
Communications
in Computer and Information Science 336

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Tai-hoon Kim
Konkuk University, Chung-ju, Chungbuk, Korea

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Xiaokang Yang
Shanghai Jiao Tong University, China



Reiner Hähnle Jens Knoop
Tiziana Margaria Dietmar Schreiner
Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification, and Validation

International Workshops
SARS 2011 and MLSC 2011
Held Under the Auspices of ISoLA 2011
in Vienna, Austria, October 17-18, 2011
Revised Selected Papers

13



Volume Editors

Reiner Hähnle
TU Darmstadt, Department of Computer Science
64289 Darmstadt, Germany
E-mail: haehnle@cs.tu-darmstadt.de

Jens Knoop
TU Vienna, Faculty of Informatics
1040 Vienna, Austria
E-mail: knoop@complang.tuwien.ac.at

Tiziana Margaria
University Potsdam, Institute of Informatics
14482 Potsdam, Germany
E-mail: margaria@cs.uni-potsdam.de

Dietmar Schreiner
TU Vienna, Faculty of Informatics
1040 Vienna, Austria
E-mail: schreiner@complang.tuwien.ac.at

Bernhard Steffen
TU Dortmund, Faculty of Informatics
44227 Dortmund, Germany
E-mail: steffen@cs.tu-dortmund.de

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-34780-1 e-ISBN 978-3-642-34781-8
DOI 10.1007/978-3-642-34781-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012951161

CR Subject Classification (1998): I.2.9, I.2.6, I.2.0-1, H.2.8, I.2.4, D.2.11, D.2.4-5,
D.2.1, J.2, F.1.1, H.3.5, I.5.3-4

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This issue contains a selection of revised papers that were presented at the
Software Aspects of Robotic Systems (SARS 2011) Workshop and the Machine
Learning for System Construction (MLSC 2011) Workshop held during October
17–18 in Vienna, Austria, under the auspices of the International Symposium Se-
ries on Leveraging Applications of Formal Methods, Verification, and Validation
(ISoLA).

Both workshops are in line with the general mission statement of the ISoLA
Symposium series. That is to provide a forum for developers, users, and re-
searchers for discussing issues related to the adoption and the use of rigorous
tools for specification, analysis, verification, certification, construction, test, and
maintenance of systems from their domain-specific point of view. Thereby, the
ISoLA symposia contribute to bridging the gap between designers and develop-
ers of (formal methods based) rigorous tools, and users in engineering and in
other disciplines.

The SARS workshop and the MLSC workshop pursue this mission within the
domains of software aspects of robotic systems and machine learning for system
construction.

The timeliness of the SARS workshop stems from the fact that development
of autonomous robotic systems experienced a remarkable boost within the last
few years. Away from stationary manufacturing units, current robots have grown
up into autonomous, mobile systems that not only interact with real-world envi-
ronments, but also fulfill mission critical tasks in collaboration with human in-
dividuals on a reliable basis. Typical fields of application are unmanned vehicles
for exploration but also for transportation, reconnaissance and search-and-rescue
in hazardous environments, and ambient-assisted living for elderly or disabled
people.

Hence, algorithms in cognition, computer vision, and locomotion have be-
come hot-spots of research and development. In addition, modern concepts like
evolutionary and bio-inspired design have entered the stage to tackle open is-
sues in robotics and to cope with domain-specific properties such as inherent
indeterminism.

The back-side of this boost is an even larger increase in complexity of modern
robotic systems. Numerous actuators and sensors have to be controlled simulta-
neously. Complex actions have to be performed via timed parallel execution of
multiple instruction streams on distinct electronic control units. Autonomy, espe-
cially long-term autonomy as required by deep-sea or space exploration missions,
necessitates features of fault-tolerance, error recovery, or at least well-defined
fallbacks. Owing to the physical interaction of robots with the real world, safety
violations are extremely harmful, in the worst case they might lead to severe
damage and even to casualties.



VI Preface

The timeliness of the MLCS workshop follows from the fact that even state-
of-the-art systems often lack adequate specifications or make use of un/under-
specified components. In fact, the popular component-based software design
paradigm naturally leads to under-specified systems, as most libraries only pro-
vide very partial specifications of their components. Moreover, revisions and
last-minute changes typically hardly enter the system specification.

As observable in many practical contexts, revision cycles are often extremely
short, making the maintenance of specifications unrealistic, and at the same time
necessitating extensive testing effort. More generally, the lack of documentation
is sadly perceived in many places, among which quality control is one of the most
prominent.

Machine learning has been proposed to overcome this situation by automat-
ically “mining” and then updating the required information. Promising results
have been obtained here using active automata-learning technology, and there
seems to be a high potential to also exploit other maching-learning techniques.

Both the SARS workshop and the MLSC workshop attracted researchers and
practioners from academia and industry and provided a lively forum for them
to present and discuss their most recent research results in the respective fields
of the two workshops.

The present issue of Communications in Computer and Information Science
contains the revised versions of selected papers that were presented at the work-
shops. These papers have undergone a second round of reviewing, and reflect
the suggestions of the reviewers as well as feedback from the presentation and
discussion of the papers at the workshops.

The topics covered by the papers of the SARS and the MLSC workshop
demonstrate the breadth and the richness of the respective fields of the two
workshops stretching from robot programming to languages and compilation
techniques, to real-time and fault tolerance, to dependability, software architec-
tures, computer vision, cognitive robotics, multi-robot coordination, and simula-
tion to bio-inspired algorithms, and from machine learning for anomaly detection,
to model construction in software product lines to classification of Web service
interfaces.

In addition the SARS workshop hosted a special session on the recently
launched KOROS project on collaborating robot systems that is borne by a con-
sortium of researchers of the faculties of architecture and planning, computer
science, electrical engineering and information technology, and mechanical and
industrial engineering at the Vienna University of Technology. The four papers
devoted to this session highlighted important research directions pursued in this
interdisciplinary research project.

Finally, we would like to thank the many individuals who contributed to
making the ISoLA 2011 worshops a success. First of all, we thank the members
of the SARS and MLSC Program Committees for their dedicated and diligent
work of selecting the papers for presentation at the two workshops. We also
thank the authors who submitted a paper to one of the workshops. Our special
thanks go to the invited keynote speakers at the SARS workshop, Davide Brugali



Preface VII

(Università degli Studi di Bergamo), Rick Middleton (National University of
Ireland Maynooth), Daniele Nardi (Sapienza Università di Roma), and Trevor
Taylor (Microsoft, Redmond). Last but not least, we thank Alfred Hofmann,
Anna Kramer, and Leonie Kunz at Springer for publishing these proceedings in
the CCIS series and for the smooth co-operation.

August 2012 Reiner Hähnle
Jens Knoop

Tiziana Margaria
Dietmar Schreiner
Bernhard Steffen



ISoLA 2011 Workshop Organization

General Chair

Tiziana Margaria University of Potsdam, Germany

SARS 2011 Workshop Chairs

Jens Knoop TU Vienna, Austria
Dietmar Schreiner TU Vienna, Austria

Program Committee

José Maŕıa Cañas Plaza Universidad Rey Juan Carlos, Fuenlabrada,
Spain

Markus Bader TU Vienna, Austria
Karl M. Göschka TU Vienna, Austria
Vincent Hugel Université de Versailles, France
Jens Knoop, Co-chair TU Vienna, Austria
Gerald Steinbauer TU Graz, Austria
Dietmar Schreiner, Co-chair TU Vienna, Austria
Stefan Tasse TU Dortmund, Germany
Markus Vincze TU Vienna, Austria
Arnoud Visser Universiteid van Amsterdam, The Netherlands
Franz Wotawa TU Graz, Austria

MLCS 2011 Workshop Chairs

Reiner Hähnle TU Darmstadt, Germany
Bernhard Steffen TU Dortmund, Germany

Program Committee

Michael Felderer Universität Innsbruck, Austria
Falk Howar TU Dortmund, Germany
Reiner Hähnle, Co-chair TU Darmstadt, Germany
Valérie Issarny INRIA, Paris-Rocquencourt, France
Richard Johansson University of Gothenburg, Sweden



X ISoLA 2011 Workshop Organization

Fabio Massaci Università di Trento, Italy
Alessandro Moschitti Università di Trento, Italy
Tomas Piatrik Queen Mary University of London, UK
Riccardo Scandariato KU Leuven, Belgium
Ina Schäfer TU Braunschweig, Germany
Bernhard Steffen, Co-chair TU Dortmund, Germany



Table of Contents

Software Aspects of Robotic Systems (SARS 2011)

A Role-Based Language for Collaborative Robot Applications . . . . . . . . . 1
Sebastian Götz, Max Leuthäuser, Jan Reimann, Julia Schroeter,
Christian Wende, Claas Wilke, and Uwe Aßmann

Efficient Localization for Robot Soccer Using Pattern Matching . . . . . . . . 16
Thomas Whelan, Sonja Stüdli, John McDonald, and
Richard H. Middleton

A NUPlatform for Software on Articulated Mobile Robots . . . . . . . . . . . . . 31
Jason Kulk and James S. Welsh

Service Component Architectures in Robotics: The SCA-Orocos
Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Davide Brugali, Luca Gherardi, Markus Klotzbücher, and
Herman Bruyninckx

Safe Autonomous Transport Vehicles in Heterogeneous Outdoor
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Tobe Toben, Sönke Eilers, Christian Kuka, Sören Schweigert,
Hannes Winkelmann, and Stefan Ruehrup

Adaptive Autonomous Systems – From the System’s Architecture
to Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Franz Wotawa

Representing Knowledge in Robotic Systems with KnowLang . . . . . . . . . . 91
Emil Vassev and Mike Hinchey

Object Detection and Classification for Domestic Robots . . . . . . . . . . . . . . 106
Markus Vincze, Walter Wohlkinger, Sven Olufs, Peter Einramhof,
Robert Schwarz, and Karthik Varadarajan

A Software Integration Framework for Cognitive Systems . . . . . . . . . . . . . 121
Michael Zillich, Wolfgang Ponweiser, and Markus Vincze

Special Session on KOROS

KOROS Initiative: Automatized Throwing and Catching for Material
Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Martin Pongratz, Klaus Pollhammer, and Alexander Szep



XII Table of Contents

Cognitive Decision Unit Applied to Autonomous Robots . . . . . . . . . . . . . . 144
Dietmar Bruckner and Friedrich Gelbard

Building iRIS: A Robotic Immune System . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Dietmar Schreiner

Towards Reorientation with a Humanoid Robot . . . . . . . . . . . . . . . . . . . . . . 156
Dietmar Bruckner, Markus Vincze, and Isabella Hinterleitner

Machine Learning for System Construction
(MLSC 2011)

Monitoring Anomalies in IT-Landscapes Using Clustering Techniques
and Complex Event Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Matthias Gander, Michael Felderer, Basel Katt, and Ruth Breu

A Hierarchical Variability Model for Software Product Lines . . . . . . . . . . . 181
Dilian Gurov, Bjarte M. Østvold, and Ina Schaefer

Learning-Based Software Testing: A Tutorial . . . . . . . . . . . . . . . . . . . . . . . . 200
Karl Meinke, F. Niu, and M. Sindhu

Machine Learning for Automatic Classification of Web Service Interface
Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Amel Bennaceur, Valérie Issarny, Richard Johansson,
Alessandro Moschitti, Daniel Sykes, and Romina Spalazzese

The Teachers’ Crowd: The Impact of Distributed Oracles on Active
Automata Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Falk Howar, Oliver Bauer, Maik Merten, Bernhard Steffen, and
Tiziana Margaria

Automata Learning with On-the-Fly Direct Hypothesis Construction . . . 248
Maik Merten, Falk Howar, Bernhard Steffen, and Tiziana Margaria

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



A Role-Based Language

for Collaborative Robot Applications

Sebastian Götz, Max Leuthäuser, Jan Reimann, Julia Schroeter,
Christian Wende, Claas Wilke, and Uwe Aßmann

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
sebastian.goetz@acm.org, max.leuthaeuser@googlemail.com,

{jan.reimann,julia.schroeter,c.wende,
claas.wilke,uwe.assmann}@tu-dresden.de

Abstract. The recent progress in robotic hard- and software motivates
novel, collaborative robot applications, where multiple robots jointly ac-
complish complex tasks like surveillance or rescue scenarios. Such ap-
plications impose two basic challenges: (1) the complexity of specifying
collaborative behavior and (2) the need for a flexible and lightweight
communication infrastructure for mobile robot teams. To address these
challenges, we introduce NaoText, a role-based domain-specific language
for specifying collaborative robot applications. It contributes dedicated
abstractions to conveniently structure and implement collaborative be-
havior and thus, addresses the complexity challenge. To evaluate Nao-
Text specifications, we introduce an interpreter architecture that is based
on representational state transfer (REST) as a lightweight and flexible
infrastructure for communication among robot teams. We exemplify the
application of NaoText using an illustrative example of robots collaborat-
ing in a soccer game and discuss benefits and challenges for our approach
compared to state-of-the-art in robot programming.

1 Introduction

Recent progress in robotic hard- and software has led to more sophisticated and
easier programmable robot platforms. In addition to their classical domains in
fabrication and research, robots are expected to become affordable for all-day ap-
plications within the coming decade, e.g., in home entertainment or facility man-
agement. This leads to new application scenarios where robots are distributed,
mobile, and communicating, solving complex tasks in collaborating teams, e.g.,
rescue or surveillance missions.

Typically, robot behavior is implemented in one of two different ways: (1)
general purpose languages (GPLs) such as C, C++, or Java can be used for
robot programming or (2) abstract domain-specific languages (DSLs) (e.g., Mi-
crosoft’s visual programming language (VPL), Choregraphe1 from Aldebaran, or

1 http://www.aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.
html

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.html
http://www.aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.html


2 S. Götz et al.

LabView for Mindstorms NXT2) can be used and have gained momentum in the
robotics community [8]. However, implementing collaborative scenarios is still
a challenging task, as the declarative expression of collaborations as first-class
programming constructs is not supported by any of these languages.

For the future of robot programming, we envision a role-based [23] approach
to express and control robot collaborations. Achieving this vision induces two
main requirements: First, abstraction from robot-platform specific concepts and
support for the expression of collaborative robot applications in an easy and com-
prehensive way. Second, a flexible and lightweight communication infrastructure
to enable execution and coordination of collaborative tasks among robot teams.
We argue that such coordination can be realized using a (possibly external) con-
troller that executes a given collaboration specification and monitors and steers
collaborative robot behavior (cf. Fig. 1).

Execution Layers

API API API

Coordinator

Nao 1 Nao ... Nao N

NaoText 
Program

Interpretation

Information 
retrieval

Distribution 
of subtasks

Legend:

Fig. 1. Naos Working in Collaboration via a central Coordinator

To address these requirements, this paper introduces NaoText, a role-based
DSL for programming collaborative robot applications. NaoText is based on the
concept of contexts allowing convenient specifications of how the entities of a
system behave in respective contexts. This partial (i.e., context-dependent) be-
havior is denoted by roles, which interact to achieve collaborative behavior. As
depicted in Fig. 1, NaoText is executed by a Java-based interpreter that is run-
ning on a central coordinator scheduling tasks of collaborative applications to
several robots communicating with the coordinator. The communication is based
on a lightweight, representational state transfer (REST)-ful service-oriented ar-
chitecture (SOA) that consists of and interconnects two stacks of layers. The
first stack runs on the coordinator and evaluates a NaoText-based collabora-
tion specification. The second stack of layers runs on each robot and exposes its

2 http://www.ni.com/academic/mindstorms/



A Role-Based Language for Collaborative Robot Applications 3

functionality using REST-ful Web services that are accessed and invoked by the
coordinator. This paper introduces both NaoText and its underlying implemen-
tation architecture. Furthermore, we exemplify the application of NaoText using
a soccer game as an exemplary collaborative robot application and discuss it’s
advantages and disadvantages.

The remainder of the paper is structured as follows. In Sect. 2 we present our
exemplary robot soccer application. In Sect. 3, we shortly outline the architecture
implemented to evaluate NaoText projects. Sect. 4 introduces the foundations of
NaoText for specifying collaborative robot applications by using the introduced
example. We discuss benefits of and challenges for our approach in Sect. 5. A
detailed discussion of related work follows in Sect. 6. Finally, Sect. 7 concludes
this paper and outlines future work.

2 Motivating Example

To illustrate the need for a language which allows to express collaborations be-
tween robots, we introduce a motivating example in this section. A well-known
testbed for the robotics community and interdisciplinary research is the Robo-
Cup.3 Robot soccer—an area of competition amongst others at the RoboCup—
is a highly dynamic, collaborative, and context-sensitive game. Hence, for our
motivating example, we choose a robot soccer scenario with Nao robots. The
Nao—developed by Aldebaran Robotics—is a humanoid robot produced in se-
ries and offering a standard platform. It has been chosen as the model for the
standard platform league at the RoboCup in 2011.

The basic structure of robot soccer is analog to usual soccer. Two teams play
against each other and a referee takes care that every participant respects the
rules. Each team comprises several roles: goalkeepers, strikers, defensive players,
and sweepers. Depending on the number of robots per team,4 only some of these
roles are bound to players during a match. Further, a single role can be played
by multiple robots (e.g., the defensive player role) or can be bound to only one
robot per team (e.g., the goalkeeper role).

Notably, several contexts can be identified for a soccer match. Besides each
team forming a separate context, situations at runtime determine contexts, too.
If, for example, two players intend to pass the ball from one to the other, this
pass defines a context of its own. Further examples include the shot on goal,
the tackling, and the corner kick, to name but a few. Each context defines roles,
which in turn specify how the participants in this context behave. For example,
a robot, which intends to pass the ball to a teammate, starts playing the Sender
role in the Pass context. It has to compute the angle to the receiving robot
(Receiver) and shoot the ball in case there are no opponents in the trajectory.
Fig. 2 depicts the central concepts used in our example. It first introduces the
context Football_Game defining the above mentioned roles of a football team.

3 http://www.robocup.org/
4 In robot soccer, less than eleven participants per team are common.



4 S. Götz et al.

<context> 

Football_Game

<role>

Referee

<context> 

Pass
<role>

Sender

<role>

Receiver
…

<role>

Goalkeeper

<role>

Striker
<role>

Sweeper

<context> 

Ball_Possession

<role>

Ball_Possessor

<role>

Ball_Seeker

Fig. 2. Selected Concepts of Robot Soccer

In an inner context named Pass the special roles of players taking part in the
pass collaboration (Sender, Receiver) are introduced.

Most of the logic behind soccer depends on the current game situation
(i.e., on the current context of the collaborating robots). In a naive implementa-
tion, contexts and roles need to be represented using concepts of a conventional
GPL. Here, we experience tangling code of different collaborations (i.e., behavior
to be performed in different situations) and scattered code for a single collabo-
ration across the code of the application by replication of if-statements.

Listing 1 shows a simplified code snippet, specifying the behavior for a robot.
The behavior of the robot depends on whether it is in possession of the ball
(if (BALL_POSSESSION)), whether it is in the role of a goalkeeper (if (GOAL-
KEEPER)) and whether it is the sender or receiver of a pass (if (SENDER),
if (RECEIVER)). The checks for the ball possessor, sender and receiver roles
need to be replicated in the else-branch of the check for the goalkeeper role.

1 if (GOALKEEPER) {
2 if (BALL_POSSESSION) {
3 if(SENDER) { throw_ball: nearest_free_player: this; }
4 else if(RECEIVER) {...}
5 }
6 else {...}
7 }
8 else {
9 if(BALL_POSSESSION) { /* replicated if structure */
10 if(SENDER) { shoot_ball: nearest_free_player: this; }
11 else if(RECEIVER) {...}
12 } else {...}
13 ...
14 }

Listing 1. Example Behavior Specification Including four Roles



A Role-Based Language for Collaborative Robot Applications 5

The illustrated nesting is required, because the actual behavior in the branches
could differ. As shown in the example, a goalkeeper will throw the ball to the
nearest player relative to himself (cf. line 3), whereas a usual player has to
shoot the ball (cf. line 10). Notably, each additional role and each additional
context will further impair replication. Scattering leads to issues in code main-
tenance, as a change in the behavior of a goalkeeper requires adjustments of
multiple—syntactically distributed and unrelated—code segments. Hence, suit-
able abstraction and modularization mechanisms are required to avoid code scat-
tering and replication. Before we present NaoText in Sect. 4—which comprises
such mechanisms—we will outline our architecture in the next section.

3 Applying SOA for Simple Robot Coordination

This section introduces our architecture for implementing the interpreter used
to evaluate NaoText-based specifications of collaborative robot applications.
Shifting the focus of robot programming from singular automation units to dis-
tributed, mobile teams of collaborating robots induces the need for a communi-
cation architecture that establishes communication channels among the involved
robots [26]. We suggest a distributed architecture that uses Web services for com-
munication. The numerous benefits of Web services and SOA introduced in [12]
are beneficial for the following reasons:

Platform Independence. Web services provide a standardized communica-
tion protocol that is implemented in and can be accessed from various plat-
forms. This is beneficial both for implementing services and the service in-
terface for concrete robot platforms to remotely access and control these
services.

Declarative Interface. Web services declare an interface abstracting the phys-
ical implementation of a given functionality. This means implementation can
be exchanged, adopted or ported to other infrastructures. This is beneficial
w.r.t. the heterogeneity found in today’s robot platforms.

Location Transparency. Services are invoked through a communication net-
work that routes service calls to the receivers independent of their location.

Various authors [14,16,18,24,25] suggest the implementation of SOAs for robot
communication using the simple object access protocol (SOAP) or the common
object request broker architecture (CORBA). Both approaches are often criti-
cized for requiring a sophisticated messaging infrastructure. This is a problem,
especially w.r.t. the restricted capabilities of software running on robots. We ad-
dress this issue by implementing SOA using REST. As REST builds on HTTP
and URIs for routing and calling Web services, it alleviates the need for custom
communication middleware and can easily be deployed for robots connected
through a wireless network. In the following, we describe the implementation of
a REST-ful SOA for Nao robots.

Fig. 3 shows the application of SOA concepts to remotely control and co-
ordinate a set of Nao humanoid robots. It consists of two stacks of layers.



6 S. Götz et al.

NaoQi (C++, from Aldebaran)

Python Bridge for NaoQi (Python, from Aldebaran)

Nao Web Service (Python)

Nao Web Service Proxies (e.g., Java)

Utility (e.g., Java)

remote communication

DSL (e.g., NaoText)

simulatable

locally 
executable 

generated

Running on 
Coordinator

Running on 
each Robot

Fig. 3. Example for a layered architecture to control Nao robots

The lower stack contributes three layers implementing REST for Nao robots.
The upper stack of layers runs on the coordinator that accesses this REST in-
terface for controlling a collaborating team of robots (cf. Fig. 1).

Naos are controlled via NaoQi which represents the lowest layer of our archi-
tecture that is closest to the Naos’ hardware (cf. Fig. 3). NaoQi provides an API
for interacting with individual Nao sensors. Furthermore, it provides an API for
basic actions such as controlling specific motors of a Nao or invoking the text-
to-speech module. NaoQi is implemented in C++ and provided by Aldebaran.
On top of NaoQi, Aldebaran provides a Python bridge that exposes the NaoQi
API for the Python language. Using Python, we built a Web service layer that
exposes the NaoQi services as REST-ful Web services. This Web service layer
is automatically generated from the Python bridge using the introspection ca-
pabilities of Python. This approach strongly reduced our implementation effort
and also eases the evolution of the Web service interface when NaoQi changes.
Besides directly accessing the Web services, all provided services can be explored
using a web browser. Each Web service can be called using HTML forms (gen-
erated by the Web service using templates). Our implementation is published5

under GPL.
To access the Web service from the coordinator, we implemented a code gen-

erator that generates Java proxies. The proxies encapsulate the remote commu-
nication with the generated Web services. Above this layer, we implemented a
number of utility interfaces that combine a number of low level Web services to
more abstract behavior units. E.g., it provides a method walkTo(int x, int y)
to let a Nao walk into a certain direction. Internally, the method computes the
angle into which the robot has to rotate and how far it has to walk. Afterwards,
a proxy object is created and the command is transmitted to the robot. Further
above, in the top layer of our architecture, we find the interpreter for NaoText,
which is described in more detail in Sect. 4. Briefly, the interpreter is executed by

5 http://code.google.com/p/naoservice/

http://code.google.com/p/naoservice/


A Role-Based Language for Collaborative Robot Applications 7

the coordinator and interprets NaoText programs. The interpreter also monitors
the system status and manages the activation of contexts and bindings of roles
to robots.

This simple SOA provides a communication infrastructure between our inter-
preter and the individual Nao robots. Similar solutions are easy to implement for
other robot platforms. Further, the three lower layers can be simulated on desk-
top PCs to emulate the Nao robots. Thus, our architecture allows in-the-loop
development and test of NaoText programs, too.

4 NaoText for Controlling Collaborating Robots

In this section, we introduce NaoText—a role-based DSL to specify the behavior
of collaborating robots. It contributes an appropriate abstraction and ensures
platform-independence for collaborative robot applications. We introduce the
design of NaoText and illustrate its application on our motivational example.

4.1 Design of NaoText

In Fig. 4 we illustrate the design of NaoText by an excerpt of its metamodel. To
manage the complexity of collaborative tasks we choose Role and Context as
central abstractions in NaoText. The concept of roles, first applied over 30 years
ago [2], embodies partial behavior of participants in a collaboration [19]. Thus,
these concepts allow for concise specifications of collaborations. Roles are of
founded, non-rigid types [15]. The property of being founded connotes that a
type is dependent on another type. Consequently, Roles cannot exist on their
own, but have to be contained in a Context. Non-rigidity connotes that instances
do not cease to exist, when they stop having a non-rigid type. For example, a
concrete robot being a striker does not cease to exist, when it stops being a
striker. In consequence, each role needs to be bound to a player (e.g., the robot
in the aforementioned example).

RoleContext

RoleConstraint

ConstraintKind

Implication 
Prohibition
Equivalence

Block Statement

Operation
WhileStatement

IfElseStatement

VariableAssignment...

constraints *

roles *
behavior

operations  * 
body 

statements 
*  

source target 

CallStatement

ActivationRule

rule

Fig. 4. Excerpt of Metamodel for the role-based NaoText DSL



8 S. Götz et al.

A multitude of approaches to constrain this binding exist. Besides hard con-
straints, restricting the players of a role to a single type as in ObjectTeams [17],
complex set constraints have been investigated in the context of first-class rela-
tionships [5]. NaoText uses a lean, but expressive way to constraint role bind-
ings that was introduced in [21]. It allows the definition of three kinds of binary
RoleConstraints: Implication, Equivalence, and Prohibition. If a role A
implies role B, every player of role A has to play role B in addition. The role-
equivalence applies the implication in a bidirectional way. Finally, if a role A
prohibits a role B, no player of A is allowed to play role B at the same time.

The binding of roles to players during runtime is controlled using Activa-
tionRules. These rules describe patterns for potential role players and trigger
the activation of a context if matching players are found. Such context activation
imposes the binding or rebinding of the roles for the matched players and initiates
the evaluation of their respective behavior.

To model the behavior of roles in NaoText, each Role contains a behavior
Block. This Block contains a list of Statements. The kinds of statements avail-
able in NaoText resemble those typically found in imperative, object-oriented
languages (e.g., WhileStatement, IfElseStatement, VariableAssignment). Us-
ing CallStatements, behavioral specifications can be modularized. CallState-
ments can refer to Operations or call Web services defined for Naos.

4.2 Application on Our Motivating Example

In the following, we will present the application of NaoText for our motivating
example. First, we discuss how the declarative part of NaoText (roles and con-
texts) is used to structure robot collaborations. Then, we present the application
of imperative language concepts.

Listing 2 shows the declaration of the Pass (lines 11–44) context as intro-
duced in Fig. 2 in NaoText syntax. The context Pass introduces two roles: the
Sender (lines 24–36) and the Receiver (lines 38–43). The context’s activation is
controlled by the activation rule defined in lines 14–22. The rule relates to roles
defined in the surrounding context Ball_Possession (lines 1–45). Whenever a
robot playing the role BallPossessor identifies another robot playing the role
BallSeeker and is itself not able to do a shot on goal, the context Pass is acti-
vated. As a result of the activation, the BallPossessor becomes a Sender and
the BallSeeker becomes a Receiver. Multiple such rules can be defined for each
context. In addition, a role-prohibition constraint expresses the exclusiveness of
the roles Sender and Receiver (line 12).

Besides the definition of contexts and roles, we use NaoText to describe the
robots’ behavior w.r.t. roles they are currently playing. Therefore, we use im-
perative language constructs to control services to be fulfilled by the robots. In
Listing 2 both roles (Sender and Receiver) comprise a behavior block, which
defines the roles’ behavior (lines 26–34 and 39–42). The Sender role defines the
behavior to be performed by a ball possessing robot, which intends to pass the
ball. If the robot concludes that the ball is catchable by an opposing robot, it
will feint a shoot and walk away. Else a pass is performed by passing the ball



A Role-Based Language for Collaborative Robot Applications 9

1 context Ball_Possession {
2 role BallSeeker {
3 behavior {...}
4 void randomWalkWithBall {
5 walk_to: random_int(20), random_int(20)
6 }
7 //...
8 }
9 role BallPossessor {...}
10
11 context Pass {
12 Sender prohibits Receiver;
13
14 activate for {
15 BallPossessor p;
16 BallSeeker s;
17 when {
18 (p.robotInVision: s) and not (p as Striker).isGoalShotPossible;
19 } with bindings {
20 p->Sender;
21 s->Receiver;
22 }
23
24 role Sender {
25 attr passRatio: float;
26 behavior {
27 if(ballCatchableByOpponent) {
28 feintShoot;
29 randomWalkWithBall;
30 } else {
31 boolean hit = shootBall;
32 updatePassRatio: hit;
33 }
34 }
35 void updatePassRatio hit:boolean {...}
36 }
37
38 role Receiver {
39 behavior {
40 waitForBallInVision;
41 catchBall;
42 }
43 }
44 }
45 }

Listing 2. Example NaoText Code including the Pass Context



10 S. Götz et al.

to another robot. Notably, the Sender role includes an attribute for the ratio of
successful or failed passes, which can be used for a more sophisticated decision
making procedure than in the example shown here. The Receiver role defines
that the robot will wait for the ball to appear in its vision followed by catching
the ball. After the ball has been catched by the Receiver, the context is finished
and other context activation rules will trigger a reconfiguration of role bindings.
At runtime, the NaoText interpreter evaluates the description of role behavior
and invokes the behavior method of the respective roles. The individual in-
structions are evaluated and, finally, transmitted as calls to the robot playing
the respective role using the communication infrastructure introduced in Sect. 3.

In this section, we applied NaoText to declare roles and contexts and to imper-
atively describe the roles’ behavior for soccer playing. Of course, implementing
a complete soccer scenario involves more contexts and roles as outlined above.
Also the concrete behavior specification are likely to be more complex as well.
However, we think that the example can give an impression of how NaoText
can improve the development of collaborative robot applications. In the next
section, we present an initial evaluation of NaoText by discussing its benefits
and challenges w.r.t. alternative approaches to specify robot collaborations.

5 Discussion

Using a SOA comes together with both advantages and disadvantages in the con-
text of collaborative robot applications. On the one hand, using a SOA instead
of other mechanisms like remote method invocation (RMI), leads to communica-
tion overhead at runtime. Thus, we decided to use a REST-ful SOA to minimize
this communication overhead. On the other hand, SOAs allow for location trans-
parency and uniform addressability. Especially, our proxy generator for the Nao
Web service provides easy connectivity for every GPL.

As our approach proposes the execution of NaoText programs on a central
coordinator node, it can be considered as an approach that shifts the applica-
tion logic from individual robots into the cloud. This leads to thin robots that
propagate their state to the coordinator node and receive commands they have
to execute to interact with their environment. This approach has advantages
as well as disadvantages, too. Coordinating all participating robots from a cen-
tral node leads to operability problems once the coordinator node fails. In this
situation, the robots can neither communicate with each other nor collaborate.
However—when operating—the central coordinator node maintains the global
state of the application and thus, knows about the robots’ locations and their
further attributes (e.g., whether or not they are close to other robots etc.). Thus,
the coordinator can easily grant and remove roles from individual robots to con-
trol the collaboration in an optimal way. Furthermore, the deployment of the
application logic into the cloud avoids the computation of complex applications
on the robots. Thus, they can save their often limited resources for basic func-
tionality which leads to better robot operability (e.g., longer battery life time).

In addition of using a central coordinator node, we propose to use a role-based
DSL which leads to the following advantages and disadvantages: First, of course,



A Role-Based Language for Collaborative Robot Applications 11

the implementation of a new DSL imposes efforts such as the language’s design
and the implementation of a parser, an interpreter, and/or a compiler. However,
afterwards, the DSL leads to several advantages in contrast to GPLs. A DSL
allows for abstraction from general-purpose concepts and expressing the behav-
ior in lesser instructions being more appropriate for the domain of the language
(i.e., humanoid robots). For example, instead of writing a block of Java code
comprising several statements to let a Nao walk to a certain position, a single
statement is sufficient to express the same behavior within NaoText. Thus, DSLs
lead to more intuitive behavior implementations that are easier to understand
and maintain. Besides, by introducing imperative robot commands that abstract
from interface invocations for robot-platform specific services, the DSL can be
easily connected to other robots. Instead of writing a completely new NaoText
program, we only have to create new service adapters for the newly introduced
robot type (e.g., to integrate Mindstorm robots into our soccer scenario). Be-
sides the advantages of DSLs in general, the role-based concepts integrated into
NaoText allow for a declarative expression of robot collaborations. Code replica-
tion and sections of nested if-statements can be avoided. By this, the utilization
of roles fosters comprehensibility and maintainability. A similar implementation
in imperative source-code would lead to a robot’s behavior scattered over many
if-statements checking its current contexts and state.

Finally, the annotation and analysis of non-functional properties is vital for
handling safety-, time-, or resource critical characteristics of robots interacting
with the physical world. A DSL offers the right level of abstraction to easily im-
plement static analysis and testing capabilities. E.g., role constraints provide an
easy concept to prohibit behavior of robots that is expected to be not executed
in parallel (e.g., a referee should not shoot a goal). Furthermore, the imperative
statements of NaoText provide the right level of abstraction for the estimation
of non-functional properties (e.g., execution time or energy consumption) of in-
dividual Naos, whereas by using a complete GPL for static analysis, large parts
of the analysis would have to deal with several general-purpose concepts being
less important for the context of collaborative robot applications.

6 Related Work

NaoText as presented in this paper contributes a communication architecture
and a role-based DSL to specify the behavior of collaborative robot applications.
In this section we discuss related work and differences to our approach.

Communication Aspects. The authors of [26] state that communication between
robots is essential for team play and therefore discuss explicit communication as
an approach for robot collaborations. Many works use SOA to address the prob-
lem of realizing the collaboration between robots. The works of [14,16,25] pro-
pose either to use CORBA or SOAP for the communication among robot teams.
In contrast, we decided to use REST-ful services—like some platforms for net-
worked mobile robotics do [6,11]—because REST does not need any additional



12 S. Götz et al.

communication middleware as it has no additional transport layer. Furthermore,
[24] proposes to use Web services to access and control robots, where a single ma-
chine orchestrates the synchronization between different tasks and robots. This
infrastructure offers control over a group of heterogeneous robots through the
Internet. Thus, they address the lack of standardized interfaces and communica-
tion protocols to interconnect heterogeneous robots over the Internet. In contrast
to our approach, the Web service protocol was not implemented directly on the
robots and no DSL to specify collaborations is presented. Chen and Bai describe
another scenario with collaborative robots [8]. In their approach the robots are
orchestrated by a remote collaboration center (RCC) and communicate via Web
services. The Robotics DeveloperStudio from Microsoft is used to realize collab-
orations. To ease the communication between robots and to provide reusable
software components, the robot operating system (ROS) framework has been
developed [18]. It provides a communication layer for robot applications that
can be used for both peer-to-peer communication and SOA-like communication
between nodes in robot applications. Besides the communication layer, ROS pro-
vides a hardware abstraction layer and libraries for commonly used functionality.
The framework is language independent in the way that it is available for multi-
ple GPLs, like Phyton, C++ and Lisp. Experimental implementations for Java
and Lua exist as well. The open-source framework urbi6 can be used to control
robots and their collaboration in general. Therefore it offers a low level C++
component library, which simplifies the process of writing programs. Multiple
robot-specific implementations of urbi exists. As the resources for computing
algorithms on robots themselves are limited, recent efforts have been spent to
shift computationally intensive functions into the cloud. DAvinCi is such a cloud
computing framework for collaborating service robots [1]. In DAvinci robotic al-
gorithms are exposed as a service. The data is shared among the robot cluster
cooperatively. The term robot as a service (RaaS) is created in [9]. The work
shows, that a robot can be used in the cloud as a SOA-unit, providing and con-
suming services and acting as a service broker. Challenges for the development
of distributed robotic services are summarized in [20].

Language Aspects. Using a DSL to describe robot behavior and collaboration is
promising, since it helps to abstract from hardware and low level implementation
details. Spica is a model-driven software development environment for creating
multi-robot communication infrastructures [3,4]. The development environment
consists of several DSLs to specify the different aspects of robot communica-
tion. In contrast to our approach, the DSL used to describe robotics’ behavior
is not capable of roles. Naos are delivered together with the development en-
vironment Choregraphe. It allows developing a Nao’s application in a graphical
and component-based manner. Complex applications can be plugged together
using basic building blocks like stand up, sit down, or text-to-speech. Although
Choregraphe allows easy development of applications for single Nao robots, it
does not support Nao interaction nor interaction between Naos and other robots

6 http://www.urbiforge.org/

http://www.urbiforge.org/


A Role-Based Language for Collaborative Robot Applications 13

or players in its environment, neither in an imperative nor in a declarative way.
The Robotics DeveloperStudio from Microsoft provides a runtime environment
to create, host, manage, and connect distributed services. The language used in
the Robotics DeveloperStudio is called VPL . It builds on the .NET framework
and is comparable to the language used in Choregraphe.

Roles for Collaborative Robot Applications. In our approach, we propose to use
roles to describe the collaboration between robots. The applicability of roles in
controlling cooperative robots is examined in [7]. The robots act independently,
but can react to messages they send to each other. The concept of roles as used
in [7] is comparable to a state the robot is in at a time. Therefore, roles and
role changes are expressed as a finite automaton for each robot. Our example
introduced in Sect. 2 shows the ability of a robot to play multiple roles at once.
In consequence, modeling role changes as transitions in an automaton leads to
an exploding number of states. This is because each possible combination of
roles has to be represented by a separate state of the automaton. In contrast,
we declare role and context changes by means of activation rules as shown in
Listing 2. An approach using roles for the collaboration of modules a robot con-
sists of is presented in [22]. In this approach, roles are used to express the (active
and reactive) behavior as well as the structure of the modules of a robot. The
authors provide a role-based DSL called Role-based Distribution Control Diffu-
sion (RDCD) to implement their approach for the ATRON self-reconfigurable
robot. The language is an extension to RAPL (Role-based ATRON Programming
Language), that is presented in [10]. Role changes can occur as a reaction of a
message from one of the robots’ modules or internal events send by sensors of a
robot. The DSL provides primitives for making simple decisions, whereas com-
plex computations are described externally. They focus on a single robot and
the collaboration between its modules, where only neighbor modules are able to
collaborate. In contrast, our approach focuses on the collaboration of multiple
independent robots.

7 Conclusion

In this paper we discussed the fundamental concepts of NaoText, a DSL sup-
porting role concepts for the implementation of collaborative robot applications.
We presented an architecture to evaluate NaoText programs based on a central
coordinator that monitors the system status and controls collaborative robot
teams. For communication between the coordinator and the individual robots
this architecture uses REST-ful Web services. We demonstrated the application
of NaoText using an exemplary football application. Our approach leverages
abstraction and comprehensibility in the implementation of collaborative robot
behavior and contributes a lightweight architecture for collaborations among
robots that is easily extensible to support further robot platforms besides Naos.
We discussed differences and commonalities of our approach with related work.

For future work, we plan to implement an interpreter for NaoText and to
complement the NaoText tooling with static analyzers, to ensure functional and



14 S. Götz et al.

non-functional properties (NFPs) (e.g., performance and energy consumption)
and to develop testing capabilities for NaoText applications. We also plan to
improve the expressiveness of NaoText by integration of predicate dispatch [13]
(i.e., the dynamic selection of appropriate method implementations w.r.t. pred-
icates over the state, structure and NFPs of the system). Notably, the currently
used role dispatch is a special case of predicate dispatch. Finally, we will extend
our interpreter architecture to support further robot platforms and other physi-
cal devices, to enable the specification of sophisticated cyber-physical systems.

Acknowledgement. This research is funded by the DFG within CRC 912 (HAEC),
the European Social Fund and Federal State of Saxony within the project ZESSY
#080951806 and by the European Social Fund, Federal State of Saxony and SAP AG
within project #080949335.

References

1. Arumugam, R., Enti, V., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F.,
Kumar, A., Meng, K.D., Kit, G.W.: DAvinCi: A cloud computing framework for
service robots. In: IEEE International Conference on Robotics and Automation
(ICRA 2010), pp. 3084–3089 (2010)

2. Bachman, C., Daya, M.: The role concept in data models. In: Proceedings of the
3rd Conference on Very Large Data Bases (VLDB), pp. 464–476 (1977)

3. Baer, P.A., Reichle, R.: Communication and Collaboration in Heterogeneous Teams
of Soccer Robots, ch.1, pp. 1–28. Tech Education and Publishing, Vienna (2007)

4. Baer,P.A.,Reichle,R.,Geihs,K.:TheSpicaDevelopmentFramework -Model-Driven
Software Development for Autonomous Mobile Robots. In: Proceedings of Interna-
tional Conference on Intelligent Autonomous Systems (IAS 2010), pp. 211–220. IAS
Society (2008)

5. Balzer, S., Gross, T.R., Eugster, P.T.: A Relational Model of Object Collaborations
and Its Use in Reasoning About Relationships. In: Bateni, M. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 323–346. Springer, Heidelberg (2007)

6. Cardozo, E., Guimaraes, E.G., Rocha, L.A., Souza, R.S., Paolieri Neto, F., Pinho, F.:
A platform for networked robotics. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2010), Taiwan, pp. 1000–1005
(2010)

7. Chaimowicz, L., Campos, M., Kumar, V.: Dynamic role assignment for cooperative
robots. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2002), pp. 293–298. IEEE (2002)

8. Chen, Y., Bai, X.: On Robotics Applications in Service-Oriented Architecture.
In: 28th International Conference on Distributed Computing Systems Workshops
(ICDCS 2008), pp. 551–556 (2008)

9. Chen, Y., Du, Z., Garcia-Acosta, M.: Robot as a Service in Cloud Computing. In:
IEEE InternationalWorkshop on Service-Oriented SystemEngineering, pp. 151–158
(2010)

10. Dvinge, N., Schultz, U., Christensen, D.: Roles and Self-Reconfigurable Robots. In:
Roles 2007, pp. 17–26 (2007)



A Role-Based Language for Collaborative Robot Applications 15

11. Edwards, R., Parker, L.E., Resseguie, D.R.: Robopedia: Leveraging Sensorpedia for
Web-Enabled Robot Control. In: Proceedings of 8th IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PERCOM 2010),
pp. 183–188 (2010)

12. Erl, T.: Service-oriented architecture: Concepts, Technology, and Design. Prentice
Hall PTR (2005)

13. Ernst, M., Kaplan, C., Chambers, C.: Predicate Dispatching: A Unified Theory of
Dispatch. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 186–211. Springer,
Heidelberg (1998)

14. Flückiger, L., To, V., Utz, H.: Service-Oriented Robotic Architecture Support-
ing a Lunar Analog Test. In: International Symposium on Artificial Intelligence,
Robotics, and Automation in Space, iSAIRAS (2008)

15. Guarino, N., Welty, C.A.: A Formal Ontology of Properties. In: Dieng, R., Corby,
O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 97–112. Springer, Heidelberg
(2000)

16. Ha, Y.-G., Sohn, J.-C., Cho, Y.-J.: Service-Oriented Integration of Networked
Robots with Ubiquitous Sensors and Devices using the Semantic Web Services
Technology. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2005), pp. 3947–3952 (2005)

17. Herrmann, S.: A Precise Model for Contextual Roles: The Programming Language
ObjectTeams/Java. Applied Ontology 2(2), 181–207 (2007)

18. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

19. Reenskaug, T., Wold, P., Lehne, O.: Working with objects - The OOram Software
Engineering Method. In: TASKON (1995)

20. Remy, S.L., Blake, M.B.: Distributed Service-Oriented Robotics. IEEE Internet
Computing 15, 70–74 (2011)

21. Riehle, D., Gross, T.: Role model based framework design and integration. In: Pro-
ceedings of the 13th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA 1998), pp. 117–133. ACM, New
York (1998)

22. Schultz, U.P., Christensen, D.J., Stoy, K.: A domain-specific language for program-
ming self-reconfigurable robots. In: Workshop on Automatic Program Generation
for Embedded Systems (APGES), pp. 28–36 (October 2007)

23. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. IEEE Transactions on Data and Knowledge Engineering 35(1), 83–106
(2000)

24. Trifa, V.M., Cianci, C.M., Guinard, D.: Dynamic Control of a Robotic Swarm using
a Service-Oriented Architecture. In: 13th International Symposium on Artificial
Life and Robotics, AROB 2008 (2008)

25. Wu, B., Zhou, B.-H., Xi, L.-F.: Remote multi-robot monitoring and control system
based on MMS and web services. Industrial Robot: An International Journal 34,
225–239 (2007)

26. Yokota, K., Ozaki, K., Watanabe, N., Matsumoto, A., Koyama, D., Ishikawa, T.,
Kawabata, K., Kaetsu, H., Asama, H.: UTTORI United: Cooperative Team Play
Based on Communication. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS
(LNAI), vol. 1604, pp. 479–484. Springer, Heidelberg (1999)



Efficient Localization

for Robot Soccer Using Pattern Matching

Thomas Whelan, Sonja Stüdli, John McDonald, and Richard H. Middleton�

Department of Computer Science, NUI Maynooth, Maynooth, Co. Kildare, Ireland
Hamilton Institute, NUI Maynooth, Maynooth, Co. Kildare, Ireland
{thomas.j.whelan,sonja.stuedli,richard.middleton}@nuim.ie,

johnmcd@cs.nuim.ie

Abstract. One of the biggest challenges in the RoboCup Soccer Stan-
dard Platform League (SPL) is autonomously achieving and maintaining
an accurate estimate of a robot’s position and orientation on the field.
In other robotics applications many robust systems already exist for lo-
calization such as visual simultaneous localization and mapping (SLAM)
and LIDAR based SLAM. These approaches either require special hard-
ware or are very computationally expensive and are not suitable for the
Nao robot, the current robot of choice for the SPL. Therefore novel ap-
proaches to localization in the RoboCup SPL environment are required.
In this paper we present a new approach to localization in the SPL which
relies primarily on the information contained within white field markings
while being efficient enough to run in real time on board a Nao robot.

1 Introduction

In our earlier work [12] we gave some initial thoughts and results for an algorithm
based on Cox’s algorithm (a form of least squares error pattern matching) for
effective robot self localization based on field markings. As we continued to use
this algorithm, we became aware of a number of significant shortcomings in the
algorithm in the form proposed in [12] and in addition, were able to introduce a
number of additional features suggested in this previous work. The main aim of
this paper is to address some of the issues highlighted in our previous work and
describe our progress with some of the future work mentioned therein [12]. This
paper is also intended to function as a stand alone reference document for those
who wish to implement this approach to localization themselves.

Previous to any RoboCup competition a complete description of the RoboCup
SPL field is provided for competing teams [8]. As can be seen in Figure 1, this
is a wholely static environment with a large amount of concise visual informa-
tion including field lines, goal posts, penalty spots and the centre circle. During
soccer matches some dynamic elements do present themselves such other robots,

� This work was supported by Science Foundation Ireland, PI Grant no. 07/IN.1/I1838
and UREKA Site Grant no. 09/UR/I1524.

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 16–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Efficient Localization for Robot Soccer Using Pattern Matching 17

referees and audience members beyond the pitch boundaries. A typical localiza-
tion system which may used in a RoboCup environment is described by Röfer
et al. in [9].

Some of the challenges associated with using white field markings in local-
ization include the development of robust vision algorithms for line detection
and line fitting, as well as techniques for identifying circular field markings and
penalty spot type features. Given the small field of view provided by the camera
on board the Nao robot, oftentimes only small segments of white field markings
are visible in any given image. This ultimately leads to the difficult problem of
uniquely identifying a certain field marking from a partial view. An immediate
issue with common solutions to this problem is the resultant spaghetti code -
large blocks of nested conditional statements tailored specifically to the RoboCup
pitch layout are required. The solution we present removes the need to design
ad-hoc line detection and identification systems by functioning generically on
any combination of simple geometric features.

Fig. 1. Standard Platform League Pitch Description [8]

2 Background

Our method for utilising field markings is a specialised extension of matching
detected ‘line points’ to a predefined map of line segments. This algorithm, in
the context of laser scanner based analysis, was first used by Cox in 1991 [1].
Cox treated the problem as least-squares linear regression with an analytical
solution, successfully demonstrating that this technique was both accurate and
practical. Lauer et al. described a similar algorithm in 2006 for robots in the
RoboCup Midsize League using points detected on white field markings instead
of laser points [5]. They also introduced a new error function with a numerical
gradient descent based solution. In 2010, Rath implemented an adaptation of
Lauer et al’s algorithm for use on the Nao robot in the SPL [7]. This adaptation
emulated most of the methods used by Lauer et al. but due to the hardware
constraints of the Nao some small changes were introduced.



18 T. Whelan et al.

2.1 Previous Work

In our previous paper we described a modified version of Cox’s original algo-
rithm dubbed the Modified Cox Algorithm (MCA) [12]. We presented a number
of modifications to the original algorithm including (i) the use of a Voronoi di-
agram to reduce computational load in determining the nearest field marking
to a given point; (ii) an extension of the basic algorithm to include all types
of field markings (line segments, circles and single points); (iii) distance based
outlier detection; and, (iv) weighted least-squares cost minimization. We also
detailed the integration of the MCA with an Unscented Kalman Filter. For the
sake of completeness the MCA which we described previously is listed in the
following section in its entirety, excluding the Kalman Filter integration. Our
new improved Kalman Filter integration is described in detail in Section 3.1.

2.2 Modified Cox Algorithm

This description is a combination of the original method described by both Cox
and Rath and the modifications we presented in our previous paper [1,7,12].
Given a set of detected points on white field markings in an image, the basic
process of the Modified Cox Algorithm involves 3 main steps;

2.2.1 Point Transformation from Image to World Coordinates
Transformation from image coordinates to world coordinates is achieved using
typical back projection associated with the extrinsic and intrinsic camera param-
eters (see for example Figure 2a). In this regard the camera location is based on
the geometry of the robot and the current joint sensor readings.

2.2.2 Selecting the Closest Field Marking to Each Point
Before this step is carried out a Voronoi diagram for all white field markings must
be pre-calculated, see Figure 2 (a). This can be done once off during the start
up of the robot. Then, the closest white field marking to any point projected
into world coordinate space can be determined in O

(
1
)
time.

2.2.3 Finding a Correction for the Current Pose
In this final step, a correction to the current robot pose, described by lt =
(x, y, θ)� where x and y describe the estimate of the robot’s global position and
θ describes the estimated orientation of the robot, is calculated. We wish to
calculate b = (Δx,Δy,Δθ)� such that a new estimate, l′t = lt + b, gives a pose
which better matches observed points to white field markings.

The aim of Cox’s original algorithm is to minimise the squared distances
associated with points on line segments (line points) to their nearest line segment.
To achieve this, the problem is linearised into a least-squares linear regression
problem and each line segment is treated as an infinite line with orthogonal unit
vector ui = (uix, uiy)

� and offset ri such that ui · zi = ri holds for all arbitrary
line points zi on the line.



Efficient Localization for Robot Soccer Using Pattern Matching 19

(a) Error Calculation (b) Distance Minimised

Fig. 2. Example of the Modified Cox Algorithm

Let the ith transformed line point be zi = (zix, ziy)
� and the current position

of the robot be c = (ltx, lty)
�. The transformation of each line point zi can be

described as:

t(b)(zi) =

(
cosΔθ − sinΔθ
sinΔθ cosΔθ

)
(zi − c) + c+

(
Δx
Δy

)
(1)

Cox suggests that the correction angle Δθ should be sufficiently small such that
we can approximate the transformation to:

t(b)(zi) ≈
(

1 −Δθ
Δθ 1

)
(zi − c) + c+

(
Δx
Δy

)
(2)

Next, the squared distance of each line point zi can be found as:

d2i = (t(b)(zi)
�ui − ri)

2 ≈ ((xi1, xi2, xi3)b− yi)
2 (3)

Where: (
xi,1 xi,2 xi,3

)
=

(
uix uiy u�

i

(
0 −1
1 0

)
(zi − c)

)
(4)

yi = ri − zixuix − ziyuiy (5)

Defining the absolute fixed world position of a penalty spot as si = (six, siy)
�

and qi = (qix, qiy)
� as a transformed penalty spot point we have:(
xi,1 xi,2 xi,3

xi+1,1 xi+1,2 xi+1,3

)
=

(
1 0
0 1

(
0 −1
1 0

)(
qi − c

))
(6)(

yi1
yi2

)
=

(
six − qix
siy − qiy

)
(7)

Assuming a centre of (0, 0) for the centre circle feature, given a radius of h and
a transformed centre circle point vi = (vix, viy)

� we have:

(
xi,1 xi,2 xi,3

)
=

(
vix

||vi||2
viy

||vi||2
v�
i

||vi||2

(
0 −1
1 0

)
(vi − c)

)
(8)

yi = hi − vixuix − viyuiy (9)



20 T. Whelan et al.

Since we expect smaller errors in the location of points close to the robot, we
define a diagonal weighting matrix, W , with diagonal elements given as:

Wii =
1

α2
i + η

, (10)

and where α is the relative distance to the point from the robot and η is some
small offset value.

Now we can calculate the weighted sum of squared distances for all points zi,
qi and vi:

EW (b) =

n∑
i=1

Wii((xi1, xi2, xi3)b − yi)
2 = (Xb− Y )�W (Xb− Y ) (11)

Where:

X =

⎛
⎜⎝
x11 x12 x13

...
...

...
xn1 xn2 xn3

⎞
⎟⎠ Y =

⎛
⎜⎝
y1
...
yn

⎞
⎟⎠ (12)

The correction b̂ that minimises EW (b) can then be (approximately) solved by:

b̂ = (X�WX + ζI)−1X�WY (13)

where ζ is a small positive constant to avoid singularity occuring in (13). Finally
a new pose is given by:

l′t = lt + b̂ (14)

The results of this process can be seen in Figure 2b.

3 Extensions and Modifications

The main short comings of our previous implementation were localization perfor-
mance and computational performance. We showed that the system was at most
on par with three other localization systems evaluated and not significantly bet-
ter by any measure [12]. Computational performance was also undesirably low
for use on the Nao system, considering that localization is just one of many com-
ponents that ideally must run at 30Hz during a soccer game. In this section we
describe the extensions and modifications we made to the original system that
aided in overcoming these issues.

3.1 Unscented Kalman Filter Integration

Initial tests with the algorithm described in [12] did not show good performance,
and the CPU requirements were excessive. For these reasons, the algorithm we
used in the RoboCup 2011 competition (including the technical challenge) un-
derwent a major redesign. This redesign reduced the number of sigma points
used and the number of iterations in the local search, and also added some ex-
tra computations to give a better estimate of the errors in the predictions from
Cox’s algorithm. The algorithm used is described below.



Efficient Localization for Robot Soccer Using Pattern Matching 21

1. Generation of a Set of Sigma Points
The sigma points were calculated in a similar way to those of [3,11]. We
have nx = 3 state variables in the filter. In our case we selected the primary
weight as w0 = 1√

2
, and the remaining weights are selected as:

w� =

√
1− w2

0

2nx
; � = 1, ...2nx. (15)

We denote the current state estimate by xk|k−1 and the �th column of the
square root of the covariance matrix as (pk|k−1)(�). The sigma points, X�,
are then calculated as:

X� =

⎧⎨
⎩

xk|k−1 : � = 0
xk|k−1 + sσ(pk|k−1)(�) : � = 1...nx

xk|k−1 − sσ(pk|k−1)(�) : � = nx + 1...nx

(16)

where the scale factor for the sigma points is given by sσ =
√

nx

1−w2
0
.

2. Use Each Sigma Point as an Initial Value for the Modified Cox
Algorithm
The Modified Cox Algorithm (MCA) described in Section 2.2 can be thought
of as a local search for a good fit between the observed points and the known
field markings. We use the sigma points in (16) as initial values for the MCA
and perform a single step correction for each. The result of this update is a
new estimate, X̂�, of a possible robot location, together with the weighted
sum of residual errors, J� =

∑
i Wiie

2
i (X̂�), and a covariance of the estimate,

varX̂�, computed as described below in (21).
3. Discard Points with Excessive Error, or Other Problems

The result of a single correction to one of the sigma points may not give a
good fit to the data. This may be because a single iteration is insufficient
to be close to convergence. It may also occur due to being close to a local
minimum. We therefore select a threshold, J̄ , and ignore any results where
the residual errors are too large, namely, J� > J̄ . Other checks used are to
test if the MCA has enough valid points to process and that the resultant
estimated robot position is not too far off the pitch. Note that in the follow-
ing equations, discarding a point is equivalent to setting the corresponding
weight to zero.

4. Adjust Sigma Point Weights According to the Residual Errors and
Renormalize
Given the initial set of weights, w�, we first adjust these according to the
residual errors:

w̃� := w�/J�. (17)

We then renormalize the adjusted weights as follows:

ŵ� := w̃�/
∑
k

w̃k (18)



22 T. Whelan et al.

5. Check for Sufficient Valid Estimates
For the algorithm to generate a valid measurement, we require that a suffi-
cient number of sigma points had valid MCA results (in our case, this was
set to 3), otherwise the entire set is ignored.

6. Recombine Sigma Points into a Single Combined Estimate

X =
∑
�

ŵ�X̂� (19)

var(X) =
∑
�

ŵ�

[
(X̂� −X)(X̂� −X)T + varX̂�

]
(20)

7. Use the Combined Estimate as a Linear Covariance Intersection
KF Measurement Update
The combined estimate, (19), is a linear function (in fact the identity) times
the localization state variables. It is therefore straightforward to use lin-
ear Kalman Filter covariance intersection updates (e.g. [10,4]) to perform a
measurement update. This update includes standard features such as outlier
detection and kidnapped robot detection.

3.2 Modified Cox Algorithm

A number of additions and alterations have been made to the MCA. These have
been divided into two categories: (i) Algorithmic Enhancements, concerned with
the information used and produced by the algorithm; and, (ii) Computational
Optimisations, concerned with the way in which the algorithm processes input
and produces an output.

3.2.1 Algorithmic Enhancements

Super-Weighted Posts - The goal posts are one of the key sets of landmarks on
the SPL pitch. They are generally quite easy to identify and are the most signifi-
cant cue for localization. Having previously ignored any goal post information in
the MCA optimisation, we now include goal posts in the form of super-weighted
single points, akin to penalty spot type features.

Being color coded, the posts on the SPL field are inherently less ambiguous
than points on white field markings. In line with this, post points are weighted
30 times higher than white field marking points in the optimisation but not in
the error calculation in order to avoid inconsistencies in error values between
frames including posts and those not. When both posts of a single color goal
are visible a robot’s position and orientation can be accurately determined using
simple triangulation. In this scenario, both post points are matched to the known
fixed positions of the posts in the world model for the MCA algorithm. More
often than not however, only one post is visible due to optical occlusion by other
robots. When this occurs the single visible post is ambiguous. Given that the
MCA is a local search to begin with, an ambiguous post is matched to the fixed



Efficient Localization for Robot Soccer Using Pattern Matching 23

(a) Before MCA (b) After Without Posts (c) After With Posts

Fig. 3. Example of Post Point Inclusion in MCA

position of the nearest post in the world model when the perceived post point
is transformed into world coordinates.

An example is shown in Figure 3 of the kind of effect this feature has on the
algorithm. In situations where the robot is mislocalized badly or a poor measure-
ment to a post is perceived, there is concern for ambiguous posts being matched
incorrectly and furthering corruption of the localization estimate. Typically in
this scenario the system is more reliant on the Kalman Filter discussed in Sec-
tion 3.1, which would normally have a high uncertainty when mislocalized and
as such will have a large spread of sigma points and be more likely to throw out
badly matched MCA updates.

Calculation of MCA Variance - In order to improve the integration of MCA up-
dates in the Kalman Filter the variance of the calculated correction is recorded,
for each sigma point. This is especially useful in scenarios where only points on
co-linear field markings are detected. The variance of the translation and rota-
tion is derived from the diagonal from the inverted component P of the final
correction calculation listed as (13) in Section 2.2.3:

P = (X�WX + ζI)−1σ2
n (21)

The noise variance measurement is taken as σ2
n = 0.01.

3.2.2 Computational Optimisations

Point Sampling - Given that the MCA is highly dependent on matrix methods,
a large amount of attention was given to these methods when optimising the
technique for computational performance. Notably, for two matrices of dimen-
sions m×p and p×n the run time complexity of standard matrix multiplication
is O

(
mnp

)
. The only input of varying size to the MCA is the number of points

on white field markings. Owing to the complexity of the multiplication method
it was observed that the execution time scaled badly. As a result, the number of
white field marking points used in the MCA is capped at 30. If there are more
points than this detected in an image 30 points are selected at random for use
in the optimisation. The same 30 points are used for all 7 sigma points.



24 T. Whelan et al.

Matrix Operation Optimisation - As mentioned in Section 2.2.3, a diagonal ma-
trix W is used to weight the optimisation. Rather than using näıve standard
matrix multiplication in the evaluation of equations which involve the diago-
nal matrix W a more efficient multiplication method is used. This alternative
method skips the summation step of standard matrix multiplication, which when
used on a diagonal matrix would result in many redundant sums of zero. For two
matrices (one diagonal) of dimensions m× p and p× n this alternative method
runs in O

(
mn

)
time as opposed to O

(
mnp

)
.

Another concern when optimising matrix operations is matrix chain multipli-
cation. When presented with a sequence of matrices we wish to determine the
most efficient way to multiply these matrices together, given that the paren-
thesization of matrix multiplication changes only the number of operations and
not the result. Evaluating (13) in Section 2.2.3 in standard left to right order
involves roughly 6000 operations when 30 points are used. Solving the matrix
chain multiplication problem on this equation results in a decrease of the number
of operations to approximately 3900. This represents a performance increase of
35%. The order of multiplication was determined using a dynamic programming
approach [2]. The resulting parenthesization of (13) is:

b̂ = ((X�(WX)) + ζI)−1(X�(WY )) (22)

One final optimisation involves the precalculation of point weights. Rather than
recalculating the weights for each sigma point, the weights of all points are
calculated before hand as they do not change between sigma points. Overall
a performance increase of 60% was recorded per sigma point with the MCA,
derived from an execution time reduction of 1ms to 0.4ms per point.

In the table below execution time differences are shown for each of the de-
scribed computational optimisations. The time given represents the increase in
execution time of the entire MCA if that feature isn’t implemented in the com-
putation.

Optimisation Time Saved (ms)
Reduction from 13 to 7 sigma points 6.1

Maximum of 30 line points 3.1
Diagonal Multiplication 1.2
Chain Multiplication 1.0
Weight Precalculation 0.1

3.3 White Field Marking Point Filtering

One concern highlighted by Rath was the issue of false positive points detected
on white features on the RoboCup pitch [7]. This was less of a concern for Lauer
et al. due to the fact that the robots used in the Midsize League do not contain
white features. The Nao robot, used in the SPL, is almost entirely white and as
a result false positive white field marking points are prevalent when color reliant
detection algorithms are used.



Efficient Localization for Robot Soccer Using Pattern Matching 25

Fig. 4. Result of a Horizontal First Difference Operation Around a Point

In order to combat this we have implemented a filter based on edge detection
principles that reliably removes false positives. When a set of points are detected
in an image a local edge check is performed either horizontally or vertically de-
pending on which scan orientation a point was detected with. As can be seen in
Figure 4 there should exist a very obvious single maximum in a simple gradient
estimate on both sides of a point. Inspecting both sides of a point for this max-
imum is a trivial process. A threshold can then also be applied to accept points
with a large gradient.

Calculation of the gradient estimate is carried out using Intel MMX SIMD in-
structions in order to maintain good computational performance. The estimated
gradient value for a given pixel (i, j) in the raw YUV image F is calculated using
only the Y component as |Fy(i, j)−Fy(i+1, j)| for horizontally detected points
and similarly as |Fy(i, j)−Fy(i, j+1)| for vertically detected points. These values
can be calculated for 7 pixels in one go by using the technique described below.

3.3.1 MMX Gradient Estimation
A two pass technique is required to calculate the full first difference for a set of
pixels using this method. The 64-bit MMX register is divided up into 8 unsigned
integers each with a range of [0 - 255]. Given that the Y component of each pixel
also has a range of [0 - 255] we are unable to use the MMX registers in a signed
format. Thus, using the horizontal direction as an example, we calculate Fy(i, j)−
Fy(i + 1, j) and Fy(i + 1, j) − Fy(i, j) separately using saturated arithmetic
(clipping at 0 and 255) and sum the result together.

When processing points on white field markings however, the expected gradi-
ent direction is known and as a result we can skip first difference calculation in
one direction.

Fig. 5. Sample Y Component Values at Point Surrounding



26 T. Whelan et al.

1. Populate an MMX register with the Y component values of the pixels around
the edge of the detected point (at most 8). The pixels shown in Figure 5
would translate to an MMX register as:

140 142 144 160 235 240 240 240

2. Depending on the expected gradient direction, based either on horizontal
or vertical orientation and whether inspecting the edge going from green to
white or vice-versa, shift a copy of the register left or right by 8 bits. In the
example case, we shift right:

0 140 142 144 160 235 240 240

3. Using saturated MMX arithmetic, subtract the shifted register from the
original, yielding the first difference for 7 pixels (we ignore the end value):

140 142 144 160 235 240 240 240
- 0 140 142 144 160 235 240 240
= - 2 2 16 75 5 0 0

The result of this calculation can then be inspected for a single maximum (with
leniency) above a preset threshold. The MMX implementation described above
was measured to be 2.6 times faster than a standard C++ implementation of the
same process. Figure 6 shows an example of the results of this process. Occasion-
ally good points are filtered out, particularly those that appear on features which
are small in the image. Loss of such distant points is only a minor inconvenience
due to the fact that they are weighted quite lightly in the MCA optimisation.

(a) Color Classified Image (b) Points Before Filtering (c) Points After Filtering

Fig. 6. Example of Detected Points With / Without Edge Filtering

4 Tests and Results

The performance of the newly modified MCA based localization system was
evaluated in 3 different tests along with 3 other localization systems. The three
tests were:



Efficient Localization for Robot Soccer Using Pattern Matching 27

(a) Target Ready Positions (b) Ball Placement Points

Fig. 7. Test Scenario Set-Ups. Initial Position and Orientation Drawn in White.

1. Ready Positions.As shown in Figure 7 (a). For this test, the robot is placed
in the initial position and commanded to walk to each of the positions marked
in black as soon as a correct estimate of the initial position is reported by
the localization system. This test was repeated 3 times for each position and
once on each side of the field, bringing the total number of runs to 18.

2. Open Goal Shots. As shown in Figure 7 (b). In this test the robot is placed
in the initial position and commanded to take shots on an open goal, again
only when an accurate estimate of the initial position is reported. The ball is
first positioned at the location labeled ‘1’. After each attempted shot on the
goal the ball is placed at the next position in the labeled sequence. This test
was carried out once on each side of the field giving a total of 10 attempted
shots.

3. Goalless Open Goal Shots. This test is identical to the previous test
except both color goals are removed from the field before the robot begins.
Initially all goal posts are on the field to allow the robot acquire an estimate
of its initial position. Once the robot acquires the correct initial position all
goal posts are removed. As before this test was carried out once on each side
of the field giving a total of 10 attempted shots.

The localization systems compared are as follows:

– Kalman Filter + MCA: The new localization system presented in this
paper including MCA updates, post updates, line and corner updates.

– Particle Filter + White Field Marking Points: An experimental im-
plementation developed for testing purposes. A basic Particle Filter using
100 particles using post updates, line updates, corner updates and a new
experimental update that uses certain functions of the MCA. This update
involves steps 1 and 2 in Section 2.2 followed by evaluation of the error mag-
nitude of the projected points. The optimisation in step 3 is not carried out.
Instead, the error before the optimisation is used to weight particles.



28 T. Whelan et al.

– Particle Filter + Lines: A basic Particle Filter using 100 particles, post
updates, line updates and corner updates.

– Kalman Filter + Lines: The same Unscented Kalman Filter used with
the MCA in this paper using only post updates, line updates and corner
updates.

4.1 Localization Performance

Figure 8 shows the results of all 3 tests. For the Ready Position test, the percent-
age of times the robot successfully reached the target position is given. For each
Ready Position test, the robot’s final resting position and orientation was manu-
ally recorded. The robot was deemed unsuccessful if it either left the field or halted
with a position which was greater than 30cm from the target location or an orien-
tationwhichwas greater than 15 degrees from the target orientation. In some cases
the robot would never halt completely and oscillated around some final location,
however there was no penalty for this behaviour if the position was correct.

Fig. 8. Localization System Test Results

In the goal shot tests the success criteria was a lot simpler. The percentage
represents the number of times the robot successfully kicked the ball towards
the goal with an accurate position estimate. Kick line up issues were accounted
for by monitoring the robot’s position estimate throughout the tests. Successful
goals where the robot’s estimate was incorrect were not counted.

4.2 Computational Performance

The execution time of all four localization systems was monitored throughout
the 3 tests. It should be noted that a small amount of debugging functions were
enabled during the testing of all 4 systems and as a result execution times without
any debugging functions may in fact be slightly lower. The execution time of
the PF + Points algorithm is significantly longer than the 3 other algorithms



Efficient Localization for Robot Soccer Using Pattern Matching 29

tested because although it lacks the optimisation in the full MCA, it requires
the repeated projection of all line points for each of the 100 particles.

