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Preface

This volume contains the papers presented at Inscrypt 2011, the 7th China
International Conference on Information Security and Cryptography, which took
place in Beijing during November 30 – December 3, 2011. The conference is a
leading international event, which has taken place in China annually since 2005.
The conference received 80 submissions and the committee decided to accept 24
of them. The program also included 2 invited talks given by Prof. Moti Yung
and Prof. Phong Nguyen.

Inscrypt 2011 was co-organized by the State Key Laboratory of Information
Security (SKLOIS), Chinese Academy of Sciences and by the Chinese Associ-
ation for Cryptologic Research (CACR). Support from these organizations was
crucial to the success of the conference and we would like to thank the organi-
zations for their continued help and assistance.

The use of the EasyChair system made the management of the conference
very convenient and is highly appreciated. We would also like to thank the orga-
nizing committee and the technical program committee as well as the external
experts who reviewed papers for their efforts in choosing the program and mak-
ing the conference a reality. Finally, we would like to thank all authors who
submitted papers to the conference and all conference attendees whose contin-
ued interest and support assures the continuation of the Inscrypt conference
series.

May 2012 Chuan-Kun Wu
Moti Yung

Dongdai Lin
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Adaptively Secure Forward-Secure

Non-interactive Threshold Cryptosystems

Benôıt Libert1,� and Moti Yung2

1 Université catholique de Louvain, ICTEAM Institute, Belgium
2 Google Inc. and Columbia University, USA

Abstract. Threshold cryptography aims at enhancing the availability
and security of decryption and signature schemes by splitting private
keys into several (say n) shares (typically, each of size comparable to the
original secret key). In these schemes, a quorum of at least (d ≤ n) servers
needs to act upon a message to produce the result (decrypted value or
signature), while corrupting less than d servers maintains the scheme’s
security. For about two decades, extensive study was dedicated to this
subject, which created a number of notable results. So far, most practi-
cal threshold signatures, where servers act non-interactively, were ana-
lyzed in the limited static corruption model (where the adversary chooses
which servers will be corrupted at the system’s initialization stage). Ex-
isting threshold encryption schemes that withstand the strongest com-
bination of adaptive malicious corruptions (allowing the adversary to
corrupt servers at any time based on its complete view), and chosen-
ciphertext attacks (CCA) all require interaction (in the non-idealized
model) and attempts to remedy this problem resulted only in relaxed
schemes. The same is true for threshold signatures secure under chosen-
message attacks (CMA).

It was open (for about 10 years) whether there are non-interactive
threshold schemes providing the highest security (namely, CCA-secure
encryption and CMA-secure signature) with scalable shares (i.e., as short
as the original key) and adaptive security. This paper first surveys our
ICALP 2011 work which answers this question affirmatively by present-
ing such efficient decryption and signature schemes within a unified al-
gebraic framework. The paper then describes how to design on top of
the surveyed system the first “forward-secure non-interactive threshold
cryptosystem with adaptive security.”

Keywords. Threshold cryptography, encryption schemes, digital signa-
tures, adaptive corruptions, non-interactivity, forward security.

1 Introduction

Threshold cryptography [27,28,14] avoids single points of failure by splitting
cryptographic keys into n > 1 shares which are stored by servers in distinct

� This author acknowledges the Belgian National Fund For Scientific Research (F.R.S.-
F.N.R.S.) for his “Collaborateur scientifique” fellowship and the BCRYPT Interuni-
versity Attraction Pole.

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 1–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 B. Libert and M. Yung

locations. Cryptographic schemes are then designed in such a way that at least
d out of n servers should contribute to private key operations in order for these
to succeed. In (d, n)-threshold cryptosystems (resp. signature schemes), an ad-
versary breaking into up to d−1 servers should be unable to decrypt ciphertexts
(resp. generate signatures) on its own.

1.1 Related Work

Designing secure threshold public key schemes has proved to be a highly non-
trivial task. For example, the random oracle model [8] was needed to analyze
the first chosen-ciphertext secure (or CCA-secure for short) threshold encryp-
tion systems put forth by Shoup and Gennaro [50]. Canetti and Goldwasser [19]
gave a standard model implementation based on the Cramer-Shoup encryption
scheme [20]. Their scheme, however, eliminates random oracles at the expense of
using interaction between decryption servers to obtain robustness (i.e., ensure
that no dishonest minority deviating from the protocol can prevent uncorrupted
servers from successfully decrypting) and to make sure that invalid ciphertexts
do not reveal useful information to the adversary. The approach of [19] consists
in randomizing the decryption process in such a way that decryption queries
on invalid ciphertexts result in meaningless partial decryptions. To avoid de-
cryption servers to jointly generate random values, they can alternatively store
a large number of pre-shared secrets. Other chosen-ciphertext-secure threshold
cryptosystems were suggested in [3,45,29,11].

Non-Interactive Schemes. Using the innovative Canetti-Halevi-Katz (CHK)
methodology [22], Boneh, Boyen and Halevi [11] showed the first non-interactive
robust CCA-secure threshold cryptosystem with a security proof in the standard
model (i.e., without the random oracle idealization): in their scheme, decryption
servers can compute their partial decryption result (termed “decryption share”)
without having to talk to each other and, in groups with a bilinear map, decryp-
tion shares contain built-in proofs of their validity, which guarantees robustness.
These properties were obtained by notably taking advantage of the fact that,
using bilinear maps, valid ciphertexts are publicly recognizable in the Boneh-
Boyen identity-based encryption system [9]. Similar applications of the CHK
methodology were studied in [15,39].

In the context of digital signatures, Shoup [51] described non-interactive
threshold signatures based on RSA and providing robustness.

Adaptive Corruptions. Historically, threshold primitives (including
[50,19,29,33,11]) have been mostly studied in a static corruption model, where
the adversary chooses which servers it wants to corrupt before the scheme is set
up. Unfortunately, adaptive adversaries – who can choose whom to corrupt at
any time and depending on the previously collected information – are known
(see, e.g., [23]) to be strictly stronger and substantially harder to deal with.
As discussed in [19], properly handling them sometimes requires to sacrifice
useful properties. For example, the Canetti-Goldwasser system can be proved
secure against adaptive corruptions when the threshold d is sufficiently small
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(typically, when d = O(n1/2)) but this comes at the expense of a lower resilience
and schemes supporting a linear number of faulty servers seem preferable.

To address the above concerns, Canetti et al. [18] proposed a method to cope
with adaptive corruptions assuming reliable erasures (i.e., players must be able
to safely erase their local data when they no longer need them) and also achieve
proactive security [47]. In the case of proactive RSA signatures, this approach
requires all servers to refresh their shares (by jointly computing a sharing of
zero) after each distributed private key operation (effectively making schemes
n-out-of-n rather than d-out-of-n for any d ≤ n). This limitation was removed
in [35] and [6], where simpler adaptively secure proactive RSA signatures are
described. In 1999, Frankel, MacKenzie and Yung [34,35] showed different tech-
niques to achieve adaptive security while still using erasures.

Later on, Jarecki and Lysyanskaya [37] eliminated the need for erasures and
gave an adaptively secure variant of the Canetti-Goldwasser CCA-secure thresh-
old cryptosystem [19]. Unfortunately, their scheme – which is also designed to
remain secure in concurrent environments – requires a lot of interaction be-
tween decryption servers. Abe and Fehr [4] showed how to extend Jarecki and
Lysyanskaya’s threshold version of Cramer-Shoup in the universal composability
framework but without completely eliminating interaction from the decryption
algorithm.

Recently, Qin et al. [48] suggested a non-interactive threshold cryptosystem
(more precisely, a threshold broadcast encryption scheme whose syntax is similar
to [24,25]) with adaptive security. Its downside is its lack of scalability since pri-
vate key shares consist of O(n) elements, where n is the number of servers (while,
in prior schemes, the share size only depends on the security parameter). More-
over, the security proof requires the threshold d to be at most poly-logarithmic
in the security parameter, even if n is polynomial.

1.2 Our Results

FullyNon-InteractiveAdaptivelySecureThresholdCryptosystems.

At ICALP 2011 [42], we gave the first robust threshold cryptosystem which is
simultaneously chosen-ciphertext secure under adaptive corruptions and non-
interactive while being scalable (i.e., providing short private keys). By “non-
interactive”, we mean that no on-line conversation is needed among decryption
servers during the decryption process: each decryption server only sends one
message to the combiner that gathers partial decryption results.

Unlike [48], our scheme [42] features constant-size private key shares (where
“constant” means independent of d and n) for public keys of comparable size.
In addition, it is conceptually simple and relies on assumptions of constant-size
whereas [48] relies on a “q-type” assumption where the input is a sequence of
the form (g, gα, . . . , g(α

q)), for some secret α ∈ Zp.
The starting point of our system [42] is the identity-based encryption (IBE)

system [12,49] proposed by Lewko and Waters [41] and the elegant dual system
approach introduced by Waters [52]. The latter has proved useful to demon-
strate full security in identity and attribute-based encryption [52,40,41] but, to
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the best of our knowledge, it has not been applied to threshold cryptosystems so
far. It is worth noting that the security proof of our scheme is not simply a direct
consequence of applying the CHK paradigm to the Lewko-Waters results [41] as
the treatment of adaptive corruptions does not follow from [22,41]. Like [41],
our proof uses a sequence of games. While we also use so-called semi-functional
decryption shares and ciphertexts as in the IBE setting [41], we have to consider
two distinct kinds of semi-functional ciphertexts and an additional step (which
aims at making all private key shares semi-functional) is needed in the proof to
end up in a game where proving the security is made simple.

Technically speaking, the encryption scheme can be visualized as a variant of
the Boneh-Boyen-Halevi threshold system [11] in groups whose order is a product
N = p1p2p3 of three primes, which are chosen at key generation. Interestingly,
if the factorization of N is somehow leaked, the proof of security under static
corruptions implied by [11] still applies and only the proof of adaptive security
ceases to go through.

In a follow-up work [43], we also described a more general framework, based
on very different techniques, for the construction of threshold cryptosystems
featuring the same properties with several advantages in terms of efficiency and
concrete security.

In the full version of [42], we also gave a non-interactive threshold signature
that follows the same line of development and which can be proven secure in the
standard model under adaptive corruptions. This appears to be the first security
result under adaptive corruptions for non-interactive threshold signatures in the
standard model.

Non-Interactive Forward-Secure Threshold Systems with Adaptive

Security. We also present a completely non-interactive threshold cryptosystem
with forward-security. Forward-secure cryptographic primitives [5] have their life-
time divided into discrete time intervals at the beginning of which private keys
are updated without changing the public key. Their goal is to mitigate the dam-
ages key exposures by confining their effect within a certain time frame: when the
adversary obtains full access to the private key at a certain period, the scheme
becomes insecure from this point forward but past uses of the private key remain
safe. Public-key constructions with forward security received much attention in
the literature (see [7,2,36,46,21,16] and references therein).

In the threshold setting, forward security guarantees that, even after having
broken into d distinct servers, the adversary can obviously compromise future
uses of the system but remains unable to abuse it for past periods: whatever was
encrypted during past periods remains computationally hidden to the adversary.
The combination of forward-secure and threshold mechanisms was suggested for
the first time by Abdalla, Miner and Namprempre [1] who argued that both
approaches provide complementary security properties. Indeed, breaking into d
distinct servers is only worth the effort when the adversary is able to obtain the
d-th share sufficiently early in the history of the system. In [1], Abdalla et al.
provided a way to obtain forward-security in threshold signatures based on fac-
toring. However, their forward-secure threshold signatures require a significant
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amount of interaction in the signature generation process, but also in the key
update algorithm: at the beginning of each time period, all servers have to run
an interactive protocol to move their private key shares forward in time. Our
construction completely eliminates the need for interaction in the key update
mechanism. At the beginning of each time period, decryption servers can au-
tonomously update their private key shares without any input supplied by other
parties.

The paper thus gives a security definition for non-interactive forward-secure
threshold cryptosystems in the adaptive corruption setting. We then give a con-
crete realization meeting our security definition. The construction can be seen
as a threshold version of the forward-secure public-key encryption scheme put
forth by Boneh, Boyen and Goh [10] using groups of composite order to deal
with adaptive corruptions in the threshold setting. Using the same design prin-
ciple, we can also readily obtain forward-secure threshold signatures that are
completely non-interactive as well.

1.3 Organization

Section 2 recalls the definitions of threshold cryptosystems. The scheme and
its CCA-security are analyzed in Sections 3.1 and 3.2, respectively. In Section
4, we provide a description of our adaptively secure forward-secure threshold
encryption scheme. Our threshold signature is presented in the full version of
the paper.

2 Background and Definitions

2.1 Definitions for Threshold Public Key Encryption

Definition 1. A non-interactive (d, n)-threshold encryption scheme is a set of
algorithms with the following specifications.

Setup(λ, d, n): takes as input a security parameter λ and integers d, n ∈ poly(λ)
(with 1 ≤ d ≤ n) denoting the number of decryption servers n and the
decryption threshold d. It outputs a triple (PK,VK,SK), where PK is
the public key, SK = (SK1, . . . , SKn) is a vector of n private-key shares
and VK = (V K1, . . . , V Kn) is the corresponding vector of verification keys.
Decryption server i is given the share (i, SKi) that allows deriving decryption
shares for any ciphertext. For each i ∈ {1, . . . , n}, the verification key V Ki

will be used to check the validity of decryption shares generated using SKi.

Encrypt(PK,M): is a randomized algorithm that, given a public key PK and
a plaintext M , outputs a ciphertext C.

Ciphertext-Verify(PK,C): takes as input a public key PK and a ciphertext
C. It outputs 1 if C is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK, i, SKi, C): on input of a public key PK, a ciphertext C
and a private-key share (i, SKi), this (possibly randomized) algorithm out-
puts a special symbol (i,⊥) if Ciphertext-Verify(PK,C) = 0. Otherwise,
it outputs a decryption share μi = (i, μ̂i).
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Share-Verify(PK, V Ki, C, μi): takes as input PK, the verification key V Ki, a
ciphertext C and a purported decryption share μi = (i, μ̂i). It outputs either
1 or 0. In the former case, μi is said to be a valid decryption share. We adopt
the convention that (i,⊥) is an invalid decryption share.

Combine(PK,VK, C, {μi}i∈S): given PK,VK, C and a subset S ⊂ {1, . . . , n}
of size d = |S| with decryption shares {μi}i∈S , this algorithm outputs either
a plaintext M or ⊥ if the set contains invalid decryption shares.

Chosen-ciphertext security. We use a definition of chosen-ciphertext secu-
rity which is identical to the one of [50,11] with the difference that the adversary
can adaptively choose which parties she wants to corrupt.

Definition 2. A non-interactive (d, n)-Threshold Public Key Encryption scheme
is secure against chosen-ciphertext attacks (or IND-CCA2 secure) and adaptive
corruptions if no PPT adversary has non-negligible advantage in this game:

1. The challenger runs Setup(λ, d, n) to obtain PK, SK = (SK1, . . . , SKn)
and VK = (V K1, . . . , V Kn). It gives PK and VK to the adversary A and
keeps SK to itself.

2 The adversary A adaptively makes the following kinds of queries:

- Corruption query: A chooses i ∈ {1, . . . , n} and obtains SKi.

- Decryption query: A chooses an index i ∈ {1, . . . , n} and a ciphertext C.
The challenger replies with μi = Share-Decrypt(PK, i, SKi, C).

3. A chooses two equal-length messagesM0,M1. The challenger flips a fair coin
β R← {0, 1} and computes C� = Encrypt(PK,Mβ).

4. A makes further queries as in step 2 but she is not allowed to make decryption
queries on the challenge ciphertext C�.

5. A outputs a bit β′ and is deemed successful if (i) β′ = β; (ii) no more than
d − 1 private key shares were obtained by A (via corruption queries) in the
whole game. As usual, A’s advantage is Adv(A) = |Pr[A wins ]− 1

2 |.
Consistency. A (t, n)-Threshold Encryption scheme provides decryption con-
sistency if no PPT adversary has non-negligible advantage in a three-stage game
where stages 1 and 2 are identical to those of definition 2. In stage 3, the adver-
sary outputs a ciphertext C and two d-sets of decryption shares Φ = {μ1, . . . , μd}
and Φ′ = {μ′1, . . . , μ′d}. The adversary A is declared successful if

1. Ciphertext-Verify(PK,C) = 1.

2. Φ and Φ′ only consist of valid decryption shares.

3. Combine(PK,VK, C, Φ) �= Combine(PK,VK, C, Φ′).

We note that condition 1 aims at preventing an adversary from trivially winning
by outputting an invalid ciphertext, for which distinct sets of key shares may
give different results. This definition of consistency is identical to the one of
[50,11] with the difference that A can adaptively corrupt decryption servers.
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2.2 Bilinear Maps and Hardness Assumptions

We use groups (G,GT ) of composite order N = p1p2p3 endowed with an effi-
ciently computable map e : G×G→ GT such that: (1) e(ga, hb) = e(g, h)ab for
any (g, h) ∈ G×G and a, b ∈ Z; (2) if e(g, h) = 1GT for each h ∈ G, then g = 1G.
An important property of composite order groups is that pairing two elements
of order pi and pj , with i �= j, always gives the identity element 1GT .

In the following, for each i ∈ {1, 2, 3}, we denote by Gpi the subgroup of order
pi. For all distinct i, j ∈ {1, 2, 3}, we call Gpipj the subgroup of order pipj. In
this setting, we rely on the following assumptions introduced in [41].

Assumption 1. Given a description of (G,GT ) as well as g
R← Gp1 , X3

R← Gp3

and η ∈ G, it is infeasible to efficiently decide if η ∈ Gp1p2 or η ∈ Gp1 .

Assumption 2. Let g,X1
R← Gp1 , X2, Y2

R← Gp2 , Y3, Z3
R← Gp3 . Given a de-

scription of (G,GT ), a set of group elements (g,X1X2, Z3, Y2Y3) and η, it is
hard to decide if η ∈R Gp1p3 or η ∈R G.

Assumption 3. Let g R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 and α, s R← ZN .
Given a description of (G,GT ), group elements (g, gαX2, X3, g

sY2, Z2) and
η, it is infeasible to decide if η = e(g, g)αs or η ∈R GT .

3 A Non-interactive CCA2-Secure Threshold
Cryptosystem with Adaptive Corruptions

Our starting point is applying the Canetti-Halevi-Katz [22] transform to a (con-
ceptually equivalent) variant of the Lewko-Waters IBE [41] in the same way as
[11] derives a CCA2-secure threshold cryptosystem from the Boneh-Boyen IBE
[9]. We show that composite order groups and the techniques of [41] make it
possible to handle adaptive corruptions in a relatively simple way and without
having to refresh private key shares after each private key operation.

To this end, we apply a modification to the IBE scheme [41][Section 3]. The
latter encrypts M under the identity ID ∈ ZN as (M · e(g, g)α·s, gs, (uID · v)s) for
a random exponent s ∈ ZN and where the public key is

(
g, u, v, e(g, g)α

)
, with

g, u, v ∈ Gp1 . We implicitly use an IBE scheme where messages are encrypted as
(M · e(g, h)α·s, gs, (uID · v)s), where h �= g and e(g, h)α is part of the public key.

Another difference is that, in order to ensure the consistency of these scheme
(as defined in section 2.1), the ciphertext validation algorithm has to reject all
ciphertexts containing components in the subgroup Gp3 .

3.1 Description

In the description hereafter, the verification key of the one-time signature is
interpreted as an element of ZN . In practice, longer keys can be hashed into ZN

using a collision-resistant hash function.

Setup(λ, d, n): given a security parameter λ ∈ N and integers d, n ∈ poly(λ)
(with 1 ≤ d ≤ n), the algorithm does the following.
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1. Choose bilinear groups (G,GT ) of orderN = p1p2p3, with p1, p2, p3 > 2λ.
2. Choose α R← ZN , g, h, u, v R← Gp1 , Xp3

R← Gp3 and compute e(g, h)α.
3. Choose a strongly unforgeable one-time signature Σ = (G,S,V).
4. Choose a polynomial P [X ] = α + α1X + · · · + αd−1X

d−1 ∈ ZN [X ], for
random coefficients α1, . . . , αd−1

R← ZN . Define the public key to be

PK =
(
(G,GT ), N, g, e(g, h)

α, u, v, Xp3 , Σ
)

and set private key shares SK = (SK1, . . . , SKn) as SKi = h
P (i) · Z3,i,

for i = 1 to n, with Z3,1, . . . , Z3,n
R← Gp3 . Verification keys are then set

as VK = (V K1, . . . , V Kn) with V Ki = e(g, h)
P (i) for i = 1 to n.

The public key PK and the verification key VK are made publicly available
while, for each i ∈ {1, . . . , n}, SKi is given to decryption server i.

Encrypt(PK,m): to encrypt m ∈ GT , generate a one-time signature key pair
(SSK, SVK)← G(λ). Choose s R← ZN and compute

C =
(
SVK, C0, C1, C2, σ

)
=
(
SVK, m · e(g, h)α·s, gs, (uSVK · v)s, σ

)
,

where σ = S(SSK, (C0, C1, C2)).

Ciphertext-Verify
(
PK,C

)
: parse the ciphertext C as (SVK, C0, C1, C2, σ).

Return 1 if V(SVK, (C0, C1, C2), σ) = 1, e(Cj , Xp3) = 1GT for j ∈ {1, 2}
and e(g, C2) = e(C1, u

SVK · v). Otherwise, return 0.
Share-Decrypt(i, SKi, C): Parse C as

(
SVK, C0, C1, C2, σ

)
and SKi as an el-

ement of G. Return (i,⊥) if Ciphertext-Verify
(
PK,C

)
= 0. Otherwise,

choose r R← ZN , W3,W
′
3

R← Gp3 , compute and return μi = (i, μ̂i), where

μ̂i = (Di,1, Di,2) =
(
SKi · (uSVK · v)r ·W3, g

r ·W ′
3

)
. (1)

Share-Verify
(
PK,C, (i, μ̂i)

)
: parse C as (SVK, C0, C1, C2, σ). If μ̂i = ⊥ or

μ̂i �∈ G2, return 0. Otherwise, parse μ̂i as a pair (Di,1, Di,2) ∈ G2 and return
1 if e(Di,1, g) = V Ki · e(uSVK · v,Di,2). In any other situation, return 0.

Combine(PK,C, {(i, μ̂i)}i∈S): for each i ∈ S, parse the share μ̂i as (Di,1, Di,2)
and return ⊥ if Share-Verify

(
PK,C, (i, μ̂i)

)
= 0. Otherwise, compute

(D1, D2) =
(∏

i∈S D
Δi,S(0)
i,1 ,

∏
i∈S D

Δi,S(0)
i,2

)
, which equals

(D1, D2) =
(
hα · (uSVK · v)r̃ · W̃3, g

r̃ · W̃ ′
3

)
,

for some W̃3, W̃
′
3 ∈ Gp3 and r̃ ∈ Zp1 . Using (D1, D2), compute and output

the plaintext m = C0 · e(C1, D1)
−1 · e(C2, D2).

As far as efficiency goes, the ciphertext-validity check can be optimized by choos-
ing ω1, ω2

R← ZN and checking that e(g · Xω1
p3
, C2) = e(C1, (u

SVK · v) · Xω2
p3

),
which rejects ill-formed ciphertexts with overwhelming probability and saves two
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pairing evaluations. Similar batch verification techniques apply to simultaneously
test d or more decryption shares using only two pairing evaluations1.

We observe that, as in [11], decryption shares can be seen as signature shares
(for a message consisting of the verification key SVK) calculated by decryption
servers. In the full version, we show that the underlying threshold signature is
secure against chosen-message attacks in the adaptive corruption scenario.

3.2 Security

The security proof departs from approaches that were previously used in thresh-
old cryptography in that we do not construct an adversary against the cen-
tralized version of the scheme out of a CCA2 adversary against its threshold
implementation. Instead, we directly prove the security of the latter using the
dual encryption paradigm [52,41].

Our proof proceeds with a sequence of games and uses semi-functional cipher-
texts as in [41], and decryption shares. Still, there are two differences. First, two
kinds of semi-functional ciphertexts (that differ in the presence of a component
of order p2 in the target group GT ) have to be involved. The second difference
is that we need to introduce semi-functional private key shares at some step
of the proof and argue that they cannot be distinguished from real key shares.
The proof takes advantage of the fact that, at each step of the sequence, the
simulator knows either the Gp1 components of private key shares {hP (i)}ni=1 or
a “blinded” version {hP (i) ·Z2,i}ni=1 of those shares, for some Z2,i ∈R Gp2 , which
suffices to consistently answer adaptive corruption queries.

Theorem 1. The scheme is IND-CCA2 against adaptive corruptions assuming
that Assumption 1, Assumption 2 and Assumption 3 all hold and that Σ is a
strongly unforgeable2 one-time signature.

Proof. The proof proceeds using a sequence of games including steps similar to
[41] and additional steps. As in [52,41], the proof makes use of semi-functional
ciphertexts and decryption shares (which are actually private keys in [41]). In
addition, we also have to consider semi-functional private key shares. Another
difference is that we need two kinds of semi-functional ciphertexts.

◦ Semi-functional ciphertexts of Type I are generated from a normal ciphertext
(C′

0, C
′
1, C

′
2) and some g2 ∈ Gp2 , by choosing random τ, zc

R← ZN and setting

C0 = C′
0, C1 = C′

1 · gτ2 , C2 = C′
2 · gτzc2 .

◦ Semi-functional ciphertexts of Type II are generated from a normal cipher-
text (C′

0, C
′
1, C

′
2) by choosing random τ, zc, θ

R← ZN and setting

C0 = C′
0 · e(g2, g2)θ, C1 = C′

1 · gτ2 , C2 = C′
2 · gτzc2 .

1 Namely, d shares {μi = (Di,1, Di,2)}di=1 can be batch-verified by drawing

ω1, . . . , ωd
R← ZN and testing if e

(
g,
∏d

i=1 D
ωi
i,1

)
=

∏d
i=1 V Kωi

i ·e
(
uSVK ·v,∏d

i=1 D
ωi
i,2

)
.

2 Strong unforgeability refers to the infeasibility, after having obtained a message-
signature pair (M,σ), of computing a new pair (M�, σ�) �= (M,σ).
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◦ Semi-functional decryption shares are obtained from a normal decryption
share (D′

i,1, D
′
i,2) by picking γ, zk

R← ZN , W3,W
′
3

R← Gp3 and setting

Di,1 = D′
i,1 · gγzk2 ·W3, Di,2 = D′

i,2 · gγ2 ·W ′
3.

◦ Semi-functional private key shares {SKi}ni=1 are obtained from normal shares
{SK ′

i}ni=1 by setting SKi = SK
′
i · Z2,i, where Z2,i

R← Gp2 , for i = 1 to n.

The proof considers a sequence of q + 6 games. It starts with the real game
Gamereal followed by Gamerestricted, Game∗restricted Game0,Game1, . . . ,Gameq and
finally Game∗q and Gamefinal.

Gamerestricted: is identical to Gamereal with the difference that the challenger
B rejects all post-challenge decryption queries (SVK, C0, C1, C2, σ) for which
SVK = SVK�, where SVK� denotes the one-time verification key included in
the challenge ciphertext.

Game∗restricted: is identical to Gamerestricted with the difference that the adver-
sary A is not allowed to make decryption queries (SVK, C0, C1, C2, σ) for
which SVK = SVK� mod p2.

Game0: is identical to Game∗restricted but the normal challenge ciphertext is re-
placed by a semi-functional ciphertext of Type I.

Gamek (1 ≤ k ≤ q): in this game, the challenge ciphertext is a semi-functional
ciphertext of Type I and the challenger B answers the first k decryption
queries by returning semi-functional decryption shares. As for the last q− k
decryption queries, they are answered using normal decryption shares.

Game∗q: is identical to Gameq with the following two differences.

- All private key shares are made semi-functional and thus contain a ran-
dom Gp2 component.

- The Type I semi-functional challenge ciphertext is traded for a semi-
functional ciphertext of Type II.

Gamefinal: is as Game∗q but the Type II semi-functional challenge ciphertext is
replaced by a semi-functional encryption of a random plaintext (instead of
Mβ). In this game, A has no information on the challenger’s bit β ∈ {0, 1}
and cannot guess it with better probability than 1/2.

As in [41], when a semi-functional decryption share is used (in combination with
d−1 normal decryption shares) to decrypt a semi-functional ciphertext, decryp-
tion only works when zk = zc, in which case the decryption share is called nomi-
nally semi-functional. For each k ∈ {1, . . . , q}, the transitions between Gamek−1

and Gamek is done in such a way that the distinguisher cannot directly decide
(i.e., without interacting with A) whether the kth decryption share is normal or
semi-functional by generating this share for the challenge verification key SVK�.
Indeed, in such an attempt, the generated decryption share is necessarily either
normal or nominally semi-functional, so that decryption succeeds either way.

Moreover, during the transition between Gameq and Game∗q , we have to make
sure that the distinguisher cannot bypass its interaction with the adversary and
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try to distinguish the two games by itself either. Should it attempt to decrypt
the challenge ciphertext using the private key shares, the transition is orga-
nized in such a way that decryption succeeds regardless of whether the private
key shares (resp. the challenge ciphertext) are normal or semi-functional (resp.
semi-functional of Type I or II).

In the full version of [42], it is shown that all games are computationally
indistinguishable as long as the one-time signature is strongly unforgeable and
Assumptions 1, 2, 3 hold. 
�
Unlike [50,11], where consistency holds statistically, we demonstrate consistency
in the computational sense and prove the next result in the full version.

Theorem 2. The scheme provides consistency if Assumption 1 holds.

4 Non-interactive Forward-Secure Threshold
Cryptosystems with Adaptive Security

In this section, we define the syntax of forward-secure non-interactive threshold
encryption schemes and their security in the adaptive corruption scenario. We
then explain how to confer forward security to our scheme of Section 3.

