A-Team for Solving the Resource Availability
Cost Problem

Piotr Jedrzejowicz and Ewa Ratajczak-Ropel

Department of Information Systems, Gdynia Maritime University
Morska 83, 81-225 Gdynia, Poland
{pj,ewra}@am.gdynia.pl

Abstract. In this paper the agent system based on A-Team and E-
JABAT architecture for solving the resource availability cost problem
(RACP) is proposed and experimentally tested. RACP known also as
RIP (resource investment problem) belongs to the NP-hard problem
class. To solve this problem an A-Team consisting of an asynchronous
agents implemented using E-JABAT middleware have been proposed.
Three kinds of optimization agent have been used. Computational ex-
periment involves evaluation of the proposed approach.

Keywords: project scheduling, resource availability cost problem,
RACP, resource investment problem, RIP, optimization, A-Team, agent,
agent system.

1 Introduction

The paper proposes an agent based approach to solving instances of the resource
availability cost problem (RACP) known also as resource investment problem
(RIP). The considered problem have attracted less attention then other project
scheduling problems, for example resource-constrained project scheduling prob-
lem (RCPSP). However, it is of great practical significance. It is used to model,
for example, the bridge construction, staff management problems or negotiations
the price of a project [I7],[I]. In this problem the total costs of using a given
amount of resource for the project is minimized. A solution of this problem con-
sists of a set of activity starting times and a set of resource capacities, while
respecting a project deadline. The problem is NP-hard.

RACP problem was introduced by Mohring (1984) [I7] as the resource in-
vestment problem (RIP). He proposed an exact algorithm based on the known
procedure for the RCPSP problem to solve it. Demeulemeester (1995) [9] pro-
posed the next exact algorithm based on a branch-and-bound procedure for the
RCPSP developed by himself and Herroelen (1992) [7], [§]. Rodrigues and Ya-
mashita (2010) [22] modified the algorithm of Demeulemeester by reducing the
search space using new bounds for branching scheme.

A few heuristic and metaheuristic algorithms are proposed to solve the RACP
problem in the literature. Drex] and Kimms (2001) [10] develop two lower bounds
for this problem using Lagrangean relaxation and column generation techniques,

N.-T. Nguyen et al. (Eds.): ICCCI 2012, Part II, LNAI 7654, pp. 443-f52] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

444 P. Jedrzejowicz and E. Ratajczak-Ropel

respectively. Both procedures are capable of yielding feasible solutions as well, so
they also proposed two optimization guided heuristics. Yamashita et al. (2006)
[26] proposed a multi-start heuristic based on the scatter search methodology
using dynamic updating of the reference set, frequency-based memory within
the diversification generator, and a combination method based on path relink-
ing. Shadrokh and Kianfar (2007) [23] develop a genetic algorithm for the RACP
in which the tardiness is permitted with penalty. Ranjbar et al. (2008) [21] de-
veloped two algorithms: a path relinking procedure and a genetic algorithm, in
which a schedule is created with a precedence feasible priority list given to the
schedule generation scheme. Van Peteghem and Vanhoucke (2011) [25] proposed
an artificial immune system algorithm inspired by the vertebrate immune system
and using new fitness function, the probability function for the composition of
capacity lists, and the K-means diversity evaluation function for the preserva-
tion of diversity. Additionally the modification of the RACP problem has been
proposed in several papers.

Approaches mentioned above to solve the RACP problem produce either ap-
proximate solutions or can be only applied for solving instances of the lim-
ited size. Hence, searching for more effective algorithms and solutions to the
RACP/RIP problem is still a lively field of research. One of the promising
directions of such research is to take advantage of the parallel and distributed
computation solutions, which are the common feature of the contemporary
multiple-agent systems.

The multiple-agent systems are an important and intensively expanding area
of research and development. There exists a number of multiple-agent approaches
proposed to solve different types of optimization problems. One of them is the
concept of an asynchronous team (A-Team), originally introduced by [24]. The
idea of A-Team was used to develop the JADE-based environment for solv-
ing a variety of computationally hard optimization problems called E-JABAT
([12],[2]). E-JABAT is a middleware supporting the construction of the dedi-
cated A-Team architectures based on the population-based approach. The mo-
bile agents used in E-JABAT allow for decentralization of computations and use
of multiple hardware platforms in parallel, resulting eventually in more effective
use of the available resources and reduction of the computation time.

