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Preface

This volume contains the articles presented at the 15th International Workshop
on Combinatorial Image Analysis, IWCIA 2012, which was held in Austin (TX),
November 28–30, 2012. The 14 previous meetings were held in Paris (France)
1991, Ube (Japan) 1992, Washington DC (USA) 1994, Lyon (France) 1995, Hi-
roshima (Japan) 1997, Madras (India) 1999, Caen (France) 2000, Philadelphia
(USA) 2001, Palermo (Italy) 2003, Auckland (New Zealand) 2004, Berlin (Ger-
many) 2006, Buffalo (USA) 2008, Playa del Carmen (Mexico) 2009, and Madrid
(Spain) 2011.

Combinatorial image analysis provides theoretical foundations and methods
for solving problems from various areas of human practice. In contrast to tradi-
tional approaches to image analysis which implement continuous models, float
arithmetic and rounding, combinatorial image analysis features discrete models
using integer arithmetic. The developed algorithms are based on studying com-
binatorial properties of classes of digital images, and often appear to be more
efficient and accurate than those based on continuous models.

IWCIA is an exciting opportunity for scholars, graduate students, and edu-
cators across the world to meet and share information about their latest findings
in the field of combinatorial image analysis, be enriched with new ideas, reflect
on some open problems, learn about new applications, and reconnect with col-
leagues. All papers submitted to the conference were carefully reviewed as each
manuscript was sent for a double-blind review to at least three highly qualified
members of the international Program Committee. The submission and review
process of the workshop was carried out through the professional OpenConf
conference management system. After a rigorous review process, 23 papers au-
thored by 51 researchers from 11 countries were accepted for presentation at the
workshop and for inclusion in this volume.

IWCIA 2012 featured keynote talks delivered by three outstanding scholars,
whose excellent presentations inspired the audience with new ideas.

An opening talk given by János Pach (EPEL, Lausanne and Alfréd Rényi
Institute of Mathematics, Budapest) was devoted to geometric graph theory.
The latter studies geometric (topological) graphs that can be drawn in the plane
by straight-line or curvilinear edges satisfying certain conditions. In his talk, the
speaker discussed fundamental extremal questions in geometric graph theory and
surveyed various results and unsolved problems.

David A. Eppstein (Donald Bren School of Information and Computer Sci-
ences, University of California, Irvine) presented an approach based on three-
dimensional hyperbolic geometry to forming a novel type of Voronoi diagram
for circles in the plane. The proposed method provides a discrete combinatorial
representation for a class of objects which may be applicable to visualization
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of broader classes of low-degree planar graphs via “Lombardi drawings” with
circular-arc edges.

Gerhard X. Ritter (University of Florida, Gainesville) presented a lattice al-
gebra approach to computational intelligence and image processing. He provided
an overview of lattice theory-based models and techniques in the field of com-
putational intelligence and discussed the specific applications to hyperspectral
image segmentation and pattern recognition.

The contributed papers included in the volume are grouped into two parts.
The first one includes 11 papers devoted to diverse problems of digital geom-
etry and topology, in particular studies on geometry and topology of digital
curves and surfaces, the design of space-efficient algorithms, and others. The
second part includes papers presenting array grammars and languages for image
analysis, research on picture transformations, morphological operations, image
segmentation, discrete tomography, and applications.

We believe that all presented works were of high quality and the attendees
benefited from the scientific program.

We would like to express our gratitude to everyone who contributed to the
success of IWCIA 2012 – from the Steering to the Program and Organizing
Committees. We are indebted to our sponsors SUNY Buffalo State College and
SUNY Fredonia, and in particular to the Interim Provost Kevin P. Kearns of
SUNY Fredonia, who endorsed the publication of this volume.

We wish to express our special thanks to the invited speakers David A. Epp-
stein, János Pach, and Gerhard X. Ritter for their remarkable talks and overall
contribution to the workshop program. We thank all authors for their valuable
works and hope that the reader will find them interesting and useful. We wish to
thank the participants and everyone who made this workshop an enjoyable and
fruitful scientific event. We had a great time at the Joe C. Thompson Conference
Center of the University of Texas at Austin thanks to Elisabel Bordallo, Con-
ference Services Manager, and Bailey Anne Dermanci; we appreciate their work.
Finally, we express our gratitude to Springer’s Computer Science Editorial team,
and especially to Alfred Hofmann and Anna Kramer, for their efficient and kind
cooperation in the timely production of this book.

November 2012 Reneta P. Barneva
Valentin E. Brimkov

Jake K. Aggarwal
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Argentina
Chiou-Shann Fuh National Taiwan University, Taiwan
Jürgen Gall ETH Zürich, Switzerland
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Vittorio Murino University of Verona, Italy
Benedek Nagy University of Debrecen, Hungary
Akira Nakamura Hiroshima University, Japan
Renato M. Natal Jorge University of Porto, Portugal
Gregory M. Nielson Arizona State University, USA
János Pach City College and Courant Institute, USA
Kalman Palagyi University of Szeged, Hungary
Petra Perner Institute of Computer Vision and Applied

Computer Sciences, Germany
Hemerson Pistori Dom Bosco Catholic University, Brazil



Organization IX

Ioannis Pitas University of Thessaloniki, Greece
Konrad Polthier Freie Universita̋t Berlin, Germany
Hong Qin SUNY Stony Brook, USA
Paolo Remagnino Kingston University, UK
Ralf Reulke Humboldt University, Germany
Gerhard Ritter University of Florida, USA
Mariano Rivera CIMAT, Mexico
Xavier Roca Marvà UAB, Spain
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On Finding Shortest Isothetic Path

inside a Digital Object

Mousumi Dutt1,�, Arindam Biswas1,
Partha Bhowmick2, and Bhargab B. Bhattacharya3
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{duttmousumi,barindam}@gmail.com
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Indian Institute of Technology, Kharagpur, India
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Abstract. Shortest path algorithms are finding interesting applications
in recent times in various emerging areas of image analysis and computer
vision. Such algorithms are designed to solve shortest path problems with
variegated need-based constraints. We present here an efficient combi-
natorial algorithm to find a/the shortest isothetic path (SIP) between
two grid points in a digital object such that the SIP lies entirely inside
the object. The algorithm first obtains the inner isothetic cover (simple
and without holes) of the object and then applies certain combinatorial
rules to construct the SIP and its constituent monotone sub-paths. For a
given grid size, the entire algorithm runs in O(n log n) time, n being the
number of grid points on the border of the cover. Experimental results
show the effectiveness of the algorithm and its further prospects in shape
analysis.

Keywords: Shortest path, Shortest isothetic path, Manhattan path,
Monotone path, Shape analysis.

1 Introduction

Shortest paths—constrained and customized according to need and application—
are increasingly used today in various fields. Some of the worth-mentioning
ones are networking, robotics, GIS, VLSI design, resource allocation and col-
lection, TSP with neighborhoods, etc. [2,9,12,15,22,26,27]. Due to such a vast
range of applications, the variation in constraint formulation and customiza-
tion has also become quite engrossing, as evidenced in the related literature
[5,3,4,10,14,18,19,21,24].

� Corresponding author.

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Over the last few years, shortest-path algorithms have also been used in several
interesting applications in the domain of image analysis and computer vision.
Some typical ones are borehole image analysis, image patching, object bound-
ary detection, road detection in satellite images, shape classification, panoramic
stereo matching, fracture identification, analysis of orientation, stratigraphic and
structural dip, etc. [8,25]. The work in [25] proposes the extraction of a circular
shortest path in an image. Quite recently, shortest path has been used in [20] to
measure the inner-distance between two points (lying possibly in two different
‘parts’ of a given object), which is subsequently used for shape analysis and
shape classification. In the context of active contours, regularized shortest path
has been used in [8], with a scheme of pixel subdivision to resolve discretiza-
tion effects. The algorithm is modified from a simple and intuitive smoothness
constraint, proposed earlier in [1].

Our work is focused on finding the shortest isothetic path (SIP) inside a digital
object A laid on a grid G (Sec. 2), such that the path lies entirely inside A and
consists of moves along grid edges only. Although our problem has some simi-
larity with certain problems of computational geometry, no efficient algorithmic
solution is available for the digital-geometric problem stated here, till date. For a
given grid size, the proposed algorithm runs in O(n log n) time, n being the num-
ber of grid points on the border of the inner isothetic cover, P (maximum-area
isothetic polygon inscribing A [6,7]). Note that, if the shortest path is obtained
directly from A (without using P ), then the time complexity of an optimal al-
gorithm would be no less than O(n2), since the number of constituent pixels of
A can be O(n2).

One of the related geometric problems is finding a/the 2D rectilinear shortest
path from one point to another in a polygonal region. The best-known algorithm
has been proposed most recently in [16], which takes O(n +m(logn)3/2) time,
m being the number of polygonal obstacles with n vertices in total; and for
m = O(n), it takes O(n(log n)3/2) time. A similar but simpler problem is find-
ing a shortest path amidst axis-parallel rectangular barriers, and its algorithm
executes in O(t+log n) time, with preprocessing in O(n log n) time [23], n being
the number of disjoint rectangles and t the number of turns on the path. For a
given monotone direction, the monotone path between two points in a polygon
is solvable in O(n log n+ rR) time, where n is the number of polygon vertices, r
the number of scan reflex vertices, and R is the total number of reflex vertices of
the polygon [28]; clearly, for rR = O(n2), it is inefficient for its quadratic time
complexity. (Given some inclination, a reflex vertex v of a polygon is called a
‘scan reflex vertex’ if both the vertices adjacent to v lie on one side of the line
parallel to the inclination and passing through v [13].) A review of algorithms
on similar problems may be seen in [16].

A shortest path or a monotone path is usually not unique, and our algorithm
reports one of the shortest paths. The inner isothetic cover, P , of the digital
object, A, is first constructed, from which SIP is derived between two given
points, p and q, by applying certain combinatorial rules (Sec. 4). As SIP lies
inside P and P is (maximally) contained in A (Sec. 2), we get the solution by
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Fig. 1. Left: Digital object A. Middle: SIP with one (isothetic) monotone sub-path.
Right: SIP with two monotone sub-paths (red and green). See electronic version for
the original color.

processing P in an efficient way (Sec. 5). Figure 1 shows a digital object A and
the solution of SIP for two pairs of points lying inside A. Further results with
necessary explanation are given in Sec. 6.

2 Definitions and Preliminaries

A digital object A is a 8-connected component [17]. The background grid is
given by G = (H,V), where H and V represent the respective sets of (equi-
spaced) horizontal grid lines and vertical grid lines. The grid size g is defined as
the distance between two consecutive horizontal/vertical grid lines. A grid point
is the point of intersection of a horizontal and a vertical grid line. A unit grid
block (UGB) is the smallest square having its four vertices as four grid points
and edges as grid edges. The inner isothetic cover of A is a polygon P whose
vertices are grid points and edges lie on grid lines. An (simple) isothetic path
from a grid point p ∈ P to a grid point q ∈ P is a sequence of 4-connected
grid points such that all the constituent points of π are distinct and lies on or
inside P ; and a shortest isothetic path (SIP) is an/the isothetic path of minimum
length. A SIP is said to be monotone if it consists of moves only in one or two
(orthogonal) directions. If a SIP is not monotone, then it is decomposed into
(minimum) monotone sub-paths by our algorithm (Fig. 1).

The 900 and 2700 vertices of P are referred to as type 1 and type 3 vertices.
The sequence of vertices of P is such that P always lies left of each edge during
its traversal. In this vertex sequence, a pair of consecutive vertices of type 1 gives
rise to a convexity, whereas a pair of consecutive vertices of type 3 gives rise to
a concavity. The straight line passing through two consecutive vertices of type 1
(type 3) is called the convexity line (concavity line). A convex region correspond-
ing to a horizontal (vertical) convexity line is the maximum-area rectangle such
that the horizontal (vertical) line segment whose endpoints lie on two vertical
(horizontal) sides of the rectangle, is either the convexity line or lies strictly
inside P . For example, in Fig. 2(left), the convex region is closed on three sides
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i

i+ 1

i− 1

i− 2

convexity line

convex region C

open side of C

i

i+ 1

i− 1

i− 2

nearest concavity line

convex region C

convexity line

open side of C

Fig. 2. Instances of convex region (hatched in white) defined by convexity line vivi−1

on one side and nearest vertex vi−2 or vi+1 (left) or nearest concavity line (right) on
the opposite side. A vertex vi is denoted by i for simplicity.

by the edges (vi−2, vi−1), (vi−1, vi), and (vi, vi+1), and open on the side defined
by the horizontal line passing through vi−2. In Fig. 2(right), the convex region
is closed similarly on three sides by the edges as in Fig. 2(left), and it is open
on the side defined by the nearest concavity line. The side of the convex region
opposite to the convexity line is referred to as its open side. A SIP has certain
interesting properties in terms of the lines of convexity and concavity, which are
explained in Sec. 3.

Using the algorithm in [6,7], we obtain (the ordered set of vertices of) P for
A, which is, therefore, the maximum-area isothetic polygon inscribing A. During
the construction of P , the vertices of P are dynamically inserted in a circular
doubly-linked list, L; the vertices and and the grid points lying on the edges
of P are simultaneously stored in two lexicographically sorted (in increasing
order) lists, Lx and Ly, with respective primary and secondary keys as x- and
y-coordinates for Lx, and opposite for Ly. Each vertex in L is assigned an index
in order of its occurrence during traversal of P .

3 Properties of a SIP

We explain here some important properties of a SIP, which are subsequently used
in our algorithm. The notation |π(p, q)| is used to denote the length of isothetic
path, π(p, q), between two grid points p(xp, yp) and q(xq, yq) lying inside or on
the border of P . The path π(p, q) is monotone if and only if it comprises either
one move only (when xp = xq or yp = yq) or two orthogonal moves taken
alternately (when xp �= xq and yp �= yq). Let |π(p, q)|x and |π(p, q)|y be the
sum of lengths of all moves parallel to x-axis and that of all moves parallel to
y-axis, respectively. Then it is easy to see that |π(p, q)|x = abs(xp − xq) and
|π(p, q)|y = abs(yp − yq), where abs(a − b) = max(a, b) − min(a, b); hence we
have the following observation.

Observation 1. An isothetic path π(p, q) between p(xp, yp) and q(xq, yq) is
monotone if and only if |π(p, q)| = |π(p, q)|x + |π(p, q)|y, where |π(p, q)|x =
abs(xp − xq) and |π(p, q)|y = abs(yp − yq).

A monotone path has, therefore, always the smallest length over all possible
isothetic paths. In particular, we have the following lemma.
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Lemma 1. Let π1(p, q) be a monotone path and π2(p, q) be an isothetic path be-
tween p and q. Then |π1(p, q)| < |π2(p, q)| if and only if π2(p, q) is non-monotone.

Proof. W.l.o.g., let xp < xq and yp > yq. If π2 is a non-monotone path, then
it contains more than two types of moves including rightward and downward
moves. The monotone path π1, on the contrary, consists only of rightward and
downward moves. Hence, from Observation 1, |π1| < |π2|.

Conversely, let |π1| < |π2|, which implies |π2| > |π(p, q)|x + |π(p, q)|y , i.e., π2

is not monotone (from Observation 1). �
Lemma 2. If π(p, q) is a SIP between p and q, and u and v are two grid points
lying on π(p, q), then the portion of π(p, q) between u and v is also a SIP between
u and v.

Proof. Let π(u, v) be a SIP between u and v, and πpq(u, v) be the portion of
π(p, q) between u and v. If |π(u, v)| < |πpq(u, v)|, then πpq(u, v) could be re-
placed by π(u, v) in π(p, q), thereby yielding a shorter SIP between p and q—a
contradiction. �
Theorem 1 (convex region). A SIP between two grid points p and q does
not pass through any convex region other than only the one(s) in which p and q
might lie.

Proof. Let π(p, q) be a SIP between p and q. If p or q lies in a convex region, then
π(p, q) has to enter that convex region. Otherwise, if π(p, q) passes through a
convex region C in which neither p nor q lies, then π(p, q) must enter and leave
C through two distinct grid points, namely u and v, both lying on the ‘open
side’ of C. The portion of π(p, q) between u and v, namely πpq(u, v), is longer
than the SIP given by the line segment uv lying on the open side of C, which
contradicts Lemma 2. Hence the proof. �
Theorem 1 provides an important characterization of SIP. This is used in our
work to frame a set of rules for contracting an isothetic path to get the final
solution (Sec. 4). Another important characterization of a SIP is in terms of the
concavity lines that it passes through. The following theorem explicates the idea.

Theorem 2 (concavity line). Anon-monotoneSIPalways passes through some
concavity line(s), whence its monotonicity is broken. However, passing through a
concavity line is not the sufficient condition for a SIP to be non-monotone.

Proof. Observe that a SIP is non-monotone if and only if it takes a ‘U-turn’—
defined as three consecutive moves in which the first and the third are in opposite
directions. If the points surrounded by such a U-turn lie inside P , then it would
result in a convex region through which passes the SIP—a contradiction of The-
orem 1. Hence, the points surrounded by such a U-turn lie outside P , which
implies that the second move of the U-turn is definitely along a concavity line.

The converse is not always true. It is evident from a typical example when
a SIP is monotone and just touches one or more concavity lines without taking
any U-turn (e.g., Fig. 3(right)). �



6 M. Dutt et al.

p

qc1

w1

w2

w3 w4

v1

v2 v3
v4 v5

v6v7

v8v9

v10 v11

v12

p

qc1

w1

w2

w3 w4

v1

v2 v3
v4 v5

v6v7

v8v9

v10 v11

v12

qc1

w1

w2

w3 w4

v1

v2 v3
v4 v5

v6v7

v8v9

v10 v11

v12

p

Fig. 3. Left: An isothetic polygon P and the bounding rectangle R having p and q as
two opposite corners. Middle: Intermediate steps. Right: Resulting SIP.

The usefulness of Theorem 2 is that a SIP loses its monotonicity due to U-turns.
Each U-turn is characterized by a pair of consecutive vertices of type 3. During
traversal of P , the types of its vertices are used to determine such U-turns after
applying necessary path contraction rules, as explained in Sec. 4.

4 Finding a SIP

To find a SIP between p and q, first a (isothetic) bounding rectangle, R, is con-
sidered with p and q as opposite corners (Fig. 3). Let, w.l.o.g., p be the top-left
corner of R. Let the bottom-left corner be denoted as c1. Then the left semi-
border of R, formed by pc1 and c1q, may intersect P at different grid points.
Let M = 〈w1, w2, . . . , wk〉 be the sequence of intersection points between the
left semi-border of R and P . If wi lies on the edge vjvj+1 of P , then we assign
index[wi] = j + 0.5 as the index of wi (i = 1, 2, . . . , k), since index[vj ] = j
for each vertex vj ∈ P . The ordering of these intersection points has certain
interesting properties related with SIP, as stated in the following theorem.

Theorem 3 (ordering). If the (open) line segment wiwi+1 lies outside P , wi

lies on a SIP π(p, q), and π(wi, wi+1) is a SIP between wi and wi+1, then for
each vertex u ∈ P lying on π(wi, wi+1), one of the following four conditions is
true.

1. if index[w1] ≤ index[wi] < index[wi+1] ≤ index[wk],
then index[wi] ≤ index[u] ≤ index[wi+1].

2. if index[w1] < index[wk] ≤ index[wi+1] < index[wi],
then index[wi+1] ≤ index[u] ≤ index[wi].

3. if index[wk] ≤ index[wi+1] < index[wi] ≤ index[w1],
then index[wi+1] ≤ index[u] ≤ index[wi].

4. if index[wi] < index[wi+1] ≤ index[wk] < index[w1],
then index[wi] ≤ index[u] ≤ index[wi+1].
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Fig. 4. Illustration of rules for selecting intersection points. The vertical dashed line is
the left border of R.

Proof. We first prove Condition 1. Observe that, since wi is a point on the
semi-border of R, we have two vertices of P that are adjacent to wi. Let these
two vertices be u′ and u′′. Clearly, index[wi] would lie between index[u′] and
index[u′′]. W.l.o.g., let index[u′] < index[wi] < index[u′′]. If π(wi, wi+1) con-
tains u′ after wi, then all other vertices following u′ in π(wi, wi+1) will be in
decreasing order of their index values and wi+1 cannot be reached unless the
points in πpq(p, wi) are visited. This is not possible, as each point in π(p, q) oc-
curs exactly once. Hence, π(wi, wi+1) should contain u′′ after wi. As the vertices
of P next to u′′ have increasing index values, the proof follows.

In Condition 2, as wi+1 has a smaller index, the indices of vertices along
π(wi, wi+1) should be in decreasing order so that wi+1 can be reached without
meeting any vertex already included in πpq(p, wi). Conditions 3 and 4 are simply
the reverse of Conditions 1 and 2, respectively. Hence, their proofs are similar
to those of Conditions 1 and 2.

To complete the proof of the theorem as a whole, observe that the four indices,
i.e., index[w1], index[wi], index[wi+1], index[wk], can be arranged on the number
line in 4! = 16 ways. Out of these, 12 cases are not possible, since the interior
of P always lies left during traversal. For example, index[w1] < index[wk] ≤
index[wi] < index[wi+1] is one of such impossible cases; for, wi+1 always comes
after wk and wi always after wi+1 while traversing P , and hence wi cannot have
an index lower than wi+1. �

4.1 Intersection Points

The intersection points are detected using Lx and Ly, and stored in Mx and My

respectively (Sec. 2). Some of them are discarded based on combinatorial rules
explained next. During the construction of SIP, reduction rules (Sec. 4.2) are
used to shorten the length of the path wherever applicable. Also note that on
considering the top-right corner of R, we get intersection points on the top and
right borders of R, which may be used to find SIP. The paths, although different,
will ensure the same length by our algorithm.
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Procedure Remove-Points(My ,Mx, p, q)

1. ConstructPair(My ,Mx)
2. if (|My | =even)
3. M ←Concat(p,My, c1,Mx, q), k

′ ← 1
4. else
5. M ←Concat(p,My,Mx, q), k

′ ← 0
6. Initialize i← 1
7. while (M [i] �= q)
8. if (M [i] = c1)
9. i← i+ 1
10. continue
11. else
12. while not ((index[M [i]]< index[M [i+1]] � index[M [k+k′]])∨(index[M [i]] >

index[M [i+ 1]] � index[M [k + k′]]))
13. if (M [i+ 2] = c1)
14. Remove(M [i+ 1],M [i+ 2],M [i+ 3])
15. else
16. Remove(M [i+ 1],M [i+ 2])
17. if (type[M [i]] = 3 ∧ type[M [i+ 1]] = 3)
18. Remove(M [i],M [i+ 1])
19. continue
20. i← i+ 2

Fig. 5. Procedure Remove-Points

In the sequence of points of intersection between R and P , if there are two
consecutive vertices of types 13 (31), then the vertex with greater (lower) index
is discarded so that the line segment joining two intersection points lies entirely
outside P . In Fig. 4(a,b), type(w1, w2) = 31, so w1 is discarded (since w1w2

lies on P but w2w3 lies outside P ). In Fig. 4(c,d), type(w1, w2) = 31, so w1

is discarded, and type(w3, w4) = 13, so w4 is discarded. Similar explanation
holds for the case in Fig. 4(e,f). This operation on vertices are performed in
ConstructPair (Step 1 in Remove-Points).

Figure 5 shows the procedure Remove-Points that removes points from
My and Mx, which initially contain all the intersection points along the left
semi-border of R. The list of selected intersection points, M , is formed by con-
catenating p, My, c1 (if it is inside P ), Mx, and q. If the number of intersection
points in My is even, then c1 is inside P (Step 2). In Steps 12–19, the indices
of pairs of intersection points are checked to find whether they are in increasing
or in decreasing order and whether the index falls within the indices of extreme
two points in M , namely M [1] and M [k + k′], where k is the total number of
intersection points. The value of k′ indicates whether c1 has been included in M
(k′ = 1 (Step 3)) or not (k′ = 0 (Step 5)).
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Fig. 6. Left: Polygon P , with rectangle R defined by p and q. Right: Resulting SIP
(thick line).

If the test in Step 12 succeeds, then three consecutive intersection points in M
are removed when c1 is the second next point from M [i] (Step 14); else next two
consecutive points are removed (Step 16). If M [i] andM [i+1] are of Type 3, then
both are discarded, and the while loop at Step 7 continues (Steps 17–19). The
index i is increased by 2 (Step 20) in order to check the next pair of points. The
while loop (Steps 7–20) continues till the last point in M , i.e., until q is reached.
See Fig. 3; Remove-Points outputs M = 〈p, w1, w4, q〉. For the polygon in
Fig. 6, the indices of (w1, w2), (w3, w4), (w5, w6), and (w7, w8) are (3.5, 5.5),
(19.5, 17.5), (7.5, 9.5), and (15.5, 13.5), respectively. Thus, index[w1] = 3.5 and
index[w8] = 13.5 (increasing order). For (w1, w2), Condition 1 of Theorem 3 is
true, and so the SIP from w1 to w2 passes through v4 and v5 (increasing order).
For (w3, w4), Condition 2 of Theorem 3 is true, and so the SIP from w3 to w4

is through v19 and v18 (decreasing order). Other pairs may be explained in a
similar manner.

4.2 Reduction Rules

To incorporate Theorem 1, reduction rules are applied during the traversal along
(border of) P when two consecutive convex vertices (type 11) appear, so that
the length of the path is minimized. Let v0, v1, v2, v3, and v4 be five consecutive
vertices for which the rules have to be applied to reduce the path-length, and
the most recently traversed point is v4. Let li be the distance from vi to vi+1.
Two sets of rules are designed: Rule R1 (R11, R12, R13) for simple convex re-
gions (type 11) and Rule R2 when there are one or more concavities (a pair of
type 33) intruding inside the convex region. The rules are applied on the vertex
set {v0, v1, . . . , v4} if type(v2v3) = 11.

Rule R11: Applied when l1 = l3 (Fig. 7a). Vertices v1, v2, v3, v4 are removed,
l0 modified as l0 + l2 + l4, path-length reduced by (l1 + l3).

Rule R12: Applied when l1 < l3 (Fig. 7b). Vertices v1, v2 are removed, v′3 is
introduced instead of v3, l0 updated to l0 + l2, l

′
3 set to l3 − l1, path-length

reduced by 2l1.
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Rule R13: Applied when l1 > l3 (Fig. 7c). Vertices v3, v4 are removed, v2 is
modified as v′2, l1 updated to l1− l3, l

′
2 set to l2+ l4, path-length reduced by 2l3.

Rule R2: Applied when one (v′v′′ in Fig. 8a) or more (v′v′′ and v′1v′′1 in Fig. 8c)
concavities are inside the convex region described by v2v3. Let l

′(> min{l1, l3})
denote the minimum of the distances between the line v2v3 and the line(s) of
concavities inside the convex region (in this case, v′v′′ and v′1v

′′
1 extended in
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Algorithm Find-SIP(Lx, Ly, p, q)

1. c1 ← Rect(p, q)
2. My ← SearchVert(p, c1, Ly)
3. Mx ← SearchHorz(c1, q, Lx)
4. M ← Remove-Points(My ,Mx, p, q)
5. i← 1,m← 0
6. Append(π[m], p)
7. while(M [i] �= q)
8. if (M [i] = c1)
9. Append(π[m], c1)
10. i← i+ 1
11. continue
12. Append(π[m],M [i])
13. Traverse(M [i],M [i+ 1], π,m)
14. Append(π[m],M [i+ 1])
15. i← i+ 2
16.Append(π[m], q)
17.Decompose(π)

Procedure Apply-Rule(π[m−2], π[m−1])

1. if (ChkVtx(π[m− 3], . . . , π[m]))
then Apply-R2(π[m− 2], π[m− 1])

2. else if (l1 = l3)
3. Apply-R11(π[m− 2], π[m− 1])
4. else if (l1 < l3)
5. Apply-R12(π[m− 2], π[m− 1])
6. else if (l1 > l3)
7. Apply-R13(π[m− 2], π[m− 1])

Procedure Traverse

(L,M [i],M [i+1], π,m)

1. if (index[M [i]] <
index[M [i+ 1]])

2. l′ ← �(index[M [i]] + 1)�
3. l′′ ← �(index[M [i+ 1]]− 1)	
4. Append(π[m], L[l′])
5. j ← l′ + 1
6. while (j � l′′)
7. Append(π[m],L[j])
8. if ((type[π[m− 2]] = 1∧)

(type[π[m− 1]] = 1))
9. Apply-Rule(π[m− 2],

π[m− 1])
10. j ← j + 1
11. else
12. l′ ← �(index[M [i]] − 1)	
13. l′′ ← �(index[M [i+ 1]] + 1)�
14. Append(π[m], L[l′])
15. j ← l′ − 1
16. while (j � l′′)
17. Append(π[m],L[j])
18. if ((type[π[m− 2]] = 1) ∧

(type[π[m− 1]] = 1))
19. Apply-Rule(π[m− 2],

π[m− 1])
20. j ← j − 1

Fig. 9. The algorithm and related procedures to find SIP and its monotone path(s)

either directions). Let the line of concavity at the minimum distance intersects
P at u′ and u′′. Then, v2 and v3 are removed, and the modified path becomes
v0v1u

′′u′v4 (Fig. 8(b,d)), path-length reduced by 2l′. As stated in Theorem 2,
since there is a concave portion of P inside the convex region, the path becomes
non-monotone at this point.

5 Proposed Algorithm

The algorithm Find-SIP (Fig. 9) takes L, Lx, Ly, and the points p and q as
input. In Step 1, the procedure Rect computes the corner point, c1, of R. The
list of intersection points, My (Mx), of pc1 (c1q) with P , is found by searching
Ly (Lx) (Steps 2–3). The list M of all intersection points of P with left semi-
border1 of R is obtained by Remove-Points in Step 4. At first, p is included in

1 It can be done with right semi-border consisting of top and right borders of R, as
well; in either case, we get a SIP.
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the path π (Step 6). Let M = 〈p, w1, w2, . . . wk, q〉. When the left semi-border of
R lies inside P , (semi-border of) R is traversed; otherwise, P . So pw1 is traversed
along R, then w1w2 along P , next w2w3 along R, again w3w4 along P , and so on
(Steps 7-15). When c1 is encountered, it is added to the path π, and the index
i is incremented by 1 (Steps 8–9). After adding the first point M [i] of the pair
(M [i],M [i+1]) to π, P is traversed from M [i] to M [i+1] (Step 13), and points
are added in π by Traverse, until M [i+1] is reached and added to π (Step 14).
In Step 15, the index is incremented by 2 in order to consider the next pair for
traversal. Lastly, q is added to π. In Step 17, π is decomposed into monotone
sub-paths (Sec. 4.2:R2), if it is not monotone.

In the procedureTraverse, if the index ofM [i] is less than that ofM [i+1], then
P is traversed in an anticlockwisemanner (Steps 1–10) using L (Sec. 2); otherwise,
P is traversed clockwise (Steps 11–20). In Steps 2–3, l′ and l′′ indicate the appropri-
ate pointers to the neighbor vertices ofM [i] andM [i+1] inL, taken appropriately.
After adding L[l′] to π (Step 4 or 14), each vertex on the path is appended to π in
thewhile loop (Steps 6–10 or 10–20), until the vertexL[l′′] is reached. Proper rules
(Sec. 4.2) are applied by calling Apply-Rule as and when necessary.

The proof of correctness of the algorithm is based on the argument similar to
finding the shortest path between two points in a simple polygon by applying
a rubberband algorithm [19]. Since the internal region containing p and q is
connected, there exists a sequence of connected rectangles through which a path
can be traced from p to q. Imagine that we lay out a loose rubberband through
this region connecting p and q. Since obstacles, if any (when R intersects the
border of P ), are not holes but the vertices forming concavity lines, the position
and hence the length of the rubberband, once tightened, will be unique. This
minimum-length rubberband will be a sequence of straight line segments, L.

The rules used in our algorithm basically mutate the initial path segments to
follow the rubberband path, with the exception that each line segment l ∈ L is
replaced by half-perimeter monotone sub-path of the empty rectangle Rl whose
diagonal is l. Therefore, our algorithm finally produces a SIP between p and q.
Note that, in the presence of holes, our algorithm may not yield a SIP.

5.1 Time Complexity

The inner isothetic cover P , which tightly inscribes the object A, is obtained
as an ordered sequence of n grid points (vertices and edge points) and stored
in L. This needs O(ng) time, since the intersection of each grid edge with A is
checked in O(g) time, and the number of grid points visited is bounded by Θ(n).
Note that, ng is linear in the number of pixels constituting the contour of A.
Subsequently, the lists Lx and Ly are constructed from L in O(n logn) time.

In the algorithm Find-SIP, O(log n) time is needed to search p and q (in Ly

and Lx) and O(n) time for rest of the intersection points (Steps 2 and 3). Step 4
requiresO(n) time, as number of points in Lx and Ly together isO(n). Thewhile
loop calls Traverse to apply the required rules through Apply-Rule. Each
of the two while loops in Traverse executes for |l′′ − l′| (grid) points, and
once processed, none of these points is processed again (by Apply-Rule).
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Fig. 10. Multiple SIPs (all in thick red lines) from a point (blue) near the mouth of
dog, pre-man, horse images to other points (blue) in different parts of the body. See
electronic version for the original color.

Logo 1293 m = 2 m = 2 m = 1

Logo 401 m = 3 m = 2 m = 1

Logo 421 m = 1 m = 1 m = 1

Fig. 11. Experimental results of SIPs with one or more monotone paths. See electronic
version for the original color.
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Hence, processing of each point inTraverse—and of each point inM , thereof—is
done at most once. Applying a rule from R1 (R11, R12, R13) needs constant time.
For R2, the pair(s) of concave vertices (type 33) is searched in Lx or Ly. For the
first pair,O(log n) time is needed. For all subsequent pairs,O(n) time is needed in
total, since the points are sorted lexicographically inLx andLy, and a linear search
is done iteratively from the concave pair dealt in the last step of the iteration. This
explains O(n) time for applying necessary rules on all concerned points. Thus, to-
tal time complexity to find SIP from P is O(n). On including the time complexity
of constructing P from A, the overall time complexity becomes O(n log n).

6 Experimental Results and Conclusion

The algorithm is implemented in C in Ubuntu 10.4, Kernel version 2.6.32-21-
generic, Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB. It is tested on
several datasets containing various digital images of different shapes and forms.
In Fig. 11, results for several typical objects are given for few different point
pairs. The monotone sub-paths are shown in red and green lines alternately. The
number of monotone sub-paths, m, shows how SIP might be useful to provide
an idea about the complexity of the object in terms of m.

The algorithm can be used to find SIPs for all pairs of grid points lying on
the border of P . Whether all-pair SIPs can be obtained with a more efficient
algorithm remains an open problem. For an object with one or more holes, com-
putation of these SIPs demands further improvements. All-pair SIPs may be used
to capture some shape-related signature [20]. As an example, see Fig. 10 that
shows how the SIPs are formed from a particular point inside a part of a shape
to points lying in other parts. Observe the overlaps among these SIPs—they get
diverted when they enter two different parts. Theoretical analysis, in fact, is re-
quired to find whether there exists any relation on ortho-convex covering [11] of
P with these SIPs. For, as observed in the context of our work, if a SIP between
p and q consists of more than one monotone sub-path, then no ortho-convex
sub-polygon of P would contain both p and q. With these interesting facts and
findings, we conclude that SIP can be used for both theoretical developments
and practical applications related to image analysis.
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Abstract. A combinatorial algorithm to find the intersection of an axis-
parallel slicing plane with the orthogonal cover of a digital object is pre-
sented in this paper. The orthogonal cover is the smallest-volume 3D
orthogonal polyhedron containing the object and stored in a doubly con-
nected edge list (DCEL). Its intersection with the slicing plane consists
of one or more isothetic polygons that provide topological information
about the cover. The algorithm traverses the vertices on the polyhedron
boundary and lying on the slicing plane, and the direction of next move
from a vertex is determined by a set of linear equations in the integer do-
main. Results for few objects with successive slicing planes are presented
to demonstrate the effectiveness and elegance of the algorithm.

Keywords: 3D orthogonal cover, 3D orthogonal polyhedron, 3D orthog-
onal polyhedron, 3D image analysis, DCEL.

1 Introduction

Extraction and analysis of features, pertaining to shape and peripheral structure
of 3D digital objects, is an important field in the domain of 3D image analysis.
Given a 3D digital object A imposed on a 3D grid G (Sec. 2), a technique on
finding its orthogonal cover PG(A) has recently been proposed in [11]. As a
further step towards acquiring a rough-and-fast estimate on structural details
of the object, this paper presents an efficient algorithm to find the intersection
of the 3D orthogonal cover with a given slicing plane parallel to one of the
coordinate planes.

A set of slice polygons is found to be effective in various CAD applications in
the field of Mechanical and Architectural drafting, in order to convey information
about cross-sections of machine parts and engineering assemblies [13,2]. Determi-
nation of cross-sections or slice polygons in an algorithmic manner is in demand
in several state-of-the-art tools, such as 3D image editing, in order to visualize
the plan and the section in the layout document of a building model [9,10,15].
For exporting a 3D model as bitmap images in computer-enabled applications,
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Fig. 1. Left: α-adjacent 3-cells for g = 2. Right: (a)–(f): Types of vertex; (g)–(i):
Types of pseudo-vertex. See electronic version for the original color.

slice polygons are also used [5]. The differences in the structure of consecutive
slices can be used to study or analyze object topology. The proposed technique
can also be useful in the field of digital tomography to distinctly identify cer-
tain parts of an object lying on the focal plane while other redundant portions
are blurred [7,17]. Techniques that highlight single layers are used in medical
imaging, and some related works may be seen in [7,8,16].

The paper is organized as follows. Preliminary ideas on theoretical foundation
are given in Sec. 2. The algorithm to extract successive slices from the orthog-
onal cover is explained and demonstrated in Sec. 3. Experimental results and
concluding notes are given in Sec. 4 and Sec. 5 respectively.

2 Definitions and Preliminaries

We start with the theoretical foundation in the context of this work. A digital
object A is defined as a finite subset of Z3, with all its constituent points (i.e.,
voxels) having integer coordinates and connected in 26-neighborhood. Each voxel
is equivalent to a 3-cell [12] centered at the concerned integer point (Fig. 1(Left)).

2.1 Digital Grid

The orthogonal cover of A is obtained w.r.t. a digital grid in 3D digital space. A
digital grid G consists of three orthogonal sets of equi-spaced grid lines, Gyz, Gzx,
and Gxy, where Gyz = {lx(j ± ag, k ± bg) | a ∈ Z, b ∈ Z}. Similarly, Gzx and Gxy

can be represented in terms of ly and lz for a grid size g ∈ Z
+. Here, lx(j, k) =

{(x, j, k) : x ∈ R}, ly(i, k) = {(i, y, k) : y ∈ R}, and lz(i, j) = {(i, j, z) : z ∈ R}
denote the grid lines (Fig. 1(Left)) along x-, y-, and z-axes respectively, where
i, j, and k are integer multiples of g. The three orthogonal lines lx(j, k), ly(i, k),
and lz(i, j) intersect at the point (i, j, k) ∈ Z3, which is called a grid point; a shift
of (±0.5g,±0.5g,±0.5g) with respect to a grid point designates a grid vertex,
and a pair of adjacent grid vertices defines a grid edge [12] (Fig. 1(Left)).

A grid, as defined above, is characterized by several elements (Fig. 1(Left)).
A unit grid cube (UGC) is a (closed) cube of length g whose vertices are grid
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vertices, edges constituted by grid edges, and faces constituted by grid faces.
Each face of a UGC lies on a face plane (henceforth referred as a UGC-face),
which is parallel to one of three coordinate planes. Clearly, each face plane,
containing coplanar UGC-faces, is at a distance of integer multiple of g from its
parallel coordinate plane. A UGC-face, fk, has two adjacent UGCs, U1 and U2,
such that fk = U1 ∩ U2. The interior of a UGC is the open cubical region lying
strictly inside the UGC. A smaller (larger) value of g implies a denser (sparser)
grid. For g = 1, the grid G essentially corresponds to Z3. As each grid point p
is equivalent to a 3-cell cp centered at p for g = 1, each face of cp is a grid face
lying on a face plane, which is parallel to a coordinate plane. A UGC consists of
g × g × g voxels and each UGC-face consists of g × g voxels.

Two 3-cells c1 and c2 having centers at p1(x1, y1, z1) and p2(x2, y2, z2) re-
spectively are α-adjacent if and only if p1 �= p2 and c1 ∩ c2 contains an α-
cell (α ∈ {0,1,2}) [12]. The grid points p1 and p2 are in k-neighborhood where
k ∈ {6, 18, 26}; k = 6 denotes 2-adjacency, k = 18 denotes 1-adjacency, and k =
26 denotes 0-adjacency in the cell model. For a grid point p(x, y, z), its respective
k-neighborhoods for k = 6, 18, 26 are given by

N6(p) := {p′ : p′ ∈ Z
3 ∧ L1(p, p

′) = 1},
N18(p) := {p′ : p′ ∈ Z3 ∧ L1(p, p

′) ∈ {1, 2} ∧ L∞(p, p′) = 1},
N26(p) := {p′ : p′ ∈ Z3 ∧ L1(p, p

′) ∈ {1, 2, 3} ∧ L∞(p, p′) = 1},
where, p′ = (x′, y′, z′), L∞(p, p′) = max{|x−x′|, |y−y′|, |z−z′|}, and L1(p, p

′) =
|x − x′| + |y − y′| + |z − z′|. Each point in Nk(p) is said to be a k-neighbor of
p. Two points p and q are k-connected in a digital set A ⊂ Z3 if and only if
there exists a sequence 〈p := p0, p1, ..., pn := q〉 ⊆ A such that pi ∈ Nk(pi−1)
for 1 � i � n. For any point p ∈ A, the set of points that are k-connected to
p ∈ A is called a k-connected component of A. In other words, a k-connected
component of a nonempty set A ⊆ Z3 is a maximal k-connected set of A. If A
has only one connected component, it is called a k-connected set.

2.2 Orthogonal Cover

An orthogonal polyhedron is a 3D polytope with all its vertices as grid vertices,
all its edges made of grid edges, and all its faces lying on face planes. Each
face of an orthogonal polyhedron is an isothetic polygon whose alternate edges
are orthogonal and constituted by grid edges of G. The orthogonal cover of
an object A is then defined as an orthogonal polyhedron PG(A) that tightly
circumscribes A, i.e., the minimum-volume polyhedron containing A.

Problem Statement. Let A be a 3D digital object, Π , the slicing plane paral-
lel to yz-, zx-, or xy-plane, and PG(A), the corresponding orthogonal cover for
grid size g. For simplicity, Π is treated as the finite rectangular plane touching
the bounding cuboid of A with its four sides. The objective is to find the inter-
section of Π with PG(A), and report the resultant slice as a set of 2D isothetic
polygons. Figure 2 shows the orthogonal cover (obtained by the algorithm in
[11]) of Stanford Bunny, and the results by slicing planes parallel to yz-plane.
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Fig. 2. Slices from the orthogonal cover of Stanford Bunny with face planes parallel
to yz-plane. From left to right: Voxelated object A; orthogonal cover Π for g = 10;
Slicing by some planes; Slicing by all face planes. See electronic version for the original
color.

3 Slicing the Cover

The cover PG(A) is stored in a Doubly Connected Edge List (DCEL), which
is a geometric data structure that records topological information about a 2D
subdivision (embedded in 3D space) as a collection of vertex list V , edge list E,
and face list F [14,3]. The face list F contains an entry corresponding to an edge
of each face of the cover and the whole face can be traversed from the edges
listed in E. A brief outline of the algorithm is given in Fig. 3, the details being
explained from Sec. 3.1 onwards.

01. for each polytope face fi lying on Π
02. classify the grid vertices on boundary of fi

as vertex, pseudo-vertex, or edge point (Sec. 3.2)
03. for each polytope face fj perpendicular to Π
04. classify the grid vertices on boundary of fj

and lying on Π as isolated point (Sec. 3.2)
05. for each grid vertex q on Π
06. if q = vs (start point) (Sec. 3.3)
07. set grid vertex v ← next[vs]
08. set visited[v]← True

09. do
10. find direction of traversal through v (Sec. 3.4)
11. set v ← next[v]
12. set visited[v]← True

13. while (v �= vs)
14. set visited[vs]← True

Fig. 3. Brief outline of the proposed algorithm
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3.1 Object Occupancy

Let Uq =
{
U

(i)
q : i = 1, 2, . . . , 8

}
be the set of eight UGCs incident at q, where

U
(i)
q denotes the ith UGC incident at q. If U

(i)
q contains an object voxel, then

U
(i)
q is said to have object occupancy, defined as follows.

Φ(U
(i)
q ) =

{
0 if U

(i)
q ∩ A = ∅

1 if U
(i)
q ∩ A �= ∅

(1)

The UGC-face f = U
(i)
q ∩ U

(j)
q is said to have object occupancy if (A ∩ U

(i)
q ) ∨

(A∩U (j)
q ) = 1. From above equation, the number of UGCs incident at q having

object occupancy is given by

mq =
∑

U
(i)
q ∈Uq

Φ(U
(i)
q ). (2)

Depending on the value of mq and the arrangement of the object-containing
UGCs, q is classified as a polyhedron vertex, a pseudo-vertex, or an edge point,
as explained next.

3.2 Grid Vertex Classification

A vertex q of PG(A) essentially coincides with some grid vertex of G and is
assigned a tuple (mq, nq), where nq is number of edges of PG(A) incident at
q. Six arrangements of object-occupied neighboring UGCs, namely (1, 3), (3, 3),
(3, 6), (4, 4), (4, 6), and (5, 4) [1], as illustrated in Fig. 1(a-f), classify a grid
vertex as a vertex of PG(A). Three other arrangements, namely (2, 5), (2, 6), and
(3, 4) (Fig. 1(g-i)) do not satisfy the criteria of being a vertex; however, these
grid vertices (always) will be the vertices of the slice (intersection) polygon,
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u4 v6
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v8
v7

v1 v3 u
uuu4u1

vvvv88

vvvv1

i2 i3
u5

v9
v10

f11

slicing plane Π′

sorted
order

f1

f2 f3

f4

grid vertex

(a) (b)

Fig. 4. (a) Process of classification of grid vertices. (b) UGC-faces neighboring a grid
vertex w.r.t. an incoming direction.
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called pseudo-vertices. For all other possible configurations of the grid vertex
q of PG(A), the grid vertex is an edge point. An edge point has all the four
neighboring UGC-faces, lying on the slicing plane, as occupied. Hence, such a
grid vertex can never qualify as the start point of a slice polygon (face or hole).

Observe that a set FΠ of polygonal faces of PG(A) lies on Π , while other
faces (set F ′

Π) whose edges are either orthogonally incident on Π or lie on Π are
perpendicular to Π . In Fig. 4(a), FΠ = {f1, f2, f3} and F ′

Π = {f4, f5, . . . , f10}.
The set VΠ of grid vertices (v1, v2, u2, etc.) on the boundaries of faces in FΠ are
classified as above. Let V ′

Π be the set of grid vertices on the boundaries of faces
in F ′

Π . So, vertices in V ′
Π , which also belong to VΠ , get classified. The remaining

vertices in V ′
Π are marked as isolated points (e.g., i1). Each grid vertex of Π

is initialized as unvisited. Note that, while tracing a slice polygon, each vertex
or edge point or isolated point is visited once, but each pseudo-vertex is visited
twice.

The grid vertex classification facilitates the determination of start point of
traversal of the grid vertices in order to trace the slice polygon. The start vertex
of a face polygon is always considered such that only one of its neighboring
UGC-faces lying on the slicing plane is occupied, and for a hole polygon three
UGC-faces are occupied. This concept is analogous to the derivation of start
vertex in [4]. A grid vertex of type (1, 3) denotes a start vertex of face polygon,
and that of type (3, 3), (3, 6), (4, 4), (4, 6), or (5, 4) denotes a start vertex of hole
polygon. The concept of cross-vertex in 2D (as proposed in [4]) is not extended
to 3D. As a result, a pseudo-vertex (type (2, 5), (2, 6), or (3, 4)) may also act as
the start point of a face polygon, as explained next in Sec. 3.3.

3.3 Start Point Identification

PG(A) consists of polygonal faces parallel to yz-, zx-, and xy-planes. Some of
these faces lie on the intersecting region Π . Thus, initially we have a set of
disconnected faces lying on Π . An unvisited vertex, a pseudo-vertex visited once,
or an unvisited isolated point belonging to such a face may qualify as a start
point. A pseudo-vertex acts as the start point if and only if there are more than
one slice polygons. A pseudo-vertex has object occupancy in exactly one pair
of diagonally opposite UGC-faces, i.e., (f1, f3) or (f2, f4), shown in Fig. 4(b)).
Starting from a pseudo-vertex, the boundary of the UGC-face f3 (f2) will be
traversed while tracing a slice polygon, but UGC-face f1 (f4) will be left out.
This implies that another slice polygon must have been traced previously that
includes the UGC-face f1 (f4). To find the start point of the slice polygon, Π is
scanned from bottom-back if Π is parallel to yz-plane, from left-back if parallel
to zx-plane, and bottom-left if parallel to xy-plane, until a grid vertex is found
to be qualifying as a start point, vs; the respective start directions (Sec. 3.4)
are set to (0, 1, 0), (0, 0, 1), and (1, 0, 0). The slice polygon is traced from vs and
concludes when it returns to vs. The scan resumes in order to find any other
unvisited grid vertex that qualifies as a new start point for tracing another slice
polygon.
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Fig. 5. Neighboring UGC-faces of a grid vertex along different planes

3.4 Direction of Traversal

Traversal through a grid vertex is possible in 6 directions: {(±1,±1,±1)} (Fig.
5(a)). Out of these, along a specified plane Π , traversal is possible in 4 directions;
e.g., for Π : y = β, {(±1, 0,±1)} (Fig. 5(b), bold black lines through the grid
vertex). Any grid vertex q lying on the path of traversal would have an incoming
direction and an outgoing direction depending on the topology at q. In partic-
ular, corresponding to an incoming direction, there can be at most 3 outgoing
directions. Thus, 4× 3 = 12 incoming-outgoing combinations are possible along
a given plane, Π .

Since a grid vertex q is common to 4 UGC-faces alongΠ , the direction of tracing
depends on the object occupancy of these 4 UGC-faces named clockwise as f1, f2,
f3, and f4 with respect to the incoming direction, as shown in Fig. 4(b). Fig. 5
shows 3 such sets, each with 4 UGC-faces, along three coordinate planes. Since a
face is always traversed anti-clockwise, the direction of traversal at q ensures that
the object always lies left. During the traversal in the direction d from the current
grid vertex qi(xi, yi, zi), the next grid vertex qo(xo, yo, zo) is given by

qo = qi + d · g (3)

The outgoing direction do at qo, given the incoming direction di, is

do =

⎧⎨⎩
+di + f1 if one UGC-face is occupied (i)
−di − f1 + f2 if two adjacent UGC-faces are occupied (ii)
+di + f1 − f2 + f3 if 3 UGC-faces are occupied (iii)

(4)

Here f denotes the UGC-face occupied, expressed as a 3-element vector (Fig. 5).
Evidently, Eqn. 4(i) denotes a left turn, Eqn. 4(ii) denotes no change in direction,
and Eqn. 4(iii) denotes a right turn (Fig. 6). For instance, in Fig. 6(g), f1 =
(−1,−1, 0), f2 = (−1, 1, 0), and f3 = (1, 1, 0) are occupied; incoming direction
di = (0, 1, 0). So, by Eqn. 4(iii), outgoing direction is do = di + f1 − f2 + f3
= (0, 1, 0) + (−1,−1, 0) − (−1, 1, 0) + (1, 1, 0) = (1, 0, 0). Note that when two
UGC-faces are diagonally occupied (pseudo-vertex), e.g., (f1, f3), it is treated as
if only UGC-face f1 is occupied, as stated in Eqn. 4(i).
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Fig. 6. Direction of traversal (along the bold black lines) through a grid vertex along
yz-plane (a,b,c), zx-plane (d,e,f), and xy-plane (g,h,i). The occupied UGC-faces are
marked light gray. The directions are labeled in boxes.

3.5 Algorithm Slice

Given PG(A) and Π , the faces of PG(A) lying onΠ are detected from F . If fi lies
on Π , then all the vertices of fi are classified by Classify-Vertex procedure
as vertices, pseudo vertices, or edge points having values 1, 2, or 3, respectively
(Algorithm Slice: Steps 1-4 in Fig. 7). Next, the faces which are not lying on
Π but having vertices or edge points on Π , are classified, and the concerned
vertices or edge points are added to Array (Steps 6-8). Some of the grid vertices
appearing in Array are already classified when the grid vertices belonging to
faces on Π are classified in Steps 3-4. Rest of the grid vertices in Array are
classified as isolated points with value 4 (Step 11).

Once all grid vertices on Π are classified, the slice polygon is determined
starting from a grid vertex vs and tracing a closed polygon. All grid vertices
traversed in search of vs are marked as visited (Step 26). For vs, do is initialized
to a value depending on the coordinate plane with which Π is parallel ((0, 1, 0)
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Algorithm Slice(A,G,Π, PG(A))

1. for each face fi ∈ F
2. if plane[fi] = Π
3. for each edge eij ∈ fi
4. vertex[src[eij]]

← Classify-Vertex(src[eij])
5. else
6. for each eij ∈ fi
7. if src[eij ] lies on Π
8. Array[Π ]

← Array[Π ] ∪ src[eij ]
9. for each point t ∈ Array[Π ]
10. if vertex[t] = 0 � init value
11. vertex[t] ← 4 � isolated point
12. for each grid vertex q ∈ Π
13. if (vertex[q] ∈ {1, 4} and

visited[q] = 0) or (vertex[q] = 2
and visited[q] = 1)

14. vs ← q
15. v ← vs + do · g
16. di ← do

17. do
18. do ← Move-Direction(v, di)

19. if vertex[v] ∈ {1, 3, 4}
20. visited[v] ← 1
21. else if vertex[v] = 2
22. visited[v] ← visited[v] + 1
23. v ← v + do · g
24. di ← do

25. while(v �= vs)
26. visited[q] ← 1

Procedure Classify-Vertex(src[eij])

1. q ← src[eij ] , count← 0
2. for each U ∈ Uq
3. if U ∩A �= ∅
4. count← count + 1
5. if (count = 1) or

(count = 3 and UGCs are 1-adjacent
or 0-adjacent) or (count = 4 and
three UGCs are 1-adjacent and
4th UGC 2-adjacent to any one)
or (count = 5 and three UGCs are
1-adjacent and two of these are
2-adjacent to two other UGCs)

6. return 1 � vertex
7. else if (count = 2 and UGCs are

0-adjacent or 1-adjacent)
or (count = 3 and UGCs are
0-adjacent and any one pair
is 2-adjacent)

8. return 2 � pseudo-vertex
9. return 3 � edge point

Procedure Move-Direction(v,di)

1. for each UGC-face fk incident at v
� k ∈ {1, 2, 3, 4}

2. if Occupancy(fk)
3. K ← K ∪ {fk}
4. if K = {f1}
5. do ← di + f1
6. else if K = {f1, f2}
7. do ← −di − f1 + f2
8. else if K = {f1, f2, f3}
9. do ← di + f1 − f2 + f3
10. return do

Fig. 7. The slicing algorithm and related procedures

for yz-, (0, 0, 1) for zx-, and (1, 0, 0) for xy-plane), and the outgoing direction
at each subsequent grid vertex serves as the incoming direction of the next grid
vertex (Steps 16 and 24). The grid vertices are visited one by one in the do
while loop (Steps 17-25) until the traversal reaches vs (and new polygons are
searched for). Consequently, the vertices, edge points, and isolated points are
marked as visited (Steps 19-20), and the number of visits to a pseudo-vertex is
updated (Steps 21-22).
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The algorithm reports hole polygons also formed on the slicing plane. This is
achieved by keeping the object always to the left during traversal. The algorithm
is not affected by a protrusion on the surface of PG(A), since a grid vertex at
the base of a protrusion never qualifies as the start point of a slice polygon and
the slice polygon containing the former has already been generated.

The proof of completion of tracing each slice polygon, and the proof of cor-
rectness of the algorithm thereof, is as follows. The outgoing direction do from
a grid vertex v depends on the incoming direction di and the set of occupied
UGC-faces incident at v and lying on Π . Accordingly, the traversal advances to
the next grid vertex in the direction of do. The object always lies to the left
during traversal. This is in analogy with the traversal of an outer isothetic cover
of a 2D digital object [4], and hence finally vs is reached. While scanning Π ,
every grid vertex v is considered at least once. Either v qualifies as a start point
or it has already been traced in a previously traced slice polygon. If v qualifies
as a start point, tracing a new polygon starts from there.

Preprocessing: We sort the vertices, edges, and faces (isothetic polygons) of
PG(A) according to the direction of motion of the slicing plane. For example, in
Fig. 4(a), all the vertices and pseudo-vertices belonging to f1, f2, . . . are sorted
in the order of non-decreasing y-coordinate and stored in a list V ′. Thus, v1, v2,
v3, ..., v8 belonging to faces f1, f2, and f3 on the slicing plane Π , are followed
by v9, v10, etc. belonging to face f11 lying on the next slicing plane Π ′. The face
list F and the edge list E are also sorted accordingly in F ′ and E′. Now consider
the intermediate step when the vertices on Π are obtained. Starting from v1,
we check whether the grid vertex immediately above it, i.e., lying on the next
slicing plane Π ′, belongs to PG(A). This is checked from V ′ since vertices on Π ′

occur in V ′ immediately after the vertices on Π . For v1 and v2, it reports none.
For v3, the grid vertex i2 lying on Π ′ belongs to PG(A). This follows from the
fact that i2 does not belong to V ′ but lies on an edge orthogonal to Π , as found
from E′. So i2 is an unvisited isolated point and taken as a start point while
slicing by Π ′. The start points for the slice at Π ′ are obtained in this manner.
For the reverse case, when a grid vertex at Π is an isolated point, e.g., i1, then
also the same procedure is applied to obtain the vertex (i3) on Π ′. For all other
cases, similar arguments hold.

3.6 Time Complexity

Let n be the number of voxels constituting the object surface connected in
26-neighborhood. Since a UGC is a cube of length g, the number of UGCs
that contains voxels from the object surface lies between nu,min = O(n/g3) and
nu,max = O(n/g). A UGC has six faces and contributes a maximum of five to the
cover. Hence, the number of UGC-faces on the object surface is at least nu,min

and at most nu,max.

Best case: A UGC has six faces and if a face intersects the object A, then the
UGC has object occupancy. As the face area is g2, object occupancy in a UGC is
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verified in O(g2) time. Hence, time complexity for Classify-Vertex is O(g2),
since eight neighboring UGCs have to be checked for object occupancy; similarly,
Move-Direction also takes O(g2) time.

Outer for loop in Steps 1-8 of Slice executes in nu,min ·O(g2) = O(n/g) time,
since the time complexity of Classify-Vertex is O(g2). The next dominant
part is the for loop from Line 12 to Line 26. It traces all (isothetic) slice polygons
for an input slicing plane, Π . Without any preprocessing, all nu,min UGC-faces
will be verified for their participation in formation of slice polygons, thus yielding
a time complexity of nu,min × O(g2) = O(n/g). In effect, the algorithm needs
O(n/g) time per slicing plane. However, with preprocessing—targeted to efficient
slicing for successive slicing planes, we can have an improvement, as explained
next.

Time needed to prepare V ′, E′, F ′ is O(|V | log |V |), since |E| = O(|V |) and
|F | = O(|V |). Note that, usually |V | will be quite small compared to n, especially
when Π has surface planarity; and in worst case, |V | = O(nu,min). Let Ly be the
length of Π (measured in grid unit) along y-axis; then we have Ly slicing planes
along y-axis. Over all these successive slicing planes, each UGC will be processed
in O(g2) time, since a UGC will be processed for exactly two successive slicing
planes. Hence, total time over Ly planes is O(n/g). Now, if the three dimensions
(Lx, Ly, Lz) of Π have comparable values or are sufficiently large in terms of
grid unit g, then L2

y = O(nu,min), as the number of UGCs (on surface of Π) is
nu,min. This yields an improved time complexity of O(

√
n/g) per slice.

Worst case: Steps 1-8 of Slice takes nu,max ·O(g2) = O(ng) time. Hence, for the
for loop from Line 12 to Line 26 (with preprocessing), |V | = O(nu,max) and total
time over Ly planes is O(ng). With L2

y = O(nu,max), we get time complexity of
O(
√
ng) per slice.

4 Experimental Results

The proposed algorithm has been implemented in C in Linux Fedora Release 7,
Kernel version 2.6.21.1.3194.fc7, Dual Intel Xeon Processor 2.8 GHz, 800 MHz
FSB. The algorithm has been tested on 3D orthogonal covers of several objects
for slicing planes moving along three coordinate axes. A few are displayed below
in Fig. 8 and Fig. 9, with results summarized in Table 1. Note that the average
CPU time of slicing along a particular direction decreases with a decrease in the
average size of the slices parallel to that plane. For instance, the average CPU
time per slicing plane along x-axis for Pickup Van at g = 2 is 0.02 secs., and
those along y- and z-axes are around 0.04 secs.; this is due to the difference in
sizes of the corresponding slices (Fig. 9). For Stanford Bunny at g = 10, the
respective slicing times are 0.6, 0.6, and 0.7 secs., which vary less as the average
slice sizes along three directions have lesser variation. It is observed that the
number of vertices, the number of edges, and the total area of the slices parallel
to a coordinate plane increases with decrease in grid size for both Stanford

Bunny and Pickup Van.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. Results of slicing by our algorithm on Stanford Bunny. (a, e) 3D orthogonal
covers for g = 5 and g = 10; (b, f) Slices parallel to yz-plane; (c, g) Slices parallel to
zx-plane; (d, h) Slices parallel to xy-plane. See electronic version for the original color.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Results of slicing by our algorithm on Pickup Van. (a, e) 3D orthogonal covers
for g = 2 and g = 3; (b, f) Slices parallel to yz-plane; (c, g) Slices parallel to zx-plane;
(d, h) Slices parallel to xy-plane. See electronic version for the original color.
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Table 1. Statistical information and CPU time of slicing

Object

Statistical information Average

Orthogonal cover
Slices CPU time

yz-plane zx-plane xy-plane per slice
|V | |E| |F | |V | |E| Σa |V | |E| Σa |V | |E| Σa (seconds)

Stanford Bunny
917 7358 895 1310 1277 881800 1391 1358 1355300 1104 1078 380125 1.1

(g = 5)
Stanford Bunny

277 2016 243 378 360 826100 380 363 554200 332 318 307500 0.6
(g = 10)

Pickup Van
287 3004 250 558 514 322996 602 582 117736 278 262 70472 0.03

(g = 2)
Pickup Van

112 1436 112 324 294 76446 288 274 103905 126 115 66204 0.02
(g = 3)

Σa = area over all slices parallel to a coordinate plane

5 Concluding Remarks

As found from our experimentation, the topology of an orthogonal cover—and of
the original digital object, thereof—gets revealed from slice polygons obtained by
intersection with successive slicing planes. As explained in Sec. 1, these slices can
be used for state-of-the-art applications, including shape analysis. For varying
grid size (i.e., multiple resolution), significant differences in slice polygons along
a particular slicing plane would carry important shape-related information, such
as planarity, concavity, convexity, etc. Hence, shape analysis in 3D domain with
multi-resolution slicing would be an engrossing work, which may be pursued for
further applications.
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Fast Combinatorial Algorithm for Tightly Separating
Hyperplanes
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Abstract. We propose a new algorithm for finding separating hyperplanes be-
tween two data sets with respect to the L∞ norm. The algorithm is an adaptation
of a previous result on enclosing hyperplanes. Our main result is that the existing
algorithm for finding enclosures can also be applied to find separations provided
the two data sets cannot be separated in a space of lower dimension.

Keywords: Separating hyperplanes, Enclosure of point sets, Arithmetical
thickness.

1 Introduction

A recurring problem in discrete geometry is to determine the two hyperplanes that en-
close a finite point set as tightly as possible. This problem is relevant both from a topo-
logical as an algebraic viewpoint. For example, on a regular grid of discrete points a
discrete analytical hyperplane consists of all the grid points between two parallel hyper-
planes. The distance between the two parallel hyperplanes is also called the arithmetical
thickness. When a discrete hyperplaneS has the right arithmetical thickness, then S will
be tunnel free (it separates space into distinct parts, and one cannot go from one part
to another part without crossing the plane) and minimal (no points can be discarded
without disturbing the topology of the plane and the surrounding space) [1, 3, 7].

In this paper we consider the related question of separating two finite point sets by
two parallel hyperplanes which are as far away as possible from each other. In this sense
the separation is also tight. We propose a fast combinatorial algorithm for determining
these separating hyperplanes and we prove its correctness.

A fast algorithm for finding separating hyperplanes is also relevant in machine learn-
ing where one has to separate data classes by decision surfaces. In fact, the plane that
lies in the middle between the tightly separating hyperplanes is the same as a support
vector machine would find, if it uses the L∞ norm, and hard bounds to separate two
classes [4].

In Section 2 we examine the relation between enclosure and separation problems.
Section 3 introduces a fast algorithm for finding tight enclosures. Section 4 contains the
main results of the paper, and it shows how the enclosure algorithm can be adapted to
find tight separations. Section 5 briefly addresses time complexity issues.

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 31–44, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Separation and Enclosure

Let fa(p) : Rn → R denote a real function of the form

fa(p) = xn − (a0 + a1x1 + · · ·+ an−1xn−1),

where the ai represent coefficients and p = (x1, . . . , xn) is a point of Rn. The equation
fa(p) = 0 defines a hyperplane in Rn with coefficients a = (a0, . . . , an−1).

In digital geometry one often considers the following enclosure problem. Let S be a
finite subset of points pi in Rn. Let ε(S) denote the minimal value for ε for which the
system

ε ≥ xn − (a0 + · · ·+ an−1xn−1) ≥ −ε, p ∈ S (1)

is still feasible. Clearly, this is a linear programming problem in which we minimize ε,
while the ai and ε have to satisfy linear inequalities. If a0, . . . , an−1, ε(S) represents a
solution of (1), then the points of S are tightly enclosed by the hyperplanes fa(p) =
ε(S) and fa(p) = −ε(S).

The problem that we want to consider, however, is a separation problem, stated for
two sets S+ and S−. We define δ(S+, S−) as the maximal value of δ for which the
system

xn − (a0 + · · ·+ an−1xn−1) ≥ δ, p ∈ S+

xn − (a0 + · · ·+ an−1xn−1) ≤ −δ, p ∈ S− (2)

is still feasible. We want to find δ(S+, S−) as well as the parameters ai. Clearly, this
is again a linear programming problem, which we can easily reformulate as an adapted
enclosure problem. To do so rewrite (2) as

(xn − τ)− (a0 + · · ·+ an−1xn−1) ≥ δ − τ, p ∈ S+

(xn + τ)− (a0 + · · ·+ an−1xn−1) ≤ −δ + τ, p ∈ S− (3)

where τ is some real number. Now we let ε = −δ + τ , and we derive from S+ and S−

two new sets:
T+
τ = {q : q = p+ (−τ, 0, . . . , 0), p ∈ S+}

T−
τ = {q : q = p+ (τ, 0, . . . , 0), p ∈ S−}, (4)

If we denote the coordinates of q as q = (y1, . . . , yn), then finding the maximal value
for δ in (3), is the same as finding the minimal value for ε for which

yn − (a0 + · · ·+ an−1yn−1) ≥ −ε, q ∈ T+
τ

yn − (a0 + · · ·+ an−1yn−1) ≤ ε, q ∈ T−
τ

(5)

is still feasible. We shall denote this maximal value as ε(T+
τ , T−

τ ). Clearly,

ε(T+
τ , T−

τ ) = τ − δ(S+, S−). (6)

Thus (5) takes the form of an enclosure problem in which we raised the points of S−

over a distance τ , while we lowered the points of S− over the same distance. The main
difference between (1) and (5) is that (5) is no longer symmetrical. In (5) there are two
different sets, T+

τ and T−
τ that define the upper and lower bounds for ε. We will call this
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problem a signed enclosure problem in which we have to compute ε(T+
τ , T−

τ ), while
(1) is called an unsigned enclosure problem where we compute ε(S), or ε(S+ ∪ S−)
for that matter.

Figure 1 illustrates the basic principle. The set S+ consisting of light points is low-
ered, and the set S− of dark points is raised. The tightly enclosing lines in Fig. 1(b)
yield tightly separating lines in Fig. 1(c).
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Fig. 1. A separation problem (a) is transformed into an enclosure problem (b) by raising the dark
points, and lowering the light points. When the points return to their original positions, shown
in (c), the tightly enclosing lines become tightly separating lines. For the moment the distance τ
over which the points are displaced is not relevant, but later on, the distance will matter when we
replace a signed enclosure problem by an unsigned enclosure problem.

For the moment the value of τ is not important, since (6) holds for any τ . Later we
will add the condition that τ must be sufficiently large to make sure that the enclosure
algorithm, which will be proposed later, computes the correct value for ε(T+

τ , T−
τ ).

3 A Fast Algorithm for Finding Tight Enclosures

There is a fast algorithm for finding tight unsigned enclosures, which is based on ele-
mental subsets [12]. Elemental is a term borrowed from robust regression [6, 10]. An
elemental set is a subset of the data containing the minimum number of points needed
to identify the parameters of the model. Here we shall add the constraint that the points
are in general position so that we can uniquely determine these parameters. For our
purposes, a set of n points pi is in general position if there is a unique hyperplane
fa(p) = 0 passing through the points. For example, for planes in R3, there is a unique
plane passing through 3 distinct points, provided the points are not collinear.

Definition 1. Let S be a finite set of points in Rn. An elemental subset E is a subset
of S with n+ 1 points, which has at least one n-point subset with its points in general
position.

The primary importance of elemental subsets stems from the fact that when S is equal
to an elemental subset E, the minimal value for ε(S), subject to the inequalities (1), can
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be found in an analytical way. For n+ 1 points pi = (xi1, . . . , xin), 1 ≤ i ≤ (n + 1)
we define the (n+ 1)× (n+ 1) matrix

M :=

⎛⎝1 x11 . . . x1n

. . .
1 x(n+1)1 . . . x(n+1)n

⎞⎠ . (7)

Let Ci, 1 ≤ i ≤ n + 1 denote the cofactors of the last column of M . These cofactors
play an important role with respect to the relative positions of the points in E and the
enclosing planes fa(p) = ±ε.

We start with a simple observation, which follows immediately from linear algebra.

Lemma 1. Let E be a subset of n + 1 points pi. Then E is an elemental subset if and
only if at least one of the cofactors Ci is non vanishing.

Proof. It suffices to show that if some cofactor Ci �= 0, then there is always a unique
plane passing through an n point subset ofE. Without loss of generality we may assume
C1 �= 0. Consider the system of linear equations

xin = a0 + a1xi1 + · · ·+ an−1x(n−1), i = 2, . . . , n+ 1.

If there is at least one xin �= 0 for i = 2, . . . , n + 1, this is a non-homogeneous
system, which has a unique solution since the determinant of its coefficient matrix
is non-zero. If all xin �= 0 for i = 2, . . . , n + 1, this is a homogeneous system
with the unique solution (a0, . . . , an−1) = (0, . . . , 0). In both cases there is a unique
hyperplane xn = a0 + a1x1 + · · · + an−1xn−1 passing through the points pi,
with i = 2, . . . , n+ 1. �

For elemental subsets we introduce a residual ε(E) that weighs the absolute value of
the determinant of M against the sum of the absolute values of the cofactors,

ε(E) : = | det(M)|/(|C1|+ · · ·+ |Cn+1|)
= |C1p1n + · · ·+ Cn+1p(n+1)n|/(|C1|+ · · ·+ |Cn+1|).