4.1 Definitions for Forward-Secure Threshold Public Key
Encryption

Definition 3. A non-interactive (d, n)-forward-secure threshold cryptosystem is
a set of algorithms with the following specifications.

Setup(λ, d, n, T ): takes as input a security parameter λ and integers d, n, T ∈
poly(λ) (with 1 ≤ d ≤ n) denoting the number of decryption servers n, the
decryption threshold d and the number of time periods T . It outputs a triple

(PK,VK,SK(0)), where PK is the public key, SK(0) = (SK
(0)
1 , . . . , SK

(0)
n )

is an initial vector of private-key shares and VK = (V K1, . . . , V Kn) is the
corresponding vector of verification keys. Decryption server i is given the

share (i, SK
(0)
i ) that allows computing decryption shares for any ciphertext.

For each i ∈ {1, . . . , n}, the verification key V Ki will be used to check the

validity of decryption shares generated using SK
(0)
i .

Update(i, t, SK
(t)
i ): is a non-interactive key update algorithm run by decryp-

tion server i ∈ {1, . . . , n} at the end of period t ∈ {0, . . . , T − 2}. On input

of a private key share SK
(t)
i for period t, it outputs an updated private key

share SK
(t+1)
i for period t+ 1 and erases SK

(t)
i .

Encrypt(PK, t,M): is a probabilistic algorithm that takes as input a public
key PK, a period number t ∈ {0, . . . , T − 1} and a plaintext M . It outputs
a ciphertext C.

Ciphertext-Verify(PK, t, C): takes as input a public key PK and a ciphertext
C. It outputs 1 if C is deemed valid w.r.t. (PK, t) and 0 otherwise.
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Share-Decrypt(PK, t, i, SK
(t)
i , C): takes as input a public key PK, a period

number t ∈ {0, . . . , T −1}, a ciphertext C and a private-key share (i, SK
(t)
i ).

It outputs a special symbol (i,⊥) if Ciphertext-Verify(PK, t, C) = 0.
Otherwise, it outputs a decryption share μi = (i, μ̂i).

Share-Verify(PK, V Ki, t, C, μi): takes as input PK, the verification key V Ki,
a ciphertext C and a purported decryption share μi = (i, μ̂i). It outputs
either 1 or 0. In the former case, μi is said to be a valid decryption share.
We adopt the convention that (i,⊥) is an invalid decryption share.

Combine(PK,VK, t, C, {μi}i∈S): givenPK,VK,C anda subsetS⊂{1, . . . , n}
of size d = |S| with decryption shares {μi}i∈S , this algorithm outputs either
a plaintextM or ⊥ if the set contains invalid decryption shares.

Chosen-ciphertext security. We use a definition of chosen-ciphertext secu-
rity which is identical to the one of [50,11] with the difference that the adversary
can adaptively choose which parties it wants to corrupt.

Definition 4. A non-interactive (d, n)-Threshold Public Key Encryption scheme
is secure against chosen-ciphertext attacks (or IND-CCA2 secure) and adaptive
corruptions if no PPT adversary has non-negligible advantage in this game:

1. The challenger runs Setup(λ, d, n) to obtain a public key PK, an initial

vector of private key shares SK(0) = (SK
(0)
1 , . . . , SK

(0)
n ) and a vector of

verification keys VK = (V K1, . . . , V Kn). It gives PK and VK to the ad-

versary A and keeps SK(0) to itself. The initial period number is set to t = 0.

2 The adversary A adaptively makes the following kinds of queries:

- Update query: when A decides to move to the next time period, he notifies
the challenger. If t < T −1, the challenger increments the period number
t. Otherwise, it returns ⊥.

- Corruption query: at any time, A can choose an index i ∈ {1, . . . , n}
and obtains the current private key share SK

(t)
i of server i.

- Decryption query: A chooses an index i ∈ {1, . . . , n} and a period-
ciphertext pair (t, C). The challenger replies with the partial decryption

μi = Share-Decrypt(PK, t, i, SK
(t)
i , C).

3. When A decides to enter the challenge phase, he chooses two equal-length
messages M0,M1. The challenger flips a fair coin β R← {0, 1} and computes
C� = Encrypt(PK, t�,Mβ), where t

� is the index of the current time period

t�. It is required that no more than d−1 private key shares SK
(t)
i be obtained

by A throughout periods t ≤ t�.
4. A makes further queries as in step 2 but it is not allowed to make decryption

queries on the challenge ciphertext C� for period t�.

5. A outputs a bit β′ and is deemed successful if β′ = β. As usual, A’s advantage
is measured as the distance Adv(A) = |Pr[β′ = β]− 1

2 |.
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4.2 A Construction with Chosen-Plaintext Security against Passive
Adversaries

For simplicity, we do not consider chosen-ciphertext security or robustness in
this section. However, both features can be added by simply using the same
techniques as in Section 3. For this reason, we do not provide an algorithm for
verifying the validity of decryption shares here. Later on, we will outline how
chosen-ciphertext security and robustness can both be added.

As in [38], we associate time periods with the leaves of a binary tree. As
in all existing forward-secure encryption schemes, we only need a Binary Tree
encryption system providing selective-node security [22] (i.e. the adversary has
to choose the node to attack ahead of time) if we were only aiming for forward
security. However, to achieve adaptive security in the threshold setting, we will
start from the Lewko-Waters HIBE system.

In the description below, we imagine binary tree of height 
 where the root
(at depth 0) has label ε. When a node at depth ≤ 
 has label w, its children are
labeled with w0 and w1. Besides, 〈t〉 stands for the 
-bit representation of integer
t. The leaves of the tree correspond to successive time periods in the obvious
way, stage t being associated with the leaf labeled by 〈t〉. Periods are indexed
from 0 to T − 1 with T = 2�. As in [38], partial decryptions are generated using
the private key of node 〈t〉 at stage t where the full private key also includes
node keys for all right siblings for nodes on the path from 〈t〉 to the root. The
latter key material allows for key updates from period t to the next one.

Keygen(λ, d, n, T ): given a security parameter λ ∈ N, the desired number of
time periods T = 2�, the number of servers n ∈ poly(λ) and a threshold
d ∈ {1, . . . , n}, do the following.

1. choose bilinear map groups (G,GT ) of order N = p1p2p3, with pi > 2λ

for each i ∈ {1, 2, 3} and g, h ∈ Gp1 .

2. Compute e(g, h)α for a random α R← Z∗
p. Choose h0, h1, . . . , h�

R← Gp1

and Xp3

R← Gp3 .
3. Define a function F : {0, 1}≤� → Gp1 , as

F (w) = h0 ·
l∏

j=1

h
wj

j

where w = w1 . . . wl and wτ ∈ {0, 1} for all τ ∈ {1, . . . , l}. The public
key is

PK =
(
g, e(g, h)α, h0, h1, . . . , h�, Xp3

)
.

4. Choose a random polynomial P [X ] of degree d− 1 such that P (0) = α.
5. For each i ∈ {1, . . . , n}, choose ri,0, ri,1 R← ZN and, for each b ∈ {0, 1},
Y b
i , Z

b
i , R

b
i,2, . . . , R

b
i,�

R← Gp3 and set

ski,0 =
(
hP (i) · hri,00 · Y 0

i , g
ri,0 · Z0

i , h
ri,0
2 ·R0

i,2, . . . , h
ri,0
� ·R0

i,�

)
,

ski,1 =
(
hP (i) · (h0 · h1)ri,1 · Y 1

i , g
ri,1 · Z1

i , h
ri,1
2 ·R1

i,2, . . . , h
ri,1
� ·R1

i,�

)
.
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Using ski,0, recursively apply algorithm Extract (defined below) to obtain
node keys ski,01, ski,001, . . . ski,0�−11 and ski,0� .

6. For each i ∈ {1, . . . , n}, the initial private share of server i is defined as

SK
(0)
i,0 =

(
ski,0� , {ski,1, ski,01, ski,001, . . . , ski,0�−11}

)
.

Extract(ski,w1...wk−1
) : to generate private keys for its children, a node of label

w = w1 . . . wl−1 at level l − 1 parses its private key into

ski,w1...wl−1
= (Ai,0, Ai,1, Bi,l, . . . , Bi,�)

=
(
hP (i) · F (w1 . . . wl−1)

r′i,w · Yi,w, gr′i,w · Zi,w,

h
r′i,w
l ·Ri,w,l, . . . , h

r′i,w
� · Ri,w,�

)
,

for some Yi,w, Zi,w, Ri,w,l, . . . , Ri,w,� ∈R Gp3 . For each j ∈ {0, 1}, it chooses
tj

R← ZN as well as random Y ′
i
j
, Z ′

i
j R← Gp3 , R

′j
i,l+1, . . . , R

′j
i,�

R← Gp3 and
computes

ski,w1...wl−1j =
(
Ai,0 · Bj

i,l · F (w1 . . . wl−1j)
tj · Y ′

i
j
, Ai,1 · gtj · Z ′

i
j
,

Bi,l+1 · htjl+1 · R′j
i,l+1, . . . , Bi,� · htj� · R′j

i,�

)
=
(
hP (i) · F (w1 . . . wl−1j)

rj,w · Ỹ j
i , g

rj,w · Z̃j
i ,

h
rj,w
i,l+1 · R̃j

i,l+1, . . . , h
rj,w
i,� · R̃j

i,�

)
where rj,w = r′i,w + tj and for some Ỹ j

i , Z̃
j
i , R̃

j
i,l+1, . . . , R̃

j
i,� ∈R Gp3 .

Update(i, t, SK
(t)
i ) : (where t < T − 2)

1. Parse 〈t〉 as t1 . . . t� ∈ {0, 1}�. Parse SK(t)
i as(

ski,〈t〉, {ski,t1...tl−11}l∈{1,...,�} s.t. tl=0

)
and erase ski,〈t〉.

2. If t� = 0, SK
(t+1)
i simply consists of remaining node keys:

SK
(t+1)
i =

(
ski,t1...t�−11, {ski,t1...tl−11}l∈{1,...,�−1} s.t. tl=0

)
.

Otherwise, let l′ ∈ {1, . . . , 
} denote the largest index such that tl′ = 0.
Let w′ = t1 . . . tl′−11 ∈ {0, 1}l′. Using the node key ski,w′ (which is

available as part of SK
(t)
i ), recursively apply Extract to obtain node

keys ski,w′1, ski,w′01, . . . , ski,w′0�−l′−11 and finally ski,〈t+1〉 = ski,w′0�−l′ .
Erase ski,w′ and return

SK
(t+1)
i =

(
ski,〈t+1〉, {ski,t1...tl−11}l∈{1,...,l′−1} s.t. tl=0

∪ {ski,w′1, ski,w′01, . . . , ski,w′0�−l′−11}
)
.

Encrypt(M, t, PK) : let 〈t〉 = t1 . . . t� ∈ {0, 1}� be the binary expansion of the
period number t. To encrypt M ∈ GT , choose s

R← ZN and compute

C = (t, C0, C1, C2) =
(
t, M · e(g, h)s, gs, F (t1 . . . t�)s

)
.
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Share-Decrypt(i, t, SK
(t)
i , C): let 〈t〉 = t1 . . . t�. Parse SK(t)

i as(
ski,〈t〉, {ski,t1...tl−11}l∈{1,...,�}s.t.tl=0

)
and the node key ski,〈t〉 as

(Ai,0, Ai,1) =
(
hP (i) · F (t1 . . . t�)ri,〈t〉 · Yi,〈t〉, gri,〈t〉 · Zi,〈t〉

)
,

for some ri,〈t〉 ∈ ZN and Yi,〈t〉, Zi,〈t〉 ∈ Gp3 (note that ski,〈t〉 can be seen as
a HIBE a key at depth 
). Then, compute and return (i, μ̂i), where

μ̂i = e(g, h)
s·P (i) =

e(C1, Ai,0)

e(C2, Ai,1)
.

Combine(PK,C, {(i, μ̂i)}i∈S): for each i ∈ S, return ⊥ if μ̂i �∈ GT . Otherwise,
compute and output

M = C0 ·
∏
i∈S

μ̂i
−Δi,S(0)

From an efficiency standpoint, the scheme inherits the efficiency of the underlying
HIBE scheme with ciphertexts of constant size as in [10,41]. As in the central-
ized forward-secure cryptosystem, public keys and private key shares consist of
O(log T ) and O(log2 T ) group elements, respectively.

As established by Theorem 3, the scheme is forward-secure against adaptive
corruptions and chosen-plaintext attacks. We note that the proof is not just a
matter of adapting the proof of Theorem 1 to the hierarchical setting.

Indeed, in several games, the challenger is forced to reveal node keys for ances-
tors of the leaf associated with the attacked time period. For these nodes, the re-
duction has to be careful and refrain from directly inserting semi-functional com-
ponents in the corresponding keys. Otherwise, an unbounded adversary might
be able to detect some correlation between these semi-functional components
and those of the challenge ciphertext.

To address this problem, the challenger has to guess upfront which leaf will
correspond to the attacked time period. By doing so, if the guess is correct (which
occurs with non-negligible probability since the number of leaves is polynomial),
the reduction knows which node keys can be safely and gradually augmented
with semi-functional components in a first step. In a second step, the reduction
has to take care of ancestors of the expected target leaf and turn them into
semi-functional keys in the same way as in the proof of Theorem 1.

Theorem 3. The scheme provides forward security against adaptive corrup-
tions in the threshold setting assuming that Assumption 1, Assumption 2 and
Assumption 3 all hold.

Proof. The proof proceeds using a sequence of games including steps similar to
[41] and additional steps. As in [52,41], the proof makes use of semi-functional
ciphertexts and decryption shares (which are actually private keys in [41]). In
addition, we also have to consider semi-functional private key shares. Another
difference is that we need two kinds of semi-functional ciphertexts.
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◦ Semi-functional ciphertexts of Type I are generated from a normal ciphertext
(C′

0, C
′
1, C

′
2) and some g2 ∈ Gp2 , by choosing random τ, zc

R← ZN and setting

C0 = C′
0, C1 = C′

1 · gτ2 , C2 = C′
2 · gτzc2 .

◦ Semi-functional ciphertexts of Type II are generated from a normal cipher-
text (C′

0, C
′
1, C

′
2) by choosing random τ, zc, θ

R← ZN and setting

C0 = C′
0 · e(g2, g2)θ, C1 = C′

1 · gτ2 , C2 = C′
2 · gτzc2 .

◦ For a node of label w = w1 . . . wl ∈ {0, 1}l, a Type I semi-functional node
key is obtained from normal a node key

ski,w1...wk
= (Ai,0, Ai,1, Bi,l+1, . . . , Bi,�)

=
(
hP (i) · F (w1 . . . wl)

ri,w · Yi,w, gri,w · Zi,w,

h
ri,w
l+1 ·Ri,w,l+1, . . . , h

ri,w
� · Ri,w,�

)
by setting (A′

i,0, A
′
i,1, B

′
i,l+1, . . . , B

′
i,�) as

Ai,0 = A′
i,0 · gγi,w·zi,w

2 · Y ′
i,w,

Ai,1 = A′
i,1 · gγi,w

2 · Z ′
i,w, (2)

B′
i,l+1 = Bi,l+1 · gγi,w·yi,w,l+1

2 ·R′
i,w,l+1,

...

B′
i,� = Bi,� · gγi,w·yi,w,�

2 · R′
i,w,�

using random γi,w, zi,w, yi,w,l+1, . . . , yi,w,�
R← ZN , Y ′

i,w, Z
′
i,w

R← Gp3 and

R′
i,w,l+1, . . . , R

′
i,w,�

R← Gp3 , where g2 is a generator of Gp2 .

We also make use of Type II semi-functional node keys.

◦ Semi-functional node keys of Type II are obtained from a normal node key
(A′

i,0, A
′
i,1, B

′
i,l+1, . . . , B

′
i,�) by setting

(Ai,0, Ai,1, Bi,l+1, . . . , Bi,�) = (A′
i,0 · gzi,w2 , Ai,1, B

′
i,l+1, . . . , B

′
i,�)

using a random zi,w
R← ZN .

The proof considers a sequence of n(2T − 1) + 4 games. It starts with the real
game Game0. For each i, we denote by Si the probability that the challenger
outputs 1 at the end of Gamei. We also define Advi := |Pr[Si]− 1/2| for each i.
Game0: is the real attack game. At the end of Game0, we call S0 the event

that the attacker A outputs a bit β′ ∈ {0, 1} and wins if β′ = β, where
β ∈R {0, 1} is the challenger’s bit in the challenge phase. In this game, we
have Adv0 = |Pr[S0]− 1/2|.
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Game1: is like Game0 with the difference that, at the beginning of the game,
the challenger chooses an index t‡ R← {0, . . . , T − 1}. At the challenge phase,
the challenger halts and outputs a random bit if the challenge ciphertext is
encrypted for a period t� such that t� �= t‡. Since the choice of t‡ is indepen-
dent of A’s view, we have Pr[S1] ≥ Pr[S0]/T . Recall that, since T ∈ poly(λ),
the probability to have t‡ = t� is non-negligible and the multiplicative gap
between Pr[S1] and Pr[S0] is thus acceptable. In the following, we denote by
path‡ the path from the root to the leaf associated with t‡.

Game2: is identical to Game1 but the normal challenge ciphertext is replaced by
a semi-functional ciphertext of Type I.

Game2.1.0: is like Game2 with the difference that, for each server i ∈ {1, . . . , n}
and each node w in the tree, the node keys {ski,w}ni=1 are calculated at the
outset of the game. The challenger thus pre-computes a polynomial number
of n(2T − 1) node keys overall.

Game2.j.κ (1 ≤ j ≤ n, 1 ≤ κ ≤ 2T − 1): in this game, the challenge ciphertext
is a semi-functional ciphertext of Type I and, in the tree, the generation of
node keys depends on indices (j, κ).

- For each server i ∈ {1, . . . , j − 1}, all node keys ski,w are computed as

semi-functional node keys if w �∈ path‡. For all labels w ∈ path‡, ski,w is
generated as a normal node key.

- For servers i ∈ {j + 1, . . . , n}, all node keys ski,w are normal keys.
- As for the server j, the distribution of the node key skj,w depends on

w. If w �∈ path‡ and w is the label of one of the first κ node keys (in
some order), B computes skj,w as a normal node key. Otherwise, skj,w is
computed as a normal node key.

Game3: is identical to Game2.n.(2T−1) with the following two differences.

- For each server i ∈ {1, . . . , n}, the node keys {ski,w}w∈path‡ – which still
have the normal distribution in Game2.n.(2T−1) – are now generated as
semi-functional node keys of Type II. Namely, their Ai,0 component now
contains a random Gp2 component.

- The Type I semi-functional challenge ciphertext is replaced by a Type
II semi-functional ciphertext.

Game4: is as Game3 but the Type II semi-functional challenge ciphertext is re-
placed by a semi-functional encryption of a random plaintext (instead of
Mβ). In this game, A has no information on the challenger’s bit β ∈ {0, 1}
and cannot guess it with better probability than 1/2.

When counting probabilities, we first note that the transition from Game0 to
Game1 is a transition based on a failure event of large probability, according to
the terminology of [26]. As shown in [26], we thus have Adv1 = |Pr[S1]− 1/2| =
Adv0/T . In the full version of [42], it is shown that |Pr[S1]−Pr[S2]| ≤ Adv1(B1),
where the latter function is an upper bound on the advantage of any PPT
distinguisher B1 for Assumption 1. It is straightforward that moving from Game2
to Game2.1.0 is just a conceptual change since A’s view is the same in both games.
Then, for each j ∈ {1, . . . , n} and κ ∈ {1, . . . , 2T − 1}, the full version of [42]
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demonstrates the existence of a PPT distinguisher B2 against Assumption 2
such that |Pr[S2.j.κ] − Pr[S2.j.(κ−1)]| ≤ Adv1(B2). As for the transition from
Game2.n.(2T−1) to Game3, the full version of [42] constructs a distinguisher B′

2

for Assumption 2 such that |Pr[S2.n.(2T−1)] − Pr[S3]| ≤ Adv1(B′
2). Finally, it

is established in [42] that |Pr[S3]− Pr[S4]| ≤ Adv3(B3), for some distinguisher
against Assumption 3. Since Pr[S3] = 1/2, by combining the above, we can write.

Adv0 ≤ T ·
(
Adv1(B1) +

(
n · (2T − 1) + 1

) ·Adv2(B2) + Adv3(B3)
)
,

where, for each i ∈ {1, 2, 3}, Advi(Bi) denotes the maximal advantage of any
PPT adversary Bi against Assumption i. 
�

5 Conclusion

This paper reviewed our results regarding the first fully non-interactive robust
threshold cryptosystems with chosen-ciphertext security against adaptive adver-
saries. Our results are proved in the sense of a game-based security definition
akin to the one of Shoup and Gennaro [50], but with adaptive corruptions.

Using the same techniques, we also gave an adaptively secure non-interactive
threshold signatures in the standard model. Motivated by the work of Abdalla,
Miner and Namprempre [1], here we gave formal definitions for robust non-
interactive forward-secure threshold public-key encryption, as well as the first
completely non-interactive construction with adaptive security. In a follow-up
work [43], we recently defined a more general framework for constructing thresh-
old public-key encryption schemes with similar properties.
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Abstract. In 2004, Koblitz and Menezes started [2] a series of papers
questioning the methodology and impact of provable security. We take
another look, by comparing cryptanalysis results and provable security
results on a variety of topics. We argue that security is complex, and
that there is much to gain from better interaction between cryptanalysis
and provable security.

Security evaluations of cryptographic schemes or protocols used to be exclusively
based on cryptanalysis. A cryptosystem was deemed secure if no efficient attack
was known. This traditional approach has obvious limitations: if there is no
attack today, it does not imply that there will not be an attack tomorrow, as the
history of cryptography has shown repeatedly. Nevertheless, cryptographic key
sizes and parameters are still routinely selected based on the state-of-the-art in
cryptanalysis.

The field of provable security was developed to provide a new kind of insur-
ance. Its goal is to mathematically prove security properties: a typical provable
security result states that a cryptographic scheme A is secure in the security
model B, provided that a set C of assumptions hold. Here, an element of C
could be a computational assumption – e.g. factoring is hard, or a security
assumption on a given primitive or protocol – e.g. AES is a pseudo-random
permutation. That such kinds of statements can be proved is fascinating, and
represents a major achievement of theoretical cryptography. Yet, this approach
also has well-known limitations, see for instance [2,1,4,5]. In particular, there are
provably-secure cryptosystems which were later shown to be insecure, in practice
and/or in theory, for various reasons.

These limitations do not mean that one should/could ignore cryptanalysis or
provable security. On the contrary, it serves as a reminder that cryptographic
security is complex, and that if one is interested in actual security, one should
gather as much information as possible, from both cryptanalysis and provable
security, without ignoring one or the other. We illustrate this point with several
examples from the past thirty years.

We argue that there are a lot of similarities between cryptology and physics.
Both use a lot of mathematics, but neither is part of mathematics. Physics aims
at discovering the laws of nature and understanding how the physical world
works, but we can never know for sure if our theories are correct: we can only
tell if our theories are consistent with state-of-the-art experiments. We invent
theoretical models to capture reality better and better, but this might be a
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never-ending work in progress: even if we find the right theory of everything in
theoretical physics, we will never know for sure if it is the right one. Similarly,
cryptology aims at achieving security, but in some sense, we never know if some-
thing is really secure in the real world, especially in the long term. We keep
refining our security models, e.g. to take into account side-channel attacks. At
best, we can say that something is theoretically secure within a certain security
model, or that something seems to be secure in practice for now.

Finally, we argue that there is much to gain from better interaction/dialogue
between cryptanalysis and provable security. A security proof can help cryptana-
lysts to identify weak points: for instance, if the security model or the assumption
seems to be unreasonable in practice, this could be the starting point for an at-
tack. Reciprocally, cryptanalysis can help provable security by playing a rôle
similar to experiments in physics.
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Abstract. During the last years, malware writers have been using sev-
eral techniques to evade detection. One of the most common techniques
employed by the anti-virus industry is signature scanning. This method
requires the end-host to compare files against a database that should
contain signatures for each malware sample. In order to allow their cre-
ations to bypass these protection systems, programmers use software
encryption tools and code obfuscation techniques to hide the actual be-
haviour of their malicious programs. One of these techniques is packing,
a method that encrypts the real code of the executable and places it as
data in a new executable that contains an unpacking routine. In previous
work, we designed and implemented an anomaly detector based on PE
structural characteristics and heuristic values, and we were able to decide
whether an executable was packed or not. We stated that this detection
system could serve as a filtering step for a generic and time consum-
ing unpacking phase. In this paper, we improve that system applying
a data reduction algorithm to our representation of normality (i.e., not
packed executables), finding similarities among executables and grouping
them to form consistent clusters that reduce the amount of comparisons
needed. We show that this improvement reduces drastically the process-
ing time, while maintaining detection and false positive rates stable.

Keywords: malware, packer, anomaly detection, dataset clustering,
computer security.

1 Introduction

Malware (or malicious software) is the term used to define any software that
has been written with malicious intentions to harm computers or networks and
usually to obtain personal benefits in an illegitimate way. Malware authors’
intentions have evolved in the last years. In the past, the intentions behind
malware were fame and self-pride, but nowadays money is the main motivation.
For this reason, efforts to bypass anti-virus tools have increased and thus, the
power and variety of malware programs, together with their ability to overcome
all kinds of security barriers [1]. One of the most commonly used techniques
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is executable packing, which consists of cyphering or compressing the actual
malicious code in order to hide it and evade signature scanning methods. Packed
programs include a decryption routine that is first executed. This code extracts
the real payload from memory and executes it. Some reports claim that up to
an 80% of the malware analysed is packed [2].

Traditional anti-virus systems apply signature scanning to identify malicious
code. This technique has been also applied to detect executables protected with
well known packers by scanning for certain byte sequences. PEID [3] is able to
detect a wide range of well-known packers. Besides, Faster Universal Unpacker
(FUU) [4] tries to identify the packer utilised to hide the original code and
then applies custom unpacking routines designed and written for each packer.
However, this approach has the same shortcoming as signatures for malware de-
tection: it is not effective with unknown obfuscation techniques, nor with custom
packers (i.e.,executable packing-unpacking algorithms exclusively designed for a
certain malicious program). Actually, according to Morgenstern and Pilz [5],
35% of malware is packed by a custom packer. This fact makes custom packers
an important issue to consider.

Several approaches have been proposed to overcome this evasion technique.
We can divide these approaches into static and dynamic approaches. Static ap-
proaches gather information about the employed packer without executing the
sample, while dynamic unpacking approaches trace the execution of an exe-
cutable and extract its protected code once unpacked. Normally, the samples
are run inside an isolated environment like a virtual machine or an emulator [6].

Numerous dynamic unpackers try to identify the original entry point (i.e.,
where the execution jumps from the unpacking routine to the original code)
by using heuristics. Once the execution flow reaches that point, the memory
content is dumped to disk in order to obtain an unpacked version of the malicious
code (e.g., Universal PE Unpacker [7] and OllyBonE [8]). Nevertheless, specific
heuristics cannot be universalised to all the packers in the wild, since all of them
work in very different manners. For instance, some packers use virtual instruction
sets and attach an interpreter to the executable in such a way that the original
code is never present in memory [9]. Other approaches decrypt frames of code
before they are executed and once executed they encode them again. In this way,
the whole malicious code is never loaded in memory at the same time [10].

In contrast, not so highly heuristic-dependent approaches have been proposed
for generic dynamic unpacking (e.g., PolyUnpack [11], Renovo [12], OmniUn-
pack [13] and Eureka [14]). Nonetheless, these methods are time-consuming and
cannot counter conditional execution of unpacking routines, a technique used for
anti-debugging and anti-monitoring defense [15–17].

PE-Miner [18] extracts characteristics from the PE file header and builds
classifiers that determine if an executable is malicious or not. PE-Probe [19],
an improvement of PE-Miner, previously determines if the executable is packed
and then applies a different classifier in each case. Perdisci et al. proposed in
[20] a method for the classification of packed executables using certain heuristics



26 X. Ugarte-Pedrero, I. Santos, and P.G. Bringas

extracted from the PE structural data, as a previous step to the actual unpacking
process.

In previous work [21], we proposed a method based on anomaly detection
to filter executables that are not packed in order to avoid the processing over-
head caused by generic unpackers. Our system calculated vectors composed of
certain structural and heuristic features and compared the samples against a
set of vectors representing not packed executables. If the sample was different
enough, then it was considered as packed. Although the results obtained were
significant enough to validate our method, the number of comparisons needed
to analyse each sample was considerably high and consequently, it presented a
high processing overhead.

In consideration of this background, we propose here an enhancement of our
previous method [21], that applies partitional clustering to the dataset in order
to reduce the number of vectors in the knowledge base. This improvement boosts
the scalability of the system, reducing the processing time. The results obtained
for the reduced dataset and the time saved by this technique reaffirms our initial
hypothesis: A fast and efficient initial filtering step can improve generic and
dynamic unpacking systems’ performance by reducing the amount of executables
to be analysed.

Summarising, our main contributions are:

– We propose a method for dataset reduction based on the partitional clus-
tering algorithm Quality Threshold (QT) clustering, and generate reduced
datasets of different sizes.

– We evaluate our system for different reduction rates, testing its accuracy
results and comparing them to previous work.

– We prove that a unique sample synthetically generated from not-packed
executables is sufficiently representative to implement an anomaly detection
system without compromising accuracy results.

The remainder of this paper is organised as follows. Section 2 details our anomaly-
based method. Section 3 describes the experiments and presents results. Section
4 discusses the obtained results and their implications, and outlines avenues for
future work.