Algorithm KF + MCA PF + Points PF + Lines KF + Lines
Avg Time (ms) 6 10 4 3
Max Time (ms) 7.7 20 5 3

5 Conclusion

In this paper we have described a number of modifications and extensions to our
original MCA implementation. Many aspects of the system have been looked at
to address some of the issues and future work discussed in our previous paper.
The results include: (i) revised and more computationally efficient Kalman Filter
integration; (ii) usage of post information in the MCA to improve localization
performance; (iii) MCA variance calculation to improve Kalman Filter interac-
tion; (iv) point sampling for improved computational performance; (v) matrix
method and chain multiplication optimisation for computational performance;
and, (vi) efficient field marking point filtering for reduced false positive points.

Computational performance was previously a significant issue with the system
but is clearly no longer a concern. The localization performance achieved with
the enhancements listed above is superior to the previous version of the MCA
and all other localization systems tested. As a testament to the system’s high
performance it was successfully demonstrated as the core part of RoboEireann’s
Open Challenge demonstration at RoboCup 2011, “Localisation without goal
posts”. The demonstration was voted 1st place out of 20 other presentations.

5.1 Future Work

Extensions to the proposed algorithm are needed to better deal with cases where
the robot gets lost. This may occur due to a range of circumstances such as:
(i) when the robot falls over; (ii) when the robot’s locomotion is restricted,
particularly when it is attempting to perform a rapid turn, but is blocked from
being able to execute the turn; (iii) when the robot is moved by the game referees
(for example in relation to either a local game stuck; or if the robot is penalized).

At present, the overall algorithm is slow to respond to these ‘kidnapped robot’
type situations, and further algorithm development is needed in this area. Mul-
tiple model Kalman filtering [6]; the ability to perform a larger number of MCA
updates (with a larger number of sigma points) and the ability to perform multi-
ple iterations of the local search may all improve the re-localization performance
significantly. However, at least on the current hardware and with the current
versions of the algorithm, speed improvements are crucial to permit these fea-
tures.



30 T. Whelan et al.

References

1. Cox, I.: Blanche - An experiment in guidance and navigation of an autonomous
robot vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–204
(1991)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Section 15.2: Matrix-chain
multiplication. In: Introduction to Algorithms, 2nd edn., pp. 331–339. MIT Press
and McGraw-Hill (2001)

3. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proceedings
of the IEEE 92(3), 401–422 (2004)

4. Julier, S., Uhlmann, J.: Using covariance intersection for SLAM. Robotics and
Autonomous Systems 55(1), 3–20 (2007)

5. Lauer, M., Lange, S., Riedmiller, M.: Calculating the Perfect Match: An Efficient
and Accurate Approach for Robot Self-localization. In: Bredenfeld, A., Jacoff, A.,
Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 142–153.
Springer, Heidelberg (2006)

6. Quinlan, M.J., Middleton, R.H.: Multiple Model Kalman Filters: A Localiza-
tion Technique for RoboCup Soccer. In: Baltes, J., Lagoudakis, M.G., Naruse,
T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 276–287. Springer,
Heidelberg (2010)

7. Rath, C.: Self-localization of a biped robot in the RoboCup domain, Master’s
Thesis. Institute for Software Technology, Graz University of Technology (2010)

8. RoboCup Technical Committee. RoboCup Standard Platform League (Nao) Rule
Book, http://www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf

9. Röfer, T., Laue, T., Thomas, D.: Particle-Filter-Based Self-localization Using Land-
marks and Directed Lines. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 608–615. Springer, Heidelberg
(2006)

10. Stüdli, S.: Kalman Filtering approach for Localisation in RobotSoccer, Master’s
Thesis. Hamilton Institute, NUI Maynooth & Institute for Control, Swiss Federal
Institute of Technology (ETH), Zurich (2011)

11. Van Der Merwe, R., Wan, E.: The square-root unscented Kalman filter for state
and parameter-estimation. In: IEEE International Conference on Acoustics Speech
and Signal Processing, vol. 6, pp. 3461–3464. Citeseer (2001)

12. Whelan, T., Stüdli, S., McDonald, J., Middleton, R.H.: Line Point Registration: A
Technique for Enhancing Robot Localization in a Soccer Environment. In: Röfer,
T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416,
pp. 258–269. Springer, Heidelberg (2012)

http://www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf


A NUPlatform
for Software on Articulated Mobile Robots

Jason Kulk and James S. Welsh

School of Electrical Engineering and Computer Science
University of Newcastle
Callaghan, Australia

Abstract. The development of software for robot systems is an involved
process, that frequently results in a robot specific system. However,
through careful design, frameworks that can be used on multiple oper-
ating systems and robot platforms can be created. This paper proposes
such a framework.

The framework makes use of a blackboard and a class hierarchy to
enable high–level software modules to be robot and operating system
independent. The blackboard is used to standardise the transfer of in-
formation and allow for the high–level modules to adapt to changes in
the robot hardware in real–time. The class hierarchy encapsulates the
platform dependent aspects and provides a means of implementation
sharing between different platforms. Furthermore, the hierarchy for the
behaviour and motion modules simplify the addition of robot specific
sections, and allow them to coexist.

The NUPlatform framework has been applied to six different plat-
forms, including four physical robots and a simulator, and runs under
several different operating system. The framework has also been success-
fully used in several research projects to implement vastly different robot
behaviours.

1 Introduction

Software for robotic systems examines incoming sensor data to generate useful
actions to be executed by a set of actuators. The development of the software is
a long and expensive operation, with contributions from many developers, across
a diverse range of fields. Given the size of software systems for robots, a solution
which is portable, configurable and maintainable is desirable.

Robots have numerous sensors and actuators, each requiring a driver to com-
municate with the software system. A robot is made of a unique set of sensors
and actuators, resulting in a unique set of drivers, and a unique set of inputs
and outputs for the software system. Consequently, software written for a robot
is often tied to that particular robot.

Furthermore, a robotic software system is often comprised of several distinct
modules, for example, a vision module, a world modelling module, a behaviour
module and a motion module. These modules may also be robot–dependant

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 31–45, 2012.
© Springer-Verlag Berlin Heidelberg 2012



32 J. Kulk and J.S. Welsh

if communication with the drivers is not done through a sufficient hardware
abstraction layer.

This chain of dependancies in the transfer of information from the hardware to
the high–level software, results in a robot–dependent system. The chain can be
broken by inserting layers of abstraction that implement standard interfaces that
are applicable to all robots. In particular, an abstraction layer is required between
the software and the robot hardware, and a standard interface is required for
inter–module communication.

The comparison of different versions of the same system module is a com-
mon task that can be accelerated if the modules are hot–swappable. That is, the
module can be replaced without restarting the entire system. Furthermore, a
single robot platform may be required to perform several unrelated tasks, conse-
quently, the replacement of modules specific to that task at runtime is desirable.
For instance, the replacement of a behaviour module designed to play soccer,
with one designed to perform a human–robot interaction experiment.

In this paper we propose a software architecture that implements a hardware
abstraction layer providing a logical robot [1] to the software system that is
identical across robot platforms. The logical robot is presented to the software
system as a blackboard [2], capable of storing a large variety of different sensor
and actuator data. In addition to the data itself, the blackboard stores infor-
mation regarding the data’s validity, enabling software modules to detect and
adapt to sensor or actuator faults.

The software architecture also makes use of class hierarchies to simplify the
development of modules and drivers, and to enforce standard interfaces between
submodules. In particular, the architecture is designed to keep the robot drivers
quite thin, minimising the robot–platform specific implementation.

The annual RoboCup soccer competitions are a popular event where univer-
sities compete against each other in games of robot soccer [6]. The competition
itself provides motivation for a large number of students and researchers, and
results in an enormous body of software designed to win a soccer match. Unfortu-
nately, the software written for RoboCup is typically not portable, or applicable
to other research domains. Recently, there have been developments to correct
this problem, predominantly from RoboCup teams who compete in multiple
leagues.

The primary purpose of the software architecture proposed in this paper was
to serve as the basis for the NUbot’s entry into RoboCup’s Standard Platform
and Humanoid Leagues, which it has been successful in since 2009. However, the
system was designed to accommodate similar legged robots and to enable the
performance of a variety of tasks. In particular, the software architecture has
facilitated the use of software developed for RoboCup to be used on other robot
platforms, and to be used to perform tasks outside of the soccer domain.

1.1 Related Work

There are many software frameworks for robotic systems in the literature [3].
The method of transfer of information between hardware and system modules



A NUPlatform for Software on Articulated Mobile Robots 33

can be categorised into two classes; those which are message–based and those
which use a blackboard.

A message–based approach excels in distributed systems, as a message can
be easily serialised and sent over a network. Notable examples of such systems
are ROS [4] and YARP [5], both of which provide an excellent framework for
robot independent software. However, the serialisation of the message and the
data copying on either end, adds overhead to the system. The transport of the
message through a physical network adds latency, however, on a single processor
system shared memory can be used instead.

A blackboard is well suited to a single mobile processor system because of
its lightweight. Blackboards are frequently used in the RoboCup legged soccer
domains, given the limited processing available on small mobile robots. Both [7]
and [8] use blackboards to share information between system modules.

The architecture proposed in this paper also uses a blackboard, as many of
the target robots have limited processing power. The blackboard proposed in
this paper is similar to that of [7], in that information is grouped into a small set
of classes. The blackboard also incorporates an actuator command queue similar
to that of NaoQi [9], enabling the storage of motion sequences and animations.
However, in contrast, the blackboard used here has been generalised to encom-
pass a wide variety of sensors and actuators, allowing the support for multiple
robot platforms. In addition to the sensor information itself, the validity of the
data is also stored in the blackboard, allowing higher level software modules to
detect and adapt to sensor and actuator failure.

A hybrid blackboard–message based architecture is proposed in [10], to take
advantage of the strengths of both approaches. A similar feature is used in this
architecture, where commands, called jobs, can either be shared using the black-
board, or serialised and sent through a physical network. Although, the messages
in this architecture are more aimed toward teleoperation, than distributed com-
puting.

Few frameworks provide hardware drivers or implementations of common al-
gorithms. Player [11] and ROS [4] are important exceptions, providing a large
software base. Both the Player and ROS frameworks are component–based sys-
tems, where a robot is assembled from a set of existing software components.
The alternative approach is to use inheritance to allow implementation sharing
between similar robot platforms. In this architecture we use a structured class
hierarchy to minimise the implementation of drivers and modules, the class hi-
erarchy also enforces standard interfaces. This approach is conceptually similar
to several software frameworks for robots, in particular, RoboFrame [12].

Given the dominant target robot platforms for this architecture are legged
robots, the configuration of the motion system is important. It is common to
use a motion manager to select from a list of available motion providers which
provider is going to control the robot [13,14,7]. This architecture uses the same
general principle, however, each limb can be controlled by a separate provider
which, for example, frees the arms of a biped to perform other tasks while walk-
ing. Additionally, a bridge pattern [17] is used to separate the motion manager



34 J. Kulk and J.S. Welsh

from the walk engine, allowing the implementation of vastly different engines, in
particular engines for both biped and quadruped robots.

Finally, of all the robot software frameworks reviewed in this section, none
of them have support for the niche set of target robots. This was an important
consideration, and resulted in the development of the software architecture which
is presented in the next section.

1.2 Overview

Figure 1 outlines the NUPlatform software architecture. The key parts being
the blackboard, the system modules, and the hardware drivers. The NUPlatform
itself is open source, and publicly available at [15], and written entirely in C++.

Fig. 1. An overview of the software architecture, and the transfer of information be-
tween the hardware and software modules via the blackboard.

The blackboard is central to the system, all of the information transferred
between modules is done via the blackboard. The NUPlatform object itself,
populates the blackboard with sensor data received from hardware, and gives
the commands stored in the blackboard to the hardware.

The remaining system modules; vision, localisation, behaviour and motion,
also communicate using the blackboard. Sensor data is obtained from the black-
board, and the results of the execution of each module are then stored on the
blackboard for the other modules to use.

2 The Blackboard

The purpose of a blackboard in a software system is to store information, and
share that information with any modules that require it. Given that the black-
board can be updated and accessed from many threads, it needs to be thread–
safe. The blackboard is also used from within real–time threads, so it needs to
be very efficient. Furthermore, as it is an object that all developers will be using
frequently, it should be easy to use.



A NUPlatform for Software on Articulated Mobile Robots 35

The blackboard used as part of the NUPlatform is shown in Fig. 2. The
information stored in the blackboard is grouped into seven classes based on the
source of the information. Each of the classes will be discussed below.

Fig. 2. A UML class diagram of the blackboard showing the seven constituent parts

2.1 Sensors

The purpose of the NUSensorsData is to store the sensor data produced by the
robotic hardware so that it can be accessed by the rest of the software system.
A UML class diagram of the sensor data store is shown in Fig. 3.

Fig. 3. A UML class diagram of the NUSensorsData, the class which stores all of the
sensor data on the blackboard

The data for an individual sensor is initialised as being invalid. When the data
is updated using the set function it becomes valid. Consequently, for a sensor
which is never updated, which is the case for a sensor that is not present on a
particular robot platform, the data will remain invalid and the get function will
always indicate to the rest of the software that the sensor is not available.

Furthermore, it is possible for sensor data to be invalid even on a robot plat-
form that has the particular sensor. The data may become invalid because of a



36 J. Kulk and J.S. Welsh

hardware fault, such as the loss of communication with a single sensor, or by
design, such as the kinematically calculated camera height for a humanoid robot
becoming invalid when the robot is no longer on the ground.

2.2 Actuators

The purpose of the NUActionatorsData is to store commands produced by the
software system to be given to the robotic hardware. The command store shares
several properties with the sensor data store, and in fact inherits from the same
base class. A UML class diagram is shown in Fig. 4.

Fig. 4. A UML class diagram of the NUActionatorsData, the class which holds all of
the actions to be given to the robotic platform

Conceptually, a command consists of data describing the action, and a times-
tamp at which the action should be performed. This is encapsulated by the
ActionatorPoint object; storing data of several common types accepted by
hardware actuators, and the timestamp at which the action should be executed.

To simplify the higher–level software modules the Actionator object is used
to store a queue of ActionatorPoint objects. The queue is sorted based on the
timestamp for each command, and interpolation is done by default on numeric
data between consecutive commands. Being able to queue commands makes
implementing sequences of actions straightforward, for example, a motion script
for a joint or an animation for an LED can be stored in an Actionator.

Fig. 4 shows that the interface to the command store consists of a single add
function. To understand how the interface works, consider the following function
signature as an example

add(id_t id, vector<double> time, vector<float> data).
There are several ways a user might wish to use such a function. If the id_t
addresses a single actuator, then the timestamps and command data will be
formatted as

[time0, time1, . . . , timeN ][data0, data1, . . . , dataN ].

In this instance, it is clear the user is specifying a sequence of commands to a
single actuator.



A NUPlatform for Software on Articulated Mobile Robots 37

However, if the id_t addresses a group of actuators the intention of the user
is ambiguous. The timestamps and command data will be formatted as

[time0, time1, . . . , timeM ][data0, data1, . . . , dataL].

If M and L both match the number of actuators in the group, the user is applying
a single command to each actuator with a unique timestamp. However, if M
and L do not match, then the user is applying the same vector with a different
timestamp to each actuator in the group.

By applying logic to the interpretation of commands specified by the user,
the ambiguity in the command can be removed. A similar approach to the one
described in the example is applied to each of the add functions. In the event
that a command does not match any of the possible formats, the command is
discarded, and the user is alerted that their command was incorrectly formatted.

2.3 Visual Information

The visual information is stored in the blackboard in two objects; the NUImage
and the FieldObjects. The NUImage stores the image data as YUV422 from
the robot’s vision sensors. Relevant settings used by the vision sensors at the
time the images were captured, such as the resolution, exposure and hue, are
also stored in this object.

The FieldObjects stores the visual information extracted from the images
after object detection. Each detected object stored in the FieldObjects contains
its relative position and velocity from the robot. This object serves as the primary
source of information for the world modelling to be performed.

2.4 Jobs

The purpose of the JobList in the blackboard is to store jobs to be executed
by a software module. This is distinct from the NUActionatorsData; jobs in the
JobList encapsulate a task at a much higher level, and are to be executed by
software modules, not by hardware.

Fig. 5 shows a UML class diagram of a subset of the available jobs. A class
hierarchy is used to share implementation among similar jobs. An STL iterator
is implemented so that each software module can iterate over the jobs in the list,
and execute the jobs assigned to it.

For example, consider the WalkJob, which controls the movement of the robot.
A WalkJob is typically generated by the behaviour module. However, a WalkJob
can be generated on an external system, and sent to a robot via a network. In
effect this enables the robot to be very easily remote controlled, whether by a
human operator, or by another artificial agent. Furthermore, every robot is also
capable of transmitting a WalkJob over a network, thus enabling any robot to
control any other robot.



38 J. Kulk and J.S. Welsh

Fig. 5. A UML class diagram of the JobList, showing a subset of the class hierarchy
that makes up the available jobs

2.5 Network Information

Information received from the network is stored in the blackboard in two ob-
jects; GameInformation and TeamInformation. The origin of the class names
stem from RoboCup soccer; the GameInformation encapsulating the state of
the soccer game [16], and the TeamInformation encapsulating the state of each
of a robot’s team mates. However, these concepts can be used in more general
domains.

The game need not be a soccer match, it could be any sort of task. We use the
referee for RoboCup to allow a human supervisor to control the basic behaviour
of the robot, such as starting, stopping and pausing the robot.

The team can consist of robots performing any task. The TeamInformation
stores the last known position of each robot in the team, as well as the task it
was executing.

3 The Platform

Fig. 6 shows the organisation of the robot dependent module of the software
system. The platform consists of four modules; the NUPlatform, NUCamera,
NUSensors and NUActionators, each of the components will be discussed below.

The flow of information through the four modules is shown in Fig. 7. The
NUCamera and NUSensors encapsulate the input sensors of the robot, while
the NUActionators encapsulates all the actuators. These three objects isolate
the high–level software modules from the robot hardware. Furthermore, the
NUPlatform encapsulates the underlying operating system. Consequently, the
high–level software modules can be made both robot and operating system in-
dependent.



A NUPlatform for Software on Articulated Mobile Robots 39

Fig. 6. A UML class diagram of the NUPlatform, showing how the class hierarchy is
organised with three example robot targets

Fig. 7. An overview of the transfer of data between the software modules and hardware
using the NUPlatform framework

3.1 NUPlatform

The NUPlatform provides a robot and operating system independent interface for
system calls. This includes functions to access the time, threading, and network-
ing of the underlying operating system, and also provides functions regarding a
robot’s identity. The class also houses the robot dependent camera, sensor and
actuator modules.

3.2 NUCamera

The NUCamera provides an interface to the robot’s vision sensor. The NUCamera
has the simple purpose of copying the raw image to the NUImage on the black-



40 J. Kulk and J.S. Welsh

board. A simple interface to modify the camera settings is also provided by this
class.

The implementation of the class itself is robot dependent. The implementation
may be inherited from a generic NUOpenCVCamera or NUV4LCamera, or it may be
robot specific, as is the case with the NAOCamera.

3.3 NUSensors

The primary role of the NUSensorsmodule is to copy data produced by hardware
sensors into the NUSensorsData on the blackboard. Before copying the data the
NUSensors converts the data into the appropriate format to be stored on the
blackboard. This includes the reduction of the data down to one of the accepted
types, but also includes necessary scaling and ordering to ensure unit and sign
conventions are preserved.

The secondary role of the NUSensors is to calculate soft sensors and select
the best sensor readings to provide a particular sense. For example, consider the
orientation of the torso of a humanoid robot. The orientation may be provided
by an IMU, in which case this sensor is used. However, the hardware may only
have accelerometers and gyrometers, in which case the orientation needs to be
calculated. Furthermore, the orientation of the torso can be calculated using the
kinematic chain of the supporting leg. When both accelerometers and kinematics
are valid, a Kalman filter is used to fuse the information together, however, when
there is a sensor fault with accelerometers, or the robot is not on the ground
only the single valid sensor readings are used.

3.4 NUActionators

The purpose of the NUActionators is to copy the commands, stored in the
NUActionatorsData on the blackboard, to the robot’s actuators. Like the
NUSensors, the data stored on the blackboard needs to be converted into
the proper format expected by the hardware. This process, along with the actual
data transfer, is robot dependent.

4 Software Modules

4.1 Behaviour

The goal of this software module is to provide task orientated behaviour for a
robot. The behaviour required of a robot is very specific to a target application,
and the target applications are vastly different. To provide behaviour for a wide
variety of tasks the system outlined in Fig. 8 is used.

The system has a single Behaviour class which serves as a manager, allow-
ing the selection of a BehaviourProvider to implement the task orientated
behaviour. The selection of an appropriate behaviour can be done at compile–
time, by specifying a default behaviour, or by using a button interface while the



A NUPlatform for Software on Articulated Mobile Robots 41

Fig. 8. A UML class diagram of the Behaviour system, showing a subset of the available
behaviour providers

robot is running. The latter approach is extremely useful when using robots in
the field.

The online behaviour switching is done at the beginning of a behaviour cycle.
The Behaviour class checks if another behaviour has been requested. If so, then
the new behaviour is created, set as the current behaviour, and then the previous
behaviour is terminated.

4.2 Motion

The motion system provides the robot with a means to move around in its
environment. Fig. 9 shows an overview of the modules that make up the motion
system. The general principle behind the system is to have a set of motion
providers capable of controlling the robot, and use a motion manager to select
which of the providers should be running at any given time.

The NUMotion class is the motion manager, selecting a motion provider for the
head, arms and legs. The manager decides which provider to execute based on
information in the NUSensorsData and the JobList. The sensor data is used to
determine when the FallProtection and Getup providers should interrupt the
current motion providers. The jobs provide a much smoother transition between
providers, waiting for one provider to finish before starting the next.

The motion modules need to be suitable for each of the target robot plat-
forms. The NUHead provider controls the motion of the head in a robot indepen-
dent manner, providing an interface to perform common tasks such as panning
and tracking an object. In the case of the Script, Getup, and FallProtection
providers, robot dependent configuration files are used to tailor the motions to
a specific robot.

The NUWalk provider is the most difficult provider to port to each robot
platform given the vastly different methods of robot locomotion. A bridge pat-
tern [17] is used to separate the motion manager from the walk engine imple-
mentations. It is desirable to use the same walk engine on different robots [13],
however, this is not always possible. A walk engine may only run on single robot,



42 J. Kulk and J.S. Welsh

Fig. 9. A UML class diagram of the Motion system, showing the hierarchy of motion
providers

such as Aldebaran Robotics’ walk engine for the NAO, or the robots are too dis-
similar, such is the case between wheeled and legged robots.

The NUWalk provider selects the appropriate engine to be used with each
platform. In the case that multiple engines can be used, the selection is left to
the user, and robot specific walk parameters are used to tailor an engine to a
particular robot.

5 System Configuration

The software system is configured using CMake [18]. Each robot platform has
a configuration file specifying the required external libraries and platform de-
pendent source files, as well as default values for miscellaneous configuration
variables. The result of which is the system can be built for a particular target
using simple commands like make NAO or make Cycloid.

The user is also able to configure many aspects of the build. In particular, the
user can select which system modules to include in the build, that is the user
is able to select whether vision, localisation, behaviour and motion should be
compiled. In the instance where multiple implementations of the same module
are provided, the user is able to select which implementation to use. For example,
the particular walk engine to compile can be selected.



A NUPlatform for Software on Articulated Mobile Robots 43

6 Applications of NUPlatform

There are currently six platforms supported by the NUPlatform software archi-
tecture. This includes four physical robots shown in Fig. 10, three bipeds and one
quadruped. In addition to these robots the framework also supports the Webots
simulation package [19], and a generic Webcam. The amount of platform specific
code is quite small, at approximately 500 lines per supported platform.

The Webots and Webcam platforms have also been successfully used under the
Linux, Mac OS-X and Windows operating systems. However, all of the physical
robots run Linux.

Fig. 10. The physical robots currently running the NUPlatform. From left to right;
the HyKim [20], a modified CycloidII [21], the NAO [9] and the DARwIn [22].

The software framework has also be used in a range of projects. The first
major project is the Standard Platform League at RoboCup [23], and related
projects [24,25], where the software framework proposed in this paper has been
used since 2009. The other major project to use the framework was the design
of urban spaces through pedestrian analysis [26], where robot pedestrians were
used as an intermediate step between simulation and real–world experiments.

7 Conclusion

The NUPlatform software architecture provides a robot and operating system
independent framework for the development of robot software. In particular,
a robot independent method for the transfer of information from hardware to
high–level modules is provided.

A structured class hierarchy is used to minimise the amount of robot depen-
dent implementation. The class hierarchy also allows the interchange of different
implementations of the same modules.



44 J. Kulk and J.S. Welsh

The NUPlatform’s flexibility has been demonstrated through its application
to six different platforms, including four different physical robots. The framework
has also been used in several different projects to provide vastly different robot
behaviours.

References

1. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for
autonomy. The Int. Journal of Robotics Research 17(4), 315 (1998)

2. Jagannathan, V., Dodhiawala, R., Baum, L.: Blackboard architectures and appli-
cations, vol. 3. Academic Press, Boston (1989)

3. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots:
A survey. Autonomous Robots 22, 101–132 (2007),
http://dx.doi.org/10.1007/s10514-006-9013-8,
doi:10.1007/s10514-006-9013-8

4. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: Ros: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software (2009)

5. Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes. Robotics
and Autonomous Systems 56(1), 29–45 (2008)

6. Robocup standard platform league, http://www.tzi.de/spl/
7. Röfer, T., Laue, T., Müller, J., Burchardt, A., Damrose, E., Fabisch, A., Feldpausch,

F., Gillmann, K., Graf, C., de Haas, T., et al.: B-human team report and code release
2010. Technical report (2010),
http://www.b-human.de/en/publications

8. Barrett, S., Genter, K., Hausknecht, M., Hester, T., Khandelwal, P., Lee, J.,
Quinlan, M., Tian, A., Stone, P., Sridharan, M.: Austin villa 2010 standard plat-
form team report. Technical Report UT-AI-TR-11-01, The University of Texas at
Austin, Department of Computer Sciences, AI Laboratory, Tech. Rep. (2011)

9. Aldebaran robotics’ nao humanoid robot, http://www.aldebaran-robotics.com/
10. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the

Component-Based Robot Software Framework Fawkes. In: Ando, N., Balakirsky,
S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 300–311. Springer, Heidelberg (2010)

11. Collett, T., MacDonald, B., Gerkey, B.: Player 2.0: Toward a practical robot pro-
gramming framework. In: Proc. of the Australasian Conf. on Robotics and Au-
tomation, ACRA 2005 (2005)

12. Petters, S., Thomas, D., Von Stryk, O.: Roboframe-a modular software frame-
work for lightweight autonomous robots. In: Proc. Workshop on Measures and
Procedures for the Evaluation of Robot Architectures and Middleware of the 2007
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2007)

13. McGill, S., Brindza, J., Yi, S., Lee, D.: Unified humanoid robotics software plat-
form. In: 5th Workshop on Humanoid Soccer Robots (2010)

14. Northern bites’ robocup code repository (2010),
http://github.com/northern-bites/nao-man

15. Kulk, J., Nicklin, S., Wong, A., Bhatia, S.: Nubot’s robocup code repository (2011),
http://github.com/nubot/robocup

16. Robocup gamecontroller, http://sourceforge.net/projects/robocupgc/

http://dx.doi.org/10.1007/s10514-006-9013-8
http://www.tzi.de/spl/
http://www.b-human.de/en/publications
http://www.aldebaran-robotics.com/
http://github.com/northern-bites/nao-man
http://github.com/nubot/robocup
http://sourceforge.net/projects/robocupgc/


A NUPlatform for Software on Articulated Mobile Robots 45

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

18. Kitware. Cmake: Cross platform make
19. Cyberbotics webots, http://www.cyberbotics.com/products/webots/
20. Tribotix: Hykim (robot bear),

http://www.tribotix.com/Products/Tribotix/Robots/Hykim_info1.htm
21. Robotis cycloidii humanoid,

http://www.tribotix.com/Products/Robotis/Humanoids/CycloidII_info1.htm
22. Robotis darwin humaniod robot, sourceforge.net/projects/darwinop/
23. Nicklin, S.P., Bhatia, S., Budden, D., King, R.A., Kulk, J., Walker, J., Wong, A.S.,

Chalup, S.K.: The nubots’ team description for 2011, University of Newcastle, Tech.
Rep (2011),
http://www.tzi.de/spl/pub/Website/Teams2011/NUbotsTDP2011.pdf

24. Nicklin, S., Welsh, J.S.: Forward kinematic based biped odometry. University of
Newcastle, Tech. Rep. (2011)

25. Kulk, J., Welsh, J.S.: Using redundant fitness functions to improve optimisers
for humanoid robot walking. In: International Conference on Humanoid Robotics
(2011)

26. Wong, A.S.W., Chalup, S.K., Bhatia, S., Jalalian, A., Kulk, J., Ostwald, M.J.:
Humanoid robots for modelling and analysing visual gaze dynamics of pedestrians
moving in urban space. In: The 45th Annual Conf. of the Australian and New
Zealand Architectural Science Association, ANZASC (2011)

http://www.cyberbotics.com/products/webots/
http://www.tribotix.com/Products/Tribotix/Robots/Hykim_info1.htm
http://www.tribotix.com/Products/Robotis/Humanoids/CycloidII_info1.htm
sourceforge.net/projects/darwinop/
http://www.tzi.de/spl/pub/Website/Teams2011/NUbotsTDP2011.pdf


Service Component Architectures in Robotics:

The SCA-Orocos Integration

Davide Brugali1, Luca Gherardi1,
Markus Klotzbücher2, and Herman Bruyninckx2

1 University of Bergamo, DIIMM, Italy
{brugali,luca.gherardi}@unibg.it

2 Katholieke Universiteit Leuven, PMA, Belgium
{markus.klotzbuecher,herman.bruyninckx}@mech.kuleuven.be

Abstract. Recent robotics studies are investigating how robots can ex-
ploit the World Wide Web in order to offer their functionality and re-
trieve information that is useful for completing their tasks. This new
trend requires the ability of integrating robotics and information sys-
tems technology. On the first side a set of robotics component based
frameworks, which are typically data flow oriented, have been developed
throughout the last years and Orocos is one of the most mature. On
the other side the state of the art is represented by the Service Ori-
ented Architecture, where the Service Component Architecture defines
a component-based implementation of this approach.

The paper reports the progress of our work, which aims to promote in
the robotics field a cooperation between Service Oriented Architecture
and Data Flow Oriented Architecture. To achieve this we propose an
integration between SCA and Orocos. We first highlight a set of archi-
tectural mismatches that have to be faced for allowing this integration
and then we introduce a java-based library, called JOrocos, that repre-
sents our solution to these mismatches. Finally we describe a case study
in which SCA and Orocos components cooperate for monitoring the sta-
tus of a robot.

1 Introduction

Recent advances in robotics and mechatronic technologies have stimulated ex-
pectations for emergence of a new generation of autonomous robotic devices that
interact and cooperate with people in ordinary human environments.

Engineering the control system of autonomous robots with such capabilities
demands for technologies that allow the robot to collect information about the
human environment, to discover available resources (physical and virtual), and
to optimally exploit information and resources in order to interact with people
adequately. Common approaches in robotics build on sophisticated techniques
for perception and learning, which require accurate calibration and extensive
off-line training

Recent approaches investigate how the robot can exploit the World Wide Web
to retrieve useful information such as 3D models of furniture [10] and images of

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 46–60, 2012.
� Springer-Verlag Berlin Heidelberg 2012



Service Component Architectures in Robotics: The SCA-Orocos Integration 47

objects commonly available at home [15]. In [16] the Robotic Information Home
Appliance is illustrated as a home robot interconnected to the home network
that offers a friendly interface to information equipment and home appliances.

This new trend poses new challenges in the development of robot software
applications since they have to integrate robotic and information systems tech-
nologies, which account for quite different non-functional requirements, namely
performance and real-time guarantees at one side and scalability, portability,
and flexibility at the other side.

Modern robot control systems are typically designed as (logically) distributed
component-based systems, where the interactions between components (con-
trol, sensing, actuating devices) are usually more complex compared to more
traditional business applications. In Robotics, the software developer faces the
complexity of event-based and reactive interactions between sensors and mo-
tors and between several processing algorithms. For this reason, robotic-specific
component-based models and toolkits have been developed, which offer mech-
anisms for real-time execution, synchronous and asynchronous communication,
data flow and control flow management, and system configuration.

In contrast, the most common middleware infrastructures for the World Wide
Web and home networks are the Java Platform Enterprise Edition and Service
Oriented Architectures. Service Oriented Architectures (SOA) have been pro-
posed as an architectural concept in which all functions, or services, are defined
using a description language and where their interfaces are discoverable over a
network [8].

Some attempts to develop robotic applications as SOA systems can be found
in the literature (a recent survey can be found in [5]). Their main disadvantage
is that they give up the typical component-based nature of robotics systems and
force a pure service oriented approach.

More recently, Service Component Architectures (SCA) [12] have been pro-
posed as an architectural concept for the creation of applications that are built
by assembling loosely coupled and interoperable components, whose interactions
are defined in terms of bindings between provided and required services. As such,
SCA offer the advantages of both the Component-based engineering approach
typically used in robotics and the Service Oriented Architectures.

In order to bridge the gap between current component-based approaches to
robotic system development and modern information systems technologies, we
have developed the JOrocos library that extends the popular Orocos robotic
framework [11] with Java technologies. Thanks to the JOrocos library, a robot
control application can be designed as a SCA system, where components en-
capsulating real-time control functionality are seamlessly integrated with web
services and the most common Java toolkits, such as the SWING framework for
developing graphical user interfaces.

The paper is organized as follows. Section 2 introduces the Service Oriented
Architecture and its main features. Section 3 briefly presents the Orocos concepts
that are useful for better understanding the paper. Section 4 describes the archi-
tectural mismatches between SCA and Orocos and how JOrocos is designed in



48 D. Brugali et al.

order to define a bridge between the two component models. Section 5 presents a
simple case study in which JOrocos is used for implementing an application where
SCA and Orocos components work together. Finally section 6 draws the relevant
conclusion.

2 Service Component Architecture

Robot control applications are increasingly being developed as component-based
systems [4]. The reason is that, ideally, components embedding common robot
functionality should be reusable in different robot control systems and applica-
tion scenarios

This is achieved by clearly separating the component specification, which
should be stable [3], from its various implementations.

A component specification explicitly declares which functionality (provided
interfaces) are offered to its clients (code invoking an operation on some compo-
nent, not necessarily in a distributed environment), and the dependencies (re-
quired interfaces) to the functionality that are delegated to other components.

Separating component specification from its implementation is desirable for
achieving modular, interoperable, and extensible software and to allow indepen-
dent evolution of client and provider components. If client code depends only
on the interfaces to a component and not on the components implementation,
a different implementation can be substituted without affecting the client code.
Furthermore, the client code continues to work correctly if the component im-
plementation is upgraded to support an extended specification [4].

The Service Component Architecture defines a generalized notion of a com-
ponent, where provided interfaces are called Services and required interfaces are
called References. Services and references are thus typed by interfaces, which
describe sets of related operations that can be invoked synchronously or asyn-
chronously.

The communication between pairs of components (i.e. operation invocation)
occurs according to the specific binding protocol associated to services and refer-
ences. A single service or reference can have multiple bindings, allowing different
remote software to communicate with it in different ways, i.e. the WSDL binding
to consume/expose web services, the JMS binding to receive/send Java Message
Service, the Java RMI binding for classical caller/provider interactions.

The components in a SCA application might be built with Java or other
languages, or they might be built using other technologies, such as the Abstract
State Machines Language (ASML) [14][2]. Components can be combined into
larger structures called composites [13], that are to be deployed together and
that can themselves be further combined. Components in a composite might run
in the same process, in different processes on a single machine, or in different
processes on different machines.

The structure of SCA components and their interconnections are defined using
an XML-based metadata language (SCDL), by which the designer specifies: the
set of services provided and the references required by each component; the im-
plementation of each service as a link to a Java or other programming languages



Service Component Architectures in Robotics: The SCA-Orocos Integration 49

file; the component properties, i.e. data for configuring the component function-
ality, whose values are not hard-coded in the component implementation; the
associations between references and services of different components; the bind-
ings that specify access mechanisms used by services and references according
to some technology/protocol; the aggregation of components in Composites.

SCA is supported by graphical tools and runtime environments. The tools
build on the Eclipse Modeling Framework and allow the generation of a SCDL
configuration file from a graphical representation of components and systems.
SCA runtime environments, like Apache Tuscany and FRAscaTI, parse the con-
figuration file, instantiate the implementation of each component, assign values
to component properties, locate component services and references and create
bindings with pairs of services and references.

3 The Orocos Framework

Orocos is one of the oldest open source framework in robotics, under development
since 2001, and with professional industrial applications and products using it
since about 2005. The focus of Orocos has always been to provide a hard real-
time capable component framework — the so-called Real-Time Toolkit (RTT)
implemented in C++— and as independent as possible from any communication
middleware and operating system.

In the context of this paper, the following Orocos primitives are most relevant
for the development of real-time components1:

– TaskContext : this is the Orocos version of a component, providing the basic
infrastructure to make a system out of pieces of code that can interact with
each other via data and events, a default life cycle state machine, reporting
and timing support, an operating system abstraction layer, etc. The latter is,
for example, provided via the primitive of an Activity, that is being mapped
onto the process or threading system of the underlying operating system.

– Data Ports : components provide or request certain data types on their in-
terface, in order to allow data flow based application architectures. Such
architectures are very common in real-time control applications, since those
typically perform the same kind of operations and interactions all over again,
triggered by time or by hardware events. Hence, data flow is used for imple-
menting the business logic of real-time components as it allows the develop-
ers to guarantee that a set of operations will be executed in a fixed amount
of time: the period of the component. Figure 1 shows a system of Orocos
components connected through their data ports according to the data-flow
paradigm. It is taken from the Component Builder’s Manual1.

– Connection policy: while Orocos wants to be as independent as possible
from communication middleware (in order to let users make their choice

1 The technical details can be found on the project’s website, and more in particular
in the The Orocos Component Builder’s Manual
http://www.orocos.org/wiki/orocos/toolchain/toolchain-reference-manuals.

http://www.orocos.org/wiki/orocos/toolchain/toolchain-reference-manuals


50 D. Brugali et al.

Fig. 1. The Orocos Data Flow Oriented Architecture

based on their own criteria), it does provide some “middleware” anyway,
for those interactions that take place in-process (for hard real-time data
exchange between threads). Ports hide the low-level locking primitives of
the underlying operating system, so that users don’t have to worry about
them, but the design goal of being able to guarantee real-time performance
is not well served by a complete shielding of the way Activities interact.
Hence, Orocos provides Lock free data Ports as one of its major features:
an Activity will never have to wait to get or read data when it needs them,
because Ports can be configured to copy their data when one or more other
Activities are also accessing the data.

– Services : Orocos implements the concept of services, which are containers
of operations. They are not used for implementing the kind of operations
that regard the business logic of the real-time components, but for exam-
ple for configuring their period or retrieving information about their status
(stopped, running, etc).

– Properties are part of the Service Configuration interface and are used to load
or tune application specific configurations at runtime (e.g. the parameters
of a PID).

4 SCA - Orocos Integration

In order to make possible the interaction between SCA and Orocos components
we had to face some architectural mismatches presented by the two frameworks.
In fact, despite both SCA and Orocos components interact by exchanging mes-
sages, the syntax and semantics of these messages is fundamentally different.

In SCA messages are used for invoking services provided by components. Ser-
vices are defined by explicit interfaces that completely describe the name of each
operation, its arguments and the return value (the signature of the method). The
message sent by the requester component to the provider component describes
which operation has to be executed and provides its parameters. Hence the ex-
ecution of the component functionality starts when the message is received.

In Orocos instead the communications are based on data flows and themessages
are used for exchanging data. Components periodically elaborate data received on



Service Component Architectures in Robotics: The SCA-Orocos Integration 51

the input ports and write their results on the output ports. This means that the
components business logic is regularly executed every T milliseconds, where T is
the period of the component.

This meaningful difference introduces two main problems:

1. How an invocation of a SCA service can produce an input that will be
processed in the next cycle of an Orocos component business logic?

2. How the data published on an Orocos output port can trigger the execution
of a SCA service?

Let’s introduce how we solved these problems by means of a simple scenario
in which two SCA components and an Orocos component cooperate in order
to move a Kuka youBot [9] towards a given position. The youBot is a mobile
manipulator with an omnidirectional and holonomic base and a five degrees of
freedom arm. The components are described below:

– A SCA component, called Locomotor, which provides a service for moving a
youBot towards a position defined by the client and monitoring its activity.
The component is in charge of transforming the given cartesian position
in a set of commands (joint positions), forwarding them to the robot and
retrieving its status. In order to do that the component requires two services,
which are provided by the driver of the robot for sending and receiving these
information.

– An Orocos component, called youBotDriver, which provides an input port
and an output port. The component implements the API of the youBot
and is in charge of actuating the axes in order to reach the joints positions
specified by the client on the input port. The output port is instead used for
periodically publishing the status of the robot, for example the position and
the velocity of the joints.

– A SCA component, called SCAyouBotDriver, which is implemented by using
the JOrcos library and represents a proxy to the youBotDriver component
within the SCA system.

The SCAyouBotDriver is described by means of the following interfaces:

– Provided interface sendingCommand. This interface provides a service for
receiving commands from the Locomotor and writing these commands on
the input port of the youBot Driver. The result is the activation of the
youBot Driver operations that are in charge of moving the robot.

– Provided interface retrievingStatus. This interface is invoked by the Loco-
motor. The SCA youBot Driver periodically checks and retrieves the new
data available on the youBot Driver output port. The interface provides the
operation for retrieving these values.

– Required interface notifying. This interface is provided by the Locomotor and
is used by the SCA youBot Driver for notifying some events. The possible
events are idle, busy, refresh. The component raises the event busy when it
starts the execution of an operation and the event idle when this operation



52 D. Brugali et al.

is completed. In this way the Locomotor knows whether the operation that
it requested is completed or not. The state refresh is instead raised when
new data are read from the youBot Driver output port.

Here is important to consider that in order to notify the Locomotor about the
availability of new data before the youBot Driver deadline, the SCA youBot
Driver should check the output port with a frequency at least two times greater
than the one of the Orocos component.

The components and the interfaces of this scenario are depicted in figure 2.

SCA youBot Driver

<< Component >>

youBot Driver

<< Component >>

retrievingStatus

JOrocos
communication

functionality

SCA
Orocos

sendingCommands

Locomotor

<< Component >>

commands

status

movingTo notifying

Fig. 2. The youBot Scenario

Another difference between SCA and Orocos regards the synchronization of
the component operations after the action of sending a message. In SCA it is
possible to define by means of an annotation whether the message is sent in
a synchronous or asynchronous way. In the first case the thread that sends the
message suspend itself until the result is returned. In the second case instead the
thread continues its execution without waiting for the return value. A callback
message will notify the component when the return value of the sent message will
be computed. In Orocos all the messages are sent in an asynchronous way. The
components read the data on the input ports and publish data on the output
ports without waiting for other component activities.

Our library face this problem by providing the possibility of reading data from
the Orocos output port in an asynchronous way, according to the Publish/Sub-
scribe communication paradigm [6] (more information about the implementation
will be described in the subsection 4.2). In this way both SCA and Orocos com-
ponent don’t have to wait after sending a message. However a synchronous com-
munication can always be defined in the implementation of SCA youBot Driver.

The last mechanism provided by SCA that is not defined in Orocos is the
hierarchical composition of the components. In SCA this functionality is available
by using the concept of composite. A composite contains different components
and allows the developer to promote a set of their services in order to make them
accessible to the clients of the composite. In this way a composite can be reused
as a simple component in a more complex architecture.

Here is possible to leverage on this SCAmechanism and create composites that
contains different bridges to Orocos components (like the SCA youBot Driver)
and promotes their operations as services. This approach is inspired by the facade
design pattern, which aims to provide a unified interface to a set of interfaces in



Service Component Architectures in Robotics: The SCA-Orocos Integration 53

a subsystem [7]. In this way a single reusable SCA component, the composite,
can provide the functionality defined in several Orocos components to its client.

4.1 The JOrocos Library and Its Architecture

The JOrocos library offers a set of mechanisms that allow the implementation
of the proxies of Orocos components mentioned in the previous pages (e.g. SCA
youBot Driver). These mechanisms provide the functionality for reading and
writing on Orocos data ports, reading and writing Orocos properties and invok-
ing operations provided by Orocos components.

Another interesting mechanism offered by JOrocos is the introspection of Oro-
cos running components. It provides the functionality for discovering at runtime
which components are available, their ports, their operations and their proper-
ties. This mechanism allows the development of systems more complex than the
scenario defined in introduction of this section: systems in which the SCA com-
posite doesn’t have a priori knowledge of the Orocos components and configures
itself at runtime according to the information retrieved through the introspec-
tion. For example, with reference to the previous scenario, it will be possible
to design a system in which the SCA composite doesn’t know at compile time
which robot has to be controlled. This information will be retrieved at runtime
by introspecting the current Robot Driver component and according to its ports
the SCA Robot Driver will configure itself.

This functionality is realized on the top of Corba, the middleware that Oro-
cos uses for exchanging messages between distributed components. Corba doesn’t
guarantee the respect of real-time constraints and for this reason when the com-
munication between Orocos components has to be real-time the components
have to run on the same machine. In this way the communication between the
local components doesn’t rely on Corba and so the respect of the real-time con-
straints is not compromised. In the same way the use of Corba is not a problem
for our integration because the real-time components will be implemented by
using Orocos and will run on the same machine.

The architecture of the library is depicted in the UML class diagram reported
in figure 3. As showed in the diagram the classes of the library are organized in
two main packages: core and corba.

– The core package contains the classes that store data structures and offer
operations that are middleware independent. These classes define the core
of the library and represent the main entities of an Orocos system.

– The corba package contains instead the classes whose methods provide a set
of operations that are corba specific.

The classes of the core package whose name starts with the word Abstract are
abstract classes and have to be extended in order to provide the functionality
that are middleware specific. They represent proxies of Orocos entities and offer
methods for introspecting them and interacting with them. The other classes of
the package are instead completely middleware independent.



54 D. Brugali et al.

Fig. 3. The JOrocos Architecture

The idea is that the separation of the middleware-independent parts (core
package) from the middleware-specific parts (corba package) will allow in fu-
ture an easier extension of the library in order to provide a support for other
middlewares.

The main class of the library is named AbstractOrocosSystem. It offers the
functionality that allows a developer to connect his software to a running Orocos
system, introspect its components and retrieve references to them.

An AbstractOrocosComponent is a proxy to an Orocos component and allows
the clients to introspect its data ports and its own service. The class offers the
operations for creating connections to Orocos ports and writing and reading data
on these ports.

The data port of an Orocos component are represented by means of the class
OrocosDataPort. The interaction with these ports is made available by the class
AbstractOrocosConnection, which provides the channel that allows the opera-
tions of writing data on the output ports and reading data from the input ports.

An AbstractOrocosService is a proxy to an Orocos service and offers the func-
tionality for introspecting and invoking its operations and introspecting, reading
and writing its properties.

The operations of an Orocos service are represented by means of the class
OrocosOperation. The properties are instead described by means of the class
OrocosProperty.

4.2 The SCA-OROCOS Component

In this subsection we will explain how the interaction between Java and Orocos
works and how the component SCA youBot Driver is implemented. The code
reported in the listing 1.1 shows the interfaces of the services provided by the
component. The annotation @Callback defines the interface that will be used
for notifying the events to the Locomotor. The annotations @OneWay instead
means that the invocation of method will be asynchronous.



Service Component Architectures in Robotics: The SCA-Orocos Integration 55

1 public interface retrievingStatus{
2 public double[] getJointsPositions();
3 }
4 @Callback(Notifying.class)
5 public interface SendingCommands {
6 @OneWay
7 public void setJointsPositions(double[] values);
8 }

Listing 1.1. The interfaces of the SCA youBot Driver services

The listing 1.2 reports the variables declared in the implementation of the
SCA youBot Driver component.

1 @Service(interfaces={retrievingStatus.class,SendingCommands.class})
2 public class SCAYouBotDriver implements retrievingStatus,SendingCommands,Observer{
3 @Property
4 protected String orocosIP;
5 @Property
6 protected String orocosPort;
7 @Callback
8 protected Notifying locomotor;
9 private AbstractOrocosSystem orocosSystem;

10 private AbstractOrodocComponent youBotDriver;
11 private double[] jointsPosition;

Listing 1.2. Part of the implementation of the SCA youBot Driver component

The class implements the interface java.util.Obsever (Observer design pattern
[7]), which defines a method for being notified when a new data is available on an
Orocos output port. Furthermore the class implements the two interfaces that
describe the services.

The first line is a SCA annotation that defines the interfaces of the services
of the component. The lines from 3 to 6 declare two SCA properties used for
configuring the IP address and the port number of the Corba name service, lines
7 and 8 instead declare a reference to the SCA callback interfaces.

Read and Write Data on Orocos Data Ports. The JOrocos library allows
both the operations of reading and writing on an Orocos data port. In order to
be executed these operations require a connection between the java client and
the Orocos port. Two types of connections are available: data and buffer. On a
data connection the reader has access only to the last written value whereas on
a buffer connection a predefined number of values can be stored.

The listing 1.3 reports the constructor of the class SCA youBot Driver in
which the connections to the port are created.

1 public SCAYouBotDriver(){
2 orocosSystem = CorbaOrocosSystem.getInstance(orocosIP,orocosPort);
3 orocosSystem.connect();
4 youBotDriver = orocosSystem.getComponent(”youBotDriver”, false);
5 youBotDriver.createDataConnectionToInputPort(”commands”, LockPolicy.LOCK_FREE, this);
6 youBotDriver.subscribeToDataOutputPort(”joinstStatus”, LockPolicy.LOCK_FREE, this, 500);
7 }

Listing 1.3. The implementation of the service SubscribingTojoinstStatusPort



56 D. Brugali et al.

– Lines 2-3 retrieve a reference to an Orocos running system and create a
connection to it.

– Lines 4 retrieves a reference to the youBot Driver component.
– Line 5 creates a data connection to the input port commands of the Orocos

component youBot Driver.
– Line 6 creates a data connection to the output port status and starts a

thread that periodically check if new data are available on the port. This
functionality is implemented in JOrocos (methods subscribeToDataOutput-
Port and subscribeToBufferOutputPort). In this case a data connection with
a lock free policy is created. The third parameter specifies the Observer ob-
ject that will be notified when new data will be available on the port (in this
case it is the component). Finally the last parameter defines the frequency
with which the availability of new data on the port will be checked (it is
expressed as period in milliseconds).

Once the component is subscribed to the output port it will be notified as soon as
a new data will be available by means of the method update (inherited from the
Observer interface). The implementation of this method is reported in the listing
1.4. It simply stores the new data on the variable jointsPosition and notifies the
Locomotor that new data are available.

1 public void update(Observable arg0, Object arg1) {
2 OrocosPortEvent event = ((OrocosPortEvent)arg1);
3 jointsPosition = ((YouBotStatus)event.getValue()).getJointsPosition;
4 locomotor.notify(”refresh”);
5 }

Listing 1.4. The implementation of the method update

From this moment the Locomotor can retrieve the new data through the oper-
ation provided by the interface retrievingStatus. Its implementation is reported
in the listing 1.5. It simply returns the position of the joints.

1 public double[] getJointsPositions() {
2 returns joinstPosition();
3 }

Listing 1.5. The implementation of the service SubscribingTojoinstStatusPort

The listing 1.6 reports instead the implementation of the operation defined
in the service sendingCommands. The purpose of this operation is writing the
data received from the Locomotor to the Orocos output port. The component
first notifies the Locomotor that the operation is started, then writes the values
on the commands port and finally notifies the Locomotor that the operation is
completed.



Service Component Architectures in Robotics: The SCA-Orocos Integration 57

1 public void setJointsPositions(double[] values) {
2 locomotor.notify(”busy”);
3 youBotDriver.writeOnPort(”commands”, values, this);
4 locomotor.notify(”idle”);
5 }

Listing 1.6. The implementation of the service sendingCommands

The operations of writing and reading data support both simple and complex
data types and respectively receive as parameter and return as result instances
of the class Object. In this context corba introduced two issues:

1. Corba returns references to the requested objects as instances of the class
Any. Hence the result of a read operation is an Any object, whereas we want
to return a more general Object instance.

2. The cast from Any to the right type is possible only by means of the “Helper”
classes that are automatically generated from the IDL-to-Java compiler.
However we cannot know every possible data type a priori and consequently
implement all the possible cast in the code of our library.

We solved these two problems by means of the Java reflection. Indeed, in the
code of the write and read operations we retrieve the class name from the object
that has to be written (in the case of the write operations) or from the Any
object (in the case of the read operations). Then we use the name of the class
for loading at runtime the right “Helper” class and using its static method for
casting Any to Object or vice versa. The listing 1.7 shows how our library casts
an Any to an Object.

1 // value is the object that has to be written
2 String className = value.getClass().getName(); + ”Helper”;
3 Class<?> helper = Class.forName(className);
4 Method castMethod = helper.getMethod(”insert”, Any.class, value.getClass());
5 // the insert method inserts value in the any object received as second parameter
6 castMethod.invoke(null, any,value);

Listing 1.7. The Any to Object cast

5 The Case Study

In order to test the functionality provided by JOrocos we have implemented
a simple case study application. It is similar to the scenario introduced in the
section 4 but the Locomotor component is replaced by a graphical interface
(youBot Monitor component), which is in charge of plotting the current state of
the joints and allowing the user to set the period (inverse of frequency with which
the operations of the component is executed) of the youBot Driver component.

The youBot Driver is currently a dummy component. Indeed we are working
on its implementation in the context of the European project BRICS (Best of
Robotics [1]), but unluckily it is not ready yet. The dummy component pub-
lishes on the output port a set of random values that describe for each joint



58 D. Brugali et al.

position, velocity, current, temperature and error flag (10 bits that provide in-
formation about a set of possible errors). For the purpose of the test it doesn’t
matter whether the values published on the port a real or random. In fact we
are only interested in testing the communication between SCA and the Orocos
components.

The youBot Driver component has a new input port called period. When a
new data is written on this port the component set its period according to the
value of this new data. Due to this new port also the SCA youBot Driver has a
new provided interface named settingPeriod. It provides a service for receiving
a new period value from the youBot Monitor and writing it on the input port
of the youBot Driver.

The youBot Monitor component has two required interfaces that correspond
to the provided interfaces of the SCA youBot Driver. It also provides the notify-
ing interface, which is used by the SCA youBot Driver for notifying its events.

The SCA components and the Orocos component run on two different ma-
chines: the last one on board of the robot whereas the other two on the supervisor
workstation.

The implementation of the SCA youBot Driver component is very similar
to the one reported in section 4. The youBot Monitor component is instead
implemented by using the Java SWING and provides several tabs. In the main
tab a set of global information about the state of the joints is showed. This tab
also allows the configuration of the youBot Driver period. The other tabs instead
provide information about a specific joint and plot on a set of charts the trend
of the joint values. The graphical interface is depicted in figure 4.

This case study demonstrated how JOrocos makes possible and simple the
communication and the cooperation between SCA and Orocos. By writing few
lines of Java code we were able to retrieve data from the Orocos output port and
set the period of the youBot Driver component. Furthermore we didn’t have to
care about the location of the components on the network (except for setting
the IP address and the port of the name service) and the different programming
language used for implementing the Orocos component.

(a) Global status (b) Joint 1 charts

Fig. 4. The graphical interface



Service Component Architectures in Robotics: The SCA-Orocos Integration 59

6 Conclusions

In this paper we have discussed the problem of making possible the cooperation
between Service Oriented Architectures (SOA) and Data Flow Oriented Archi-
tectures in the robotics field. In particular we have focused our attention on SCA
and Orocos, the first a component based SOA and the second an hard real-time
component based robotics framework. We have presented a set of architectural
mismatches between the two component models and a java-based library, named
JOrocos, which allows the developers to bridge these differences by defining prox-
ies components. We have also provided a guideline for the development of these
proxies and we have applied it in a case study.

The first mismatch regarded the syntax and the semantics of the messages
exchanged between the components in the two frameworks. Here JOrocos pro-
vides to the developers the mechanisms for allowing the communication between
SCA and Orocos components and translating SCA messages to Orocos messages
and vice-versa. However JOrocos doesn’t provide the possibility of directly con-
necting a SCA Service (or Reference) to an Orocos Port. The developer has to
define, according to our guideline, a proxy component which provides input to
the Orocos component when one of its services is invoked and invoke a service
of its client (the SCA component) when the Orocos component produces data
on the output port. In this direction a possible improvement will consist of (a)
using JOrocos for extending the SCA runtime in order to define a new binding
for Orocos and (b) extending the SCA composite designer for supporting this
new binding. These extensions will replace the role of the proxy components and
will allow the developer to directly connect SCA and Orocos components.

The second mismatch was about the synchronization of the component oper-
ations after the action of sending a message. Here JOrocos doesn’t provide the
possibility of choosing a specific synchronization mechanism. In order to permit
both synchronous and asynchronous way, a specific synchronization mechanism
has to be implemented in the proxy components. For example, in our scenario we
have demonstrated how it is possible to send messages synchronously and asyn-
chronously. Indeed the operation of retrieving the robot status is executed by
the SCA youBot Driver in a synchronous way, whereas the operation of sending
commands in an asynchronous way.

Finally the last mismatch concerns the absence of an hierarchical composition
mechanism in Orocos. Here JOrocos allows the developers to leverage on the
SCA composition mechanism for encapsulating several Orocos proxies in SCA
composites and reusing them in complex and hierarchical systems.

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. FP7-ICT-231940-BRICS (Best Practice in
Robotics).

The authors would like to thank all the partners of the BRICS project for
their valuable comments.



60 D. Brugali et al.

References

1. BRICS - Best of Robotics, http://www.best-of-robotics.org/
2. Brugali, D., Gherardi, L., Riccobene, E., Scandurra, P.: A formal framework for

coordinated simulation of heterogeneous service-oriented applications. In: 8th In-
ternational Symposium on Formal Aspects of Component Software, FACS (2011)

3. Brugali, D., Salvaneschi, P.: Stable aspects in robot software development. Inter-
national Journal on Advanced Robotic Systems 3(1), 17–22 (2006)

4. Brugali, D., Scandurra, P.: Component-based robotic engineering, part I: Reusable
building block. IEEE Robotics & Automation Magazine 16, 84–96 (2009)

5. van de Molengraft, R., Beetz, M., Fukuda, T.: A special issue toward a www for
robots. IEEE Robotics Automation Magazine 18(2), 20 (2011)

6. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of publish/-
subscribe. ACM Computing Surveys (CSUR) 35(2), 114–131 (2003)

7. Gamma, E.: Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional (1995)

8. Marks, E., Bell, M.: Service-Oriented Architecture (SOA): A planning and imple-
mentation guide for business and technology. John Wiley & Sons (2006)

9. KUKA youBot store, http://youbot-store.com/
10. Mozos, O., Marton, Z.-C., Beetz, M.: Furniture models learned from the www.

IEEE Robotics Automation Magazine 18(2), 22–32 (2011)
11. Open Robot Control Software, http://www.orocos.org
12. Service Component Architecture (SCA), http://www.osoa.org
13. SCA Specifications - SCA Assembly Model,

http://www.osoa.org/display/Main/The+Assembly+Model

14. Scandurra, P., Riccobene, E.: A modeling and executable language for designing
and prototyping service-oriented applications. In: EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA 2011 (2011)

15. Tenorth, M., Klank, U., Pangercic, D., Beetz, M.: Web-enabled robots. IEEE
Robotics Automation Magazine 18(2), 58–68 (2011)

16. Yoshimi, T., Matsuhira, N., Suzuki, K., Yamamoto, D., Ozaki, F., Hirokawa, J.,
Ogawa, H.: Development of a concept model of a robotic information home appli-
ance, aprialpha. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), vol. 1, pp. 205–211 (2004)

http://www.best-of-robotics.org/
http://youbot-store.com/
http://www.orocos.org
http://www.osoa.org
http://www.osoa.org/display/Main/The+Assembly+Model


Safe Autonomous Transport Vehicles

in Heterogeneous Outdoor Environments�

Tobe Toben1, Sönke Eilers1, Christian Kuka1,
Sören Schweigert1, Hannes Winkelmann1, and Stefan Ruehrup1,2

1 OFFIS e.V., 26121 Oldenburg, Germany
lastname@offis.de

2 FTW, Vienna, Austria
lastname@ftw.at

Abstract. Autonomous transport vehicles (AGVs) steadily gain impor-
tance in logistics and factory automation. Currently, the systems are
mainly operating in indoor scenarios at limited speeds, but with the
evolution of navigation capabilities and obstacle avoidance techniques,
AGVs have reached a degree of autonomy that, from a technical perspec-
tive, allows their operation beyond closed work environments. The major
hurdle to overcome is to be able to guarantee the required safety level for
industrial applications. In this paper, we propose a general architecture
for AGVs that formalizes the current safety concept and extends it to
vehicles driving at higher speeds in outdoor environments. Technically,
the additional safety level is achieved by integrating information from
stationary sensors in order to increase the perception of the vehicles.

1 Introduction

Autonomous guided vehicles (AGV) steadily gain importance in logistics and
factory automation. Traditionally, those vehicles are working in closed environ-
ments on pre-defined driving paths. The driving speed is limited in order to be
sure to stop the vehicle as soon as any obstacles is recognized by on-board sen-
sors. A comprehensive overview of the different systems and applications can be
found in [25]. With the evolution of navigation capabilities and obstacle avoid-
ance techniques, AGVs have reached a degree of autonomy that allows their
operation beyond closed work environments. From a technical perspective, au-
tonomous vehicles can already be used in outdoor environments and working
areas that can be entered by people (i.e. not necessarily trained personnel) and
other manned vehicles. However, from a safety point of view, these environ-
ments pose new challenges, such as the avoidance of moving obstacles, whose
appearance cannot be determined in advance. Moreover, changing environment
conditions in outdoor scenarios state additional challenges to a safe sensing of
the environment. For various scenarios, there are specific technical solutions for
a safe operation of automated vehicles. Most solutions address the uncertainty
and complexity of the environment by restricting speed and allowing limited

� This work has been supported by the German Federal Ministry of Economics and
Technology (BMWi) under the grant 01MA09037.

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 61–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



62 T. Toben et al.

sensing capabilities of the AGV, which lowers its efficiency on long routes found
in outdoor areas. Thus the general safety issues of approaches beyond these set-
tings still remain open. Therefore, we will address a more general approach to
system safety by defining an extended AGV architecture with an appropriate
and feasible safety concept.

1.1 Safety Aspects for AGVs

Traditionally, automated vehicles are considered as machines and considerations
on functional safety follow mechanical engineering principles, where the focus
is on component failures and the primary goal is to increase component relia-
bility. Safety risks of the system are assessed after integrating the components
into the overall system. If necessary, a stage of risk reduction is performed, e.g.
by installation of additional safety devices (e.g. sensors that trigger an emer-
gency shutdown in order to protect human operators). Those devices are usually
certified or evaluated, such that their failure probability can be estimated.

According to EN 1525 [12], a dedicated safety standard for automated guided
vehicles, safety devices for automated vehicles have to comply to certain safety
categories1 and be able to detect test bodies of a certain size in front of the
vehicle. These test bodies are meant to represent an arm or leg of a person
standing or lying on the ground. It is the responsibility of the manufacturer to
show that the safety devices can fully oversee the route ahead and trigger the
breaks on time if necessary. Hence, the range of safety sensors (esp. for obstacle
detection) and the stopping distance of the vehicle determine the maximum
speed. State-of-the-art industrial laser range finders have a general range of 50m,
but a safety range of less than 10m (also called protective zone). Therefore, the
maximum speed of AGVs equipped with such sensors is usually in the range of
walking speed, which we will call “normal speed” in the following.

At higher speeds an automated vehicle underlies essentially the same safety
requirements: It has to avoid collisions with static and moving obstacles. Higher
speeds imply a longer stopping distance and thus require a greater sensing range
for obstacle detection. Especially for moving obstacles, it is difficult to foresee if
a moving object could possibly intersect the planned trajectory. Since the range
of on-board safety sensors is limited and moving obstacles might be obstructed,
we prepose a safety architecture that uses stationary safety sensors to monitor
the areas of operation. This allows the detection of obstacles beyond the range
of vehicle’s on-board sensors. Furthermore, we avoid the need for specialized
on-board sensors that are not certified for industrial applications.

The additional sensing capabilities by external sensors can be used only in a
close coordination with the vehicle control. In this paper, we devise a general
safety concept that allows for a formally sound argumentation for a collision-
free movement of the automated vehicle. To this end, we decompose the general
safety requirement of collision-freedom into a number of sub-requirements that
have to be individually fulfilled by the components of the vehicles.

1 EN 1525:1997 refers to categories defined in EN 954-1:1996 [10], which are replaced
by performance levels in the succeeding standard EN ISO 13849 [14].



Safe Autonomous Transport Vehicles 63

1.2 Related Work

Currently, research on autonomous vehicles mainly focusses on how to efficiently
navigate in structured and unstructured environments. The most promising re-
sults are demonstrated in contests like the DARPA Grand/Urban Challenges
(see e.g. [5]). The goal was to build autonomous road vehicles that can cope
with an unknown environment and interact with other traffic, but not compli-
ance to industrial safety standards. Therefore, an important property of such
vehicles is the sophisticated sensor equipment that allows a precise measure-
ment of the environment (see e.g. [17]). Consequently, the software architecture
is designed to support fast sensor data processing, interpretation, object tracking
and online mapping of the environment. Safety aspects are already considered for
the involved algorithms, e.g. for context recognition [28,11,23] or motion plan-
ning [22,13,1,21], but there is typically no dedicated safety concept that can be
used to validate or even guarantee a certain safety level of the overall system.

Our aim is to develop a general safety concept for autonomous movements.
A number of basic safety notions for driverless vehicles are given in [4], from
which we adopt the requirement that the vehicle may not harm by action
(though we cannot guarantee to be harmless by inaction, cf. Sect. 3). In the
SAMS project [16], a dedicated on-board safety component in the context of
autonomous robotics is modeled and verified by means of formal methods [27].
This component focuses on the calculation of dynamic safety zones, which are
protected by a laser scanner, depending on the vehicle’s intended maneuvers.

In our setting, we use additional external sensors to increase the awareness of
the vehicles, that is, we combine mobile and stationary sensors. Our proposed
architecture is intended to extend a common AGV design, where safety func-
tions are implemented separately from navigation and control components. In
this respect our concept differs from system architectures proposed for the afore-
mentioned autonomous road vehicles [17] and from architectures for cooperative
vehicle-to-vehicle applications (e.g. platooning) [7]. The latter architecture is di-
vided into layers according to the the communication needs with the cooperating
counterpart, whereas our architecture consists of operational and safety layers.

In the automotive domain, the usage of road side infrastructures can also be
seen as a combination of mobile and stationary sensors. Safety aspects in this
particular context are for example addressed in the SafeSpot [19] project, where
an intersection application was developed that tracks pedestrians and cyclists at
an intersection by laser scanners and and warns the driver against critical right
turns. While use of stationary sensors is similar to our approach, the system
issues warnings to a driver. In this setting, failures of the external systems and
loss of messages are tolerable, since the driver still has the responsibility to act
accordingly. In our case, we have to make sure that the autonomous vehicle
operates safely in the case of external failures.

1.3 Structure

The paper is organized as follows: Section 2 describes the current state of the
art in the field of autonomous transport vehicles. Section 3 describes the safety



64 T. Toben et al.

concept for efficient AGVs and their requirements, followed by the system ar-
chitecture and the safety analysis of the architecture. Based on the architecture,
Section 4 presents the technical concept, including a brief overview of a sensor
layout as well as extensions towards a more efficient trajectory planning based
on obstacle classification and hazard prediction. Section 5 concludes the paper.

2 State of the Art

In Fig. 1 we illustrate the basic architecture of a classical AGV. This archi-
tecture is intended to be a high-level description which covers a large class of
existing implementations. The functional behaviour of the vehicle is realized by
the components within the operational layer at the bottom. After a transport
task has been assigned by the control centre, the Navigation component calcu-
lates a suitable driving path. In AGVs with a higher degree of autonomy, the
Trajectory planner is responsible to compute a feasible driving trajectory. Classic
guidance technology along a fixed track (e.g. via transponders) does not require
a trajectory planner and reduces the navigation to a simple selection between
alternative routes, if applicable. Finally, the vehicle follows the desired track or
trajectory by using the Actuator control component which actually controls the
hardware actuators of the vehicle. Note that these components need to know
whether the vehicle is on the designated position or path, which is provided by
a dedicated component for (absolute or relative) Localization.

On-board ob-
stacle sensors

Speed
sensor

Localization

Navigation
Trajectory
planner

Actuator
control

Speed
monitor

Actuators

Emergency
brake

Control
centre

slow down

stop

operational layer

safety layer I

Fig. 1. Control flow between components of a standard architecture for AGVs

A dedicated safety layer is responsible for collision avoidance. To this end, On-
board obstacle sensors are used for detecting obstacles within the driving path.
Technically, this is typically carried out by tactile bumpers or LIDAR based sen-
sors (cf. Sect. 4.1). The presence of an obstacle within a pre-defined protective
zone in front of the vehicle triggers the Emergency brake. In order to reduce the
number of brakings, some systems also implement a more preventive strategy
which slows down the vehicle if there is an obstacle within the warning zone
(which strictly covers the protective zone). However, such comfort mechanisms
are typically not part of the safety concept itself. The dimensions of these zones



Safe Autonomous Transport Vehicles 65

are defined such that the vehicle is able to stop before hitting the obstacle. As
this property relies on a predefined maximal speed of the vehicle, a combina-
tion of Speed sensor and Speed monitor constantly checks whether the vehicle
is operating below this maximum. If not, the vehicle is stopped. Obviously, the
maximum speed depends on the employed technology for obstacle detection. In
current systems, the speed is typically limited to walking speed (i.e. less than
3m/s). In the following, we call this the “normal” speed.

3 Safety Concept for Efficient AGVs

The goal of building a safe and efficient AGV for outdoor environments (as
sketched in the introduction) corresponds to the following three (abstract) top-
level requirements, namely

1. The AGV must be able to perform transportation tasks.
2. The AGV must be able to drive faster than normal.
3. The AGV must not collide when moving.

