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Abstract. Rigid transformations are useful in a wide range of digital image pro-
cessing applications. In this context, they are generally considered as continuous
processes, followed by discretization of the results. In recent works, rigid trans-
formations on Z2 have been formulated as a fully discrete process. Following this
paradigm, we investigate – from a combinatorial point of view – the effects of
pixel-invariance constraints on such transformations. In particular we describe
the impact of these constraints on both the combinatorial structure of the trans-
formation space and the algorithm leading to its generation.
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1 Introduction

Rigid transformations, (i.e., transformations based on translations and rotations) are in-
volved in the design of many computer vision and image processing techniques (see,
e.g., [8,9]). Such transformations are generally performed by considering the Euclidean
space (Rn) associated to the Eulerian space (Zn) of the data. As a consequence, they need
to be interfaced with a subsequent digitization process to finally produce results in Zn.

In [5], we have recently proposed to study rigid transformations on Z2 as a fully
discrete process. In this context, three main questions were considered: (i) How many
rigid transformations can be defined on a finite subspace of Z2? (ii) How to generate all
of them? (iii) What are the topological relationships between them? Some combinatorial
and algorithmic answers, inspired by the approaches developed in [3,4], were provided,
and then contributed to the state of the art in this research field [3,4,2,7]. In [5], a
combinatorial structure – namely a graph – is used to represent the 2D discrete rigid
transformations. This structure has a polynomial complexityO(N9) where N × N is the
size of images. However, this high complexity makes it difficult to generate the whole
graph for large images, and to further find admissible transformations that best match
two given images, namely a template and a target image; the later problem is called
image registration. Practically in computer vision, some constrained search paradigms
are used for registration issues (see, e.g., [9,1]). Indeed the constraints introduce prior
knowledge of transformations and contribute to reduce the research space.
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In this article, we extend the study initiated in [5], by investigating the effects of ge-
ometric constraints on the proposed graph. In particular, we focus on pixel–invariance
constraints, which consist of forcing the correspondence between points in an initial
(sub)space (of Z2) and transformed points – or more generally regions.

This study is organised as follows. We first recall background notions on discrete
rigid transformations (Sec. 2), and express pixel-invariance constraints in the associ-
ated parameter space (Sec. 3). We then develop an algorithmic process for generating
a combinatorial structure modeling all the discrete rigid transformations and their rela-
tionships under the given constraints (Sec. 4). A complexity analysis is proposed for this
algorithm and the induced structure (Sec. 5). Finally, we conclude the article (Sec. 6).

2 Background Notions of Discrete Rigid Transformations

2.1 Digital Images and Digital Rigid Transformations

In the continuous framework, an image can be formalised as a function I : R2 → V ,
where V is any value space. A digital image associated to I can then be defined as
I : Z2 → V , by sampling I on the discrete space Z2. In other words, we have I = I|Z2 ,
and for each p ∈ Z2, the value I(p) models the value of I on the associated pixel
p + [− 1

2 ,
1
2 ]2, namely the Voronoi cell of R2 induced by Z2 around p. This paradigm

relies on the digitisation function, where [ . ] is a rounding operator, defined as
∣
∣
∣
∣
∣
∣

D : R2 −→ Z2

(x, y) �−→ ([x], [y])
(1)

In the continuous framework, a 2D rigid transformation, composed of translation and
rotation, is expressed as a bijection T : R2 → R2 defined, for any x = (x, y) ∈ R2, by

T (x) =

(

cos θ − sin θ
sin θ cos θ

) (

x
y

)

+

(

a
b

)

(2)

where a, b, θ ∈ R and θ ∈ [0, 2π[. In particular, such a transformation is unambiguously
modeled by the triplet of parameters (a, b, θ), and will sometimes be noted by Tabθ.
When applied on an image I : R2 → V , it provides a new transformed image I ◦T−1 :
R

2 → V .
Following the digitisation paradigm proposed above, a digital rigid transformation

T : Z2 → Z2 associated to T can be defined, for any p = (p, q) ∈ Z2, by

T (p) = D ◦ T (p) =

(

[p cos θ − q sin θ + a]
[p sin θ + q cos θ + b]

)

(3)

In general, this function is not bijective. However, by setting T−1 : Z2 → Z2 as T−1 =