2 Method Description

The method described in this paper is based on our previous work, a packed
executable detector based on an anomaly detection system [21]. Our approach
consisted in the measurement of the distance from binary files to a set of binaries
not packed. Any sample that deviates sufficiently from a representation of nor-
mality (not packed executables) is classified as packed. Contrary to supervised
learning approaches, this method does not need a model training phase, and thus
it does not require labelled packed executables, reducing the efforts needed to
find and label a set of packed binaries. Nevertheless, it is necessary to compute
as many distance values as executables in the not packed set.
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Fig. 1. Architecture of the proposed system. The QT clustering algorithm transforms
the original dataset into a new reduced synthetic dataset. It requires 2 parameters: the
distance measure and the threshold. The comparison system compares samples against
the reduced dataset obtained, applying a distance measure, a distance threshold, and
a selection rule. Finally the system is classifies the sample as packed or not packed.

In this paper, we improve the efficiency of our system by designing a data
reduction phase capable of boosting the detector’s scalability. Fig. 1 shows the
architecture of our proposed system. The first objective of our method is to
improve its efficiency by applying data reduction. The data reduction phase
consists in the application of the QT clustering algorithm to the original dataset
to obtain a reduced version that conserves the original dataset’s features. In
this way, the number of comparisons performed, and thus, the comparison time
required for the analysis of each sample are much lower.

The second objective is to measure the precision of our system when the
training set is incrementally reduced, in order to evaluate the trade-off between
efficiency and accuracy. In addition, this data reduction approach enables us to
test the performance of the system when a unique representation of a ’normal’
executable is used, and to determine if it can to correctly classify packed and
not packed executables.

2.1 Structural Features

In previous work [21], we selected a set of 211 structural features of the PE
executables from the conclusions obtained in previous research in the area [18–
20]. Some features are extracted directly from the PE file header, while others
are calculated values based on heuristics commonly used for detecting packers.
Farooq et al. [18] and Perdisci et al. [20] used PE executable structural features,
as well as heuristics like entropy analysis or certain section characteristics to
determine if an executable is packed or not, as a previous step to a second
analysis phase. To select the set of features we combined both points of view,
structural characteristics and heuristics, and analysed their individual relevance
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by statistical methods to determine how they impact on the classification of
packed and not packed executables.

A second issue to consider in the feature selection was extraction time, since
the system is aimed at becoming a filter to reduce the amount of executables
analysed in dynamic environments that can be much more time consuming.
Therefore, we selected a set of features that, unlike techniques such as code dis-
sassembly, string extraction or n-gram analysis [20], do not require a significant
processing time.

Features are classified into four main groups: 125 raw header characteristics
[19], 33 section characteristics (i.e., number of sections that meet certain prop-
erties), 29 characteristics of the section containing the entry point (the section
which will be executed first once the executable is loaded into memory) and,
finally, 24 entropy values. For each feature, we calculated the Information Gain
(IG) value [22]. IG provides a ratio for each feature that outlines its impor-
tance in order to classify a sample as packed or not packed. To calculate these
weight values, we used a dataset comprised of 1,000 packed and 1,000 not packed
executables.

– DOS header characteristics (31). The first bytes of the PE file header
correspond to the DOS executable header fields. IG results showed that
these characteristics are not specially relevant, having a maximum IG value
of 0.23, corresponding to a reserved field, which intuitively may not be a
relevant field. 15 values range from 0.10 to 0.16, and the rest present a
relevance bellow 0.10.

– File header block (23). This header block (also named COFF header) is
present in both image files (executable files), and object files. From a total
of 23 characteristics, 14 have an IG value greater than 0, and only 2 of them
have an IG value greater than 0.01: the number of sections (0.3112) and the
time stamp ( 0.1618).

– Optional Header Block (71). This block is present in image files but not
in object files, and contains data about how the executable must be loaded
into memory. The data directory is located at the end of this structure and
provides the address and size for very useful data structures. 37 features have
an IG value over 0, but the most relevant ones are: the address of entry point
(0.5111), the Import Address Table (IAT) size (0.3832) and address (0.3733)
(relative to the number of imported DLLs), the size of the code (0.3011),
the base of the data (0.2817), the base of the code (0.2213),the major linker
version (0.1996), checksum (0.1736), the size of initialised data (0.1661), the
size of headers (0.1600), the size of relocation table (0.1283) and the size of
image (0.1243).

– Section characteristics (33). From the 33 characteristics that conform
this group, 22 have an IG value greater than 0. The most significant ones
are: the number of non-standard sections (0.7606), the number of executable
sections (0.7127); the maximum raw data per virtual size ratio (0.5755)
(rawSize/virtualSize, where rawSize is defined as the section raw data
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size and virtualSize is the section virtual size, both expressed in bytes),
the number of readable and executable sections (0.5725) and the number of
sections with a raw data per virtual size ratio lower than 1 (0.4842).

– Section of entry point characteristics (29). This group contains char-
acteristics relative to the section which will be executed once the executable
is loaded into memory. 26 characteristics have an IG value greater than 0,
from which 11 have a significant relevance: the characteristics field in its
raw state (0.9757), its availability to be written (0.9715), the raw data per
virtual size ratio (0.9244), the virtual address (0.7386), whether is a pointer
to raw data or not (0.6064), whether is a standard section or not (0.5203),
the virtual size (0.4056), whether it contains initialised data (0.3721), the
size of raw data (0.2958) and its availability to be executed (0.1575).

– Entropy values (24). We have selected 24 entropy values, commonly used
in previous works [20], from which 22 have an IG value greater than 0, and
9 have a relevant IG value: max section entropy (0.8375), mean code sec-
tion entropy (0.7656), mean section entropy (0.7359), file entropy (0.6955),
entropy of the section of entry point (0.6756), mean data section entropy
(0.5637), header entropy (0.1680), number of sections with an entropy value
greater than 7.5 (0.7445), and number of sections with an entropy value
between 7 and 7.5 (0.1059).

After the extraction, every feature has to be normalised: each value is divided
by the maximum value for that feature in the whole dataset. In this way, each
executable is represented as a vector of decimal values that range from 0 to
1. Finally, each feature value is multiplied by its relevance IG value to obtain
the final vector that will be used in the next steps. These weights are used to
compute a better distance measure among samples and to reduce the amount of
features selected, given that only 151 of them have an IG value greater than 0.

2.2 Data Reduction

Dataset reduction is a step that has to be faced in very different problems that
have to work with large datasets. In our work [21], the experiments were per-
formed with a base of 900 not packed executables, which means that every sample
analysed had to be compared 900 times to classify it as packed or not. Now, we
propose a data reduction algorithm based on partitional clustering. Cluster anal-
ysis divides data into meaningful groups [23]. These techniques usually employ
distance measures to compare instances in datasets to make groups with those
which appear to be similar. We can identify several types of clustering, but
most common ones are hierarchical clustering and partitional clustering. The
first approach generates clusters in a nested style, which means that the clusters
generated from the dataset are related hierarchically. In contrast, partional clus-
tering techniques create a one-level (unnested) partitioning of the data points
[23]. We are interested in this last technique to validate our initial hypothesis: it
is possible to divide a big set of executables that represent normality (i.e., not
packed executables) into a reduced set of representations.
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input : The original dataset V, the distance threshold for each cluster
threshold, and the minimum number of vectors in each cluster
minimumvectors

output: The reduced dataset R
// Calculate the distance from each vector (set of executable

features) to the rest of vectors in the dataset.

foreach {vi|vi ∈ V} do
foreach {vj |vj ∈ V} do

// If a vector vj’s distance to vi is lower than the specified

threshold, then vj is added to the potential cluster Ai,

associated to the vi vector

if distance(vi,vj) ≥ threshold then
Ai.add(vj)

// In each loop, select the potential cluster with the highest

number of vectors

while ∃Ai ∈ A : |Ai| ≥ minimumvectors and ∀Aj ∈ A : |Ai| ≥ |Aj | and i �= j
do

// Add the centroid vector for the cluster to the result set

R.add(centroid(Ai))

// Discard potential clusters associated to vectors vj ∈ Ai

foreach {vj |vj ∈ Ai} do
A.remove(Aj)

V.remove(vj)
// Remove vectors vj ∈ Ai from the clusters Ak remaining in A
foreach {Ak|Ak ∈ A} do

foreach {vj |vj ∈ Ak and vj ∈ Ai} do
Ak.remove(vj)

// Add the remaining vectors to the final reduced dataset

foreach {vj |vj ∈ V} do
R.add(vj)

Fig. 2. QT Clustering based dataset reduction algorithm

Quality Threshold (QT) clustering algorithm was proposed by Heyer et al.
[24] to extract useful information from large amounts of gene expression data.
K-means is a classic algorithm for partitional clustering, but it requires to spec-
ify the number of clusters desired. In contrast, QT clustering algorithm does
not need this specification. Concretely, it uses a similarity threshold value to
determine the maximum radial distance of any cluster. This way, it generates a
variable number of clusters that meet a quality threshold. Its main disadvantage
is the high number of distance calculations needed. Nevertheless, in our case,
this computational overhead is admissible because we only have to reduce the
dataset once, (we employ an static representation of normality that only varies
from platform to platform).
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Our algorithm, shown in Fig. 2, is based on the concepts proposed by Heyer
et al. [24], but it is adapted to our data reduction problem and it is implemented
iteratively, instead of recursively.

Let A = {A0,A1, ...,An} be the set of potential clusters. For each vector vi
in the dataset V , there is potential cluster Ai ∈ A. A potential cluster Ai is
composed of the set of vectors at a distance respect to vi not higher than the
threshold previously specified.

Once the potential clusters are calculated, we select the cluster with the high-
est number of vectors as a final cluster. Then, we calculate its centroid, defined
as c = x1 + x2 + · · ·+ xk/k where x1, x2, · · · , xk are points in the feature space.
The resultant centroid is added to the final reduced dataset. Afterwards, each
vector vj present in the selected cluster Ai is removed from the original dataset
V (as they will be represented by the previously calculated centroid). Moreover,
the potential clusters Aj ∈ A associated to each vector vj previously removed
are also discarded. When there are not more clusters available with a number of
vectors higher than the parameter minimumvectors, the remaining vectors in V
are added to the final reduced dataset and the algorithm finishes and returns the
resulting reduced dataset. The final result is a dataset composed of one centroid
representing each cluster and all the vectors that were not associated to any
cluster by the QT clustering algorithm (i.e., outliers).

2.3 Anomaly Detection

The features described represent each executable as a point in the feature space.
Our anomaly detection system analyses points in the feature space and classifies
executables based on their similarity. The analysis of an executable consists of
3 different phases:

– Extraction of the features from the executable file.
– Computation of calculated values.
– Measurement of the distance from the point representing the executable file
to the points that symbolise normality (i.e., not packed executables) that
conform the knowledge base.

As a result, any point at a distance from normality that surpasses an established
threshold is considered to be an anomaly and thus, a packed executable. In this
study, we have considered 2 different distance measures:

– Manhattan Distance. This distance between two points x and y is the
sum of the lengths of the projections of the line segment between the points
onto the coordinate axes:

d(x, y) =

n∑
i=0

|xi − yi|

where x is the first point; y is the second point; and xi and yi are the ith

component of first and second point, respectively.
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– Euclidean Distance. This distance is the length of the line segment con-
necting two points. It is calculated as:

d(x, y) =
n∑

i=0

√
x2i − y2i

where x is the first point; y is the second point; and xi and yi are the ith

component of first and second point, respectively.

In previous work [21] we noticed that the cosine similarity measure, (i.e., a dis-
tance measure computationally more expensive), does not produce better results.

Since we have to compute this measure with a variable number of points
representing not packed executables, a combination metric is required in order
to obtain a final distance value which considers every measure performed. To
this end, we employ 3 simple rules:

– Mean rule. Select the average distance value.
– Max rule. Select the highest distance value.
– Min rule. Select the lowest distance value.

In this way, when an executable is analysed, the final distance value calculated
depends on the distance measure and the combination rule selected.

3 Empirical Validation

To evaluate the performance of our method, we have conducted an experiment
consisting of 2 phases: firstly, we reduce the set of vectors corresponding to not
packed executables that represent normality, and secondly we start the anomaly
detection step to measure accuracy and efficiency.

3.1 Experimental Configuration

The experiment designed to evaluate this system was performed using an ex-
ecutable collection comprising 1,000 packed and 1,000 not packed executables.
Initially, 1,000 goodware executables were extracted from a common Microsoft
Windows XP installation, and 1,000 malicious executables were gathered from
the website VxHeavens [25]. All the executables where analysed with PEiD to
assure that they were not packed. To generate the packed dataset, we employed
1,000 not packed executables (500 benign and 500 malicious) and we packed
them using 10 different packing tools with different configurations: Armadillo,
ASProtect, FSG, MEW, PackMan, RLPack, SLV, Telock, Themida and UPX.
The not packed dataset was comprised of the remaining 1,000 executables.

The experimental method used was 10-fold cross validation [26], dividing the
whole dataset into 10 different divisions. In this way, each fold is composed of
900 not packed executables as knowledge base and 1,100 testing executables,
from which 100 are not packed and 1,000 are packed executables.
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In order to test the dataset reduction algorithm proposed, 4 experimental
configurations were selected for each distance measure. The threshold param-
eter values for our QT clustering based algorithm were selected by empirical
observation. In particular, the thresholds for Manhattan distance were set as
the double of the thresholds selected for Euclidean distance. While Manhattan
distance sums the lengths of the projections of the line segment between the
points onto the different coordinate axes, the Euclidean distance measures the
line between two points, that is always shorter. Table 1 shows the results ob-
tained in the process. Reduction ratio varies from 76.12% for Euclidean distance
and threshold 0.25 to 99.88% for both Euclidean and Manhattan distance and
an infinite threshold (in practice, this threshold is set to the maximum value
allowed for a 64-bit double variable). The result obtained for this configuration
is a unique centroid of the whole dataset that represents the arithmetic mean
vector, or a single representation of normality. In this case, selection rules do not
influence the final result because it is only performed one single comparison for
each sample.

Table 1. Number of vectors that conform the reduced dataset for the different re-
duction parameters. The initial dataset is in all cases comprised of 900 not packed
vectors.

Distance Quality % Average Number of vectors in each fold
measure threshold reduction 1 2 3 4 5 6 7 8 9 10

Euclidean

0.25 76.12% 217 215 214 218 216 208 216 219 206 220
0.50 95.35% 44 42 39 44 41 44 42 42 39 41
1.00 99.12% 7 8 8 8 8 8 8 8 8 8
∞ 99.88% 1 1 1 1 1 1 1 1 1 1

Manhattan

0.50 83.63% 153 148 150 149 151 145 147 143 141 146
1.00 95.42% 41 41 41 43 40 42 40 43 38 43
2.00 98.98% 7 10 11 10 8 10 9 10 8 8
∞ 99.88% 1 1 1 1 1 1 1 1 1 1

3.2 Efficiency Results

During our experimental evaluation, we measured the times employed in each
different phase. In this way, we can distinguish 3 different phases in the experi-
ment:

– Feature Extraction and Normalization. The first step in the experiment
was to extract the characteristics from the executables and to calculate values
such as entropy or size ratios. Once extracted, these features were normalised
to obtain a value ranging from 0 to 1 for each point in the feature space.
This stage was performed in a virtual machine to keep all malware samples
isolated from the host system and to prevent any possible infection. The vir-
tual machine used was VMWare[27], hosted in an Intel Core i5 650 clocked
at 3.20 GHz and 16 GB of RAM memory. The guest machine specification
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was the following: 1 processor, 1 GB of RAM memory and Windows XP SP3
as operative system. Fig. 3 shows the time required by the feature extraction
and normalization process for each file. This step took an average time of
28.57 milliseconds for each file analysed (93.66 μseconds/KB). Although the
extraction of certain features such as PE executable header fields should
require a similar amount of time for all the executables, some other values
such as entropy are calculated using all the bytes present in the file: the
higher the file size, the higher the time it takes to analyse it. Once extracted,
feature vectors were saved into CSV files for further use.

Fig. 3. Time required to extract and normalize the selected features from each exe-
cutable file. The X axis represents the file size, expressed in bytes, while the Y axis
shows the time taken by the extraction process, expressed in milliseconds.

– Data Reduction. The second step was data reduction. In this phase, we
reduced the original datasets, composed of 900 vectors for each fold, which
were previously saved into CSV files. In this way, we used 8 different config-
urations to reduce each different dataset: Euclidean distance (0.25, 0.50, 1,
and ∞) and Manhattan distance (0.50, 1, 2, and ∞). This stage was con-
ducted directly in the host machine. Fig. 4 shows the time employed in the
data reduction phase. It can be observed that times do not vary considerably
for the different thresholds used for each distance measure. This occurs be-
cause the operations that take a higher processing overhead are the distance
measure calculations, and the algorithm proposed in Fig. 2 calculates all the
distances between points before starting the clustering step. Consequently,
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the data reduction algorithm performs the same heavy calculations indepen-
dently of the threshold specified. The average processing time consumed to
reduce each fold is 97.83 seconds for Euclidean distance and 65.05 seconds
for Manhattan distance. Note that this process, in spite of being very time
consuming, is executed only once and does not interfere in the performance
of the system.

Fig. 4. Time required to reduce the original dataset composed of 900 not packed exe-
cutables. The X axis shows the different experimental configurations selected for the
data reduction step. The Y axis shows the time required by each clustering process
performed, expressed in milliseconds.

– Sample comparison. Finally, the last step was the comparison of samples.
For each experimental configuration employed in the data reduction stage,
the samples under test (1,000 packed samples and 100 not packed samples)
were compared against the reduced dataset. The total number of compar-
isons depends exclusively on the number of vectors present in the reduced
datasets, so it is straightforward that the time employed in this step is in-
versely proportional to the threshold value used in the clustering process. As
the previous phase, the sample comparison process was performed in the host
machine. Fig. 5 shows the average time employed by the comparison step for
each executable file. It can be noticed that the time required for comparison
is lower when fewer vectors are utilised. For Euclidean distance the average
comparison time varies from 25.62 ms for a 0.25 clustering threshold value,
to 0.13 ms for an ∞ threshold (single vector representation). In the case of
Manhattan distance, performance overhead is lower due to the simplicity of
the calculations, and varies from 11.62 ms for a 0.50 clustering threshold
value, to 0.08 ms for an ∞ threshold.
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Fig. 5. Time required by the comparison phase for each reduced dataset. The X axis
represents the reduction rate for each dataset once the clustering step was applied. The
higher the reduction rate, the lower the number of vectors utilised for comparison. The
Y axis represents the average comparison time for each executable file, expressed in
milliseconds.

Subsequently, once the reduced datasets are obtained, the analysis of an exe-
cutable file depends on extraction, normalization and comparison time. The
times obtained highlight the conclusion that our system is able to compute
between 1,000 and 2,000 executables in a minute.

3.3 Efficacy Results

Hereafter, we extracted the selected features from the executables and reduced
the dataset using the 2 different distance measures and 4 different threshold
values (resulting into 8 different reduced datasets). Afterwards, we employed
the same 2 distance measures and the 3 combination rules described in Section
2.3 to test the datasets and obtain a final measure of deviation for each testing
executable. For each measure and combination rule, we established 10 different
thresholds to determine whether an executable is packed or not, and selected the
one which conducted to the best results in each case in terms of False Negative
Rate and False Positive Rate.

We evaluated accuracy by measuring False Negative Rate (FNR), False Pos-
itive Rate (FPR), and the Area Under the ROC Curve (AUC).

In particular, FNR is defined as:

FNR(β) =
FN

FN + TP
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where TP is the number of packed executable cases correctly classified (true
positives) and FN is the number of packed executable cases misclassified as not
packed software (false negatives).

As well, FPR is defined as:

FPR(α) =
FP

FP + TN

where FP is the number of not packed executables incorrectly detected as packed
while TN is the number of not packed executables correctly classified.

Finally, the AUC is defined as the area under the curve formed by the union of
the points representing FPR and TPR for each possible threshold in a plot where
the X axis represents the FPR and the Y axis represents the TPR. To calculate
the AUC we used the points corresponding to the 10 thresholds selected. The
lowest and the highest thresholds were selected in such a way that they produced
a 0% FNR and a 0% FPR respectively. The rest of thresholds were selected
by equally dividing the range between the first and the last threshold. The
area under the curve formed by that points was calculated dividing it into 9
trapezoidal subareas and computing them independently:

AUC =

i=9∑
i=0

(
(xi+1 − xi) · yi + (xi+1 − xi) · (yi+1 − yi)

2

)
Table 2 shows the obtained results. To simplify the results presented, we only
show the performance that corresponds to the best possible threshold for each
configuration. Despite Euclidean distance is more time consuming than Man-
hattan distance, both distance measures achieve similar results for each dataset
configuration. In particular, our anomaly-based packed executable detector is
able to correctly detect more than 99% of packed executables while maintaining
the rate of misclassified not packed executables lower than 1%. As it can be
observed, mean combination rule presents slightly better results both for FNR
and FPR.

Nevertheless the most important issue to consider is data reduction. We pro-
pose 4 different data reduction configurations for each distance measure. We
can observe in Table 2 that results slightly get worse when a higher threshold
is applied (higher reduction rate). Fig. 6 shows 6 different plots for each dis-
tance measure and selection rule. Each plot shows 4 ROC curves corresponding
to the 4 different reduced datasets. We can observe that in most of the cases
the ROC curves show inferior results as the threshold increases (and thus, the
number of vectors to compare with, decreases). Fig. 8 represents this evolution.
In each case, as the number of vectors is reduced, the system looses accuracy.
Nevertheless, when the executables are compared against the mean vector, the
results obtained improve and in some occasions are even better than the ones
achieved for the less reduced dataset (Euclidean distance with Max selector, in
Fig. 6(c), and Manhattan distance with Max and Min selectors in Fig. 6(d) and
Fig. 6(f)). This behaviour is more noticeable for Max and Min selectors, owing
to the fact that this selectors are more sensitive to outlier vectors (i.e., vectors
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Table 2. Results for the different reduced datasets, combination rules and distance
measures. Our method is able to detect more than 99% of the packed executables
while maintaining FPR lower than 1%.

Dataset Selection rule Threshold FNR FPR AUC

Euclidean

Prev.
work

Mean 1.54000 0.00200 0.00800 0.99676
Max 2,20000 0,00200 0,01400 0.99887
Min 0.62000 0.00180 0.01400 0.99815

0.25
Mean 1.36667 0.00100 0.00500 0.99820
Max 2.06667 0.01860 0.01000 0.99874
Min 0.58889 0.00370 0.00700 0.99845

0.50
Mean 1.46667 0.00100 0.00400 0.99821
Max 2.02222 0.01720 0.02100 0.99784
Min 0.64444 0.00560 0.00800 0.99808

1
Mean 1.42222 0.01170 0.01300 0.99786
Max 1.97778 0.03420 0.02200 0.99383
Min 0.70000 0.01090 0.03800 0.99448

∞ - 1.33333 0.00100 0.00400 0.99830

Manhattan

Prev.
work

Mean 4.05000 0.00160 0.01000 0.99819
Max 7.40000 0.00820 0.01800 0.99808
Min 1.55000 0.00180 0.00800 0.99914

0.50
Mean 3.75556 0.00110 0.00500 0.99898
Max 6.33333 0.00780 0.01900 0.99829
Min 1.22222 0.00100 0.00400 0.99925

1
Mean 3.87778 0.00110 0.00500 0.99921
Max 6.33333 0.00890 0.01500 0.99850
Min 1.36667 0.00200 0.00800 0.99858

2
Mean 3.84444 0.00740 0.01700 0.99853
Max 5.94444 0.06440 0.04700 0.98612
Min 1.60000 0.01220 0.02300 0.99782

∞ - 3.47778 0.00200 0.00500 0.99901

distant from the normality representation) and can affect in a negative way as
they alter the distance value obtained. Fig. 7 visually represents this effect. In
the clustering process, 3 clusters are generated. Unfortunately, 2 clusters corre-
spond to 2 outlier vectors that do not match with the majority of the not packed
vectors. Arrows in Fig.7(b) show how the final distance value is very high for
the not packed sample under analysis when Max selector is chosen. At the same
time, the packed sample is misclassified if the Min selector is applied, due to the
proximity of a not packed sample. In contrast, as Fig. 7(c) shows, mean vector
is the representation of the whole dataset and the negative effects caused by
distant vectors over the single centroid are smoothed by the rest of the vectors
in the group.

The results obtained indicate that it is not necessary to renounce to accuracy
in order to improve the efficiency of our anomaly detection approach. Although
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(a) ROC curve for the Euclidean distance
and Mean selector.

(b) ROC curve for the Manhattan dis-
tance and Mean selector.

(c) ROC curve for the Euclidean distance
and Max selector.

(d) ROC curve for the Manhattan dis-
tance and Max selector.

(e) ROC curve for the Euclidean distance
and Min selector.

(f) ROC curve for the Manhattan distance
and Min selector.

Fig. 6. ROC curves for the different experimental configurations. Each figure shows
4 ROC curves corresponding to the different reduced datasets. The scale selected for
the X and Y axes has been reduced to 0.00 to 0.04 for X axis (false positive rate)
and 0.95 to 1.00 for Y axis (true positive rate), to facilitate legibility and to represent
precisely the differences among the different datasets tested. Unfortunately, the curve
for Manhattan reduction with a threshold of 2 is out of the scope of the scale shown
in the plot in 6(d). Note that in 6(a) and 6(b), some of the curves represented slightly
overlap.
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(a) Initial situation. (b) Sample comparison after clustering
with a low threshold.

(c) Sample comparison after clustering
with an infinite threshold.

Fig. 7. Visual representation of the comparison process in two different scenarios. In
7(a) it is shown the initial situation. Crosses represent not packed executables, circles
are packed files and question marks stand for samples to classify. In particular, bold
question marks symbolise not packed vectors whereas flat ones are packed vectors.
Finally, asterisks represent the centroid vectors generated for each cluster after the
clustering process is performed. In 7(b) we show the vectors generated in the clustering
process for a low threshold, and the effects over the distance measures obtained in the
comparison phase. Similarly, 7(b) shows the unique centroid generated for the clustering
with infinite threshold, and the distance measures obtained with this configuration.

accuracy is reduced when a higher reduction rate is applied, when the samples
are compared to a single representation (centroid of the group), results improve.
This is the configuration that should be considered to implement an efficient and
accurate packed executable filter.
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Empieza la figura EFFICIENCY ACCURACY

Fig. 8. Dataset reduction rate and accuracy achieved with each reduced dataset. The
continuous line represents the increasing reduction rate (the higher the rate, the lower
the number of samples in the reduced dataset), while the dotted lines represent the
area under the ROC curve (AUC) obtained with each reduced dataset.

4 Discussion and Conclusions

The method proposed in this paper was focused on executable pre-filtering, in
order to distinguish between packed and not packed executables. More specif-
ically, it improves our previous work [21] by providing a new method for data
reduction that boosts scalability in the anomaly detection process, enabling a
much more efficient comparison of executable characteristics. As opposite to
other approaches, anomaly detection systems do not need previously labelled
data about packed executables or specific packers, as they measure the devia-
tion of executables respect to normality (not packed executables). In contrast to
signature scanning methods, this approach is packer independent.

Furthermore, accuracy results are not compromised by the dataset reduction
process. It can be observed that the AUC varies slightly as the number of vec-
tors in the dataset decreases. Nonetheless, when a single centroid vector is used,
results are still sound, or even better than the ones obtained with no reduction.
This fact brings us to the conclusion that it is possible to determine a single
representation for not-packed executables, and that this single point is suffi-
ciently representative to correctly classify executables as packed or not packed.
Although anomaly detection systems tend to produce high false positive rates,
our experimental results show very low values in all cases. These results, in ad-
dition to the time results presented in section 3.2 show that this method is a
valid pre-process step for a generic unpacking schema. Since the main limitation
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of these unpackers is their performance overhead, a packed executable detector
like our anomaly-based method with data reduction can improve their workload,
acting as a filter.

Nevertheless, there are some limitations that should be focused in further
work. First, the features selected by their IG value for the executable compar-
ison are subject to attacks in order to bypass the filter. Malware writers can
avoid certain suspicious field values or can program malware in such a way that
the characteristics analysed by the proposed filter are more similar to the ones
that correspond to not packed executables. For instance, DLL imports, section
number, certain flags and patterns in executable headers can be modified with
this intention. In addition, heuristic approaches can be evaded by using standard
sections instead of not standard ones, or filling sections with padding data to
unbalance byte frequency and obtain lower entropy values.

Secondly, the system is not aimed at identifying the packer used to protect
the executable. However, this information is useful for the malware analyst and
anti-virus systems in order to apply specific unpacking routines for each packer,
avoiding the execution on time consuming dynamic analysis environments.

Finally, the dataset we employed was composed of executables protected with
only 10 known packers. Some other packers, as well as custom packers, may
implement some of the mentioned evasion techniques to bypass our filter.

In further work we will study different characteristics and alternative represen-
tations of executables to obtain an static detection system capable of providing
more information about the packer used, if any. In addition, characteristics sub-
ject to attacks should be considered, in order to make the system resilient to
new techniques employed by malware writers.
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Abstract. Finding a recurrence of a shift register gives its equivalent
shift register in Fibonacci configuration and hence helps to decide whether
different nonlinear shift registers are equivalent, i.e., whether they gen-
erate the same set of output sequences. We define a dependence graph
of a shift register and it is a directed acyclic graph related to the shift
register. We show that existence of a dependence graph with a special
property of a nonlinear shift register ensures existence of a short recur-
rence of the sequence generated by the nonlinear shift register. We also
present an algorithm to search dependence graphs of a nonlinear shift
register.

Keywords: nonlinear feedback shift register, directed acyclic graph,
topological ordering, dependence graph, feedback graph.

1 Introduction

Stream ciphers are an important method to protect confidential data in modern
communication. Though block ciphers have attracted more and more research
interests, particularly after the birth of the Advanced Encryption Standard[7],
stream ciphers remain interesting especially due to their comparatively higher
efficiency in hardware implementation. Moreover, the design philosophy of block
ciphers and stream ciphers exert mutual influence [4,5,10,15].