In this paper the E-JABAT-based A-Team architecture for solving the RACP
problem instances is proposed and experimentally validated. A-Team includes
optimization agents which represent heuristic algorithms. The behavior of the
A-Team is defined by the, so called, working strategy. In the proposed approach
the architecture for the RACP problem implemented using the E-JABAT envi-
ronment and three optimization algorithms based on local search, path relinking
and Lagrangean relaxation, has been proposed.

The paper is constructed as follows: Section 2 of the paper contains the RACP
problem formulation. Section Bl gives some information on E-JABAT environ-
ment. Section Ml provides details of the proposed A-Teams architecture designed
for solving the RACP instances. Section [Bl describes settings of the computa-
tional experiment carried-out with a view to validate the proposed approach.

A-Team for Solving the Resource Availability Cost Problem 445

Section [6] contains a discussion of the computational experiment results. Finally,
Section [contains conclusions and suggestions for future research.

2 Problem Formulation

Single resource availability cost problem consists of a set of n + 2 activities,
where each activity has to be processed without interruption to complete the
project. The dummy activities 0 and n + 1 represent the beginning and the end
of the project. The duration of an activity j, j = 0,...,n + 1 is denoted by d;
where dy = d,4+1 = 0. There are r renewable resource types. The availability
of each resource type k in each time period is unlimited but using each unit
of each resource type costs. There are r cost values, one for each resource cg,
kE=1,...,r. Each activity j requires r;; units of resource k£ during each period
of its duration, where ryy =7, =0, k=1, ...,7.

There are precedence relations of the finish-start type with a zero parameter
value (i.e. F'S = 0) defined between the activities. In other words activity i
precedes activity j if j cannot start until 4 has been completed. The structure
of a project can be represented by an activity-on-node network G = (SV,SA),
where SV is the set of activities and SA is the set of precedence relationships.
SS; (SP;) is the set of successors (predecessors) of activity j, j =1,...,n. It is
further assumed that 0 € SP;, j=1,...,n+1,andn+1€55;,5=0,...,n.

There is also a time limit impose for the project execution as deadline D. All
parameters, except costs are non-negative integers.

The objective is to find a schedule S of activities starting times [s1,. .., y],
where s; = 0 and s,4+1 < D and resource requirements [rq, ..., 7], such that
the total resource cost is minimized.

Formally, the RACP problem can be described as follows:

miankrk (1)
k=1
s.t.
si+dj <s; V(i,j) € SA (2)
d rw<r Vhk=1,...r,t=1,...,D (3)
1€EA:

where A; denotes the set of activities processed in time ¢,

Sn+1 SD (4)
80:0 (5)
r, >0 Ve=1,...r (6)

The above formulated problem as a generalization of the classical job shop schedul-
ing problem belongs to the class of NP-hard optimization problems [4],[17].

RACP can be denoted as PSy,,oo|prec| > Crymax 11(S,t) [5] or m,1|cpm,
On|rac, (rac means resource availability costs) [11].

446 P. Jedrzejowicz and E. Ratajczak-Ropel

3 The E-JABAT Environment

E-JABAT is a middleware allowing to design and implement A-Team archi-
tectures for solving various combinatorial optimization problems, such as the
resource-constrained project scheduling problem (RCPSP), the traveling sales-
man problem (TSP), the clustering problem (CP), the vehicle routing problem
(VRP). It has been implemented using JADE framework. The problem-solving
paradigm on which the proposed system is based can be best defined as the
population-based approach.

E-JABAT produces solutions to combinatorial optimization problems using a
set of optimization agents, each representing an improvement algorithm. Each
improvement (optimization) algorithm when supplied with a potential solution
to the problem at hand, tries to improve this solution. An initial population of
solutions (individuals) is generated or constructed. Individuals forming an initial
population are, at the following computation stages, improved by independently
acting agents. Main functionality of the proposed environment includes organiz-
ing and conducting the process of search for the best solution.