The first (functional) requirement corresponds to the general ability of executing
the desired transport tasks, which depend on the actual application and typically
include e.g. the ability to accept new tasks, to autonomously drive to the desired
location and to pick up the freight. The second (non-functional) requirement
states that the classical driving speed of indoor AGVs is not sufficient for outdoor
applications, but rather a higher speed (called “fast” in the sequel) is required
for an efficient application. The third (safety) requirement forbids collisions with
any kind of obstacles. Collisions are only accepted if the vehicle is not moving,
as such collisions cannot be avoided by the vehicle itself. There is a clear link
between the latter two requirements, as in particular driving at a higher speed
must not leads to collisions.

In Subsection 3.1, we describe our overall safety concept that ensures collision-
freedom. We then present in Subsection 3.2 a system architecture that allows
for an implementation of the (non-)functional requirements and in particular
supports the safety concept. Finally, Subsection 3.3 identifies further safety re-
quirements that arise due to the technical realization of the safety concept.

3.1 Safety Concept

Collision-avoidance for classical AGVs is ensured by three aspects, namely

1. the vehicles’ speed never exceeds normal speed,
2. the absense of obstacles ensures collision-freedom, and
3. the presence of obstacles forces the vehicle to stop.

More abstractly, the vehicle is always in one of the two modes driving or standing,
and the obstacle sensor is responsible to trigger a timely transition from the first
to the latter mode. Our safety concept for safe and efficient AGVs is a natural
generalization of this principle. That is, we limit the AGV’s behaviour with



66 T. Toben et al.

respect to a dedicated set of operational safety modes, and these modes are set
at run-time according to the current environmental situation and then directly
constrain the physical execution of movements. One particular advantage is that
errors in intermediate decisions components are masked and thus can not lead to
collisions. By this, certain components of the system become irrelevant for the
overall safety analysis. We will discuss which of the system components remain
safety-relevant in Sect. 3.3.

For our application, we define the three safety modes stop, normal and fast.
Intuitively, a vehicle that is not moving corresponds to the fact that mode stop
is active. The other two modes denote a limitation to normal and fast driving
speed, respectively. We distinguish between the mode that is currently set, and
the mode that is currently active. Note that these two modes are not necessarily
the same, basically as (de-)acceleration takes some time.

We call the vehicle safe as long as it has a certain positive distance to all
other obstacles. As a safe vehicle is in particular collision-free, requirement (3)
is implied by “The vehicle is always safe or in mode stop”. This requirement in
turn can be ensured by the combination of the following constraints:

3.1 Initially, mode stop is set and active.
3.2 Always one of the modes stop, normal or fast is active.
3.3 The modes normal and fast become active only if they are set.
3.4 Setting a mode leads to its timely activation, namely

(a) If normal is active and stop is set, stop is active after tn time units.
(b) If fast is active and normal is set, normal is active after tf time units.
(c) If fast is active and stop is set, stop is active after tf + tn time units.

3.5 Setting a mode guarantees safety for a pre-defined time, namely
(a) If normal is set, driving with normal speed is safe for tn time units.
(b) If fast is set, driving with fast speed is safe for tf + tn time units.

The derived requirements can be classified into three categories, namely speed
control (3.1, 3.2, 3.3), speed reduction (3.4), and speed clearance (3.5). Note that
tn is the time to stop the vehicle when driving at normal speed and tf is the
time to decelerate the vehicle from fast speed to normal speed.

To prove that the satisfaction of requirements 3.1 to 3.5 are actually strong
enough to ensure the top-level safety requirement 3, we formalized the require-
ments in the linear temporal logic (LTL [18]) as stated in the following and
analyzed the implication by means of model-checking techniques2.

In LTL, system states are expressed by the valuation of a set of predefined
atomic propositions. Besides the classics boolean operations, the evolution of
these propositions over time can be formalized by temporal operators. We use
a discrete time version of LTL where time is modeled a sequence of equidistant
steps. For example, the expression ‘Xφ’ states that the proposition φ holds in
the next system step, while for ‘Gφ’ the proposition has to hold forever from
now on. Moreover, ‘Dt φ’ requires φ to hold during the next t steps, while ‘Ft φ’
requires φ to finally hold at least after t steps.

2 The implementation can be found at http://vhome.offis.de/tobe/sars2011/.

http://vhome.offis.de/tobe/sars2011/


Safe Autonomous Transport Vehicles 67

We use propositions act(m) and set(m) for each mode m ∈ {stop, normal, fast}
to state that mode m is currently active or set, respectively. The proposition safe
symbolically denotes a safe state of the vehicle (see above). Then the top-level
requirement (3) and the decomposed subgoals can be formalized to corresponding
LTL formulae φ3 and φ3.x as follows:

φ3 = G
(¬safe → act(stop)

)
φ3.1 = (set(stop) ∧ act(stop))

φ3.2 = G
(
act(stop) ∨ act(normal) ∨ act(fast)

)
φ3.3 = G

(
(¬act(normal) ∧ X act(normal) → set(normal)) ∧
(¬act(fast) ∧ X act(fast) → set(fast))

)
φ3.4 = G

(
(act(normal) ∧ set(stop) → Ftn act(stop)) ∧
(act(fast) ∧ set(normal) → Ftf act(normal)) ∧
(act(fast) ∧ set(stop) → Ftn+tf act(stop))

)
φ3.5 = G

(
(set(normal) → Dtn(act(≤normal) → safe)) ∧
(set(fast) → Dtn+tf (act(≤ fast) → safe))

)

where act(≤normal) := act(stop) ∨ act(normal)

act(≤ fast) := act(≤normal) ∨ act(fast)

Note that the ‘X’ expressions of the active modes in clause φ3.3 do not express
that the mode switching happens in one time units. The expression rather cap-
tures the moment in time where the new mode becomes active and requires
that the corresponding mode must be set at that point in time. We applied the
model-checking engine NuSMV [8] to show that

(φ3.1 ∧ φ3.2 ∧ φ3.3 ∧ φ3.4 ∧ φ3.5) → φ3

is a tautology, that is, whenever all sub-goals are satisfied by a system, the
satisfaction of the top-level requirement is guaranteed.

3.2 System Architecture

Figure 2 shows a system architecture which conservatively extends the basic ar-
chitecture as discussed in Sect. 2. In the following, we will lay out how this design
supports our safety concept. To this end, we will map the safety requirements
3.1 to 3.5 from the previous section to the architecture.

We give an overview of the architecture first. The operational layer and the
safety layer I basically correspond to the classical architecture from Fig. 1.
In particular, it comprises components for Navigation and Trajectory planning in
order to support a higher degree of autonomy than classical AGVs. A further
safety layer II is responsible to ensure safe driving at a faster speed. To this end,



68 T. Toben et al.

External ob-
stacle sensors

Observer
(on-board)

Prediction

Mode
switch

On-board ob-
stacle sensors

Speed
sensor

Localization

Navigation
Trajectory
planner

Actuator
control

Speed
monitor

Actuators

Emergency
brake

Control
centre

operational layer

safety layer I

safety layer I

safety layer II

Fig. 2. Control flow between components of the extended architecture

External obstacle sensors (cf. Sect. 4.1) are used to monitor the driving path in
front of the vehicle. This information is communicated to an on-board Observer
component, which, taking the current position of the vehicle into account, then
decides whether driving at fast speed is safely possible. The information from
both On-board sensors andObserver is given to theMode switch component, which
sets the suitable safety mode for Speed monitor, Emergency brake, and Actuator
control. In turn, these components adjust their speed limit to the current mode.
In particular, the emergency brake is triggered when mode stop is set.

We now explain which components are responsible to ensure the derived
safety requirements from the previous section. The requirements for speed con-
trol, i.e. 3.1, 3.2, and 3.3, are realized by the Mode switch, Actuator control and
Speed monitor components. In particular, the output of the Mode switch must be
consistent with the input from the sensors, and the Speed monitor must trigger
the Emergency brake whenever the vehicles’ speed erroneously exceeds the active
mode. The requirement for speed reduction (3.4) addresses the timely activation
of mode reductions. Switching from fast to normal in time tf is a property of
the Actuator control and the Actuators themselves. Switching from normal to stop
in time tn basically corresponds to the braking distance of the vehicle. Physical
conditions of the outdoor environment affecting the braking distance apply here,
and realistic values has to be assessed depending on worst-case assumptions of
the actual working environment.

The requirements for speed clearance (3.5) is the most involved constraints.
Setting mode normal corresponds to the classical safety mechanism based on
the on-board sensors (i.e. driving with normal speed is safely possible when no
obstacles are in the protective zone). Setting mode fast is only valid if driving
with fast speed is safely possible for the next tf + tn time units. This property
has to be ensured by the Observer component (cf. Subsection 3.3 below), based
on the vehicles current position and the environment data of external sensors.

Intuitively, using external sensors within safety layer II corresponds to an
extension of the classical protective and warning zones, that is, the additional



Safe Autonomous Transport Vehicles 69

Fig. 3. Zones covered by safety sensors (S) and their respective safety layer in the
system architecture (cf. Fig. 2)

sensors increase the recognition of obstacles in the dimension of space and time
(cf. Fig. 3). Setting mode fast then corresponds to the fact that no obstacle is in
the extended zone. This however can be a very conservative implementation of
requirement 3.5(b) as not every obstacle in this zone necessarily poses a safety
risk. To this end, an (optional) Prediction component can be used to estimate
the movements of the obstacle for the near future and then to decide whether a
mode reduction is required. We will discuss prediction in more detail in Sect. 4.4.

3.3 Safety Analysis

Given the architecture above, we identify a set of system components as safety-
relevant, that is, their malfunction may lead to a violation of the top-level safety
requirement. For the driving at normal speed, these are exactly those components
which are located within safety layer I. We identify two kinds of information flow
in this layer, namely on the one hand the mode setting starting from the On-
board sensors via the Mode switch to the Emergency brake, and on the other hand
the speed monitoring, starting from the Speed sensor via the Speed monitor to
the Emergency brake. For the safety assessment within this paper, we focus on
the requirements regarding the speed clearance, because the constraints on speed
control and -reduction can be ensured and verified with standard techniques [26].
The same applies to the correctness of the information flow itself.

Speed clearance for mode normal is formalized by requirement 3.5(a) and has
to be guaranteed by the on-board obstacle sensors. We will elaborate on reliable
obstacle detection using classical on-board sensors in Sect. 4.1 below. Speed
clearance for mode fast corresponds to requirement 3.5(b), and we introduced
the component Observer to realize this requirement. It comes along with an
additional information flow from Localization and External obstacle sensors to the
Observer and further via Mode switch to the Emergency brake or Actuator control.
Again, we will discuss the technical realization in Sect. 4.1 below. Besides a
reliable detection of obstacles, we are confronted with two additional issues:



70 T. Toben et al.

1. The information from the external stationary sensors has to be transferred
via (in general unreliable) communication channels. Thus the Observer can-
not rely on information being always available; it has to deal with “missing”
information in a way that it has to assume non-existent external obstacle
sensors for the time the communication is not possible. In addition, the in-
tegrity of the communicated information has to be ensured by using suitable
protocols, typically involving check-sums and timestamps.

2. A correct localization of the vehicle becomes safety-relevant. This is as the
clearance from the external sensors is always bound to the current position
of the vehicle. Hence, a reliable localization method has to be employed. One
approach is to use the detection of the vehicle from the perspective of the
external sensors in order to validate the internally estimated position of the
vehicle. Another possibility is the redundant layout of on-board localization.

4 Technical Concept

The technical concept shows how the proposed architecture can be supported
and implemented. The basis are reliable sensors for the external monitoring,
as described in Subsection 4.1. Their data is communicated to the on-board
Observer, which decides if a fast speed is safe. Its decision making is described
in Subsection 4.2 based on a conservative estimation of obstacle movements. A
better estimation can be achieved by classification of obstacles, as described in
Subsection 4.3. Based on this classification, Subsection 4.4 sketches, how the
movement of objects can be predicted for a more efficient trajectory planning.

4.1 Safety Sensors

Most AGVs use tactile or optical safety sensors that support safety layer I (cf.
Fig. 2). Tactile sensors (“bumpers”) respond to a physical deformation when
touching an obstacle. The range of these sensors is usually limited. Optical sen-
sors such as laser scanners can detect obstacles at a larger distance and without
touching them. Typical devices allow to configure different ranges or zones, such
that the vehicle is slowed down when an obstacle is detected within a larger
distance and stopped using the emergency break only in case of a close obstacle.

Optical sensors can be used as well to support safety layer II (cf. Fig. 2).
When used as external and static sensors, a reference body can be set up in
almost any distance and thus exploit the effective range of the sensors. There are
the following advantages of static sensors over mobile on-board sensors: Some
sensors are completely excluded from mobile use because of their principle of
measurement (e.g. motion detectors). Other sensors are prone to direct sunlight
or other influences in an outdoor environment. Moreover, some sensors, e.g.
PMDs (photonic mixing devices) or ultrasonic sensors, may interfere with a
sensor of the same type if the emitted signal of another device is interpreted
incorrectly. In a static layout, such sensors can be placed in a way that minimizes
negative environmental influence and interference.



Safe Autonomous Transport Vehicles 71

Therefore it should be part of the roll-out of the complete system to take
these influencing factors into account, while providing coverage of areas that
need consistent observation for safety or efficiency reasons. An (external) static
sensor setup serves already as an implementation of requirement 3.5b. Due to
the arguments above, we see a high potential for existing safety sensors to be
employed for such external monitoring tasks, even in outdoor settings.

Also further data processing steps, as described in the next subsections, can
benefit from a static sensor setup. Some simple but effective algorithms such
as background subtraction can be used to detect obstacles or moving objects
if a static background is given. A further advantage is the known position and
orientation of each stationary sensor.

4.2 The Observer Component

The Observer component evaluates the data that is communicated from external
sensors to the AGV. It is integral part of the extended architecture and respon-
sible for ensuring that the fast mode is only active if the AGV is in a safe state.
In the following we sketch its operation principle in a conservative mode, which
we think can be validated with state-of-the-art methods. Further improvements
require object classification and prediction as specified in subsequent subsections.

We assume that external sensor infrastructure communicates obstacle infor-
mation to the vehicle repeatedly with an update interval ofΔt. While the reliabil-
ity of sensor measurements are assumed to meet industrial safety requirements,
no assumptions are made on the (wireless) communication with the vehicle.

When receiving the external sensors’ data, the Observer has to decide if the fast
mode can be activated or remain active by calculating the reachability region
of the AGV itself and the reachability region of static and moving obstacles.
Reachability regions (or reachable sets, see e.g. [20]) cover all possible trajectories
or locations within a certain time interval.

1. The reachability region RAGV of the AGV is calculated for the next tn+tf +
Δt time units (update interval plus deceleration and stopping time). It should
be based on the current speed, the current location and an overestimation of
the vehicles dynamics, such that failures in lateral control or break actions
are covered. RAGV corresponds to the existence regions in [20]. Note that a
precise localization of the AGV is vital; a loss of precision has to result in
leaving the fast mode.

2. The reachability region Robs of all obstacles is calculated. A 2D mapping
of the obstacles, e.g. the contour obtained from a laser scan, is sufficient
as input. In case of a known static background (walls, fences), the contour
gives the border of the reachable set. Other obstacles have to be treated as
potentially moving, i.e. a safety margin has to be added to the reachable set
Robs. This safety margin must cover all possible movements for the duration
of tn+tf+Δt. A margin must also be added to the boundaries of the sensing
range, where moving obstacles can possibly enter the observed region.

Since the external sensors are static, the following simplification is pos-
sible: A sensor covers a fixed predefined region T as well as an additional



72 T. Toben et al.

safety margin S. If the covered area T + S is free of obstacles, Robs = T is
sent to the AGV. Note that Δt has to be fix then, as S depends thereon.

3. The observer checks whether RAGV ∩ Robs = ∅. If the intersection of both
regions is empty, then the fast mode can be activated or remain active for
Δt time units. Otherwise and in case of a missing update it is set to normal.

The calculated reachability regions grow with the time interval Δt, such that
non-empty intersections become more likely and trajectories are rendered unsafe.
Distinguishing static obstacles from moving obstacles can help to reduce safety
margins. For moving obstacles, the concept of stochastically reachable sets [2]
was introduced. Both require obstacle classification as discussed in the following.

4.3 Fusion of Sensor Data and Obstacle Classification

With a conservative calculation of reachability sets, an AGV’s trajectory can
be regarded as unsafe even if there is no risk of collision. Thus, the goal is
to identify moving obstacles and their movement direction and distinguish them
from static obstacles in order to obtain more precise reachability sets. These sets
are usually smaller and allow to plan better trajectories. Obstacle classification
should should provide higher levels of information, e.g. information about ob-
jects instead of collections of distance measurements. This object data is further
processed in the Prediction component, which is described in the next subsection.
Obstacle classification can be facilitated by high-end single-sensor solution such
as 3D laser range finders. For most use cases of AGVs, however, such solution is
too costly and has to be replaced by industrial sensors, or combinations of those.
Combinations of sensors , e.g. laser range finders, which are well suited for pre-
cise contour finding, with other optical sensors that support object classification,
help to overcome limitations of a single sensing technology.

When combining sensor data, the error margins and dependencies have to be
preserved. Especially sensor measurements in outdoor scenarios are tackled by
environmental influences that can affect sensors of the same class. It is vital so
safety-relevant processes to eliminate false negatives. If this cannot be guaran-
teed, the system has to fall back into the appropriate mode for safe operation.

Existing systems for sensor data fusion target the improvement of the ob-
ject detection. However most of the works do not consider the evidence of the
measurements of the participating sensors and the sensor data processing in the
results [3]. Hence, these systems cannot or only rarely give any consideration
about the quality of their results concluding in a binary assertion about the
detected obstacles. While this is acceptable in non-safety-critical applications,
the evidence about the non-presence of an obstacle in safety-critical systems
is significant. A number of mechanisms have been proposed for handling this
uncertainty [6]. They include Fuzzy Logic, Bayesian Networks, Hidden Markov
Models and the Dempster-Shafer theory. As also stated in [6] a hybrid approach
to process the uncertainty and perform a context reasoning should be preferred.

To support of a wide variety of sensors we use an architecture consisting of
three logical layers. Simple sensors (without interpretation logic) such as laser



Safe Autonomous Transport Vehicles 73

range finders send their measurements to the lowest layer, called raw data layer.
More intelligent sensors that can already detect and separate contours of an
object send their measurements to the second layer, the feature layer. Sensors
that can already detect and classify objects send their data to the highest layer,
called the object layer. The raw data layer is responsible to extract features from
raw data and propagate them with the measurement uncertainty to the feature
layer. The feature layer detects and classifies objects formed by the detected fea-
tures. It also propagates uncertainty about detected objects. In the object layer,
the detected objects are tracked and enhanced with their speed and direction.
The object layer appends uncertainty of the tracking to further processing. This
object classification and tracking enables a prediction of future movements.

4.4 Hazard Prediction

An important aspect in the efficient operation of an AGV is the planning of
trajectories. Autonomous vehicles can dynamically (re-)plan their trajectories,
which allows to chose an alternative, if the intended trajectory is not safe or re-
quires a stop. The assessment of trajectories w.r.t. potential hazards is the task
of the Prediction component. Though the prediction is not required in the safety
architecture, it plays a vital role in improving the overall efficiency. Especially
outdoor scenarios are often characterized by a mixed traffic environment involv-
ing uncooperative users. If the dynamics of such uncooperative users (vehicles or
pedestrians) can be anticipated rather than making worst-case assumptions of
their movement, a more efficient dynamic trajectory planning is possible. Based
on object detection and classification, the dynamics of other users are predicted
in order to identify possibly critical situations and resolve conflicts in a safe way.

The prediction of movement can be generally performed in three different ways
[15]: Nominal, probabilistic, and worst-case. The nominal movement is an ex-
trapolation of the past movement, while the worst-case movement model returns
reachability sets (cf. Subsection 4.2). The probabilistic model adds probabilities
to these positions (e.g. [2]). For pedestrians a worst-case prediction is adequate
because of their agility. For vehicles a probabilistic model is recommended that
includes changes in speed and direction, but only to a certain realistic extent.
Such reachability sets of possible movements for a certain time interval can then
be checked for conflicts with the AGV’s planned trajectory.

In case of a conflict, the movement of the AGV has to be adapted, such
that it results in a safe trajectory. Depending on the dimension of intervention
(longitudinal or also lateral control), the prediction triggers the mode switch
or the trajectory planner (Fig. 2). An adaptive trajectory planning offers higher
efficiency gains than a speed adaption, but also involves further challenges in
the realization of the prediction component. This also depends on the quality
of available information given by external and on-board sensors. If all moving
objects in the environment can be reliably classified as either pedestrians or
vehicles, a better prediction of their movement is possible. In case of uncertainty,
the worst-case prediction has to be applied, which results in lower speed or more
conservative (re-)planning of trajectories.



74 T. Toben et al.

5 Conclusion

The presented architecture shows how the existing safety case for autonomous
transport vehicles can be extended to heterogeneous environments. This exten-
sion uses external safety sensors and allows to overcome limitations by relying
on a vehicle’s on-board sensors only. By extending an established architecture,
we can use a well-understood safety case as a fallback if the external infras-
tructure cannot guarantee safety or fails. Furthermore, we avoid to introduce
software-intensive components into the basis architecture.

We have formalized the safety requirements and derived sub-goals, for which
we showed completeness and also mapped them to the system components of the
architecture. As of yet, the requirements focus on the internal switch control. In
a further step, a (probabilistic) formalization of the sensory components is to
be integrated, e.g. based on the modeling framework in [23,24]. In general, the
implementation of this architecture should be embedded in a safety lifecycle and
accompanied by a preceding hazard analysis (e.g. using a generic hazard list [9])
to determine areas of operation that have to be monitored by external sensors.

We have shown that the system architecture with a conservative obstacle de-
tection allows for a fulfillment of the main safety requirements. We have sketched
the technical aspects to illustrate the feasibility of including external safety sen-
sors into an overall safe system for a conservative setting. The concept still has
a potential for providing more efficient trajectories in the presence of moving
obstacles while preserving the safety constraints. However, in order to tap this
potential, considerable work has to be done to safely classify objects in the en-
vironment, plan trajectories and assess their risk automatically and eventually
choose a safe and efficient path.

References

1. Alami, R., Krishna, K., Simeon, T.: Provably Safe Motions Strategies for Mobile
Robots in Dynamic Domains. In: Autonomous Navigation in Dynamic Environ-
ments. STAR, vol. 35, pp. 85–106. Springer, Heidelberg (2007)

2. Althoff, M., Stursberg, O., Buss, M.: Stochastic reachable sets of interacting traffic
participants. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 1086–1092 (2008)

3. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems.
IJAHUC 2(4), 263–277 (2007)

4. Benenson, R., Fraichard, T., Parent, M.: Achievable safety of driverless ground
vehicles. In: ICARCV, pp. 515–521. IEEE (2008)

5. Berger, C., Rumpe, B.: Autonomous Driving - Insights from the DARPA Urban
Challenge. IT - Information Technology 50(4), 258–264 (2008)

6. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,
A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
and Mobile Computing (June 2009)

7. Caveney, D.: Hierarchical software architectures and vehicular path prediction for
cooperative driving applications. In: 11th Int. IEEE Conf. on Intelligent Trans-
portation Systems (ITSC 2008), October 2008, pp. 1201–1206 (2008)



Safe Autonomous Transport Vehicles 75

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
pp. 359–364. Springer, Heidelberg (2002)

9. Eilers, S., Peikenkamp, T., Rührup, S., Schweigert, S., Toben, T., Winkelmann,
H.: Eine Generische Gefährdungsliste für Fahrerlose Transportfahrzeuge in der In-
tralogistik. In: Automatisierungs-, Assistenzsysteme und eingebettete Systeme für
Transportmittel, pp. 245–259. ITS Nds. e.V, Braunschweig (2011)

10. EN 954-1:1996, Safety of machinery - Safety-related parts of control systems (1996)
11. Ess, A., Leibe, B., Schindler, K., Gool, L.J.V.: Moving obstacle detection in highly

dynamic scenes. In: ICRA, pp. 56–63. IEEE (2009)
12. European Committee for Standardization (CEN): Safety of industrial trucks -

Driverless trucks and their systems; German version EN 1525 (1997)
13. Fraichard, T., Asama, H.: Inevitable collision states - a step towards safer robots?

Advanced Robotics 18(10), 1001–1024 (2004)
14. ISO EN 13849-1:2006 Safety of machinery - Safety-related parts of control systems

(2006)
15. Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling

methods. IEEE Trans. on Intelligent Transportation Systems 1, 179–189 (2000)
16. Lüth, C., Frese, U., Täubig, H., Walter, D., Hausmann, D.: SAMS Sicherheitskom-

ponente für Autonome Mobile Serviceroboter. In: VDI-Bericht 2012. VDI (2008)
17. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,

Haehnel,D.,Hilden,T.,Hoffmann,G.,Huhnke,B.,Johnston,D.,Klumpp,S.,Langer,
D., Levandowski, A., Levinson, J., Marcil, J., Orenstein, D., Paefgen, J., Penny, I.,
Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D., Vogt, A., Thrun, S.: Junior:
The stanford entry in the urban challenge. J. Field Robot. 25, 569–597 (2008)

18. Pnueli, A.: The Temporal Logic of Programs. In: 18th Symposium on Foundations
of Computer Science, pp. 46–57 (October 1977)

19. Safespot: cooperative vehicles and road infrastructure for road safety,
http://www.safespot-eu.org

20. Schmidt, C., Oechsle, F., Branz, W.: Research on trajectory planning in emergency
situations with multiple objects. In: IEEE Intelligent Transportation Systems Con-
ference (ITSC 2006), pp. 988–992 (2006)

21. Seward, D., Pace, C., Agate, R.: Safe and effective navigation of autonomous robots
in hazardous environments. Auton. Robots 22, 223–242 (2007)

22. Thorpe, C., Carlson, J., Duggins, D., Gowdy, J., MacLachlan, R., Mertz, C., Suppe,
A., Wang, B.: Safe Robot Driving in Cluttered Environments. In: 11th Int. Sym-
posium on Robotics Research (ISRR 2003), pp. 271–280 (2005)

23. Toben, T.: A Formal Model of Reliable Sensor Perception. In: Lukowicz, P.,
Kunze, K., Kortuem, G. (eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 94–107.
Springer, Heidelberg (2010)

24. Toben, T., Rakow, J.H.: Safety and Precision of Spatial Context Models for Au-
tonomous Systems. In: 1st ETAPS Workshop on Hybrid Autonomous Systems
(HAS 2011). ENTCS (2011) (to appear)

25. Ullrich, G.: Fahrerlose Transportsysteme. Vieweg + Teubner (2011)
26. Vincoli, J.: Basic Guide to System Safety, 2nd edn. Wiley, New York (2006)
27. Walter, D.: A Formal Verification Environment for Use in the Certification of

Safety-Related C Programs. Ph.D. thesis, Universität Bremen (2010)
28. Wardziński, A.: The Role of Situation Awareness in Assuring Safety of Autonomous

Vehicles. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 205–218.
Springer, Heidelberg (2006)

http://www.safespot-eu.org


Adaptive Autonomous Systems –

From the System’s Architecture to Testing

Franz Wotawa

Technische Universität Graz,
Institute for Software Technology,

Inffeldgasse 16b/2, 8010 Graz, Austria
wotawa@ist.tugraz.at

http://www.ist.tugraz.at/

Abstract. Autonomous systems have to deal with situations where ex-
ternal events or internal faults lead to states, which have not been con-
sidered during development. As a consequence such systems have to have
knowledge about themselves, which has to be used to reason about adap-
tions in order to fulfill a given goal. In this paper we present a control
architecture that combines a the sense-plan-act paradigm and model-
based reasoning. The latter is used to identify internal faults. Beside
discussing the control architecture we also briefly explain advantages of
model-based diagnosis where there is a shift from providing control pro-
grams to developing models. Consequently, testing of models becomes
an issue. Therefore, we also introduce basic definitions related to testing
models for diagnosis and discuss the involved challenges.

Keywords: Adaptive systems, model-based reasoning, testing model-
based systems.

1 Introduction

Truly autonomous systems like mobile robot have to fulfill given tasks even in
case of internal faults or external events potentially preventing the robot from
reaching its goal. Such an autonomous robot has to detect a misbehavior by its
own. Therefore, the robot has to have capabilities to reason about its state and
all the consequences of the state. One consequence might be that a sensor signal
cannot longer be trusted or that certain reconfigurations of the hardware and
software have to be performed. The ability of reasoning about itself is even more
required in cases where a robot has to deal with non-foreseen situations during
the development of the robot.

Today almost no available robot is able to deal with internal faults or not
previously known external events in an intelligent way. The reasons are (1) the
increasing complexity of systems dealing with faults in an automatic fashion,
(2) the complexity of the environment, i.e., the real physical world, of an au-
tonomous and mobile robot, and (3) difficulties to enumerate all potential faults
and interaction scenarios in advance, e.g., during the development phase of the

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 76–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ist.tugraz.at/


Adaptive Autonomous Systems 77

Fig. 1. Fetch the key scenario

SENSE PLAN ACT

E N V I R O N M E N T

Fig. 2. Sense-plan-act control architecture

robot. The latter prevents using simple solutions like rule-based systems. More-
over, there is also the problem of testing intelligent systems especially when using
neural networks and other potentially non-deterministic approaches.

In this paper we present a software architecture that allows for constructing
truly autonomous systems. We use model-based reasoning techniques for en-
abling a robot reasoning about itself. We state the theory behind the approach.
But the paper focuses more on the architecture and its components, and on
testing. In the following we illustrate the underlying idea using an example sce-
nario where a robot has to fetch a key lying on a floor (see Fig. 1). In many
cases the used underlying control architecture of robots follows more or less a
traditional sense-plan-act architecture depicted in Fig. 2. In this architecture the
robot computes a plan using the given sensor inputs, its internal state, and the
given goal. A plan in this terminology is nothing else than a sequence of actions
that are executed sequentially. The execution of the actions potentially changes
the state of the environment, which is sensed again. In case of failing actions or
situations where a plan cannot longer be followed re-planning is performed.

A plan for our key fetching task would include actions for moving forward,
turning left, and moving forward again until the robot reaches the key, i.e.,
〈forward, left, forward〉. In a perfect world such a plan can be correctly exe-
cuted. Let us assume now that in the first forward action there is a problem
with the robot’s drive. The attached sensor of a wheel is returning that the wheel
is not rotating. Hence, the action cannot be successfully continued and the robot
might not be able to fulfill its objective anymore because of lack of functioning
actuators allowing a robot to move from one position to another. However, the
reason for the sensor signal might not be that the motor is not working anymore.
It is also possible that the sensor is faulty but distinguishing this two explana-
tions requires self-reasoning capabilities and a certain degree of redundancy. In
this example, a robot that is able to identify wrong sensor information would
be able to reach the goal and fetch the key, because the robot would not termi-
nate plan execution. The forward action would still be executed, and the robot
would be able to move to the key.

In the following sections we introduce the theory behind root cause identifi-
cation and discuss an algorithm. Afterwards we discuss the new robot control
architecture where root cause identification is an integral part. This extended
control architecture relies on combining root cause identification and the sense-



78 F. Wotawa

plan-act architecture. Then we discuss the software engineering challenges of
such systems with respect to development and testing. Finally, we review re-
lated research and conclude the paper.

2 Model-Based Reasoning

In this section we introduce the basic concepts of model-based diagnosis (MBD)
[3,4] following the definitions of Reiter [18]. The basic idea behind MBD is to
use a model of the system directly for identifying the root causes of detected
deviations between the observed and the expected behavior. The model specifies
the correct behavior of the system. Hence, in the original definition of MBD
there is no need for modeling incorrect behavior. This is especially important
in cases where the incorrect behavior of components is not known in advance
or too expensive to obtain. Since we also want to deal with unknown situations
this capability of MBD serves our purpose.

MBD starts with a model, which is called a diagnosis system comprising a
system description SD and a set of components COMP , where each component
may fail. There are two important aspects regarding MBD to mention. First,
SD comprises a set of logical sentences that state the model of the components
and the structure of the system. In SD also the connections between the com-
ponents, i.e., the means for communication between components, have to be
specified. Second, the component models in SD define the correct behavior of
the component. In order to distinguish between the correct and the incorrect
behavior MBD makes use of a special predicate AB. AB(c) is true if component
c is faulty (or behaves abnormal). The negated predicate ¬AB(c) states that c
is working as expected1.

We illustrate how to write a model for MBD using the fetch key example
(Fig. 1), where we model the robot drive partially and in an abstract way. The
considered part of the robot drive (see Fig. 3) comprises a motor m connected
with a wheel w. The rotation of the wheel is measured using a wheel encoder e.
In order to allow for deciding whether the motor is working or not we assume
that the current flowing through the motor is also observed by means of a current
meter c.

In the following we introduce the logical model SD written in first order logic
for our example:

Motor: In case of a correct behavior a particular motor is running in forward
direction if there is command for moving forward cmd fwd. In this case there
is a current flowing through the motor. This current can be of nominal value
or higher if there is a strong resistance coming from attached components like
wheels. Hence, for all components X that are motors, the following logical
sentence formalize their behavior:

1 It is worth noting that it would also be possible to use a predicate NO stating normal
operation instead of the negation of AB. However, the AB predicate has been used
in almost all MBD papers. Therefore, we also make use of AB in order to introduce
the basic MBD theory.



Adaptive Autonomous Systems 79

Motor m

Wheel w

Commands fwd

Current 
meter c

Wheel encoder e

Fig. 3. Schematic of a robot drive

∀X : motor(X) →⎛
⎜⎜⎜⎜⎝

¬AB(X) → (cmd fwd → direction(X, fwd))
direction(X, fwd) → torque(X, fwd)

direction(X, fwd) ∧ resistance(X) → current(X,high)
direction(X, fwd) ∧ ¬resistance(X) → current(X,nominal)
current(X,high) ∨ current(X,nominal) → direction(X, fwd)

⎞
⎟⎟⎟⎟⎠

(1)

Wheel: The torque provided via the axle is turned into rotations of the wheel.
Only in case of a stuck wheel there is a resistance against the applied torque.
But this case is not going to be formalized because we are only interested
in the correct behavior. For wheels X we formalize the correct behavior as
follows:

∀X : wheel(X) →
(¬AB(X) → (torque(X, fwd) → (rotate(X, fwd) ∧ ¬resistance(X))))

(2)
Current Meter: The current meter measures the value of the current. Hence,

there is a one to one correspondence of the current flow and the measurement
in case of a correct behavior. This behavior of a current meter X can be
formalized as follows:

∀X : current meter(X) →( ¬AB(X) → (current(X,high) ↔ observed current(X,high))
¬AB(X) → (current(X,nominal) ↔ observed current(X,nominal))

)
(3)

Wheel Encoder: The wheel encoder X is providing a frequency only in case of
a rotation. For a wheel encoderX we introduce the following logical sentence:



80 F. Wotawa

∀X : encoder(X) →
(¬AB(X) → (rotate(X, fwd) ↔ frequency(X)))

(4)

What is now missing to complete the model for our example is a description of
the structure. We first define the components:

motor(m) ∧ wheel(w) ∧ current meter(c) ∧ encoder(e) (5)

Second, we have to define the connections between the components. This can be
done using the following logical sentences:

torque(m, fwd) ↔ torque(w, fwd)
resistance(m) ↔ resistance(w)

current(m,nominal) ↔ current(c, nominal)
current(m,high) ↔ current(c, high)
rotate(w, fwd) ↔ rotate(e, fwd)

(6)

The rules stated in Equations (1) – (6) define the structure and behavior of
the model SD of our small example. For this example the set of components
comprise 4 elements, i.e., COMP = {m, c, w, e}.

Having now the model (SD,COMP ) we are interested in finding root causes.
For this purpose we have to state a diagnosis problem.

Definition 1 (Diagnosis problem). A diagnosis problem is a tuple
(SD,COMP,OBS), where SD is a model, COMP a set of components, and
OBS a set of observations.

Before discussing solutions to diagnosis problems we should discuss some cases.
In the first case assume that the model SD allows for deriving the given ob-
servations OBS, or in other words assume that the observations are not in
contradiction with the model. In this case, it is reasonable to assume that the
system is working as expected. The same holds for the second case where no
observations are available, i.e., OBS = ∅. The third case is the more interesting
one, where the observations are in contradiction with SD. In this case, we are
interested in finding the root cause for the contradiction. What we have are the
components and the assumptions about their correctness or incorrectness. For
this purpose we use the negated AB predicate. Hence, a root cause or diagnosis
should be assumptions about the logical value of the AB predicate, which lead
to a logical sentence that is not in contradiction with the given observations
OBS. Formally, we define a diagnosis as follows:

Definition 2 (Diagnosis). Let (SD,COMP,OBS) be a diagnosis problem. A
set Δ ⊆ COMP is a diagnosis if and only if SD ∪ OBS ∪ {¬AB(X)|X ∈
COMP \Δ} ∪ {AB(X)|X ∈ Δ} is consistent.

We illustrate this definition using our running example again. Let us assume
now that a forward command is sent to the motor, a nominal current is mea-
sured, but the wheel encoder is not delivering any frequency output. The di-
agnosis problem includes SD and COMP described previously and OBS1 =



Adaptive Autonomous Systems 81

{cmd fwd, observed current(m,nominal),¬frequency(e)}. Valid diagnoses are
{e}, {w}, {c,m} but also {c,m, e, w}. In order to eliminate the latter diagnosis,
which states that all components are not working as expected, from the list of
diagnoses we introduce the definition of minimal diagnosis.

Definition 3 (Minimal diagnosis). A diagnosis Δ is a minimal diagnosis if
there exists no diagnosis Δ′ ⊂ Δ.

From here on we assume that a diagnosis algorithm always returns minimal di-
agnoses. Hence, the 3 minimal diagnoses {e}, {w}, {c,m} remain for our running
example. This result allows for distinguishing some reasons for a misbehavior.
For example, the wheel might be the root cause in case of OBS1 but not the
motor alone. In this case we might prefer small diagnosis and thus reject the
fault hypothesis {c,m}. However, we are not able to distinguish the diagnosis
{w} from {e}. In order to solve this challenge there are 3 options: (1) introduce
new observations, which might be not possible in case of autonomous systems
with a limited number of sensors, (2) use fault probabilities, and (3) extend the
model to eliminate diagnoses.

Option (2) can be implemented by assigning a fault probability pf(X) to each
component X . In this case we are able to compute the probability of a diagnosis
assuming independence of component faults as follows:

p(Δ) =
∏
X∈Δ

pf (X) ·
∏

X∈COMP\Δ
(1− pf (X)) (7)

If we assume that a fault in a wheel is less likely than a fault in the wheel
encoder, Equation 7 returns a higher probability value for the diagnosis wheel
encoder than for the diagnosis wheel. It is worth noting that fault probabilities
might also change over time. For a theory of adapting fault probabilities using
diagnosis information we refer the interested reader to [6].

In option (3) the idea is to eliminate diagnoses by adding knowledge about
impossibilities to the system description. Friedrich et al. [10] introduced this con-
cept of physical impossibilities and explained the advantage with respect to diag-
nosis capabilities. For our running example, we might state that it is impossible
that the wheel is the reason for observing no frequency in case of nominal cur-
rent flow through the motor. In other word we state that the physical connection
between the motor and the wheel can never break. This is not true in general but
might be applicable in special cases. In order to state this impossibility we defined
SD′ to be SD together with the rule current(m,nominal)∧¬rotate(w, fwd) →
⊥. When using SD′ together with OBS1 only diagnosis {e} remains as single
diagnosis.

There are many algorithms available for computing diagnosis. Reiter [18] in-
troduces a hitting set based algorithm that makes use of conflicts, which was
corrected by Greiner et al. [12]. De Kleer and Williams [6] introduced their
general diagnosis engine (GDE). GDE is based on an assumption based truth
maintenance system (ATMS) [5]. Later on Nejdl and Fröhlich [11] presented
a very fast diagnosis engine that is also based on logic model representations.



82 F. Wotawa

Diagnosis algorithms that make use of certain structural properties include [8]
and [22].

Note that there is no restriction regarding the modeling language used for
model-based reasoning. In this section we make use of first order logic, but
also constraint representations [7], or other formalisms might be used. The only
requirement is to have a solver that allows for checking consistency. Algorithm 1
introduces a straight forward but not optimal algorithm that computes minimal
diagnoses up to a pre-defined size. The algorithm basically checks all subsets of
COMP for being a diagnosis. Although there are many improvements possible
the algorithm is fast enough if we are interested in smaller diagnoses like single
faults only.

Algorithm 1. DIAGNOSIS

Input: A model (SD,COMP ), a set of observations OBS, and the maximum size of
computed diagnoses max > 0. In casemax is not given, we assumemax := |COMP |.

Output: A set of minimal diagnoses accordingly to Definition 3.
{Computes all minimal diagnoses up to the given size.}
Let DS be the empty set.
for i:= 0 to max do

Generate all subset of COMP of size i and store the results in DS′.
Remove all elements in DS′ that are subset of minimal diagnosis stored in DS.
for all Δ ∈ DS′ do

Call the theorem prover on SD ∪ OBS ∪ {¬AB(X)|X ∈ COMP \ Δ} ∪
{AB(X)|X ∈ Δ}).
if the theorem prover call returns an inconsistency then

Remove Δ from DS′.
end if

end for
Let DS be DS ∪DS′.

end for
return DS

3 A Model-Based Control Architecture

In this section, we discuss the extension of the ordinary sense-plan-act control
architecture (Fig. 2) to handle cases of internal faults and external events, pre-
venting actions to be executed. In the original architecture a plan is generated
that leads from an initial state to a goal state. The state (comprising the sensor
information and internal state) is observed and used to select actions based on
the plan. The actions are executed using the actuators. This execution might
lead to changes in the internal state or in the environment. As discussed in
the introduction the original control architecture cannot react on internal faults
and hardly interact on external events, preventing actions to be executed and
therefore plans to reach their goals.



Adaptive Autonomous Systems 83

SENSE PLAN ACT

E N V I R O N M E N T

MBR EngineModel

Fig. 4. The adaptive robot control architecture

In order to overcome this problem, we introduce an extended sense-plan-act
control architecture, which computes root causes in case of a detected misbe-
havior. In Figure 4 the extended sense-plan-act control architecture is depicted.

The main control loop of the sense-plan-act architecture remains the same but
in some cases, which we discuss later, a model-based reasoner is used to decide
the current health status of the autonomous system. The reasoner has access to
the internal state of the controller and the sensor information. The health status
needs not to be always checked. A check has to be performed only in cases
where an action that is decided by the planning module cannot be successfully
executed. As already stated, there might be several reasons: (1) there is a fault
in the hardware preventing the action to be successfully terminated, or (2) an
external event occurred. The latter requires re-planning activities whereas the
first reason requires determining the fault in order to adapt the behavior.

Algorithm 2 describes the underlying behavior of the extended sense-plan-
act architecture. We assume that the goal state specifies the purpose of an au-
tonomous system. The task of the control architecture is now to find a plan,
i.e., a sequence of actions, that allows the system to reach the goal state from
the current state, and to execute this plan. This idea originates from STRIPS
planning [9] and our algorithm relies on the same input data, i.e., a planning
knowledge base Mp comprising a set of actions a where each action has a cor-
responding set of pre conditions and effects. Moreover, we require a goal state
SG and a diagnosis model (SD,COMP ), used in cases of failing actions during
plan execution.

In Algorithm 2 we make heavily use of a function SENSE(). This function
returns the current state of the autonomous system comprising the internal
state and the information obtained from the sensors. We assume that the sensor
information is only given when reliable. Hence, in case of a diagnosis indicating
a sensor to fail, the information is no longer provided. Although time is not
handled explicitly in the algorithm it is worth noting that time exceeds during
execution. Therefore, SENSE() represents the state at a discrete point in time
only, where measurements and the internal state are observed. We assume that
this is done on a regular basis.



84 F. Wotawa

Algorithm 2. EXT PSA ARCH

Input: A planning model Mp, a diagnosis model (SD,COMP ), and the goal state
SG.

Output: Computes and executes a plan from the current state to SG.
Let p := PLAN(Mp,SENSE(),SG).
while p is not empty do

Let a be the first action of plan p.
Remove a from p.
if pre conditions of a are not fulfilled in SENSE() then

Let p := PLAN(Mp,SENSE(),SG).
else

Execute a.
if execution terminates with a failure then

Let SΔ be the result of calling DIAGNOSIS(SD,COMP,SENSE()), and Δ be
the leading diagnosis of SΔ.
if Δ indicates a sensor failure only then

Consider a to be executed without failure and proceed.
else

Remove all actions from the planning model that cannot be longer used
because of diagnosis Δ.
Let p := PLAN(Mp,SENSE(),SG).

end if
else

if effects of a are not fulfilled in SENSE() then
Let p := PLAN(Mp,SENSE(),SG).

end if
end if

end if
end while

The control algorithm starts computing a plan based on the available infor-
mation, i.e., the current state provided by SENSE() and the planning knowledge
based Mp together with the goal state SG. At the beginning all actions that
can be performed by the system are functioning, and are therefore available for
planning. Afterwards, the plan is executed by sequentially executing the actions.
First, the pre conditions of the current action a are checked. In case that the pre
conditions are not fulfilled in the current state, the action cannot be performed.
This might happens due to an external event. As a consequence, re-planning has
to be performed and plan execution starts again using the new plan.

If the pre conditions of an action are fulfilled, the action is executed. This
execution might be terminated returning a failure. In this case diagnosis has
to be performed that returns diagnoses from which a leading diagnosis can be
obtained. A leading diagnosis in our case might be the smallest diagnosis or the
one with the highest fault probability. For simplicity we do not handle the case of
multiple diagnoses that cannot be distinguished with the available information.
If such case occurs, measures for distinguishing diagnoses have to be performed,
like providing testing procedures. For example, Wotawa et al. [25] introduce



Adaptive Autonomous Systems 85

distinguishing test cases for solving such problems. Hence, we assume that we
can always determine a leading diagnosis. This leading diagnosis is used to either
remove actions that cannot be performed anymore, or to assume that some sensor
data is no longer reliable. In the latter case there is no need to apply re-planning.
Instead the action is forced to be executed and the procedure continues.

The last possibility for a fault occurring during execution is that the effects of
an action are not visible. In this case we again perform re-planning, which might
lead to the case where the current action is re-executed again. Note that this
might lead to a situation where the robot is executing an action again and again
due to a sensor failure or an external event. Therefore, in the implementation
the repetition of executions of the same actions should be tracked and handled
appropriately. For example, a diagnosis step might also be performed.

The extended sense-plan-act control architecture provides adaptation due to
internal faults and external events. Depending on the used models it allows for
distinguishing sensor and actuator faults. It might also be used for handling
faults in software providing a model of the behavior. Of course the implementa-
tion of the control loop and the diagnosis module have to be correct and cannot
be corrected using the proposed approach.

4 Testing Model-Based Systems

One advantage of the model-based reasoning approach is that the underlying
implementation, i.e., the diagnosis module and the control architecture, can be
easily re-used. The only changes necessary are changes of the underlying mod-
els. Therefore, we focus on challenges of testing models instead of testing the
implementation of the different modules that together contribute to the overall
system’s architecture. Testing models especially when they are written in logic
or any other relational language is rather similar to ordinary software testing
[1]. In both cases we are interested in comparing the behavior imposed by a
system with the expected behavior. However, there are some differences and
challenges like answering the question when to stop testing? Usually, in software
engineering practice there are some criteria like mutations scores or coverage,
e.g., statement or branch coverage, a test suite has to fulfill. In case of testing
models such criteria can hardly be applied directly and new criteria have to be
developed.

We start with discussing testing the diagnosis model. What we have to ensure
is that the model allows for deriving all correct diagnoses for any given set of
observations. Moreover, the model should never allow deriving diagnoses that are
not correct. So what we want to show is whether DIAGNOSIS(SD,COMP ,OBS)
= DSexpected holds for all possible OBS or not. This is of course not feasible
even in the case of a finite number of predicates that might be used in OBS.
Therefore, in testing diagnosis models we have to restrict the number of tests.
Formally, we introduce a test suite for a model (SD,COMP ) as follows:

Definition 4 (Test, test suite). Let (SD,COMP ) be a diagnosis model and
PO the set of possible observations. A tuple (OBS,DS,max), where OBS is



86 F. Wotawa

a set of observations, DS a set of diagnoses with cardinality less or equal to
max, is a test for the diagnosis model if OBS ⊆ PO and SD ∪OBS �|= ⊥ or if
OBS ⊆ PO, SD∪OBS |= ⊥ and DS = ∅ . A test suite for the diagnosis model
is a set of tests.

Note that in the definition |= stands for the logical consequence, and ⊥ for the
contradiction. In the above definition there is no restriction on DS with the
exception of the case, where the observations directly are in contradiction with
the model. In this case no diagnosis is allowed to be computed. This fact follows
directly from the definition of diagnosis in MBD.

We are now able to specify soundness and completeness of a model with
respect to the given test suite. In particular, we might be interested whether
a given model delivers all correct diagnoses. This can be ensured when having
sound and complete models. A model is sound if only correct diagnoses can be
obtained from the model. A model is complete if all diagnoses can be derived
from the model and the given observations.

Definition 5 (Soundness, completeness). Let (SD,COMP ) be a diagnosis
model and TS its non empty test suite. (SD,COMP ) is sound with respect
to TS iff for all (OBS,DS,max) ∈ TS: DIAGNOSIS(SD,COMP ,OBS,max)
⊆ DS. (SD,COMP ) is complete with respect to TS iff for all (OBS,DS) ∈ TS:
DIAGNOSIS(SD,COMP ,OBS,max) ⊇ DS.

We further say that a diagnosis model is correct with respect to a test suite iff
it is sound and complete.

After defining test suites and their impact on the model under test, we are
interested in generating test suites that obey a reasonable criterion. Although we
know that ”Program testing can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their absence.”2 generating tests
that at least allows us to check correctness for some important cases is essential.
Hence, we have to ask ourselves what are the important cases for diagnosis?
When considering the practical application of diagnosis, correctly identifying
single fault might be enough. Double and triple faults might occur but can
hardly be distinguished. Therefore, there would be a strong need for handling
a huge amount of diagnoses concurrently, which increases complexity. Hence,
classifying test suites regarding their capabilities of testing diagnosis results up
to a certain cardinality, seems to be a good choice.

We now generalize the concept of classifying test suites with respect to the
checking diagnoses up to a certain cardinality.

Definition 6 (n-cardinality criteria). A test suite TS for a diagnosis model
(SD,COMP ) fulfills the n−cardinality criteria iff ∀Δ ⊆ 2COMP ∧ |Δ| ≤ n :
∃(OBS,DS,max) ∈ TS : (Δ ∈ DS ∨ ∃Δ′ ∈ DS : Δ ⊃ Δ′).

Obviously in this definition a test suite that fulfills 2-cardinality also fulfills 1-
cardinality. Therefore, when constructing a test suite, starting with 1-cardinality

2 from Edsger Wybe Dijkstra, The Humble Programmer, ACM Turing Lecture 1972.



Adaptive Autonomous Systems 87

and than extending the test suite to fulfill the higher cardinality criteria, seems
to be a good procedure. It is worth noting that even constructing 1-cardinality
test suites may not be easy because specifying all diagnoses of size 1 for given
observations can be a hard problem. Hence, in practice it might be a good
option to iteratively construct test cases. First, start with observations that
must lead to some diagnosis. Call the DIAGNOSIS algorithm for computing all
diagnosis up to a given size. If the intended diagnoses are part of the result,
check the remaining diagnoses (if there are any). Remove all diagnoses that are
unexpected. Add diagnoses that are missing and generate the new test case.

Besides testing the diagnosis model the planning model and the interaction of
the planning module and the diagnosis module has to be tested. The planning
model might be tested similarly to the diagnosis model. The initial and the goal
state have to be specified, and possible plans have to be provided. If the planner
computes the same plans, the model has to be correct with respect to the test
case. Again certain corner cases should be specified and tested in order to ensure
at least partial correctness.

The interaction between the planner and the diagnosis engine can be tested
by stating more complex scenarios. The integration test has to specify a scenario
where a fault occurs, which has to be detected by the diagnosis algorithm. If the
implementation together with the model fulfill the scenarios the model might
be assumed to be correct because the system behaves like expected. However,
because of complexity it is impossible to check all scenarios. Again only some
important cases can be used for evaluation purposes.

Testing model-based applications basically means testing the developed mod-
els. Because of the complexity of models and underlying domains it is a painstak-
ing task to generate larger sets of test cases. Moreover, the quality of test suites
can hardly be quantified. In case of the model-based diagnosis module we are
able to quantify test suites with respect to the cardinality of diagnoses handled
in a certain case. What remains to do is to work on supporting test case gener-
ation for model-based systems. Even for diagnosis this seems not to be an easy
task and requires an iterative procedure.

5 Related Research

The application of MBD in the context of autonomous mobile systems is not
new. To our knowledge Williams and colleagues [24,17] were the first introduc-
ing a system that automatically adapts to internal faults in order to reach its
objectives. The MBD system had been tested in real-world conditions as part
of the control system of the NASA deep space one space probe3. The focus of
the approach was on hardware faults. Hence, intelligent interactions in case of
external events were not considered. Moreover, the space probe itself had no in-
tended capabilities of changing the external world. This is different to the mobile
robotics domain where actions have an impact on the environment.

3 See http://nmp.nasa.gov/ds1/



88 F. Wotawa

Approaches for applying MBD to the domain of robotics include [2], [15], and
[16] where the focus lies more in diagnosing interactions between many mobile
robots that should work together in order to reach a specified goal. Steinbauer
and colleagues [19] introduced a system that is capable of dealing with software
faults in mobile robot control systems. The approach is based on a very simplified
structural model of the control software and makes use of monitoring procedures
for detecting a misbehavior. The structural model is used to extract pieces of
software, i.e., modules, that should be restarted in order to overcome the detected
problems. The approach of Steinbauer and colleagues does not make use of a
behavior model and does not consider the case of external events.

In [14] the authors describe a MBD approach for handling faults in robot
drives. In particular the authors claim that they can adapt the kinematics of the
robot in case of faults in the drive. In the paper the focus is on how to adapt the
kinematics. The whole system’s architecture is explained but not in detail. The
adaption of high level control is also not given in detail. However, we borrow the
idea of using diagnosis information for changing high-level control from [14].

The idea of adapting plans based on diagnosis knowledge gained during ex-
ecution was outlined in [23] and [21]. The first paper deals in particular with
dependent failures, which might occur in robotics systems. In both papers the
authors make use of repair in case of misbehavior to ensure robustness. In this
paper we formally introduce the system’s architecture and also discuss the chal-
lenge of verifying such systems by means of model testing.

The work most closely to our work described in this paper is [13]. There the
authors introduce a MBD approach for mobile autonomous systems that is capa-
ble to handle internal faults as well as external events. The approach of Gspandl
et al. makes use of a Reiter’s situation calculus and is characterized by combin-
ing control and diagnosis knowledge in a uniform framework. In contrast to this
work our approach separates planning and control from diagnosis. Moreover, we
also tackle the problem of testing such systems, which has not been covered
before.

Steinbauer and Wotawa [20] discussed the evaluation of adaptive mobile and
autonomous robots. There the objective is to find an evaluation testbed that
allows for comparing different solutions. The paper does not deal with testing
such systems during development. Instead the paper focuses on the validation
of intelligent and adaptive robots with respect to their robustness in practical
situations.

6 Conclusion

In this paper we introduced a control architecture that enables adaptive control
of autonomous systems. The control architecture integrates the sense-plan-act
architecture and a model-based diagnosis engine. As a consequence both exter-
nal events and internal faults can be treated in a smart way. Internal faults are
handled by the diagnosis engine directly. External events cause re-planning ac-
tivities. An advantage of the proposed system is also the implicit software re-use.



Adaptive Autonomous Systems 89

The implementation of the approach could be used in many applications. Only
the underlying models have to be adapted or changed.

From the software engineering point of view, there is a focus switch from
coding to modeling. Or in other words, model-based development requires writ-
ing models instead of more traditional source code. Consequently, testing has
to focus on model testing. Unfortunately, testing models is not an easy task. In
the paper we outline some basic definitions of testing models for diagnosis and
briefly discuss an iterative approach for generating test suites from models.

Although, authors have shown in their papers that the model-based reason-
ing approach really allows for generating adaptive autonomous systems, there
is almost no work on developing and testing such systems. In future work we
will discuss this issue in much more detail. It is also worth mentioning that the
proposed approach requires a certain degree of redundancy. This redundancy is
different from the redundancy used to ensure robustness and reliability of sys-
tems, where components are typically available many times. In case of MBD
there is a need for an overlap of functionality, e.g., sensor input, in the system
that is maybe provided by different sensors. Developing guidelines for construct-
ing systems in order to fulfill the requirement of partial redundancy is also an
open research issue.

Acknowledgement. The work presented in the paper has been funded by the
Austrian Science Fund (FWF) under contract number P22690.

References

1. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold (1990)

2. Daigle, M., Koutsoukos, X., Biswas, G.: Distributed diagnosis of coupled mo-
bile robots. In: IEEE International Conference on Robotics and Automation,
pp. 3787–3794 (2006)

3. Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial Intelli-
gence 24, 347–410 (1984)

4. Davis, R., Hamscher, W.: Model-based reasoning: Troubleshooting. In: Shrobe,
H.E. (ed.) Exploring Artificial Intelligence, ch.8, pp. 297–346. Morgan Kaufmann
(1988)

5. de Kleer, J.: An assumption-based TMS. Artificial Intelligence 28, 127–162 (1986)
6. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelli-

gence 32(1), 97–130 (1987)
7. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
8. El Fattah, Y., Dechter, R.: Diagnosing tree-decomposable circuits. In: Proceedings

14th International Joint Conf. on Artificial Intelligence, pp. 1742–1748 (1995)
9. Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theo-

rem Proving to Problem Solving. Artificial Intelligence 2, 189–208 (1971)

10. Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault mod-
els. In: Proceedings of the National Conference on Artificial Intelligence (AAAI),
Boston, pp. 331–336 (August 1990); also appears in Readings in Model-Based Di-
agnosis. Morgan Kaufmann (1992)



90 F. Wotawa

11. Fröhlich, P., Nejdl, W.: A Static Model-Based Engine for Model-Based Reasoning.
In: Proceedings 15th International Joint Conf. on Artificial Intelligence, Nagoya,
Japan (August 1997)

12. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Reiter’s
theory of diagnosis. Artificial Intelligence 41(1), 79–88 (1989)

13. Gspandl, S., Pill, I.H., Reip, M., Steinbauer, G., Ferrein, A.: Belief management for
high-level robot programs. In: Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI (2011)

14. Hofbaur, M., Köb, J., Steinbauer, G., Wotawa, F.: Improving robustness of mo-
bile robots using model-based reasoning. Journal of Intelligent & Robotic Sys-
tems 48(1), 37–54 (2007)

15. Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms
for teams of situated agents. Artificial Intelligence 171(8-9), 491–513 (2007)

16. Micalizio, R., Torasso, P., Torta, G.: On-line monitoring and diagnosis of a team
of service robots: A model-based approach. AI Communications 19(4), 313–340
(2006)

17. Rajan, K., Bernard, D.E., Dorais, G., Gamble, E.B., Kanefsky, B., Kurien, J.,
Millar, W., Muscettola, N., Nayak, P.P., Rouquette, N.F., Smith, B.D., Taylor, W.,
Tung, Y.: Remote agent: An autonomous control system for the new millennium.
In: 14th European Conference on Artificial Intelligence (ECAI), pp. 726–730 (2000)

18. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

19. Steinbauer, G., Mörth, M., Wotawa, F.: Real-time diagnosis and repair of faults of
robot control software. In: RoboCup International Symposium, pp. 13–23 (2005)

20. Steinbauer, G., Wotawa, F.: Evaluating the robustness of the perception-decision-
execution cycle of autonomous robots. In: Proceedings of the ICAR Workshop on
Performance Measures for Quantifying Safe and Reliable Operation of Professional
Service Robots in Unstructured, Dynamic Environments (2011)

21. Steinbauer, G., Wotawa, F.: Robust plan execution using model-based reasoning.
Advanced Robotics 23(10), 1315–1326 (2009)

22. Stumptner, M., Wotawa, F.: Diagnosing Tree-Structured Systems. In: Proceedings
15th International Joint Conf. on Artificial Intelligence, Nagoya, Japan (1997)

23. Weber, J., Wotawa, F.: Diagnosis and repair of dependent failures in the control
system of a mobile autonomous robot. Applied intelligence (2008)

24. Williams, B.C., Pandurang Nayak, P.: Immobile robots – ai in the new millennium.
AI Magazine, 16–35 (1996)

25. Wotawa, F., Nica, M., Aichernig, B.K.: Generating distinguishing tests using the
minion constraint solver. In: CSTVA 2010: Proceedings of the 2nd Workshop on
Constraints for Testing, Verification and Analysis. IEEE (2010)



R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 91–105, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Representing Knowledge in Robotic Systems  
with KnowLang 

Emil Vassev and Mike Hinchey 

Lero—the Irish Software Engineering Research Centre, 
University of Limerick, Limerick, Ireland 

{Emil.Vassev,Mike.Hinchey}@lero.ie 

Abstract. Building intelligent robotic systems is both stirring and extremely 
challenging. Researchers have realized that robot intelligence can be achieved 
with a logical approach, but still AI struggles to connect that abstract logic with 
real-world meanings. This paper presents KnowLang, a new formal language 
for knowledge representation in a special class of intelligent robotic systems 
termed ASCENS. Autonomic Service-Component Ensembles (ASCENS) are 
multi-agent systems formed as mobile, intelligent and open-ended swarms of 
special autonomic service components capable of local and distributed 
reasoning. Such components encapsulate rules, constraints and mechanisms for 
self-adaptation and acquire and process knowledge about themselves, other 
service components and their environment. In this paper,a brief KnowLang case 
study of knowledge representation for a robotic system is presented.  

Keywords: knowledge representation, intelligent robotic systems, formal 
approach, robot ontology, ASCENS. 

1 Introduction 

Nowadays one of the most intriguing challenges in IT is the challenge of building 
intelligent robots. Apart from the complex mechanisms and electronics, building 
robots is about the challenge of interfacing with a dynamic and unpredictable world, 
which requires the presence of intelligence. Robotic artificial intelligence (AI) mainly 
excels at formal logic, which allows it,for example, to find the right chess move from 
hundreds of previous games. According to Matt Berlin, an AI researcher with MIT's 
Media Lab,“People realized at some point that you can only get so far with a logical 
approach”. The problem is that AI struggles to connect that abstract logic with real-
world meanings, which willl give a robot the necessary knowledge to become 
intelligent. 

The basic building block of intelligence in robotic systems is data [1], which takes 
the form of measures and representations of the internal and external worlds of a 
robot, e.g., raw facts and numbers. When regarded in a specific context (domain of 
interest), data can be assigned relevant meaning to become information. 
Consecutively, knowledge is a specific interpretation of information, i.e., knowledge 
is created and organized by flows of information interpreted and shaped by the 



92 E. Vassev and M. Hinchey 

intelligent system. Here the most intriguing question is how to represent the data and 
what mechanisms and algorithms are needed to derive knowledge from it.  

In this paper, we present our approachto knowledge representation for a particular 
class of intelligent robotic systems termed Autonomic Service-Component Ensembles 
(ASCENS) [2]. Our assumption is that knowledge representation can be regarded as a 
formalspecification of knowledge data reflecting the robot’s understanding about 
itself and its surrounding world. To specify a knowledge representation in ASCENS 
systems, we are currently developing a special formal language termed as KnowLang. 
In this paper, we present KnowLang in terms of special specification tiersand 
parameterization necessary to cover the specification of robot’s knowledge domains 
and reasoning primitives.We use KnowLang in a simple knowledge representation for 
a robotic case study.  

The rest of this paper is organized as follows: Section 2 introduces the notion of 
knowledge together with common knowledge representation techniques and inference 
engines. In Section 3, we briefly present ASCENS and our approach to knowledge 
representation for ASCENS systems. In Section 4, we formally present KnowLang, 
our target language for specifying knowledge in ASCENS systems. Section 5 presents 
a knowledge-representation case study and finally in Section 6, we provide brief 
concluding remarks and a summary of our future research goals. 

2 Background 

Conceptually, knowledge can be regarded as a large complex aggregation [3] 
composed of constituent parts representing knowledge of different kind. Each kind of 
knowledge may be used to derive knowledge models of specific domains of interest. 
For example, in [3] the following kinds of knowledge are considered: 

• domain knowledge – refers to the application domain facts, theories, and 
heuristics;  

• control knowledge – describes problem-solving strategies, functional 
models, etc.; 

• explanatory knowledge – defines rules and explanations of the system's 
reasoning process, as well as the way they are generated; 

• system knowledge – describes data contents and structure, pointers to the 
implementation of useful algorithms needed to process both data and 
knowledge, etc. System knowledge may also define user models and 
strategies for communication with users. 

Moreover, being considered as essential system and environment information, 
knowledge may be classified as 1) internal knowledge – knowledge about the system 
itself; and 2) external knowledge – knowledge about the system environment. Another 
knowledge classification could consider a priori knowledge (knowledge initially 
given to a system) and experience knowledge (knowledge gained from analysis of 
tasks performed during the lifetime of a system). 

There are different knowledge representation techniques that might be used to 
represent different kinds of knowledge and it is our responsibility to pick up or create 
the technique which best suits our needs.In general, to build a knowledge model we 



 Representing Knowledge in Robotic Systems with KnowLang 93 

need specific knowledge elements. The latter may be primitives such as frames, rules, 
logicalexpressions, etc. Knowledge primitives might be combined together to 
represent more complex knowledge elements. A knowledge model may classify 
knowledge elements by type, and group those of the same type into collections. 
Typical knowledge representation techniques are rules, frames, semanticnetworks, 
concept diagrams, ontologies and logics [4, 5]. Actually logics are used to formalise 
the knowledge representation techniques, which gives them a precise semantics. 
Knowledge-based systems integrate knowledge via knowledge representation 
techniques to build a computational model of some domain of interest in which 
symbols serve as knowledge surrogates for real world domain artefacts, such as 
physical objects, events, relationships, etc. The domain of interest can cover any part 
of the real world or any hypothetical system about which one desires to represent 
knowledge for computational purposes. Computations over represented knowledge 
are done by the so-called inference engine (or inferential engine) that acts on the 
knowledge facts to produce other facts that may need to be added to the knowledge 
base (KB). For example, if the KB contains rules, the inference engine may chain 
them either forward (e.g., for forecast) or backward (e.g., for diagnosis). The 
inference engines are logic-based, e.g., First Order Logic (FOL) and Description 
Logics (DL) [5, 6].  

One way to implement inference is by using algorithms from automated deduction 
dedicated to FOL, such as theorem proving and model building. Theorem proving can 
help in finding contradictions or checking for new information. Finite model building 
can be seen as a complementary inference task to theorem proving, and it often makes 
sense to use both in parallel. Some common FOL-based inference engines are 
VAMPIRE [7], SPASS [8], and the E theorem prover [9]. The problem with FOL-
based inference is that the logical entailment for FOL is semi-decidable, which means 
that if the desired conclusion follows from the premises then eventually resolution 
refutation will find a contradiction. As a result, queries often unavoidably do not 
terminate.Inference engines based on Description Logics (DLs) (e.g., Racer [10], 
DLDB [11], etc.) are extremely powerful when reasoning about taxonomic 
knowledge, since they can discover hidden subsumptionrelationships amongst classes. 
However, their expressive power is restricted in order to reduce the computational 
complexity and to guarantee the decidability (DLs are decidable) of their deductive 
algorithms. Consequently, this restriction prevents taxonomic reasoning from being 
widely applicable to heterogeneous domains (e.g. integer and rational numbers, 
strings) in practice. 

3 ASCENS and ASCENS Knowledge Base 

ASCENS is an FP7 (Seventh Framework Program) [12] project targeting the 
development of a coherent and integrated set of methods and tools providing a 
comprehensive development approach to developing ensembles (or swarms) of 
intelligent, autonomous, self-aware and adaptive service components (SC). Note that 
it is of major importance for an ASCENS system to acquire and structure 
comprehensive knowledge in such a way that it can be effectively and efficiently 
processed, so such a system becomes aware of itself and its environment. Our initial 



94 E. Vassev and M. Hinchey 

research on knowledge representation for ASCENS systems [4, 13] concluded that a 
SC should have structured knowledge addressing the SC’s structure and behaviour, 
the SC Ensemble’s (SCE) structure and behaviour, the environment entities and 
behaviour and situations where that SC or the entire SCE might end up in. Based on 
these considerations, we defined four knowledge domains in ASCENS [4]:  

• SC knowledge – knowledge about robot’s internal configuration, resource 
usage, content, behaviour, services, goals, communication ports, actions, 
events, metrics, etc.;  

• SCE knowledge – knowledge about the whole system, e.g., architecture 
topology, structure, system-level goals and services, behaviour, 
communication links, public interfaces, system-level events, actions, etc.; 

• environment knowledge – parameters and properties of the operational 
environment, e.g., external systems, concepts, objects, external 
communication interfaces, integration with other systems, etc.; 

• situational knowledge – specific situations, involving one or more SCs 
and eventually the environment. 

These knowledge domains are represented by four distinct knowledge corpuses — SC 
Knowledge Corpus, SCE Knowledge Corpus, Environment Knowledge Corpus and 
Situational Knowledge Corpus. Each knowledge corpus is structured into a special 
domain-specific ontology [14] and a logical framework. The domain-specific 
ontology gives a formal and declarativerepresentation of the knowledge domain in 
terms of explicitly described domain concepts, individuals (or objects) and the 
relationships between those concepts/individuals. The logical framework helps to 
realize the explicit representation of particular and general factual knowledge, in 
terms of predicates, names, connectives, quantifiers, and identity. The logical 
framework provides additional computational structures to determine the logical 
foundations helping a SC reason and infer knowledge. 

All four ASCENS knowledge corpuses together form the ASCENS Knowledge 
Base (AKB). The AKB is a sort of knowledge database where knowledge is stored, 
retrieved and updated. In addition to the knowledge corpuses, the AKB implies a 
knowledge-operating mechanism providing for knowledge storing, updating and 
retrieval/querying. Ideally, we can think of an AKB as a black box whose interface 
consists of two methods called TELL and ASK. TELL is used to add new sentences 
to the knowledge base and ASK can be used to query information. Both methods may 
involve knowledge inference, which requires that the AKB is equipped with a special 
inference engine (or multiple, co-existing inference engines) that reasons about the 
information in the AKB for the ultimate purpose of formulating new conclusions, i.e., 
inferring new knowledge.  

