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Abstract. Array Token Petri Net Structure (ATPNS) to generate rect-
angular arrays has been defined in [6]. We prove that this model generate
the regular array languages. By introducing a control on the firing se-
quence, we have shown that, ATPNS with inhibitor arcs generate the
context-free and context-sensitive array languages. Comparisons with
other classes of array languages have been made.

Keywords: Array token, Catenation, Inhibitor arcs, Petri net, Picture
languages.

1 Introduction

Picture languages generated by grammars or recognized by automata have been
advocated since the seventies for problems arising in the framework of pattern
recognition and image analysis [2,7,9]. In syntactic approaches to generation of
picture patterns, several two-dimensional grammars have been proposed. Array
rewriting grammars [11], controlled tabled L array grammars [10] and pure 2D
context-free grammars [13] are some of the picture generating devices. Applica-
tions of these models to generation of “kolam” patterns [12] and in clustering
analysis [14] are found in the literature.

On the other hand, a Petri net is an abstract formal model of information
flow [4]. Petri nets have been used for analyzing systems that are concurrent,
asynchronous, distributed, parallel, non deterministic and/or stochastic. Tokens
are used in Petri nets to simulate dynamic and concurrent activities of the sys-
tem. A language can be associated with the execution of a Petri net. By defining
a labeling function for transitions over an alphabet, the set of all firing sequences,
starting from a specific initial marking leading to a finite set of terminal mark-
ings, generates a language over the alphabet.

Petri net structure to generate rectangular arrays are found in [5, 6]. The
two models have different firing rules and catenation rules. In [5] column row
catenation petri net structure (CRCPNS) has been defined. A transition with
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several input places having different arrays is associated with a catenation rule
as label. The label of the transition decides the order in which the arrays are
joined (columnwise or rowwise) provided the condition for catenation is satisfied.
In CRCPNS a transition with a catenation rule as label and different arrays in
the input places is enabled to fire.

In ATPNS [6] the catenation rule involves an array language. All the input
places of the transition with a catenation rule as label, should have the same
array as token, for the transition to be enabled. The size of the array langauge
to be joined to the array in the input place, depends on the size of the array in
the input place.

In this paper we examine the generative capacity of ATPNS. We find that
ATPNS is able to generate only the regular languages. To control the firing se-
quence inhibitor arcs are introduced. The introduction of inhibitor arcs increases
the generative capacity. ATPNS with inhibitor arcs generate the context-free and
context-sensitive languages.

The paper is organized as follows: Section 2 defines Array Token Petri Net
Structure (ATPNS), language associated with it and gives an example. Section
3 compares ATPNS with three families of array grammars, T0L array gram-
mar with regular control and pure 2D context-free grammar. Section 4 defines
Array Token Petri Net Structure with inhibitor arcs, compares with the other
six families of array grammars and T0L array grammar with context-free or
context-sensitive control.

2 Array Token Petri Nets

In this section we give preliminary definitions of Petri Net and give the notations
used. We define Array Token Petri Net Structure (ATPNS), language associated
with it and give an example.

A Petri net is one of several mathematical models for the description of dis-
tributed systems. A Petri net is a directed bipartite graph, in which the nodes
represent transitions (i.e., events that may occur, signified by bars) and places
(i.e., conditions, signified by circles). The directed arcs from places to a transi-
tion denote the pre-conditions and the directed arcs from the transition to places
denote the post-conditions (signified by arrows). Graphically, places in a Petri
net may contain a discrete number of marks called tokens. Any distribution of
tokens over the places will represent a configuration of the net called a marking.
In an abstract sense relating to a Petri net diagram, a transition of a Petri net
may fire whenever there are sufficient tokens at the start of all input arcs; when
it fires, it consumes these tokens, and places tokens at the end of all output arcs.
Transitions can be labeled with elements of an alphabet so that the firing se-
quence corresponds to a string over the alphabet. A labeled Petri net generates a
language. Hack [3] and Baker [1] have published a report on Petri net languages.
Petri net to generate string languages is also found in [8].

We now recall the basic definitions of Petri net [4] and the basic notations
pertaining to rectangular arrays [11].
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Definition 1. A Petri Net structure is a four tuple C = (P, T, I, O) where P =
{p1, p2, . . . , pn} is a finite set of places, n ≥ 0, T = {t1, t2, . . . , tm} is a finite
set of transitions m ≥ 0, P ∩ T = φ, I : T → P∞ is the input function from
transitions to bags of places and O : T → P∞ is the output function from
transitions to bags of places.