To perform the above described cycle two main classes of agents are used.
The first class called OptiAgent is a basic class for all optimization agents. The
second class called SolutionManager is used to create agents or classes of agents
responsible for maintenance and updating individuals in the common memory.
All agents act in parallel. Each OptiAgent represents a single improvement al-
gorithm (for example: local search, simulated annealing, tabu search, genetic
algorithm etc.).

Other important classes in E-JABAT include: Task representing an instance
or a set of instances of the problem and Solution representing the solution. To
initialize the agents and maintain the system the TaskManager and Platform-
Manager classes are used. Objects of the above classes also act as agents.

E-JABAT environment has been designed and implemented using JADE (Java
Agent Development Framework), which is a software framework supporting the
implementation of multi-agent systems. More detailed information about E-
JABAT environment and its implementations can be found in [12] and [2].

4 E-JABAT for Solving the RACP Problem

E-JABAT environment was successfully used by the authors for solving the
RCPSP, MRCPSP and RCPSP /max problems ([13],[14],[3]). In the proposed ap-
proach the new data representation has been proposed dedicated for the RACP
problem. Additionally some modification in order to improve the system effi-
ciency has been implemented.

Classes describing the problem are responsible for reading and preprocessing
the data and generating random instances of the problem. The discussed set
includes the following classes:

— RACPTask inheriting from the Task class and representing the instance of
the problem,

A-Team for Solving the Resource Availability Cost Problem 447

RACPSolution inheriting from the Solution class and representing the solu-
tion of the problem instance,

— Activity representing the activity of the problem,

— Resource representing the renewable resource,

— TimeUnit representing the time unit in which the activities are processed.

The second set includes classes describing the optimization agents. Each of
them includes the implementation of an optimization heuristic used to solve
the RCPSP problem. All of them are inheriting from OptiAgent class. In the
proposed dedicated A-Team this set includes the following classes:

— OptiLRA denoting the Lagrangean Relaxation Algorithm (LRA),
— OptiLSA denoting the Local Search Algorithm (LSA),
— OptiPRA denoting Path Relinking Algorithm (PRA),

The LRA is an implementation of the heuristic based on the Lagrangean re-
laxation method proposed by Drexl and Kimms in [I0]. The relaxed problem
of minimizing the total weighted completion times of the activities subject to
precedence constraints is solved after convertion to minimum cut problem [I§].
The implementation of the push relabel maximum flow algorithm described in
[6] was used. The solution obtained represents a feasible suboptimal solution of
the RACP problem.

Additionally, the above mentioned optimization agent and its algorithm based
on the Lagrangean relaxation method is used to compute and update lower
and upper bound for the processing instance. The bounds values are stored in
RACPTask and used to stop computation in case when the lower bound or upper
bound is reached by an agent.

The LSA is a local search algorithm which finds the shortest schedule for
the considered problem with fixed resource availabilities by making a move.
The move is understood as moving one of the activity to a new position in the
schedule. All possible places in the schedule are checked in one iteration. For
each combination of activities the value of possible solution is calculated. The
best schedule is remembered and finally returned. The resource availabilities are
calculated as follows:

— for feasible initial solution - the resource availabilities are decreased by xj
coeflicient but not less then to the resource availability lower bound:

Tk :max(rk—xk(rk—rﬁB),rﬁB), fork=1,...,r, (7)

— for infeasible initial solution - the resource availabilities are increased by yy
coefficient but not more then to the resource availability upper bounds:

rIB), rUB) fork=1,...,r. (8)

The resource availability lower T,fB and upper bound ’I“gB are calculated initially
and updated during computation by the LRA algorithm. The coefficients zy, for
k=1,...,r. are set initially to 10% and updated during computation as well.
The PRA is an implementation of the path-relinking algorithm. For a pair
of solutions a path between them is constructed. The path consists of schedules

e = min(ry + yr(

448 P. Jedrzejowicz and E. Ratajczak-Ropel

obtained by carrying out a single move from the preceding schedule. The move is
understood as in the case of LSA as moving one of the activities to a new position
in the schedule. For each schedule in the path the value of the respective solution
is checked using minimal for these two solutions resource availabilities. The best
schedule is remembered and finally returned.