4 KnowLang 

KnowLangis a formal language providing a comprehensive specification model 
addressing all the aspects of an ASCENS Knowledge Corpus and providing 
formalism sufficient to specify the AKB operators and theories helping the AKB 
inference mechanism. The complexity of the problem necessitates the use of a 



 Representing Knowledge in Robotic Systems with KnowLang 95 

specification model where knowledge can be presented at different levels of depth of 
meaning. Thus, KnowLang imposes a multi-tier specification model (see Figure 1), 
where we specify the ASCENS knowledge corpuses, KB operators and inference 
primitives at different hierarchically organized knowledgetiers.  

 

Fig. 1. KnowLang Multi-tier Specification Model 

Definitions 1 through 49 (see the definitions following Figure 1) outline a formal 
representation of the KnowLang specification model. As shown in Definition 1, an 
ASCENS Knowledge Base (AKB) is a tuple of three main knowledge components - 
knowledge corpus (Kc), KBoperators (Op) and inference primitives (Ip). A Kc is a 
tuple of three knowledge components – ontologies ( ), contexts ( ) and logical 
framework ( ) (see Definition 2).  

Further, an ASCENS ontology is composed of hierarchically organized sets of 
meta-concepts ( ), concept trees ( ), object trees ( ) and relations ( ) (see 
Definition 4). Meta-concepts ( ) provide a context-oriented interpretation ( ) (see 
Definition 6) of concepts.  

Concept trees ( ) consist of semantically related concepts ( ) and/or explicit 
concepts ( ). Every concept tree ( ) has a root concept ( ) because the 
architecture ultimately must reference a single concept that is the connection point to 
concepts that are outside the concept tree. A root concept may optionally inherit a 



96 E. Vassev and M. Hinchey 

meta-concept, which is denoted   (see Definition 8). The square brackets 
“[]” state for “optional” and “ ” is inherits relation. Every concept has a set of 
properties ( ) and optional sets of functionalities ( ), parent concepts ( ) and 
children concepts ( ) (see Definition 10).  

Explicit concepts are concepts that must be presented in the knowledge 
representation of an ASCENS system. Explicit concepts are mainly intended to 
support 1) the autonomic behaviour of the SCs; and 2) distributed reasoning and 
knowledge sharing among the SCs. These concepts might be policies ( ), events ( ), 
actions ( ), situations ( ) and groups ( ) (see Definition 13).  

A policy has a goal ( ) and policyconditions ( ) mapped to policyactions( ), 
where the evaluation of   may imply the evaluation of actions (denoted with 
(  )  (see Definition 15). A condition is a Boolean function over ontology 
(see Definition 17). Note that the policy conditions may be expressed with policy 
events.  

 
FORMAL REPRESENTATION OF KNOWLANG , ,   (ASCENS Knowledge Base)   (1) , ,   (ASCENS Knowledge Corpus)   (2) 
 
ASCENS ONTOLOGIES , , ,   (ASCENS Ontologies)   (3) , , ,   (ASCENS Ontology)   (4)    , , … . ,  (Meta-concepts)    (5) ,    (Meta-concept,   – Context)  (6)      (  – Interpretation)  , , … . ,   (Concept Trees)    (7) , ,   (Concept Tree)    (8)   (  ),    (  – Tree Root)  , , … . ,   (Concepts)    (9) , , ,   (Concept)    (10) (  ),    (  – Parents)   (  ),   (  – Children)     , , … . ,   (Properties)    (11) , , … . ,   (Functionalities)    (12) , , , ,   (Explicit Concepts)   (13) , , … . ,   (Policies)    (14) , ,  , ( ,  )  (Policy)     (15) 

,    (  ) ,    (  ) , , … . ,   (  )   (16)  ( )   (Condition – Boolean Statement ) (17) ( )   (Goal)     (18) . ⟩|  { .P, .P,.., .P }⟩ | ⟩(State ) (19) 
   ( StateEvents) , , … . ,   (Events)    (20) 



 Representing Knowledge in Robotic Systems with KnowLang 97 

, , … . ,   (Actions)    (21) , , … . ,   (Situations)    (22) , , ,   (Situation)    (23) 
   ( ) 
   ( ) 
   (  ) , , … . ,   (Groups)    (24) ,   (Group)     (25)    (  ,  – Objects) 
   (  ) , , … . ,   (Object Trees )    (26) ,     (Object Tree)     (27) ( ),    (Object)     (28)           : , , … . ,    (Object Properties)    (29)         , , … . , }  (Relations)     (30)  , ,  | , ,   (Relation,  – relation name)  (31) 

 
A goal is a desirable transition from a state to another state (denoted with ) 
(see Definition 18). The system may occupy a state ( ) when the properties of an 
object are updated (denoted with . ), the properties of a set of objects get 
updated, or some events have occurred in the system or in the environment (denoted 
with ) (see Definition 19). Note that Tell is a KB Operator involving 
knowledge inference (see Definition 46).  

A situation is expressed with a state ( ), a history of actions ( ) (actions 
executed to get to state ), actions  that can be performed from state  and an 
optional history ofevents  eventually occurred to get to state  (see Definition 23).  

A group involves objects related to each other through a distinct set of relations 
(see Definition 25). Note that groups are an explicit concept intended to (but not 
restricted) represent knowledge about the SCE structure topology.  

Object trees ( ) are conceptualization of how objects existing in the world of 
interest are related to each other. The relationships are based on the principle that 
objects have properties, where sometimes the value of a property is another object, 
which in turn also has properties. Such properties are termed as object properties 
( ). An object tree consists of a root object ( ) and an optional set of object 
properties ( ) (see Definition 27). An object ( ) has a set of properties ( ) 
including object properties ( ) and is an instance of a concept (denoted as ( )  
- see Definition 28). 

Relations connect two concepts or two objects. Note that we consider binary 
relations only. 

 
ASCENS CONTEXTS , , … . , }  (Contexts)    (32) ,   (Context)    (33) , , … . ,   (AmbientTrees)    (34) 



98 E. Vassev and M. Hinchey 

, ,    (AmbientTree)    (35) 
   (     ) 
   (  )      (   ) , , … . ,   (Context Interpretations)  (36) 

 
Contexts are intended to extract the relevant knowledge from an ontology. Moreover, 
contexts carry interpretation for some of the meta-concepts (see Definition 6), which 
may lead to a new interpretation of the descendant concepts (derived from a meta-
concept – see Definition 8). We consider a very broad notion of context, e.g., the 
environment in a fraction of time or a generic situation such as currently-ongoing 
important system function. Thus, a context must emphasize the key concepts in an 
ontology, which helps the inference mechanism narrow the domain knowledge 
(domain ontology) by exploring the concept trees down to the emphasized key 
concepts only. Thus, depending on the context, some low-level concepts might be 
subsumed by their upper-level parent concepts, just because the former are not 
relevant for that very context. For example, a robot wheel can be considered as a thing 
or as an important part of the robot’s motion system. As a result, the context 
interpretation of knowledge will help the system deal with “clean” knowledge and the 
reasoning shall be more efficient.  A context ( ) consists of ambient trees ( ) and 
optional contextinterpretations ( ) (see Definition 33). An ambient tree ( ) 
consists of a real concept tree ( ) described by an ASCENS ontology, ambient 
concepts ( ) part of the concept tree and optional contextinterpretation ( ). 

 
ASCENS LOGICAL FRAMEWORK , ,   (ASCENS Logical Framework)   (37) , , … . ,  (Facts)     (38)  ( ) T  (Fact – True statement over ontology) (39) , , … . ,   (Rules)     (40)        (Rule)     (41) , , … . ,   (Constraints)    (42) ⟩ |  ⟩    (Constraint) (43)       ,  

 
An ASCENS Logical Framework ( )is composed of facts ( ), rules ( ) and 
constraints ( ) (Definition 37). As shown in Definitions 38 through 43, the ’s 
components are built with ontology terms: 

• facts – define true statements in the ontologies ( ); 
• rules – express knowledge such as: 1) if H than C; or 2) if H than C1 

else C2; where H is hypothesis of the rule and C is the conclusion; 
• constraints – used to validate knowledge, i.e., to check its consistency. 

Can be positive or negative and express knowledge of the form:  
1) if A holds, so must B;  
2) if A holds B must not. 

Constraints are rather consistency rules helping the knowledge-processing engines 
check the consistency of a KC (knowledge corpus).  



 Representing Knowledge in Robotic Systems with KnowLang 99 

ASCENS KNOWLEDGE BASE OPERATORS , ,   (ASCENS Knowledge Base Operators)  (44)  ( )    (query knowledge base)   (45)  ( )   (update knowledge base)  (46)  (  )    (Inter-ontology Operators ) (47)           
 
ASCENS INFERENCE PRIMITIVES , , … . ,   (Inference Primitives)   (48)  ( )  |  ( )  |   ( ) (Inference Primitive) (49) 

 
The ASCENS Knowledge Base Operators ( ) can be grouped into three groups:  operators (retrieve knowledge from a knowledge corpus ),  operators 
(update a ) and inter-ontology operators ( ) intended to work on one or more 
ontologies (see Definitions 44 through 47). Such operators can be, merging, mapping, 
alignment, etc. Note that all the Knowledge Base Operators ( ) may imply the use 
of inference primitives, i.e., new knowledge might be produced (inferred) and stored 
in the KB (see Definitions 45 through 47).   

The ASCENS Inference Primitives ( ) are intended to specify algorithms for 
reasoning and knowledge inference. The inference algorithms will be based on 
reasoning algorithms relying on First Order Logic (FOL) [5] (and its extensions), First 
Order Probabilistic Logic (FOPL) [15] and on Description Logics (DL) [6]. FOPL 
increases the power of FOL by allowing us to assert in a natural way “likely” features 
of objects and concepts via a probability distribution over the possibilities that we 
envision. Having logics with semantics gives us a notion of deductive entailment. It is 
our intention to address the following inference techniques inherent in FOL and DL: 

• induction (FOL) – induct new general knowledge from specific 
examples;  
Example: Every robot I know has grippers. → Robots have grippers. 

• deduction (FOL) – deduct new specific knowledge from more general 
one; 
Example: Robots can move. MarXbot is a robot. →MarXbot can move. 

• abduction (FOPL) – conclude new knowledge based on shared attributes. 
Example: The object was pulled by a robot.  
MarXbot has a gripper. →MarXbot pulled the object. 

• subsumption (DL) – the act of subsuming a concept by another concept;   
Example: Exploit the taxonomy structure of concepts that are defined in 
the ontology and compute a new taxonomy for a set of concepts or derive 
matching statement from computed generalization/specialization 
relationships between task and query. 

• classification (DL) – assessing the category a given object belongs to; 
• recognition (DL) – recognizing an object in the environment. 

Note that uncertainty is an important issue in abductive reasoning (abduction), which 
cannot be handled by the traditional FOL, but by FOPL. Abduction is inherently 



100 E. Vassev and M. Hinchey 

uncertain and may lead to multiple plausible hypotheses, and to find the right one 
those hypotheses can be ranked by their plausibility (probability) if the latter can be 
determined. For example, given rules and , and fact , both  and  
are plausible hypotheses and the inference mechanism shall pick up the one with 
higher probability.  

5 The Ensemble of Robots Case Study 

The ensemble of robots case study targets swarms of intelligent robots with self-
awareness capabilities that help the entire swarm acquire the capacity to reason, plan 
and autonomously act. The case study relies on the marXbot robotics platform [16], 
which is a modular research robot equipped with a set of devices that help the robot 
interact with other robots of the swarm or the robotic environment. The environment 
is defined as an arena where special cuboid-shaped obstacles are present in arbitrary 
positions and orientations. Moreover, the environment may contain a number of light 
sources, usually placed behind the goal area, which act as environmental cues used as 
shared reference frames among all robots.  

 

 

 

 

 

 

 

 

 

 

Fig. 2. A marXbot Robot [16] 

Figure 2 shows a marXbot robot [16]. Such robot is equipped with a set of devices 
to interact with the environment and with other robots of the swarm: 

• a light sensor, that is able to perceive a noisy light gradient around the 
robot in the 2D plane; 

• a distance scanner that is used to obtain noisy distances and angular 
values from the robot to other objects in the environment. Its range is 1.5 
meters. 

• a range and bearing communication system [28], with which a robot can 
communicate with other robots that are in line of sight. 

• a gripper, that is used to physically connect to the transported object; 
• two wheels independently controlled to set the speed of the robot. 



 Representing Knowledge in Robotic Systems with KnowLang 101 

Currently, the marXbots robots are able to work in teams where they coordinate based 
on simple interactions on group tasks. For example, a group of marXbots robots may 
collectively move a relatively heavy object from point A to point B by using their 
grippers. 

5.1 The marXbots Robot Ontologies 

To tackle the marXbots knowledge representation problem, an initialstructure for the 
marXbotsRobot Ontology (SC Ontology) has been developed with KnowLang. Figure 
3 depicts a concept tree (see Definition 8) with a tree root “Thing”. The concept 
“Thing” is determined by the metaconcept (see Definition 6)“Robot Thing”, which 
carries information about the interpretation of the root concept “Thing” such as 
“Thing is anything that can be related to a marXbots robot”. According to this 
concept tree there are two categories of things in a  marXbots robot: entities and 
virtual entities, where both are used to organize the vocabulary in the internal robot 
domain. Note that all the explicit concepts  (see Definition 13) are presented as 
concepts in this concept tree – qualified path “ThingVirtual EntityPhenomenon”, 
i.e., in this SC Ontology, the explicit concepts inherit (“ ”) the concepts 
“Phenomenon”, “Virtual Entity” and “Thing”.     

 

Fig. 3. The marXbots Robot SC Ontology: Robot Concept Tree 

Figure 4 depicts an object tree  (see Definition 27) of the marXbots Robot SC 
Ontology. As shown, the Robot Object Tree shows the object properties of the 
marXbots Robot object. Note that both the concept and object trees presented here are 
partial, due to space limitations. Moreover, the marXbots Robot SC Ontology 
contains a few more concept and object trees, such as the Relations Concept Tree not 
presented here, etc. 
 



102 E. Vassev and M. Hinchey 

 

Fig. 4. The marXbots Robot SC Ontology: Robot Object Tree 

 
In addition to the marXbots SC Ontology, to represent the knowledge in all 

necessary aspects, we have developed initial variants of the other three ASCENS 
ontologies – SCE Ontology, Environment Ontology, and Situational Ontology (see 
Section 3). Figure 5 depicts apartial concept tree of the marXbots Robot Environment 
Ontology. This ontology presents parameters and properties of the robot’s operational 
environment, e.g., external systems (humans, other robots, etc.), concepts (velocity, 
event, signal, etc.), obstacles, etc. Due to space limitations, the other ontologies with 
their concept and object trees are not presented here.   

  



 Representing Knowledge in Robotic Systems with KnowLang 103 

 

Fig. 5. The marXbots Robot Environment Ontology: Environment Concept Tree 

5.2 The marXbots Robot Contexts and Logical Framework 

In specific situations, the robot’s inferential engine narrows the scope of knowledge in 
order to reason more efficiently. This ability is supported by the KnowLang’s Context 
construct (see Definition 33).  

 

Fig. 6. The marXbots Robot Environment Ontology: Environment Concept Tree 

For the purpose of this case study, we have specified a few Contexts, e.g., a context 
corresponding to the situation “Robot cannot move”. This Context is specified with 
one single Ambient Tree  as following: 
 
CONTEXT name = “Robot cannot move” { 
 AMBIENT_TREE { 

  ONTOLOGY: Robot; 
  CONCEPT_TREE: Thing; 
  AMBIENT_CONCEPTS {Electronics, Software, Property} 
 } 

} 



104 E. Vassev and M. Hinchey 

This Context is applied automatically at runtime to narrow the scope of knowledge as 
shown in Figure 6. Note that the ambient concepts define the “depth” of the concept 
tree in that specific context, i.e., all the concepts descending from those ambient 
concepts are generalized (or abstracted) by the ambient concepts. For example, we do 
not deal with Shape, Color, or Measure anymore, but with Property, because the latter 
is the ambient concept for the former. 

When a robot ends up in such a situation, it checks for possible action determined 
by policies (specified by one of the robot’s ontologies) (see Definition 15) or by rules 
(specified by the robots’ Logical Framework) (see Definition 41). For example, for 
the purpose of this case study, we have specified two rules as part of the robot’s 
Logical Framework: 
 
RULE { 
 IF “robot cannot move” THEN {  
  DO ACTION “check battery” 
 } 
} 
RULE { 
 IF “robot cannot move” AND “battery is charged” THEN { 

  DO ACTION “run scanner for obstacles on road” 
 } 

}  

6 Conclusion and Future Work 

As part of a major international European project, we are currently developing the 
KnowLang formal language for knowledge representation in a special class of 
autonomous systems termed as ASCENS. To provide comprehensive and powerful 
specification formalism, we propose a special multi-tier specification model, allowing 
for knowledge representation at different depths of knowledge. The KnowLang 
specification model defines an AKB as composed of a special knowledge corpus, 
knowledge base operators and inference primitives. The knowledge corpus is built of 
a domain ontology, special knowledge-narrowing contexts and a special logical 
framework providing facts, rules and constraints. The knowledge base operators 
allow for knowledge retrieval, update and special inter-ontology operations. All these, 
may rely on the inference primitives, and therefore new knowledge might be inferred. 

Our plans for future work are mainly concerned with further and complete 
development of KnowLang including a toolset for formal validation. Once 
implemented, KnowLang will be used to specify the knowledge representation for all 
the three ASCENS case studies.  

Acknowledgment. This work was supported in part by Science Foundation Ireland 
grant 03/CE2/I303_1 to Lero—the Irish Software Engineering Research Centre and 
the European Union FP7 Integrated Project Autonomic Service-Component 
Ensembles (ASCENS). 



 Representing Knowledge in Robotic Systems with KnowLang 105 

References 

1. Makhfi, P.: MAKHFI - Methodic Applied Knowledge to Hyper Fictitious Intelligence 
(2008), http://www.makhfi.com/ 

2. ASCENS – Autonomic Service-Component Ensembles (2010),  
http://www.ascens-ist.eu/ 

3. Devedzic, V., Radovic, D.: A Framework for Building Intelligent Manufacturing Systems. 
IEEE Transactions on Systems, Man, and Cybernetics,Part C - Applications and 
Reviews 29, 422–439 (1999) 

4. Vassev, E., Hinchey, M.: Knowledge Representation and Awareness in Autonomic 
Service-Component Ensembles – State of the Art. In: Proceedings of the14th IEEE 
International Symposium on Object/Component/ Service-oriented Real-time Distributed 
Computing Workshops, pp. 110–119. IEEE Computer Society (2011) 

5. Brachman, R.J., Levesque, H.J.: Knowledge representation and reasoning. Elsevier, San 
Francisco (2004) 

6. Baader, F., Nutt, W.: Basic Description Logics. In: Baader, F., Calvanese, D., 
McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook 
(2002) 

7. Riazanov, A.: Implementing an Efficient Theorem Prover. Ph.D. Dissertation, University 
of Manchester (2003) 

8. Weidenbach, C.: SPASS:Combining superposition, Sorts and Splitting. In: Handbook of 
Automated Reasoning. Elsevier (1999) 

9. Schulz, S.: E - a brainiac theorem prover. Journal of AI Communications 15(2), 111–126 
(2002) 

10. RacerPro 2.0, http://www.racer-systems.com 
11. Guo, Y., Heflin, J., Pan, Z.: Benchmarking DAML+OIL Repositories. In: Fensel, D., 

Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 613–627. Springer, 
Heidelberg (2003) 

12. European Commission – CORDIS, Seventh Framework Program (FP7),  
http://cordis.europa.eu/fp7/home_en.html 

13. Vassev, E., Hinchey, M., Gaudin, B., Nixon, P.: Requirements and Initial Model for 
KnowLang – A Language for Knowledge Representation in Autonomic Service-
Component Ensembles. In: Proceedings of the Fourth International C* Conference on 
Computer Science & Software Engineering(C3S2E 2011), pp. 35–42. ACM (2011) 

14. Swartout, W., Tate, A.: Ontologies. IEEE Intelligent Systems 14, 18–19 (1999) 
15. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 

311–350 (1990) 
16. Bonani, M., Baaboura, T., Retornaz, P., Vaussard, F., Magnenat, S., Burnier, D., 

Longchamp, V., Mondada, F.: marXbot, Laborotoire de SystemesRobotiques (LSRO), 
École Polytechnique Fédérale de Lausanne,  
http://mobots.epfl.ch/marxbot.html 



Object Detection and Classification

for Domestic Robots

Markus Vincze, Walter Wohlkinger, Sven Olufs, Peter Einramhof,
Robert Schwarz, and Karthik Varadarajan�

Technische Universität Wien, 1040 Vienna, Austria
vincze@acin.tuwien.ac.at

Abstract. A main task for domestic robots is to navigate safely at
home, find places and detect objects. We set out to exploit the knowl-
edge available to the robot to constrain the task of understanding the
structure of its environment, i.e., ground for safe motion and walls for lo-
calisation, to simplify object detection and classification. We start from
exploiting the known geometry and kinematics of the robot to obtain
ground point disparities. This considerably improves robustness in com-
bination with a histogram approach over patches in the disparity image.
We then show that stereo data can be used for localisation and even-
tually for object detection classification and that this system approach
improves object detection and classification rates considerably.

1 Introduction

The purpose of this paper is to propose a systems approach to robotic naviga-
tion and object classification in domestic settings to take on these challenges.
The inspiration is taken from the holistic approaches [14][12]. The rationale is
that the domestic robot accumulates knowledge about the environment when
moving safely through it and can exploit this knowledge to enhance its cognitive
capabilities. Starting from obtaining the free ground plane in front of the robot,
which is necessary for safe navigation, the free space is used for localisation, and
the borders of the free space indicate where the typical objects in rooms, such
as chairs, start (Figure 1). An advantage is that the detected ground plane gives
information about the robot camera orientation, which can be used to obtain
better information about locations. The accurate knowledge of the ground also
aids more robust object class detection, e.g., for chairs.

One of the open questions in domestic robotics is which sensor(s) to use to
obtain 3D information additionally to colour images to cope with the versatile
structure present in a home setting. Options are laser range sensors [15] and
time of flight sensors [17]. We propose to use stereo cameras and intend to show
that the depth and colour information can be used to enable the capabilities
summarised in Figure 1. The paper focuses on using stereo images to efficiently

� The research leading to these results has received funding from the European Com-
munity for projects robots@home and HOBBIT.

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 106–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Object Classification for Domestic Robots 107

Stereo images
Stereo camera

Depth image
Ground & object 

segmentation
Object

categorisation

Learning object 
classes from the webLocalisation

Wall and door 
detection

Robot „James“

Fig. 1. Diagram of the situated approach to domestic robotics. Ground plane data is
exploited for localisation and to constrain subsequent object classification.

and reliably detect the ground plane and on how this information is best used
for robust localisation and object classification.

2 System Approach to Domestic Robotics

Figure 1 presented the basic approach. The robot is equipped with two sets of
stereo cameras: (1) the top system looks down in front of the robot to deter-
mine the drivable free space immediately in front of the robot, and (2) a stereo
system about 90 cm above ground (the black box below the white board of the
upper body of James in Figure 1) looks forward parallel to the ground to obtain
good views from the walls and doors around the robot. Dense depth images are
obtained using the approach in [6]. Two sets of cameras are required to obtain
a better coverage of the floor as well as the surrounding of the robot. To obtain
good localisation the field of view is relatively large with about 100 degrees.

Using the depth image of the top camera the ground plane and the accurate
robot roll and pitch angle are detected, Section 3. The ground plane is critical
for navigation and to safely avoid all obstacles in a home. But it also places the
robot in its environment by clearly indicating where object beyond the border
of free space are expected. With this information the detection of objects is
considerably simplified. Furthermore, accurate roll and pitch of the robot are
used as prior to improve finding of support planes for object categorisation and
the detection of rooms structure such as walls and doors.

3 Ground Plane and Object Segmentation

When using a 3D sensor resp. the 2.5D depth images from a stereo camera, the
captured scene is represented in the form of a point cloud, where the ground
plane connects walls and other objects to one contiguous cluster. Thus, it is
necessary to segment scenes into ground and objects before the data can be
used for obstacle avoidance and self localisation, or object classification. The
first step is to detect and remove the ground plane, which leaves single-standing
point clusters representing objects. Furthermore, the dynamic pitch and roll of



108 M. Vincze et al.

the sensor with respect to the world coordinate system can be derived from the
plane parameters.

In [2] we presented the details of the algorithm to find ground planes even if the
robot tumbles and with ground plane detection correctly adjust its orientation
to ground and removes it. Due to space restrictions we only present results of
this approach in Fig. 2. All stereo points from one height form a ”virtual laser
scan” (Fig. 2a and 2c). As stated in the introduction, the 2D representation is
compatible to current mobile robotics’ obstacle avoidance algorithms.

(a) (b)

(c) (d)

(e) (f) (g)

Fig. 2. Ground detection for object classification: (a) and (c) show the virtual laser
scan overlayed onto the left rectified camera image. (b) and (d) show the result of
removing ground plane pixels from the full resolution disparity image. (e) shows the
3D data calculated from the reduced resolution disparity map’s non-ground points. (f)
represents an occupancy grid (5cm x 5cm cells) resulting from the projection of the 3D
data onto the ground plane; the blue rectangle marks the single-standing point cluster
stemming from the chair. Finally, (g) shows the left rectified camera image with the
colour-coded disparity map; green marks the ground, red objects (or obstacles) and
blue marks the chair (object of interest).

Fig. 2 shows the results for two scenes: In Fig. 2a and 2c the virtual laser scan
is overlayed onto the left rectified camera image. Fig. 2b and 2d show the result
of removing ground plane pixels from the full resolution disparity image. Fig. 2e-
g show the selection of an ”object of interest” whose 3D data can be provided to



Object Classification for Domestic Robots 109

object classification. For this example we simply took the closest single-standing
point cluster in front of the robot. The input disparity maps stemming from
a stereo camera mounted in a height of 132cm above the ground and tilted
downwards 32 degrees. Computation of the reduced resolution disparity image
takes 7ms on average using one core of a notebook with a Core Duo T2250 CPU
(1.73GHz).

4 Localisation from Ground Plane

Robust Self-localization is the base for all kinds of behavior-based systems. It
has to cope with uncertainty due to imprecise sensors, incomplete knowledge
of the environment and limited range of sensing. Very popular approaches for
localization are the dynamic state space models using Bayesian Filter variants
like MCL [20] or EKF [1]. MCL method has been proven a robust and precise
method, but only under certain constraints: The map must contain the complete
environment and the sensor data must contain enough ”true data” that is known
from the map. In fact not all constraints can always be fulfilled due to, e.g.,
technical restrictions of the sensor or changing environment. A map that does
not contain all features as well as limited sensing (Field of View or Range) will
lead to unsatisfactory precision.

In this section, we shortly outline the new area-based observation model that
tracks the ground area inside a the ”free room” (that is, the not occupied cells) of
a known map by using a visibility information of a believed pose to the map. In
practical experiments carried out with data obtained by a real robot we demon-
strate that our model improves the precision and robustness of standard MCL
methods when dealing with incomplete maps and limited range of sensing. We
use laser and the detected ground plane of the previous section as input in order
to demonstrate the robustness of our model. An efficient real-time approximation
is given in [11] using integral images and image decomposition.

The model is inspired by the work of Thrun [19] on robot mapping using a
ground space model for local maps. The ground space model is used for align-
ment, but not for localization itself since the ground cannot be transformed into
a feature vector like a laser scan. The main idea of our observation model is as
follows: We detect the ground space area and keep the detected space inside the
non-occupied area of the a-priori known map. In the fashion of Bayesian filters
and Markov Chains we track and refine the pose over time. It is assumed that
the ground can be detected as given in Section 3 rather than detecting a wall.
We model the ground space in contrast to standard localization approaches in an
opportunistic way: We define an observation model that calculates the difference
of the observed ground space and the free space according to the map at the
believed pose. This approach implicitly deals with unmapped regions as well. As
result we obtain possible poses that are not violated (i.e., not wall/unexplored
areas are intersected) by the observed area. In combination with a state estima-
tion algorithm and motion model we are able to track the pose. For more details
please refer to [11].



110 M. Vincze et al.

To indicate that the usefulness of ground only we compare our proposed area-
based observation model with the standard beam model using the well-known
Monte Carlo Localization method in practice. In order to demonstrate the high
robustness of our model we use also stereo vision as sensor. The beam model
with stereo uses an modified Model [3] that also uses wall features. The main
difference to the laser beam-model is a that it rejects outliers.

For our experiments we use a non-holonomic mobile robot manufactured by
Bluebotics with an additional SICK LMS 200 laser range finder mounted to its
front. We use a b/w stereo sensor with vertical camera alignment and approx. 90
degrees field of view. The sensor is oriented into the robot’s driving direction and
mounted at a height of 30 cm over ground. We use the Videre-Design SRI Stereo
Engine for dense stereo-data calculation at a resolution of 640x480 (VGA) and
using 96 disparities.

0 4 8 12 16 20 24 28

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

X [m]

Y
 [m

]

Fig. 3. Sample map of the used environment. The robot is shown as black circle/red
line, green areas as furniture and walls as black . The furniture is not mapped.

We choose a typical office environment (see Fig. 3) for camera, odometry and
laser data. An external sensor system (multiple vision and laser scanners) for
ground truth with a precision of 2cm is used. We use two different maps of the
same environment: The first map contains the full environment like traditional
localization systems [18,3,13]. The second map of the environment consists only
of wall and ground segments like the footprint of a building. Please note that the
furniture (in green) is only shown for sake of completeness but not included in
the map. This is done on purpose to demonstrate the robustness and precision
of our approach. We recorded representative eight tours through our lab with
a total length of approximately 1600 meters. The robot moves with an average
travelling speed of 0.65m

s . Table 1 shows the average localization error on the
complete data set. First we see that the unconstrained laser scanner with a
complete map shows a good precision with the Beam-Model and our Model.



Object Classification for Domestic Robots 111

Well, this result is not unexpected, MCL has already been proven a robust and
precise method under these conditions. We want to emphasise that our proposed
model works as good as the usual model under these conditions.

Table 1. Average Localization Error of the complete data

MCL’s Model Our Model

Translative Rotative Translative Rotative

Sensor Error [cm] Error [deg] Error [cm] Error [deg]

Laser / full range, complete Map 1.825 1.176 2.135 1.023
Laser / full range, incomplete Map 3.864 4.776 2.253 1.383
Laser / 4m range, incomplete Map 23.396 31.589 1.825 1.041
Laser / FoV 66 deg, incomplete Map 32.975 47.166 1.994 1.175
Laser / Fov 66 deg, 4m, incomplete Map 25.190 21.716 2.736 2.750
Ground Plane full range, incomplete Map 9.427 13.063 4.858 1.993

5 Object Categorisation

To overcome the disadvantages of the environment and target categories, we
decided to use a pure-vision based system for the task, namely dense stereo, and
develop the system operation from the view of an embodied agent situated in
the home environment. We start from the requirement to devise a framework
that can be easily extended to new object classes. This has been attempted for
appearance of objects in [9] where they showed a rather slow approach used laser
scans and domain adaptation. Alternatively, we propose to use only the perfect
3D data and transform it into sensor simulated data to cope with the typical
problems of real applications such as only one view of an object (2.5D) with
self-occlusion, incomplete models, aliasing effects and realistic noise levels from
stereo data. We then use these data to calculate object classifiers extending the
3D Harmonics descriptor [8] with the constraints from the robotics domain and
match it against the database to find the nearest class to the object.

Recent results on the Pascal visual object classes challenge 20091 show the
state of the art in 2D object class recognition. In the detection challenge the
results are far below the classification challenge. The best methods gets 47.8%
on the aeroplane class and 15.0% on chairs. These results are produced using
imagery from flickr2 as training input.

Most of the systems using real world data make assumptions on the location
of the objects, i.e., ground floor detection or detection of other support planes.
The work most similar to our work is [10] where a mobile robot equipped with a
tilting laser scanner extracts support planes, on which objects are assumed and
a subsequent object recognition and classification step is performed on 2D high
resolution images taken at these locations. We also have to mention the Sharp

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/
2 www.flickr.com

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/
www.flickr.com


112 M. Vincze et al.

3D SHREC shape retrival contest 3 where the goal is to retrieve similar objects
from a database given a range scan. The best method, which uses a SIFT-based
approach on a grid spanned over the model, achieves about 50% AP on these
high resolution, laser scanned objects. This contest is - to our knowledge - the
thematically closest dataset available to test 2.5D object classification on.

5.1 System Approach to Object Classification

We now give an overview of constraints that we exploit as priors in our robotic
object classification system.

Scale. Pure image based recognition and classification algorithms do not have
access to the scale of objects in the image. Therefore they have to use multi-
scale approaches that increase the computational load tremendously. Exploiting
a calibrated stereo camera, the scale ambiguity is non-present and algorithmic
complexity is reduced such as shown recently in [5].

Orientation. Knowing the sensor-to-robot geometry and assuming regular robot
movement regarding to the robot specifications, we can infer the orientation and
location of the ground plane to within a certain accuracy.

Room and Object Class. Another priory is to exploit contextual knowledge,
for example, about the class of objects to search for. Rooms are likely to con-
tain room-specific objects. As shown in [22] this information can be extracted
automatically from the web and proves valuable in object search.

Datasources. A mobile robot equipped with sensors has the option to take
images from different views. Additionally, different image characteristics can be
exploited: monochrome, color, and 3D data.

5.2 Web-Based Model Aquisition

Data collection for learning new object classes is a time consuming and some-
times tedious work if one tries to get a large number of classes and especially
exhausting if the data is not standard imagery but 3D data which has to be
created with special hardware. Therefore we propose another approach and tap
the huge amount of freely available 3D models from the web.

Web-Download. The input into our model acquisition system is the name of
the new object class. With this keyword we search for 3D models on Google
Warehouse4. Because some object classes have a huge intraclass variability, a
large amount of training data is required. Classes such as “dining chair” have a
high intraclass variability and need many exemplar models whereas classes such
as “apple” only need one or two exemplars to be useful.
3 http://www.itl.nist.gov/iad/vug/sharp/contest/2010/RangeScans/
4 http://sketchup.google.com/3dwarehouse/

http://www.itl.nist.gov/iad/vug/sharp/contest/2010/RangeScans/
http://sketchup.google.com/3dwarehouse/


Object Classification for Domestic Robots 113

Domain Simulation. To use the models from the web, we generate synthetic
2.5D models by rendering and sampling the 3D models from views around the
model. We use 45 degree steps in elevation and azimuth which results in 24
views for a model, see Figure 4(left). Figure 4(right) shows the 2.5D partial
point clouds created for one model from the chair and mug classes. The most
useful information in these figures is the fact that the same object can have a
completely different shape and therefore a different representation when seen
from different viewpoints.

Fig. 4. Model rendering from 24 views at 45 degree steps in elevation and azimuth
and the resulting 2.5D point-clouds generated from the web-downloaded 3D model of
a mug and a chair.

5.3 Processing Steps

In the following we summarise the processing steps [23][24].

Support Plane Detection. In the first iteration of the data partitioning the
ground floor is the basic and elementary support plane. We apply a RANSAC-
based plane fitting procedure exploiting the known robot geometry, i.e., the
camera pose wrt. the wheels, and we use the two points where the wheels touch
the ground as two of the three points in the plane candidate search. This gives
more robust results in cases where the ground plane is not the dominant plane
in the scene. Figure 5 shows the initial 3D point cloud with the floor detected
and coloured in red.

Fig. 5. Floor detection result (left) and point cloud clusters

Clustering. The next step is to obtain groups of data points that may indicate
individual objects. To this end we use clustering based on flood filling on the
remaining points above the ground plane. The size of the filter kernel depends
on the size of the smallest object we are looking for and the minimal allowed



114 M. Vincze et al.

distance between two objects. As we already have the object classes we can
extract these parameters from the database. For the experiments, the kernel
diameter is set to 5cm. Results of this procedure can be seen in Figure 5 (right).

Region Prior Filter. One prior is the assumption that objects are located only
on support planes. Hence, an efficient way of reducing the candidate clusters for
object classification is to reject all clusters outside the support region. To obtain
the boundary for the support plane, the 2D convex hull is calculated and the
projected point clusters are tested against the plane polygon using the odd-even
test. The support plane boundary is shown in red in Figure 6 (left) with the
projected clusters in green. Only clusters inside this support plane are valid
candidates for the next processing step.

Fig. 6. Support plane boundary and candidate objects for classification

Supported Candidates Filter. The “object on support plane” assumption
also implies that the candidate objects are actually “on” the support plane.
We therefore only process point clusters which are attached to their support
plane. The resulting object candidates for the classification produced by the
data acquisition chain are shown in red in Figure 6

Play It Again, Sam. Up to this point, the only support plane extracted from
the data is the ground floor. For finding objects on further support planes – such
as objects on tables and counters – the RANSAC-based support plane detection
and the associated clustering, region prior and candidate filtering stages are
performed again on the clusters.

5.4 Classification

The goal of classification is to find the correct class label for a given data cluster.
This can also be seen as finding the most similar object to the query data and
assigning the label of the most similar match. Finding similar objects - especially
3D models in large databases - with efficient and robust algorithms has attracted
a good amount of researchers over the last years. Following the proposed robotics
approach to object classification, we want to stress the following properties and
differences to classical approaches [4][7].

3D Descriptor Properties. The biggest challenge in 3D shape matching is the
fact that objects should be considered to be the same if they differ by a similarity
transformation. To explicitly search over the whole space of transformations is



Object Classification for Domestic Robots 115

impracticable because efficiency is a key property a retrieval algorithm should
have. Hence, the similarity metric must implicitly provide the similarity at the
optimal alignment of the two models.

Normalization. This can be achieved in a normalization step prior to the
similarity calculation for each model where translation, rotation and scale are
normalized, i.e., a canonical frame is computed.

Invariance. To avoid the imperfections of a prior normalization step, the al-
ternative is to design the descriptor in a transformation invariant fashion. This
means that the descriptors produce the best similarity measure for any transfor-
mation. Because of all the difficulties with normalization, we propose to apply
an invariant descriptor.

Spherical Harmonics Descriptor. The spherical harmonics descriptor[8] is
a affine invariant descriptor which is calculated from a 64x64x64 voxel grid.
The calculation of the descriptor from a coarse voxel grid gives us the needed
generalization for object class recognition. The descriptor is represented and
stored as a 2D histogram in the database which enables us to efficiently calculate
the k-nearest neighbours using the Euclidean distance between the query and
all entries in the database.

5.5 Results

Tests are shown on datasets collected in our lab on chairs and on a table scene.
The chair classes in our system are “dining chair”, “office chair” and “arm chair”.
For chairs, the system is able to produce classification results useful for robotic
purposes. Our test-database consists of 119 point clouds where 47 chairs are
present. The segmentation stage was able to successfully extract 30 of the 47
chairs from the scene. A representative sample of test scenes with chairs in ar-
bitrary position and distractor objects can be seen in Figure 8. Figure 7 shows
the precision recall curve for the dining chair class and Figure 7 when testing
against the meta class of chairs, consisting of dining-, office- and armchairs. The
decrease in performance is only marginal for chairs as to be seen in Figure 7 as
they provide enough structural shape to differ from other object classes. This
is no longer true for primitive shaped objects like bottles or mugs as the only
distinction between a round paper basket and a mug - when seen from a certain
viewpoint - is their size, despite their common location. This can be seen in Fig-
ure 9 where there is just not enough data for distinguishing between some small
objects. Nevertheless most of the mugs on the table were correctly identified.

The presented system heavily depends on good and complete data. Without
sufficient data the support planes can not be extracted and the clustering of
the object will produce multiple fragments which renders the classification with
global desciptors useless.



116 M. Vincze et al.

Fig. 7. Left:Precision recall curve for the dining chair class. Right:Precision recall curve
for the meta class chair. The blue curve shows the performance of the spherical har-
monics descriptor with a bounding box prior, green without.

Fig. 8. Test scenes with chairs and distractor objects. Green dots indicate correct class,
red dot indicate false positive and red cross indicates not detected as belonging to class
chair. Image 2:Chair lying on the ground could not be classified due to insufficient
segmentation; Image 6 the box was wrongly classified as belonging to the class chair.

Fig. 9. A tablescene with instances of classes mugs, cans, bottles, apple and light bulb



Object Classification for Domestic Robots 117

6 Wall and Door Detection

The previous Section presented an elegant approach to learn object classes from
models found on the web. However, there are domestic object classes that are
not suited to this approach such as doors and walls. These vertical structures
omnipresent in rooms are better obtained from tailored approaches. In an at-
tempt to obtain robust detection results, we propose a twofold approach. Based
on colour and dense stereo features we can obtain the wall layout including door
openings (Section 6.1).And in a complimentary we investigate the use of vertical
line features in a sparse stereo approach (Section 6.2).

6.1 Wall Detection, Room Modeling and Doorway Detection from
Colour and Stereo Data

Detection and classification of structural components in the indoor scene assumes
significant importance, especially with respect to robot navigation, place learning
and semantic object recognition. Due to space limits, we present results and refer
the reader to [21] for more details. The idea is based on exploiting constraints for
indoor wall, room and door classification. Walls are typically characterized by
homogeneous regions or areas with regular texture, usually with high numeric
intensity values. The largest single color regions in a given scene, especially
with no large occluding obstacles in the vicinity, and walls hold pixels with the
farthest visible range information on planes parallel to the ground plane. Rooms
are characterized by a combination of walls approximating a cuboid and the
largest and most consistent of all possible cuboids in the scene (helps exclude
walls internal to the room). Room fitting can be reduced in most cases (based
on assumptions of known floor and ceiling) to fitting of a maximum of just three
(largest) vertical walls. Finally, doorways are characterized by external outliers
(or exclave points in range images) to the room model that can be grouped to
form regions with size bounds similar to that of typical doorways.

In [21] we have demonstrated the benefits of a novel framework of fusing
2D local and global features such as edges, textures and regions with geom-
etry information obtained from pixel-wise dense stereo for reliable 3D indoor
structural scene representation. The strength of the approach is derived from
the novel depth diffusion and segmentation algorithms that result in better sur-
face characterization as opposed to traditional feature based stereo or RANSAC
plane fitting approaches. It should also be noted that in the context of indoor
3D room reconstruction, the presented framework is (a) highly efficient with
extremely sparse range data (b) preserves and detects depth edges in regions
where there are no visible edges in the color data and (c) handles shadows and
specular highlights effectively. Examples of using the assumptions in the shortly
outlined approach are given in Fig. 10.

6.2 Feature-Based Door Detection

Door detection is again based on the robots knowledge about its vertical pose.
The approach consequently searches for vertical line of certain height and



118 M. Vincze et al.

Fig. 10. Results from test environment (Top to bottom) (a) Input scenes (b) 3D model
reprojected on to the image plane (c) Ground truth. The percentage of mislabeled pixels
were 5, 4, 17, 12 and 5 respectively.

0

2

4

6

−3
−2

−1
0

1
2

3
0

1

2

3

4

Fig. 11. Results for door detection: first two rows show successful detection, last row
shows false line matching with false grouping

parallelism. The main problem is to cope with fragmented lines. The main idea
is to post process the 3D lines obtained from stereo processing and limited to
vertical lines in Euclidean 3D space based on the mean shift algorithm. Due to
space limits we refer the reader to [16] and present a result for completing object
detection in domestic settings in Fig. 11.



Object Classification for Domestic Robots 119

The grouping algorithm has only the kernel as parameter, so after generating
the kernel which size depend on the distance, no other parameter must be set.

Doors are detected where two vertical parallel lines have a distance between 0.6
m and 1.4 m, and both lines have a height of more than 1.5m. The data set consists
of a test run through our office, where several doors can be found. Figure 11 shows
example frames: in the first three rows door hypothesis are found and drawn as
blue rectangles. The last row shows false grouping and false matching of lines, so
the segmented line can not bemapped and grouped in 3Dand no door canbe found.

7 Conclusion

The aimwas to showhow the combination of contextual knowledge helps to build a
robot suitable for deployment in domestic environments. The idea of this approach
is to overcome the difficulties encountered in approaches that do not take into ac-
count knowledge available from the agent’s environment. The core functionality a
home robot needs to provide is to cope with the diversity of furniture in homes.
While it is unclear if scanning laser sensors, time-of-flight, triangulation sensors or
stereo imaging will prevail in the long run, we propose a complete approach based
on stereo sensing. With appropriate adaptation to the specific sensor characteris-
tics the algorithms will work also for other type of depth sensors.

Starting from the basic requirement to obtain the free space in front of the
robot for safe navigation and obstacle avoidance, we developed a method to seg-
ment the ground plane around the robot (Section 3). In Section 4 we then show
how the free space can be exploited to localise the robot. The most important
finding is that the free space model compensates disadvantages of the smaller
viewing angle as compared to laser range sensors. On the other hand, stereo pro-
cessing allowed us to take objects at all heights into account. The ground plane
is used to boost object classification to over 90 percent for chairs as compared
to 15 percent in VOC. And finally we indicate that also wall, door and room
structure detection profit from this systems approach.

References

1. Arras, K., Castellanos, J., Schilt, M., Siegwart, R.: Feature-based multi-hypothesis
localization and tracking using geometric constraints. Robotics and Autonomous
Systems 1(44), 41–53 (2003)

2. Einramhof, P., Vincze, M.: Stereo-based real-time scene segmentation for a home
robot. In: International Symposium ELMAR (2010)

3. Elinas, P., Little, J.: omcl: Monte-carlo localization for mobile robots with stereo
vision. In: Proceedings of Robotics: Science and Systems, Cambridge, MA, USA,
pp. 373–380 (2005)

4. Golovinskiy, A., Kim, V.G., Funkhouser, T.: Shape-based recognition of 3d point
clouds in urban environments. In: ICCV (2009)

5. Helmer, S., Lowe, D.: Using stereo for object recognition. In: ICRA (2010)
6. Humenberger, C., Zinner, C., Weber, M., Kubinger, W., Vincze, M.: A fast stereo

matching algorithm suitable for embedded real-time systems. Computer Vision and
Image Understanding 114, 1180–1202 (2010)



120 M. Vincze et al.

7. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in
cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gences 21(5), 433–449 (1999)

8. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical har-
monic representation of 3d shape descriptors. In: SGP, pp. 156–164 (2003)

9. Lai, K., Fox, D.: Object detection in 3d point clouds using web data and domain
adaptation. International Journal of Robotics Research (2010)

10. Meger, D., Gupta, A., Little, J.: Viewpoint detection models for sequen-
tial embodied object category recognition. In: 2010 IEEE International
Conference on Robotics and Automation (ICRA), pp. 5055–5061 (2010),
doi:10.1109/ROBOT.2010.5509703

11. Olufs, S., Vincze, M.: An efficient area-based observation model for monte-carlo
robot localization. In: International Conference on Intelligent Robots and Systems
IROS 2009, St. Louis, USA (2009)

12. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologi-
cally inspired robotics. Science 318, 1088–1093 (2007)

13. Plagemann, C., Kersting, K., Pfaff, P., Burgard, W.: Gaussian beam processes: A
nonparametric bayesian measurement model for range finders. In: Robotics: Science
and Systems (RSS), Atlanta, Georgia, USA (2007)

14. Pylyshyn, Z.: Visual indexes, preconceptual objects, and situated vision. Cogni-
tion 80, 127–158 (2001)

15. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Close-range scene segmentation
and reconstruction of 3d point cloud maps for mobile manipulation in domestic
environments. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (2009)

16. Schwarz, R., Olufs, S., Vincze, M.: Merging line segments in 3d using mean shift al-
gorithm in man-made environment. Austrian Association for Pattern Recognition
(2010)

17. Swadzba, A., Wachsmuth, S.: Indoor scene classification using combined 3d and
gist features. In: Asian Conference on Computer Vision, Queenstown, New Zealand,
vol. 2, pp. 725–739 (2010)

18. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, 1st edn. MIT Press, Cam-
bridge (2005)

19. Thrun, S., Fox, D., Burgard, W.: A real-time algorithm for mobile robot mapping
with application to multi robot and 3d mapping. In: International Conference on
Robotics & Automation, San Francisco, CA, USA (2000)

20. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for
mobile robots. Artificial Intelligence 128(1-2), 99–141 (2000)

21. Varadarajan, K., Vincze, M.: 3d room modeling and doorway detection from in-
door stereo imagery using feature guided piecewise depth diffusion. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (2010)

22. Viswanathan, P., Meger, D., Southey, T., Little, J.J., Mackworth, A.: Automated
spatial-semantic modeling with applications to place labeling and informed search.
In: CRV (2009)

23. Wohlkinger, W., Vincze, M.: 3d object classification for mobile robots in home-
environments using web-data. In: IEEE International Workshop on Robotics in
Alpe-Adria-Danube Region RAAD (2010)

24. Wohlkinger, W., Vincze, M.: Shape-based depth image to 3d model matching and
classification with inter-view similarity. Submitted to IEEE IROS (2011)



A Software Integration Framework

for Cognitive Systems

Michael Zillich, Wolfgang Ponweiser, and Markus Vincze

Automation and Control Institute, Vienna University of Technology
{zillich,ponweiser,vincze}@acin.tuwien.ac.at

Abstract. Handling complex tasks with increasing levels of autonomy
requires robotic systems to incorporate a large number of different func-
tionalities at various levels of abstraction, such as localisation, naviga-
tion, object detection and tracking, human robot interaction including
speech and gesture recognition as well as high level reasoning and plan-
ning. The interaction between functionalities in these cognitive robotics
systems not only requires integration at a technical level but more impor-
tantly at an organisational and semantic level. Within this contribution,
these cognitive functionalities are encapsulated in software components
with the objective to provide clearly specified interfaces to allow reuse
in other cognitive vision or robotics systems. To arrive at the level of
building a system from these functionalities, it is considered essential to
provide a framework that coordinates the components. Two principles
organise the components: (1) the service principle uses a ”yellow pages”
directory to announce its capabilities and to select other components,
and (2) the hierarchy principle orders components along data abstrac-
tion from signal to symbolic levels and ascertains that system response
is reactive. The proposed system is demonstrated in a context-oriented
system for activity interpretation involving functionalities such as track-
ing, object and gesture recognition, spatio-temporal object relationships
and reasoning to extract symbolic activity descriptions.

1 Introduction

Computer vision has reached a state where it becomes possible to derive con-
ceptual information from basic visual input streams. Applications in the area
of mobile robots, surveillance or vehicle steering are some examples. This ad-
vance led to the use of terms such as Cognitive Vision, Cognitive Vision System
(CVS) and, finally, Cognitive Systems, where emphasis on vision as the sole or
main sensor is removed. Such “systems”, and in particular, Cognitive Vision
Systems become possible with the advance of computing power, the availabil-
ity of techniques to handle the vast amount of video data, the development of
reasoning techniques to approach the semantic level, and finally the advances in
robotics and other forms of active vision and active embodiment. As a conse-
quence, a CVS or a Cognitive System comprises processes ranging from low-level
(data) to high-level (semantic) processing including a large number of models

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 121–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



122 M. Zillich, W. Ponweiser, and M. Vincze

and techniques (e.g., perception-action mapping, recognition and categorisation,
prediction, reaction and symbolic interpretation) and feedback and interaction
mechanisms and embodiment to fulfil a task (e.g., navigating to goals, finding
objects and communication to humans).

The ultimate driving force of developing such systems is to obtain systems
that are applicable to a wide range of tasks, robust to changing and possibly new
environments and situations, and which execute the tasks within reasonable time
limits. These expectations in a CVS impose a number of constraints:

– The system is on-line with the observed scene. Therefore the system has to
react in the temporal order of activities observed and with appropriate time
delay (data-driven).

– The system has to solve several tasks concurrently, tasks must be executed on
restricted resources, tasks are complex in terms of the methods and combina-
tions applied and require control and integration of (nowadays) probabilistic
methods to fulfil the demands of cognitive processes. Therefore the system
has to enable task-driven processes.

– Additionally all practical aspects of software engineering have to be taken
into account such as scalability, ease of use and software reuse.1

To comply with all these requirements vision scientists have been investigating
different architectures and frameworks. Early examples are the VAP project
(Vision as Process, [5]), which basically enabled data-driven processes and active
vision, or the Khoros software development environment [10]. Later examples are
DACS [7] or RAVL [6]. Recent attempts have been made in the robotics, multi-
agent and software engineering areas, each area with different approaches and
fulfilling a slightly different spectrum of requirements (for details see Section 2).

This work wants to foster the use of a software framework as a tool to build
Cognitive Vision Systems. This framework has been devised specifically for CVS
to study the interaction between low-level and high-level processes. It exploits
experience of software engineering to build complex systems based on the com-
ponent principle [20]. The idea is to develop components individually and to
endow the component with a service description that enables other components
to reuse individual functionalities (or cognitive vision skills) already developed
and to focus on studying the interaction in the system. Two aspects greatly
support a component-based approach. First, experience in software engineering
found this as the best solution to reuse software and to build larger systems.
And second, it will be shown below that the component structure forces scien-
tists and engineers to clearly specify what their vision function can do under
certain circumstances. This description will use the notion of Quality of Service
(QoS), which, for the first time, makes computer vision developers specify in
formal terms what their algorithm really can do. We see this need to be ob-
jective about vision capabilities as a big step forward to advance the science of
computer vision and cognitive vision.

1 The latter two have been often underestimated but they are critical for successful
application and everyday use.



A Software Integration Framework for Cognitive Systems 123

After reviewing in more detail related work (Section 2) the software framework
is introduced in detail in Section 3. It has been designed for CVS applications, in
particular, the ActIPret project, which sets out to interpret activities of persons
handling tools and involves skills such as tracking, object and gesture recogni-
tion, spatial-temporal object relationships and reasoning to extract the symbolic
description. We will exemplify the use of the framework with two examples from
this project (Section 4) and finalise with a discussion of the usefulness of such a
framework (Section 5).

2 Related Work

To comply with all these requirements it is proposed to use a software frame-
work that provides the basic functionalities for these requirements. One such
attempt has been made in the European IST Project ActIPret, which has the
goal to interpret activities of a person handling objects. To study the interaction
between low-level and high-level processes, a software framework has been devel-
oped based on the component principle [20]. The coordination requirements of
component based programming are related to distributed artificial intelligence
and multi-agent theory [4], [23], [17], [9], [13]. Multi-agent systems use negotia-
tion to determine a configuration. Such an approach is too time consuming for
a reactive system that must respond with a fixed delay.

Some architectures for robotics and perception cope with this constraint and
are related to component-based system programming (e.g., [1], [2], [11]). Such
architectures provide mechanisms to configure a system set-up during compile or
start-up time. Dynamic component selection and activation is not permitted in
such systems. E.g., the OROCOS project (www.orocos.org) provides basic com-
mon principles for frameworks for developing robot control software (e.g., fusion
and reactive behaviour). Other tools to develop frameworks can be separated
into the communication middle-ware, e.g., RPC (Sun Microsystems), DCOM
or CORBA, and higher-level framework tools and concepts such as SAPHIRA
(SRI), AYLLU (ActivMedia), BERRA [11], OSCAR [3], SMARTSOFT [14].
However, the API’s (application programming interface) of these tools provide
little or no temporal dynamics in the sense of on-line changes in the component
set-up and trivial or specific API’s for sensory processes. The well known robot
operating system (ROS) [15] offers a large repository of drivers and components
as well as a strong research community. It is intended however to provide only a
technical integration framework rather than propose an organisational principle.
The CoSy Architecture Schema Toolkit (CAST) [16] in contrast offers a software
framework for a variety of languages (C++, Java, Python) built around a dis-
tributed blackboard architecture. Components are organised in sub-architectures
each with its own working memory, serving as the central knowledge repository
for this part of the overall architecture. Keeping data consistent with several
components accessing asynchronously can however become problematic.

The ActIPret framework sets out to resolve these shortcomings. It is presented
in Section 3 and examples are given in Section 4.



124 M. Zillich, W. Ponweiser, and M. Vincze

3 A Software Framework for Cognitive Vision Systems

One of the goals of ActIPret is to develop a general-purpose framework for CVS
that can be used not only for the ActIPret demonstrator but also in other CVS
applications, i.e., other machine vision systems and also in robotic systems. This
section summarises the important design goals that are derived from the essential
elements of cognitive vision demands as reviewed in Section 1 (Section 3.1). We
then give the design decisions to realise the framework (Section 3.2), outline the
two particular principles the framework builds on, namely the ’service principle’
and the ’hierarchy principle’ (Section 3.3), and introduce the structure of the
individual components (Section 3.4) and the mechanism to select components
(Section 3.5). Finally, Section 3.7 presents important implementation details.

3.1 Requirements on a Software Framework for CVS

The realisation of the CVS goals listed in the Introduction and of systems re-
viewed impose a series of specific requirements on a software framework. First,
computer (and cognitive) vision implies image data of multiple redundancies:
temporal redundancy from data streams, stereo or multiple views, within each
image many cues and a vast number of features and an even larger number of
feature operators, and a multiple of representations to store and formalise the
image content. And second, the vision functionalities are not alone. There are
many other sensors, e.g., speech, sonar, laser rangers, to name only a few, that
contribute the the systems. The system is embodied, in the minimum with the
restrictions to camera views. It is embedded in a task and the situations deriv-
ing from this, and it may contain knowledge representations or even a kind of
common sense knowledge to better cope with these situations. Finally, a CVS is
expected to contain a linguistic components that can present knowledge seman-
tically.

To summarise, a software framework for CVS should support to build a system
with the following specifications.

– Proactivity: an on-line software system, such as a CVS and in particular the
ActIPret system, has to deal with limited resources. Hence the system has
to focus its resources (processing power, views, etc.) according to task rele-
vancy. Proactivity subsumes goal and task orientation, taking the initiative
to control resources and to generate appropriate sub-tasks [23].

– Reactivity: the system has to react to the sensor input provided by the
cameras. The goal is to build a CVS that reacts and responds to human
actions. Hence reactions must take place in a time scale appropriate to human
activity.

– Scalability: this should be linear or as close as possible to linear. In practice
this means that duplication of any component should result in (as near as
possible) a duplication of the associated service assuming the existence of
similarly duplicated resources.



A Software Integration Framework for Cognitive Systems 125

– Control: scalability also implies distributed control throughout the system
(a single control component would not scale). Hence, each component has its
own ”control policy” (albeit at different scales of task relevance) to control
the services requested and the results or data obtained.

– Modularity: the development effort for CV software can be limited by reusing
software segments. Modularity forms the basis for software reuse and a dy-
namic system structure.

– Independence of components: a component only needs to know about the
functionality (the service) of another component and not about their im-
plementations. Hence, every component has the control of the services it
provides to other components and the services it requests from other com-
ponents.

Several of these requirements aim at fulfilling a point that is often neglected:
(re)usability by the researcher and engineer. Project success depends to a larger
extend than generally acknowledged on a fast learning curve, the support to
evaluate components and the whole system, transparent use of the tool (e.g., in-
terface specifications), and a certain flexibility to enable modifications without
the need to adapt the complete system. Experience from software engineering
advocates programming based on components the present most successful ap-
proach in this respect [20].

3.2 Design Decisions

To realise the framework, some design decisions had to be taken. The decisions
are driven by the list of requirements given previously.

– The system is distributed: vision and interpretation require significant pro-
cessing power. In order to achieve scalability the system has to be distributed
over several machines. Distribution into distinct modules (components) sim-
plifies parallel development.

– The components of the framework run asynchronously: the effort required
to synchronise a distributed system outweighs the simplification in the in-
tegration process. Furthermore, synchronisation is pointless for components
having different temporal behaviours such as tracking and recognition.

– Data consistency: control over service responses from other components as-
sumes that the data received is consistent. For example, if two detectors on
different cameras are asked to find a hand, the responses must be fused in
the component that requested those two services.

3.3 Design Principles

As a consequence of the requirements and following the design decisions, the
framework is built according to two major design principles: (1) the “service
principle” and (2) the “hierarchy principle”. These two terms are explained sub-
sequently. The underlying software concept is founded on a component-based



126 M. Zillich, W. Ponweiser, and M. Vincze

approach [19], which is faster than classical agent systems to guarantee reactiv-
ity and enables easier distribution than conventional object oriented approaches
whose scalability ends at the one-computer border.

Our first goal for the Cognitive Vision (CV) framework is to build a task
driven system, so every distributed component is task driven. From the point
of view of a component, it has to provide one or more interfaces to make its
functionality accessible. Using this interface other components can initiate one
or more tasks. Components can be regarded as black boxes and so according to
the goal of component independence these interfaces have to describe all of the
component’s capabilities. Because of the task related nature these interfaces are
called services, which are derived from the CORBAservices ([12]). They form a
”Yellow Pages” dynamic look-up directory that makes it possible to select on-line
the best service available according to a formalised performance characterisation.
The component itself builds the frame for the service provider.

Any component or service provider can use the services of other components.
In this case the component or service provider establishes the interface of the
service requested. This interface object is called service requester. Every compo-
nent ’presents’ its own abilities by providing services via the service provider and
every component makes use of the abilities of other components by requesting
services via the service requester. Using the service principle the implementation
is hidden outside of the component.

The “hierarchy principle” resolves the problem of building a reactive system.
Fully agent-based systems do not use a hierarchy. All agents negotiate until a
configuration is reached. This is thought too time consuming for a reactive sys-
tem. To reduce administrative communication overheads during decision-making
(service selection) a strict hierarchical structure of components is used. Hence
every link between components has a higher-level component and a lower-level
component. The higher-level component always orders the task (service), the
lower-level component has to process (provide/deliver) it.

3.4 Component Structure

At this point it is appropriate to define a component [21].

– The inside of a SW-component is a piece of software with some properties.
It is a unit or entity that can be reused.

– The outside of a SW-component is an interface with some properties. It
provides a good or service to humans or other SW-components.

From the view point of a CVS, a component encapsulates (that is the relation
between inside and outside) the cognitive vision (or other system) function, and
provides the means for communication with other components. The function
itself encompasses all aspects typical of today’s vision functions. This includes
memory up to the point of a separate component (such as a model server),
mechanisms for self-evaluation (e.g., reporting confidence measures, expected
accuracy, and resource demands), the necessary control to execute the function,



A Software Integration Framework for Cognitive Systems 127

which entails control of processing as well as views and embodiment and the use
of other components, and finally techniques to exploit and report context.

The context states how the software is to be managed and used, within a
defined process for software development and maintenance. If the context is not
stated (and it usually isn’t), then concepts such as encapsulation and reuse are
ambiguous [21].

The last point leads to a side effect of using a framework to build a CVS: the
contextual relationships, that is how to use the component and what it can do
under the contextual circumstances, need to be formalised. While it might be
considered cumbersome, this enforces to clearly specify what a vision function
can do. And it can be said, with justified self criticism, that scientific work in
computer vision has not addressed this issue sufficiently (with the noticeable
exception of work in performance evaluation).

In conclusion, using the two design principles (3.3) a component is made up
of three elements (see Fig. 1):

– The component itself that is the frame for all other building units. The com-
ponent unit is responsible for managing services. This includes offering of
services that can be provided, reception of service requests and establish-
ing of service providers. Also long term memory of common data or other
functionality all providers share is placed in the component.

– The service provider contains the real functionality that provides the ser-
vice. The component establishes the service provider as an instantiation of
a service. consistence.

– The service requester is the access point for all responses from a service
provider. It can be established by a component or a service provider that
requires other services.

Component

Service ProviderService ProviderService Provider

Service Requester

managing
frame

Implemen-
tation;

provider
interface

requester
interface

Fig. 1. Structure of a component

3.5 Service Selection

In order to fulfil task orientation and to optimise resource allocation it is nec-
essary to manage service requests. Otherwise components might be activated
that cannot obtain the necessary resources. The critical issue is the method of
selecting a service. Service selection serves the purpose of selecting resources
efficiently. [8] presents an overview of options of making the preferences of the
requester and the properties of the provider known to the other components



128 M. Zillich, W. Ponweiser, and M. Vincze

and/or a middle agent. Often used approaches are blackboard systems, where
the preferences are known by all others, or a broker system, where the middle
agent knows about both preferences and properties and negotiates to select a
service.

The mechanism introduced here is derived from the CORBA trader service
[12]. It adheres to the yellow-pages principle, where the provider makes his prop-
erties known to the middle agent and the requester. The following sequence de-
scribes the process for registering a service in the service list and selecting the
service(s). Also refer to Fig. 2 for an example sequence to set-up a component
connection.

1. During the component start-up every component registers its services in
a global service list, (i.e., they export a service offer). A service list entry
consists of the service name, the ID of the component providing the service
and an abstract description of the service (i.e., Quality of Service, costs,
constraints, etc.). If due to changes in the environment properties of the
component change, this is reflected in an updated service list entry.

2. If a component or service provider needs a service of another component it
creates a service requester to establish a connection. All selection, configu-
ration and communication is done by the service requester.

3. The service requester starts the search for a service in the service list (it asks
for service ”S1” in Figure 2). The component description (QoS, constraints,
etc.) makes it possible to select the relevant subset of all components provid-
ing the service ”S1”. The service list returns the list of corresponding service
offers (in our example, for components 2, 3 and 4). The service requester can
now use the service properties to select the service that is most suited to the
demand, in this example the service of Component 3.

4. The service requester selects one of the service offers received and establishes
a link to the provider selected. This completes the process of service selection.

3.6 Quality of Service, Utility and Costs

The goal of a CVS is to fulfil a task by using appropriate components. The
appropriateness can be measured as the Utility (U) of a service. The Cost (C)
of running a service is the Utility of the disabled service(s). This stems from the
fact that for a given computing power services need to be negotiated according
to the utility they offer versus cancelling other services (and their utilities).

The obvious system goal is to optimise system utility, that is, select the service
that has the property

max(U − C). (1)

Using the notion of QoS, the utility of one component is a function of QoS. The
Quality of Service (QoS) defines the properties of components in terms of (1)
execution time (as expected or inferred from previous use), (2) accuracy (spatial,
2D or 3D) and (3) the confidence or certainty in a correct match or correct result
of the function (also see [18]). As a start the simple relation

U = f(QoS) = f(execution time) + f(accuracy) + f(confidence) (2)



A Software Integration Framework for Cognitive Systems 129

Service List

Component 1

Component 2

provides S1, S2

Component 3

provides S1, S3

Component 4

provides S1

Component 1

Component 2

provides S1, S2

Component 3

provides S1, S3

Component 4

provides S1

Service List

Component 2 S1: Prop1, Prop2

Component 4 S1: Prop1, Prop2

Component 3 S3: Prop1, Prop2

Component 3 S1: Prop1, Prop2

Component 2 S2: Prop1, Prop2

Service List

Component 1
Component 2 S1: Prop1, Prop2

Component 4 S1: Prop1, Prop2

Component 3 S3: Prop1, Prop2

Component 3 S1: Prop1, Prop2

Component 2 S2: Prop1, Prop2

Component 2 Component 3 Component 4

S1 Requester

Service List

Component 2 S1: Prop1, Prop2

Component 4 S1: Prop1, Prop2

Component 3 S3: Prop1, Prop2

Component 3 S1: Prop1, Prop2

Component 2 S2: Prop1, Prop2

Component 2 Cmp. 3 Component 4

S1 Provider

Component 1

S1 Requester

a) b)

c) d)

Fig. 2. a) A system state before any services are offered. b) The components offered
their services with current properties. c) The service requester asks for services with
specific properties. d) The service requester establishes a link to the selected service
provider.

is proposed. Work in the ActIPret project has shown that formalising vision
functions to this extent is already cumbersome. It also indicates that the science
of computer vision did not yet settle enough to reward work in this area.

cognitive vision functions detection, tracking and recognition.

3.7 Implementation: zwork and Its Graphical User Interface (GUI)

The software implementation of the framework is based on RPC (Remote Pro-
cedure Call) under the operating system Linux. RPC has been chosen because
it is very established, standardised, light weight, fast and easy to use. CORBA
as an alternative networking layer imposes a larger overhead and is generally
tailored to other uses, such as web-services rather than a real-time vision sys-
tems. Moreover CORBA is still developing and different implementations are
not interchangeable.

The framework implementation is referred to as zwork. It provides the com-
munication mechanisms to establish and request services. Deliverable D1.3, avail-
able from the ActIPret home-page (actipret.infa.tuwien.ac.at), gives more details
about zwork, an installation and a programmer’s guide.

In order to control such a framework and give the user, and especially the de-
veloper, feedback of the results of various components, a graphical user interface



130 M. Zillich, W. Ponweiser, and M. Vincze

(GUI) is mandatory. Results of different vision modules should be superimposed
on the original image to indicate correct operation at a glance. A GUI with the
capability to display text and drawing primitives as an overlay of the processed
2D images and a 3D graphical display was implemented, see Fig. 3. It provides
the following functions:

– Display of the original 2D images from the cameras together with an over-
lay of vision processing results. A button just below the image selects this
alternate display.

– Display of 3D representation of the objects (see Figure 4 for an example),
trajectories and other spatial information. The three sliders to the left, right
and below the image allow zoom in and spherical angle change for the view
of the 3D scene.

– Display all services available at present (box to the left top).
– Display of all components (box to the left centre) and currently running

services. Graphical output for each component can be enabled or disabled.
– Display of textual information (box to the bottom right) to output symbolic

information, e.g., recognised gesture or activity concepts.
– Various functions for debugging and presentation (bottom left), eg. for log-

ging data and images, and to make a snap shot of the GUI (such as presented
in Fig. 3).

Fig. 3. GUI of the Cognitive Vision Framework developed in ActIPret. In the 3D
display (top left), the green (bright) trajectory is the 3D hand trajectory. The ellipses
are the two CDs recognised, also marked with an “f” for found. This 3D rendering can
be viewed from different angles using the sliders in the GUI.



A Software Integration Framework for Cognitive Systems 131

4 Experiments in the ActIPret Project

Fig. 4 gives on overview of the ActIPret Demonstrator architecture. The system
was rigorously tested by the ActIPret partners in an integration meeting at a
partners site (Fig. 5). For these tests, there were no Activity Planner and User
HMI components available. As a result the internal ARE (Activity Reasoning
Engine, see Fig. 4) output was displayed at the GUI.