Feedback shift registers are a primitive unit to design stream ciphers. Much
work was devoted to linear feedback shift registers (abbr. LFSR)[14] and cryp-
tosystems based on them. However, generally it is much more difficult and hence
challenging to analyze nonlinear feedback shift registers (abbr. NLFSR). Re-
cently, using NLFSRs as pseudo-random generators has turned out to be a new
trend, e.g. Trivium, a finalist of eSTREAM[5]. Thus, better analysis of NLFSRs
is highly desirable.

NLFSRs have two special types: the Fibonacci configuration and the Galois
configuration. The former is clearly characterized by a recurrence equation and
was paid much attention[11,13]; the latter probably can be more efficiently imple-
mented because of potentially less circuit depth. However, so far the theoretical
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analysis of NLFSRs is not as mature as that of LFSRs, which is an obstacle
to applying Galois NLFSRs in practical stream ciphers on a reliable basis. Two
approaches are possible choices. One approach is to construct Galois NLFSRs
from Fibonacci NLFSRs. Dubrova [8] gave a sufficient condition on which two
NLFSRs generate the same set of sequences, and also presented an algorithm
to transform a Fibonacci NLFSR to its equivalent NLFSR in a special Galois
configuration. Thereafter efficiency of Galois configuration was improved at cir-
cuit level[6]. The other is to characterize Galois NLFSRs by their equivalent
Fibonacci NLFSRs, which is nonetheless challenging.

Our contribution is a sufficient condition in the language of graph theory to
ensure existence of a short (nonlinear) recurrence of an NLFSR. This condition is
tested algorithmically and an algorithm is presented to generate the recurrence
if this sufficient condition holds. This result partially helps to decide whether dif-
ferent NLFSRs are equivalent and whether a Galois NLFSR can be transformed
to a short Fibonacci NLFSR.

The rest of this paper is organized as follows. Section 2 defines dependence
graphs of an NLFSR and explains that a special type of dependence graphs
generate recurrences of the NLFSR. Section 3 describes an algorithm to search
dependence graphs of an NLFSR. In Section 4 we show that our method extends
the previous result by Dubrova[8]. Section 5 presents a vivid toy example. In the
last section, we conclude by leaving some problems in future.

2 A Sufficient Condition for Existence of Short
Recurrences

An NLFSR of order n has n bits and its state at clock cycle t is represented by
the vector

s(t) = (s0(t), s1(t), · · · , sn−1(t)).

Then (si(t))
∞
t=0 is the sequence of values of the i-th bit.

A general NLFSR of order n is characterized by the state transition equations
below ⎧⎪⎪⎪⎨⎪⎪⎪⎩

s0(t) = f0(s0(t− 1), s1(t− 1), · · · , sn−1(t− 1)),
s1(t) = f1(s0(t− 1), s1(t− 1), · · · , sn−1(t− 1)),

...
sn−1(t) = fn−1(s0(t− 1), s1(t− 1), · · · , sn−1(t− 1)),

(1)

where f0, f1, · · · , fn−1 are boolean functions of n variables. The output sequence
of this NLFSR is determined by Eqs.(1) and its initial state s(0).

Definition 1. [8] For the NLFSR defined by Eqs.(1), the nonlinear recurrence
of order m describing the sequence of values of the i-th bit is the expression of
type

si(t) =

2m−1⊕
j=0

(
aj

m−1∏
k=0

(si(t−m+ k))jk

)
,
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where aj ∈ {0, 1},
⊕

is addition modulo 2, (jm−1 · · · j1j0) is the binary expansion
of j with j0 being the least significant bit, and (si(t − m + k))jk is defined as
follows:

(si(t−m+ k))jk =

{
si(t−m+ k), for jk = 1;
1, for jk = 0.

Definition 2. For the NLFSR defined by Eqs.(1), let s�(t) be expressed by a
boolean function f defined on

{si(tj) : i = 0, 1, · · · , n− 1; 0 � tj <∞}.

The pair (
, f) is called to be a representative of the 
-th bit. The dependence
set of the 
-th bit with respect to f , denoted by depf (
), is the set of bits i such
that si(t

′) at some clock cycle t′ occurs in the algebraic normal form of f , i.e.,

depf (
) = {i : f |si(t′)=0 �= f |si(t′)=1 for some clock cycle t′},

where f |si(t′)=b is the boolean function obtained by replacing each occurrence of
si(t

′) by b in f . Let

S = {k : f |si(t+k)=0(t) �= f |si(t+k)=1(t) for some i ∈ {0, 1, · · · , n− 1}}.

We call the greatest integer in S to be the upper time of the representative
(
, f), denoted by ut((
, f)), and also the least integer in S as the lower time of
the representative (
, f), denoted by lt((
, f)). If the k-th bit sk(t

′) occurs as a
linear term in the algebraic normal form of f , then the k-th bit is expressed by
a boolean function f (k) as

sk(t
′) = s�(t)⊕ sk(t′)⊕ f = f (k). (2)

The two representatives (
, f) and (k, f (k)) are said to be associated to each
other. A representative can also be said to be associated to itself.

Remark 1. The dependence set depf (
) tells exactly which bits determine the
value of the 
-th bit by the boolean function f . The upper and lower times
indicate the range of clock cycles to determine the present value of the 
-th bit
by the boolean function f . The term dependence set occurred in [8].

If fi is an equation in Eqs.(1) and (k, f
(k)
i ) is an associated representative of (i, fi)

defined by Eq.(2), one sees that ut((i, fi)) = lt((i, fi)) = −1, ut((k, f (k)i )) = 1

and lt((k, f
(k)
i )) = 0. Actually, the association in Definition 2 defines an equiva-

lence relation of representatives.

Example 1. An NLFSR consisting of four bits satisfies

s0(t) = f0(s0(t− 2), s1(t− 1), s2(t− 1), s3(t− 2))

= s1(t− 1)⊕ s0(t− 2)s2(t− 1)s3(t− 2).
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Then (0, f0) is a representative of the 0 bit and depf0(0) = {0, 1, 2, 3}. Besides,
ut((0, f0)) = −1 and lt((0, f0)) = −2. Moving linear terms yields

s1(t) = f
(1)
0 (s0(t− 1), s0(t+ 1), s2(t), s3(t− 1))

= s0(t+ 1)⊕ s0(t− 1)s2(t)s3(t− 1).

Hence, (1, f
(1)
0 ) is a representative of the 1st bit associated to (0, f0) and

dep
f
(1)
0

(1) = {0, 2, 3}. Besides, ut((1, f (1)0 )) = 1 and lt((1, f
(1)
0 )) = −1.

If the NLFSR defined by Eqs.(1) satisfies depfi(i) ⊂ {0, 1, · · · , i, i+ 1} for each
i = 0, 1, · · · , n− 1, then it is said to be in a Galois configuration.

While readers are referred to [1,2,3,9] for involved graph theory, some terms
are exactly defined below because in the literature there appear quite a few
terms concerning the same (or similar) meanings. A digraph G is a pair (V,E),
where V is the set of nodes and E ⊂ V × V . The ordered pair (u, v) ∈ E is
called an edge of G. If (u, v) ∈ E, u is said to be a predecessor of v and v is
said to be a successor of u. We call 〈v0, v1, · · · , vn〉 to be a path of length n
in G if (vi, vi+1) ∈ E for i = 0, 1, · · · , n − 1. If vn = v0, this path is called a
cycle. We call a digraph with no cycle to be a directed acyclic graph(abbr.DAG).
A node with no predecessors(successors) is called a source(sink). A topological
ordering of the digraph G is a linear ordering of its nodes such that u precedes
v in the ordering for each (u, v) ∈ E. For a digraph G and its node v, we denote
PredG(v) as the set of predecessors of v and SuccG(v) as the set of successors
of v. If G has a unique source, we write DepthG(v) as the distance from the
source to v, i.e., the length of the shortest path from the source to v. When G
is given without ambiguity, we also write respectively Pred(v), Succ(v) and
Depth(v) for convenience.

Definition 3. A dependence graph for the 
-th bit of the NLFSR defined by
Eqs.(1) is a DAG G satisfying the following conditions:

1. There exists a unique source node vσ.
2. Denote V to be the set of nodes of G, and denote B to be the set of boolean

functions defined on si(tl) for i = 0, 1, 2, · · · , n − 1 and 0 � tl < ∞. The
mapping θ : V → {0, 1, 2, · · · , n − 1} attaches to each node an integer.
Particularly, we define θ(vσ) = 
. There also exists only one sink node vτ
such that θ(vτ ) = 
. Besides, the mapping λ : V \{vσ} → B attaches to each
non-source node a boolean function. Furthermore, for each non-source node
v of G, (θ(v), λ(v)) is a representative of the θ(v)-th bit of this NLFSR.

3. Let v be a non-source node of G. For v1 �= v2, where v1, v2 ∈ Pred(v), it
holds that θ(v1) �= θ(v2). Besides,

depλ(v)(θ(v)) = {θ(v′) : v′ ∈ Pred(v)}.

4. For a node v with Depth(v) � 2, the attached representative (θ(v), λ(v)) is
not associated to (θ(v′), λ(v′)) for any v′ ∈ Pred(v).



48 L. Wang, B. Shen, and T. Qiao

5. No representative is attached more than once, i.e., for any two distinct non-
source nodes v1 and v2 of G,

(θ(v1), λ(v1)) �= (θ(v2), λ(v2)).

Remark 2. Restrictive conditions 4 and 5 in Definition 3 are not essential but
used to reduce redundancy. See Prop.1 below.

Proposition 1. Let G be a DAG satisfying Conditions 1-3 in Definition 3 but
not Condition 4 or 5. Let R = {(θ(v), λ(v)) : v is a non-source node of G}.
Then there exists a dependence graph G′ for the 
-th bit such that for each non-
source node v′ of G′,

(θ(v′), λ(v′)) ∈ R.
Proof. Assume that there exist a pair of nodes v and w such that w is a successor
of v and (θ(v), λ(v)) is associated to (θ(w), λ(w)). By Definition 2, there exists
a node u as a predecessor of v such that θ(u) = θ(w). For each v′ ∈ SuccG(w)
add an edge from u to v′. Now remove w and delete all edges starting from w
or heading to w. Notice that newly added edges admit any topological ordering
of G and hence no cycle is added. However, new incompatibility of Condition
4 is possibly introduced, say, (θ(u), λ(u)) is associated to (θ(v′), λ(v′)) where
v′ ∈ SuccG(w) is a successor of w in the original G. Anyhow, since

min{DepthG(u),DepthG(v
′)} < min{DepthG(v),DepthG(w)},

applying this process recursively for finitely many times finally yields a DAG G1

admitting Conditions 1-4.
Assume that nodes v1, v2, · · · , vi exactly share the same representative (k, f),

i.e.,
{v1, v2, · · · , vi} = {v : (θ(v), λ(v)) = (k, f)}.

Without loss of generality, suppose that DepthG1
(v1) � DepthG1

(vj) for j =
2, 3, · · · , i. That is, there exists a topological ordering of G in which v1 occurs
before v2, v3, · · · , vi. Let S = SuccG1(v2) ∪ SuccG1(v3) ∪ · · · ∪ SuccG1(vi). For
each w ∈ S, add a new edge from v1 to w. Since there is no path from w to v1,
no cycle appears. Then remove nodes v2, v3, · · · , vi and delete all edges starting
from them or heading to them. This process does not contradict Conditions
1-4 in Definition 3, but reduces at least one representative incompatible with
Condition 5. Inductively, a dependence graph G′ can be constructed such that
G′ satisfies Conditions 1-5 in Definition 3. Through our construction above, no
representatives are attached to nodes of G′ other than those attached to nodes
of G. 
�
Definition 4. Let G be a dependence graph for the 
-th bit of an NLFSR.
For the source vσ of G we define the upper time U(vσ) = 0 and iteratively
U(v) = max{U(v′) : v′ ∈ Pred(v)} + ut((θ(v), λ(v))) as the upper time of a
non-source node v. Similarly, we define the lower time L(vσ) = 0 and iteratively
L(v) = min{L(v′) : v′ ∈ Pred(v)} + lt((θ(v), λ(v))) as the lower time of a
non-source node v.
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Proposition 2. If there exists a dependence graph G for the 
-th bit of an
NLFSR, then there exists an algebraic equation in values of the 
-th bit at most
U(vτ )− L(vτ ) + 1 clock cycles, where vτ is the sink of G such that θ(vτ ) = 
.

Proof. Below we present Algorithm 1 to obtain an algebraic equation involving
values of the 
-th bit from a given dependence graph for the 
-th bit.

Algorithm 1. Find an equation from a dependence graph

Input: a dependence graph G for the �-th bit
Output: an equation involving values of the �-th bit
1: compute a topological ordering of G from vσ until vτ : v0,v1,· · · ,vk, where v0 = vσ,

vk = vτ .
2: let g0 be the identity mapping.
3: for i = 1 to k do
4: for each vj ∈ Pred(vi) do
5: replace each occurrence of sθ(vj)(t) in λ(vi) by gj , where gj is an expression

of sθ(vj)(t) in s�(tl) at some clock cycles tl. {substitute for variables involving
non-� bits}

6: end for
7: get the expression gi of sθ(vi)(t) in s�(tl) at some clock cycles tl.
8: end for
9: return the expression s�(t) = gk.

Existence of a topological ordering ensures correctness of this algorithm.
For each j ∈ {1, 2, · · · , k}, Algorithm 1 gives an expression of sθ(vj)(t) by gj .

Then (θ(vj), gj) is an representative of the θ(vj)-th bit of this NLFSR. Moreover,
notice that

L(vj) � lt((θ(vj), gj)) � ut((θ(vj), gj)) � U(vj).
Thus, s�(t) = gk involves at most U(vτ )− L(vτ ) + 1 clock cycles. 
�
Note that (
, gk) obtained by Algorithm 1 is a representative. Thus, if U(vτ ) =
U(vk) < 0, then s�(t) = gk is a recurrence. Since lt((
, gk)) � L(vk), −L(vτ ) is
an upper bound of the order of this recurrence, i.e., to determine s�(t) we need
at most the values of −L(vτ ) previous clock cycles. Therefore, we conclude that

Proposition 3. Use conditions in Prop.2. If U(vτ ) < 0, then the expression
of s�(t) obtained by Algorithm 1 gives a recurrence describing the sequence of
values of the 
-th bit whose order is less than or equal to −L(vτ ).
Remark 3. Let G be a dependence graph of the NLFSR defined by Eqs.(1) such
that each (θ(v), λ(v)) attached to one of its nodes is (associated to) a repre-
sentative generated by Eqs.(1), i.e. (i, fi), i = 0, 1, · · · , n − 1 and their associ-
ated representatives. (Algorithm 2 in Section 3 seeks such a dependence graph.)
Then we have U(vτ ) � Depth(vτ ), L(vτ ) � −Depth(vτ ) and U(vτ )−L(vτ ) �
Depth(vτ ). Since −L(vτ ) � Depth(vτ ) � n2, the recurrence by Algorithm 1
involves at most n2 clock cycles, not too large compared with the number of bits
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of the NLFSR. In this sense, we roughly call the recurrence generated from a
dependence graph to be short. (This is not a definition.)

Complexity of Algorithm 1. We estimate the running time of Algorithm 1 for
a dependence graph as in Remark 3. Recall big Oh notations to describe the
asymptotic behavior of an algorithm. An algorithm is said to be of complexity
O(f(n)) if it can be completed by cf(n) basic operations for some constant c
when the problem size n approaches to infinity. Let n be the number of bits
of the NLFSR defined by Eqs.(1), and let m be the greatest number of terms
of algebraic normal forms of fi in Eqs.(1), i = 0, 1, · · · , n − 1. For an LFSR,
m � n. For general NLFSRs, 1 � m � 2n and we use both n and m to describe
the problem size. When the system of equations (1) is sparse, m is possibly
of size O(n); When the system of equations (1) is dense, m is possibly of size
O(2n). Let G be a dependence graph of the NLFSR given by Eqs.(1) with r
nodes and e edges. See r � n2 and e � n(r − 1) � n3. Note that the topological
ordering of G can be computed in linear time with respect to r + e[3], in time
O(n3). Besides, replacing a variable in λ(vi) is computationally equivalent to a
polynomial multiplication. Thus, Algorithm 1 requires at most O(n3) polynomial
multiplications. More precise estimation on the complexity of Algorithm 1 in bit
operations depends also on the number of terms of Eqs.(1). Below we give a rough
estimation of bit operations of the prototype Algorithm 1. For polynomials p of
a terms and q of b terms, multiplication for pq can be implemented by ab bit
operations. Denote T (vi) to be the number of terms of gi in Algorithm 1, i.e.
the number of bit operations in Line 5 of Algorithm 1. For w ∈ G, we have

T (w) � m
∏

v∈Pred(w)

T (v).

Hence, logm T (vi) � 1 +
∑i−1

j=0 logm T (vj) � 2i−1, i.e. T (vi) � m2i−1

. Since∑k
i=0m

2i � 2m2k , seeing k < n2, we have

k∑
i=0

T (vi) � m2n
2

.

Therefore, Algorithm 1 has bit complexity O(m2n
2

). It is desirable to improve
efficiency of the raw Algorithm 1.

Remark 4. Prop.2 and Prop.3 together only give a sufficient condition to ensure
existence of recurrences of lower order. On one hand, generally it is difficult
to decide whether the algebraic expression obtained by Algorithm 1 implies
a recurrence. Prop.3 gives only a sufficient condition to ensure existence of a
recurrence, and it is possible that a dependence graph with U(vτ ) > 0 also
generates a recurrence through Algorithm 1. See the example in Section 5. On
the other hand, the converse statement of Prop.2 is not necessarily true. For
example, an NLFSR of order three defined by
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⎧⎨⎩
s0(t) = s0(t− 1)s1(t− 1)⊕ s1(t− 1),
s1(t) = s0(t− 1)s1(t− 1)s2(t− 1),
s2(t) = s0(t− 1)⊕ s0(t− 1)s2(t− 1),

has no dependence graph. Anyhow, the sequence of values of the 1st bit is de-
scribed by

s1(t) = s1(t− 1)⊕ s1(t− 1)s1(t− 2), t � 2.

3 Search Dependence Graphs of an NLFSR

In this section we give an algorithm to search possible dependence graphs of an
NLFSR.

Given a list of all representatives computed by Eqs.(1), i.e. (i, fi), i = 0, 1,
· · · , n − 1 and their associated representatives, Algorithm 2 below generates a
dependence graph for the 
-th bit of this NLFSR if there exists one.

Algorithm 2. Search a dependence graph of an NLFSR

Input: all representatives computed from Eqs.(1)
Output: a dependence graph for the �-th bit if there exists one, or failure
1: Add vσ in G and set θ(vσ) = �. {initialize the source node}
2: for each unused representative (k, f) do
3: if there exists nodes v1, v2, · · · , vl in G such that θ(vi) �= θ(vj),i, j ∈ {1, 2, · · · , l},

depf (k) = {θ(vi) : i = 1, 2, · · · , l}
and (k, f) is not associated to (θ(vi), λ(vi)), i = 1, 2, · · · , l then

4: add a node v to G, set (θ(v), λ(v)) = (k, f) and append new edges from vi to
v, i = 1, 2, · · · , l.

5: if θ(v) = � then
6: return G
7: end if
8: tag the representative (k, f) to be used
9: else
10: return failure
11: end if
12: end for

Correctness of Algorithm 2. It is tedious but not difficult to check that a graph
constructed by Algorithm 2 is a DAG complying with conditions in Definition 3.

Completeness of Algorithm 2. We have to show that there exists no dependence
graph for the 
-th bit of the NLFSR if Algorithm 2 returns failure. Assume
that Algorithm 2 constructs a graph Gb and stops at Line 10, but nevertheless
assume that there exists a dependence graph G for the 
-th bit of the NLFSR.
Let vσ, v1, v2, · · · , vl, vτ be (part of) a topological ordering of G, where vσ is
the source and vτ is the sink satisfying θ(vτ ) = 
. Notice that vσ is also the
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source of Gb but vτ is not a node of Gb(Otherwise, Algorithm 2 stops at Line
6). Then suppose vk to be the first node not appearing in Gb by the topological
ordering. More precisely, in the topological ordering above each representative
(θ(vi), λ(vi)) is attached to some node in Gb for i = 1, 2, · · · , k − 1 but the
representative (θ(vk), λ(vk)) is attached to no node of Gb. However, by Definition
3 and the supposition above, there exists nodes v′1, v

′
2, · · · , v′j in Gb such that

depλ(vk)
(θ(vk)) = {θ(v′i) : i = 1, 2, · · · , j}

and (θ(vk), λ(vk)) is not associated to (θ(v′i), λ(v
′
i)), i = 1, 2, · · · , j. Hence we

can append vk into Gb, contradictory to our assumptions above. Moreover, since
there exists at least one representative of the 
-th bit, Algorithm 2 stops either
at Line 6 or at Line 10.

Complexity of Algorithm 2. Use the same notation as in Setion 2. We denote m
as the greatest number of terms of equations in Eqs.(1). Main computation of
Algorithm 2 is implicit search in Line 3. It scans an equation f to find depf (k),
taking O(m) bit operations. Decision in Line 3 also requires searching G once,
with complexity O(e), where e is the number of edges ofG. Since e < n3, a search
ofG takes O(n3) bit operations. Furthermore, we have at most n2 representatives
from Eqs.(1). Thus, the complexity of Algorithm 2 is O(n2(m + n3)). Here is
only a prototype algorithm. Heuristic search algorithms[3], robotic learning or
other maneuvers of artificial intelligence[12] are possible candidates to improve
efficiency of this algorithm .

Non-unique outputs of Algorithm 2. An NLFSR possibly has more than one
dependence graphs. See the example in Section 5.

4 The Relation with the Previous Result

In the language of graph reduction, Dubrova [8, III] gave a sufficient condition
for existence of a recurrence.

A feedback graph of the NLFSR defined by Eqs.(1) consists of nodes 0, 1, · · · ,
n − 1 which represent corresponding bits, and a directed edge (i, j) is defined
if and only if i ∈ depfj (j). Provided that j is the unique predecessor of i, the
substitution sub(i, j) removes the node i and replaces any edge (i, k) by (j, k)
for k �= i.
Proposition 4. [8, Lemma 1] If the feedback graph of an n-bit NLFSR can be
reduced to a single node 
 by substitutions, then there exists a nonlinear recur-
rence of order n describing the sequence of values of the bit 
.

As explained below, Prop.2 and Prop.3 together extend Prop.4.

Proposition 5. If the feedback graph of the NLFSR defined by Eqs.(1) is reduced
to a single node 
 by substitutions, then there exists a dependence graph for the

-th bit such that U(vτ ) < 0 and L(vτ ) � −n, where vτ is the sink of this
dependence graph satisfying θ(vτ ) = 
.
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Proof. Without loss of generality, suppose that the feedback graph G is reduced
to a single node 0 through a sequence of substitutions.

We define a new digraphG′ as follows: the nodes of G′ is {v0, v1, · · · , vn−1, vτ};
(vi, vj), where vj �= v0, is an edge of G′ if and only if (i, j) is an edge of G; (vi, vτ )
is an edge of G′ if and only if (i, 0) is an edge of G. Let vσ = v0. Define θ(vσ) = 0,
(θ(vτ ), λ(vτ )) = (0, f0), and (θ(vi), λ(vi)) = (i, fi) for i = 1, 2, · · · , n− 1.

On one hand, notice that a substitution does not eliminate any cycle in a
feedback graph. On the other hand, G′ is a DAG if and only if each cycle in G
passes through the node 0. Since G collapses to the node 0 via substitutions, G′

is therefore a DAG with a unique source vσ and a sink vτ .
Moreover, since G′ has exactly n + 1 nodes and all attached representatives

are distinct, Conditions 4 and 5 in Definition 3 also hold. Therefore, G′ is a
dependence graph of this NLFSR.

Furthermore, since ut((θ(v), λ(v))) = −1 for any non-source node v, we have
U(v)<0. Particularly, U(vτ ) < 0. Since lt((θ(v), λ(v)))=−1 andDepthG′(vτ ) �
n, L(vτ ) � −n. 
�
Remark 5. The inverse of Prop.5 is not necessarily true. It is possible that an
NLFSR has a dependence graph but its feedback graph does not reduce to a
single node through substitutions. See the example in Section 5.

5 A Toy Example

An NLFSR is given by state transition equations (3) as below [8, III]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0(t) = f0(s0(t− 1), s1(t− 1), s2(t− 1), s3(t− 1))
= s0(t− 1)⊕ s1(t− 1),

s1(t) = f1(s0(t− 1), s1(t− 1), s2(t− 1), s3(t− 1))
= s2(t− 1),

s2(t) = f2(s0(t− 1), s1(t− 1), s2(t− 1), s3(t− 1))
= s3(t− 1),

s3(t) = f3(s0(t− 1), s1(t− 1), s2(t− 1), s3(t− 1))
= s0(t− 1)⊕ s2(t− 1)s3(t− 1).

(3)

We can no more use Prop.4 to get a recurrence describing the sequence of values
of some bit of the NLFSR (3), since the feedback graph of Eqs.(3), Fig.1, cannot
reduce to a single node through substitutions. However, below we use our method
to give such a recurrence.

0 ��
�� 3

��

��

1

��

2��

��

Fig. 1. Feedback graph
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First, possible representatives are listed in Table 1. Each column contains a
representative, its dependence set and its associated representative(s).

Table 1. Representatives by Eqs.(3)

representative (0, f0) (0, f
(0)
3 ) (1, f

(1)
0 ) (1, f1) (2, f2) (2, f

(2)
1 ) (3, f3) (3, f

(3)
2 )

dependence set {0, 1} {2, 3} {0} {2} {3} {1} {0, 2, 3} {2}
associated reps. (1, f

(1)
0 ) (3, f3) (0, f0) (2, f

(2)
1 ) (3, f

(3)
2 ) (1, f1) (0, f

(0)
3 ) (2, f2)

Fig.2 and Fig.3 are two dependence graphs for the 0 bit of this NLFSR.

(2, f
(1)
2 )

����
��
��
��
�

��

(1, f
(1)
0 )��

(0, f
(0)
3 ) (3, f

(3)
2 )�� (0)

��

Fig. 2. Dependence graph 1

(1, f1) �� (0, f0) (0)��

����
���

��
��
�

���
��

��
��

��

(2, f2)

��

(3, f3)�� (2, f
(2)
1 )��

��

(1, f
(1)
0 )��

(3, f
(3)
2 )

		���������

Fig. 3. Dependence graph 2

For the dependence graph Fig.3, we have U(vτ ) = −1 and there exists a
recurrence of order not larger than −L(vτ ) = 4 describing the sequence of values
of the 0 bit. For the dependence graph Fig.2, we have U(vτ ) = 4 and L(vτ ) = 0.
Anyhow, running Algorithm 1 on the dependence graph Fig.2 gives expressions
involving the 0 bit:

s1(t) =s0(t+ 1)⊕ s0(t),
s2(t) =s0(t+ 2)⊕ s0(t+ 1),

s3(t) =s0(t+ 3)⊕ s0(t+ 2),

s0(t) =s0(t+ 2)⊕ s0(t+ 3)⊕ s0(t+ 4)⊕ s0(t+ 2)s0(t+ 3)

⊕ s0(t+ 1)s0(t+ 3)⊕ s0(t+ 1)s0(t+ 2).
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Equivalently, we get the recurrence of the sequence of values of the 0 bit as below

s0(t) = s0(t− 4)⊕ s0(t− 1)⊕ s0(t− 2)⊕ s0(t− 2)s0(t− 3)

⊕s0(t− 1)s0(t− 3)⊕ s0(t− 1)s0(t− 2).

6 Conclusion and Future Work

We give a sufficient condition, existence of a dependence graph with U(vτ ) < 0,
to ensure existence of a recurrence describing the sequence of values of a bit
of a general NLFSR. We also present an algorithm to find such dependence
graphs based on state transition equations and also an algorithm to construct a
recurrence from such a dependence graph. As Remark 4 shows, our method is
restricted. Thus, it is natural to ask what percentage of NLFSRs have a depen-
dence graph. Besides, since an NLFSR possibly has more than one dependence
graphs, it is desirable to give an algorithm to find the dependence graph of small
size. Furthermore, it also remains interesting to optimize Algorithm 1 for better
performance.

Acknowledgments. The authors would like to express their sincere gratitude to
the anonymous referees who made a number of valuable comments to improve
the manuscript.

References

1. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Confor-
mance Checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP,
vol. 66, pp. 122–133. Springer, Heidelberg (2011)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)
3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

2nd edn. The MIT Press, Cambridge (2001)
4. De Cannière, C., Preneel, B.: Trivium: a Stream Cipher Construction Inspired

by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/021, http://www.ecrypt.eu.org/stream/papersdir/2006/021

5. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)

6. Chabloz, J., Mansouri, S.S., Dubrova, E.: An Algorithm for Constructing a Fastest
Galois NLFSR Generating a Given Sequence. In: Carlet, C., Pott, A. (eds.) SETA
2010. LNCS, vol. 6338, pp. 41–54. Springer, Heidelberg (2010)

7. Daemen, J., Rijmen, V.: The Design of Rijindael: AES - the Advanced Encryption
Standard. Springer (2001)

8. Dubrova, E.: A Transformation from the Fibonacci to the Galois NLFSRs. IEEE
Transactions on Information Theory 55(11), 5263–5271 (2009)

9. Foulds, L.R.: Graph Theory Applications. Springer (1992)
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Abstract. Differential and linear cryptanalysis are two of the most pow-
erful techniques to analyze symmetric-key primitives. For modern ci-
phers, resistance against these attacks is therefore a mandatory design
criterion. In this paper, we propose a novel technique to prove security
bounds against both differential and linear cryptanalysis. We use mixed-
integer linear programming (MILP), a method that is frequently used in
business and economics to solve optimization problems. Our technique
significantly reduces the workload of designers and cryptanalysts, be-
cause it only involves writing out simple equations that are input into
an MILP solver. As very little programming is required, both the time
spent on cryptanalysis and the possibility of human errors are greatly
reduced. Our method is used to analyze Enocoro-128v2, a stream cipher
that consists of 96 rounds. We prove that 38 rounds are sufficient for secu-
rity against differential cryptanalysis, and 61 rounds for security against
linear cryptanalysis. We also illustrate our technique by calculating the
number of active S-boxes for AES.
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primitives. For block ciphers, differential cryptanalysis analyzes how input differ-
ences in the plaintext lead to output differences in the ciphertext. Linear crypt-
analysis studies probabilistic linear relations between plaintext, ciphertext and
key. If a cipher behaves differently from a random cipher for differential or linear
cryptanalysis, this can be used to build a distinguisher or even a key-recovery
attack.