Definition 2. A Petri Net marking is an assignment of tokens to the places of
a Petri Net. The tokens are used to define the execution of a Petri Net. The
number and position of tokens may change during the execution of a Petri Net.
In this paper arrays over an alphabet are used as tokens.

Definition 3. An inhibitor arc from a place pi to a transition tj has a small
circle in the place of an arrow in regular arcs. This means the transition tj is
enabled only if pi has no tokens. A transition is enabled only if all its regular
inputs have tokens and all its inhibitor inputs have zero tokens.

Basic Notations: Σ∗∗ denotes the arrays made up of elements of Σ. If A
and B are two arrays having same number of rows then A©| B is the column
wise catenation of A and B. If two arrays have the same number of columns
then A©− B is the row wise catenation of A and B. (x)n denotes a horizontal
sequence of n ‘x’ and (x)n denotes a vertical sequence of n ‘x’ where x ∈ Σ∗∗.
(x)n+1 = (x)n©| x and (x)n+1 = (x)n©− x.

The Petri net model defined here has places and transitions connected by
directed arcs. Rectangular arrays over an alphabet are taken as tokens to be
distributed in places. Variation in firing rules and labels of the transition are
listed out below.

Firing Rules in ATPNS
We define three different types of enabled transition in ATPNS. The pre and
post condition for firing the transition in all the three cases are given below:

1. When all the input places of t1 (without label) have the same array as token.

– Each input place should have at least the required number of arrays.
– Firing t1 removes arrays from all the input places and moves the array

to all its output places.

The graph in Fig. 1 shows the position of the array before the transition fires
and Fig. 2 shows the position of the array after transition t1 fires.

P2

P1
P3

t1
A

A

Fig. 1. Position of arrays before firing
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P2

P1
P3

t1

A

Fig. 2. Position of array after firing

2. When all the input places of t1 have different arrays as token

– The label of t1 designates one of its input places.
– The designated input place has the same array as tokens.
– The designated input place has sufficient number of tokens.
– Firing t1 removes arrays from all the input places and moves the array

from the designated input place to all its output places.

The graph in Fig. 3 shows the position of the array before the transition fires
and Fig. 4 shows the position of the array after transition t1 fires. Since the
designated place is p1 the array in p1 is moved to the output place.

P2

P1
P3

A 1

A 2

1     1
t  (p )

Fig. 3. Transition with label before firing

P2

P1
P3

1     1
t  (p )

A 1

Fig. 4. Transition with label after firing

3. When all the input places of t1 (with catenation rule as label) have the same
array as token

– Each input place should have at least the required number of arrays.
– The condition for catenation should be satisfied.
– The designated input place has sufficient number of tokens.
– Firing t1 removes arrays from all the input places p and the catenation

is carried out in all its output places.
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Catenation Rule as Label for Transitions: Column catenation rule is in
the form A©| B. Here the array A denotes the m × n array in the input place
of the transition. B is an array language whose number of rows will depend on
‘m’ the number of rows of A. The number of columns of B is fixed. For example
A©| (x x)m adds two columns of x after the last column of the array A which
is in the input place. But (x x)m©| A would add two columns of x before the
first column of A. ‘m’ always denotes the number of rows of the input array A.
Row catenation rule is in the form A©− B. Here again the array A denotes the
m× n array in the input place of the transition. B is an array language whose
number of columns will depend on ‘n’ the number of columns of A. The number
of rows of B is always fixed. For example A©− [

x
x

]n
adds two rows of x after the

last row of the array A which is in the input place. But
[
x
x

]n ©− A would add
two rows of x before the first row of the array A. ‘n’ always denotes the number
of columns of the input array A.

An example to explain row catenation rule is given below. The position of the
arrays before the transition fires is shown in Fig. 5 and Fig. 6 shows the position
of the array afer transition t1 fires. Since the catenation rule is associated with
the transition, catenation takes place in p3.