D ◦ T−1, it becomes possible to define the digital transformed image I ◦ T−1 : Z2 → V
with respect to T . In the sequel of this article, we focus on such digital rigid transfor-
mations. From this point on – for the sake of readability and without loss of correctness
– we will denote them T instead of T−1, due to the bijectivity of T and T−1.
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Fig. 1. Tipping surfaces in the 3D parameter space (a, b, θ) (left) and their cross-sections, namely
tipping curves, in the 2D planes (a, θ) and (b, θ) (right)

2.2 Discontinuities of Digital Rigid Transformations

For any x in Eq. (2), if we change the value of (a, b, θ) slightly, then the new point
T (p) also changes slightly. More formally, the function (a, b, θ) �→ Tabθ is continuous.
Contrariwise, in Eq. (3), an infinitesimal variation of (a, b, θ) may lead to a variation
of T (p) from a point of Z2 to another one. More precisely, the parameter space R3 of
(a, b, θ) is divided into 3D open cells where the function (a, b, θ) �→ Tabθ = D ◦ Tabθ is
piecewise constant, bounded by 2D surfaces where it is discontinuous.

We focus in particular on the triplets (a, b, θ) and their associated transformations
Tabθ, which lead to such discontinuities in the space of digital rigid transformations.
Such critical transformations are those that map at least one discrete point onto the
discrete half-grid H =

(

R × (Z + 1/2)
)

∪
(

(Z + 1/2) × R
)

(i.e., the boundaries of the
Voronoi cells of R2 induced by Z2).

Definition 1 ([5]). Let (a, b, θ) ∈ R3, and Tabθ : R2 → R
2 be its associated rigid

transformation. We say that Tabθ is a critical transformation if ∃p ∈ Z2 s.t. Tabθ(p) ∈ H .

It is plain that in the parameter space (a, b, θ), the critical transformations are modeled
by 2D surfaces analytically defined, for any p = (p, q) ∈ Z2 and k, l ∈ Z, by

∣
∣
∣
∣
∣
∣

Φpqk : R2 −→ R
(b, θ) �−→ a = φpqk(θ) = k + 1

2 + q sin θ − p cos θ,
(4)

∣
∣
∣
∣
∣
∣

Ψpql : R2 −→ R
(a, θ) �−→ b = ψpql(θ) = l + 1

2 − p sin θ − q cos θ.
(5)

The surfaces Φpqk (resp. Ψpql) are termed tipping surfaces [5]. Their intersection φpqk

(resp. ψpql) on the 2D plane (a, θ) (resp. (b, θ)) are called tipping curves. These tipping
surfaces/curves, which correspond to the discontinuities of digital rigid transformations
expressed in the parameter space (a, b, θ), are illustrated in Fig. 1.
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Fig. 2. Parameter space subdivided by four tipping surfaces (left) and its DRT graph (right)

2.3 Partition of Parameter Space and Discrete Rigid Transformation Graph

The digitisation process (Eq. (1)) generally maps distinct rigid transformations (Eq. (2))
onto the same digital rigid transformation (Eq. (3)). More precisely, the set of all the
non-critical transformations can be partitioned into equivalence classes induced by the
equivalence relation ∼ defined by (Tabθ ∼ Ta′b′θ′) ⇐⇒ (Tabθ = Ta′b′θ′). This also leads
to the straightforward definition of an equivalence relation on the parameters (a, b, θ)
associated to these transformations. In this isomorphic framework, each equivalence
class is called a discrete rigid transformation (DRT), and is modeled by 3D open cells
bounded by 2D tipping surfaces, which subdivide the parameter space (a, b, θ) (see
Fig. 1(a)).

In [5], we have shown that this subdivision of the parameter space could be modeled
using a dual combinatorial structure, namely a graph. In particular, each 3D open cell
(i.e., each DRT) is associated to a vertex, and each tipping-surface segment (linked to a
critical transformation) shared by two adjacent 3D open cells, is associated to an edge.
The resulting graph is called a DRT graph [5] (see Fig. 2).

From a theoretical point of view, the notions introduced above are correctly defined
for images and transformations on Z2 and R2. Practically, our purpose is to study such
transformations on images of finite sizes. Under this hypothesis, only a finite subset of
digital rigid transformations are relevant, namely those which actually affect such finite
images. From this point on, we focus on this finite case and assume that the digital
images are defined on subsets of Z2 of size N × N (N ∈ N). We have the next property.

Property 2 ([5]). The DRT graph associated to a digital image of size N × N has a
space complexity of O(N9).