PC n Camera n

Attention

Object
Recogniser

Pre-Attention

Object
Detector &

Tracker

Hand
Detector &

Tracker

Legend

Camera 1

Pre-Reasoning

Synthesis

Hand
Detector &

Tracker

Object
Detector &

Tracker

Pose Server

Object
Relation

Generator

Activity
Reasoning

Engine

USER
(HMI)

Activity Plan
Generator

Object
Recogniser

Pose Server
CPU

Controller

Gesture
Recogniser

Ellipse
Detector

da
ta

 a
bs

tr
ac

tio
n

Service List
--------------------------
-
Detect Motion:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PCn)
.
.

Task based control
(Service request)

Image data driven
(Service response)

communication link

Component
Namereal component

Process Nameabstract process

Service List with ViewController
-------------------------------------------------------------
Recognise Object: QoS, Costs, Desc. (PC2)
Track Hand: QoS, Costs, Desc. (PC1)
Track Hand: QoS, Costs, Desc. (PC2)

View
Controller

1

View
Controller

n

View
Controller

2

View independent

View dependent

����

�

�� ����

can request a view

Image ServerImage Server

PC 1

CPU
Controller

Motion
Detector

Model

Model Server

Virtual Reality
(offline)

Fig. 4. The components of the ActIPret demonstration system

Of particular interest is the study of the interaction between components. Two
examples are given. The first example is the automatic initialisation of tracking
using detection. The second is the contextual use of hand tracking to limit the
area to search for potential objects that might be grasped.

Ellipse detection is used to initialise ellipse tracking. Fig. 6 shows this cou-
pling of two components for a lamp. The technique of detection is based on a
hierarchical grouping method that is very efficient in computing [24]. By exploit-
ing an ordering according to most likely ellipse arcs, arc groupings and, finally,
ellipses, it also produces reliable results. Computing time is less than 500 ms on
an Athlon 1.880+ PC for the full image (768x576 pixels) and only 50 ms when
used in a ROI (Region of Interest) provided by hand tracking (exemplified in
the second example). Tracking exploits the technique described in detail in [22].
In the Fig. 6 only the first frame is shown.

An example of using context in ActIPret is the exploitation of the hand tra-
jectory to narrow the SOI (Space of Interest) for computational expensive com-
ponents like object detection and object recognition. Fig. 7 is an instant where



132 M. Zillich, W. Ponweiser, and M. Vincze

Fig. 5. A live demonstration of the ActIPret framework in the laboratory at PRO-
FACTOR. Top left is the active fixed stereo system, top right the stereo system on the
robot arm. The screen in the background shows the GUI of the framework while Jon
Howell (from the ActIPret partners from the University of Sussex) is placing a CD in
the player.

the hand is tracked (ellipses around the hand) and the motion direction indi-
cates the image region where potential grasp objects, in this case CDs, might be
detected. The search region on the top of the CD-player is caused by a previous
hand motion. The ellipses reported are generated using the method of hierarchi-
cal grouping presented in [24]. It can be seen that the most likely hypothesis,
marked with “0”, is the CD in both squares.

In the first example, the Object Detector & Tracker (ODT, please refer to
Fig. 4) needs external help to provide the promised service of detection and calls
the Ellipse Detector (ED) to detect the lamp object. In the second example it is
the Object Relationship Generator (ORG) that establishes the context between
Hand Detector & Tracker (HDT) and ODT. The ODT then again selects the
service from an ED to initialise tracking. In this case a second option is available,
where the service of Object Recognition (OR) could provide object locations for
tracking. This is investigated with partner CMP (Center for Machine Perception,
Czech Technical University, Prague) within the ActIPret project. It shows that
with a growing number of components, more versatile systems can be built and
that there are several routes to fulfil a task, which adds to the robustness of
the overall system. This later aspect is the ultimate driving force to build the
framework and it is seen as a promising method to approach building widely
applicable CVS.



A Software Integration Framework for Cognitive Systems 133

Fig. 6. Detecting all ellipses in the scene to track the object. Top left shows the edges,
top right the grouped arcs, bottom left the only detected ellipse and the final image
the first step of tracking using the technique of [22].

Fig. 7. Display of information from Hand Tracker and Ellipse Detector overlaid on
the original image. The green ellipses represent the hand tracked over the last images.
The two squares contain information on ellipse detection within this ROI. Each time
the ellipses detected are displayed and the number gives the ranking, with number 0
being the highest ranking and indicating, the both CDs have been found correctly.



134 M. Zillich, W. Ponweiser, and M. Vincze

5 Conclusions

The intention of this paper is to raise the awareness that building CVS includes
many facets of science for fulfilling the tasks intended. The argument is that
embodiment, multiple modes of sensing with vision as a powerful yet demanding
sense (in terms of resources as well as methods) and reasoning about the percepts
as well as the situation and goals, call for a supporting software framework.

The paper then outlined one tool, zwork, to provide such a framework for
the ActIPret project. This framework will be further used and improved in the
ActIPret project. The main project goal is to study the interaction of vision func-
tionalities for activity interpretation. The central theme of work is to use contex-
tual information to increase the robustness of the interpretation. The framework
is the necessary tool to do so easily. zwork operates with a quick component
start-up, a data transfer time of one millisecond and it has, due to its simple
design, a short learning phase for the vision researcher. The developers plan to
make the framework tool zwork publicly available. Please contact the authors.

The notion of QoS was introduced to formalise the properties of vision func-
tionalities encapsulated in the components. While recent work on performance
evaluation started to aid such a formalisation, computer vision methods elucidate
such a scientific formalisation far more than methods in other engineering sci-
ences. It is therefore thought essential to work along this line to arrive at clearly
defined properties of methods for given context and use. The component-based
approach enforces this development and the advantages gained from building
components (reuse in other applications, easy use of methods by other, formal
comparison of methods) will have the effect to seriously evaluate the advance of
vision methods.

The current demonstrations work with intermediate functionality of the com-
ponents. While simple options for redundant components (finding CDs either
with recognition or ellipse detection) have been realised, the full power of a
component-based approach becomes visible if many components offer similar or
competing services. Hence, we want to encourage other vision researchers to ex-
change their developments and components with our framework to build more
powerful and versatile Cognitive Vision Systems.

References

1. Albus, J.S.: 4-D/RCS: A reference model architecture for Demo III. In: IEEE
ISIC/CIRA/ISAS Joint Conf. (September 1998)

2. Arkin, R.C.: Behaviour based robotics. The MIT Press (1998)
3. Blum, S.: OSCAR - Eine Systemarchitektur für den autonomen, mobilen Roboter

MARVIN. In: Autonome Mobile Systeme, Informatik Aktuell, pp. 218–230
(November 2000)

4. Crowley, J.L.: Integration and Control of Reactive Visual Processes. Robotics and
Autonomous Systems 15(1) (1995)

5. Crowley, J., Christensen, H. (eds.): Vision as Process. Springer (1995)
6. University of surrey. Recognition and Vision Library (2003),

http://ravl.sourceforge.net

http://ravl.sourceforge.net


A Software Integration Framework for Cognitive Systems 135

7. Fink, G.A., Jungclaus, N., Kummert, F., Ritter, H., Sagerer, G.: A distributed sys-
tem for integrated speech and image understanding. In: International Symposium
on Artificial Intelligence, Cancun, Mexico, pp. 117–126 (1996)

8. Klusch, M., Sycara, K.: Brokering and Matchmaking for Coordination of Agent
Societies: A Survey. In: Omicini, A., et al. (eds.) Coordination of Internet Agents.
Springer (2001)

9. Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.): Intelligent Information
Agents. LNCS (LNAI), vol. 2586. Springer, Heidelberg (2003)

10. Konstantinides, K., Rasure, J.R.: The Khoros software development environment
for image and signal processing. IEEE Transactions on Image Processing 3(3),
243–252 (1994)

11. Lindstöm, M., Orebäck, A., Christensen, H.: Berra: research architecture for service
robots. In: IEEE ICRA, pp. 3278–3283 (2000)

12. Object Management Group (OMG). CORBAservices: Common Object Service
Specification (March 1995)

13. Prouskas, K., Pitt, J.: A real-time architecture for time-aware agents. In: IEEE
SMC (2003) (in press)

14. Schlegel, C., Wörz, R.: The Software Framework SmartSoft for Implementing Sen-
sorimotor Systems. In: IEEE/RSJ IROS 1999, Kyongju, Korea, pp. 1610–1616
(October 1999)

15. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,
A.: Ros: an open-source Robot Operating System. In: ICRA Workshop on Open
Source Software (2009)

16. Hawes, N., Wyatt, J.: Engineering Intelligent Information-Processing Systems with
CAST. Advanced Engineering Infomatics 24(1), 27–29 (2010)

17. Shoham, Y.: What we talk about when we talk about software agents. IEEE In-
telligent Systems 14(2), 28–31 (1999)

18. Ponweiser, W., Umgeher, G., Vincze, M.: A Reusable Dynamic Framework for
Cognitive Vision Systems. In: Workshop on Computer Vision System Control Ar-
chitectures at ICVS 2003, Graz, pp. 31–34 (2003)

19. Szyperski, C., Pfister, C.: Workshop on Component-Oriented Programming, Sum-
mary. In: Mühlhäuser M. (ed.) Special Issues in Object-Oriented Programming -
ECOOP 1996 Workshop Reader. dpunkt Verlag, Heidelberg (1996)

20. Szyperski, C.: Component software. Addison Wesley, United Kingdom (1999)
21. Veryard, R.: Component-Based Business: Plug and Play. Springer (2001)
22. Vincze, M., Ayromlou, M., Ponweiser, W., Zillich, M.: Edge Projected Integration

of Image and Model Cues for Robust Model-Based Object Tracking. Int. Journal
of Robotics Research 20(7), 533–552 (2001)

23. Wooldridge, M., Jennings, N.: Intelligent Agents: Theory and Practice. Knowledge
Engineering Review 10(2) (1995)

24. Zillich, M., Matas, J.: Ellipse Detection using Efficient Grouping of Arc Seg-
ments. In: 27th Workshop of the Austrian Association of Pattern Recognition
OAGM/AAPR, pp. 143–148 (2003)



KOROS� Initiative: Automatized Throwing

and Catching for Material Transportation

Martin Pongratz1, Klaus Pollhammer1, and Alexander Szep2

1 Vienna University of Technology, Institute of Computer Technology
Gußhausstraße. 27-29 / 384, 1040 Wien, Austria

http://www.ict.tuwien.ac.at
2 Vienna University of Technology, Automation and Control Institute

Gußhausstraße. 27-29 / 376, 1040 Wien, Austria
{pongratz,pollhammer}@ict.tuwien.ac.at, alexander.szep@tuwien.ac.at

http://www.acin.tuwien.ac.at

Abstract. Catching a thrown object has increasingly been a subject
of research. The reason has largely been to demonstrate the advances
in robot technology. Besides this academic usage also the application
of throwing and catching for material transport has been proposed.
Within the KOROS initiative at the Vienna University of Technology
the transport-by-throwing approach will be developed further. Based on
multiple cameras and advanced robotic arms a practical evaluation of the
approach will be done. The realization with state of the art equipment
will enable to identify possible fields of application as well as current lim-
itations of the transport-by-throwing approach. Especially soft throwing
and catching, exposing the transported objects to minimal forces, are of
main interest.

Keywords: KOROS, versatile manufacturing, flexible transportation,
transport-by-throwing, robotics, catching, throwing.

1 Introduction

State of the art production faces the challenge of the conflicting requirements
of automatization and flexibility [1]. The main driver for this challenge is the
raising demand for individual products and the increasing number of product’s
variants over the last decades. This circumstance has raised the requirements
for production facilities and automatization solutions. Versatile solutions for the
material flow, that are able to cope with unexpected situations, are required

� The tranport-by-throwing scenario presented here is one of the activities within
the KOROS (collaborating robotic systems) initiative of the Vienna University of
Technology. The initiative has be established in 2010 after a successful proposal for
robotic infrastructure including a 3D-display, two KUKA LWR 4+ arms and the
world-wide first Alebaran Romeo humanoid robot (panned to be delivered in early
2013). The funding for the infrastructure has been provided by the WWTF as well
as the Vienna University of Technology.

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 136–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ict.tuwien.ac.at
http://www.acin.tuwien.ac.at


KOROS: Throwing and Catching for Material Transportation 137

Fig. 1. Overview of the transport-by-throwing approach with four functional divisions

[1]. The concurrent increased usage of robots [2] for handling tasks opens the
opportunity to use the robots also to enable new flexible ways of material flow.

Transport-by-throwing has been proposed by Frank [3]. The basic princi-
ple of automatized throwing and catching significantly increases the flexibility
due to the laps of additional infrastructure for material handling like conveyor
belts. Regarding the three main shapes of flexibility, namely layout-flexibility,
throughput-flexibility and the flexibility of the transported material proposed
by Günthner [4], the transport-by-throwing approach has excellent properties
regarding the layout-flexibility and the throughput-flexibility. In case the pro-
duction line is composed of modular production units the layout of the whole
line is only restricted by the range of throwing. In case of longer transporta-
tion paths routing via other production units is possible (similar to multi-hop
routing in communication networks). Basically all other (modular) production
units can be used for transporting in case they are within the reach of the origin
unit. In addition to transportation on the same height-level also the transfer
to different levels is possible without additional infrastructure. In terms of the
flexibility of transported material, research has only dealt with highly symmet-
rical (point-symmetrical, axial-symmetrical) objects like tennis balls, cylinders
or similar objects [5] [6] [7] [8] [9].

Currently the field of application of transport-by-throwing is seen in the area
of objects with a mass of up to 100 g for sorting and separation [7]. One of the
future research scenarios presented in section 3 will deal with the identification
of suitable objects for this transport approach.

Based on initial results examining transportation over a distance of 3 m with
a initial velocity of approximately 10 m/s the current work is based on slower
thrown objects (5 m/s) and a transportation distance of 2.5 m. This combination
represents the minimal velocity required for a tennis ball to travel the distance
of 2.5 m [10], thus limiting the velocity requirements on throwing and catching
devices.

The whole process of throwing and catching can be divided into four major
functions [3]. Figure 1 illustrates a throwing and catching system and outlines
the four fundamental functions. The breakdown into four functional divisions is



138 M. Pongratz, K. Pollhammer, and A. Szep

based on the main functions throwing and catching as well as the derived re-
quirements for pose (position and orientation) prediction and tracking. Pose pre-
diction is necessary in order to gain information about the optimal interception
position and suitable deceleration trajectories at the catching site. Additional
tracking is necessary because the trajectory of the thrown object is highly sensi-
tive to small, unavoidable deviations in the launching parameters as well as other
factors (e.g. air streams, deviations in the object’s physical properties) [3] [9].
The tracking information is used to refine the pose prediction during the flight.
Regarding the prior work based on point symmetrical object’s the requirement
for orientation-prediction and -tracking has been omitted.

Throwing. During throwing the object is accelerated up to the velocity that is
required to reach the catching area of the destination unit. The main parameter
of the throwing process is the launching velocity. Both magnitude and direction
of the velocity are highly important as the trajectory is highly sensitive to devi-
ations in the launching velocity [3]. Other important properties of the throwing
process are the acceleration trajectory and the forces during the acceleration.
The acceleration trajectory is responsible for the rotational behavior of the ob-
ject throughout the flight. Linear acceleration units have been used in order to
enable accurate throwing with a stable object orientation [11]. The maximum
force, the object is exposed to, is responsible for deforming of the object or
damage and has to be limited depending on the object’s properties.

Catching. The task of catching deals with the controlled deceleration of the ob-
ject at the destination unit. Information about the optimal interception position
is based on the initial launching parameters as well as the tracking information.
In order to minimize the forces on the object during catching the deceleration
trajectory has to initially follow the object’s trajectory. After the thrown object
is fixed on the catching device (e.g. actively grasped, passively fixed by fric-
tion) the deceleration trajectory may change to a different shape. This deviation
also results in forces on the caught object, that have to be considered as well.
A possible catching trajectory is a circle that tangents the object’s trajectory
in the interception point and afterwards decelerates the object with a circular
movement.

Prediction. Pose prediction is necessary to enable catching at the destination
unit. The information of the predicted trajectory and orientation is used to po-
sition the catching device at the optimal interception position prior to the object
reaching this point. Also the aligning of the object’s and the catching device’s
velocity is based on the prediction system. The information the prediction sys-
tem is based on are the initial launching parameters as well as the information
from the tracking system. Prediction can be based on physical models, modeling
the flight properties of the object [6] [9], generic curve fitting [9] or approaches
based on learning [12].

Tracking. Tracking of a thrown object is mainly based on video information
due to the high dynamics of the movement. Approaches based on single cameras



KOROS: Throwing and Catching for Material Transportation 139

[6], a set of two cameras [9] [13] as well as multiple cameras [14] [15] are exist-
ing. Depending on the object’s symmetrical properties the image processing’s
complexity varies, ranging from simple object detection to pose estimation and
tracking.

2 Related Work

In addition to the transport-related application of throwing and catching also
the usage of this application for demonstrations of the abilities of robots has
been done. Catching emerging from grasping has been surveyed at the Univer-
sity of Tokyo [16] [17] [18] [19]. A three-fingered hand was developed and first
used to grip soft objects (foam ball, foam cylinder). A specially developed low-
resolution high-speed vision system working at 1000 frames per second is used to
determine the position of the object. This specially designed vision system has a
limited range of view and uses only binary image information which is equal to a
black/white image. The algorithm designed for the tracking of the object relies
on the high frame rate of the visual information (1000 frames per second) and
the resulting small movement of the object between two captured frames. Usage
of the so-called ”self windowing” algorithm is possible in combination with a
tracking algorithm for the sensor system that keeps the object under investiga-
tion in the center of the image. This algorithm is not comparable to other object
tracking algorithms in machine vision, because it was purposely built for this
application [13]. Results achieved (in order of publication date) are: catching
of a foam ball [18], catching of a foam cylinder [18], dribbling a ball on a flat
surface [20] and dynamic regrasping [21] on a small range. More recent research
has focused on knotting and object handling in hand. Common attributes of
these topics are the small range the object moves before it is caught and the
high-speed position detection. These two restrictions allow catching based on
the actual measured position of the object, omitting the need of an interception-
time, position and orientation prediction system.

Approaches for throwing and catching including trajectory estimation and
trajectory prediction were already done in 1995 by Hong and Slotine at the
Massachusetts Institute of Technology [22]. Using two cameras they were able to
successfully complete ”trajectory matching” of a thrown ball in 70 to 80 % of all
throws. The trajectory fitted to the measured positions was a simple parabolic
function. In 1997 Hove and Slotine were able to show the realization of the
whole system based on a set of more advanced cameras [23]. At that time the
rate of successfully caught balls, thrown to the robot’s workspace from random
positions, was about 75 % as well. The slow closure of the catching device as
well as the small allowed timing error were the main challenges they had to face.

Another approach done by Frese and colleagues of the Institute of Robotics
and Mechatronics at the German Aerospace Center in 2001 used an extended
Kalman filter for trajectory prediction while the position acquisition was based
on a stereo vision camera system. The prediction accuracy was better than 100
mm even for the early flight phase [24]. Further research at the same institution



140 M. Pongratz, K. Pollhammer, and A. Szep

from Bäuml et al. [14] presents three different catching strategies ”soft”, ”latest”
and ”cool” that attribute the movement of the robotic arm. The setup is based
on a DLR LWR 3 arm (prototype series, predecessor of the KUKA LWR 4 arm)
and the same visual tracking and Extended Kalman filter based prediction as in
2001. Tracking is processed on a quad-core processor while the catching strategy
related calculations are done on a 32-core cluster. The catch success rate is higher
than 80 %. Common for the strategies is the attribute that the ball is caught
in a ”hard” way which means that the arm is not moving along the trajectory
of the ball during catching. This results in mayor forces or torques on the arm
and the caught object during catching. More recent work deals with the usage
of a rolling humanoid robot, outfitted with two arms, for ball catching and the
preparation of coffee. A catch rate of 80 % is achieved for the robot system as
well, considering balls within the catch space of the robot [15].

3 Planned Research Topics

Based on the robotic hardware of the KOROS work group the transport-by-
throwing approach will be developed further. The findings in previous research
at the Vienna University of Technology based on a coil-based throwing device,
a tennis ball and an impact position detection system [9] will be used as the
startingpoint. Four research topics will be outlined in the next subsections.

3.1 Throwing and Catching of Point-Symmetrical Objects

The first scenario is the realization of previous established algorithms [9] with
robotic arms, enabling the transportation of a tennis ball between two robotic
arms based on throwing and catching. For throwing an arm outfitted with a cup
will be used while the catching device will be another robotic arm outfitted with a
baseball glove. Initially the ”hard” ball catching will be used but the progression
towards ”soft” catching is planned. Here ”hard” catching is defined as catching
without specific movement of the robotic arm along the object’s trajectory while
”soft” catching is defined as catching with matched trajectories of object and
robotic arm, resulting in smaller forces on the objects and the robotic arm. Due
to the relatively high velocity of the ball (concerning the maximum velocity of the
end-effector of the KUKA LWR 4 arm) optimal usage of the robot’s kinematic
is planned. While related work [14] is based on a vertical axis of the first joint,
rotation of this axis into a horizontal position will enable faster movements of
the end-effector along the ball’s trajectory.

3.2 Practical Experiments on Object’s Flight Properties

Abasic step in application of the transport-by-throwing approach to industrial ap-
plications is the identification of suitable objects for throwing and catching. The
flight properties of the objects are a main criteria, besides the mechanical proper-
ties, influencing the flight trajectory. Based on a simulation and practical experi-
ments the impact of size, mass and shape of the object on the flight properties will



KOROS: Throwing and Catching for Material Transportation 141

be examined. Keeping two of the three factors constant while varying the remain-
ing will establish information to identify suitable objects on a broader range.

3.3 Evaluation of Throwing Strategies

The high number of degrees of freedom (7 DoFs) of the KUKA LWR 4 arm allows
to accelerate an object to the same launching velocity on different trajectories.
These different trajectories result in different rotational velocities of the object in
the throwing instant and thus also influence the stability of the object’s orienta-
tion during the flight. In interaction with the experiments on the object’s flight
properties also the optimized acceleration trajectory for an object will be exam-
ined. Based on a set of practical experiments the goal is again to derive general
rules for the acceleration trajectory to enable a stable flight of the object.

3.4 Experience Based Trajectory Prediction

Most in 2 presented approaches predict the object’s motion based on physical
models or based on a Kalman filters. The goal for the experience based trajectory
prediction is to predict the object’s motion based on a set of reference throws.
Currently two strategies for processing the position information are planned: one
using a quasi-continuous spatial information, the other based on quantized spatial
information. In the second case the object’s movement will be mapped from the
continuous spatial space into a quantized spatial space, reducing the numbers of
ingestible positions for the object. This step is comparable to the digitalization
of audio data on a compact disk. While the quantization introduces an additional
error, the effect of this error will be minimized through the alignment of the quan-
tization intervals to the position detection system’s accuracy. Figure 2 shows a ex-
ample of objects positions in continuous spatial space and quantized spatial space
(size of cuboids or quantization intervals: qx = 30mm, qy = 30mm, qz = 50mm).
Based on the reduced number of ingestible positions the information about the
trajectories will be stored as experience. This experience will be used to find sim-
ilar throws to previously experienced throws and predict the current trajectory

Fig. 2. Visualization of positions in continuous spatial diagram (left side, circles) and
quantized spatial space (right diagram, cuboids)



142 M. Pongratz, K. Pollhammer, and A. Szep

on this basis. Advantages and disadvantages of both methods will be evaluated in
terms of computation expense and prediction accuracy.

4 Conclusion

The infrastructure of the KOROS work group at the Vienna University of Tech-
nology is an excellent basement for further research of the transport-by-throwing
approach. Several scenarios were outlined in this overview and it is hoped that
the KOROS initiative will help to revolutionize the material-transport for small-
scale items.

Acknowledgments. The would like to thank the Vienna Science and Tech-
nology Fund and the Vienna University of Technology for their support that
permitted the acquisition of the KOROS infrastructure.

References

1. BVL Bundesvereinigung Logistik, Trends und Strategien in der Logistik - Ein Blick
auf die Agenda des Managements 2010, Deutscher Verkehrs-Verlag GmbH, Bremen
(2005) ISBN 3-87154-331-4

2. Quest Trend Magzin Online, http://www.quest-trendmagazin.de/
Einsatz-von-Robotern-steigt-20.174.0.html?&L=0 (last visit August 23, 2011)

3. Frank, H., Wellerdick-Wojtasik, N., Hagebeuker, B., Novak, G., Mahlknecht, S.:
Throwing Objects – A bio-inspired Approach for the Transportation of Parts. In:
IEEE International Conference on Robotics and Biomimetics, ROBIO 2006, De-
cember 17-20, pp. 91–96 (2006)

4. Günthner, W., Heinecker, M.: Modulare Materialflusssysteme für wandelbare Fab-
rikstrukturen - Bewertungs- und Gestaltungsrichtlinien für wandelbare Materi-
alflusssysteme, Internetplattform Logistics.de, Erscheinungsdatum, May 19 (2006)

5. Frank, H., Barteit, D., Meyer, M., Mittnacht, A., Novak, G., Mahlknech, S.: Opti-
mized Control Methods for Capturing Flying Objects with a Cartesian Robot. In:
Proceedings on 3rd IEEE International Conference on Robotics, Automation and
Mechatronics, Chengdu, China, September 22 - 24 (2008)

6. Barteit, D., Frank, H., Kupzog, F.: Accurate prediction of interception positions for
catching thrown objects in production systems. In: Proceedings on 6th IEEE Inter-
national Conference on Industrial Informatics, Daejeon, Korea, July 13 - 16 (2008)

7. Frank, H., Mittnacht, A., Scheiermann, J.: Throwing of Cylinder Shaped Objects.
In: Proceedings on 2009 IEEE/ASME International Conference on Advanced In-
telligent Mechatronics (AIM 2009), Singapore, July 14-17, pp. 59–64 (2009)

8. Barteit, D., Frank, H., Pongratz, M., Kupzog, F.: Measuring the Intersection of a
Thrown Object with a Vertical Plane. Paper is accepted for 7 th IEEE Interna-
tional Conference on Industrial Informatics (INDIN 2009), Cardiff, UK, June 24
-26 (2009)

9. Pongratz, M., Kupzog, F., Frank, H., Barteit, D.: Transport by Throwing - A
bio-inspired Approach. In: Proceedings on 8th IEEE International Conference on
Industrial Informatics, Osaka, Japan, July 13 - 16, pp. 685–689 (2010)

http://www.quest-trendmagazin.de/Einsatz-von-Robotern-steigt-20.174.0.html?&L=0
http://www.quest-trendmagazin.de/Einsatz-von-Robotern-steigt-20.174.0.html?&L=0


KOROS: Throwing and Catching for Material Transportation 143

10. Animation - Der schräge/schiefe Wurf ohne und mit Luftwiderstand/dynamischem
Auftrieb/Magnus-Effekt,
http://www.tutz.ws/JS/Simulation-Schraeger-Wurf-F_L-F_A-F_M.html (last
visit August 25, 2011)

11. Frank, H., Mittnacht, A., Scheiermann, J.: “Throwing of cylinder-shaped objects.
In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
AIM 2009, July 14-17, pp. 59–64 (2009)

12. Mulling, K., Kober, J., Peters, J.: A biomimetic approach to robot table tennis.
In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), October 18-22, pp. 1921–1926 (2010)

13. Ishii, I., Nakabo, Y., Ishikawa,M.: Target tracking algorithm for 1ms visual feedback
system using massively parallel processing. In: Proceedings of IEEE International
Conference on Robotics and Automation, April 22-28, vol. 3, pp. 2309–2314 (1996)

14. Bäuml, B., Wimböck, T., Hirzinger, G.: Kinematically Optimal Catching a Flying
Ball with a Hand-Arm-System (2010)

15. Bäuml, B., Schmidt, F., Wimböck, T., Birbach, O., Dietrich, A., Fuchs, M., Friedl,
W., Frese, U., Borst, C., Grebenstein, M., Eiberger, O., Hirzinger, G.: Catching
Flying Balls and Preparing Coffee: Humanoid Rollin’Justin Performs Dynamic and
Sensitive tasks (2011)

16. Namiki, A., Nakabo, Y., Ishii, I., Ishikawa, M.: High speed grasping using visual
and force feedback. In: Proceedings of IEEE International Conference on Robotics
and Automation, vol. 4, pp. 3195–3200 (1999)

17. Namiki, A., Ishikawa, M.: Robotic catching using a direct mapping from visual
information to motor command. In: Proceedings of IEEE International Conference
on Robotics and Automation, ICRA 2003, September 14-19, vol. 2, pp. 2400–2405
(2003)

18. Namiki, A., Imai, Y., Ishikawa, M., Kaneko, M.: Development of a high-speed multi-
fingered hand system and its application to catching. In: Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003), October
27-31, vol. 3, pp. 2666–2671 (2003)

19. Imai, Y., Namiki, A., Hashimoto, K., Ishikawa, M.: Dynamic active catching using
a high-speed multifingered hand and a high-speed vision system. In: Proceedings
of IEEE International Conference on Robotics and Automation, ICRA 2004, April
26-May 1, vol. 2, pp. 1849–1854 (2004)

20. Shiokata, D., Namiki, A., Ishikawa, M.: Robot dribbling using a high-speed mul-
tifingered hand and a high-speed vision system. In: Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2005), August
2-6, pp. 2097–2102 (2005)

21. Furukawa, N., Namiki, A., Taku, S., Ishikawa, M.: Dynamic regrasping using a
high-speed multifingered hand and a high-speed vision system. In: Proceedings of
2006 IEEE International Conference on Robotics and Automation, ICRA 2006,
May 15-19, pp. 181–187 (2006)

22. Hong, W., Slotine, J.-J.E.: Experiments in Hand-Eye Coordination Using Active
Vision. In: Khatib, O., Salisbury, J.K. (eds.) Experimental Robotics IV. LNCIS,
vol. 223, pp. 130–139. Springer, Heidelberg (1995)

23. Hove, B., Slotine, J.-J.E.: Experiments in Robotic Catching. In: American Control
Conference, June 26-28, pp. 380–386 (1991)

24. Frese, U., Bauml, B., Haidacher, S., Schreiber, G., Schaefer, I., Hahnle, M.,
Hirzinger, G.: Off-the-shelf vision for a robotic ball catcher. In: Proceedings of 2001
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp.
1623–1629 (2001)

http://www.tutz.ws/JS/Simulation-Schraeger-Wurf-F_L-F_A-F_M.html


 

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336 , pp. 144–149, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Cognitive Decision Unit Applied to Autonomous Robots 

Dietmar Bruckner and Friedrich Gelbard 

Institute of Computer Technology, Vienna University of Technology, 
Gusshausstrasse 27/384, 1040 Vienna, Austria, Europe 
{bruckner,gelbard}@ict.tuwien.ac.at 

Abstract. A novel approach to equip robots with human-like capabilities is to 
use meta-psychology – the theoretic foundation of psychoanalysis. We used 
meta-psychology as archetype for a decision making framework to control a 
robot. This has been achieved recently in theory and in simulation. However, 
when moving to a real robotic platform, additional things have to be considered. 
In this article we show how to fill the gap between sensing, environmental 
interaction, and decision making by grounding these topics with an agent's 
internal needs using the concepts of meta-psychology. The use of the common 
humanoid robot platform NAO compelled us to deal with complex situations 
and disturbed sensor readings. An implemented visual marker detecting system 
helps to detect objects in the surrounding environment, representing energy 
sources. We show how it is possible to use the psychoanalytically inspired 
framework ARS to control a real world application, the robot NAO. 

Keywords: Cognitive Automation, Robotic Control Unit, Simulation, Sensor 
Data Interpretation. 

1 Introduction 

As of today, artificial intelligence algorithms like vacuum cleaning robots or chess 
playing computers [1] fulfill highly specialized tasks. A more complex approach to 
artificial intelligence is represented by a new research community called Artificial 
General Intelligence (AGI). 

The Artificial Recognition System (ARS) project develops such an architecture. 
Ten years ago, when this project started, the motivational question was how to extract 
meaning from data provided by hundreds of thousands of sensor nodes each second 
[2]. A possibility to solve this problem is to model mechanisms of the human mind. A 
novel concept is to use the theoretical background of psychoanalysis as foundation 
[3]. The resulting model is described in depth in [4-6] and a brief overview is given in 
Section 3. 

The first application used to evaluate the model was a kitchen equipped with 
various types of sensors [7]. In the course of the project, focus shifted to a simulated 
world of artificial life [8]. A first attempt to use the psychoanalytically inspired 
control system to control a robot is mentioned in [9]. The used robot was Tinyphoon 
[10]: a small, two-wheeled, cube shaped soccer robot equipped with various sensors. 



 Cognitive Decision Unit Applied to Autonomous Robots 145 

 

This approach was limited, as a rich control system was applied to a robot with only 
two wheels as actuators. This violated the demand of ecological balance formulated in 
the design principles for embodied agents [11]. 

 

 

Fig. 1. NAO Robot 

In contrast, humanoid robots. offer a wide range of actuators and sensors together 
with more interesting body features like motor temperature, joint sensors, and power 
supply. This article aims at presenting the application of a psychoanalytically inspired 
decision unit to such a robot. The chosen platform is NAO – a standard robot platform 
(see Fig. 1). 

The full report of this work has been published earlier [12]. 

2 State of the Art 

2.1 Mobile Platforms 

Commonly used mobile platforms for research purposes are the wheel driven pioneer 
robots. They are produced by Mobile Robots and can be shipped in different 
configurations due to their modular design. The basic configuration of pioneer robots 
is a mobile platform without sensors and actuators. Recent developments in RoboCup 
show practical applications of pioneer robots and demonstrate their capabilities. 

Another mobile platform architecture is PR2. PR2 is manufactured by Willow 
Garage. PR2 has two arms and wheel drive and is able to grasp and transport objects 
[13]. The disadvantage of PR2 is its high price. 

For both platforms, pioneer robots as well as PR2, the open-source meta-operating 
system ROS [14] can be used. ROS offers a standardized API to control mobile 
platforms. 

But for the current work we used NAO (Fig. 1). NAO offers human-like arms and 
legs and provides a thoroughly documented API. 



146 D. Bruckner and F. Gelbard 

 

2.2 Control Architectures 

Widely used control architectures for autonomous robots are the subsumption 
architecture [15] and the belief-desire-intention (BDI) architecture [16]. The 
subsumption architecture is able to fulfill simple tasks like following a line or 
collecting certain things. For more difficult tasks the subsumption architecture is 
rarely used. 

In contrast to the subsumption architecture, BDI architecture can easily be adapted 
to altered tasks. For a different task, only the database of the BDI architecture needs 
to be changed; the program code remains the same. The disadvantage of BDI is the 
lack of planning and learning abilities. 

More specific control architectures are cognitive architectures like SOAR [17] and 
ACT-R [18]. These control architectures model human cognition. Common 
characteristics of cognitive architectures are specific memory structures and 
categorization of knowledge. Often, ontologies are used and an inference engine 
based on rules and facts is implemented. 

In contrast to artificial intelligence (AI) which is focused on specific simple tasks, 
artificial general intelligence (AGI) intends to solve complex problems similar to 
human’s intelligence. AGI tries to reconstruct human thinking processes and tries to 
develop models of the human mind. 

One important AGI project is LIDA [19]. LIDA processes perceptions in cognitive 
cycles. One cognitive cycle is subdivided in understanding phase, consciousness 
phase, and action selection phase. 

A second project is OpenCog [20]. Specific memory structures and cognitive 
processes are the characteristics of OpenCog. Applications are virtual pets and child 
learning simulations. 

3 Model 

The aim of the ARS-project is to implement psychoanalytic notions in artificial 
general intelligence and to demonstrate the feasibility in a simulation model. One 
important aspect of ARS is the clear interface which connects ARS to its 
environment. Incoming data are perceptions from the environment, bodily drives, and 
homeostatic sensor data. Outgoing data are the actuator control commands. Fig. 2 
shows the basic concept of ARS with its interfaces. 

In Fig. 2 Id represents the perceptions, bodily drives, and homeostatic sensor data. 
On the other hand, Super-Ego represents social rules like: “Share your food with 
others.” or “Be polite and not aggressive.” 

If the demands of Id are conflicting with social rules and reality, Ego needs to 
interfere and mediate between Super-Ego and Id. Ego uses the defense mechanisms to 
allow conflict free drives and perceptions. 

The interface between ARS and the body is called brain-socket. The brain-socket 
makes the ARS software independent from an agent platform which hosts the ARS 
decision unit. Different agent platforms can be attached to the ARS decision unit. 



 Cognitive Decision Unit Applied to Autonomous Robots 147 

 

In the following the psychoanalytic ARS framework is used to be hosted by the 
NAO-robot-platform. 

 

 

Fig. 2. Psychoanalytically inspired architecture 

4 Implementation 

The ARS project [4] implements psychoanalytic notions in artificial intelligence. In 
order to demonstrate the functionalities of ARS a multi-agent simulation environment 
was developed. This virtual world is called ARSini World. An agent is set into a 
virtual environment where the agent must process different tasks like finding 
nutrition, avoiding obstacles, and excrete. 

The difficulty for the agent are conflicting situations where the satisfaction of 
bodily needs of the agent is impeded by enemy agents or dangerous situations. The 
task for the agent is to resolve these situations by using psychoanalytic tools and/or 
psychoanalytic defense mechanisms. 

The final step is to transfer and couple the ARS decision unit to a NAO robot. This 
way, theoretical findings from the virtual simulation environment can be proved by 
using NAO in a real world application. This final step of coupling the ARS decision 
unit to NAO robot is further described in the current article in the next section. 

5 Results 

The aim of this article is to demonstrate the implementation of the psychoanalytic 
ARS control unit in the humanoid robot NAO. This way, theoretical findings of 
applying psychoanalysis in artificial intelligence can be demonstrated in a real world 
application. 

To couple the ARS decision unit and NAO robot the brain-socket interface was 
developed and adapted to fit NAOs sensor- and actuator interface. The Webots 
simulation environment [21] helps adapting ARS interfaces to fit the NAOqi API. 



148 D. Bruckner and F. Gelbard 

 

Webots is used to test functionalities of NAOs interface before actually building ARS 
into NAO. NAOqi simulates the exact functionalities of NAOs actuators and sensors. 
Functionalities which work with NAOqi can be applied one to one to the real NAO 
robot. That, we can approve. 

The following scenario is set up in the ARSini World to test the functionalities of 
the decision unit: The agent’s task is to find and consume energy sources like cake or 
plant. Therefore, the agent can develop action plans with help of the decision unit. To 
form action plans the backward chaining approach [4, p. 99] is used. Action plans are 
generated by using a pre-defined rule. The action plans yield motory commands 
which control the actuators of the agent. 

The same scenario as in ARSini World is now implemented in the Webots 
simulation environment to test the deployment with NAO. For NAO we needed to 
adapt the agent’s perception capabilities and perception algorithms. NAO’s 
perception engine is able to distinguish between different marker objects by size and 
shape. So we mapped the objects from ARSini World like cake and plant to marker 
objects for NAO’s perception engine. 

Fig. 3 shows these marker objects. We mapped the stone from the ARSini World to 
the TU-Wien symbol, the energy sources from ARSini World are represented by the 
number symbols 1 through 4, and ARSini World agents are mapped by using the 
number symbols 5 through 9. 

By mapping the ARSini World symbols to NAO’s marker symbols we were able to 
keep the architecture of ARS which compares perceived symbols with templates in a 
knowledge base. 

Additionally to perception, we implemented three action commands for NAO’s 
actuators: move forward, turn, and consume. 

 

 

Fig. 3. Interpretation of marker symbols 

6 Conclusion 

This article reports the first ever implementation of a psychoanalytically inspired 
decision unit as control system for a biped humanoid robot. Previously, the developed 
architecture was evaluated using an artificial life simulation only. While this was a 
necessary intermediate step, we showed how to adapt the model and its database to an 
embodied real world agent, the NAO robot. The experiments show that the resulting 
behavior is comparable to the one observed in the simulation. Thus, the model is 
robust regarding calculation time differences (deliberation takes zero time in the 



 Cognitive Decision Unit Applied to Autonomous Robots 149 

 

simulation) and different locomotion types. In the simulator a two wheeled simple 
locomotion is used, which is much simpler than the biped holonic drive of the robot. 

References 

1. Hsu, F.-H.: Behind Deep Blue: Building the Computer that Defeated the World Chess 
Champion. Princeton University Press (2002) 

2. Dietrich, D.: Evolution potentials for fieldbus systems. In: Proceedings of WFCS, pp. 145–
146 (2000) ( invited Talk) 

3. Brainin, E., Dietrich, D., Kastner, W., Palensky, P., Rösener, C.: Neuro-bionic architecture 
of automation systems: Obstacles and challenges. In: Proceedings of 2004 IEEE 
AFRICON, vol. 2, pp. 1219–1222 (2004) 

4. Zeilinger, H.: Bionically inspired information representation for embodied software agents. 
Ph.D. dissertation, Vienna University of Technology (2010) 

5. Lang, R.: A decision unit for autonomous agents based on the theory of psychoanalysis. 
Ph.D. dissertation, Vienna University of Technology (2010) 

6. Dietrich, D., Fodor, G., Zucker, G., Bruckner, D.: Simulating the Mind - A Technical 
Neuropsychoanalytical Approach. Springer, Wien (2009) 

7. Soucek, C., Russ, G., Fuertes, C.T.: The smart kitchen project - an application on fieldbus 
technology to domotics. In: Proceedings of IWNA, p. 1 (2000) 

8. Deutsch, T., Zeilinger, H., Lang, R.: Simulation results for the ars-pa model. In: Proc. 5th 
IEEE INDIN, June 23–27, vol. 2, pp. 995–1000 (2007) 

9. Deutsch, T., Lang, R., Pratl, G., Brainin, E., Teicher, S.: Applying psychoanalytic and 
neuro-scientific models to automation. In: Proc. 2nd IET IE, vol. 1, pp. 111–118 (2006) 

10. Novak, G., Mahlknecht, S.: Tinyphoon - a tiny autnomous agent. In: IEEE ISIE 2005, 
vol. 4, pp. 1533–1538 (2005) 

11. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press (1999) 
12. Deutsch, T., Muchitsch, C., Zeilinger, H., Bader, M., Vincze, M., Lang, R.: Cognitive 

Decision Unit Applied to Autonomous Biped Robot NAO. In: IEEE INDIN (2011) 
13. Contact-Reactive Grasping of Objects with Partial Shape Information, 10 (2010) 
14. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: 

Ros: an open-source robot operating system. In: ICRA Open Source Software (2009) 
15. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robotics and 

Automation, 14–23 (1986) 
16. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press (1987) 
17. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence. 

Artificial Intelligence 33, 1–64 (1987) 
18. Anderson, J.R., Lebiere, C.: The Atomic Components of Thought. Lawrence Erlbaum 

Associates (1998) 
19. Franklin, S., Patterson, F.G.: The LIDA architecture: Adding new modes of learning to an 

intelligent, autonomous, software agent. In: Proceedings of IDPT (2006) 
20. Goertzel, B.: Patterns, hypergraphs and embodied general intelligence. In: Proceedings of 

the IJCNN, pp. 451–458 (2006) 
21. Michel, O.: Cyberbotics ltd - webotstm: Professional mobile robot simulation. 

International Journal of Advanced Robotic Systems 1(1), 39–42 (2004) 



Building iRIS: A Robotic Immune System

Dietmar Schreiner

Vienna University of Technology
Institute of Computer Languages, Compilers and Languages Group

Vienna, Austria
schreiner@complang.tuwien.ac.at

Abstract. Progress in robotics has led to complex autonomous and even
collaborating robotic systems, fulfilling mission critical tasks in safety
critical environments. An increase in capabilities and thus complexity
consequently led to a dramatic increase in possible faults that might man-
ifest in errors. Even worse, by applying robots with emerging behavior
in non-deterministic real-world environments, faults may be introduced
from external sources. Consequently, fault testing has become increas-
ingly difficult. Both, software and hardware may fail or even break, and
hence may cause a mission failure, heavy damage, or even severe injuries
and loss of life. The ability of a robotic system to function in presence
of such faults, so to become fault tolerant, is a continuously growing
area of research. Our work meets this challenge by developing a mech-
anism for robotic systems that is capable of detecting defects, selecting
feasible counter measures, and hence keeping robots in a sane and and
consequently safe state. Inspired by biology, we conceptually aim at an
immune system for a robot (RIS), which is able to detect anomalies,
and which is able to autonomously counter them by appropriate means.
This position paper outlines the requirements and research scopes that
have been identified as relevant for the development of a robotic immune
system.

1 Introduction

Robustness and dependability are key factors for today’s as much as upcoming
embedded computer systems not only in safety and mission critical domains but
also in everyday life. Driven by progress and market the number of devices that
operate within the real world and hence may harm people and environment, like
autonomous vehicles, computer guided aircrafts, or reconnaissance and rescue
robots, is constantly growing. At the same time, the complexity of those devices
and applications–devices typically consist of a large number of networked proces-
sors, sensors and actuators–has reached a noticeable extent. Complicated tasks
have to be fulfilled within a nondeterministic environment under strict consid-
eration of safety guarantees, but also under harsh cost and energy constraints.
Features like long-term autonomy and system adaptability have become an ad-
ditional burden on robotic systems’ software. Traditional techniques in software
development that typically handle a precisely enumerated set of faults do not

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 150–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

schreiner@complang.tuwien.ac.at


Building iRIS: A Robotic Immune System 151

scale well with the aforementioned increasing system complexity and the real
world’s nondeterminism.

We think that a nature inspired approach similar to the concept of a biolog-
ical immune system could be able to provide a sound and robust solution for
this robotic issue. Assuming that there exists no complete enumeration of faults
that should be detected and handled over the lifespan of a system within an
indeterministic environment, classical error handling techniques quickly reach
their limits in terms of development cost and technical capability. An immune
systems can overcome the problem of unknown and unexpected faults by detect-
ing anything that is not a sane system state, and by utilizing adaptable rules
on how to (re)establish a sane system. This concept was developed by evolu-
tion over millions of years, and is a promising approach for robust autonomous
dependable systems within nondeterministic environments.

2 Scopes of Research for a RIS

To achieve the goal of nature inspired fault-tolerant self-healing software re-
search has to be conducted at the intersection of five major scopes like depicted
in Figure 1. Affordable devices that fulfill all necessary dependability constraints
like safety or robustness [1] can only be built by joining results from all denoted
domains: (i) Model Driven Development as a basis for code generation as much
as for system verification, (ii) Static Analysis as a methodology to derive sys-
tem properties from program codes as much as to guide compilation and code
generation tasks, (iii) Programming Languages to provide proper means of ab-
straction and semantically enriched specifications, (iv) Reflective Computing as
a methodology for run-time monitoring and supervision, and (v) Nature Inspired
Computing as promising way to handle the systems’ increasing complexity.

Fig. 1. Research Scopes

2.1 Model Driven Development

The complex nature of robotic applications—aspects like real time constraints
as much as issues of concurrency or resource consumption have to be considered
at the same time—introduces the need for a sound development methodology
that not only provides separation of concerns but also allows the incorporation



152 D. Schreiner

of domain specific knowledge typically held by the robots’ user rather than by
programmers.

In model driven development views on the system that is built, the models, are
specified at various levels of abstraction. These models are subject to so called
model transformations, processes that automatically generate new artifacts like
system configurations, new models, or even executable program code. Consider-
ing the requirements on robotic software engineering model driven development
is a well suited methodology: specific aspects of the system under development
are described in distinct views at proper levels of abstraction; domain specific
know-how can easily be formalized by non-programmers as yet another view
that can be transformed into technical views via automatic model transforma-
tions; system as much as application properties can be extracted from models
via model transformations.

Our ongoing research within the domain of model driven development deals
with automatic generation of synchronization artifacts for concurrent embed-
ded systems applications [2]. Expected outcome is a sound methodology for
automatic code injection and code generation for software sensors and reflective
components in order to get run-time monitoring support for complex embedded
systems as the backbone of an innate immune system.

2.2 Static Analysis

By examining executable code or even the executables’ source code, many vital
properties of a software system can be calculated before execution. These infor-
mation can be used to automatically refactor and optimize code, detect various
defects, or simply determine sane bounds for a program’s execution.

The work relevant for a robotic immune system mainly aims at analyses that
identify run-time properties before execution, like worst case loop-bounds, feasi-
ble paths, and WCET bounds, as a basis for an immune system’s innate knowl-
edge base, as much as at the identification of mount points for software sensors
(which will be used later on in model driven injection (see Section 2.1)).

2.3 Programming Languages

Programming languages are the computer systems’ interface for software de-
velopers. However, most programming languages used for embedded systems
today are well suited for process centric or even hardware related software de-
velopment, but do not meet upcoming requirements like distributed computing,
concurrency, or dependability constraints. Additionally, those languages require
a high expertise in programming and firm knowledge of the underlying hardware,
which typically excludes experts from the devices’ application domain from ap-
plication development.

Visual programming languages, but also visual modeling techniques–we do
consider a program’s source code to be a model of the program–are one way
to provide abstraction where necessary, and to lower the barrier for application
domain experts to create or at least modify their own application. Additionally,



Building iRIS: A Robotic Immune System 153

complex system constraints can be expressed in a comprehensible way, and can
furthermore be used by transformation and compilation techniques to generate
subsystems of an embedded immune system. The idea of graphical modeling
is well accepted, its application to the automotive domain is for example out-
lined in [3] where UML 2.0 profiles were used to graphically specify a system’s
communication requirements.

2.4 Reflective Computing

Reflective computing denotes techniques that provide self-inspection of running
systems. Although this idea is not new to computer science, it is part of the
research agenda for a RIS. Introspection is an inevitable feature for any immune
system, biological as much as artificial. Aiming at the automatic generation
of an artificial immune system for a robotic device, software sensors have to
be automatically deployed at compile time in order to disencumber application
developers.

Research in that domain will hence deal with questions on identifying the
proper locations for software sensors (this question goes hand in hand with
static analysis) as much as a robust and resource constrained embodiment of
those sensors.

2.5 Nature Inspired Computing

Nature has developed remarkable mechanisms for extremely complex tasks by
evolution over a very long time. Consequently, those concepts can provide the
solution to many open scientific but also engineering issues. However, the con-
cepts have to be understood and simplified, abstracted in terms of a computer
scientist, and adapted to specific needs.

The vision outlined in this paper is that of an artificial immune system for
autonomous robust embedded devices. This system is inspired by biological im-
mune systems, at least as far as they are understood today, and is custom tailored
to the upcoming technical domain of collaborating robotic systems.

3 iRIS: An Overview

In terms of computer science, a biological immune system is a robust, multi-
layered, distributed system that is able to identify numerous pathogens. Its main
responsibility is to counter act harmful effects to keep the organism in a sane
state. An artificial immune system is meant to do exactly the same for computers
and in our case robotic systems. Harmful effects can be detected and can be
overcome autonomously.

In [4] one bio-inspired algorithm, the negative selection algorithm, is de-
scribed, which is based on the detection of self from non-self. Dedicated immune
cell types like lymphocytes have receptors that allow them to bind to specific



154 D. Schreiner

proteins. During maturation these cells are ‘trained’ on proteins that are natu-
rally present in the organism, the self-antigenes. Lymphocytes which spuriously
bind to self-antigenes are destroyed immediately (apoptosis). After reaching ma-
turity, the trained cells are spread over the organism. If they bind to a protein
now, this is a clear indication of a non-self protein, a pathogen.

Sane

T

H

Insane

Fig. 2. Immune reaction to faulty component

iRIS (innate Robotic Immune System) is structured in accordance to a biolog-
ical immune system: Within the organism (the robot), distributed autonomous
light-weight processes, so called T-processes, constantly monitor the system’s
sanity via their receptors, e.g., software-sensors, execution monitors, or even
hardware sensors. Antigenes are sequential representations of specific states
within the robot, and may be defined and classified at development but also
dynamically at run-time. Detection of non-self antigenes is achieved in two ways:
(i) T-processes undergo a process of maturation, which means they are trained
to detect self-antigenes on a running system. (ii) T-processes utilize ‘genetic
knowledge’, represented by predefined rules and parameters. On detection of a
non-self antigene, T-processes activate H-processes, which are in charge of elim-
inating anomalies (e.g., by restarting malfunctioning components of a robot,
reinitializing affected structures, or recalibrating sensors).

Figure 2 depicts the conceptual idea behind an iRIS immune reaction: It shows
two components, Sane and Insane, both exposing their associated antigene. As
Insane is malfunctioning, the T-process T detects this non-self behavior and
notifies specialized H-processes. One H-process finally docs at Insane’s main-
tenance interface to counter-act the fault. In addition, our observations show
that typical faults within robotic systems require complex repair actions at dis-
tributed subsystems. For that reason, H-processes may emit messenger antigenes
to trigger additional repair activities at all affected subsystems.

Compared to existing work, iRIS covers aspects of autonomic computing like
summarized in [5]. It does reflective computation [6,7] at run-time in a bio-
inspired way, using knowledge extracted from static analyses and system models



Building iRIS: A Robotic Immune System 155

at development and compile time. A model driven development methodology as
much as static analyses come to use to extract the ‘genetic knowledge’ of iRIS.
In addition, iRIS incorporates dynamic means of machine learning, also inspired
by natural immune systems, to cope with unforeseen faults.

4 Conclusion

This paper has outlined the basic idea for an innate robotic immune system
(iRIS), which aims at robust dependable robots. In order to build such a sys-
tem research has to be conducted at least in five domains within computer sci-
ence: (i) Model Driven Development, (ii) Static Analysis, (iii) Programming
Languages, (iv) Reflective Computing, and (v) Nature Inspired Computing.
Merging results from these domains will enable the development of an innate
immune system capable of self/non-self discrimination, which denotes the base-
line for further adaptable systems.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (2004)

2. Schreiner, D., Puntigam, F.: Robots, Software, Mayhem? Towards a Design Method-
ology for Robotic Software Systems. In: Supplemental Volume of the Eight European
Dependable Computing Conference (EDCC 2010), pp. 31–32 (April 2010) ISBN:
978-84-692-9571-7

3. Schreiner, D., Göschka, K.M.: Modeling Component Based Embedded Systems Ap-
plications with Explicit Connectors in UML 2.0. In: Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC 2007), pp. 1494–1495. ACM Press, New
York (2007)

4. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy (1994)

5. Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the vision of autonomic
computing. Computer 43(1), 35–41 (2010)

6. Maes, P.: Concepts and experiments in computational reflection. In: OOPSLA, pp.
147–155 (1987)

7. Rodŕıguez, M., Fabre, J.-C., Arlat, J.: Wrapping Real-Time Systems from Tempo-
ral Logic Specifications. In: Bondavalli, A., Thévenod-Fosse, P. (eds.) EDCC 2002.
LNCS, vol. 2485, pp. 253–270. Springer, Heidelberg (2002)



R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 156–161, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Towards Reorientation with a Humanoid Robot 

Dietmar Bruckner1, Markus Vincze2, and Isabella Hinterleitner1 

1 Institute of Computer Technology, Vienna University of Technology, 
Gusshausstrasse 27/384, 1040 Vienna, Austria, Europe 

{bruckner,hinterleitner}@ict.tuwien.ac.at 
2 Automation and Control Institute, Vienna University of Technology, 

Gusshausstrasse 29/384, 1040 Vienna, Austria, Europe 
vincze@acin.tuwien.ac.at 

Abstract. Current cognitive vision systems and autonomous robots are not able 
to flexibly adapt to novel scenes. For example, when entering a new kitchen it 
is relatively simple for humans to adapt to the new situation. However, there 
exist no methods such that a robot holds a generic kitchen model that is then 
adapted to the new situation. We tackle this by developing a hierarchical 
ontology system linking process, object, and abstract world knowledge via 
connecting ontologies, all defined in a formal description language. 

The items and objects and their affordances in the object ontology are either 
learned from 3D models of the Web or from samples. We bind the features of 
the learned models to the concepts represented in the ontology. This enables us 
to actively search for objects to be expected to be seen in a kitchen scenario. 
The search for the objects will use the selection of cues appropriate to the 
relevant object. We plan to evaluate this model in three different kitchens with a 
mobile robot with an arm and further with Romeo, a humanoid robot designed 
by Aldebaran to operate in homes. 

Keywords: Cognitive Robotics, Situated Vision, Ontology, Reorientation. 

1 Introduction 

Our goal is to understand the necessary preconditions for perception and action in a 
context which is familiar in an abstract sense (e.g., tea making), yet not in a given 
concrete setting (a kitchen not seen before). Our vision is to give an explanation of 
this interplay between perception and vision and to provide a representation of these 
different types of knowledge, such as different ontologies [1] (encompassing task, 
process, affordance [2] and object knowledge) that are used at different stages. This 
abstract knowledge needs to be modeled such that it can be tethered [3] to actual 
objects and the affordances provided by a new situation. We see several major 
advantages of this approach: 

• Clean separation of top-down abstract knowledge and bottom-up concrete data. 
• Insights of what an abstract database needs to provide in order to guide visual 

input towards the task affordances and processes (the actual robot grasping and 
manipulation). 



 Towards Reorientation with a Humanoid Robot 157 

• A thorough understanding of what vision needs to provide to perceive these 
affordances given a specific task and robot embodiment, we refer to this as the 
situatedness of vision [4]. 

• The natural inclusion of attention-based vision to re-orientate in novel 
environments extending present artificial saliency maps to situated robots. 

• And, formal means to study how to flexibly adapt to novel settings given the 
genericness of the ontological knowledge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Robots to show the situated vision approach: James with 7DOF arm and hand prosthesis 
(top right) and Romeo by Aldebaran (140cm tall, right bottom) shaking hands with a boy (left) 

2 Motivation 

In his seminal work Michael Land investigated human eye movement when performing 
a tea-making task in a kitchen at their university [5]. The important aspect is that the 
subjects had not seen the kitchen before, but before recording the sequence it took them 
about 30-40 seconds to re-orient in the new setting. During the recorded eye fixations 
while making tea all fixations are “relevant” to the task, clearly indicating that the 
human has built up a full mental representation of the kitchen setting. The fixations fall 
into four action types: locating (objects), directing (an object towards a new location), 
guiding (the interaction of one object with another), or checking (the state of a variable). 
The authors outline different levels of description, starting from a higher-level goal 
(“make the tea”) to single steps (such as “transport to sink”). 

It is striking that this work focuses on questions involved in the “execution” of the 
task and not the crucial re-orientation phase before the task can be executed so 
smoothly. We are, however, interested in the seconds before the test subject starts 
making the tea, i.e., the seconds that involve the “binding” of needed parts of the task 
to the concrete objects found in the current situation  [6]. 



158 D. Bruckner, M. Vincze, and I. Hinterleitner 

3 State of the Art 

3.1 Situated Vision 

AI’s notion of “situatedness” [7, 4] emphasizes the necessity to focus the operation of 
an agent enabling it to operate reliably in an uncertain, changing environment. The 
rationale is that domain knowledge scales the possibilities found in such a setting. 

Accomplishing tasks in an everyday setting, especially in a home environment, is a 
great challenge for robots and vision alike. The reason is the inherent uncertainty that 
is imposed by the lack of controlling the environmental conditions. Humanoids or 
rolling torsos can approach an immediate target but environments are fully modeled 
and objects need to be clearly colored or textured [8, 9]. The environment can be 
reconstructed from tracking features using a Manhattan assumption [10], however 
obtaining high level structure requires constraints such as given models [11] or 
recurrent items [12]. First work shows how to systematically search for objects using 
bottom up information in a room with tables and sofas [13], a few shelves with a 
humanoid robot [14], or learning views related to a bicycle [15]. The most cognitive 
approach learns and reasons about object to room relations [16], which is a first step 
towards reorienting in a new setting. 

3.2 Formalizing Task Knowledge 

Task planning is a key issue in robotics. [17] defines a task matrix and focuses on 
developing a set of complex behaviors using manually-devised connections between 
task programs. [18] studies industrial automation tasks and distributes tasks amongst 
agents, as robots in a flexible factory production have to solve industrial automation 
tasks. The complete ontology of how to achieve a task is split up in the sum of partial 
task descriptions in the agents. A theoretical approach for an ontology of robot tasks 
is presented in [19]. 

While psychology is debating the necessity and existence of explicitly accessible 
representations [20] we have to find ways to assign tasks to robots to make them 
interact with the environment. The robot has to check the environment for available 
resources. In our situated vision approach this is achieved via features or objects in 
the environment that have to be recognized in terms of affordances [2]. Gibson 
defines an affordance as follows: 
Affordances relate the utility of things, events, and places to the needs of animals and 
their actions in fulfilling them [...] Affordances themselves are perceived and, in fact, 
are the essence of what we perceive. 

3.3 Visual Attention 

The concept of visual attention is well investigated in human vision. Many 
psychological models of visual attention exist (cf. overviews in [21, 22]). Among the 
best known models are the Feature Integration Theory [23] and the Guided Search 
model [24]. All models have in common that several feature channels are processed in 



 Towards Reorientation with a Humanoid Robot 159 

parallel and fused to a single saliency map. This map highlights the most interesting 
regions in a scene and guides the focus of attention. There are controversies about 
which features guide the deployment of attention. Some cues however are undoubted 
to belong to these basic features: color, motion, orientation and size. Other studies 
also support depth cues, shape and curvature [25]. 

4 ENTER Approach 

We introduce a concept of four ontologies, hierarchically ranging from high level 
tasks to low level objects. Although the planned nested ontology has to fulfill a high 
level task, at the level of the task ontology only the object class is defined. 
In the first step a task is broken into subtasks (processes). Objects have to be 
identified to meet requirements of a process (affordances).  Thus, on the lower level 
of ontologies we have a basic object ontology and the affordance ontology. 
The fact that only the class is defined at task level makes the whole ontology very 
much light weighted and flexible. 

The robot evaluates the environment according to affordances of, e.g., water 
supply, making hot water, containers for tea bags and the like. To do so the robot has 
to identify the function of an object (where the term “object” also includes, e.g., flat 
surfaces that can be used to place a cup or saucer). Affordances are more than 
descriptions of objective functionality. Rather than describing the function of an 
object they describe what impact an object has on the entity that interacts with the 
object. Thus, it depends not only on the object, but also on the agent and on what the 
environment can offer. Depending on the shape and degrees of freedom of a robot 
hand an object may be lift-able or even carry-able or it may not be movable at all and 
thus considered as an obstacle. Depending on the size of the robot hand an object may 
be considered as graspable or not. Below object level an affordance-based ontology is 
constructed: it links objects to robot actions that could be performed to complete a 
task given the robot's capabilities. 

The task ontology is considered as a domain ontology and on the highest level it 
contains the processes required to fulfill a task including its context. 

Finally, the object ontology contains all objects that are needed for a task, such as 
cup, kettle, milk, fridge, tap, etc. The object ontology subsumes the objects’ 
affordances representing the semantic knowledge. 

The example in Fig.2 shows how the FillCup scenario can be fulfilled based on the 
model of hierarchical information processing. First, a camera gives information, 
whether the kettle and/or the cup are already on the table. Then, giving direct 
feedback during execution of the process, sensors, such as the contact sensors, detect, 
whether the robot is grasping the kettle correctly. Finally, the sensors observe, if the 
arm is manipulated in order to pour the water from the kettle in the cup. The example 
for the robot pouring the water works given the fact that the cup is already in the 
range of the machine. If this is not the case, the world knowledge will be consulted in 
order to search where a cup could be located. As is stated there, the robot would then 
start searching in cabinets for a cup. 



160 D. Bruckner, M. Vincze, and I. Hinterleitner 

 

Fig. 2. ENTER Ontologies for the concrete example of filling the tea cup with hot water from 
the kettle. On the right the different ontologies are listed while on the left the dependencies 
between instances of the ontologies are shown. 

The novelty is that this neuro-symbolic network model can be described by using 
rule systems, where each network node becomes a rule, representing the node inputs 
as premises and the node outputs as conclusions. This enables a high-level 
specification of neuro-symbolic networks and the use of the RuleML format for 
network interchange [26]. 

References 

1. Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intelligent 
Systems 21, 96–101 (2006) 

2. Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin, USA (1979) 
3. Sloman, A.: Getting meaning off the ground: Symbol-grounding vs symbol-tethering 

(March 2002), http://www.cs.bham.ac.uk/research/projects/cogaff/ 
talks/ (April 2009) 

4. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Boston (2001) 
5. Land, M., Mennie, N., Rusted, J.: The roles of vision and eye movements in the control of 

activities of daily living. Perception 28(11), 1311–1328 (1999) 
6. Tatler, B.W., Hayhoe, M., Land, M.F., Ballard, D.H.: Eye guidance in natural vision: 

Reinterpreting salience. Journal of Vision 11(5), 1–23 (2011) 
7. Clancy, W.J.: Situated Cognition. Cambridge University Press, Cambridge (1997) 
8. Gravot, F., Haneda, A., Okada, K., Inaba, M.: Cooking for humanoid robot, a task that 

needs symbolic and geometric reasoning. In: IEEE International Conference on Robotics 
and Automation, ICRA 2006, pp. 462–467 (May 2006) 



 Towards Reorientation with a Humanoid Robot 161 

9. Tenorth, M., Klank, U., Pangercic, D., Beetz, M.: Web-enabled robots. IEEE Robotics 
Automation Magazine 18(2), 58–68 (2011) 

10. Flint, A., Mei, C., Murray, D., Reid, I.: A Dynamic Programming Approach to 
Reconstructing Building Interiors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) 
ECCV 2010, Part V. LNCS, vol. 6315, pp. 394–407. Springer, Heidelberg (2010) 

11. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M.E., Beetz, M.: Functional object mapping 
of kitchen environments. In: IEEE/RSJ International Conference on Intelligent Robots and 
Systems, IROS 2008, pp. 3525–3532 (September 2008) 

12. Ruhnke, M., Steder, B., Grisetti, G., Burgard, W.: Unsupervised learning of compact 3d 
models based on the detection of recurrent structures. In: 2010 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), pp. 2137–2142 (October 2010) 

13. Meger, D., Forssn, P.-E., Lai, K., Helmer, S., McCann, S., Southey, T., Baumann, M., 
Little, J.J., Lowe, D.G.: Curious george: An attentive semantic robot. Robotics and 
Autonomous Systems 56(6), 503–511 (2008); from Sensors to Human Spatial Concepts 

14. Andreopoulos, A., Hasler, S., Wersing, H., Janssen, H., Tsotsos, J.K., Korner, E.: Active 
3d object localization using a humanoid robot. IEEE Trans. on Robotics 27(1), 47–64 
(2011) 

15. Meger, D., Gupta, A., Little, J.J.: Viewpoint detection models for sequential embodied 
object category recognition. In: 2010 IEEE International Conference on Robotics and 
Automation (ICRA), pp. 5055–5061 (May 2010) 

16. Wyatt, J.L., Aydemir, A., Brenner, M., Hanheide, M., Hawes, N., Jensfelt, P., Kristan, M., 
Kruijff, G.M., Lison, P., Pronobis, A., Sjöö, K., Vrecko, A., Zender, H., Zillich, M., 
Skocaj, D.: Self-understanding and self-extension: A systems and representational 
approach. IEEE Transactions on Autonomous Mental Development 2(4), 282–303 (2010) 

17. Drumwright, E.: The task matrix: An extensible framework for creating versatile 
humanoid robots. In: IEEE Intl. Conf. on Robotics and Automation, ICRA (2006) 

18. Feng, Q., Bratukhin, A., Treytl, A., Sauter, T.: A exible multi-agent system architecture for 
plant automation. In: 5th IEEE International Conference on Industrial Informatics, pp. 
1047–1052 (2007) 

19. Hidayat, S.S., Kim, B.K., Ohba, K.: Learning affordance for semantic robots using 
ontology approach. In: IEEE/RSJ International Conference on Intelligent Robots and 
Systems IROS, pp. 2630–2636 (2008) 

20. Haselager, P., de Groot, A., van Rappard, H.: Representationalism vs. 
antirepresentationalism: a debate for the sake of appearance. Philosophical Psychology 16, 
5–23 (2003) 

21. Bundesen, C., Habekost, T.: Attention. In: Lamberts, K., Goldstone, R. (eds.) Handbook of 
Cognition, Sage Publications, London (2005) 

22. Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their 
cognitive foundation: A survey. ACM Trans. Applied Perception 7(1), 1–46 (2010) 

23. Treisman, A.M., Gelade, G.: A feature integration theory of attention. Cognitive 
Psychology 12, 97–136 (1980) 

24. Wolfe, J.M.: Visual search. In: Pashler, H. (ed.) Attention, pp. 13–74. Psychology Press, 
Hove (1998) 

25. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and 
how do they do it? Nature Reviews Neuroscience 5, 1–7 (2004) 

26. Boley, H.: Posl: An integrated positional-slotted language for semantic web knowledge, 
ruleml draft (2004),  
http://www.ruleml.org/submission/ruleml-shortation.html 



Monitoring Anomalies in IT-Landscapes

Using Clustering Techniques
and Complex Event Processing�

Matthias Gander, Michael Felderer, Basel Katt, and Ruth Breu

Institute of Computer Science, University of Innsbruck, Austria
{matthias.gander,michael.felderer,basel.katt,ruth.breu}@uibk.ac.at

Abstract. Monitoring the behavior of IT-landscapes is the basis for
the detection of breaches of non-functional requirements like security.
Established methods, such as signature-based monitoring extract fea-
tures from data instances and compare them to features of the signature
database. However, signature-based monitoring techniques have an in-
trinsic limitation concerning unseen instances of aberrations (or attacks)
because new instances have features which are not yet recognized in the
signature database. Therefore, anomaly detection has been introduced
to automatically detect non-conforming patterns in data. Unfortunately,
it is often prohibitively hard to attain labeled training data to employ
supervised-learning based approaches. Hence, the application of non-
supervised techniques such as clustering became popular. In this paper,
we apply complex event processing rules and clustering techniques lever-
aging models of an IT-landscape considering workflows, services, and the
network infrastructure to detect abnormal behavior. The service and in-
frastructure layer both have events on their own. Sequences of service
events are well-defined, represent a workflow and are counter-checked
via complex event processing rules. These service events however trigger
infrastructure events, like database activity, and network traffic, which
are not modeled. These infrastructure events are then related to the ap-
propriate call traces and clustered among network profiles and database
profiles. Outlying service events, nodes, and workflows are detected based
on measured deviations to clusters. We present the main properties of
our clustering-based anomaly detection approach and relate it to other
techniques.