An individual is represented as a schedule of activities S. The final solution is
obtained from the schedule for fixed resource availabilities by Serial Generation
Scheme (serial SGS) procedure [16].

All optimization agents (OptiAgents) co-operate together using their A-Team
common memory managed by the SolutionManager. The working strategy of
SolutionManager has been defined as follows:

— All individuals in the initial population of solutions are generated randomly,
improved by the LRA algorithm and stored in the common memory.

— Individuals for improvement are selected from the common memory ran-
domly and blocked, which means that once selected individual (or individu-
als) cannot be selected again until all other individuals have been tried.

— Returning individual replaces the first found worse individual. If a worse
individual cannot be found within a certain number of reviews (where review
is understood as a search for the worse individual after an improved solution
is returned) then the worst individual in the common memory is replaced
by a randomly generated one.

— The computation time is defined by the no improvement time gap set by
the user. If in this time gap no improvement of the current best solution has
occurred, the A-Team stops computations.

5 Computational Experiment Settings

To evaluate the effectiveness of the proposed approach and compare the results
the computational experiment has been carried out using benchmark instances
generated by Yamashita at al. [26] for their computational experiment. The
instances of RCPSP for 30, 60, 90 and 120 activities and 4 resource types are
taken from the PSPLIB [19], and instances for RCPSP for 6 and 8 resource types
has been generated by ProGen [15] using the following settings:

— Resource factor (RF): 0.25, 0.5, 0.75 and 1.0,
— Network complexity (NC): 1.5, 1.8 and 2.1.

Next, the instances has been adopted to RACP problem using Drexl and Kimms
methodology [10] by removing the resource availability requirements, adding
the costs drawn from a uniform distribution U[1,10] and adding the deadlines
calculated using deadline factor DF = 1.2 (D = DF max}} s¢¥, where s¢'7
denotes the earliest starting times taken from the critical path).

The test set includes 144 problem instances. The experiment involved compu-
tation with the fixed number of optimization agents, fixed population size, and
the limited time indicated by the no improvement time gap.

A-Team for Solving the Resource Availability Cost Problem 449

The proposed A-Team includes 3 optimization agents representing the LRA,
LSA and PRA algorithms described in Section [- one of each type. The popu-
lation has included 10 individuals, and the no improvement time gap has been
set to 3 minutes. The values of the parameters are chosen on the basis of the
previous experiments [12], [13], [14].

The experiment has been carried out using nodes of the cluster Holk of the
Tricity Academic Computer Network built of 256 Intel Itanium 2 Dual Core 1.4
GHz with 12 MB L3 cache processors and with Mellanox InfiniBand intercon-
nections with 10Gb/s bandwidth. During the computation one node per three
optimization agents was used.

6 Computational Experiment Results

During the experiment the following characteristics of the computational results
have been calculated and recorded: mean and maximal relative error (Mean RE)
calculated as the deviation from the best solution obtained by Yamashita at
al. [26] for three heuristics: scatter search with dynamic update (SSD) and two
multi-start heuristic (FMS and RMS), the number of best results obtained, mean
computation time required to find the best solution (Mean CT) and mean total
computation time (Mean total CT). Each instance has been solved five times
and the results have been averaged over these solutions.

Table 1. Performance of the proposed A-Team in terms of the mean relative error and
number of the best results obtained

#Activities #Best
30 60 90 120 Mean | cults
A-Team for RACP 0.51% 1.23% 1.30% 1.52% 1.14% 96

Table 2. Performance of the proposed A-Team in terms of the mean computation time
in seconds

#Activities
30 60 90 120 Mean
A-Team for RACP 89.78s 123.42s 269.30s 315.92s 199.61s

Table 3. Performance of the proposed A-Team in terms of the mean total computation
time in seconds

#Activities

30 60 90 120 Mean

A-Team for RACP 141.04s 345.67s 470.53s 537.05s 373.57s

450 P. Jedrzejowicz and E. Ratajczak-Ropel

Table 4. Literature reported results [26]. Mean RE from the best known solution
obtained by Yamashita at al. [26] and number of the best solutions for three heuristics:
SSD, FMS and RMS.