In [5], an exact computation algorithm was also proposed to build this graph in linear
time w.r.t. its size. The DRT graph models a kind of “neighbouring” relationship be-
tween DRTs. Indeed, the existence of an edge between two vertices indicates that the
associated transformations differ in one pixel among the N2 ones. This property opens
a way of involving this combinatorial structure in image processing tasks.
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We now study the effects of forcing the correspondence between points in the initial
and transformed spaces. We focus in particular on the subdivision of the parameter
space and the induced graph from the algorithmic and combinatorial points of view.

3 Constraints and Feasible Rigid Transformation Set

3.1 Pixel-Invariance Constraints and Interpretation in the Parameter Space

In the context of rigid transformations in R2, forcing the correspondence between points
p in the initial space and p′ in the transformed one leads to restricting the transforma-
tions T . Moreover, forcing the correspondence between k ≥ 2 distinct pairs of points
(pi, p′i) restricts the number of feasible transformations T to at most one. Indeed, from
the relation expressed in Eq. (2) we obtain for every pair of corresponding points two
equations representing the trigonometric surfaces. We then need at least two pairs of
corresponding points to obtain a rigid transformation as the feasible transformation. As
illustrated in Fig. 3(a), each pair of surfaces represents a pair of corresponding points,
and the intersection of two pairs of surfaces determines the feasible transformation.

Restricting discrete rigid transformations, under similar constraints, is more permis-
sive. Indeed, when forcing the correspondence between one or several pairs of pixels
(pi, p′i) of Z2, a larger space of transformations may remain valid (see Fig. 3(b–g)).

Definition 3. Let p = (p, q) ∈ A ⊂ Z2 and p′ = (p′, q′) ∈ B ⊂ Z2, such that A, B are of
size N ×N. There exists a pixel-invariance constraint between p and p′ if the authorised
digital rigid transformations T between A and B satisfy the equality T (p) = p′, i.e., if

p′ − 1/2 < p cos θ − q sin θ + a < p′ + 1/2, (6)

q′ − 1/2 < p sin θ + q cos θ + b < q′ + 1/2. (7)

More generally, there exist pixel-invariance constraints between two sets {pi}mi=1 and
{p′i}mi=1 (m ≥ 1) if T (pi) = p′i (i.e., if Eqs. (6)–(7) are satisfied) for every i ∈ [[1,m]].

In absence of constraints, the 3D parameter space (a, b, θ), induced by the subset of size
N × N where the image is defined, is divided into cells whose boundaries are all the
tipping surfaces Φpqk and Ψpql, with p, q ∈ [[0,N − 1]] and k, l ∈ [[0,N]]. In this context,
the whole volume of the parameter space models adequate rigid transformations.

In contrast, under a pixel-invariance constraint, some discrete rigid transformations
may become irrelevant. Equivalently, only a part of the parameter space – namely
the subspace of parameters (a, b, θ) that satisfy this constraint – remains valid. From
Eqs. (6)–(7), this parameter subspace is defined by the intersection of 4 half-spaces
associated to 4 tipping surfaces for one pixel correspondence (see Fig. 3(b)).

3.2 Feasible Rigid Transformation Set

More generally, if a set P of m pixel correspondences is provided, the parameter sub-
space of relevant transformations is defined as the intersection of m regions induced by
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Rigid transformation sets induced by geometric constraints in continuous (a) and discrete
(b,c) frameworks. (a) Transformations with one-point correspondence (red line) and two-point
correspondences (red dot). (b,c) Transformations with one-pixel (b) and two-pixels (c) corre-
spondences (red volumes). (d,e) (resp. (f,g)) Cross-sections of (b) (resp. (c)) on the planes (a, θ)
and (b, θ) via the use of tipping curves.

these constraints, i.e., as the intersection of 4m half-spaces defined by Eqs. (6)–(7). Let
us first define the half-spaces induced by tipping surfaces Φpqk and Ψpql:

H+pqk = {(a, b, θ) | a > Φpqk(b, θ)} and H−pqk = {(a, b, θ) | a < Φpqk(b, θ)}, (8)

V+pql = {(a, b, θ) | b > Ψpql(a, θ)} and V−pql = {(a, b, θ) | b < Ψpql(a, θ)}. (9)

The subspace of interest, called feasible rigid transformation set, is defined as follows.