P2

P1
P3

A

A

A   (x)     yθ n−1

1
t

Fig. 5. Transition with catenation rule before firing

P2

P1
P3A 1

A   (x)     yθ n−1

1 
t

Fig. 6. Transition with catenation rule after firing

If A =
a a a
a a a
a a a

, the number of columns of A is 3, n− 1 is 2, firing t1 adds the

row x x y as the last row. Hence A1 =

a a a
a a a
a a a
x x y

.
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Definition 4. If C = (P, T, I, O) is a Petri net structure with arrays over of
Σ∗∗ as initial markings, M0 : P → Σ∗∗, label of at least one transition being
catenation rule and a finite set of final places F ⊂ P , then the Petri net structure
C is defined as Array Token Petri Net Structure (ATPNS).

Definition 5. If C is a ATPNS then the language generated by the Petri net
C is defined as L(C) = {A ∈ Σ∗∗/A is in p for some p in F}. With arrays of
Σ∗∗ in some places as initial marking all possible sequences of transitions are
fired. The set of all arrays collected in the final places F is called the language
generated by C.

Example 1. Σ = {x, .},, F = {p1}

t 1

t 2

t 3

t 4

P1

P2

P4 P3

S

A    B 4

B      A
3

B      A
2

A     B 1

Fig. 7. ATPNS

where S =
x x x
x . x
. . x

, B1 = (. x)m, B2 = (x .)m, B3 =
x
x

(
x
.

)n−2
x
x

and B4 =

(
x
.

)n−2
.
.
x
x
.

Firing t1 puts an array in p2 making t2 enabled. Firing t2 puts an array in p3
making t3 enabled. Firing t3 puts an array in p4 making t4 enabled. Firing t4
puts an array in p1. The firing sequence (t1t2t3t4)

k, k ≥ 0 puts a square spiral
of size 4k + 3 in p1. The language generated by this ATPNS is a set of square
spirals. When the transitions t1, t2, t3 and t4 fire the array that reaches the
output place is shown below

S
t1=⇒

x x x . x
x . x . x
. . x . x

t2=⇒
x . x x x . x
x . x . x . x
x . . . x . x

t3=⇒

x x x x x x x
x . . . . . x
x . x x x . x
x . x . x . x
x . . . x . x
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t4=⇒

x x x x x x x
x . . . . . x
x . x x x . x
x . x . x . x
x . . . x . x
x x x x x . x
. . . . . . x

The language generated by this ATPNS is square spirals of size 4n+ 3, n ≥ 0.

3 Comparative Results

In this section we recall the definitions of Array rewriting Grammar [11], Ex-
tended Controlled Table L-array Grammar [10], pure 2D context-free grammar
with regular control [13] and compare it with ATPNS.

Definition 6. G = (V, I, P, S) is an array rewriting grammar (AG), where V =
V1∪V2, V1 a finite set of nonterminals, V2 a finite set of intermediates, I a finite
set of terminals, P = P1∪P2∪P3, P1 is the finite set of nonterminal rules, P2 is
the finite set of intermediate rules, P3 is the finite set of terminal rules. S ∈ V1

is the start symbol. P1 is a finite set of ordered pairs (u, v), u and v in (V1∪V2)
+

or u and v in (V1 ∪ V2)+.
P1 is context-sensitive if there is a (u, v) in P1 such that u = u1S1v1 and

v = u1αv1 where S1 ∈ V1, u1, α, v1 are all in (V1 ∪ V2)
+ or all in (V1 ∪ V2)+. P1

is context-free if every (u, v) in P1 is such that u ∈ V1 and v in (V1 ∪ V2)
+ or

(V1 ∪ V2)+. P1 is regular if u ∈ V1 and v of the form U ⊕ V , U in V1 and V in
V2 or U in V2 and V in V1.

P2 is a set of ordered pairs (u, v), u and v in (V2 ∪ {x1, . . . , xp})+ or u and
v in (V2 ∪ {x1, . . . , xp})+; x1, . . . , xp in I++ have same number of rows in the
first case and same number of columns in the second case. P2 is called CS, CF
or R as the intermediate matrix languages generated are CS, CF or R.

P3 is a finite set of terminal rules are ordered pairs (u, v), u in (V1 ∪ V2) and
v in I++.