#Activities #Best

30 60 90 120 Mean results
SSD 0.17% 0.00% 0.00% 0.00% 0.04% 137
FMS 0.42% 0.97% 1.33% 1.51% 1.06% 33
RMS 0.72% 1.77% 1.92% 2.26% 1.67% 31

Table 5. Literature reported results [26]. Mean computation time and mean total
computation time in seconds for three heuristics: SSD, FMS and RMS.

Mean CT Mean total CT
SSD 1609.55s 3262.01s
FMS 945.09s 3135.13s
RMS 133.92s 3117.85s

Performance of the proposed A-Team is presented in Tables [l 21and Bl These
results are compared with the results reported in the literature [26] shown in
Tables @ and Bl

The experiment results show that the proposed E-JABAT based A-Team for
RACP implementation is effective and the results are comparable with the lit-
erature reported results. In each case the 100% of feasible solutions has been
obtained. The times obtained in the experiment are quite good, however in the
case of the agent based approaches it is difficult to directly compare computation
times. The results obtained be a single agent may or may not influence the re-
sults obtained by the other agents. Additionally the computation time includes
the time used by agents to prepare, send and receive messages.

7 Conclusions

Experiment results show that the proposed implementation based on the ded-
icated A-Team architecture is an effective and competitive tool for solving in-
stances of the RACP problem. Presented results are comparable with solutions
known from the literature. It can be also noted that they have been obtained
in a comparable time. Time comparisons in this case might be misleading since
the proposed A-Teams have been run using different numbers and kinds of pro-
cessors. In case of the agent-based environments the significant part of the time
is used for agent communication which has an influence on both - computation
time and quality of the results.

The presented implementation and experiment is a first approach to construct
A-Team for RACP problem. The experiment should be extended to examine the

A-Team for Solving the Resource Availability Cost Problem 451

A-Team behavior for different no improvement time gaps, different numbers
of optimization agents and different population sizes. The other optimization
algorithms and ideas to improve this implementation should be considered and
tested.

Future research will concentrate on implementing more sophisticated proce-
dures and optimization agents, as well as on searching for the best configuration
of the heterogenous agents used during computations.

Acknowledgments. The authors are grateful to Proffesor Denise S. Yamashita
and Proffesor Sdvio B. Rodrigues from Federal University of Sao Carlos for
making available the benchmark datasets and solutions for RACP problem.

The research has been supported by the Ministry of Science and Higher Ed-
ucation grant no. N N519 576438 for years 2010-2013. Calculations have been
performed in the Academic Computer Centre TASK in Gdansk.

References

1. Artigues, C., Demassey, S., Néron, E.: Resource-Constrained Project Scheduling.
Models, Algorithms, Extensions and Applications. ISTE Ltd. and John Wiley &
Sons, Inc. (2008)

2. Barbucha, D., Czarnowski, 1., Jedrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska,
I.: eJABAT - An Implementation of the Web-Based A-Team. In: Nguyen, N.T.,
Jain, L.C. (eds.) Intel. Agents in the Evol. of Web & Appl. SCI, vol. 167, pp. 57-86.
Springer, Heidelberg (2009)

3. Barbucha, D., Czarnowski, 1., Jedrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska,
I.: Parallel Cooperating A-Teams. In: Jedrzejowicz, P., Nguyen, N.T., Hoang, K.
(eds.) ICCCI 2011, Part II. LNCS (LNAI), vol. 6923, pp. 322-331. Springer, Hei-
delberg (2011)

4. Blazewicz, J., Lenstra, J., Rinnooy, A.: Scheduling subject to resource constraints:
Classification and complexity. Discrete Applied Mathematics 5, 11-24 (1983)

5. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-Constrained
Project Scheduling: Notation, Classification, Models, and Methods. European Jour-
nal of Operational Research 112, 3-41 (1999)