For stream ciphers, differential cryptanalysis can be used in the context of
a resynchronization attack [11]. In one possible setting, the same data is en-
crypted several times with the same key, but using a different initial value
(IV). This is referred to as the standard (non-related-key) model, where the
IV value is assumed to be under control of the attacker. An even stronger at-
tack model is the related-key setting, where the same data is encrypted with
different IVs and different keys. Not only the IV values, but also the differences
between the keys are assumed to be under control of the attacker. Similar to
differential cryptanalysis, linear cryptanalysis can also be used to attack stream
ciphers in both the standard and related-key model. In the case of stream ci-
phers, linear cryptanalysis amounts to a known-IV attack instead of a chosen-IV
attack.

Resistance against linear and differential cryptanalysis is a standard design
criterion for new ciphers. For the block cipher AES [13], provable security against
linear and differential cryptanalysis follows from the wide trail design strat-
egy [12]. In this work, we apply a similar strategy. After proving a lower bound
on the number of active S-boxes for both differential and linear cryptanalysis,
we use the maximum differential probability (MDP) of the S-boxes to derive an
upper bound for the probability of the best characteristic. We assume (as is com-
monly done) that the probability of the differential can accurately be estimated
by the probability of the best characteristic. Several works focus on calculat-
ing the minimum number of active S-boxes for both Substitution-Permutation
Networks (SPNs) [12] and (Generalized) Feistel Structures (GFSs) [5, 6, 16, 24].
Unfortunately, it seems that a lot of time and effort in programming is required
to apply those techniques. This may explain why many related constructions
have not yet been thoroughly analyzed. In this paper, we introduce a novel
technique using mixed-integer linear programming in order to overcome these
problems.

Linear programming (LP) is the study of optimizing (minimizing or maxi-
mizing) a linear objective function f(x1, x2, . . . , xn), subject to linear inequal-
ities involving decision variables xi, 1 ≤ i ≤ n. For many such optimization
problems, it is necessary to restrict certain decision variables to integer values,
i.e. for some values of i, we require xi ∈ Z. Methods to formulate and solve
such programs are called mixed-integer linear programming (MILP). If all de-
cision variables xi must be integer, the term (pure) integer linear programming
(ILP) is used. MILP techniques have found many practical applications in the
fields of economy and business, but their application in cryptography has so far
been limited. For a good introductory level text on LP and (M)ILP, we refer to
Schrage [23].
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In [7], Borghoff et al. transformed the quadratic equations describing the
stream cipher Bivium into a MILP problem. The IBM ILOG CPLEX Opti-
mizer1 was then used to solve the resulting MILP problem, which corresponds
to recovering the internal state of Bivium. In the case of Bivium A, solving this
MILP problem takes less than 4.5 hours, which is faster than Raddum’s approach
(about a day) [22], but much slower than using MiniSAT (21 seconds) [9].

For the hash function SIMD, Bouillaguet et al. [8] used an ILP solver to find
a differential characteristic based on local collisions. Using the SYMPHONY
solver2, they could not find the optimal solution, but found lower bounds for
both SIMD-256 and SIMD-512. The computation for SIMD-512 took one month
on a dual quad-core computer.

In [5, 6], Bogdanov calculated the minimum number of linearly and differ-
entially active S-boxes of unbalanced Feistel networks with contracting MDS
diffusion. He proved that some truncated difference weight distributions are im-
possible or equivalent to others. For the remaining truncated difference weight
distributions, he constructed an ILP program which he then solved using the
MAGMA3 Computational Algebra System [4]. Compared to Bogdanov’s tech-
nique, the fully automated method in this paper is much simpler to apply:
Bogdanov’s approach requires a significant amount of manual work, and the
construction of not one but several ILP programs. We will show how this can be
avoided by introducing extra dummy variables into the MILP program.

While this paper was under submission, Wu and Wang released a paper on
ePrint [28] that also uses integer linear programming to count the number of ac-
tive S-boxes for both linear and differential cryptanalysis. Just as in Bogdanov’s
approach, their algorithms require a large number of ILP programs to be solved,
instead of only one as in the technique of this paper.

We apply our technique to the stream cipher Enocoro-128v2 [26, 27], in or-
der to obtain bounds against differential and linear cryptanalysis. We consider
both the standard and related-key model. All MILP programs are solved using
CPLEX. There are 96 initialization rounds in Enocoro-128v2. We prove that 38
rounds are sufficient for security against differential cryptanalysis, and 61 rounds
against linear cryptanalysis. These security bounds are obtained after 52.68 and
228.94 seconds respectively. We also calculate the minimum number of active
S-boxes for up to 14 rounds of AES, which takes at most 0.40 seconds for each
optimization program. Our experiments are performed on a 24-core Intel Xeon
X5670 Processor, with 16 GB of RAM.

This paper is organized as follows. Sect. 2 explains how to find the minimum
number of active S-boxes for a cryptographic primitive by solving an MILP
program. A brief description of Enocoro-128v2 is given in Sect. 3. In Sect. 4
and Sect. 5, we construct an MILP program to prove that Enocoro-128v2 is
secure against differential cryptanalysis and linear cryptanalysis respectively.
We provide some ideas for future work in Sect. 6, and conclude the paper in

1 http://www.ibm.com/software/integration/optimization/cplex-optimizer/
2 http://projects.coin-or.org/SYMPHONY
3 http://magma.maths.usyd.edu.au/

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://projects.coin-or.org/SYMPHONY
http://magma.maths.usyd.edu.au/
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Sect. 7. In App. A, we calculate the minimum number of active S-boxes for AES
using our technique, and provide the full source code of our program.

2 Constructing an MILP Program to Calculate the
Minimum Number of Active S-Boxes

We now explain a technique to easily prove the security of many ciphers against
differential and linear cryptanalysis. Our method is based on counting the mini-
mum number of active S-boxes. To illustrate our technique, we use Enocoro-128v2
and AES as test cases in this paper. The equations we describe are not specific
to these ciphers, but can easily be applied to any cipher constructed using S-
box operations, linear permutation layers, three-forked branches and/or XOR
operations.

2.1 Differential Cryptanalysis

We consider truncated differences, that is, every byte in our analysis can have
either a zero or a non-zero difference. More formally, we define the following
difference vector:

Definition 1 Consider a stringΔ consisting of n bytes Δ = (Δ0, Δ1, . . . , Δn−1).
Then, the difference vector x = (x0, x1, . . . , xn−1) corresponding to Δ is defined
as

xi =

{
0 if Δi = 0 ,

1 otherwise .

Equations Describing the XOR Operation. Let the input difference vector
for the XOR operation be (x⊕in1

, x⊕in2
) and the corresponding output difference

vector be x⊕out. The differential branch number is defined as the minimum number
of input and output bytes that contain differences, excluding the case where there
are no differences in inputs nor outputs. For XOR, the differential branch number
is 2. In order to express this branch number in equations, we need to introduce a
new binary dummy variable d⊕.4 If and only if all of the three variables x⊕in1

,x⊕in2

and x⊕out are zero, d
⊕ is zero, otherwise it should be one. Therefore we obtain the

following linear equations (in binary variables) to describe the relation between
the input and output difference vectors:

x⊕in1
+ x⊕in2

+ x⊕out ≥ 2d⊕ ,

d⊕ ≥ x⊕in1
,

d⊕ ≥ x⊕in2
,

d⊕ ≥ x⊕out .
4 Note that this extra variable was not added in [5,6], which is why Bogdanov had to
solve several ILP programs instead of only one.
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Equations Describing the Linear Transformation. The equations for a
linear transformation L can be described as follows. Assume L transforms the
input difference vector (xLin1

, xLin2
, · · · , xLinM) to the output difference vector

(xLout1 , x
L
out2 , · · · , xLoutM). Given the differential branch number BD, a binary

dummy variable dL is again needed to describe the relation between the in-
put and output difference vectors. The variable dL is equal to 0 if all vari-
ables xLin1

, xLin2
, · · · , xLinM , xLout1 , x

L
out2 , · · · , xLoutM are 0, and 1 otherwise. There-

fore the linear transformation L can be constrained by the following linear
equations:

xLin1
+ xLin2

+ · · ·+ xLinM + xLout1 + x
L
out2 + · · ·+ xLoutM ≥ BDdL ,

dL ≥ xLin1
,

dL ≥ xLin2
,

· · · · · ·
dL ≥ xLinM ,

dL ≥ xLout1 ,
dL ≥ xLout2 ,
· · · · · ·
dL ≥ xLoutM .

The Objective Function. The objective function that has to be minimized, is
the number of active S-boxes. This function is equal to the sum of all variables
that correspond to the S-box inputs.

Additional Constraints. An extra linear equation is added to ensure that
at least one S-box is active: this avoids the trivial solution where the mini-
mum active S-boxes is zero. If all d-variables and all x-variables are restricted
to be binary, the resulting program is a pure ILP (Integer Linear Programming)
problem. If all d-variables are restricted to be binary, but only the x-variables
corresponding to the input (plaintext), the equations ensure that the optimal so-
lution for all other x-variables will be binary as well. This is similar to Borghoff’s
suggestion in [7], and results in an MILP (Mixed-Integer Linear Programming)
problem that may be solved faster.

2.2 Linear Cryptanalysis

For linear cryptanalysis, we define a linear mask vector as follows:

Definition 2 Given a set of linear masks Γ = (Γ0, Γ1, . . . , Γn−1), the linear
mask vector y = (y0, y1, . . . , yn−1) corresponding to Γ is defined as

yi =

{
0 if Γi = 0 ,

1 otherwise .
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The duality between differential and linear cryptanalysis was already pointed
out by Matsui [20]. The equations describing a linear function are the same as
in the case for differential cryptanalysis, however the differential branch number
BD is replaced by the linear branch number BL. The linear branch number is
the minimum number of non-zero linear masks for the input and output of a
function, excluding the all-zero case. No extra equations are introduced for the
XOR operations, because the input and output linear masks are the same.

For a three-forked branch, we proceed as follows. Let the input linear mask
vector for the three-forked branch be y�in, and the corresponding output lin-
ear mask vector be (y�out1 , y

�
out2). We introduce a binary dummy variable l� to

generate the following linear equations for the three-forked branch:

y�in + y�out1 + y
�
out2 ≥ 2l� ,

l� ≥ y�in ,
l� ≥ y�out1 ,
l� ≥ y�out2 .

3 Description of Enocoro-128v2

The first Enocoro specification was given in [25]. Enocoro is a stream cipher,
inspired by the Panama construction [10]. Two versions of Enocoro were speci-
fied: Enocoro-80v1 with a key size of 80 bits, and Enocoro-128v1 with a key size
of 128 bits. Later, a new version for the 128-bit key size appeared in [15]. It is re-
ferred to as Enocoro-128v1.1. We now give a short description of Enocoro-128v2.
For more details, we refer to the design document [26, 27].

Internal State. The internal state of Enocoro-128v2 is composed of a buffer
b consisting of 32 bytes (b0, b1, . . . , b31) and a state a consisting of two bytes
(a0, a1). The initial state is loaded with a 128-bit key K and a 64-bit IV I as
follows:

b
(−96)
i = Ki, 0 ≤ i < 16 ,

b
(−96)
i+16 = Ii, 0 ≤ i < 8 .

All other internal state bytes are loaded with predefined constants.

Update Function. The update function Next uses functions ρ and λ to update
the internal state as follows:

(a(t+1), b(t+1)) = Next(S(t)) = (ρ(a(t), b(t)), λ(a(t), b(t))) .

An schematic overview of this function is given in Fig. 1.
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Fig. 1. State Update during the Initialization of Enocoro-128v2. Indices of buffer (on
the left) refer to b-variables, indices of the state (on the right) refer to a-variables.

Function ρ. The function ρ updates the state a. It consists of an 8-bit S-box
operation, a linear transformation L and XORs. The transformation L is defined
as a linear transformation with a 2-by-2 matrix over GF(28):(

v0
v1

)
= L(u0, u1) =

(
1 1
1 d

)(
u0
u1

)
, d ∈ GF(28) ,

where d = 0x02, u0 = a
(t)
0 ⊕ S[b(t)2 ] and u1 = a

(t)
1 ⊕ S[b(t)7 ]. The updated state

(a
(t+1)
0 , a

(t+1)
1 ) is then calculated as follows:

a
(t+1)
0 = v0 ⊕ S[b(t)16 ] ,

a
(t+1)
1 = v1 ⊕ S[b(t)29 ] .

Function λ. The λ function of Enocoro-128v2 consists of XOR operations and
a byte-wise rotation of the buffer b. It is defined as follows:

b
(t+1)
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b
(t)
31 ⊕ a(t)0 , if i = 0 ,

b
(t)
2 ⊕ b(t)6 , if i = 3 ,

b
(t)
7 ⊕ b(t)15 , if i = 8 ,

b
(t)
16 ⊕ b(t)28 , if i = 17 ,

b
(t)
i−1 otherwise .

Output Function Out. After 96 initialization rounds, the Enocoro-128v2 out-
put function outputs the lower byte of the state.

Out(S(t)) = a
(t)
1 .
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Several results [14, 17, 18, 21, 27] on differential and linear cryptanalysis have
already been published for different versions of Enocoro. In this paper, we con-
sider the most recent version Enocoro-128v2 [26, 27] as an example to illustrate
our technique. Watanabe et al. already showed that at least 2177.8 chosen IVs
are required for a differential attack on Enocoro-128v2 [27]. For a linear attack,
Konosu et al. [18] showed that 2216 known IVs are required for an attack on the
64-round variant Enocoro-128v1.1. Although these results are already sufficient
to prove the security of Enocoro-128v2 against linear and differential cryptanal-
ysis, we explain in this paper how to prove the security against these attacks in
a much easier way.

4 Differential Cryptanalysis of Enocoro-128v2

Our technique is now used to find the minimum number of active S-boxes
for the stream cipher Enocoro-128v2. We will consider an idealized variant of
Enocoro-128v2, for which the minimum number of active S-boxes is a lower
bound for the real Enocoro-128v2. In this idealized variant of Enocoro-128v2,
the S-boxes can map any non-zero input difference to any non-zero output dif-
ference. The same holds for the L-function, with the restriction that the branch
number is 3.

For this idealized variant of Enocoro-128v2, we have written a program to
calculate the minimum number of active S-boxes. We present our problem as
a mixed-integer linear programming (MILP) problem, and use CPLEX to solve
it. The solution corresponds to the minimum number of differentially active S-
boxes for Enocoro-128v2. It is used to prove the security of the cipher against
differential cryptanalysis, using a similar proof as for the block cipher AES [12,
13]. Note that an actual characteristic with the given number of active S-boxes
may or may not exist, depending on the specific S-box and L-function that is
used. This is not a concern for us, as our goal is to prove a security bound against
differential cryptanalysis.

4.1 Constructing the MILP Program

Enocoro-128v2 has eight XOR operations and one linear transformation L in
each round. We represent the differential behavior of each of these operations
by a set of linear equations, as described in Sect. 2. Let us take the first round
of Enocoro-128v2 as an example. The initial difference vector in the buffer and
states is represented by the binary variables (x0, x1, . . . , x31) and (x32, x33) re-
spectively. Let us consider the XOR operation which has the rightmost byte
of buffer b, i.e. b31, and state byte a0 as inputs. These correspond to binary
variables x31 and x32 respectively, the input difference vector for this XOR op-
eration. From the update function, we can obtain the corresponding value of
the leftmost byte of buffer b, i.e. b0, after the first round. Let the corresponding
output difference vector be x34, which is the first new binary variable that we
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Fig. 2. Difference Vectors for Nine Operations in the First Round
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Fig. 3. Differential State Update during the Initialization of Enocoro-128v2. The in-
dices refer to x-variables.

introduce. After introducing a binary dummy variable d0, this XOR operation
can be described by the equations:

x31 + x32 + x34 ≥ 2d0 ,

d0 ≥ x31 ,
d0 ≥ x32 ,
d0 ≥ x34 .

We now consider the second XOR operation, for which buffer b2 (input to the
first S-box) and the state a0 are the inputs. Because the S-box is bijective, it is
not only the case that the zero input difference results in a zero output difference,
but also that a non-zero input difference results in a non-zero output difference.
We find that (x2, x32) is the difference vector of the second XOR operation. The
second new variable, x35, will be the output difference vector for this second
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XOR operation. Similarly, for the third XOR operation, the input difference
vector is (x7, x33) (corresponding to (b7, a1)), and the output difference vector
is x36. Given two binary dummy variables d1 and d2 for the second and third
XOR operation respectively, we again obtain four linear equations for every XOR
operation.

From the structure of the linear transformation of Enocoro-128v2, we know
that (x35, x36) is the input difference vector for the linear transformation L in
the first round. By introducing a new binary variable d3, the relations between
the output difference vector (x37, x38) and the input difference vector (x35, x36)
are easily described by the following equations:

x35 + x36 + x37 + x38 ≥ 3d3 ,

d3 ≥ x35 ,
d3 ≥ x36 ,
d3 ≥ x37 ,
d3 ≥ x38 .

The other five XORs in the first round are represented in a similar way. The
new variables x39, x40, x41, x42 and x43 are shown in Fig. 2. These equations
result in the binary dummy variables d4, d5, d6, d7, d8. For all the eight XORs
and one linear transformation L, ten new binary variables x34, x35, . . . , x43 and
nine binary dummy variables d0, d1, . . . , d8 are required. Therefore, a system of
4 · 8 + 5 · 1 = 37 equations is obtained to describe all the nine operations in the
first round (and also every subsequent round) of Enocoro-128v2. The detailed
input and output vectors for all the nine operations are shown in Fig. 2.

After one round the difference vector for buffer and state will be

(x34, x0, x1, x41, x3, . . . , x6, x42, x8, . . . , x15, x43, x17, . . . , x30)

and (x39, x40) respectively. All binary xi-variables obtained for the first round
are illustrated in Fig. 3. Therefore, using this technique we can represent the
differential update of Enocoro-128v2 for any round with a system of linear equa-
tions.

4.2 The Minimum Number of Active S-Boxes for Differential
Cryptanalysis

We now focus on the variables that represent the S-box inputs in every round.
Note that x2, x7, x16, and x29 correspond to the input differences of the S-
boxes, and therefore determine if the S-box is active or not. Let Di include the
four indices of variables that represent the four S-box inputs in the i-th round
(1 ≤ i ≤ 96). The 96 sets include the indices for variables that represent the four
S-box inputs in each round. They can easily be obtained from Sect. 4.1, and are
as follows:
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D1 = {2, 7, 16, 29} ,
D2 = {1, 6, 15, 28} ,
D3 = {0, 5, 14, 27} ,
D4 = {34, 4, 13, 26} ,
D5 = {44, 3, 12, 25} ,

...

D96 = {954, 941, 902, 863} .

Let kN be the number of active S-boxes for N rounds of Enocoro-128v2. If

IN =
⋃

1≤i≤N

Di ,

then
kN =

∑
i∈IN

xi

will be the number of active S-boxes in N rounds of Enocoro-128v2. To avoid
the trivial case where no S-boxes are active, we add an extra linear constraint
to specify that least one S-box is active. If we can minimize the linear function
kN =

∑
i∈IN

xi, it will give us the minimum number of active S-boxes for N
rounds of Enocoro-128v2. This will provide a security bound for Enocoro-128v2
against differential cryptanalysis. The objective function kN =

∑
i∈IN

xi is a
linear function, constrained by a system of 37N linear equations. If all variables
must be binary variables, this corresponds to an ILP program.

It is easy to verify that the maximum differential probability for the 8-bit
S-box of Enocoro-128v2 is 2−4.678. As the IV is limited to 64 bits, there are at
most 264 IV pairs for any given difference (if the key is fixed). Because there
exists a generic attack with a data complexity of 264 IV s (obtaining the entire
codebook under one key), attacks requiring 264 IV s or more should not be
feasible. Therefore, we do not consider attacks using more than 264 IV s, even
in the related-key setting. If the number of active S-boxes in the initialization
rounds is at least 14 > 64/4.678, we consider the cipher to be resistant against
differential cryptanalysis. Because we allow differences in both the key and the
IV, our results hold both in the single-key and in the related-key setting. We
note that typically, differential and linear cryptanalysis are used to attack a few
more rounds than the number of rounds of the characteristic. The cipher must
also be resistant against other types of attacks and add extra rounds to provide
a security margin. For these reasons, more rounds should be used than suggested
by our analysis.

In order to optimize the MILP program, we use CPLEX. The experiments are
implemented on a 24-core Intel Xeon X5670 @ 2.93 GHz, with 16 GB of RAM.
Because this computer is shared with other users, execution times may be longer
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than necessary, which is why we do not give timing information for all problem
instances. We found that it takes about 52.68 seconds to show that the minimum
number of active S-boxes for 38 rounds of Enocoro-128v2 is 14. Therefore, 38
rounds of Enocoro-128v2 or more are secure against differential cryptanalysis.
The minimum number of active S-boxes for each round of Enocoro-128v2 are
listed in Table 1.

We would like to point out to the reader, that the seemingly complex book-
keeping of variable indices should not be a concern for the cryptanalyst who
wishes to use this technique. The MILP linear equations can be generated by a
small computer program. This program keeps track of the next unused x- and
d-variables. It is then easy to replace every XOR and L function operation in
the reference implementation of the cipher by a function to generate the corre-
sponding equations, and every S-box application by a function that constructs
the objective function. For a typical cipher, this should not require more than
half an hour of work for a minimally experienced programmer.

If all d-variables are restricted to binary variables, as well as variables x0 up
to x33, the equations ensure that the optimal solution for all other xi-variables
will be binary as well. Therefore, similar to Borghoff’s suggestion in [7], we
might solve an MILP program where only the d-variables and x0 up to x33
are binary variables, instead of a pure ILP program. We find that Borghoff’s
observation can give dramatic speed-ups in some cases: for 72 rounds, it takes
5,808.15 seconds using an MILP, compared 342,747.78 seconds using a pure ILP.
However, our MILP program for 38 rounds takes longer: 75.68 seconds instead
of 52.68 seconds. Explaining this phenomenon seems to be a useful direction for
future work.

5 Linear Cryptanalysis of Enocoro-128v2

We will use our technique to analyze an ideal variant of Enocoro-128v2 for linear
cryptanalysis. Similarly as for differential cryptanalysis, the real Enocoro-128v2
will have at least as many linearly active S-boxes as the idealized one, and
therefore can be used to prove a security bound.

5.1 Constructing the MILP Program

We now illustrate our technique by presenting the equations for the first round of
the stream cipher Enocoro-128v2 for linear cryptanalysis. For the initial state,
let the linear mask vector for the buffer be (y0, y1, . . . , y31), and for the state
be (y32, y33). Consider the three-forked branch, which has the state byte a0
as the input linear mask and buffer byte b31 as one output linear mask. We
obtain the first new binary variable y34 as the other output vector. The input
and output linear mask vector for this three-forked branch are then y32 and
(y31, y34) respectively. By introducing the binary dummy variable l0, the four
equations describing the three-forked branch can be described as follows:
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Table 1. Minimum Number of Differentially Active S-boxes min(kN) for N rounds of
Enocoro-128v2

N min(kN)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 2

N min(kN )

21 2

22 3

23 3

24 3

25 4

26 5

27 7

28 8

29 8

30 8

31 8

32 9

33 9

34 10

35 11

36 12

37 13

38 14

39 15

40 15

N min(kN )

41 16

42 17

43 18

44 18

45 18

46 19

47 20

48 20

49 21

50 22

51 22

52 22

53 22

54 22

55 22

56 22

57 23

58 23

59 24

60 24

N min(kN )

61 25

62 26

63 27

64 27

65 28

66 29

67 30

68 30

69 30

70 31

71 32

72 34

73 35

74 35

75 36

76 37

77 37

78 38

79 38

80 38

N min(kN )

81 39

82 39

83 40

84 40

85 40

86 41

87 42

88 43

89 43

90 44

91 44

92 45

93 45

94 46

95 47

96 47

y31 + y32 + y34 ≥ 2l0 ,

l0 ≥ y31 ,
l0 ≥ y32 ,
l0 ≥ y34 .

For the XOR operation, the two inputs and the output all have the same linear
mask. The bijectiveness of the S-box implies the linear mask at the output will
be non-zero if and only if the input mask is non-zero. Therefore, the linear
transformation L has an input linear mask vector of (y34, y33), and an output
linear mask vector of (y35, y36). Using a new binary dummy variable l1, the
equations describing the L transformation are:

y34 + y33 + y35 + y36 ≥ 3l1 ,

l1 ≥ y34 ,
l1 ≥ y33 ,
l1 ≥ y35 ,
l1 ≥ y36 .
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Fig. 4. Linear Mask Vectors for Nine Operations in the First Round
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Fig. 5. Linear Mask Vectors Update during the Initialization of Enocoro-128v2. The
indices refer to y-variables.

As an Enocoro-128v2 round contains eight three-forked branch operations and
one linear transformation L, ten new binary variables y34, y35, . . . , y43, as well as
nine binary dummy variables l0, l1, . . . , l8 are introduced. Therefore, 4 ·8+5 ·1 =
37 equations are required to describe the propagation of linear masks for the
first round (as well as any subsequent round) of Enocoro-128v2. The input and
output linear mask vectors for all nine operations in the first round are shown
in Fig. 4. The linear mask vector for the buffer and state after one round are

(y31, y0, y1, y37, y3, · · · , y5, y38, y39, y8, · · · , y14, y40, y41, y17, · · · , y27, y42, y43, y30)

and (y35, y36) respectively. They are shown in Fig. 5.
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5.2 The Minimum Number of Active S-Boxes for Linear
Cryptanalysis

Using the technique in the previous section, we can represent any number of
rounds of Enocoro-128v2. We now explain how to calculate the number of active
S-boxes. Let Li include all indices of the four variables representing the input
linear mask vector of S-boxes in the i-th round (1 ≤ i ≤ 96). We then obtain
the following 96 sets:

L1 = {34, 33, 35, 36} ,
L2 = {44, 36, 45, 46} ,
L3 = {54, 46, 55, 56} ,
L4 = {64, 56, 65, 66} ,
L5 = {74, 66, 75, 76} ,

...

L96 = {984, 976, 985, 986} .

Let mN be the number of active S-boxes for N rounds of Enocoro-128v2. If

JN =
⋃

1≤j≤N

Lj ,

then
mN =

∑
j∈JN

yj

will be the number of active S-boxes for N rounds of Enocoro-128v2. By min-
imizing the linear objective function mN , we obtain the minimum number of
linearly active S-boxes for N rounds of Enocoro-128v2.

The maximum correlation amplitude of the 8-bit S-box of Enocoro-128v2 is
Cmax = 2−2. For the same reasons as for differential cryptanalysis, we limit the
number of IV s to 264. Let us denote the minimum number of active S-boxes by
a. From the limit on the number of IV s, we then find that resistance against
linear cryptanalysis requires [13, pp. 142–143]:

Ca
max = (2−2)a ≤ 2−64/2 .

This inequality is satisfied for a ≥ 16. Therefore, if the number of linearly active
S-boxes is at least 16, Enocoro-128v2 can be considered to be resistant against
linear cryptanalysis (in both the single-key and related-key setting).

If we solve the resulting MILP problem using CPLEX, we find that the mini-
mum number of active S-boxes is 18 for 61 rounds of Enocoro-128v2. This result
was obtained after 227.38 seconds. Therefore, we conclude that Enocoro-128v2
with 96 initialization rounds is secure against linear cryptanalysis (in both the
single-key and related-key setting). The minimum number of active S-boxes for
Enocoro-128v2 are listed in Table 2.
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Table 2. Minimum Number of Linearly Active S-boxes min(mN) for Enocoro-128v2

N min(mN)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 0

N min(mN)

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 3

34 6

35 6

36 6

37 6

38 6

39 6

40 6

N min(mN )

41 6

42 9

43 9

44 9

45 12

46 12

47 12

48 12

49 12

50 12

51 12

52 15

53 15

54 15

55 15

56 15

57 15

58 15

59 15

60 15

N min(mN)

61 18

62 18

63 18

64 18

65 18

66 18

67 18

68 21

69 21

70 21

71 21

72 21

73 21

74 21

75 21

76 24

77 24

78 24

79 24

80 24

N min(mN)

81 24

82 27

83 27

84 27

85 27

86 27

87 27

88 27

89 27

90 27

91 27

92 27

93 30

94 30

95 33

96 33

6 Future Work

It is interesting to investigate how the internal parameters of CPLEX can be
fine-tuned to calculate bounds against linear and differential cryptanalysis in
the fastest possible time. If there are symmetries in the round function, these
may be used to speed up the search as well. Similarly, the attacker may improve
a given (suboptimal) lower bound for a particular cipher by clocking the round
functions forward or backward in order to obtain a lower number of S-boxes. To
obtain a rough lower bound for a large number of rounds, the “split approach”
(see for example [3]) may be used. For example, if r rounds of a cipher contain
at least a active S-boxes, then kr rounds of a cipher must contain at least ka
active S-boxes. It is useful to explore how these observations can be applied
when CPLEX takes a very long time to execute. Otherwise, the shorter solving
time does not compensate for the additional time to construct the program. For
ILP programs with a very long execution time, it may be better to calculate the
minimum number of active S-boxes using a different technique (e.g. [3]).