An Array Grammar is called (CS : CS)AG if the nonterminal rules are CS
and at least one intermediate language is CS. An Array Grammar is called (CS
: CF)AG if the nonterminal rules are CS and none of the intermediate language
is CS. An Array Grammar is called (CS : R)AG if the nonterminal rules are
CS and all the intermediate languages are regular. Similarly all the other six
families (CF : CS)AG, (CF : CF)AG, (CF : R)AG, (R : CS)AG, (R : CF)AG
and (R : R)AG are defined. (X : Y)AL refers to the language generated by the
(X : Y)AG, where X,Y ∈ {R,CF,CS}.

Definition 7. An extended, controlled < kl, kr, ku, kd > table L-array grammar
is a 5-tuple G = (V, T,P , C, S,#) where V is a finite nonempty set; T ⊆ V is
the terminal alphabet of G; P is a finite set of tables {P1, P2, . . . , Pk}, and each
Pi, i = 1, 2, . . . , k, is a left, right, up or down rules only. The rules within a table
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are all of the same type: either string rules with neighborhood context determined
by kl, kr, ku, kd ∈ {0, 1}, or matrix rules. In either case, all right-hand sides of
rules within the same table are of the same length; C is a control language over
P; and S �∈ V is the start matrix; # is an element not in V .

In particular if V = T and S is a matrix, G is a controlled table L-array
grammar; if C = P∗, then there is no control and the order of applications of
the tables is arbitrary; G is then an extended table L-array grammar.

If kl = kr = ku = kd = 0, then the rules are all context-free (0L) table array
grammar. If at least one of kl, kr, ku, kd equals 1 then we get a context dependent
(1L) table array grammar.

(γ)TXLAL refers to the language generated by table XL array grammar with
γ control; X may be 0 or 1 and γ may be R, CF or CS.

Definition 8. A pure 2D context-free grammar (P2DCFG) is a 4-tuple G =
(Σ,Pc, Pr,M0), where

– Σ is a finite set of symbols.
– Pc = {tci|1 ≤ i ≤ m}, Pr = {trj |1 ≤ j ≤ n}.

Each tci , (1 ≤ i ≤ m), called a column table, is a set of context-free rules of
the form a → α, a ∈ Σ, α ∈ Σ∗ such that for any two rules a → α, b → β
in tci , we have |α| = |β|, where |α| denotes the length of α.

Each trj , (1 ≤ j ≤ n), called a row table, is a set of context-free rules of the
form c → γT , x ∈ Σ, γ ∈ Σ∗ such that for any two rules c → γT , d → δT

in trj , we have |γ| = |δ|.
– M0 ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.

Derivations are defined as follows. For any two arrays M1,M2, we write M1 ⇒
M2 if M2 is obtained from M1 by either rewriting a column of M1 by rules of
some column table tci in Pc or a row of M1 by rules of some row table trj in Pr.
⇒∗ is the reflexive transitive closure of ⇒.

The picture array language L(G) generated by G is the set of rectangular
picture arrays {M |M0 ⇒∗ M ∈ Σ∗∗, for some M0 ∈ M0}. The family of
picture array languages generated by pure 2D context-free grammars is denoted
by P2DCFL.

Definition 9. A pure 2D context-free grammar with a regular control is Gc =
(G,Lab(G), C) where G is a pure 2D context-free grammar, Lab(G) is a set of
labels of the tables of G and C ⊆ Lab(G∗) is a regular (string) language. The
words in Lab(G)∗ are called control words of G. Derivations M1 ⇒w M2 in Gc

are done as in G, except that if w ∈ Lab(G∗) and w = l1l2 . . . lm, then the tables
of rules with labels l1, l2, . . . , lm are successively applied starting with M1 to yield
M2. The picture array language generated by Gc consists of all picture arrays
obtained from the axiom array of G with the derivations controlled as described
above. We denote by (R)P2DCFL the family of picture array languages generated
by pure 2D context-free gramamrs with a regular control.

Theorem 1. The class of table 0L array languages without control or with reg-
ular control can be generated by ATPNS.
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Proof. Let G = (V,P , C, S) be a table 0L array grammar; where V is a finite
set of terminals, P is a finite set of tables {P1, P2, . . . , Pk}, and each Pi, i =
1, 2, . . . , k, is a left, right, up or down rules only. S is the start array.

The rules within a table are all of the same type. The left hand side of each
production is a single terminal. The right hand side of all the rules within the
same table is of the same length. Each table will have at least one rule for each
symbol on the boundary. If say, P1 has left (right) rules then applying the rules
of P1 will amount to column catenation. Similarly applying the table containing
up(down) rules will amount to row catenation.