(8)

Since, by Lemma 1, for an elemental subset at least one of the cofactors is non-zero,
the denominator in (8) is always non-zero, and ε(E) is therefore always defined.

To be able to describe a fast enclosure algorithm, we summarize three results proven
in [11, 12].

Theorem 1. Let E be an elemental subset for which all the n-point subsets are in
general position. Then there is a unique pair of hyperplanes fa(p) = ε(E), fa(p) =
−ε(E) such that each point pi in E lies on the hyperplane

fa(pi) = sign(Ci)sign(M)ε(E).

Furthermore, there is no hyperplane fa(p) = 0 for which |fa(p)| < ε for all p ∈ E.

Hence, when S coincides with an elemental subset E, the residual ε(E) as defined in
(8) coincides with the minimal value of ε in (refencleps), which we denoted as ε(S).
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As noted in Lemma 1 the requirement that all n-point subsets are in general position,
is equivalent to the condition that all cofactors Ci are non zero. Theorem 1 is no longer
valid, however, when one or more of the cofactors are zero. To illustrate what happens,
Figure 2 (a) and (b) shows a configuration where all points pi = (xi, yi) have the same
x coordinate, except for p5. The elemental subset E145 = {p1, p4, p5} has matrix

M145 =

⎛⎝1 x1 y1
1 x4 y4
1 x5 y5

⎞⎠ .

If we let C1, C4, C5 denote the cofactors of the last column of M145, then, since x1 =
x4 �= x5, we have C1 �= 0, C4 �= 0, but C5 = 0. As a result the enclosing hyperplanes
fa(p) = ±ε(E) are not unique, although ε(E145) is well defined. Figures 2(a) and (b)
show two possible enclosures where in each case the vertical height between the two
supporting hyperplanes is equal to ε(E145). Since the sign of cofactor C5 is undeter-
mined, the point p5 can either lie on the lowest supporting hyperplane, or on the highest
supporting hyperplane.
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Fig. 2. Three special cases where some of the points have the same x-coordinate. As a result the
enclosing (or supporting) hyperplanes are not unique.

Second, one can show that the unsigned enclosure of Theorem 1 is optimal in the
sense that there is no signed enclosure that is tighter [11, 12].

Theorem 2. Let S+, S− be a partition of S and let E be an elemental subset in S+ ∪
S− for which all the n-point subsets are in general position. Then ε(E) ≤ ε(E+, E−).

The previous two results refer to elemental subsets, but can be extended to larger sets.
Let S be a (large) finite subset of points that contains at least one elemental subset. The
size of S may be much larger than n+ 1. We define the residual of S as

ε(S) := max
E⊆S

ε(E),

where the maximum of ε(E) is taken over all elemental subsets E in S. The following
result was proven in [11].
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Theorem 3. Let S be a finite set of points and let E be an elemental subset for which
ε(E) = ε(S). Let fa(p) = 0 be a hyperplane such that |fa(p)| ≤ ε(E), for all p ∈
E. Then |fa(p)| ≤ ε(E), for all p ∈ S Furthermore, for any ε < ε(E) there is no
hyperplane fa(p) = 0 such that |fa(p)| ≤ ε, for all p ∈ S.

Whether the surface in Theorem 3 is unique depends on the cofactors of those elemental
subsets E that yield the maximal residual ε(S). Figure 2(c) shows an example where
ε(S) = ε(E134) = ε(E145). However, both E345 and E135 have cofactors that are zero,
and their enclosing hyperplanes are not unique. Therefore, the enclosing hyperplanes of
S are also not unique. On the other hand, the elemental subset E345 has a unique pair
of enclosing hyperplanes (shown as gray lines in Fig. 2(c)), but these hyperplanes do
not enclose the entire set S, since ε(E345) < ε(S).

In the remainder, to simplify the exposition we will avoid these special cases, and
we will assume that all the n point subsets of S are in general position. In practice, this
can be accomplished by adding very small random offsets to the points.

Theorem 3 has an immediate corollary [12]. In fact, an elemental subset can only
give rise to enclosing hyperplanes if its residual is maximal. Or conversely, if a point
p ∈ S is not enclosed by the supporting hyperplanes of some elemental subset E, then
E ∪ {p} must have a residual that is larger than the residual of E (since otherwise the
supporting hyperplanes of E would also enclose E ∪ {p}).
Corollary 1. Let S be a finite set that contains at least one elemental subset E1. Let
fa(p) = ε(E1) and fa(p) = −ε(E1) denote the two hyperplanes that tightly enclose
the points of E1. If there is a point p2 ∈ S for which |fa(p2)| > ε(E1) then the set
E1 ∪ {p2} contains at least one elemental subset E2 for which ε(E2) > ε(E1).

Corollary 1 yields an efficient greedy algorithm for finding tight unsigned enclosures
[12]. The key idea is to increase the residual of an elemental subset by replacing one of
its points. Corollary 1 states that this always possible as long as there remains at least
one point that falls outside the enclosure. On the other hand, when all the points of S
fall within the enclosure defined by E, we have found an optimal solution.

Enclosure algorithm.
Input: A finite set S.
Output: An elemental subset Ek such that ε(Ek) = ε(S).

1. Select an arbitrary initial elemental subset E1 and compute ε(E1);
2. Compute the best fit fa of Ei;
3. Process all points of S until a point p is found at a distance further

than ε(Ei) from the best fit;
4. If no such point is found, return the current Ei;
5. Replace Ei by an elemental subset Ei+1 in Ei ∪ {p} for which

ε(Ei+1) > ε(Ei). According to Corollary 1 there is at least one
such subset in Ei ∪ {p}.

6. Proceed with step 2.

As explained in [12] the best fit fa of step 2 can be computed by solving the system

fa(pj) = sign(Cj)sign(M)ε, pj ∈ Ei,
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which has n + 1 linear equations, and n + 1 unknowns a0, . . . , an−1, ε. When ε(Ei)
is already known, ε can be replaced by ε(Ei), and one of the n + 1 equations can be
discarded, no matter which equation.

4 Tight Separations

The above enclosure algorithm determines the unsigned enclosure and residual ε(S) of
a finite set S. However, to solve a separation problem, we must either determine the
maximal value of δ in (2), or after raising the points of S− and lowering the points of
S+, determine the minimal value of ε in (5). Both are signed problems, and a signed
enclosure can differ from a unsigned enclosure. Figure 3 shows an example in which the
dark points belong to the raising of S−, and the light points belong to the lowering of
S+. Figure 3 (a) shows the unsigned tight enclosure. The supporting lines contain points
of both types, and therefore they cannot be the supporting lines of a signed enclosure.
Figure 3 (b) shows the tightest signed enclosure, where the upper support line contains
only dark points, and the lower support line only contains light points. This example
shows that a tight unsigned enclosure, as produced by the enclosure algorithm, is not
necessarily a solution for (5).
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Fig. 3. The difference between (a) unsigned enclosure, and (b) signed enclosure. In the unsigned
enclosure the supporting lines may contain points from both sets, while in the signed enclosure
each line has to pass either through dark points or through light points. Clearly, in an unsigned
enclosure the distance between the lines can be much smaller.

Figure 4 shows a second configuration of raised and lowered points. In this case the
signed and unsigned enclosure coincide. Each supporting line only contains points from
one part. Note that in Fig. 3 the points of S+ and S− are distributed differently than in
Fig. 4. If we look at the projections π(p) upon the x1-axis of the points in Fig. 3, then
the two projected sets π(S+) and π(S−) can still be linearly separated, i.e, there is a
real number α such that π(p) < α for all p ∈ S+ and π(p) > α for all p ∈ S−. In Fig.
4 the projected points cannot be linearly separated. It seems therefore that the algorithm
for finding unsigned enclosures does not work for signed enclosures when the partition
is biased, i.e, the projected points can already be separated linearly in a space of lower
dimension. We will show that this is true in general. Furthermore, we will show that
this is the only way in which the algorithm can fail.
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Fig. 4. When the projection on the x1 axis produces two data sets that cannot be linearly separated
(their convex hulls overlap), then the signed and unsigned enclosures coincide. In Theorem 4 we
will show that this is true in general, provided τ is chosen large enough.

Proof of the Main Result
Given a partition S+, S−, for each elemental subset E in S+ ∪ S− we let E+, E−

denote the partition of E induced by S+, S−. That is, E+ = E∩S+ andE− = E∩S−.

Definition 2. Let E be an elemental subset of S with all n point subsets in general
position. We say that the signs of the cofactors coincide with the partition E+, E− if
for any pair pi ∈ E+ and pj ∈ E− we have sign(Ci)sign(Cj) = −1. In other words,
if the points belong to distinct parts, their cofactors must have opposite signs.

We shall use C+(E) and C−(E) to denote the partition as induced by the cofactors, i.e
C+(E) ∪ C−(E) = E and

C+(E) = {pi : pi ∈ E and Ci > 0},
C−(E) = {pi : pi ∈ E and Ci < 0}.

Recall that we reformulated the separation of two sets, as an enclosure of two sets where
the points were raised or lowered by τ . The following lemma states that an elemental
subset for which the signs of the cofactors do not coincide with the partition cannot be
an enclosing subset when τ is sufficiently large.

Lemma 2. Let S+ and S− be finite subsets of Rn, such that S+ ∪S− contains at least
one elemental subset for which the signs of the cofactors coincide with the partition.
Let τ be a positive real number, and let T+

τ and T−
τ denote the sets derived from S+

and S− as in (4). Let Tτ = T+
τ ∪ T−

τ and let EM
τ be the elemental subset in Tτ with

the largest unsigned residual, i.e.,

EM
τ = argmaxE⊂Tτ

ε(E).

Then there exists a lower bound τ0 such that for all τ ≥ τ0 we have EM
τ ∩ T+

τ =
C+(EM

τ ) and EM
τ ∩ T−

τ = C−(EM
τ ).
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Proof. Let E = {p1, . . . , pn+1} be an elemental subset of S. Let I = {1, . . . , n + 1}
denote the set of indices of the points in E. We partition I into four different subsets:

I++ = {i : pi ∈ E ∩ S+ and Ci > 0}
I−− = {i : pi ∈ E ∩ S− and Ci < 0}
I+− = {i : pi ∈ E ∩ S+ and Ci > 0}
I−+ = {i : pi ∈ E ∩ S− and Ci < 0}

(9)

Then I = I++∪I−−∪I+−∪I−+, since Ci �= 0 for all i. We will use CI as a shorthand
for
∑

i∈I |Ci|. The residual of E can then be written as

ε(E) =

(
|
∑

i∈I++

xinCi +
∑

i∈I−−
xinCi +

∑
i∈I+−

xinCi +
∑

i∈I−+

xinCi|
)
/CI . (10)

There are only two ways in which the signs of the cofactors can coincide with the
partition, either I+− = I−+ = ∅ or I++ = I−− = ∅. First assume that I+− = I−+ =
∅. Then (10) is equal to

ε(E) =

(
|
∑

i∈I++

xinCi +
∑

i∈I−−
xinCi|

)
/CI .

When we raise the points of S− by τ , while we lower the points of S+ also by τ the
residual will change:

ε(Eτ ) =

(
|
∑

i∈I++

(xin − τ)Ci +
∑

i∈I−−
(xin + τ)Ci|

)
/CI (11)

where Eτ contains the raised and lowered points of E. Since Ci ≥ 0 for i ∈ I++ and
Ci ≤ 0 for i ∈ I−−, we obtain

ε(Eτ ) =

(∣∣∣∣∣∑
i∈I

xinCi − τ
∑
i∈I

|Ci|
∣∣∣∣∣
)
/CI .

Hence, for τ sufficiently large, i.e, τ > |
∑

iinI xinCi|/CI ,ε(Eτ ) increases as

ε(Eτ ) = τ − ε(E).

The case I++ = I−− = ∅ leads to a similar result, where ε(Eτ ) increases at the same
rate as τ .

Now let F = {q1, . . . , qn+1} be a second elemental subset for which the signs of
the cofactors do not coincide with the partition. That is, I−+ ∪ I+− �= ∅ and I++ ∪
I−− �= ∅. We denote the coordinates of the points of F as qi = (yi1, . . . , yin). We
again partition the index set as in (9). If we let Fτ denote the set of lowered and raised
points of F , we have

ε(Fτ ) =

(∣∣∣∣∣ ∑
i∈I++

(yin − τ)Ci +
∑

i∈I−−
(yin + τ)Ci+

∑
i∈I+−

(yin − τ)Ci +
∑

i∈I−+

(yin + τ)Ci

∣∣∣∣∣
)
/CI .
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Since, Ci ≥ 0 for i ∈ I++ ∪ I−+ and Ci ≤ 0 for i ∈ I−− ∪ I+− we obtain

ε(Fτ ) =

(∣∣∣∣∣∑
i∈I

yinCi − τ

( ∑
i∈I++∪I−−

|Ci| −
∑

i∈I+−∪I−+

|Ci|
)∣∣∣∣∣
)
/CI . (12)

Because in this case I−+ ∪ I+− �= ∅ and I++ ∪ I−− �= ∅,

0 ≤
∣∣∣∣∣ ∑
i∈I++∪I−−

|Ci| −
∑

i∈I+−∪I−+

|Ci|
∣∣∣∣∣ /CI < 1. (13)

Hence, for τ sufficiently large, ε(Fτ ) increases as

ε(Fτ ) = c0 + c1τ,

where c0, c1 are constants and 0 ≤ c1 < 1. Thus, when τ is sufficiently large, ε(Eτ )
will always be larger than ε(Fτ ). Hence if EM

τ = argmaxE⊂Tτ
ε(E) the cofactor signs

of EM
τ must coincide with the partition when τ is sufficiently large. �

We now derive explicit conditions that ensure that S+, S− contains an elemental subset
for which the signs of the cofactors coincide with the partition. First we note that the
cofactors provide linear dependencies between the points of E.

Lemma 3. Let Ci be the cofactors of the last column of the matrix M . Then∑
1≤i≤n+1

π(pi)Ci = 0

and ∑
1≤i≤n+1

Ci = 0

Proof. To prove the first part it suffices to replace the last column of M by the el-
ements xij for some j = 1, . . . , n − 1. Since the determinant of a matrix with two
identical columns is zero,

∑
1≤i≤n+1 xijCi = 0 for each j = 1, . . . , n − 1. Hence∑

1≤i≤n+1 π(pi)Ci = 0. Second, if we replace the elements of the last column of
M all by one, we again obtain a matrix with two identical columns, and therefore∑

1≤i≤n+1 Ci = 0. �

We now derive a simple condition for a set to contain at least one elemental subset
that will trigger the application of Lemma 2. The proof is based in Caratheodory’s
theorem [13].

Lemma 4. Let S+, S− be finite subsets of Rn such that

(π(S+) ∩ convπ(S−)) ∪ (π(S+) ∩ convπ(S−)) �= ∅

Then S+ ∪ S− contains at least one elemental subset E for which the signs of the
cofactors coincide with the partition.
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Proof. Without loss of generality we may assume that π(S+) ∩ convπ(S−) �= ∅, and
that there is a point p1 ∈ S+ such that π(p1) ∈ convπ(S−).

The convex set convπ(S−) lies in an (n − 1)-dimensional space. Since π(p1) ∈
convπ(S−) by Caratheodory’s theorem there must be n points p2, . . . , pn+1 in S−

such that π(p1) is also within the convex hull of the n projections of these points. Let
E denote the elemental subset defined by E = {p1, . . . , pn+1}. By Lemma 3 we have

p1 = − 1

C1

∑
2≤i≤n+1

π(pi)Ci (14)

Also by Lemma 3,−
∑

2≤i≤n+1 Ci = C1. It follows that (14) represents p1 as an affine
span of p2, . . . , pn+1, that is, p1 = α2p2+· · ·+αn+1pn+1, where α2+· · ·+αn+1 = 1.
Furthermore, since p1 lies in the convex hull of the points π(pi) we also have αi ≥ 0.
Hence sign(Ci)sign(C1) = −1, for 2 ≤ i ≤ n + 1, which means the cofactor signs
coincide with the partition of the points into S+ and S−. �

Note that the previous lemma formalizes our observation made in Figs. 3 and 4. In fact,
the main theorem follows immediately from the previous results.

Theorem 4. Let S+, S− be be finite subsets of Rn such that

(π(S+) ∩ convπ(S−)) ∪ (π(S+) ∩ convπ(S−)) �= ∅

and let Tτ denote the set of raised and lowered points of S. Then there is a lower bound
τ0 such that for all τ ≥ τ0

max
E⊂Tτ

ε(E) = ε(Tτ ) = ε(T+
τ , T−

τ ) = τ − δ(S+, S−)

Proof. By Lemma 4 there is at least one elemental subset E in S for which the partition
of S coincides with the signs of the cofactors. Hence there is an elemental subset in Tτ

that has the largest residual, which we will denote as EM
τ , i.e ε(EM

τ ) = maxE⊂Tτ ε(E).
Then by Theorem 1 ε(EM

τ ) = ε(Tτ ). By Lemma 2 when τ is sufficiently large, we have
ε(EM

τ ) = ε(EM
τ ∩ T+

τ , EM
τ ∩ T−

τ ). By Theorem 1 the supporting hyperplanes of EM
τ

enclose Tτ , while for any elemental subset Fτ ⊂ Tτ for which ε(F+
τ , F−

τ ) < ε(EM
τ ),

the enclosing hyperplanes of F cannot enclose the entire set Tτ . Hence, we also have
ε(EM

τ ) = ε(T+
τ , T−

τ ). �

5 Application and Time Complexity

If the conditions of Theorem 4 are satisfied, we can compute the separating hyperplanes
with the enclosure algorithm. The conditions require that the projection of the two data
sets overlap, in the sense that the projection of one of the convex hulls must contain at
least one projected point of the other data set.

This is a common situation. Figure 5 shows a typical example where the projected
sets clearly overlap. The separating hyperplanes were found by (i) lowering and raising
the data points, (ii) finding the enclosing hyperplanes, and (iii) raising one and lowering
the other hyperplane so that they separate (and support) the original two sets.
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Fig. 5. The two supporting planes separate the positive points (dark) from the negative points
(light). The support points are indicated as large points, two on each supporting plane.

The conditions required by Theorem 4 are violated when the two projected hulls do
not overlap. In fact, this means that the projected sets can already be separated linearly
in Rn−1. In this sense, Theorem 4 admits that when the sets can already be separated
in Rn−1, the separation algorithm can give incorrect results in Rn. In other words, the
data sets should be separated in the subspace of lowest possible dimension in which the
projected data points are already linearly separable.

To conclude, we briefly address the time complexity of the enclosure/separation al-
gorithm. Suppose the data set consists of N lowered and raised points. In Rn, this
means that there are O(M) elemental subsets, where M =

(
N

n+1

)
. Since the goal of

the proposed algorithm is to find the elemental subset with the largest residual, the time
complexity depends on the speed with which the elemental cost will increase when
replacing points in the elemental subset by more distant points. Let ε1, ε2, . . . , εM rep-
resent the sequence of the residuals in increasing order of all the elemental subsets. If
we select an elemental subset at random, then its residual will be one element of this
sequence, denoted εj . Hence, if the algorithm replaces the elemental subset with a new
one that has a larger residual, then a desirable property would be that the new residual
would lie close to the median of εj and εM . If this would indeed be the case the al-
gorithm would converge to the maximal residual in log2 M = log2

(
N

n+1

)
steps. Since

for each elemental subset we have to evaluate, in the worst case all N points to find a
new point behind the enclosing hyperplanes of the current elemental subset, it may take
up to N operations to process one elemental subset. This yields a time complexity of
O(N log2 N

n+1) = O((n+ 1)N log2 N) operations.
The above time complexity analysis, however, depends heavily on the assumption

that each time we replace one of the points of an elemental subset, the new residual will
lie close to the median of the remaining subsequence εj , . . . , εM . Up to now we have
no real rigorous proof that this is in fact the case. However, experiments with random
data sets have indeed shown that the time number of iterations is on average equal to
k log2 N , where k does not increase faster than n + 1. Figure 6 shows the number of
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iterations that are needed to find the enclosing elemental subset in R4 and R6, for data
sets similar to the one shown in Fig. 5, for varying sizes of the data set.
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Simulation results in R^4
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Fig. 6. Time complexity for varying size of the data set. From the above analysis, the expected
number of iteration grows as (n+ 1) logN . The experimental results show the average number
of iterations that were needed to find the enclosing elemental subset. The average was taken over
100 experiments for each N = 10, 20, . . .. The smooth curves show plots of the best fit of the
form a + b log2(N) to the experimental results, where N represents the number of data points.
In R

4 a good fit was a + 1.35 log2(N) (shown left), in R
6 a good fit was a + 2.31 log2(N). In

each case, the rate b is smaller than the expected value n+ 1.

For support vector machines (SVM), approximative training algorithms have been
reported that can find a separating hyperplane in linear time [8, 9]. However, the linear
time complexity of these iterative algorithms depends strongly on the parameter set-
tings, such as the required accurracy of the approximation, the sparseness of the feature
vectors, and the soft margin parameter [2, 9]. In contrast, the combinatorial algorithm
proposed in this paper is not an approximative method, but gives an exact result. Fur-
thermore, the algorithm solves the primal optimization problem, which for large scale
problems may have advantages over algorithms that solve the dual optimization prob-
lem, as discussed in [5].

Although the proposed method provides an exact solution, its major limitation is
that it only provides separating hyperplanes for hard margins, not for soft margins [4].
Furthermore, as can be easily seen from the lowering and raising of the data points,
when the two data sets are not linearly separable, the proposed algorithm will return a
hyperplane for which the maximum distance between the misclassified data points and
the hyperplane will be minimal.

6 Conclusion

We proposed a combinatorial algorithm for finding separating hyperplanes based on
elemental subsets. However, some issues still have to be further explored to determine
the method’s qualities for use in practice. One important, but interesting problem is how
the linear separability of the data set is affected when we introduce a lifting function
to find a separating surface that is not linear. Since the proposed algorithm only works
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correctly in the subspace of lowest dimension in which the data is separable, an interest-
ing question is to find a lifting function for which the data set becomes just separable.
Although the latter is one of the key problems in pattern recognition, a combinatorial
approach may provide new insights.
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Abstract. This paper uses digital curvatures for 3D object analysis and
recognition. For direct adjacency in 3D, digital surface points have only
six types. It is easy to determine and classify the digital curvatures of
each point on the boundary of a 3D object. This is simpler than the case
of triangulation on the boundary surface of a solid; the curvature can be
any real value. This paper focuses on the global properties of categorizing
curvatures for small regions. We use both digital Gaussian curvatures and
digital mean curvatures to characterize 3D shapes. Then propose a multi-
scale method and a feature vector method for 3D similarity measurement.
We found that Gaussian curvatures mainly describe the global features
and average characteristics such as the five regions of a human face.
However, mean curvatures can be used to find local features and extreme
points such as nose in 3D facial data.

Keywords: Digital space, Digital Gaussian curvature, Digital mean cur-
vature, Multi-scale, Feature vector, Classification.

1 Introduction

There are many applications related to geometric analysis in 3D image process-
ing. Besl and Jain first proposed using Gaussian curvature and Mean curvature
to classify 3D surface points [1,2]. Besl and Jain used the signs (positive, zero,
negative) of Gaussian and mean curvatures to classify 3D surface points. Some
related research can also be found in [3].

A 3Dobject can be representedby one or several closed surfaces (2D-manifolds).
Curvatures that describe the degree of change at a point on the surface have been
used for many years in 3D image processing [1,14]. The typical technology related
to curvatures is the following: (1) triangulation of the surface, (2) fit the digital im-
age to a continuous surface (using B-spline), and (3) calculate the standard Gaus-
sian and/or mean Curvatures.

Worring and Smeulders showed that even in 2D, the interpretations of digi-
tized curves may generate completely different curvatures [18]. In other words,
the same image will generate different curvature maps if the triangulation of the
is different.
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On the other hand, methods in digital and discrete geometry for 3D computer
graphics and 3D image processing have been developing in recent years. For
example, recognition algorithms related to 3D medical images can be found
in [4] in which Brimkov and Klette made extensive investigations in boundary
tracking.

This paper presents a preliminary study of using digital curvatures of digital
surfaces as features to classify different 3D objects. In this paper, we propose
using curvatures in digital space for 3D object matching, classification, and recog-
nition. Since direct adjacency only has six types of digital surface points in local
configurations, it is much easier to determine and classify the digital curvatures
for every point on the boundary surface of a 3D object.

2 Definitions of Digital Curvatures

In 1986, Besl and Jain presented a systematic method to use curvatures in image
processing [2]. Besl and Jain used the signs (positive, zero, negative) of Gaussian
curvature and Mean curvature to classify 3D surface points. Their technique
uses triangulation for decomposition and then calculates the Gaussian curvature
(K) and Mean curvature (H). Eight principle shapes can be identified: (1) Peak
(surface) point K > 0, H < 0; (2) Flat point H = 0,K = 0; (3) Pit Point
H > 0,K > 0; (4) Minimal point H = 0,K < 0; (5) Ridge point K = 0, H < 0;
(6) Saddle Ridge point H < 0,K < 0; (7) Valley Point H > 0,K = 0; (8) Saddle
Valley point H > 0,K < 0;

In fact, cases (1) and (3) are mirror images of the same shape and H changes
the sign. This also applies to cases (5) and (7) and cases (6) and (8).

In this paper, we mainly study the curvature in digital space. Given a set
of cloud points in 3D, we assume that they are connected. Since cubical space
with direct adjacency, or (6,26)-connectivity space, has the simplest topology in
3D digital spaces, we will use it as the 3D image domain. It is also believed to
be sufficient for the topological property extraction of digital objects in 3D. In
this space, two points are said to be adjacent in (6,26)-connectivity space if the
Euclidean distance between these two points is 1.

Let M be a closed (orientable) digital surface in the 3D grid space in direct
adjacency. We know that there are exactly 6-types of digital surface points [5][6].

Assume thatMi (M3,M4,M5,M6) is the set of digital points with i neighbors.
We have the following result for a simply connected M [5]:

|M3| = 8 + |M5|+ 2|M6|. (1)

Mapping the digital surface points (Fig. 1) to the Besl-Jain classification, we will
be able to see in the following that M3 corresponds to cases (1) and (3), M4(a)
to case (2), M4(b) to cases (5) and (7), M5 to cases (6) and (8), and M6 to case
(4).

Digital configurations contain two types of minimal surface points. The corre-
spondence between the shapes in the Besl-Jain paper and Fig. 1 is very interesting.
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Fig. 1. Six types of digital surfaces points in 3D

Worring and Smeulders showed that even in 2D the interpretations of digitized
curves may generate totally different curvatures [18]. In other words, the same
image will generate different curvature maps if the triangulation is different.

2.1 Gaussian Curvatures and Mean Curvatures

If Ki denotes the Gaussian curvature of the elements in Mi, i = 3,4,5,6. We have
(see discussion in [6].)

Lemma 1. (a) K3 = π/2, (b) K4 = 0, for both types of digital surface points,
(c) K5 = −π/2, and (d) K6 = −π, for both types of digital surface points.

We also have a genus formula based on the Gauss-Bonnet Theorem [6]

g = 1 + (|M5|+ 2 · |M6| − |M3|)/8. (2)
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If Hi denotes the mean curvature of elements in Mi, i = 3, 4, 5, 6. We have

Lemma 2. (a) H3 = 4√
3
. (b) H4 = 0 for flat neighborhood, and H4 =

√
2 for a

bended neighborhood. (c) H5 = 4
5 . (d) H6 = 0, for both types of digital surface

points.

This lemma can be proved easily based on the formula derived by Meyer et al in
2002 [13]. Goodman-Strauss and Sullivan used the H6 = 0 points to construct
cubic minimum surfaces [11]. A minimum surface can be defined as a surface
whose mean curvature at every point is 0. There are several algorithms for ob-
taining minimum surfaces. Here we give a brief proof for Lemma 2. The formula
derived in [13] for the mean curvature normal at point x is:

H(x) · n =
1

2 · AΣxi∈N(x)(cotαi + cotβi)(x− xi) (3)

where N is the set of (discrete) neighbors of x. αi and βi are angles in two
different triangles that are both opposite to line segment xxi; which is shared by
the triangles. A is called the voronoi region of x. For digital space, the voronoi
region is easy to determine. See Fig 2.
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Fig. 2. The voronoi region in digital space

H(x) · n =
1

A
Σxi∈N(x)(x − xi) (4)

Note that H(x) · n is a vector. |(x − xi)| = 1 and cotαi = cotβi =1. in Fig 2.
A = 1

4 · i for Mi points. |Σxi ∈ N(x)(x− xi)| =
√
(3) for M3; |Σxi ∈ N(x)(x−

xi)| = 0 for M4 flat, and
√
(2) for M4 bended; |Σxi ∈ N(x)(x − xi)| = 1 for
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M5;|Σxi ∈ N(x)(x − xi)| = 0 for M6; Therefore, H3 = 1
3· 14
√
(3) = 4√

(3)
. For

bended M4 points (Fig. 1 (c)), H4 = 1
4 1

4

√
(2) =

√
(2). H5 = 1

5 1
4

· 1 = 4
5 .

2.2 Digital Principal Curvatures

The principal curvatures at a point p of a surface, denoted k1 and k2, are the
maximum and minimum values of the curve curvature on normal planes (inter-
secting with the surface). The relationship among the principal curvature, the
Gaussian curvature, and the mean curvature are:K = k1·k2 andH = (k1+k2)/2.
Therefore [12][13],

k1 = H +
√
H2 −K, k2 = H −

√
H2 −K

It is easy to get,

Lemma 3. (a) k
(3)
1 = 4√

3
+
√

16
3 −

π
2 = 4.24913, k

(3)
2 = 4√

3
−
√

16
3 −

π
2 =

0.369675. (b) k
(4b)
1 = 0, k

(4b)
2 = 0; k

(4c)
1 = 2

√
2 = 2.82843, k

(4c)
2 = 0. (c)

k
(5)
1 = 4

5 +
√

16
25 + π

2 = 2.28687, k
(5)
2 = 4

5 −
√

16
25 + π

2 = −0.686875, . (d) k
(6)
1 =

√
π = 1.77245, k

(6)
2 = −

√
π = −1.77245 for both types of M6 digital surface

points.

From these lemmas, we can find some interesting information about digital prin-

cipal curvatures. k
(4c)
1 does not have π involved in the formula. However, from

Fig. 1c to Fig. 1a is just like making a 90 degree angle similar to the case from
Fig. 1b to Fig. 1c. Where does the π came from? In classical differential geom-
etry, the base area is usually a circle. But here we always consider the square.
However, due to the definition of curvatures (or the intuitive meaning of cur-
vatures), it is rounded. That may explain the digital curvatures. Sometime, π
appears, and sometimes, it does not. Due to the fact that digitaldiscrete mean
curvatures were obtained using an approximation, we think that the value of the
mean curvatures for Mi points can be modified as H ′ = c1 · H + c2 as long as
we keep H ′

3 > H ′
4c > H ′

5 > H6 = 0, where c1 and c2 are two constants.

3 Digital Curvatures and 3D Image Analysis

Researchers have applied curvatures to image segmentation, shape recognition,
and edge detection [15,8]. In this section, we investigate the digital Gaussian cur-
vature and the digital mean curvature in classification of 3D objects. For instance
in a closed digital surface,M4 is independent toM3;M4 contains parabolic points
(the bended ones). M3 contains the elliptical points since the surface point is
locally convex. M5 and M6 contain hyperbolic points; the Gaussian curvature is
negative and the surface point will be locally saddle shaped.
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3.1 Analysis Based on Digital Gaussian Curvatures

Let S be a subset of the 2D manifold M . We define a feature vector called the
digital curvature vector fS = (m3,m4,m5,m6), where mi = |Mi| with respect to
S. We can also split the vector into a six component vector to include two cases
for M4 and M6 respectively. Basically, the vector now contains four components:
fS = (|M3|, |M4|, |M5|, |M6|).

The motivation to define such a vector for a local region is based on the
corresponding Gaussian-Bonnet theorem [12]. Suppose C is a boundary curve of
S that is simply connected and kg is the geodesic curvature of C, then∫

C

kgdt+

∫ ∫
S

KdA = 2π (5)

If C is a n-polygon and αi is the interior angle, then

(n− 2) · π +

∫
C

kgdt+

∫ ∫
S

KdA = Σn
i=1αi (6)

Therefore,

gS = g(fS) = |M3| ·K3 + |M5| ·K5 + |M6| ·K6) =

∫ ∫
S

KdA (7)

can also be used to represent the total geodesic curvature of C :∫
C

kgdt = 2π − gS (8)

In image processing, we can define S (or C) as a rectangular region. If S only
contains one surface point, then gS is just K. In practice, the vector fS can be
used for a closed surface or a small region centered at one point. Between two
regions, there can be intersections or no intersection. The region can be 2D or
3D, depending on whether the problem can be projected into 2D easily. The most
popular shapes of the domain regions are circles/spheres and rectangles/cubes.

We have used this technique to analyze human facial data. If the size of the
region reduced by 1, 2, 22, ..., 2k times, we will get a sequence of fS , or simple
get gS . Then we can see the change in the curvatures. Such a method is usually
called a multi-scaling method.

Let us look at the following example. The two original images are shown in
Fig 3.

In Fig. 4 andFig. 5, we show the initial digital curvature calculation–projections
from x− and y− directions. In these two figures, There are three symbols, ′∗′,′+′,
and ′X ′. ′∗′ indicates M3-points on the face that are the positive curvature point
(π/2). ′+′ indicates M5-points (−π/2), and ′X ′ indicates M6-points (−π); they
are negative curvature points. The calculation is for the whole 3D. The display
only shows in two observation angles for each image.

In Fig. 6, we show the projected Gaussian curvature data for each scale for
face-one from 64× 64× 64 to 8× 8× 8. Fig. 7 is for face-two. In order to be able
to observe easily, we will display the same size image when the scale changes.
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Fig. 3. Two original human faces from NIST-FRGC data sets

Analyzing Figs. 6 and 7, we see that the multi-scaling method can identify
some of the interesting areas of the face. For example, we can identify five areas
of interest for face-one and face-two. They both contain two areas in the top and
in the bottom and one area in the middle. These five areas indicate two region on
the head-sides, two cheeks, and the nose. The nonzero total of Gaussian curvature
for a region that remains means that total change has not been canceled in this
region.

The result shows that the first person has a flatter face than the second person
since the method reaches the five interesting areas earlier. We can also identify
the flat-or-bending regions in the human face as shown in Fig. 9. A total of four
such areas can be easily found.

The advantage of Gaussian curvature-based calculation is that it is not a sim-
ple processing of pixel averages in the region. The curvature-based calculation
is based on geometric and topological properties of the 3D object. For instance
we know the total Gaussian curvature will be a constant as the selected region
becomes the whole 3D data array. In summary, the method described in this
section can identify the five regions of interest and four flat-or-bending regions
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Fig. 4. Digital curvature on face-one’s surface by projection: ′∗′,′+′, and ′X ′ indicate
M3,M5,M6-points, respectively

as the common similar characteristics of a human face.addition, the calculation
is much easier than that of triangulation based images. The following lemma
provides evidence for this.

Lemma 4. The algorithm designed to obtain scaled local Gaussian curvatures
for finding five areas of interest on the image of a human face is of complexity
O(nlogn). The space needed is O(logn).

Proof: We first compute the curvature for higher resolution image then we reduce
the resolution by half. Since the 2k − 1-scaled Gaussian curvature data can be
used to calculate the 2k-scaled Gaussian curvature data. We can design a fast
linear algorithm due to the reduction of the size of the array by half. In such a
case, the space needed will also be O(n) if we just use the input array and not
the intermediate data. By using the output of the result for each resolution or
scale, the time complexity will be O(n log n) and the space complexity will be
O(log n) (consider only the space needed to run the algorithm).
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Fig. 5. Digital curvature on face-two’s surface by projection

3.2 Investigation Based on Digital Mean Curvatures

For the mean digital curvature application, we have investigated the calculation
based on the absolute average for small regions. The geometric meaning of such
a treatment for digital mean curvature is the zigzagged points on the surfaces.
Mean curvature zero points indicate the critical points that change from inward
to outward if it is not a flat point. The result of an example is shown in Fig. 9.

To summarize the findings, Gaussian curvatures describe the global features
and the average characteristics such as the five regions of a human face, but mean
curvatures find local features and extreme points such as the nose. In the future,
we will use this method for analyzing more human facial data. We can normalize
the image size and calculate the distance for a pair of faces in corresponding scale
or nearby scales. The following section will present a method for 3D data ”rough”
classification using digital curvature vectors.

4 Object Classification Using Curvature Vectors

In this section, we will explore a method based on the digital curvature vectors for
3D shape similarity analysis and classification of 3D objects. There have been



54 L. Chen and S. Biswas

Fig. 6. Digital curvature scaling for Face-one

Fig. 7. Digital curvature scaling for Face-two

many research investigations that use local curvatures in 3D shape similarity
analysis. Shum, Hebert, and Ikeuchi proposed a method that has O(n2) time
complexity [16]. However, it is not very practical for the purpose of data retrieval.
Another disadvantage of the continuous curvature method is that the calculation
of curvatures return real numbers and that introduces precision errors [14]. A
multi-scaling method was proposed to complete this task, but it takes more time.

The technique presented in this section is not an attempt to replace the
methods developed before. We try to explore more applications using digital
curvatures. As we discussed in Section 2 and 3, the local digital curvature is
determined by the local shape of the digital surface. The number of each type
of surface-point may indicate the features of a 3D object.

4.1 Feature Vectors of 3D Object Based on Digital Curvatures

We first define a First, form a feature vector that only contains the number of
digital surface points in each of the categories M3, M4, M5, and M6. In general,
a 3D digital object may not necessarily be a 3D digital manifold. This is because
we have strict definitions for 3D manifolds where each local neighborhood must
similar to a 3D Euclidean Space. However, this does not affect the use of curva-
tures in 3D object. For a safe claim, we can assume that the 3D object is simply
connected. This is method is used for calculating the boundary surface of a 3D
object in this section. The feature vector is



Digital Curvatures Applied to a 3D Object 55

Fig. 8. Five areas of interests and four flat-or-bending areas are the common similar
characteristics of human face

fv =
1

T
(|M3|, |M4|, |M5|, |M6|) = (r3, r4, r5, r6) (9)

where T is the total surface points. For example, an object has a total of 1679
digital points on boundary surface: |M3| = 469; |M4| = 995; |M5| = 183; |M6| =
32. The non-manifold points (2D) are the points where the neighborhood of
the point is not a 2D-configuration shown in Fig. 1. its Because of some non-
manifold points, we corrected the data for |M |’s: 484; 995; 180; 28 ; 240. It also
includes the total of 8 none manifold points. The method to delete those points
is presented in [7]. Therefore, we get the Ratio r3 = 0.288267, r4 = 0.592615,
r5 = 0.107207, and r6 = 0.016677. The Euclidean distance of two feature vectors:
d =

√
Σ6

i=3((xi − yi)2)
We could also use the scaling method from Section 3 to get more features. Here

we use this method to do a rough classification for 3D shapes. The computing
examples are taken from the Princeton Benchmark Website [10].

4.2 Similarity and Distance Analysis Based on the Feature Vectors

For n samples of solid objects, we can calculate the feature ratio vectors for each
of them. So we will have n feature vectors e1, · · · , en. A simple calculation is to
get the Euclidean distances for every pair of points. For the example in Fig. 10,
the feature ratio vectors ex = (r3, r4, r5, r6) where rk = |Mk|/T are listed below:

e1 = (0.288267, 0.592615, 0.107207, 0.016677),
e2 = (0.262424, 0.508752, 0.193369, 0.044133),
e3 = (0.168149, 0.680220, 0.144854, 0.008895),
e4 = (0.152833, 0.711492, 0.122506, 0.013966),
e5 = (0.148500, 0.710425, 0.135432, 0.007128),
e6 = (0.162700, 0.688310, 0.140705, 0.010093).
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Fig. 9. Use digital mean curvature to find a peak point that indicates nose of human
face: (a) Image is made by a 2 × 2 summation of the absolute values of digital mean
curvatures, and (b)Image is made by a 4×4 summation of the absolute values of digital
mean curvatures

Fig. 10. Six 3D objects from Princeton database

The Distance matrix of two-vector pairs is

⎛⎜⎜⎜⎜⎜⎜⎝
0
0.015878586 0
0.023580826 0.041884473 0
0.032715518 0.059045308 0.001737666 0
0.034301844 0.058376743 0.001390322 0.000233753 0
0.02609007 0.04611817 0.000113789 0.000980967 0.000727309 0

⎞⎟⎟⎟⎟⎟⎟⎠ (10)
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In the matrix, aij is the distance between object i and object j. The matrix is
symmetric so we only present half of it. We can easily see that Objects 1 and
Object 2 are closely related. Objects 4,5, and 6 are similar. From the data pic-
tures displayed in Fig. 10, we can see that is correct. An interesting observation
is that Object 3 does not go with three other objects in the second category.

5 Conclusion

In this paper, we have used digital Gaussian curvatures and digital mean cur-
vatures to analyze 3D shapes. We have found that digital curvatures may have
some power for identifying the significant features of 3D objects. For instance,
we could identify five regions in some facial images. We also presented a method
for similarity analysis using digital curvatures in Section 4. In future research, we
need to do more investigations including the comparison with other techniques.
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Abstract. A discrete polynomial curve is defined as a set of points lying
between two polynomial curves. This paper deals with the problem of
fitting a discrete polynomial curve to given integer points in the pres-
ence of outliers. We formulate the problem as a discrete optimization
problem in which the number of points included in the discrete polyno-
mial curve, i.e., the number of inliers, is maximized. We then propose a
method that effectively achieves a solution guaranteeing local maximal-
ity by using a local search, called rock climging, with a seed obtained
by RANSAC. Experimental results demonstrate the effectiveness of our
proposed method.

Keywords: Curve fitting, Discrete polynomial curve, Local optimal,
Outliers, Consensus set, RANSAC, Discrete geometry.

1 Introduction

Fitting geometric models such as lines or circles is an essential task in image
analysis and computer vision, and it is indeed used in feature detection and
many other procedures. Though several methods exist for model fitting, they use
continuous models even in a discrete environment. The method of least-squares
is most common for curve fitting. This method minimizes the sum of squared
residuals from all data, and the solution can be analytically computed. This
method is, however, fatally susceptible to the presence of outliers: just one outlier
can cause a great impact on estimation results. In order to enhance robustness,
minimizing the sum of other functions has been proposed. For example, the
method of least-absolute-values minimizes the sum of absolute residuals from
all data. The method of least median of squares [5] minimizes the median of
squared residuals, resulting in tolerating up to half the data being outliers. This
means, however, that it does not work in the presence of more outliers. On
the other hand, RANdom SAmple Consensus (RANSAC) [2] is commonly used
in computer vision. This method maximizes the number of inliers, and work
regardless of the fraction of outliers. However, its random approach takes a long
time to ensure high accuracy.
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In discrete spaces, it is preferable to use discretized models rather than con-
tinuous ones because the representation of the models is also discrete. Discrete
model fitting in the 2D discrete space is studied for lines [1, 6], annuluses [7],
and polynomial curves [4]. For lines and annuluses, methods that work for a
data set including outliers, i.e., points that do not describe the model, have been
developed, however, such a method that deals with outliers for discrete polyno-
mial curves remains to be reported. This paper aims at developing a method
for discrete polynomial curve fitting for a given set of discrete points including
outliers.

We formulate the discrete polynomial curve fitting problem as a discrete op-
timization problem where the number of inliers is maximized. We then propose
a method that guarantees its output to achieve local optimal. Our proposed
method combines RANSAC and a local search. Namely, starting with a seed ob-
tained by RANSAC, our method iteratively and locally searches for equivalent
or better solutions to increase the number of inliers. Our method guarantees
the obtained set of inliers is local maximum in the sence of the set inclusion.
Experimental results demonstrate the efficiency of our method.

2 Discrete Polynomial Curve Fitting Problem

2.1 Definitions of Notions

A (continuous) polynomial curve of degree k in the Euclidean plane is defined
by

P = {(x, y) ∈ R
2 : y = a1x

k + a2x
k−1 + · · ·+ akx+ ak+1, a1 �= 0}, (1)

where a1, . . . , ak+1 ∈ R.
We define the discretization of eq. (1), namely, a discrete polynomial curve,

by
D = {(x, y) ∈ Z

2 : 0 ≤ y − f(x) ≤ w} , (2)

where f(x) = a1x
k + a2x

k−1 + · · ·+ akx+ ak+1, and w is a given constant real
value. ai, k and w are respectively called the coefficient, the degree, and the width
of the discrete polynomial curve (i = 1, . . . , k + 1). Geometrically, D is a set of
integer points lying between two polynomial curves y = f(x) and y = f(x) +w,
and w is the vertical distance between them. We remark that D is a Digital
Level Layer (DLL) [3].

We define several notions for a discrete polynomial curve. For a finite set of
discrete points

S = {pj ∈ Z
2 : j = 1, 2, . . . , n} ,

where the coordinates of pj are finite values, and a discrete polynomial curve D,
pj ∈ D is called an inlier, and pj /∈ D is called an outlier of D. The set of inliers
is called the consensus set of D which is denoted by C. Two polynomial curves
y = f(x) and y = f(x) + w are called the support lines of D. In particular, we
call y = f(x) the lower support line, and y = f(x) + w the upper support line.
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Points on the support lines are called critical points of D. In particular, a point
on the lower support line is called a lower critical point, while that on the upper
support line is an upper critical point.

2.2 Description of the Discrete Polynomial Curve Fitting Problem

Let Dk,w be the set of all discrete polynomial curves of degree up to k with width
w. The problem of discrete polynomial curve fitting is described as follows:

Input. A set of discrete points S, a degree k, and a width w.

Output. A (k + 1)-tuple of coefficients (a1, . . . , ak+1) of D ∈ Dk,w having the
maximum number of inliers.

A consensus set having the maximum number of inliers, denoted by Cmax, is
called the maximum consensus set. We remark that not less than one optimal
solution can exist.

2.3 Discrete Polynomial Curve Fitting in the Parameter Space

A discrete polynomial curve of Dk,w is identified as a point in the parameter space
(a1, . . . , ak+1). We formulate the problem of discrete polynomial curve fitting
as an optimization problem in the parameter space to obtain the maximum
consensus set.

Given a point (x′, y′) ∈ S, (a1, . . . , ak+1) determining D ∈ Dk,w such that
D � (x′, y′) satisfies

0 ≤ −x′ka1 − · · · − x′ak − ak+1 + y′ ≤ w . (3)

We call the set of such points in the parameter space the level layer for (x′, y′).
(x′, y′) is a lower critical point when the left-hand side equality is satisfied, and
is an upper critical point when the right-hand side equality is satisfied. For a
consensus set C = {(x1, x1), . . . , (xm, ym)}, we have (a1, . . . , ak+1) that satisfies⎧⎪⎨⎪⎩

0 ≤ −xk
1a1 − · · · − x1ak − ak+1 + y1 ≤ w ,

...
0 ≤ −xk

ma1 − · · · − xmak − ak+1 + ym ≤ w .

(4)

Letting PC be the convex polytope (the intersection of these level layers) defined
by eq. (4), PC is the set of (a1, . . . , ak+1) determining D ∈ Dk,w such that D ⊃ C
but not S∩D = C. Therefore, D determined by (a1, . . . , ak+1) in PC contains at
least |C| inliers. For an arbitrary consensus set C′ such that C′ ⊃ C, PC′ ⊂ PC

since PC′ is the intersection of PC and the level layers for the points in C′\C.
Finding Cmax is equivalent to finding the convex polytope(s) for Cmax in the

parameter space. Fig. 1 shows an example of level layers in the case of k = 1.
Note that an intersection of level layers is always a convex polygon in this case.
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Fig. 1. An example of level layers in the case of k = 1. The darkness is proportional
to the number of inliers.

If we define F (a1, . . . , ak+1) = the number of inliers of D determined by
(a1, . . . , ak+1), then the discrete polynomial curve fitting problem is equivalent
to seeking

arg max
(a1,...,ak+1)

F (a1, . . . , ak+1) (5)

for given S, k, and w.

3 Properties of Discrete Polynomial Curves

A polynomial curve of degree up to k is uniquely determined by different k + 1
points on the curve. Theorem 1 states that a discrete polynomial curve also has
a similar property.

Theorem 1. A discrete polynomial curve D ∈ Dk,w is uniquely determined by
k + 1 critical points having k + 1 different x-coordinates where each of them is
specified whether it is an upper or a lower critical point.

Proof. A discrete polynomial curveD∈ Dk,w with k+1 critical points (s1, t1), . . . ,
(sk+1, tk+1) such that si �= sj for all i �= j, is identified as a point (a1, . . . , ak+1)
in the parameter space satisfying⎧⎪⎨⎪⎩

−sk1a1 − · · · − s1ak − ak+1 + t1 = c1 ,
...

−skk+1a1 − · · · − sk+1ak − ak+1 + tk+1 = ck+1 ,

(6)

where

ci =

{
0 if (si, ti) is a lower critical point
w if (si, ti) is an upper critical point

(i = 1, . . . , k + 1) .
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Fig. 2. Discrete polynomial curves of GS,k,w in the parameter space. They are the
intersection points of the boundaries of level layers; the white points represent them.

Eq. (6) has the unique solution in (a1, . . . , ak+1) because it has k + 1 linearly
independent equations. ��

We remark that eq. (6) does not have a solution if si = sj for ∃i, j (i �= j).
Theorem 1 indicates that the set of all discrete polynomial curves in Dk,w

generated from k + 1 points in S is finite where the k + 1 points are used as
critical points. The set is denoted by GS,k,w. GS,k,w is not empty iff the points
in S have at least k + 1 different x-coordinates.

Assume that GS,k,w is not empty. To identify a discrete polynomial curve in
GS,k,w, we consider 2n hyperplanes that are the boundaries of the level layers
for all points in a given S = {(x1, y1), . . . , (xn, yn)},

−xk
i a1 − · · · − xiak − ak+1 + yi = 0

−xk
i a1 − · · · − xiak − ak+1 + yi = w

(i = 1, . . . , n) . (7)

Note that the boundaries of the two level layers for (x′
1, y

′
1) ∈ S and (x′

2, y
′
2) ∈ S

are parallel iff x′
1 = x′

2. Since D ∈ GS,k,w has at least k + 1 critical points
with k+1 different x-coordinates, (a1, . . . , ak+1) determining D satisfies at least
k + 1 independent equations in eq. (7). Therefore, D is an intersection point
of the boundaries of the level layers identified by these equations. Fig. 2 shows
an example of discrete polynomial curves of GS,k,w in the parameter space. We
remark that for an arbitrary consensus set C, any discrete polynomial curve of
Dk,w determined by a vertex of PC is an element of GS,k,w.

Since GS,k,w is a finite set, if it contains an element having the maximum
consensus set, then we can find the optimal (a1, . . . , ak+1) (in the sense that it
maximizes the number of inliers) by brute-forth search in GS,k,w.

Theorem 2. If GS,k,w is not empty, then there exists D ∈ GS,k,w such that
S ∩D = Cmax.
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To prove Theorem 2, we need the following lemma.

Lemma 1. If GS,k,w is not empty, then the points in Cmax have at least k + 1
different x-coordinates.

Proof. We show that a consensus set C whose points have m(≤ k) different x-
coordinates is not maximum. Let X1, . . . , Xm be these x-coordinates. Then, PC

is written by ⎧⎪⎨⎪⎩
L1 ≤ −Xk

1 a1 − · · · −X1ak − ak+1 ≤ U1 ,
...

Lm ≤ −Xk
ma1 − · · · −Xmak − ak+1 ≤ Um ,

(8)

where Li, Ui ∈ R, and Ui − Li ≤ w for i = 1, . . . ,m. Since the points in S have
at least k + 1 different x-coordinates, there exists a point (X,Y ) ∈ S\C such
that X �= Xi for i = 1, . . . ,m. The level layer for (X,Y ) is

0 ≤ −Xka1 − · · · −Xak − ak+1 + Y ≤ w. (9)

There exists at least one solution (a1, . . . , ak+1) satisfying both of eq. (8) and
eq. (9). Therefore, there exists at least one discrete polynomial curve D′ ∈ Dk,w

such that D′ ⊃ C ∪ {(X,Y )}, which concludes that C is not maximum. ��
Lemma 1 states that a consensus set whose points have less than k+1 different
x-coordinates is not maximum. Therefore, we need not consider such consensus
sets in proving Theorem 2. We now give the proof of Theorem 2.

Proof. If PCmax is bounded, then each of its vertices corresponds to an element
of GS,k,w, from which Theorem 2 is immediately obtained. Therefore, we only
have to show that PCmax is bounded.

Since GS,k,w is not empty, there exist at least k+1 points (u1, v1), . . . , (uk+1,
vk+1) ∈ Cmax such that ui �= uj for all i �= j thanks to Lemma 1. Any
(a1, . . . , ak+1) in PCmax satisfies⎧⎪⎨⎪⎩

0 ≤ −uk
1a1 − · · · − u1ak − ak+1 + v1 ≤ w ,

...
0 ≤ −uk

k+1a1 − · · · − uk+1ak − ak+1 + vk+1 ≤ w ,

(10)

which can be rewritten as⎧⎪⎨⎪⎩
−uk

1a1 − · · · − u1ak − ak+1 + v1 = d1 ,
...

−uk
k+1a1 − · · · − uk+1ak − ak+1 + vk+1 = dk+1 ,

(11)

where 0 ≤ di ≤ w (i = 1, . . . , k + 1). We thus obtain⎛⎜⎝ a1
...

ak+1

⎞⎟⎠ =

⎛⎜⎜⎜⎝
−uk

1 · · · −u1 1
...

. . .
...

...
−uk

k · · · −uk 1
−uk

k+1 · · · −uk+1 1

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

d1 − v1
...

dk − vk
dk+1 − vk+1

⎞⎟⎟⎟⎠ . (12)
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Denoting the (i, j) entry of the inverse matrix by mij allows eq. (12) to be
written as

ai =

k+1∑
j=1

mij(dj − vj) (i = 1, . . . , k + 1) . (13)

Eq. (13) shows that ai is linear in d1, . . . , dk+1. Therefore, the set of (a1, . . . , ak+1)
satisfying eq. (10) is bounded since 0 ≤ di ≤ w. PCmax is its subset, and conse-
quently is bounded. ��

Theorem 2 states that the consensus sets {S ∩ D : D ∈ GS,k,w} contain all
the maximum consensus sets. Therefore, if GS,k,w is not empty, then all the
maximum consensus sets are found by the brute-forth search. Hereafter, we
assume that GS,k,w is not empty, which almost always holds.

4 Discrete Polynomial Curve Fitting Algorithm

RANSAC iteratively generates model parameters by randomly sampling points
from a given set to find the ones describing a largest number of points in the
set. Finding all the maximum consensus sets by RANSAC requires to compute
the consensus sets for all the discrete polynomial curves of GS,k,w, which is com-
putationally expensive and impractical. In fact, the brute-forth search requires
up to 2k+1

( |S|
k+1

)
iterations. In this section, we propose a method that effectively

achieves a solution guaranteeing local optimality in the sense of the set inclusion
by introducing a local search.

We define neighbors in GS,k,w for our local search. When D ∈ GS,k,w is given,
we define neighbors of D denoted by ND as the discrete polynomial curves hav-
ing k upper and lower critical points all of which are identical with those of D
where the x-coordinates of the critical points are different from each other. Note
that D /∈ ND. Then, (a1, . . . , ak+1) of D

′ ∈ ND satisfies the same k independent
equations as that of D in eq. (7). Therefore, (a1, . . . , ak+1) corresponding to D′

is on the intersection line of the k hyperplanes that are the boundaries of the
level layers identified by these equations. Thus, the neighboring relations are
determined by the intersection lines of k boundaries of level layers. We call these
lines neighboring lines. Fig. 3 shows an example of neighbors in the parameter
space when k = 1. In this case, the neighboring lines are identical to the bound-
aries of level layers themselves. We call D′ having at least the same number of
inliers a good neighbor of D.

Our method consists of two steps (Algorithm 1). In the first step, we use
RANSAC to obtain a seed for the second step. In the second step, we intro-
duce a local search, called rock climbing, to increase the number of inliers. Given
an initial seed (discrete polynomial curve) obtained by RANSAC, rock climb-
ing searches the discrete polynomial curves having a largest number of inliers
among the seed and its neighbors, and then iterates this procedure using the
obtained curves as new seeds. Algorithm 2 describes the concrete procedure of
rock climbing.
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Fig. 3. An example of the neighbors (k = 1). The neighbors of the black point are
depicted with white points. They are on the neighboring lines, i.e., lines passing through
the black point.

Algorithm 1. Our method

Input: A set of discrete points S, a degree k, a width w, a number of iterations t for
RANSAC.

Output: A set of discrete polynomial curves.
Run RANSAC with t iterations.
Run rock climbing using a seed obtained by RANSAC.
return The output of rock climbing.

A consensus set C is called local maximum when no consensus set exists that
is a superset of C. We denote a local maximum consensus set by Clocal.

Theorem 3. Rock climbing outputs discrete polynomial curves that correspond
to all the vertices of a PClocal

.

Proof. Let C be the consensus set of the current discrete polynomial curve.
We first consider the case of C = Clocal. Any two vertices of a convex polytope

are reachable with each other by tracing edges of the polytope. This means that
we can obtain all the vertices of PClocal

by propagating the neighboring relation
from the current vertex, since each edge of PC is a part of a neighboring line.
Furthermore, any (a1, . . . , ak+1) in PClocal

satisfies F (a1, . . . , ak+1) = |Clocal|.
Consequently, we can obtain all the vertices of PClocal

by iteratively searching
good neighbors.

If C �= Clocal, then a consensus set C′ = C∪(x′, y′) exists where (x′, y′) ∈ S\C.
PC′ is the intersection of PC and the level layer for (x′, y′). Therefore, each vertex
of PC′ is on an edge or a vertex of PC as illustrated in Fig. 4 . This means that
we can obtain all the vertices of PC′ by propagating the neighboring relation
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Algorithm 2. Rock climbing

Input: S, k, w, an initial discrete polynomial curve Dinit ∈ GS,k,w.
Output: A set A of discrete polynomial curves.

A := {Dinit}
loop

A′ :=A set of discrete polynomial curves in

(
A ∪

⋃
D∈A

ND

)
having a largest num-

ber of inliers
if A = A′ then

Break out of the loop
else

A := A′

end if
end loop
return A

Fig. 4. PC (black) and PC′ (blue). Each vertex of PC′ is on an edge or a vertex of PC .
Suppose that the black point corresponds to the current polynomial curve. Then the
white points are the neighbors in PC .

from the current vertex of PC . Furthermore, any (a1, . . . , ak+1) in PC satisfies
F (a1, . . . , ak+1) ≥ |C|. Consequently, we can obtain all the vertices of PC′ by
iteratively searching good neighbors. This discussion holds as long as C �= Clocal.
By repeating this procedure, we finally obtain C′ = Clocal. ��

From Theorem 3, we can always find all the vertices of a PClocal
by rock climbing.

Therefore, we can generate all (a1, . . . , ak+1)’s determining D such that D ⊃
Clocal from these vertices.

It should be noted that our method does not always terminate immediately
at a local optimal consensus set. Rock climbing examines every neighbor to seek
good ones, and rock climbing does not terminate as long as good neighbors exist.

Rock climbing has possibilities of not achieving a global optimum. Its output
depends on an initial seed. Having a “good” seed will be preferable. That is why
we use RANSAC to obtain an initial seed having as many inliers as possible.
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5 Experiments

To demonstrate the effectiveness of our proposed method, we compared our
method with RANSAC under two different scenarios. First, we fixed the ratio
between inliers and outliers among input points and changed the number of in-
put points. Then, we evaluated the computational time required to obtain the
maximum number of inliers. Second, we fixed the number of input points and
changed the ratio between inliers and outliers. Then, we evaluated the computa-
tional time. In both cases, we observed that our method outperforms RANSAC.

For the first scenario, we set k = 2, w = 1 and fixed the ratio of outliers
among input points to be 25%, 50%, 75%. For each fixed ratio, we generated
five different discrete input point sets S, where |S| was changed by 40 from
40 to 200 (see Fig. 5 for examples). In each set, integer points satisfying 0 ≤
y − 0.01x2 ≤ w (−100 ≤ x ≤ 100) were randomly generated for inliers (blue
points) and integer points that do not satisfy this inequality were randomly
generated within [−100, 100]× [−100, 100] for outliers (red points). We remark
that we designed in each fixed outlier ratio, all the five input point sets have
the same optimal solutions in GS,k,w (k = 2, w = 1). (Data-sets having different
outlier ratios do not have the same optimal solutions.)

To these data-sets, we applied our method 100 times independently where we
set t = 1000 (the number of iteration for our RANSAC step). We then evaluated
the computational time to obtain Cmax (a consensus set having the maximum
number of inliers) in terms of the required number of samplings there. Note
that one sampling takes the same computational time and thus the number of
samplings can be a measurement for the computational time. For comparison,
we applied RANSAC alone without setting any limited number of iterations,
and terminated it when Cmax is obtained.

The average number of samplings over the 100 trials is given in Table 1 and
illustrated in Fig. 6. We see that our method finds Cmax more than twice faster
than RANSAC and that the difference of required numbers of samplings to
find Cmax drastically becomes larger as the number of input points increases.
From Fig. 6, we can also observe that regardless of outlier ratios, the required
number of samplings has a similar behavior depending on the number of input
points. Namely, the required number of samplings slowly increases and is not
exponentially affected by the number of input points for our method while it
exponentially increases for RANSAC. We can thus conclude that the number of
input points has far less impact on our method than RANSAC.

For the second scenario, we again set k = 2, w = 1 and fixed the number of
input points to be 200. We generated nine different discrete input point sets,
where the ratio of outliers was changed by 10% from 10% to 90% (see Fig.
7 for examples). In each set, inliers and outliers are generated in the similar
way as the first scenario. To these data-sets, we applied our method 100 times
independently and evaluated the required number of samplings to obtain Cmax.
We also applied RANSAC alone using the same condition as the first scenario
case.
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(a) |S| = 40, 25% outliers.
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(b) |S| = 120, 25% outliers.
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(c) |S| = 200, 25% outliers.
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(d) |S| = 40, 50% outliers.
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(e) |S| = 120, 50% outliers.
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(f) |S| = 200, 50% outliers.
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(g) |S| = 40, 75% outliers.
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(h) |S| = 120, 75% outliers.
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(i) |S| = 200, 75% outliers.

Fig. 5. Input set examples with different numbers of points and different outlier ratios
(k = 2). (a), (b), (c) are for 25% outliers; (d), (e), (f) are for 50% outliers; (g), (h), (i)
are for 75% outliers.

Table 2 and Fig. 8 show the average number of samplings over the 100 trials.
From these results, we can see that our method finds Cmax more than ten times
faster than RANSAC. We can also observe that in both methods, the outlier
ratio does not affect the required number of samplings as far as the number of
input points is the same. We remark that in our method, the required number
of samplings in the case where the outlier ratio is 90% (in this case, the number
of inliers is 20 while that of outliers is 180) becomes almost twice of that for
the other cases. This suggests that there may be a minimum number of inliers
required for our method to work effectively. Investigating this is left for future
work.

So far, we had experiments only for quadratic curves (k = 2). In order to
confirm our observations even for another order case, we conducted the same
experiments under the condition of k = 3 and w = 1. As input points, we
randomly generated inliers satisfying 0 ≤ y − 0.0001x3 ≤ w (−100 ≤ x ≤ 100)
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Table 1. Number of samplings (×103) required for achieving Cmax (k = 2)

ratio of outliers (%) |S| 40 80 120 160 200

25
our method 0.8 1.6 2.4 3.6 5.0
RANSAC 2.0 16.5 46.1 101.7 211.2

50
our method 0.8 1.4 2.4 3.2 5.4
RANSAC 1.7 14.9 46.6 113.1 223.4

75
our method 1.7 2.4 4.3 6.0 8.8
RANSAC 6.1 64.4 256.1 560.1 1062.0
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(b) 50% outliers.
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(c) 75% outliers.

Fig. 6. Required number of samplings depending on |S| (k = 2)
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(f) 90% outliers.

Fig. 7. Input set examples with different outlier ratios under the same number of
points (|S| = 200, k = 2)

Table 2. Number of samplings (×103) under different outlier ratios (k = 2)

ratio of outliers (%) 10 20 30 40 50 60 70 80 90

our method 4.7 4.6 4.2 4.6 4.6 4.4 4.6 4.3 7.0
RANSAC 76.7 80.1 75.9 87.7 81.2 74.9 75.8 72.0 77.4
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Fig. 8. Required number of samplings depending on outlier ratio (k = 2)
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(a) |S| = 40, 25% outliers.
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(b) |S| = 120, 25% outliers.
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(d) |S| = 40, 50% outliers.
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(e) |S| = 120, 50% outliers.
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(f) |S| = 200, 50% outliers.
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(g) |S| = 40, 75% outliers.
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(h) |S| = 120, 75% outliers.
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(i) |S| = 200, 75% outliers.

Fig. 9. Input set examples with different numbers of points and different outlier ratios
(k = 3). (a), (b), (c) are for 25% outliers; (d), (e), (f) are for 50% outliers; (g), (h), (i)
are for 75% outliers.
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Table 3. Number of samplings (×103) required for achieving Cmax (k = 3)

ratio of outliers (%) |S| 40 80 120 160 200

25
our method 1.5 4.2 8.4 11.9 16.5
RANSAC 23.5 374.2 2321.9 7380.0 14749.4

50
our method 2.1 6.3 11.4 15.8 20.2
RANSAC 51.0 963.4 4784.3 24186.0 50754.9

75
our method 7.4 7.5 13.5 17.8 26.2
RANSAC 55.8 1052.4 4890.6 14855.5 54525.0
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(a) 25% outliers.
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(b) 50% outliers.
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(c) 75% outliers.

Fig. 10. Required number of samplings depending on |S| (k = 3)
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(f) 90% outliers.

Fig. 11. Input set examples with different outlier ratios under the same number of
points (|S| = 200, k = 3)
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Table 4. Number of samplings under different outlier ratios (k = 3)

ratio of outliers (%) 10 20 30 40 50 60 70 80 90

our method (×104) 1.7 1.8 1.9 1.7 1.9 2.0 1.9 2.6 5.7
RANSAC (×107) 2.9 2.6 2.9 2.9 2.4 2.8 2.6 2.9 3.1

Fig. 12. Required number of samplings depending on outlier ratio (k = 3)

and outliers over [−100, 100] × [−100, 100] so that no outlier satisfies this in-
equality (see Figs. 9 and 11 for examples). The results are shown in Tables 3
and 4 and Figs. 10 and 12. From these results, we have the same observation as
the quadratic curves case. We can thus conclude that our method significantly
outperforms RANSAC.

6 Conclusion

This paper dealt with the problem of fitting a discrete polynomial curve to a
given set of points including outliers. We formulated this problem as an optimiza-
tion problem where the number of inliers is maximized. Our proposed method
effectively searches solutions by rock climbing using an initial seed obtained by
RANSAC. We showed that our method guarantees local maximality of inliers in
the sense of the set inclusion. The effectiveness of our method was demonstrated
using experiments.
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Hugo Jiménez-Hernández2, and Iván Ramón Terol-Villalobos3
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Abstract. The circle is a useful morphological structure: in many situ-
ations, the importance is focused on the measuring of the similarity of a
perfect circle against the object of interest. Traditionally, the well-known
geometrical structures are employed as useful geometrical descriptors,
but an adequate characterization and recognition are deeply affected by
scenarios and physical limitations (such as resolution and noise acquisi-
tion, among others). Hence, this work proposes a new circularity measure
which offers several advantages: it is not affected by the overlapping, in-
completeness of borders, invariance of the resolution, or accuracy of the
border detection. The propounded approach deals with the problem as
a stochastic non-parametric task; the maximization of the likelihood of
the evidence is used to discover the true border of the data that repre-
sent the circle. In order to validate the effectiveness of our proposal, we
compared it with two recently effective measures: the mean roundness
and the radius ratio.

Keywords: Measure, Circularity, Shape, Disk, Topology.

1 Introduction

The analysis of the shapes of objects has been of great interest in many areas,
such as medicine [6], materials science [16] and industrial processing [24,4]. In
fact, the measurement of shapes is an ongoing research topic, particularly in
digital image processing and discrete geometry [18,10,23]. Even though several
shape descriptors are useful for describing and differentiating a variety of objects
– circles, ellipses, rectangles, and reclines [22] – its computation is still a tough
task. The main reason is that many descriptors are affected by factors such as
resolution in the representation, small irregularities in the contours (perimeter
inaccuracy) and noise. Furthermore, these factors are sensitive to different as-
pects of the shape (for instance, regular or irregular shapes).

The majority of shape measures are focused on a two dimensional space and
are commonly represented in a plane or as images in which one of the most useful
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measures is the circularity of the shape [24,21,19,8].The most widely used mea-
sure of circularity is the so-called shape factor (SF) given by SF = 4πArea/P 2

[3], where P is the perimeter. This measure is defined as the ratio of the sec-
tion area of an object to its perimeter. The digital equivalent of this circularity
measure was introduced in [13]. This measure has several drawbacks in prac-
tice: (i) it is not perfectly scale invariant, (ii) it is difficult to interpret, (iii) it
is highly sensitive to small irregularities in the contours, (iv) it is dependent
on the resolution, and (iv) it is affected by overlapping, rendering impossible
to characterize partially visible objects. These problems have motivated many
authors to propose new measures of circularity [19,13,1]. Recently, Ritter and
Cooper [21] reviewed and compared seven measures of circularity in terms of
resolution dependence, demonstrating that most of them are derivations of SF.
In their work, the authors proposed two new measures of roundness: the mean
roundness (MR) and the radius ratio (RR). These measures can be useful to as-
sess the circularity of regular objects in a two-dimensional space; however, when
the information of the object is given partially or there are abrupt changes in
the contours they become inefficient.

As commented above, the different approaches try to exploit geometrical in-
formation for measuring circularity. In summary, the approaches found in the
literature to compute the circularity can be divided in three main groups: Ap-
proaches based on the circular Hough transformation (HT) [9,7,26]; their main
disadvantage is the fact that computational and storage requirements of the
algorithm increase exponentially to the dimensionality of the curve.

Approaches based on the separation of the circle problem into discrete and
computational geometry [18,10,25,5,2]; however, these algorithms need to be ex-
tended to measure the extent of the deviation with a digital arc. Approaches
based on the reference shape [15,19,1]; which has the following drawbacks: the
generation of a digitized disk adds more complexity and it is necessary to know
the real object to generate a digitized disk according to the shape resolution.
Approaches based on circle fitting [20,14,11]; in some cases these methods offer
solutions with minimum error, but they are not necessarily the best solutions to
the data. In sum, the reader may find in the literature several properties that
a good measure of circularity should have. One of the most representative is
the work of Haralick [13]. In his work, the author introduces four properties to
construct a good measure of circularity of closed figures: (i) the more a figure
becomes circular, the more the measure of its circularity increases, (ii) the values
for digital figures follow the values for the corresponding continuous figures, (iii)
the circularity measure is independent of the orientation, and (iv) the circularity
measure is area independent.