Definition 4. Let P = {(pi, p′i)}
m
i=1 (m ≥ 1) be a set of corresponding pixel pairs. The

feasible rigid transformation set (FRTS) associated to P is the subspace R ⊂ R3 of the
parameter space (a, b, θ), defined as

R =
⋂

i∈[[1,m]]

(

H+piqi p′i
∩ H−piqi p′i+1 ∩ V+piqiq′i

∩ V−piqiq′i+1

)

.

Note that a constraint of one pixel pair (namely, m = 1), the FRTS is observed as a
“tube” in the parameter space (a, b, θ) (see Fig. 3(b)). We can consider that a pixel-
invariance constraint leads to all rotations with a center x ∈ R2 inside of pixel p ∈ Z2

(i.e., x ∈ p+[−1/2, 1/2]2). For constraints of two pixel pairs (namely, m = 2), the FRTS
becomes a “bounded region” (see Fig. 3(c)).

The FRTS generated by m pixel correspondences is divided into DRTs induced from
the (N2 −m) remaining pixels of the given image of size N × N. In particular, the com-
binatorial structure of DRTs in a FRTS, modeling this subdivision, is a subgraph of the
DRT graph. We introduce, in the following, a notion of directional convexity of a re-
gion R, such that R is “convex along an axis”, and show that any FRTS R is directionally
convex. This property is used in the next sections to study the combinatorial structure
of DRTs in R.
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Definition 5. We say that a region R ⊆ Rn in an n-variable space (x1, . . . , xn) is xk-
convex if, for any two points p1, p2 ∈ R such that the segment [p1 p2] = {α.p1+(1−α).p2 |
α ∈ [0, 1]} is parallel to the xk-axis, [p1 p2] is included in R.

Property 6. The FRTS R is both a- and b-convex.

4 Combinatorial Structure of Discrete Rigid Transformations in a
Feasible Rigid Transformation Set

So far, we know that a FRTS contains all rigid transformations satisfying all constraints,
and is subdivided into DRTs (see Sec. 2.3). This section presents a method for con-
structing a combinatorial structure of DRTs in a FRTS by following the three stages:
(1) finding the boundaries of a FRTS, (2) finding tipping surfaces passing a FRTS and
(3) constructing a DRT graph in a FRTS. Before describing these stages, we first ex-
plain an algorithm for building a graph modeling a subdivision of the parameter space
from a given set of tipping surfaces, which is used later in the first and third stages.

4.1 Sweeping Algorithm for Incremental Partition Graph Construction

We may generalize the problem of subdivision of the parameter space by tipping sur-
faces as follows: given a set of tipping surfaces S , we would like to construct a graph
modeling the subdivision of the parameter space (a, b, θ) induced by S . Such a graph
is called a partition graph and denoted by G. In G each vertex is associated to a 3D
open cell of the subdivision, and each tipping-surface segment shared by two adjacent
3D open cells, is associated to an edge. This problem can be answered with the help of
3D arrangements of surfaces [6]. In [5], we have proposed the sweeping algorithm for
constructing a DRT graph of a given image (see Section 2.3), which is a specific case
of generating a partition graph. Such a method has a complexity O(n3), where n is the
number of surfaces. Here we present a similar method that builds the partition graph G
based on the relations that link tipping surfaces and tipping curves (see Eqs (4)–(5) and
Fig. 1). Such a subdivision can be fully described from its two cross-sections on the
planes (a, θ) and (b, θ), respectively expressed by two sets of tipping curves. Therefore,
instead of constructing directly the partition graph in the 3D parameter space (a, b, θ),
we will first build the structures of the graphs in the 2D planes (namely, (a, θ) and (b, θ)
planes), and then combine them to build the complete partition graph. Note that G be-
comes a DRT graph if we consider all tipping surfaces for a given image.

We first define a cut for a plane – either (a, θ) or (b, θ) – denoted by γ, as a monotonic
line intersecting exactly once for each tipping curve in the plane. A cut is then repre-
sented by its sequence of intersecting tipping curves (see Fig. 4(a)). Such a cut can be
modeled by a directed graph according to their sequences of tipping curves.

Definition 7. Let γ = (φ1, φ2, . . .) be a cut. A graph Gγ = (Vγ, Eγ) w.r.t. γ consists of
– a set of vertices Vγ = {v0, v1, . . .}, and
– an ordered set of labelled edges Eγ = ((v0, v1, φ1), (v2, v1, φ2), . . .) and each edge

(u,w, f ) ∈ Eγ connects two vertices u,w ∈ Vγ separated by the tipping curve f , which
is considered as an edge label.
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(a) (b)

Fig. 4. (a) Example of a cut and its graph. (b) Progress of the cut at an event point by which the
cut is updated and the corresponding graph is modified.