Let us construct an array token Petri net structure when there is no control
on the application of the tables. Let p1 be the place with the start array S as
a token. For every table Pi ∈ P have a transition ti with the corresponding
row or column catenation rule as label. Have k transitions one each for the k
tables in P with p1 as both input place and output place of all the transitions.
F = {p1}. Every time a table production is required to be used the corresponding
transition is fired. Since there is no control the tables can be applied in any order
to generate the language. In the net p1 is the output place of every transition.
Hence after the firing of any transition the array reaches p1, so at any given time
all the k transitions are enabled. Thus the Petri net constructed will generate
the language generated by the grammar G.

Let us construct an array token Petri net structure when a regular control
C = (P1P2 . . . Pk)

∗ is defined on the application of tables. Have k transitions
and k places. Let S the start array be a token in place p1. Let t1 be a transition
with the catenation rule, which corresponds to the table P1, as label; p1 being the
input place and p2 as its output place. Let t2 be a transition with the catenation
rule, which corresponds to the table P2, as label; p2 being the input place and p3
as its output place. Continuing like this have a transition tk with the catenation
rule, which corresponds to the table Pk, as label; pk being the input place and p1
as its output place. F = {p1}. Firing tk puts a token in p1 so that t1 is enabled
again. The firing sequence t1t2 . . . tk will have the same effect as applying the
production rules P1P2 . . . Pk in that order once. The effect of the regular control
is got by placing the transitions with those labels in the same order forming a
loop in the net so that the sequence of transitions can be fired any number of
times. Thus the Petri net constructed will generate the language generated by
the grammar G. ��
Theorem 2. (R)T 0LAL is properly contained in the family generated by ATPNS.

Proof. Let us give an example to prove this theorem. The language of square spi-
rals given in Example 1 is a (R)T 1LAL [10]. Thus ATPNS can generate certain
languages that do not belong to (R)T 0LAL, which proves a proper containment.

��
Theorem 3. The families of (R : Y )AL, where Y ∈ {R,CF,CS}, can be gen-
erated by ATPNS.

Proof. Let G = (V, I, P, S) be an array grammar, where V = V1 ∪V2, V1 a finite
set of nonterminals; V2 a finite set of intermediates; I a finite set of terminals,
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P = P1 ∪ P2, P1 is the finite set of regular nonterminal rules; P2 is the finite
set of terminal rules. S ∈ V1 is the start symbol. For each A in V2, MA is an
intermediate language.

In array grammars the derivation is as follows. Starting with S the nonter-
minal rules are applied without any restriction, as in string grammar, till all
the nonterminals are replaced. Then replace each intermediate A by MA sub-
ject to the conditions imposed by the row and column catenation operator. Let
the regular non-terminal rules of G generate the infinite sequence of matrices
{Mn/n ≥ 1} where Mn is in any one of the following forms. For all n > 1,
Mn = (X©−Mn−1)©| Y or Mn = Y©| (X©−Mn−1) or Mn = Y©| (Mn−1©−X) or
Mn = (Mn−1©−X)©| Y , where X and Y are chosen from intermediate matrix
languages LX and LY (subject to conditions imposed by row and column cate-
nation). The recursive definition of Mn is assumed to be unique. S → M1 is the
terminal rule.

Construction of ATPNS, for the case when Mn = (X©−Mn−1)©| Y where X
and Y are intermediates, is given below. For the other cases the construction is
similar. Define the arrays BX and BY corresponding to the intermediate lan-
guage X and Y . Put M1 in the start place p1 as a token. Have a transition t1
with the row catenation rule BX©−A as a label. Let p1 be the input place of t1.
The number of rows of BX is fixed but the number of columns of BX is depen-
dent on ‘n’ the number of columns of A. A is the array that reaches the input
place p1 of the transition t1 during the course of the execution of the net. Let
p2 be the output place for the transition t1. The array BY is defined similar to
the intermediate language generated by Y . Have a transition t2 with the column
catenation rule A©| BY as a label. Let p2 be the input place of t2. The number
of columns of BY is fixed but the number of rows of BX is dependent on ‘m’
the number of rows of A. A is the array that reaches the input place p2 of the
transition t2 during the course of the execution of the net. Let p1 be the output
place for the transition t2. First time the sequence t1t2 is executed, the matrix
M2 is put in p1. Let F = {p1} be the final set of places. The firing sequence
(t1t2)

k puts the matrix Mk+1, k ≥ 0 in p1. Thus {Mn/n ≥ 1} of matrices is the
language generated. ��

Theorem 4. The families of (R : Y )AL, where Y ∈ {R,CF,CS}, are properly
contained in the family generated by ATPNS.