This paper focuses on introducing a new framework to measure circularity,
which is not affected by overlapping, incompleteness of the borders, invariance of
the resolution, or accuracy of border detection, providing a good balance between
measure accuracy and the computational resources needed. This framework is
based on the generalization of the concept of disk in spaces with high dimension
under a certain induced norm. This yields a framework in which the roundness
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Fig. 1. The shape of a circle in a discrete space. The circle becomes deformed by the
resolution, being hard to decide whether it represents a circle. The examples show
different discrete circles with radius equal to: (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, and (f)
10, given pixels.

is conceived by its properties instead of by the topology of a particular space,
thus allowing the definition and measurement of the roundness of objects in a
non-Euclidean space, which can be useful in a range of applications. Moreover,
experiments are conducted to demonstrate the effects of the measure in a real
example. In particular, the case of a two dimensional image is analyzed and
matched with two circularity measures recently proposed.

This paper is organized as follows. In Section 2, the foundations of the cir-
cle and disk, together with their main properties, are introduced. In an initial
part, possible situations which could affect the robustness of the measures are
discussed, followed by a short description of the norm. In Section 3, a new dis-
crete measure based on the distribution of the radius is proposed. In Section 4,
the proposal is tested under the Euclidean norm with other well-known accepted
circularity measures: radius ratio (RR) and mean roundness (MR). In additon, a
real example to compare these measures is presented. Subsequently, the results
are discussed showing the main advantages of our proposal with real digital
images. Finally, comments and conclusions can be found in the last section.

2 Foundations

In practical scenarios, the existent circularity measures become insufficient be-
cause the discretization process of the image may deform the shape of the in-
volved objects as is appreciated in Fig. 1.
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2.1 Basic Notions and Preliminaries

The definition of a circle entails a center position c and a neighborhood of size
r. Assuming that c is in R2 and r ∈ R+, the disk is defined as:

O(c, r) = {xi|d(c, xi) ≤ r} (1)

where d(c, xi) =
√
(c1 − xi1)2 + (c2 − xi2)2, r ∈ R+ and c, xi ∈ R2. As a conse-

quence, the circle is defined as follows:

C(c, r) = {xi|d(c, xi) = r}. (2)

Both equations (1) and (2) represent infinite sets 1 under the corresponding
restrictions. However, this definition is limited to a two dimensional space, that
is, any measure based on these assessments is dependent on the dimensionality
of the space.

2.2 The Shape of the Circle and the Norm

In general terms, by preserving the definitions of circle and disk, we can substi-
tute the L2 norm used to measure the distance by any Lk norm. As a result,
the shape and form of the circle changes, i.e., the topology of the neighborhood
is completely different and depends on each norm. Then, the norm Lk defines a
distance function dk as follows

dk(x, y) =

(
n∑

i=1

|xi − yi|k
) 1

k

, (3)

where || is the absolute value.

3 Circularity Measure Framework

Whenever the circle is discretized, the pdf becomes affected by the density of the
discretization, changing the form to a Gaussian-like form, where the μ parameter
represents the radius and the σ parameter the sparseness. These parameters
have a direct relation to the discretization process, i.e. f(r) ≈ G(μ, σ). In other
words, when the circle becomes bigger the density function tends to a Gaussian.
However, environment perturbations of the discretization process cause that the
f(r) of the radius is composed of distinct peaks or modes. Therefore, the radius
distribution, without loss of generality, can be modeled as mixed distributions.
This model can become more complicated when there are insufficient data to
estimate the set of parameters for each density function.

1 Under the assumption that they are represented in a continuous space.
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3.1 The Circularity Measure

Let us consider that the magnitude of the radius can be represented as a ran-
dom variable r with a distribution f(r). Whenever the evidence of the elements
belonging to the circle C′ are the result of an acquisition process, they repre-
sent a subset of C(c, r), and the f(r) distribution becomes sparse. The expected
value E[f(r)] for f(r) corresponds to the most probable value for the radius. The
area surrounding the maximum of f(r) denotes the probability Pr(C′), which
represents the circle C(c, r) of radius r and center c.

Pr(C′) =
∫ b

a

f(r)dr (4)

such that C′ = {x1, x2, . . . , xn} and xi ∈ Rn, where a and b represent the
interval of confidence. The a and b values are defined as E[f(r)] − g1(r, k) and
E[f(r)]+g2(r, k) respectively, such that functions g1 and g2 denote the maximum
sparse criterion.

Let C′ = {x1, x2, . . . , xn} be such that each xi ∈ R2 and dk(c, r) is a two
dimensional norm k and c = (x, y) is the center, then the roundness measure is
defined as:

MOR(C′) =
∫ E[f(r)]+g2(r,k)

E[f(r)]−g1(r,k)

f(r)dr (5)

The proposed measure results invariant to the norm used, in the sense that it
follows the circle restriction regardless of the type of norm used.

3.2 Parameter Estimation

In some cases note that parameters c and r of the measure must be previously es-
timated to make a good measurement; however, in real scenarios, it is difficult to
provide a good estimation of these parameters. To figure out the estimation task,
the measure of parameters will be considered in four main situations discussed
bellow:

1. The objects to be measured have closed borders. For a given border
denoted by C′ = {x1, x2, . . . , xn}, where each xi ∈ R2 under the dk norm,
the center of the object is defined as:

c = E{x1, x2, . . . , xn} (6)

and the radius distribution is defined as follows:

r = {dk(c, x1), dk(c, x2), . . . , dk(c, xn)}, (7)

where the pdf of r ∼ f(r)

2. The objects to be measured contain partial information. Assuming
that the evidence of the border C′ can be represented as a differentiable
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parametrized curve in R2, the radius of circularity for the evidence C′ is
estimated as follows

r =
|γ′|3√

|γ′|2|γ′′|2 − (γ′· γ′′)2
(8)

such that γ′
t = γt+1 − γt−1 and γ′′

t = γ′
t+1 − γ′

t−1, where γ(n) is expressed as
centered differences for the discrete case. Once the radius is estimated, the
center of the circle is located at a distance k from a vector orthogonal to its
derivative, which is denoted as follows

c = γ′(t) +
−γ′(t)r
||γ′(t)|| (9)

3. The border of the circle is not connected. The estimation of the center
is computed as the expected value of the estimated centers of all disconected
borders, i.e., for a given set of borders Ω = {C′

1, C
′
2, . . . , C

′
k} correspond-

ing to the same object, the estimated radius and centers are estimated as
described above and denoted as Φ = {r1, r2, . . . , rk}, Ψ = {c1, c2, . . . , ck}.
Consequently, the radius of the semi arcs in Ω are defined as:

E[Φ] = argmax{r1, r2, . . . , rk} (10)

4. The amount of information in the borders. The border of the object
may be closed or opened. In the first case, the situation is quite similar to
the one mentioned above, with the consideration that a discretization process
involves a uniform sampling over the ideal border. However, when the cardi-
nality |r| is considerable, then to reduce the complexity of the computation,
f(r) can be estimated. Assuming a Gaussian parametric form, the estima-
tion may be performed by considering an optimization process, in which
the derivative of vector parameter θr of the distribution G(θ) is computed,
where θr = [μ, σ]. Then, the optimal parameters θr

∗ can be estimated using
standard methods of differential calculus.

The parameter estimation is considered as a maximum-likelihood problem.
However, the nature of the data make it difficult to guarantee the stability of
the parameter estimation. To overcome this problem, each evidence can be
considered as an incomplete estimation of the true parameters, where a func-
tion Q(θr, θ

∗
r ) exists and represents the parameter estimated with incomplete

data θr and the true parameter θ∗r . Iteratively, it is feasible to estimate the
value of θ∗r from θr using the following expression for the Gaussian parameter
estimation:

θtr =

[
ρθ

(t−1)
r1 + (1− ρ)x(t)

ρθ
2(t−1)
r2 + (1− ρ)(θ

(t−1)
r1 − x(t))

2

]
(11)

such that ρ ε[0, 1]. This is a better way to estimate the parameters of the
distribution without the restriction of the loss of data.
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The parameter estimation performed in the fourth case is suitable for the first
and third cases, since it offers an economic way to compute the parameter dis-
tribution of the center of the circle in a closed situation and the real center,
whenever partial information is presented.

4 Experimental Process

This section presents a set of experiments performed with the aim of showing the
capabilities of the proposal and its behavior against other well-accepted measures
in controlled and uncontrolled scenarios. The experimental process is divided in
three parts. In the first part, the measure is tested under controlled situations,
one hundred digital circles are drawn, in which parameters such as norm and
radius are varied. Particular aspects such as resolution, occlusion, connectivity
and amount of border information of the objects are addressed here. In the
second part, the proposal is tested with other well-known measures – radius
ratio and mean roundness [21] – under the L2 norm (Euclidean distance). In the
third part, real images of graphite nodules are used; the nodules are characterized
by their circularity using our approach and recent well-known used approaches.

4.1 Synthetic Images

In this subsection, the results obtained in controlled situations are presented.
They include the validation of the framework by evaluating the roundness mea-
sure when it is applied to various circles with different norms and radii. The test
consists in applying the MOR measure over a set of ideal circles under different
Li norms. The radius is varied from 1 to 100 with increments of 1, whereas the
norm corresponds to L0.001, L0.002, L0.005, L0.01, L0.02, L0.05, L0.1, L0.2, L0.5,
L1, L2, L3, L4, L5, and L10. Results are illustrated in Fig. 2. As can be appre-
ciated, the proposal obtains similar results for the different norms. The lowest
measures correspond to norms L1<, where low values imply loss of accuracy for
the different drawn circles. Additionally, in the majority of cases the measure is
located above 0.995 with circles of at least 15 pixels in radius (see next para-
graph for a more detailed explanation of this fact). On the other hand, several
norms with small radii are scored with values equal to 1. From this situation fol-
lows the sparseness process, which comprises those few data that do not provide
enough evidence for locating the inflexion change over the pdfs conformed by the
distance to the border. The independence of the framework over the norm used,
makes it suitable to be employed with other induced norm topologies in which
other forms such as squares, stars or even diamond shapes can be recognized
with a simple change in the norm used.

Next, in Fig. 3, an emphasis is made of the results obtained with the L2 norm.
It can be observed that the MOR measure stabilizes around circles with 5-pixel
radius. This means that the information in the border provides enough evidence
to infer that the figure is a circle. This result is completely justified by the big
numbers law [12], which in general terms states that enough evidence to model
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Fig. 2. Results obtained from different circles artificially generated with different
norms. As can be appreciated, regardless of the norm used, the roundness measure
converges faster for values nearer to one.

Fig. 3. Results for the particular case L2. The circles with small radii converge faster
to one.

a normal distribution must consist of at least 30 elements. In our particular
case, the perimeter of a 5 pixel radius is 31.415 pixels. Similarly, circles smaller
than 5 pixels have a MOR measure approximately of 1 given by the limitations
of locating the inflexion points over the pdf of the radius. The above results
give the minimum criterion with respect to the resolution and the amount of
information necessary to infer that the figure represents a circle and provide an
issue to define a sampling process which reduces the computational complexity
to estimate the measure discussed in the fourth case.

The following test consists in evaluating the accuracy in the recognition of
a circle, even when there is a lack of information. This situation is common
when the object is partially occluded or the quality of the acquisition is poor
and the borders are not well-defined. The test consists in sampling an artificial
circle using a percentage of the total of pixels that conform the border. The
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Fig. 4. Results obtained for different sampling levels. The degradation in the accuracy
of the MOR measure is small, which confirms that it is robust, even when there is no
considerable information on circle borders.

radius is varied and the circle is used under the L2 norm. The total of the
information used in the sampling is: 100%, 75%, 50%, 25%, 12.5%, 10%, 5%
and 1%. The results are illustrated in Fig. 4. The sampling process entails a
uniform sampling over the pixels that conform the border of the circle. The MOR
measure is not significantly affected by the sampling process. When the sampling
process uses only 10% or less of the information, there is a slight reduction in
precision; however, in practice this represents extreme cases that are not likely
to succeed. As can be appreciated, the proposal framework is robust even when
the information of the object is partial or has been lost.

In conclusion, the above test shows that the framework is suitable to measure
the roundness in various scenarios. In the following paragraphs we show the
results on real scenarios, as well as the comparison of our proposal with other
well accepted measures.

4.2 Comparison with Other Measures in Synthetic Images

In an attempt to validate the proposal, in this study, our measure is compared
with two other measures: the radius ratio (RR) and the mean roundness (MR).

RR =
rbmin

rbmax
, (12)

where rbmin is the minimum radius from a border point to the center of the
border and rbmax is the maximum radius. The main disadvantage of this measure
is that the proportions of the shortest and longest radius do not provide sufficient
information to characterize the roundness of the object, and the measure can be
affected by pixel aberrations as well.
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The second measure is based on the theory of mean deviation (MD), it calcu-
lates the sum of the absolute differences between the radius of each border pixel
and the average radius. This measure is defined as:

MR =
1

n

∑ rb
|rj − rb|+ rb

, (13)

where rb is the average radius from the border points to the center of the object,
and rj is the radius of border point j to the center of the border. The center
of the object is usually expressed as the expected point from all points that
conform the border. This expression is valid only if the expected value is equal
to the mean. Therefore, the average is highly correlated for closed to round
objects. Consequently, this measure is not reliable when assessing the roundness
of irregular and partial shapes.

The results of the comparison are shown in Fig. 5. From this graph, it can
be seen that the proposed measure converges quickly for values near to one.
On the other hand, MOR and MR are equivalent when the resolution becomes
higher. Conversely, the RR measure yields significant smaller results. This means
that it is less robust to resolution changes. Moreover, the main disadvantage of
this measure is that the proportions of the shortest and longest radii do not
provide sufficient information to measure the roundness and the measure could
be affected by pixel aberrations. The MR measure becomes numerically similar
to the proposal; however, these results were obtained from regular shapes, but
when there is a partial or not connected shape (for instance an arc), it is not
reliable for measuring the roundness, because it is not possible to define the
rb radius. Furthermore, the mean does not always represent a good estimator
for characterizing the roundness of an object, especially when the objects to
be measured are partially occluded or the borders are not complete. This fact
becomes important when measuring the roundness of incomplete particles.

Commonly, several measures discuss the resolution as an invariance property
of each of them; however, as it was commented above, in Fig. 1, the shape and
the topology of the circle are related to the resolution and therefore unsuitable
for several measures that are considered resolution invariant.

Next, one hundred polygons were generated, the number of sides ranging
from 3 to 100. Figure 6 shows the measures obtained for regular polygons. As
expected, the circularity increases with the number of sides and converges toward
1. The larger the number of sides, the more the polygons resemble a circle and
the more the circularity approaches 1. Now, the RR measure is quite similar to
MOR whenever the polygons are regular; instead MR results less robust than
the other two. Hence, MR results more robust to resolution changes, but RR is
better to characterize regular polygons. However, our proposal appears always
equivalent to the best measure in the distinct tested scenarios.

4.3 Application to a Real Case

Finally, to show the reliability of the proposal, we have selected a real application
oriented to compound materials. The application corresponds to the analysis of
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Fig. 5. Results obtained of different circles artificially generated with different measures

Fig. 6. Regular polygone circularity

nodule graphite circularity in images. The proposed approach is used under the
L2 norm (Euclidean distance), and for comparative purposes the two measures
aforementioned are used. In Fig. 7, a typical image with graphite nodules is
shown. Note that the nodules come with different shapes close to circular forms.
In order to test our approach, we develop an experimental analysis in two stages:
In the first scenario, the order of each measure is defined and analyzed over
10 distinctive graphite nodules (see Fig. 8). In a second scenario, 110 graphite
particles are evaluated in a graphite specimen and the range of distribution for
each measure is computed.

In the first stage, from a population of 10 typical shapes encountered in the
nodules, the circularity measure of each shape is estimated. The image in Fig.
8 shows the distinctive graphite nodules; Table 1 displays the results for each
measure. Note that all measures have a distinguishable difference, especially
when the shape of the nodules is irregular. To illustrate this, observe the first
element in the table, the minimum value of the roundness measure MOR is
0.4437, and those computed for MR and RR are 0.7563 and 0.0471, respectively.
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Fig. 7. Graphite specimen

Fig. 8. Different graphite nodules

On the other hand, when the nodule shape tends to be more circular, MOR
and MR show similar values; this can be seen in samples 9 and 10 of Table
1. Analyzing these results with MR, the interval between the least roundness
and the most roundness is small, approximately 0.2130; consequently, it cannot
distinguish the effects of roundness. Alternatively, taking our proposed measure
and RR, the interval is about 0.5314 and 0.8372, respectively, which means that
it is possible to discriminate between the least circular nodule and the most
circular one. On the other hand, to demonstrate the consistency of the measures
when compared with human perception, the 10 nodules were evaluated by 50
people. In this part, each person accommodated them in order from the most
circular shape to the least circular. The comparisons carried out between the
participants and the measures obtained show that MOR and MR give a good
match when human perception is utilized. A visual comparison evinces that not
all the selected graphite particles are close to a circle, that is, some nodules
cannot be considered circular. As a result, the MR measure is less accurate in
characterizing the circularity of a graphite sample, especially when the shape
is markedly irregular. Finally, as can be appreciated, our proposal maintains a
relative order of the shapes, being more robust for irregular objects, unlike the
other presented measures.
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Table 1. Values of roundness estimated for 10 segmented nodules illustrated in Fig. 14

Nodule Number MOR MR RR

1 0.4737 0.7563 0.0471
2 0.5520 0.7615 0.1180
3 0.5520 0.6315 0.5381
4 0.5934 0.7748 0.4588
5 0.6330 0.7803 0.6147
6 0.6390 0.7765 0.5047
7 0.7361 0.9424 0.6315
8 0.9654 0.9358 0.6852
9 0.9851 0.9661 0.8216
10 0.9751 0.9693 0.8847

Fig. 9. Histograms for the different measures

Finally, as an additional test, the sparseness of the measure is analyzed for
each measure used for nodules in the image (Fig. 7). Using all nodules, the dis-
tribution of each measure is estimated. Observe in Fig. 9 that the MOR measure
has the sparsest range. On the other hand, for MR and RR, the dispersion is less
sparse. In metric spaces, sparse distribution is better because the probability to
generate classes is higher. Then, when using MR and RR measures, it becomes
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more complicated to distinguish the different classes of nodules. As aforemen-
tioned, the MR measure is based on the mean operator and MOR is based on the
mode. This difference causes the outliers to affect the mean operator, whereas
the mode becomes more robust, especially when outliers do not follow a normal
distribution. It is noteworthy to emphasize that the proposed measure (MOR)
is a generalized measure. Therefore, it satisfies the following properties: (1) it
ranges within ([0, 1]), where 1 is scored only by a perfect circle, (2) it is invariant
with respect to resolution, so the measure becomes independent of the equip-
ment, (3) it is tolerant to shape variations, (4) it is tolerant to noise or narrow
intrusions, and (5) it can be easily compared to human perception. Hence, the
proposed measure can be adopted as an alternative to measure the roundness of
graphite nodules.

5 Conclusion

In this work, a new framework to measure the roundness is presented. This
framework is based on the central concept of circle in a two dimensional space
under certain induced norm. This framework results useful, because the round-
ness is conceived by its properties instead of by the topology of a particular
space, which allows to match order and to measure the roundness of the objects
in non-Euclidean spaces. The particular case of a two dimensional case is ana-
lyzed. Here, the proposed measure is matched with two of the most well accepted
measures. The results demonstrate that the proposed measure is better behaved
with regard to spareness and measures more robustly the roundness of the ob-
jects under the tested scenario. As a result, we provide a reliable framework to
deal with the task of measuring circularity.
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Abstract. Given a binary image of n pixels, assign integral labels to
all pixels so that any background pixel has label 0 and any two fore-
ground pixels have the same positive integral labels, if and only if they
belong to the same connected components. This problem is referred to as
’Connected Components Labeling’ and it is one of the most fundamental
problems in image processing and analysis. This paper presents a new al-
gorithmic framework for the problem. From an algorithmic point of view,
the problem can be solved in O(n) time and O(n) space. We propose new
algorithms which use smaller work space without much sacrifice of the
running time. More specifically, assuming that an input binary image
is given by a read-only array, our algorithm outputs correct labels in
the raster order in O(n log n) time using only O(

√
n) work space. Some

applications of the algorithms are also given.

Keywords: Connected component, Limited work space, Computational
complexity.

1 Introduction

There is increasing demand for highly functional consumer electronics such as
printers, scanners, and digital cameras. To achieve this functionality they need
sophisticated embedded software. One fundamental difference from software used
in conventional computers is that there is little allowance of work space which
can be used by the software. In this paper we propose several space-efficient
algorithms designed for some fundamental image processing tasks. All those
tasks are indeed easy, if sufficient memory space is available. In this paper we
are interested in solving the same tasks using only restricted memory while
keeping efficiency of the algorithms.

Computational Model with Limited Work Space
The space complexity of an algorithm is measured by the amount of work space
used in addition to a read-only array to store an input binary image of n pixels.
Such work space is composed of pointers and counters. The size of such a pointer
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or a counter is O(log n) bits. In this paper we consider only those algorithms
using O(1) or O(

√
n) pointers and counters.

Throughout the paper we assume that an input binary image consists of
O(
√
n) rows and O(

√
n) columns. We also assume a read-only array keeping an

input binary image with random access to pixels.

Why Read-only Array?
Why do we assume a read-only array for an input binary image? The main
reason is to exclude the possibility of a sophisticated mechanism to embed some
information in an input array. Such a technique is used in implicit and succinct
data structures (see, e.g., [14]).

Another reason is to save memory space.
It is known that predicates can be used to transform images and save mem-

ory. For example, suppose that we are interested in extracting an object region
in a given color image C of n pixels and we know some color information char-
acterizing the object. Then, using this information we can define a predicate f
which determines in constant time whether a pixel value (color) belongs to the
object. The pair (C, f) defines a binary image. In our settings, we can expect
that the largest connected component in the binary image corresponds to the
object region. To save space, we do not create the binary image since any pixel
value can be computed in constant time. This is equivalent to assuming that a
binary image is stored in a read-only array.

(a) (b)

Fig. 1. Input color picture (a) and its largest component (b)

Fig. 1 shows such an example. The target object in Fig. 1(a) is a bridge which
is characterized by color intervals, say Red [80, 255], Green [0, 80], and Blue [0,
255]. Fig. 1(b) shows the largest component.

Connected Components Labeling
In this paper we propose a new algorithmic framework for the problem known as
connected components labeling in which integral labels are assigned to all pixels
so that any background pixel has label 0 and any two foreground pixels have the
same positive integral label, if and only if they belong to the same connected
component.
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Known Results on Connected Components Labeling
A number of algorithms have been proposed so far under several different compu-
tational models including pipelining and parallel computation [1, 5, 7–11, 15–19].
A nice survey [12] on this topics is also available. Since we may have O(n) con-
nected components for a binary image of n pixels, the whole label matrix takes
O(n log n) bits in total. Our idea to save the work space is not to keep such a
label matrix but just to report labels in a fixed order, say in the raster order
without using any array.

Fig. 2 shows an example of a binary image. The right figure is the result of
labeling using different colors for different components. Pixels in a connected
component have the same label while any two pixels from different components
have different labels. Colors are used for labels in the figure, but in fact they are
integers 1, 2, . . . , c for c connected components.

(a) (b)

Fig. 2. Labeling a binary image. (a) input binary image, and (b) resulting labels of
different colors. Note that black pixels are colored white in (b).

Results Obtained
A great number of algorithms have been presented for the connected components
labeling, but none of them works in sublinear work space since they keep a label
matrix in the algorithm. Since O(n) different labels may be needed for a binary
image of n pixels, we need O(n) space for the matrix. To save the space we keep
only two rows of the label matrix. Our algorithm outputs a labeling matrix, a
result of connected components labeling, in raster order in O(n log n) time using
only O(

√
n) work space.

The algorithm can be easily adapted to solve the following interesting problem:
given a binary image and a constant k > 0, computes a binary image which
contains only k largest connected components in the input image. The resulting
binary image should be output row by row in the raster order without keeping
the whole output image in the work space.
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Novelty of Our Approach
Designing algorithms using limited work space has been studied for many years
under the name of “log-space algorithms” in the complexity theory. A main
concern for log-space algorithms has been of theoretical interest in a class of
problems which can be solved in polynomial time using only constant work
space for an input of size n in addition to a read-only array of size O(n) to keep
n input data. However, the constraint of the work space to O(1) may be too
severe for practical applications. It is quite natural to work on an image of n
pixels to use some constant number of rows and columns as work space, which
amounts to O(

√
n) for an image of size O(

√
n)×O(

√
n).

From a theoretical point of view, it is rather easy to design a linear-time
algorithm for connected components labeling, if we are allowed to use linear
work space. A folklore algorithm using wave propagation is one such example.
In this paper we propose a completely different framework for the problem. Our
main purpose here is to reduce the amount of work space assuming that an input
binary image is given on a read-only array. Our algorithm outputs a label matrix
row by row in the raster order just using two rows of the matrix (and thus O(

√
n)

work space for an image of n pixels) and runs in O(n log n) time. The running
time depends on complexity of an input image. If it is simple enough, it runs in
linear time.

2 Preliminary: Basic Assumptions and Definitions

A binary image of n pixels of size O(
√
n)×O(

√
n) is given on a read-only array.

Pixels are sequentially indexed from 0 to n− 1 in the raster order (from left to
right and bottom to top). We embed the input image into a larger array filled
with 0 on the four sides. When we denote the width and height of the extended
image array by w and h, respectively, pixels in the array are indexed from 0 to
wh − 1 = O(n). A pixel is considered as a square with four sides. The top and
the right sides (edges) of a pixel of index k are indexed with 2k and 2k + 1,
respectively. Thus, edges are also uniquely indexed using O(log n) bits.

Fig. 3 shows how pixels and edges are indexed. Pixels are all indexed, but some
edges are not. For example, edges on the left and bottom sides of the extended
image are not indexed. Since we are only interested in original input pixels which
lie inside and their associated edges, those boundary edges are never accessed
(or cause no problem).

Here we summarize basic definitions and terminologies (see Fig. 4).

Connectivity: Two foreground pixels are 4-connected (resp. 8-connected), if
they are adjacent horizontally or vertically (resp., one of them lies in the
3× 3 neighborhood of the other). We also say that two foreground pixels are
4-connected (resp. 8-connected), if there is a path of foreground pixels such
that any two consecutive pixels are 4-connected (resp. 8-connected).

Connected Component: A maximal subset of foreground pixels such that
any two of them are connected.
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Fig. 3. Sequential indices of pixels in the raster order (a) and edge indices (b). A binary
image of size 7 × 9 is embedded in a larger image of size 9 × 11 by filling background
pixels in the margin.

Hole: A connected component of background pixels contained in a connected
component.

Connectivity for Holes: Use alternate connectivities for foreground pixels
and background ones. If connectivity for foreground pixels is 4-connectivity
then that for background ones must be 8-connectivity.

Island: A connected component of foreground pixels contained in a hole.
External Boundary: A unique boundary of a connected component (of fore-

ground pixels) with background pixels surrounding them.
Internal Boundary: Boundaries of a connected component with its holes.
Raster Order of Pixels: A pixel p1 precedes another pixel p2 in the raster

order, if p1 is lower than p2 or they lie in the same row and p1 lies to the
left of p2.

Raster Order of Edges: A vertical edge e1 is smaller than another vertical
edge e2, if e1 is lower than e2 or they lie in the same row, but e1 lies to the
left of e2. We are not interested in ordering horizontal edges.

Orientation of Edges: Edges on a boundary are oriented so that foreground
pixels always lie to the right. Thus, external boundaries are clockwisely or-
dered while internal ones counterclockwisely.

Canonical Edge [13] : The vertical edge of a boundary (external or internal)
that is smallest in raster order. By our convention on orientation canonical
edges of external (resp. internal) boundaries are upward (resp. downward).

NextEdge(e): Given any edge on a boundary, we can compute the next edge
on the boundary in constant time (see Fig. 5). So, we assume a function
NextEdge(e) to compute the next edge. The function depends on which
connectivity is used to define a connected component of foreground pixels,
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but it is an easy exercise to design such a function, and thus omitted here.
(see Fig. 5(b))

PrevEdge(e): A function to compute the previous edge of e on a boundary.
Run: A maximal sequence of foreground pixels in a row.
Lowest Run: A run which is not adjacent to any run in its lower row.
Labeling: Assigning positive integral labels to pixels so that two pixels have

the same label, if and only if they belong to the same connected component.
Canonical Labeling: A labeling of a binary image by sequential integral num-

bers in the raster order of their canonical edges.

(a) (b)

Fig. 4. An example of a binary image consisting of three connected components. The
largest component contains two holes and the right hole contains an island. Each of
five boundaries has a unique canonical edge indicated by an arrow. (a) Lowest runs are
indicated by shading. (b) A result of labeling the image using different colors.
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(a) (b)

Fig. 5. The next edge of a vertical edge. (a) for 4-connectivity, and (b) for 8-
connectivity.

3 O(n)-Space and O(n)-Time Algorithm

To explain our basic idea, we will first present a linear-time algorithm using
linear work space. We use two linear-size arrays, one for a label matrix and the
other for keeping labels on boundary edges.

We scan a given binary image in the raster order. Whenever we encounter
an edge which has not been labeled yet, we create a new label and follow the
boundary from the edge while putting the label on the array for edge labels. If
two foreground pixels are consecutive in a row, we just propagate a label from
left to right.
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This simple algorithm works for a binary image without a hole. To deal with
holes, we also follow a boundary whenever we have a transition from foreground
to background (transition from ’1’ to ’0’). If an edge associated with the transi-
tion has not been labeled, we first obtain a label from the pixel to the left of the
edge (it must have been labeled) and then follow the boundary while putting
the label on the edge array.

By the definition of canonical edges, for any boundary (external or internal)
the first edge we encounter in the scan must be its canonical edge (see Fig. 6). If
we keep a label of a component, such an edge can be detected when we encounter
an edge which has not been labeled yet. Note that the canonical edge of an
external boundary of a connected component must have been detected earlier
than canonical edges of internal boundaries of the component. So, if we put a
label when we find the canonical edge of the external boundary and put the
new label on those edges on the boundary and propagate the label to the right,
the label must reach the canonical edges of hole(s) in the component before we
detect the edges by transitions ’10’.

The running time of Algorithm 1 is O(n) since we follow each boundary only
once and the remaining operations are obviously done in linear time.

lowest run

run adjacent to a hole

Fig. 6. Lowest runs and runs adjacent to holes

Lemma 1. Given a binary image of n pixels, Algorithm 1 computes its correct
canonical labeling in O(n) time and O(n) work space.

4 O(
√
n)-Space and O(n

√
n)-Time Algorithm

Our main concern in this paper is to reduce space complexity while suppressing
increase of time complexity. In Algorithm 1 we used two arrays of linear size. It
is easy to reduce the one for a label matrix into O(

√
n). Recall that Algorithm 1

outputs the label matrix row by row. Thus, we do not need to keep the whole
array, but one or two rows are enough.

How about the array to store labels in edges? Labels stored in edges are needed
to propagate labels along (external and internal) boundaries. Is it possible to get



New Algorithm for Connected Components Labeling 97

Algorithm 1. Compute the label matrix using O(n) space

Input: A binary image B[i], i = 0, . . . , wh− 1.
Arrays: lab[0..wh− 1], edge[0..2wh − 1].
L = 0 ; // the number of labels used so far

Initialize arrays lab[.] and edge[.]
for i = 1 to h− 1 do

for j = 1 to w − 1 do // pixel in the raster order

p = i× w + j ; // pixel at (i, j).
switch the value of B[p− 1]B[p] do

case ’00’ // background pixel p
lab[p] = 0; break;

case ’11’ // next pixel of the run
lab[p] = lab[p− 1]; break;

case ’01’ // boundary pixel p
if edge[2p− 1] = 0 then // new component

L = L+ 1 ; // new label

es = 2p− 1 ; // es: start edge

e = es ; // e: current edge e
repeat // traverse the boundary of component L

edge[e] = L; e = NextEdge(e);
until e = es;

end
else // old component labeled edge[2p− 1]

lab[p] = edge[2p− 1];
end
break;

otherwise // case ’10’, pixel p− 1 is on a boundary
lab[p] = 0.
if edge[2p− 1] = 0 then // unlabeled boundary

es = e = 2p− 1 ; // start edge es and current edge e
repeat // traverse the unlabeled boundary

edge[e] = lab[p− 1]; e = NextEdge(e);
until e = es;

end

endsw

endsw

end

end
Output the array lab[.]

the label information without using the array? Yes, it is possible. Our idea is
very simple. Whenever we encounter a boundary edge we follow the boundary
while checking pixels along the boundary whether they are labeled or not. Since
we examine pixels in the raster order, if we start from any edge which is not
the canonical edge of an external boundary we must reach a boundary edge which
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is smaller in the raster order than the starting edge. In our algorithm we create
a new label when we find the canonical edge of the external boundary of a new
component. If the current boundary edge e is not canonical, then we follow the
boundary and get a label, which is the correct label of the pixel adjacent to e.
We can determine whether an edge e is canonical or not just by following the
boundary from e to see whether we see any edge e′ < e.

Fig. 7. Worst case example for which Algorithms 2 takes Ω(n
√
n)

Lemma 2. Given a binary image of n pixels, Algorithm 2 computes its correct
canonical labeling in O(n

√
n) time using O(

√
n) work space. There is an example

for which the algorithm takes Ω(n
√
n) time.

Proof. We follow boundaries whenever we encounter an edge associated with a
transition ’01’. There may be O(

√
n) such edges in a row and each boundary

may consist of O(n) edges. However, we never follow the same boundary more
than once since we can stop whenever we come to an edge which is smaller in
the raster order than the starting edge. Thus, the total length of boundaries
we follow in a row is bounded by O(n). Since we have O(

√
n) rows, the total

running time is bounded by O(n
√
n).

The correctness of the algorithm can be proved by induction.

There is an example for which the algorithm takes Ω(n
√
n) time. See Fig. 7

(a) for an worst case example. The binary image contains only one connected
component, which has O(

√
n) lowest runs depicted by bold lines. Whenever we

encounter the left edge of each such lowest run we follow the boundary in a
clockwise order. For a lowest run starting at x = k, the length of our traverse is

O(k2) by the construction. Thus, it takes time O
∑O(

√
n

k=1 k2 = O(n
√
n).

5 O(
√
n)-Space and O(n logn)-Time Algorithm

It is surprisingly easy to accelerate Algorithm 2 while keeping the size of the
work space. See the worst case example shown in Fig. 7 (a). It is easy to see
that it took much time since we follow the boundary clockwise manner. If we
follow it counterclockwisely instead, then we immediately find a lower edge and
thus the total running time concerning the boundary is just linear. This suggests
a bidirectional search for a lower boundary edge. Bose and Morin [6] achieved
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Algorithm 2. Compute the label matrix using O(
√
n) space.

Input: A binary image B[i], i = 0, . . . , wh− 1.
Array: lab[2][0..w − 1]. // label array for two rows

L = 0 ; // the number of labels used so far

Initialize the array lab[2][.], a = 0, b = 1
for i = 1 to h− 1 do

// the labels in the previous row are computed in lab[b][.]
for j = 1 to w − 1 do // pixel in the raster order

p = i× w + j ; // pixel at (i, j).
switch the value of B[p− 1]B[p] do

case ’00’ // empty pixel p
lab[a][p] = 0; break;

case ’11’ // next pixel of the run
lab[a][p] = lab[a][p− 1]; break;

case ’01’ // boundary pixel p
es = e = 2p− 1 ; // start edge es and current edge e
repeat // traverse the boundary from es

e = NextEdge(e);
until e = es or e is adjacent to a pixel with a positive label k in
the row i (by lab[a][.]) or i− 1 (by lab[b][.]);
if e = es then // new component

L = L+ 1, k = L ; // new label

end
lab[a][p] = k; break;

otherwise // case ’10’,
lab[a][p] = 0;

endsw

endsw

end
Output the content of the array lab[a][.].
Exchange the roles of a and b (a = 1− a, b = 1− b).

end

O(n log n) time using the bidirectional traverse on a planar subdivision. More
exactly, at each boundary edge we examine the boundary in opposite directions
using the two functions, NextEdge() and PrevEdge(), to find the next and previ-
ous edges on the boundary. If the starting edge e is not canonical then one of the
pointers reaches an edge which is smaller in the raster order than e, which must
be adjacent to a labeled pixel. Otherwise the two pointers meet without finding
such pixels. Bose and Morin [6] showed that the bidirectional search runs in
O(n log n) time without using any extra array. Thus, the algorithm is described
as follows.

Theorem 1. Given a binary image of n pixels, Algorithm 3 computes the canon-
ical labeling in O(n log n) time using O(

√
n) work space. There is an example

for which the algorithm takes Ω(n logn) time.
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Algorithm 3. Compute the label matrix using bidirectional search

Input: A binary image B[i], i = 0, . . . , wh− 1.
Array: lab[2][0..w − 1]. // label arrays for two rows

L = 0 ; // the number of labels used so far

Initialize the array lab[2][.], a = 0, b = 1
for i = 1 to h− 1 do

// the labels in the previous row are computed in lab[b][.]
for j = 1 to w − 1 do // pixel in the raster order

p = i× w + j ; // pixel at (i, j).
switch the value of B[p− 1]B[p] do

case ’00’ // empty pixel p
lab[a][p] = 0; break;

case ’11’ // next pixel of the run
lab[a][p] = lab[a][p− 1]; break;

case ’01’ // boundary pixel p
ef = eb = 2p− 1 ; // two pointers in two directions

d = 0. ; // search direction: 0 for forward

repeat // traverse the boundary in two directions
if d = 0 then ef = NextEdge(ef) else eb = PrevEdge(eb)
d = 1− d.

until ef = eb or ef or eb is adjacent to a pixel with a positive
label k in the row i or i− 1;
if ef = eb then // new component

L = L+ 1, k = L ; // new label

end
lab[a][p] = k; break;

otherwise // case ’10’,
lab[a][p] = 0;

endsw

endsw

end
Output the array lab[a][.].
Exchange the roles of a and b (a = 1− a, b = 1− b).

end

6 Some Applications

The algorithm can be easily adapted to solve the following interesting problem:
given a binary image and a constant k > 0, computes a binary image which
contains only k largest connected components in the input image. It is done by
using a priority queue of size k. It is done by using a priority queue of size k.
It suffices to update, if necessary, the content of the queue whenver a connected
component finishes. The resulting binary image should be output row by row in
the raster order without keeping the whole output image in the work space.

Here is another example. Suppose we have a gray-tone image G and we have
a target size A of an object area. When we apply a threshold T to G, we have
a binary image. The size of the largest connected component in the resulting
binary image is anti-proportional to the threshold. Problem here is to find an
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Algorithm 4. Compute k-largest connected components

Input: A binary image B[i], i = 0, . . . , wh− 1.
Array: lab[2][0..w − 1]. // label arrays for two rows

L = 0 ; // the number of labels used so far

Initialize the array lab[2][.], a = 0, b = 1
for i = 1 to h− 1 do

// the labels in the previous row are computed in lab[b][.]
for j = 1 to w − 1 do // pixel in the raster order

p = i× w + j ; // pixel at (i, j).
switch the value of B[p− 1]B[p] do

case ’00’ // empty pixel p
lab[a][p] = 0; break;

case ’11’ // next pixel of the run
lab[a][p] = lab[a][p− 1]; break;

case ’01’ // boundary pixel p
ef = eb = 2p− 1 ; // two pointers in two directions

d = 0. ; // search direction: 0 for forward

repeat // traverse the boundary in two directions
if d = 0 then ef = NextEdge(ef) else eb = PrevEdge(eb)
d = 1− d.

until ef = eb or ef or eb is adjacent to a pixel with a positive
label k in the row i or i− 1;
if ef = eb then // new component

L = L+ 1, k = L ; // new label

end
lab[a][p] = k; break;

otherwise // case ’10’,
lab[a][p] = 0;

endsw

endsw

end
Output the array lab[a][.].
Exchange the roles of a and b (a = 1− a, b = 1− b).

end

optimal threshold so that the largest connected component size is closest to the
target size A. This problem can be solved by the algorithm below in O(n log2 n)
time using only O(

√
n) space.

7 Conclusions

In this paper we have presented a space efficient algorithm for connected compo-
nents labeling. It runs in O(n logn) time using only O(

√
n) work space assuming

that an input image of n pixels is stored in a read-only array. It is simple and
easy to implement. An open problem is to prove the algorithm is theoretically
optimal in the sense that Ω(n log n) is the lower bound of any algorithm for the
problem when O(

√
n) work space is allowed.
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Abstract. This paper presents space-efficient algorithms for some ba-
sic tasks (or problems) on a binary image of n pixels, assuming that an
input binary image is stored in a read-only array with random-access.
Although efficient algorithms are available for those tasks if O(n) work
space (of O(n log n) bits) is available, we aim to propose efficient algo-
rithms using only limited work space, i.e., O(1) or O(

√
n) space. Tasks

to be considered are (1) CCC to count the number of connected com-
ponents, (2) MERR to report the minimum enclosing rectangle of every
connected component, and (3) LCCR to report a largest connected com-
ponent. We show that we can solve each of CCC, MERR, and LCCR in
O(n log n) time using only O(1) space. If we can use O(

√
n) work space,

we can solve them in O(n), O(n), and O(n+m logm) time, respectively,
where m is the number of pixels in the largest connected component.

Keywords: Connected component, Minimum enclosing rectangle,
Largest connected component, Space-efficient algorithms.

1 Introduction

Demand for embedded software is growing toward intelligent hardware such as
scanners, digital cameras, etc. One of the most important aspects and also a
difference between ordinary software in computers and embedded software comes
from the constraints on the size of local memory. For example, to design an
intelligent scanner, a number of algorithms should be embedded in the scanner.
In most of the cases, the size of the pictures is increasing while the amount of
work space available for such software is severely limited. Thus, algorithms which
require a restricted amount of work space and run reasonably fast are desired.

In this paper we propose several space-efficient algorithms designed for some
fundamental image processing tasks. All of the tasks that we consider have
straightforward solutions if sufficient memory (typically, of size proportional to
the size of the image) is available (see, for example, [5,8]). Solving the same
tasks with restricted memory, without severely compromising the running time,
is more of a challenge.
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1.1 Computational Model with Limited Work Space

We measure the space efficiency of algorithms by the amount of work space used.
Such space typically takes the form of pointers and counters (whose number of
bits is at most a logarithm of the image size). Our objective is to design efficient
algorithms that use only O(1) or O(

√
n) such pointers and counters.

Throughout the paper we assume that an input binary image consists of n
pixels in O(

√
n) rows and columns, and it is stored in a read-only array in a

random-access manner.

1.2 Three Basic Tasks Considered in This Paper

Three basic tasks for an input binary image are considered in this paper:

CCC (Connected Components Counting). Count the number of con-
nected components.

MERR (Minimum Enclosing Rectangles Reporting). Report the mini-
mum enclosing (axis-parallel) rectangle of every connected component.

LCCR (Largest Connected Component Reporting). Report all pixels of
a largest connected component.

We have to output a number of pieces of information except for the task CCC.
MERR requires us to output rectangles, and in the case of LCCR, we have to
output the pixels in the largest component. It is expensive to use an array for the
output. Therefore, we output the information directly without using any array
to store it.

1.3 Important Concepts and Terminology

Several important concepts and notions are used in order to design space efficient
algorithms for those tasks.

Lexicographical Order: We assume a lexicographical order among all pixels.
A pixel at (x, y) precedes the one at (x′, y′) if y < y′ or y = y′ and x < x′.
The same order is defined for all vertical edges.

Canonical Edge: Connected components are described by external and inter-
nal boundaries. The canonical edge of a boundary is the lexicographically
smallest vertical edge on the boundary, which is uniquely defined.

Run: A maximal sequence of foreground (white) pixels in a row is called a run.
Run Adjacency Graph: Run adjacency graph represents incidence relations

among runs in two consecutive rows. The graph plays an important role in
the algorithms to be presented in the paper. It contains O(

√
n) vertices and

edges since there are only O(
√
n) columns by the assumption.

Provisional Label: We put labels to runs to maintain information on con-
nected components. Once we know two runs belong to the same component,
their labels must be merged. This way a number of labels are created and
removed. These temporary labels are called provisional labels. We use some
labels many times in our labeling process. A basic idea is to save the total
number of labels.
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1.4 Results Obtained

We present space efficient algorithms for the tasks listed above using O(1)
or O(

√
n) work space. For the tasks CCC (Connected Components Counting)

and MERR (Minimum Enclosing Rectangles Reporting) our algorithms run in
O(n log n) time with O(1) work space or O(n) time with O(

√
n) space. For the

task LCCR (Largest Connected Components Reporting) our algorithm runs in
O(n log n) time using O(1) work space. If we can use O(

√
n) space, the run-

ning time is reduced to O(n +m logm) time where m is the size of the largest
component.

2 Known Results for O(1)-Space Algorithms and Their
Extensions

2.1 Basic Algorithm

First, we give an intuitive explanation of an algorithm for counting the number
of connected components in a given binary image.

Basic algorithm for counting the number of connected components
c = 0. // counter for the number of connected components
for each pixel p in the lexicographic order (raster order)

if it is a unique pixel in a component then increment the counter c.
Report the counter value c as the number of connected components.

We assume a lexicographical order among all pixels. A pixel at (x, y) precedes
one at (x′, y′) if y < y′ or y = y′ and x < x′. The same order is defined for vertical
edges.

The algorithm correctly counts the number of connected components if a
unique pixel is defined for each connected component and we can determine in
some reasonable time whether a given pixel is the unique one. For this purpose
we introduce the notion of canonical edge instead of a unique pixel.

2.2 Canonical Edge

A connected region in a binary image refers to a maximal set of foreground pixels
in which any two of them are connected by a 4-connected path of foreground
pixels. It may contain holes, islands, and further holes of islands. Thus, the
boundary of a connected component is defined by a single external boundary
and possibly more than one internal boundary. In this paper we assume a small
square for each pixel, which has four sides. Two adjacent pixels share a side. A
side between two pixels of different values is called an edge. Then, a boundary
is a sequence of such edges, horizontal or vertical. Any boundary must have a
unique vertical edge that is lowest (and leftmost if there are ties). This uniquely
defined edge is referred to as the canonical edge of the boundary, as it was
defined in the literature [4,6]. Fig. 1 shows how canonical edges are defined using
a simple binary image when each boundary is oriented so that foreground pixels
always lie to the right.
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Fig. 1. Geometric model of a binary image. There are three connected components
C1, C2 and C3. C2 containing four holes H1, . . . ,H4, and H1 including an island C3.
Edges are directed so that foreground pixels lie to their right. Canonical edges are
indicated by arrows.

2.3 Bidirectional Search

It is known that we can enumerate all the canonical edges in O(n logn) time
using the algorithm [3,4] which was originally designed for traversing a planar
map without using any mark bits. By the definition of a canonical edge, an
edge e is canonical if and only if there is no other boundary edge e′ on the
same boundary which is lexicographically smaller than e, that is, e′ < e. The
condition can be tested by following the boundary until we find a smaller edge,
but it takes time. A magic for acceleration is to search in two opposite directions
(Bidirectionsl Search) [4].

Since we can distinguish canonical edges on the external boundaries from those
on the internal ones only using local information around them (see Fig. 1), we
can count the number of connected components by counting that of canonical
edges on external boundaries. Thus, the task CCC can be done in O(n log n)
time using constant work space[1,2].

Algorithm for counting the number of connected components
c = 0. // counter for the number of connected components
for each pixel p in the lexicographic order (raster order)

Let e be the vertical edge to the right of p.
if LocalCondition(p) and IsCanonical(e) then increment the counter c.

Report the counter value c as the number of connected components.
Boolean LocalCondition(p){ // Local condition for a canonical pixel

if p is background and p’s right pixel is foreground and p’s lower right pixel
is background then return True else return False.

}
Boolean IsCanonical(e){ // Is an edge e canonical?

ef = NextEdge(e). // the next edge of e on the boundary.
eb = PrevEdge(e). // the previous edge of e on the boundary.
while(ef > e and eb > e) do{
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ef = NextEdge(ef). // forward search
if ef = eb then return True. // if two pointers meet then canonical
eb = PrevEdge(eb). // backward search
if ef = eb then return True. // if two pointers meet then canonical

}
return False.

}

In the algorithm above, NextEdge(e) is a function to compute the next edge of
e on the boundary (since each boundary is singly connected, the next element
is uniquely determined). PrevEdge(e) is a function for the previous edge of e.
NextEdge(e) and PrevEdge(e) can be computed in constant time. IsCanonical(e)
is a function to determine whether an edge is canonical or not. This function
cannot be computed in constant time, but the total time we need to evaluate
the function for every edge is bounded by O(n log n) due to bidirectional search.

We now know that the first problem CCC – count the number of connected
components – is easily solved using only constant work space. It is rather straight-
forward to extend the algorithm for the task MERR. Whenever we find a canoni-
cal edge of an external boundary, we follow the boundary. Then, we can compute
the minimum enclosing rectangle of the corresponding component in linear time
by maintaining the smallest and largest x and y coordinates of the edges on the
boundary. Thus, MERR can be solved in O(n log n) time using O(1) space.

On the other hand, it is not easy to extend it so that it reports component
sizes. The difficulty comes from the existence of holes. If a component has no
hole, it suffices to follow its boundary to compute its area. Fortunately, it is also
known that the problem can be solved in O(n logn) time with O(1) space by
applying the algorithm due to Bose and Morin [4], which is described below.

2.4 Component Pixel Traversal

The algorithm of Bose and Morin [4], which works on a graph, can be modified to
deal with a binary image where the graph structure is implicitly given. We start
from the canonical edge of the external boundary of a connected component C
and follow the boundaries associated with C. At each upward vertical edge e
walk to the east until we reach a boundary edge f . If f is a canonical edge, then
we move to f with f as the current edge. Otherwise, we first check whether the
next edge of e on the boundary is canonical or not. If it is the canonical edge
of the external boundary (by further checking whether it is upward), then we
are done. If it is the canonical edge of a hole, then we walk to the west until we
encounter a boundary edge e′ and let e = e′.

Fig. 2 illustrates how the algorithm traverses pixels in a connected component.
Fig. 2(a) shows the first two rows and the entire traversal is given in (b). A more
formal description algorithm follows.
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1

2 3

(a) (b)

Fig. 2. Component pixel traversal: (a) the first two rows, and (b) the entire traversal

Algorithm for visiting every pixel starting from an edge es.
e = es. //es is the starting edge.
repeat{

if e is horizontal then e =NextEdge(e).
else if e’s eastern pixel is foreground then{

Report consecutive foreground pixels until we reach a boundary edge f .
if IsCanonical(f) then e = f else e =NextEdge(e).

}else if IsCanonical(e) then
Walk to the west until we reach an edge f and let e = f .

else e =NextEdge(e).
}until(e = es)

Theorem 1. Let I be a binary image. When a canonical edge of an external
boundary of a connected component Ci is known, we can report all pixels of Ci

in O(aC + bC log bC) time using O(1) work space, where aC denotes the area of
C and bC denotes the number of edges defining the boundaries of C.

Using the results listed above, we have the following theorem.

Theorem 2. Given a binary image of n pixels, we can solve the three basic
problems (CCC, MERR, and LCCR) in O(n log n) time using O(1) work space.

Proof. Given a binary image, we examine every boundary edge whether it is the
canonical edge of an external boundary. It is done in O(n log n) time in total.
Thus, counting the number of connected components is straightforward. To solve
MERR it suffices to maintain the minimum and maximum x and y coordinates
of edges on an external boundary.

A largest connected component can be computed in two phases. In the first
phase we detect all canonical edges of external boundaries. For each such canon-
ical edge e we count the number of pixels of the component associated with e by
applying the function for component pixel traversal. In this way we maintain a
canonical edge having the largest count. Then, in the second phase we apply the
function for component pixel traversal again with the canonical edge obtained
in the first phase. ��
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3 O(
√
n)-Space Algorithms Using Run Adjacency Graph

From now on we will consider algorithms using more work space, O(
√
n) space.

But, before introducing such algorithms we will start with a linear-space algo-
rithm for the labeling to explain our basic ideas of run adjacency graph and
provisional labels.

In our algorithm we read an input image row by row in the raster manner and
convert each row into a sequence of runs. More exactly, a run r is a maximal
sequence of foreground pixels (of value 1) in a row. It is associated with an
interval I(r) = {s, s+1, . . . , t} when it starts at the s-th column and ends at the
t-th column. So, a white run (s, t) in the i-th row means that foreground pixels
continue from the s-th column to the t-th column and (s − 1)-st and (t + 1)-st
pixels are both black pixels in the row (if they exist).

Definition 1. A foreground run r1 “intersects” another foreground run r2 if
they are in consecutive rows and their associated intervals denoted by I(r1) and
I(r2) have non-empty intersection.

We construct a graph called a Run Adjacency Graph with vertices being
runs and edges between two intersecting runs in consecutive rows. Then, we
partition the graph into connected components {C1, C2, . . . , Ck} by applying a
depth-first search and assign the integral label i to each run in the component
Ci. To distinguish connected components in a graph from those in a binary
image, we call the former as graph components and the latter as image
components. There is a one-to-one correspondence between graph components
and image components. So, the last phase is to convert the run representation
into a labeling matrix using the label for each run.

The algorithm described above is almost the same as the old one by Rosenfeld
and Pfalts [7], which consists of two phases, horizontal scan to partition each
row into runs and vertical scan to merge vertically adjacent runs using a union-
find data structure. Differences are (1) we use horizontal scan twice (instead of
horizontal scan followed by vertical scan) and (2) we use a depth-first algorithm
for computing graph components after building a run adjacency graph (instead
of using a union-find tree data structure). Since the depth-first algorithm runs in
linear time, the whole algorithm runs in linear time. This is a folklore knowledge
although such a formal statement is rather rare in the literature.

In this paper we are interested in space-efficient algorithms, especially using
O(
√
n) space. Due to the space constraint we cannot build the whole run adja-

cency graph. A key idea is to use the O(
√
n) work space to keep a set of runs in

two consecutive rows.

Provisional Label: An Idea to Save Space
Unfortunately, there are O(n) runs in a binary image and thus O(n) vertices
in its associated run adjacency graph. There are two ideas to reduce the work
space. The first idea is to introduce a notion of provisional labels which are



110 T. Asano, S. Bereg, and L. Buzer

labels temporarily used in the algorithm and may be different from the final
labels to be reported. More important is that we can use the same provisional
label for two graph components if they are ”clearly” separated.

We read an input binary image in the lexicographic order (raster order) row
by row. We read the first row and put provisional labels to those runs in the row.
Then, in the second row, we construct a modified run adjacency graph for a set
of runs in the two rows and then partition it into connected components (graph
components). In this way we know how those runs in the first two rows are
connected and thus we can put provisional labels to the runs in the second row.
In general, assuming that those runs in the previous row have been labeled, we
put provisional labels to the runs in the current row by examining connectivities
among those runs. Hereafter, those runs with provisional labels in the previous
row are called colored runs, and those runs with no provisional labels yet white
runs. A set of colored runs which have the same provisional label is replaced by
a path connecting them in a line.

The graph can be partitioned into connected components (graph components)
by applying depth-first search which runs in linear time. The resulting graph
components are classified into three kinds (see Fig. 3):

Starting Component: consisting of a singe white run in the current row,
Terminating Component: consisting of colored runs in the previous row, and
Extending Component: including both of colored and white runs in the two

rows.

1. Starting Component: A graph component C of a single white run.
If a graph component C is a singleton consisting of a single white run in the

current row, then it means a new image component starts at the current row,
which may be merged in the future scan with another existing image component.
So, we need a procedure to create a new image component with a new label. We
maintain labels using integers with the current largest label L. Hence, whenever
we create a new image component, we increment the value of L and assign the
value to the new image component. We also maintain the size of each image
component by an array size[ ], which is initially determined by the run length.

2. Terminating Component: A graph component C consisting of colored
runs and containing no white run. It may have two or more colored runs, which
must be connected in the graph by a path. Therefore, all the colored runs in the
component must have a single common provisional label. Since no colored run
in the component intersects any white run in the current row, it does not extend
to the current row. That is, the corresponding image component terminates in
the previous row. This event is called a death of the image component.

3. Extending Component: A graph component C having both of colored
and white run(s).

If a component C has at least one colored run and at least one white run,
then the corresponding image component extends to the next row. If the label k
is the smallest label among those colored runs in the graph component, then all
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Fig. 3. A set of runs in two consecutive rows (rows i− 1 and i). Runs r1, . . . , r5 in the
previous row (row i− 1) have been labeled by connectivities established in the already
scanned part. The run r7 and r9 in the current row intersect no run in the previous
row, and hence they may create new components. On the other hand, the component
associated with the runs r3 and r4 does not extend to the current row, and hence the
component terminates here. The corresponding run adjacency graph is given below in
the figure.

the pixels associated with those labels and runs in the graph components should
be labeled as k in the next row. At the same time, we update the size of the
merged graph component C labeled k by the sum of the sizes of all associated
image components.

Fig. 4 illustrates how provisional labels are created, propagated, and terminate
during raster scan.

As is seen in Fig. 4, we can save a number of provisional labels. Unfortunately,
however, this is not enough to achieve O(

√
n) work space. We need another idea.

A key idea is to reuse provisional labels again and again. A provisional label
disappears in two ways. A colored component of a label terminates at some row
or it is merged into another terminating component of a different (and smaller)
label. The latter case happens when a white run in the current row intersects two
or more terminating components of different provisional labels in the previous
row. In this case those labels are merged into one of the smallest label together
with their associated information such as their sizes.
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Fig. 4. Provisional labels propagated during raster scan

3.1 O(
√
n)-Space Algorithm for CCC

Now we are ready to present an O(
√
n)-space algorithm for the task CCC for

counting the number of connected components in a given binary image of n
pixels.

Lemma 1. For an arbitrary binary image consisting of O(
√
n) rows and

columns, the maximum number of image components in a row (or a column)
is O(

√
n).

Proof. If 0’s and 1’s alternate in a row and all 1-pixels belong to different com-
ponents we have O(

√
n) components in the row, which is the worst case. Thus,

the lemma follows. ��

In the above algorithm we have created a new label whenever we find a run
which is not connected with any component in the part already scanned. A label
may be merged into another. To save work space, we maintain two sets of labels,
U and V . The set U keeps a set of labels currently used. The set V is a set of
those labels which have been used before but are not used currently. Whenever
we need a new label, we check the set V and takes one label out of V unless it is
empty. If V is empty then we create a new label and use it by incrementing the
value of L. Whenever a label has terminated or is merged into another, we move
the label from U to V . In this way we maintain a set of labels. Then, Lemma 1
guarantees that the maximum size of U ∪ V is O(

√
n). Thus, we have

Theorem 3. Given a binary image of n pixels, we can report the number of
connected components and the size of each component in O(n) time using O(

√
n)

work space.
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Proof. In each row we build a run adjacency graph which contains O(
√
n) ver-

tices and edges. We can decompose it into connected components in linear time
using depth-first search. Other operations are done in constant time by standard
techniques for such data structures. Thus, the total time required is linear in the
number of pixels. ��

3.2 O(
√
n)-Space Algorithm for MERR

It is rather straightforward to modify the algorithm for CCC so that it can also
report the minimum enclosing rectangle of every connected component using
O(
√
n) work space. What we should do is to maintain rectangle information

when two or more provisional labels are merged.

Theorem 4. Given a binary image of n pixels, we can report the minimum
enclosing rectangle of every connected component in O(n) time and O(

√
n) work

space.

3.3 O(
√
n)-Space Algorithm for LCCR

We have already had an O(n log n)-time and O(1)-space algorithm for solving
the problem LCCR (Largest Connected Component Reporting). Can we solve
it in linear time using O(

√
n) work space? Unfortunately, it seems very hard,

but some small improvement is possible. Exactly speaking, we can design an
algorithm which runs in O(n + m logm) time using O(

√
n) work space, where

m is the size of a largest connected component.
We modify our algorithm for reporting the smallest enclosing rectangle for

each connected component. By the definition of the canonical edge of the external
boundary of a connected component C it must be located at the leftmost lowest
corner. We modify the algorithm so that we maintain the following information

(1) the leftmost lowest edge,
(2) the number of pixels for each label. Then, in one scan over an input image

we get the leftmost lower edge e of a largest component in O(n) time. Then,
we apply the O(1)-space algorithm for component pixel traversal which runs in
O(m logm) time for a connected component of m pixels.

Theorem 5. Given a binary image of n pixels, we can report all pixels of a
largest connected component of size m in O(n+m logm) time and O(

√
n) work

space.

4 Conclusions

In this paper we have presented space efficient algorithms for some basic tasks
on binary images. We have shown that such basic tasks can be done in linear
or almost linear time even if work space is limited to O(

√
n) or further to O(1).

Counting the number of connected components is rather easy. In fact we had a
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linear-time algorithm if O(
√
n) work space is available. However, it is not known

whether we can report all pixels in a largest connected component in linear time
or not.

In this paper we implicitly assumed 4-connectivity for foreground pixels,
that is, two foreground pixels are directly 4-connected if they are horizon-
tally or vertically adjacent. In the 8-connectivity the neighborhood includes
all eight neighbors around a pixel. It is rather easy to adapt our algorithms
for 8-connectivity. It suffices to modify the definition of intersection between
two runs in two consecutive rows. For the 4-connectivity a run [s1, t1] inter-
sects another run [s2, t2] if their associated intervals have non-empty inter-
section, that is, [s1, t1] ∪ [s2, t2] �= ∅. For the 8-connectivity it is the case if
[s1, t1] ∩ [s2 − 1, t2 + 1] �= ∅ or [s1 − 1, t1 + 1] ∩ [s2, t2] �= ∅.
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Abstract. We study graphs with the vertex set Z2 which are subgraphs
of the 8-adjacency graph and have the property that certain natural
cycles in these graphs are Jordan curves, i.e., separate Z

2 into exactly
two connected components. For the minimal graphs with this property,
we discuss their quotient graphs, too.

Keywords: simple graph, adjacency, digital plane, Jordan curve.

1 Introduction

In digital image processing, the well-known binary relations of 4-adjacency and
8-adjacency are used for structuring the digital plane Z2. A disadvantage of
this approach is that neither 4-adjacency nor 8-adjacency itself allows for an
analogue of the Jordan curve theorem – cf. [5]. To eliminate this deficiency, a
combination of the two adjacencies has to be used. Despite this inconvenience,
the approach based on using a combination of the 4-adjacency and 8-adjacency
proved to be useful for solving many problems of digital image processing and
for writing efficient graphic software.

In [2], a new, purely topological approach to the problem of structuring the
digital plane was proposed which utilizes a single convenient structure on Z2,
namely the Khalimsky topology. The topological approach was then developed
by many authors – see, e.g., [3-6] and [9-16]. Since the Khalimsky topological
space is an Alexandroff space (i.e., has a completely additive closure), its con-
nectedness coincides with the connectedness in a certain graph with the vertex
set Z2, the so-called connectedness graph of the topology. Thus, when studying
the connectedness of digital images, the adjacency of this graph, rather than the
Khalimsky topology, may be used for structuring the digital plane. A well-known
analogue of the Jordan curve theorem is then valid in the graph – cf. [2]. A dis-
advantage of this approach is that Jordan curves in the (connectedness graph of
the) Khalimsky topology cannot turn, at any point of Z2, to form an acute angle
of π

4 . It would therefore be useful to find some new, more convenient adjacencies
on Z2. In the present note, we introduce a certain natural graph with the vertex
set Z2 whose cycles are eligible for Jordan curves in Z2 and we solve the prob-
lem of finding adjacencies on Z2 with respect to which these cycles are Jordan
curves. We will be, in particular, interested in the minimal adjacencies having
this property. We will show that their quotient adjacencies provide a number

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 115–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of convenient adjacencies on Z2 including the one given by the connectedness
graph of the Khalimsky topology. The results obtained suggest new background
structures on Z2 with natural Jordan curves which may be used for studying
and processing digital images.

2 Preliminaries

For the graph-theoretic concepts used in the sequel, see, for instance, [1]. By a
graph on a set V we always mean an undirected simple graph without loops whose
vertex set is V . Thus, such a graph is a pair (V,E) where E ⊆ {{a, b}; a, b ∈
V, a �= b} is the set of edges of the graph. An edge {a, b} ∈ E is said to join
the vertices a and b. We also say that a and b are incident with {a, b} and
that {a, b} is incident with each of the vertices a and b. For an arbitrary vertex
a ∈ V , we denote by E(a) the set of all vertices joined by an edge with a, i.e.,
E(a) = {b ∈ V ; {a, b} ∈ E}. Clearly, {a, b} ∈ E if and only if b ∈ E(a) or,
equivalently, a ∈ E(b). Thus, the set E of edges of a graph may be given by
determining the set E(a) for every a ∈ V .

A graph (U, F ) is a subgraph of (V,E) if U ⊆ V and F ⊆ E. In this case, we also
say that (V,E) is a supergraph of (U, F ). If, moreover, F = E∩{{a, b}; a, b ∈ U},
then (U, F ) is said to be an induced subgraph of (V,E) and is denoted briefly by
U . Given graphs (V,E) and (U, F ), their union is the graph (V ∪U,E ∪F ). We
represent graphs by demonstrating vertices as points and edges as line segments
whose end points are just the vertices they join.

Let (V,E) and (W,F ) be graphs. A map f : V → W is called a homomorphism
of (V,E) into (W,F ) if {f(a), f(b)} ∈ F whenever {a, b} ∈ E. The graph (W,F )
is said to be finer than (V,E) and the graph (V,E) is said to be coarser than
(W,F ) if W = V and E ⊆ F (so that (V,E) is a subgraph of (W,F )).

Given a graph (V,E) and a surjection e : V → W , a graph (W,F ) is called
the quotient graph of (V,E) generated by e if (W,F ) is the coarsest graph on W
for which e is a homomorphism of (V,E) into (W,F ). It is obvious that (W,F )
is the quotient graph of (V, F ) generated by a surjection e : V →W if and only
if, for every pair of vertices c, d ∈W , {c, d} ∈ F ⇔ there exist a ∈ e−1({c}) and
b ∈ e−1({d}) such that {a, b} ∈ E.

Recall that a path in a graph (V,E) is a finite (nonempty) sequence (ai| i ≤
n) = (a0, a1, ..., an) of pairwise different vertices such that {ai−1, ai} ∈ E when-
ever i ∈ {1, 2, ...n}. The number n is then called the length of the path. Thus,
also a single vertex is considered to be a path (of length 0). A cycle in (V,E) is
any finite set of at least three vertices which can be ordered into a sequence to
form a path whose first and last members are joined by an edge. A subset X ⊆ V
is said to be connected if, for every pair a, b ∈ V , there is a path (ai| i ≤ n) such
that a0 = a, an = b and ai ∈ X for all i ∈ {0, 1, ..., n}. A maximal (with respect
to set inclusion) connected subset of V is called a component of the graph (V,E).

A nonempty, finite and connected subset C of V is said to be a simple closed
curve in (V,E) if the set E(a) ∩ C has precisely two elements for every a ∈ C.
Clearly, every simple closed curve is a cycle. A simple closed curve in (V,E) is
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called a Jordan curve if it separates the set V into precisely two components,
i.e., if the induced subgraph V − C of (V,E) has exactly two components.

We will need the following statement:

Lemma 1. Let (V,E) be a graph, e : V → W be a surjection and let (W,F ) be
the quotient graph of (V,E) generated by e. Let e have the property that e−1({y})
is connected in (V,E) for every point y ∈ W and let B ⊆ W be a subset. Then
B is connected in (W,F ) if and only if e−1(B) is connected in (V,E).

Proof. If e−1(B) is connected in (V,E), then B is connected in (W,F ) because
B = e(e−1(B)) (clearly, a homomorphic image of a connected set is connected).
Conversely, let B be connected in (W,F ) and let a, b ∈ e−1(B). Then the pair
e(a), e(b) of points of B may be joined by a path (e(a) = c0, c1, ..., cn = e(b)) in
(W,F ) contained in B. Since (W,F ) is the quotient graph of (V,E) generated
by E, there exist, for every i ∈ {1, 2, ..., n}, points ai−1 ∈ e−1({ci−1}) and
bi ∈ e−1({ci}) such that {ai−1, bi} ∈ E. Put a = b0 and b = an. Then we
get a sequence (b0, a0, b1, a1, b2, a2, ..., bn−1, an−1, bn, an) where {ai−1, bi} ∈ E
for every i ∈ {1, 2, ..., n} and {bi, ai} ⊆ e−1({ci}) for every i ∈ {0, 1, ..., n}. As
e−1({ci}) is connected in (V,E) for every i ∈ {0, 1, ..., n}, the points bi, ai ∈
V may be joined by a path (bi = ai0, a

i
i, ..., a

i
ni

= ai) in (V,E) contained in
e−1({ci}) ⊆ e−1(B) for every i ∈ {0, 1, ..., n}. Consequently, the path (a = b0 =
a00, a

0
1, ..., a

0
n0

= a0, b1 = a10, a
1
1, ..., a

1
n1

= a1, b2 = a20, a
2
1, ..., a

2
n2

= a2, ..., a
n−1
nn−1

=
an−1, bn = an0 , a

n
1 , ..., a

n
nn

= an = b) in (E, V ) connects a and b and is contained
in e−1(B). Thus, e−1(B) is connected in (V,E).

In the sequel, we will consider graphs on Z2 only. For every point (x, y) ∈ Z2,
we denote by H2(x, y) and V2(x, y) the sets of all points that are horizontally
2-adjacent and vertically 2-adjacent to (x, y), respectively, i.e., H2(x, y) = {(x−
1, y), (x + 1, y)} and V2(x, y) = {(x, y − 1), (x, y + 1)}. Further, we denote by
A4(x, y) and A8(x, y) the sets of all points that are 4-adjacent and 8-adjacent
to (x, y), respectively. Thus, A4(x, y) = {(x + i, y + j); i, j ∈ {−1, 0, 1}, ij =
0, i+j �= 0} and A8(x, y) = A4(x, y)∪{(x+ i, y+j); i, j ∈ {−1, 1}}. The graphs
(Z2, A4) and (Z2, A8) are called the 4-adjacency graph and 8-adjacency graph,
respectively. An arbitrary subset A ⊆ A8 is said to be an adjacency on Z2 and
the graph (Z2, A) is said to be an adjacency graph. Thus, adjacency graphs are
exactly the graphs on Z2 that are subgraphs of the 8-adjacency graph, i.e., the
graphs (Z2, A) with the property A(z) ⊆ A8(z) for every z ∈ Z2. In an adjacency
graph (Z2, A), vertices a, b ∈ Z2 are said to be adjacent if {a, b} ∈ A, i.e., if they
are joined by an edge. If an adjacency graph (Z2, B) is a quotient graph of an
adjacency graph (Z2, A) generated by a surjection e : Z2 → Z

2, then we say that
the adjacency B is the quotient adjacency of A generated by e.

Definition 1. The square-diagonal graph is the adjacency graph in which two
points z1 = (x1, y1), z2 = (x2, y2) ∈ Z2 are adjacent if and only if one of the
following four conditions is fulfilled:
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1. |y1 − y2| = 1 and x1 = x2 = 4k for some k ∈ Z,
2. |x1 − x2| = 1 and y1 = y2 = 4l for some l ∈ Z;
3. x1 − x2 = y1 − y2 = ±1 and x1 − 4k = y1 for some k ∈ Z,
4. x1 − x2 = y2 − y1 = ±1 and x1 = 4l − y1 for some l ∈ Z.

A section of the square-diagonal graph is shown in Fig. 1.
When studying digital images, it may be advantageous to equip Z2 with a

structure with respect to which all or most of the cycles in the square-diagonal
graph are Jordan curves. Such a convenient structure given by a topology was
introduced and studied in [12]. In this note, we focus on those convenient struc-
tures on Z2 which are given by adjacencies.
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Fig. 1. A section of the square-diagonal graph

3 Convenient Adjacencies on Z2

Definition 2. An adjacency A on Z2 is said to be an sd-adjacency if every cycle
in the square-diagonal graph is a Jordan curve in (Z2, A).