In practice, the elements of Eγ are also ordered in the same way as γ (see Fig. 4(a)).
The main idea of the sweeping method in 2D is that a cut is swept through all tip-

ping curves on the plane in finite time, allowing us to construct the graph afterwards. We
assume that γ starts at θ = 0 and ends at θ = 2π. While sweeping the cut, its sequence
changes only at intersections of tipping curves, called event points. The moment at which
a cut reaches an event point, the algorithm performs an update of its sequence, and gen-
erates new vertices and edges in the graph (see Fig. 4(b)). We call this an elementary step
of the algorithm. The set of event points forms a series of elementary steps. Therefore,
instead of moving the cut continuously, we need to maintain a set of sorted event points
w.r.t. θ, and progress the cut in their increasing order to build the graph incrementally.

For building a graph G in 3D, two cuts are used such that each cut sweeps on either
the plane (a, θ) or (b, θ). We denote those cuts by γa and γb respectively. For each update
of the cuts, γa and γb, the associated graphs, Gγa and Gγb , are respectively modified, so
that a part of G is generated. We call such a part of G a partial graph, denoted by δG .
In fact, δG is a combination of the two graphs Gγa and Gγb as follows (see Fig. 5).

Definition 8. The partial graph δG = (δV, δE) is generated from Gγa = (Vγa , Eγa ) and
Gγb = (Vγb , Eγb ), such that

– δV = {(va, vb) | va ∈ Vγa , vb ∈ Vγb }, and
– δE = {((u1, v), (u2, v), φu) | u1, u2 ∈ Vγa , v ∈ Vγb , (u1, u2, φu) ∈ Eγa } ∪ {((u, v1),

(u, v2), φv) | v1, v2 ∈ Vγb , u ∈ Vγa , (v1, v2, φv) ∈ Eγb }.

Therefore, when an elementary step is applied, the sweep progresses as the partial graph
δG is generated and integrated in G for constructing the final graph as well. The follow-
ing proposition has been originally proposed in [5] for constructing a DRT graph, and
this is valid for a partition graph as well.

Proposition 9. Let S be a set of tipping surfaces and G be a partition graph modeling
the subdivision of the parameter space by S . We have

G =
⋃

i∈[[1,e]]

δGi,

where δGi is a partial graph at the i-th elementary step and e is the number of ordered
event points.

More details about the sweeping algorithm for tipping surfaces can be found in [5].
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(a) (b)

Fig. 5. Construction of a partial graph δG by combining two graphs Gγa and Gγb

4.2 Finding the Feasible Rigid Transformation Set Boundary

It is possible to describe a FRTS R by a set of half-spaces constituting the boundary of
R, instead of using all the half-spaces of R as described in Definition 4. This section
explains how to find such a set using the above sweeping algorithm.

A FRTS R in the parameter space (a, b, θ) can be fully described from its two cross-
sections RH and RV on the planes (a, θ) and (b, θ), defined as

RH =
⋂

i∈[[1,m]]

(

h+piqiq′i
∩ h−piqiq′i+1

)

and RV =
⋂

i∈[[1,m]]

(

v+piqi p′i
∩ v−piqi p′i+1

)

(10)

where h+piqiq′i
and h−piqiq′i+1 (resp. v+piqi p′i

and v−piqi p′i+1) are the cross-sections in the plane

(a, θ) (resp. (b, θ)) of H+piqiq′i
and H−piqiq′i+1 (resp. V+piqi p′i

and V−piqi p′i+1). This is illustrated
in Fig. 3(d–g). They are expressed as shown in Eq. (8) (resp. Eq. (9)) by replacing the
tipping surfacesΦpqk and Ψpql by the tipping curves φpqk and ψpql respectively. We call
h+pqk, v

+
pql, upper half-planes and h−pqk, v

−
pql lower half-planes.