6. Cherkassky, B.V., Goldberg, A.V.: On Implementing Push-Relabel Method for the
Maximum Flow Problem. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS,
vol. 920, pp. 157-171. Springer, Heidelberg (1995)

7. Demeulemeester, E.L.: Optimal Algorithms for Various Classes of Multiple
Resource-Constrained Project Scheduling Problems, Ph.D. thesis, Department of
Applied Economics, Katholieke Universiteit Leuven, Belgium (1992)

8. Demeulemeester, E.L., Herroelen, W.S.: A Branch-and-Bound Procedure for the
Multiple Resource-Constrained Project Scheduling Problem. Management Sci-
ence 38, 1803-1818 (1992)

9. Demeulemeester, E.L.: Minimizing resource availability costs in time-limited
project networks. Management Science 41, 15901598 (1995)

10. Drexl, A., Kimms, A.: Optimization guided lower and upper bounds for the re-
source investment problem. Journal of the Operational Research Society 52, 340—
351 (2001)

452

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. Jedrzejowicz and E. Ratajczak-Ropel

Herroelen, W., De Reyck, B., Demeulemeester, E.L.: A classification scheme for
project scheduling. In: Weglarz, J. (ed.) Handbook of Recent Advances in Project
Scheduling, pp. 1-26. Kluwer, Dordrecht (1999)

Jedrzejowicz, P., Wierzbowska, I.: JADE-Based A-Team Environment. In: Alexan-
drov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006, Part
II1. LNCS, vol. 3993, pp. 719-726. Springer, Heidelberg (2006)

Jedrzejowicz, P., Ratajczak-Ropel, E.: New Generation A-Team for Solving the
Resource Constrained Project Scheduling. In: Proc. the Eleventh International
Workshop on Project Management and Scheduling, Istanbul, pp. 156-159 (2008)
Jedrzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max Problem by the
Team of Agents. In: Hakansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J.,
Jain, L.C. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 734-743.
Springer, Heidelberg (2009)

Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general
class of resource-constrained project scheduling problems. Management Science 41,
1693-1703 (1995)

Kolisch, R.: Serial and parallel Resource-Constrained Project Scheduling Meth-
ods Revisited: Theory and Computation. European Journal of Operational Re-
search 43, 23-40 (1996)

Mohring, R.: Minimizing Costs of Resource Requirements in Project Networks
Subject to a Fixed Completion Time. Operations Research 32, 89-120 (1984)
Mohring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling prob-
lems by minimum cut computations. Management Science 49, 330-350 (2003)
PSPLIB, http://129.187.106.231/psplib

Radermacher, F.J.: Scheduling of Project Networks. Annals of Operations Re-
search 4, 227-252 (1985)

Ranjbar, M., Kianfar, F., Shadrokh, S.: Solving the resource availability cost prob-
lem in project scheduling by path relinking and genetic algorithm. Appl. Math.
Comput. 196, 879-888 (2008)

Rodrigues, S., Yamashita, D.: An exact algorithm for minimizing resource avail-
ability costs in project scheduling. European Journal of Operational Research 206,
562-568 (2010)

Shadrokh, S., Kianfar, F.: A genetic algorithm for resource investment project
scheduling problem, tardiness permitted with penalty. European Journal of Oper-
ational Research 181, 86-101 (2007)

Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous Teams: Co-
operation Schemes for Autonomous, Computer-Based Agents. Technical Report
EDRC 18-59-96. Carnegie Mellon University, Pittsburgh (1996)

Van Peteghem, V., Vanhoucke, M.: An artificial immune system algorithm for the
resource availability cost problem. Flexible Services and Manufacturing Journal,
1936-6582, 1-23 (2011)

Yamashita, D., Armentano, V., Laguna, M.: Scatter search for project scheduling
with resource availability cost. FEuropean Journal of Operational Research 169,
623-637 (2006)

http://129.187.106.231/psplib

	A-Team for Solving the Resource Availability Cost Problem
	Introduction
	Problem Formulation
	The E-JABAT Environment
	E-JABAT for Solving the RACP Problem
	Computational Experiment Settings
	Computational Experiment Results
	Conclusions
	References