The two adjacencies on Z2 that are most frequently used for the study of digital
images, namely the 4-adjacency and 8-adjacency, are not sd-adjacencies. An-
other adjacency on Z

2, which has been used since late 1980’s, is given by the
connectedness graph of the Khalimsky topology on Z2 (i.e., the graph on Z2 in
which arbitrary vertices z1, z2 ∈ Z2 are joined by an edge if and only if z1 �= z2
and {z1, z2} is a connected subset of the Khalimsky topological space). This ad-
jacency will be called the Khalimsky adjacency and the corresponding adjacency
graph will be called the Khalimsky graph.

The Khalimsky graph coincides with the adjacency graph (Z2,K) given as
follows:

For any z = (x, y) ∈ Z
2,

K(z) =

{
A8(z) if x+ y is even,
A4(z) if x+ y is odd.
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Fig. 2. A section of the Khalimsky graph

A section of the Khalimsky graph is shown in Fig. 2.
The main result of [2] implies that, in the Khalimsky graph, every simple

closed curve with at lest four points is a Jordan curve . But it is readily verified
that the Khalimsky adjacency is not an sd-adjacency. More precisely, a cycle
in the square-diagonal graph is a Jordan curve in the Khalimsky graph if and
only if it does not turn, at any of its points, to form an acute angle of π

4 - cf.
[2]. It could therefore be useful to replace the Khalimsky adjacency with some
sd-adjacencies allowing Jordan curves to form acute angles of π

4 at some points.
To this end, we define:

Definition 3. An adjacency A on Z2 is said to be basic if, for every point
z = (x, y) ∈ Z2,

A(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A8(z) if x = 4k, y = 4l, k, l ∈ Z,
(A8(z)−A4(z)) if x = 2 + 4k, y = 2 + 4l, k, l ∈ Z,
{(x− 1, y), (x+ 1, y), (m,n)} where (m,n) ∈ {(u, v)} ∪H2(u, v) if

z ∈ V2(u, v) where u = 4k + 2, v = 4l, k, l ∈ Z,
{(x, y − 1), (x, y + 1), (m,n)} where (m,n) ∈ {(u, v)} ∪ V2(u, v) if

z ∈ H2(u, v) where u = 4k, v = 4l+ 2, k, l ∈ Z,

A(z)−H2(z) = V2(z) if x = 4k, y = 4l+ 2, k, l ∈ Z, and
A(z)− V2(z) = H2(z) if x = 4k + 2, y = 4l, k, l ∈ Z.

Basic adjacency graphs are demonstrated in Fig. 3. A section of a basic graph is
obtained by just choosing, for every vertex demonstrated by a bold dot, exactly
one of the three edges denoted by the bold line segments that are incident with
this vertex.

Theorem 1. The basic adjacencies on Z2 are precisely the minimal sd-adjacen-
cies.

Proof. Let A be a basic adjacency on Z2. Clearly, any cycle in the square-
diagonal graph is a simple closed curve in (Z2, A). Let z = (x, y) ∈ Z2 be a
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Fig. 3. A demonstration of (sections of) basic adjacency graphs

point such that x = 4k + p and y = 4l + q for some k, l, p, q ∈ Z with pq = ±2.
Then we define the fundamental triangle T(z) to be the nine-point subset of Z2

given below:

T (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(r, s) ∈ Z2; y − 1 ≤ s ≤ y + 1− |r − x|} if
x = 4k + 2 and y = 4l + 1 for some k, l ∈ Z,
{(r, s) ∈ Z2; y − 1 + |r − x| ≤ s ≤ y + 1} if
x = 4k + 2 and y = 4l − 1 for some k, l ∈ Z,
{(r, s) ∈ Z2; x− 1 ≤ r ≤ x+ 1− |s− y|} if
x = 4k + 1 and y = 4l + 2 for some k, l ∈ Z,
{(r, s) ∈ Z2; x− 1 + |s− y| ≤ r ≤ x+ 1} if
x = 4k − 1 and y = 4l + 2 for some k, l ∈ Z.

Graphically, the fundamental triangle T (z) consists of the point z and the eight
points lying on the triangle surrounding z - the four types of fundamental tri-
angles are represented in the following figure:
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T (z1)
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T (z3) T (z4)

Given a fundamental triangle, we speak about its sides - it is clear from the
above picture which sets are understood to be the sides (note that each side
consists of five or three points and that two different fundamental triangles may
have at most one side in common).
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Now, one can easily see that:

1. Every fundamental triangle is connected (so that the union of two funda-
mental triangles having a common side is connected) in (Z2, A).

2. If we subtract from a fundamental triangle some of its sides, then the result-
ing set is still connected in (Z2, A).

3. If S1, S2 are fundamental triangles having a common side D, then the set
(S1∪S2)−M is connected in (Z2, A) whenever M is the union of some sides
of S1 or S2 different from D.

4. Every connected subset of Z2 having at most two points is a subset of a
fundamental triangle.

Analogously to the proof of Theorem 1 in [14], we may show that the following
is also true:

5. For an arbitrary cycle C in the square-diagonal graph, there are sequences
SF ,SI of fundamental triangles, SF finite and SI infinite, such that, when-
ever S ∈ {SF ,SI}, the following two conditions are satisfied:
(a) Each member of S, excluding the first one, has a common side with at
least one of its predecessors.
(b) C is the union of those sides of fundamental triangles in S that are not
shared by two different fundamental triangles from S.

Given a cycle C in the square-diagonal graph, let SF and SI denote the union
of all members of SF and SI , respectively. Then SF ∪SI = Z2 and SF ∩SI = C.
Let S∗F and S∗I be the sequences obtained from SF and SI by subtracting C from
each member of SF and SI , respectively. Let S∗

F and S∗
I denote the union of all

members of S∗F and S∗I , respectively. Then S∗
F and S∗

I are connected by (1), (2)
and (3) and it is clear that S∗

F = SF − C and S∗
I = SI − C. So, S∗

F and S∗
I are

the two components of Z2 − C by (4) (SF − C is called the inside component
and SI − C is called the outside component). Therefore, A is an sd-adjacency.

To show that A is a minimal sd-adjacency, let B be an sd-adjacency such
that B ⊆ A. Suppose that there is an edge {z1, z2} ∈ A −B. Since (Z2, B) is a
supergraph of the square-diagonal graph, there is a fundamental triangle T (z)
with z ∈ {z1, z2}. Thus, {z1, z2} is one of the three edges incident with z and
the point z′ ∈ {z1, z2} − {z} lies on a side D of T (z). Let S be the fundamental
triangle different from T (z) such that one of the sides of S is D. Then the union
C of all sides of T (z) and S different from D is a cycle in the square diagonal
graph but it is not a Jordan curve in (Z2, B) because the inside part of C, i.e., the
set (T (z)∪S)−C, is evidently not connected in the subgraph Z

2−C of (Z2, B).
Thus, the subgraph Z2 −C of (Z2, B) has more than two components. This is a
contradiction. Therefore, A = B and the minimality of (Z2, A) is proved.

Remark 1. It follows from the proof of Theorem 1 that, if A is a basic adja-
cency on Z2, then an adjacency B on Z2 is an sd-adjacency whenever, for every
edge {a, b} ∈ B−A, there exists a fundamental triangle T with {a, b} ⊆ T such
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that the union of all sides of T is a simple closed curve in (Z2, B). Three sd-
adjacency graphs are obtained as connectedness graphs of the closure operators
on Z2 studied in [11] and [14-15]. Sections of these graphs are shown in Fig. 4.
Note that only the first of the three adjacencies given by these graphs is basic
and that the third adjacency graph is the union of the first two.
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Fig. 4. Sections of the sd-adjacency graphs that coincide with the connectedness graphs
of the closure operators discussed in [11] and [14-15]

4 Quotients of the Basic Adjacencies

We will show that certain interesting adjacencies on Z2 may be obtained as
quotient adjacencies of the basic adjacencies.

Let G be the adjacency Z2 defined as follows:
For any (x1, y1), (x2, y2) ∈ Z2, {(x1, y1), (x2, y2)} ∈ G if and only if one of the

following four conditions is fulfilled:

1. |y1 − y2| = 1 and x1 = x2 = 2k for some k ∈ Z,
2. |x1 − x2| = 1 and y1 = y2 = 2l for some l ∈ Z;
3. x1 − x2 = y1 − y2 = ±1 and x1 − 2k = y1 for some k ∈ Z,
4. x1 − x2 = y2 − y1 = ±1 and x1 = 2l − y1 for some l ∈ Z.

A section of the adjacency graph (Z2, G) is shown in Fig. 5.
The following statement follows from [12], Theorem 12:
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Fig. 5. A section of the adjacency graph (Z2, G)

Theorem 2. G is the quotient adjacency of any of the basic adjacencies on Z2

generated by the surjection g : Z2 → Z2 given as follows:

g(x, y) =

⎧⎪⎪⎨⎪⎪⎩
(2k, 2l) if (x, y) ∈ {(4k, 4l)} ∪ A8(4k, 4l), k, l ∈ Z,
(2k, 2l+ 1) if (x, y) ∈ {(4k + i, 4l+ 2); i ∈ {−1, 0, 1}}, k, l ∈ Z,
(2k + 1, 2l) if (x, y) ∈ {(4k + 2, 4l+ j); j ∈ {−1, 0, 1}}, k, l ∈ Z,
(2k + 1, 2l+ 1) if (x, y) = (4k + 2, 4l+ 2), k, l ∈ Z.

Let H be the adjacency on Z2 defined as follows:
For any (x1, y1), (x2, y2) ∈ Z2, {(x1, y1), (x2, y2)} ∈ H if and only if one of the

following four conditions is fulfilled:

1. |y1 − y2| = 1 and x1 = x2 = k for some k ∈ Z,
2. |x1 − x2| = 1 and y1 = y2 = l for some l ∈ Z;
3. x1 − x2 = y1 − y2 = ±1 and x1 − 4k = y1 for some k ∈ Z,
4. x1 − x2 = y2 − y1 = ±1 and x1 = 4l − y1 for some l ∈ Z.

A section of the adjacency graph (Z2, H) is shown in Fig. 6.
The following statement follows from [12], Theorem 14:

Theorem 3. H is the quotient adjacency of any of the basic adjacencies on Z2

generated by the surjection h : Z2 → Z2 given as follows:

h(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2k + 2l+ 1, 2l− 2k + 1) if (x, y) ∈ {(4k, 4l+ 2)} ∪ A4(4k, 4l+ 2),

k, l ∈ Z,
(2k + 2l+ 1, 2l− 2k − 1) if (x, y) ∈ {(4k + 2, 4l)} ∪ A4(4k + 2, 4l),

k, l ∈ Z,
(x+y

2 , y−x
2 ) if x, y are odd or (x, y) = (4k + 2l, 2l), k, l ∈ Z.

Remark 2. It follows from [12], Theorem 10, that also the Khalimsky adjacency
is a quotient adjacency of any of the basic adjacencies on Z

2, namely that one
generated by the surjection f : Z2 → Z2 given as follows:

f(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2k, 2l) if (x, y) = (4k, 4l), k, l ∈ Z,
(2k, 2l+ 1) if (x, y) ∈ A4(4k, 4l+ 2), k, l ∈ Z,
(2k + 1, 2l) if (x, y) ∈ A4(4k + 2, 4l), k, l ∈ Z,
(2k + 1, 2l+ 1) if (x, y) ∈ {(4k + 2, 4l+ 2)} ∪ (A8(4k + 2, 4l+ 2)−

A4(4k + 2, 4l+ 2)), k, l ∈ Z.
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Fig. 6. A section of the adjacency graph (Z2,H)

It may easily be seen that the surjections g and h from Theorems 2 and 3,
respectively, have the property that g−1({y}) and h−1({y}) are connected in
(Z2, A) for every point y ∈ Z2. Therefore, using Lemma 1 and Theorems 1-3,
we may identify Jordan curves among the simple closed curves in the adjacency
graphs (Z2, G) and (Z2, H).

Theorem 4. Let D be a simple closed curve in (Z2, G) having more than four
points and such that every pair of different points z1, z2 ∈ D with both coordinates
even satisfies A4(z1) ∩ A4(z2) ⊆ D. Then D is a Jordan curve in (Z2, G).

Proof. It may easily be seen that there is precisely one cycle C in the square-
diagonal graph satisfying g(C) = D. Let (Z2, E) be the first of the three sd-
adjacency graphs from Fig. 4. By Theorem 1, C is a Jordan curve in (Z2, E).
C consists of the center points of the sets g−1(z), z ∈ C, and the points laying
between the pairs of center points of the sets g−1(z1) and g−1(z2) where z1, z2 ∈
C are adjacent points in (Z2, G) (clearly, for every pair of points z1, z2 ∈ C
adjacent in (Z2, G), there is precisely one point lying between the center points
of g−1(z1) and g−1(z2) - it is the only point adjacent to each of the two center
points in the square-diagonal graph). Since D is a simple closed curve in (Z2, G),
we have card({(x+ i, y + j); i, j ∈ {−2, 2}} ∩C) = 2 for every point (x, y) ∈ C
with x = 4k + 2 and y = 4l + 2 for some k, l ∈ Z. Further, we have card C >
8 because D has more than four points. The fact that every pair of different
points z1, z2 ∈ g(C) with both coordinates even satisfies A4(z1)∩A4(z2) ⊆ g(C)
implies that (4k, 4l + 2) ∈ C whenever (4k, 4l), (4k, 4l + 4) ∈ C (k, l ∈ Z) and
(4k + 2, 4l) ∈ C whenever (4k, 4l), (4k+ 4, 4l) ∈ C (k, l ∈ Z).

Let C1, C2 be the two components of the induced subgraph Z2−C of (Z2, E)
and put C′

i = Ci − g−1(D) for i = 1, 2. Since C has more than four points, we
have C′

i �= ∅ for i = 1, 2. Let (x, y) ∈ D be a point and write g−1(x, y) briefly
instead of g−1({(x, y)}). Clearly, there exists a point (x, y) ∈ D with x or y even.

(1) Suppose that x is even and y is odd. Then g−1(x, y) = {(2x+ k, 2y); k ∈
{−1, 0, 1}} where (2x, 2y) ∈ C and there is i ∈ {1, 2} such that (2x − 1, 2y) ∈
Ci and (2x + 1, 2y) ∈ C3−i. We also have {(x, y − 1), (x, y + 1)} ⊆ D and,
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Fig. 7. Portions of two subgraphs of the adjacency graph (Z2, G)
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Fig. 8. A portion of a subgraph of the adjacency graph (Z2,H)

consequently, {(2x− 1, 2y− 1), (2x− 1, 2y+1)} ⊆ Ci and {(2x+1, 2y− 1), (2x+
1, 2y+1)} ⊆ C3−i. Suppose thatD contains exactly one of the points (x−2, y−1)
and (x−2, y+1), say (x−2, y−1). Then (x−2, y+1) �∈ D implies g−1(x−2, y+1) =
A8(2x − 4, 2y + 2) ∪ {(2x − 4, 2y + 2)} ⊆ C′

i. It may easily be seen that every
point of C′

i may be joined with (2x − 4, 2y + 2) by a path in (Z2, E) contained
in C′

i. It follows that C′
i is connected. Further, we have (x + 2, y − 1) �∈ D

because, otherwise, {(x + 1, y − 1)} = A4(x, y − 1) ∩ A4(x + 2, y − 1) ⊆ D,
so that D would contain three points adjacent to (x, y − 1) in (Z2, G), namely
(x − 1, y − 1), (x, y) and (x + 1, y − 1), which is impossible. Thus, we have
g−1(x+2, y− 1) = A8(2x+4, 2y− 2)∪ {(2x+4, 2y− 2)} ⊆ C′

3−i. It may easily
be seen that every point of C′

3−i may be joined with (2x+ 4, 2y − 2) by a path
in (Z2, E) contained in C′

3−i. It follows that C
′
3−i is connected.

(2) If x is odd and y is even, then the situation is analogous to the previous
one.

(3) Suppose that both x and y are even. Then, by the assumptions of the
statement, D ∩ A4(x, y) = ∅ and the set A8(x, y)− (A4(x, y) ∪D) has precisely
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two points z = (p, q) and z′ = (p′, q′) such that p �= p′ and q �= q′. It follows
that there is i ∈ {1, 2} such that g−1(p, q) = A8(2p, 2q) ∪ {(2p, 2q)} ⊆ C′

i and
g−1(p′, q′) = A8(2p

′, 2q′)∪{(2p′, 2q′)} ⊆ C′
3−i. Using arguments similar to those

used in (1), we may show that C′
i and C′

3−i are connected.
By (1)-(3), C′

i is connected for i = 1, 2. We clearly have g(C1) ∩ g(C2) =
∅ (because, otherwise, there is a point y ∈ g(C1) ∩ g(C2), which means that
g−1({z}) ∩ C1 �= ∅ �= g−1({z}) ∩ C2 - this is a contradiction because g−1({z})
is connected). Therefore, g(C′

1) ∩ g(C′
2) = ∅. This yields C′

i = g−1(g(C′
i)) for

i = 1, 2, hence g(C′
i) is connected for i = 1, 2 by Lemma 1 and Theorem 2.

Suppose that Z2 −D is connected. Then g−1(Z2 −D) = C′
1 ∪ C′

2 is connected
by Lemma 1 and Theorem 2. This is a contradiction because ∅ �= C′

i ⊆ Ci

for i = 1, 2, C1 and C2 are disjoint and C1 ∪ C2 is not connected. Therefore,
Z2−D = g(C′

1)∪g(C′
2) is not connected and, consequently, g(C′

1) and g(C′
2) are

components of the induced subgraph Z
2 −D of (Z2, G). We have shown that D

is a Jordan curve in (Z2, v).

Example 1. By Theorem 4, every cycle in any of the two graphs sections of which
are shown in Fig. 7 is a Jordan curve in (Z2, G).

The following statement may be proved similarly to Theorem 4. But it may also
be obtained as a consequence of Theorem 8 from [13]:

Theorem 5. Every simple closed curve D in (Z2, H) which is a cycle in the
graph a section of which is shown in Fig. 8 is a Jordan curve in (Z2, H).

5 Conclusion

The sd-adjacencies introduced and studied proved to provide graphs on the
vertex set Z2 having certain natural cycles as Jordan curves, namely arbitrary
cycles in the square-diagonal graph. An advantage of these Jordan curves over
the Jordan curves with respect to the Khalimsky topology on Z2 is that they
may turn, at some points, to form the acute angle π

4 . From this point of view, the
sd-adjacencies provide a more convenient structure on Z

2 than the Khalimsky
topology for the study of digital images. Another advantage of the sd-adjacencies
is that some of their quotient adjacencies may also be used in digital topology
to structure the digital plane because they possess rich enough varieties of Jor-
dan curves (a Jordan curve theorem for each of the quotient adjacencies may
be obtained by using the Jordan curve theorem proved for the sd-adjacencies).
A rich variety of Jordan curves is one of the most important criterions of con-
venience of a structure on Z2 for the study of digital pictures because Jordan
curves represent borders of picture regions (imaged objects). Therefore, the re-
sults presented in this note may be useful for solving the problems of digital
image processing that are closely related to borders such as contour filling, thin-
ning, pattern recognition, etc.
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for Triangular Thinning Algorithms
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Abstract. Thinning is a frequently used strategy to produce skeleton-
like shape features of binary objects. One of the main problems of paral-
lel thinning is to ensure topology preservation. Solutions to this problem
have been already given for the case of orthogonal and hexagonal grids.
This work introduces some characterizations of simple pixels and some
sufficient conditions for parallel thinning algorithms working on triangu-
lar grids (or hexagonal lattices) to preserve topology.

Keywords: Triangular grids, Topology preservation, Thinning.

1 Introduction

The concept of skeletonization serves as a useful shape descriptor in various
areas of image processing and pattern recognition [13]. Thinning is a widely
used iterative technique for producing the skeletons of binary objects [8,16].
Thinning algorithms are composed of reductions (i.e., some object points having
value of “1” in a binary picture that satisfy certain topological and geometric
constrains are changed to “0” ones simultaneously).

A fundamental requirement of these algorithms is topology preservation [7]. At
first, sufficient conditions for the topological correctness of reduction operators
working on orthogonal grids were proposed by Ronse and Kong [6,12].

2D digital pictures on hexagonal and triangular grids have been studied by a
number of authors [7,10]. There were also various thinning algorithms working
on hexagonal and triangular grids proposed in [1,2,5,14,15,17]. For the hexago-
nal case, Kardos and Palágyi established some sufficient conditions for topology
preserving reductions [5]. A triangular grid, which is formed by a tessellation
of regular triangles, corresponds, by duality, to the hexagonal lattice, where the
points are the centers of that triangles, see Fig. 1. The geometry of triangu-
lar grids has been already investigated (see for example [3,11]), however, their
topological properties have been poorly dealt with.

In this paper we study reductions on triangular grids in the view of topology
preservation. For this purpose, first we discuss some characterizations of so-
called simple pixels which play a key role in this field, and we also present some
sufficient conditions for topology preserving reductions. Our result can be applied
to construct topologically correct triangular parallel thinning algorithms.

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 128–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. A triangular grid and the hexagonal lattice dual to it. Triangular pixels are
bounded by thick line segments. Pixel centers are joined with thin line segments.

The rest of this paper is organized as follows. Section 2 briefly introduces some
basic notions of digital topology. Then, in Section 3 we introduce two kinds of
characterizations of simple pixels. Section 4 discusses our sufficient conditions
mentioned above. To illustrate the usefulness of these conditions, we define a
pair of reductions in Section 5 and validate its topological correctness.

2 Basic Notions and Results

We use the fundamental concepts of digital topology as reviewed by Kong and
Rosenfeld [7].

Let us consider the digital space V , and let us call the elements of V pixels.
We refer with the notation Nk(p) to the set of pixels that are k-adjacent to
pixel p ∈ V and let N∗

k (p) = Nk(p) \ {p}. Note that reflexive and symmetric
adjacency relations are generally considered (i.e., p ∈ Nk(p) and if q ∈ Nk(p),
then p ∈ Nk(q)). The sequence of distinct pixels 〈x0, x1, . . . , xs〉 is called a k-path
of length s from pixel x0 to pixel xs in a non-empty set of pixels X ⊆ V if each
pixel of the sequence is in X and xi is k-adjacent to xi−1 (i = 1, . . . , s). Note
that a single pixel is a k-path of length 0. In the special case when x0 = xn,
we call the k-path an k-cycle. Two pixels p, q ∈ V are said to be k-connected in
the set X ⊆ V if there is a k-path from p to q in X . A set of pixels X ⊆ V is
k-connected in the set of pixels Y ⊇ X if any two pixels in X are k-connected
in Y . A set of pixels X ⊆ V is a k-component in the set of pixels Y ⊇ X if X is
k-connected in Y , but the set X ∪{y} is not k-connected in Y for any y ∈ Y \X
(i.e., X is a maximal k-connected set of pixels in Y ).

An (m,n) digital picture is a a quadruple P = (V,m, n,B). Each pixel in
B ⊆ V is called a black pixel and has a value of 1 assigned to it. Picture P is
finite if it contains finitely many black pixels. Each pixel in V \B is called a white
pixel and has a value of 0 assigned to it. Adjacency relation m is assigned to
black pixels, and a black component or an object is an m-connected set of pixels
in B. Adjacency relation n is assigned to white pixels, and a white component is
an n-connected set of pixels in V \B. In a finite picture there is a unique white
component that is called the background . A finite white component is called a
cavity.
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A reduction transforms a binary picture only by changing some black pixels
to white ones (which is referred to as the deletion of 1’s). A 2D reduction does
not preserve topology [6] if any black component is split or is completely deleted,
any white component is merged with another white component, or a new white
component is created.

A black pixel is called a border pixel in an (m,n) picture if it is m-adjacent
to at least one white pixel. A simple pixel is a black pixel whose deletion is
a topology preserving reduction [7]. Let P be an (m,n) picture. The set of
black pixels D = {d1, . . . , dk} is called a simple set of P if D can be arranged
in a sequence 〈di1 , . . . , dik〉 in which di1 is simple and each dij is simple after
{di1 , . . . , dij−1} is deleted from P , for j = 2, . . . , k. (By definition, let the empty
set be simple.)

In this paper our attention is focussed on pictures sampled on the triangular
grid denoted by T (see Fig. 1). Each pixel in T is a regular triangle and a
point in the hexagonal lattice is associated to it [10]. Two kinds of adjacency
relations have been considered in the triangular grid T : two triangles (pixels)
are 3-adjacent if they share an edge, and two triangles are 12-adjacent if they
share at least one vertex. It is easy to see that N3(p) ⊂ N12(p) for any p ∈ T .
The considered adjacencies on the hexagonal lattice is shown in Fig. 2. The set
composed by six pairwise 12-adjacent pixels of T is called a unit hexagon (see
Fig. 2c).

In order to avoid connectivity paradoxes [7] and verify the discrete Jordan’s
theorem [10], (m,n) = (12, 3) and (m,n) = (3, 12) pictures are considered on the
triangular grid T (where m �= n). That is why we intruduce characterizations
of simple points and give suficient conditions for topology preserving reductions
for (12, 3) and (3, 12) pictures in the next two sections.

3 Characterizations of Simple Pixels

If we want to verify whether a reduction preserves topology or not, first we
must be able to determine, which pixels in an object are simple. For this aim, we
present some characterizations of simple pixels in both (12,3) and (3,12) pictures.

Theorem 1. Let p a black pixel in a picture (T,m, n,B) ((m,n) = (12, 3),
(3, 12)). Pixel p is simple if and only if all the following conditions are satisfied:

1. Pixel p is m-adjacent to exactly one m-component of N∗
12(p) ∩B.

2. Pixel p is n-adjacent to exactly one n-component of N12(p) \B.

Proof. First, we prove that if p is simple in picture (T,m, n,B), then Conditions
1 and 2 are fulfilled. Let us denote C(p) and C(p) the number of m-components
of N∗

12(p)∩B and the number of n-components of N12(p)\B, respectively. Thus
we want to prove that C(p) = C(p) = 1. We give an indirect proof for this,
therefore, let us suppose that p is simple but at least one of Conditions 1 and 2
does not hold.
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Fig. 2. Indexing schemes for N3(p) = {p4, p8, p12} and N12(p) = {p1, . . . , p12} (a)-(b),
and a unit hexagon (c)

First, we will see that in this case none of Conditions 1 and 2 is fulfilled, i.e.,
there exist some pixels pi1 , pi2 ∈ N∗

12(p) ∩B and pj1 , pj2 ∈ N12(p) \B such that
pi1 and pi2 are not m-connected in N∗

12(p) ∩ B, and the pixels pj1 , pj2 are not
n-connected in N12(p) \B:

– The assumption C(p) = 0 implies that p is an isolated pixel, which contra-
dicts the simplicity of p since an object is completely deleted if an isolated
point is deleted. Hence, C(p) �= 0.

– The relationship C(p) = 0 means that p is not a border pixel, thus again p
could not be simple since deletion of a non-border pixel creates a new cavity.
Therefore, C(p) �= 0.

– Let us examine the case when C(p) ≥ 2. This directly implies that there
exist two pixels pi1 , pi2 ∈ B such that pi1 and pi2 are not m-connected in
N∗

12(p) ∩B.
• If (m,n) = (12, 3), then p must have two white 3-neighbors, or else any
pixel in N∗

12(p)∩B would be 12-adjacent to at least one black 3-neighbor
of p, and as any two 3-neighbors of p are 12-adjacent, as well, pi1 and
pi2 would be 12-connected in N∗

12(p) ∩ B. Let us denote the mentioned
two white 3-neighbors pj1 and pj2 . For the sake of clarity, let for example
pj1 = p4, pj2 = p8. (Any other possible case could be examined similarly
because of the symmetrical structure of N12(p).)
If p12 is a black pixel, then at least one of the pixels p5, p6, and p7 must
be black, and if p12 is white, then at least two of the sets {p1, p2, p3},
{p5, p6, p7}, and {p9, p10, p11} must contain a black pixel, or else p would
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be 12-adjacent to exactly one black component in N∗
12(p)∩B, which is a

contradiction with our assumption. Hence, p4 and p8 are not 3-connected
in N∗

12(p)\B. Consequently, there exist two black pixels q, r ∈ N∗
12(p)∩B

such that q and r are not 12-adjacent in N∗
12(p) ∩ B and they are not

contained in the same 3-path between pj1 and pj2 in N∗
12(p), and thus,

pj1 and pj2 are not contained in the same 3-path between q and r in
N∗

12(p). Without loss of generality, let pi1 = q and pi2 = r.

• If (m,n) = (3, 12), then pi1 and pi2 are 3-adjacent to p. Let, for example,
pi1 = p4 and pi2 = p8. Each of the sets {p3, p5} and {p7, p9} contains at
least one black pixel, or else a black component would be split by the
removal of p. If p12 is a white pixel, then at least one of the pixels p5,
p6, and p7 must be white, and if p12 is black, then at least two sets of
{p1, p2, p3}, {p5, p6, p7}, and {p9, p10, p11} must contain a white pixel, or
else p would be 3-adjacent to exactly one 3-component of N∗

12(p) ∩ B.
By the latter four relationships it can be shown that p is 12-adjacent
to at least two white 12-components of N∗

12(p) \ B. This implies that
there exist two white pixels q, r ∈ N∗

12(p) \B such that q and r are not
12-adjacent in N∗

12(p)\B and they are not contained in the same 3-path
between pi1 and pi2 in N∗

12(p). It is also easy to see that q and r are not
12-connected in N∗

12(p) \ B. Without loss of generality, let pj1 = q and
pj2 = r.

– Now, let us consider the case when C(p) ≥ 2, i.e., there exist two pixels
pj1 , pj2 ∈ T \B such that pj1 is not n-connected to pj2 in N12\B. We can get
a similar result to the one derived in the previous case, if we follow the same
train of thoughts for the situations (m,n) = (3, 12) and (m,n) = (12, 3), as
in the previous case for (m,n) = (12, 3) and (m,n) = (3, 12), respectively.
To do this, we only need to interchange the adjectives “white” and “black”,
the set notations N∗

12(p) ∩ B and N12(p) \ B, and the indices i1, i2 and j1,
j2, respectively.

Let us take such pixels pi1 , pi2 ∈ N∗
12(p) ∩B and pj1 , pj2 ∈ N12(p) \B that have

the property shown above. Obviously, pi1 and pi2 are m-connected in B \ {p},
furthermore, pj1 and pj2 are n-connected in T \ B, or else a black component
would be split by the removal of p, or two white components would be merged,
which contradicts the simplicity of p.

Let P1 be the set of the pixels of an m-cycle that we get if we extend an
m-path between pi1 and pi2 with p, furthermore, let P2 be the set of the pixels
of an n-cycle that we get if we extend an n-path between pj1 and pj2 in T \ B
with p.

It is easy to see that picture (T, n,m, T \P1) contains two objects. Due to the
assumptions on pj1 and pj2 , it follows that pj1 and pj2 are not n-connected in
T \ P1 (i.e., pj1 and pj2 are contained in distinct objects in picture (T, n,m, T \
P1)), or else we came to a contradiction with our assumption that pj1 and pj2
are not contained in the same 3-path between pi1 and pi2 in N∗

12(p).
An object of picture (T, n,m, T \ P1) must contain all elements of P2 \ {p},

or else pj1 and pj2 would not be n-connected in T \B, thus the number of white
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components would be reduced by the removal of p. However, this leads to a
contradiction with the above stated fact that pj1 and pj2 are not contained in
the same object in (T, n,m, T \ P1).

Hence from this follows that if p is simple, then both of Conditions 1 and 2
hold.

Now, let us suppose that Conditions 1 and 2 are satisfied. We will see that
the removal of p preserves topology:

– Let q1 and q2 be two black pixels in (T,m, n,B) such that q1 and q2 are both
m-connected to p, i.e., these pixels are contained by the same black compo-
nent. It is easy to verify that in this case, there exists anm-path in B between
q1 and q2 that contains a subpath 〈pi1 , p, pi2〉 (i1, i2 ∈ {1, 2, . . . , 12}, i1 �= i2).
However, by Condition 1, pi1 and pi2 are also m-connected in N∗

12(p) ∩ B,
which means that there is also an m-path between q and r that does not
contain p. This implies that after the removal of p, q, and r will still fall into
the same black component, i.e., no black component is split by the removal
of p.

– Now, let r1 and r2 be two white pixels belonging to distinct white components
in (T,m, n,B). If r1 is n-connected to a pixel pj ∈ N3(p)\B, then r2 cannot
be n-connected to any pixel in N12(p) \B, or else r1 and r2 would fall into
the same white component, as, by Condition 2, pj is n-connected to all pixels
of N3(p) \ B. Therefore, after the removal of p, r1 and r2 will still fall into
two distinct white components, which means that no cavity is merged with
the background nor with another cavity by the removal of p.

– Furthermore, no object is completely removed by the deletion of p, or else
this would mean that p is an isolated object pixel, but this would contra-
dict Condition 1. Even new cavities cannot be created by the removal of p,
because this could only arise, if N∗

m(p) contained only black pixels, which
contradicts Condition 2.

By the above observations we can state that if Conditions 1 and 2 hold, then p
is simple. ��

Some configurations of simple and non-simple pixels in (12,3) pictures are shown
in Fig. 3.

We remark that Theorem 4.1 in [7] states a similar relationship as above for
(8,4) and (4,8) pictures sampled on the orthogonal grid Z

2.
The following lemma points out to a kind of a duality between (12,3) and

(3,12) pictures concerning simple pixels.

Lemma 1. Pixel p is simple in picture (T,m, n,B) ((m,n) = (12, 3), (3, 12)), if
and only if p is simple in picture (T, n,m, (T \B) ∪ {p}).

Proof. Let us suppose that p is simple in picture (T,m, n,B). Note that we get
picture (T, n,m, T \B) from (T,m, n,B) by recoloring all its pixels and switching
the applied types of adjacency relation between black and white pixels. From
this follows, that each white/black component of (T, y, x, T \ B) coincides with
a black/white component of (T, x, y, B).
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Fig. 3. Examples for a simple (a) and three non-simple (b-d) pixels in (12,3) pictures.
Pixel p is not simple in (b) since its deletion may split an object (Condition 1 of
Theorem 1 is violated). A white 3-component (singleton cavity) is created by deletion
of p in (c) (Condition 2 of Theorem 1 is violated). Pixel p is also not simple in (d),
since its deletion completely deletes a (singleton) object (Condition 1 of Theorem 1 is
violated).

By Theorem 1, p is m-adjacent to exactly one m-component of N∗
12(p)∩B in

(T,m, n,B), which we will hereafter denote by C1. Furthermore, p is n-adjacent
to exactly one n-component of N12(p) \B, which will be denoted by C2.

According to the above observations, it is easy to show that in picture (T, n,m,
T \B) and thus in picture (T, n,m, (T \B)∪{p}) the white component coinciding
with C1 is the onlym-component ofN12(p)\(T \B) beingm-adjacent to p, and the
black component coinciding with C2 is the only n-component of N∗

12(p)∩ (T \B)
being n-adjacent to p. Hence, p is simple in picture (T, n,m, (T \ B) ∪ {p}), as
well.

The proof in the opposite direction can be carried out similarly. ��

For a better understanding of the concept of Lemma 1 , let us again examine
the configurations in Fig. 3. It can be easily verified that if we “invert” those
configurations by switching the black and white pixels in N12(p), then we get
some other configurations such that the first example (“inverted” version of
Fig. 3a) represents a simple pixel in a (3,12) picture, and the remaining three
examples (“inverted” versions of Figs. 3b-d) refer to non-simple pixels in (3,12)
pictures.

Using the relationship formulated in Theorem 1 to check simple pixels may not
be convenient for implementational purposes. Here we give some configurations
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(so-called matching templates) to decide whether an object pixel p is simple
or not, which make possible an efficient implementation of the verification of
simplicity. We define a matching template as a pair (τb, τw), where τb and τw are
both subsets of the set {1, 2, . . . , 12} such that τb∩τw = ∅. We say that an object
pixel p in a picture (T,m, n,B) ((m,n) = (12, 3), (3, 12)) matches a matching
template τ = (τb, τw), if the following two conditions hold:

– if k ∈ τb (k ∈ {1, 2, . . . , 12}), then pk ∈ N∗
12(p) ∩B, and

– if k ∈ τw (k ∈ {1, 2, . . . , 12}), then pk ∈ N∗
12(p) \B.

In the lattice representation of the matching template τ = (τb, τw) with central
pixel p, pk is depicted in black (white) if k ∈ τb (k ∈ τw), furthermore, pk is
denoted by “.” if k /∈ τb ∪ τw.

Let T (m,n)
i denote the set of matching templates composed by the match-

ing template T
(m,n)
i in Figs. 4-5 and its rotations by k · 60 degrees ((m,n) =

(12, 3), (3, 12); i = 1, 2, 3; k = 1, . . . , 5), and let T (m,n) = T (m,n)
1 ∪ T (m,n)

2 ∪
T (m,n)
3 .

p
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x
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. .

.

.
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.

p

. .

.

.
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.

.

.

T
(12,3)
1 T

(12,3)
2 T

(12,3)
3

Fig. 4. Matching templates for characterizing the simplicity of a pixel p in (12,3)
pictures. Notations: each position marked • matches a black pixel; ◦ matches a white
point; at least one of the pixels x, y, and z is black; positions denoted by “.” refer to
pixels of arbitrary color.

Theorem 2. A black pixel p is simple in an (m,n) picture, if and only if it
matches an element of the set of matching templates T (m,n) ((m,n) = (12, 3),
(3, 12)).

Proof. It can be easily verified that we can get the templates of T (3,12)
4−i (i =

1, 2, 3) from the elements of T (12,3)
i by recoloring their pixels and by switching

the types of adjacency relations applied on their black and white pixels. Hence,
by Lemma 1 it is sufficient to carry out the proof for (m,n) = (12, 3).

By observing the possible configurationswe can state that if p hasmore than one
white 3-neighbors, then there exists a white 3-path between them, and any pixel
coincidingwithapositiondenotedby“.” is 12-connectedwithanyblackpixel.From
these follows that p represents a simple pixel in each of the mentioned templates.



136 P. Kardos and K. Palágyi
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Fig. 5. Matching templates for characterizing the simplicity of a pixel p in (3,12)
pictures. Notations: each position marked • matches a black pixel; ◦ matches a white
point; at least one of the pixels x, y, and z is white; positions denoted by “.” refer to
pixels of arbitrary color.

Let us suppose that p is simple but it does not match any template of T (12,3)
i

(i = 1, 2, 3). Even in this case, p must be 3-adjacent to at least one white pixel,
or else p would not be simple. Hence, the neighborhood of p differs in some

pixels from the ones shown in T (12,3)
i . If we changed the color of a white pixel

in N∗
12(p) \N∗

3 (p) to black, then this would obviously break the 3-connectedness
of two white 3-neighbors of p, which, by Theorem 1, would cause that p is not
simple after the recoloring. Furthermore, if we changed every black pixels in

{x, y, z} to white in the templates of T (12,3)
1 , then p would be an isolated object

pixel, i.e., a non-simple pixel. Hence, if p does not match any of the templates
of T (12,3), then p is not simple. ��

4 Sufficient Conditions for Topology Preserving
Reductions

Based on Theorems 1 and 2 we present some sufficient conditions for topology
preservation on both (12,3) and (3,12) pictures.

Before we formulate the main theorem of this paper, first we provide two
important relationships.

Lemma 2. Let O be a reduction, and let S be the set of black pixels removed
by O from picture P = (T,m, n,B) ((m,n) = (12, 3), (3, 12)). O is topology-
preserving, if for any pixel p ∈ S and for any set Q ⊆ S ∩N∗

12(p), p is simple in
picture (T,m, n,B\Q).

Proof. We note that the proof of the alternative version of this lemma for (6,6)
pictures given in Lemma 2 of [5] does not rely on any special property of the
hexagonal grids, therefore the proof for the triangular case can be done exactly
the same way, only some notations will change. ��
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Lemma 3. Let us suppose that p and q are simple pixels in picture (T,m, n,B),
where (m,n) = (12, 3), (3, 12). Then the following statements are equivalent:

1. Pixel q is simple in picture (T,m, n,B \ {p}).
2. Pixel p is simple in picture (T,m, n,B \ {q}).

Proof. Let x, y ∈ {p, q}, where x �= y. Let us suppose that x is simple in picture
(T,m, n,B \ {y}). From this follows that {p, q} is a simple set. If y would not
be a simple pixel in (T,m, n,B \ {x}), then this would imply that the removal
of y is not a topology-preserving reduction in (T,m, n,B \ {x}), thus even the
removal of {x, y} = {p, q} is not topology-preserving in (T,m, n,B). However,
this would contradict the simplicity of {p, q}. ��

Now we are ready to discuss our sufficient conditions for topology preservation.

Theorem 3. A reduction O is topology-preserving in picture P = (T,m, n,B)
((m,n) = (12, 3), (3, 12)), if all of the following conditions hold:

1. Only simple pixels are deleted by O.
2. If O removes two n-adjacent pixels p and q, then p is simple in (T,m, n,

B\{q}), or q is simple in (T,m, n,B\{p}).
3. O does not delete completely any object contained in a unit hexagon.

Proof. Let us suppose that O fulfills Conditions 1-3, and let us denote by S the
set of black pixels removed by O. By Condition 1, each member of S is a simple
pixel. By Lemma 2, it is sufficient to show that for any pixel p ∈ S and for any
set Q ⊆ S ∩N∗

12(p), p is simple in picture (T,m, n,B\Q).
Let p ∈ S and Q ⊆ S ∩ N∗

12(p). As p is simple, it matches a template X ∈
T (m,n) in (T,m, n,B) by Theorem 2. If X �= T (3,12)

3 , then let Q′ ⊆ Q the set of
black pixels coinciding with a position denoted by “.” in X , else let Q′ be the
set of black pixels coinciding with one of the positions denoted by x, y, and z.
Obviously, if Q′ = Q, then p will match X even in picture (T,m, n,B \Q).

Let us suppose that X ∈ T (m,n)
1 . If (m,n) = (3, 12), then Q′ = Q, as if we

removed any black 3-neighbor of p, then p would not match any template of
T (m,n), which, by Theorem 2, would contradict Condition 2.

Hence, in this case the property to be proved holds by the above observation
on Q′. Let us examine the case (m,n) = (12, 3) and let us introduce the set
R = {x, y, z}∩B. It is obvious that Q ⊆ R. If each element of R is simple, then
it is easy to see by Condition 2 and Theorem 1 that this can only occur if p and
the elements of R constitute an object that can be covered by a unit hexagon.
This and Condition 3 implies that p is not removed by O, i.e., p /∈ S. If any
element of R is simple, then p will obviously match X in picture (T, 12, 3, B \Q),
hence by Theorem 2, it remains simple after the removal of Q.

Let us suppose that X ∈ T (m,n)
2 ∪T (m,n)

3 . If (m,n) = (3, 12), then p would not
match X (nor any other possible templates), hence, p would not be simple by
Theorem 2. However, this would contradict Condition 2 (see Lemma 3), therefore
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O does not remove any pixel in N∗
12(p) \ (N∗

3 (p) ∪ Q′). Consequently, if O does
not delete any black 3-neighbor of p, then Q = Q′ must hold, thus the property
to be proved holds by the above observation on Q′.

Let q, r ∈ N∗
3 (p) ∩ B. The following statements can be formulated on q and

r, depending on the possible values of X :

– If X ∈ T (12,3)
2 , then q = r, as p has only one black 3-neighbor.

– If X ∈ T (12,3)
3 or X ∈ T (3,12)

2 , then N∗
3 (p) ∩ B = {q, r}. As both q and r

have at least two black 3-neighbors, none of them matches any template of

T (m,n)
1 . By careful examination of the templates of T (m,n)

2 and T (m,n)
3 , we

can state that r may even not match these templates after the removal of q,
and the same goes for q after the deletion of r, i.e., {q, r} is not a simple set.
Hence, by Condition 2, O may only remove at most one black 3-neighbor of
p.

– If X ∈ T (3,12)
3 , then O may not remove the black 3-neighbor of p being not

3-adjacent to x nor to z in X , or else p would not remain simple by Theorem
1, hence Condition 2 would fail (see Lemma 3). Therefore, O may remove at
most two black 3-neighbors of p, namely the common black 3-neighbors of
pixels p, x and p, z. Let these pixels be q and r, respectively. By applying
Theorems 1 and 2, we can easily show that if O removes q, then x ∈ T \B,
and if O deletes r, then z ∈ T \ B must be satisfied. Hence, if {q, r} is a
simple set, then, according to the above observations onN∗

12(p)\(N∗
3 (p)∪Q′),

Q = {q, r} or Q = {q, r, y} holds, furthermore, after the removal of {q, r},
p will match a template of T (3,12)

1 . If y ∈ Q, then we can easily verify by
Theorem 2 that the colors of q, r does not influence the simplicity of y, and
in the latter template, the color of y does not influence the simplicity of p.
From this we can conclude that p is simple even in picture (T, 3, 12, B\Q). If
set {q, r} is not simple, then O can only remove at most one black 3-neighbor
of p.

Hereafter, it is sufficient to examine the case when O removes exactly one black
3-neighbor of p, as all the other cases are previously discussed. For the sake of
simplicity, let q ∈ N∗

3 (p)∩B be this removed pixel, i.e., let q ∈ Q. By Condition
2 and Lemma 3, p is simple after the removal of q, hence, p matches a template

Y ∈ T (m,n)
1 ∪ T (m,n)

2 after q is deleted.
Let us examine the situation after the removal of q depending on the value of

Y . We will prove that for any possible value of Y all the pixels of Q \ {q} are
simple in (T,m, n,B \ {q}), hereafter we can reduce the remaining part of the
proof to one of the previously discussed situations.

– If Y ∈ T (12,3)
1 , then obviously Q ⊆ {q, x, y, z}. It is easy to verify that the

color of p does not influence the properties of pixels x, y, z formulated in
Theorem 1, i.e., the pixels of {x, y, z}∩Q remain simple after the removal of

q. From this point, the proof can be reduced to the case when X ∈ T (12,3)
1 .
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– If Y ∈ T (3,12)
1 , then, by Condition 2, Lemma 3, and Theorem 1, each element

of the sets Q∩N∗
12(q) and Q\N∗

12(q) remains simple after q is deleted. From

this point, the proof can be reduced to the case when X ∈ T (3,12)
1 .

– If Y ∈ T (12,3)
2 , then, by Theorem 1, the elements of Q\N12(q) remain simple

after the removal of q. Obviously, the pixels of Q ∩ (N12(q) \ N3(q)) fulfill
Condition 2 of Theorem 1, furthermore, as they with q are elements of a
unit hexagon that contains a non-deletable black pixel, and as the elements
of a unit hexagon are pairwise 12-adjacent, pixels belonging to Q∩ (N12(q)\
N3(q)) also satisfy Condition 1 of Theorem 1, independently of the color of q.
Consequently, by Theorem 1, the elements of Q∩ (N12(q)\N3(q)) are simple
in (T,m, n,B \ {q}), as well. In Y we can note that the white element on
the position corresponding to the removed pixel q may have only one black
3-neighbor. Let Q ∩N3(q) = {s}. Pixel s is simple even after q is removed,
because of Condition 2 and Lemma 3. Hence, each pixel of Q \ {q} remains
simple after the removal of q. Hereafter, the proof can be reduced to the case

when X ∈ T (12,3)
2 and the remaining black 3-neighbor of p is not deleted.

– If Y ∈ T (3,12)
2 , then, by Condition 2 and Lemma 3, each element ofQ∩N∗

12(q)
remains simple after q is deleted, and the pixels of Q \N∗

12(q) were not even
deletable in the initial picture by the previous observations. From this point,

we can reduce the proof to the situation where X ∈ T (3,12)
2 and none of the

remaining black 3-neighbors of p are deleted.

Herewith, we have examined all possible cases. ��

We note that the above result is similar to Ronse’s sufficient conditions for
topology preserving reduction on (8,4) and (4,8) pictures on the 2D orthogonal
grid Z2 [12].

Figure 6 illustrates two examples for reductions on (12,3) pictures. The first
one (see Fig. 6b) satisfies all the conditions of Theorem 3, therefore it is topology
preserving. The second one (see Fig. 6c) violates Conditions 2 and 3 of Theorem
3, and it is topologically incorrect.

(a) (b) (c)

Fig. 6. The original picture (a) and the results produced by two reductions (b-c) on
it. Deleted pixels are depicted in gray. The first reduction satisfies all conditions of
Theorem 3, while the second one violates Conditions 2 and 3 of Theorem 3.
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5 Validating Topology Preservation

Here we introduce a pair of reductions relying on the so-called subfield-based
thinning strategy, which rests on the decomposition of the digital space into
several subfields [4]. During an iteration step, the subfields are alternatively
activated, and only pixels in the active subfield may be deleted. We propose the
partitioning of the triangular grid T into two subfields, SF (0) and SF (1) (see
Fig. 7.
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Fig. 7. Partition of T into two subfields. The pixels marked i are in SF (i) (i = 0, 1).

By carefully examining the pattern in Fig. 7 we can observe the following
property of this partitiong:

Proposition 1. If p ∈ SF (i) (i = 0, 1), then N∗
3 (p) ∩ SF (i) = ∅.

Thinning algorithms must care about not only preserving the topology but also
the shape of the original object. The latter requirement is usually fulfilled by
adding some geometric constraints to the deleting conditions of the algorithms.
For this purpose, here we give a definition of so-called end pixels.

Definition 1. A black pixel p in a (12, 3) picture is called an end pixel if there
are at most two black pixels 12-adjacent to p, and at most one of them is 3-
adjacent to p.

We define our reductions on (12,3) pictures as follows.

Definition 2. Let R-SF-i be the reduction that deletes a black pixel p ∈ SF (i)
from a (12, 3) picture if p is simple and not an end pixel (i = 0, 1).

Now, using our sufficient conditions introduced in the previous section, we prove
that the above reductions are topology preserving.

Theorem 4. Both reductions R-SF-0 and R-SF-1 are topology-preserving.

Proof. As R-SF-i (i = 0, 1) deletes only simple pixels, Condition 1 of Theorem
3 is satisfied. Furthermore, Proposition 1 implies that if R-SF-i deletes p, then
p does not remove any q ∈ N3(p), which means that R-SF-i fulfills Condition 2
of Theorem 3.
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Let S be a set of the black pixels of an object contained in a unit hexagon,
and let us denote by |S| the number of elements in S. If there is a black pixel
p ∈ S such that p /∈ SF (i), then it is obvious that p will not be removed. Let
us suppose that S ⊂ SF (i). It can be readily seen that in this case |S| ≤ 3. If
|S| = 1, then the only object pixel in S is a non-simple pixel, which will not be
deleted by R-SF-i. If |S| = 2 or |S| = 3, then the pixels of S are all end pixels,
which are also retained by R-SF-i. Having examined all the possible cases for
the content of S, we can conclude that Condition 3 of Theorem 3 also holds.

Hence, R-SF-i (i = 0, 1) is topology-preserving by Theorem 3. ��

Let us perform these two reductions succesively in a (12,3) picture shown in
Figure 8a. The effects of operators R-SF-0 and R-SF-1 can be observed in Figs.
8b-c.

(a) (b) (c)

Fig. 8. A picture of a triangle (a) and the results produced by successively applying
the reductions R-SF-0 (b) and R-SF-1 (c) in it

6 Conclusions

This paper has concerned itself with the topological properties of (12,3) and
(3,12) pictures. We have given some characterizations of simple pixels in these
types of pictures, and as the main novelty of our work, we have presented some
sufficient conditions to ensure topology preservation for reductions on (12,3) pic-
tures. As an illustration for the usefulness of these conditions, we have defined
a pair of subfield-based reductions, and we have verified their topological cor-
rectness. As a future work we intend to give further conditions that are capable
of constructing triangular thinning algorithms whose topological correctness is
automatically guaranteed.
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Cellular Topology on the Triangular Grid
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Abstract. In this paper we use the triangular grid and present a co-
ordinate system that is appropriate to address elements (cells) of cell
complexes. Coordinate triplets are used to address the triangle pixels of
both orientations, the edges between them and the points at the corners
of the triangles. To illustrate the utility of this system some topological
algorithms, namely collapses and cuts are presented.

Keywords: Coordinate system, Triangular grid, Topology, Digital
geometry.

1 Introduction

In digital geometry, i.e., in grids (tessellations of the plane) there are some phe-
nomena which do not occur in the Euclidean plane. For instance, there are
neighbor points (pixels), etc. there can be two 8-connected lines that cross on
each other without sharing a pixel (as the two diagonals of a chessboard; this
phenomena is connected to the Jordan curve theorem and its digital variations).
There are several important examples for such a non-correspondence of concepts
[9] and several algorithms and methods of digital image processing are based on
these non-correspondences. In digital image processing and in computer graphics
discrete space is used. In digital geometry spaces are digital, i.e., they consist
of points that can be addressed by integer coordinate values. The square and
cubic grids are well-known and frequently used in applications, since they use
a Cartesian coordinate system. To use other grids, one needs a good coordi-
natization method. The points of the hexagonal grid can be addressed by two
integers [8]. There is a more elegant solution using three coordinate values with
zero sum reflecting the symmetry of the grid [6]. Similarly the triangular grid
can be described with three values [14–17] (see Fig. 1).

Topology is an important part of geometry and so, of image processing theory
[5, 10]. One of the main concepts is the cell complex. For digital images geometry
of locally finite spaces is given [13]. Two and three dimensional images are usually
stored in two and three dimensional arrays. Each element of the array contain a
color, a density, etc. value. For topological calculations we need a modification:
a two dimensional image, as a cell complex, contain not only two-dimensional
pixels, but one dimensional edges and zero dimensional points, as well. Usually
we do not care about these lower dimensional parts since only pixels are shown

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 143–153, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. A symmetric coordinate frame for triangular pixels

in a screen, only they are printed out etc. However for image processing feature
these parts play also importance. In this paper we extend the coordinate system
addressing not only the triangle pixels, but also the edges and the points on
their boundaries with coordinate triplets analogously to the method given by
Kovalevsky in [12, 13]. In this way the lower dimensional parts of the picture
can also be shown in the screen and corresponding image processing algorithms
can also be described more elegantly (see e.g. [11]).

We note here that there is another system for triangles that uses three coordi-
nate values: the barycentric coordinates. They were discovered by Möbius (see,
e.g., [4]). They can effectively be used to address points inside the triangle with
triplets. Actually, the values can be seen as masses located in the three corners
of the triangle resulting the center of mass at the addressed point. Our aim in
this paper is not to address the points of a triangle but to address the various
objects of the (digital) triangular grid.

The structure of the paper is as follows. In the next section we recall some
earlier results concentrating on the square grid. In Section 3 we present the new,
topological coordinate system for the triangular grid, further cell complexes and
collapses and cuts are described using the new coordinate system to present its
usability. Finally some conclusions and future thoughts close the paper.

2 Preliminary Results: The Square Grid

In this section we recall and adapt some definitions from [12] to our case. We
also present some details about the case of the square grid in Subsection 2.1.

Definition 1. An abstract cell complex C = (E,B, d) is a set E of abstract
elements (cells) provided with an antisymmetric, irreflexive, and transitive binary
relation B ⊂ E ×E called the bounding relation, and with a dimension function
d : E → {0, 1, 2} such that d(e′) < dim(e′′) for all pairs (e′, e′′) ∈ B.
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The maximum dimension d of the cells of an abstract cell complex is called its
dimension. We consider complexes of dimensions 2 in the triangular grid. Their
cells with dimension 0 (0-cells) are called points (or nodes), cells of dimension
1 (1-cells) are called edges, cells of dimension 2 (2-cells) are called pixels (or
triangles). If (e′, e′′) ∈ B, then it is usual to write e′ < e′′ or to say that the
cell e′ bounds (or it is on the boundary of) the cell e′′. Two cells e′ and e′′ of
an abstract cell complex C are called incident to each other in C if and only if
either e′ = e′′, or e′ bounds e′′, or e′′ bounds e′.

It is very crucial that in abstract cell complexes no cell is a subset of another
cell, as it is the case in simplicial and Euclidean (or geometric) complexes [5, 7].
Exactly this property of abstract cell complexes makes it possible to define a
topology on the set of abstract cells independently from any Hausdorff space.
The topology of abstract cell complexes with some applications to computer
imagery has been described in [13].

Definition 2. A subcomplex S = (E′, B′, d′) of a given abstract cell complex
C = (E,B, d) is a complex such that E′ ⊂ E and the relation B′ is a restriction
of B to E′, i.e., it is the intersection of B with E′ × E′. The dimension d′ is
equal to d for all cells of E′.

Since a subcomplex is uniquely defined by the subset E′ it is possible to apply
set operations as union, intersection and complement to abstract cell complexes.
We could say the term subset in the meaning subcomplex. The connectivity in
abstract cell complexes is the transitive hull of the incidence relation. It can be
shown that the connectivity thus defined corresponds to classical connectivity.

2.1 The Square Grid

Here we recall the topological raster and the extended (uniform) coordinate
system used by Kovalevsky to address two-, one-, and zero-dimensional cells,
i.e., square pixels, edges and points (corners) on the square grid (Fig. 2). The
pixels are addressed by two odd values, the points of the grid are addressed by
two even values, the horizontal edges of the grid is addressed by a vector with
even first and odd second component, while vertical edges of the grid has vector
with odd first and even second component. In this way each cell has different
coordinates, and the number of odd values gives the dimension of the cell.

This topological (or combinatorial) coordinate system is very helpful to use
various dimensional cells in the same framework in topological image processing
algorithms.

In the next section we will show similar uniform coordinate system for the
triangular grid.

3 The Extended Coordinate System for the Triangular
Grid

In this section we present an extended coordinate system by modifying the sys-
tem defined and used in [14–17] (Fig. 1) to include addressing the zero and one
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Fig. 2. Cartesian cells and some of their coordinate values

dimensional cells: to use not only the triangle pixels, but the edges between two
neighbor triangles and their endpoints, i.e., the corners of the triangles (the nodes
of the grid) we need to address them also. Since we want to use only integers,
first we modify the original coordinate system as follows. For any triangle that
had coordinate triplet (x, y, z) we use the triplet (2x, 2y, 2z) in the new system.

We note here that the square grid is selfdual: the (neighbor) structure of the
square pixels is the same as the (neighborhood) structure of the zero-dimensional
points of the grid. Therefore we have a choice that points or squares should have
vector with even coordinate values. We presented Kovalevsky’s choice in the
previous section. (Actually everything goes in an analogous way with the other
choice.) However the graph theoretical dual of the triangular grid is the hexag-
onal grid: while the (neighborhood) structure of the pixels form the triangular
grid, i.e., we use the triangles; the zero-dimensional points (nodes) of the grid
forms a hexagonal structure. For this reason we use even coordinate values for
the triangle pixels.

There are two types of triangles: shape� and shape ∇. In the original coordi-
nate system they are addressed by zero sum coordinate triplets and by one-sum
coordinate triplets, respectively. According to this fact the names even- and
odd- triangles are used. By the structure of the grid a triangle pixel has three
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neighbor pixels, and all of them have the opposite shape than the considered
triangle. In our new coordinate system the even triangles (�) have zero-sum
coordinate values, while odd triangles (∇) have two-sum coordinate triplets.
Then the neighbor triangles (triangles sharing an edge) have two coordinate
values in which they do not differ, and the difference in the third coordinate
value is ±2. Therefore the edge between them can be addressed by two even
coordinates (the same as for the two triangles) and an odd value that is the
average of the values of the two triangles. Actually, having two neighbor triangles
with coordinates (x1, y1, z1) and (x2, y2, z2), the edge between them is addressed
by the triplet (x1+x2

2 , y1+y2

2 , z1+z2
2 ) (a triplet with two even and an odd value).

The sum of the coordinate values of every edge is one. The edges of the grid lies on
gridlines that are orthogonal to one of the coordinate axes. The odd coordinate is
the first element of the vector for edges orthogonal to axis x. Edges orthogonal
to axis y has odd value at their second coordinate. Finally, edges orthogonal
to axis z are described by vectors having odd third value. Accordingly a node
(zero-dimensional cell, point) is described by a triplet with odd values. The sum
of these coordinate values is one for each point. Actually, these points form a
hexagonal-grid structure, and therefore they can be described by triplets with
a fixed coordinate sum (based on [6, 14, 15, 18, 19]). See Fig. 3 also, where a
small segment of the grid is shown with the coordinate values. Consequently, the
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Fig. 3. The topological coordinate system for a segment of the triangular grid
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dimension and also the orientation (it can be defined for the triangles and the
edges) of any cell can be described from its topological coordinate values.

Considering the topological neighborhood structure of the grid, we have the
following properties: stepping from a triangle to one of its sides (edges of the
grid) two coordinate values do not change, while the third one changes by ±1
with respect to the direction of the step (and resulting a one-sum triplet). When
we step from an edge to one of its endpoints (corners of the triangles, nodes of
the grid) a coordinate value does not change (our step is orthogonal to one of
the coordinate axes), the two other values are changing by ±1 depending on the
direction of the step. When we step from a triangle to one its corner, all the
three values are changing by ±1 such that the sum of the values become one.
We will also describe these facts in a formal way. In our description the parity of
the coordinate values and the parity of the coordinate-sum together can be used
to show the dimension of the cell. So let n be the number of even coordinate
values of a cell plus one if the coordinate sum is also even (else, i.e., when the
coordinate sum is odd, we do not add this one). Then the dimension of the cell
is n

2 .
Now we present some technical definitions: By fixing a coordinate value one

can obtain lines and lanes:

Definition 3. Let us fix a coordinate value. If it is even, then all the cells having
this fixed coordinate value form a lane.
If the fixed coordinate value is odd, then all the cells having this coordinate value
form a line.

A lane consists of triangles and edges alternately, moreover in the following order:
odd triangle, edge, even triangle, edge, etc., where the corresponding edges are
between the two consecutive triangles. Any line consists of edges and points
alternately, where the point between two edges is their common endpoint.

3.1 Cell Complexes on the Triangular Grid

In this subsection we present some details about cell complexes using the new
coordinate system.

Let us see how the bound relation (e′, e′′) ∈ B (i.e., e′ < e′′) and thus the
incidence relation can be described by our coordinate system. First the boundary
of an edge is described, therefore let e′′ be an edge (one-dimensional cell) and
let (x1, y1, z1) be its coordinate triplet. Then e′′ bounds e′ if e′ is a point and
its coordinate triplet differ from (x1, y1, z1) by +1, −1 and +0, respectively. In
details, there are three possibilities up to direction (orientation) of the edge:

– edges orthogonal to axis x (i.e., x1 is odd, y1 and z1 are even): the points e′

with (x1, y1+1, z1− 1) and (x1, y1− 1, z1+1) are the ones for which e′ < e′′

is fulfilled;
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– edges orthogonal to axis y (i.e., y1 is odd, x1 and z1 are even): the points e′

with (x1+1, y1, z1− 1) and (x1− 1, y1, z1+1) are the ones for which e′ < e′′

is fulfilled;
– edges orthogonal to axis z (i.e., z1 is odd, x1 and y1 are even): the points e′

with (x1+1, y1− 1, z1) and (x1− 1, y1+1, z1) are the ones for which e′ < e′′

is fulfilled.

Let us see the cells that bound a triangle. Let e′′ be a triangle with coordinate
values (x1, y1, z1). Then all the cells (but e′′) bound e′′ with coordinate values
from X × Y × Z where X = {x1 − 1, x1, x1 + 1}, Y = {y1 − 1, y1, y1 + 1} and
Z = {z1 − 1, z1, z1 + 1}. Actually, depending on the orientation (parity) of the
triangle the coordinate values of its bounding edges can be computed as follows:
change any of the values by ±1 to obtain a coordinate triplet with one-sum.
Changing all the three coordinate values by ±1 to obtain one-sum triplets the
coordinate triplets of the bounding points are obtained. For more precisely, there
are the following cases:

Let e′′ be a triangle with coordinate values (x1, y1, z1).

– Let e′′ be an even triangle, i.e., x1 + y1 + z1 = 0), then

• the edges e′′ with (x1 + 1, y1, z1), (x1, y1 + 1, z1) and (x1, y1, z1 + 1) are
the ones for which e′′ < e′ is fulfilled; (they are orthogonal to the axes
x, y and z, respectively.)
• the points e′′ with (x1 + 1, y1 + 1, z1 − 1), (x1 + 1, y1 − 1, z1 + 1) and
(x1 − 1, y1 + 1, z1 + 1) are the ones for which e′′ < e′ is fulfilled;

– Let e′′ be an odd triangle (x1 + y1 + z1 = 2), then

• the edges e′′ with (x1 − 1, y1, z1), (x1, y1 − 1, z1) and (x1, y1, z1 − 1) are
the ones for which e′′ < e′ is fulfilled; (they are orthogonal to the axes
x, y and z, respectively.)
• the points e′′ with (x1 + 1, y1 − 1, z1 − 1), (x1 − 1, y1 + 1, z1 − 1) and
(x1 − 1, y1 − 1, z1 + 1) are the ones for which e′′ < e′ is fulfilled.

In the next section we present algorithm for collapses and cuts ([2]) based on
our new coordinate system.

4 Collapses and Cuts

In this section we present an algorithm for collapses on the triangular grid. Let
C = (E,B, d) be an abstract cell complex on the triangular grid. Let e be an
edge (1-cell) in C. If there exists a unique triangle (2-cell) e′ in C such that
e < e′, then C1 = C \ {e, e′} is an elementary 2-collapse of C. Let e be a point
(0-cell) in C. If there exists a unique edge (1-cell) e′ in C such that e < e′, then
C1 = C \{e, e′} is an elementary 1-collapse of C. If there is a d-collapse sequence
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(d = 1, 2) C = C0, C1, . . . , Ck = C′ (for k ≥ 0) such that Ci is a d-collapse of
Ci−1 for every 1 ≤ i ≤ k, then C′ is a d-collapse of C. If C′ is a d-collapse of
C and there is no C′′ �= C′ such that C′′ is a d-collapse of C′, then C′ is an
ultimate d-collapse of C. Below algorithms are shown that compute a collapses
and an ultimate collapses of the input abstract cell complex C.

Algorithm 1. For an elementary 2-collapse

Input: the cell complex C.
Find an edge (x, y, z) in C (with two even an one odd values)
such that exactly one of the elements of the set
S = {(x+1, y, z), (x−1, y, z), (x, y+1, z), (x, y−1, z), (x, y, z+1), (x, y, z−1)}
is in C.

if there is no such edge,
then C is an ultimate 2-collapse, STOP.
else

let (x′, y′, z′) be the triangle in S ∩ C;
let C′ = C \ {(x, y, z), (x′, y′, z′)} ;
the output is C′ as a 2-collapse of C;

endif.

The next algorithm obtains an elementary 1-collapse of the input C. It is
usually required that the input C is an ultimate 2-collapse (of itself).

Algorithm 2. For an elementary 1-collapse

Input: the cell complex C.
Find a point (x, y, z) in C (with x, y, z all odd values)
such that exactly one of the elements of the set S = {(x+ 1, y − 1, z),
(x−1, y+1, z), (x, y+1, z−1), (x, y−1, z+1), (x−1, y, z+1), (x+1, y, z−1)}
is in C.

if there is no such point,
then C is an ultimate 1-collapse, STOP.
else

let (x′, y′, z′) be the edge in S ∩ C;
let C′ = C \ {(x, y, z), (x′, y′, z′)} ;
the output is C′ as a 1-collapse of C;

endif.

By iterative use of the above steps one can obtain an ultimate d-collapses.
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Algorithm 3. For ultimate d-collapse

Input: the cell complex C and the parameter d ∈ {1, 2}.
if d = 2 then
while (there is an edge (x, y, z) in C
such that exactly one of the elements of the set
S = {(x+1, y, z), (x−1, y, z), (x, y+1, z), (x, y−1, z), (x, y, z+1), (x, y, z−1)}
is in C)

let (x′, y′, z′) be the unique triangle in S ∩ C;
let C = C \ {(x, y, z), (x′, y′, z′)} ;

endwhile
the output C is an ultimate 2-collapse, STOP.

else
while (there is a point (x, y, z) in C
such that exactly one of the elements of the set
S = {(x+ 1, y − 1, z), (x− 1, y + 1, z), (x, y + 1, z − 1),
(x, y − 1, z + 1), (x− 1, y, z + 1), (x+ 1, y, z − 1)}
is in C)

let (x′, y′, z′) be the unique edge in S ∩ C;
let C = C \ {(x, y, z), (x′, y′, z′)} ;

endwhile
the output C is an ultimate 1-collapse, STOP.

endif.

Note that computing collapses need only local tests and changes.
Segmentation is an image processing task of finding objects of interest. Usually

the result of such a process is a set of incident cells which constitutes the separa-
tion between regions. A separation which cannot be reduced without connecting
some regions is a cut.

Actually a cut of an abstract cell complex C can be computed from any of
its ultimate 1-collapses by eliminating cells that are not on the boundary of
any regions. There could be a cell e′ in an ultimate 1-collapse C′ that all the
cells e′′ for which e′ < e′′ are in the same region, i.e., any two of them can be
connected by a sequence of incident cells such that none of the elements of the
sequence are elements of C′. To eliminate such cells and obtain a cut we need
a global computation: this can be done by a bread-first-like search resulting a
global labelling. A similar linear time technique is shown in ([2]).

5 Conclusions and Future Work

Non-traditional grids are used more frequently in image processing and computer
graphics. Some results on the hexagonal and triangular grids can be found in
[1, 20, 21]. In this paper the topological coordinate system is introduced for
the triangular grid. We have defined a coordinate system that is appropriate to
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describe abstract cell complexes on the triangular grid. We have detailed some
important properties of the description and give also algorithm for collapses
and cuts using our coordinate frame. We use coordinate triplets reflecting the
symmetry of the grid. In the proposed coordinate system the natural directions
of the grid (parallel and orthogonal to the edges/lines of the grid) have the same
(symmetric) role. One may think that two values (i.e., coordinate pairs) are
enough to address various cells, since the triangular grid is a two dimensional
grid. Unfortunately, the number and the directions of the neighbor cells, i.e., the
structure of the grid, do not allow to use a simple coordinate system with two
coordinates.With coordinate triplets, however, the elements of the cell complexes
can be addressed in a uniform way as we detailed. The main advantages of the
topological description is that it contains more information about the image
than the usual description: storing not only the pixels of the two dimensional
image, but storing also the lower dimensional segments, the edges and the points
separating the pixels. Therefore it is reasonable to use the topological system for
research purposes. The best way to use the topological coordinates consists in the
following by the advice of Kovalevsky ([12]). When thinking about the problem to
be solved one should use the topological coordinates. Also a program which must
solve a topological or geometrical problem in which notions like the connectivity,
boundary, incidence etc. are involved should work with topological coordinates.
Only the storage of values assigned to the pixels, should be performed to save
memory. This is possible since the cells of lower dimension do not carry values
like color, gray value or density. They only carry indices of subsets to which they
belong, i.e., foreground or background.

In this paper we made the first step to use cellular topology on the triangular
grid, further extension, such as, description of open and smallest open neigh-
borhood, closure, frontier and open frontier will come. Other algorithms (e.g.,
boundary tracing, segmentation, thinnings, watersheds) can also be investigated
using this framework ([3]).
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1 Introduction

Motivated by different problems in the framework of image analysis and picture
processing, the classical grammar models of formal string languages [20,21] have
been extended by many researchers and several array grammar models have been
proposed (see for example [10,17,19,24,26] and references therein) for generation
of picture arrays in the two-dimensional plane. Most of these array grammars
extend the rewriting feature in Chomsky’s string grammars and make use of
string rewriting rules or array rewriting rules. On the other hand the contextual
array grammar introduced and investigated by Freund et al [9] is an interest-
ing array counterpart of string contextual grammars introduced by Marcus [14]
and intensively investigated subsequently (see for example [6,15]). In the string
case, contextual grammars are motivated from certain fundamental linguistic
phenomenon [15]. There is a basic feature in the generation of strings of symbols
in contextual grammars. Unlike the Chomsky grammars [20] or Lindenmayer
systems [20], in contextual grammars rewriting of symbols is not done, modify-
ing the symbols. Instead, strings of symbols are adjoined to the current string
and the symbols once introduced remain in the finally generated string .