Relying on the similarity of RV and RH , hereafter we consider only RH . Our prob-
lem is then specified as follows: given a constraint set of half-planes ofRH defined from
m corresponding pixel pairs, P = {(pi, p′i )}mi=1, report the boundary half-planes of RH .
From Property 6, it is obvious that RH contains two sets of boundary half-planes:

– a upper boundary sequence U = (h+piqiq′i
, . . .) contains only the upper half-planes;

– a lower boundary sequence L = (h−piqiq′i+1, . . .) contains only the lower half-planes.
The 2D sweeping algorithm, presented in Sec. 4.1, is used to find such U and L of RH ,
such that the cut γ is now represented as a sequence of half-planes intersecting it. Note
that no partition graph is built in this stage, and we only need to observe the sequence
of the cut γ during its update in order to obtain U and L. Indeed, while sweeping γ
its sequence changes at event points. We remark that γ is in RH when its sequence
of half-planes is separated into two successive sequences of γ+ and γ−, namely γ =
γ+γ−, where γ+ contains only the upper half-planes and γ− contains only the lower
half-planes. Moreover, we see that the last element of γ+ and the first element of γ−

determine the upper and lower boundaries of RH respectively. The cut is located out of
RH when there is no more such a separation. According to the change of γ in RH , the
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(a) (b) (c)

Fig. 6. (a) Progression of the cut γ in the cross-section RH of FRTS R on the plane (a, θ). The ini-
tial cut is γ1 = (h+111, h

−
112, h

+
001, h

−
002); when it goes in RH it has become γ2 = (h+001, h

+
111, h

−
002, h

−
112);

when it goes out of RH it becomes γ3 = (h+111, h
−
112, h

+
001, h

−
002). (b) Example of tipping surfaces (in

red) passing R in the parameter space (a, b, θ) and (c) its cross-section RH on the plane (a, θ).

upper and lower boundaries are added progressively in U and L at each event point. See
Fig. 6(a) for the illustration.

By using two cuts γa and γb sweeping on the two planes (a, θ) and (b, θ), we can find
the boundary of a FRTS R. At each event point either on (a, θ) or (b, θ), the algorithm
updates and checks the sequences of both cuts. From this, we obtain the boundary of
R, and the first θ at which both sequences of γa and γb are separated in two parts (resp.
have no more separation), denoted by θmin (resp. θmax) of R that need in the next stage.

4.3 Finding Tipping Surfaces Passing by a Feasible Rigid Transformation Set

As the subdivision of a FRTS R is induced by the tipping surfaces existing in R (see
Fig. 6(b)), we need to determine such tipping surfaces among all Φpqk and Ψpql for
p, q ∈ [[0,N − 1]] and k, l ∈ [[0,N]], where N × N is the image size. Now looking at the
cross-sections of R, this problem is equivalent to finding tipping curves φpqk (resp. ψpql)
passing RH (resp. RV) (see Fig. 6(c)).

A tipping curve φpqk passesRH if it intersects one of the boundary segments of φp′q′k′

of RH . This is easily verified by the following steps:

(i) verify if φpqk and φp′q′k′ intersect, i.e., if the following relation is satisfied [5,
Property 2]: Δ1+Δ2 > 0 and |KP±

√
Δ1| ≤ P2+Q2 and |KQ±

√
Δ2| ≤ P2+Q2, where

P = p−p′, Q = q−q′, K = k−k′, Δ1 = P2(P2+Q2−K2) and Δ2 = Q2(P2+Q2−K2);
(ii) if they intersect, then calculate the following values at the intersection [5, Corol-

lary 1]: sin θ = KQ±
√
Δ1

P2+Q2 and cos θ = KP±
√
Δ2

P2+Q2 , and verify if θmin ≤ θ ≤ θmax, where
θmin and θmax are obtained in Sec. 4.2;

(iii) if (ii) is verified, then calculate aupper = max
h+pqk∈U

φpqk(θ) and alower = min
h−pqk∈L

φpqk(θ),

and verify if aupper ≤ a ≤ alower, where the value a at the above intersection θ is
calculated from Eq. (4).

Note that the values cos θ and sin θ are used to represent θ. All cos θ, sin θ, cos θmin,
sin θmin, cos θmax, sin θmax, a, amin and amax are quadratic irrationals1. As shown in [5],
their comparisons can be achieved exactly in constant time.

1 A quadratic irrational is an irrational number that is a solution of some quadratic equations.
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We define tipping surfaces of interest as a set of tipping surfaces that bound or pass a
FRTS R. Similarly, tipping curves of interest ofRH (resp.RV) is the set of the boundary
tipping curves of RH (resp. RV) and the tipping curves passing RH (resp. RV).