1 Introduction

In high security industries, especially in multi-user collaborative information sys-
tems (CIS), it is common to specify security requirements, in more or less formal
models. For CIS in the health-care domain for instance, the integrating the health-
care environment (IHE) standards committee1 provides requirement documents

� This work is supported by QE LaB - Living Models for Open Systems (FFG 822740),
COSEMA - funded by the Tiroler Zukunftsstiftung, and SECTISSIMO (P-20388)
FWF project.

1 http://www.ihe.net/, Accessed: July 20, 2012.

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 162–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 163

for authentication, authorization, and auditing. To make sure that these secu-
rity requirements are met correctly, different monitoring solutions have been es-
tablished, e.g. intrusion prevention/detection systems (IPS/IDS). The Common
Intrusion Detection Framework (CIDF), a working group founded by DARPA in
1998, and later changed to Intrusion Detection Working Group (IDWG) defined
a common architecture for IDS by using four functional components [1].

– E blocks, also called Event-boxes, are basically configured sensors that mon-
itor given target systems.

– D blocks, also called Database-boxes, store event data received by the E
blocks and allow further processing.

– A blocks, also called Analysis-boxes, are components that allow further anal-
ysis on data within D blocks.

– R blocks, also called Response-boxes, allow to react on alerts, e.g. stop exe-
cution of a compromised system.

Differences within the blocks imply a variety of detection systems [1]. If the
E blocks explicitly collect network traffic, and are, therefore, stationed within
routers/switches, we speak of network intrusion detection systems (NIDS). If,
on the other side, sensors are stationed within hosts to monitor, for instance,
log files or application behavior, we speak of host-based intrusion detection sys-
tems (HIDS). A very common technique for A blocks involves signature-based
methods. Features, extracted from event data in D blocks are compared to fea-
tures in attack signatures that are provided by experts. Other approaches, e.g.
anomaly detection, often make use of machine learning-based algorithms. Both
approaches, signature-based and anomaly-based, have strengths and weaknesses.

Signature-Based Approaches. If a signature-based approach finds an attack,
it is very probable that it is indeed a true-positive. Unfortunately signature-
based methods have the inherent limitation that they always have to consult the
signature database to match detected features with the information therein. If
a new attack is out, it is probable that the signature database does not contain
the latest attack pattern.

Anomaly-Based Approaches.Anomaly-based detection techniques compared
to signature-based approaches are known to detect previously unseen patterns,
i.e. determine if an entity (user, service, data flow etc.) is sufficiently different
from the average behavior. Anomaly-based techniques model “normal” behavior
of the system that needs protection, and generate an anomaly alert whenever the
deviation between features of newly registered events and normal features exceed
some threshold. We are interested in machine-learning based approaches, i.e. su-
pervised and unsupervised learning. Supervised machine-learning has some ma-
jor drawbacks, the first one being the dependency on labeled training instances,
which is not always easy to procure. And the second is that training instances
are susceptible to be trained by an attacker [1]. In this work we make use of
the assumption that the behavior of the network is mostly normal (η%) and the
abnormal behavior is just a tiny fraction of the overall behavior (1 − η%) [2].



164 M. Gander et al.

Therefore it becomes possible to apply unsupervised-machine learning to de-
tect this change in behavior. Unsupervised-learning can roughly be classified in,
nearest-neighbour, rule-mining, statistical, and clustering techniques. Each of
which have advantages and disadvantages, depending on how they are used, see
Chandola et al. [3]. For our purpose, grouping anomalous instances, clustering
seems best suited. The disadvantages of clustering, i.e. the complexity of clus-
tering algorithms, a possibly missclassification, can be mitigated by leveraging
optimized algorithms and assumptions [2].

Complex Event Processing (CEP). In a mid–to–upper size IT infrastructure
(e.g., in the health-care sector) it is very common that many service events are
generated in a short amount of time, almost isochronal. Composition of multiple
services necessitates patterns to determine the correct execution order of services.
This is the task of Complex Event Processing (CEP). Its purpose is to derive
a more meaningful, a more complex, event from those which are collected. An
example is a CEP system in a car which alerts the user of a flat tire. The
combination of pressure loss in some tire and possibly a short period during
which the pressure was lost could be the “simple” events from which the alert
was generated [4]. Much research has been invested in query languages to handle
the stream of events in query-based languages similar to SQL2, ESPER3, Oracle
CEP4, Coral85 and Aleri6.

Contribution and Structure

In this paper we present a general anomaly detection framework for a multi-
user CIS to support real-time outlier detection for insider threats based on the
analysis of event streams. We provide an IT-landscape metamodel as vocabulary
for solution architects to build the concrete landscape model, i.e. the workflows,
the services, and the nodes they rely on, which represents the CIS. Using the
information from the, thus, created model, the framework can provide stateful
monitoring of workflows as well as anomaly detection. In these landscape models
each workflow can be characterized as a sequence of CEP rules to describe dis-
tinct steps of a concrete workflow. Since the vocabulary provides means to attach
service instances to workflow events, they can be related. During execution of
the system, service events are mapped to infrastructure clustering-instances, that
represent normal and abnormal behavior of the network, database, and users,
respectively. Using the above mentioned CEP rules the system detects workflow
attacks, and through clustering of infrastructure events we are able to create
normality profiles, detect outliers and raise alerts accordingly. The contribution
of our framework will be threefold:

2 http://www.w3schools.com/sql/default.asp, Accessed: July 20, 2012.
3 http://esper.codehaus.org/, Accessed: July 20, 2012.
4 http://tinyurl.com/OracleCEP, Accessed: July 20, 2012.
5 http://tinyurl.com/Coral8CEP, Accessed: July 20, 2012.
6 http://tinyurl.com/AleriStreaming, Accessed: July 20, 2012.



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 165

1. A UML metamodel [5] to specify an IT-landscape for multi-user CIS which
includes the network infrastructure, service events and workflows. As we will
see, model information provides information to link events to their origin in
the model (traceability), but also allows the creation of monitoring rules
(CEP).

2. The detection of (a) workflow attacks via CEP rules by breaking down the
workflow into distinct events, and (b) anomalous user and network activity
by clustering event streams.

In Section 2 we present a case study, possible threats (threat model), assumption
and objectives. This is followed by Section 3 which presents the framework, com-
pliance detection. Section 4 and 5 discuss related and future work respectively.

2 Basic Context

In this section we discuss our motivating example, present our threat model,
and provide details about concepts, such as the layered approach we use, and
the events we are interested in.

2.1 Case Study

We elaborate our framework based on a running example taken from a workflow
in the health-care domain. In this scenario a doctor (document consumer), logged
in on a host, wants to retrieve a patient medical record (sensitive information)
from a document repository over an XACML [6] infrastructure. By this example
we discuss the behavior of a workflow, demonstrate possible attacks, and finally
show how the proposed framework diffuses them.

The workflow makes use of SOAP web services (HTTP). For the descrip-
tion we make use of the standard BPMN and workflow notions, i.e. actors and
tasks [7]. We distinguish among multiple actors in our example: The Identity
Provider, which identifies nodes and users, but also assigns roles. The Document
Consumer, which is the source of a patient document query, or document change
request, for instance a host requesting a patient medical record (PMR). The Doc-
ument Repository, which is the location of the patient data. Access control is
offered through an XACML architecture.

A document retrieval transaction, which involves polling a patient’s confi-
dential information consists of two tasks, namely authentication, and document
retrieval. Below we explain the tasks in the sample workflow from Figure 1:

– Provide Credentials : The document consumer (DC) forwards his credentials
to the identity provider.

– Authentication: The identity provider queries a database interface service to
validate the credentials and assigns a role to the user and answers with a
SAML 2.0 assertion containing an authorization statement.

– Retrieve Document Query: After the document consumer receives this ticket,
the actual retrieval can start. The consumer sends a retrieve document query
together with his ticket to the document repository.



166 M. Gander et al.

Fig. 1. An exemplary document retrieval workflow

– XACML Flow : The request is intercepted by the XACML infrastructure.
1. The policy enforcement point (PEP) attached to the document repository

calls the PIP to deduce attributes for the document that needs to be
retrieved.

2. The policy information point (PIP) returns the appropriate attributes.
3. The PEP forwards the query and resources to the PDP and awaits a

decision.
4. The policy decision point (PDP) acquires policies for the target from the

PAP.
5. The policy assertion point (PAP) returns the appropriate policies and

via rule combining algorithms derives a decision.
6. The PEP receives the decision and either (depending on the ruling of

the PDP) allows or rejects the access.
– Now either the rejection message (Rejection), due to unauthorized access,

or the document itself (Document Retrieval) is transmitted to the document
consumer, concluding the workflow.

It is possible to track the execution of such a workflow in granular fashion on the
service level, i.e. by tracking some/all service events (calls). Taking into account
that service events are related to infrastructure events, for instance, network
events (TCP, UDP) and database access events (CRUD) it becomes possible to
relate infrastructure traffic to service events.

2.2 Problem Statement and Assumptions

An attacker who wishes to gain confidential information is bound to steal cre-
dentials from an asset (doctor) or hacking into a node (host, router, . . . ) of the
network. For the intruder, it is often prudent to install backdoors, i.e. by patch-
ing or replacing code [8, 9], to (i) gain easy access without the need to re-exploit
a vulnerability and (ii) tweak the behavior of a system in ones favor. Attack



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 167

techniques are manifold [10, 11]. In our experience they manifest either in work-
flows, fiddling with the execution flow, or a layer beneath, tampering with the
infrastructure.

Workflow Threats. A serious way to deal damage to a company is to de-
liberately sabotage the service invocation sequence. For instance if an attacker
manages to bypass checks, i.e. for sufficient funds, in a shopping application.
In our case study a likely attack target is the XACML infrastructure. Assume
an attacker wishes to grant access for certain individuals to confidential data
by changing the internal behavior of the XACML architecture. More technically
speaking, assume, the PEP does not invoke the PDP in the access control flow
and allows selected individuals access to PMRs, although they are usually not
permitted. Another example is the communication between PDP and PIP. The
PDP is supposed to retrieve document attributes from the PIP to base its de-
cision making. What if the PDP does not? Services along the way of document
queries are also susceptible to attacks, for instance, replay-attacks or fake queries
(false tickets). Whatever the attack, it will manifest in missing events, wrong se-
quences of events, sometimes too many (replay attacks), along the execution of
the workflow.

Infrastructure Threats. Our objective lies in network-based attacks that
manifest as odd connection patterns meanwhile a service event takes place.

Example 1. In the following Table 1 we illustrate an anomaly that portraits
an access rights manipulation in the activity Retrieve Document Query. The
queries shown in Ev5,6 (from the document consumer with UIDx and requested
resource object, PMR12), result in Authorization Denied events emitted from the
PDP. Immediately after the second Authorization Denied event, the database is

Table 1. Access Rights Manipulation

E
v
en
t

L
ay
er

S
o
u
rc
e

D
es
t

A
p
p

Id
en
t

O
b
je
ct

T
im

e

T
y
p
e

Ev1 Service DC DR – UIDx PMR12 7.22 pm Query
Ev2 Service DC DR – UIDx PMR12 7.22 pm Retrieve
...

...
...

...
...

...
...

...
...

Ev3 Infrastructure DC – Postgres SQL UIDx PMR12 7.23 pm Read
Ev4 Infrastructure DC – Postgres SQL PDP PMR12 7.23 pm Read
Ev5 Service PDP PEP – UIDx PMR12 2.01 am AuthDenied
Ev6 Service PDP PEP – UIDx PMR12 2.02 am AuthDenied
Ev7 Infrastructure DC – Postgres SQL UIDx PMR12 2.02 am Update

accessed at the document repository for the same resource and more importantly
from the same user, shown in Ev7. Above all, as we will show, the time of the
query is very unusual for the user UIDx.



168 M. Gander et al.

Example 2. After the Document Retrieval from the DR has been sent to the
DC, the DC starts a TCP based communication to two hosts, C and D, in
the network. C is used for backup services, yet D, in this instance, represents
a malicious host that collects confidential data. A plethora of other potential
threats exist in this perspective, starting from web service attacks,7 possible
buffer overflows in “low-level” services like, FTP, and badly configured access
control, i.e. allowing SMB null sessions. Dealing with the latter attacks is beyond
the scope of this paper and partially covered by existing research [1, 12, 13].
Our concern is to detect anomalous communication that is triggered by service
calls and anomalous database activity in relation to service calls. Service calls
themselves may produce anomalies, e.g. service calls at unusual hour, service
calls from unusual nodes, but also a change in flow behavior of service calls (for
instance payload anomalies).

2.3 Course of Action and Objectives

In our framework we consider several layers of abstraction through the use of
an IT-landscape model. This allows us for instance to detect possible XACML
flow anomalies. The idea of splitting an enterprise model into multiple layers
is not new, we build on the ideas of Breu et al. [14, 15]. The top layer is the
workflow layer, that contains sequences of activities. These activities determine
the sequence of a workflow. The service layer consists of services in the network
that execute activities. The bottom layer is the infrastructure layer, in here,
nodes host services and represent the backbone of executing workflows.

Events we consider are extracted from the infrastructure and service layer.
Infrastructure events consist of network and database events. Network events
are UDP and TCP packets that are aggregated as communication flows among
two nodes. These flows have multiple characteristics, such as: source, destina-
tion, ports, time, among others. For database applications (especially in the
health-care domain) it is essential to know all the details of database access, i.e.
everything about create, read, update, and delete operations (CRUD). For this
purpose database events need to contain a user id, the object id being accessed,
the time, the type of the CRUD operation and the originating host. Workflow
events are omitted, we derive workflow information implicitly over service events.
Service events are calls from one service to another containing a type. In this
work we cover a set of standard types, authentication, authorization, query, re-
trieve, delete, update, create and forward.

3 Clustering-Based Anomaly Detection Framework

In this section we discuss our anomaly detection framework in detail. We show
how the model information in the IT-landscape model can be used to extract
valuable information to create CEP monitoring rules and how infrastructure
events can be related to service calls to attain network and database profiles of
service calls.
7 http://www.ws-attacks.org, Accessed: July 20, 2012.



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 169

3.1 IT-Landscape Metamodel

Domain-specific languages (DSL) are a common way to provide vocabulary for
experts to let them express their knowledge of the system via textual or graph-
ical models. Textual as well as graphical DSLs are not uncommon in enterprise
modelling, for instance [14–16]. These models can later be accessed for look-ups,
reasoning, and/or code generation.

In our case, the metamodel is a DSL that allows the creation of a model that
in turn allows harvesting information and monitoring rule-generation concerning
multi-user CIS, i.e. multi-tier network infrastructures, comprised of workflows,
services, and hosts. The model we created reuses concepts from Breu et al. [14,
15], for example the introduction of multiple conceptual layers. We follow an
event-driven process chain paradigm [17]. This has the benefit that services can
be represented via events and, thus, need not be modelled explicitly. A workflow
activity, therefore, is not modeled via services and their call-sequence but rather
as a series of events.

Our model contains three layers, Workflow, Service and Infrastructure. The
workflow layer contains three classes, these are WF Activity, Role, and Actor.
Workflow activities but also service events are connected via arcs (Arc) that
are of different types AND, OR, XOR, SEQ. SEQ denotes that if said arc lies
between two workflow activities A and B, then A is followed by B. AND, OR
and XOR are ternary arcs that relate events in a fashion known from boolean
operations. For instance A XOR B,C denotes that after A either B or C is
executed. Each activity is attached to a role. A role is a set of responsibilities
and obligations for a stakeholder. A set of actors is associated to roles which are
uniquely identifiable, via an Identifier. Services are not modeled directly, but
rather as ServiceEvent of various types (EventTypeEnum). Event emitters are
services, on top of network nodes. Hence, among other features provided by the
service event, i.e. variable ones like timestamps and session ids (to identify the
Actor), we assume a source and a destination pointing to the nodes that took
part in the event. This allows us to connect the service layer to the infrastructure
layer. Nodes can be of various type (NodeType), this makes it easier to map
events to their corresponding workflow activity during runtime.

Each one of the many association relations denotes the use of the element.
Identifier defines the set of identifiers, i.e. all elements are connected to it via
identifiedBy, such as nodes, service events, and actors are identified by it (via
UUID and a location). Workflow activities are executed via services, the execu-
tion order is in form of service events. The real elements doing the execution are
nodes from the infrastructure (runsOn).

Example 3. The workflow, from our running example (see Section 2.1) can
be modelled as instance of the IT-landscape model, consider Figure 3. The ac-
tivity is associated to five events, Ev1,...,5, which are emitted by nodes in the
infrastructure. These nodes are split into static ones, Authentication Service,
XACML-PEP, XACML-PDP, Database Service, and a variable one: Worksta-
tion. Some information may be static, i.e. non-mutable DNS names for Windows
Domain Controllers, but other information isn’t, e.g. changing IPs. Therefore the



170 M. Gander et al.

Fig. 2. The IT-Landscape Metamodel

model admits variable (“DynType = Variable”) nodes. This allows then to rep-
resent variable information, certain only at runtime, in the workflow models.
Thus, consiering the example, any node that is flagged as a Workstation may
partake in the authorization workflow.

3.2 Complex Event Processing

To monitor proper execution of workflows, e.g. to prevent attacks as discussed
in Section 2.2, proper rules are needed. Since we are in the comfortable position
of knowing how workflows should be executed (sequences), and who is responsi-
ble for certain actions we can automatically create CEP rules to monitor these
workflows in regard of security. We use the Esper Query Language (EQL)8 in
combination with the Esper CEP engine since it provides several “must have”
features, it is open source (GPL GNU Public License v2.0), has an active commu-
nity and has been shown to outperform competitors, e.g. Drools, ILOG JRules,
Amit, for several benchmarks [18].

Translation. During the modelling phase expected events, ServiceEvent (see
Figure 3), are created and associated to workflow activities. From these models
we extract query rules to configure the CEP engine as follows,

1. For each expected event E create an Esper rule.

8 http://esper.codehaus.org/, Accessed: July 20, 2012.



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 171

Fig. 3. Sample model for an access control activity in our running example

2. If an event En is a successor (SEQ) of another event En−1 then the rules
representing those events are conjoined by the EQL keyword “→”. To dis-
ambiguate the EQL keyword from the logical implication sign, we denote
it as −−→

seq
. The formula Ev0 −−→

seq
Ev1 is only satisfied if and only if Ev0 is

emmitted before Ev1.

3. If after event E follows either E0 or E1 (OR branch) then those events are
conjoined by the logical operator OR. Since there is no XOR operator we
break it down into a corresponding rule by only using AND, OR and NOT
operators.

Applying this method we can carry out basic workflow compliance detection
based on service events.

Example 4. The access control specification from Figure 3 would lead to a series
of rules for the CEP engine. As a reminder, the model is fulfilled if all events are
registered in the same sequence, containing the same meta-data (e.g., the same
source), and have not been replicated. Assume we have derived the rules R0,...,5

for each expected event. No alert is raised if the formula R0 −−→
seq

R1 −−→
seq

R2 −−→
seq

R3 −−→
seq

(R4 ∧ ¬R5) ∨ (¬R4 ∧ R5), which represents the trace of the workflow,



172 M. Gander et al.

is satisfied.9 To notice misbehavior in the workflow service events are fed to the
CEP engine. The CEP engine then compares entries of the event to the rules
and thereby inspects if said events correspond to the expected flow. This way,
replay attacks, an altered service invocation sequence, and missing events, are
prevented/detected (see Section 2.2).

3.3 Profiling via Clustering

Defining rules for network behavior (i.e. flow behavior) in a fine grained fashion
is tough since rules have to consider the complexity of packet-handling, e.g. flags
of TCP packets (which are system implementation specific) [19], or the state of
congestion in the network [20]. In this section we describe how we link infras-
tructure events to service calls to enable network and database access related
profiling. Figure 4 summarizes how the layers are related. Workflow activities are
linked to service call sequences. Then, infrastructure events are linked to service
calls. Said events are then clustered to attain the profiles.

Fig. 4. Overview of connecting the layers

Events Put into Relation. The objective is to sum up network and database
behavior for nodes during service calls, and by that determine anomalies. To do
this we first have to relate infrastructure events to service events. For that we
make use of the following heuristic:

i. Set time interval t = 10 seconds. Capture all events during interval t, let
the number of events captured during the time interval be cpt(t) = n. The
applied heuristic finds an interval t′ that captures at least half of all events
captured within t. Hence we identify arg min

t′∈[0,10]
cpt(t′) > n

2 . This heuristic

9 For the sake of brevity we substituted AND to “∧” and NEG to “¬”.



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 173

gives an interval that subsumes events that have, presumably, a high degree
of relatedness.

ii. Relate all network events from a node to the last service call from that same
node within t′.

iii. Relate all database CRUD events happening during t′, that involve the same
identifier that was present in the service call to it.

Related events provide the possibility to create profiles of a service call type, e.g.
a network profile and a database profile (consider Figure 5). As we will discuss in-
depth in the following sections we obtain profiles via clustering [21], which makes
use of the inherent structure of data. Data instances are grouped (clustered) by
common attributes and a similarity measure. The network profile of a service call
type, e.g. authentication, contains for example a clustering instance for each node
in the network. In contrast, the database profile contains a clustering instance
for each user instead of nodes and pinpoints rare user behavior in relation to a
service call type. The profile types, depicted in Figure 5, were chosen to address
the problem of inferring database and network behavior during workflows in
health-care domains.10

Network Communication and Database Features. Each network commu-
nication and database CRUD event needs to be compared to other instances to
determine their relatedness. Therefore we define several simple and aggregated

Fig. 5. Visualisation of the network and database profile based on clustering

10 In other domains other profile types have precedence over the ones we chose. In a
nuclear power plant for instance, an anomaly profile might be constituted of tem-
perature sensors, and position of nuclear power rods.



174 M. Gander et al.

features, some being continuous and others being scaled nominally. The collec-
tion of network features and database features form vectors that can be compared
through some distance measure. In the network profile the objective is to deter-
mine who is talking to whom and how the communication pattern for a service call
looks like. We model TCP/UDP communications based on Hernandez et al. [22].

A TCP/UDP connection can be represented as a flow sequence (f0, . . . , fn−1)
where n is the number of exchanges. Each fi is a flow triplet fi = (ai, bi, ti) that
describes the i-th communication flow (amount of data). ai, bi is the number of
bytes from an initiator node to the destination node and vice versa. The time
parameter ti represents the time from fi to fi+1. It does not make sense to
record the time in a more granular fashion, since it depends on the state of the
network, e.g. on the degree of congestion [20, 22]. For details on the extraction
methods of the flow sequence consider the solution provided in [22]. Moreover
our approach uses measurement data gathered with flowd.11

Each flow sequence of a connection represents a communication pattern. To-
gether with the two participating IPs and ports a sequence serves as base to
derive feature vectors that are used to compute the distance to other flows via
a distance or correlation measurement. The network feature vector consists of
the number of flows in the flow vector, the total number of bytes transmitted
(atot, btot), the maximum and minimum bytes (amin/max, bmin/max), the amount
of time ttot, the mean bytes (aμ, bμ) of the flow sequence, the sample standard
deviation (aσ, bσ), source IP, destination IP, source port, and destination port.

Database events don’t need to be preprocessed as network events since each
event is a self-contained action. Features that we extract contain a user id, the
object id being accessed, the type of the CRUD operation, the originating host,
and the time of the event.

Example 5. A snapshot of the beginning of an FTP communication between
node A and B (ports 5320, 21) produces the following sequence, ((100, 100, 0.2),
(1000, 10, 0.2), (22390, 100, 0.2)). From this sequence the following feature vector
x is created (3, 23490, 210, 0.6, 7830, 70, 12617, 51.96,IPA,IPB, 5320, 21) that now
serves as input for a distance measure.

Clustering and Distance Measurement. Vectors xi = (xi0, . . . , xin−1) need
to be compared to determine if there are similarities. To compare (measure
the distance) various metrics have been proposed [21–23]. For network feature
vectors we make use of the standard Euclidean metric, mainly because other
authors produced good results with such a measurement [2] in similar domains.

d2(xi,yi) =

(
n−1∑
k=0

(xik − yik)
2

) 1
2

(1)

Database feature vectors mostly consist of nominal values which disqualify the
use of d2. In order to cope with this situation we use a distance measure that is
used in symbolic data analysis, objective dissimilarity [24].

11 http://www.mindrot.org/projects/flowd/, Accessed: July 20, 2012.



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 175

dod(xi,yi) =

n−1∑
k=0

d′od(xik,yik), d′od(c, c
′) =

{
1 if c �= c′

0 else
(2)

Three issues in distance measuring need to be resolved, the first one being nor-
malization. Assume feature vectors {(2, 1222, 5), (5, 1020, 3)}, column two dis-
proportionally adds to the distance in d2. Therefore we normalize each entry in
the vectors according to the standard deviation of the vector. The second issue
are nominal features in network activity, i.e. source and destination, which can-
not be measured using d2. To cope with that we add weighted constants to the
distance between vectors (without the nominal features) where nominal features
vary. For instance, two TCP flow sequences (x,y) may have very similar flows
but if the ports and addresses differ, their distance will be affected. The third
issue is that objective dissimilarity is not accurate enough to handle continuous
values among nominal ones, i.e. the “time” feature in database events. To tackle
that, we group daytime seconds to 12 intervals, [0, 2]0, [2, 4]1, . . . ,

12 which leads
for instance to 3.24 a.m. being categorized to interval 1, and 5.44 p.m. to inter-
val 9. Finally the difference of the intervals from the database feature vectors is
added to the measured distance of dod, for instance |ti − tj |.

Clustering Algorithm and Training. The distance measurement we use al-
lows various clustering algorithms, e.g. agglomerative-hierarchical clustering to
produce dendrograms, prototype-based clustering, partial clustering, or graph-
based clustering [21]. We tried several algorithms and came to the conclusion that
a prototype-based clustering (i.e., center-based clustering) best fits to our needs.13

We employ fixed-width clustering, proposed by [2] that leverages single-linkage
clustering. The benefit of using single-linkage clustering in contrast to, e.g. k-
means, is a better runtime complexity (it computes clusters with just a single
passage through the data instances). Since our framework uses several clustering
instances and aggregated data is large it is essential that clustering and detec-
tion is fast. In fixed-width clustering [25], clusters have a maximal width, ω, and
a cluster center, centroid. Feature vectors outside, either create their own cluster
or are assigned to another cluster. Some clusters contain more, some contain less
data instances. The assumption that very few instances are real outsiders (η% of
data instances) tells us that small clusters, smaller then some threshold T , repre-
sent anomalous data points. This is captured by the following formula (3), where
#(C) is the number of data instances within cluster C.

#(C)∑
C′∈S

#(C′)
< T (3)

We leverage the distance notation from formulas 1 and 2 to d2(xi, C) and
dod(xi, C) respectively to denote the distance from some vector to a cluster

12 We abbreviate the intervals from [n ∗ 3600, (n+ 2) ∗ 3600] to [n, n+ 2], where 3600
seconds are one hour.

13 Further experiments will show if DBSCAN can be used to create a partial clustering
to reduce noise [21].



176 M. Gander et al.

(represented by its centroid). Formally, the algorithm consists of 3 steps, shown
in Figure 6.

1. The set of clusters S is initialized S = ∅.
2. From the training set a feature vector xi = (xi0, . . . ,xin−1) is retrieved.

IF S is still empty, xi will spawn a new cluster X and is added S ∪X.
xi will be the centroid of X.
ELSE The cluster C is identified with argmin

C∈S
(d2(xi, C))

IF d2(xi, C) ≤ ω, xi is added to C.
ELSE a new cluster is created S ∪X.

3. Repeat step 2 until all feature vectors in the training set have been dealt
with.

Fig. 6. Basic Clustering Algorithm

Detection of Abnormal Behavior. The detection is straight-forward, a com-
munication flow between nodes via TCP/UDP is translated to a feature repre-
sentation x as defined in this section. Then the task is simply to find the cluster C
that contains the nearest centroid that does not exceed ω: arg min

∀C∈S
(d2(x, C)) ≤

ω. The flow will be classified (and labeled) according to the cluster it was as-
signed to. Hence, if a cluster was anomalous, then so is the event stream. If x
exceeds the width of the nearest cluster a new anomalous cluster is created.

Example 6. The suspicious database event (Ev7) that was part of the first
infrastructure attack example in Section 2.2 produces an alert, here we show
why. In the training phase, database events are captured and associated to the
corresponding service call type, here Authorization Denied. The user feature
of the events determines their appropriate clustering instance in the database
profile. Since the events that were clustered for UIDx proved to be very similar
according to dod, only one cluster C with centroid c = {DC, UIDx,PMR12,
Create, 10.00 a.m.} and a predefined ω = 4 was created. While in detection
mode a new database event, Ev7, at 2.02 a.m. is captured. As explained in
Section 3.3 a feature representation x is created, and the distance between C
is measured: dod(x, C) = 6. Since the distance exceeds ω, the point x creates
a new cluster and is immediately flagged anomalous because the cluster size
falls below the threshold, see Formula 3. A closer look at Ev7 reveals that it
is an update PMR event (crUd) with identifier UIDx and object PMR12 at
2.02 a.m. This is an uncommon occurrence. The second infrastructure example
from Section 2.2 is solved in a similar fashion, this time, the network profile is
the source of the alert. There is only one cluster C with centroid c such that
d2(x, c) ≤ ω. This means that the communication of DC with D is indeed very
similar to the communication represented by the cluster C. Since we also add
weighted constants to represent differences of nominal values, e.g. IP addresses,
the resulting distance exceeds ω. Therefore, the communication pattern creates
a new cluster and represents an anomalous event.



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 177

Thoughts on False-Positives and Security Testing. Anomalous elements
are candidates for misconfiguration, attacks, or non-compliant system usage, i.e.
true positives, but may also be false-positives. To reduce the number of false-
positives, the threshold, see Formula 3, can be decreased to allow near-empty
clusters to be normal. Cluster-widths may also be decreased, which leads to
sparse, large, clusters. Another way to mitigate this challenge is to define (a)
white lists that allow clusters to be classified as not not harmful, e.g. commu-
nication to known non-harmful websites, (b) a threshold χ% for the number of
infrastructure anomalies that have to be detected in order for an alert to be
raised, and (c) test cases that validate clusters. As anomalies on the infrastruc-
ture level are traceable to service calls and workflow activities in our approach,
test cases for anomalous clusters could be generated. We consider the generation
of test cases for the detection of false-positives as future work.

4 Related Work

In this section we discuss related work in the areas of modelling, workflow com-
pliance and anomaly detection via clustering in intrusion detection.

Modelling and CEP. Our metamodel allows the inclusion of roles, node hi-
erarchies, and consists of three abstract layers. This is derived from the work
of [14, 15]. Both approaches provide a model-based approach together with con-
cepts and methods for security management. The latter work also includes the
Living Models approach where models are subjected to constant evolution. Mod-
eling languages have been proposed to create service infrastructures, for instance
the Service Oriented Architecture Modeling Language (SoaML)[26] and the Ser-
vice Markup Language SML [27]. The two reasons that prohibited the use of
SoaML were (i) it is especially designed for modelling SOA services. Our objec-
tive lies in services monitoring, yet SoaML provides a too rich vocabulary. Since
our interest is mainly event oriented, our metamodel is built to reflect this by
leveraging and adapting the idea of event-driven process chains (EPC), deeply
discussed in [28], to our needs. The metamodel allows the definition of event-
sequences, which allow to detect deviations of workflows. Workflow compliance
has been discussed in various publications. Mulo et al. [17] propose monitoring
compliance of business processes in SOA via complex event processing (CEP)
means. A service invocation is regarded as an event and business process ac-
tivities as event-trails. These event-trails guide the creation of queries which a
CEP engine uses to identify and monitor business activities. Since the business
activities are rendered identifiable it is possible to monitor the flow of a business
process at runtime, hence, it is possible to detect anomalous process executions.
Baresi et al. [29] and Erradi et al. [30] focus on monitoring the execution of
centrally orchestrated web services compositions (specified in WS-BPEL). Our
work distinguishes itself from the former and the latter in that we also take into
account infrastructure anomalies via machine learning, have a strict focus on
security and present a modeling environment for said workflows.



178 M. Gander et al.

Anomaly Detection. Related work in anomaly detection, especially in the area
of intrusion detection, is plenty, consider [1] for a survey of different methods.
Since unsupervised learning, e.g. clustering, has been used by multiple authors [2,
23, 25, 31] shows the versatility of clustering. Portnoy et al. [2] uses cluster
analysis successfully to detect attacks in the KDD 1999 data set.14 Gu et al. [23]
also leverage clustering techniques successfully to detect botnets using their tool
“Botminer”. Clustering is itself also subject of ongoing research. [25] introduce
adaptive clustering to reduce time-based bias in dynamic networks, i.e., traffic
variance over time. [31] improves clustering for NIDS by using a density-based
clustering algorithm and a grid-based metric. Both [25] and [31] evaluate their
efforts on the KDD 1999 data set. We leverage common TCP features and flow
modelling [22, 23], common clustering algorithms and metrics [2, 21, 24] (see
Section 3). Shared algorithms or flow modelling are only present superficially.
Differences include, for instance, the area of anomaly detection. Our method
inspects service call profiles for anomalies, instead of, for instance, explicitly
detecting botnet activity [23].

To the best of our knowledge, there is no model-driven approach that allows
CEP extraction and anomaly detection to monitor (a) the execution of work-
flows and (b) detect infrastructure aberrations relative to said workflows. As a
by-product of the IT-landscape model, and also in contrast to existing work,
outlying events can be used to locate suspicious nodes, services and workflows.

5 Conclusion and Future Work

We have presented an anomaly detection framework that allows real-time moni-
toring of critical workflows. In contrast to existing monitoring work we consider
the interplay of multiple layers at once and can, thus, link infrastructure anoma-
lies to workflows. Workflow aberrations are detected by CEP rules, which are
extracted from models, anomalies are inferred by network and database profiles
(which are related to service calls). Summarizing this approach enables to detect
workflow aberrations via CEP and connected anomalies, e.g. anomalous CRUD
activities. Future work consists in the continuation of the implementation and
evaluation efforts to create a fully functional anomaly detection framework that
follows the scheme described in this paper. The framework as a whole will be
evaluated based on a real-world setting.

Besides the evaluation of the overall approach, future work will consist of
fine-tuning metrics, features, and clustering algorithms in order to better cope
with, e.g. nominal values, overlapping clusters. A promising approach to measure
the distance between nominal values are data generalization hierarchies [32]. As
already mentioned before, we will also consider the generation of test cases for
the detection of false-positives.

14 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Accessed: July 20,
2012.



Monitoring Anomalies in IT-Landscapes Using Clustering Techniques 179

References

1. Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.: Anomaly-
based Network Intrusion Detection: Techniques, Systems and Challenges. Comput-
ers & Security 28(1-2), 18–28 (2009)

2. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using
clustering. In: Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (2001)

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009)

4. Eckert, M., Bry, F.: Complex Event Processing, CEP (2009)
5. OMG: Omg uml specification, v2.0 (2005)
6. Moses, T.: eXtensible Access Control Markup Language TC v2.0 (XACML) (2005)
7. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-

rization constraints in workflow management systems. ACM Transactions on In-
formation and System Security (TISSEC) 2(1), 65–104 (1999)

8. Walker-Morgan, D.: Vsftpd backdoor discovered in source code. Website (2011),
http://h-online.com/-1272310 (accessed: July 20, 2012)

9. Hoglund, G., Butler, J.: Rootkits: subverting the Windows kernel. Addison-Wesley
Professional (2006)

10. Peikari, C., Chuvakin, A.: Security Warrior. O’Reilly (2004)
11. Wells, J.: Computer fraud casebook: the bytes that bite. John Wiley & Sons Inc.

(2008)
12. Ye, N., Emran, S.M., Chen, Q., Vilbert, S.: Multivariate Statistical Analysis of

Audit Trails for Host-based Intrusion Detection. IEEE Transactions on Comput-
ers 51(7), 810–820 (2002)

13. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: LISA, pp.
229–238. USENIX (1999)

14. Breu, R., Innerhofer-Oberperfler, F., Yautsiukhin, A.: Quantitative assessment of
enterprise security system. In: The Third International Conference on Availability,
Reliability and Security, pp. 921–928. IEEE (2008)

15. Innerhofer-Oberperfler, F., Breu, R., Hafner, M.: Living security collaborative se-
curity management in a changing world. In: Parallel and Distributed Computing
and Networks/720: Software Engineering. ACTA Press (2011)

16. Xtext, http://www.eclipse.org/Xtext/ (accessed: July 20, 2012)
17. Mulo, E., Zdun, U., Dustdar, S.: Monitoring web service event trails for business

compliance. In: 2009 IEEE International Conference on Service-Oriented Comput-
ing and Applications (SOCA), pp. 1–8. IEEE (2009)

18. Grohe, S., Schlameu, C., Sommer, R.: Performancevergleich von cep-engines. Tech-
nical report, Hochschulschriftenserver der Universitt Stuttgart (Germany) (2010),
http://elib.uni-stuttgart.de/opus/oai2/oai2.php

19. McClure, S., Scambray, J., Kurtz, G.: Hacking exposed 6. McGraw-Hill (2009)
20. Allman, M., Paxson, V., Stevens, W.: RFC 2581 (rfc2581) - TCP Congestion Con-

trol. Technical Report 2581 (1999)
21. Tan, P., Steinbach, M., Kumar, V.: Cluster Analysis: basic concepts and algo-

rithms. In: Introduction to Data Mining, Addison-Wensley (2006)
22. Hernandez-Campos, F., Nobel, A.B., Smith, F.D., Jeffay, K.: Understanding pat-

terns of tcp connection usage with statistical clustering. In: 13th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 35–44. IEEE (2005)

http://h-online.com/-1272310
http://www.eclipse.org/Xtext/
http://elib.uni-stuttgart.de/opus/oai2/oai2.php


180 M. Gander et al.

23. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: clustering analysis of network
traffic for protocol-and structure-independent botnet detection. In: Proceedings of
the 17th Conference on Security Symposium, pp. 139–154 (2008)

24. Malerba, D., Esposito, F., Gioviale, V., Tamma, V.: Comparing dissimilarity mea-
sures for symbolic data analysis. In: Proceedings of Exchange of Technology and
Know-how and New Techniques and Technologies for Statistics, vol. 1, pp. 473–481
(2001)

25. Oldmeadow, J., Ravinutala, S., Leckie, C.: Adaptive Clustering for Network In-
trusion Detection. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS
(LNAI), vol. 3056, pp. 255–259. Springer, Heidelberg (2004)

26. Berre, A.: Service oriented architecture modeling language (soaml)-specification
for the uml profile and metamodel for services (upms) (2008)

27. Popescu, V., Smith, V., Pandit, B.: Service modeling language, version 1.1. W3C
recommendation, W3C (May 2009),
http://www.w3.org/TR/2009/REC-sml-20090512/

28. van der Aalst, W.: Formalization and verification of event-driven process chains.
Information and Software Technology 41(10), 639–650 (1999)

29. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for service monitoring. In: Technolo-
gies for E-Services, pp. 72–83 (2006)

30. Erradi, A., Maheshwari, P., Tosic, V.: WS-Policy based monitoring of composite
web services (2007)

31. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detec-
tion using clusters. In: Proceedings of the Twenty-eighth Australasian Conference
on Computer Science, vol. 38, pp. 333–342 (2005)

32. Julisch, K.: Clustering intrusion detection alarms to support root cause analysis.
ACM Transactions on Information and System Security (TISSEC) 6(4), 471 (2003)

http://www.w3.org/TR/2009/REC-sml-20090512/


A Hierarchical Variability Model

for Software Product Lines�

Dilian Gurov1, Bjarte M. Østvold2, and Ina Schaefer3

1 Royal Institute of Technology, Stockholm, Sweden
dilian@csc.kth.se

2 Norwegian Computing Center, Oslo, Norway
bjarte@nr.no

3 TU Braunschweig, Germany
i.schaefer@tu-bs.de

Abstract. A key challenge in software product line engineering is to rep-
resent solution space variability in an economic, yet easily understand-
able fashion. We introduce the notion of hierarchical variability models
to describe families of products in a manner that facilitates their modular
design and analysis. In this model, a family is represented by a common
set of artifacts and a set of variation points with associated variants.
A variant is again a hierarchical variability model, leading to a hierar-
chical structure. These models, however, are not unique with respect to
the families they define. We therefore propose a quantitative measure on
hierarchical variability models that expresses the degree to which a vari-
ability model captures commonality and variability in a family. Further,
by imposing well-formedness constraints, we identify a class of variabil-
ity models that, by construction, have maximal measure and are unique
for the families they define. For this class of simple families, we pro-
vide a procedure that reconstructs their hierarchical variability model.
The reconstructed model can be used to drive various static analyses
by divide-and-conquer reasoning. Hierarchical variability models strike a
balance between the formalism’s expressiveness and the desirable prop-
erty of model uniqueness. We illustrate the approach by a small product
line of Java classes.

1 Introduction

System diversity is prevalent in modern software systems. Systems simultane-
ously exist in many different variants in order to comply with different require-
ments. Software product line engineering [18] aims at developing a family of
system variants by managed reuse in order to decrease time to market and to
improve quality. The variability of the different products in a software product
line can be represented at different levels [7]. Problem space variability describes

� Partly funded by the EU project HATS, Highly Adaptable and Trustworthy Soft-
ware using Formal Models (FP7-231620) and the Deutsche Forschungsgemeinschaft
(SCHA1635/2-1).

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 181–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



182 D. Gurov, B.M. Østvold, and I. Schaefer

product variation in terms of features where a feature is a user-visible product
characteristic. The set of valid feature configurations defines the set of possible
products. However, features do not relate to the actual artifacts that are used
to realize the products.

Problem-space variability, based on features, is at the requirements level, while
solution space variability is at the design and implementation level. Solution-
space variability describes product variation in terms of shared artifacts that are
used to build the actual products of the product line. In this paper, we capture
solution space variability in terms of variable artifact implementations for fixed
artifact names. This means that in different product variants an artifact with the
same name can be realized with different implementations. Here, an artifact can
be a component at a suitable level of granularity, such as a method, a class, or a
module. Then, the artifact name would be the method signature (including the
method name), interface signature or module signature, respectively, while the
artifact implementation would be the method body, interface implementation,
or the module realization. Previously, we used the finest of these levels [20],
i.e., method signatures and method bodies, while in Section 4 we show another
interpretation, where artifact names are types and artifact implementations are
classes, interfaces or types implementing the former type.

In order to describe the relationship of the artifact names to the artifact
implementations in the product variants, we introduce hierarchical variability
models. Hierarchical variability models represent, in a hierarchical manner, the
artifact implementations that are common to all products and the variations in
the artifact implementations that can occur between different products. On each
hierarchical level, there is a common set of artifact implementations that repre-
sent parts shared by all products, while variation points represent parts that can
vary from product to product. Every variation point is associated with a set of
variants that represent choices for realizing the variation point in different ways.
A variant is itself represented by a hierarchical variability model, introducing a
new level of hierarchy. A product described by a hierarchical variability model
is obtained by selecting a variant at every variation point.

We have previously argued that hierarchical variability models support mod-
ular design [12] and divide-and-conquer reasoning for product lines, such as the
formal verification of critical requirements of all products of a family [20]. In gen-
eral, given a concrete program analysis, factoring out common implementations
naturally reduces redundancy in the analysis. At variants with more than one
variation point, the analysis problem is decomposed into simpler subproblems
(since they expose orthogonality), while at variation points with more than one
variant, the same problem is solved independently as a case analysis (since they
don’t share implementations). Thus, a hierarchical variability model can be seen
as a (divide-and-conquer style) scheme for decomposing and splitting an analysis
over a family.

In this paper, we propose a hierarchical variability model that is simple in the
sense that it requires the choice of exactly one variant for every variation point,
and does not specify any constraints between choices made at different variation



A Hierarchical Variability Model for Software Product Lines 183

points. Figure 1 shows a simple hierarchical variability model for a cash desk sys-
tem, depicted as a tree with a root node marked CashDesk. Common to all cash
desk systems are the following artifact implementations: saleProcessCashDesk for
handling the sale process, and two implementations called writeReceiptCashDesk

and updateStockCashDesk responsible for the corresponding tasks. The notational
convention is that an artifact implementation is an artifact name (e.g., saleProcess)
with an index (e.g., CashDesk).

At the first level of hierarchy, a cash desk can vary in two uncorrelated (i.e.,
orthogonal) aspects. First, there are two methods to input data about merchan-
dise payed for at the cash desk: by keyboard or using a scanner. Second, there
are two ways to pay, either in cash or by card. Thus, on the first level, the hierar-
chical variability model in the figure has two variation points: InputMethods and
PaymentMethods. Each variation point has associated variants which capture
one particular way of realizing the variation point. Variation point InputMeth-
ods has two variants, Keyboard and Scanner, each with an implementation of
the corresponding input method. Variation point PaymentMethods also has two
variants: Cash and Card for the two forms of payment. Both variants provide an
artifact named slot for inserting the means of payment and pay for the actual
payment process with different implementations. slot has one implementation
in each variant, whereas pay has one implementation for cash and three variant
implementations for card, corresponding to three different types of card.

The intention of a hierarchical variability model is that, on each level of hier-
archy, common sets of artifact implementations are factored out, while uncorre-

{ saleProcessCashDesk,
writeReceiptCashDesk,
updateStock CashDesk }

{inputKeyboard}

{inputScanner}

{slotCash, payCash}
{slotCard} {payCredit}

{payDebit}

{payPrePaid}

CashDesk

Keyboard

Scanner

Cash

Card

PrePaid

Debit

Credit

InputMethods

PaymentMethods

CardTypes

Legend: root of SHVM; variation point.

Fig. 1. The CashDesk hierarchical variability model (drawn sideways)



184 D. Gurov, B.M. Østvold, and I. Schaefer

lated (or orthogonal) sets of artifact implementations are delegated to different
variation points. To provide a measure for the quality of hierarchical variability
models for defining a family in an economical way, we define the separation degree
of a model (Definition 6) as the ratio between the total number of artifact imple-
mentations from which products are constructed and the total number of artifact
implementation occurrences in the common sets of the model. Thus, high-quality
models capture repetitions across products in a family without repetition in the
model. The maximal possible separation degree of one is reached in models where
every artifact implementation occurs in exactly one common set.

In order to reason formally about hierarchical variability models, we provide
these with a formal semantics in terms of the products that can be generated
by variant selection. We define well-formedness constraints on hierarchical vari-
ability models, under which the separation degree of the model is equal to one
by construction. We term the class of families generated by well-formed variabil-
ity models simple families, and define this class in a model-independent fashion.
We present a transformation from simple families to hierarchical variability mod-
els that (re)constructs the unique well-formed model that generates the family.
Uniqueness is established by showing that the two transformations—from well-
formed models to simple families and vice versa—are inverses of each other. For
practical purposes, the latter transformation can be used for variability model
mining from a given family of products. Simple hierarchical variability models
thus strike a balance between the expressiveness of the modeling formalism—
no bindings and being grammar-like—and the desirable property of uniqueness
of models: With a more expressive modeling formalism uniqueness may not be
achievable.

To the best of our knowledge, this work is the first to provide a formal seman-
tics for hierarchical variability models in the solution space, and to characterize
a class of variability models through the class of generated product families. Pre-
vious work has been informal, as for instance the Koala component model [22],
hierarchical variability modeling for software architectures [12], or plastic partial
components [17]. Our work is also the first to provide a technique for constructing
a hierarchical solution space variability model from a given family.

Our main contributions are thus:

(i) A formal definition of simple families as families that can be formed from
artifact implementations by using a set of base operations on families (Sec-
tion 2.1).

(ii) A definition of simple hierarchical variability models, together with a quality
measure called separation degree and a set of well-formedness constraints
yielding (by construction) models with maximal measure (Section 2.2).

(iii) A formal semantics for hierarchical variability models in terms of family
generation, and a proof that, for every well-formed variability model, the
generated family is simple (Section 3.1).

(iv) A procedure to construct hierarchical variability models from simple fami-
lies that produces well-formed models (Section 3.2).

(v) A characterization result stating that, for well-formed hierarchical variabil-
ity models and simple families, family generation and hierarchical variability



A Hierarchical Variability Model for Software Product Lines 185

model construction are inverses of each other, thus implying correctness of
model construction and uniqueness of well-formed models with respect to
the families they generate (Section 3.3).

All proofs and some supporting results can be found in the accompanying tech-
nical report [11].

2 Families and Variability Models

In this section, we present product families as a semantic domain for our hier-
archical variability model. The model is presented in the following subsection.

2.1 Families

We consider products realized by a set of artifact implementations for a given
set of artifact names. An artifact can be thought of as, e.g., a component or a
method. We fix a countably infinite set of artifact names Art .

Definition 1 (Product, family). An artifact implementation is an indexed
artifact name; let ai denote the i-th implementation of artifact name a. A prod-
uct P is a finite set of artifact implementations, where for each artifact name
there is at most one implementation. A family F is a finite non-empty set of
products.

Thus, products can be seen as partial maps from artifact names to natural
numbers, having a finite domain; we use NatArt to denote the set of all products
over Art . We refer to singleton set families as core families, or simply cores. The
family consisting of the empty product is denoted 1F .

Example 1. Here are some families that are used later to illustrate various no-
tions.

FA =
{ {a1, b1, c1, d1, e1} , {a1, b1, c1, d1, e2} , {a1, b1, c2, d2, e1} ,
{a1, b1, c2, d2, e2} , {a1, b1, c2, d3, e1} , {a1, b1, c2, d3, e2}

}
FB =

{ {a1, b1} , {a1, b2} , {a2, b1}
}

Next, we define two mappings for identifying the artifact names and artifact
implementations that occur in a family.

Definition 2 (Family names and implementations). The mapping
names (F) from families to sets of artifact names and the mapping impls(F)
from families to sets of artifact implementations are defined as follows, where
a1, . . . , an ∈ Art and i1, . . . , in ∈ Nat:

names (F)
def
=

⋃
P∈F names (P )

where names
({a1i1 , . . . , anin}) def

= {a1, . . . , an}
impls(F)

def
=

⋃
P∈F impls(P )

where impls({a1i1 , . . . , anin})
def
= {a1i1 , . . . , anin}



186 D. Gurov, B.M. Østvold, and I. Schaefer

In this definition we abuse notation by also defining mappings with the same
names from products to the same co-domains.

We use two binary operations on families, the usual set union operation ∪ and
the product union operation �� over families with disjoint sets of artifact names
defined by:

F1 �� F2
def
= {P1 ∪ P2 |P1 ∈ F1 ∧ P2 ∈ F2}

and generalized through
∏

i∈I Fi to non-empty sets of families. Intuitively, the
product union of two families is the family having as products all possible com-
binations of products of the original families. Both operations are commutative
and associative.

We now define a distinct class of families that we later relate to a specific
class of hierarchical variability models. The class of families contains all single-
product families consisting of a single artifact implementation, and is closed
under product union of families over disjoint sets of artifact names, and un-
der union of families over the same set of artifact names, but having disjoint
implementations.

Definition 3 (Simple family). The class F of simple families is the least set
of families closed under the formation rules:

(F1)
{{ai}} ∈ F for any a ∈ Art and i ∈ Nat.

(F2) F1 �� F2 ∈ F for any F1,F2 ∈ F such that names (F1) ∩ names (F2) = ∅.
(F3) F1 ∪ F2 ∈ F for any F1,F2 ∈ F such that names (F1) = names (F2) and

impls(F1) ∩ impls(F2) = ∅.
Example 2. The family

{ {a1, b1} , {a1, b2}} is simple, as it can be presented as{{a1}} �� (
{{b1}}∪{{b2}}) which follows the above formation rules. Family FA

of Example 1 is also simple (as we shall see later in Example 6), while family FB

of Example 1 is not: there is no way of building this family with the above
formation rules.

Simplicity of families expresses that different functionalities in a product line are
always orthogonal, and that alternative realizations of the same functionality
have always disjoint implementations. These assumptions are rather heavy and
may not always hold in practice. But only under such severe constraints can one
hope for such a (strong) uniqueness result as the one obtained later (Section 2.1).

Two distinct artifact names a, b ∈ names (F) are termed correlated in a fam-
ily F , denoted aCF b, if there are implementations ai, bj ∈ impls(F) such that no
product in F contains both implementations simultaneously. Otherwise, names
a and b are termed uncorrelated or orthogonal. The correlation relation CF on
names (F) is symmetric, and hence, its reflexive and transitive closure C∗

F is
an equivalence relation. As usual, we denote the partitioning induced by C∗

F on
names (F) by names (F) /C∗

F (quotient set).

Example 3. Consider family FA of Example 1. The only two correlated names
are c and d, evidenced by the lack of a product containing, for instance, c1 and d2.
Thus, we have names (FA) /C

∗
FA

= {{a}, {b}, {c, d}, {e}}.



A Hierarchical Variability Model for Software Product Lines 187

Correlation (and orthogonality) extends naturally to products in a family: Prod-
ucts P and P ′ are correlated in F if some artifact name occurring in P is cor-
related to some artifact name occurring in P ′. Similarly, we define the sharing

relation NF on F as P1 NF P2
def⇔ P1∩P2 �= ∅, and use its reflexive and transitive

closure N∗
F to partition the family F .

When restricted to simple families, the two operations on families do not dis-
tribute over each other. This entails that simple families have unique formation
trees modulo commutativity and associativity of the two operations associated
with the rules.

2.2 Variability Models

In order to represent solution space variability of families in terms of shared
artifact implementations, we consider simple hierarchical variability models.

Definition 4 (Simple hierarchical variability model). A simple hierarchi-
cal variability model (SHVM) S is inductively defined as:

(i) a (possibly empty) common set of artifact implementations MC , or
(ii) a pair (MC , {VP1, . . . ,VPn}) where MC is defined as above and the set

{VP1, . . . ,VPn} of variation points is non-empty. A variation point VP i =
{Si,j | 1 ≤ j ≤ ki}, where ki ≥ 2, is a set of (at least two) SHVMs called
variants.

We sometimes refer to an SHVM simply as a variability model. An SHVM with
only a common set of artifact implementations is called ground model. An SHVM
generates a family F through all possible ways of resolving the variabilities of
the SHVM. This process recursively selects exactly one variant for each variation
point. We defer a formal definition of such a semantics for SHVMs to Section 3.1.
Variability models can be naturally depicted as trees, where leaves are common
sets of artifact implementations, and internal nodes are the roots of SHVMs or
variation points.

Example 4. Figure 2 and Figure 3 show four variability models named SA1, SA2,
SB1, and SB2. In these figures, (sub)trees showing variability models are rooted
with boxes, and subtrees showing variation points are rooted with diamonds.

In analogy with Definition 2, we define two mappings for identifying the artifact
names and artifact implementations that occur in SHVMs.

Definition 5 (SHVM names and implementations). The mapping
names (S) from SHVMs to sets of artifact names and the mapping impls(S)
from SHVMs to sets of artifact implementations are defined as follows, where
a1, . . . , an ∈ Art and i1, . . . , in ∈ Nat:



188 D. Gurov, B.M. Østvold, and I. Schaefer

{}

{a1, b1,
c1, d1, e1}

{a1, b1,
c1, d1, e2}

{a1, b1,
c2, d2, e1}

{a1, b1,
c2, d2, e2}

{a1, b1,
c2, d3, e1}

{a1, b1,
c2, d3, e2}

SA1

{a1, b1}

{c1, d1} {c2}

{d2} {d3}

{e1} {e2}

SA2

Fig. 2. SHVMs SA1 and SA2 for the family FA in Example 1

{a1, b2}

{a1} {a2}

{b1}

SB1

{a1}

{b1} {b2}

{a2, b1}

SB2

Fig. 3. SHVMs SB1 and SB2 for the family FB in Example 1



A Hierarchical Variability Model for Software Product Lines 189

names
({a1i1 , . . . , anin}) def

= {a1, . . . , an}
names ((Mc, {VP1, . . . ,VPn})) def

= names (MC) ∪
⋃

1≤i≤n names (VP i)

where names (VP)
def
=

⋃
S∈VP names (S)

impls({a1i1 , . . . , anin})
def
= {a1i1 , . . . , anin}

impls((Mc, {VP1, . . . ,VPn})) def
= impls(MC) ∪

⋃
1≤i≤n impls(VP i)

where impls(VP)
def
=

⋃
S∈VP impls(S)

Again we abuse notation by also defining mappings with the same names from
variation points to the same co-domains.

Next, we define a measure of the degree of separation in a variability model, as
the proportion between the number of artifact implementations of a variability
model and the total size of the leaves of the SHVM tree. The separation degree
is, thus, a number in the interval 〈0, 1], and captures the degree to which the
commonalities and orthogonalities of products are factored out as common sets
and variation points in a variability model, respectively: the higher this degree,
the less artifact implementations occur repeatedly in more than one leaf. The
maximal value of 1 holds when every artifact implementation occurs in exactly
one leaf; this is trivially the case for ground models.

Definition 6 (Separation degree). The separation degree sd(S) of a vari-
ability model S is defined as:

sd({}) def
= 1

sd(S) def
=

|impls(S)|
sd ′(S) if S �= {}

where sd ′(S) is inductively defined as follows:

sd ′(MC)
def
= |MC |

sd ′((MC , {VP1, . . . ,VPn})) def
= sd ′(MC) +Σ1≤i≤nsd

′(VP i)

where sd ′(VP)
def
= ΣS∈VPsd

′(S)
As usual |S| denotes the cardinality of set S.

Intuitively this definition captures the extent to which orthogonal artifact
implementations are delegated to separate variation points, and the extent to
which disjointness of artifact implementations is delegated to separate variants.
Since this is the original intention of variation points and variants in our model,
separation degree is an obvious quality measure indicating how well the model
is used for the purpose of hierarchically representing a software family (that is,
a set of products).

The following definition provides a set of well-formedness constraints on
SHVMs.



190 D. Gurov, B.M. Østvold, and I. Schaefer

Definition 7 (Well-formed variability model). A ground variability model
S = MC is well-formed if constraint (S1) below is satisfied. A variability model
S = (MC , {VP1, . . . ,VPn}) with variation points VP i = {Si,j | 1 ≤ j ≤ ki} is
well-formed if all variants Si,j are well-formed, and furthermore, the following
constraints are satisfied:

(S1) MC implements artifact names at most once.
(S2) names (MC) ∩ names (VP i) = ∅ for all i, and

names (VP i1) ∩ names (VP i2) = ∅ whenever i1 �= i2.
(S3) names (Si,j1) = names (Si,j2) for all i, j1, j2, and

impls(Si,j1 ) ∩ impls(Si,j2 ) = ∅ whenever j1 �= j2.

Example 5. Consider the SHVMs SA1 and SA2 depicted in Figure 2. SA1 is not
well-formed whereas SA2 is. The separation degrees are sd(SA1) =

9
6·5 = 0.3 and

sd(SA2) =
9
9 = 1. Figure 3 depicts another two SHVMs, SB1 and SB2. Neither

of these are well-formed and both have separation degree 4
5 = 0.8.

The constraints in Definition 6 ensure that the separation degree of a well-formed
SHVM is equal to one, and is thus maximal.

Proposition 1. If variability model S is well-formed then sd(S) = 1.

Note that the converse of Proposition 1 does not hold in general: The vari-
ability model MC = {a1, a2} has separation degree 1, but well-formedness con-
straint (S1) is not satisfied.

3 Relating Families and Variability Models

In this section, we present translations between well-formed variability models
and simple families, and show that they are inverses of each other. In particu-
lar, this entails that the translation from simple families to variability models
produces the unique well-formed model generating the respective family, thus
giving a procedure for constructing a variability model from a given family.

3.1 From Variability Models to Families

The set of products generated by a ground model is the singleton set comprising
the set of common artifact implementations (and, thus, representing one prod-
uct). The set of products generated by a variation point is the union of the
product sets generated by its variants. Finally, the set of products generated by
an SHVM with a non-empty set of variation points is the set of all products
consisting of the common artifact implementations and of exactly one product
from the set generated by each variation point.

Definition 8 (Family generation). The mapping family(S) from variability
models to families is inductively defined as follows:



A Hierarchical Variability Model for Software Product Lines 191

family(MC)
def
= {MC}

family((MC , {VP1, . . . ,VPn})) def
= {MC} ��

∏
1≤i≤n family(VP i)

where family(VP)
def
=

⋃
S∈VP family(S)

We say that variability model S generates family(S).
Here we again abuse notation by also defining a mapping with the same name
from variation points to the same co-domain. Family generation is well-defined
in the sense that well-formed variability models generate simple families.

Proposition 2. If variability model S is well-formed, then family(S) is simple.

Example 6. SHVMs SA1 and SA2 in Figure 2 both generate family FA in Ex-
ample 1, implying that family FA is simple since SA2 is well-formed. SHVMs
SB1 and SB2 in Figure 2 both generate family FB in Example 1. Of these four,
SA2, SB1 and SB2 have maximal separation degree in the sense that, for each
of the families FA and FB, no other SHVMs for the same family have higher
separation degree.

3.2 From Families to Variability Models

We now present a reverse transformation from simple families to well-formed
variability models. Recall that simple families have unique formation trees mod-
ulo commutativity and associativity of the two operations. Well-formed SHVMs
can thus be seen as a uniform way of grouping the formation terms. Every fam-
ily F can be decomposed into the form:

F = {P} �� FV , FV =
∏

1≤i≤n Fi, Fi =
⋃

1≤j≤ki
Fi,j

where P is a product, or equivalently, as a single equation:

F = {P} ��
∏

1≤i≤n

⋃
1≤j≤ki

Fi,j (∗)

The existence of the decomposition is ensured since every family F can be
trivially decomposed as {∅} ��

∏⋃F , i.e., with product P being empty and
n = k1 = 1. Decomposition (∗) is only unique under additional constraints,
under which the decomposition is called canonical.

Definition 9 (Canonical form). A family F , decomposed as equation (∗)
above, is in canonical form if the following conditions hold:

(C1) The product P is the set of artifact implementations that are common to
all products in F .

(C2) The set of artifact names in FV has n equivalence classes w.r.t. correlated
artifact names C∗

FV
, and for the i-th equivalence class, the family Fi is the

projection of FV onto the artifact names of the class.



192 D. Gurov, B.M. Østvold, and I. Schaefer

(C3) For all i, 1 ≤ i ≤ n, Fi,j are the ki equivalence classes of Fi w.r.t. imple-
mentation sharing N∗

Fi
.

The decomposition into canonical form is clearly unique for a simple family, and
exposes one level of hierarchy. Thus, by iterative application of the decomposi-
tion, we obtain a mapping from families to hierarchical variability models.

Definition 10 (Variability model generation). The mapping shvm(F) from
simple families presented in canonical form to variability models is inductively
defined as follows:

shvm({MC}) def
= MC

shvm
({MC} ��

∏
1≤i≤n

⋃
1≤j≤ki

Fi,j

) def
= (MC , {VP1, . . . ,VPn})

where VP i
def
= {shvm(Fi,j) | 1 ≤ j ≤ ki}

We say that family F generates variability model shvm(F).

As the next result shows, the generated variability model is well-formed.

Proposition 3. If family F is simple, then shvm(F) is well-formed.

Example 7. Consider the family FA from Example 1.

– In the first step of the decomposition of FA into canonical form we obtain
the common set P = {a1, b1} and the family FV = {{c1, d1, e1} , {c1, d1, e2} ,
{c2, d2, e1} , {c2, d2, e2} ,
{c2, d3, e1} , {c2, d3, e2}}.

– In the next step, we analyze FV to find that only artifact names c and d are
correlated. Projecting FV onto the two resulting equivalence classes {c, d}
and {e} we obtain the two variation points F1 = {{c1, d1} , {c2, d2} , {c2, d3}}
and F2 = {{e1} , {e2}}.

– In the third step, we analyze F1 and see that two products share the artifact
implementation c2, which gives us the variants F1,1 = {{c1, d1}} and F1,2 =
{{c2, d2} , {c2, d3}}, and then analyze F2 to obtain the variantsF2,1 = {{e1}}
and F2,2 = {{e2}}.

Only F1,2 is not a ground model. Applying the above steps decomposes it into a
common set {c2} and a single variation point with two variants consisting of the
common sets {d2} and {d3}. It is easy to see that shvm(FA) is the variability
model SA2 in Figure 2.

3.3 Characterization Results

Our first result establishes correctness of model extraction.

Lemma 1. For every simple family F we have:

family(shvm(F)) = F



A Hierarchical Variability Model for Software Product Lines 193

The second result establishes uniqueness of well-formed models w.r.t. the gen-
erated (simple) family.

Lemma 2. For every well-formed variability model S we have:

shvm(family(S)) = S

An immediate consequence of the above two lemmata is our main characteriza-
tion result, which essentially states that the two transformations relating vari-
ability models and families are inverses of each other.

Theorem 1 (Characterization Theorem). For every simple family F and
every well-formed variability model S we have:

family(S) = F ⇐⇒ shvm(F) = S

4 Application

In this section, we show how to apply our theory to families consisting of products
of program code. We explain how to obtain an SHVM from a set of products,
and what insights one can gain from the derived model. Our running example
(Section 4.1) is a simple product family written in Java, but the application of
our theory is not restricted to particular programming languages or paradigms.

4.1 Example Product Line: Storing and Processing Collections

The example family consists of six products, where each product is a Java class.
The code for all products appears in Figure 4.1 The six products—named PX1,
PX2, PY1, PY2, PZ1, and PZ2 after the respective class—have the following com-
monalities: They all store a collection of values of the custom type Elem, have
a method for setting this state to some value, a method process(), and last a
method compute() which returns some subclass of Number. The products have
the following differences: The type of the state is either List or Set, both subin-
terfaces of java.util.Collection. In the case of List, method compute()

returns a Double, and in the case of Set, it returns either a Byte or an Integer.
Furthermore, method process() either prints out the state of one element at a
time using a method on class System, or it produces a String from the elements
and returns it.

4.2 From Code to Artifacts

Before we can construct an SHVM, we need a scheme to obtain a set of products,
that is, products in the sense of Definition 1. Thus, we must identify artifacts in
the product code. An artifact name in the program code is a construct that may

1 We have omitted the following: import declarations, definition of custom type Elem,
and repeated or irrelevant code.



194 D. Gurov, B.M. Østvold, and I. Schaefer

class X1 {
List<Elem> s t a t e = new ArrayList<Elem>() ;
void s e tS ta t e ( L i st<Elem> arg ) { this . s t a t e . addAll ( arg ) ; }
Double compute ( ) { . . . }
void p roc e s s ( ) { for (Elem e : s t a t e ) System . out . p r i n t l n ( e ) ; }

}
class X2 {

List<Elem> s t a t e = new ArrayList<Elem>() ;
void s e tS ta t e ( L i st<Elem> arg ) { . . . } // as be fore
Double compute ( ) { . . . }
S t r i ng p roc e s s ( ) {

S t r i ng r e s = ”” ;
for (Elem e : s t a t e ) r e s = re s + ” , ” + e . t oS t r i ng ( ) ;
return r e s ;

} }
class Y1 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e ( Set<Elem> arg ) { this . s t a t e . addAll ( arg ) ; }
Byte compute ( ) { . . . }
void p roc e s s ( ) { . . . } // as be fore with same s ig .

}
class Y2 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e ( Set<Elem> arg ) { . . . } // as be fore
Byte compute ( ) { . . . }
S t r i ng p roc e s s ( ) { . . . } // as be fore with same s ig .

}
class Z1 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e ( Set<Elem> arg ) { . . . } // as be fore
In t e ge r compute ( ) { . . . }
void p roc e s s ( ) { . . . } // as be fore with same s ig .

}
class Z2 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e ( Set<Elem> arg ) { . . . } // as be fore
In t e ge r compute ( ) { . . . }
S t r i ng p roc e s s ( ) { . . . } // as be fore with same s ig .

}

Fig. 4. Example product line consisting of six Java classes

Table 1. Example scheme for obtaining artifacts from Java code

Art. name Art. impl. Connection Notation

interface I class C C implements I IC
interface I interface J J subinterface of I IJ
class C class D D subclass of C CD

type T type T (by convention) TT

occur several times, but with different realizations which are then the artifact
implementations. Deciding how to identify artifacts in the code means deter-
mining what are the important parts of the code for the variability model of
the product line. In general, this can be done in many ways. Here, we give one
possible example.

For this example, we consider an artifact to be a pair of Java types, one
being the name of the type and one being its implementation. For two Java



A Hierarchical Variability Model for Software Product Lines 195

types to form an artifact, they must be connected as shown in Table 1. The
types that form artifacts in our example are underlined in Figure 4. (Class
java.lang.Object and interface Collection do not occur in the figure, but
are also used.) These are some artifacts identified in the example:

– The interface java.util.List is connected to the interface
java.util.Collection via the Java implements relation, giving rise to the
artifact CollectionList (omitting package prefixes).

– The Class java.lang.String is connected to the class
java.lang.Object via the subclass relation, so we have the artifact
ObjectString.

– Class Elem is—by convention—related to itself, so we have the artifact
ElemElem.

With the scheme in Table 1, we identify the following set of products which is
a simple family and yields a hierarchical variability model with three variation
points including one inside the other.

PX1 =
{
ElemElem, CollectionList, NumberDouble, ObjectSystem

}
PX2 =

{
ElemElem, CollectionList, NumberDouble, ObjectString

}
PY1 =

{
ElemElem, CollectionSet, NumberByte, ObjectSystem

}
PY2 =

{
ElemElem, CollectionSet, NumberByte, ObjectString

}
PZ1 =

{
ElemElem, CollectionSet, NumberInteger, ObjectSystem

}
PZ2 =

{
ElemElem, CollectionSet, NumberInteger, ObjectString

}

4.3 Constructing and Interpreting the SHVM

From the set of products obtained in the previous section, constructing an SHVM
is straightforward by the procedure specified in Definition 10. We obtain the
SHVM depicted in Figure 5. The SHVM in this figure is nearly identical to SA2

in Figure 2—differing only in the cardinality of set at the leftmost branch from
the root. Hence, the construction proceeds similarly to that of Example 7. Since
the family is simple, the obtained model is well-formed and, thus, optimal w.r.t.
the separation degree.

The constructed SHVM may be read as a graphical summary of the textual
product line description given in Section 4.1, focusing on Java types. Note, in
particular, that the choice between List and Set is clearly visible as a variation
point, and that, for example, the combination of List and Byte is not allowed
by the SHVM, whereas List and Double is allowed.