In the area of membrane computing, P systems which were introduced by
Paun [16] have turned out to be a rich framework for dealing with several types
of computing related problems. Among different kinds of P systems, rewriting
P systems, in which objects are given as finite strings over an alphabet and
the evolution rules are given as context-free rewriting rules, have been inves-
tigated extensively [1,8,16,28]. Contextual way of handling string-objects in P
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systems has been considered in [13] and contextual P systems are found to be
more powerful than string contextual grammars. Ceterchi et al [2] introduced
and investigated array P systems of the isometric variety, extending the string-
rewriting P systems to arrays using context-free type of rules. Subsequently,
several P system models for array generation, both isometric and non-isometric
variety, have been considered in the literature (see for example [23]). It is natural
to introduce and examine the power of using contextual type of rules in array
P systems. Based on the contextual style of array generation considered in [9],
we introduce a P system model with array objects and array contextual rules
and bring out its generative power by comparing it with other array generative
devices. In particular, we note that the P system model considered here and
called as Contextual Array P System, properly includes a class of contextual
array languages considered in [9], thus bringing out the power of handling array
objects in P systems in the contextual way.

2 Preliminaries

For notions related to formal language theory we refer to [20,21] and for array
grammars and two-dimensional languages we refer to [9,10]. We briefly recall,
as found in [9], the mathematical formulation of needed notions on arrays and
array contextual grammars.

We consider the two-dimensional digital plane ZZ2, where ZZ is the set of
integers, together with a graph theoretical connectivity concept. Any point of ZZ2

is called a pixel, and each pixel p is identified with the unit closed square whose
center is p. So, it is common to name a pixel also a square or a cell. Two pixels p =
(p1, p2), q = (q1, q2) ∈ ZZ2 are called neighbors (more precisely, 8-neighbors [18])
if ‖ p− q ‖max= max{|p1− q1|, |p2− q2|} = 1. The neighborhood relation defines
un undirected graph on ZZ2. A subset M ⊆ ZZ2 is called connected if for any two
points p, q ∈M , there is a sequence (a path in the graph) p = m1,m2, · · · ,mk = q
of points of M where any two consecutive points are neighbors. Interpreting the
digital plane as set of squares, two squares p, q are neighbors if they intersect. The
connectivity used here coincides with the well-known 8-connectivity on the two-
dimensional digital plane ZZ2 [18], and with the 1-connectivity on ZZ2 considered
in [9].

Now let V be a finite alphabet, and # a symbol not belonging to V . A
two-dimensional array is a set of pixels labelled by the symbols of V or the so-
called blank symbol #, where # indicates that the pixel is empty or unlabelled.
Formally, a (two-dimensional) array is a function α : ZZ2 → V ∪ {#} with
finite and connected support supp(α), given by supp(α) = {v ∈ ZZ2|α(v) �= #}.
Although an array could be given as a function defined on a proper subset of
ZZ2, it can be extended to an array defined on the whole plane ZZ2, assigning
the blank symbol # to any pixel non-labelled by some symbol of V . So, for
providing an array, it is sufficient to specify some finite set supp(α) and to give
the label (element of V ) which the function α assigns to each pixel p ∈ supp(α).
The restriction of an array to its support, which is a connected finite set of
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pixels labelled by elements of V , is named a pattern. Due to the suppositions of
connectivity and finiteness of its support, an array is named (two-dimensional)
connected finite array in [9].

Note that the supposition of finiteness of the support implies that supp(α) is
always completely surrounded by pixels having the blank symbol.

We denote by V +2 the set of all non-empty, (connected finite) arrays over
V , where the empty array is supposed as the function which assigns the blank
symbol to all pixels of ZZ2. An array language is a subset of V +2. For example,
Fig. 1 shows an array (which is a pattern) H describing the letter H that has
two of its pixels labelled by c with the other pixels labelled by a. Supposing that
the pixel having label c in the left vertical arm of the letter H has coordinates
(0, 0) ∈ ZZ2, the array in Fig. 1 can be described in a formal manner by giving
the label α(p) ∈ V = {a, c} for each pixel p belonging to the pattern as follows:

H = {((0, 0), c), ((1, 0), a), ((2, 0), a), ((3, 0), a), ((4, 0), a), ((5, 0), a), ((6, 0), c),

((0, 1), a), ((0, 2), a), ((0, 3), a), ((0,−1), a), ((0,−2), a), ((0,−3), a),
((6, 1), a), ((6, 2), a), ((6, 3), a), ((6,−1), a), ((6,−2), a), ((6,−3), a)} .

a a
a a
a a
c a a a a a c
a a
a a
a a

Fig. 1. An array (pattern) representing the letter H

For any v ∈ ZZ2, the translation τv : ZZ2 → ZZ2, given by τv(w) = w + v for
all v ∈ ZZ2, provides a bijection between supp(α) and τ(supp(α)) for any array
α. Defining α′(τv(p)) = α(p) for any p ∈ supp(α), we obtain an array α′ which
is the translation of the array α. On the set of all arrays, the binary relation
defined for any two arrays by the fact that one array is a translation of the
other one, clearly is an equivalence relation. Arrays can therefore be regarded
as equivalence classes of arrays with respect to translations on ZZ2. Hence, only
relative positions of the symbols different from the blank symbol are essential
for describing an array. In order to keep the description simple, we refer to a
member of such an equivalence class as the array itself. We will use the usual
method to denote an array by a figure indicating only the non-blank labels of
the pixels belonging to its support, but without mentioning the coordinates of
the pixels themselves. For example, the array in Fig. 1 is shown in this manner.

Given two arrays α, β, array β is called a sub-array of α if there exists a vector
v ∈ ZZ2 such that for the translation τv it follows that τv(supp(β)) ⊆ supp(α). In
other words, all labelled pixels of β coincide with the corresponding labelled pixels
of α when β is placed on α after a suitable translation of the pattern supp(β).
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We now recall the definition of a contextual array grammar [9], restricting
ourselves to the two-dimensional case.

Definition 1. A contextual array grammar (CAG) is a construct
G = (V,#, P, A) where V is an alphabet not containing the blank symbol #, A is
a finite set of two-dimensional arrays in V +2, named axioms, and P is a finite
set of rules of the form (α, β), called array contextual rules, where

(i) α is a function defined on Uα ⊂ ZZ2 with values in V ∪ {#} such that
supp (α) �= ∅;

(ii) β is a function defined on Uβ ⊂ ZZ2 with values in V ;
(iii) Uα ∩ Uβ = ∅, Uα, Uβ are finite and at least Uα is non-empty.

(Uα, α) is called the selector and (Uβ , β) the context of the production (α, β);
Uα is called the selector area, and Uβ is the context area.

For arrays C1, C2 ∈ V +2, intuitively, if in C1 we find a sub-array that corre-
sponds to the selector (Uα, α), and if the places corresponding to (Uβ, β) are
labelled only by the blank symbol, then we can add the context (Uβ , β), thus
obtaining the derivation C2. Formally, C2 is called directly derivable from C1 by
the contextual array production p = (α, β) ∈ P (we write C1 =⇒p C2), if there
exists a vector v ∈ ZZ2 such that, denoting again by τv the translation by v, the
following is true:

– C1 (w) = C2 (w) = α (τ−v (w)) for all w ∈ τv (Uα),
– C1 (w) = # for all w ∈ τv (Uβ),
– C2 (w) = β (τ−v (w)) for all w ∈ τv (Uβ),
– C1 (w) = C2 (w) for all w ∈ ZZ2 \ τv (Uα ∪ Uβ).

If there exists a contextual array production p ∈ P such that C1 =⇒p C2, then
C2 is called derivable from C1 and we write C1 =⇒G C2. By =⇒∗

G we denote the
reflexive transitive closure of =⇒G and by =⇒t

G we denote the relation which,
for arbitrary arrays A,B ∈ V +2 is defined by A =⇒t

G B if and only if A =⇒∗
G B

and there is no C ∈ V +2 such that B =⇒G C.
For a given CAG grammarG, the relation =⇒t

G corresponds to collecting only
the arrays produced by blocked derivations, namely, derivations which cannot
be continued. This derivation mode is known as the maximal mode or t-mode
(“termination-mode”) [4]. In contrast, the collection of all possible derivations
is commonly named the ∗-mode of derivation. In consequence, due to these two
modes, the following two kinds of array languages can be associated with a CAG
grammar G:

L∗ (G) =
{
B ∈ V +2 | A =⇒∗

G B for some A ∈ A
}
,

Lt (G) =
{
B ∈ V +2 | A =⇒t

G B for some A ∈ A
}
.

In general, the family of two-dimensional array languages generated by contex-
tual array grammars of the form G = (V,#, P, A) with G in the f -mode with
f ∈ {∗, t} will be denoted by L (cont, f). We illustrate with an example of a
contextual array grammar working in t-mode of derivation, the generation of
solid rectangles of a′s.
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Example 1. Consider the contextual array grammar G = ({a} ,#, P, A) with A
containing the axiom array [{((0, 0) , a) , ((0, 1) , a) , ((1, 0) , a)}] , which is given in

the figure
a
a a

, and P consisting of the rules pi of the form (αi, βi), i = 1, 2, · · ·8.
Only two of the rules are listed and the rest of the rules are given only in pictorial
form.

p1 = ({((0, 0), a), ((0, 1), a), ((1, 0), a)} , {((1, 1), a), ((1, 2), a), ((2, 1), a)}) ,
p2 = ({((0, 0), a), ((0, 1), a), ((1, 0), a)} , {((1, 1), a)}) .

The selector area Uα and the context area Uβ are disjoint in a contextual array
production. Hence the rules p1, p2, · · · , p8 can be represented by the following
patterns where the pixels and symbols of the selector are indicated by enclosing
these in boxes:

p1 =
a

a a a
a a

, p2 =
a a
a a

, p3 =
a a
a a

,

p4 =
a a
a a

, p5 =
a a a
a a a

, p6 =
a a a
a a a a

,

p7 =
a a
a a
a a

, p8 =

a
a a
a a
a a

A maximal (that is, t-mode) derivation in G generating a 3 × 4 solid rectangle
of a′s, is shown below.

a
a a

=⇒G

a
a a a
a a

=⇒G

a a a
a a a a
a a

=⇒G

a a a a
a a a a
a a

=⇒G

a a a a
a a a a
a a a

=⇒G

a a a a
a a a a
a a a a

We note that in this maximal derivation, starting with the axiom array
[{((0, 0) , a) , ((0, 1) , a) , ((1, 0) , a)}] , the rules p1, p5, p3, p4 and again p4 are ap-
plied in this order. After the last rule p4 is applied, no other rule can be applied
and thus the axiom array yields in maximal mode the 3×4 solid rectangle of a′s.
In general, in a derivation in the maximal mode, starting with the axiom array,
the rule p1 can be applied any number of times (which will decide the number
of rows of the rectangle) until the rule p2 or p5 or p6 is used. While using p2
will allow only p3 and p4, to be applied a suitable number of times, thus giving
a solid square array of a′s, application of p5 or p6 (along with p3 and p4 applied
a suitable number of times) will enable to add more columns of a′s to the right
of the rectangle and application of p7 or p8 (again along with p3 and p4 applied
a suitable number of times) will enable to add more rows of a′s to the top of
the rectangle. In fact the rules p1, p2, p3, p4 are given in (Example 4, page 120
of [9]), while illustrating maximal derivation in a contextual array grammar for
generating solid squares of a′s. Our additional rules p5, p6, p7, p8 make possible
to generate arbitrary rectangles.
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3 A P System Generating Contextual Array Languages

In a string-rewriting P system [16] in each step, each string which can be rewrit-
ten by a rule in its region is rewritten but the rewriting of each string is done
sequentially, giving rise to transitions between the configurations of the system.
A sequence of transitions constitutes a computation. A halting computation is
one that reaches a configuration where no rule can be applied. The result of
a halting computation is the set of strings sent out of the system during the
computation, thus, generating a language. Ceterchi et al [2] introduced an ar-
ray P system linking the areas of membrane computing and picture grammars
and investigated its power in generating array languages. The array P system
is a rewriting kind of P system with array objects and array-rewriting rules in
its regions. It has an internal output in the sense that the result is obtained
in a specified membrane and has halting computations to define correct com-
putations. We now introduce a P system that has similar features but with a
difference of having array contextual rules in its membranes as in a contextual
array grammar [9].

Definition 2. A contextual array P system of degree m ≥ 1 is a construct

Π = (V,#, μ, A1, . . . , Am, P1, . . . , Pm, io),

where V is the alphabet, # is the blank symbol, μ is a membrane structure with m
membranes or regions, labelled 1, 2, . . . ,m, in a one-to-one manner, A1, . . . , Am

are finite sets of arrays over V respectively associated with the m regions of μ,
P1, . . . , Pm are finite sets of array contextual rules over V associated with the
m regions of μ; the rules have attached targets here, out, in (in general, here is
omitted). Finally, io is the label of the so-called elementary membrane or output
membrane which is the innermost membrane of μ and which serves to collect the
computation results.

In general, the definition of a P system allows a membrane of μ to contain one
or more regions. In the present work, we need only a linear structure of the m
regions with the skin membrane being the outermost membrane. The skin mem-
brane contains a membrane inside which in turn contains another membrane
inside and so on with the innermost membrane being an elementary membrane.
We represent the structure μ as follows: [1[2· · · [m]m · · ·]2]1, where the skin mem-
brane has label 1 and the innermost elementary membrane has label m, so that
the number of regions equals m.

A computation in a contextual array P system is done as follows, with the
successful computations being the halting computations. For each array A in
each region of the system, if an array contextual rule p in the region can be
applied to A, then it should be applied which means that the application of
a rule is sequential at the level of arrays. The resulting array, if any, is placed
in the region indicated by the target associated with the rule used interpreting
the attached target as follows: (here means that the array remains in the same
region, out means that the array exits the current membrane and is placed in
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the immediately outer membrane if one exists and so, if the application of the
rule was in the skin membrane (the outer most membrane enclosing all other
membranes), then the array exits the system and arrays leaving the system are
considered “lost” in the environment), and in means that the array is immedi-
ately sent to one of the directly lower membranes, nondeterministically chosen if
several exist; (if no internal membrane exists, then a rule with the target indica-
tion in cannot be used). A computation is successful only if it stops such that a
configuration is reached where no rule can be applied to the existing arrays. The
result of a halting computation consists of the arrays collected in the membrane
with label io in the halting configuration. The set of all such arrays computed
or generated by a system Π is denoted by CAL(Π).

The family of all array languages CAL(Π) generated by systems Π as men-
tioned above, with at most m membranes, is denoted by CAPm.

In order to increase the generative power of a generative device like grammar,
several regulating mechanisms have been introduced in formal language theory,
both in the string and array cases. We now show that the family of array lan-
guages generated by contextual array P system of degree 2 properly includes
the family of array languages generated in the maximal mode by the contextual
array grammars. This result shows that contextual way of handling array ob-
jects in P systems do really increase the generative power of contextual way of
rewriting arrays in the t mode.

Theorem 1. L (cont, t) ⊂ CAP2.

Proof. The inclusion can be seen as follows: LetL be an array language inL (cont, t)
generated by a CAG G in maximal mode. We construct a contextual array P sys-
tem Π with only one membrane which is also the output membrane, containing
all the rules of G, each with attached target here, and the axiom array of G as its
initial object. It is clear that Π generates all and only the arrays of L.

The proper inclusion is seen by considering the array language Lc consisting
of all pixel sets forming solid squares of odd side length 2n+ 1, n ≥ 1, with the
label c in its “central” pixel (the pixel in row n + 1 and column n+ 1) and all
other pixels having label a. Fig. 2 shows such a 5 × 5 solid square with c in its
central pixel.

a a a a a
a a a a a
a a c a a
a a a a a
a a a a a

Fig. 2. A solid square of a′s with c at the center

The language Lc cannot be generated by any CAG in maximal mode, since
adding a context to a selector which has the pixel with label c in it cannot
maintain the special symbol c in its central position while choosing a selector
anywhere else in the square cannot ensure to make the symbol appear in its
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central position. But the following contextual array P system Πc with two mem-
branes can generate all and only the arrays in Lc.

We construct Πc = ({a, c},#, μ, A1, A2, P1, P2, 2) where μ = [1[2]2]1 with mem-

brane labelled 2 inside the membrane labelled 1, A1 =
a
c a

, A2 = ∅. The set

P1 contains the rule p1(in), p2(in) and the set P2 contains p3(out), p4(out),
p5, p6, p7, p8, p9. Note that the rules p5, p6, p7, p8, p9 all have the target here.
The rules are given below in pictorial form.

p1 =
a

a c a
a a

, p2 =
a

a a a
a a

, p3 =
a

a a a
c a

,

p4 =
a

a a a
a a

, p5 =
a a
a a

, p6 =
a a
a a

, p7 =
a a
a a

,

p8 =
c a
a a

, p9 =
a a
a c

.

Starting from the initial array
a
c a

in region 1, the rule p1(in) is applied (only

once) adjoining the context
a
a a

to the selector
a
c a

and then the resulting array

a
a c a
a a

is sent to region 2 due to the target indication in in p1. Note that there

is no initial array in region 2. If the rule p3(out) is applied (only once) in region

2, then the context
a
a a

will be adjoined resulting in the array

a
a a a

a c a
a a

which is

sent back to region 1, due to the target indication out in rule p3. The rule p2(in)
in region 1, can now be applied and the resulting array sent again to region 2.
The process can be repeated by applying the rule p4(out). If rule p5 is applied
in region 2, the process of “filling” the north-east corner with a is done and the
array remains in region 2 itself due to the target indication here understood in
rule p5. This is then followed by application of rules p6, p7 suitable number of
times “filling” the remaining pixels to the left and right of the diagonal joining
the south-west corner to north-east corner. The rules p8, p9 are needed only once
for starting the filling of the north-west part and of the south-east part of the
square to be generated. At the end, the process comes to a halt and thus in the
halting configuration, a solid square array of odd side length with c in its central
position and a′s for all other pixels is generated. This proves the result. ��
Generation of solid and hollow rectangles and squares is one of the problems
of interest and investigation in the study of two-dimensional picture grammars.
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In [27], a regular array grammar [3] generating solid squares of a′s, is given
while it is shown that hollow rectangles made of a′s cannot be generated by
even a context-free array grammar [27]. On the other hand hollow rectangles,
two of whose arms (left and bottom arms) are made of a′s and the other two
(right and top arms) are made of b′s are shown to be generated by a contextual
array grammar in [7,9] . Here we give a contextual array P system with one
membrane generating hollow rectangles made of only one symbol a. This is an
improvement over the contextual array grammar for hollow rectangles given in
[7,9]. It is interesting to note that an array P system with array rewriting rules
is given in (Example 3, page 10 [2]) generating hollow rectangles of a′s, which
motivates our construction.

Theorem 2. The array language LH consisting of hollow rectangles of a′s be-
longs to CAP1.

Proof. The array language LH is generated by a contextual array P system ΠH

with just one membrane.ΠH = ({a},#, [1 ]1, A, P, 1) where A contains the initial

array
a
a
a a a

, and P has the rules p1, p2, p3, p4, p5 given below in pictorial form.

p1 =
a

# a #
, p2 =

#

a a

#

, p3 =
#

# a a
,

p4 =
#

a #
a

, p5 =
# a #

a
.

Starting with the initial array in the only region 1, the rule p1 allows the left
vertical arm of the hollow rectangle of a′s to be generated, to grow up and the
rule p2 allows the bottom (as well as top) horizontal arms to grow right , while
the rule p3 allows the left vertical arm to turn to the right and the rule p4 allows
the top horizontal arm to turn down so as to grow the right vertical arm by using
rule p5, until the bottom horizontal arm and right vertical armmeet at their ends,
thereby reaching a halting configuration and the computation stops generating
a hollow rectangle of a′s. Any other incorrect computation will not result in a
halting configuration, and will not contribute anything to the language. Note
that the halting condition is crucial for a successful computation. ��
Another class of two-dimensional array grammars, called parallel contextual ar-
ray grammars, that extend the contextual operations on strings to arrays and
generate languages of rectangular arrays has been introduced in [11] and sub-
sequently, properties of several variants of these parallel contextual grammars
have been obtained in [25]. Here we compare the class CAP of array languages
considered here with a class called EPCA in [25] of array languages generated
by external parallel contextual array grammars (EPCAG).This kind of EPCAG
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[25] generates rectangular arrays by adjoining arrays to the left and right or to
the top and bottom of the array, decided by certain conditions, analogous to the
external contextual grammars in the string case [15] that adjoin strings to the
left and right of a current string during a generation process.

Theorem 3. CAP1 − EPCA �= ∅.

Proof. It is known [25] that the array language M = M ′ ∪M ′′ where

M ′ =

⎧⎪⎨⎪⎩
⎛⎝a

a
a

⎞⎠2n+1

| n = 0, 1, . . .

⎫⎪⎬⎪⎭ ,M ′′ =

⎧⎪⎨⎪⎩
a
b
a

⎛⎝a
a
a

⎞⎠2n+1
b
a
b
| n = 0, 1, . . .

⎫⎪⎬⎪⎭
cannot be generated by any external parallel contextual array grammar and
hence does not belong to EPCA. But it belongs to CAP1 since it is generated
by the contextual array P system Π = ({a},#, [1 ]1, A, P, 1) where A contains

the two initial arrays
a
a
,
a
b
a a

, and P has the rules p1, p2, p3, p4 given below in

pictorial form.

p1 =

a
a
a

#

, p2 =

a a
a a a
a a a

#

, p3 =

a b
a a
a b

#

, p4 =

a a
a a
a a a

#

.

The rules p1, p2 generate the arrays in M ′ from the initial array
a
a

while the

rules p3, p4 generate the arrays in M ′′ from the initial array
a
b
a a

. ��

4 Conclusion

We have introduced a P system with array objects and array contextual rules of
the kind considered in [9] and we have shown that the P system model has more
generative power than the contextual array grammars [9] working in maximal
mode in generating two-dimensional arrays. We can also consider other modes
of derivation and examine the power of contextual array P systems. Also the
contextual style of generating strings has been extended to arrays in different
ways [11,12,25]. These models belong to the category of non-isometric variety
and generate rectangular arrays. We have made a comparison with a class in
[11,25]. Comparison of the contextual array P system considered here with other
classes in [25] could be studied. The model in [12] is more in line with the array
grammars considered in [22] and based on this work a P system generating
rectangular arrays is considered in [5]. A comparison of the P system model
introduced here with the models in [12,5] could also be studied.
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Abstract. Array Token Petri Net Structure (ATPNS) to generate rect-
angular arrays has been defined in [6]. We prove that this model generate
the regular array languages. By introducing a control on the firing se-
quence, we have shown that, ATPNS with inhibitor arcs generate the
context-free and context-sensitive array languages. Comparisons with
other classes of array languages have been made.

Keywords: Array token, Catenation, Inhibitor arcs, Petri net, Picture
languages.

1 Introduction

Picture languages generated by grammars or recognized by automata have been
advocated since the seventies for problems arising in the framework of pattern
recognition and image analysis [2,7,9]. In syntactic approaches to generation of
picture patterns, several two-dimensional grammars have been proposed. Array
rewriting grammars [11], controlled tabled L array grammars [10] and pure 2D
context-free grammars [13] are some of the picture generating devices. Applica-
tions of these models to generation of “kolam” patterns [12] and in clustering
analysis [14] are found in the literature.

On the other hand, a Petri net is an abstract formal model of information
flow [4]. Petri nets have been used for analyzing systems that are concurrent,
asynchronous, distributed, parallel, non deterministic and/or stochastic. Tokens
are used in Petri nets to simulate dynamic and concurrent activities of the sys-
tem. A language can be associated with the execution of a Petri net. By defining
a labeling function for transitions over an alphabet, the set of all firing sequences,
starting from a specific initial marking leading to a finite set of terminal mark-
ings, generates a language over the alphabet.

Petri net structure to generate rectangular arrays are found in [5, 6]. The
two models have different firing rules and catenation rules. In [5] column row
catenation petri net structure (CRCPNS) has been defined. A transition with
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several input places having different arrays is associated with a catenation rule
as label. The label of the transition decides the order in which the arrays are
joined (columnwise or rowwise) provided the condition for catenation is satisfied.
In CRCPNS a transition with a catenation rule as label and different arrays in
the input places is enabled to fire.

In ATPNS [6] the catenation rule involves an array language. All the input
places of the transition with a catenation rule as label, should have the same
array as token, for the transition to be enabled. The size of the array langauge
to be joined to the array in the input place, depends on the size of the array in
the input place.

In this paper we examine the generative capacity of ATPNS. We find that
ATPNS is able to generate only the regular languages. To control the firing se-
quence inhibitor arcs are introduced. The introduction of inhibitor arcs increases
the generative capacity. ATPNS with inhibitor arcs generate the context-free and
context-sensitive languages.

The paper is organized as follows: Section 2 defines Array Token Petri Net
Structure (ATPNS), language associated with it and gives an example. Section
3 compares ATPNS with three families of array grammars, T0L array gram-
mar with regular control and pure 2D context-free grammar. Section 4 defines
Array Token Petri Net Structure with inhibitor arcs, compares with the other
six families of array grammars and T0L array grammar with context-free or
context-sensitive control.

2 Array Token Petri Nets

In this section we give preliminary definitions of Petri Net and give the notations
used. We define Array Token Petri Net Structure (ATPNS), language associated
with it and give an example.

A Petri net is one of several mathematical models for the description of dis-
tributed systems. A Petri net is a directed bipartite graph, in which the nodes
represent transitions (i.e., events that may occur, signified by bars) and places
(i.e., conditions, signified by circles). The directed arcs from places to a transi-
tion denote the pre-conditions and the directed arcs from the transition to places
denote the post-conditions (signified by arrows). Graphically, places in a Petri
net may contain a discrete number of marks called tokens. Any distribution of
tokens over the places will represent a configuration of the net called a marking.
In an abstract sense relating to a Petri net diagram, a transition of a Petri net
may fire whenever there are sufficient tokens at the start of all input arcs; when
it fires, it consumes these tokens, and places tokens at the end of all output arcs.
Transitions can be labeled with elements of an alphabet so that the firing se-
quence corresponds to a string over the alphabet. A labeled Petri net generates a
language. Hack [3] and Baker [1] have published a report on Petri net languages.
Petri net to generate string languages is also found in [8].

We now recall the basic definitions of Petri net [4] and the basic notations
pertaining to rectangular arrays [11].
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Definition 1. A Petri Net structure is a four tuple C = (P, T, I, O) where P =
{p1, p2, . . . , pn} is a finite set of places, n ≥ 0, T = {t1, t2, . . . , tm} is a finite
set of transitions m ≥ 0, P ∩ T = φ, I : T → P∞ is the input function from
transitions to bags of places and O : T → P∞ is the output function from
transitions to bags of places.

Definition 2. A Petri Net marking is an assignment of tokens to the places of
a Petri Net. The tokens are used to define the execution of a Petri Net. The
number and position of tokens may change during the execution of a Petri Net.
In this paper arrays over an alphabet are used as tokens.

Definition 3. An inhibitor arc from a place pi to a transition tj has a small
circle in the place of an arrow in regular arcs. This means the transition tj is
enabled only if pi has no tokens. A transition is enabled only if all its regular
inputs have tokens and all its inhibitor inputs have zero tokens.

Basic Notations: Σ∗∗ denotes the arrays made up of elements of Σ. If A
and B are two arrays having same number of rows then A©| B is the column
wise catenation of A and B. If two arrays have the same number of columns
then A©− B is the row wise catenation of A and B. (x)n denotes a horizontal
sequence of n ‘x’ and (x)n denotes a vertical sequence of n ‘x’ where x ∈ Σ∗∗.
(x)n+1 = (x)n©| x and (x)n+1 = (x)n©− x.

The Petri net model defined here has places and transitions connected by
directed arcs. Rectangular arrays over an alphabet are taken as tokens to be
distributed in places. Variation in firing rules and labels of the transition are
listed out below.

Firing Rules in ATPNS
We define three different types of enabled transition in ATPNS. The pre and
post condition for firing the transition in all the three cases are given below:

1. When all the input places of t1 (without label) have the same array as token.

– Each input place should have at least the required number of arrays.
– Firing t1 removes arrays from all the input places and moves the array

to all its output places.

The graph in Fig. 1 shows the position of the array before the transition fires
and Fig. 2 shows the position of the array after transition t1 fires.

P2

P1
P3

t1
A

A

Fig. 1. Position of arrays before firing
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P2

P1
P3

t1

A

Fig. 2. Position of array after firing

2. When all the input places of t1 have different arrays as token

– The label of t1 designates one of its input places.
– The designated input place has the same array as tokens.
– The designated input place has sufficient number of tokens.
– Firing t1 removes arrays from all the input places and moves the array

from the designated input place to all its output places.

The graph in Fig. 3 shows the position of the array before the transition fires
and Fig. 4 shows the position of the array after transition t1 fires. Since the
designated place is p1 the array in p1 is moved to the output place.

P2

P1
P3

A 1

A 2

1     1
t  (p )

Fig. 3. Transition with label before firing

P2

P1
P3

1     1
t  (p )

A 1

Fig. 4. Transition with label after firing

3. When all the input places of t1 (with catenation rule as label) have the same
array as token

– Each input place should have at least the required number of arrays.
– The condition for catenation should be satisfied.
– The designated input place has sufficient number of tokens.
– Firing t1 removes arrays from all the input places p and the catenation

is carried out in all its output places.
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Catenation Rule as Label for Transitions: Column catenation rule is in
the form A©| B. Here the array A denotes the m × n array in the input place
of the transition. B is an array language whose number of rows will depend on
‘m’ the number of rows of A. The number of columns of B is fixed. For example
A©| (x x)m adds two columns of x after the last column of the array A which
is in the input place. But (x x)m©| A would add two columns of x before the
first column of A. ‘m’ always denotes the number of rows of the input array A.
Row catenation rule is in the form A©− B. Here again the array A denotes the
m× n array in the input place of the transition. B is an array language whose
number of columns will depend on ‘n’ the number of columns of A. The number
of rows of B is always fixed. For example A©−

[
x
x

]n
adds two rows of x after the

last row of the array A which is in the input place. But
[
x
x

]n©− A would add
two rows of x before the first row of the array A. ‘n’ always denotes the number
of columns of the input array A.

An example to explain row catenation rule is given below. The position of the
arrays before the transition fires is shown in Fig. 5 and Fig. 6 shows the position
of the array afer transition t1 fires. Since the catenation rule is associated with
the transition, catenation takes place in p3.

P2

P1
P3

A

A

A   (x)     yθ n−1

1
t

Fig. 5. Transition with catenation rule before firing

P2

P1
P3A 1

A   (x)     yθ n−1

1 
t

Fig. 6. Transition with catenation rule after firing

If A =
a a a
a a a
a a a

, the number of columns of A is 3, n− 1 is 2, firing t1 adds the

row x x y as the last row. Hence A1 =

a a a
a a a
a a a
x x y

.
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Definition 4. If C = (P, T, I, O) is a Petri net structure with arrays over of
Σ∗∗ as initial markings, M0 : P → Σ∗∗, label of at least one transition being
catenation rule and a finite set of final places F ⊂ P , then the Petri net structure
C is defined as Array Token Petri Net Structure (ATPNS).

Definition 5. If C is a ATPNS then the language generated by the Petri net
C is defined as L(C) = {A ∈ Σ∗∗/A is in p for some p in F}. With arrays of
Σ∗∗ in some places as initial marking all possible sequences of transitions are
fired. The set of all arrays collected in the final places F is called the language
generated by C.

Example 1. Σ = {x, .},, F = {p1}

t 1

t 2

t 3

t 4

P1

P2

P4 P3

S

A    B 4

B      A
3

B      A
2

A     B 1

Fig. 7. ATPNS

where S =
x x x
x . x
. . x

, B1 = (. x)m, B2 = (x .)m, B3 =
x
x

(
x
.

)n−2
x
x

and B4 =

(
x
.

)n−2
.
.
x
x
.

Firing t1 puts an array in p2 making t2 enabled. Firing t2 puts an array in p3
making t3 enabled. Firing t3 puts an array in p4 making t4 enabled. Firing t4
puts an array in p1. The firing sequence (t1t2t3t4)

k, k ≥ 0 puts a square spiral
of size 4k + 3 in p1. The language generated by this ATPNS is a set of square
spirals. When the transitions t1, t2, t3 and t4 fire the array that reaches the
output place is shown below

S
t1=⇒

x x x . x
x . x . x
. . x . x

t2=⇒
x . x x x . x
x . x . x . x
x . . . x . x

t3=⇒

x x x x x x x
x . . . . . x
x . x x x . x
x . x . x . x
x . . . x . x



172 D. Lalitha, K. Rangarajan, and D.G. Thomas

t4=⇒

x x x x x x x
x . . . . . x
x . x x x . x
x . x . x . x
x . . . x . x
x x x x x . x
. . . . . . x

The language generated by this ATPNS is square spirals of size 4n+ 3, n ≥ 0.

3 Comparative Results

In this section we recall the definitions of Array rewriting Grammar [11], Ex-
tended Controlled Table L-array Grammar [10], pure 2D context-free grammar
with regular control [13] and compare it with ATPNS.

Definition 6. G = (V, I, P, S) is an array rewriting grammar (AG), where V =
V1∪V2, V1 a finite set of nonterminals, V2 a finite set of intermediates, I a finite
set of terminals, P = P1∪P2∪P3, P1 is the finite set of nonterminal rules, P2 is
the finite set of intermediate rules, P3 is the finite set of terminal rules. S ∈ V1

is the start symbol. P1 is a finite set of ordered pairs (u, v), u and v in (V1∪V2)
+

or u and v in (V1 ∪ V2)+.
P1 is context-sensitive if there is a (u, v) in P1 such that u = u1S1v1 and

v = u1αv1 where S1 ∈ V1, u1, α, v1 are all in (V1 ∪ V2)
+ or all in (V1 ∪ V2)+. P1

is context-free if every (u, v) in P1 is such that u ∈ V1 and v in (V1 ∪ V2)
+ or

(V1 ∪ V2)+. P1 is regular if u ∈ V1 and v of the form U ⊕ V , U in V1 and V in
V2 or U in V2 and V in V1.

P2 is a set of ordered pairs (u, v), u and v in (V2 ∪ {x1, . . . , xp})+ or u and
v in (V2 ∪ {x1, . . . , xp})+; x1, . . . , xp in I++ have same number of rows in the
first case and same number of columns in the second case. P2 is called CS, CF
or R as the intermediate matrix languages generated are CS, CF or R.

P3 is a finite set of terminal rules are ordered pairs (u, v), u in (V1 ∪ V2) and
v in I++.

An Array Grammar is called (CS : CS)AG if the nonterminal rules are CS
and at least one intermediate language is CS. An Array Grammar is called (CS
: CF)AG if the nonterminal rules are CS and none of the intermediate language
is CS. An Array Grammar is called (CS : R)AG if the nonterminal rules are
CS and all the intermediate languages are regular. Similarly all the other six
families (CF : CS)AG, (CF : CF)AG, (CF : R)AG, (R : CS)AG, (R : CF)AG
and (R : R)AG are defined. (X : Y)AL refers to the language generated by the
(X : Y)AG, where X,Y ∈ {R,CF,CS}.

Definition 7. An extended, controlled < kl, kr, ku, kd > table L-array grammar
is a 5-tuple G = (V, T,P , C, S,#) where V is a finite nonempty set; T ⊆ V is
the terminal alphabet of G; P is a finite set of tables {P1, P2, . . . , Pk}, and each
Pi, i = 1, 2, . . . , k, is a left, right, up or down rules only. The rules within a table
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are all of the same type: either string rules with neighborhood context determined
by kl, kr, ku, kd ∈ {0, 1}, or matrix rules. In either case, all right-hand sides of
rules within the same table are of the same length; C is a control language over
P; and S �∈ V is the start matrix; # is an element not in V .

In particular if V = T and S is a matrix, G is a controlled table L-array
grammar; if C = P∗, then there is no control and the order of applications of
the tables is arbitrary; G is then an extended table L-array grammar.

If kl = kr = ku = kd = 0, then the rules are all context-free (0L) table array
grammar. If at least one of kl, kr, ku, kd equals 1 then we get a context dependent
(1L) table array grammar.

(γ)TXLAL refers to the language generated by table XL array grammar with
γ control; X may be 0 or 1 and γ may be R, CF or CS.

Definition 8. A pure 2D context-free grammar (P2DCFG) is a 4-tuple G =
(Σ,Pc, Pr,M0), where

– Σ is a finite set of symbols.
– Pc = {tci|1 ≤ i ≤ m}, Pr = {trj |1 ≤ j ≤ n}.

Each tci , (1 ≤ i ≤ m), called a column table, is a set of context-free rules of
the form a → α, a ∈ Σ, α ∈ Σ∗ such that for any two rules a → α, b → β
in tci , we have |α| = |β|, where |α| denotes the length of α.

Each trj , (1 ≤ j ≤ n), called a row table, is a set of context-free rules of the
form c → γT , x ∈ Σ, γ ∈ Σ∗ such that for any two rules c → γT , d → δT

in trj , we have |γ| = |δ|.
– M0 ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.

Derivations are defined as follows. For any two arrays M1,M2, we write M1 ⇒
M2 if M2 is obtained from M1 by either rewriting a column of M1 by rules of
some column table tci in Pc or a row of M1 by rules of some row table trj in Pr.
⇒∗ is the reflexive transitive closure of ⇒.

The picture array language L(G) generated by G is the set of rectangular
picture arrays {M |M0 ⇒∗ M ∈ Σ∗∗, for some M0 ∈ M0}. The family of
picture array languages generated by pure 2D context-free grammars is denoted
by P2DCFL.

Definition 9. A pure 2D context-free grammar with a regular control is Gc =
(G,Lab(G), C) where G is a pure 2D context-free grammar, Lab(G) is a set of
labels of the tables of G and C ⊆ Lab(G∗) is a regular (string) language. The
words in Lab(G)∗ are called control words of G. Derivations M1 ⇒w M2 in Gc

are done as in G, except that if w ∈ Lab(G∗) and w = l1l2 . . . lm, then the tables
of rules with labels l1, l2, . . . , lm are successively applied starting with M1 to yield
M2. The picture array language generated by Gc consists of all picture arrays
obtained from the axiom array of G with the derivations controlled as described
above. We denote by (R)P2DCFL the family of picture array languages generated
by pure 2D context-free gramamrs with a regular control.

Theorem 1. The class of table 0L array languages without control or with reg-
ular control can be generated by ATPNS.
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Proof. Let G = (V,P , C, S) be a table 0L array grammar; where V is a finite
set of terminals, P is a finite set of tables {P1, P2, . . . , Pk}, and each Pi, i =
1, 2, . . . , k, is a left, right, up or down rules only. S is the start array.

The rules within a table are all of the same type. The left hand side of each
production is a single terminal. The right hand side of all the rules within the
same table is of the same length. Each table will have at least one rule for each
symbol on the boundary. If say, P1 has left (right) rules then applying the rules
of P1 will amount to column catenation. Similarly applying the table containing
up(down) rules will amount to row catenation.

Let us construct an array token Petri net structure when there is no control
on the application of the tables. Let p1 be the place with the start array S as
a token. For every table Pi ∈ P have a transition ti with the corresponding
row or column catenation rule as label. Have k transitions one each for the k
tables in P with p1 as both input place and output place of all the transitions.
F = {p1}. Every time a table production is required to be used the corresponding
transition is fired. Since there is no control the tables can be applied in any order
to generate the language. In the net p1 is the output place of every transition.
Hence after the firing of any transition the array reaches p1, so at any given time
all the k transitions are enabled. Thus the Petri net constructed will generate
the language generated by the grammar G.

Let us construct an array token Petri net structure when a regular control
C = (P1P2 . . . Pk)

∗ is defined on the application of tables. Have k transitions
and k places. Let S the start array be a token in place p1. Let t1 be a transition
with the catenation rule, which corresponds to the table P1, as label; p1 being the
input place and p2 as its output place. Let t2 be a transition with the catenation
rule, which corresponds to the table P2, as label; p2 being the input place and p3
as its output place. Continuing like this have a transition tk with the catenation
rule, which corresponds to the table Pk, as label; pk being the input place and p1
as its output place. F = {p1}. Firing tk puts a token in p1 so that t1 is enabled
again. The firing sequence t1t2 . . . tk will have the same effect as applying the
production rules P1P2 . . . Pk in that order once. The effect of the regular control
is got by placing the transitions with those labels in the same order forming a
loop in the net so that the sequence of transitions can be fired any number of
times. Thus the Petri net constructed will generate the language generated by
the grammar G. ��
Theorem 2. (R)T 0LAL is properly contained in the family generated by ATPNS.

Proof. Let us give an example to prove this theorem. The language of square spi-
rals given in Example 1 is a (R)T 1LAL [10]. Thus ATPNS can generate certain
languages that do not belong to (R)T 0LAL, which proves a proper containment.

��
Theorem 3. The families of (R : Y )AL, where Y ∈ {R,CF,CS}, can be gen-
erated by ATPNS.

Proof. Let G = (V, I, P, S) be an array grammar, where V = V1 ∪V2, V1 a finite
set of nonterminals; V2 a finite set of intermediates; I a finite set of terminals,
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P = P1 ∪ P2, P1 is the finite set of regular nonterminal rules; P2 is the finite
set of terminal rules. S ∈ V1 is the start symbol. For each A in V2, MA is an
intermediate language.

In array grammars the derivation is as follows. Starting with S the nonter-
minal rules are applied without any restriction, as in string grammar, till all
the nonterminals are replaced. Then replace each intermediate A by MA sub-
ject to the conditions imposed by the row and column catenation operator. Let
the regular non-terminal rules of G generate the infinite sequence of matrices
{Mn/n ≥ 1} where Mn is in any one of the following forms. For all n > 1,
Mn = (X©−Mn−1)©| Y or Mn = Y©| (X©−Mn−1) or Mn = Y©| (Mn−1©−X) or
Mn = (Mn−1©−X)©| Y , where X and Y are chosen from intermediate matrix
languages LX and LY (subject to conditions imposed by row and column cate-
nation). The recursive definition of Mn is assumed to be unique. S →M1 is the
terminal rule.

Construction of ATPNS, for the case when Mn = (X©−Mn−1)©| Y where X
and Y are intermediates, is given below. For the other cases the construction is
similar. Define the arrays BX and BY corresponding to the intermediate lan-
guage X and Y . Put M1 in the start place p1 as a token. Have a transition t1
with the row catenation rule BX©−A as a label. Let p1 be the input place of t1.
The number of rows of BX is fixed but the number of columns of BX is depen-
dent on ‘n’ the number of columns of A. A is the array that reaches the input
place p1 of the transition t1 during the course of the execution of the net. Let
p2 be the output place for the transition t1. The array BY is defined similar to
the intermediate language generated by Y . Have a transition t2 with the column
catenation rule A©| BY as a label. Let p2 be the input place of t2. The number
of columns of BY is fixed but the number of rows of BX is dependent on ‘m’
the number of rows of A. A is the array that reaches the input place p2 of the
transition t2 during the course of the execution of the net. Let p1 be the output
place for the transition t2. First time the sequence t1t2 is executed, the matrix
M2 is put in p1. Let F = {p1} be the final set of places. The firing sequence
(t1t2)

k puts the matrix Mk+1, k ≥ 0 in p1. Thus {Mn/n ≥ 1} of matrices is the
language generated. ��

Theorem 4. The families of (R : Y )AL, where Y ∈ {R,CF,CS}, are properly
contained in the family generated by ATPNS.

Proof. Let us give an example to prove this theorem. Kirsch’s right triangles
is a (CF : R)AL [11]. But ATPNS can generate Kirsch’s right triangles. Thus
ATPNS generates certain languages which do not belong to (R : Y )AL, which
proves proper containment. ��

Theorem 5. Any (R)P2DCFL can be generated by ATPNS.

Proof. Let the language be generated by a P2DCFG with a regular control,
Gc = (G,Lab(G), C) where G is a P2DCFG, Lab(G) is the set of all labels and
C is the control language.
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Application of a column table is equivalent to a column catenation. Hence
for every tcj , we can define an equivalent column catenation rule. Similarly for
every row table trj , an equivalent row catenation rule can be defined.

Let M1 be an array derived from the axiom array M0 using the control words
w = l1l2 . . . lm. We give the steps for constructing the ATPNS to generate the
language, assuming that all the tables are used on the boundary of M0.

Let p0 be a place with the array M0 as token. Let t1 be a transition with
the catenation rule corresponding to l1 as a label, p0 as input place and p1 as
output place. Let t2 be a transition with the catenation rule corresponding to
l2 as label, p1 as input place and p2 as output place. Proceeding like this let
tm be a transition with the catenation rule corresponding to �m as label, pm−1

as input place and p0 as output place. The firing sequence t1t2 . . . tm has the
same effect as of applying the tables l1, l2, . . . , lm to the array M0. This Petri
net structure generates all the arrays that can be generated by the control words
of (l1l2 . . . lm)∗.

If all the tables are not applied on the boundary of M0, then consider a
subarray M01 of M0 such that the table l1 is applied to the boundary of M01.
Take M01 as a token in p0 and construct the ATPNS as given above. Add
a transition tm+1 with input place p0 and output place pm. The label of the
transition should have the catenation rule, which joins the row/column that was
removed from M0. Required number of transitions should be added to join all
the rows/columns that were removed from M0. ��

4 Array Token Petri Nets with Inhibitor Arcs

Since ATPNS is able to generate only T0L with regular control and (R : Y )AL,
where Y ∈ {R,CF,CS} we use inhibitor arcs to control the firing sequence.
This section introduces Array Token Petri Net Structure with inhibitor arcs and
compares it with the other array languages and tabled array languages.

Firing Rules in ATPNS with inhibitor arcs is similar to the firing rules of
ATPNS with the extra condition that any transition with inhibitor input can
fire only if the inhibitor input does not have any array.

Definition 10. An Array Token Petri Net Structure with at least one inhibitor
arc is defined as Array Token Petri Nets with inhibitor arcs.

The language generated by the Petri net is the set of all arrays which reach
the final place.

Example 2. Σ = {x •}, S =
x •
x • , B1 = (•)m, B2 = (x)m, B3 =

⎛⎝x
x
x

⎞⎠
n
2
⎛⎝••
•

⎞⎠
n
2

,

B4 = (x)
n
2 (•)n

2 , F = {p2}.

To start with both t2 and t5 are enabled. The sequence t2t3t4 can be fired any
number of times. Once t5 is fired the inhibitor input p6 makes sure that the
sequences t7t8 is also fired the same number of times. When p6 is empty the
transition t9 fires to put the final array into p2.
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t1

t2 t3

t4

t5

t6

t8

t9

P2

P3

P4 P5

P6

P7

P8 P9

t7 8(P  )

A    B 2

4A    B

P1

P1

1A    B

A    B 2

B     A2

S

S

3A    B

Fig. 8. ATPNS with inhibitor arc

The array generated by the firing sequence t1 . . . t9 is given below.

S
t1...t9=⇒

x x • • x x
x x • • x x
x x • • x x
x x • • x x
x x • • x x
x x • • x x

The language generated is squares split into three equal columns.

Theorem 6. The language generated by a table 0L array grammar with context-
free or context-sensitive control can be generated by ATPNS with inhibitor arcs.

Proof. Let G = (V,P , C, S) be a table 0L array grammar with context-free
control, where V is the set of terminals, P is a finite set of tables {P1, P2, . . . , Pk},
C = (P1 . . . Pi)

n(Pj . . . Pk)
n, 1 ≤ i, j ≤ k, be a context-free control and S is the

start array.
Construct an ATPNS with two subnets C1 and C2 as in figure. Let p1 belong

to C1 with the start array S as a token. Have transition t1 with the catenation
rule which corresponds to P1, p1 being the input place and p2 as its output
place. Transition t2 with the catenation rule which corresponds to P2, p2 being
the input place and p3 as its output place and so on. Transition ti with the
catenation rule which corresponds to Pi, pi being the input place and p1, M1

as its output places. The subnet C1 can be executed any number of times. The
sequence (t1t2 . . . ti)

n would put n different arrays as tokens in M1. But the
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t1

P1

M2

M1

sequence of
transitions

Subnet C  : First1
sequence of
transitions

T

S

Subnet C  : Second2

Fig. 9. Subnets of ATPNS with inhibitor arcs

place p1 will have the array which is the array that would result in applying the
tables P1 . . . Pi n times to S. Once tj in C2 is fired the second subnet starts its
execution. Since M1 is an input place for tj , the subnet C2 can be executed at
the most n times (the number of times C1 was executed). Similar to C1 in C2

there is a transition for every table Pj , . . . , Pk. Whenever C2 is executed once
an array is put in M2 and p1. This array would be the array that results after
applying the tables (P1 . . . Pi)

n (Pj . . . Pk)
m (m is the number of times C2 was

executed) to S. Once C2 starts its execution C1 cannot be executed again till M2

is empty as M2 is an inhibitor input for t1. After executing C2 ‘n’ times M2 can
be emptied by firing T ‘n’ times. Since M1 is an inhibitor input for T , T cannot
be fired until M1 is empty. In other words M2 cannot be emptied until C2 is
executed exactly n times. Thus the subnets C1 and C2 are executed the same
number of times. Hence the sequences t1 . . . ti and tj . . . tk can be fired exactly
the same number of times. This is the effect of a context-free control.

Thus using the concepts of inhibitor arcs we are able to have a context-free
control on the firing sequence. Similarly with three subnets and with proper
usage of inhibitor inputs we can have a context-sensitive control on the firing
sequence. ��

Theorem 7. The families of (X : Y )AL, where X ∈ {CF,CS} and Y ∈
{R,CF,CS}, can be generated by ATPNS with inhibitor arcs.

Proof. Let G = (V, I, P, S) be an (CF : Y )AG. Then the nonterminal rules be

of the form (A)n(B)n or (A)n
(B)n

where A,B are intermediates. LA and LB the

intermediate languages are regular, context-free or context-sensitive. Similar to
the construction given in the proof of Theorem 6 have two subnets C1 and C2.
The subnet C1 should generate the intermediate language LA and the subnet C2

should generate the intermediate language LB. With the use inhibitor inputs we
can make sure the subnets C1 and C2 are executed the same number of times.
Thus with inhibitor arcs any (CF : Y )AL can be generated.
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For any (CS : Y )AG the nonterminal rules are of the form (A)n(B)n(C)n

or
(A)n
(B)n
(C)n

, where A,B,C are intermediates. LA, LB and LC the intermediate

languages are regular, context-free or context-sensitive. With three subnets and
with proper usage of inhibitor inputs we can generate all (X : Y ) array languages,
where X ∈ {CF,CS} and Y ∈ {R,CF,CS} can be generated by ATPNS with
inhibitor arcs. ��

5 Conclusion

Array token Petri net structure generates rectangular arrays. This model is able
to generate (R)P2DCFL, three of the nine families of array languages and the
tabled 0L languages with regular control. Introducing inhibitor arcs to ATPNS
the other six families of Array Languages and tabled 0L languages with context-
free or context-sensitive control can also be generated. The languages generated
by the nine families of array grammars and tabled 0L grammars with the three
types of control can all be generated by ATPNS with inhibitor arcs.
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Abstract. Regional tile rewriting grammars are recently introduced
tiling based array rewriting grammar models on picture processing. They
extend context free string grammars to rectangular array grammars
with polynomial time complexity. We introduce Regional Hexagonal Tile
Rewriting Grammar (RHTRG) and generate images. We have compared
this model with Context Free Hexagonal Array Grammars (CFHAG) and
Hexagonal Tiling Systems (HTS) and shown that RHTRG have higher
generative capacity than CFHAG and incomparable with HTS and they
are strictly included in the Hexagonal Tile Rewriting Grammars.

Keywords: Hexagonal picture languages, Regional tiling, Hexagonal
array grammars, Hexagonal tiling systems.

1 Introduction

Picture languages generated by grammars have been advocated since seventies
for problems arising in the framework of pattern recognition and image anal-
ysis. Regional tile rewriting grammars [1] are recently introduced tiling based
array rewriting grammar models on picture processing. This model is resulting
from the restriction of Tile Rewriting Grammars (TRG) [2]. This model ex-
tends the context free string grammars to two dimensions with polynomial-time
complexity. The other kinds of 2D array rewriting grammars can be defined by
restricting the tiles used in RTG. RTG’s generative capacity is stronger than
that of Siromoney’s Array grammar [7] and context free Prussa Grammar [5].

Hexagonal patterns and grammars are known to occur in the literature on pic-
ture processing and scene analysis [4,6]. One of the classical formal models of gen-
eration of hexagonal arrays is Hexagonal Kolam Array Grammars (HKAG) [6],
in which hexagonal arrays on triangular grids were considered as two dimen-
sional representation of three dimensional blocks and several transformations
related to scene analysis were studied. The notion of arrowhead catenation is
a novel feature of that study. Recently, Hexagonal Tile Rewriting Grammars
(HTRG) are introduced [9], which combined the features of Hexagonal Tiling
System (HTS) [3] and Hexagonal Array Rewriting System, HAG [8].
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c© Springer-Verlag Berlin Heidelberg 2012



182 T. Kamaraj and D.G. Thomas

Motivated by the above studies, in this paper, we introduce Regional Hexag-
onal Tile Rewriting Grammars (RHTRG) and generate images. They are the
restriction of HTRG with a specified set of simple type of tiling named regional.
A typical rule of this grammar has a left and right part, both hexagonal pic-
tures of unspecified but equal size (isometric). The left part is a C-homogeneous
hexagonal picture (i.e.,) a hexagonal picture containing some non terminal sym-
bol C for all its pixels. The right part is a picture of regional hexagonal local
language over non-terminal symbols. Thus a grammar rule is a scheme defin-
ing a possibly unbounded number of isometric pairs of left and right hexagonal
pictures. But we can also have the rules whose right part is single terminal.

We compare the class RHTRG with context free Hexagonal Array Grammars
(CFHAG) [8], which are the extension of HKAG [6]. Then we compare it with
HTS. We prove that RHTRG has more generative capacity than CFHAG and
it is incomparable with HTS. We show that the family of languages generated
by RHTRGs is included in the family of languages generated by HTRGs.

2 Preliminaries

Let Σ be a finite alphabet of symbols. A hexagonal picture p over Σ is a hexag-
onal array of symbols of Σ.

We consider hexagons of the type

right most vertex

lower right vertex

upper right vertexupper left vertex

left most vertex

lower left vertex

For example, a hexagonal picture over the alphabet {a} is
a a

a a a
a a

.

The set of all hexagonal arrays over of the alphabet Σ is denoted by Σ∗∗H .
A hexagonal picture language L over Σ is a subset of Σ∗∗H .

With respect to a triad
x y

z

of triangular axes x, y, z, the co-ordinates
of each element of hexagonal picture can be fixed [3].

For p ∈ Σ∗∗H , let p̂ be the hexagonal array obtained by surrounding p with a
special boundary symbol # �∈ Σ. For example,

p̂ =

# # #
# a a #

# a a a #
# a a #

# # #

for p =
a a

a a a
a a

Given a picture p ∈ Σ∗∗H , let ‘�’ denote the number of elements in the border
of p from upper left vertex to left most vertex in the direction ↙ called x
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direction, ‘m’ denote the number of elements in the border of p from upper right
vertex to right most vertex in the direction ↘ called y direction and ‘n’ denote
the number of elements in the border of p from upper left vertex to upper right
vertex in the direction → called z direction.

The directions are fixed with origin of reference as the upper left vertex,
having co-ordinates (1, 1, 1). The triple (�,m, n) is called the size of the picture
p denoted by |p| = (�,m, n). Let pijk denote the symbol in p with co-ordinates
(i, j, k) where 1 ≤ i ≤ �, 1 ≤ j ≤ m, 1 ≤ k ≤ n. Let Σ(	,m,n)H be the set of
hexagonal pictures of size (�,m, n).

Given a hexagonal picture p of size (�,m, n) , we denote by Bg,h,k(p) the set
of all hexagonal subpictures of p of size (g, h, k), where g ≤ �, h ≤ m and k ≤ n.
Each member of B2,2,2(p) is called a hexagonal tile. We denote the set of all
hexagonal tiles contained in a picture p̂ by [[p̂]].

We now recall some basic definitions [3, 6].

Definition 1. A p-hexagon is a six-sided convex polygon whose opposite sides
are parallel. A b-hexagon is an equiangular p-hexagon whose opposite sides are
equal.

Definition 2. A non-convex hexagon ABCDEF as shown in Figure 1 is called
an a-hexagon or an arrowhead if |AB| = |FE|, |BC| = |ED|, AB is parallel to
FE and BC is parallel to ED. It is noted that the opposite sides |CD| and |AF |
are equal and parallel. |CD| is the thickness of the arrowhead and B is called the
vertex. ABC is the outermost edge and DEF is the innermost edge.

D C

BE

F A

Fig. 1. Right arrowhead

Depending on the direction of a vertex an arrowhead is classified as right
arrowhead (R), upper left arrowhead (UL), lower left arrowhead (LL) and their
duals left (L), upper right (UR) and lower right (LR) arrowheads.

Definition 3. If PQRSTU (Figure 2 (a)) is a hexagon and ABCDEF is a
right arrowhead with B as the vertex, then the arrowhead can be catenated to the

hexagon in the right direction if |PQ| = |FE| and |QR| = |ED| where PQ
and QR are the outermost right edges of the hexagon PQRSTU .

The resultant is a hexagon ABCSTU as shown in Figure 2 (b).
It is noted that |SC| = |SR|+ |RC| = |SR|+ |DC| and |UA| = |UP |+ |PA| =

|UP |+ |FA|.
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(R)D

F A

(Q) E B

C

P

Q

RS

T

U

T

S

U (P)
(a) (b)

Fig. 2. Right arrowhead catenated to hexagon

The upper left and the lower left arrowheads and the corresponding catenations

in the upper left direction and the lower left direction are illustrated in
Figure 3.

Similarly the duals the left, upper right and lower right arrowheads and the

corresponding catenations in the left direction , the upper right direction

and the lower right direction can be defined.

Definition 4. Let Γ and Σ be two finite alphabets and π : Γ → Σ be a mapping
which we call, a projection. Let p ∈ Γ ∗∗H be a hexagonal picture. The projection
by mapping π of p is the picture p′ ∈ Σ∗∗H such that p′(i, j, k) = π(p(i, j, k))
for all 1 ≤ i ≤ �, 1 ≤ j ≤ m and 1 ≤ k ≤ n, where (�,m, n) is the size of the
hexagonal picture.

Definition 5. Let L ⊂ Γ ∗∗H be a hexagonal picture language. The projection
by mapping π of L is the language L′ = {p′/p′ = π(p), ∀ p ∈ L} ⊆ Σ∗∗H .

Definition 6. Let Γ be a finite alphabet. A hexagonal picture language L ⊆
Γ ∗∗H is called local if there exists a finite set Δ of hexagonal tiles over Γ ∪ {#}
such that L = {p ∈ Γ ∗∗H/B2,2,2(p̂) ⊆ Δ}. In this case L is denoted by L(Δ).
The family of hexagonal local picture languages will be denoted by L(HLOC).

Definition 7. Let Σ be a finite alphabet. A hexagonal picture language L ⊆
Σ∗∗H is called recognizable if there exists a hexagonal local picture language L′

(given by a set of hexagonal tiles) over an alphabet Γ and a mapping π : Γ → Σ
such that L = π(L′).

The family of all recognizable hexagonal picture languages will be denoted by
L(HREC).

Example 1. Let Σ = {a}. It is shown that the language of hexagonal pictures
over Σ with all sides of equal length is not local, but recognizable [3].

Definition 8. A Hexagonal Tiling System (HTS) T is a 4-tuple (Σ,Γ, π, θ),
where Σ and Γ are two finite sets of symbols, π : Γ → Σ is a projection and θ
is a set of hexagonal tiles over the alphabet Γ ∪ {#}.
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Upper left
catenationarrowhead

Upper left

Lower left Lower left
catenationarrowhead

Fig. 3. Upper left and lower left arrowheads catenated to hexagons

Definition 9. The hexagonal picture language L ⊆ Σ∗∗H is tiling recognizable
if there exists a tiling system T = (Σ,Γ, π, θ) such that L = π(L(θ)).

It is easy to see that L(HREC) is exactly the family of hexagonal picture
languages recognized by HTS, i.e., L(HTS).

We now recall the notions of regular (R), context-free (CF) and context-sensitive
(CS) hexagonal array grammars and languages [8].

Definition 10. A Hexagonal Array Grammar (HAG) is G = (N, I, T, P, S,L)
where N, I and T are finite non-empty sets of nonterminals, intermediates and
terminals respectively. S ∈ N is the start symbol. For each A in I, LA is an
intermediate language which is regular, CF or CS string language, written in the
appropriate arrowhead form. An arrowhead is written in the form {· · · 〈v〉 · · · }
where 〈v〉 denotes the vertex and the arrowhead is written in the clock-wise di-
rection. L = {LA/A ∈ I}.

P = P1∪P2 is a finite nonempty set of productions where P1 consists of initial
rules of the following forms:

(1) S → H S′ (2) S → H S′ (3) S → H S′

(4) S → H S′ (5) S → H S′ (6) S → H S′

where S′ ∈ N ; S′ �= S and H is a hexagonal array over T .
G is regular if the rules of P2 are of the forms:

(1) S1 → A S2 (2) S1 → A S2 (3) S1 → A S2
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(4) S1 → A S2 (5) S1 → A S2 (6) S1 → A S2

(7) S1 → A
where S1, S2 ∈ N ; S1, S2 �= S and A ∈ I. Furthermore, if an initial rule in P1

is of the form (r), r = 1, . . . , 6, then P2 does not contain any rule of the form
(r+ 1) if r is odd and (r− 1), if r is even. Also P1 and P2 do not contain rules
of both the forms (r) and (r + 1), r = 1, 3, 5.
G is CF if the rules of P2 are of the form
S1 → α1 �1 · · ·�k−1 αk(k ≥ 1), where S1 ∈ N ; S1 �= S and αi ∈ (N − {S}) ∪ I
(1 ≤ i ≤ k) and �j denotes any one of the six arrowhead catenations, (1 ≤ j ≤
k − 1).

G is CS if the rules of P2 are of the form
β � S1 � δ → β � γ � δ or β � S1 → β � γ or S1 � δ → γ � δ or S1 → γ, where
S1 ∈ N ; S1 �= S and β, γ, δ are of the form α1� · · ·�αk, with αi ∈ (N−{S})∪I,
1 ≤ i ≤ k.

In particular, G is called (X : R)HAG or (X : CF )HAG or (X : CS)HAG,
for X ∈ {R,CF,CS}, according as all the intermediate languages are regular or
at least one of them is CF or at least one of them is CS.

3 Regional Hexagonal Tile Rewriting Grammars

In this section we are going to introduce and study the grammar with a specified
set of tiling named regional. The definitions given below are analogous to that
of [1] for the case of hexagonal pictures. Here a picture p refers to a b-hexagonal
(or) a-hexagonal (Arrowhead) array.

Definition 11. A pixel is an element p(i, j, k) of a picture p. If all pixels are
identical to C ∈ Σ the picture is called C-homogeneous or C-picture. The domain
of a picture p of size (�,m, n) is set d(p) consists of all positions of pixels in p.
A subdomain ds(p) of d(p) is a set of positions of pixels in p correspond to a sub
picture s of size (g, h, k) if 1 ≤ g ≤ �, 1 ≤ h ≤ m, 1 ≤ k ≤ n. A subdomain is
called C-homogeneous when its associated sub picture is a C-picture. C is called
the label of the subdomain.

Definition 12. A homogeneous partition of a picture p is any partition P =
{ds1 , ds2 , . . . , dsn} of d(p) into homogeneous sub domains ds1 , ds2 , . . . , dsn . The
unit partition of p, written unit(p), is the homogeneous partition of d(p) defined
by single pixels. A homogeneous partition is called strong if adjacent subdomains
have different labels. The unique partition given by strong homogeneous partition
of a picture p is π∗(p).

Definition 13. A Hexagonal Tile Rewriting Grammar [9] is a tuple (Σ,N, S,R),
where Σ is the terminal alphabet, N is a set of non terminal symbols, S ∈ N is
the starting symbol, R is a set of rules of two kinds of forms:

Fixed size : A→ t, where A ∈ N , t ∈ Σ.
Variable size : A → w, where A ∈ N , w is a set of hexagonal tiles over

N ∪ {#} such that HLOC(w) admits a strong homogeneous partition for each
p ∈ HLOC(w).
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Definition 14. A homogeneous partition is regional (RH) if and only if dis-
tinct subdomains have distinct labels. A picture p is regional if it admits a RH
partition. A language is regional if all its pictures are regional.

Definition 15. A regional hexagonal tile rewriting grammar (RHTRG) is a tu-
ple (Σ,N, S,R), where Σ is the terminal alphabet, N is a set of non terminal
symbols, S ∈ N is the starting symbol, R is a set of rules of the form

Fixed size : A→ t, where t ∈ Σ.
Variable size : A → w, where w is a set of hexagonal tiles over N ∪ {#},

HLOC(w) is a regional language.

Picture derivation is defined as follows.
Consider a hexagonal grammar G = 〈Σ,N, S,R〉. Let p, p′ ∈ (Σ∪N)(g,h,k) be

pictures of identical size. Let π, π′ be the homogeneous partitions of d(p) with
π = {ds1 , ds2 , . . . , dsn}. We say that (p′, π′) is derived in one step from (p, π),
written as (p, π)⇒

G
(p′, π′) if and only if for some A ∈ N and for some rule r ∈ R

with left part A, there exists a subdomain dsi in π called application area, such
that

(i) p′ is obtained by substituting the sub picture s at ds in p with a picture q
of same size, defined as follows:
(a) if r is of type(1), then q = t
(b) if r is of type(2), then q ∈ HLOC(w).

(ii) π′ is a homogeneous partition of d(p) into the subdomains

(π\{dsi}) ∪ transdsπ
∗(q)

where transdsπ
∗(q) denotes the displacement of strong homogeneous parti-

tion of q to the position of ds.

We say that (p′, π′) is derived from (p, π) in n steps, written (p, π)
n⇒
G
(p′, π′) if

and only if p = p′ and π = π′ when n = 0 or there is a picture q and a

homogeneous partition π′′ such that (p, π)
n−1⇒
G

(q, π′′) and (q, π′′) ⇒
G

(s, π′).
∗⇒
G

denotes the transitive closure of ⇒
G
.

Definition 16. The hexagonal picture language L(G) defined by a RHTRG G
is the set of p ∈ Σ++H such that

〈S|p|, d(p)〉 ∗⇒
G
(p, U)

where U denotes the partition of d(p) defined by single pixels. Shortly we can

also write S
∗⇒
G
p.

The family of hexagonal languages generated by RHTRGs is denoted by
L(RHTRG).
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4 Examples on Regional Hexagonal Tile Rewriting
Grammar

In this section we give some examples of RHTRGs and their languages.

Example 2. The set of all b-hexagonal pictures whose diagonal elements are
x’s and other elements are y’s is generated by the RHTRG grammar G =
(Σ,N, S,R) where Σ = {x, y}, N = {X,Y, Z,X ′, X ′′, Y ′, Y ′′, Z ′, A′, A′′, B′, B′′,
A,B, Y , U1, U2, . . . , U7} and R consists of the following rules:

S →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # # #
# X Y Y Y #

# X S S S Y #
# X S S S S Y #

# X S S S S S Z #
# X S S S S Z #

# X S S S Z #
# X Z Z Z #

# # # # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # #
# X Y Y #

# X S S Y #
# X S S S Z #

# X S S Z #
# X Z Z #

# # # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
/ ⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
# # #

# U1 U2 #
# U3 U7 U4 #

# U5 U6 #
# # #

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

X →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # #
# X ′ #

# A #
# A #

# A #
# A #

# A #
# X ′′ #

# # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; A→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # #
# A′ #

# A #
# A #

# A #
# A #

# A #
# A′′ #

# # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # # #
# Y ′ Y Y Y #

# # # # # Y #
# Y #

# Y ′′ #
# #

#

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Z →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

#
# #

# Z ′ #
# B #

# # # # # B #
# B B B B #

# # # # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

#
# #

# B′ #
# B #

# # # # # B #
# B′′ B B B #

# # # # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
X ′, X ′′, Y, Z ′, A,B, U1, U2, . . . , U7 → x
A′, A′′, Y ′, Y ′′, B′, B′′ → y
First three pictures generated by this grammar are

x x
x x x
x x

x y x
y x x y

x x x x x
y x x y
x y x

x y y x
y x y x y

y y x x y y
x x x x x x x
y y x x y y
y x y x y
x y y x

The derivation of second picture is given in the following figure.

Z

Z

X

X

X

Y

Y Y

Z

ZSS S

S

S S

SX

XS

S

S

S

S

S

S S

S

SSS S

S

S S

SS

S

⇒

X ′ Y Y
A S S Y

A S S S Z
A S S Z

X ′′ Z Z

⇒

X ′ Y Y
A′ S S Y

A S S S Z
A′′ S S Z

X ′′ Z Z

⇒

x Y Y
A′ S S Y

A S S S Z
A′′ S S Z

X ′′ Z Z

⇒

x Y Y
y S S Y

A S S S Z
A′′ S S Z

X ′′ Z Z
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⇒

x Y Y
y S S Y

x S S S Z
A′′ S S Z

X ′′ Z Z

⇒

x Y Y
y S S Y

x S S S Z
y S S Z
X ′′ Z Z

⇒

x Y Y
y S S Y

x S S S Z
y S S Z
x Z Z

∗⇒

x y x
y U1 U2 y

x U3 U7 U4 x
y U5 U6 y

x y x

∗⇒

x y x
y x x y

x x x x x
y x x y
x y x

Example 3. The language

L =

⎧⎨⎩
1 1

1 2 1
1 1

,
1 1 1

1 2 2 1
1 1 1

,
1 1 1 1

1 2 2 2 1
1 1 1 1

,
1 1 1 1 1

1 2 2 2 2 1
1 1 1 1 1

, . . .

⎫⎬⎭
is generated by the RHTRG grammar G = 〈Σ,N, S,R〉 where Σ = {1, 2},
N = {S,X,X ′, Y, Y ′, Z, Z ′, U, V }.
R consists of following rules

S →

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

# # # #
# X X X #

# U Z Z V #
# Y Y Y #

# # # #

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦
/⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
# # #

# X X #
# U Z V #

# Y Y #
# # #

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

X →

⎡⎣⎡⎣ # # # #
# X ′ X X #

# # # #

⎤⎦⎤⎦
Y →

⎡⎣⎡⎣ # # # #
# Y ′ Y Y #

# # # #

⎤⎦⎤⎦
Z →

⎡⎣⎡⎣ # # # #
# Z ′ Z Z #

# # # #

⎤⎦⎤⎦
X ′ → 1, X → 1, U → 1,
Y ′ → 1, Y → 1, V → 1,
Z ′ → 2, Z → 2.
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5 Comparison Results

In this section we give the main results of this paper.

Theorem 1. The family of CF Hexagonal Array Grammar languages is strictly
included in the family of RHTRG languages.

Proof. Consider CFHAG grammar G in Chomsky Normal form. It may contain

six types of rules A B, A B, A B and its duals A B, A B, A B.