4.4 DRT-Graph Construction in a Feasible Rigid Transformation Set

In order to build the DRT graph in a FRTS R, we use the sweeping algorithm described
in Sec. 4.1. However the cut γ in this part sweeps from θmin to θmax instead of [0, 2π[,
and contains only tipping surfaces existing between the upper and lower boundaries of
R. The following question then arises: how can we detect event points in R? Or when is
an elementary step applied? Because of the similarity of RV and RH , in the following
we consider only the cross-section RH of R. Event points in RH are now defined as
intersections of tipping curves of interest being either on a boundary segment or inside
of RH , as illustrated in Fig. 6(c). According to its nature, it is called either a boundary
event point or an inside event point. Similarly to the method in Sec. 4.3 if an intersection
coordinate (θ, a) satisfies θmin ≤ θ ≤ θmax and amin ≤ a ≤ amax, then it is verified to be
an event point. The algorithm described in Sec. 4.1 deals with any inside event points.
In contrary, the boundary event points must be treated separately as follows.

As described in Sec. 4.1, an elementary step at each event point consists of (i) updat-
ing the graphs Gγa and Gγb according to the change of γa and γb respectively (explained
below) and (ii) building the partial graph δG from Gγa and Gγb (see Definition 7).

In [5], we classified inside event points into two cases: simple intersections and de-
generacies (see Fig. 7). Figure 8 shows an elementary step at a simple intersection. In
[5], the degeneracies are processed by modifying this simple case.

Regarding boundary event points, they can be classified into the following six cases
(Fig. 9), which are easily detected by checking the tipping curves intersecting at the
event point with the tipping curves in γ and the upper and lower bound sequences U
and L. The procedure for handling them in simple cases is explained below, while the
degenerate cases are treated similarly to [5] and omitted in this paper due to the page
number limitation. As illustrated in Fig. 9, an event point:

– changes the boundary, which is either upper (a) or lower (b);
– does not change the boundary, such that one of the tipping curves

• goes in (resp. out) R by the upper boundary (c) (resp. (d));
• goes in (resp. out) R by the lower boundary (e) (resp. (f)).

We first explain how to update the cut for (a) and (b). Without loss of generality, let
q = {φu, φv} be a boundary event point generated by two tipping curves φu, φv and γ, γ′

be the cuts before and after q respectively. Assuming γ = (φ1, φ2, . . . , φn−1, φn), if q is

– the upper boundary, i.e., φu = φ1 and φv = φ2, then γ′ = (φv, φ2, . . . , φn−1, φn),
– the lower boundary, i.e., φu = φn and φv � φn−1, then γ′ = (φ2, φ3, . . . , φn−1, φv).

Similarly, the procedures for updating the cut for (c) and (d) are given as follows. Let
q = {φu, φv} be an event point on the upper boundary, i.e., φu = φ1. We have two cases:

– when φv goes in RH , i.e., φv � φ2, then γ′ = (φ1, φv, φ2, . . . , φn);
– when the curve φv goes out RH , i.e., φv = φ2, then γ′ = (φ1, φ3, . . . , φn).

The procedures for (e) and (f) can be considered in the same way. Fig. 10 illustrates he
elementary steps for those boundary event points.
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(a) (b) (c)
Fig. 7. Inside event point classification: a simple intersection if it is generated by only two tipping
curves (a), otherwise it is a degeneracy (b,c), i.e., when there are more than two tipping curves

Fig. 8. Updating the graph Gγa w.r.t. the change of the cut γa at a simple intersection

(a) (b) (c) (d) (e) (f)

Fig. 9. Classification of simple boundary event points, an event point having a tipping curve that:
changes a boundary (a,b), goes in and out by an upper boundary (c,d), goes in and out by a lower
boundary (e,f). Upper and lower boundaries are colored in blue and red respectively.

5 Complexity and Experiments

5.1 Complexity Analysis

The space complexity of a DRT graph is proportional to its number of vertices and
edges. In absence of constraints, the DRT graph G for an image of size N × N, has a
O(N9) complexity (Property 2). This results from the fact that (i) the number of event
points of the whole space is O(N6), and (ii) at each elementary step (i.e., for each event
point), there are O(N3) vertices generated in the partial graph δG of G [5]. Given one
pixel-invariance constraint, some of the potential DRTs become irrelevant. Following
the similar proof scheme as above, we can show that the number of event points (i)
decreases from O(N6) to O(N5) (due to Property 4 in [5] on tipping curves periodicity),
and (ii) at each elementary step, O(N2) vertices are generated instead of O(N3) since, as
explained in Sec. 4, δG of G is generated from two graphs Gγa and Gγb of two cuts γa

and γb sweeping on the planes (a, θ) and (b, θ) respectively. Each of the cut intersects
at most O(N2) tipping curves on the plane. Then at each intersection, there are O(N2)
vertices generated in δG. This leads to the following property.