The technique in this paper is quite general, and may also be used for trun-
cated differentials, higher-order differentials, impossible differentials, saturation
attacks,... It can also be applied to other ciphers constructed using S-box opera-
tions, linear permutation layers, three-forked branches and/or XOR operations.
We leave the exploration of these topics to future work as well.
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7 Conclusion

In this paper, we introduced a simple technique to calculate the security of many
ciphers against linear and differential cryptanalysis. The only requirement is that
the cipher is composed of a combination of S-box operations, linear permutation
layers and/or XOR operations. Our technique involves writing a simple program
to generate a mixed-integer linear programming (MILP) problem. The objective
function of the MILP program is the number of linearly or differentially active S-
boxes, which we want to minimize. This MILP problem can then easily be solved
using an off-the-shelf optimization package, for exampleCPLEX.The result canbe
used to prove the security of a cryptosystem against linear and differential crypt-
analysis.

Our technique can be applied to a wide variety of cipher constructions. As an
example, we apply the technique in this paper to the stream cipher Enocoro-128v2.
We prove that for Enocoro-128v2 38 rounds are sufficient for security against dif-
ferential cryptanalysis, and 61 rounds against linear cryptanalysis. These results
are valid both in the single-key and related-key models. As Enocoro-128v2 con-
sists of 96 initialization rounds, this proves the security of Enocoro-128v2 against
linear and differential cryptanalysis.

We would like to point out that only little programming is required to ob-
tain this result. A minimally experienced programmer can modify the reference
implementation of a cipher, in order to generate the required MILP program
in about half an hour. In the case of Enocoro-128v2, it takes CPLEX less than
one minute on a 24-core Intel Xeon X5670 processor to prove security against
differential cryptanalysis, and less than four minutes to prove security against
linear cryptanalysis. We note that because very little programming is required,
both the time spent on cryptanalysis and the possibility of making errors are
greatly reduced.

Acknowledgments. The authors would like to thank their colleagues at COSIC,
as well as the anonymous reviewers for their detailed comments and suggestions.
Special thanks to Hirotaka Yoshida for reviewing an earlier draft of this paper.
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A Number of Active S-Boxes for AES

The four-round propagation theorem of AES [13] proves that the number of
active S-boxes in a differential or linear characteristic of four AES rounds is at
least 25. Combined with the properties of the AES S-box, this result was used in
the AES design document to prove the resistance against linear and differential
attacks. In this section, we illustrate our technique by applying it to the block
cipher AES. We not only confirm the four-round propagation theorem, but also
determine the minimum number of active S-boxes for up to 14 rounds in Table 4.

An AES round update consists of four operations: AddRoundKey (AR), Sub-
Bytes (SB), ShiftRows (SR) and MixColumns (MC). The update of the first
AES round is shown in Table 3. Every variable corresponds to a byte of the AES
state. The variable is 1 if the difference is non-zero, and 0 if the difference is zero.
All variables corresponding to the inputs of the SubByte operations are summed
in the objective function, this corresponds to the number of active S-boxes. The
linear function used in the MixColumns operation has a differential as well as a
linear branch number of 5.

A program was written in C to generate the equations for this optimization
problem in the CPLEX LP format. To illustrate the simplicity of our technique,
we provide this program (including source code comments) below in full. None
of the optimization problems in Table 4 took longer than 0.40 seconds to solve,
using only a single core of our 24-core Intel Xeon X5670 processor.

Table 3. The Variables in the First Round Update of AES

⎡
⎢⎢⎣
x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

⎤
⎥⎥⎦ SB−→

⎡
⎢⎢⎣
x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

⎤
⎥⎥⎦ SR−→

⎡
⎢⎢⎣

x0 x4 x8 x12

x5 x9 x13 x1

x10 x14 x2 x6

x15 x3 x7 x11

⎤
⎥⎥⎦MC−−→

⎡
⎢⎢⎣
x16 x20 x24 x28

x17 x21 x25 x29

x18 x22 x26 x30

x19 x23 x27 x31

⎤
⎥⎥⎦

Table 4. Minimum Number of Differentially or Linearly Active S-boxes min(kN ) for
N rounds of AES

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

min(kN) 1 5 9 25 26 30 34 50 51 55 59 75 76 80

http://eprint.iacr.org/
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#include <stdio.h>

int i,j,r;

const int ROUNDS = 4; /* number of rounds */

int next = 0; /* next unused state variable index */

int dummy = 0; /* next unused dummy variable index */

void ShiftRows(int a[4][4]) {

int tmp[4];

for(i = 1; i < 4; i++) {

for(j = 0; j < 4; j++) tmp[j] = a[i][(j + i) % 4];

for(j = 0; j < 4; j++) a[i][j] = tmp[j];

}

}

void MixColumn(int a[4][4]) {

for(j = 0; j < 4; j++) {

for (i = 0; i < 4; i++) printf("x%i + ",a[i][j]);

for (i = 0; i < 3; i++) printf("x%i + ",next+i);

printf("x%i - 5 d%i >= 0\n",next+3,dummy);

for(i = 0; i < 4; i++)

printf("d%i - x%i >= 0\n",dummy,a[i][j]);

for(i = 0; i < 4; i++)

printf("d%i - x%i >= 0\n",dummy,a[i][j]=next++);

dummy++;

}

}

int main() {

int a[4][4]; /* the bytes of the AES state */

for (i = 0; i < 4; i++)

for (j = 0; j < 4; j++)

a[i][j] = next++; /* initialize variable indices */

printf("Minimize\n"); /* print objective function */

for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);

printf("x%i\n\n",ROUNDS*16-1);

printf("Subject To\n"); /* round function constraints */

for (r = 0; r<ROUNDS; r++) { ShiftRows(a); MixColumn(a); }

/* at least one S-box must be active */

for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);

printf("x%i >= 1\n\n",ROUNDS*16-1);

printf("Binary\n"); /* binary constraints */

for (i = 0; i < 16; i++) printf("x%i\n",i);

for (i = 0; i < dummy; i++) printf("d%i\n",i);

printf ("End\n");

return 0;

}
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Abstract. Adleman, Manders and Miller had mentioned how to extend
their square root extraction method to the general rth root extraction
over finite fields, but not shown enough details. Actually, there is a dra-
matic difference between the square root extraction and the general rth
root extraction because one has to solve discrete logarithms for rth root
extraction. In this paper, we clarify their method and analyze its com-
plexity. Our heuristic presentation is helpful to grasp the method entirely
and deeply.
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1 Introduction

Root extraction is a classical problem in computers algebra. It plays an essen-
tial role in cryptosystems based on elliptic curves [2]. There are several effi-
cient probabilistic algorithms for square root extraction in finite fields, such as
Cipolla-Lehmer [6,7], Tonelli-Shanks [10,12] and Adleman-Manders-Miller [1].
All of them require a quadratic nonresidue as an additional input. In 2004,
Müller investigated this topic in Ref.[8]. In 2011, Sze [11] presented a novel idea
to compute square roots over finite fields, without being given any quadratic
nonresidue, and without assuming any unproven hypothesis.

Adleman-Manders-Miller square root extraction method can be extended to
solve the general rth root extraction problem. In recent, Nishihara et al. [9] have
specified the Adleman-Manders-Miller method for cube root extraction. Barreto
and Voloch [2] proposed an efficient algorithm to compute rth roots in Fpm for
certain choices of m and p. Besides, it requires that r || p − 1 and (m, r) = 1,
where the notation ab||c means that ab is the highest power of a dividing c.

The basic idea of Adleman-Manders-Miller square root extraction in Fp can
be described as follows. Write p− 1 in the form 2t · s, where s is odd. Given a
quadratic residue δ and a quadratic nonresidue ρ, we have

(δs)2
t−1 ≡ 1 (mod p), (ρs)2

t−1 ≡ −1 (mod p)

If t ≥ 2, then (δs)
2t−2

(mod p) ∈ {1,−1}. Take k1 = 0 or 1 such that

(δs)
2t−2

(ρs)
2t−1·k1 ≡ 1 (mod p)
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Since (δs)
2t−3

(ρs)
2t−2·k1 (mod p) ∈ {1,−1}, take k2 = 0 or 1 such that

(δs)
2t−3

(ρs)
2t−2·k1 (ρs)

2t−1·k2 ≡ 1 (mod p)

Likewise, we can obtain k3, · · · , kt−1 ∈ {0, 1} such that

(δs) (ρs)
2·k1+22·k2+···+2t−1·kt−1 ≡ 1 (mod p)

Thus, we have (
δ

s+1
2

)2 (
(ρs)

k1+2·k2+···+2t−2·kt−1

)2

≡ δ (mod p)

It should be stressed, however, that there is a dramatic difference between the
square root extraction and the general rth root extraction. Write p − 1 in the
form rt · s, where (r, s) = 1. Given a rth residue δ and a rth nonresidue ρ, we
have

(δs)r
t−1 ≡ 1 (mod p), (ρs)r

t−1 �≡ 1 (mod p)

Since (δs)
rt−2

(mod p) is a root of the equation Xr ≡ 1 (mod p) and the

equation has r different roots (these roots can be represented by (ρs)ki·rt−1

, ki ∈
{0, 1, · · · , r − 1}), it becomes difficult to find k1 such that

(δs)
rt−2

(ρs)
rt−1·k1 ≡ 1 (mod p)

In 1977, Adleman, Manders and Miller [1] had presented a brief description
on how to extend their square root extraction method to the general rth root
extraction over finite fields, but not shown enough details. By the way, it is the
only known method for the general rth root extraction over finite fields. In this
paper, we clarify their method and analyze its complexity.

2 Preliminary

Let Zn = {0, 1, · · · , n−1} be the set of all numbers smaller than n, Z∗
n = {x | 1 ≤

x ≤ n and gcd(x, n) = 1} be the set of numbers in Zn that are coprime to n.
The following definitions and results can be found in Ref.[4].

Definition 1. A residue a ∈ Z∗
n is said to be a quadratic residue if there exists

some x ∈ Z∗
n such that x2 ≡ a (mod n). If a is not a quadratic residue, then it

is referred to as a quadratic non-residue.

Theorem 2. (Euler’s Criterion) For prime p, an element a ∈ Z∗
p is a quadratic

residue if and only if a
p−1
2 ≡ 1 (mod p).

Definition 3. (Legendre Symbol) For any prime p and a ∈ Z∗
p, we define the

Legendre symbol[
a

p

]
=

{
1 if a is a quadratic residue (mod p)
−1 if a is a quadratic non-residue (mod p)
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For an integer a, we define log(a) to be the number of bits in the binary repre-
sentation of |a|; more precisely,

log(a) =

{ �log2 |a|�+ 1 if a �= 0
1 if a = 0

Given a ∈ Zn and a non-negative integer e, the repeated-squaring algorithm
computes ae (mod n) using just O(log(e)) multiplications in Zn, thus taking
time O(log(e)log2n). Therefore, we have the following result:

Proposition 4. For an odd prime p, we can test whether an integer a is a quadratic

residue modulo p by either performing the exponentiation a
(p−1)

2 (mod p) or by

computing the Legendre symbol
[
a
p

]
. Assume that 0 < a < p. Using a standard

repeated squaring algorithm, the former method takes time O(log3p), while using
Euclidean-like algorithm, the latter method takes time O(log2p).
Proof. See [5].

Let R be a ring. Let us define the length of a polynomial f(X) ∈ R[X ], denoted
by log(f), to be the length of its coefficient vector; more precisely, we define

log(f) =

{
deg(f) + 1 if f �= 0
1 if f = 0

Analogous to algorithms for modular integer arithmetic, we can also do arith-
metic in the residue class ring R[X ]/(f), where f ∈ R[X ] is a polynomial of
deg(f) > 0 whose leading coefficient lc(f) is a unit.

Proposition 5. Let R[X ]/(f) be a residue class ring, where f ∈ R[X ] is a polyno-
mial of deg(f) > 0 whose leading coefficient lc(f) is a unit. Given g ∈ R[X ]/(f)
and a non-negative exponent e, using repeated-squaring algorithm we can com-
pute ge taking O(log(e) deg(f)2) operations in R.

Proof. See [3].

Notice that using a standard representation for Fp, each operation in Fp takes
time O(log2p).

3 Adleman-Manders-Miller Square Root Extraction
Method

The Adleman-Manders-Miller square root extraction method requires a quadratic
non-residue as an additional input. We classify the method into two kinds be-
cause there is a gap between the base field Fp and the extension Fpm to test
whether an element is a quadratic non-residue.

3.1 Adleman-Manders-Miller Square Root Extraction Method in Fp

Consider the problem to find a solution to the congruence X2 ≡ δ (mod p) over
finite field Fp, where p is an odd prime.
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Adleman, Manders and Miller [1] proposed an algorithm to solve the problem.
Their square root extraction method is based on the following facts. Write p− 1
in the form 2t · s, where s is odd. Given a quadratic residue δ and a quadratic
nonresidue ρ, we have

(δs)
2t−1 ≡ 1 (mod p), (ρs)

2t−1 ≡ −1 (mod p)

If t = 1, then δs ≡ 1 (mod p). Hence, we have
(
δ

s+1
2

)2

≡ δ (mod p). It means

that δ
s+1
2 is a square root of δ. In this case, it only takes time O(log(s)log2p).

If t ≥ 2, then (δs)
2t−2

(mod p) ∈ {1,−1}. Take k1 = 0 or 1 such that

(δs)
2t−2

(ρs)
2t−1·k1 ≡ 1 (mod p)

Take k2 = 0 or 1 such that

(δs)2
t−3

(ρs)2
t−2·k1 (ρs)2

t−1·k2 ≡ 1 (mod p)

Likewise, we obtain k3, · · · , kt−1 ∈ {0, 1} such that

(δs) (ρs)2·k1+22·k2+···+2t−1·kt−1 ≡ 1 (mod p)

Finally, we have(
δ

s+1
2

)2 (
(ρs)k1+2·k2+···+2t−2·kt−1

)2

≡ δ (mod p)

Table 1. Adleman-Manders-Miller square root extraction algorithm in Fp

Input: Odd prime p and a quadratic residue δ.
Output: A square root of δ.

Step 1: Choose ρ uniformly at random from F∗
p.

Compute [ ρ
p
] using Euclidean-like algorithm.

Step 2: if [ ρ
p
] = 1, go to Step 1.

Step 3: Compute t, s such that p− 1 = 2ts, where s is odd.
Compute a← ρs, b← δs, h← 1.

Step 4: for i = 1 to t− 1

compute d = b2
t−1−i

if d = 1, k← 0
else k ← 1
b← b · (a2)k, h← h · ak

a← a2

end for

Step 5: return δ
s+1
2 · h
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To find a quadratic non-residue ρ, it requires to check that [ρp ] �= 1. The

computation takes time O(log2p). If we do this for more than O(1)log p different
randomly chosen ρ, then with probability > 1− ( 1p )

O(1) at least one of them will
give a quadratic non-residue. Thus, to find a quadratic nonresidue ρ, it takes
expected time O(log3p). To compute b2

t−i−1

(mod p), it takes time O((t − i −
1)log2p). Since there are 1 + 2+ · · ·+ (t− 1) = t(t−1)

2 steps, the loop takes time

O(t2log2p). Thus, the total estimate is O(log3p + t2log2p). At worst (if almost
all of p− 1 is a power of 2), this is O(log4p).

3.2 Adleman-Manders-Miller Square Root Extraction Method in
Fpm

As we mentioned before, the Adleman-Manders-Miller method in the extension
field Fpm differs from the method in the base field Fp because one can not
determine a quadratic non-residue by computing the Legendre Symbol.

Set q = pm. To find a quadratic non-residue ρ, it requires to check that

ρ
q−1
2 �= 1. The computation takes time O(log3q). If we do this for more than

O(1)log q different randomly chosen ρ, then with probability > 1 − (1q )
O(1) at

least one of them will give a quadratic non-residue. Thus, to find a quadratic
nonresidue ρ, it takes expected time O(log4q).

To compute b2
t−i−1

, it takes time O((t− i− 1)log2q). Since there are 1 + 2+
· · · + (t − 1) steps, the loop takes time O(t2log2q). Thus, the final estimate is
O(log4q + t2log2q).

Table 2. Adleman-Manders-Miller square root extraction algorithm in Fpm

Input: Odd prime p, a positive integer m and a quadratic residue δ.
Output: A square root of δ.

Step 1: Choose ρ uniformly at random from F∗
pm .

Step 2: if ρ
pm−1

2 = 1, go to Step 1.
Step 3: Compute t, s such that pm − 1 = 2ts, where s is odd.

Compute a← ρs, b← δs, h← 1.
Step 4: for i = 1 to t− 1

compute d = b2
t−1−i

if d = 1, k← 0
else k ← 1

b← b · (a2)k, h← h · ak

a← a2

end for

Step 5: return δ
s+1
2 · h
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4 Adleman-Manders-Miller Cubic Root Extraction
Method

In 2009, Nishihara et al. [9] specified the Adleman-Manders-Miller method for
cube root extraction. See the following description.

Table 3. Adleman-Manders-Miller cubic root extraction algorithm in Fpm

Input: Odd prime p, a positive integer m and a cubic residue δ.
Output: A cubi root of δ.

Step 1: Choose ρ uniformly at random from F∗
pm .

Step 2: if ρ
pm−1

3 = 1, go to Step 1.
Step 3: Compute t, s such that pm − 1 = 3ts, where s = 3l ± 1.

Compute a← ρs, a′ ← ρ3
t−1·s, b← δs, h← 1.

Step 4: for i = 1 to t− 1

compute d = b3
t−1−i

if d = 1, k← 0,
else if d = a′, k← 2
else k ← 1

b← b · (a3)k, h← h · ak

a← a3

end for

Step 5: r ← δlh
if s = 3l + 1, r ← r−1

return r

Set q = pm. The cubic root extraction algorithm takes time O(log4q+t2log2q).
As for this claim, we refer to the complexity analysis of Adleman-Manders-Miller
square root extraction algorithm in Section 3.2.

5 Specification of Adleman-Manders-Miller rth Root
Extraction Method

Consider the general problem to find a solution to Xr = δ in Fq. Clearly, it
suffices to consider the following two cases:

(1) (r, q − 1) = 1; (2) r|q − 1.

If (r, q − 1) = 1, then δr
−1

is a rth root of δ. Therefore, it suffices to consider
the case that r|q − 1.

Adleman, Manders and Miller [1] had mentioned how to extend their square
root extraction method to rth root extraction, but not specified it. We now
clarify it as follows.

If r|q−1, we write p−1 in the form rt ·s, where (s, r) = 1. Given a rth residue

δ, we have (δs)
rt−1

= 1. Since (s, r) = 1, it is easy to find the least nonnegative
integer α such that s|rα− 1. Hence,
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(
δrα−1

)rt−1

= 1 (1)

If t− 1 = 0, then δα is a rth root of δ. From now on, we assume that t ≥ 2.
Given a rth non-residue ρ ∈ Fq, we have

(ρs)
i·rt−1 �= (ρs)

j·rt−1

where i �= j, i, j ∈ {0, 1, · · · , r − 1}

Set

Ki = (ρs)
i·rt−1

and K = {K0,K1, · · · ,Kr−1}

It is easy to find that all Ki satisfy X
r = 1. Since((

δrα−1
)rt−2

)r

= 1

there is a unique j1 ∈ {0, 1, · · · , r − 1} such that

(
δrα−1

)rt−2

= Kr−j1

where Kr = K0. Hence, (
δrα−1

)rt−2

Kj1 = 1

That is (
δrα−1

)rt−2

(ρs)
j1·rt−1

= 1 (2)

By the way, to obtain j1 one has to solve a discrete logarithm.
Likewise, there is a unique j2 ∈ {0, 1, · · · , r − 1} such that

(
δrα−1

)rt−3

(ρs)
j1·rt−2

(ρs)
j2·rt−1

= 1 (3)

Consequently, we can obtain j1, · · · , jt−1 such that

(
δrα−1

)
(ρs)

j1·r (ρs)j2·r
2 · · · (ρs)jt−1·rt−1

= 1 (4)

Thus, we have

(δα)r
(
(ρs)j1+j2·r+···jt−1·rt−2

)r

= δ (5)

It means that

δα (ρs)j1+j2·r+···jt−1·rt−2

is a rth root of δ.
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Table 4. Adleman-Manders-Miller rth root extraction algorithm in Fq

Input: Fq and a rth residue δ, r|q − 1.
Output: A rth root of δ.

Step 1: Choose ρ uniformly at random from F∗
q .

Step 2: if ρ
q−1
r = 1, go to Step 1.

Step 3: Compute t, s such that q − 1 = rts, where (r, s) = 1.
Compute the least nonnegative integer α such that s|rα− 1.

Compute a← ρr
t−1s, b← δrα−1, c← ρs, h← 1

Step 4: for i = 1 to t− 1

compute d = br
t−1−i

if d = 1, j ← 0,
else j ← − loga d (compute the discrete logarithm)
b← b (cr)j , h← h cj

c← cr

end for
Step 5: return δα · h

6 Complexity Analysis of Adleman-Manders-Miller rth
Root Extraction Method

We now discuss the time estimate for this rth root extraction algorithm.

To find a rth non-residue ρ, it requires to check that ρ
q−1
r �= 1. The com-

putation takes time O(log3q). If we do this for more than O(1)log q different
randomly chosen ρ, then with probability > 1− (1q )

O(1) at least one of them will
give a rth non-residue. Therefore, the expected time of finding a rth non-residue
is O(log4q).

The work done outside the loop amounts to just a handful of exponentiations.
Hence, it takes time O(log3q). To compute br

t−i−1

, it takes time O((t − i −
1)log rlog2q). Since there are 1+2+· · ·+(t−1) steps, it takes timeO(t2log rlog2q).

To compute the discrete logarithm loga d, it takes time O(rlog2q) using brute-
force search. Since there are t − 1 discrete logarithms at worst, it takes time
O(trlog2q).

Thus, the final estimate is O(log4q + rlog3q). Notice that the algorithm can
not run in polynomial time if r is sufficiently large.

7 Conclusion

The basic idea of Adleman-Manders-Miller root extraction method and its com-
plexity analysis have not specified in the past decades. In this paper, we clarify
the method and analyze its complexity. We think our heuristic presentation is
helpful to grasp the method entirely and deeply.
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12. Tonelli, A.: Bemerkungüber die Auflösung quadratischer Congruenzen.
Nachrichten der Akademie der Wissenschaften in Göttingen, 344–346 (1891)

eprint.iacr.org/2009/457


Multi-pixel Encryption Visual Cryptography�

Teng Guo1,2, Feng Liu1, and ChuanKun Wu1

1 State Key Laboratory of Information Security
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

2 Graduate University of Chinese Academy of Sciences, Beijing 100190, China
{guoteng,liufeng,ckwu}@is.iscas.ac.cn

Abstract. A visual cryptography scheme (VCS) is a secret sharing
method, for which the secret can be decoded by human eyes without
needing any cryptography knowledge nor any computation. In their pi-
oneer work, Naor and Shamir mentioned that encrypting a block of pix-
els simultaneously may result in better result. Inspired by that idea,
we first define multi-pixel encryption visual cryptography scheme (ME-
VCS), which encrypts a block of t (1 ≤ t) pixels at a time. Then we
give an upper bound of the overall contrast of ME-VCS. We also give a
lower bound of the pixel expansion of (n, n, t)-ME-VCS. At last, we built
a contrast-optimal ME-VCS from a contrast-optimal VCS and built an
optimal (n, n, t)-ME-VCS from an optimal (n, n)-VCS.

Keywords: Visual cryptography, Multi-pixel encryption, Contrast-optimal,
ME-VCS.

1 Introduction

In [13], Naor and Shamir first presented a formal definition of k out of n threshold
visual cryptography scheme, denoted as (k, n)-VCS for short. In a (k, n)-VCS,
the original secret image is split into n shares, where the stacking of any k
shares can reveal the content of the secret image but any less than k shares
should provide no information about the secret image, except the size of it.
In [1], Ateniese et al. extended the model of Naor and Shamir to general access
structure. A general access structure is a specification of qualified participant
sets ΓQual and forbidden participant sets ΓForb. Any participant set X ∈ ΓQual

can reveal the secret by stacking their shares, but any participant set Y ∈ ΓForb

cannot obtain any information of the secret image, except the size of it.
In [13], Naor and Shamir also mentioned in the footnote that encrypting a

block of pixels simultaneously may result in better result. Afterwards, many stud-
ies have been spent to multi-pixel encryption. In [9], Hou proposed a method,
which encrypts a block of two pixels at a time. However, this method is proba-
bilistic and it is for 2 out of 2 threshold structure only. In [14], Du extended Hou’s
method to general access structure, but the proposed method is still probabilis-
tic. In [3], Chen proposed a multiple-level (k, k) secret sharing scheme, which

� This work was supported by NSFC No.60903210.

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 86–92, 2012.
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encrypts a block of pixels at a time. This method combined with two techniques
(histogram width-equalization and histogram depth-equalization) can deal with
gray-level images, however it is not perfect secure (in an information-theoretic
sense). Other studies on multi-pixel encryption can be found in [2,11,12]. How-
ever, they are all probabilistic and not proved to be optimal.

In the model of Naor and Shamir, we encode a pixel at a time, and we can
recover the original secret image exactly (recover every pixel of the original
secret image). In this sense, the model of Naor and Shamir is also known as
deterministic VCS. In this paper, we refer deterministic VCS encoding a pixel
at a time (the model of Naor and Shamir) as VCS. We first extend the model of
Naor and Shamir (denoted as VCS) to the multi-pixel encryption model (denoted
as ME-VCS), for which the model of Naor and Shamir is a special case of the
proposed multi-pixel encryption model. Then we give an upper bound of the
overall contrast of ME-VCS. For (n, n, t)-ME-VCS, we also give a lower bound
of the pixel expansion. At last, we build a contrast-optimal ME-VCS from a
contrast-optimal VCS and build an optimal (n, n, t)-ME-VCS from an optimal
(n, n)-VCS.

This paper is organized as follows. In Section 2, we give some preliminaries of
VCS and ME-VCS. In Section 3, we give an upper bound of the overall contrast
of ME-VCS and a lower bound of the pixel expansion of (n, n, t)-ME-VCS. The
paper is concluded in Section 4.

2 The Multi-pixel Encryption Model

In this section, we first give the definition of VCS. Then we give the definition
of ME-VCS.

Let X be a subset of {1, 2, · · · , n} and let |X | be the cardinality of X . For
any n × m Boolean matrix M , let M [X ] denote the matrix M constrained
to rows in X , then M [X ] is a |X | × m matrix. We denote by H(M [X ]) the
Hamming weight of the OR result of rows of M [X ]. Let C0 and C1 be two
collections of n × m Boolean matrices, we define C0[X ] = {M [X ] : M ∈ C0},
C1[X ] = {M [X ] :M ∈ C1}.

In a VCS with n participants, we share one pixel at a time. The pixel is either
white or black. If the pixel to be shared is white (resp. black), we randomly
choose a share matrix from C0 (resp. C1) and distribute its j-th (0 ≤ j ≤ n)
row to share j. Let ′0′ denote a white pixel and let ′1′ denote a black pixel. A
VCS for an access structure Γ is defined as follows:

Definition 1 (VCS [13,1,7,8,10]). Let (ΓQual, ΓForb, n) be an access structure
on a set of n participants. The two collections of n×m Boolean matrices (C0, C1)
constitute a visual cryptography scheme ({ΓQual, ΓForb}, n)-VCS if the following
conditions are satisfied:

1. (Contrast) For any participant set X ∈ ΓQual, we denote lX= max
M∈C0[X]

H(M),

and denote hX = min
M∈C1[X]

H(M). It holds that 0 ≤ lX < hX ≤ m.
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2. (Security) For any participant set Y ∈ ΓForb, C0[Y ] and C1[Y ] contain the
same matrices with the same frequencies.

hX (resp. lX) is the minimum (resp. maximum) Hamming weight of the stacked
patterns of a black (resp. white) pixel restricted to qualified set X . The contrast
of qualified set X is defined as αX = hX−lX

m , and the contrast of the scheme
is defined as α = min

X∈ΓQual

{αX}. The pixel expansion of the scheme is m. The

contrast is expected to be as large as possible. The pixel expansion is expected
to be as small as possible. When the contrast reaches its maximum, the VCS
is contrast-optimal. When the pixel expansion reaches its minimum, the VCS
is pixel-expansion-optimal. When the VCS is both contrast-optimal and pixel-
expansion-optimal, we say that the VCS is optimal.

Remark: In this paper, VCS means deterministic VCS encoding a pixel at a
time, for which the original secret image can be reconstructed exactly. All the
results are for deterministic VCS too.