5 Related Work

The existing approaches to represent solution space product line variability can
be divided into three directions [23]. First, annotative approaches consider one



196 D. Gurov, B.M. Østvold, and I. Schaefer

{ElemElem}

{CollectionList,
NumberDouble}

{CollectionSet}

{NumberByte} {NumberInteger}

{
ObjectSystem

}{
ObjectString

}

Fig. 5. SHVM for the example family

model representing all products of a product line. Variant annotations, e.g.,
using UML stereotypes [24,10], presence conditions [6], or separate variability
representations, such as orthogonal variability models [18], define which parts
of the model have to be removed to generate the model of a concrete prod-
uct. Second, compositional approaches [4,23,16,3] associate product fragments
with product features which are composed for particular feature configurations.
Third, transformational approaches [13,5] represent variability by rules deter-
mining how a base model has to be changed for a particular product model. All
these approaches consider a representation of artifact variability without any
hierarchy.

Our hierarchical variability model generalizes the ideas of the Koala compo-
nent model [22] for the implementation of variant-rich component-based systems.
In Koala, the variability of a component is described by the variability of its
sub-components which can be selected by switches and explicit diversity inter-
faces. Diversity interfaces and switches in Koala can be understood as concrete
language constructs targeted at the implementation level to express variation
points and associated variants. Plastic partial components [17] are an archi-
tectural modeling approach where component variability is defined by extending
partially defined components with variation points and associated variants. How-
ever, variants cannot contain variable components so this modeling approach is
not truly hierarchical. Hierarchical variability modeling for software architec-
tures [12] applies the modeling concepts for solution space variability presented
in this paper to component-based software engineering and provides a concrete
modeling language for variable software architectures that is truly hierarchical.
However, none of these approaches formally defines the semantics of hierarchical
variability models, nor reasons about their well-formedness or uniqueness.

To the best of our knowledge, this paper presents the first approach for con-
structing a hierarchical variability model for solution space variability from a
given product family. So far, there have only been approaches to construct
feature models for representing problem space variability for a given set of



A Hierarchical Variability Model for Software Product Lines 197

products. Czarnecki et al. [8] re-construct a feature model from a set of sample
feature combinations using data mining techniques [1]. Other approaches aim
at constructing feature models from sample mappings between products and
their features using formal concept analysis [9], for instance, to derive logical
dependencies between code variants from pre-processor annotations [21], or to
construct a feature model for function-block based systems after determining
model variants by similarity [19]. Loesch and Ploedereder [14] use formal con-
cept analysis to optimize feature models in case of product line evolution, e.g.,
to remove unused features or to combine features that always occur together.
Niu and Easterbrook [15] apply formal concept analysis to functional and non-
functional product line requirements in order to construct a feature model as
a more abstract representation of the requirements. Also, information retrieval
techniques are applied to obtain a feature model from heterogeneous product
line requirements [2]. Using hierarchical clustering, a tree structure of textually
similar requirements is constructed. Requirement clusters in the leaves are more
similar to each other than requirements clusters closer to the root giving rise to
the structure of a feature model.

In our work, we abstract from the need to determine the different variants of
the same conceptual entity by assuming fixed artifact names and corresponding
artifact implementations. However, if we relax this assumption, techniques, such
as similarity analysis [19] or formal concept analysis [9] could be applied to infer
the relationship between different variants of the same conceptual entity, and
thus make our approach applicable.

6 Conclusion

In this article, we present hierarchical solution space variability models for soft-
ware product lines. We give a formal semantics of such models in terms of sets
(or families) of products, where each product is a set of artifact implementations.
We introduce the separation degree as a quality measure of hierarchical variabil-
ity models. We identify well-formed variability models as a class of models for
which the measure is maximal (and equal to one) and which are unique for the
family they generate; the class of families generated by such models is the class
of simple families. Furthermore, we present a transformation that constructs,
from a simple family, the unique well-formed model that generates it, and prove
uniqueness by showing that family generation and model construction are in-
verses of each other for this class of models. While maximal separation degree
and uniqueness of models with maximal measure are theoretically appealing, in
practice, product families might not be simple. Still, the separation degree is
a useful measure for hierarchical variability models, and, as Examples 5 and 6
suggest, searching for the set of models with a maximal measure (not necessarily
equal to one) for a given family is equally meaningful.

Future work will focus on the practical evaluation of the proposed method for
variability model mining, considering in particular sets of (legacy code) products
that have not been designed as a family from the outset. Further effort is planned



198 D. Gurov, B.M. Østvold, and I. Schaefer

on generalizing the model with optional and multiple variant selections and with
requires/excludes constraints between variants, and on adapting accordingly the
model reconstruction transformation. Another generalization will deal with the
more abstract domain of products over implementations only, where the names
are not given in advance, but must be inferred. Additionally, the restriction that
all variants associated to a variation point have to provide the same artifact
names will be lifted. In order to integrate hierarchical variability models into
software product line engineering, we aim at offering tool support for hierarchical
variability modeling extending the approach presented in [12] and connecting
variation points to product features captured by feature models.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD Conference, pp. 207–216 (1993)

2. Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P.,
Pohl, C., Rummler, A.: An exploratory study of information retrieval techniques
in domain analysis. In: SPLC, pp. 67–76 (2008)

3. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software
Product Lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.
Springer, Heidelberg (2009)

4. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Eng. 30(6), 355–371 (2004)

5. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: GPCE.
Springer (2010)

6. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

7. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

8. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There
and back again. In: SPLC, pp. 22–31 (2008)

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1996)

10. Gomaa, H.: Designing Software Product Lines with UML. Addison Wesley (2004)

11. Gurov, D., Østvold, B.M., Schaefer, I.: A hierarchical variablility model for software
product lines. Technical Report TRITA-CSC-TCS 2011:1, KTH Royal Institute of
Technology, Stockholm, 26 pages (2011),
http://www.csc.kth.se/~dilian/Papers/techrep-11-1.pdf

12. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F.: Hierarchical
variability modeling for software architectures. In: Software Product Line Confer-
ence, SPLC 2011 (2011) (to appear)

13. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: Software Product Line
Conference (SPLC 2008), pp. 139–148. IEEE (2008)

14. Loesch, F., Ploedereder, E.: Optimization of variability in software product lines.
In: SPLC, pp. 151–162 (2007)

http://www.csc.kth.se/~dilian/Papers/techrep-11-1.pdf


A Hierarchical Variability Model for Software Product Lines 199

15. Niu, N., Easterbrook, S.: Concept analysis for product line requirements. In: Pro-
ceedings of the 8th ACM International Conference on Aspect-oriented Software
Development, AOSD 2009, pp. 137–148 (2009)

16. Noda, N., Kishi, T.: Aspect-Oriented Modeling for Variability Management. In:
Software Product Line Conference (SPLC 2008), pp. 213–222. IEEE (2008)

17. Pérez, J., Dı́az, J., Soria, C.C., Garbajosa, J.: Plastic Partial Components: A so-
lution to support variability in architectural components. In: WICSA/ECSA, pp.
221–230 (2009)

18. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer (2005)

19. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification in
function-block-based models. In: Proceedings of the Ninth International Conference
on Generative Programming and Component Engineering, GPCE 2010, pp. 23–32.
ACM, New York (2010)

20. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional Algorithmic Verification
of Software Product Lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

21. Snelting, G.: Reengineering of configurations based on mathematical concept anal-
ysis. ACM Trans. Softw. Eng. Methodol. 5, 146–189 (1996)

22. van Ommering, R.: Software reuse in product populations. IEEE Trans. Software
Eng. 31(7), 537–550 (2005)

23. Völter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: Software Product Line Conference (SPLC
2007), pp. 233–242. IEEE (2007)

24. Ziadi, T., Hëlouët, L., Jézéquel, J.-M.: Towards a UML Profile for Software Product
Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2004)



Learning-Based Software Testing:
A Tutorial

Karl Meinke, F. Niu, and M. Sindhu

School of Computer Science and Communication,
Royal Institute of Technology, 100-44 Stockholm, Sweden

karlm@nada.kth.se

Abstract. We present an overview of the paradigm of learning-based
testing (LBT) for software systems. LBT is a fully automated method for
specification-based black-box testing using computational learning prin-
ciples. It applies the principle of tests as queries, where queries are either
generated by a learning algorithm or by a model checker through use of
a formal requirements specification. LBT can be applied to automate
black-box testing of a variety of different software architectures includ-
ing procedural and reactive systems. We describe some different testing
platforms which have been designed using this paradigm and some rep-
resentative evaluation results. We also compare LBT with related testing
methods.

1 Introduction

Learning-based testing (LBT) is an emerging technology for specification-based
black-box testing that encompasses the three essential steps of : (1) test case
generation (TCG), (2) test execution, and (3) test verdict (the oracle step). It
represents a quite sophisticated and powerful paradigm of testing that can be
applied to many different types of software architecture. So far, LBT has been
successfully applied to testing procedural systems in [25] and [27], and reactive
systems in [30] and [28]. The basic idea of LBT is to automatically generate a
large number of high-quality test cases by combining a model checking algorithm
with an efficient model inference algorithm, and integrating these two with the
system under test (SUT) in an iterative loop.

For effective testing, a variety of efficient learning principles such as incremen-
tal learning must be applied in order to make this technology fast and scalable to
large SUTs. Our research into LBT has shown that, when suitably optimised, it
has the capability to significantly outperform random testing in the speed with
which it finds errors in an SUT.

In this tutorial we will present the basic principles of learning-based testing.
Our tutorial is mainly oriented towards testing researchers and test tool builders.
As this is a short tutorial, we will ignore the deeper theoretical issues involved in
LBT, such as convergence of learning, decidability of model checking and sound-
ness and completeness of testing. These issues have been considered elsewhere
in the literature. The methodology of learning based testing, and its integration

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 200–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Learning-Based Software Testing: A Tutorial 201

into different software lifecycle models have not yet been investigated, and must
be left for some future discussion.

The construction of LBT systems is technically demanding, since it requires
expertise in both computational learning and model checking. Nevertheless, we
will try to demonstrate that an investment in these techniques pays off in terms
of efficient and flexible testing tools. Using three LBT testing tools that have
been presented in the literature, we will illustrate how the LBT paradigm can be
instantiated for testing different kinds of software systems. We will also review
the literature on testing and learning, and compare the LBT approach with
related approaches to software testing.

The organisation of this tutorial is as follows. In Section 2, we present an
overview of the general principles of LBT. In Section 3, we discuss different
computational learning techniques that have been used to optimise the effective-
ness of testing. In Section 4, we provide a short survey of some practical LBT
platforms and tools which have been implemented to evaluate the LBT paradigm
on different types of SUT. We discuss typical performance results achieved with
such tools. In Section 5, we review the literature on learning and testing, and we
compare LBT with some similar approaches in the testing literature. Finally, in
Section 6 we draw some conclusions and discuss the prospects for future research.

2 What Is Learning-Based Testing?

It is easier to define the paradigm of learning-based testing if we first consider
the more general problem of specification-based testing.

2.1 Specification-Based Testing

In specification-based testing, we are mainly concerned with so called functional
or behavioural testing, although in the case of some systems such as real-time
systems, behaviour and performance cannot be entirely separated.

The starting point of specification-based testing is a user requirement SysReq
(a black-box requirement) concerning the functional behaviour of the system
under test. Ideally such a requirement is expressed in a formal logical language
such as a first-order or temporal logic. This has the significant advantage that
we can then automate both test case generation, and verdict construction.

A generic architecture for specification-based testing is presented in Figure
2.1. In this figure we see that the first step in specification-based testing is to
apply a constraint solving algorithm to SysReq. This step generates a test case
for an SUT as an input datum i satisfying any preconditions or input con-
straints expressed in SysReq. Executing this test case i on the SUT using a
runtime environment yields an observed output datum o. Finally, we can anal-
yse the input/output pair (i, o) together with the requirement SysReq using a
constraint checker to derive a verdict about the test case i. This last phase is
commonly known in testing as the oracle step. If the observed input/output pair
(i, o) agrees with the requirement SysReq then the test case is passed, otherwise



202 K. Meinke, F. Niu, and M. Sindhu

SysReq pass/fail 

Test 
case Output 

Constraint solver Constraint checker Language runtime 

ssass

Fig. 2.1. Specification-based Test Framework

this observed black-box behaviour contradicts SysReq and the test case is failed.
Note that while constraint checking is usually a decidable problem, constraint
solving is often undecidable, due to the recursive insolvability of the satisfisfia-
bility problem for many logics. Nevetheless, in some circumstances well known
decision algorithms exist, and some of these are practically useful.

A small pedagogical example of these concepts is illustrated in Figure 2.2.
Here we apply this generic model of specification-based testing to unit testing a
simple procedural program. Generally, a unit of a procedural program takes a
single input vector and returns a single output vector, and timing issues do not
arise, although the unit may fail to terminate. In Figure 2.2 we are unit testing
a small numerical program that implements a square root algorithm, such as
Newton’s method. Of course in black-box testing the structure of the code is
irrelevant, and it is only the black-box behaviour which is important. Functional
requirements on procedural code such as this are conventionally expressed using
a pre- and postcondition or Hoare triple. In this example, we take the simple
functional specification {x ≥ 0} SUT { |y∗y−x| ≤ ε }, which expresses that for
a positive input value x the absolute error of the square of the returned value y
lies within a small constant positive error tolerance ε.

Let us suppose that the constraint solver returns an input value x = 4.0
satisfying the precondition x ≥ 0. Suppose also that the SUT returns the output
value y = 2.0. Then a simple calculation confirms that the assignment (x :=
4.0, y := 2.0) satisfies the postcondition |y∗y−x| ≤ ε for any choice of positive ε.

Figure 2.2 is meant just to provide a short illustration of the principles of
specification based testing. It is not the purpose of this tutorial to provide ex-
tensive information about this subject, and the reader is referred to surveys such
as [36] for further details. On the other hand, this simple example already illus-
trates some of the difficulties of specification-based testing. One single test case
would not normally be considered adequate as a test suite, even for a simple
numerical SUT such as this. However, generally speaking we have no clear idea
how to systematically generate many solutions to a precondition by constraint
solving. (The previous example is deceptive since it is unusually simple.) This is



Learning-Based Software Testing: A Tutorial 203

Constraint solver Constraint checker 

Fig. 2.2. Specification-based Testing of a procedural code unit

because it is impossible to analyse the number and distribution of solutions in
the general case.

An alternative approach to the problem of generating a large number of test
cases might be to introduce some sort of feedback loop into this testing process,
to guide and possibly even improve the quality of subsequent test cases. Here,
quality might refer to coverage or it might refer to effectiveness in finding an
error. We take this possibility as our point of departure for presenting learning-
based testing.

2.2 Learning-Based Testing

The goal of learning-based testing is to improve the process of specification-based
black-box testing as described in Section 2.1 above. This improvement aims to
automatically generate a large number of test cases within a reasonable time
frame, while simultaneously optimising the quality of test cases based on the
outcome of previous tests. Furthermore, the whole process should require little
or no manual interaction if we are to retain the full benefits of test automation
using formal requirements specifications.

As we have already suggested, the key idea is to introduce a feedback loop
into the basic testing process of Figures 2.1 and 2.2. Technically, this is achieved
by introducing a learning algorithm, which tries to infer a model of the unknown
SUT on the basis of all currently available test data (inputs and outputs). This
model of the SUT can then be automatically analysed (a process known as
model checking) to try to identify counterexamples within the learned model to
the correctness of the system requirements SysReq. Any such counterexample
can then be applied as a new test case. If the model is a reasonably accurate
approximation of the SUT (at least as far as the requirement is concerned)
then there is a good chance that this new test case will witness a discrepancy
between the observed SUT behaviour and the system requirement. In any case
the accuracy of the learned model will improve over time, as new test cases are



204 K. Meinke, F. Niu, and M. Sindhu

SysReq pass/fail 

i o 

Model checker Constraint checker 

behavioural data (i, o) 

System-Model 

che

b h i l d t (i )

Language runtime 

ass/ss

Fig. 2.3. Learning-based Test Framework

executed and integrated into it. A generic model of the LBT paradigm can be
seen in Figure 2.3.

To understand this paradigm in more detail, and sketch a basic LBT algo-
rithm, it is useful to focus on three key components:

(1) a (black-box) system under test (SUT) S,

(2) a formal requirements specification SysReq for S, and

(3) a learned model M of S.

As we have seen, (1) and (2) are common to all specification-based testing, and it
is (3) that is distinctive. Learning-based approaches are heuristic iterative meth-
ods to automatically generate a sequence of test cases. The heuristic approach
is based on learning a black-box system using tests as queries.

An LBT algorithm iterates the following four steps:

(Step 1) Suppose that n test case inputs i1, . . . , in have been executed on S
yielding the system outputs o1, . . . , on. The n input/output pairs (i1, o1), . . . ,
(in, on) are synthesized into a learned model Mn of S using an efficient learning
algorithm (see Section 3). This step involves generalization from the given data,
(which represents an incomplete description of S) to all possible data. It gives
the possibility to predict previously unseen errors in S during Step 2.

(Step 2) The system requirements SysReq are satisfiability checked against the
learned model Mn derived in Step 1 (aka. model checking). This process searches
for a counterexample in+1 to the requirements.

(Step 3) The counterexample in+1 is executed as the next test case on S, and if
S terminates then the output on+1 is obtained. If S fails this test case (i.e. the
pair (in+1, on+1) does not satisfy SysReq) then in+1 was a true negative and
we proceed to Step 4. Otherwise S passes the test case in+1 so the model Mn

was inaccurate, and in+1 was a false negative. In this latter case, the effort of



Learning-Based Software Testing: A Tutorial 205

executing S on in+1 is not wasted. We return to Step 1 and apply the learning
algorithm once again to n + 1 pairs (i1, o1), . . . , (in+1, on+1) to infer a refined
model Mn+1 of S.

(Step 4) We terminate with a true negative test case (in+1, on+1) for S.

Thus an LBT algorithm iterates Steps 1 . . . 3 until an SUT error is found
(Step 4) or execution is terminated. Possible criteria for termination include a
bound on the maximum testing time, or a bound on the maximum number of
test cases to be executed. More sophisticated models of termination can be based
on the degree of convergence of the underlying model (c.f. [27]), which is a kind
of black-box coverage measure.

This iterative approach to TCG yields a sequence of increasingly accurate
models M0, M1, M2, . . ., of S. (We can take M0 to be a minimal or even empty
model.) So, with increasing values of n, it becomes more and more likely that
satisfiability checking in Step 2 will produce a true negative if one exists. Notice
if Step 2 does not produce any counterexamples at all then to proceed with the
iteration, we must construct the next test case in+1 by some other method, e.g.
using a structural query generated by a learning algorithm, or using a random
query (see Section 3.2). Therefore in LBT all learning can be classified as active
learning (in the terminology of computational learning theory), since different
algorithms are used to actively generate new queries during learning.

In practise, depending upon the modeling method and learning algorithm
which one uses, it may not be possible to generate a new learned model Mn+1

after each new i/o pair (in+1, on+1). For example, this is true for most classical
automata learning algorithms such as Angluin’s L* algorithm [2], where the
gap between successive hypothesis automaton constructions may be of the order
of hundreds of thousands of i/o pairs. Observations of this kind have led us to
investigate new learning algorithms more suitable for learning-based testing such
as those of [26] and [30].

Generally speaking, we can characterise any LBT architecture in terms of:

(i) the class of SUTs to be tested (e.g. procedural, reactive etc.),
(ii) the class of models Mi,
(iii) the learning algorithm used to infer models Mi,
(iv) the formal specification language used to express requirements, and
(v) the satisfiability algorithm used to derive counterexamples.

Different choices from each of these categories will lead to LBT architectures
with very different capability and performance properties. We will use this five-
fold classification to discuss existing LBT architectures in Section 4. Note that in
general it is difficult to predict testing performance from any theoretical analysis
of these individual components. Therefore practical implementation and evalu-
ation is an important aspect of research into learning-based testing.



206 K. Meinke, F. Niu, and M. Sindhu

3 Learning Principles for Efficient Testing

As has already been suggested in Section 2.2, for LBT to be fast at finding
errors, it is important to use an efficient learning algorithm. In fact software
testing places some requirements on learning algorithms which are rather novel
from the traditional perspective of computational learning. Generally speaking,
a good learning algorithm should maximise the opportunity of the satisfiability
algorithm to find a true counterexample to the requirements SysReq as soon
as possible. In addition, to achieve scalability of LBT, a number of other effi-
ciency principles should be applied. We describe some of the most important
learning principles that have been applied in this section. Further research into
computational learning is still needed to extend this set of efficient techniques.

3.1 Incremental Learning

A learning algorithm L is said to be incremental if it can produce a sequence of
models M0, M1, . . ., known as hypothesis models, which are approximations to
an unknown SUT S, based on a sequence of information (queries and results)
about S. The sequence M0, M1, . . . must finitely converge to S, at least up
to behavioural equivalence. This principle is usually known as learning in the
limit after the pioneering work on automata learning of Gold [18]. In addition,
the computation of each new hypothesis Mi+1 should reuse as much structural
information as possible about the previous hypothesis Mi. Incremental learn-
ing algorithms can be contrasted with complete learning algorithms, where the
emphasis is on having a sufficiently large data set (e.g. a characteristic set of
queries) such that a model of the entire SUT S can be constructed as one single
hypothesis M . By contrast, incremental learning algorithms compute a "best
guess" from the currently available data.

Incremental learning algorithms are necessary for efficient learning-based test-
ing of reactive systems for two reasons.

(1) Real systems may be too big to be completely learned and tested within a
feasible timescale. This is due to their inherent complexity, and also the typical
complexity properties of learning and model checking.

(2) Testing of specific requirements such as use cases may not require learn-
ing and analysis of an entire software system, but only of that fragment which
implements the requirement SysReq.

Thus incremental learning improves the speed of LBT, since we can model check
at more frequent intervals. It also improves the scalability of LBT, since we need
not learn an entire system to find errors. In this last respect, incremental learning
is similar to the technique of program slicing (see e.g. [23]) used in program anal-
ysis to reduce code size. Both methods can be executed dynamically. However,
program slicing is a glass box technique, while LBT is a black-box technique.

To take an example: for automata, as widely used models of reactive sytems,
there is an extensive literature on the problem of learning (also known as regular
inference). A recent survey is [14]. In practise, most of the well-known classi-
cal regular inference algorithms such as L* (Angluin [2]) or ID (Angluin [1])



Learning-Based Software Testing: A Tutorial 207

are designed for complete rather incremental learning. Among the much smaller
number of known incremental learning algorithms, we can mention the RPNII
algorithm (Dupont [15]), the IID algorithm of (Parekh et al. [32]) and IDS al-
gorithm of (Meinke and Sindhu [29]) which learn Moore automata, the CGE
algorithm (Meinke [26]) which learns Mealy automata and the IKL algorithm of
(Meinke and Sindhu [30]) which learns deterministic Kripke structures.

3.2 Query Types

As we have already observed in Section 2.2, learning in LBT is active learning.
This means that one or more algorithms are used to generate queries (as test
cases) during the learning process. By considering the kinds of query generators
used, and the types of queries they construct, we can influence the efficiency of
testing.

For testing efficiency, we need to be aware that the overhead of SUT execution
to answer a query can be large compared with the execution time of the learning
algorithm itself (see e.g. [5]). So queries should be seen as “expensive”, which
means that we should try to choose the most efficient type at any time.

So far, based on the presentation we have given, we can identify three different
types of query, namely:

(i) model checking queries generated by model checkers,
(ii) structural queries generated by learning algorithms, and
(iii) random queries generated by random data generators.

A model checker query is a potential counterexample to a specific user require-
ment SysReq. On the other hand, a structural query is generated by a learning
algorithm to identify model structure, for example to identify a valid state space
partition. A random query can be applied when the methods of model checking
and learning fail to generate any new queries. In practise this can be observed
to happen, albeit with low frequency. However, even a random query may be
required to satisfy logical constraints, such as a precondition of a user require-
ment. So the algorithmic cost of generating these different kinds of query varies
very much. Generally speaking however, random queries are computationally the
easiest type to generate, while model checker queries are the most expensive to
generate.

With regard to their testing efficiency, empirical evidence that we have gath-
ered (using the LBT tools described in Section 4) suggests that: (i) random
queries make the least efficient test cases, while (ii) model checking queries are
more efficient than structural queries. This efficiency is measured in terms of
the number of queries needed (on average) to find an SUT error. The real-time
performance of learning-based testing has other factors involved as we shall see.

These efficiency differences, which can be quite significant, are mainly due to
the varying relevance of each query type for falsifying a user requirement SysReq.
Quite simply, the model checker (unlike the learner or random generator) is the
only algorithm which "knows" about the user requirement. The probability of



208 K. Meinke, F. Niu, and M. Sindhu

falsifying SysReq on the basis of a random query is always rather low. For this
reason, LBT is nearly always more efficient than random testing, unless the
distribution of an SUT error is very large.

Structural queries, generated by learning algorithms, also make no reference
to user requirements SysReq. Therefore, they too can only uncover an SUT error
by accident and so perform poorly by comparison with model checker queries.
However, the comparison with random queries is rather surprising. In [41] it is
shown (in the context of reactive systems testing) that structural queries achieve
better functional coverage than random queries. This is because most learning
algorithms are optimised to discover SUT structure and converge in an efficient
way, while random querying ignores any such structure.

By now we can see that the real-time performance of LBT involves a delicate
balance between the cost of generating various kinds of test case versus their
effectiveness at finding SUT errors. Model checking queries are very effective,
but expensive to generate. Random queries are ineffective, but cheap to generate.
These issues can be seen in practise in Section 4, when we look at the testing
performance of specific LBT tools.

Let us draw some conclusions from these observations about query efficiency
for the design of practical learning algorithms for LBT. We can see that when
no counterexample can be found by model checking (which occurs in practise),
it is generally better to use a structural query than a random query. However,
it is generally better to apply a model checker query than a structural query.
Therefore, as many queries as possible should be derived from model checking
the hypothesis model Mi, and as few queries as possible should be derived by
structural analysis of the learning algorithm. These observations have led us
to investigate new learning algorithms that construct hypothesis automata us-
ing very few structural queries. For example the CGE algorithm of [26] uses a
greedy technique that requires no structural queries at all. The RPNII learning
algorithm of [15] also shares this property.

3.3 Local Learning

Instead of learning a single global model of an SUT, it may be possible to learn
a set of smaller local models, which collectively model the SUT. This principle
was first applied to LBT in [25], where a single global polynomial model of a
numerical program was replaced by a set of piecewise overlapping polynomial
models.

Where local learning can be applied, it can be shown to substantially increase
the efficiency of learning and testing. On the one hand it increases the speed of
learning, which usually has a time complexity that is super-linear with respect to
the size of models. One can also usually restrict the number of local models that
need to be updated and model checked after each new test case. Furthermore,
local learning increases the speed of model checking, since again smaller local
models tend to be much easier to check.

In the search for counterexamples to a user requirement SysReq, it may also be
possible to direct the search to specific local models while ignoring others. This



Learning-Based Software Testing: A Tutorial 209

choice can be made based on the estimated reliability of different local models
(say by a convergence analysis), and the known absence of any counterexamples.
This constitutes a novel kind of partition of the underlying SUT input space, and
supports an efficient depth first search for errors. One example of this heuristic
is described in [27], where the principle of convergence is used to estimate local
model reliability and hence direct counterexample search.

3.4 System Abstraction

Abstraction has long been understood as an important principle for hiding im-
plementation details which can make software analysis an easier task. Many
examples of this principle can be applied to LBT. When used appropriately, ab-
straction can improve both the speed and scalability of complete LBT systems.

For example, an abstraction principle such as data abstraction can be applied
to the choice of learned models appropriate for an SUT class (see e.g. Section 4.1
below). This choice can then make both learning and model checking much easier
to carry out. Incremental learning (c.f. Section 3.1) can itself be considered as a
type of abstraction technique, since those parts of an SUT which are irrelevant
to a user requirement SysReq are ignored (abstracted away).

Other abstraction techniques such as n-wise testing and bit-slicing have also
been considered in the context of LBT. (These techniques will be described later
in the survey.) There are many more well-known abstraction techniques which
have yet to be investigated in an LBT context.

4 A Survey of LBT Tool Architectures

The subject of learning-based testing is still in its infancy. However, already a
number of complete architectures for testing different types of SUT have been
designed, implemented and evaluated. In most cases, evaluation is still an on-
going activity, due to the difficulty of obtaining and testing a large number of
convincing case studies. However, some useful and promising conclusions can
already be made on the basis of existing tools.

Below, we describe three practical systems for learning based testing which
have been documented in the literature. The first of these examples concerns
testing procedural code, while the other two concern testing of embedded or
reactive systems. In the context of testing reactive systems, a number of other
authors, (for example Peled et al. [33], Groce et al. [19] and Raffelt et al. [37])
have also considered a combination of learning and model checking to achieve
testing and/or formal verification. This work will be compared with the LBT
approach in Section 5.

4.1 LBT for Procedural Systems

Architectural Summary:
SUT Type: Procedural numerical code



210 K. Meinke, F. Niu, and M. Sindhu

Model: Piecewise polynomial functions
Learning algorithm: Algebraic parameter estimation
Specification language: First-order logic over real-closed fields
Model checker: Hoon/Collins satisfiability algorithm for real-closed fields

In [25] the problem of applying LBT principles to procedural code was first
considered. This resulted in a very simple LBT framework that was substantially
extended in [27]. It is this latter architecture that will be discussed here.

A simple black-box model of a numerical procedural unit is a partial function
f : Rm → R

n, where the real numbers are used as an idealised model or data
abstraction of a specific floating point number model. We can learn such a func-
tion by splitting it into its n co-ordinate functions f1, . . . , fn : Rm → R. By
the Weierstrass Approximation Theorem (see e.g. [35] or [38]) any continuous
total function f : Rm → R can be approximated to arbitrary accuracy over a
bounded m-dimensional sphere of radius r by an m-dimensional d-degree poly-
nomial for some degree d. To deal with non-termination and discontinuity in
numerical code, we can replace a single global polynomial (of high degree) by
a set of piecewise overlapping polynomial models (of low degree) defined over
several m-dimensional spheres s1, . . . , sk with different radii r1, . . . , rk and
centres c1, . . . , ck. The use of these non-gridded centres c1, . . . , ck helps reduce
the exponential blowup in model size when larger values of m are involved.

Thus we bound the maximum degree d, and instead of increasing d to improve
approximation, we increase the number and reduce the radii ri of the local models
instead. This gives a local modeling technique in the sense of Section 3.3. Figure
4.1 illustrates this modeling technique with a simple example.

Overlapping Area

f1�x�

f2�x�

r2

r1

Centre Points

�5 5 10 15

x

�5

5

10

y

Fig. 4.1. Two cubic local models fi(x) = aix
3 + bix

2 + cix + di, i = 1, 2

Our research into LBT for procedural SUTs has focussed on numerical algo-
rithms mainly because there is a well known and powerful algorithm for sat-
isfiability analysis of first-order formulas over real-closed fields. This is the so
called Hoon/Collins cylindric algebraic decomposition (CAD) algorithm (see e.g.
[7]). This is a type of quantifier elimination algorithm, although practical im-
plementations can include other methods such as Grœbner basis techniques for
solving formulas. The LBT architecture of [27], uses an implementation of the
CAD algorithm provided in the MathematicaTMcomputer algebra package.



Learning-Based Software Testing: A Tutorial 211

�

�

�

� �

�

�

�

�
�

0.01 0.1 1 10 100
Error size ���

2

4

6

8

10

12

14

Performance ratio IRT�LBT

� Inequational spec.

� Equational spec.

Fig. 4.2. Relative performance of iterative random testing (IRT) and LBT

Since (d + 1)m points suffice to uniquely determine an m-dimensional degree
d polynomial, each local model has this many points. However, local models can
share points, as indicated in Figure 4.1, so that they overlap. Learning a local
polynomial model with centre point ci is easily implemented by solving a system
of linear equations to estimate its coefficients, based on the (d + 1)m new and
previously existing data points closest to its centre point. Only those local mod-
els which are close to a new input/output pair (i, o) ∈ R

m+1 need be updated.
Model radii reduce naturally over time, as more new points and local models
are added. Furthermore, the relative convergence of each local polynomial model
can be estimated by integrating the volume difference between successive ap-
proximations for it. This convergence can be used as a proxy for the reliability of
counterexamples contained within the local model. Thus if several counterexam-
ples to SysReq are found by model checking then we can choose a counterexample
from the most reliable local model as the next test case. This reliability approach
to test case choice implements a depth-first search for counterexamples in the
sense of Section 3.3.

When the value of m becomes large, we face a classic problem of high-
dimensional modeling. This well known problem can be approached using clas-
sical methods of software testing such as n-wise testing (see e.g. [34]) to bound
the maximum dimension of polynomial models. It has been widely observed in
the literature that a large percentage of software errors can be found using low
values of n. The case n = 2 (so called pairwise testing) is especially popular
among testing practitioners. Thus we see in this particular LBT implementation
how the basic principles of LBT can be extended with a variety of optimisations
(as described in Section 3) for dealing with practical real-world testing problems.

This LBT architecture has been evaluated using both specific numerical codes
and randomly generated multidimensional piecewise continuous functions. In
both cases code mutations were injected to induce errors. In fact, with randomly
generated functions we were able to control the size of errors, and investigate
testing speed as a function of this size. The chosen benchmark for compari-
son in both cases was iterative random testing (IRT), which provides a simple
and easily implemented alternative technique. One set of evaluation results pre-
sented in [27], is the relative performance graph shown in Figure 4.2. This graph
demonstrates that for two different structural types of requirements formula, the



212 K. Meinke, F. Niu, and M. Sindhu

relative improvement of LBT over IRT increases steadily as the size of injected
errors (and thus the ease of finding them randomly) decreases. At the limits of
our data set, these speedup is on average a factor of 10-15.

4.2 LBT for Reactive Systems I

Architectural Summary:
SUT Type: Deterministic reactive systems
Model: Deterministic Boolean valued Kripke structures
Learning algorithm: IKL incremental learning algorithm for Kripke structures
Specification language: Propositional linear temporal logic
Model checker: NuSMV model checking package (SAT and BDD techniques)

A reactive system is a software system that interacts continuously with its en-
vironment over time. Typical applications include embedded software to control
mechanical devices, such as automobile components, robotic machinery, flight
control systems etc. Research into modeling and verifying such systems has made
great progress over the last decade. It is nowadays conventional to model reactive
systems as some sort of state transition system such as a Kripke structure, and
to model user requirements on such reactive systems as temporal logic formulas.
A survey of this very extensive subject is for example [12].

In [30] we introduced a new incremental learning algorithm IKL for deter-
ministic Kripke structures. A deterministic Kripke structure can be viewed as a
Moore machine, with a unique output for each state given by a Boolean vector
(o1, . . . , on) ∈ B

n. The IKL learning algorithm combines incremental learning
with other optimisations such as bit projection and lazy partition refinement to
yield an efficient algorithm for learning-based testing of reactive systems over a
Boolean data type. By means of a data encoding, this approach can in principle
be applied to learning reactive systems over any finite data types.

Bit projection is a technique that allows the IKL algorithm to learn just those
output bits which are relevant to (i.e. appear in) a propositional temporal logic
formula which formalises a user requirement SysReq. This abstraction technique
can significantly reduce the size of the learned Kripke structure. Efficient bit pro-
jection requires on-the-fly minimisation of the state space of the learned Kripke
structure. So by confining ourselves to deterministic Kripke structures we can
use an efficient n logn algorithm to do minimisation. Since bit projection in-
volves learning a single deterministic finite automaton (DFA) for each projected
bit, we can apply lazy partition refinement to reduce the number of structural
queries generated to learn several DFA simultaneously. This latter approach is
rather technical and the reader is referred to [30] for further details.

For model checking Kripke structures we chose the NuSMV model checker
(see e.g. Cimatti et al. [10]), which supports the satisfiability analysis of Kripke
structures with respect to both linear temporal logic (LTL) and computation
tree logic (CTL) [12]. A random query generator was also integrated to ensure
that learning proceeds even when no model checker or structural queries can be
generated. The resulting LBT architecture can be seen in Figure 4.3. Note in



Learning-Based Software Testing: A Tutorial 213

this diagram how the oracle problem is solved by generating a predicted output p
from the learned Kripke structure Mn and comparing this (under equality) with
the observed output o. More sophisticated oracles are possible (see Section 4.3
below), but this one is fast and works reasonably well in practise.

Fig. 4.3. An LBT Architecture using the IKL algorithm

Since the underlying Boolean data type allows very efficient learning and
model checking (using either BDD or SAT solving techniques) the performance
of this LBT architecture is quite satisfactory. Table 1 below gives the results of
testing six user requirements on an elevator control program with 38 states and
8 output bits.

Table 1. LBT performance for Elevator Requirements

Requirement tfirst (sec) ttotal (sec) % improvement (tfirst/ttotal ∗ 100)
Req 1 0.34 1301.3 0.002
Req 2 0.49 1146 0.04
Req 3 0.94 525 0.2
Req 4 0.052 1458 0.004
Req 5 77.48 2275 3.4
Req 6 90.6 1301 7.0

We compare the average time tfirst needed to first discover an injected error
with the average time ttotal needed to completely learn the SUT. These results
show that on average incremental learning finds a first instance of an error using
between 0.002% and 7% of the time needed to perform complete learning. For
this specific case study and set of requirements the data supports our hypothesis
about the great advantage of using incremental learning techniques.



214 K. Meinke, F. Niu, and M. Sindhu

4.3 LBT for Reactive Systems II

Architectural Summary:
SUT Type: Deterministic reactive systems
Model: Extended Mealy automata (EMA) over abstract data types
Learning algorithm: CGE incremental learning algorithm for EMA
Specification language: Quantifier-free first-order linear temporal logic
Model checker: First-order disunification algorithm using basic narrowing

Real-world reactive systems, such as flight controllers, often require high-level
and complex data types that go beyond the Boolean data type. At the very least,
there may be a need for infinite data types such as integers (counting), floating-
points (measuring) and symbolic data types such as strings (naming). Each of
these extensions results in infinite state systems. They may even be all combined
together inside the same control algorithm which completes a complex feedback
loop between sensors and mechanical actuators. Furthermore, even finite state
systems, such as communication protocols may require the use of complex sym-
bolic messages with finite parameters.

The concept of an abstract data type (ADT) has been introduced as a method-
ology for dealing with complex data models and data abstraction. The theory of
algebraic data type specification (see e.g. [24]), provides a precise model of ADTs
that can be used to design algorithms and data structures that implement this
programming construct. In [26] we introduced a new symbolic learning algo-
rithm CGE for extended Mealy automata (EMA). An EMA is a Mealy machine
that is parameterised by algebraic data types, i.e. the input and output data for
an EMA are ADTs. This combination is elegant, since automata are algebraic
structures in their own right, as are ADTs. EMA provide a high-level model
of reactive systems that is similar to, but simpler than, the well known Stat-
echart model of [20]. The CGE algorithm implements symbolic learning, since
the learned representation of the unknown SUT is a string rewriting system
(SRS) over the underlying ADT. This representation can then be analysed using
symbolic methods such a narrowing (see below).

Having shown that automata over high-level ADTs can be learned in princi-
ple, [28] showed how symbolic constraint solving techniques based on methods
of disunification, [13] term rewriting [3] and narrowing [21] can be used to model
check an SRS representation of an EMA. In this case the requirements lan-
guage for EMA is a quantifier-free first-order temporal logic, since equations and
inequalities concerning the underlying ADT are needed. The basic narrowing
(BN) model checker implemented in [28] reduces the problem of model checking
first-order linear temporal logic to the problem of disunification (i.e. equation
solving) for sets of first-order equations and inequations by a translation method.
Narrowing is a symbolic method to solve equations by means of term rewriting,
while basic narrowing is a restricted form of narrowing that can be guaranteed
to terminate under certain conditions. Figure 4.4 illustrates a (by now hopefully
familiar) architecture for LBT that combines the CGE learning algorithm with
a basic narrowing (BN) model checker.



Learning-Based Software Testing: A Tutorial 215

BN Model Checker

Oracle

Random Input
Generator

Pass / (i
k+1

, o
k+1

)
 

R
k

Input/Output Pair: 
(i

k+1
, o

k+1
)

R
k

CGE
Learning Algorithm

SUT
Input : i

k+1

Equivalence Checker
SUT =? R

k

True / Stop

Warning 
or

Fail / Stop

LTL Requirement Formula
 ϕ 

Fig. 4.4. An LBT architecture for reactive systems using symbolic learning

It is worthwhile contrasting the oracle in this architecture, with that of Section
4.2 (c.f. Figure 4.3). In the above architecture, the oracle avoids making any
specific prediction of the SUT behaviour ok+1 that should observed on executing
input ik+1. Instead, it uses the translation of temporal logic into first-order logic
to plug the i/o pair (ik+1, ok+1) back into the requirement formula SysReq and
check the truth of this formula (recall Figure 2.2 in Section 2.1). This approach
to oracle construction is more flexible and powerful than the oracle described in
Section 4.2. Technical details of this approach can be found in [28].

Table 2 illustrates the results of a case study using the above LBT architecture
to test a simplified version of the TCP/IP protocol. This case study appeared
in [28]. It involves an 11 state EMA with a symbolic input and output alphabet
given by various send and receive messages with parameters. Following the eval-
uation principles described in Section 4.1, we again compared LBT with iterative
random testing (IRT) for five different temporal logic formulas representing dif-
ferent user requirements. We measured the average number of queries Qfirst and
the average time tfirst to first discover an injected error for both LBT and IRT.

The performance results of Table 2 are somewhat mixed. On the one hand,
we can see that in terms of query numbers, LBT is always much more efficient
than random testing. On the other hand, we can also see that the real-time
performance of this LBT architecture is sometimes better and sometimes worse
than iterative random testing. The essential problem here is that the overhead
of learning and model checking an EMA is quite high relative to the much
simpler task of randomly generating data. On the other hand, we can see that



216 K. Meinke, F. Niu, and M. Sindhu

Table 2. Random testing versus LBT: a performance comparison

Requirement Random Testing LBT
Qfirst tfirst(sec) Qfirst tfirst(sec)

Req 1 101.4 0.11 19.11 0.07
Req 2 1013.2 1.16 22.41 0.19
Req 3 11334.7 36.7 29.13 0.34
Req 4 582.82 1.54 88.14 2.45
Req 5 712.27 2.12 93.14 3.13

random test data is an inefficient way to find requirements failures. Nevertheless,
this data might bode well if the algorithmic methods of symbolic learning and
constraint solving can be made more efficient.

The use of infinite and abstract data types in learned models is an area where
much further research is still needed to make practical and efficient tools. To
make matters more complicated, the satisfiability problem for many logical lan-
guages over common ADTs is undecidable. This undecidability problem afflicts
both random testing, specification-based testing and LBT equally. Quite simply
the search for test cases that witness a requirements failure cannot always be
guaranteed to terminate.

5 Relations to Other Testing Methods

The connections between computational learning and software testing have been
a fruitful line of research since the pioneering work of Budd and Angluin [6] and
Weyuker’s PhD research [42], in the early 1980s. Earlier approaches to test case
generation by learning include work of Bergadano and Gunetti [4] on inferring
and testing Prolog programs, and PAC-learning and testing of axiomatic models
by Zhu and his colleagues in [44] and [43]. Complexity theoretic results on testing
and learning include [9], [22] and [39].

In the context of testing reactive systems, several more recent works, (for ex-
ample Peled et al. [33], Groce et al. [19] and Raffelt et al. [37]) have considered
a combination of learning and model checking to achieve testing and/or formal
verification. Generally, these approaches use classical algorithms for complete
learning of automata such as variations of Angluin’s L* algorithm. Compared
with the benefits of using incremental learning algorithms, such approaches do
not seem to be optimal if our aim is to use a model checker to focus on rel-
evant test cases (c.f. the discussion of query types in Section 3.2). However,
as we observed in 3.2, [41] has shown that even without model checking, test
case generation by model inference alone can provide better functional coverage
than random testing. So the use of complete learning algorithms is not entirely
inappropriate either.

Within the model checking community the verification approach known as
counterexample guided abstraction refinement (CEGAR) also combines learning
and model checking, (see e.g. Clarke et al. [11] and Chauhan et al. [8]). The LBT



Learning-Based Software Testing: A Tutorial 217

approach can be distinguished from CEGAR by both: (i) an emphasis on testing
rather than verification, and (ii) optimisations on model checking and learning
algorithms specifically chosen to make testing more effective..

There is an extensive literature on the emerging topic of model-based software
testing, and the use of model checkers to automatically generate test cases. Re-
cent surveys that focus on testing of embedded systems include [16] and [17].
Unlike LBT, these approaches involve no learning at all. Rather, they concern
glass-box testing of reactive systems for which an automaton already exists as a
design artifact or model. They generally seek to achieving specific structural cov-
erage criteria on these models, such as all-state or MC/DC. In some sense, LBT
can be seen as model-based testing without a model since rather than constructing
it during a design process, the model is inferred from the actual implementation
using test data. Thus LBT also connects to the subject of model mining. There
are some advantages to learning a model from an SUT, not least in those sit-
uations where the design process fails to update the design model due to code
changes in its implementation.

6 Conclusions and Future Research

We have presented a short tutorial on learning-based testing, and surveyed the
state-of-the art in methods and tools. We have also presented a brief comparison of
LBT with related testing techniques. Further discussion of both of these aspects of
LBT can be found in [31] and [40], where several of the technical papers also appear.

LBT seems to be a novel, general and widely applicable paradigm. While adapt-
able to many different types of SUT, it also seems to have a clear set of design prin-
ciples. Most importantly, it appears to be a step forward in black-box testing, from
the point of view of speed at finding errors, especially those that would normally
be hard to find by random testing. The high degree of automation which can be
achieved in LBT also seems positive from an industrial perspective.

Implementing a successful LBT system is both challenging and rewarding.
Hopefully, this tutorial is sufficient to inspire other attempts at this. However,
much more research remains to be done, both in improving the efficiency and
scalability of LBT, and in evaluating its performance on practical case studies.
More benchmarking against other testing techniques and tools is also needed.
However, the problem of finding a fair basis for comparison between different
tools with different aims seems problematic. Lastly, there are still outstanding
theoretical issues such as coverage measures for LBT that need to be considered.

We gratefully acknowledge financial support for this research from the Swedish
Research Council (VR), the China Scholarship Council (CSC), the Higher Edu-
cation Commission (HEC) of Pakistan, and the European Union under project
HATS FP7-231620. We are also grateful to the anonymous referees for pointing
out errors in earlier drafts of this report.

References

1. Angluin, D.: A note on the number of queries needed to identify regular languages.
Information and Control 51(1), 76–87 (1981)



218 K. Meinke, F. Niu, and M. Sindhu

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(1), 87–106 (1987)

3. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning,
pp. 447–531. Elsevier (2001)

4. Bergadano, F., Gunetti, D.: Testing by means of inductive program learning. ACM
Trans. Software Engineering and Methodology 5(2), 119–145 (1996)

5. Bohlin, T., Jonsson, B.: Regular inference for communication protocol entities. Tech-
nical Report 2008-024, Dept. of Information Technology, Uppsala University (2008)

6. Budd, T.A., Angluin, D.: Two notions of correctness and their relation to testing.
Acta Informatica 18, 31–45 (1982)

7. Caviness, B.F., Johnson, J.R.: Quantifier Elimination and Cylindrical Algebraic
Decomposition. Springer (1998)

8. Chauhan, P., Clarke, E.M., Kukula, J.H., Sapra, S., Veith, H., Wang, D.: Auto-
mated Abstraction Refinement for Model Checking Large State Spaces Using Sat
Based Conflict Analysis. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, pp. 33–51. Springer, Heidelberg (2002)

9. Cherniavsky, J.C., Smith, C.H.: A recursion theoretic approach to program testing.
IEEE Transactions on Software Engineering SE-13(7), 777–784 (1987)

10. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic
Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

11. Clarke, E., Gupta, A., Kukula, J.H., Strichman, O.: SAT Based Abstraction-
Refinement Using ILP and Machine Learning Techniques. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 265–279. Springer, Heidelberg (2002)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
13. Comon, H.: Disunification: a survey. In: Computational Logic: Essays in Honor of

Alan Robinson, pp. 322–359. MIT Press (1991)
14. de la Higuera, C.: Grammatical Inference. Cambridge University Press (2010)
15. Dupont, P.: Incremental Regular Inference. In: Miclet, L., de la Higuera, C. (eds.)

ICGI 1996. LNCS, vol. 1147, pp. 222–237. Springer, Heidelberg (1996)
16. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-

Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)
17. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: A survey.

Tech. rep. 2007-p2-04, TU Graz (2007)
18. Gold, E.M.: Language identification in the limit. Information and Control 10(5),

447–474 (1967)
19. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic Journal of

the IGPL 14(5), 729–744 (2006)
20. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Computer

Programming 8, 231–274 (1987)
21. Hullot, J.M.: Canonical Forms and Unification. In: Proc. Fifth Int. Conf. on Au-

tomated Deduction. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)
22. Vitter, J.S., Romanik, K.: Using vapnik-chervonenkis dimension to analyze the

testing complexity of program, segments. Information and Computation 128(2),
87–108 (1996)

23. Krinke, J.: Program slicing. In: Handbook of Software Engineering and Knowledge
Engineering. Recent Advances, vol. 3. World Scientific Publishing (2005)

24. Loeckx, J., Ehrich, H.D., Wolf, M.: Specification of Abstract Data Types. John
Wiley & Sons, Inc., New York (1996)



Learning-Based Software Testing: A Tutorial 219

25. Meinke, K.: Automated black-box testing of functional correctness using func-
tion approximation. In: ISSTA 2004: Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 143–153. ACM,
New York (2004)

26. Meinke, K.: CGE: A Sequential Learning Algorithm for Mealy Automata. In:
Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 148–162.
Springer, Heidelberg (2010)

27. Meinke, K., Niu, F.: A Learning-Based Approach to Unit Testing of Numerical
Software. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS,
vol. 6435, pp. 221–235. Springer, Heidelberg (2010)

28. Meinke, K., Niu, F.: Learning-Based Testing for Reactive Systems Using Term
Rewriting Technology. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019,
pp. 97–114. Springer, Heidelberg (2011)

29. Meinke, K., Sindhu, M.: Correctness and performance of an incremental learning
algorithm for finite automata. Technical report, School of Computer Science and
Communication, Royal Institute of Technology, Stockholm (2010)

30. Meinke, K., Sindhu, M.: Incremental Learning-Based Testing for Reactive Systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011)

31. Niu, F.: Learning-based software testing using symbolic constraint solving methods.
Licentiate thesis, School of Computer Science and Communication, Royal Institute
of Technology (2011)

32. Parekh, R., Nichitiu, C., Honavar, V.G.: A Polynomial Time Incremental Algo-
rithm for Learning DFA. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS
(LNAI), vol. 1433, pp. 37–49. Springer, Heidelberg (1998)

33. Peled, D., Vardi, M.Y., Yannakakis, M.: Black-box checking. In: Formal Methods
for Protocol Engineering and Distributed Systems FORTE/PSTV, pp. 225–240.
Kluwer (1999)

34. Phadke, M.S.: Planning efficient software tests. Crosstalk 10(10), 11–15 (1997)
35. Phillips, E.R.: An Introduction to Analysis and Integration Theory. Dover,

New York (1984)
36. Poston, R.M.: Automating Specification-Based Software Testing. IEEE Computer

Society Press, Los Alamitos (1997)
37. Raffelt, H., Steffen, B., Margaria, T.: Dynamic Testing Via Automata Learning. In:

Yorav,K. (ed.) HVC2007. LNCS, vol. 4899, pp. 136–152. Springer,Heidelberg (2008)
38. Reimer, M.: Multivariate Polynomial Approximation. Birkhauser, Basel (2003)
39. Romanik, K.: Approximate testing and its relationship to learning. Theoret. Comp.

Sci. 188, 79–99 (1997)
40. Sindhu, M.: Incremental Learning and Testing of Reactive Systems. Licentiate the-

sis, School of Computer Science and Communication, Royal Institute of Technology,
Stockholm, Sweden (2011)

41. Walkinshaw, N., Bogdanov, K., Derrick, J., Paris, J.: Increasing Functional Cover-
age by Inductive Testing: A Case Study. In: Petrenko, A., Simão, A., Maldonado,
J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 126–141. Springer, Heidelberg (2010)

42. Weyuker, E.: Assessing test data adequacy through program inference. ACM Trans.
Program. Lang. Syst. 5(4), 641–655 (1983)

43. Zhu, H.: A formal interpretation of software testing as inductive inference. Journal
of Software Testing, Verification and Reliability 6(1), 3–31 (1996)

44. Zhu, H., Hall, P., May, J.: Inductive inference and software testing. Journal of
Software Testing, Verification and Reliability 2(2), 3–31 (1992)



Machine Learning for Automatic Classification

of Web Service Interface Descriptions

Amel Bennaceur1, Valérie Issarny1, Richard Johansson4,
Alessandro Moschitti3, Daniel Sykes1, and Romina Spalazzese2

1 Inria, Paris-Rocquencourt, France
firstname.lastname@inria.fr

2 Università degli Studi dell’Aquila, Italy
romina.spalazzese@di.univaq.it
3 DISI, University of Trento, Italy

moschitti@disi.unitn.it
4 Centre for Language Technology, University of Gothenburg, Sweden

richard.johansson@gu.se

Abstract. We argue that the automatic classification of web service
interface descriptions into a predefined set of categories can consider-
ably speed up the task of finding compatible web services. By doing
so, we restrict computationally-expensive compatibility checking to sys-
tems within the same domain category. In this paper we show that this
classification can be carried out by leveraging techniques derived from
automatic document classification. In particular, we devise an approach
that exploit the characteristics of web service interface descriptions to
extract the features necessary for inferring the categorisation function.
We further reports the results of experiments in categorising various web
service interface descriptions using different classification algorithms.

1 Introduction

Interoperability is becoming more and more important given the large increase of
both types and use of connecting devices, e.g., smart phones, laptop, tablets, and
so on. This fact, along with the large variety of services that can be offered to the
user, highly increases the communication complexity. In this perspective, auto-
mated solutions for establishing interoperability between the networked systems
appear to be the only viable approach to achieve the required level of flexibility
and scalability. Unfortunately, traditional solutions to determine compatibility
between systems are rather expensive in terms of computational cost [4], espe-
cially when these are applied to systems in unrelated domains. Indeed, a com-
patibility assessment requires in-depth analyses considering the interface and
conversational protocol of the two target connecting systems.

One way to speed up the assessment above is to apply machine learning
methods to automatically classify high-level functionality of a system’s inter-
face description. By doing so, we restrict the scope of compatibility checks and
consequently providing an overall performance gain when looking for matches
between systems.

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 220–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Machine Learning for Automatic Classification 221

In this paper, we describe how the interface description classifiers are imple-
mented by applying machine learning: inducing the classification function from
a set of examples. We describe how the standard document classification tech-
niques need to be changed in order to be adapted to work with interface descrip-
tions: most importantly, the feature extraction function needs to process the semi-
structured data that is available in the WSDL interface description language.

We carried out a number of experiments that evaluate the effect of several
design parameters in the implementation of the categorisation system, such as
the design of the feature extraction function and the choice of the appropriate
machine learning method.

In the reminder of the paper is structured as follows. Section 2 describes the
target of the automated classifiers, i.e., the web services description files (WSDL).
Section 3 describes the machine learning methods we apply, i.e., automated text
categorisation, specialised for the target task. Section 4 presents our experiments
on the classification of WSDL. Finally, Section 5 concludes the paper.

2 Setting Up the Context

Web services expose a description of their programmatic interface (API) using
the standard WSDL (Web Service Description Language1) language. This de-
scription details the operations which can be performed by the web service as well
as the data types of the inputs or outputs of these operations in terms of XML
Schema2. WSDL also includes human-readable documentation and has some
support for specifying the semantics of operations (and data) through the on-
tological annotations supported in SA-WSDL3. There is however no structured
support for specifying what the service does at a high level, i.e. the abstract
category to which the service belongs.

In the Connect project we define a language for specifying these categories
by reference to ontology concepts [2] in order to facilitate the identification of
services with similar, compatible functionality. Services in the same category
are expected to have similar functionality, which may be provided to the en-
vironment, or required from it, and which allows the services to be composed
and interact. However, legacy services do not make use of the explicit Connect
description language. Without information about the high-level functionality
of services, it is necessary to employ time-consuming syntactic and behavioural
analyses that determine compatibility as a very fine-grained level of detail. Since
Connect aims to overcome interoperability issues at runtime, computationally
expensive procedures must be avoided. Service categories provide an interesting
means to determine compatibility at the macro-level, before applying more de-
tailed checks where necessary. Consequently we need a means to determine the
high-level functionality of a service given only its WSDL description.

1 http://www.w3.org/TR/wsdl
2 http://www.w3.org/XML/Schema
3 http://www.w3.org/2002/ws/sawsdl/

http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
http://www.w3.org/2002/ws/sawsdl/


222 A. Bennaceur et al.

<wsdl : portType name=”WeatherForecastSoap”>
<wsdl : operat ion name=”GetWeatherByZipCode”>

<wsdl :documentation
xmlns : wsdl=”http :// schemas . xmlsoap . org /wsdl/”>

Get one week weather f o r e c a s t f o r a v a l i d Zip Code (USA)
</wsdl :documentation>
<wsdl : input message=”tns : GetWeatherByZipCodeSoapIn” />
<wsdl : output message=”tns : GetWeatherByZipCodeSoapOut ” />

</wsdl : operat ion>
<wsdl : operat ion name=”GetWeatherByPlaceName”>

<wsdl :documentation
xmlns : wsdl=”http :// schemas . xmlsoap . org /wsdl/”>

Get one week weather f o r e c a s t f o r a p lace name (USA)
</wsdl :documentation>
<wsdl : input message=”tns : GetWeatherByPlaceNameSoapIn” />
<wsdl : output message=”tns : GetWeatherByPlaceNameSoapOut” />

</wsdl : operat ion>
</wsdl : portType>

Fig. 1. WSDL fragment for a weather service

Figure 2 shows a partial WSDL description for a weather service, taken from
the web. It lists a number of operations with names such as “GetWeather-
ByZipCode” and “GetWeatherByPlaceName”. Each operation refers to mes-
sages which in turn determine the input and output data of the operation (de-
fined elsewhere in the file). Each operation also includes a short piece of docu-
mentation, although this latter part is not always present. It is however obvious
that this service has functionality related to the weather, and when presented
with a taxonomy of categories a human would likely be able to assign this service
to one of them: this is the process we seek to automate.

3 Applying Document Classification Techniques for the
Categorisation of Service Descriptions

In order to build automatic classifiers of web service interfaces, we will build on
the considerable amount of research that has been carried out on the topic of
automatically assigning a category tag to a given text document. This is a task
with many practical applications in the real world [1].

We give an introduction to the topic of automatic classification of text doc-
uments, and describe how machine learning techniques are typically applied to
solve this task. We then show how these techniques can be easily adapted for the
task of interface description classification. The most significant change from stan-
dard document classification methods is that the feature extractor – the function
that determines the attributes used to distinguish the categories – needs to be
tailored for the specific properties of of web service interface descriptions.



Machine Learning for Automatic Classification 223

3.1 Machine Learning for Automatic Document Classification

The complexity of the category systems may vary depending on the application.
The simplest would be a binary classification such as spam filtering. Slightly
more complex category system can be seen in tasks such as sentiment classifi-
cation of reviews [14], where the task of the classifier would be to predict the
number of stars assigned by the reviewer. The largest category systems are typi-
cally hierarchically organised, such as the categories used in well-known Reuters
dataset [10], and we may well imagine even more advanced categories such as
the structured classifications used in library science [15].

The task of categorising documents is usually tackled by applying classifiers
that have been automatically induced by estimation on a collection of docu-
ments. We refer to the process of automatically inducing a classification function
from data as machine learning, and the collection of documents on which the
estimation is carried out is called the training set [11].

We may divide the set of machine learning methods into two broad categories:
supervised learning, where each document in the training set is assigned a doc-
ument category by a human supervisor and the task of the machine learner is
to induce a function that produces similar labelings, and unsupervised learning,
where the documents are not labeled a priori and the machine learning method
must find a meaningful division into categories. This paper focuses on the former
method, which has generally been much more successful in most studies.

There exists a variety of methods to carry out supervised machine learning
of classifiers. For classification of documents the most popular learning meth-
ods are based on the idea of associating classes of documents with regions in a
vector space. Training a classifier becomes equivalent to describing the decision
surface, the boundary between the regions in the space. In most cases this is
described using a linear function, so the decision surface becomes a hyperplane.
Methods for inducing the linear separator include the well-known perceptron al-
gorithm [16]. The most notable recent advance in machine learning by inducing
linear separator is the support vector machine (SVM) [3], which has been very
successfully applied to the task of document classification [9]. The support vec-
tor classification approach is based on finding the maximal separation between
the classes – the maximal margin. In case the classes are not fully separable,
soft margins are introduced, which permit a small number of violations of the
separation constraint. Figure 2 shows an illustration of a soft-margin support
vector machine. Note that this is much simpler than in realistic document clas-
sification, where the documents may be represented as points in a vector space
of millions of dimensions rather than just two.

In addition to the simple task of assigning a category label to a document,
similar machine learning techniques can also be applied in very complex categori-
sation tasks. An important type of such categorisation tasks are those requiring
a classification of a pair of documents, for instance determining whether a text
is a good answer to a given question [12].



224 A. Bennaceur et al.

0bxw

1w x b

1w x b

1
1

w

i ix

Fig. 2. Example of the decision boundary (dashed line) and the margins in a soft-
margin support vector machine. There are two violations of the margin constraints.

3.2 Feature Extraction in Web Service Interface Descriptions

In order to be able to classify objects into categories, an automatic classifier
needs to determine the salient properties of those objects. This process is called
feature extraction. A good feature extractor should extract the exact distinguish-
ing features of each category. As it has been noted repeatedly, designing feature
extractors is an art more than a science, and requires a good understanding of
the classification task.

For the task of document classification, the most common feature extraction
method is called the bag-of-words representation [17]. In this method, a docu-
ment is converted into a point in a vector space; every word in the vocabulary
is associated with a dimension of the vector space, allowing the document to be
mapped into the vector space simply by computing the occurrence frequencies
of each word. The bag-of-words representation is considered the standard repre-
sentation underlying most document classification approaches, and attempts to
incorporate more complex structural information have mostly been unsuccessful
for the task of categorisation of single documents [13].

WSDL documents generally contain a significant amount of text, and this text
can be directly processed using standard a bag-of-words representation method.
However, the most informative part of the WSDL interface descriptions normally



Machine Learning for Automatic Classification 225

consists of structured data: names of methods, objects, parameters. These ele-
ments are represented as a tree-structured XML structure. It should be noted that
very little textual documentation may be available if the identifiers are informa-
tively named and their purpose obvious.

This means that the various semi-structured identifiers that are part of the
WSDL interface description XML documents should be added to the bag-of-
words feature representation. Most importantly, the representation should in-
clude the names of the method and input parameters defined by the interface.
The inclusion of identifiers will be important since: (1) the textual content of
the identifiers is often highly informative of the functionality provided by the
respective methods; and (2) the free text documentation is not mandatory and
may not always be present.

To extract useful word tokens from the identifiers, we split them into pieces
based on the presence of underscores or CamelCase. All tokens were then nor-
malised to lowercase. For instance, consider the following piece of WSDL code.

<wsdl : message name=”GetWeatherByZipCodeSoapIn”>
<wsdl : part name=”parameters ”

element=”tns : GetWeatherByZipCode ” />
</wsdl : message>
<wsdl : message name=”GetWeatherByZipCodeSoapOut”>

<wsdl : part name=”parameters ”
element=”tns : GetWeatherByZipCodeResponse ” />

</wsdl : message>

In this example, we split the CamelCased identifier GetWeatherByZipCode

into the tokens get, weather, by, zip, and code, so the complete bag-of-words
vector for the example is [get:4, weather:4, by:4, zip:4, code:4, soap:2,

in:1, out:1, response:1].

4 Experiments

We carried out a large number of experiments to select the appropriate technique
to implement the categorizer of web service interface descriptions.x

As described in Sec. 3.1, we implemented the classifiers by automatically in-
ducing them from labeled data. For this purpose, we used a collection of WSDL
documents4 [8]. We selected the 10 most frequent categories, in total 397 docu-
ments as depicted in Table 1.

To train the classifiers, we used support vector machines that we trained using
the LibLinear machine learning software [7].

The following subsections describe the experiments. All results have been ob-
tained using a 10-fold cross-validation procedure: split the data into 10 pieces;
form 10 different training sets by excluding each piece; train 10 classifiers; eval-
uate on each piece and combine the results.

4 http://www.andreas-hess.info/projects/annotator/ws2003.html



226 A. Bennaceur et al.

Table 1. Statistics for the data collection

Category Number of instances

CountryInfo 64
Money 54
Converter 49
Finder 46
Communication 45
Web 39
Developers 37
News 30
Business 23
Mathematics 10

Total 397

4.1 Classification Results

To evaluate the performance of the classifiers, we computed a number of different
evaluation measures. The first one is the overall classification accuracy, which
is defined as the proportion of correctly classified interface descriptions. Our
best implementation correctly classified 236 out of 397 descriptions, giving us an
accuracy of 59.4%.

In addition to the overall accuracy, we evaluated the classification performance
on individual categories. Here, we used the precision (P ) and recall (R) measures.

For a given category C, if the gold standard contains ng instances labeled as
C, our system labels no outputs as C, and nc of the system outputs are correct,
then we define P = nc/no and R = nc/ng. The overall accuracy is the number
of correctly classified instances over the total number A = Σnc/ΣnO Finally, it
is very common to present the harmonic mean of precision and recall, which is
referred to as the F -measure.

In most situations, there is a tradeoff relationship between the precision and
recall measures: if we often predict C, then we would also find many C (higher
recall) but also over-generate (lower precision). By varying a class sensitivity
parameter when training, we can tune the precision/recall tradeoff, and plot the
relationship in a graph. Figure 3 shows such plots for the four largest classes of
interfaces: CountryInfo, Money, Converter and Finder. In this kind of
plot, overall prediction quality for a class is determined by how close the plot is to
the upper right corner. In our case, we see that the overall prediction quality for
the four classes tends to be correlated with the size of the class: CountryInfo
class is the class for which the plot is closest to the upper right corner.

In addition to the class-wise precision and recall evaluations, we computed
the macro precision and recall, which are precision and recall values averaged
over all classes. In this macro evaluation, our classifier achieved a precision of
58.0, a recall of 52.8, and an F -measure of 55.3.



Machine Learning for Automatic Classification 227

Fig. 3. Precision / recall plots for the four most frequent classes: CountryInfo,
Money, Converter and Finder

4.2 Design of the Feature Extractor

The challenge in interface description classification compared to traditional doc-
ument classification is the feature design problem, and in particular the problem
of making use of the WSDL structure.

As a baseline, we used traditional bag-of-word feature extractors that are
normally used in document classification. We applied the baseline feature ex-
tractors to the text available in the documents: the code documentation and the
comments.

As an alternative to the raw text, we extracted features from the structured
text, i.e. the identifiers used in the WSDL code. As discussed in Sec. 3.2, we used
an identifier splitting heuristic based on the presence of CamelCase. However,
we also tried out an identifier-based feature representation that did not split the
identifiers.

Finally, we used a feature representation that combined the BOW and WSDL
identifier features. Here, we evaluated two different representations. In the first
approach we used two separate vector spaces for the two types of features. In the
second one, there was only one vector space, so for instance if the word withdraw
would appear in the documentation or in an identifier, this would result in the
same feature being enabled.



228 A. Bennaceur et al.

To see the effect of the feature extraction design choices, we carried out an
evaluation of several different feature extractors. The result of this experiment is
shown in Table 2. We show the overall classification performance using accuracy
and macro precision/recall/F -measure.

Table 2. Evaluation of feature extraction methods

Representation Accuracy Macro
precision

Macro recall Macro
F-measure

BOW (doc. only) 24.9 39.5 28.4 33.0
BOW (doc. and comments) 25.2 36.1 27.8 31.5
WSDL Identifiers 41.6 33.7 32.8 33.2
WSDL Identifiers, CC splitting 58.2 54.8 51.6 53.2
BOW + Indentifiers (separate) 57.9 55.1 51.1 53.0
BOW + Indentifiers (mixed) 59.4 58.0 52.8 55.3

The experiment shows very clearly that purely text-based feature represen-
tations are not sufficient for achieving a good classification performance. It is
crucial to extract features from the WSDL identifiers, and they need to be split
in order to be useful. The best representation was the mixed combination of
BOW and identifier features; the combination by separate vector spaces seems
to lead to feature sparsity, which is very problematic when using small training
sets.

4.3 Selection of the Machine Learning Algorithm

In addition to the feature extraction mechanism, another crucial parameter when
building a classifier is the selection of a machine learning algorithm for training.
We evaluated a wide range of learning algorithms. Our primary approach was
support vector machines (SVMs) since this algorithm has been very successful
in text categorization [9].

We used several variations of the SVM learning algorithm. The original SVM
formulation [3] was restricted to two-class classification. This means that if we
want to apply SVMs to classification problems with more than two classes, we
must apply a tranformation of the problem – a binarization. The most common
binarization method is called one-versus-all : create one SVM for each class, and
select the highest-scoring class at test time. We tried two binarised SVM variants:
L2-loss and L1-loss SVMs; L2-loss is the standard formulation and L1-loss is a
newer variant that typically uses much smaller feature sets [18]. In addition to
the binarised SVM variants, we used a recent SVM formulation that can solve
multiclass problems directly [6].

Apart from the SVMs, we evaluated classifiers trained using the logistic re-
gression, perceptron [16], and passive–aggressive [5] learning methods. All SVMs,



Machine Learning for Automatic Classification 229

as well as the logistic regression classifiers, were implemented using LibLinear.
The perceptron and passive–aggressive classifiers were based on our own imple-
mentations.

Table 3. Evaluation of machine learning methods

Learning method Accuracy Macro
precision

Macro recall Macro
F-measure

Binarized L2-SVM 59.4 58.0 52.8 55.3
Binarized L1-SVM 58.9 55.3 49.5 52.3
Multiclass SVM 59.4 55.0 52.9 53.9
Logistic regression 49.9 47.1 39.3 42.9
Perceptron 51.1 51.0 45.6 48.1
Passive–aggressive 58.4 53.3 51.4 52.4

Table 3 shows the result of the machine learning method comparison. We
notice that all SVM variants outperform the other learning algorithms. The
best-performing SVM is the most commonly used variant: the L2-loss SVM with
standard binarisation.