Property 10. The DRT graph G associated to a digital image of size N × N under one
pixel-invariance constraint has a space complexity of O(N7).
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(a) (b)

(c) (d)

Fig. 10. Illustrations of elementary steps –update γ and generate its graph Gγ– for a tipping curve
changing (a) an upper or (b) a lower boundary, and going (c) in or (d) out of an upper boundary

Regarding more complex pixel invariance constraints, we cannot use a similar approach
to obtain the theoretical upper bound complexity of G in a FRTS. This is due to the
space complexity of G depending on the distance between the involved pixels. Thus,
we construct G using our method and we investigate its complexity in practice.

5.2 Computational Experiments

Experiments were carried out on 2D digital images I of size N ×N, for 1, 2, 3, 5 and 10
constraints, to investigate how these constraints affect the complexity of the DRT graph.
The first experiment (Fig. 11(a)) validates the theoretical O(N7) space complexity for
one given pixel-invariance constraint. Previous works in [2,7] on discrete rotations pro-
vide a complexity of only O(N3). However, they consider only a rotation center at a
pixel center, while our approach makes no such assumption. In other words, we con-
sider any discrete rotation whose rotation center is located inside a pixel region, due to
one pixel-invariance constraint, instead of a pixel center. For this reason, the complexity
is increased from O(N3) to O(N7). Given two pixel-invariance constraints, the bounded
FRTS R varies randomly with the selected corresponding pixels. Results obtained for
an image of size 5 × 5 are shown in Fig. 11(b) for two random pixel choices with some
fixed distances. Results for different image sizes are shown in Fig. 11(c). By taking into
account the largest complexity for each image size we obtain a worst case complexity
O(N5.5) of a DRT graph G in R.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Experiments for one (a), two (b,c), three (d-g), five (h) and ten (i) pixel-invariance con-
straints (see Sec. 5.2)

We could expect thatR is strictly reduced when given supplementary pixel-invariance
constraints, i.e., more than two constraints. Nevertheless, the third experiment shows
that it is not always true. Let us set two pixel-invariance constraints (in red and blue in
Fig. 11(d)), and the associated FRTS R (Fig. 11(e)). A supplementary constraint deter-
mined by green pixels in Fig. 11(d) does not reduce R; green dotted lines do not pass
through R. Actually (see Fig. 11(f)), there exist two kinds of pixels: one contains some
pixels providing no contribution toR such as the green ones, and another contains pixels
allowing to reduce R such as purple ones. Consequently, the complexity of G depends
on given pixel-invariance constraints, but not on the number of constraints.

However, in practice, the more constraints are imposed, the lower the complexity of
the DRT graph. This is shown in the experiments for 5 and 10 constraints illustrated
in Fig. 11(h) and (i) respectively. Overall there is a downward trend in the numbers of
vertices and edges in the DRT graph, though the experimental complexity do not exceed
O(N5.5).
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6 Conclusion

This article continued the study initiated in [5] by investigating the effects of geomet-
ric constraints on rigid transformations of digital images. In this work, we addressed
pixel-invariance constraints which consist of specifying the correspondence between
points in an initial (sub)space (of Z2) and pixels in the transformed space. By enforcing
correspondence between one or several pairs of pixels, we consequently restrict the fea-
sible transformations into a parameter subspace, called a feasible rigid transformation
set (FRTS), in which all such constraints are satisfied. A proposed algorithm allowed
us to build a combinatorial structure (namely a graph) for modeling the subdivision of
the FRTS on a subset of Z2 of size N × N. We have theoretically analysed the complex-
ity of the graph with one given pixel-invariance constraint to be O(N7). For more than
one constraint, the complexity could not be theoretically calculated. However, using
our proposed graph construction method we actually built the graph and experimentally
investigated its complexity, which was shown not to exceed O(N5.5).

Note that the FRTS is generated from a finite intersection of regions of the imposed
constraints. In practice, due to the precision of pixel-invariance constraints, we may
obtain an empty set of feasible rigid transformations induced by these constraints. In
order to avoid this problem, one solution can be to change the resolution of the im-
ages. Namely, we degrade the image resolution as in [7] until we find a non-empty and
bounded FRTS.
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