If the two collections of n × m Boolean matrices (C0, C1) can be obtained
by permuting the columns of the corresponding n ×m matrix (S0 for C0, and
S1 for C1) in all possible ways, we will call the two n × m matrices the basis
matrices [1]. In this case, the size of the collections (C0, C1) is the same (both
equal to m!). The algorithm for the VCS based on basis matrices has small
memory requirement (it keeps only the basis matrices S0 and S1, instead of two
collections of matrices (C0, C1)), and it is efficient (to choose a matrix in C0

(resp. C1), it only generate a permutation of the columns of S0 (resp. S1)).
In multi-pixel encryption visual cryptography scheme (ME-VCS) with n par-

ticipants, we share a block of t (t ≥ 1) pixels at a time. We denote the t pixels as
an encryption block. Obviously, the Hamming weights of all possible encryption
blocks may be 0, 1, . . . , t. There are t+1 encryption collections (C0, C1, . . . , Ct),
for which Ci (0 ≤ i ≤ t) is for encryption blocks of Hamming weight i. To share
an encryption block of Hamming weight i (0 ≤ i ≤ t), we randomly choose a
share matrix from Ci, and distribute the j-th (0 ≤ j ≤ n) row to share j. A
ME-VCS for an access structure Γ is defined as follows:

Definition 2 (ME-VCS). Let (ΓQual, ΓForb, n) be an access structure on a set of
n participants. The t+1 collections of n×mBoolean matrices (C0, C1, . . . , Ct) con-
stitute a multi-pixel encryption visual cryptography scheme ({ΓQual, ΓForb}, n, t)-
ME-VCS if the following conditions are satisfied:

1. (Contrast) For any participant set X ∈ ΓQual, we denote l
X
i = min

M∈Ci[X]
H(M)

(0 ≤ i ≤ t), and denote hXi = max
M∈Ci[X]

H(M). It holds that 0 ≤ hX0 < lX1 ≤
hX1 < l

X
2 ≤ hX2 < lX3 ≤ . . . ≤ hXt−1 < l

X
t ≤ m.

2. (Security) For any participant set Y ∈ ΓForb, C0[Y ], C1[Y ], . . ., and Ct[Y ]
contain the same matrices with the same frequencies.

lXi (0 ≤ i ≤ t) is the minimum Hamming weight of the stacked patterns
of encryption blocks of Hamming weight i restricted to qualified set X . hXi
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(0 ≤ i ≤ t) is the maximum Hamming weight of the stacked patterns of an en-
cryption block of Hamming weight i restricted to qualified set X . The contrast
of qualified set X between encryption blocks of Hamming weight i (0 ≤ i ≤ t−1)
and those of Hamming weight i+ 1 is defined as αXi =

lXi+1−hX
i

m , and the overall

contrast of qualified set X is defined as αX =

t−1∑
i=0

αXi . The overall contrast of

the scheme is defined as α = min
X∈ΓQual

αX . The pixel expansion of the scheme

is m. The overall contrast is expected to be as large as possible. Because all
possible Hamming weights of encryption blocks are evenly ranging from 0 to t,
∀ X ∈ ΓQual, the contrasts αXi (0 ≤ i ≤ t− 1) are expected to be equal. When
the overall contrast reaches its maximum, and ∀ X ∈ ΓQual, the contrasts αXi
(0 ≤ i ≤ t − 1) are equal, the ME-VCS is contrast-optimal. The pixel expan-
sion is expected to be as small as possible. When the pixel expansion reaches
its minimum, the ME-VCS is pixel-expansion-optimal. When a ME-VCS is both
contrast-optimal and pixel-expansion-optimal, we say that the ME-VCS is opti-
mal.

Remark: If the size of encryption blocks is one, the definition of ME-VCS
coincides with that of VCS. In other words, a ({ΓQual, ΓForb}, n, 1)-ME-VCS
is the same as a ({ΓQual, ΓForb}, n)-VCS. The model of Naor and Shamir is a
special case of the proposed ME-VCS. The concept of basis matrices in VCS can
easily be applied to ME-VCS. When (ΓQual, ΓForb) represents a (k, n) threshold
structure, for convenience, we can simply write ({ΓQual, ΓForb}, n, t)-ME-VCS
as (k, n, t)-ME-VCS.

3 Multi-pixel Encryption Visual Cryptography Scheme

In this section, we first give an upper bound of the overall contrast of ME-VCS.
Then we give a lower bound of the pixel expansion of (n, n, t)-ME-VCS. At last,
we build a contrast-optimal ME-VCS from a contrast-optimal VCS and build an
optimal (n, n, t)-ME-VCS from an optimal (n, n)-VCS.

Theorem 1. We denote the contrast of a contrast-optimal ({ΓQual, ΓForb}, n)-
VCS as α∗. We denote the overall contrast of a contrast-optimal ({ΓQual, ΓForb},
n, t)-ME-VCS as αme. Then we must have that αme ≤ α∗.
Proof: Let (C0, C1, . . . , Ct) be the t + 1 collections of Boolean matrices of a
contrast-optimal ({ΓQual, ΓForb}, n, t)-ME-VCS. It is easy to see that C0 and Ct

constitute a ({ΓQual, ΓForb}, n)-VCS.
In the following, we calculate the contrast of the ({ΓQual, ΓForb}, n)-VCS con-

structed from C0 and Ct. Let l
X
i (0 ≤ i ≤ t) be the minimum Hamming weights

of the stacked patterns of a share matrix from Ci restricted to qualified set X .
Let hXi (0 ≤ i ≤ t) be the maximum Hamming weights of the stacked patterns
of a share matrix from Ci restricted to qualified set X . The contrasts of the

({ΓQual, ΓForb}, n, t)-ME-VCS restricted to qualified set X are αXi =
lXi+1−hX

i

m
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(0 ≤ i ≤ t − 1). The contrast of the above ({ΓQual, ΓForb}, n)-VCS restricted

to qualified set X is αX =
lXt −hX

0

m . Since lXi ≤ hXi (0 ≤ i ≤ t), we get that
t−1∑
i=0

αXi ≤ αX . From the definition of overall contrast of ME-VCS, we get that

αme = min
X∈ΓQual

t−1∑
i=0

αXi . The contrast of the above ({ΓQual, ΓForb}, n)-VCS con-

structed from C0 and Ct is α = min
X∈ΓQual

αX . Thus it holds that αme ≤ α. Since
α∗ is the optimal (maximal) contrast for ({ΓQual, ΓForb}, n)-VCS, it results that
αme ≤ α ≤ α∗. �

In the following, we give a lower bound of the pixel expansion of (n, n, t)-ME-
VCS as follows.

Theorem 2. In an (n, n, t)-ME-VCS, we denote its pixel expansion as m, then
we have that m ≥ t× 2n−1.

Proof: It is known that the contrast of (n, n)-VCS is upper bounded by 1
2n−1

(see [13]). In an (n, n, t)-ME-VCS, we denote its overall contrast as αme. Because
there is only one qualified set in (n, n, t)-ME-VCS, the overall contrast of the
scheme equals to the overall contrast restricted to the qualified set. We will
not distinguish them in the following discussion. We denote the contrast of the
scheme between encryption blocks of Hamming weight i (0 ≤ i ≤ t−1) and those
of Hamming weight i+1 as αi. From the definition of overall contrast, we know

that αme =

t−1∑
i=0

αi. From Theorem 1, we know that αme ≤ 1
2n−1 . Thus it holds

that

t−1∑
i=0

αi ≤ 1

2n−1
. Let α =

t−1
min
i=0
{αi}. Since α ≤ 1

t ×
t−1∑
i=0

αi ≤ 1

t× 2n−1
, we have

that
1

α
≥ t× 2n−1. Since the difference between the minimal Hamming weight of

recovered patterns of encryption blocks of Hamming weight i+1 (0 ≤ i ≤ t− 1)
and the maximal Hamming weight of those of Hamming weight i is at least one,
we have that α×m ≥ 1. Thus it holds that m ≥ 1

α ≥ t× 2n−1. �

In the following, we will build a contrast-optimal ME-VCS from a contrast-
optimal VCS. Our method is similar to the hybrid technique widely used in
complexity theory and theoretical cryptography, see chap. 3 in [5], chap. 2
in [6] and [4]. Let M0 and M1 be the basis matrices of a contrast-optimal
({ΓQual, ΓForb}, n)-VCS with contrast α∗ and pixel expansion m. The following
t+1 basis matricesGi (0 ≤ i ≤ t) define a contrast-optimal ({ΓQual, ΓForb}, n, t)-
ME-VCS.

Gi =M0 ◦ . . . ◦M0︸ ︷︷ ︸
t−i

◦M1 ◦ . . . ◦M1︸ ︷︷ ︸
i

(0 ≤ i ≤ t).
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Theorem 3. The aboveGi (0 ≤ i ≤ t) define a contrast-optimal ({ΓQual, ΓForb},
n, t)-ME-VCS.

Proof: The Hamming weight of the stacked pattern of M0 restricted to qual-
ified set X is denoted as wX

0 . The Hamming weight of the stacked pattern
of M1 restricted to qualified set X is denoted as wX

1 . The contrast of the

({ΓQual, ΓForb}, n)-VCS restricted to qualified set X is αX =
wX

1 − wX
0

m
. The

contrast of the ({ΓQual, ΓForb}, n)-VCS is α∗ = min
X∈ΓQual

αX .

The Hamming weight of the stacked pattern of Gi restricted to qualified set
X is denoted as lXi (0 ≤ i ≤ t). From the construction of Gi, we know that
lXi = wX

0 × (t − i) + wX
1 × i (0 ≤ i ≤ t). So the contrast of qualified set X

between encryption blocks of Hamming weight i (0 ≤ i ≤ t − 1) and those

of Hamming weight i + 1 is αXi =
lXi+1 − lXi
m× t =

wX
1 − wX

0

m× t =
αX
t
> 0. The con-

trast condition of the ME-VCS is satisfied. The overall contrast of qualified

set X is αme
X =

t−1∑
i=0

αXi = t× (
αX
t
) = αX . The overall contrast of the scheme

is α = min
X∈ΓQual

αme
X = min

X∈ΓQual

αX = α∗. From Theorem 1, we know that the

overall contrast reaches its maximum value. Besides, ∀ X ∈ ΓQual, the con-
trasts αXi (0 ≤ i ≤ t − 1) are equal up. Thus the ({ΓQual, ΓForb}, n, t)-ME-
VCS is contrast-optimal. The security condition follows from the security of the
({ΓQual, ΓForb}, n)-VCS. Thus the conclusion holds. �

The construction of an optimal (n, n)-VCS can be found in [13]. In the following,
we prove that the above construction builds an optimal (n, n, t)-ME-VCS from
an optimal (n, n)-VCS.

Theorem 4. Let M0 and M1 be the basis matrices of an optimal (n, n)-VCS,
then the above Gi (0 ≤ i ≤ t) define an optimal (n, n, t)-ME-VCS.

Proof: From Theorem 3, we know that the above (n, n, t)-ME-VCS is contrast-
optimal. From the construction of Gi (0 ≤ i ≤ t), we know that the pixel
expansion of the above (n, n, t)-ME-VCS is t× 2n−1. From Theorem 2, we know
that the above (n, n, t)-ME-VCS is pixel-expansion-optimal. Thus the conclusion
holds. �

4 Conclusions

We first extended the model of Naor and Shamir (denoted as VCS) to the multi-
pixel encryption model (denoted as ME-VCS), for which the model of Naor and
Shamir is a special case of the proposed multi-pixel encryption model. Then
we give an upper bound of the overall contrast of ME-VCS. We also give a
lower bound of the pixel expansion of (n, n, t)-ME-VCS. At last, we built a
contrast-optimal ME-VCS from a contrast-optimal VCS and built an optimal
(n, n, t)-ME-VCS from an optimal (n, n)-VCS.



92 T. Guo, F. Liu, and C. Wu

Acknowledgements. This work was supported by NSFC No.60903210.

References

1. Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for
general access structures. Information and Computation 129, 86–106 (1996)

2. Chang, C.Y.: Visual cryptography for color images. MS thesis, National Central
University, Taiwan (2000)

3. Chen, Y.F., Chan, Y.K., Huang, C.C., Tsai, M.H., Chu, Y.P.: A multiple-level
visual secret-sharing scheme without image size expansion. Information
Sciences 177, 4696–4710 (2007)

4. Goldreich, O.: A note on computational indistinguishability (1989),
http://www.wisdom.weizmann.ac.il/~oded/PS/iplnote.ps

5. Goldreich, O.: Foundations of cryptography: Basic tools, vol. 1, p. 392. Cambridge
University Press (2001)

6. Goldwasser, S., Bellare, M.: Lecture notes on cryptography, (2008),
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf

7. Hofmeister, T., Krause, M., Simon, H.U.: Contrast-Optimal k Out of n Secret
Sharing Schemes in Visual Cryptography. In: Jiang, T., Lee, D.T. (eds.) COCOON
1997. LNCS, vol. 1276, pp. 176–185. Springer, Heidelberg (1997)

8. Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing
schemes in visual cryptography. Theoretical Computer Science 240(2), 471–485
(2000)

9. Hou, Y.C., Tu, C.F.: Visual cryptography techniques for color images without pixel
expansion. Journal of Information, Technology and Society 1, 95–110 (2004) (in
Chinese)

10. Krause, M., Simon, H.U.: Determining the optimal contrast for secret sharing
schemes in visual cryptography. Combinatorics, Probability & Computing 12(3),
285–299 (2003)

11. Lin, C.H.: Visual cryptography for color images with image size invariable shares.
MS thesis, National Central University, Taiwan (2002)

12. Liu, F., Wu, C.K., Lin, X.J.: Color visual cryptography schemes. IET Information
Security 2(4), 151–165 (2008)

13. Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

14. Tu, S.F.: On the design of protection scheme for digital images and documents
based on visual secret sharing and steganography. PhD thesis, National Central
University, Taiwan (2005)

http://www.wisdom.weizmann.ac.il/~oded/PS/iplnote.ps
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf


C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 93–101, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

An Improved Electronic Voting Scheme  
without a Trusted Random Number Generator 

Yining Liu, Peiyong Sun, Jihong Yan, Yajun Li, and Jianyu Cao 

School of Mathematics and Computational Science 
Guilin University of Electronic Technology 

Guilin, China, 541004 
ynliu@guet.edu.cn 

Abstract. Bingo Voting uses trusted random number generator to realize the 
correctness and coercion-free. If the trusted random number generator is 
corrupted, the whole scheme is dangerous, which make it a security bottleneck. 
With the method of verifiable random number based on interpolating 

polynomial over pF , an improved electronic voting scheme is proposed, 

which not only inherits the good properties of Bingo Voting, but also eliminates 
the dependence of the trusted random number generator. With the receipt, voter 
can verify whether the content of vote meets his aspiration or not, but he can 
not prove to others whom he has vote. The improved e-voting scheme based on 
verifiable random number that is fair, verifiable, and untraceable can efficiently 
prevent from colluding and buying vote.  

Keywords: E-voting, verifiable random number, finite field, interpolating 
polynomial, coercion-free, verifiability. 

1 Introduction 

Election is a very common phenomenon in many countries to assure the legitimacy of 
the regime, which should meet a lot of requirements, such as directness, freedom, 
equality, and security. A secure e-voting scheme should satisfy at least three 
properties: an election should be free, i.e., nobody can be coerced to cast a certain 
vote, it should be equal, i.e., nobody can influence the result more than with her own 
vote, and it should be secret: no one can learn the votes of other people. 

Proposals for secure electronic voting systems have been emerging over the past 20 
years. The basis for security, both in terms of vote privacy, and in terms of preventing 
from fraud,  is provided with the use of cryptography such as blind signature[1,2], 
mixnets[3,4] and homomorphic encryption[5,6].  

The e-voting scheme usually consists of four roles: 

1. Votes: the normal requirement of a voter is to cast a vote. 
2. Election authority: the deputy of the election authority includes: distribution of 

ballot forms, recruitment of officials, aggregation of votes, publishing information, 
announcing the result and so forth. 
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3. Auditors: auditor provides an expert opinion on evidence of proper function 
published by the e-voting system, by checking or auditing the published 
information.  

4. Help Organizations. 

In recent years, a lot of progress has been achieved in the area of verifiable elections, 
such as Punchscan[7,8], Prêt à Voter[9] and Scantegrity II [10]. Examples for DRE 
based schemes are the voting scheme of Moran and Naor[11], and Bingo 
Voting[12,13]. 

Bingo Voting is an interesting scheme that uses a random number for each 
candidate on the receipt which is ingenious but does rely on trust in the random 
number generation. If the random number generation is corrupted, the privacy of vote 
should be destroyed.  

In the next section, we will introduce Bingo Voting and analyze its security flaw, 
we present a method of verifiable random number in section 3, give the improved e-
voting scheme in section 4, and the paper conclusion is in section 5. 

2 Review of Bingo Voting  

Bingo Voting consists of three phases: pre-voting, voting, and post-voting, which is 
for a simple election with a single voting machine and the option to choose one out of  
n  candidates. 

• Pre-voting Phase 

In the pre-voting phase, i
l

i rr ,,1   for each candidate iP  are created by voting 

machine or authority, which is used to yield a commitment to ),( i
ji rP  called a “ 

dummy vote” for iP , where l  is the number of eligible voters. The dummy votes are 

shuffled and published. A public proof that there are exactly l  dummy votes for each 
candidate is added. These preparations can be made by the voting authority which 
must be trusted to ensure ballot secrecy. 

• Voting Phase 
After the voter has chosen a candidate, a fresh random number is generated by the 
trusted random number generator and is transferred to the voting machine. 

The voting machine creates and prints a receipt that contains a list of candidates 
with a random number associated to each candidate. The number for the selected 
candidate must match the number which is displayed by the trusted random number 
generator; this can be checked by the voter. The other numbers are the random 
numbers of dummy votes generated during the pre-voting phase. Dummy votes which 
were printed on a receipt are marked as “used” and will not be selected for further 

receipts. For simplicity, we denote the receipt{ }),(,),,(),,( 2211 nn RPRPRP  .  

This phase is shown in Fig.1. 
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Fig. 1. The voting receipt generation 

• Post-voting Phase 
After the election, the voting machine calculates the result and sends it together with a 
proof of correctness to a public bulletin board. The published data consists of : 

1. The number of votes of each candidate; 
2. The receipts issued by the voting machine; 

3. A list of the “unused” pairs ),( i
ji rP , i.e., dummy votes that are not used on 

any receipt, together with the unveil information for the corresponding 
commitment; 

4. A proof of the correctness of the result. 

In the phase, each voter can check whether her receipt was published correctly, and 
the tally result is true or false. And the proof of correctness together with the 
comparisons by the voters guarantees correction of the election result.   

• Analysis of Bingo Voting 
Many recent secure e-voting schemes guarantee the correctness of the election result 
with special properties of paper or printers. In contrast to these schemes Bingo Voting 
uses a random number generator with display as a trust anchor which makes the voter 
to check her vote without being subject to secrecy/coercion attacks if the voting 
machine is uncorrupted. In addition to provide correctness and coercion protection, 
the implementation of Bingo Voting is also efficient which is described in [12]. 

From the above analysis, we know the secure basis of Bingo Voting is the honest 
random number generator, which produces genuine random number for the receipt. If 
the generation of random number is colluded, the scheme is dangerous for voters 
because their privacy is disclosed.   
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In Bingo Voting, random number is used in two aspects. First, the task of random 
number in preparatory stage is to create the dummy vote, which is easily achieved 
with various random number generation methods as illustrated in previous literature, 
and election official and the public can supervise the process to ensure the 
randomness and fairness, because pre-voting phase is open for all. Second, a fresh 
random number is used to mark the chosen candidate in voting phase while the other 
candidates are assigned a dummy vote. This phase is performed in the voting booth to 
assure the vote’s confidence. When the voter press the according candidate’s button, a 
fresh random number R  is generated and transferred to the voting machine, which is 
printed in the receipt. The voter has to verify that the number shown on the random 
number generator is assigned to the candidate he intended to vote for. If the voter 
failed to spot that the error between voting machine and receipt due to negligence, she 
can not claim rights once he leaves the voting booth because the random number is 
non-repeatedly and can not be verified by anyone, which maybe a psychological 
obstacle to influence a tiny number of voters. But if the random number generator is 
corrupted, the random number transferred to voting machine is controlled, which will 
be the main threat to compromise the security of election scheme, may be dangerous 
to voter and society. The operation and data transmission in voting phase are all 
performed in closed environment, which make nobody can check whether the random 
number according to the chosen candidate is genuine random or not. The feasible way 
is to involve voter’s participation in generating random number, and enable voters to 
verify whether her involvement has played a role.  

In this paper, based on verifiable random number, an improved e-voting scheme is 
proposed, which not only inherits the advantages of Bingo Voting, but no longer 
requires the trusted random generator, eliminates the security bottleneck. 

3 Verifiable Random Number Based on Interpolating 
Polynomial 

3.1 Polynomial Generation over pF   

For simplicity, we assume there are n  users and a computing center to generating 
verifiable random number together. The step is as follows: 

1. )1( niUi ≤≤  selects a pair of number ),( iii yxr =  randomly, and sends 

it to Computing Center( CC).  

2. CC selects a pair of number ),( 000 yxr =  randomly; 

3. CC constructs a polynomial n
n xaxaaxA +++= 10)(  using 1+n  

points ),(,),,(),,( 1100 nn yxyxyx  by adopting Lagrange polynomial 

Interpolation as in [14, 15]. We know it is easy to calculate the corresponding 

coefficients ),,,( 10 naaa   of interpolated polynomial which satisfies the 

equation )( ii xAy = )0( ni ≤≤ . 
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We give two examples for illustrating the interpolated polynomial over 7F . 

If there are three points )2,1(),( 00 =yx , )6,2(),( 11 =yx , )5,4(),( 22 =yx , 

the corresponding Interpolating polynomial is  =+++= n
n xaxaaxA 10)(  

][252 7
2 xFxx ∈++ . 

If there are five ordered pairs over 7F , ),5,1(),( 00 =yx  ),3,2(),( 11 =yx  

)1,3(),( 22 =yx , ),6,4(),( 33 =yx  )2,5(),( 44 =yx , the corresponding 

polynomial is 43 425)( xxxxA +++= . 

3.2 Verifiable Random Numbers 

There are n  candidates; we propose a method of constructing verifiable random 
number: 

1. voter choose his favorite candidate, and cast his ballot to him, nobody knows 

whom voter has voted for except himself, we assume iP  is selected by voter; 

2. every failed candidate is assigned a dummy vote, the corresponding pairs are listed 

as  ),(,),,(),,(,),,( 111111 nniiii RPRPRPRP  ++−−  ;  

3. ][)( 01
2

2 xFaxaxaxA p
n

n ∈+++= −
−   is generated with 1−n  pairs by 

voting machine, iP  is substituted to )(xA , )( iPA  is used as verifiable random 

number for voter, and ),(,),,()),(,(),,(,),,( 111111 nniiiiii RPRPPAPRPRP  ++−− is 

printed in receipt. 
4. If voter doubt that voting machine is corrupted, he can check whether the verifiable 

random number )( iPA  is generated according his selection. If the verification is 

true, voter convinces his participant involved in generating polynomial )(xA , so 

the receipt reflects his wish. 

4 An Improved E-voting Scheme  

4.1 Introduction of Improved Scheme  

Based on the method of verifiable random number, an improved e-voting scheme is 
proposed without a trusted random number generator. The phase of pre-voting and 
post-voting is same as Bingo Voting, we only add a task of initializing a prime p  

which should larger than all dummy vote in the phase of pre-voting. We omit the 
description of these two stages, mainly focus the second phase. The improved voting 
phase is described as follows: 

1. voter presses the button according his favorite candidate; 
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2. the other candidates is assigned a dummy vote randomly;  
3. the voting machine calculates the verifiable random number and distributes it 

to the chosen candidate; 
4. the voting machine prints the receipt, in which every candidate is attached 

the corresponding number;  
5. Voter leaves the voting booth. 

In order to illustrate the process, we simplify the dummy vote and give a example 

over 7F . First we assume the identifications of 321 ,, PPP  are 3,2,1 and the selected 

candidate is 2P , and the two dummy votes are assigned to 31, PP ,their according 

commitment number is )6,(),1,( 31 PP ,we transform them to  )6,3(),1,1( . Now 

voting machine computes the interpolating polynomial ][26)( 7 xFxxA ∈+= which 

passes through two points )6,3(),1,1( ,then voting machine substitutes 2P  to the 

polynomial )(xA , 0)2( =A that is verifiable random number is assigned to 2P , 

which is same as fresh random number in Bingo Voting. The voting process is shown 
as Fig2. 

 

Fig. 2. The improved voting receipt generation 

4.2 Analysis  

The improved scheme doesn’t rely on the trusted random number generator, which 
eliminates the security bottleneck. From the introduction of the improved scheme, we 
know the previous properties are all inherited. Now we only analyze the good 
characteristic derived from the above process. 
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1. random 
In the above proposal, voter chooses his favorite candidate freely in the voting booth, 
no others can interference him. Once voter presses the button, every failed candidate 
is distributed a dummy vote randomly by the voting machine, the according 
interpolating polynomial )(xA  is generated with the identification of these failed 

candidates and their dummy vote. Then the selected candidate is substituted 
to )(xA to get the verifiable random number for voter, which is assigned to the 

selected candidate and printed in the receipt. The verifiable random number based on 
Lagrange interpolating polynomial has the same effect with the trusted random 
number generator in Bingo Voting, but also the random number is involved every 
voter’s influence including the voter’s selection and other’s dummy vote, nobody has 
the controlling role in the scheme, which eliminate the bottleneck of trust.  

2. verifiability  

Assuming the selected candidate is iP , 01
2

2)( axaxaxA n
n +++= −

−   over a 

finite field is generated with 1−n  dummy votes ,then substituting iP  for x  in 

)(xA , )( iPA  is attached to iP . The candidates and their number are printed in the 

receipt, which make voter verify whether the receipt reflects his wish even if he 
leaves the voting booth. In Bingo Voting, the voter must site inspection the receipt 
and random number generator. If he leaves the voting booth, he has no evidence to 
question the fairness. 

3. coercion-free 
The vote receipt can not be used to prove anything about the contents of a vote to 
others. In the receipt, every candidate is attached a random number, the failed 
candidate is distributed from dummy vote pool and the selected candidate is assigned 
the verifiable random number. )(xA  is constructed with arbitrary 1−n  pairs and 

the remaining point satisfies )(xA . So voter has no idea to prove to others that he has 

vote the specific candidate, for example, his favorite candidate is iP , )(xA  is 

generated from ),(,),,(),,(,),,( 111111 nniiii RPRPRPRP  ++−− ,and 

)( ii PAR = ,which are all printed in the receipt. But if we replace iP  with jP , i.e.,  

),(,),,(),,(,),,( 111111 nnjjjj RPRPRPRP  ++−− )( ij ≠  can retrieve the 

same )(xA , and )( jj PAR =  is also hold. Voter has not evidence that )(xA  is 

only constructed by ),(,),,(),,(,),,( 111111 nniiii RPRPRPRP  ++−−  to prove 

his selected candidate iP , which is important to avoid vote selling. 

4.3 The Case of 1 Out of 2 

In case of 1 out 2 candidates, the polynomial can not be generated with the above 
method because there is no unique polynomial which passes through one point.  
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In order to construct verifiable random number, we give a modification to make it 
available. 

In pre-voting phase, voting machine selects a constant C  and publishes it. In 

voting phase, we assume that the favorite candidate of voter is 2P , there is unique 

polynomial CaxxA +=)(  which passes through ),( 11 RP . Then 2P  is substituted 

to CaxxA +=)(  and the verifiable random number is generated and attached to 

2P  in the receipt. For example, we set 74 FC ∈= , and 2;1 21 == PP , and voting 

machine distributes 1P  a dummy vote 61 =R . It is easy to know 42)( += xxA , 

and 1)2( 2 ==PA  is verifiable random number for 2P . )1,(),6,( 21 PP  are printed 

in the receipt. The properties in the above analysis is also satisfied in the case of 1 out 
2 candidates. 

5 Conclusion  

In this paper, an improved e-voting scheme based on interpolating polynomial is 
proposed, which eliminate the security bottleneck to make every voter to authenticate 
the random number. There are no privacy disclosure in the receipt and nobody can 
deduce who has been voted, which protect the content of vote and prevent from 
buying vote. As for calculation cost, a little burden is increased for polynomial 
construction contrast with Bingo Voting. The construction of verifiable random 

number based on interpolating polynomial over pF  is efficient. The other phase is 

same as Bingo Voting, which make the improved scheme inherit all the properties. 
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Abstract. In recent years, fault attacks have been developed to be very
powerful tools in the field of attack against crypto-algorithm. The basic
idea of fault attacks is through provoking disturbances, then an adver-
sary is able to recover some secret data from a carelessly implemented
crypto-algorithm. As we known the Miller’s algorithm is the critical step
for bilinear pairing calculation. Since the Miller’s algorithm is usually
embedded in identity aware devices such as smart card, a lot of atten-
tions are attracted to analyze these devices. In this paper, we investigate
a new approach based on the resolution of a nonlinear system, and this
approach has an advantage that the pairing based cryptography in Hes-
sian coordinates is vulnerable to a fault attack.

Keywords: Hessian coordinates, fault attack, pairing based
cryptography.

1 Introduction

In 1984, Shamir [11] challenged that how to find a protocol based on the user’s
identity. This challenge was first introduced by Boneh and Franklin [3] in 2001.
They developed an identity-based cryptography (IBC) scheme based on pairings.
The important point is that the decryption operation involves the secret key and
the message in the bilinear pairing calculation, where the secret key is one of the
elliptic curve points input to the pairing. The original algorithm for computing
pairings is due to Miller [8], which is the most widely used technique to compute
the pairings.

Fault attacks against pairing based cryptography [5,12,13] are a recent class
of attacks that have been revealed to be very powerful in practice. By disrupt-
ing the normal execution of an algorithm, an adversary is able to recover some
secret data from the crypto-algorithm. The fault attack consists in modifying
the number of iterations of the algorithm. Page and Vercauteren [5] propose a
fault attack against the pairings for the first time when they demonstrate an at-
tack on the Duursma and Lee algorithm. Then Mrabet further investigates that
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this idea is completed in application to the Miller’s algorithm in Weierstrass
coordinates. Furthermore, Whelan and Scott [12] conclude that if the secret is
used as the first position of the pairing computation, it can not be recovered.
More recent studies by Mrabet [6] further examine wherever the position of the
secret point is located, the secret key is also recovered. The pairing computa-
tion consists of two main parts, the Miller loop and the final exponentiation.
Whelan and Scott [13] have given a perfect result about how to dispose the final
exponentiation. Therefore we ignore the final exponentiation in the following
discussion.