4.4 Generating Multiple Hypotheses

The purpose of a categorizer of web services is to reduce the time it takes to
decide whether we can automatically connect two different web services. While
we would certainly like to have a classifier that perfectly predicts the correct
class, this is of course not realistic; however, if a classifier that is allowed to
make multiple predictions, the probability of the correct class being found is
much higher. Such a classifier would also save considerable connection time.

We measured the performance of a classifier that is allowed to output k dif-
ferent category labels. In this evaluation, a prediction is counted as correct if the
set of guesses contains the correct answer. The relationship between the k value
and the performance is shown in Table 4. We see that even with a small k, we
can get very high classification performance.

Table 4. Classification performance when predicting k possible hypotheses

k Accuracy Macro precision Macro recall Macro
F-measure

1 59.4 58.0 52.8 55.3
2 71.5 71.0 65.6 68.2
3 79.3 79.1 75.0 77.0
4 85.1 85.1 81.3 83.2
5 87.7 88.0 83.9 85.9



230 A. Bennaceur et al.

5 Conclusion

There is a considerable need for automatic composition of web services. The
Connect project addresses, in particular, interoperability issues arising from
the need to compose heterogeneous systems at runtime. The first step in com-
posing such systems is determining whether, and to what degree, the systems
are compatible. At the highest level of abstraction, systems in the same domain
category, e.g. weather, have the potential to interact.

Automatic classification of web service interface descriptions is a technique
that can speed up the service matching procedure considerably by allowing us
to avoid expensive behavioural analyses that encumber the runtime composition
of services.

We described how methods derived from automatic document classification
based on machine learning can be used to build categorizers of web service
interface descriptions.

We carried out a number of experiments in automatic categorisation of inter-
face descriptions, to determine the best way to implement an automatic system
to carry out this kind of categorisation. We evaluated the effect of the choice of
machine learning method, and we saw that support vector machines gave the
best performance.

Most importantly, we evaluated how the performance is influenced by the
design of the feature extraction component of the classifier. We saw very clearly
that standard document classification methods are not directly applicable: such
an approach leads to very low performance. Instead, we need to use a feature
representation that is tailored to the task of interface description classification
by using the specific structure of the WSDL code, in particular its identifiers.

We saw that a classifier that predicts a number of possible alternatives (not
just one) achieves very high performance levels. We believe that an approach
using multiple hypothesis can also be useful for service matching.

Acknowledgements. This research has been supported by the EU FP7 projects:
Connect – Emergent Connectors for Eternal Software Intensive Networking
Systems (project number FP7 231167), EternalS – “Trustworthy Eternal Sys-
tems via Evolving Software, Data and Knowledge” (project number FP7 247758)
and by the EC Project, LiMoSINe – Linguistically Motivated Semantic aggre-
gation engiNes (project number FP7 288024).

References

1. Basili, R., Moschitti, A.: Automatic Text Categorization: from Information Re-
trieval to Support Vector Learning. Aracne editrice, Rome (2005)

2. Bennaceur, A., Blair, G.S., Chauvel, F., Georgantas, N., Grace, P., Nundloll, V.,
Paolucci, M., Saadi, R., Sykes, D.: Intermediate connect architecture. Technical
Report D1.2, Connect ICT FET IP Project (February 2011)



Machine Learning for Automatic Classification 231

3. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-
fiers. In: Computational Learning Theory, Pittsburgh, United States, pp. 144–152
(1992)

4. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Comm. (1990)

5. Crammer, K., Dekel, O., Keshet, J., Shalev-Schwartz, S., Singer, Y.: Online passive-
aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)

6. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2, 265–585 (2001)

7. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A
library for large linear classification. Journal of Machine Learning Research 9,
1871–1874 (2008)

8. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

9. Joachims, T.: Learning to Classify Text using Support Vector Machines.
Kluwer/Springer, Boston (2002)

10. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research 5, 361–397
(2004)

11. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
12. Moschitti, A.: Kernel methods, syntax and semantics for relational text catego-

rization. In: Proceedings of ACM 17th Conference on Information and Knowledge
Management (CIKM), Napa Valley, United States (2008)

13. Moschitti, A., Basili, R.: Complex Linguistic Features for Text Classification:
A Comprehensive Study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS,
vol. 2997, pp. 181–196. Springer, Heidelberg (2004)

14. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of EMNLP (2002)

15. Ranganathan, S.R.: Colon Classification. Ess Ess Publications, Delhi (2006)
16. Rosenblatt, F.: The Perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review 65(5), 386–408 (1958)
17. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.

Technical Report TR74-218, Department of Computer Science, Cornell University,
Ithaca, New York (1974)

18. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press (2002)



The Teachers’ Crowd: The Impact of Distributed

Oracles on Active Automata Learning�

Falk Howar1, Oliver Bauer1, Maik Merten1,
Bernhard Steffen1, and Tiziana Margaria2

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany

{falk.howar,oliver.bauer,maik.merten,steffen}@cs.tu-dortmund.de
2 University Potsdam, Chair for Service and Software Engineering, Potsdam,

D-14482, Germany
margaria@cs.uni-potsdam.de

Abstract. In this paper we address the major bottleneck of active au-
tomata learning, the typically huge number of required tests, by inves-
tigating the impact of using a distributed testing environment (a crowd
of teachers) to execute test cases (membership queries) in parallel. This
kind of parallelization of automata learning has the best potential when
the time for test case execution is dominant, an assumption valid for
most practical applications. Our investigation explicitly focuses on the
impact of the structure of the system under learning (number of states,
size of alphabet) and the degree of supported parallelism. It comprises
three variants of active learning algorithms with different test case gen-
eration profiles. These differences can be observed directly at the level of
the run-times, which all show a linear speedup for moderate degrees of
parallelization, but with different saturation points beyond which further
parallelization does not pay off.

1 Introduction

Automata learning techniques are becoming a valuable tool in software construc-
tion. They have been used successfully to infer models of black-box systems in
the context of model-checking [16], interface synthesis [1], and (model-based)
testing [6]. In all these cases, models are a necessary prerequisite, and the lack
of appropriate models can therefore be considered a show stopper. Active au-
tomata learning paves the way to overcome this problem by providing a solely
test-based approach for inferring models of black-box systems. Key to this ap-
proach is the active interaction with the system under learning (SUL): The heart
of the automata learning process consists of an elaborate way to generate test
cases tailored to support the construction of adequate system models. This di-
rectly reveals the major bottleneck of the approach: active automata learning
requires the execution of enormously many test cases. Already learning models

� This work is supported by the European FP 7 project CONNECT (IST 231167).

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 232–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Teachers’ Crowd: The Impact of Distributed Oracles 233

with a few hundred states typically requires the execution of some hundred thou-
sand tests case on the SUL. In classical automata learning terminology, where
the considered systems are simply deterministic automata, this means that huge
numbers of so-called membership queries need to be answered by a (minimally
adequate) teacher also called membership oracle [2].

In this paper we investigate the impact of using a distributed testing environ-
ment (a crowd of teachers) to execute test cases (membership queries) in parallel.
In our experience, this kind of parallelization of automata learning has the best
potential for speedup, as it allows for quite a flexible load balancing with very
little overhead. Our investigation comprises three variants of active learning al-
gorithms with different test case generation profiles that can be observed also at
the level of parallelization-based speedup.

As conceptual basis we consider the sequential L∗
M algorithm presented in

[19] that can be regarded as state of the art of practical automata learning. We
present here its parallel version, which essentially arises from enabling parallel
execution of test cases at three dedicated points. We have implemented this
version together with two similar versions for learning algorithms with slightly
different querying profiles in LearnLib1, our library for experimenting with active
automata learning algorithms [17,13].

The paper presents an evaluation of these three parallel implementations in a
series of experiments that explicitly focus on the impact of the structure of the
SUL (number of states, size of alphabet) and the degree of supported parallelism
in a context where the time for test case execution is dominant. This assumption
is valid for most practical applications. The results indicate that for moderate
degrees of parallelization a linear speedup can be realized, but that there seem
to be saturation points beyond which further parallelization does not pay off.

Related Work. Active automata learning has been introduced in [2] for deter-
ministic finite automata (DFAs). It has been extended to infer Mealy machine
models in [15,9], which are more adequate for describing reactive systems that
produce outputs rather than accept or reject sequences of inputs. It has been
used successfully to infer models of black-box systems in model-checking [16],
testing [6], and interface synthesis [1].

The largest reported learned model concerns a software router with 22,000
states and 7 inputs [17]. Models of actual systems are easily bigger by some
orders of magnitude. Thus, models inferred by active learning are valuable assets
for documenting behavior of smaller systems or for organizing test suites. This is
already useful in practice even if these models are not yet used in the verification
of real systems.

The performance of active learning (in terms of queries) is essential when
it comes to practical application. Performance has been addressed by applying
application specific filters, which help answering membership queries without
performing tests on a SUL [7]. The potential of different generic types of filters
and the interplay of different filters has been investigated in [11,10].

1 http://www.learnlib.de



234 F. Howar et al.

While optimizations to the number of membership queries have been investi-
gated thoroughly, distributing queries has only been investigated from a theoretic
perspective in [3]. In this paper, we investigate the impact of this optimization
from a practical point of view.

Outline. We start in the next Section by providing some preliminary concepts
and notation. In Section 3 we present our main result: an active automata learn-
ing algorithm that executes tests on a SUL in parallel. Section 4 presents the
results of a practical evaluation of our new algorithm and compares its pro-
file w.r.t. distribution of membership queries with some other active learning
algorithms from LearnLib. Finally, we conclude in Section 5.

2 Preliminaries

In this section we define some preliminary concepts. We describe Mealy machines
as a modeling formalism for a system under learning (SUL) and introduce a
semantic model for Mealy machines that closely resembles regular languages.
This model allows for the formulation of a Myhill/Nerode-like theorem for Mealy
machines, which serves as the conceptual backbone of our learning algorithm.

Let Σ be a finite set of inputs of some system, e.g., method calls to a software
library. We describe such system as an automaton.

Definition 1. A Mealy machine is a tuple M = 〈Q, q0, Σ,Ω, δ, λ〉 where
– Q is a finite nonempty set of states,
– q0 ∈ Q is the initial state,
– Σ is a finite input alphabet,
– Ω is a finite output alphabet,
– δ : Q×Σ → Q is the transition function, and
– λ : Q ×Σ → Ω is the output function. ��

A Mealy machine processes sequences of inputs (input words or simply words)

and, other than a DFA, it produces outputs. We write q
a/o−−→ q′ to indicate that

M moves from q to q′ on input a producing output o according to δ and λ.
Abstracting from the fact that a Mealy machine will produce an output in

every single step, we can describe the semantics of a Mealy machine as a function
from the set of words to the set of outputs. Let ε denote the empty word, and
Σ+ = Σ∗ \ {ε} be the set of all words of length greater than zero. Then, let
�M� : Σ+ → Ω be the set of traces of M.

In order to describe �M� in terms of M, we inductively extend the transi-
tion function δ to δ∗ : Q × Σ∗ → Q by defining δ∗(q, ε) = q and δ∗(q, aw) =
δ∗(δ(q, a), w) for q ∈ Q and aw ∈ Σ+ with w ∈ Σ∗.

Let �M� now simply be defined to be the last output of M on a particular
word, i.e.,

�M�(wa) = λ( δ∗(q0, w), a) for wa ∈ Σ+.

From this definition, we can immediately derive an equivalence relation of the
set of words that resembles the Nerode relation for regular languages [14].



The Teachers’ Crowd: The Impact of Distributed Oracles 235

q0 q1 q2 q3

put/� put/� put/�

get/�get/�get/�
get/×

put/×

Fig. 1. Mealy machine model of a 3-place buffer

Definition 2. For a mapping T : Σ+ → Ω, two words u, u′ ∈ Σ∗ are equivalent
wrt. T , denoted by u ≡T u′, iff

∀v ∈ Σ+ . T (uv) = T (u′v). ��

As for regular languages and DFAs, this relation can be used as a basis for the
following characterization theorem, which we proved in [19].

Theorem 1. A mapping T : Σ+ → Ω is a set of traces for some Mealy machine
iff ≡T has finite index. ��
The theorem is a direct reformulation for Mealy machines of the well-known
Myhill/Nerode theorem for DFAs. One direction of the proof of this theorem
comprises the construction of the canonical Mealy machine MT for T , in which
every class of ≡T corresponds to exactly one state in MT . This approach to
automata construction is the conceptual backbone of all active automata learning
algorithms. A detailed discussion can be found in [19].

Example. Figure 1 shows a graphical representation of a Mealy machine model-
ing a 3-place buffer with two inputs put and get, that add and remove elements
from the buffer. States in the model correspond to the number of elements in
the buffer. Successful actions on the buffer are indicated by output � in the
figure. The only two unsuccessful operations (indicated by output ×) are adding
an element to the already full buffer and retrieving an element from the empty
buffer. We will pick up this example when discussing the learning algorithm in
Section 3. ��

3 Parallel Learning

In this section we present our learning algorithm that distributes test cases to
multiple systems under learning SULs, and a description of how we realized the
distributed implementations of the active learning algorithms within LearnLib.
The results from an experimental evaluation of the gained speedup are presented
in the next section.

Active learning algorithms are formulated in the MAT-learning model [2],
which assumes the existence of a Minimally Adequate Teacher (MAT) that an-
swers two kinds of queries.



236 F. Howar et al.

Membership queries test for the output of a word w ∈ Σ+. Sometimes
MQ(w) will be used instead of �SUL�(w) to emphasize that the value has
to be determined by a test on the SUL.

Equivalence queries test whether an intermediate hypothesis automaton H
is equivalent to the SUL, i.e., if �H� = �SUL�. If hypothesis and system are
not equivalent, an equivalence query delivers a counterexample, i.e., a word
w ∈ Σ+ for which �H�(w) �= �SUL�(w). Equivalence queries will be denoted
by EQ(H) in pseudo-code listings.

Corresponding to the two kinds of queries, inference is organized in two phases,
alternated iteratively. In the hypothesis construction phase a hypothesis model is
derived from the observations and iteratively refined using membership queries.
In the hypothesis validation phase hypothesis models are tested for equivalence
with the SUL by means of equivalence queries.

3.1 The L∗
M Algorithm

We present here a variant of the reduced observation table algorithm presented by
Rivest and Schapire for determined finite acceptors (DFAs) in [18]. Our variant,
the L∗

M algorithm, infers Mealy machine models and is described in [19], that also
presents an extended example. Here we restrict ourselves to a brief description
of the realization of the two phases discussed above in the basic algorithm and
focus rather on the distribution of membership queries.

Hypothesis construction. In its basic form, active learning starts with a hypoth-
esis automaton with only one state and refines this automaton on the basis of
membership queries until a consistent state-minimal deterministic hypothesis
automaton can be constructed. Key to achieving this result is the dual charac-
terization of states that is established in Definition 2 and Theorem 1:

– by a set U ⊂ Σ∗ of prefixes. L∗
M constructs such a set U , containing prefixes

u ∈ Σ∗ reaching all states of the hypothesis automaton. This characteriza-
tion of states is too fine, as different words u1, u2 ∈ U may lead to the same
state in the target system. Hence, L∗

M maintains a second set Us ⊆ U of
access sequences for which it is guaranteed that during learning u1, u2 ∈ Us

(and u1 �= u2) definitely lead to different states in the SUL. Technically, the
relation between U and Us is U = Us ∪ Us ×Σ.

– by an ordered set, V ⊂ Σ∗, of distinguishing sequences. L∗
M realizes the char-

acterization of a hypothetical state reached by some prefix u in terms of a
vector 〈r1, . . . , rk〉 (with ri ∈ Ω), characterizing the states by means of sub-
sequent outputs, i.e., ri = �SUL�(u · vi) with vi ∈ V . Intuitively, the vector
approximates a characterization of the state wrt. to ≡T (cf. Definition 2).

L∗
M maintains its observations in an observation table 〈U, V, T 〉, where U is the

set of prefixes, V is the set of suffixes, and T : U × V → Ω is the table mapping
with T [u, v] = �SUL�(u·v). We define the table row of a prefix u ∈ U , denoted by
row(u), to be the vector 〈T [u, v1], . . . , T [u, vk]〉 for V = 〈v1, . . . , vk〉. Of course,
membership queries are used to construct and maintain the table mapping.



The Teachers’ Crowd: The Impact of Distributed Oracles 237

put get

ε � ×
get � ×
put � �
put put
put get

|Σ||V |

put get put put

ε � ×

|U |
put � �
get � ×
put put � �
put get � ×

Fig. 2. Two intermediate observation tables with batches of membership queries for
example from Figure 1

Example. Figure 2 displays two snapshots of the observation table that is con-
structed when inferring a model of the 3-place buffer of Figure 1. The rows of
the table are labeled with prefixes from U , the columns are labeled with suffixes
from V , and the cells correspond to the table mapping; row(u) is the actual row
labeled by u in a table. The set Us corresponds to the row labels in the upper
parts of the tables. ��
When learning, the set Us is initialized as {ε} and contains only the access
sequence to the initial state. The set U \ Us is initialized accordingly as Σ and
covers all transitions originating from the initial state. The ordered set V of
distinguishing suffixes is initialized as Σ and characterizes states by the output
that are produced along outgoing transitions.

The L∗
M algorithm then continues by refining the hypothesis. It checks whether

an automaton constructed from the observation table is closed under the one-
step transitions, i.e., if every transition from a state of this automaton ends
in a well defined state of this same automaton. Since states in a hypothesis
are characterized by rows in the observation table, this is the case if for every
u ∈ U \ Us there exists a u′ ∈ Us with row(u) = row(u′).

In case row(u) �= row(u′) for some u ∈ U \ Us and all prefixes u′ ∈ Us, i.e., if
the observation table is unclosed, the set of access sequences Us is extended by
u and U is extended by {u} ·Σ accordingly. This procedure is iterated until the
observation table is closed and a hypothesis automaton H = 〈Q, q0, Σ,Ω, δ, λ〉
can be constructed from the table, where:

– for every access sequence u in Us there is a state qu ∈ Q,
– q0 = qε is the state reached by the prefix ε, and

– for every prefix ua ∈ U with a ∈ Σ there is a transition qu
a/T [u,a]−−−−−→ qu′ such

that row(ua) = row(u′).

This construction resembles closely the construction of a canonical Mealy ma-
chine from a set of traces (cf. [19]). Closedness of the observation table guarantees
that H is well-defined.

Hypothesis verification. Once a hypothesis H is produced from the observation
table, an equivalence query can be used to find a counterexample, i.e., a word w ∈



238 F. Howar et al.

Algorithm 1. Parallel L∗
M

Input: A fixed set of inputs Σ
Output: A model H with �H� = �SUL�
1: Us := {ε} � Initialize observation table
2: U := Us ∪ Σ
3: V := Σ
4: for all u ∈ U, v ∈ V do � (|Σ|+ 1)|V | membership queries
5: T [u, v] := MQ(uv) � performed in parallel
6: end for
7: loop
8: while 〈U, V, T 〉 not closed do
9: Let u in U \ Us s.t. ∀u′ ∈ Us : row(u) �= row(u′) � Close table
10: Us := Us ∪ {u}
11: U := U ∪ {ua | a ∈ Σ}
12: for all a ∈ Σ, v ∈ V do � |Σ||V | membership queries
13: T [ua, v] := MQ(uav) � performed in parallel
14: end for
15: end while
16: construct hypothesis H from 〈U, V, T 〉 � cf. Section 3
17: ce := EQ(H) � Perform equivalence query
18: if ce = ′OK′ then � Learned successfully?
19: return H
20: end if
21: decompose ce to find suffix v � �log2(|ce|) membership queries
22: as described in Section 3 � performed sequentially
23: V := V ∪ {v}
24: for all u ∈ U do � |U | membership queries
25: T [u, v] := MQ(uv) � performed in parallel
26: end for
27: end loop

Σ+ for which �H�(w) �= �SUL�(w). In practice, an equivalence query is usually
approximated by a number of membership queries, using ideas from conformance
testing (e.g., [4]). Thus, equivalence queries can also be optimized by distributing
membership queries to multiple instances of a SUL. This, however, exceeds the
scope of this paper. Here we assume the existence of actual equivalence queries.

In [19] we proved the following theorem about counterexamples, which is a
variant of the version for DFAs from [18].

Theorem 2. A counterexample w has a suffix v such that for two prefixes u ∈ U
and u′ ∈ Us with u �= u′ and row(u) = row(u′) it holds that �SUL�(u · v) �=
�SUL�(u′ · v). ��
Intuitively, the theorem states that there is at least one suffix of the counterex-
ample that will lead to unclosedness in the observation table if added to the set
of distinguishing suffixes. Such a suffix can be found using a binary search on
the counterexample [18,19].



The Teachers’ Crowd: The Impact of Distributed Oracles 239

Adding the suffix to the set V leads to a refined hypothesis automaton in the
next equivalence query, with at least one new state. Since, on the other hand,
the characterization of states by rows in the table will never refine ≡T (which
would correspond to using Σ+ as set of suffixes), the process is guaranteed to
terminate with the canonical Mealy machine for SUL.

Put together, this results in Algorithm 1, where lines 1-6 initialize the ob-
servation table and lines 8-15 close the observation table as described above. In
lines 16-17 an equivalence is used to search for a counterexample. In case none
is found, the algorithm terminates successfully with the correct model in line 19.
Otherwise, a new suffix is extracted from the counterexample and added to the
table in lines 21-26.

3.2 Parallel Execution of Queries

In Algorithm 1 the parts between for all domain do and end for are meant to
be parallelized, where domain defines a set of objects to be used in the different
threads of execution. In particular, the algorithm performs batches of member-
ship queries in parallel

– when initializing the observation table (lines 4-6),
– when closing the observation table (lines 12-14), and
– when adding new suffixes from counterexamples (lines 24-26).

The membership queries used in the analysis of counterexamples (lines 21-22),
on the other hand, cannot be executed in parallel since the binary search on the
counterexample cannot be split into multiple independent threads of execution.

Example. Figure 2 shows operations on the observation table for our running
example. In the left table, the prefix put is added to the set of access sequences
(indicated by an arrow). The resulting extension of the table is shown below:
the two extensions of put with put and get are added to the set of prefixes.
The resulting batch of membership queries has size 4 in this particular case. In
the right table, the set of suffixes is extended by the new suffix put put, which
will eventually lead to row(put) �= row(put put). The corresponding batch of
membership queries has size 5. ��

3.3 Implementation

We have implemented a method for distributing membership queries on top
of LearnLib. The conceptual idea of our realization is shown in Figure 3: The
learning algorithm produces sets of membership queries (batches), which are
handed to a so-called BatchOracle. This oracle schedules the distribution of the
queries to a fixed number of MembershipOracles, each of which is connected to
a separate instance of the SUL.

Since this pattern is quite universal, we were able to extend all learning al-
gorithms in LearnLib to support BatchOracles. The next section discusses our
experimental results showing that the different learning algorithms have different
parallelization profiles.



240 F. Howar et al.

L∗
M BatchOracle

MembershipOracle

...

MembershipOracle

Map<Word,Word> processQueries(

Collection<Word> queries)

Word processQuery(Word query)

Fig. 3. Schematic overview of learning algorithm using multiple SULs in LearnLib

4 Evaluation

In this section we present the results of three series of learning experiments
conducted using the newly implemented parallelized versions of the learning
algorithms in LearnLib. The experiments were executed in a simulation environ-
ment that supports equivalence queries. In order to compare the algorithms w.r.t.
the distribution of membership queries, we voluntarily did not use membership
queries to approximate equivalence queries. For the same reason we excluded
membership queries used during analysis of counterexamples from the statistics
since these (few) sequentially produced membership queries occur in all algo-
rithms. Finally, we used a cache and counted only original membership queries.
In the experiments in which we measured run-times, however, the time spent for
analysis of counterexamples is included in the observations.

Our evaluation focuses on the impact of the structure of the SUL (number
of states, size of alphabet) and the degree of supported parallelism in a context
where the time for test case execution is dominant and thus the bottleneck, an
assumption valid for most practical applications. In order to model this domi-
nance without imposing too long experimentation times, we set up the simulator
to require 5 ms (realized as busy waiting) per membership query. Although 5
ms are still extremely short when considering practical applications, where sev-
eral seconds are not uncommon, they were sufficient to make the time spent in
processing membership queries the dominant costs during learning while still
allowing to execute experiments on systems of reasonable size in an acceptable
amount of time. We therefore believe that the observed speedup patterns are
quite representative, and that run-times for real systems of similar size can be
easily extrapolated.

In the experiments we used the parallelized versions of the following three
active learning algorithms:

L∗
M This is the algorithm we discussed in the previous section. It uses an ob-

servation table as underlying data structure, and it can produce batches of
queries when (1) resolving an unclosedness or when (2) extending the set of
suffixes as discussed in Section 3.

DHC The Direct Hypothesis Construction (DHC) algorithm [19,12] has a dif-
ferent profile w.r.t. to the batches of queries produced during learning. It is



The Teachers’ Crowd: The Impact of Distributed Oracles 241

capable of resolving multiple occurrences of unclosedness at the same time,
resulting in fewer but larger batches and a less uniform batch size. The im-
plemented behavior would correspond to executing lines 8-15 of Algorithm 1
in parallel. When extending the set of suffixes the DHC algorithm behaves
exactly like the L∗

M algorithm in lines 23-26.
Observation Pack Finally, the Observation Pack algorithm [5] uses a discrim-

ination tree (cf. [8]) instead of an observation table. In this algorithm new
prefixes are not added to the table but rather sunken into a tree. At every
inner node of the tree a membership query is performed for each prefix. This
leads to smaller batches than in the L∗

M algorithm: after resolving an un-
closedness, k new prefixes can be sunken into the tree in parallel, resulting
in batches of size at most k (the tree does not have to be balanced).

Also this algorithm uses new suffixes from counterexamples only to split
one leaf of the tree (containing the set of prefixes corresponding to the in-
coming transitions of the hypothetical state represented at that particular
leaf.) Thus, also batches produced by new suffixes tend to be smaller than
in the L∗

M and the DHC algorithm.

Additionally, all three algorithms differ in the absolute number of membership
queries and equivalence queries consumed during learning: While the Observa-
tion Pack algorithm uses dramatically less membership queries than the other
two algorithms it uses, on the other hand, many more equivalence queries.

Experimental Setup. We conducted three series of experiments, targeted at deter-
mining the profile of these algorithms along different dimensions of variability.
All the experiments were conducted using LearnLib in Potsdam, on the Au-
tomata Learning server, a 2.4GHz AMD Opteron processor with 16 cores (= 16
threads) and 256GB memory running Linux. The first two series address profile
trait inherent to the algorithm-specific organization of the learning process (in
Sect. 4.1) and to the behaviour’s scalability on a family of examples (in Sect. 4.2)
and were performed in sequential learning mode. On the contrary the third series
(in Sect. 4.3) concerns speedup and makes use of the multicore capability of the
server.

4.1 Different Profiles by Example

In this first series of experiments we compared the three algorithms on identical
SULs and analyzed in detail the resulting profiles in terms of the number of
membership queries, the number of equivalence queries, the number of batches,
and size of batches. Figure 4 explicitly summarizes the resulting batch sizes for
each of the considered algorithms for one particular (small) SUL with 15 states
and 5 inputs. Considering our other experiments, the data displayed in the figure
are, however, quite representative.

1. The L∗
M algorithm produces batches of the same size during a single phase of

hypothesis construction. Batches produced when adding new counterexam-
ples tend to be bigger in size (especially later in the progress) than batches



242 F. Howar et al.

5 10 15 20
0

70

140

Progress

S
iz
e
of

b
at
ch

L∗
M

5 10 15
0

70

140

Progress

S
iz
e
of

b
at
ch

DHC

5 10 15 20 25 30 35 40 45 50
0

35

70

Progress

S
iz
e
of

b
at
ch Pack

Fig. 4. Concrete numbers and sizes of batches for all algorithms and one SUL

produced by unclosedness, which grow slowly and strictly monotonically with
every new suffix.

2. The DHC algorithm, on the other hand, produces fewer but large batches of
queries. Each spike in Figure 4 represents one phase of model construction.
In the first two batches of every spike a new suffix is added for the initial
state and then to every prefix. Then, some bigger batches follow resolving
multiple occurrences of unclosedness at the same time, before the phase ends
much faster than in the L∗

M algorithm.
3. The Observation Pack algorithm produces significantly more and smaller

batches (of sizes of ca. 5 (= k)) than the other algorithms. In the case of L∗
M

batch sizes for most of the batches are slightly above 25 (= k2).
Finally, the Observation Pack algorithm needs less membership queries

(450) than the L∗
M and DHC algorithms (624 and 650), while these need

fewer equivalence queries (4 each) than the Observation Pack (10).

4.2 Asymptotic Profiles

In a second series of experiments we analyzed the mean size of batches produced
by the learning algorithms for particular classes of target systems. In the first
sub-series we randomly created canonical Mealy machines with 2i states (1 ≤
i ≤ 8), 4 inputs and 8 outputs. In each class we performed 20 experiments and
recorded the mean size of batches (mean of all batches of all experiments in a
class).

The results are shown on the left of Figure 5. Please note that in this diagram
the value axis is scaled logarithmically. The size of the batches produced by
the DHC algorithm, develops almost linearly in the number of states, indicating
that the number of occurrences of unclosedness that can be resolved in parallel



The Teachers’ Crowd: The Impact of Distributed Oracles 243

0 64 128 192 256
4

8

16

32

64

128

256

Number of states

M
ea
n
si
ze

of
b
at
ch
es

L∗
M

DHC
Pack

0 8 16 24 32
0

400

800

1,200

1,600

Number of inputs

M
ea
n
si
ze

of
b
at
ch
es

L∗
M

DHC
Pack

Fig. 5. Mean sizes of batches for SULs with increasing numbers of states (left) and for
SULs with increasing numbers of inputs (right)

grows with the size of the inferred automata. While the mean batch sizes for
the L∗

M start from k2 and increase moderately with the number of states (and
suffixes needed to distinguish these), the mean batch sizes for the Observation
Pack algorithm converge towards k, as was anticipated (see above). It may look
surprising at first sight that the average batch size decreases with growing system
size. This is simply due to the fact that the Observation Pack algorithm starts
with a batch size of k2, and that the influence of this initial batch size becomes
less relevant the longer the learning process lasts.

In the second sub-series we fixed the number of states to 10, the number of
outputs to 4, and varied the number of inputs in 2i (1 ≤ i ≤ 5). As in the first
sub-series, we performed 20 experiments in every class and recorded the mean
size of batches over all batches of all experiments in a class.

Figure 5 (right) shows the mean sizes of the created batches in the exper-
iments. As is observed easily, increasing the number of inputs has (1) a more
dramatic and (2) a more uniform effect on the mean sizes of batches for all learn-
ing algorithms: The L∗

M algorithm produces batch sizes very close to k2, which
is consistent with our expectations and with the discussion above. The behavior
of the other algorithms does not meet their anticipated profile. This is due to
the fact that in these experiments the number of inputs clearly dominates the
number of states, leading to learning processes with only very few iterations of
hypothesis construction and hypothesis validation. Thus the number of mem-
bership queries issued in the initial batch has a significant influence of the mean
size of all batches.

4.3 Speedup

We performed a third series of experiments in order to determine the speedup
that can be gained for a fixed number (8 and 16 in this case) of SULs among
which the membership queries can be distributed. For this series we have gen-
erated randomly a suite of 850 Mealy machine models, with varying number of



244 F. Howar et al.

0 20 40 60 80 100 120
0

2

4

6

8

Mean size of batches

S
p
ee
d
u
p

L∗
M

0 60 1200

4

8

Pack

0 120 2400

4

8

DHC

Fig. 6. Speedup per mean batch size for 8 SULs

1 2 3 4 5 6 7 8
0

100

200

300

400

Speedup

E
x
p
er
im

en
ts

L∗
M

DHC
Pack

2 4 6 8 10 12 14 16
0

100

200

300

Speedup

E
x
p
er
im

en
ts

L∗
M

DHC
Pack

Fig. 7. Distribution of speedup in 850 experiments. Left: for 8 SULs. Right: for 16
SULs.

states, number of inputs, and number of outputs. The constructed automata had
up to 10 states, up to 20 inputs, and up to 10 outputs.

For every Mealy machine in this suite, we inferred a model three times: once
using only one instance of the SUL to process membership queries (used as
sequential control baseline), once using 8, and once using 16 instances of the
SUL to process membership queries. Each SUL was allocated to a core (thread)
of the multicore server. We tried to use in different batches both the 8 and the
16 cores, in order to determine which grade of parallelism is most beneficial. As
discussed above, we fixed the costs for a single membership query to 5 ms, which
were spent in a busy waiting loop. The speedup in a single experiment is then
the ratio between the runtime when using a single SUL and the runtime when



The Teachers’ Crowd: The Impact of Distributed Oracles 245

using 8 (16) SULs. Figure 6 shows the speedup gained in the experiments with
increasing mean size of batches (per experiment this time) in the case of 8 SULs.

Considering the results, two observations are striking:

– For eight SULs a speedup of nearly 8 can be actually realized in many cases.
– A speedup of 8 is not realized for mean batch sizes of 8 (or little above) but

only for mean batch sizes greater than 40.

This phenomenon has to do with the quantization effect at the number of avail-
able cores. As soon as the batch size exceeds the number of cores, the job needs
to schedule an additional cycle. The last such cycle is nearly always suboptimally
used, as likely some cores are not needed and remain idle. For example, using
8 SULs, the worst case is a batch of size 9: needing more than 8 cores, it will
require two 5ms cycles and 10 ms to compute. In the sequential case, 9 queries
would require 45 ms. This results in a speedup of just 4.5. Growing batch size re-
duces the impact of not using all resources for the last queries of the batch, thus
reaching better speedup. For example, a batch with 41 queries would compute
with a speedup of 6.8 (205ms/30ms).

The results in Figure 6 show nicely the correspondence of mean batch sizes and
speedup for the learning algorithms. The results are consistent for all three algo-
rithms. The algorithms differ, however, in the distribution of achieved speedup
on the set of 850 examples. This distribution is shown in Figure 7 for the case
of 8 SULs (left) and 16 SULs (right) for all algorithms. In both series of ex-
periments the Observation Pack algorithm achieves less speedup than the L∗

M

algorithm, which in turn gains less speedup than the DHC algorithm. This is
little surprising since the gained speedup correlates to the mean batch sizes.

Interestingly, none of the algorithms lead to a speedup of 14 or more in the
experiments with 16 SULs. This can be attributed to the fact that for these
examples no algorithm produced batch sizes large enough to fully leverage 16
SULs.

Summarizing the results, one can see that the potential speedup depends hugely
on the system to be inferred (i.e., its size and the size of its input alphabet).
Both factors have an influence on the mean batch size. To optimally leverage
distribution of queries to multiple SULs, the expected mean batch size has to
be considered (a) when choosing a particular learning algorithm and (b) when
determining the number of SULs to be used.

Acknowledgement. We thank Mohamed Babiker for conducting preliminary
experiments.

5 Conclusion

We have investigated the impact of parallelizing the execution of test cases (mem-
bership queries) during active automata learning in a context where the time for
test case execution is dominant - an assumption valid for most practical applica-
tions. Our systematic investigation has focused on the impact of the structure of



246 F. Howar et al.

the SUL (number of states, size of alphabet) and the degree of supported paral-
lelism. Our results indicate that for moderate degrees of parallelization a linear
speedup can be realized, but that there seem to be saturation points beyond
which further parallelization does not pay off.

Currently we are investigating how these results transfer to industrial-scale
case studies, like e.g. the Springer’s Online Conference Service (OCS), and how
the different batch-profiles of the three considered algorithms show up there.
Furthermore, we will investigate how this optimization can be combined with
other optimizations - especially those that reduce the number of membership
queries.

References

1. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for Java classes. In: POPL 2005, pp. 98–109. ACM (2005)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

3. Balcázar, J.L., Dı́az, J., Gavaldà, R., Watanabe, O.: An optimal parallel algorithm
for learning dfa. In: Proceedings of the Seventh Annual Conference on Computa-
tional Learning Theory, COLT 1994, pp. 208–217. ACM, New York (1994)

4. Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE
Transactions on Software Engineering 4(3), 178–187 (1978)

5. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - Lessons Learned in the
ZULU Challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS,
vol. 6415, pp. 687–704. Springer, Heidelberg (2010)

6. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy sys-
tems. In: ITC 2003, pp. 971–980. IEEE Computer Society (2003)

7. Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata
Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
315–327. Springer, Heidelberg (2003)

8. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

9. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: HLDVT 2004, pp. 95–100. IEEE Computer
Society (2004)

10. Margaria, T., Raffelt, H., Steffen, B.: Analyzing Second-Order Effects Between
Optimizations for System-Level Test-Based Model Generation. In: ITC 2005. IEEE
Computer Society (2005)

11. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innovations in Systems and Soft-
ware Engineering 1(2), 147–156 (2005)

12. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata Learning with on-
the-Fly Direct Hypothesis Construction. In: Hähnle, R., et al. (eds.) ISoLA 2011
Workshops. CCIS, vol. 336, pp. 248–260. Springer, Heidelberg (2012)

13. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

14. Nerode, A.: Linear Automaton Transformations. Proceedings of the American
Mathematical Society 9(4), 541–544 (1958)



The Teachers’ Crowd: The Impact of Distributed Oracles 247

15. Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-
versity of Dortmund, Germany (2003)

16. Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. Journal of Automata,
Languages and Combinatorics 7(2), 225–246 (2002)

17. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407
(2009)

18. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Information and Computation 103(2), 299–347 (1993)

19. Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning
from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)



Automata Learning with On-the-Fly Direct

Hypothesis Construction�

Maik Merten1, Falk Howar1, Bernhard Steffen1, and Tiziana Margaria2

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany

{maik.merten,falk.howar,steffen}@cs.tu-dortmund.de
2 University Potsdam, Chair for Service and Software Engineering, Potsdam,

D-14482, Germany
margaria@cs.uni-potsdam.de

Abstract. We present an active automata learning algorithm for Mealy
state machines that directly constructs a state machine hypothesis ac-
cording to observations, while other algorithms generate a state machine
as output from information gathered in an observation table. Our DHC
algorithm starts with a one-state hypothesis that it successively extends
using a direct construction approach. This approach enables direct ob-
servation of the automata construction process: the learning algorithm
continues to complete its hypothesis, providing intuition to a field of for-
mal methods otherwise dominated by algorithms that largely operate on
internal data structures without visible feedback.

The DHC algorithm is competitive in cases where memory is the crit-
ical issue, e.g., in embedded networked systems. It is also well-suited
as educational tool to teach the underlying well-established theoretical
methods in a totally unbiased fashion, without cluttering the view onto
the actual idea of the learning process with aspects only relevant to in-
ternal bookkeeping.

1 Introduction

Most system documentation has central shortcomings that reduce its usefulness,
sometimes to the point of being useless. Apart from missing desirable properties
like being faithful to the documented system, complete, or comprehensive, it
shows distinctive lack of behavioral formal models like, e.g., automata or other
formats of finite state machines.

Many real-life systems can be modeled as input/output state machines, e.g.,
most networked applications react according to received messages and an in-
ternal state, producing state transitions and output messages in response to
input messages. The same is true for hardware circuits and for many commu-
nication protocols. State machines thus are of interest for, e.g., documentation

� This work was partially supported by the European Union FET Project CON-
NECT: Emergent Connectors for Eternal Software Intensive Networked Systems
(http://connect-forever.eu/).

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 248–260, 2012.
� Springer-Verlag Berlin Heidelberg 2012



Automata Learning with On-the-Fly Direct Hypothesis Construction 249

purposes of networked systems and reactive systems in general, potentially giv-
ing insightful information on system behavior. Behavioral models provided as
state machines can also be used for automated or semiautomated verification
(e.g., via means of model-checking) and for simulation purposes, as the strict
formalism enables automatic execution. Thus ways to (semi-)automatically de-
rive state machine descriptions of actually deployed systems are a useful addition
to the documentation-toolbox.

Fig. 1. Model of an exemplary web service, learned from the WSDL via automata
learning

Figure 1 shows a very small example of a model created via active automata
learning of a web service that simulates a vending service. Messages defined in the
WSDL description can be observed, modifying the state of the service. The model
reveals a tight interlock between communication primitives: e.g., the “purchase”
primitive can only be successfully executed once a transaction was opened using
the “startTransaction”primitive. While a WSDL does not contain such infor-
mation, this is potentially valuable knowledge that any documentation for this
service should contain. Automata learning can reveal such properties with little
or no prior knowledge on the inner workings of exploration targets.

In this paper, we present our approach of learning automata by direct hypoth-
esis construction (DHC). The DHC algorithm works by successively expanding a
spanning tree of already explored states in a breadth first manner, and introduc-
ing cycles whenever a newly found states is considered equivalent to an already
explored state until a complete hypothesis automaton has been formed. Charac-
teristic is its notion of equivalence, which is based on the next-step pattern called
signatures. As signatures simply based on the input alphabet are of course not
enough to characterize the states of a finite state system, they are successively
extended to comprise artificial symbols consisting of whole sequences of input
symbols in a way mimicking the rows of the observation table underlying the
well-known L∗ algorithm. The result is an algorithm which continuously main-
tains a hypothesis and which has a significantly smaller memory footprint, an
important property for our successful attempts to learn systems with more than
a million states.



250 M. Merten et al.

After providing the preliminaries in the next section, we present the DHC
algorithm in Section 3, we discuss its profile in Section 4, and present our con-
clusions and perspectives in Section 5.

2 Scenario: Input/Output Systems

Automata learning algorithms were originally designed to learn finite state ac-
ceptors (i.e. regular languages) [2]. The approach can be extended to learn Mealy
machines in a straightforward manner: only the notion of language has to be re-
placed by the broader notion of a semantic functional [17]. In Mealy machines
input words classify w.r.t. the output symbols produced, rather than w.r.t. ac-
ceptance.

In practice Mealy machines have been shown to be useful to describe large
classes of reactive systems [15,13,14,1]. Given an input symbol, a machine will
produce an output symbol depending on that input and its currently active
internal state, and may also let the machine switch to a another active state.
The formal definition for Mealy machines is as follows:

Definition 1 (Mealy Machine)
A Mealy machine is defined as a tuple 〈Q,q0,Σ,Ω,δ,λ〉 where

– Q is a finite nonempty set of states of size n, i.e.: n = |Q|,
– q0 ∈ Q is the initial state,
– Σ is a finite input alphabet of size k, i.e.: k = |Σ|,
– Ω is a finite output alphabet,
– δ : Q×Σ → Q is the transition function, and

– λ : Q×Σ → Ω is the output function.

Intuitively, a Mealy machine evolves through states q ∈ Q, and whenever one
applies an input symbol (or action) a ∈ Σ, the machine moves to a new state
according to δ(q,a) and produces an output according to λ(q,a).

We write q
i/o−→ q′ to denote that on input symbol i the Mealy machine moves

from state q to state q′ producing output symbol o. The transition function δ :
Q× Σ → Q and the output function λ : Q×Σ → Ω can be extended to process
words in the obvious way.

Learning algorithms for input/output systems use two types of queries to gather
information on the target system:

– Membership Queries (MQs) retrieve behavioral information of the target
system. Consisting of sequences of stimuli, MQs actively trigger the produc-
tion of behavioral outputs which are collected and analyzed by the learning
algorithm. MQs are used to construct a hypothesis, which after being made
consistent is subject of a verification by a second class of queries, the equiv-
alence queries.



Automata Learning with On-the-Fly Direct Hypothesis Construction 251

– Equivalence Queries (EQs) are used to determine if the learned hypothesis
is a faithful representation of the target system. If the equivalence oracle
handling the EQ finds diverging behavior between the learned hypothesis

(output function λhypo, initial state qhypo
0 ) and the target system (output

function λtarget , initial state qtarget
0 ), a counterexample ex ∈ Σ∗ with

λhypo(qhypo
0 ,ex) �= λtarget(qtarget

0 ,ex)

is produced, which is used to refine the hypothesis after restarting the learn-
ing process.

With those two query types learning algorithms such as L∗
i/o [12] create minimal

automata models, this meaning that the learned result never contains more states
than the minimized representation of the target system, and they also guarantee
termination with an accurate model.

The minimality property results from identifying states by their potential for
future output behavior, which according to the well-know Myhill/Nerode Theo-
rem [11] directly relates these states to the finitely many states of the minimized
representation of the target system [17]. More concretely, the states of the learned
automata correspond to the equivalence classes of the following equivalence re-
lation between states qa,qb ∈ Q:

qa ≡ qb ⇐⇒ ∀w ∈ Σ+, λ(qa,w) = λ(qb,w)

In practice it is impossible to algorithmically consider all such futures. On the
other hand, it is possible to distinguish all states of a finite state systems with
finitely many futures.

Equivalence queries provide the termination property: With every counterex-
ample the learning algorithm identifies at least one new state by using the di-
verging output behavior. Given that the number of states to be discovered is
bound by the number of states in the target system, termination is guaranteed
and the equivalence queries guarantee termination with the correct result.

3 The DHC Algorithm

Like all other active automata learning algorithms, the DHC algorithm also aims
at constructing the minimal deterministic automaton of some given finite state
target systems by identifying states according the to Myhill/Nerode theorem as
described in the previous section. Characteristic to the DHC algorithm, how-
ever, is its consequent direct breadth-first oriented construction of intermediate
hypotheses. This construction in particular avoids the use of the so-called obser-
vation tables, that may easily become a memory bottleneck.

As usual, our breadth-first search maintains a queue of states to be explored,
which gets initialized with the initial state of the automaton. If a state is unique,
i.e. not equivalent to any already explored state, its successors are enqueued for
later exploration.



252 M. Merten et al.

If we were able to decide the Myhill/Nerode equivalence described above this
construction would immediately deliver the desired automaton. Unfortunately,
in practice this equivalence can in general only be approximated on the basis of
testing. The DHC algorithm therefore follows a very simple principle based on
the following notion of signature, which works under the assumption that the
set of input symbols is ordered:

Definition 2 (Signature). The ordered set of output symbols produced at a
state q ∈ Q in response to applying all inputs of an ordered input alphabet is
called output signature: sig(q) : (λ(q,a) | a ∈ Σ)

Quite similarly to L∗ [2] the DHC algorithm iterates now two steps:

Step 1 Construction of a (hypothesis) automaton based on the equivalence of
states defined by equality of the corresponding signatures. This step al-
ways terminates with a closed and consistent hypothesis in the sense of
L∗. In the following, we call states with identical signature siblings.

Step 2 Extension of the input alphabet in response to the counterexamples pro-
vided by the Equivalence Oracle. There are various variants of the DHC
algorithms depending on the strategy of counterexample treatment. The
most important ones are

• to add all suffixes of the counterexample to the input alphabet, which
is strongly related to the counterexample treatment proposed by Maler
and Pnueli [8], and

• to add only one significant suffix to the input alphabet according to the
approaches of Rivest and Shapire [16].
These steps “aggregate” the futures provided by the counterexamples in
order to be able to treat them just like individual inputs in the next
iteration, with the result that the signatures directly match the state
characterizing vectors of the L∗ observation table.

In essence, the DHC algorithm resembles L∗ very closely, with the difference that

– it continuously provides a hypothesis also during the first phase, rather than
constructing it once at the end of this phase, and

– that this hypothesis, the main data structure of the DHC, is significantly
smaller than observation table: it grows with O(nk), whereas the observation
tables grows with O(nk2 + n2k). Unfortunately, this benefit comes with the
necessity of recomputation during each iteration.

Whereas the first difference is nice for illustration or pedagogical reasons, the
latter helped us in achieving our size record for active automata learning: a
system with over a million states, but with an extremely fast membership oracle.
The observation table for this example would have required several terabytes.
Thus there was no way to fit it into main memory, which excluded this example
from the scope of our algorithms.

In its first step, the DHC algorithm constructs closed and consistent hypoth-
esis automata by sibling-based completion.



Automata Learning with On-the-Fly Direct Hypothesis Construction 253

3.1 Step 1: Sibling-Based Completion

Definition 3. A state is called complete if for every input symbol an output
symbol and a successor state are determined. A hypothesis is called complete if
every state of it is complete.

Whereas it is easy to see that a complete hypothesis is closed in the sense of
L∗, consistency is not so obvious. In fact, we will see that it is the result of
the hypothesis construction which forces all siblings to have exactly the same
successors, namely the one determined by the oldest sibling. This is in fact similar
to the approach by Rivest and Shapire [16] or Maler and Pnueli [8].

The DHC algorithm is a classical worklist algorithm. It is initialized with the
input-alphabet and it starts with a one-state hypothesis containing only the ini-
tial state. This hypothesis is obviously not complete, as it has no transitions yet.
The initial state is therefore enqueued into the list of incomplete states, which
need to be completed via additional information extracted from membership-
queries.

Fig. 2. First steps of DHC hypothesis construction with the alphabet {a,b}

To complete the enqueued incomplete states the algorithm generates a new set
of membership queries, which are strings of symbols from the input-alphabet.
This is done by determining an access sequence that leads from the hypothe-
sis’ initial state to the incomplete state under examination, and extending this
sequence with every symbol of the input-alphabet, resulting in k queries. The
access sequence can e.g. be determined using a standard Dijkstra search [3] on
the current hypothesis or via any other search strategy.

Once a state is completed, there are two possibilities:

1. If it happens to have the same output signature as an already present com-
plete state both stat es are considered equivalent and “merged”as illustrated
in the step from 4 to 5 of Figure 2.

2. Otherwise, new successor states are created for each input symbol and en-
queued as incomplete states in the worklist. This step clearly reveals the
breadth-first exploration scheme, ensuring that any edge redirected to a pre-
vious state with identical signature is then pointing at the same or lower
search level.



254 M. Merten et al.

The sibling-based completion terminates once the queue of incomplete states is
empty.

Figure 2 shows the first steps of the DHC algorithm. The hypothesis at first
includes only the incomplete initial state, which is completed using membership
queries. This results in new incomplete states, that are completed using addi-
tional queries. In this example both successors of the initial state show the same
output behavior after completion, which causes them to be merged.

A pseudocode representation of the core algorithm is given in Figure 3. The
method getAccessSequence returns a sequence of input symbols which reaches
the respective state from the initial state of the hypothesis. The doMember-

shipQuery method expects a sequence of input symbols and returns the system
response by means of a membership query. An eventual sibling to the current
state will be retrieved by the findStateWithSameSignaturemethod. If a sibling
is found, the current state will be removed from the hypothesis by the remove

method, after ensuring any transitions are redirected to the detected sibling by
invoking rerouteAllTransitions. If no sibling was found, createSuccesors-
ForEveryTransition will create new states for every transition of the retained
state, which subsequently are enqueued for exploration.

3.2 Step 2: Refining the Input Alphabet

The second step deals with the case when the equivalence oracle returns a coun-
terexample. A simple way to treat a counterexample is to add all the suffixes
of the counterexample to the input-alphabet and re-start the learning with the
extended alphabet. This resembles the approach presented in [8] for guarantee-
ing that the newly started breadth-first exploration will take into account the
knowledge about the diverging behavior inherent in the counterexample.

Amore efficient approach to counterexample treatment analyzes the counterex-
ample in order to determine a suffix d which separates two previously assumed to
be equivalent states[16]. This can be achieved using a binary search on the coun-
terexample and some additional MQs to pinpoint the diverging behavior [17]. The
DHC algorithm then proceeds with step 1 after adding the suffix d as a new (ar-
tificial) symbol to the input alphabet. This guarantees that each additional input
symbol leads to at least one more state. Table 1 illustrates the impact of this im-
proved counterexample treatment according to a number of different methods ex-
plained in the next Section. As we see comparing the first with the last row, the
gains are significant and vary from a factor 10 to a factor 30.

After extending the alphabet in one of these ways the breadth-first exploration
could proceed as described in the previous section. The artificial input symbols,
which we call splitters, are indeed sequences of input symbols only introduced
to split states previously considered equivalent. Splitters are somewhat different
from the normal alphabet symbols. They should, e.g., not be represented in the
final result presented to a user, and they need not be considered when filling
the worklist after having detected a new state as will be discussed in Section 4.
Figure 4 illustrates the effect of splitters.Splitters are indicated by the square



Automata Learning with On-the-Fly Direct Hypothesis Construction 255

1 f unc t i on DHC(Alphabet a lphabet ) {
2 Hypothes is hypo = new Hypothes is ( ) ;
3 Queue statesToComplete = new Queue ( ) ;
4 statesToComplete . enqueue ( hypo . g e tS t a r tS ta t e ( ) ) ;
5

6 while ( statesToComplete . isNotEmpty ( ) ) {
7 State cu r r en tS ta t e = statesToComplete . dequeue ( ) ;
8 Sequence acces sSeq = cur r en tS ta t e . getAccessSequence ( ) ;
9

10 for ( Symbol sym in alphabet ) {
11 Query query = acces sSeq . append (sym ) ;
12

13 // Communicate wi th the t a r g e t system , f e t c h the output symbol
14 Symbol output = doMembershipQuery ( query ) ;
15

16 // s e t the t r a n s i t i o n output f o r the sym input−symbol
17 // to the r e t r i e v e d output symbol .
18 cu r r en tS ta t e . setTrans i t ionOutput (sym , output ) ;
19 }
20

21 State s i b l i n g = hypo . f indStateWithSameSignature ( cu r r en tS ta t e ) ;
22 i f ( e x i s t s ( s i b l i n g ) ) {
23 // re rou t e a l l t r a n s i t i o n s to cu r r en tS t a t e to s i b l i n g
24 hypo . r e r ou t eA l lT r an s i t i o n s ( currentState , s i b l i n g ) ;
25 hypo . remove ( cu r r en tS ta t e ) ;
26 } else {
27 cu r r en tS ta t e . c r ea teSucce so r sForEveryTrans i t i on ( ) ;
28 for ( State su c c e s s o r o f cu r r en tS ta t e ) {
29 statesToComplete . enqueue ( su c c e s s o r ) ;
30 }
31 }
32 }
33

34 return hypo ;
35 }

Fig. 3. Pseudocode of the DHC core algorithm

brackets in the left graph (for instance, the splitter “[a,a]” joined by output such
as “[0,1]”) and removed in the right graph, the actual learning result.

4 Notes on Efficient Implementation Strategies

While the DHC algorithm itself is simple and can be implemented with little
effort, there are some hurdles to overcome to make the implementation actually
perform well. The following suggestions employ standard algorithm-engineering
approaches. To evaluate the impact of the proposed implementation strategies,



256 M. Merten et al.

Fig. 4. The effect of splitters

Table 1. Comparison of the impact of the optimizations

Split Ref Sib 49 states 66 states 88 states
17.90 s 49.59 s 353.41 s

� 10.70 s 30.67 s 210.04 s
� 8.95 s 23.21 s 162.42 s
� � 2.03 s 5.08 s 20.92 s

� 13.68 s 29.86 s 181.69 s
� � 8.42 s 18.78 s 111.10 s
� � 6.77 s 13.96 s 79.89 s
� � � 1.70 s 3.44 s 11.39 s

we conducted experiments with an implementation [10] that allows enabling and
disabling specific optimizations.

Exploring only successor states of original alphabet symbols: As can be observed
in Figure 4, states reached by splitter transitions are also reached by successively
following the transitions of the splitters’ individual symbols. This is guaranteed
to be the case, as splitters are unrolled into sequences of individual symbols on
membership query construction, which generates identical traces to successively
following transitions of the individual symbols. Thus, as splitter transitions do
not reach states not reached otherwise, it is not necessary to to enqueue any
successor state of splitter transitions. For the provided example automaton, for
instance, this decreases the number of generated membership queries from 78 to
46, the same number the algorithm of [7] would require when following the same
path of construction.

Adding only one splitter per counterexample (Split): To complete a state, one
membership query per alphabet symbol will be generated, meaning that the num-



Automata Learning with On-the-Fly Direct Hypothesis Construction 257

Fig. 5. The impact of the optimization strategies on scalability

ber of MQs generated by the DHC learning algorithm depends on the effective
size of the alphabet, that includes the original input-alphabet Σ and the splitters
added during the enhancement of the signatures. As described in Sect. 3.2, it is
possible to analyze counterexamples so that only one splitter needs to be added
to the alphabet, which drastically decreases the size of the required signatures,
and consequently the number of membership queries.

The impact of this optimization is presented in Table 1, which shows that
employing this optimization, denoted as Split in the table, decreases the overall
runtime for all examined examples.

Determining access sequences quickly (Ref): For every incomplete state we need
to determine an access sequence for the construction of membership queries. A
straightforward approach would be to, e.g., employ a Dijkstra search, which is
a safe bet and will work in all cases. Figure 5, however, shows that the Dijkstra
search (not surprisingly) scales extremely poorly with increasing state count.

This can be overcome by maintaining the reverse edges of the spanning tree
when constructing the DHC hypothesis, which immediately allows one to col-
lect the access sequence in linear time. Table 1 illustrates the impact of this
optimization here indicated as Ref.



258 M. Merten et al.

Fig. 6. Memory consumption of DHC compared to two algorithms with observation
tables

Finding siblings fast (Sib): Finding siblings by searching the complete hypoth-
esis becomes increasingly slower as the hypothesis grows as is shown in Figure
5, where employing a graph-wide search for siblings scales unfavorably with in-
creasing state counts.

A good optimization is to sort all states with an unique output signature into
a decision tree, which guarantees a lookup time solely depending on the input-
alphabet of the hypothesis. The immense impact of this optimization is visible
in Figure 5, where this optimization is included in optimizations enabled, and
also in Table 1, where this optimization is referred to as Sib.

The overall impact of our optimizations is summarized in Figure 5, which in
particular shows how nicely the optimized algorithm scales with growing state
spaces.

5 Conclusion

In this paper we have presented an automata learning algorithm that follows
the well-known breadth-first-oriented exploration pattern and is thus, due to its
continuous provision of a visualizable hypothesis structure, fit for educational
purposes. Moreover, these DHC hypotheses, the main data structures of the
DHC algorithm, are significantly smaller than observation table: they grow with
O(nk), whereas observation tables grow with O(nk2 +n2k) already in the case of



Automata Learning with On-the-Fly Direct Hypothesis Construction 259

[7], and the estimation for L∗ has even an additional factor “maximal size of a
counterexample”. This difference is nicely illustrated in Fig. 6, which clearly in-
dicates that the memory consumption of table-based algorithms correlates with
the number of discovered transitions (coarsely dotted line), whereas DHC’s mem-
ory consumption only grows linearly with the number of discovered states (finely
dotted line). 1

Although this memory efficiency comes at the price of recomputation dur-
ing each iteration, the DHC algorithm allowed us to raise the record for active
learning to systems with more than a million states in settings where membership
queries are extremely fast. The DHC algorithm is implemented in the LearnLib
[10,9], which is available as free download at http://www.learnlib.de.

A closer investigation reveals that the DHC algorithm can be considered as
an elegant means for splitting the data maintained in the observation table in
two parts, the ones to be kept in main memory, namely the DHC hypotheses,
and data that can be kept on disk or SSD, namely a cache, storing the results of
all membership queries. This extends the practical impact of DHC’s reduction
of the memory footprint to large systems where answering membership queries
is (very) expensive:

– It allows one to deal with systems of a few hundred thousand states whose
observation table would grow far beyond the available main memory.

– The additional cache lookups required for the DHC algorithm do not weight
in comparison to the membership querying times.

This separation of concerns is quite similar to the one proposed in [5,6,18] for
externalizing the bulk of the required memory for graph search. We are convinced
that following this line of thought that considers layered memory hierarchies can
be quite successful also for active automata learning, even though their work
depends on that fact that the considered graphs are provided in a white box
fashion. This excludes the direct use of GPUs as proposed by [18], but it seems
to have nevertheless a great potential for parallelization. First results in this
direction are reported in [4].

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communica-
tion Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

1 The large spikes seen for the table-based algorithms are caused by copying data from
fixed-size data structures into freshly allocated data structures of bigger size, and the
ripples in DHC’s memory profile can be explained by the from-scratch construction
principle whenever a counterexample is delivered, which leads to the deallocation of
memory consumed by the disproved hypothesis.



260 M. Merten et al.

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

4. Howar, F., Bauer, O., Merten, M., Steffen, B., Margaria, T.: The Teachers’ Crowd:
The Impact of Distributed Oracles on Active Automata Learning. In: Hähnle, R.,
et al. (eds.) ISoLA 2011 Workshops. CCIS, vol. 336, pp. 232–247. Springer,
Heidelberg (2012)

5. Jabbar, S.: External directed search. KI 21(1), 37–38 (2007)
6. Jabbar, S.: External memory algorithms for state space exploration in model check-

ing and action planning. PhD thesis (2008)
7. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.

MIT Press, Cambridge (1994)
8. Maler, O., Pnueli, A.: On the Learnability of Infinitary Regular Sets. Information

and Computation 118(2), 316–326 (1995)
9. Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating Learning

of Register Automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 466–471. Springer, Heidelberg (2012)

10. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

11. Nerode, A.: Linear Automaton Transformations. Proceedings of the American
Mathematical Society 9(4), 541–544 (1958)

12. Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis,
University of Dortmund, Germany (2003)

13. Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid test of web applications
with webtest. In: TAV-WEB 2008: Proceedings of the 2008 Workshop on Testing,
Analysis, and Verification of Web Services and Applications, pp. 1–7. ACM, New
York (2008)

14. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)

15. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407
(2009)

16. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

17. Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning
from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

18. Sulewski, D., Edelkamp, S., Kissmann, P.: Exploiting the computational power
of the graphics card: Optimal state space planning on the gpu. In: Bacchus, F.,
Domshlak, C., Edelkamp, S., Helmert, M. (eds.) ICAPS. AAAI (2011)



Author Index

Aßmann, Uwe 1

Bauer, Oliver 232
Bennaceur, Amel 220
Breu, Ruth 162
Bruckner, Dietmar 144, 156
Brugali, Davide 46
Bruyninckx, Herman 46

Eilers, Sönke 61
Einramhof, Peter 106

Felderer, Michael 162

Gander, Matthias 162
Gelbard, Friedrich 144
Gherardi, Luca 46
Götz, Sebastian 1
Gurov, Dilian 181

Hinchey, Mike 91
Hinterleitner, Isabella 156
Howar, Falk 232, 248

Issarny, Valérie 220

Johansson, Richard 220

Katt, Basel 162
Klotzbücher, Markus 46
Kuka, Christian 61
Kulk, Jason 31

Leuthäuser, Max 1

Margaria, Tiziana 232, 248
McDonald, John 16
Meinke, Karl 200
Merten, Maik 232, 248
Middleton, Richard H. 16
Moschitti, Alessandro 220

Niu, F. 200

Østvold, Bjarte M. 181
Olufs, Sven 106

Pollhammer, Klaus 136
Pongratz, Martin 136
Ponweiser, Wolfgang 121

Reimann, Jan 1
Ruehrup, Stefan 61

Schaefer, Ina 181
Schreiner, Dietmar 150
Schroeter, Julia 1
Schwarz, Robert 106
Schweigert, Sören 61
Sindhu, M. 200
Spalazzese, Romina 220
Steffen, Bernhard 232, 248
Stüdli, Sonja 16
Sykes, Daniel 220
Szep, Alexander 136

Toben, Tobe 61

Varadarajan, Karthik 106
Vassev, Emil 91
Vincze, Markus 106, 121, 156

Welsh, James S. 31
Wende, Christian 1
Whelan, Thomas 16
Wilke, Claas 1
Winkelmann, Hannes 61
Wohlkinger, Walter 106
Wotawa, Franz 76

Zillich, Michael 121


	Title
	Preface
	Organization
	Table of Contents
	Software Aspects of Robotic Systems (SARS 2011)
	A Role-Based Languagefor Collaborative Robot Applications
	Introduction
	Motivating Example
	Applying SOA for Simple Robot Coordination
	NaoText for Controlling Collaborating Robots
	Design of NaoText
	Application on Our Motivating Example

	Discussion
	Related Work
	Conclusion
	References

	Efficient Localization for Robot Soccer Using Pattern Matching
	Introduction
	Background
	Previous Work
	Modified Cox Algorithm

	Extensions and Modifications
	Unscented Kalman Filter Integration
	Modified Cox Algorithm
	White Field Marking Point Filtering

	Tests and Results
	Localization Performance
	Computational Performance

	Conclusion
	Future Work

	References

	A NUPlatformfor Software on Articulated Mobile Robots
	Introduction
	Related Work
	Overview

	The Blackboard
	Sensors
	Actuators
	Visual Information
	Jobs
	Network Information

	The Platform
	NUPlatform
	NUCamera
	NUSensors
	NUActionators

	Software Modules
	Behaviour
	Motion

	System Configuration
	Applications of NUPlatform
	Conclusion
	References

	Service Component Architectures in Robotics:The SCA-Orocos Integration
	Introduction
	Service Component Architecture
	The Orocos Framework
	SCA - Orocos Integration
	The JOrocos Library and Its Architecture
	The SCA-OROCOS Component

	The Case Study
	Conclusions
	References

	Safe Autonomous Transport Vehiclesin Heterogeneous Outdoor Environments
	Introduction
	Safety Aspects for AGVs
	Related Work
	Structure

	State of the Art
	Safety Concept for Efficient AGVs
	Safety Concept
	System Architecture
	Safety Analysis

	Technical Concept
	Safety Sensors
	The Observer Component
	Fusion of Sensor Data and Obstacle Classification
	Hazard Prediction

	Conclusion
	References

	Adaptive Autonomous Systems –From the System’s Architecture to Testing
	Introduction
	Model-Based Reasoning
	A Model-Based Control Architecture
	Testing Model-Based Systems
	Related Research
	Conclusion
	References

	Representing Knowledge in Robotic Systemswith KnowLang
	Introduction
	Background
	ASCENS and ASCENS Knowledge Base
	KnowLang
	The Ensemble of Robots Case Study
	The marXbots Robot Ontologies
	The marXbots Robot Contexts and Logical Framework

	Conclusion and Future Work
	References

	Object Detection and Classification for Domestic Robots
	Introduction
	System Approach to Domestic Robotics
	Ground Plane and Object Segmentation
	Localisation from Ground Plane
	Object Categorisation
	System Approach to Object Classification
	Scale.
	Orientation.
	Room and Object Class.
	Datasources.

	Web-Based Model Aquisition
	Web-Download.
	Domain Simulation.

	Processing Steps
	Support Plane Detection.
	Clustering.
	Region Prior Filter.
	Supported Candidates Filter.
	Play It Again, Sam.

	Classification
	3D Descriptor Properties.
	Normalization.
	Invariance.
	Spherical Harmonics Descriptor.

	Results

	Wall and Door Detection
	Wall Detection, Room Modeling and Doorway Detection from Colour and Stereo Data
	Feature-Based Door Detection

	Conclusion
	References

	A Software Integration Framework for Cognitive Systems
	Introduction
	Related Work
	A Software Framework for Cognitive Vision Systems
	Requirements on a Software Framework for CVS
	Design Decisions
	Design Principles
	Component Structure
	Service Selection
	Quality of Service, Utility and Costs
	Implementation: zwork and Its Graphical User Interface (GUI)

	Experiments in the ActIPret Project
	Conclusions
	References


	Special Session on KOROS
	KOROS Initiative: Automatized Throwing and Catching for Material Transportation
	Introduction
	Related Work
	Planned Research Topics
	Throwing and Catching of Point-Symmetrical Objects
	Practical Experiments on Object's Flight Properties
	Evaluation of Throwing Strategies
	Experience Based Trajectory Prediction

	Conclusion
	References

	Cognitive Decision Unit Applied to Autonomous Robots
	Introduction
	State of the Art
	Mobile Platforms
	Control Architectures

	Model
	Implementation
	Results
	Conclusion
	References

	Building iRIS: A Robotic Immune System
	Introduction
	Scopes of Research for a RIS
	Model Driven Development
	Static Analysis
	Programming Languages
	Reflective Computing
	Nature Inspired Computing

	iRIS: An Overview
	Conclusion
	References

	Towards Reorientation with a Humanoid Robot
	Introduction
	Motivation
	State of the Art
	Situated Vision
	Formalizing Task Knowledge
	Visual Attention

	ENTER Approach
	References


	Machine Learning for System Construction(MLSC 2011)
	Monitoring Anomalies in IT-Landscapes Using Clustering Techniques and Complex Event Processing
	Introduction
	Basic Context
	Case Study
	Problem Statement and Assumptions
	Course of Action and Objectives

	Clustering-Based Anomaly Detection Framework
	IT-Landscape Metamodel
	Complex Event Processing
	Profiling via Clustering

	Related Work
	Conclusion and Future Work
	References

	A Hierarchical Variability Model for Software Product Lines
	Introduction
	Families and Variability Models
	Families
	Variability Models

	Relating Families and Variability Models
	From Variability Models to Families
	From Families to Variability Models
	Characterization Results

	Application
	Example Product Line: Storing and Processing Collections
	From Code to Artifacts
	Constructing and Interpreting the SHVM

	Related Work
	Conclusion
	References

	Learning-Based Software Testing: A Tutorial
	Introduction
	What Is Learning-Based Testing?
	Specification-Based Testing
	Learning-Based Testing

	Learning Principles for Efficient Testing
	Incremental Learning
	Query Types
	Local Learning
	System Abstraction

	A Survey of LBT Tool Architectures
	LBT for Procedural Systems
	LBT for Reactive Systems I
	LBT for Reactive Systems II

	Relations to Other Testing Methods
	Conclusions and Future Research
	References

	Machine Learning for Automatic Classification of Web Service Interface Descriptions
	Introduction
	Setting Up the Context
	Applying Document Classification Techniques for the Categorisation of Service Descriptions
	Machine Learning for Automatic Document Classification
	Feature Extraction in Web Service Interface Descriptions

	Experiments
	Classification Results
	Design of the Feature Extractor
	Selection of the Machine Learning Algorithm
	Generating Multiple Hypotheses

	Conclusion
	References

	The Teachers’ Crowd: The Impact of DistributedOracles on Active Automata Learning
	Introduction
	Preliminaries
	Parallel Learning
	The L*M Algorithm
	Parallel Execution of Queries
	Implementation

	Evaluation
	Different Profiles by Example
	Asymptotic Profiles
	Speedup

	Conclusion
	References

	Automata Learning with On-the-Fly DirectHypothesis Construction
	Introduction
	Scenario: Input/Output Systems
	The DHC Algorithm
	Step 1: Sibling-Based Completion
	Step 2: Refining the Input Alphabet

	Notes on Efficient Implementation Strategies
	Conclusion
	References


	Author Index