Then the rules of G, C → A B are equivalent to RHTRG rules of the form

C →

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

# # # # #
# B B A A #

# B B A A A #
# B B A A #

# # # # #

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

C → A B equivalent to RHTRG rules of the form

C →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # #
# B B #

# B B B #
# A A B #

# A A A #
# A A #

# # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
C → A B equivalent to RHTRG rules of the form

C →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # #
# A A #

# A A A #
# A A B #

# B B B #
# B B #

# # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The rules C → t, t ∈ Σ are identical in both the grammars. The inclusion is
strict because the language of Example 3 cannot be generated by any CFHAG.

Suppose there exists a CFHAG grammar G = (N, I, T, P, S, LA1) where N =

{S, S1}, I = {A1}, T = {1, 2}, P = P1 ∪ P2 where P1 = {S → H S1}

and P2 = {S1 → A1 S1, S1 → A1} with H =

⎧⎨⎩
1 1

1 2 1
1 1

⎫⎬⎭ and LA1 is an

intermediate language corresponding to A1.
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The other elements of the language of HAG are constructed through the
left arrow head catenation of first hexagonal array and hence first element of
the language must be the suffix hexagonal array of the second element of the
language and so on, but which is not the language as in Example 3. Similarly the
proof can be made if we use the right arrow head catenation in the grammar. ��

Theorem 2. The family of hexagonal tiling system languages and the family of
RHTRG languages are incomparable.

Proof. First we prove that both the families of languages are not disjoint.
The language

L1 =

⎧⎨⎩
x x

x x x
x x

,
x x x

x x x x
x x x

, . . .

⎫⎬⎭
is present in both the families.

If we consider the hexagonal tile set

θ =

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

# # # #
# 1 1 1 #

# 2 2 2 2 #
# 3 3 3 #

# # # #

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

Then

L2 =

⎧⎨⎩
1 1

2 2 2
3 3

,
1 1 1

2 2 2 2
3 3 3

, . . .

⎫⎬⎭
= L(θ).

This implies L2 ∈ L(HLOC). If we use a projection π as π(1) = π(2) = π(3) = x
then we get L1 = π[L2].

Thus the tiling system 〈Σ,Γ, θ, π〉 where Σ = {x}, Γ = {1, 2, 3}, accepts the
language L1. Hence L1 is HTS recognizable.

Consider the RHTRG grammar, G = 〈Σ,N, S,R〉 where Σ = {x} and N =
{S,X, Y, Z,X ′, Y ′, Z ′}

R consists of the rules

S →

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

# # # #
# X X X #

# Y Y Y Y #
# Z Z Z #

# # # #

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦ ; X →

⎡⎣⎡⎣ # # # #
# X ′ X X #

# # # #

⎤⎦⎤⎦

Y →

⎡⎣⎡⎣ # # # #
# Y ′ Y Y #

# # # #

⎤⎦⎤⎦ ; Z →

⎡⎣⎡⎣ # # # #
# Z ′ Z Z #

# # # #

⎤⎦⎤⎦
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X ′, X, Y ′, Y, Z ′, Z → x.
Clearly this RHTRG grammar generates all the elements of L1.
Thus L(HTS) ∩ L(RHTRG) �= φ.
The language L3 of hexagonal pictures of a’s with all the three sides equal is

in HTS, T = 〈Σ,Γ, θ, π〉 where Σ = {a}, Γ = {0, 1},

θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # # # #
# 1 0 0 0 0 #

# 0 0 1 0 0 0 #
# 0 1 0 0 1 0 0 #

# 0 0 0 0 0 0 1 0 #
# 0 0 1 0 0 0 0 0 1 #

# 0 0 0 0 0 0 1 0 #
# 0 1 0 0 1 0 0 #

# 0 0 1 0 0 0 #
# 1 0 0 0 0 #

# # # # # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
π(1) = π(0) = a. But the only possible grammar rules generating strong
homogeneous partition are

S →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # # # #
# W1 B0 W0 B0 W0 #

# B0 B0 W1 B0 W0 B0 #
# W0 W1 W0 B0 W1 B0 W0 #

# B0 B0 B0 B0 W0 B0 W1 B0 #
# W0 W0 W1 W0 W0 B0 W0 B0 W1 #

# B0 B0 B0 B0 W0 B0 W1 B0 #
# W0 W1 W0 B0 W1 B0 W0 #

# B0 B0 W1 B0 W0 B0 #
# W1 B0 W0 B0 W0 #

# # # # # #

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # # # #
# B1 W0 B0 W0 B0 #

# W0 W0 B1 W0 B0 W0 #
# B0 B1 B0 W0 B1 W0 B0 #

# W0 W0 W0 W0 B0 W0 B1 W0 #
# B0 B0 B1 B0 B0 W0 B0 W0 B1 #

# W0 W0 W0 W0 B0 W0 B1 W0 #
# B0 B1 B0 W0 B1 W0 B0 #

# W0 W0 B1 W0 B0 W0 #
# B1 W0 B0 W0 B0 #

# # # # # #

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W1, B1,W0, B0 → a.
But clearly the variable size rules are not generating regional pictures. So the

language L3 is not generated by any RHTRG grammar.
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The set of all L-shaped palindromic left hexagonal arrowheads over the al-
phabet {a, b} is generated by RHTRG having the rules

S →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # # #
# X X X #

# X X X #
# X X X #

# X X X #
# X X X #

# X X X #
# X X X #

# # # # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # # # #
# R X X #

# R X X #
# R X X #

# R X X #
# R X X #

# R X X #
# R X X #

# # # # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # #
# R #

# R #
# R #

# R #
# R #

# R #
# R #

# # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # #
# A′ #

# R #
# R #

# R #
# R #

# R #
# A′′ #

# # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# # #
# B′ #

# R #
# R #

# R #
# R #

# R #
# B′′ #

# # #

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A′, A′′ → a; B′, B′′ → b; R→ a, b

This language is clearly not generated by any HTS as there is no local strategy
available for the corresponding palindromic alphabet positions. ��

Theorem 3. L(RHTRG) ⊂ L(HTRG).

Proof. Since RHTRG grammar rules are restricted form of HTRG rules, every
RHTRG rule is a rule in HTRG also. Therefore L(RHTRG) ⊆ L(HTRG). But
L(RHTRG) �= L(HTRG) is seen from the grammar given for the language L3

where the variable size rules are of the form of HTRG and not in RHTRG. ��

6 Conclusion

Regional hexagonal tile rewriting grammars are the simple type of hexagonal
tiling based array rewriting models. They have higher generative capacity than
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CFHAG but less general than HTRG. Its incomparability and non-empty dis-
jointness with hexagonal tiling system shows that it may include some subclass
of HTS languages, which we have to explore further.

Practical applicability of image processing tasks (like pattern recognition,
biomedical image analysis, 3 dimensional structure interpretation) remains to
be investigated, which will largely depend on time complexity of this new model
and on good parsing algorithm.
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Abstract. Algebraic characterization of recognizable trace languages
were studied and the relation of recognizable trace languages to elemen-
tary Petri nets were established by using partial commutation as a tool.
Motivated by the above studies in string languages, we have extended
the notion of partial commutation to two-dimensional array languages
and established that if L is local then φ(L) need not be local, where φ
is a partial commutation mapping. We have proved that L(φ(θ)) and
φ(L(θ)) are not disjoint, where θ is a finite set of 2 × 2 tiles over the
alphabet Γ ∪ {#}. We have also considered partial commutation map-
ping on Siromoney matrix languages and proved some interesting results.

Keywords:Tiling system, Projection, Local recognizability, Partial com-
mutation and trace languages, Siromoney matrix grammar.

1 Introduction

A two-dimensional language is a set of two-dimensional patterns which appear
in the studies concerning cellular automata, parallel computing and image anal-
ysis [5, 8, 9, 12, 13]. The notion of recognizability in two-dimension is the most
ambitious property for picture languages. The generalization of finite state au-
tomaton to two-dimensional languages can be attributed to M. Blum and C.
Hewitt [1] and they have introduced the notion of 4-way automaton. The idea of
recognizability of a set of pictures in terms of tiling system has been introduced
in [4]. The underlying idea is to define recognizability by projection of local
properties. Siromoney et al. introduced various matrix grammars for generating
rectangular picture languages [10].

On the other hand the theory of traces has been motivated by the theory of
Petri nets and by the theory of formal languages and automata [3]. The original
attempt of the theory of traces was to use the well developed tools of formal
language theory for the analysis of concurrent systems as it is done in Petri nets.

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 196–208, 2012.
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Based on the behaviour of elementary net systems Mazurkiewicz introduced
the concept of partial commutation on string languages to the computer science
community [6]. The abstract description of a concurrent process is then called a
trace, being defined as a congruence class of word modulo identities of the form
ab ≡ ba for some pairs of letters. The success of Mazurkiewicz approach results
from the fact that the partial commutation copes with some important phenom-
ena in concurrency. Since the work of Cartier and Foata [2] in combinatorics,
the trace theory has grown in breadth and depth.

Motivated by the above studies we have considered partial commutation on
rectangular arrays and examined whether the language obtained by applying
partial commutation on a local language is local or not. Similar question has
been analyzed for Siromoney matrix languages.

2 Preliminaries

In this section we recall the notions of recognizability of two-dimensional picture
languages [4] and Siromoney matrix grammars [10] and partial commutation on
strings [6].

Definition 1. A two-dimensional string (or a picture) over Σ is a two-
dimensional rectangular array of elements of Σ. The set of all two-dimensional
strings over Σ is denoted by Σ∗∗. A two-dimensional language over Σ is a subset
of Σ∗∗.

Given a picture p ∈ Σ∗∗, let �1(p) denote the number of rows of p and �2(p)
denote the number of columns of p. The pair (�1(p), �2(p)) is called the size of
the picture p. The empty picture is the only picture of size (0, 0) denoted by Λ.
The set of all pictures of size (m,n) with m,n > 0 is represented by Σm×n.

The notion of recognizability of a set of pictures in terms of tiling systems
is introduced in [4]. The recognition in a tiling system is defined in terms of a
finite set of square pictures of size two by two over a new alphabet Γ . The tiles
define a local language over Γ and a projection from Γ to Σ, applied to this
local language, produces the language over Σ recognized by the tiling system.

Definition 2. Let p ∈ Γ ∗∗ be a picture. The projection by the mapping π of a
picture p is the picture p′ ∈ Σ∗∗ such that p′(i, j) = π(p(i, j)) for all 1 ≤ i ≤ �1(p)
and 1 ≤ j ≤ �2(p), where p(i, j) is the (i, j)th element of p.

Definition 3. Let L ⊆ Γ ∗∗ be a picture language. The projection by the mapping
π of L is the language L′ = {p′|p′ = π(p) ∀ p ∈ L} ⊆ Σ∗∗. We denote the
language obtained by the projection of L by the mapping π as π(L).

Let p be a picture of size (m,n). We denote by p̃ the picture of size (m+2, n+2)
obtained by bordering p with a special boundary symbol # �∈ Σ. Bh,k(p) denotes
the set of all subpictures of p of size (h, k). A tile is a picture of size (2, 2).

Definition 4. A tiling system is a 4-tuple T = (Σ,Γ, θ, π) where Σ and Γ are
alphabets, θ is a finite set of tiles over the alphabet Γ ∪ {#} and π : Γ → Σ is
a projection.
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Definition 5. Let Γ be a finite alphabet. A two-dimensional language
L ⊆ Γ ∗∗ is local if there exists a finite set θ of tiles over the alphabet Γ ∪ {#}
such that L = {p ∈ Γ ∗∗|B2,2(p̃) ⊆ θ}. The language L is denoted by L(θ).

The family of local picture languages is denoted by LOC. The set θ represents
the set of allowed blocks for pictures belonging to the local language L. Given a
language L, we can consider the set θ as the set of all possible blocks of size (2, 2)
of pictures that belong to L (when considered with the frame of # symbols).

Definition 6. A language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling
system T = (Σ,Γ, θ, π) such that L = π(L(θ)).
L(TS) is the family of all two-dimensional languages recognizable by tiling

systems.

We now consider Siromoney matrix grammars [10].

Definition 7. A Siromoney matrix grammar G is a 2-tuple (G1, G2), where
(i) G1 = (V1, I1, P1, S) is a regular or a context-free or a context-sensitive or
a phrase-structure grammar with V1, a finite set of horizontal non-terminals;
I1 = {S1, . . . , Sk}, a finite set of intermediates, V1 ∩ I1 = φ; P1, a finite set of
production rules called horizontal production rules and S ∈ V1, the start symbol

and (ii) G2 =

k⋃
i=1

G2i where G2i = (V2i, Ti, P2i, Si), 1 ≤ i ≤ k, a regular grammar

with V2i, a finite set of vertical non-terminals, V2i ∩ V2j = φ, i �= j; Ti, a finite
set of terminals, P2i, a finite set of right linear production rules called vertical
production rules of the form X → aY or X → a where X,Y ∈ V2i, a ∈ Ti and
Si ∈ V2i, the start symbol of G2i.

The grammar G is called a regular (RMG), context-free (CFMG), context-
sensitive (CSMG) and phrase-structure (PSMG) Siromoney matrix grammar if
G1 is regular, context-free, context-sensitive and phrase-structure respectively.

Derivations are defined as follows: First a string, Si1Si2 . . . Sin ∈ I∗1 is gen-
erated horizontally using the horizontal production rules of P1 in G1. i.e., S ⇒
Si1Si2 . . . Sin ∈ I∗1 .

Vertical derivations proceed as follows: We write

Ai1 . . . Ain

⇓
Bi1 . . . Bin

ai1 . . . ain

if Aij → aijBij are rules in P2j , 1 ≤ j ≤ n. The derivation terminates if
Aij → amj are terminal rules in G2.

The set L(G) generated by G consists of all m × n arrays [aij ] such that

1 ≤ i ≤ m, 1 ≤ j ≤ n and S
∗⇒
G1

Si1Si2 . . . Sim
∗⇒
G2

[aij ].

Definition 8. L(G) is called a phrase-structure matrix language (PSML),
context-sensitive matrix language (CSML), context-free matrix language (CFML),
regular matrix language (RML) if G is a PSMG, CSMG, CFMG, RMG
respectively.
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The Siromoney matrix grammars were extended as Tabled Matrix Grammars
[11], by specifying a finite set of tables of rules in the second phase of gener-
ation with each table having either right-linear non terminal rules or terminal
rules. The resulting families of picture array languages are denoted by TRML
(TCFML, TCSML) and are known to properly include class of RML (CFML,
CSML). These models generate wide class of picture languages, including simple
pictures like H and ladder,which Siromoney matrix models cannot generate.

We now recall partial commutation on strings [6, 7].
Let Σ be a finite alphabet. Let I ⊆ Σ × Σ be a symmetric and irreflexive

relation over the alphabet Σ, called the independence (or commutation) relation.
(a, b) ∈ I means that ab = ba.

The relation I induces an equivalence relation ∼I over Σ∗. Two words x
and y are equivalent under ∼I , denoted by x ∼I y, if there exists a sequence
z1, z2, . . . , zk of words such that x = z1, y = zk, and for all i, 1 ≤ i < k, there
exist words z′i, z

′′
i , and letters ai, bi satisfying:

zi = z′iaibiz
′′
i , zi+1 = z′ibiaiz

′′
i , and (ai, bi) ∈ I.

Thus, two words are equivalent by ∼I if one can be obtained from the other by
successive transpositions of neighboring independent letters. It is easy to verify
that ∼I is the least congruence over Σ

∗ such that ab ∼I ba for all pairs (a, b) ∈ I.
The quotient of Σ∗ by the congruence ∼I is the free partially commutative
monoid induced by the relation I, denoted byM(Σ, I). The elements ofM(Σ, I),
which are equivalence classes of words of Σ∗ under the relation ∼I , are called
traces. Consequently, M(Σ, I) is called a trace monoid.

For a word x of Σ∗ the equivalence class of x under ∼I is denoted by [x]I .
Thus, [x]I is the set of words which are equivalent to a given word x,

i.e., [x]I = {y ∈ Σ∗|y ∼I x}.

For instance, if we consider I = {(a, d), (d, a), (b, c), (c, b)}, we have:

[baadcb]I = {baadcb, baadbc, badacb, badabc, bdaabc, bdaacb}.

A trace language is any subset of M(Σ, I). If X ⊆ Σ∗, then [X ] = {[x]I |x ∈ X}.
Clearly, [X ] is a trace language.

For further details on partial commutation and traces we refer to [6, 7].

3 Trace of Array Languages

In this section, we extend the notion of trace languages to two dimensional
picture languages.

Definition 9. Let Σ be an alphabet and p ∈ Σ∗∗. The row partial commutation
mapping φR : Σ×Σ → Σ×Σ is defined as φR(a, b) = (b, a) and φR(b, a) = (a, b)
for a, b ∈ Σ. i.e., a and b commute with each other. A row partial commutation
is denoted by (a b)↔ (b a). It is applied on any row of p replacing ab by ba and
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vice versa. The equivalence class of p obtained by row partial commutation is a
trace, denoted by [p]R or φR(p). The set of all equivalence classes obtained by
row partial commutation on a language L, denoted by φR(L), is a trace language.
If L ⊆ Σ∗∗, then φR(L) = {[p]R|p ∈ L}.

Definition 10. Let Σ be an alphabet. The column partial commutation mapping

φC :
(

Σ
Σ

)
→
(

Σ
Σ

)
is defined as φC

(
a
b

)
=
(

b
a

)
and φC

(
b
a

)
=
(
a
b

)
for a, b ∈ Σ.

A column partial commutation is denoted by
(
a
b

)
↔
(

b
a

)
. It is applied on any

column of a picture p ∈ Σ∗∗. The equivalence class of p obtained by column
partial commutation is a trace, given by [p]C or φC(p). If L ⊆ Σ∗∗, then φC(L) =
{[p]C |p ∈ L}.

Note. If every element of Σ commutes with each other then the partial com-
mutation is called a total commutation.

Example 1. Let

θ =

{
# #
# 1

,
# #
1 0

,
# #
0 #

,
# 1
# 0

,
1 0
0 1

,
0 #
1 #

,
# 0
# #

,
0 1
# #

,

1 #
# #

,
# #
0 0

,
0 0
1 0

,
0 0
# #

,
# 0
# 0

,
0 1
0 0

,
0 0
0 0

,
0 #
0 #

}
.

The local language L = L(θ) is the language of squares over Σ = {0, 1} such
that the principal diagonal elements are ‘1’ and remaining elements are all ‘0’.

i.e., L = L(θ) = {p ∈ Σ∗∗|�1(p) = �2(p) such that aii = 1,

aij = 0 for i �= j, i = 1, 2, . . . , n}

i.e., L =

⎧⎨⎩1 0
0 1

,
1 0 0
0 1 0
0 0 1

, . . .

⎫⎬⎭.

By applying the row commutativity (0 1)↔ (1 0) to each element of L, we get

φR(L) =

⎧⎨⎩1 0
1 0

,
1 0
0 1

,
0 1
0 1

,
0 1
1 0

,
1 0 0
0 1 0
0 0 1

,
0 1 0
0 1 0
0 0 1

, . . .

⎫⎬⎭ .

φR(L) cannot be local, for if it is local, then there exists a set of tiles θ′

such that L(θ′) = φR(L). Then
0 0
1 0

,
0 0
0 1

,
0 1
0 0

,
1 0
0 0

,
0 0
0 0

should be in θ′ since

0 0 0 0 1
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

∈ φR(L). But

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

is in L(θ′) and not in φR(L).
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Now by applying the row partial commutation to θ, we get

φR(θ) =

{
# #
# 1

,
# #
1 0

,
# #
0 1

,
# #
0 #

,
# 1
# 0

,
1 0
0 1

,
1 0
1 0

,
0 1
0 1

,
0 1
1 0

,
0 #
1 #

,
# 0
# #

,

1 0
# #

,
0 1
# #

,
1 #
# #

,
# #
0 0

,
0 0
0 1

,
0 0
1 0

,
0 #
0 #

,
# 0
# 0

,
0 0
# #

,
1 0
0 0

,
0 1
0 0

,
0 0
0 0

}
.

Now 101 ∈ L(φR(θ)). But 101 �∈ φR(L(θ)).
0 1 0
0 1 0
0 0 1

∈ φR(L(θ)). But
0 1 0
0 1 0
0 0 1

�∈ L(φR(θ))

Hence φR(L(θ)) �= L(φR(θ)).

By applying column partial commutation

(
1
0

)
↔
(
0
1

)
on L we get

φC(L) =

⎧⎨⎩0 0
1 1

,
0 1
1 0

,
1 1
0 0

,
1 0
0 1

,
1 0 0
0 1 0
0 1 0

,
1 0 0
0 1 1
0 0 0

, . . .

⎫⎬⎭
Again φC(L) cannot be local and this can be proved in the same way as in the
case of φR(L) and φC(L(θ)) �= L(φC(θ)).

Example 2. We consider a local language L = {1 2 3,
1 2 3
1 2 3

,
1 2 3
1 2 3
1 2 3

, . . . } over

Σ = {1, 2, 3}, where

θ =

{
# #
# 1

,
# #
1 2

,
# #
2 3

,
# #
3 #

,
3 #
3 #

,
# 1
# 1

,

1 2
1 2

,
2 3
2 3

,
# 1
# #

,
1 2
# #

,
2 3
# #

,
3 #
# #

}
.

By applying the row partial commutation (1 2)↔ (2 1) on L we get

φR(L) =

{
1 2 3, 2 1 3,

2 1 3
1 2 3

,
1 2 3
2 1 3

,
2 1 3
2 1 3

,
1 2 3
1 2 3

, . . .

}
.

φR(L) cannot be local, for if it is local, then there exists a set of tiles θ′ such
that L(θ′) = φR(L).
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Since
2 1 3
1 2 3
1 2 3

,
1 2 3
2 1 3
1 2 3

,
1 2 3
1 2 3
2 1 3

∈ φR(L), the set of tiles contained in the picture

# # # # # #
# 2 1 2 3 #
# 1 2 1 3 #
# # # # # #

is a subset of θ′.

This implies,
2 1 2 3
1 2 1 3

∈ L(θ′) but not in φR(L). Hence φR(L) is not local.

By applying the row partial commutation (1 2)↔ (2 1) to the elements of θ,
we get

φR(θ) =

{
# #
# 1

,
# #
1 2

,
# #
2 1

,
# #
2 3

,
# #
3 #

,
# 1
# 1

,
1 2
1 2

,
1 2
2 1

,

2 1
1 2

,
2 1
2 1

,
2 3
2 3

,
3 #
3 #

,
# 1
# #

,
2 3
# #

,
3 #
# #

,
1 2
# #

,
2 1
# #

}
.

Now
1 2 1 2 3
1 2 1 2 3

∈ L(φR(θ)).

But
1 2 1 2 3
1 2 1 2 3

�∈ φR(L(θ)).

Again
2 1 3
2 1 3
2 1 3

∈ φR(L(θ)). But
2 1 3
2 1 3
2 1 3

�∈ L(φR(θ)).

So, φR(L(θ)) �= L(φR(θ)).
If we denote the transpose of θ by θt we see that φR(L(θ

t)) is local and φR(L(θ
t))

= L(φR(θ
t)).

By applying column commutativity

(
1
2

)
↔
(
2
1

)
to the elements of L, we get

φC(L) = L and φC(θ) = θ.
Clearly, φC(L) is local and φC(L(θ)) = L(φC(θ)).
But we see that φC(L(θ

t)) is not local and φC(L(θ
t)) �= L(φC(θ

t)).

Remark 1. If all the elements of Σ = {1, 2, 3} are commuted, that is, (1 2)↔
(2 1), (2 3)↔ (3 2) and (1 3)↔ (3 1) then φR(L(θ)) is not local. In other words
whenever the partial commutation becomes a total commutation, φR(L(θ)) need
not be local.

From the above examples and the remark, we have the following results.

Theorem 1. Suppose φ is either a row partial (or) a column partial commuta-
tion mapping and θ is a finite tile set over the alphabet Γ ∪ {#}.

(i) If L is local then φ(L) need not be local.
(ii) If L is local then φ(L(θ)) and L(φ(θ)) need not be equal
(iii) φ(L(θ)) and L(φ(θ)) are not disjoint.
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Proof. (i) and (ii) follow from Examples 1 and 2.
(iii) Since φ induces an equivalence relation on L(θ), L(θ) ⊆ φ(L(θ)).
Since θ ⊆ φ(θ), L(θ) ⊆ L(φ(θ)).
So L(θ) ⊆ φ(L(θ))∩L(φ(θ)). In other words φ(L(θ)) and L(φ(θ)) are not disjoint.

��

Note. If we apply either row partial commutation mapping (0 1) ↔ (1 0) or

column partial commutation mapping

(
1
0

)
↔
(
0
1

)
(one operation at a time)

on L, given in Example 1, we get the array language⎧⎨⎩0 1
0 1

,
1 0
0 1

,
1 0
1 0

,
0 1
0 0

,
0 0
1 1

,
1 1
0 0

,
1 0 0
0 1 0
0 0 1

,
1 0 0
0 0 1
1 0 0

, . . .

⎫⎬⎭
which can be denoted by φR/C(L). Clearly φR/C(L) is also not local and
L(φR/C(θ)) �= φR/C(L(θ)).

Proposition 1. If L, L1 and L2 are any three array languages over Σ and φC

and φR are respectively partial column and row commutation mappings, then,
the following properties are true

(i) φC(L1 ∪ L2) = φC(L1) ∪ φC(L2)
(ii) φC(L1) ⊆ φC(L2) if L1 ⊆ L2

(iii) φC(φR(L)) need not be equal to φR(φC(L)).
(iv) φC(L1)©− φC(L2) need not be equal to φC(L1©− L2)

φC(L1)©| φC(L2) need not be equal to φC(L1©| L2)
(v) φC(L1 ∩ L2) need not be equal to φC(L1) ∩ φC(L2)

Properties (ii), (iii), (iv), (v) hold good if we replace φC by φR.

4 Partial Commutation on Siromoney Matrix Languages

In this section, we consider Siromoney matrix grammars which are well known
classical picture generating models and examine the partial commutativity ap-
plied on Siromoney matrix languages.

Example 3. Consider the regular matrix language consisting of m × n arrays
(m > 1, n > 1) on {·, X} describing the L tokens (Fig. 1), which is generated by
the RMG, G =< G1, G2 >
where G1 = ({S,A}, {I1, I2}, {S → I1A,A→ I2A,A→ I2}, S)
and G2 = G21 ∪G22,
with G21 = ({I1, B}, {X}, {I1 → XB,B → XB/X}, I1)
and G22 = ({I2, C}, {·, X}, {I2 → ·C,C → ·C/X}, I2)

If we apply column partial commutation
( ·
X

)
↔
(

X
·
)
on L(G) then

φC(L(G)) =

⎧⎨⎩X ·
X X

,
X X
X · ,

X ·
X ·
X X

,
X ·
X X
X ·

,
X X
X ·
X ·

, . . .

⎫⎬⎭
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X · · · ·
X · · · ·
X · · · ·
X · · · ·
X · · · ·
X X X X X

Fig. 1.

In φC(L(G)), we observe that first column of every picture contains all X ’s and
each of other columns contains only one element as X and other elements as ·’s.

This language can be generated by the following RMG

G′ = 〈G′
1, G

′
2〉

where G′
1 = G1 and G′

2 = G′
21 ∪G′

22 with G′
21 = G21 and

G′
22 = ({I2, B′, C,D,E}, {·, X}, {I2 → XB′| · C| ·D,B′ → ·B′|·, C → ·C|X ,

D → ·D|XE,E → ·E/·}.
If we apply row partial commutation (· X)↔ (X ·) on L(G), then

φR(L(G)) =

⎧⎨⎩X ·
X X

,
· X
X X

,
X ·
X ·
X X

,
· X
X ·
X X

,
X ·
· X
X X

,
· X
· X
X X

, . . .

⎫⎬⎭
In φR(L(G)) we observe that each row (except last) of every picture consists
of one X (at any position) and remaining ·’s. The last row contains all X ’s.
This means that every column has a chance of having more than one X (entire
column may be X ’s).

If an RMG G′′ = 〈G′′
1 , G

′′
2 〉 generates φR(L(G)), then all the vertical pro-

duction rules in G′′
2 should produce column strings as discussed above. This

means, we have a picture

X X
X X
X X
X X

in L(G′′), which clearly indicates that L(G′′) �=

φR(L(G)).

Example 4. Consider the context free matrix language consisting of m×n arrays
(m ≥ 3, n ≥ 3) on {·, X} describing I tokens (Fig. 2), which is generated by the
CFMG, G =< G1, G2 >
where G1 = ({S,A}, {I1, I2}, {S → I1SI1, S → I1AI1, A→ I2}, S),
G2 = G21 ∪G22

with G21 = ({I1, B, C}, {·, X}, {I1 → XB,B → ·C,C → ·C/X}, I1)
and G22 = ({I2, O,E}, {X}, {I2 → XO,O→ XE,E → XE/X}, I2)
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X X X X X X X
· · · X · · ·
· · · X · · ·
· · · X · · ·
X X X X X X X

Fig. 2.

If we apply column partial commutation

(
·
X

)
↔
(
X
·

)
on L(G), then

φC(L(G)) =

⎧⎨⎩
X X X
X X ·
· X X

,
· X X
X X ·
X X X

,
· X ·
X X X
X X X

, . . .

⎫⎬⎭
This language can be generated by the following CFMG
G′ =< G′

1, G
′
2 > where G′

1 = G1, G
′
2 = G′

21 ∪G′
22 with

G′
21 = ({I1, B′, C′, D, F, I, J,K, L,M}, {·, X}, R, I1) where

R = {I1 → XB′/ · F ,
B′ → ·C′,
C′ → ·C′/XD/X ,
D → ·D/·,
F → ·K/XL,
K → ·K/XM ,
M → ·M/XI/X ,
L→ ·L/XJ/X ,
I → ·I/·,
J → ·J/·}

and G′
22 = G22.

Example 5. Consider the context-sensitive matrix language consisting of four
pronged forks (without handle) of all sizes and proportions (but retaining equal
intervals between forks) (Fig. 3) which is generated by the CSMG,
G =< G1, G2 >

X X X X X X X X X X
X · · X · · X · · X
X · · X · · X · · X
X · · X · · X · · X
X · · X · · X · · X

Fig. 3.

where G1 = ({S, S1, A,B,C,D,E, F}, {I1, I2}, R, S)
with R = {S → ABCS1, S1 → ABCS1, S1 → DI1, BA→ AB,CA→ AC,
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CB → BC,CD → DC,BD → EBI1, BE → EB,AE → FAI1,
AF → FA,F → I1, I1A→ I1I2, I2A→ I2I2, I1B → I1I2,
I2B → I2I2, I1C → I1I2, I2C → I2I2}

and G12 = G21 ∪G22

with G21 = ({I1, J}, {X}, {I1 → XJ, J → XJ, J → X}, I1)
and G22 = ({I2,K}, {X, ·}, {I2 → XK,K → ·K/·}, I2)

If we apply column partial commutation

(
·
X

)
↔
(
X
·

)
, then

φC(L(G)) =

{
X X X X X X X
X · X · X · X ,

X · X X X X X
X X X · X · X

, · · ·
}
.

This language can be generated by the following CSMG.
G′ =< G′

1, G
′
2 > where

G′
1 = G1

G′
2 = G′

21 ∪G′
22 with

G′
21 = G21

G′
22 = ({I2, B′, C′, D′, E′}, {·, X}, {I2 → XB′/ · C′/ ·D′, B′ → ·B′/·,

C′ → ·C′/X,D′ → ·D′/XE′, E′ → ·E′/·}, I2)

Remark 2. In both examples 4 and 5, if we apply row partial commutation
on L defined as (· X) ↔ (X ·), then every column has a chance of having
more than one X . So, by a similar argument made in the example 3, we see that
φR(L(G)) cannot be generated by any CFMG or CSMG.

Theorem 2. (i) If L is a RML (CFML, CSML) then φC(L) is also a RML
(CFML, CSML).

(ii) If L is a RML (CFML, CSML) then φR(L) need not be a RML (CFML,
CSML).

Proof. Column partial commutation does not change the number of occurrences
of each terminal in every column. For a RML (CFML, CSML) L defined on two
symbols, we claim that there exists a RMG (CFMG, CSMG) G′ =< G′

1, G
′
2 >

generating φC(L). To show this, let L be a RML (CFML, CSML) on alphabet
{a, b}. If a column of p ∈ φC(L) contains only a’s and no b’s, then the vertical
production rules of G′

2 are of the form I → aA, A→ aA, A→ a. If a column of
p ∈ φC(L) contains only one b and remaining a’s, then the vertical production
rules of G′

2 are of the form I → bA/aB/aC, A → aA/a, B → aB/b, C →
aC/a/bD, D → aD/a. If a column of p ∈ φC(L) contains two or more b’s
and remaining a’s, then the vertical production rules of G′

2 are of the form
I → bA/aB, A → aC, C → aC/bD/b, D → aD/a, B → aE/bF , E → aE/bH ,
H → aH/bK/b, F → aF/bJ/b, K → aK/a, J → aJ/a.

By induction on the size of the alphabet (greater than or equal to 2) we
can show that, given a RML (CFML, CSML) L, there exists a RMG (CFMG,
CSMG) G′ generating φC(L). Hence first part of the theorem follows.

Second part of the theorem is obvious from Example 3 and Remark 2, where
we observe that φC(L(G)) �= L(G′) for any RMG (CFMG, CSMG) G′. ��
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We now give an example of a Tabled Matrix grammar. This grammar brings out
the dependence between several columns in vertical derivations unlike
Siromoney Matrices grammars, which cannot bring such dependency.

Example 6. Consider the TRMG G =< G1, G2 > where the language generated
by the horizontal grammar G1 with the set of intermediates {I1, I2} is L(G1) =
{I1In2 I1|n ≥ 1}. The tables of G2 are
t1 = {I1 → XI1, I2 → ·I2},
t2 = {I1 → XI1, I2 → ·A},
t3 = {I1 → XI1, A→ XB},
t4 = {I1 → XI1, B → ·B},
t5 = {I1 → X,B → ·},
The tabled regular matrix langauge L generated by G is the set of all m × n
(m,n ≥ 3) arrays on {·, X}, describing the token H of X ’s of different sizes and
proportions (Fig. 4).

X · · X
X · · X
X · · X
X X X X
X · · X

Fig. 4.

The langauge φC(L) obtained by applying column partial commutation
( ·
X

)
↔
(

X
·
)
on L, can be generated by the following TRMG G′ =< G′

1, G
′
2 > where

the horizontal grammar G′
1 = G1 and the tables of vertical grammar G′

2 are:

t1 = {I1 → XI1/XB,B → XB, I2 → XC,C → ·D,D → ·D, I2 → ·E/ · F ,
E → ·J, J → ·J, F → ·F/XK,K → ·K}

t2 = {B → X,D→ ·, J → ·,K → ·}.
But φR(L), obtained by applying row partial commutation (· X)↔ (X ·) on L,
cannot be generated by any TRMG G′′, which we can argue in the same way as
in Example 3.

We can also have examples on TCFML and TCSML, by choosing the horizon-
tal languages to be the CFL {In1 I2In1 |n ≥ 1} and the CSL {In1 I2In1 I2In1 |n ≥ 1}
respectively and retaining the same vertical tables as in Example 6. Again, φC(L)
(where L is TCFML or TCSML) can be generated by a TCFMG or TCSMG
G′, whose construction is similar to that of TRMG G′.

Again φR(L) when L is a TCFML or TCSML cannot be generated by any
TCFMG or TCSMG G′′.

Proposition 2. (i) If L is a TRML (TCFML, TCSML), then φC(L) is also a
TRML (TCFML, TCSML).

(ii) If L is a TRML (TCFML, TCSML), then φR(L) need not be a TRML
(TCFML, TCSML).

Proof follows in similar lines with that of Theorem 2.
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5 Conclusion

The study of partial commutation for strings yielded many algorithmic and al-
gebraic results. The study of commutativity in 2D languages is novel and worth
examining to obtain the algorithmic and algebraic results. In section 3 we have
dealt with row partial commutation mapping φR and column partial commu-
tation mapping φC . We have proved that if L is local and φ is either a row or
column partial commutation mapping, then φ(L) need not be local. We have
established a theorem: L(φ(θ)) and φ(L(θ)) are not disjoint. In section 4 we
have proved that if L is a RML (CFML, CSML), then φC(L) is a RML (CFML,
CSML). But φR(L) need not be a RML (CFML, CSML). Partial commutation
on recognizable languages and other classes of array languages is under investiga-
tion. Application of this study in analyzing the structure of images and parsing
can be explored in future.
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Abstract. Many image analysis methods need a lot of parameters that have to 
be adjusted to the particular image in order to achieve the best results. There-
fore, methods for parameter learning are required that can assist a system  
developer in building a model. This task is usually called meta-learning. We 
consider meta-learning for learning the image segmentation parameters so that 
the image segmenter can be applied to a wide range of images while achieving 
good image segmentation quality. The meta-learner is based on case-based rea-
soning. The cases in the case base are comprised of an image description and 
the solutions that are the associated parameters for the image segmenter. First, 
the image description is calculated from a new image. The image description is 
used to index the case base. The closest case is retrieved based on a similarity 
measure. Then the associated segmentation parameters are given to the image 
segmenter and the actual image is segmented. We explain the architecture of 
such a case-based reasoning image segmenter. The case-description as well as 
the similarity function are described. Finally, we give results on the image seg-
mentation quality.  

Keywords: image segmentation, case-based learning, image similarity, feature 
description. 

1 Introduction 

The aim of image processing is to develop methods for automatic extraction of de-
sired information from an image or a video. The developed system should assist the 
user in processing and understanding the content of a complex signal, such as an im-
age. Usually, an image consists of thousands of pixels. This information can hardly be 
quantitatively analyzed by the user. In fact, some problems related to the subjective 
factor or to the tiredness of the user arise, which may influence the interpretation. 
Therefore, an automatic procedure for analyzing images is necessary. 

Although in some cases it might make sense to process a single image and to adjust 
the parameters of the image processing algorithm to this single image manually, most-
ly the automation of the image analysis makes sense only if the developed methods 
have to be applied to more than one single image. This is still an open problem in 
image processing. The parameters involved in the selected processing method have to 
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be adjusted to the specific image. It is often hardly possible to select the parameters 
for a class of images in such a way that the best result can be ensured for all images of 
the class. Therefore, methods for parameter learning are required that can assist a 
system developer in building a model [8] for the image processing task.  

While the meta-learning task has been extensively studied for classifier selection it 
has not been studied so extensively for parameter learning. Soares et. al [14] studied 
parameter selection for the identification of the kernel width of a support-vector ma-
chine, while Perner [7] studied parameter selection for image segmentation.  

The meta-learning problem for parameter selection can be formalized as following: 
For a given signal that is characterized by specific signal properties A  and domain 
properties B find the parameters P of the processing algorithm that ensure the best 
quality of the resulting output signal/information: 

 PBAf →∪:  (1) 

Meta-data for images may consist of image-related meta-data (gray-level statistics) 
and non-image related meta-data (sensor, object data) [9]. In general the processing of 
meta-data from signals and images should not require too heavy processing and 
should allow characterizing the properties of the signal that influence the signal 
processing algorithm.  

The mapping function f can be realized by any classification algorithm, but the in-
cremental behavior of Case-Based Reasoning (CBR) fits best to many data/signal 
processing problems, where the signal-class cannot be characterized ad-hoc since the 
data appear incrementally. The right similarity metric that allows mapping data to 
parameter-groups and, as consequence, allows obtaining good output results should 
be more extensively studied. Performance measures that allow to judge the achieved 
output and to automatically criticize the system performance are another important 
issue [10].  

Abstraction of cases to learn domain theory would allow better understanding the 
behavior of many signal processing algorithms that cannot be described by means of 
standard system theory [16]. 

The aim of our research is to develop methods allowing learning a model for the 
desired task from cases without heavy human interaction (see Fig. 1). The specific 
emphasis of this work is on development of a methodology for finding the right image 
description for the case that groups similar images in terms of parameters within the 
same group and maps the case to the right parameters in question. 

We recently investigated [11] the theoretical and implementation aspects of the  
watershed transformation, which allowed us to draw conclusions for suitable image 
descriptions. Four different image descriptions have been considered in [11], respec-
tively based on: statistical and texture features; marginal distributions of columns, 
rows, and diagonals; similarity between regional minima; and central moments. In 
this paper we study promising descriptors based on statistical and texture features in 
which we changed the influence of the difference features. 

 
 



 Incremental Learning of the Model for Watershed-Based Image Segmentation 211 

 

Fig. 1. Problem description in modeling 

The basic idea for meta-learning with case-based reasoning for image processing 
tasks was introduced in this section. In Section 2, we briefly describe the segmenta-
tion based on watershed transformation and on the use of Case-Based Reasoning, and 
point out that the behavior of the watershed transformation may influence the result of 
the segmentation when the same image is processed after rotation or scaling. The test 
images and the corresponding best segmentation parameters are given in Section 3, 
where also the problems concerning the evaluation of the results are briefly addressed. 
The results of the descriptor based on weighted statistical and texture feature are de-
scribed in Section 4. Results are given in Section 5 and the conclusions are presented 
in Section 6. 

2 Watershed Transformation Based on CBR 

Many segmentation algorithms based on watershed transformation have been devel-
oped (for a survey, see, e.g., [13]). As for the basic watershed transform algorithm, we 
implemented it according to the approach suggested by Vincent and Soille [15]. For 
the oversegmentation reduction process we followed the approach by Frucci [2] and 
Frucci and Sanniti di Baja [5] and transformed the crisp rules into a CBR-approach [3, 
4] that made the whole process more flexible.  

Another way to reduce the over-segmentation of the conventional watershed algo-
rithm is by using the marker controlled watershed algorithm. The marker controlled 
watershed algorithm has the disadvantage that one has to compute the foreground and 
background objects before the algorithm start. This can be done by a human or by 
preprocessing. For example, Jobin Christ and Parvathi [6] use k-means clustering to 
compute the regions from which the marked controlled watershed algorithms started.  

Zanaty and Afifi [17] use an algorithm based on seed region growing and image 
entropy to reduce the oversegmentation in magnetic resonance images (MRIs). 

The conventional watershed algorithm usually produces over-segmentation, which 
is reduced by combining an iterative computation of the watershed transform with 
processes called digging and flooding [2]. Flooding merges a non-significant basin to 

System Transfer Function H(x,y)
O(x,y)

Method

Input Signal Output Signal

System Theory

I(x,y)
O(x,y)=I(x,y)*H(x,y)

Meta Learning

System BehaviorSignal Description
Quality Measure

iPBAf →∪:
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adjacent basins by suitably increasing the gray level of the bottom of the non signifi-
cant basin. This way, when the watershed transform is newly computed, no regional 
minimum is found within the non-significant basin. Digging merges a partially signif-
icant basin to specific adjacent regions. The basin A, regarded as partially non-
significant, is merged with an adjacent basin B, by digging a canal into the watershed 
line separating A and B, to prevent that a regional minimum is found in A when apply-
ing again the watershed transformation. As a result of merging, the number of local 
minima found at each iteration diminishes. Flooding and digging and watershed com-
putation are iterated until only significant basins are left. 

In order to determine whether a basin X has to be merged to a basin Y, Frucci et al. 
[3] perform the following check: 

 
1

2
XY XYSA D

a b T
At Dt

⋅ + ⋅ ≥ 
 
 

, with , , 0a b T ≥  (2) 

where At and Dt  are threshold values (for their automatic computation see [2]). The 
values a and b are constants setting different influences to the parameters. The con-
stant T is a threshold for the rule that tells us when to accept the merging. SAXY is a 
similarity parameter that is the difference between the regional minima of X and Y, 
and DXY is the relative depth of the basin X with respect to the adjacent basin Y (for 
more details see [2, 3]). 

We are interested in analyzing the image properties in order to detect the proper val-
ues for the constants a, b and T. The constants a and b control the influence of the simi-
larity parameter and the relative depth. T can be regarded as a threshold. Different test 
shows, that if T is 0 and a,b ≥ 0, then we obviously get the same segmentation like the 
one produced by the conventional Vincent-Soille algorithm [15]. If we choose in our 
CBR-based watershed algorithm the parameters a,b =2 and T=1 we obtain often similar 
results as those obtained by using the crisp rule-based algorithm described in [2]. 

It is essential to study the real behavior of the used Watershed Algorithm and im-
plementation in order to build a general image segmentation model. The behavioral 
aspects of the Vincent-Soille algorithm [15] for the watershed transformation that 
influence the segmentation results have been studied in detail in [11]. In summary, we 
can say that some of the Watershed Algorithms are not invariant for image rotation 
and scaling due to their dependence on the order of visiting the pixels. The detailed 
theoretical description and demonstration of this fact can be found in [11]. Since the 
basic Watershed Algorithm is rotation and scaling dependent, the Watershed Algo-
rithm based on Case-Based Reasoning is also dependent on rotation and scaling. The 
best values of a, b and T can be different for two images after scaling or rotation. 
Other problems are likely to arise, since the watershed lines may be missing or may 
be too thick. Thus, we have to find an image description that can take into account the 
behavior of the algorithm. 

Making a compromise between computational cost and quality of the obtained 
segmentation results, we have finally opted for the Vincent-Soille algorithm as basis 
for CBR-based Watershed Algorithm. In future work, we will carry out further tests 
on the different behavior of the basic watershed algorithms. The hope is that the 
choice of the basic algorithm can be included as parameter into a CBR-based  
Watershed Algorithm. 
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3 Test Images and Parameters for Watershed Segmentation 

For demonstration of our study we use nine running image examples of different 
types (biological images, faces and animals, see Fig. 2a-j). The images {neu1,neu2, 
neu3,neu4,neu4_r180} shown in Fig. 2 c-h belong to the same class, except that 
neu4_r180 is the 180 degree rotated image of neu4 and neu4 is at slightly larger scale 
with respect to the other four images. 

The parameters for the watershed segmentation have been obtained by running a 
number of times the Watershed Algorithm based on Case-Based Reasoning [11], 
adjusting the parameters until the result has the best segmentation quality. For exam-
ple, in Fig. 3 three different segmentation results are shown for the image gan128, 
obtained with different selections of the parameters. N=67 basins are obtained in the 
best segmentation. 

 

  
a) cell b) gan128 c) neu1 d) neu2 e) neu3 

 

 

f) neu4 h) neu4_r180 i) monroe j) parrot  

Fig. 2. Images used for the study 

  

a) gan128 b) (0.75, 0.75, 1) N=67 c) (0.75, 2, 1) N=211 d) (1.75,0.75,1) N= 73 

Fig. 3. Influence of the selected parameter-set to the segmentation result for the image gan128 

The parameters corresponding to the best segmentation results for the nine test im-
ages in Fig. 2 are shown in Table 1. The parameter were obtained by running of the 
Watershed Algorithm based on Case-Based Reasoning with different parameter val-
ues and by evaluation of the obtained images by an expert.  
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Note, that in Table 1 only two of the neuron images have the same parameters 
(neu1 and neu3). Actually, neu4 contains cells slightly larger than those in the other 
neuron images and cannot be segmented by using the same parameters of the other 
images, because the Vincent-Soille algorithm is not invariant with respect to scaling. 
Moreover, image neu2 differs from neu1 and neu3 by the presence of a larger number 
of cells, which justifies a different set of parameters. 

Table 1. Segmentation parameters a, b, and T for the test images shown in Fig. 2 

Image a b T 
monroe 0,5 2 1 
gan128 0,75 0,75 1 
parrot 0,75 2 1 
cell 1 1 1 
neu1 2 1 1 
neu2 0,25 1 1 
neu3 2 1 1 
neu4 0,75 2 1 
neu4_r180 1 0,5 1 

 
A problem related to the determination of the segmentation parameters for the 

CBR-based watershed algorithm is how to judge the best segmentation quality. Eval-
uation done by humans is subjective and can result in differently segmented versions 
of the same input image. For example, two humans asked to select the preferred seg-
mentation between three possible results (shown in Fig. 3b-d) gave opposite answers 
(see Fig. 3b-c). In turn, the best segmentation automatically obtained by comparing 
the watershed lines of the segmented image to the edge image, generated by the Pre-
witt-Operator [10], of the input based on similarity procedure described in [3] is 
shown in Fig. 3d. An automatic evaluation of the segmentation results is really neces-
sary, but even an automatic evaluation may have some weakness.  

The automatically computed binarized gradient image is only an auxiliary method 
for getting the true segmented image (gold standard) to which we have to compare. 
The gold standard could be obtained by manually labeling the regions of the input 
image, which is not appropriate.  

4 Elicitation of Image Descriptions and Assessment of 
Similarity for Watershed Transform 

The aim of image description is to find out among a set of images the group of images 
that needs the same processing parameters to achieve the best segmentation results. 
To give an example, the images neu1 and neu3 should be grouped together in one 
group based on the best parameters a, b, and T (see Table 1) and the images neu4 and 
parrot should be grouped together in another group. 

We consider different image descriptions in our study [11] that should allow us to 
group images based on the image features and by doing this to learn a model for im-
age segmentation by samples.  
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Cases are composed normally of  

• non-image information 
• features specifying image characteristics, and 
• parameters for solution (image segmentation parameters). 

Non-image information is different depending on the application. In our study we use 
images from different domains, such as biological images, faces and animals. Our aim 
is to describe image similarity only by general image features. Hence our cases are 
composed of 

• features specifying image characteristics, and 
• parameters a, b, T for segmentation. 

Images, which are classified as being similar based on the image features, should be 
segmented with the same parameters of the segmentation algorithm, which should 
produce the best segmentation for any of them. 

To understand which features are to be used, we resort to hierarchical clustering. 
This gives us a graphical representation of the different image groups. Single linkage 
is used to show outlier while the distance between two classes is defined as the  
minimal. 

The question is: What are the right image features that allow us to map the images 
to the proper image segmentation parameters for the watershed transformation?  

The image description should reflect the behavioral approach of the watershed 
transformation with respect to the particular image characteristics. Therefore, we 
studied the theoretical details and the implementation limits of the watershed trans-
formation in [11] to get insights into this question. Based on this work we decided to 
test four image descriptions based on: 

• Statistical and Texture Features, 
• Marginal Distribution for Columns, Rows, and Diagonals, 
• Similarity between the Regional Minima, and 
• Central Moments.  

The details of this study are given in [11]. The most promising description is based on 
Statistical and Texture Features. This description is used for the study in this paper.  

4.1 Image Description Based on Statistical and Texture Features  

According to Perner [7], who used this description for meta-learning the parameters 
for a CBR-based image segmentation model, we used statistical features (like centro-
id, energy, entropy, kurtosis, mean, skewness, variance and variation coefficient) and 
textures feature (energy, correlation, homogeneity, contrast) for case description. The 
input image is the gradient image of the original image, since the watershed transfor-
mation works on that image. First results on this image description are reported in  
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Frucci et al. [3]. The texture features have been chosen to describe the particular dis-
tribution of the regional minima in an image, while the statistical features describe the 
signal characteristics. 

Like in Perner [7], the distance between two images A and B is computed by: 

 
1 max min

1
,

k
iA iB

AB i
i i i

C C
dist

k C C
ω

=

−=
−  (3) 

where k is the number of features in the data base, Cimax  and Cimin  are the maximum  
and minimum value of the ith feature for all images in the data base, CiA (CiB) is the 
value of the ith feature for image A (B) and the ωi are weights.  

The following equation holds for the weights:  
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4.2 Equal Weighting of the Statistical and Texture Features 

To get an equal weighting of the statistical and texture features we set the weights in 
formula (3): 

 ωi =1/k ∀i ∈ [1,…,k] (5) 

The results are reported in Fig. 4. 
If we virtually cut the dendrogram by the cophenetic similarity of 0.0043 we obtain 

the groups G1={neu4, neu4_r180, neu1, neu3}, G2={neu2}, G3={parrot}, 
G4={gan128}, G5={monroe}, and G6={cell}.  

The images neu4 and the image neu4_r_180 (which is the 180 degree rotated  
version of neu4) are grouped into the same group, although they have completely 
different segmentation parameters. We obtained the best result for neu4 with the pa-
rameter-set a = 0.75, b = 2 and T = 1, while for neu4_r180 the best segmentation was 
obtained with the parameter-set a = 1, b = 0.5 and T = 1. By using the latter parame-
ter-set for neu4, we would get an undersegmented result. Overall we observe that not 
all images having the same image segmentation parameters are grouped into one 
group such as neu4 and parrot. 

4.3 Unequal Weighting of the Statistical and Texture Feature 

To sort out rotated images from the group that includes the un-rotated images we have 
to give more emphasis to the feature centroid, because this features is only one which 
is not invariant for rotations. Therefore, we divide the image features set into three 
groups: texture features, centroid, and the remaining statistical features. In the follow-
ing we tested different weighting of these three groups. Inside the three feature groups 
the features are equal weighted. 
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Fig. 4. Dendrogram for image description based on texture and statistical features 

First we test, if each group gets a total weight ωg of 1/3 (1 3g≤ ≤ ). The weights 

ωgi inside of each group, are computed as follow 

 
1 1

1 1

3* 3

l l

g gi
gi i

l
ω ω

= =

= = =  , (6) 

where lg is the number of features in the group.  
In the resulting dendrogram the images neu4 and neu4_r180 are clustered in differ-

ent groups (see Fig. 5). 
If we virtually cut the dendrogram by a cophenetic similarity value of 0,0057 then 

we obtain the following groups G1={neu1, neu3}, G2={neu4_r180}, G3={neu2}, 
G4={neu4}, G5={gan128}, G6={parrot}, G7={cell}, and G8={monroe}. Except for 
the images neu4 and parrot, these groups seem to reflect better the relationship be-
tween the image description and the parameter-set.  

In the following we demonstrate that a small preference of the weighting for the 
group features “centroid” separation of the images neu4 and neu4_r180.  
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Therefore let 2ω  be the total weight of the feature group “centroid”. The weights 

ωgi inside of each group are computed as follow   

  (7) 

 

 

Fig. 5. Dendrogram for image description based on weighted texture, centroid and statistical 
features using formula (6) 

The results for z = 2 and z = 3 are shown in Fig. 6 and Fig. 7.  Fig. 5, Fig 6 and Fig. 7 
demonstrate that when we increase the preference of the group “centroid” the two 
images become more and more dissimilar. 

If we virtually cut the dendrogram by a cophenetic similarity value of 0.0042 (Fig. 
6) respectively 0.061 (Fig. 7), then we obtain the following groups G1={neu1, neu3, 
neu4_r180}, G2={neu4},  G3={neu2}, G4={gan128}, G5={parrot}, G6={cell}, and 
G7={monroe}. But by using the parameter-set a = 2, b = 1 and T = 1 for neu4_r180, 
we would get an undersegmented result for the image neu4_r180. 
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Fig. 6. Dendrogram for image description based on weighted texture, centroid and statistical 
features  with weighting after formula z=2 

It can be problematic that we need a high preference of the group “centroid”. In 
that case it can happen that during other tests we need for other features a higher 
weight in order to separate other images. Depending on the feature weighting, we can 
obtain results as the ones in Fig. 5, but we can also get results as in Fig. 4 where the 
rotated images are not separated.     

The proper weighting of the features can improve the grouping of the images. In 
future work we will work on automatic determination of the proper weighting. 

5 Discussion 

Out of the four image descriptions which we studied in [11] based on statistical and 
texture features; marginal distributions of columns, rows, and diagonals; similarity 
between regional minima; and central moments, the descriptions working better for 
the watershed transformation are those based on statistical and texture features 
(STDescript) and on central moments. During this study we have considered the de-
scriptions based on unequally weighted statistical and texture features.  
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Fig. 7. Dendrogram for image description based on weighted texture, centroid and statistical 
features  with weighting after formula z=3 

In contrast to equally weighting of the statistical and texture features, we are by 
unequally weighting of the feature variable for different kinds of images because we 
can adjust the weighting on the feature to the situation and can separate rotated and 
scaled images. We demonstrate that a small preference of the weighting for the group 
features “centroid” is enough to separate rotated images. The best result we get for 
our test image using weighting of the three feature groups (weighted STDescript). The 
obtained groups for the two descriptions are the following: 
 

STDescript 
G1={neu4, neu4_r180, neu1, neu3}, G2={neu2}, G3={parrot}, G4={gan128},    
G5={monroe}, and G6={cell} 
 
weighted STDescript  
G1={neu1, neu3}, G2={neu4_r180}, G3={neu2}, G4={neu4}, G5={gan128}, 
G6={parrot}, G7={cell}, and G8={monroe} 
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The groups obtained by means of the weighted STDescript seem to reflect better the 
relationship between the image characteristics and the segmentation parameters than 
the groups obtained by the other description. The computation time of the image de-
scriptions is more or less the same.  Thus, we can say that the weighted statistical and 
texture features description is the best image description that we have found so far 
during our study. 

6 Conclusions  

The aim of our work was to find an image description based on weighted statistical 
and texture features that characterizes each particular image with respect to the beha-
vior of the image segmentation method. The image description should allow retriev-
ing the best possible segmentation parameters. We first studied the theoretical and 
implementation aspects of the watershed transformation in order to draw conclusions 
for the image description.  

The watershed transformation produces different results if the image is rotated or 
rescaled. The particular implementation of the algorithm puts constraints on the beha-
vior of the algorithm. As result of our study we concluded that we need an image 
description that describes the distribution of the regional minima and that is not inva-
riant against rotation and scaling.  

In previous studies we researched four different image descriptions, respectively 
based on: statistical and texture features; marginal distributions of columns, rows, and 
diagonals; similarity of regional minima; and central moments. 

Two of the above four image descriptions did not lead to any success. The best and 
most variable image description is the description based on weighted statistical and 
texture features. This image description seems to well represent the relationship be-
tween the image characteristics of the particular image and the segmentation parame-
ters. Cases having the same segmentation parameters could be grouped into the same 
group using an image description based on weighted statistical and texture features. 
This will make possible the generalization over these groups of cases, which is ex-
pected to lead to a complete image segmentation model. In future work we plan to 
study, how we can automatically choose the proper weight values of the statistical and 
texture features for different kinds of images. 
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Abstract. Estimation of differentials of discrete signals is almost
mandatory in digital segmentation. We present a new fast method based
on convolutions by a mask with a logarithmic number of constant lay-
ers. Then we compare it to other multigrid convergent methods in the
field such as the Binomial Convolution, the Digital Straight Segment
Tangent Estimator, and the Taylor Polynomial Fitting. Our convolu-
tion method’s main advantage is its complexity of O(2n.log2(m)), which
makes it competitive to the convolution by Fast Fourier Transform (FFT)
latest implementation. In the experimental part, we also tested the pre-
cision of the first order derivative estimation, its resistance to noise and
its convergence rate.

Keywords: Differential estimator, Discrete differential operator, Fast
convolution, Noise resistant, Sparse differential operator, FFT.

1 Introduction

Digital segmentation algorithms such as active contour model often use sig-
nal parameters as energy. Estimation of differentials is almost mandatory for
most of them as they use regularization terms like the Snake Algorithm [9] and
other deformable models [15]. Previous work is divided into two categories: non-
convolutional methods and convolutional methods. The Digital Straight Segment
(DSS) Tangent Estimator [12,2] extracts maximal DSS and computes their tan-
gents. One of the advantages of this method is its ability to detect corners. Its
convergence rate is O(13 ). The Taylor Polynomial Approximation [17] fits the
values of a digital function by a polynomial. It introduces a roughness parame-
ter to relax the function values in an interval. It has a bounded maximal error
for the kth derivative and a resolution h of O(h

1
1+k ). Its convergence rate is

O( 1
1+k ). The Binomial Convolution [16,3] approximates differentials with the

finite differences after applying a digital version of the scale space [13] function
smoothening, using integer-only binomial coefficients as the convolution mask. It
is noise resistant, has a convergence rate of O((23 )

k) and a complexity of O(n∗m)
with n the size of the image andm the one of the convolution mask. We introduce
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a new convolution method mainly focusing on complexity, similar to the convo-
lution by FTT [1] latest implementation [5], however based on a much simpler
approach. Due to its nature, it is more resistant to noise than the first version
of the DSS [19]. We were not able to compare it to the latest version of DSS
[11,10], however, due to lack of time and data. For the first order derivative, our
method is more precise than the Taylor Polynomial Fitting and is faster than
the binomial convolution and FFT with a complexity of O(2n.log2(m)).

The paper is organized as follows. Section 1 presents convolutions. In the fol-
lowing section we propose two compatible kernels based on the Gaussian function
and the binomial coefficients. Then we describe a sparse operator able to quickly
estimate the differential for a single pixel and to reduce the overall complexity of
the smoothening and derivative process. In experimental results we show a com-
parison of the computational cost, estimated convergence rate, noise resistance,
and precision.

2 Level-Wise Convolution

When dealing with derivatives estimation, one of the most classical method is
to use finite differences. Although effective in continuous geometry, it cannot be
applied as such to discrete images, because derivative values would be limited to
integers. A solution is to average each pixel of the image with its neighborhood,
a process called smoothening. This mathematical operation is known as the
convolution product of a function in the integers interval f : [0, n]→ [0, n] (the
image to be convolved) and a function H : [0, n]→ [0, n] (the averaging kernel).
Using the Gaussian function as a kernel is the standard approach in this field, as
described by Lindeberg in the scale space theory [13]. The resulting image can
then serve to compute differentials, using finite differences with a convolution by
a differential operator δ as a kernel.

Figure 1 shows an example of the convolution of a digital function 1, 2, 2, 4, 5
by a binomial coefficients kernel 1, 2, 1. To preserve the image scale, each value
has to be divided by the mass (or weight) of the kernel (the sum of all its values),
in this case n = 2. The weight being the mass of the mask W = 2n = 4 in the
given example.

Then we convolve the smoothened image by a differential operator to obtain
the derivatives (first order with this operator). There are three kinds of first
order derivative operator, the centered one as in the example, the backward
difference (f(0) − f(−1)) and the forward difference (f(1) − f(0)). The choice
of the derivative operator can slightly shift the values, if the symmetry with
the smoothening operator is not respected. For a centered kernel (odd size) we
use the centered operator. An even size kernel can be convolved with left or
right shift (we use the opposite smoothening kernel shift). Out of the range
of the discretization there is no information about the function values. The
convolution loses precision when those pixels are required. This is known as the
border problem. For the example of Fig. 1 the unknown values are set to 0. In
the experimental part we only use functions for which we know those values.
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The major drawback of this method in the discrete paradigm is its complexity
of O(n ∗m), with n being the size of the image and m the size of the kernel.

(f ∗H)(x) = W.
+k∑

i=−k

f(x− i).H(i) (1)

Equation (1) shows the discrete convolution product of an image f with a kernel
H for the pixel x of f ; W represent the weight of the kernel. Looking at the
right part of Fig. 1 the kernel can be viewed in a multilevel way. The discrete
convolution product can be rewritten to apply on one level of the kernel at a
time, as shown in Eq. (2), the convolution of the function f with the kernel

H only for the pixel n. The first loop
∑k

j=0 iterates through all levels and the

second one
∑k−j

i=−k+j through the whole current level.

The complexity has changed to O(m∗
∑k/2�

i=0 k− i), but Eq. (2) only concerns
one pixel and since each level of the kernel has the same value, we only need to
convolve for the first pixel as indicated in Eq. (3) and Fig. 2. The left part is the
convolution of pixel n and the right part is the convolution of pixel n+ 1 using
the previous result. Since each level of the kernel has the same value (Fig. 1) we
only need to subtract the product of H−m and Fn−m−1 and to add the product
Hm and Fn+m to the convolution of pixel Fn to obtain the result.

1 2 2 4 5

1 2 1

4 7 10 15 14

-1 0 1

7 6 8 4 -15

Convolution kernel H with binomial
coefficients for n=2

Digital image

Differential operator delta with
centered finite differences

Smoothened image without the
weight (sum of kernel values 2^(-2))

First order derivative of the original
image without the weight 2^(-1)

1 8 28 56 70 56 28 8 1

14

28 28 28

20 20 20 20 20

7 7 7 7 7 7 7

1 1 1 1 1 1 1 1 1

Fig. 1. Left. First the detailed process of convolving a digital image with a binomial
coefficients kernel, second the convolution of the smoothed image with the central
differential operator of central finite differences. Right. Level view of the binomial
kernel for

(
n
k

)
with n = 8 and k the line index.

F

H

F

H
-m m0 -m m0

nn-m n+m - +n+1n

-m

x x

1 1 1 1 1

Fig. 2. Convolution of image f with kernel H of size 2m + 1 centered at 0
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(f ∗H)(n) =

k∑
j=0

k−j∑
i=−k+j

f(n+ i).(H(−k + j)−H(−k + j − 1)) (2)

(f ∗H)(n+ 1) = (f ∗H)(n)−H−m.fn−m−1 +Hm.fn+m (3)

2.1 Complexity

The resulting complexity depends on the number of levels of the kernel. We
only use kernels with log2 bounded number of levels. We have a O(2n ∗ log2(m))
complexity which is smaller than the binomials convolution of O(n∗m) in [16,3]
and theoretically slightly better to the latest complexity of the FTT of O(394 N ∗
log2(N)) in [7,14,8]. In addition, the FFT has to be done two times, once for
the image and once for the kernel and in addition their multiplication in Fourier
space must be performed. Using other types of boundaries than the logarithmic
ones can increase or decrease the complexity. Thus, it could be interesting to
have a kernel with a fixed number of levels.

2.2 Kernel Compatibility and Extension to Higher Dimensions

In order for a kernel to be compatible with this method, there must exist a
level-wise decomposition of it and it must be symmetric to avoid data shift.
There is a log2 bounded number of levels in order to have the same complexity.
The convolution should work in higher dimensions using the tensor product of
one dimension kernels. The use of n dimension kernels is possible if they are
separable in 1 dimension elements.

3 Kernels Presentation

We introduce two discrete kernels of low complexity. They are level-wise versions
of two known kernels, namely binomial coefficient kernel (which is the fastest
converging method for the first three order derivative) and the Gaussian kernel
(which is the fastest in terms of computational times).

3.1 Pseudo-gaussian Kernel

To create this kernel, we started from the continuous Gauss formula Γ (4) with
real constant parameters α = 1

σ
√
2π

, σ is the standard deviation and λ the

expectation. When λ = 0 the function is centered in 0 on the x axis. We have
created a rough kernel with its level number bounded by the log2 function HΓ

(5). It is always centered in 0 with α representing the weight such as the integral
of the kernel is equal to 1 in order not to scale the image after convolution.
Parameter Λ represents the standard deviation and γ controls the number of
levels.
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Γ = αe
−
(x− λ)2

2σ2 or αe−λ2x
2

for λ = 0 (4)

HΓ = α2μ
2)γ ∗ log2(i)*

where μ = Λ1/γ (5)

3.2 Building Complexity

Since we cannot predict for which value of i the level change will occur, we have
to compute the values for the whole kernel size O(m) with m being the size of
the kernel. The building process can be speed up by using the left arithmetic
shift to compute the powers of 2.

3.3 Pseudo-binomial Kernel

We used the binomial coefficients as a basis for this kernel since it is a good
discretization of the Gaussian function Γ . It is a level-wise kernel and the values
of the levels are the sum of the binomial coefficients between two boundaries
controlled by the floor function. Eqs. (6) and (7) calculate the pseudo-binomial
kernel B. The integers parameters are: m the size of the kernel, B0 the centered
value, Bk the other values for 1 < k < n, n the number of the level and s(k)
is the signature of the value. Figure 3 illustrates the relation between the two
kernels. At the top, H is represented through different levels with sizes equal to
the increasing powers of two. B level values are the average of the values in the
corresponding level.

B0 =
1

22α+1−2

(
2α+1 − 2

2α − 1

)
for n �= 0 (6)

Bk =
1

22α+1−2 + )log2(|k|)*

⎛⎝i=21+�log2(|k|)�−1∑
i=2�log2(|k|)�

(
2α+1 − 2

2α − 1 + s(k)i

)⎞⎠ (7)

where

{
s(k) = +1 if n > 0

s(k) = −1 if n < 0
and m = 2α+1 − 2

3.4 Building Complexity

To minimize the complexity we use the Pascal triangle building method to com-
pute the binomial coefficients. For memory management, we use the upper bound

4n

8n
√
πn

to allocate our triangle’s line.
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Fig. 3. Top. Odd length binomial kernel H with a center marked by a black square.
Bottom. Pseudo-binomial kernel B. The lower line represents power of 2 coefficients
determining the level size.

4 Sparse Differential Operator

Up to now, our methods used finite differences on the image smoothed by a
convolution. It is efficient when we want derivatives for the whole image, but
it can be costly in terms of memory and computational time when we are only
interested in the information on a single pixel. Using the associative property of
the convolution product in Eq. (8) with level-wise kernels and the centered finite
differences, we can create a differential operator δ2 with many zeros as shown in
Fig. 4. H is the kernel level L, δ is the centered finite differences kernel, and f
is the image.

δ2(x) = (HL ∗ δ) ∗ (f(x))

δ2(x) =
n∑

i=0/i∈Z

(HL ∗ δ)(i)f(x − i)

δ2(x) =

n∑
i=0/HL(i) �=0

(HL ∗ δ)(i)f(x− i) (8)

c c c c b b a b b c c c c

-1 0 1

c 0 0 b-c b-c a-b 0 b-a c-b c-b 0 0 c

Level-wise kernel H

Central finite
differences delta 1

Sparse Differential 
operator delta 2

Fig. 4. The sparse differential operator δ2 is a result of the convolution of the level-wise
kernel H with the differential operator of the central finite differences δ1 (first order
derivative)
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This reduces the steps for differential computation by making a new differential
operator from the smoothened kernel and the centered finite differences kernel.
It can be applied to any level-wise kernel and is able to work on a single pixel
without having the need to convolve the whole image as it was before.

4.1 Complexity

As shown in Fig. 4, the remaining coefficients appear in the places where the
level changes were. The complexity that was for one pixel O(m) with m being
the size of the kernel, is now O(4.(level number)) for each convoluted pixel.

5 Experiments

The tests of the two kernels have been done with a variety of functions (sine,
exponential, arctangent, square, the polynomial (P (x) = 0.5 ∗ (0.5 ∗x3+0.5.t2+
0.5.t− 13) + 2cos(5t) + 5) and with different function factors to vary the mean
curvature). For lack of space we decided to only show one of the best and one of
the worse cases. In the implementation of our method we used the GMP library
[4], the GSL library [6] and the FFTW library [5]. For the parameters of the
pseudo Gaussian kernel we used γ = 10, λ = m, m = 1.6

h and for the pseudo

binomial kernel we used α = 5.log(h2 ) with h the resolution used.

5.1 Precision

In Fig. 5 we show the derivative of the sine function. The comparison of the
estimation by the PGM [17] and the level-wise convolution estimation for both
kernels. While the pseudo-Gaussian lacks precision in low curvature areas of
the sine function, the pseudo-binomial is more precise than the other methods.
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Fig. 5. Sine derivative of first order from its approximation with the Taylor polynomial
method and the level-wise convolution method with discretization step of 0.05 : Left.
Pseudo Gaussian kernel. Right. Pseudo binomial kernel.
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Fig. 6. Derivative of x.sin(1/x) first order (from discretized function of step 0.01) and
its approximation with level-wise convolution method : Left. Pseudo Gaussian kernel.
Right. Pseudo binomial kernel.

Figure 6 is the same test on the derivative of u(x) = x.sin( 1x ) and does not
include data from the PGM. Clearly a hard test, the pseudo-binomial gives
better results in the same type of areas.