Proof. Let us give an example to prove this theorem. Kirsch’s right triangles
is a (CF : R)AL [11]. But ATPNS can generate Kirsch’s right triangles. Thus
ATPNS generates certain languages which do not belong to (R : Y )AL, which
proves proper containment. ��

Theorem 5. Any (R)P2DCFL can be generated by ATPNS.

Proof. Let the language be generated by a P2DCFG with a regular control,
Gc = (G,Lab(G), C) where G is a P2DCFG, Lab(G) is the set of all labels and
C is the control language.



176 D. Lalitha, K. Rangarajan, and D.G. Thomas

Application of a column table is equivalent to a column catenation. Hence
for every tcj , we can define an equivalent column catenation rule. Similarly for
every row table trj , an equivalent row catenation rule can be defined.

Let M1 be an array derived from the axiom array M0 using the control words
w = l1l2 . . . lm. We give the steps for constructing the ATPNS to generate the
language, assuming that all the tables are used on the boundary of M0.

Let p0 be a place with the array M0 as token. Let t1 be a transition with
the catenation rule corresponding to l1 as a label, p0 as input place and p1 as
output place. Let t2 be a transition with the catenation rule corresponding to
l2 as label, p1 as input place and p2 as output place. Proceeding like this let
tm be a transition with the catenation rule corresponding to 	m as label, pm−1

as input place and p0 as output place. The firing sequence t1t2 . . . tm has the
same effect as of applying the tables l1, l2, . . . , lm to the array M0. This Petri
net structure generates all the arrays that can be generated by the control words
of (l1l2 . . . lm)∗.

If all the tables are not applied on the boundary of M0, then consider a
subarray M01 of M0 such that the table l1 is applied to the boundary of M01.
Take M01 as a token in p0 and construct the ATPNS as given above. Add
a transition tm+1 with input place p0 and output place pm. The label of the
transition should have the catenation rule, which joins the row/column that was
removed from M0. Required number of transitions should be added to join all
the rows/columns that were removed from M0. ��

4 Array Token Petri Nets with Inhibitor Arcs

Since ATPNS is able to generate only T0L with regular control and (R : Y )AL,
where Y ∈ {R,CF,CS} we use inhibitor arcs to control the firing sequence.
This section introduces Array Token Petri Net Structure with inhibitor arcs and
compares it with the other array languages and tabled array languages.

Firing Rules in ATPNS with inhibitor arcs is similar to the firing rules of
ATPNS with the extra condition that any transition with inhibitor input can
fire only if the inhibitor input does not have any array.

Definition 10. An Array Token Petri Net Structure with at least one inhibitor
arc is defined as Array Token Petri Nets with inhibitor arcs.

The language generated by the Petri net is the set of all arrays which reach
the final place.

Example 2. Σ = {x •}, S =
x •
x • , B1 = (•)m, B2 = (x)m, B3 =

⎛

⎝
x
x
x

⎞

⎠

n
2
⎛

⎝
•
•
•

⎞

⎠

n
2

,

B4 = (x)
n
2 (•)n

2 , F = {p2}.

To start with both t2 and t5 are enabled. The sequence t2t3t4 can be fired any
number of times. Once t5 is fired the inhibitor input p6 makes sure that the
sequences t7t8 is also fired the same number of times. When p6 is empty the
transition t9 fires to put the final array into p2.
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t6
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P2

P3

P4 P5

P6

P7

P8 P9

t7 8(P  )

A    B 2

4A    B

P1

P1

1A    B

A    B 2

B     A2

S

S

3A    B

Fig. 8. ATPNS with inhibitor arc

The array generated by the firing sequence t1 . . . t9 is given below.

S
t1...t9=⇒

x x • • x x
x x • • x x
x x • • x x
x x • • x x
x x • • x x
x x • • x x

The language generated is squares split into three equal columns.