5.2 Robustness

For the test of Fig. 7, we used a uniform Gaussian noise of 1
40 the amplitude

of the sine function to show its effect on the level-wise convolutions differential
approximation. The kernel length is set higher than in the previous tests. The
results are close to the expected value and the Gaussian-kernel outperforms the
binomial-kernel on the low-curvature areas.
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Fig. 7. Approximation of the first derivative of a noisy discretization (step 0.05 and
uniform noise of ± 1 pixel) of the sine function. Left. The Pseudo-Gaussian kernel.
Right. The Pseudo-binomial kernel.

5.3 Convergence Rate

An estimation of multigrid convergence is achieved experimentally by increasing
the discretization step (thus decreasing the discretization error) and the kernel
size at the same time. The kernel size and the discretization step are the axis,
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the slope formed by the error between theoretical and estimated derivative is
the convergence rate. Figure 8 is the experimental convergence rate of the sine
function derivative approximation. The image size is the same as the kernel size
and we did not use per function optimal parameters. The rates are close to one
of the binomial coefficients kernel for this test.
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5.4 Computational Cost

Being the principal asset of the level-convolution, we tested the convolution
speed along with the FTT implementation in the FFTW library [5]. In Fig. 9
we confirm the theoretical complexity. The results are slightly better than the
FFTW library which is very much optimized.
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Fig. 9. Convolution computational cost

6 Conclusion

We have presented a new fast digital convolution method with promising exper-
imental results, specifically in terms of computational cost. We also introduced
a sparse differential operator able to compute the properties of a single pixel as
well as a small group, which can be useful for updating estimation on the fly in
segmentation algorithms. In our future work we will focus on the parameters se-
lection and the adaptivity of our kernel using multi-pass convolutions for higher
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order differentials. Also we will test higher dimension and higher derivative order.
The last goal will be the GPU implementation allowing a multi-pass approach
to improve the runtime. In a near future we plan to prove mathematically the
multigrid convergence properties of the method and the kernels.
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Abstract. Rigid transformations are useful in a wide range of digital image pro-
cessing applications. In this context, they are generally considered as continuous
processes, followed by discretization of the results. In recent works, rigid trans-
formations on Z2 have been formulated as a fully discrete process. Following this
paradigm, we investigate – from a combinatorial point of view – the effects of
pixel-invariance constraints on such transformations. In particular we describe
the impact of these constraints on both the combinatorial structure of the trans-
formation space and the algorithm leading to its generation.

Keywords: Combinatorial structure, Discrete rigid transformation, Pixel–
invariance constraints.

1 Introduction

Rigid transformations, (i.e., transformations based on translations and rotations) are in-
volved in the design of many computer vision and image processing techniques (see,
e.g., [8,9]). Such transformations are generally performed by considering the Euclidean
space (Rn) associated to the Eulerian space (Zn) of the data. As a consequence, they need
to be interfaced with a subsequent digitization process to finally produce results in Zn.

In [5], we have recently proposed to study rigid transformations on Z2 as a fully
discrete process. In this context, three main questions were considered: (i) How many
rigid transformations can be defined on a finite subspace of Z2? (ii) How to generate all
of them? (iii) What are the topological relationships between them? Some combinatorial
and algorithmic answers, inspired by the approaches developed in [3,4], were provided,
and then contributed to the state of the art in this research field [3,4,2,7]. In [5], a
combinatorial structure – namely a graph – is used to represent the 2D discrete rigid
transformations. This structure has a polynomial complexityO(N9) where N × N is the
size of images. However, this high complexity makes it difficult to generate the whole
graph for large images, and to further find admissible transformations that best match
two given images, namely a template and a target image; the later problem is called
image registration. Practically in computer vision, some constrained search paradigms
are used for registration issues (see, e.g., [9,1]). Indeed the constraints introduce prior
knowledge of transformations and contribute to reduce the research space.
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In this article, we extend the study initiated in [5], by investigating the effects of ge-
ometric constraints on the proposed graph. In particular, we focus on pixel–invariance
constraints, which consist of forcing the correspondence between points in an initial
(sub)space (of Z2) and transformed points – or more generally regions.

This study is organised as follows. We first recall background notions on discrete
rigid transformations (Sec. 2), and express pixel-invariance constraints in the associ-
ated parameter space (Sec. 3). We then develop an algorithmic process for generating
a combinatorial structure modeling all the discrete rigid transformations and their rela-
tionships under the given constraints (Sec. 4). A complexity analysis is proposed for this
algorithm and the induced structure (Sec. 5). Finally, we conclude the article (Sec. 6).

2 Background Notions of Discrete Rigid Transformations

2.1 Digital Images and Digital Rigid Transformations

In the continuous framework, an image can be formalised as a function I : R2 → V ,
where V is any value space. A digital image associated to I can then be defined as
I : Z2 → V , by sampling I on the discrete space Z2. In other words, we have I = I|Z2 ,
and for each p ∈ Z2, the value I(p) models the value of I on the associated pixel
p + [− 1

2 ,
1
2 ]2, namely the Voronoi cell of R2 induced by Z2 around p. This paradigm

relies on the digitisation function, where [ . ] is a rounding operator, defined as
∣
∣
∣
∣
∣
∣

D : R2 −→ Z2

(x, y) �−→ ([x], [y])
(1)

In the continuous framework, a 2D rigid transformation, composed of translation and
rotation, is expressed as a bijection T : R2 → R2 defined, for any x = (x, y) ∈ R2, by

T (x) =

(

cos θ − sin θ
sin θ cos θ

) (

x
y

)

+

(

a
b

)

(2)

where a, b, θ ∈ R and θ ∈ [0, 2π[. In particular, such a transformation is unambiguously
modeled by the triplet of parameters (a, b, θ), and will sometimes be noted by Tabθ.
When applied on an image I : R2 → V , it provides a new transformed image I ◦T−1 :
R

2 → V .
Following the digitisation paradigm proposed above, a digital rigid transformation

T : Z2 → Z2 associated to T can be defined, for any p = (p, q) ∈ Z2, by

T (p) = D ◦ T (p) =

(

[p cos θ − q sin θ + a]
[p sin θ + q cos θ + b]

)

(3)

In general, this function is not bijective. However, by setting T−1 : Z2 → Z2 as T−1 =

D ◦ T−1, it becomes possible to define the digital transformed image I ◦ T−1 : Z2 → V
with respect to T . In the sequel of this article, we focus on such digital rigid transfor-
mations. From this point on – for the sake of readability and without loss of correctness
– we will denote them T instead of T−1, due to the bijectivity of T and T−1.
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Fig. 1. Tipping surfaces in the 3D parameter space (a, b, θ) (left) and their cross-sections, namely
tipping curves, in the 2D planes (a, θ) and (b, θ) (right)

2.2 Discontinuities of Digital Rigid Transformations

For any x in Eq. (2), if we change the value of (a, b, θ) slightly, then the new point
T (p) also changes slightly. More formally, the function (a, b, θ) �→ Tabθ is continuous.
Contrariwise, in Eq. (3), an infinitesimal variation of (a, b, θ) may lead to a variation
of T (p) from a point of Z2 to another one. More precisely, the parameter space R3 of
(a, b, θ) is divided into 3D open cells where the function (a, b, θ) �→ Tabθ = D ◦ Tabθ is
piecewise constant, bounded by 2D surfaces where it is discontinuous.

We focus in particular on the triplets (a, b, θ) and their associated transformations
Tabθ, which lead to such discontinuities in the space of digital rigid transformations.
Such critical transformations are those that map at least one discrete point onto the
discrete half-grid H =

(

R × (Z + 1/2)
)

∪
(

(Z + 1/2) × R
)

(i.e., the boundaries of the
Voronoi cells of R2 induced by Z2).

Definition 1 ([5]). Let (a, b, θ) ∈ R3, and Tabθ : R2 → R
2 be its associated rigid

transformation. We say that Tabθ is a critical transformation if ∃p ∈ Z2 s.t. Tabθ(p) ∈ H .

It is plain that in the parameter space (a, b, θ), the critical transformations are modeled
by 2D surfaces analytically defined, for any p = (p, q) ∈ Z2 and k, l ∈ Z, by

∣
∣
∣
∣
∣
∣

Φpqk : R2 −→ R
(b, θ) �−→ a = φpqk(θ) = k + 1

2 + q sin θ − p cos θ,
(4)

∣
∣
∣
∣
∣
∣

Ψpql : R2 −→ R
(a, θ) �−→ b = ψpql(θ) = l + 1

2 − p sin θ − q cos θ.
(5)

The surfaces Φpqk (resp. Ψpql) are termed tipping surfaces [5]. Their intersection φpqk

(resp. ψpql) on the 2D plane (a, θ) (resp. (b, θ)) are called tipping curves. These tipping
surfaces/curves, which correspond to the discontinuities of digital rigid transformations
expressed in the parameter space (a, b, θ), are illustrated in Fig. 1.
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Fig. 2. Parameter space subdivided by four tipping surfaces (left) and its DRT graph (right)

2.3 Partition of Parameter Space and Discrete Rigid Transformation Graph

The digitisation process (Eq. (1)) generally maps distinct rigid transformations (Eq. (2))
onto the same digital rigid transformation (Eq. (3)). More precisely, the set of all the
non-critical transformations can be partitioned into equivalence classes induced by the
equivalence relation ∼ defined by (Tabθ ∼ Ta′b′θ′) ⇐⇒ (Tabθ = Ta′b′θ′). This also leads
to the straightforward definition of an equivalence relation on the parameters (a, b, θ)
associated to these transformations. In this isomorphic framework, each equivalence
class is called a discrete rigid transformation (DRT), and is modeled by 3D open cells
bounded by 2D tipping surfaces, which subdivide the parameter space (a, b, θ) (see
Fig. 1(a)).

In [5], we have shown that this subdivision of the parameter space could be modeled
using a dual combinatorial structure, namely a graph. In particular, each 3D open cell
(i.e., each DRT) is associated to a vertex, and each tipping-surface segment (linked to a
critical transformation) shared by two adjacent 3D open cells, is associated to an edge.
The resulting graph is called a DRT graph [5] (see Fig. 2).

From a theoretical point of view, the notions introduced above are correctly defined
for images and transformations on Z2 and R2. Practically, our purpose is to study such
transformations on images of finite sizes. Under this hypothesis, only a finite subset of
digital rigid transformations are relevant, namely those which actually affect such finite
images. From this point on, we focus on this finite case and assume that the digital
images are defined on subsets of Z2 of size N × N (N ∈ N). We have the next property.

Property 2 ([5]). The DRT graph associated to a digital image of size N × N has a
space complexity of O(N9).

In [5], an exact computation algorithm was also proposed to build this graph in linear
time w.r.t. its size. The DRT graph models a kind of “neighbouring” relationship be-
tween DRTs. Indeed, the existence of an edge between two vertices indicates that the
associated transformations differ in one pixel among the N2 ones. This property opens
a way of involving this combinatorial structure in image processing tasks.
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We now study the effects of forcing the correspondence between points in the initial
and transformed spaces. We focus in particular on the subdivision of the parameter
space and the induced graph from the algorithmic and combinatorial points of view.

3 Constraints and Feasible Rigid Transformation Set

3.1 Pixel-Invariance Constraints and Interpretation in the Parameter Space

In the context of rigid transformations in R2, forcing the correspondence between points
p in the initial space and p′ in the transformed one leads to restricting the transforma-
tions T . Moreover, forcing the correspondence between k ≥ 2 distinct pairs of points
(pi, p′i) restricts the number of feasible transformations T to at most one. Indeed, from
the relation expressed in Eq. (2) we obtain for every pair of corresponding points two
equations representing the trigonometric surfaces. We then need at least two pairs of
corresponding points to obtain a rigid transformation as the feasible transformation. As
illustrated in Fig. 3(a), each pair of surfaces represents a pair of corresponding points,
and the intersection of two pairs of surfaces determines the feasible transformation.

Restricting discrete rigid transformations, under similar constraints, is more permis-
sive. Indeed, when forcing the correspondence between one or several pairs of pixels
(pi, p′i) of Z2, a larger space of transformations may remain valid (see Fig. 3(b–g)).

Definition 3. Let p = (p, q) ∈ A ⊂ Z2 and p′ = (p′, q′) ∈ B ⊂ Z2, such that A, B are of
size N ×N. There exists a pixel-invariance constraint between p and p′ if the authorised
digital rigid transformations T between A and B satisfy the equality T (p) = p′, i.e., if

p′ − 1/2 < p cos θ − q sin θ + a < p′ + 1/2, (6)

q′ − 1/2 < p sin θ + q cos θ + b < q′ + 1/2. (7)

More generally, there exist pixel-invariance constraints between two sets {pi}mi=1 and
{p′i}mi=1 (m ≥ 1) if T (pi) = p′i (i.e., if Eqs. (6)–(7) are satisfied) for every i ∈ [[1,m]].

In absence of constraints, the 3D parameter space (a, b, θ), induced by the subset of size
N × N where the image is defined, is divided into cells whose boundaries are all the
tipping surfaces Φpqk and Ψpql, with p, q ∈ [[0,N − 1]] and k, l ∈ [[0,N]]. In this context,
the whole volume of the parameter space models adequate rigid transformations.

In contrast, under a pixel-invariance constraint, some discrete rigid transformations
may become irrelevant. Equivalently, only a part of the parameter space – namely
the subspace of parameters (a, b, θ) that satisfy this constraint – remains valid. From
Eqs. (6)–(7), this parameter subspace is defined by the intersection of 4 half-spaces
associated to 4 tipping surfaces for one pixel correspondence (see Fig. 3(b)).

3.2 Feasible Rigid Transformation Set

More generally, if a set P of m pixel correspondences is provided, the parameter sub-
space of relevant transformations is defined as the intersection of m regions induced by
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Rigid transformation sets induced by geometric constraints in continuous (a) and discrete
(b,c) frameworks. (a) Transformations with one-point correspondence (red line) and two-point
correspondences (red dot). (b,c) Transformations with one-pixel (b) and two-pixels (c) corre-
spondences (red volumes). (d,e) (resp. (f,g)) Cross-sections of (b) (resp. (c)) on the planes (a, θ)
and (b, θ) via the use of tipping curves.

these constraints, i.e., as the intersection of 4m half-spaces defined by Eqs. (6)–(7). Let
us first define the half-spaces induced by tipping surfaces Φpqk and Ψpql:

H+pqk = {(a, b, θ) | a > Φpqk(b, θ)} and H−pqk = {(a, b, θ) | a < Φpqk(b, θ)}, (8)

V+pql = {(a, b, θ) | b > Ψpql(a, θ)} and V−pql = {(a, b, θ) | b < Ψpql(a, θ)}. (9)

The subspace of interest, called feasible rigid transformation set, is defined as follows.

Definition 4. Let P = {(pi, p′i)}
m
i=1 (m ≥ 1) be a set of corresponding pixel pairs. The

feasible rigid transformation set (FRTS) associated to P is the subspace R ⊂ R3 of the
parameter space (a, b, θ), defined as

R =
⋂

i∈[[1,m]]

(

H+piqi p′i
∩ H−piqi p′i+1 ∩ V+piqiq′i

∩ V−piqiq′i+1

)

.

Note that a constraint of one pixel pair (namely, m = 1), the FRTS is observed as a
“tube” in the parameter space (a, b, θ) (see Fig. 3(b)). We can consider that a pixel-
invariance constraint leads to all rotations with a center x ∈ R2 inside of pixel p ∈ Z2

(i.e., x ∈ p+[−1/2, 1/2]2). For constraints of two pixel pairs (namely, m = 2), the FRTS
becomes a “bounded region” (see Fig. 3(c)).

The FRTS generated by m pixel correspondences is divided into DRTs induced from
the (N2 −m) remaining pixels of the given image of size N × N. In particular, the com-
binatorial structure of DRTs in a FRTS, modeling this subdivision, is a subgraph of the
DRT graph. We introduce, in the following, a notion of directional convexity of a re-
gion R, such that R is “convex along an axis”, and show that any FRTS R is directionally
convex. This property is used in the next sections to study the combinatorial structure
of DRTs in R.
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Definition 5. We say that a region R ⊆ Rn in an n-variable space (x1, . . . , xn) is xk-
convex if, for any two points p1, p2 ∈ R such that the segment [p1 p2] = {α.p1+(1−α).p2 |
α ∈ [0, 1]} is parallel to the xk-axis, [p1 p2] is included in R.

Property 6. The FRTS R is both a- and b-convex.

4 Combinatorial Structure of Discrete Rigid Transformations in a
Feasible Rigid Transformation Set

So far, we know that a FRTS contains all rigid transformations satisfying all constraints,
and is subdivided into DRTs (see Sec. 2.3). This section presents a method for con-
structing a combinatorial structure of DRTs in a FRTS by following the three stages:
(1) finding the boundaries of a FRTS, (2) finding tipping surfaces passing a FRTS and
(3) constructing a DRT graph in a FRTS. Before describing these stages, we first ex-
plain an algorithm for building a graph modeling a subdivision of the parameter space
from a given set of tipping surfaces, which is used later in the first and third stages.

4.1 Sweeping Algorithm for Incremental Partition Graph Construction

We may generalize the problem of subdivision of the parameter space by tipping sur-
faces as follows: given a set of tipping surfaces S , we would like to construct a graph
modeling the subdivision of the parameter space (a, b, θ) induced by S . Such a graph
is called a partition graph and denoted by G. In G each vertex is associated to a 3D
open cell of the subdivision, and each tipping-surface segment shared by two adjacent
3D open cells, is associated to an edge. This problem can be answered with the help of
3D arrangements of surfaces [6]. In [5], we have proposed the sweeping algorithm for
constructing a DRT graph of a given image (see Section 2.3), which is a specific case
of generating a partition graph. Such a method has a complexity O(n3), where n is the
number of surfaces. Here we present a similar method that builds the partition graph G
based on the relations that link tipping surfaces and tipping curves (see Eqs (4)–(5) and
Fig. 1). Such a subdivision can be fully described from its two cross-sections on the
planes (a, θ) and (b, θ), respectively expressed by two sets of tipping curves. Therefore,
instead of constructing directly the partition graph in the 3D parameter space (a, b, θ),
we will first build the structures of the graphs in the 2D planes (namely, (a, θ) and (b, θ)
planes), and then combine them to build the complete partition graph. Note that G be-
comes a DRT graph if we consider all tipping surfaces for a given image.

We first define a cut for a plane – either (a, θ) or (b, θ) – denoted by γ, as a monotonic
line intersecting exactly once for each tipping curve in the plane. A cut is then repre-
sented by its sequence of intersecting tipping curves (see Fig. 4(a)). Such a cut can be
modeled by a directed graph according to their sequences of tipping curves.

Definition 7. Let γ = (φ1, φ2, . . .) be a cut. A graph Gγ = (Vγ, Eγ) w.r.t. γ consists of
– a set of vertices Vγ = {v0, v1, . . .}, and
– an ordered set of labelled edges Eγ = ((v0, v1, φ1), (v2, v1, φ2), . . .) and each edge

(u,w, f ) ∈ Eγ connects two vertices u,w ∈ Vγ separated by the tipping curve f , which
is considered as an edge label.
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(a) (b)

Fig. 4. (a) Example of a cut and its graph. (b) Progress of the cut at an event point by which the
cut is updated and the corresponding graph is modified.

In practice, the elements of Eγ are also ordered in the same way as γ (see Fig. 4(a)).
The main idea of the sweeping method in 2D is that a cut is swept through all tip-

ping curves on the plane in finite time, allowing us to construct the graph afterwards. We
assume that γ starts at θ = 0 and ends at θ = 2π. While sweeping the cut, its sequence
changes only at intersections of tipping curves, called event points. The moment at which
a cut reaches an event point, the algorithm performs an update of its sequence, and gen-
erates new vertices and edges in the graph (see Fig. 4(b)). We call this an elementary step
of the algorithm. The set of event points forms a series of elementary steps. Therefore,
instead of moving the cut continuously, we need to maintain a set of sorted event points
w.r.t. θ, and progress the cut in their increasing order to build the graph incrementally.

For building a graph G in 3D, two cuts are used such that each cut sweeps on either
the plane (a, θ) or (b, θ). We denote those cuts by γa and γb respectively. For each update
of the cuts, γa and γb, the associated graphs, Gγa and Gγb , are respectively modified, so
that a part of G is generated. We call such a part of G a partial graph, denoted by δG .
In fact, δG is a combination of the two graphs Gγa and Gγb as follows (see Fig. 5).

Definition 8. The partial graph δG = (δV, δE) is generated from Gγa = (Vγa , Eγa ) and
Gγb = (Vγb , Eγb ), such that

– δV = {(va, vb) | va ∈ Vγa , vb ∈ Vγb }, and
– δE = {((u1, v), (u2, v), φu) | u1, u2 ∈ Vγa , v ∈ Vγb , (u1, u2, φu) ∈ Eγa } ∪ {((u, v1),

(u, v2), φv) | v1, v2 ∈ Vγb , u ∈ Vγa , (v1, v2, φv) ∈ Eγb }.

Therefore, when an elementary step is applied, the sweep progresses as the partial graph
δG is generated and integrated in G for constructing the final graph as well. The follow-
ing proposition has been originally proposed in [5] for constructing a DRT graph, and
this is valid for a partition graph as well.

Proposition 9. Let S be a set of tipping surfaces and G be a partition graph modeling
the subdivision of the parameter space by S . We have

G =
⋃

i∈[[1,e]]

δGi,

where δGi is a partial graph at the i-th elementary step and e is the number of ordered
event points.

More details about the sweeping algorithm for tipping surfaces can be found in [5].
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(a) (b)

Fig. 5. Construction of a partial graph δG by combining two graphs Gγa and Gγb

4.2 Finding the Feasible Rigid Transformation Set Boundary

It is possible to describe a FRTS R by a set of half-spaces constituting the boundary of
R, instead of using all the half-spaces of R as described in Definition 4. This section
explains how to find such a set using the above sweeping algorithm.

A FRTS R in the parameter space (a, b, θ) can be fully described from its two cross-
sections RH and RV on the planes (a, θ) and (b, θ), defined as

RH =
⋂

i∈[[1,m]]

(

h+piqiq′i
∩ h−piqiq′i+1

)

and RV =
⋂

i∈[[1,m]]

(

v+piqi p′i
∩ v−piqi p′i+1

)

(10)

where h+piqiq′i
and h−piqiq′i+1 (resp. v+piqi p′i

and v−piqi p′i+1) are the cross-sections in the plane

(a, θ) (resp. (b, θ)) of H+piqiq′i
and H−piqiq′i+1 (resp. V+piqi p′i

and V−piqi p′i+1). This is illustrated
in Fig. 3(d–g). They are expressed as shown in Eq. (8) (resp. Eq. (9)) by replacing the
tipping surfacesΦpqk and Ψpql by the tipping curves φpqk and ψpql respectively. We call
h+pqk, v

+
pql, upper half-planes and h−pqk, v

−
pql lower half-planes.

Relying on the similarity of RV and RH , hereafter we consider only RH . Our prob-
lem is then specified as follows: given a constraint set of half-planes ofRH defined from
m corresponding pixel pairs, P = {(pi, p′i )}mi=1, report the boundary half-planes of RH .
From Property 6, it is obvious that RH contains two sets of boundary half-planes:

– a upper boundary sequence U = (h+piqiq′i
, . . .) contains only the upper half-planes;

– a lower boundary sequence L = (h−piqiq′i+1, . . .) contains only the lower half-planes.
The 2D sweeping algorithm, presented in Sec. 4.1, is used to find such U and L of RH ,
such that the cut γ is now represented as a sequence of half-planes intersecting it. Note
that no partition graph is built in this stage, and we only need to observe the sequence
of the cut γ during its update in order to obtain U and L. Indeed, while sweeping γ
its sequence changes at event points. We remark that γ is in RH when its sequence
of half-planes is separated into two successive sequences of γ+ and γ−, namely γ =
γ+γ−, where γ+ contains only the upper half-planes and γ− contains only the lower
half-planes. Moreover, we see that the last element of γ+ and the first element of γ−

determine the upper and lower boundaries of RH respectively. The cut is located out of
RH when there is no more such a separation. According to the change of γ in RH , the
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(a) (b) (c)

Fig. 6. (a) Progression of the cut γ in the cross-section RH of FRTS R on the plane (a, θ). The ini-
tial cut is γ1 = (h+111, h

−
112, h

+
001, h

−
002); when it goes in RH it has become γ2 = (h+001, h

+
111, h

−
002, h

−
112);

when it goes out of RH it becomes γ3 = (h+111, h
−
112, h

+
001, h

−
002). (b) Example of tipping surfaces (in

red) passing R in the parameter space (a, b, θ) and (c) its cross-section RH on the plane (a, θ).

upper and lower boundaries are added progressively in U and L at each event point. See
Fig. 6(a) for the illustration.

By using two cuts γa and γb sweeping on the two planes (a, θ) and (b, θ), we can find
the boundary of a FRTS R. At each event point either on (a, θ) or (b, θ), the algorithm
updates and checks the sequences of both cuts. From this, we obtain the boundary of
R, and the first θ at which both sequences of γa and γb are separated in two parts (resp.
have no more separation), denoted by θmin (resp. θmax) of R that need in the next stage.

4.3 Finding Tipping Surfaces Passing by a Feasible Rigid Transformation Set

As the subdivision of a FRTS R is induced by the tipping surfaces existing in R (see
Fig. 6(b)), we need to determine such tipping surfaces among all Φpqk and Ψpql for
p, q ∈ [[0,N − 1]] and k, l ∈ [[0,N]], where N × N is the image size. Now looking at the
cross-sections of R, this problem is equivalent to finding tipping curves φpqk (resp. ψpql)
passing RH (resp. RV) (see Fig. 6(c)).

A tipping curve φpqk passesRH if it intersects one of the boundary segments of φp′q′k′

of RH . This is easily verified by the following steps:

(i) verify if φpqk and φp′q′k′ intersect, i.e., if the following relation is satisfied [5,
Property 2]: Δ1+Δ2 > 0 and |KP±

√
Δ1| ≤ P2+Q2 and |KQ±

√
Δ2| ≤ P2+Q2, where

P = p−p′, Q = q−q′, K = k−k′, Δ1 = P2(P2+Q2−K2) and Δ2 = Q2(P2+Q2−K2);
(ii) if they intersect, then calculate the following values at the intersection [5, Corol-

lary 1]: sin θ = KQ±
√
Δ1

P2+Q2 and cos θ = KP±
√
Δ2

P2+Q2 , and verify if θmin ≤ θ ≤ θmax, where
θmin and θmax are obtained in Sec. 4.2;

(iii) if (ii) is verified, then calculate aupper = max
h+pqk∈U

φpqk(θ) and alower = min
h−pqk∈L

φpqk(θ),

and verify if aupper ≤ a ≤ alower, where the value a at the above intersection θ is
calculated from Eq. (4).

Note that the values cos θ and sin θ are used to represent θ. All cos θ, sin θ, cos θmin,
sin θmin, cos θmax, sin θmax, a, amin and amax are quadratic irrationals1. As shown in [5],
their comparisons can be achieved exactly in constant time.

1 A quadratic irrational is an irrational number that is a solution of some quadratic equations.
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We define tipping surfaces of interest as a set of tipping surfaces that bound or pass a
FRTS R. Similarly, tipping curves of interest ofRH (resp.RV) is the set of the boundary
tipping curves of RH (resp. RV) and the tipping curves passing RH (resp. RV).

4.4 DRT-Graph Construction in a Feasible Rigid Transformation Set

In order to build the DRT graph in a FRTS R, we use the sweeping algorithm described
in Sec. 4.1. However the cut γ in this part sweeps from θmin to θmax instead of [0, 2π[,
and contains only tipping surfaces existing between the upper and lower boundaries of
R. The following question then arises: how can we detect event points in R? Or when is
an elementary step applied? Because of the similarity of RV and RH , in the following
we consider only the cross-section RH of R. Event points in RH are now defined as
intersections of tipping curves of interest being either on a boundary segment or inside
of RH , as illustrated in Fig. 6(c). According to its nature, it is called either a boundary
event point or an inside event point. Similarly to the method in Sec. 4.3 if an intersection
coordinate (θ, a) satisfies θmin ≤ θ ≤ θmax and amin ≤ a ≤ amax, then it is verified to be
an event point. The algorithm described in Sec. 4.1 deals with any inside event points.
In contrary, the boundary event points must be treated separately as follows.

As described in Sec. 4.1, an elementary step at each event point consists of (i) updat-
ing the graphs Gγa and Gγb according to the change of γa and γb respectively (explained
below) and (ii) building the partial graph δG from Gγa and Gγb (see Definition 7).

In [5], we classified inside event points into two cases: simple intersections and de-
generacies (see Fig. 7). Figure 8 shows an elementary step at a simple intersection. In
[5], the degeneracies are processed by modifying this simple case.

Regarding boundary event points, they can be classified into the following six cases
(Fig. 9), which are easily detected by checking the tipping curves intersecting at the
event point with the tipping curves in γ and the upper and lower bound sequences U
and L. The procedure for handling them in simple cases is explained below, while the
degenerate cases are treated similarly to [5] and omitted in this paper due to the page
number limitation. As illustrated in Fig. 9, an event point:

– changes the boundary, which is either upper (a) or lower (b);
– does not change the boundary, such that one of the tipping curves

• goes in (resp. out) R by the upper boundary (c) (resp. (d));
• goes in (resp. out) R by the lower boundary (e) (resp. (f)).

We first explain how to update the cut for (a) and (b). Without loss of generality, let
q = {φu, φv} be a boundary event point generated by two tipping curves φu, φv and γ, γ′

be the cuts before and after q respectively. Assuming γ = (φ1, φ2, . . . , φn−1, φn), if q is

– the upper boundary, i.e., φu = φ1 and φv = φ2, then γ′ = (φv, φ2, . . . , φn−1, φn),
– the lower boundary, i.e., φu = φn and φv � φn−1, then γ′ = (φ2, φ3, . . . , φn−1, φv).

Similarly, the procedures for updating the cut for (c) and (d) are given as follows. Let
q = {φu, φv} be an event point on the upper boundary, i.e., φu = φ1. We have two cases:

– when φv goes in RH , i.e., φv � φ2, then γ′ = (φ1, φv, φ2, . . . , φn);
– when the curve φv goes out RH , i.e., φv = φ2, then γ′ = (φ1, φ3, . . . , φn).

The procedures for (e) and (f) can be considered in the same way. Fig. 10 illustrates he
elementary steps for those boundary event points.
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(a) (b) (c)
Fig. 7. Inside event point classification: a simple intersection if it is generated by only two tipping
curves (a), otherwise it is a degeneracy (b,c), i.e., when there are more than two tipping curves

Fig. 8. Updating the graph Gγa w.r.t. the change of the cut γa at a simple intersection

(a) (b) (c) (d) (e) (f)

Fig. 9. Classification of simple boundary event points, an event point having a tipping curve that:
changes a boundary (a,b), goes in and out by an upper boundary (c,d), goes in and out by a lower
boundary (e,f). Upper and lower boundaries are colored in blue and red respectively.

5 Complexity and Experiments

5.1 Complexity Analysis

The space complexity of a DRT graph is proportional to its number of vertices and
edges. In absence of constraints, the DRT graph G for an image of size N × N, has a
O(N9) complexity (Property 2). This results from the fact that (i) the number of event
points of the whole space is O(N6), and (ii) at each elementary step (i.e., for each event
point), there are O(N3) vertices generated in the partial graph δG of G [5]. Given one
pixel-invariance constraint, some of the potential DRTs become irrelevant. Following
the similar proof scheme as above, we can show that the number of event points (i)
decreases from O(N6) to O(N5) (due to Property 4 in [5] on tipping curves periodicity),
and (ii) at each elementary step, O(N2) vertices are generated instead of O(N3) since, as
explained in Sec. 4, δG of G is generated from two graphs Gγa and Gγb of two cuts γa

and γb sweeping on the planes (a, θ) and (b, θ) respectively. Each of the cut intersects
at most O(N2) tipping curves on the plane. Then at each intersection, there are O(N2)
vertices generated in δG. This leads to the following property.

Property 10. The DRT graph G associated to a digital image of size N × N under one
pixel-invariance constraint has a space complexity of O(N7).
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(a) (b)

(c) (d)

Fig. 10. Illustrations of elementary steps –update γ and generate its graph Gγ– for a tipping curve
changing (a) an upper or (b) a lower boundary, and going (c) in or (d) out of an upper boundary

Regarding more complex pixel invariance constraints, we cannot use a similar approach
to obtain the theoretical upper bound complexity of G in a FRTS. This is due to the
space complexity of G depending on the distance between the involved pixels. Thus,
we construct G using our method and we investigate its complexity in practice.

5.2 Computational Experiments

Experiments were carried out on 2D digital images I of size N ×N, for 1, 2, 3, 5 and 10
constraints, to investigate how these constraints affect the complexity of the DRT graph.
The first experiment (Fig. 11(a)) validates the theoretical O(N7) space complexity for
one given pixel-invariance constraint. Previous works in [2,7] on discrete rotations pro-
vide a complexity of only O(N3). However, they consider only a rotation center at a
pixel center, while our approach makes no such assumption. In other words, we con-
sider any discrete rotation whose rotation center is located inside a pixel region, due to
one pixel-invariance constraint, instead of a pixel center. For this reason, the complexity
is increased from O(N3) to O(N7). Given two pixel-invariance constraints, the bounded
FRTS R varies randomly with the selected corresponding pixels. Results obtained for
an image of size 5 × 5 are shown in Fig. 11(b) for two random pixel choices with some
fixed distances. Results for different image sizes are shown in Fig. 11(c). By taking into
account the largest complexity for each image size we obtain a worst case complexity
O(N5.5) of a DRT graph G in R.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Experiments for one (a), two (b,c), three (d-g), five (h) and ten (i) pixel-invariance con-
straints (see Sec. 5.2)

We could expect thatR is strictly reduced when given supplementary pixel-invariance
constraints, i.e., more than two constraints. Nevertheless, the third experiment shows
that it is not always true. Let us set two pixel-invariance constraints (in red and blue in
Fig. 11(d)), and the associated FRTS R (Fig. 11(e)). A supplementary constraint deter-
mined by green pixels in Fig. 11(d) does not reduce R; green dotted lines do not pass
through R. Actually (see Fig. 11(f)), there exist two kinds of pixels: one contains some
pixels providing no contribution toR such as the green ones, and another contains pixels
allowing to reduce R such as purple ones. Consequently, the complexity of G depends
on given pixel-invariance constraints, but not on the number of constraints.

However, in practice, the more constraints are imposed, the lower the complexity of
the DRT graph. This is shown in the experiments for 5 and 10 constraints illustrated
in Fig. 11(h) and (i) respectively. Overall there is a downward trend in the numbers of
vertices and edges in the DRT graph, though the experimental complexity do not exceed
O(N5.5).



248 P. Ngo et al.

6 Conclusion

This article continued the study initiated in [5] by investigating the effects of geomet-
ric constraints on rigid transformations of digital images. In this work, we addressed
pixel-invariance constraints which consist of specifying the correspondence between
points in an initial (sub)space (of Z2) and pixels in the transformed space. By enforcing
correspondence between one or several pairs of pixels, we consequently restrict the fea-
sible transformations into a parameter subspace, called a feasible rigid transformation
set (FRTS), in which all such constraints are satisfied. A proposed algorithm allowed
us to build a combinatorial structure (namely a graph) for modeling the subdivision of
the FRTS on a subset of Z2 of size N × N. We have theoretically analysed the complex-
ity of the graph with one given pixel-invariance constraint to be O(N7). For more than
one constraint, the complexity could not be theoretically calculated. However, using
our proposed graph construction method we actually built the graph and experimentally
investigated its complexity, which was shown not to exceed O(N5.5).

Note that the FRTS is generated from a finite intersection of regions of the imposed
constraints. In practice, due to the precision of pixel-invariance constraints, we may
obtain an empty set of feasible rigid transformations induced by these constraints. In
order to avoid this problem, one solution can be to change the resolution of the im-
ages. Namely, we degrade the image resolution as in [7] until we find a non-empty and
bounded FRTS.
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Abstract. In this paper, we extend the morphological operators defined for
graphs by Cousty et al. to use structuring elements. We then apply these extended
operators to develop algorithms for Minimum Dominating Set (MDS) and Mini-
mum Independent Dominating Set (MIDS) on incomplete grid graphs which cor-
respond to binary images with 4-connected neighbourhoods. We show that our
algorithm performs as well as the best known heuristic for Minimum Indepen-
dent Dominating Set. We apply the extended morphological graph operators and
algorithms to various image analysis tasks such as distance transforms, skeletons
and clustering. In particular, we propose a novel MIDS Skeleton that may po-
tentially reduce the time for reconstructing the original objects. A hierarchical
clustering algorithm (also using MIDS) is proposed. This algorithm is analogous
to the conventional algorithms that use a distance threshold for clustering. We
illustrate the proposed algorithms on several example images and conclude that
they are useful in image analysis.

Keywords: Clustering, Grid Graphs, Image Analysis, Minimum Dominating Set,
Minimum Independent Dominating Set, Morphological Operators.

1 Introduction

Image analysis, over the years, has brought within its scope a number of diverse tech-
niques such as signal processing, statistics, discrete mathematics, graph theory, etc.
Each of these have enriched the field and provided interesting and often powerful in-
sights and led to algorithmic developments and novel applications. In this paper, we
explore two such techniques: mathematical morphology and graph theory and propose
novel morphological algorithms for two important graph theoretic problems viz. Min-
imum Dominating Sets (MDS) and Minimum Independent Dominating Sets (MIDS),
and show that these graph theoretic problems, in turn, are useful in image analysis. In
particular, the application of morphological algorithms to distance transforms, skele-
tonization and clustering is presented.

Mathematical morphology, a non-linear, set-based approach to image processing,
developed originally by Matheron and Serra[25] provides a number of powerful tools
for image analysis. Developments in morphology have taken mainly two paths. The
first is extending the morphological operations developed for binary images to a num-
ber of domains such as gray scale images[28], graphs[19,4], fuzzy sets[23,3], colour
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images[9,24], simplical complex spaces [12] etc. The second path is the development
of new operations such as opening and closing distributions[6], pattern spectra[20], area
morphology[1], watersheds[21,10], etc.

Graph-theoretic approaches have found increasing applications in image analysis
from the turn of this century. Some notable contributions are in segmentation[13,27]
and computer vision[14]. Classical graph problems such as minimum spanning tree
(MST), cuts and partitioning, and sub-graph isomorphism[5] have been applied to such
image analysis tasks. In this paper, we show that dominating set problems on graphs
may be used to advantage in image analysis tasks such as skeletons and clustering.
Images are modelled as grid graphs which are a special subset of unit-disk graphs, on
which dominating set problems are an active area of work[7,22].

This paper makes three distinct contributions by linking dominating sets on grid
graphs with image analysis: novel extensions to the graph morphology operators pro-
posed originally by Cousty, et. al[11]; new morphological algorithms for the classical
dominating set problems; and, the applications of the proposed algorithms to image
analysis.

The rest of the paper is organized as follows: we review and extend the graph mor-
phological operators defined by Cousty et al [11] to use structuring elements in Section
2. The algorithms for computing MDS and MIDS using these operators are presented
in Section 3. The comparison of the results of the proposed algorithms with those of the
standard algorithms in literature, the application of the extended operators to distance
transform and the application of dominating sets for skeleton and clustering of images
are presented in Section 4. We conclude with Section 5.

2 Dilations and Erosions with Structuring Elements

Cousty, et. al [11] recently defined an entire hierarchy of graph morphological operators
from a set of four fundamental operators that derive a set of edges from a given set of
vertices and vice versa. Combinations that derive vertices from vertices and edges from
edges are shown to be dilations and erosions. Briefly, consider a graph X = (X•, X×)
where X• is the set of vertices and X× is the set of edges. The four fundamental op-
erators are: δ•(X×) which returns the set of all vertices that belong to the edges in
X×; ε×(X•) which returns the set of all edges, both ends of which are in X•; ε•(X×)
which returns only the isolated vertices of the complement of the graph; δ×(X•) which
returns all the edges, at least one end of which is part of X•. These can then be com-
bined to form vertex dilation (δ = δ• ◦ δ×) and erosion (ε = ε• ◦ ε×) as well as edge
dilation (Δ = δ× ◦ δ•) and erosion (ε = ε× ◦ ε•) operators. Combining these two leads
to graph dilation and erosion. In addition, they define opening and closing, filters and
granulometries as in classical mathematical morphology using these operators. In this
paper, we extend these operators to incorporate structuring elements and apply them to
MDS and MIDS problems.

Any binary image may be modelled as the complete grid graph G shown in Fig. 1.
Note that Cousty in [11] used the same grid graph to formulate his morphological op-
erators. The powerset of G represented by G forms a complete lattice. We define graph
morphological operators with structuring elements on the same lattice. Following the



Novel Morphological Algorithms for Dominating Sets on Graphs 251

conventional definition, a structuring element on graphs is a small graphB = (B•, B×).
It may be used to identify, isolate or operate on graphs and sub-graphs that are isomor-
phic to the structuring element.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

Fig. 1. The Complete Grid, which forms the
workspace, G. The subgraphs of this grid
graph form the input topologies for the al-
gorithms presented in this paper.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

Fig. 2. Topology to illustrate the results of
applying extended morphological operators
that use structuring elements of Fig. 3

We define B to be the set of all possible 1-hop structuring elements of G. By 1-hop,
we mean that a structuring element is composed of a node and the nodes adjacent to it in
the grid. Thus, there are a total of 15 1-hop structuring elements – one with four edges, 4
with three edges, 6 with two edges and 4 with a single edge. These are shown in Fig. 3.
B is an ordered set of structuring elements where, the structuring elements are ordered
in descending order of the number of edges in them. Thus, B1 < B2 ⇒ |B×

1 | < |B×
2 |.

As in the case of morphological operators defined on binary images, we translate
the origin of the structuring element to each node in X• when defining the erosion and
dilation operators. Given a structuring element, B ∈ B and a graph X = (X•, X×),
we define the following operators:

1. δ•B : G× → G• is such that:

δ•B(X
×) = {x ∈ G

• | ∃ex,y ∈ (X× ∩B×
x )} (1)

2. δ×B : G• → G× is such that:

δ×B (X•) = {ex,y ∈ G
× | x ∈ (X• ∩B•

x) OR y ∈ (X• ∩B•
x)} (2)

3. ε•B : G× → G• is such that:

ε•B(X
×) = {x ∈ G

• | ∀ex,y ∈ B×
x , ex,y ∈ (X× ∩B×

x )} (3)
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(a) (c)(b) (d) (e)

(k)

(l) (m) (n)

(f) (g)

(o)

(h) (j)(i)

Fig. 3. The 15 structuring elements of a grid graph in descending order of the number of edges in
the structuring element

4. ε×B : G• → G× is such that:

ε×B(X
•) = {ex,y ∈ G

× | x ∈ (X• ∩B•
x) AND y ∈ (X• ∩B•

x)} (4)

Operator δ•B returns the set of all vertices that belong to the intersection of the edges
of the given graph with those of the structuring element. The result of applying the
structuring element given in Fig. 3(k) on the topology in Fig. 2 is shown in Fig. 4.
We use the same structuring element with the other operators to illustrate the results of
applying them on a given graph. The operator δ×B returns the set of all edges, at least
one end point of which is a member of the intersection of the vertices of the given graph
and the vertices of the structuring element. The result is shown in Fig. 5. Operator ε•B
returns only those vertices where all the edges of the vertex in the graph are also the
edges of the structuring element. ε×B returns the set of edges where both the end points
of the edge are in the intersection of the vertices of the given graph with those of the
structuring element. The results for ε•B and ε×B are shown in Figs. 6 and 7.

As shown in [11], the operators δ•B and δ×B are dilations, ε•B and ε×B are erosions. If
we compose the dilation and erosion operators to act on G• and G×, we get the vertex
and edge dilations and erosions using structuring elements.

Vertex Dilation and Erosion. We define Vertex Dilation, δB and Vertex Erosion, εB that
act on G• (i.e., G• → G•) by δB = δ•B ◦ δ×B and εB = ε•B ◦ ε×B, where ◦ is a composition
and not opening.

Edge Dilation and Erosion. We define Edge Dilation, ΔB and Edge Erosion, εB that
act on G× (i.e., G× → G×) by ΔB = δ×B ◦ δ•B and εB = ε×B ◦ ε•B .
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Fig. 4. δ•B with structuring element of Fig.
3(k) applied on the graph in Fig. 2
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Fig. 5. δ×B with structuring element of Fig.
3(k) applied on Fig. 2
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Fig. 6. ε•B with structuring element of Fig.
3(k) applied on the graph in Fig. 2
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Fig. 7. ε×B with structuring element of Fig.
3(k) applied on Fig. 2

Graph Dilation and Erosion. We can now define the graph dilation and erosion op-
erators using structuring elements by composing the dilation and erosion operators of
vertices and edges together. Thus, the graph dilation operator,X⊕B = δ⊕ΔB(X) is de-
fined as (δB(X•), ΔB(X

×)). Similarly, the graph erosion operator,X+B = ε+εB(X),
is defined as (εB(X•), εB(X×)).

We applied our operators to compute the distance transform on images, which is
presented in Section 4. We apply these operators, as well as those defined by Cousty,
et. al [11], to compute dominating sets which is described in the next section.

3 Algorithms for MIDS and MDS Using Graph Morphological
Operators

A dominating set of a graph G = (V,E) is a subset S ⊆ V such that every node v ∈ V
is a member of S or is adjacent to a member of S. Any Maximal Independent Set (MIS)
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is a dominating set. The dominating set with the minimum cardinality is called the Min-
imum Dominating Set (MDS). This cardinality is called the domination number, γ(G),
of the graph. An MIS with the minimum cardinality is called the Minimum Indepen-
dent Dominating Set (MIDS). This cardinality is called the independent domination
number, i(G), of the graph. It is proven that finding MDS or MIDS isNP-hard [16]. It
is also proven that these areNP-hard for Unit Disk Graphs and Grid Graphs [8]. Both
Minimum Dominating Set and Minimum Independent Dominating Set have many ap-
plications, especially in clustering of wireless networks [7]. They have also been used
in information retrieval etc. for clustering of the documents leading to multi-document
summarization [26]. There are many heuristics proposed to solve MIDS, of which the
maximum degree heuristic is one such [2]. The greedy algorithm for computing MDS is
also the optimal approximation algorithm with an approximation ration of lnΔ, where
Δ is the maximum degree in the graph [30].

The basic algorithm we propose here for both MIDS and MDS is essentially the
same. The difference comes from the requirement of independence property of MIDS.
The basic operation is to use the erosion operator ε•B with each of the structuring ele-
ments and take the union of all the eroded nodes to construct the dominating set. We
describe the algorithms for MIDS and MDS, in detail, in the next two sub-sections.

3.1 MIDS Algorithm

The MIDS algorithm MIDS(X,Y •), for a given graph X = (X•, X×) with the dom-
inating set returned Y • is as follows:

1. For each structuring element B ∈ B do the following:
(a) ZB = ε•B(X

×)
(b) For each node v ∈ ZB do the following:

i. If Bv �⊂ X where Bv is the structuring element B translated to the node v,
then remove v from ZB and go to Step 1b

ii. Construct the set of the dominating node, v, and its dominated nodes. This
can be given as δ• ◦ αBv (X

×) where, αBv (X
×) = δ×Bv

◦ ε•Bv
, where the

subscript v indicates that all the operations are performed only at node v.
The result is the set of edges that are incident on the node v. δ• operator
from [11] returns all nodes incident on these edges, which are nothing but
the dominating and the dominated nodes.

iii. The set of all edges incident on the dominating and dominated nodes is
given by Δ ◦ αBv (X), where Δ is the edge dilation operator from [11].
We define βBv (X) = (δ• ◦ αBv (X), Δ ◦ αBv (X)) to be the subgraph of
the dominating and dominated nodes and all edges incident on them.

iv. We need to remove the subgraph represented by βBv (X) from the given
graph X by defining the operator ψBv (X) = (X \ βBv (X) = (X• \ δ• ◦
αBv (X), X× \Δ ◦ αBv (X)).

v. Update ZB by removing all nodes that are not in ψBv (X)
(c) Y • = Y • ∪ ZB

2. This leaves isolated nodes, if any. These are added to the dominating set to get the
final dominating set: Y • = Y • ∪X•.
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3.2 MDS Algorithm

The Minimum Dominating Set(MDS), MDS(Y •, X) is very similar to MIDS. Note,
however, that we are not iterating for the construction of MDS unlike in MIDS. We
apply the operators using each structuring element on the whole graph.
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Fig. 8. Example topology to illustrate that
MDS algorithm leads to redundant nodes in
the dominating set
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Fig. 9. Result of applying steps 1-2 of the
MDS algorithm selects nodes 44, 45, 46, 16,
31, 32, 33 as the dominating set
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Fig. 10. Result of applying the step 3 of
MDS algorithm removes nodes 32, 45 from
the dominating set as they are redundant
nodes

1. For each structuring element B ∈ B do the following:
(a) Use the erosion operator ε•B with the structuring element B on X×. Let us say

that this results in a set of nodes E•.
(b) If E• = φ go to the next structuring element B.
(c) Otherwise, Y • = Y • ∪E•.
(d) We apply the operator ψB(X) = (X \βB(X) = (X• \ δ• ◦αB(X), X× \Δ◦

αB(X)) to remove the dominating and dominated nodes and the edges incident
on them from the given graph X . Note that this removes many dominating
nodes and their neighborhood in one iteration unlike in MIDS.
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2. Add isolated nodes, if any, to the dominating set to get the final dominating set:
Y • = Y • ∪X•.

3. We, now, apply a post-processing step to remove all redundant nodes from Y •. We
call a dominating node redundant, if the node and all its neighbors are covered by
other dominating nodes. An example of a redundant node is shown in Fig. 9 when
applying structuring elements shown in Figs. 3(b) and 3(j) on the graph shown in
Fig. 8. Nodes 31, 32, 33 and 44, 45 and 46 are in Y •. However, Node 45 and all its
neighbors are covered by nodes 31, 44 and 46. Similarly, 32 is covered by 31 and
33. Therefore, nodes 32 and 45 are redundant and can be removed without affecting
the domination property while reducing cardinality. Π(A) is the set of dominated
nodes of set A. Redundant node removal is expressed as Y • = Y • \{x ∈ Y • | x ∈
Π(Y • \ x) and ∀ex,y ∈ X×, y ∈ Π(Y • \ x)}.

4 Experimentation and Results

As part of the experimentation, we developed an incomplete grid graph generator soft-
ware. We generated grid graphs with number of edges in the graphs varying from 50-
1000 edges. For each edge size, we generated 20 instances and computed the average
of the dominating set cardinality using our algorithms as well as the standard heuris-
tics. The results are presented in Tables 1 and 2. We find that our algorithm for MIDS
performs as well as the maximum degree heuristic in terms of cardinality.

We also find that our MDS algorithm performs on the average about 8% worse than
the optimal approximation algorithm [30]. This can be explained by the fact that, before
applying the next structuring element, we are removing the neighborhood of nodes
selected by the erosion operator. Sometimes, this can lead to an increase in cardinality.
On the other hand, not removing the neighborhood leads to an increase in cardinality in
other cases.

The time taken to compute MDS and MIDS using morphological operators is much
more than the heuristics as we have not optimized the implementation for performance.
Efficient implementations, both sequential and parallel, have been proposed by Vincent
[29] and by Géraud et al. [17] which suggest that these running times may be reduced
considerably making them comparable to the other approaches.

Table 1. Cardinality (i) of MIDS returned
by the Max. Deg. Heuristic and Morph. Al-
gorithms for Grid Graph Instances

Edges Heuristic Morphology
i t (ms) i t (ms)

50 15.35 0.138 15.3 352.042
100 26.5 0.2688 26.8 700.504
250 53.9 0.59785 54.05 1729.8
500 100.3 1.1482 100.05 4331.52
750 140.6 1.66625 140 6701.06

1000 181.1 2.3031 181.35 10687.9

Table 2. Cardinality (γ) of MDS returned
by the Opt. Approx. Algorithm and Morph.
Algorithms for Grid Graph Instances

Edges Heuristic Morphology
γ t (ms) γ t (ms)

50 14.25 0.7296 14.95 168.047
100 24.45 2.17165 25.85 247.804
250 50.2 10.9223 56 399.16
500 92.85 33.0356 98.65 644.136
750 127.85 74.8657 143.4 787.486

1000 168.9 123.271 182.25 989.726
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In the rest of this section, we illustrate the use of our algorithms and operators for
image analysis. Firstly, we use our structuring element based erosion for computation
of the distance transform. Secondly, we show two uses of dominating sets in image
analysis, i.e., the dominating set as the skeleton of the image and in clustering of the
image.

4.1 Distance Transform Computation Using the Extended Graph Morphology
Operators

We applied our extended graph morphological operators to compute the distance trans-
form of an image to illustrate that they are exactly identical in operation to standard
morphological operators on sets of points. The extended operators defined by us can be
directly used on all images modeled as graphs. As yet, our operators are defined for bi-
nary images and so we illustrate the distance transform on binary images only. Erosion
operation with the structuring element shown in Fig.3(a) computes distance transform
on the graph model that is identical to the one defined on binary images as point sets.

Fig. 11. Image to illustrate distance trans-
form using ultimate erosion with structuring
elements
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Fig. 12. Distance transform of the image,
with nodes in the given graph labeled with
the distance computed by the ultimate ero-
sion using ε•B with SE of Fig.3(a)

The algorithm for computation of distance transform works as follows: we initially
mark the distance of all nodes in the graph 1, to indicate they are at a minimum distance
of 1 from the background pixels. We apply the ε•B operator with the structuring element
of Fig. 3(a) on the edge set of the given graph. The nodes returned by this operator,
S, are marked to be distance 2 from the background pixels. We, now, apply the same
operator on the subgraph induced on S. Any nodes returned are marked to be at a
distance 3 from the background pixels. This operation is repeated until S = φ. This is
nothing but ultimate erosion with the structuring element given. We give an example
image in Fig. 11 and its corresponding distance transform computed by our algorithm
in Fig. 12.

4.2 MIDS Skeleton

In this section, we demonstrate the use of dominating sets, and in particular, MIDS, to
represent the skeleton of an image. In Fig. 13, we show the image used by Gonzalez
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Fig. 13. Image from Gonzalez and Woods
[18], with the nodes in black representing the
skeleton obtained using a 3 × 3 structuring
element

Fig. 14. Skeleton of the same image with
the MIDS nodes (in black) representing the
skeleton

and Woods [18] to illustrate the computation of a skeleton using ultimate erosion with
structuring elements. The skeleton of the image using a 3 × 3 structuring element is
represented by the black nodes in the figure. The skeleton represented by the MIDS of
the image is shown in Fig. 14. By also storing the structuring element that caused a node
to be selected as the dominating node, we can reconstruct the image by applying dilation
operations. A second example is taken from [15] and is shown in Fig. 15. The skeleton
obtained using the standard 3×3 structuring elements is, once again, represented by the
black nodes in the figure. The skeleton represented by the MIDS of the image is given
in Fig. 16, with the MIDS nodes shown in black.

The MIDS Skeleton is an interesting alternative to the skeletons based on distance
transforms, Medial Axis transform and others. The other skeletons generally tend to
capture the centrality of the object while the MIDS Skeleton is more uniformly dis-
tributed. The potential advantage of the MIDS Skeleton is that it may be possible to
reconstruct the original graph with relatively fewer operations as the independence
property ensures that any node is reconstructed from only one dominating node (i.e.,
from the skeleton). Further, from the examples shown, it appears that the size of the
MIDS Skeleton is comparable to the other skeletons.

4.3 Hierarchical Clustering Using Dominating Sets

We present a hierarchical clustering scheme which uses an overlay of dominating sets
and illustrate the scheme with a couple of examples. The algorithm is as follows:

1. Repeat the following on the given graph X until MIDS constructed has only one
node or there are only disconnected components.
(a) Using the 4-node structuring element in Fig.19(b) at each node y, compute

ε•By
(X×). Add the node y, if it satisfies the erosion property, to the dominating

set Y •. Calculate the residual graph ψBy (X). Repeat this step until there are
no nodes that are part of the eroded set using this structuring element.

(b) Repeat Step 1a using the structuring elements of Fig. 19(c) and 19(d) on the
residual graph obtained at the end of step 1a. Note that these two structuring
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Fig. 15. Example Image [15] used to illus-
trate construction of a skeleton using ulti-
mate erosion with structuring elements. The
skeleton nodes are in black.

Fig. 16. Skeleton of the image with the
MIDS nodes (in black) representing the
skeleton of the image

Fig. 17. Skeleton of the image with the
opt.approx. MDS nodes (in black) represent-
ing the skeleton of the image

elements are applied in parallel to the residual graph of step 1a and not in se-
quence. Any isolated nodes left at the end of applying each structuring element
are also added to the dominating set.

(c) We, now, construct the overlay graph, X , of the dominating nodes. For this, we
add an edge eu,v between dominating nodes u and v, if they or their dominated
nodes are adjacent to each other along the grid.

An example image is given in Fig. 18(a). The dominating nodes of the graph repre-
senting this image, after the first iteration, are shown in the darker shade. The overlay
graph induced by the dominating nodes is shown in Fig. 18(b). The dominating set of
this graph is shown in a lighter shade. The overlay graph of the dominating nodes of
Fig.18(b) is shown in Fig.18(c). Finally, only the top node of the graph in Fig.18(c) is
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(a) (b) (c)

Fig. 18. An example of an image which re-
sults in a single cluster after three iterations
of clustering on overlays of dominating sets.
Iteration 1 is shown in (a), iteration 2 in (b)
and iteration 3 in (c).

(a)

(b)

(c)

(d)

Fig. 19. Hierarchical clustering of the image
shown in Fig. 13. We get two clusters shown
in different shades in (a). The 4-node SE is
shown in (b), the 2-node SEs are shown in (c)
and (d).

the dominating node and the clustering algorithm halts. As the MIDS at the last overlay
has only one node, it implies that the entire graph is a single cluster. Another example
is shown in Fig. 19 which shows the clusters formed for the image in Fig.13 using this
algorithm. In this case, there are two disjoint dominating nodes after four iterations
leading to two clusters in the given image. These are represented by different shades for
the two clusters. It may be seen that the MIDS clustering algorithm requires neither the
number of clusters nor seed points as input. It starts by operating on 1-hop nodes and
then proceeds to more and more distant nodes as it travels up the overlay graphs. In this
sense, it is analogous to the algorithms that use a distance threshold for clustering.

5 Conclusions and Future Work

In this paper, we extended the dilation and erosion operators defined on graphs in [11]
to use structuring elements. Using the ordered set of structuring elements, we have de-
signed algorithms to compute Minimum Dominating Set (MDS) and Minimum Inde-
pendent Dominating Set (MIDS). We find that the cardinality returned by our algorithms
is similar to the best heuristics in the literature. We applied the graph morphological op-
erators on various tasks in image analysis and showed that they provide a sufficiently
interesting alternative to the methods proposed in literature. In future, we plan to ex-
plore the use of dominating sets in other aspects of image analysis. We also wish to
define granulometries for more intuitive approaches to hierarchical clustering.
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Abstract. In binary tomography, the goal is to reconstruct binary im-
ages from a small set of their projections. However, especially when only
two projections are used, the task can be extremely underdetermined. In
this paper, we show how to reduce ambiguity by using the morphological
skeleton of the image as a priori. Three different variants of our method
based on Simulated Annealing are tested using artificial binary images,
and compared by reconstruction time and error.

Keywords: Binary tomography, Reconstruction, Morphological skele-
ton, Simulated annealing.

1 Introduction

Binary tomography [7] aims to reconstruct binary images from their projections.
In the most common applications of this field, e.g., electron tomography [1,2]
and non-destructive testing [3], usually just few projections of the object can
be measured, since the acquisition of the projection data can be expensive or
damage the object. Moreover, the physical limitations of the imaging devices
make it sometimes impossible to take projections from numerous angles. Owing
to the small number of projections the binary reconstruction can be extremely
ambiguous. A common way to reduce the number of solutions of the reconstruc-
tion task is to assume that certain geometrical properties (e.g., convexity and/or
connectedness) are satisfied.

In this paper we investigate a new kind of prior information, the skeleton
of the image to be reconstructed. Skeleton is a region-based shape descriptor
which represents the general form of binary objects [6]. One way of defining the
skeleton of a 2-dimensional continuous object is as the set of the centers of all
maximal inscribed (open) disks [5]. A disk is maximal inscribed if it is included
in an object, but it is not contained by any other inscribed disk. The skeleton of
a discrete binary image can be characterized via morphological operations [6],
where disks are approximated by successive dilations of the selected structuring
element that represents the unit disk. An interesting property of the morpho-
logical skeleton is that the original binary image can be exactly reconstructed
from the skeletal subsets. In this work, we deal with the reconstruction problem

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 263–273, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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in which the entire morphological skeleton (instead of the individual skeletal
subsets) and two projections of the original image are known.

In the reconstruction process the prior knowledge is often incorporated into
an energy function, thus the reconstruction task is equivalent to a function
minimization problem. There are various methods to solve that kind of prob-
lems [4,9,11]. In this paper, we show how to use Simulated Annealing (SA) for
the binary reconstruction problem using two projections and the morphological
skeleton. We show that, although theoretically the problem is non-unique, under
some circumstances an acceptable image quality can be achieved. We propose
three variants of a method to solve the above problem, based on parametric SA
reconstruction.

The paper is structured as follows. In Section 2 we introduce the binary recon-
struction problem, and show how to describe it as an energy minimization task.
The morphological skeleton as an additional information to the reconstruction
is presented in Section 3. In Section 4 we describe the problem of using skeletal
information in the reconstruction and introduce the proposed algorithms to solve
this task. In Section 5 we present experimental results and provide an explana-
tion of them. Finally, we summarize our work and mention some of its possible
extensions in Section 6.

2 The Two-Projection Binary Reconstruction Problem

In binary tomography the task is to reconstruct a two-dimensional binary image
from a set of projections. The image can be represented by a binary matrix, and
its horizontal and vertical projection can be defined as the vector of the row and
column sums, respectively, of the image matrix. The task is now to reconstruct
the binary image F from its horizontal and vertical projections, H(F ) and V(F ),
respectively. Throughout this paper – without loss of generality – we assume
square images of size n× n.

The first method to solve the above problem was published in [10]. In the same
work it was also showed that the solution is not always uniquely determined.
Furthermore, in practical applications noisy projection data also complicates
the reconstruction. A common way to overcome those problems is to transform
the original task to a function minimization problem

f(x) = ||Ax− b||22 + α · g(x) → min , (1)

where ||.||2 stands for the Euclidean norm, x is an n2×1 binary vector represent-
ing the unknown image in a vector form using row-by-row traversal;

b =
(
H(F ),V(F )

)T
is a 2n × 1 vector containing the projections and A is a

2n× n2 binary matrix, where aij = 1 if and only if the pixel xi is in relation
with the j-th projection ray, 0 otherwise. The function g(x) provides additional
information, such as shape, connectivity, perimeter, etc. The lower value it takes
the closer the reconstructed image to the expected one. It is multiplied by the
weighting parameter α > 0. In this paper we show how to use morphological
skeleton as additional information.



Reconstruction from Two Projections and Skeletal Information 265

3 Morphological Skeleton

The morphological skeleton S(F, Y ) of a discrete set of points F ⊂ Z
2 determined

by a structuring element Y ⊂ Z2 consists of the centers of all maximal inscribed
discrete disks of radius k (k = 0, 1, . . .) [6]. With this approach, the structuring
element Y is assumed to be the unit disk (i.e., a disk of radius 1) and the discrete
disk Y k of radius k is derived from Y by successive dilations:

Y k = (. . . (({O}⊕Y )⊕ Y )⊕ . . .)⊕︸ ︷︷ ︸
k-times

Y , (2)

where O and “⊕” denote origin and the fundamental morphological operation
called dilation [6], respectively.

The morphological skeleton S(F, Y ) is defined by

S(F, Y ) =

K⋃
k=0

Sk(F, Y ) =

K⋃
k=0

(F + Y k)− [(F + Y k+1)⊕ Y ] , (3)

where “+” denotes the erosion (i.e., a morphological operation that is dual to
dilation) [6], and K is the radius of the largest inscribed disk. In other words,

K = max{ k | F + Y k �= ∅ }. (4)

According to the formulation defined by Eq. 3, the morphological skeleton is the
union of the disjoint skeletal subsets, where Sk(F, Y ) contains the centers of all
maximal inscribed disks of radius k (k = 0, 1, . . . ,K). An interesting property
of the morphological skeleton is that a set F can be exactly reconstructed from
the skeletal subsets:

F =

K⋃
k=0

Sk(F, Y )⊕ Y k =
⋃

p∈S(F,Y )

p⊕ Y kp , (5)

where kp is a unique value for each p such that p ∈ Skp(F, Y ).
From now we assume that structuring element Y corresponds to the

4-neighbors of the origin:

Y = { (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0) } . (6)

Figure 1 shows an example of morphological skeleton by that Y .

4 Problem Setting and the Proposed Method

Let H ∈ Rn and V ∈ Rn be two vectors, and S ⊂ Z2 be a finite set of points. Our
task is to reconstruct an image F for which S(F, Y ) = S, and which (at least
approximately) satisfies H(F ) = H and V(F ) = V (see Fig. 2). Unfortunately,
the problem is underdetermined, as the following lemma states.
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(a) (b) (c)

Fig. 1. Example of morphological skeleton. Original image F (a), the enlarged version
of the considered structuring element Y (b), and the morphological skeleton S(F, Y )
(c).

(a) (b) (c)

Fig. 2. Examples of two kinds of reconstruction problems. If kp is known for each
p ∈ S(F, Y ), F is uniquely reconstructable by Eq. 5 (a), the considered problem is to
reconstruct F from S(F, Y ) and the two projections (b), image F to be reconstruced
(c).

Lemma 1. There may be some images with the same projections and morpho-
logical skeleton (i.e., the considered reconstruction problem is ambiguous).

Proof. An example is given in Fig. 3. ��

We know that for each point p ∈ S(F, Y ) there is a unique kp value such that
p ∈ Skp(F, Y ). Thus, the image F can be uniquely represented by a vector

K(S(F, Y )) = (kp1 , kp2 , . . . , kp|S(F,Y )|) ∈ Z|S(F,Y )|. Using the notions of Eq. 1 and
given a set of points S, our goal is to find a K∗(S) = (k∗p1

, k∗p2
, . . . , k∗p|S|) which

corresponds to the image F ∗ generated by Eq. 5, such that f(x∗) = ||Ax∗−b||22
is minimal. Here, x∗ is the column vector representing F ∗. Figure 4 shows an
example. Note that even if there is no F such that S = S(F, Y ) and the function
value of f is zero (e.g. in case of noisy data), it is still possible to give a solution,
whose projections are close to the required ones.

The following lemma gives an upper bound for each element of K(S(F, Y ))
of an arbitrary binary image F .
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Fig. 3. Two different images F1 and F2 having the same projections and morphological
skeleton, where S(F1, Y ) = S(F2, Y ) = {p, q, r, s}

(a) (b) (c)

Fig. 4. Example of the studied reconstruction problem. The skeleton S and the required
projections H and V (a), a possible solution F with H(F ) and V(F ) given by some
K(S) (b), the optimal solution F ∗ with H = H(F ∗) and V = V(F ∗) given by K∗(S)
(c). Projection elements that differ from the required ones are shown underlined.

Lemma 2. Let F be a binary image of size n×n and K(S(F, Y )) = (kp1 , kp2 , . . . ,
kp|S(F,Y )|) ∈ Z|S(F,Y )|. Then kpi ≤ n/2 for each i = 1, . . . , |S(F, Y )|.

Proof. From Eq. 4 we know that the maximum value of K(S(F, Y )) is
max{k | F + Y k �= ∅}. Since the size of the structuring element Y is 3 × 3,
it follows that F + Y n/2 = ∅. Thus, the possible maximum value in K(S(F, Y ))
is n/2. ��

Since the size of the image is known, the searching space is bounded by Lemma 2.
The following lemma defines a sharper upper bound.

Lemma 3. For any skeletal set of points S and for each p = (i, j) ∈ S with the
corresponding ki,j ∈ K(S)

ki,j ≤ min

{
i− 1, j − 1, n− i, n− j,

hi

2
,
vj
2

}
,
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where hi and vj is the corresponding horizontal and vertical projection value,
respectively.

Proof. It is trivial due to the size of the image and the size of Y ki,j . ��

Lemma 2 and Lemma 3 define a unique maximum value for each
kp ∈ K(S(F, Y )). Additionally, we can use the following theorem for further
reducing the searching space.

Theorem 1. Let S(F, Y ) be the morphological skeleton of F generated with the
structuring element Y defined by Eq. 6. Let p, q ∈ S(F, Y ), where ||p− q||2 ≤

√
2

(i.e., p and q are 8-adjacent to each other) and p ∈ Si(F ), q ∈ Sj(F ) defined by
Eq. 3. Then |i− j| ≤ 1.

Proof. Indirectly assume that |i − j| > 1, e.g., i ≥ j + 2. We know from Eq. 3
that q ∈ (F + Y j) but q /∈ (F + Y j+1). Similarly p ∈ (F + Y i). However, in that
case p ∈ (F +Y j+2). Since p and q are 8-adjacent to each other, this also means
that q ∈ (F + Y j+1), which is a contradiction. The case j ≥ i + 2 can be seen
analogously. ��

Informally, if two skeletal points, p and q are 8-adjacent, then |kp − kq| ≤ 1, if
the structuring element is Y mentioned before. This can significantly reduce the
searching space if the skeleton contains numerous pairs of 8-adjacent points.

There are numerous methods for solving Eq. 1. Since the function f is discrete
and has many local minima, we propose to use Simulated Annealing (SA) [8].
Perhaps the most important advantage of the SA over the competitive methods
is that it can guarantee a near optimal solution in a reasonable time. On the
other hand, one serious drawback of the method is that one has to fine-tune
many parameters to achieve an acceptable approximation of the global minimun
of f . See Alg. 1 for the pseudo-code for SA.

The energy function f is simply f(x) = ||Ax−b||22, where x is defined by F .
The goal is to find K∗(S) which describe an image x∗ where f(x∗) is minimal,
i.e., it has the lowest energy. We know that if f(x1) < f(x2), then the image F1

is better than F2 in the sense that its projections are closer to the required ones,
therefore function f(x) is a proper energy function. T (t) is the temperature
function or the cooling schedule, such that T (0) is positive, and T (t) → 0 as
t→∞.

We choose the following exponential function

T (t) = T0 ·
(
Ts

T0

)t/M

,

where t denotes time, so the temperature will decrease over time, T0 is the chosen
value for the starting temperature and Ts is a technical parameter controlling
the shape of the cooling schedule. We empirically established the starting tem-
perature T0 = 10 and the technical parameter Ts = 0.001. In each iteration
step the time t is increased by 1. The process terminates when reaching M the
maximal number of allowed iterations or zero energy.
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Algorithm 1. Simulated Annealing on the Introduced Problem

Input: projections H and V , set of skeletal points S and starting position K0(S)
Output: K(S)

K(S)← K0(S)
t← 0
repeat

K′(S)← MODIFY(K(S))
Calculate x′ and x from K′(S) and K(S), respectively

if f(x′) < f(x) or RAND < exp
(

f(x)−f(x′)
T (t)

)
then

K(S)← K′(S)
end if
t← t+ 1

until the termination criterion is satisfied

RAND is a floating point number taken in each iteration from a uniform
random distribution (0 ≤ RAND ≤ 1). With the function MODIFY we alter a
state to another one simply by choosing a kp ∈ K(S) randomly and updating its
value between the corresponding bounds. For the initial solution we choose the
kp-s such that the initial image satisfies Theorem 1 and its projections are close to
the required ones. We developed three different strategies for the reconstruction:

1. No Vase Constraint (NVC): In the SA modification step, we choose a kp
randomly, and change it randomly between its bounds, omitting Theorem 1.

2. Dynamic Vase Constraint (DVCC): We apply Theorem 1 in the following
way: in each step, we modify a randomly chosen kp by defining its new value
such that |kp − kq| ≤ C holds for each q 8-adjacent to p. If C = 1, we
allow only those differences that mentioned in Theorem 1. Because it also
means slow convergence during iterations, we allow higher C values in the
beginning of the reconstruction, and decrease C through time. For that we
use a function C(t), which is similar to the cooling schedule:

C(t) =

⌈
C0 ·

(
Cs

C0

)t/M
⌉
,

where -.. denotes the ceil function, C0 is the starting parameter, so C(0) =
C0, Cs is a technical parameter established to 0.15 explicitly. Note that
C(t) → 1 as t → M , so we force SA to search a solution that satisfies
Theorem 1 as much as possible.

3. Combined Energy Function (CEFα): We incorporate the constraints of The-
orem 1 by using an extended energy function:

f(x) = α||Ax − b||22 + (1− α)g(x),

where α is a weighting parameter (0 ≤ α ≤ 1),

g(x) =
∑

||p−q||2≤
√
2

h(kp, kq)
(
p, q ∈ S, kp, kq ∈ K(S)

)
,
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and

h(kp, kq) =

{
0 if |kp − kq| ≤ 1

|kp − kq|/2 otherwise.

Note that if a solution F satisfies Theorem 1, then g(x) = 0. In case of
α = 1, this method is equivalent to the No Vase Constraint method (i.e.
CEF1 = NVC).

5 Results

5.1 Implementation Details

For testing our proposed methods we developed a general reconstruction frame-
work. For initialization, one has to specify the initial temperature T0, the techni-
cal parameter Ts, the maximal number of allowed iterations and the initialization
method. Some of the solving methods could have additional parameters, such
as α or C0. Certain parameters were fixed, since they are not really relevant
to the efficiency of the methods, such as Cs or the structuring element Y . We
also fixed the cooling schedule, which is empirically established. The test was
running under Windows 7 on an Intel Core 2 Duo T2520 of 1.5 GHz PC with
2GB of RAM.

5.2 Experimental Results

We tested our algorithm on many images, in this paper we show eight samples
of them. Six of our test samples have one point thin morphological skeleton
consisting of few 8-connected components. However, we also show two other
images which have more complex skeletons. All of the test images have the size
of 256× 256.

Since SA is a randomized algorithm, we performed each test 5 times and
measured the mean CPU time and errors of the reconstruction. For the numerical
evaluation of the quality of the reconstructed images, we calculated

E = ||b− b′||2 ,

where b and b′ are the projection vectors of the original and the reconstructed
image, respectively For all tests, we set T0 = 10, Ts = 0.001 and M = 50 000.

First, we tested the images containing just one convex object (see the first row
of Table 1). An example for the reconstruction is shown in Fig. 5. We found that
the results were mostly smooth enough, and 50 000 iterations were more than
enough to converge to such a reconstructed image. All three methods provided
good results, and DVC turned out to be the best choice. In one case, with certain
parameters we could even perfectly reconstruct the original image in all 5 runs,
using only 21 220 iterations on average.

In the second turn we studied the images of convex objects arranged in a 2 × 2
and a 3 × 3 array (second row of Table 1). We observed that the initial state mis-
leaded the DVC algorithm in one of the images. The main reason is that the initial
image is very dissimilar to the original one, and DVC converges very slowly.
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Table 1. Reconstruction results. CPU values are in milliseconds and E values are
rounded to integers. Best results are highlighted.

Image Method CPU E Image Method CPU E
NVC 3842 1060 NVC 7276 1285
DVC10 4030 98 DVC10 7900 174
DVC5 4116 97 DVC5 8127 146
DVC1 4563 18 DVC1 4473 0
CEF0.3 4358 2468 CEF0.3 7626 2578
CEF0.5 4415 1675 CEF0.5 7665 1849
CEF0.7 4435 1305 CEF0.7 7691 1505
NVC 3784 3405 NVC 4346 6136
DVC10 3038 1291 DVC10 4733 1066145
DVC5 3164 4288 DVC5 4609 1722350
DVC1 3566 5307 DVC1 4926 3302481
CEF0.3 5412 5665 CEF0.3 7308 14371
CEF0.5 5387 4829 CEF0.5 7243 8896
CEF0.7 5328 3212 CEF0.7 7222 7402
NVC 1666 1341 NVC 2165 2709
DVC10 1215 292 DVC10 1713 6042
DVC5 1234 314 DVC5 1724 7962
DVC1 1302 294 DVC1 1910 6360
CEF0.3 2904 2534 CEF0.3 4123 5688
CEF0.5 2827 1950 CEF0.5 4131 4178
CEF0.7 2851 1732 CEF0.7 4114 3346
NVC 3537 2530 NVC 2757 4034
DVC10 2852 9154 DVC10 2304 4523
DVC5 2981 13138 DVC5 2467 7472
DVC1 3226 67493 DVC1 2430 13096
CEF0.3 6380 5183 CEF0.3 8884 6663
CEF0.5 6367 4102 CEF0.5 8856 5012
CEF0.7 6343 3029 CEF0.7 8959 4407

(a) (b) (c)

Fig. 5. A test image (a), its morphological skeleton (b), one of the reconstructed images
with CEF0.5 (c)
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The third group of test data contained images consisting of convex objects
forming random groups (third row of Table 1). For the first image, the results
are similar to the first group’s results, even if there are more skeletal points
now which yields a bigger searching space. However, for the second image NVC
produced the best results.

Finally, we examined some images that have many skeletal points with few
connections (fourth row of Table 1). An example reconstruction result can be
seen in Fig. 6. One of the reasons for the poor results could be the skeleton,
which contains many isolated pixels. It makes the method slow and ambiguous
due to the large searching space. Here, NVC proved to be the best choice, since
it does not use Theorem 1, yielding the most robust approach of all. Although
even this method could reach just a rough approximation of the original object,
the result is quite promising – regarding that just two projections were used.

(a) (b) (c)

Fig. 6. A test image (a), its morphological skeleton that contains numerous isolated
pixels (b), and one of the reconstructed images with NVC (c)

6 Conclusions and Further Work

We proposed three variants of a method based on Simulated Annealing to re-
construct binary images from their horizontal and vertical projections and their
morphological skeleton. Without assuming 8-connected morphological skeletons,
a rough reconstruction is always possible in a short time and a small number
of iterations. With additional restrictions the result will be smoother, however,
the convergency of the method becomes slower. The No Vase Constraint method
provides overall satisfactory results, however, the Dynamic Vase Constraint cre-
ates smoother results in most cases, but needs more iterations to converge. The
Combined Energy Function method is just slightly worse than the first method,
but much slower. Beside that, in all the three considered methods we found that
the result is much more dependent on the number of the skeletal points, rather
than on the size of the image.

This paper is just an introduction of a novel approach and there are many
open questions in the field. Since SA is rather sensitive to the initial state, in a
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further work, we want to apply further strategies for choosing a starting image,
e.g., by using Ryser’s algorithm to obtain an initial solution. Beside that, we try
to find a more sophisticated function minimizer, or redefine our energy function
in a way that it could be managed with deterministic mathematical tools –
however, this seems to be a hard task. We assume that the problem is NP-hard.
We also plan to examine the efficiency of the methods using more projections
and other prior information, such as smoothness on the boundary. Finally, we
also intend to study the robustness of the reconstruction when the projections
are corrupted by noise.
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303–331. Birkhäuser, Basel (2007)
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Abstract. In this paper binary tomography on the triangular grid is
addressed. We use three and six natural projections according to the
structure of the grid. We propose an energy-minimization method based
on the simulated annealing algorithm to reconstruct the original images.
Our method is shown in four regular hexagon shaped test images of
approximately 4000 pixels.
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1 Introduction

Tomography deals with recovering images from a number of projections. From
the mathematical point of view, the object corresponds to a function and the
problem posed is to reconstruct this function from its integrals or sums over
subsets of its domain. In general, the tomographic reconstruction problem may
be continuous or discrete. In Discrete Tomography (DT) [9,10] the range of the
function is a finite set, in practice, DT often deals with reconstructions of digital
images that consist of only few number of gray levels. In addition to other, DT
has a wide range of application in medical imaging [6], for example within Com-
puter Tomography (CT), Positron Emission Tomography (PET) and Electron
Tomography (ET). A special case of DT, which is called Binary Tomography
(BT), deals with the problem of the reconstruction of a binary image.

In digital geometry and in digital image processing the digital plane/space is
addressed with integer coordinates. By the widespread use of the Cartesian coor-
dinate system usually the square (rectangular) and the cubic grid is used in two
and three dimensions, respectively. However there are some important theoreti-
cal results that show the legacy of other regular grids. In the plane the hexagonal
and the triangular grids are valid candidates of image processing methods. The
hexagonal grid (hexagonal pixels) has some advantages, it is very simple; it has
only one widely used neighborhood criterion. It is connected to the most densest
packing of same size circles of the plane. The hexagonal grid can be described by
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three coordinates using its symmetry. The pixels are addressed with zero-sum
triplets [8]. The triangular gird has a similar symmetry (rotations by 2π/3 moves
the grid to itself) therefore three coordinate axes seem to be appropriate in its
description (see, e.g., [18]).

BT has a wide literature on the square grid using two [4,3] three [23,24] four
[2]or even more directions of projection (see e.g. [21]). The projection on two
directions (i.e., by rows and columns) is the most basic problem, the extension
to four direction (using diagonal directions) is also frequently used. In hexagonal
grid there are three natural directions of projection [15]. On the triangular grid,
the grid allows to use three basic directions [17] that can be extended to six
directions by the geometry of the grid. Based on this fact in this paper we use
three and six directions of projections.

Tomography is not an easy task. Actually, for two projections the reconstruc-
tion problem of discrete tomography is usually undetermined, while for more
than two projection directions, the problem is NP-hard (see [7]) therefore vari-
ous stochastic methods, e.g., genetic algorithms, brunch and bound, simulated
annealing [19] can effectively be used ([1,4,17,22]) to compute acceptable solu-
tions in reasonable time.

The structure of the paper is as follows. In the next section we recall the
description of the triangular grid in a brief form. After this, we formalize the BT

Fig. 1. Coordinate system for the triangular grid with a lane (y = 2) and a projection
direction parallel to axis y
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problem. In Section 3 we present our energy-minimization based method, while
in Section 4 some experimental results are shown. Concluding remarks are given
in Section 5.

2 The Triangular Grid

We use a symmetric coordinate system for the triangular grid addressing every
pixel by a coordinate-triplet. The three coordinate axes have angles 2π/3, the
coordinate values are not independent from each other, since we are in the two
dimensional plane: the sum of the coordinate values is 0 or 1 for each pixels.
The pixels with zero-sum are called even pixels, they have � shape, while the
triangle pixels having coordinate values with one-sum are odd and their shape is
∇. A so-called lane is obtained by fixing a coordinate value (see Fig. 1, red color
represents the lane with y = 2). Every lane consists of even and odd triangle
pixels alternately.

In this paper we use three projections to orthogonal to the coordinate axes.
In this way the sum of the 1’s by lanes are counted. Using six projections, we
use directions also parallel to the coordinate axes. The pixels counted in such
a projection that sums the value (i.e. 1’s) of the set containing points that
fulfill the equation that two of the coordinate values have a fixed difference, e.g.,
{(p(1), p(2), p(3))|p(1)− p(3) = 1} (yellow color on Fig. 1).

We use images of regular hexagonal shape. A hexagon with size l contains
n = 6l2 triangles (for example, in Fig. 1 l is equal to 3).

3 Proposed Reconstruction Method

We consider a BT image reconstruction problem where the imaging process is
represented by the following linear system of equations

Ax = b, A ∈ Rm×n, x ∈ {0, 1}n, b ∈ Rm.

The matrix A is a so called projection matrix, whose each row corresponds to one
projection ray, the corresponding components of vector b contain the detected
m projection values, while binary-vector x represents the unknown image to be
reconstructed. Each row entries ai,· of A represent the length of the intersection
of the pixel and the projection ray passing through it. The projection value
measured by a projection ray is calculated as a sum of products of the pixel’s
intensity and the corresponding length of the projection ray through that pixel.
Projections are taken from different directions. Due to the symmetry and the
distinguished directions of the triangular grid, as we already mentioned, three
and six projection directions are used in this paper.

We reformulate the BT problem into an energy-minimization problem given
by

min
x∈{0,1}n

E(x), (1)
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where the energy/objective function is defined by

E(x) =
1

2

⎛⎝‖Ax− b‖2 + λ
∑
i

∑
j∈Υ (i)

(xi − xj)
2

⎞⎠ . (2)

The first term in (2) is called as data fitting term and measures the accordance
of a solution with a projection data. The second term is the so called smooth
regularization term and its rule is to enforce the coherency of the solution. Its ap-
plication is based on the the prior knowledge that the original image is composed
from compact regions of pixels with homogeneous intensities. By Υ (i) we denote
the set of indices of 3-neighborhood pixels of xi, defined by the following way:
if xi is an even pixel (� shape), then the Υ (i) contains indices of neighborhood
pixels in directions parallel to x− and y coordinate axes; in other case, when xi

is an odd pixel (∇ shape), the Υ (i) contains indices of neighborhood pixels in
direction parallel to z− axis. The parameter λ > 0 is the balancing parameter
between data fitting and smoothing terms. For the minimization task in (1) we
adapt the Simulated Annealing (SA) algorithm.

Algorithm 1. SA Algorithm

Parameters supplied by the user:
Tstart > 0 {start temperature},
Tmin > 0 {minimum temperature},
Tfactor ∈ (0, 1) {multiplicative factor for reducing the temperature},
NoChgLimit ∈ N {number of required successively reduced temperature levels

without accepted change attempts}.
Initial settings:
x = [0, 0, . . . , 0]T , T = Tstart,
NoChg = 0, Ecurrent = E(x).
while (T ≥ Tmin) ∧ (NoChg <= NoChgLimit)

for i = 1 to sizeof(x),
choose a random position j in the vector x;
x̃ = x; x̃j = 1− xj ;
Eattempt = E(x̃);
ΔE = Eattempt − Ecurrent;
z = rand (U(0, 1));
if (ΔE < 0) ∨ (Exp(−ΔE/T ) > z), then
x = x̃; {accept change}
Ecurrent = Eattempt;
NoChg = 0;

end if
end for
T = T ∗ Tfactor;
NoChg = NoChg + 1;

end while.
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Star Phantom1.

Phantom2 Phantom3

Fig. 2. Original images used in experiments. All images has the same size of 26 by 26
by 26 (regular hexagons), i.e. 4056 pixels/triangles.

Simulated annealing (SA) is a stochastic optimization algorithm based on
the simulation of physical process of slow cooling of the material in a heat
bath. Based on the ideas from a paper published by Metropolis et al.(1953)
[16] the SA optimization algorithm is introduced by Kirkpatrick et. al.(1983)
[11]. The SA algorithm starts from an arbitrary high initial temperature (con-
trol parameter) and initial solution with initial energy. The initial solution
is perturbed by a small random move to a neighboring solution and the re-
sulting change in energy, ΔE is computed. If ΔE is negative the new solu-
tion is accepted. In a case when ΔE is positive (worse attempt), the new
solution is accepted with the probability given by the Bolzmann probability
factor [12]:
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e−ΔE/T .

This process is repeated sufficiently many times until the equilibrium state
is achieved at the current temperature, T . The criterium for equilibrium state
is often interpreted as a sufficiently large number of iterations taken. The
temperature is then reduced and the algorithm is run on a lower tempera-
ture value. The reduced temperature value decreases the probability of the
worse attempts acceptance. The entire process is repeated until the frozen
state, that is, the stopping criterium is reached, which is often determined
by the final temperature. The final temperature is commonly zero or close to
zero.

3 projections 6 projections

PE=17 PE=0

Fig. 3. First row: reconstructions of Star test image from 3 and 6 projections. Second
row: difference images of reconstructions and the original image. PE denotes the number
of wrongly reconstructed pixels.
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Our interpretation of the SA algorithm for solving the minimization problem
(1) is described in Algorithm 1. We note, that applications of the SA algorithm
in similar problems [13,14,22] show its good performance. This gave us motiva-
tion to the application of SA for the minimization problem considered in this
paper.

4 Experimental Results

In this paper we use test binary images of size 26 by 26 by 26 (regular hexagons).
An image of this size has 4056 pixels, and therefore the size of such an image is
very close to the size of a 64 by 64 square image in terms of the used pixels. The
original test images are presented in Fig. 2.

3 projections 6 projections

PE=277 PE=2

Fig. 4. Reconstruction analysis of Phantom1 test image. The layout is thee same as
in Fig. 3.
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For SA algorithm we use the following parameter settings: Tstart = 4, Tmin =
0.001, Tfactor = 0.97 and NoChgLimit = 10. The algorithm were performed
without restarting. The parameter λ in energy function (2) is empirically derived
and set as 5.

3 projections 6 projections

PE=657 PE=4

Fig. 5. Reconstruction analysis of Phantom2 test image. The layout is thee same as
in Fig. 3.

Reconstructions, obtained by the proposed method, are presented in Figs. 3,
4, 5 and 6. We note here that using only three projections there are various
‘switching components’ [17]. Due to them the reconstruction of a larger image
almost always differ from the original projected image even if the projection
values has no error. In our experiments the most complex test images, Phan-
tom2 and Phantom3, have unacceptable bad reconstructions, see Figs. 5 and
6. However, reconstructions from 6 projection directions provide always quality
reconstructions.
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3 projections 6 projections

PE=1058 PE=82

Fig. 6. Reconstruction analysis of Phantom3 test image. The layout is thee same as
in Fig. 3.

5 Conclusions

We have successfully developed an energy-minimization method based on the
SA optimization algorithm for binary tomography reconstruction problem on
triangular grid. We analyzed reconstructions from 3 and 6 projection direc-
tions. Experimental result on four phantom images confirm a capability of the
proposed method for providing quality reconstructions. Reconstructions from 3
projections, using lane directions, do not provide always accurate results, but,
depending on the goals and the complexity of the original, can satisfy specific
requirements. It is obvious that data from 3 projection can not provide enough
information for fully reconstruction. Our other conclusion, based on the obtained
experimental results, is that the used 6 projection directions provides perfect or
reconstructions with very small number of wrong pixel positioning.
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6 Future Work

The energy function (2) of the proposed method is differentiable and convex.
This can be a motivation for further work, where the nondeterministic Simu-
lated Annealing algorithm can be replaced with a much faster, deterministic
and gradient based minimization method. As possible approaches for this pur-
pose we mention the convex-concave regularization [20] and spectral gradient
based algorithms [5,13,14].
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2004. LNCS, vol. 3322, pp. 38–51. Springer, Heidelberg (2004)



Skin Lesion Feature Vector Space with a Metric

to Model Geometric Structures of Malignancy
for Classification

Mutlu Mete1, Ye-Lin Ou2, and Nikolay Metodiev Sirakov1,2

1 Texas A&M University Commerce, Computer Science
{Mutlu.Mete,Nikolay.Sirakov}@tamuc.edu

2 Texas A&M University Commerce, Department of Mathematics
Yelin.Ou@tamuc.edu

Abstract. This paper develops an approach aiming to identify a pat-
tern defined by malignant dermoscopic skin lesions presented as lesion
feature vectors (LFVs) in a 4D Riemannian manifold. The manifold con-
sists of all 4-tuples and its metric is defined on the basis of the To-
tal Dermoscopy Score (TDS) formula used in the ABCD diagnosis rule.
Tools in Riemannian geometry including distance functions, directional
angles, polar, cylindrical and spherical coordinates are used to study the
geometric structures of a sample space defined by malignant 4D LFVs.
To explore the geometric structures and the distribution pattern of the
malignant LFVs, we find methods to visualize the objects in a 4D man-
ifold by projecting them onto a 2D or 3D space via polar, generalized
cylindrical and spherical coordinates. To observe malignancy identifica-
tion structures in the newly constructed manifold a data-set of 70 lesion
images with a ground truth were used to generate LFVs. To build a sur-
face separating the benign and malignant LFVs a linear TDS-based and
a non-linear support vector machine (SVM) classifiers were applied. The
SVM is build with a polynomial kernel, whose degree and parameters
were suggested by a geometric structure observed in a 3D space. A sta-
tistical comparison, on the base of experimental results, showed that the
polynomial SVM has a better f-measure accuracy than the linear TDS
based one.

Keywords: Skin lesion classification, Riemannian manifold, Support
vector machines (SVM).

1 Introduction

The skin disease melanoma is one of the most common malignancies in the
United States [1]. The problem of diagnosing skin lesion malignancy is that the
entire present process heavily depends on the investigator. Currently the ABCD
(Asymmetry, Boundary, Colors number, Dermoscopy structures) rule [2,8] is
used in majority of the dermoscopic clinical practices, in which components of the
rule are connected with a linear function, called total dermoscopy score (TDS).

R.P. Barneva et al. (Eds.): IWCIA 2012, LNCS 7655, pp. 285–297, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



286 M. Mete, Y.-L. Ou, and N.M. Sirakov

In practice the TDS components are found by naked-eye investigation, which is
time-consuming, operator dependent, and error-prone. In this sense, automatic,
intelligent, and unbiased extraction and measurement of the components of the
ABCD rule will greatly improve their assessments and help generate feature
vectors for classification of benign and malignant lesions.

This paper is a natural continuation of a sequence of works presented in
[4,5,11,12]. In [12] a shrinking active contour model (S-ACES) is designed. In
[4,5,11] the model is applied to extract the ABCD rule [2] related features: lesion
boundary; abrupt boundary; boundary of color regions; number of colors in a
lesion. The boundary is used in [11] for lesion asymmetry calculation, in [5] for
abrupt boundary definition and color regions asymmetry calculation. In [11] a
2D LFV space is generated while [5] extends the vectors to 4D. The study in [4]
proved that the active contour presented in [12] possesses the necessary accuracy
to extract lesion’s boundaries.

The present work develops an approach that 1) views the 4D LFVs generated
in [5,11] as points in a 4D Riemannian manifold [7,9]; 2) uses the generalized
cylindrical and spherical coordinates to project 4D LFVs onto a 3D space for
a purpose of visualization; 3) applies SVM and selects its kernel using knowl-
edge derived from the 3D space to separate the geometric structures formed by
malignant and benign vectors.

This paper is organized as follows. An overview of the lesion feature extrac-
tion and measurement approaches are given in Section 2. The 4D Riemannian
manifold that we constructed, the basics of its geometry, as well as 2D and 3D
visualizations are given in Section 3. Experimental dataset and results of exper-
iments are presented in Section 4. Finally, Section 5 concludes this study and
sheds a light on future directions.

2 Lesion Features Extraction

The first step of our framework is to extract, from images, the ABCD [8] related
lesion features used to generate the LFVs. The skin lesion features subjects
of extraction are: lesion boundary; lesion colored regions; number of colored
regions; and boundary used to calculate abrupt lesion endings. To extract the
above features the shrinking active contour model S-ACES [12] is applied.

Note that for the accuracy of skin lesion delineation, colored regions and
abrupt boundary extraction are important requirements for the proper LFVs
generation. To prove the S-ACES model is up to the job its accuracy has been
investigated in [4] and a set of experiments has been performed in [4,11]. The
boundaries of 51 skin lesions were extracted from images and the statistical
properties recall, precision, accuracy and border error have been measured and
compared to a ground truth.

The evolution equation of S-ACES is formulated with the following parametric
vector function [12]:

r(s, t) = eas−4a2t(C1cos(c.a.s), C2sin(c.a.s)) (1)
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In Eq. 1, s is a space parameter that describes a particular curve, t is time
parameter, which describes a family of curves for t ∈ [0,∞) , a = |ds|/2, C1, C2,
and c are real constants such that r : R2 → R2. The ds denotes the rate of
change of s.

The initial curve circumscribe the entire image by using the following initial
conditions (IC) [5,11,12]:

a2t = 0.001, c = 1000, R = C1 = C2 =
√
(nc)2 + (nr)2 (2)

where, nc denotes the number of columns in the image, nr the number of rows.
One may tell that Eq. 1 describes a circle with a radius R → 0 if a2t → ∞. In
practice R becomes a point (pixel) if a2t = 2.5.

In order to extract lesion’s boundary and boundary used to measure abrupt
lesion endings the following boundary conditions (BC) is applied [5]:

r(s, t) = r(s, t+ ∂t) if
∂f

∂t
(r(s, t)) > ε, for 2.5 > ta2 > 0.001 (3)

To define color regions and extract their boundaries, the following BC is applied
along with evolution Eq. 1 and IC 2:

r(s, t) = r(s, t+ dt) if f(r(s, t+ dt)) ∈ [ε1, ε2]
r(s, t) �= (s, t+ dt) otherwise.

(4)

The values of ε1 and ε2 represent image intensities and are selected by the user
on the base of the image database under consideration, whereas f(x, y) is the
image function. For more details about the values selected for ε1, ε2 and ε please
see [5]. Also, BCs and (3) and (4) will detect the boundaries in a noiseless images.
An improvement of the boundary conditions that lets the active contour pass
through noise, which area may be inscribed in a rectangle with nxk pixels, is
developed in [5].

Fig. 1. Upper left to down right: image of malignant lesion; masks of light brown, blue
gray, dark brown, black, and red colors. Their boundaries were extracted by S-ACES.

In [11] the extracted lesion boundaries were used to measure the lesion’s asym-
metry and calculate the lesion’s area. Thus a set of 2D LFVs was generated in
this paper. Further BC (3) was applied in [5] along with an area based approach
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to calculate the lesions abrupt endings, and a noise surpassing version of BC (4)
to extract the boundaries of color regions.

Thus, our approach automatically extracts and measures the components of
4D LFVs X i = (Ai

B , A
i
C , B

i, Ci), where AB denotes boundary asymmetry, AC

colors asymmetry, B abrupt boundary, and C the number of colors in a lesion,
respectively. For example, the LFV for the lesion in Fig. 1 is (0, 0.3, 5, 5). The
totality of these LFVs Sn = {X i|i = 1, 2, ..., n} is our sample space, where n is
the numbers of images in our experiments.

In this paper we present the sample space Sn as a subspace of a 4D Riemannian
manifold and study the geometric structures and distribution pattern of the sets
defined by malignant and benign LFVs.

2.1 Asymmetry

Using the extracted lesion boundary and color regions boundary we calculate
asymmetry of each lesion and the asymmetry of its color regions (AB, AC). For
this purpose we used an axial asymmetry measure developed in [6] and modified
in [5,11]. The asymmetry approach starts with finding major and minor axes,
vertical and horizontal dash lines, of the lesion boundary [6] shown in Fig. 2.

Note that in the clinical practice a dermatologist manually determines the
major and minor axes of the lesion [8]. In the present study we use the boundary
points and calculate all distances defined by them in time O(n2), where n is the
number of boundary points extracted by S-ACES. Further the maximum and
minimum distances are found as major and minor axes, again in time O(n2).
In the light of the ABCD instructions, we calculate asymmetry with respect to
both axes and select the minimum value.

Fig. 2. Lesion boundary Sa (blue, dark in grayscale ) extracted by S-ACES with BC
3 and the union of color regions Sb (red, light in grayscale)

In order to quantify asymmetry [5,11] with respect to an axis, the area of
the lesion mask, R, is flipped around this axis to find overlapping areas of the
regions, called true-symmetry and denoted by (Ts); and to find the area of the
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non-overlapping regions, called false-symmetry and denoted by Fs. We calculate
asymmetry by Fs/R for the major and minor axes and use a threshold to as-
sign 1, for each axis, if symmetry value is above the threshold and 0 otherwise.
Thus asymmetry is determined for the whole lesion to find AB which takes val-
ues either 0 or 1 or 2. The criterion that applies for this feature is the larger
asymmetry, the higher likelihood for melanoma.

Analogously asymmetricity of each color region is calculated. The LFV com-
ponent AC is determined as the mean of the asymmetricity of all color regions.
For more detailed calculation of the components AB and AC please see [5].
Applying the approach, described above, on the boundaries extracted from the
image shown in Fig. 1 we found that AB = 0 and AC = 0.3.

2.2 Abrupt Edges

In regard to component B, from the LFV, we developed a technique to model the
necked eye abrupt lesion edges assessment, performed by dermatologists (ABDC
[8]). Thus a lesion is divided into eight sectors using axial segments as shown in
Fig. 2. In each segment, the method looks for a sharp, abrupt ending of lesion
at the periphery. The quantification of this feature is binary-wise and is given
in details in [5]. If an abrupt edge is detected, this sector contributes a score of
one, otherwise zero. Therefore, the maximum abrupt border score is eight, and
the minimum score is zero.

The lesion boundary is extracted by S-ACES using BC (3) (Fig. 2 - blue
(dark) line). The area bounded by this line is denoted by Sa. The area enclosed
by the red (light) line is denoted by Sb and determined as the union of the color
regions extracted by S-ACES with BC (4) .

Further, for each segment we test if 1 − τ ≤ Sa/Sb ≤ 1 + τ holds [5], where
τ is an empirically found threshold. If this test holds for a section, we add one
point to the total abruption score.

As stated in ABCD rule, total border score in nevi is very low and in
melanomas is between three and eight. Based on this calculation, for instance,
the value of abrupt boundary is five for the lesion in Fig. 2.

2.3 Number of Colors

Since the presence of many colors in a lesion increases the likelihood of melanoma,
the last component C of the LFVs regards number of colors seen in a lesion. As
indicated by ABCD rule, major colors of the lesion are white, red, light-brown,
dark-brown, blue-gray, and black. White color in the lesion should be considered
significant if the area is lighter than the neighboring skin. If all six colors are
found the maximum color score would be six. The minimum score is one. The
lesion colors are extracted by S-ACES using evolution Eq. 1, IC (2), and BC
(4), where the thresholds ε1 and ε2 are selected by an expert as shown in [5].
Melanomas are usually characterized by presence of three or more colors. Five
colors were extracted from the lesion shown in Fig. 2.
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3 The 4D Manifold and Its Metric

The main idea of this study is to view the LFVs sample space Sn as a subspace
of the Riemannian manifold (R4, g), so that we can use the notion of distance
and other tools of Riemannian geometry to study the geometric structures of
the subsets defined by malignant and benign points in Sn.

We start with the weighted Euclidean metric g(X,Y ) = 1.3X1Y1+1.3X2Y2+
0.1X3Y3 + 0.5X4Y4, where the choice of the weights is suggested by the TDS
formula in the ABCD diagnosis rule [8].

3.1 The Geometry of (R4, g)

We define the norm of X = (X1, X2, X3, X4) by the expression

|X | = (g(X,X))
1
2 = [1.3X2

1 + 1.3X2
2 + 0.1X2

3 + 0.5X2
4 ]

1
2 , (5)

which gives the distance of the terminal point of the vector X to the origin. The
angle between two vectors X = (X1, X2, X3, X4) and Y = (Y1, Y2, Y3, Y4) in the
4D Manifold is defined by

θ = cos−1 g(X,Y )

|X ||Y | (6)

Thus, the directional angle of a vector X = (X1, X2, X3, X4) is computed by

θi = cos−1 g(X, ei)

|X | , i = 1, 2, 3, 4, (7)

where e1 = 1√
1.3

(1, 0, 0, 0), e2 = 1√
1.3

(0, 1, 0, 0), e3 = 1√
0.1

(0, 0, 1, 0), e4 =
1√
0.5

(0, 0, 0, 1) form an orthonormal basis of the Riemannian manifold (R4, g).

3.2 Visualization of LVFs in 2D and 3D Spaces

In our efforts to visualize the distribution of malignant and benign lesions in 4D
Riemannian manifold we compute the distance function ρ(X) = |X | of LFVs
and obtain the graph of the distance function as shown in Fig. 3.

Note that most malignant LFVs lie in the interval [3.5, 3.7] ∪ [4.2, 4.7]. This
image result shows that the distance function is not discriminative condition be-
cause many benign vectors appear in the same intervals as given above. There-
fore, the development of another tool will be an effort to geometrically distinguish
between malignant and benign vectors.

A point X in xy-plane can be located by its Cartesian coordinates X = (x, y)
or its polar coordinates X = (ρ, θ). The relation between the Cartesian and the
polar coordinates are given by:
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Fig. 3. Plot of the distance functions of the LFVs, |X|

x = ρcosθ, ρ =
√
x2 + y2

y = ρsinθ, θ = tan−1( yx )
(8)

Further, we use the mean

θm =
(θ1 + θ2 + θ3 + θ4)

4
(9)

of the four directional angles of a LFV X = (AB , AC , B, C), as its polar angle.
Further we apply the distance ρ(X) = |X | of X , defined by Eq. 5, to the origin
in order to plot the graph of the LFVs in a generalized polar coordinate system
(ρ, θm). Here, the polar coordinates of a point X = (X1, X2, X3, X4) are given
by X = (x, y) = (|X |cos(θm), |X |sin(θm)), and we obtained Fig. 4.

Although many malignant points are already evident in the upper right part of
Fig. 4, benign points are present there as well. To better identify malignant LFVs,
we map them to a 3D space by using the generalized cylindrical coordinatesX →
(ρ(X)cos(θm), ρ(X)sin(θm), θσ(X)), where θσ(X) =

[
1
4

∑4
i=1(θm(X)− θi(X))2

]
is the variance of the directional angles. One advantage of this generalized cylin-
drical coordinates representation is that it allows us to plot points of a 4D space
in a 3D space as seen in Fig. 5. One may observe that most of the malignant LFVs
are close to the plane defined by the points (3, 0, 0) (0, 2.5, 0) and (0, 0, 0.2).
The region where the malignant points are located, around the plane, is defined
by the intervals x ∈ [3.5, 5], y ∈ [1.3, 2.5] and z ∈ [0.1, 0.25]. This parallel piped
region contains more and better separated malignant points but still benign are
presented there. Except that the malignant points are located around a plane, no
geometric structure is observed so far.

Thus we represent the LFVs in a spherical coordinate system

X → (ρ(X)sinθmcosθσ, ρ(X)sinθmsinθσ, ρ(X)cosθm). (10)
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in order to find a geometric structure or pattern defined by malignant and/or
benign vectors in the 3D space. This may prove helpful in predicting the geo-
metric structures in the 4D manifold. The shape of this structure may be used
to suggest a SVM kernel to be applied for the purpose of vectors separation to
malignant and benign.

For example, as we mention above, using polar coordinates in 2D, we observed
that all LFVs are located around a line. In 3D generalized cylindrical coordinates,
we observed that the vectors are located around a plane. Further, a mapping of
the same vectors in the 3D spherical coordinate system still kept them around a
plane, where no geometric structure was formed yet. But a presentation on the
unit sphere showed a quasi-polynomial curve on the sphere (see Fig. 6 (right)).
Thus we observe that the curve defined by red (light gray) points have three
picks, which may suggest that a fourth degree polynomial may be used as a
kernel of a SVM to separate the malignant vectors from the benign ones on the
unit sphere.

Fig. 4. LFVs in a generalized polar coordinate system

4 Experiments and Discussion

A data set of 70 lesion images selected from [3] was used for these experiments.
Ground truth delineation of the lesions and diagnosis is available for each lesion.
Of 70, 45 and 25 images are identified as benign and malignant respectively with
the help of ground truth labels. The size of the images varies between 1891 x
1261 and 707 x 484 in pixel. In a few cases, frame black strip is removed from
the images to facilitate the S-ACES evolution.

To separate malignant LFVs from benign ones we used SVM [14] in the 3D
space. On the other hand, for comparison, predictions of TDS model are found
in the 4D Manifold. Remember that TDS is already capable of result labels
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Fig. 5. LFVs in a cylindrical system

Fig. 6. (left) The 70 LFVs mapped on a unisphere; (right) zoom of the part of the
unisphere where the vectors are located

for lesions. In the experiments, we compare the methods over f-measure of the
model classification, which is harmonic mean of precision and recall. Recall is
the percentage of positive (malignant) labeled instances that were predicted as
positive and found by TP/(TP +FN). Precision is defined as the percentage of
positive predictions that are correct, and calculated by TP/(TP + FP )1.

TDS applied in this study uses the feature set, AB, AC , B, C and the weights
[1.3, 1.3, 0.1, 0.5] suggested by [8]. To calculate the values of each feature we
selected the following thresholds to maximize the classification accuracy: 0.91
for lesion asymmetry, 0.88 for color asymmetry and 0.06 for abruption. Within a

1 TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.
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grid search over possible intervals (asymmetry [0.7, 1], and abruption threshold
[0, 2]), the best accuracy of 0.68 was obtain with the threshold of 5.9, meaning
that a lesion will be classified as malignant if (1.3AB+1.3AC+0.1B+0.5C) ≥ 5.9,
or benign vice versa.

In the 3D space, (ρ(X), θm(X), θσ(X)) , we employed ν−SVM [10] to build up
a surface that will separate malignant from benign LFVs. ν−SVM is also a soft
margin classifier using ν-parameterizations. In this approach, the classification
problem is solved by ν − SVM , which is

min
w∈H,ξ∈Rm,ρ∈R

= τ(w, ξ, ρ) = 1
2

∥∥w2
∥∥− νρ+ 1

m

∑m
i=1 ξi

subject to yik(xi, x
′) ≥ ρ− ξi, i = 1, ...,m

and ξi ≥ 0, ρ ≥ 0

(11)

In the above equation w is weight vector in a Hilbert space H, slack variables
ξi are used to relax constrains subject functions, ν ∈ (0, 1) and ρ are parame-
terization variables. In our case, dimensionality of the problem is m = 3. Also,
k(xi, x

′) is the kernel, which may be based on Gaussian, polynomial, and sigmoid
function. In case of polynomial function k(xi, x

′) = γ[(xi · x′) + b]d, where xi is
a vector from the training set, x′ is the vector to be classified, b is a constant
and d is the power of the polynomial.

We performed a grid search using the following values for γ = {0.001, 0.005,
0.01, 0.015, 0.02, 0.01}; d = {1, 2, 3, 4}; ν = {0.4, 0.5, 0.6} and applying the fol-
lowing kernels - linear, polynomial, Gaussian based, radial basis, and sigmoid
function. We found that the maximum f-measure accuracy of 0.89 was obtained
with the polynomial kernel [14] of (1/70)(xi ·x′)+6)4 with ν = 0.5 and γ = 0.015.

Recall that selecting the right parameters and kernel, for the SVM, is a chal-
lenging task in the high dimensional spaces especially because of visualization
difficulties. Thus for the 4D manifold, the observations in section 3.2 suggest us
that most likely the kernel which provides higher accuracy would be the fourth
degree polynomial kernel. This conclusion was validated in [11] where a grid
search over multiple kernels and parameters using 51 LFVs determined that the
best average accuracy in the 4D Manifold is obtained again by using a polyno-
mial kernel of degree four. A similar kernel is also reported in [5] as an optimum
one for classification of 64 skin lesions.

As stated above the experiments performed in the 3D space with the set of 70
LFVs applying SVM with polynomial, Gaussian based, radial basis function, and
sigmoid kernels provided that the best f-measure classification was obtained with
a polynomial of degree four. This result complies with the suggestion derived in
Section 3.2, that the best f-measure accuracy is obtained with a fourth degree
polynomial kernel.

Therefore the LFVs geometric patterns observed in the 3D space may be used
to make prediction about the kernel and its parameters to be used by the SVM
in 3D and 4D manifolds. Note that there is no reliable method, in the literature,
capable of finding these SVM parameters. A combinatorial reasoning tells that
the number of test runs will dramatically increase if we increase the size of each
used set with a few more elements.
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Note that similar results can be obtained with other soft margin SVM, however
ν-SVC is preferred in our study since in practice, choosing a ν is easier than
parameter C of C-SVM. The results show that ν-SVM applied in the 3D space
provides a better f-measure accuracy for classification than the TDS applied in
the 4D space.

5 Conclusion

The contribution of this study can be summarized as follows. We used 4D LFVs
generated in [4,5,11] on the base of a modified version of the ABCD rule and
the idea of measuring TDS to build a 4D Riemannian manifold as a model
to study skin lesion identification. In an attempt to characterize the geometric
structure and explore the distribution of the malignant lesions, we found methods
to project 4D manifold onto 2D and 3D spaces which provide visualizations of
the 4D LFVs in 2D polar and 3D cylindrical and spherical spaces.

Recall that the classification by SVM depends on the kernel and its param-
eters. Also, there are no reliable approaches in the literature to select the right
kernel for a particular classification problem. Thus, the projection to 3D spher-
ical space was used to provide an observation of the LFVs distribution, which
allowed us to select the kernel and its parameters, which provide the most accu-
rate classification for malignant and benign points. As a result of the presentation
of the LFV on a unit sphere we observed that the malignant vectors are most
probably located on a fourth degree polynomial curve which lies on the unit
sphere. This observation suggests that polynomial kernel of degree four may be
used to build up a malignancy separating surface applying ν-SVM in the 3D
spherical space.

Thus, we are able to suggest a kernel for SVM learning. Therefore, an advan-
tage of this approach is that helps the user avoid tedious and time consuming
grid search on SVM kernels and parameters. As shown in the experimental sec-
tion, results of the search using different kernels complies with our observation
in 3.2.

Speaking of the opportunity of kernel and parameters prediction for the SVM
most accurate f-measure classification we have to note the followings:

– The observation is performed in a 3D space. Therefore it would be accurate
for prediction made in this dimension which is relatively low.

– Bringing the conclusion to a higher dimension may not be that much accu-
rate. This statement holds because adding a single dimension to the 3D may
lead to the mapping of a single point in 3D to multiple points in 4D. But
this property still allows us to reject the use of some kind of kernels, which
is sufficient to reduce the calculation complexity two or three times.

For example, observing a polynomial of degree greater than one in 3D rejects the
opportunity for use a linear, or sigmoid or Gaussian kernel in the 4D manifold.

Another advantage of the present study is a better f-measure of malignancy
identification than TDS rule used by dermatologists. Also, although we are focus-
ing on a 4D manifold, for the model in this paper, our approach can be extended
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to higher dimensions as we can add more features to the LFV. Moreover our
method is automatic whereas the one used by clinicians is manual and carried
out through naked eyes.

A drawback of this method is the subjective observation of a relatively small
amount of LFVs selected from a single collection. Also, there is a number of
parameters that should be correctly selected in order to provide accurate LFVs.
Hence, this study could be extended with a new image collection to increase
sample space and a work on automated parameters selection.

This work will continue with additional manifolds generalizations to higher
dimension and development of a new metrics to provide more accurate separa-
tion of LFVs. Level set method [13] will be applied to extract additional lesion
features such as dots and streaks.
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Abstract. We propose a novel region-based active contour model, which
incorporates the image local and global information into a fuzzy en-
ergy function, providing a robust and accurate segmentation while ac-
counting for intensity inhomogeneity. In this model, image intensities are
assumed to have a Gaussian distribution with different means and vari-
ances. While the local information contributes to dealing with intensity
inhomogeneity, the global information allows improving the performance
of the model in the case of very noisy or blurred images. Another inter-
esting property is that the energy function of the proposed model is
convex with respect to the variable used to determine the contour. This
makes the accuracy of the result invariant with respect to the position
of the initial contour and more suitable for an automatic segmentation.
Moreover, the energy function of the proposed model is minimized in a
computationally efficient way by calculating the fuzzy energy alterations
directly. Experiments are carried out to validate the capabilities of the
proposed model. Comparisons are provided with ground truth and other
methods in the field to underline the superiority of our method in terms
of accuracy.

Keywords: Segmentation, Active Contour, Fuzzy energy function,
Medical images.

1 Introduction

Segmentation is a basic domain in image analysis and processing. Generally, it
consists of partitioning a given image into objects sharing the same image prop-
erties and background. In medical imaging, segmentation is necessary for detec-
tion of pathological regions such as tumors or lesions [6,18,20]. With the newest
imaging technologies and computer vision, segmentation can help improving the
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diagnosing, monitoring and staging of patients. Despite the recent acquisition
technologies and performances of reconstruction algorithms, the quality of medi-
cal images can be affected by inherent noise or artifacts involving PET (Positron
Emission Tomography), MR (Magnetic Resonance) images as well as low dose
CT (Computed Tomography) images [17], making it difficult to distinguish the
organ structure. This in turn makes the segmentation more difficult [13]. An
important obstacle for the effective segmentation is the intensity inhomogene-
ity, which is due to a typical phenomenon known as shading artifact in medical
images. It behaves as a relative variation of the intensity in the object of interest.

A motivation for this study is the development of an automatic tool capable
of facilitating the work of the medical experts, avoiding manual delineation for
purpose of segmentation. Note that such manual work is tedious, prone to errors,
and depends on the qualification of the expert.

A number of segmentation methods have been proposed in the literature.
Among them the active contour models (ACM) have gained significant interest
due to their accuracy and ability to handle complex images. Since the intro-
duction of the first model by Kass et al. [5], ACM have been proven to be
among the most successful and accurate methods for segmentation of medical
images [1, 4, 18]. The main idea behind the ACM is based on deformation of
an initial curve so that it evolves towards object boundaries, under some con-
straints. The existing ACM can be categorized as: edge-based [2, 5, 11], and
region-based [3, 8, 15, 16, 19].

The methods in the first category, where image gradient is used to stop the
curve evolution, may fail when the gradient of the object boundaries is not well
defined, e.g., noisy, blurred or even discontinuous edges. To overcome this draw-
back, other image information is used including the properties of regions between
the contour, in order to efficiently evolve and stop the evolving curve. This char-
acterizes the region-based ACM, including the popular CV model proposed by
Chan and Vese [3], by assuming that image regions are homogeneous. The CV
model is efficient in segmenting images with noisy and weak boundaries, but
inefficient while dealing with intensity inhomogeneity, due to the above assump-
tion. Other methods consist of combining ACM with fuzzy logic to enhance the
ability of segmentation [4, 7], allowing more robustness to weak boundaries and
initial condition. In [7], Krinidis et al. proposed an effective ACM based on fuzzy
energy to segment objects whose boundaries are very smooth and discontinuous.
However, these models fail to segment images with intensity inhomogeneity by
assuming that each region is homogeneous, as the CV model does.

To tackle the problem of intensity inhomogeneity, the local intensity infor-
mation is taken into account in the energy function [8,14], where a local energy
term using a weighting function and local intensity means are applied. In [8], the
weighting function is a Gaussian kernel used to account for localization property,
while local intensity means are approximated by smooth functions. By using the
local information, these models are proven to be efficient to handle the intensity
inhomogeneity. However, the localization and the non-convexity of the energy
function of these models make them dependent on the initial contour. To improve
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the robustness with respect to the position of the initial contour, some other ap-
proaches, namely the LGIF [15] and the LCV [16] models, take into account the
global information in the energy function. These models are formulated using
level set function [9] which is an implicit method and allows automatic change
of topology. However, the inconvenience induced from this formulation is the
non-convexity of the energy function. Thus, the influence of the initial contour
is only reduced by global information, but still remains unavoidable.

In order to cope with the intensity inhomogeneity and the dependence on
the initial condition of the ACM, in this paper we propose a novel region-based
ACM which incorporates both local and global information in a fuzzy energy
function. The model takes advantage of both approaches as well as of the fuzzi-
ness of the energy. In the present method, intensity information is described by
Gaussian distributions with different means and variances. The local informa-
tion approach is inspired by the LGDF model of Wang et al. [14] which utilizes
the local information distribution. This allows our model to handle the intensity
inhomogeneity which is not the case of the FEBAC [7] model. In addition, using
a fuzzy membership function to determine the evolution process of the contour,
our energy function is convex, while the LGDF model is not. The convexity
of our model implies that its accuracy is independent from the initial contour.
Furthermore, the energy function of the proposed model is minimized in a com-
putationally efficient way by utilizing the fast algorithm described in [7, 12] to
calculate the fuzzy energy alterations directly. This calculation allows us to avoid
issues related to numerical stability constraints. Hereafter, we will refer to our
model as LGFGD (local and global fuzzy Gaussian distribution).

The rest of this paper is organized as follows. In Section 2, the description of
our model and its fuzzy energy are introduced along with a proof of the convexity
of the model, followed by the numerical implementation, an illustration, and the
computational complexity of our method. Experimental results and comparison
with existing methods are given in Section 3. Finally, Section 4 presents the
conclusions and the directions of the future work.

2 The Proposed Method

In this section, we first present the LGFGD energy function. Then, this energy
function is described in a similar way as in the level-set formulation, which is
referred also as pseudo-level formulation. Then, using appropriate values of the
weighting exponent on the degree of fuzzy membership, we will prove that the
energy function of our model is convex. Further, the local information is taken
into account to tackle the intensity inhomogeneity, while the global information
is used to handle the objects whose boundaries are not well defined by the gra-
dient. To exploit the local image intensities, we use Gaussian distributions with
different means and variances at each pixel in a region and the Gaussian kernel to
define the local property of the energy function. We assume that the global im-
age intensities are characterized by Gaussian distributions with the same means
and variances for all the pixels in a region. Moreover, we combine the local and
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global energy functions with the fuzzy logic to benefit from this technique in
clustering, which provides more accurate detection. This allows us to obtain a
convex model capable of handling efficiently the intensity inhomogeneity.

Let Ω ⊂ R2 be an image domain, and I : Ω → R+ denotes the image. The pro-
posed ACM is based on the minimization of the following fuzzy energy function:

F (M) = μ|C|+ λF1(M1) + (1− λ)F2(M2) (1)

where M = (C, c1, c2, ε
2
1, ε

2
2, f1, f2, σ

2
1 , σ

2
2 , u), M1 = (c1, c2, ε

2
1, ε

2
2, u), and M2 =

(f1, f2, σ
2
1 , σ

2
2 , u), μ ≥ 0 is a constant to control the length |C| of the contour

C, 0 < λ < 1 is a constant to control the influence of the global term F1 and
the local term F2, c1 and c2 are the global intensities described by the standard
deviations of Gaussian distributions ε1 and ε2, respectively inside and outside
the contour C, f1 and f2 are the local intensities described by the standard
deviations of Gaussian distributions σ1 and σ2, respectively inside and outside
of C. The global and local terms are defined as follows:

F1(M1) =−
∫
Ω

log p(I(y), ε1)[u(y)]
mdy −

∫
Ω

log p(I(y), ε2)[1 − u(y)]mdy (2)

F2(M2) =−
∫
Ω

[ ∫
Ω

Kσ(x− y) log px(I(y), σ1)[u(y)]
mdx

]
dy

−
∫
Ω

[ ∫
Ω

Kσ(x− y) log px(I(y), σ2)[1− u(y)]mdx

]
dy (3)

where x, y are pixels, Kσ is a Gaussian kernel with a standard deviation σ,
u(x) ∈ [0, 1] and 1− u(x) ∈ [0, 1] are the degrees of memberships of I(x) inside
and outside of C respectively, m ≥ 2 is a weighting power on the degree of
membership, p(I(y), εi) and px(I(y), σi), i = 1, 2, are the Gaussian distributions:

p(I(y), εi) =
1√
2πεi

exp

(
−
(
ci − I(y)

)2
2ε2i

)
(4)

px(I(y), σi) =
1√
2πσi

exp

(
−
(
fi(x)− I(y)

)2
2σ2

i

)
(5)

2.1 Pseudo Level Set Formulation

In this section, we formulate the fuzzy energy function by using a pseudo level
set formulation based on the membership values of u as defined in [7]. The curve
C in Ω is represented by the pseudo zero level set of u such that C = {x∈ Ω :
u(x) = 0.5}, in(C) = {x∈ Ω : u(x) > 0.5}, out(C) = {x∈ Ω : u(x) < 0.5}.

Now, we change the contour length |C| in (1) by
∫
Ω |∇u|dx for the following

goal: When our energy function is minimized, the values of u for the pixels inside
the contour C are different from the values of u for the pixels located outside
the contour. However, the values of u for the pixels located inside the contour
C are similar. This is the same for the pixels located outside the contour. Then,
energy function (1) is transformed to:

F (M) = μ

∫
Ω

|∇u|dx+ λF1(M1) + (1− λ)F2(M2) (6)
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2.2 Convexity of Our Model with Respect to u

First, we recall the definition of a convex function (Definition 1). Then, we will
prove that our energy function is convex with respect to u (Theorem 1).

Definition 1. A real valued function k : D → R defined on a convex set D is
called convex if for ∀x, y ∈ D and ∀t ∈ [0, 1], the following inequality holds:

k(tx+ (1− t)y) ≤ tk(x) + (1 − t)k(y) (7)

Note that the variable u of our energy function is in BVΩ(0, 1), which is the
set of bounded functions in [0, 1]. So, we will prove that BVΩ(0, 1) is convex. It
means that for ∀u, v ∈ BVΩ(0, 1) and ∀t ∈ [0, 1], we have to prove tu+(1− t)v ∈
BVΩ(0, 1). Indeed, consider f(x, t) = tu(x)+(1− t)v(x) = (u(x)−v(x))t+v(x),
this is a linear function with respect to t ∈ [0, 1]. It follows that the max and the
min of f(x, t) are at the end points 0 and 1: f(x, 0) = v(x) and f(x, 1) = u(x).
Since u(x), v(x) ∈ [0, 1], we have f(x, t) ∈ [0, 1], ∀x ∈ Ω and ∀t ∈ [0, 1]. Thus,
f ∈ BVΩ(0, 1) and also tu+ (1− t)v ∈ BVΩ(0, 1). So, BVΩ(0, 1) is a convex set.

Then, we formulate the following theorem.

Theorem 1. The energy function F in Eq. (1) is convex with respect to u.

Proof. Utilizing |a+b| ≤ |a|+ |b|, ∀a, b, and the linearity of the gradient operator,
we apply the definition of convex function to prove that

∫
Ω
|∇u|dx is convex with

respect to u.
To prove the convexity of F1 with respect to u, we consider the function:

G(z) = azm + b(1− z)m (8)

where z ∈ [0, 1], m ≥ 2, a, b > 0. We will show that G(z) is convex with respect
to t by proving that G′′(z) ≥ 0. Indeed, we have:

G′′(z) = m(m− 1)azm−2 +m(m− 1)b(1− z)m−2 (9)

Recall that z ∈ [0, 1], m ≥ 2, a, b > 0. Therefore, we have G′′(z) ≥ 0, which im-
plies that G(z) is convex with respect to z. Since p is a Gaussian distribution, its
values are in (0, 1). Thus, log p < 0. Then, we can consider a = − log p(I(y), ε1),
b = − log p(I(y), ε2), and z = u(y), where y ∈ Ω. Then, the function:

F y
1 (u) =− log p1(I(y), ε1)[u(y)]

m − log p2(I(y), ε2)[1− u(y)]m (10)

is a convex function with respect to u. It means that if ∀y ∈ Ω, ∀t ∈ [0, 1],
∀u, v ∈ BVΩ(0, 1), we have the following inequality:

F y
1 (tu + (1− t)v) ≤ tF y

1 (u) + (1− t)F y
1 (v) (11)

Then, by integrating inequality (11) on Ω, we obtain:∫
Ω

F y
1 (tu+ (1− t)v)dy ≤ t

∫
Ω

F y
1 (u)dy + (1 − t)

∫
Ω

F y
1 (v)dy (12)
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Note that, F1 =
∫
Ω
F y
1 dy. So, we have:

F1(tu+ (1− t)v) ≤ tF1(u) + (1− t)F1(v) (13)

∀t ∈ [0, 1], ∀u, v ∈ BVΩ(0, 1). Therefore, F1 is convex with respect to u.
Taking into account that Kσ > 0, we prove in a similar fashion that F2 is

convex with respect to u as well. Finally, considering that μ, λ, 1−λ are positive
numbers, we prove that the energy function F is convex with respect to u. �

2.3 Numerical Implementation

The energy function could be solved by the gradient descent method derived
from the Euler-Lagrange equation which converges relatively slowly. For our
model, we apply the fast numerical scheme proposed by Song et al. [12] and
developed by Krinidis et al. [7]. Instead of solving the Euler-Lagrange equation,
this method calculates the energy directly and verifies if the energy decreases
when the intensity membership on the image changes.

Before presenting the algorithm to solve our model, we compute each variable
fixing the others. For simplicity, without losing the generality, Eq. (6) has been
considered without the length term (μ = 0).

Applying calculus of variation we can see that if we fix u, the minimization
of the energy in Eq. (6) with respect to c1, c2, ε

2
1, ε

2
2, f1, f2, σ

2
1 , σ

2
2 implies:

ci =

∫
Ω I(y)[ai(y)]

mdy∫
Ω
[ai(y)]mdy

, ε2i =

∫
Ω(ci − I(y))2[ai(y)]

mdy∫
Ω
[ai(y)]mdy

(14)

fi(x) =

∫
Ω Kσ(x− y)I(y)[ai(y)]

mdy∫
Ω Kσ(x− y)[ai(y)]mdy

(15)

σ2
i (x) =

∫
Ω Kσ(x− y)(fi(x) − I(y))2[ai(y)]

mdy∫
Ω
Kσ(x− y)[ai(y)]mdy

(16)

where i = 1, 2, a1(·) = u(·), a2(·) = 1− u(·).
Moreover, if we fix c1, c2, ε

2
1, ε

2
2, f1, f2, σ

2
1 , σ

2
2 , the minimization of the energy

F with respect to u, by calculus of variation, allows us to compute u as follows:

u(y) =
1

1 +

[
λ log p(I(y),ε1)+(1−λ)

∫
Ω

Kσ(x−y) log px(I(y),σ1)dx

λ log p(I(y),ε2)+(1−λ)
∫
Ω

Kσ(x−y) log px(I(y),σ2)dx

] 1
m−1

(17)

Now, given a point y0 in Ω, the intensity value of point y0 is I(y0), and the
corresponding degree of membership for I(y0) is uy0 . Assume that the degree of
membership of I(y0) changes to the new value uny0. Denote by ΔF the differ-
ence between the new and old energies calculated at the new and old degree of
membership of I(y0). Assuming that the changes of ε1, ε2, σ1 and σ2 at a point
are very small, ΔF is calculated as follows:

ΔF = μΔl + λΔF1 + (1− λ)ΔF2 (18)
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where Δl is the change of the contour length. The rate of change of the global
fuzzy energy ΔF1 and the local fuzzy energy ΔF2 are calculated as follows:

ΔF1 =− log
1√
2πε1

Δum +
s1Δum

s1 +Δum

(I(y0)− c1)
2

2ε21

− log
1√
2πε2

Δvm +
s2Δvm

s2 +Δvm

(I(y0)− c2)
2

2ε22
(19)

ΔF2 =−Kσ ∗
(
log

1√
2πσ1

)
(y0)Δum −Kσ ∗

(
log

1√
2πσ2

)
(y0)Δvm

+
∑
x∈Ω

s3(x)Kσ(x− y0)Δum

s3(x) +Kσ(x− y0)Δum

(I(y0)− f1(x))
2

2σ2
1(x)

+
∑
x∈Ω

s4(x)Kσ(x− y0)Δvm
s4(x) +Kσ(x− y0)Δvm

(I(y0)− f2(x))
2

2σ2
2(x)

(20)

where s1 =
∑

y∈Ω[u(y)]
m, s2 =

∑
y∈Ω[1− u(y)]m, s3 = Kσ ∗ [u]m, s4 = Kσ ∗ [1−

u]m, Δum = [uny0 ]
m − [uy0 ]

m, Δvm = [1− uny0 ]
m − [1− uy0 ]

m.
In summary, the algorithm for the active contour evolved by the fuzzy energy

function consists of the following steps:

– Step 1. Initial partition: setup u > 0.5 for the interior of the contour, and
u < 0.5 for the exterior.

– Step 2. For each iteration, the following sub-steps are performed:

• (i) Compute c1, c2, ε1, ε2, f1, f2, σ1, σ2 by fixing u and using (14-16).
• (ii) For each pixel y0 ∈ Ω, we are given uy0 as the degree of membership
of I(y0) in the previous iteration. The new degree of membership uny0

is calculated by using (17) where the fixed c1, c2, ε1, ε2, f1, f2, σ1, σ2 are
calculated in the previous step. Then, we use (18-20) to calculate the
difference between the new and old energyΔF at the pixel y0. IfΔF < 0,
then we change uy0 with uny0 ; otherwise, we keep the old value uy0 .
• (iii) Repeat step (ii) for all the pixels y0 ∈ Ω to obtain all new degree of
membership uny0. Then, we compute the total energy F of the image.

Repeat step 2 until the rate of change of F becomes zeros.
– Step 3. We use the following criterion: if u(x) > 0.5, then x is in the object.

Otherwise, x is in the background.

2.4 Illustration of the Method

In this section, we illustrate our method on a real image of rices. We present the
evolution of the contour (Figs. 1(a) - 1(d)) where the initial contour is in red
(dark gray) and the evolution contours are in yellow (light gray); the evolution
of the energy function F (Fig. 1(e)). Fig. 1(e) shows that our energy function
converges to the minimum at the 12nd iteration. However, we see that the con-
tours at the 5th (Fig. 1(c)) and 25th (Fig. 1(d)) iterations are visually similar.
This can be explained by using the values of u at two points p1 and p2 reported
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(a) Initial contour (b) 2nd iteration (c) 5th iteration (d) 25th iteration

(e) Evolution of F

Fig. 1. Illustration for our method on a real image of rices

Table 1. Values of f1, f2, σ1, σ2 and u for the pixel p3 reported in Fig. 1(b)-1(c)

f1 f2 σ1 σ2 u

2nd iteration 63.5085 44.5250 2537.4 922.3 0.5003

5th iteration 51.1039 51.2402 1564.9 1579.1 0.4986

in each figure as follows: at the 5th iteration, u(p1) = 0.5003, u(p2) = 0.4989. As
u(p1) > 0.5, then p1 is a pixel corresponding to the object. As u(p2) < 0.5, then
p2 is a pixel from the background. However, the value of our energy function
is not minimized at this iteration. Therefore, the values of u must be changed.
But, this change does not affect the fact that p1 and p2 are the pixels of the
object and background, respectively. Moreover, Table 1 shows the evolution of
the pixel p3, reported in Figs. 1(b)-1(c), through the values of f1, f2, σ1, σ2,
and u which show that p3 is the pixel in the background. At the 2nd iteration,
as u(p3) = 0.5003 > 0.5, p3 is a pixel in the object. We see also at this iteration:
f1 > f2, σ1 < σ2. However, at the 5th iteration, as u(p3) = 0.4986 < 0.5, p3 is a
pixel in the background, we have also the changes of f1, f2, σ1 and σ2: f1 < f2
and σ1 > σ2.

2.5 Computational Complexity

The computational complexity of the LGFGDmethod is in the order ofO(NxyG),
where NxyG = Nx.Ny.NGx .NGy , Nx and Ny are the column and row numbers of
the considered image, respectively; NGx and NGy are the column and row num-
bers of the Gaussian kernel Kσ, respectively. To validate the above complexity,
we test the LGFGD method on an image with size 65 × 68 (Fig. 2(a)) and its
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(a) (b) (c) (d)

Fig. 2. (a) and (b) Images with sizes 65× 68 and 130× 136, resepectively. (c) and (d)
Segmentation results applying the LGFGD on (a) and (b), respectively.

zoom-in image with double size for each dimension 130× 136 (Fig. 2(b)). As it
can be observed in Figs. 2(a) - 2(b), the initial contours are at the same positions
and the obtained results are also the same. The CPU times to obtain results in
Figs. 2(c) - 2(d) are 1.44 second and 5.52 second, respectively. We can see that,
since the size of Fig. 2(b) is four times the size of Fig. 2(a), the CPU time to
obtain Fig. 2(d) is approximately four times the CPU time to obtain Fig. 2(c).

3 Experimental Results and Comparison

We present results of our model on variety of synthetic and real images, namely
PET, CT, X-Ray and MR images. A comparative evaluation has been performed
to demonstrate the advantages of our method over similar contemporary meth-
ods such as the LGIF [15], the LCV [16] and the FEBAC [7]. The code of
the LGIF model is obtained by incorporating the global term in the code of the
LBF [8] model, which is obtained from the home page of the author [8]. The code
of the LCV model is provided by the author of [16]. The code of the FEBAC
model is implemented based on the algorithm published in [7]. To provide a
fair comparison, all the methods used one and the same initial contour, which
is painted in red (dark gray), while the yellow (light gray) curves indicate the
final contours. We use the MATLAB r2008b to implement our algorithm on a
computer with Intel Core 2 Duo CPU 2.93GHz and 4GB RAM. The images used
for the experiments vary in size between 65× 68 and 452× 348.

In Fig. 3, we compare our model with the FEBAC model on two synthetic
images. A synthetic image (top row) including two homogeneous objects with
similar intensities is tested. One may observe that the results of FEBAC and
our models are accurate and similar. However, for the synthetic image exhibiting
three homogeneous objects with different intensities (bottom row), the FEBAC
model detected the two objects with dark intensities on a light background, while
the object with a quite different intensity, from those objects, is missed. Note that
the missed object and the background have quite similar intensities. Thus, the
global model FEBAC fails when there is not significant variation of intensities
between the object and the background. On the contrary, our new model LGFGD
successfully extracted the three objects, as show in Fig. 3, bottom row.

Fig. 4 shows the results of the FEBAC and our models for the case of noisy
images with Gaussian distribution. The Gaussian noise is added with standard
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Fig. 3. Test on two synthetic images. Col. 1: Original images with initial contours. Col.
2: Results of the FEBAC model. Col. 3: Results of the LGFGD.

Fig. 4. Results on noisy versions of the original images from Fig. 3 with standard
deviations 10 (col. 1&3) and 30 (col. 2&4). Top: results of the FEBAC model. Bottom:
results of our model.

deviations 10 and 30 in the images in Fig. 3. One may observe that the results
of the FEBAC model, in the case of standard deviation 10, are similar to the
results obtained from the original image in Fig. 3, while the result of this model
are not accurate for higher noise level. We can see that on images with high
noise (standard deviation 30), our results are still as accurate as the results for
the original images in Fig. 3.

The results in Figs. 3-4 show that the LGFGD model outperforms the FEBAC
model in what concern the segmentation of low contrast and noisy images.

Fig. 5 compares the segmentation capabilities of FEBAC, LGIF, LCV and the
newly proposed LGFGD method. Three X-ray images of blood vessels are used
for the purpose of comparison. All images are nonhomogeneous. In this exper-
iment, the results provided from the LGIF (4th column) and our (5th column)
models are similar and good. The FEBAC does not give accurate results (2nd

column) for all of the three images because of its global property. For the LCV
model (3rd column), the result of the top image is not accurate, while the result
of the middle image is similar to the results of the LGIF and our models. The
bottom image is sufficiently well segmented except the right corner part where
the contour is missed. The reason why the LGIF, the LCV and our models pro-
vide good results on these nonhomogeneous images is that these models utilize
the local information in the energy function.
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Fig. 5. Results obtained on three blood vessel X-ray images. From left to right columns:
original images with initial contours, results of the FEBAC, the LCV, the LGIF and
the LGFGD models, respectively.

Fig. 6. Results obtained on two heart MR images. Column 1: original images and
initial contours. Column 2: results of the LCV model. Column 3: Results of the LGIF
model. Column 4: Results of our model, LGFGD.

Further, we compare our model with the LCV and the LGIF models using two
heart MR images. The results are illustrated in Fig. 6 where one may observe
that the new model LGFGD detects the object boundary in a more accurate
fashion than the LCV and the LGIF did. On the top images, the results of the
LCV and the LGIF models are good enough, but there is seen also some non-
accurate contours. On the bottom image with nonhomogeneous intensity, the
result of LGIF model is completely incorrect, while the LCV contour can not be
stopped at the exact contour. This is not the case for our result.

Now, we present in Fig. 7 experiments on a noisy 2D CT images, which
contains the thorax at the level of the pulmonary arteries (at top left), of 3mm
thickness. This image is acquired with standard reconstruction filter and is noise-
free (or low noise). Another CT image (at top right) is 2mm thick, acquired at
the same position with optimized reconstruction filter, and different values of



Segmentation by a Local and Global Fuzzy Gaussian Distribution Energy 309

Fig. 7. Results on a thorax CT image and its noisy version. Top row: original images
with initial contour. Bottom row: the corresponding segmentation results.

(a) Brain PET (b) Brain MR

(c) Result of (a) (d) Result of (b)

Fig. 8. Results of our method for some medical images

the parameters for tomography reconstruction, hence noisy. The original images
and the initial contours are shown in the top row. The segmented images are
shown in the bottom. It is not difficult to see that the results are very similar.

We report also on Fig. 8 some medical images which have a clinical importance.
We present a segmentation of a brain PET image (Fig. 8(a)) and a brainMR image
(Fig. 8(b)) to show the flexibility of our method. The obtained results (Figs. 8(c)-
8(d)) are evaluated by our medical expert, as successful in detecting the boundary.
One may notice on brain MR image that sulci and gyri are well delineated.

Next, we present also validation results with real expert-segmented thorax CT
images and heart MR image. As can be seen in Fig. 9, the interior boundaries
of the thorax are accurately extracted, as compared with the contour segmented
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Fig. 9. Comparison with ground truth established by our expert on thorax CT images
and heart MR image. Column 1: original image. Column 2: ground truth image. Column
3: our result.

Table 2. DSC values for third column of Fig. 9

Row 1 Row 2 Row 3

left part 0.98 0.97 0.94
DSC

right part 0.96 0.98 0.98

by our expert. Moreover, to quantitatively evaluate the accuracy of our results,
we use Dice Similarity Coefficient (DSC) [10], which is defined as:

DSC =
2N(S1 ∩ S2)

N(S1) +N(S2)
(21)

where S1 and S2 represent the obtained segmentation and the ground truth,
respectively, N(·) indicates the numbers of pixels in the enclosed set. The closer
the DSC value is to 1, the better the segmentation is. Table 2 shows the DSC
values of our method. From this table, our results are very close to the ground
truth established by expert, since the DSC values LGFGD are very close to 1.

To validate the convexity of our model, proved in Section 2.2, we performed
experiments using one of the synthetic images and one of the heart MR images.
In every experiment, we placed the initial contour on a different position with
a varying contour size. In every instance, the accuracy of segmentation is the
same, which validates the robustness of the LGFGD model (see Fig. 10).

As mentioned above, the constant value 0 < λ < 1 is used to control the
influence of the global term F1 and the local term F2. If the considered image is
homogeneous, the value of λ can be close to 1 which will make the global term
more dominant than the local term. On the other hand, if the tested image is
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Fig. 10. Results of our model with the different initial contours

Fig. 11. Result on a hand X-Ray image with the different values of . From left to right:
original image, results with λ = 0.2, 0.5, 0.9, respectively.

nonhomogeneous, the value of λ can be selected small enough to make the local
term dominant. To support the last statements we applied our method on a
hand X-Ray image with intensity inhomogeneity. One may observe that λ = 0.2
gives accurate result; if λ = 0.5, a part of the contour on the top of this image
is missing; while in the case of λ = 0.9, when the global term is more dominant
than the local term, the segmentation result is incorrect (see Fig. 11).

4 Conclusion and Future Works

This paper presents a novel convex and fuzzy energy based ACM. The model
is named LGFGD and outperforms, in terms of accuracy and robustness with
respect to noise, contemporary models such as the FEBAC [7], the LCV [16] and
the LGIF [15]. By taking into account the local information with a distribution of
different means and variances, the model is capable to segment nonhomogeneous
regions. Furthermore, global information is also accounted for providing accurate
performance in case of noise and weak boundaries. Moreover, our fuzzy energy
function is convex, which makes the model invariant with respect to the initial
position of the contour while giving the same accuracy and repeatability. The
experimental results depend on the size of the Gaussian kernel. In terms of
future work, we plan to investigate more effective implementation of the model
and extend it to 3D images.
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Jiménez-Hernández, Hugo 75

Kalyani, T. 196
Kamaraj, Thangasamy 181, 196
Kardos, Péter 128
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