Theorem 6. The language generated by a table 0L array grammar with context-
free or context-sensitive control can be generated by ATPNS with inhibitor arcs.

Proof. Let G = (V,P , C, S) be a table 0L array grammar with context-free
control, where V is the set of terminals, P is a finite set of tables {P1, P2, . . . , Pk},
C = (P1 . . . Pi)

n(Pj . . . Pk)
n, 1 ≤ i, j ≤ k, be a context-free control and S is the

start array.
Construct an ATPNS with two subnets C1 and C2 as in figure. Let p1 belong

to C1 with the start array S as a token. Have transition t1 with the catenation
rule which corresponds to P1, p1 being the input place and p2 as its output
place. Transition t2 with the catenation rule which corresponds to P2, p2 being
the input place and p3 as its output place and so on. Transition ti with the
catenation rule which corresponds to Pi, pi being the input place and p1, M1

as its output places. The subnet C1 can be executed any number of times. The
sequence (t1t2 . . . ti)

n would put n different arrays as tokens in M1. But the
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t1

P1

M2

M1

sequence of
transitions

Subnet C  : First1
sequence of
transitions

T

S

Subnet C  : Second2

Fig. 9. Subnets of ATPNS with inhibitor arcs

place p1 will have the array which is the array that would result in applying the
tables P1 . . . Pi n times to S. Once tj in C2 is fired the second subnet starts its
execution. Since M1 is an input place for tj , the subnet C2 can be executed at
the most n times (the number of times C1 was executed). Similar to C1 in C2

there is a transition for every table Pj , . . . , Pk. Whenever C2 is executed once
an array is put in M2 and p1. This array would be the array that results after
applying the tables (P1 . . . Pi)

n (Pj . . . Pk)
m (m is the number of times C2 was

executed) to S. Once C2 starts its execution C1 cannot be executed again till M2

is empty as M2 is an inhibitor input for t1. After executing C2 ‘n’ times M2 can
be emptied by firing T ‘n’ times. Since M1 is an inhibitor input for T , T cannot
be fired until M1 is empty. In other words M2 cannot be emptied until C2 is
executed exactly n times. Thus the subnets C1 and C2 are executed the same
number of times. Hence the sequences t1 . . . ti and tj . . . tk can be fired exactly
the same number of times. This is the effect of a context-free control.

Thus using the concepts of inhibitor arcs we are able to have a context-free
control on the firing sequence. Similarly with three subnets and with proper
usage of inhibitor inputs we can have a context-sensitive control on the firing
sequence. ��
Theorem 7. The families of (X : Y )AL, where X ∈ {CF,CS} and Y ∈
{R,CF,CS}, can be generated by ATPNS with inhibitor arcs.

Proof. Let G = (V, I, P, S) be an (CF : Y )AG. Then the nonterminal rules be

of the form (A)n(B)n or (A)n
(B)n

where A,B are intermediates. LA and LB the

intermediate languages are regular, context-free or context-sensitive. Similar to
the construction given in the proof of Theorem 6 have two subnets C1 and C2.
The subnet C1 should generate the intermediate language LA and the subnet C2

should generate the intermediate language LB. With the use inhibitor inputs we
can make sure the subnets C1 and C2 are executed the same number of times.
Thus with inhibitor arcs any (CF : Y )AL can be generated.
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For any (CS : Y )AG the nonterminal rules are of the form (A)n(B)n(C)n

or
(A)n
(B)n
(C)n

, where A,B,C are intermediates. LA, LB and LC the intermediate

languages are regular, context-free or context-sensitive. With three subnets and
with proper usage of inhibitor inputs we can generate all (X : Y ) array languages,
where X ∈ {CF,CS} and Y ∈ {R,CF,CS} can be generated by ATPNS with
inhibitor arcs. ��

5 Conclusion

Array token Petri net structure generates rectangular arrays. This model is able
to generate (R)P2DCFL, three of the nine families of array languages and the
tabled 0L languages with regular control. Introducing inhibitor arcs to ATPNS
the other six families of Array Languages and tabled 0L languages with context-
free or context-sensitive control can also be generated. The languages generated
by the nine families of array grammars and tabled 0L grammars with the three
types of control can all be generated by ATPNS with inhibitor arcs.
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