Previous studies only consider under the Weierstrass coordinates. Recently,
Hessian coordinates are introduced for computing pairings. However, with fur-
ther exploration none of these studies mentioned before has been focused on
fault attack in the Hessian coordinates. As we known, Hessian curves become
interesting for elliptic curve cryptography when it is introduced by Smart in
[9], which includes a performance advantage over the standard representation.
The advantage of Hessian coordinates is that points are represented with fewer
coordinates, which results in substantial memory savings, and a processor can
reach around forty percent when it allows the evaluation of a number of field
multiplications in parallel. In this context, we investigate the security of pairings
in Hessian coordinates.

In this paper, we establish a fault attack against the Miller’s algorithm in
Hessian coordinates based on hardware error analysis. Moreover, we further in-
vestigate how to actively influence the target device and induce faults during the
process of computation. Our model is generalize the fault attack to the Miller’s
algorithm in every possible iteration, not only for the last iteration. Further-
more, no matter where the position of the secret point is located, our model
could recover secret, not only for the second position. Our model needs very
precise timing, position and an expensive apparatus to be performed. The most
attractive point of our model is that we propose the detailed attack process,
establish the attack model and analyze the probability of the success. The main
contribution is to show that a fault attack against the Miller’s algorithm in
Hessian coordinates can be done through the resolution of a nonlinear system.

Organization. The remainder of this paper is organized as follows. Firstly we
give a short introduction to pairings and to the Miller’s algorithm in Section
2. After that the background of Hessian coordinates is presented in Section 3.
Section 4 presents our fault attack against pairing based cryptography in Hessian
coordinates and gives the method to recover the secret key by solving a nonlinear
system. Finally, some remarks are given in section 5.

2 Pairings and the Miller’s Algorithm

In this section, we recall a brief overview of the definition and property of pair-
ings. Subsequently, the Miller’s algorithm [8] is described in Hessian coordinates.
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2.1 A Short Introduction to Pairings

We consider pairings defined over an elliptic curve E over a finite field Fq with
q = pn, where p is a prime number. We describe the attack for pairing calculation
in Hessian coordinates.

We consider the elliptic curve in Hessian coordinates:X3+Y 3+Z3 = 3aXY Z,
with a ∈ Fq. Let l ∈ N∗, and k be the smallest integer such that l divides (qk−1),
k is called the embedding degree.

Definition 1. A pairing is a bilinear and non-degenerate function:

e :

{
G1 ×G2 → G3

(P,Q)→ e(P,Q).

The most useful properties in pairing based cryptography are:

Bilinearity: for any integer m,n, e([n]P, [m]P ) = e(P,Q)nm for all P ∈ G1 and
Q ∈ G2.

Non-degeneracy: for each P �= O there exists Q ∈ G2 such that e(P,Q) �= 1.

2.2 Miller’s Algorithm

The Miller’s algorithm [8] is the central step for the pairing computation. The
goal of Miller’s algorithm is to construct a rational function fl,P for l > 0, let
P ∈ G1, Q ∈ G2, the function fl,P is an Fqk -rational function with divisor:

div(fl,P ) = l(P )− (lP )− (l − 1)(O).

Miller’s algorithm [8] is a double-and-add method to compute fl,P in log2(l)
operations based on the following observation:

fi+j,P = fi,P fj,P
l[i]P,[j]P

v[i+j]P
,

where l[i]P,[j]P is the equation of the line through [i]P and [j]P (or the tangent
line when [i]P=[j]P) and v[i+j]P is the equation of the vertical line through
[i+ j]P .

The Miller’s algorithm constructs the rational function fl,P associated to the
point P , it evaluates fl,P (Q) for a point Q.
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Algorithm 1. Miller’ algorithm for elliptic curves

Input: l = (ln · · · l0)(binary decomposition), P ∈ G1 ⊂ E(Fq)
and Q ∈ G2 ⊂ E(Fqk);
Output: fl,P ∈ G3 ⊂ E(F∗

qk);

1 : T ← P
2 : f ← 1
for i = n− 1 to 0 do

3 : T ← [2]T , where T = (X,Y, Z) and [2]T = (X2, Y2, Z2)
4 : f ← f2 × h1(Q), h1 is the equation of the tangent at

the point T
if li = 1 then

5 : T ← T + P
6 : f ← f × h2(Q), h2 is the equation of the line (PT )

end
end
return fl,P (Q)

Algorithm 1 is a simplified version of the Miller’s algorithm [8], and without
loss of generality we can consider this simplified Miller’s algorithm.

3 Background on Hessian Curves

In this section, we briefly introduce the Hessian elliptic curves [9] and the group
law.

3.1 Definition and Properties

Definition 2. An Hessian elliptic curve over K is a plane cubic curve given by
an equation of the form

E/K : x3 + y3 + 1 = 3axy,

or in projective coordinates,

E/K : X3 + Y 3 + Z3 = 3aXY Z,

where a ∈ K and a3 �= 1.

3.2 The Hessian Group Law

The group law of the Hessian elliptic curve has been introduced in [4,9]. The
zero of the group law on E is given by O = (1,−1, 0). If T = (X1, Y1, Z1), we
define −T = (Y1, X1, Z1).
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The formulae for point doubling are given by [2]T = (X2, Y2, Z2), where⎧⎨⎩
X2 = Y1(Z

3
1 −X3

1 )
Y2 = X1(Y

3
1 − Z3

1 )
Z2 = Z1(X

3
1 − Y 3

1 ).

We note T = (X1, Y1, Z1) and P = (X2, Y2, Z2). The addition formulae for point
addition are given by T + P = (X3, Y3, Z3), where⎧⎨⎩

X3 = Y 2
1 X2Z2 − Y 2

2 X1Z1

Y3 = X2
1Y2Z2 −X2

2Y1Z1

Z3 = Z2
1Y2X2 − Z2

2Y1X1.

.
The doubling formulae operation requires 6 field multiplications and 3 squares,
and the addition formulae operation requires 12 field multiplications.

4 Fault Attack against the Miller’s Algorithm

We start with the description of a fault attack against the Miller’s algorithm,
this attack is a type of attacks based on hardware error analysis. For this attack
an adversary can actively influence the target device and induce faults during
the process of computation. This attack needs very precise timing, position and
an expensive apparatus to be performed. However, a new realistic technique [7]
is provided for the design of the attack model.

4.1 Description of the Fault Attack

In order to facilitate description the fault attack in the context, we assume that
the pairing is used in an identity-based cryptography, in which the secret key
is denoted by P as the first position of the pairing and the public parameter
is denoted by Q. In contrast, if the secret key is Q as the second position, all
the nonlinear system are written in Q coordinates, and the same attack can be
applied easily. As a result, no matter where the position of the secret point is
located, our fault attack could recover it.

This fault injection attack is to modify the number of iterations in the Miller’s
algorithm. We complete this process by giving a precise description of the attack,
by computing the probability of finding suitable number of iterations and by
adapting it to the Miller’s algorithm. The fault attack scheme is completely
presented in [5].

We assume that the pairing based cryptography is implemented on a smart
card, and the secret point P is embedded in this card as the first position of
the pairing. The aim of the attack is to find P in the computation of e(P,Q).
Suppose as many public data of the point Q as we want can be gained, and for
each of them, the pairing between the secret point P and the public point Q can
be computed. In order to find the secret P , we modify the number of iterations
in algorithm 1. The attack steps are listed as follows:
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Step 1. Gain the number of iterations (i.e. l) in the Miller’s algorithm.
Step 2. Modify the number of iterations by provoking disturbances.
Step 3. Get the number of Miller loop iterations from counting the clock cycles.
Step 4. Find j from the binary decomposition of l.
Step 5. Show a nonlinear system and resolve it.

Here, we give some detailed explanation of above steps. In the first step, we
have to find the flip-flops belonging to the counter of the number of iterations
on the smart card. The number of iterations can be gained by using reverse
engineering procedures. Once we found it, then modify it in the second step.
The disturbance can be induced by a laser [1]. Lasers are nowadays thin enough
to make this attack realistic [7]. In the third step, we are able to know how many
iterations the Miller loop has done, by counting the number of clock cycles during
the pairing calculation. Each time, we record the value of the Miller loop and
the number of iterations we made. The aim is to find a couple (d, d+ 1) of two
consecutive values during the Miller’s algorithm and the probability of finding
such a couple is given in Appendix A. In order to modify the value of l, we execute
the Miller algorithm several times and provoke disturbances in every execution,
until the output of the dth and (d+ 1)th iterations of algorithm 1 can be found,
and denote the two results by fd,P (Q) and fd+1,P (Q). After d iterations, the
algorithm 1 will have calculated [j]P . It calculates [2j]P during the (d + 1)th

iterations. Then considering the value of the (d + 1)th bit of l, it either stops
at this moment, or it calculates [2j + 1]P . In the fourth step, we know l from
the first step and the number d of iterations from the third step. Furthermore,
reading the binary decomposition of l gives us j directly. We consider that at the
beginning j = 1, if ln−1 = 0 then j ← 2j, else j ← 2j + 1, and go on, until we
arrive at the (n− 1− d)th bit of l. For example, let l = 100001001010 in basis 2,
and d = 5, at the first iteration we compute [2]P , at the second, as ln−1 = 0 we
only make the doubling, so we calculate [4]P , it is the same thing for the second,
third and fourth step so we have [32]P in T . At the fifth iteration, ln−6 = 1,
then we make the doubling and the addition, so j = 2× 32 + 1, i.e. j = 65.

To conclude the attack, we consider the ratio
fd+1,P (Q)
(fd,P (Q))2 , then a nonlinear

system can be gained, the secret point P will be revealed in the basis of Fqk by
solving this nonlinear system.

4.2 Curve and Equations

In [2,5,6], only the affine coordinates case is treated and gives a result. Here, we
extend to the situation of fault against pairing in Hessian coordinates.

The embedding degree. For simplicity and without loss of generality, in this
paper we only consider the embedding degree k = 4.

As k = 4 is even, we denote B = {1, ξ,√υ, ξ√υ} the basis of Fq4 , this basis
is constructed by a tower extensions. P = (XP , YP , ZP ) ∈ E(Fq) and Q =
(XQ
√
υ, YQ, ZQ) ∈ E(Fq4) are given in Hessian coordinates, with XQ, YQ, ZQ

and υ ∈ Fq2 ,
√
υ ∈ Fq4 .
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Next, the details of the computation of a Miller iteration are investigated. We
take a look into the details of the computation. It is known that the doubling
step is required for each iteration of the Miller iteration algorithm, as a result,
we consider the following cases.

Case 1: When ld+1 = 0, we have obtained the results fd,P (Q) and fd+1,P (Q)
corresponding to dth and (d+1)th iterations of the Miller’s algorithm in Section
4.1. We observe what happens during the (d+ 1)th iteration.

In the Miller’s algorithm, we calculate [2j]P = (X2j , Y2j , Z2j) at the step 4
and store the result in the variable T . The coordinate of [2j]P are given by the
following formula:

⎧⎨⎩
X2j = Yj(Z

3
j −X3

j )
Y2j = Xj(Y

3
j − Z3

j )
Z2j = Zj(X

3
j − Y 3

j ),

where we denote [j]P = (Xj , Yj , Zj). The doubling step gives:

fd+1,P (Q) = (fd,P (Q))
2 × h1(Q),

where h1(Q) = (3aXjZ
2
j −3Y 2

j Zj)YQ
√
υ+(3aXjZ

2
j −3X2

jZj)XQ+3X3
j +3Y 3

j −
6aXjYjZj .

The additional step doesn’t need done because of ld+1 = 0. The return result of
the Miller’s algorithm is fd+1,P (Q) = (fd,P (Q))

2×h1(Q). We dispose of fd,P (Q),
fd+1,P (Q) and the point Q = (XQ

√
υ, YQ, ZQ), with XQ, YQ and ZQ ∈ Fq2 .

Recall that the coordinates of Q can be freely chosen, we can calculate the

value R ∈ F∗
q4 of the ratio

fd+1,P (Q)
(fd,P (Q))2 :

R = R3ξ
√
υ +R2

√
υ +R1ξ +R0,

where R3, R2, R1, R0 ∈ Fq.
Moreover, we know the expression of R depends on the coordinates of [j]P

and Q in the basis B = {1, ξ,√υ, ξ√υ}:

R = (3aXjZ
2
j −3Y 2

j Zj)YQ
√
υ+(3aXjZ

2
j −3X2

jZj)XQ+3X3
j +3Y 3

j −6aXjYjZj .

As the point Q = (XQ
√
υ, YQ, ZQ) is known, we know the decomposition of

XQ, YQ ∈ Fq2 in the basis (1, ξ), XQ = x0 + x1ξ, YQ = y0 + y1ξ, and the value
of x0, x1, y0, y1. Furthermore Xj, Yj , and Zj are in Fq.
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Consequently, with the exact value of R in Fq4 , the coordinates of point Q
and the expression of R depending on the coordinates of P and Q, we obtain
the following system of equations in Fq, by identification in the basis of Fq4 ,⎧⎪⎪⎨⎪⎪⎩

(3aXjZ
2
j − 3Y 2

j Zj)y1 = R3

(3aXjZ
2
j − 3Y 2

j Zj)y0 = R2

(3aXjZ
2
j − 3X2

jZj)x1 = R1

(3aXjZ
2
j − 3X2

jZj)x0 + 3X3
j + 3Y 3

j − 6aXjYjZj = R0.

Thus this nonlinear system can be rewritten as follows (the value of λ0, λ1 and
λ2 are known numbers):⎧⎨⎩

aXjZ
2
j − Y 2

j Zj = λ2
aXjZ

2
j −X2

jZj = λ1
X3

j + Y 3
j − 2aXjYjZj = λ0.

(1)

After some calculations, this nonlinear system can be regarded as polynomials
f and g :{
f(Xj, Yj) = −λ2X4

j + (λ1 + λ2)Y
2
j X

2
j + a(λ2 − λ1)2Xj − λ1Y 4

j

g(Xj, Yj) = X
5
j − Y 2

j X
3
j + (Y 3

j − λ0)X2
j − 2a(λ2 − λ1)YjXj − Y 5

j − λ0Y 2
j .

At this point we have a system of equations whose solutions are precisely the
same as the original system.We calculate the resultant of f(Xj, Yj) and g(Xj, Yj)
with respect to Xj is:

AY 2
j +BY 5

j + CY 8
j +DY 11

j + EY 14
j = 0, (2)

and the values of A,B,C,D and E are given in Appendix B.
Apparently equation (2) contains only one variable Yj . There are at least 14

solutions in Fq because of the degree is 14. We use the function factorff in
PariGP [10], a software for mathematical computation, to achieve the factor-
ization of the equation in Yj , and consequently the solutions of this equation.
The equations (1) yields Xj and Zj , so we construct the point [j]P . Moreover
we know [j]P = (Xj , Yj , Zj), to find the possible points P , we have to compute
k the inverse of j modulo l, such that [j][k]P = [jk]P = P . The points that do
not lie on elliptic curve E can be eliminated by using the elliptic curve equation.
Then we perform Miller’s algorithm with the remaining points and verify the
result. Therefore, we recover the secret point P , in the case ld+1 = 0.

Case 2: When ld+1 = 1, in this case, the (d + 1)th iteration involves one ad-
dition in the Miller’s algorithm. The doubling step is the same as Case 1, for
the addition step, we have to calculate [2j+1]P = (X2j+1, Y2j+1, Z2j+1), where
[j]P = (Xj , Yj , Zj), [2j]P = (X2j , Y2j , Z2j) and P = (XP , YP , ZP ). We see what
happens during the (d+ 1)th iteration in Miller’s algorithm.

At the (d+ 1)th iteration we have to calculate:

fd+1,P (Q) = (fd,P (Q))
2 × h1(Q)× h2(Q),

where h2(Q) = (XPZj −XjZP )YQ
√
υ − (YPZj − YjZP )XQ − YjXP +XjYP .
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We repeat the scheme of the previous case. The ratio is R = h1(Q)h2(Q), with
the unknown values Xj , Yj , Zj and XP , YP , ZP . Based on the value of R and
Q, as well as the expression of R, we can obtain 4 equations in the 6 unknown
values. As the elliptic curve equation provides 2 other equations, through P and
[j]P ∈ E(Fq). ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F1(XP , YP , ZP , Xj , Yj , Zj) = λ1
F2(XP , YP , ZP , Xj , Yj , Zj) = λ2
F3(XP , YP , ZP , Xj , Yj , Zj) = λ3
F4(XP , YP , ZP , Xj , Yj , Zj) = λ4
X3

P + Y 3
P + Z3

P − 3aXPYPZP = 0
X3

j + Y 3
j + Z3

j − 3aXjYjZj = 0,

(3)

where, F1,2,3,4() is a polynomial and λ1,2,3,4 ∈ Fq. Then we get a more difficult
system than Case 1 to solve, but giving us the coordinates of P directly, because
of the coordinates of P are solution of the system. We can also use the resultant
method to solve this system. Simplify the form of the above system of expression
by substituting multivariate for univariate based on the resultant method, then
get a univariate nonlinear equation in finite field. So the secret point P can be
recovered based on the resultant method.

5 Conclusion

We have presented the Miller’s algorithm in Hessian coordinates which is vulner-
able to a fault attack when it is used in pairing based cryptography. This attack
consists in modifying the internal counter of a smart card, getting the number of
Miller loop and finding j from the binary decomposition of l. In order to realize
this fault attack, it is precisely described in this paper. We show the probability
of obtaining two consecutive iterations, and find out that a small number of
tests are needed to find two consecutive results. We consider the secret point
P at the first position of the Miller’s algorithm. The result of the fault attack
is a nonlinear system. Then we give the method to solve this nonlinear system.
Our model is also applicable in the secret point Q at the second position of the
Miller’s algorithm, all the nonlinear system are written in Q coordinates. Thus,
wherever the position of the secret is located, our fault attack will recover it.
So we can say that the fault attack is a threat against the Miller’s algorithm in
Hessian coordinates.
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A Appendix

The Probability for the Fault Attack
The important point of this fault attack is that we can obtain two consecutive
couples of iterations, after a realistic number of tests. The number of picks with
two consecutive number is the complementary of the number of picks with no
consecutive numbers. The number B(n,N) of possible picks of n numbers among
N integers with no consecutive number is given by the following recurrence
formula: ⎧⎪⎪⎨⎪⎪⎩

N ≤ 0, n > 0, B(n,N) = 0,
∀N,n = 0, B(n,N) = 1,

B(n,N) =
N∑
j=1

n∑
k=1

B(n− k, j − 2).

http://pari.math.u-bordeaux.fr/
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With this formula, we can compute the probability to obtain two consecutive
numbers after n picks among N integers. This probability P (n,N) is

P (n,N) = 1− B(n,N)

Cn
n+N

.

The probability for obtaining two consecutive numbers is sufficiently large to
make the attack possible. In fact, for an 8 − bits architecture only 15 tests are
needed to obtain a probability larger than one half, P (15, 28) = 0.56, and only
28 for a probability larger than 0.9.
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45λ22a
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Abstract. In recent years, there have been many steganographic
schemes designed by different technologies to enhance their security.
And a benchmarking scheme is needed to measure which one is more
detectable. In this paper, we propose a novel approach of benchmarking
for steganography via Kernel Fisher Discriminant Criterion (KFDC), in-
dependent of the techniques in steganalysis. In KFDC, besides between-
class variance resembles what Maximum Mean Discrepancy (MMD)
merely concentrated on, within-class variance plays another important
role. Experiments show that KFDC is qualified for the indication of the
detectability of steganographic algorithms. Then, we use KFDC to il-
lustrate detailed analysis on the security of JPEG and spatial stegano-
graphic algorithms.

Keywords: Steganography, benchmarking, kernel Fisher discriminant,
between-class variance, within-class variance.

1 Introduction

Steganography [1] is an art and science of hiding information so that its presence
cannot be detected, while steganalysis refers to the analysis of intercepted signals
to determine whether they contain hidden messages. Steganalytic schemes are
special or universal. Universal steganalysis is usually based on universal feature
designing. By these features which can be viewed as a low-dimensional model
of covers [2], it’s much easier to use machine learning engines (MLE) to detect
hidden messages.

It’s confusing that which steganographic algorithm is more secure since many
of them are claimed with “provably” [3], “perfectly secure” [4], “highly un-
detectable” [5] or “minimal distortion” [6]. Therefore, several researchers have
worked on the criteria to compare their undetectability (or security), theoreti-
cally or practically. A number of studies and experiments have been published
on telling which steganography algorithm is more undetectable. They are mainly
in five categories and each has its own advantages and disadvantages.

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 113–130, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1. Information-theoretic based approaches, such as Kullback-Leibler (KL) di-
vergence [1]. Although KL divergence provides fundamental information
about the limits of any steganalysis method, it’s difficult to estimate ac-
curately from sparse data in high-dimensional spaces [2].

2. Two-sample problem based approaches, such as Maximum Mean Discrep-
ancy (MMD) [2]. MMD needs an acceptable size of samples and lower
complexity O(D2) where D is the sample size, and it’s well established the-
oretically. However, MMD only measures the distance between the centers
of two classes. As we know, aggregation of samples in the same class also
plays an important part in indicating separability. If two centers of classes
are well surrounded by their own samples, they will have better separability.

3. Detecting results from a specific blind detector [7,8]. Up to now, most of
blind detectors require a feature set and an MLE. But detecting results are
affected by many factors, such as the diversity of the training and testing
sets (if the samples are distinct, or if testing samples are similar to training
ones), the parameter optimization of MLEs (which MLE is better and which
is the best configuration) and the rules of comparison (true rate, Receiver
Operating Characteristic curves, and minimum false rate [9]).

4. Embedding efficiency analysis. Many steganographic algorithms have im-
provements by advanced encoding skills. For instance, F5 [10] utilizes ma-
trix encoding to reduce the payload per coefficient, while Modified Matrix
Encoding (MME) [6] enables to modify more than one position to achieve
smaller distortion. It’s clear that MME is more secure than F5. Consider-
ing another approach called Perturbed Quantization (PQ) [7], it only allows
distortion on the coefficients whose fractions are close to 0.5. Many efforts
help enhance the security, but it’s too hard to say which mechanism is more
effective, merely their mechanisms given.

5. Multimedia quality based criteria. Audio quality such as basic profile trans-
parency and basic profile robustness [11] can be used to test how the mod-
ification distorts the covers and affects human senses. However, qualities of
multimedia are different from the statistical characteristics and well-designed
features [12,13,14] can detect tiny distortions for human senses.

The contribution of this paper is mainly on proposing a novel benchmarking for
steganography considering not only the distance between two classes but also the
variance of samples in each class. We aim at providing a fair criterion that elimi-
nates uncertainties in steganalysis techniques as much as possible. Kernel Fisher
Discriminant Criterion (KFDC) [15], which is the maximum ratio of variances
of between-classes and within-classes in any projection in Reproducing Kernel
Hilbert Spaces (RKHS), is a measurement of separability between two classes
of samples. Hence, we use KFDC as a criterion to indicate the detectability of
steganography.

The rest of this paper is organized as follows: In Section 2, we introduce some
existing benchmarking schemes and state the existing problem. Both framework
and implementation of our method are described in Section 3. We demonstrate
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KFDC benchmarking for public steganographic schemes and compare their se-
curity in Section 4. Finally, the paper is concluded in Section 5.

2 Related Work

This section describes the model of steganography and introduces three main
benchmarking criteria. Then, the existing problem is stated with a list of condi-
tions for benchmarking criteria.

2.1 Model of Steganography

It’s proposed by Cachin [1] that steganography can be viewed as information-
theoretic model with passive adversaries. Steganography can be modelled as
follows [2]. Let C be the set of all covers c described by a random variable c on
C with probability distribution function (pdf) P . A steganographic algorithm S
is a mapping C ×M× K → C. S assigns a new object called stego s ∈ C with
pdf Q to each triple (c,M,K), where M ∈M is a secret message selected from
the set of communicable messagesM and K ∈ K is the secret key.

2.2 KL Divergence

For the two possible probability distributions, denoted by P and Q, the adver-
sary must decide between cover-text c and stego-text s. The relative entropy or
discrimination between them is defined as

DKL(P‖Q) =
∑
c∈C
P (c) log

P (c)

Q(c)
.

For a set of D database images, cover images X = {x1, x2, . . . , xD} and stego
images Y (α) = {y1, y2, . . . , yD} explicitly on the relative message length α are
generated. It’s denoted that xi = ψ(ci) and yi = ψ(si) are d-dimensional vectors
where X and Y are D dependent realizations of the random variables ψ(c) and
ψ(s). Then KL divergence can be estimated as

DKL(ψ(c)‖ψ(s)) =
∫
Rd

p(x) log
p(x)

q(x)
,

where x, y ∈ Rd.
Although the k-Nearest Neighbour (kNN) estimator can provide accurate

results in high dimensional spaces, cross-entropy is more difficult to estimate
[2]. After testing on artificial data generated by Gaussian distributions p =
N(− 1√

d
· 1, I) and q = N(− 1√

d
· 1, I) with 1 being the vector of d ones, it is

concluded that in many distributions, DKL(p‖q) is too hard to simply apply
existing estimators to data sets because a sample size D much more than 105 is
required even d ≤ 10.
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2.3 Maximum Mean Discrepancy

Pevný et al. [2] utilized Maximum Mean Discrepancy (MMD) to estimate sparse
data in high-dimensional spaces. Assuming the samples X and Y are generated
from distributions p and q, we need to determine two hypotheses

H0 : p = q

H1 : p �= q.

Let F be a class of functions f : X → R. MMD is defined as

MMD[F , p, q] = sup
f∈F

(Ex∼pf(x)−Ey∼qf(y)).

In finite sample setting, we have

MMD[F ,X,Y] = sup
f∈F

(
1

D

D∑
i=1

f(x)− 1

D

D∑
i=1

f(y)

)
.

In the Reproducing Kernel Hilbert Spaces (RKHS) H, the supremum is reached
for f = (μp − μq)/‖μp − μq‖H. An unbiased estimate based on U-statistics of
MMD in an RKHS generated by the Gaussian kernel k : R× R→ R

k(x, y) = exp
(−γ(x− y)2) (1)

is provided as

MMDu[F ,X,Y] =

⎡⎣ 1

D(D − 1)

∑
i�=j

k(xi, xj) + k(yi, yj)− k(xi, yj)− k(yi, xj)
⎤⎦

1
2

when the joint pdfs p and q is factorizable p(x1, . . . , xn) = p(x1) · . . . · p(xd) and
q(y1, . . . , yn) = q(x1) · . . . · q(xd). MMD can be shown that

MMD2[F , p, q] =
( ∞∑

n=0

b2p,n

)d

− 2

( ∞∑
n=0

bp,nbq,n

)d

+

( ∞∑
n=0

b2q,n

)d

,

where coefficients

bp,n =

∫
R

p(x) ·
√

(2γ)n

n!
xn exp(−γx2)dx,

with γ = η−2 and η is the median of L2 divergences between samples.
In MMD, only discrepancy between the centers of two classes is considered.

When we compare different algorithms using different features, the extents how
samples gather around their center are not the same. From the view of pattern
recognition, samples with smaller variance are easier to separate.
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2.4 Detecting Results by Steganalysis

Many steganalytic algorithms [12,13,14] use Support Vector Machine (SVM) to
achieve better accuracy. For SVM, the labels of testing data are decided by
the knowledge learned from provided training data. When the detecting result
is used as a criterion, it’s argued that the selection of testing data affects the
reported accuracy significantly [2]. MLEs (SVM [17], neural network [18], etc.)
are configured by many parameters, such as the cost function, weights, iterations,
etc. All these steganalytic techniques will influence the accuracy. Since detection
result criterion relies on many factors, it is not a good choice.

2.5 Existing Problem

Although detection result provides a direct implementation to score the security
of steganography, it’s affected by too many factors that can be arbitrarily chosen.
For this reason, a measure that is independent of steganalytic techniques is
more reliable in benchmarking. MMD is easier to estimate than KL divergence.
However, it merely reports the discrepancy between two classes.

The within-class variance of samples plays another important role in pattern
recognition. Steganalytic features are different in the completeness [19] and ag-
gregation ability. A feature of high aggregation ability has small variance that its
sample points are aggregated around its center. In Figs. 1 and 2, the mean of the
sample points in two classes are the same. Compared with Fig. 1, the samples
in Fig. 2 are gathered around their center more closely and two classes are more
separative. If the features from cover and stego signals are more separative, the
steganographic system is less secure.

Thus, we suggest that a fair benchmarking criterion satisfy the following con-
ditions.

– It has a solid theoretic base that we can rely on.
– It generates a score to indicate the security or insecurity so that it can be

easily compared and sorted in steganographic schemes.
– It is consistent with the best accuracy of current steganalytic schemes when

many test images of high diversity are engaged.
– It may be independent to the selection of test images, and eliminate what

an operator can arbitrarily control as much as possible.

3 Benchmarking by Kernel Fisher Discriminant Criterion

Since MMD merely concerns the distance between two classes, we propose a
benchmarking schemes based on kernel Fisher’s discriminant criterion (KFDC)
as the maximum ratio of between-class and within-class variances in the form
of Rayleigh coefficient [20]. In this section, we firstly describe the definition of
between-class and within-class variances. Secondly, we expand them to Repro-
ducing Kernel Hilbert Spaces (RKHS) and provide a benchmarking framework
via KFDC. A practical implementation is illustrated at the end of this section.
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Fig. 1. Between-class scatters in two-dimensional samples. The given samples are
placed on two dimensions xi and xk. Samples of Class 1 (X1) are in hollow circles,
while those of Class 2 (X2) are in hollow squares. Their centers are the solid ones.
Circles and squares on the projection axis w are the projections of the ones outside
them.

w

Class 1

Class 2

2
2w

1
1w

ix

kx

2

1

1x

2 2w x

1 1w x

2x

Fig. 2. Within-class scatters in two-dimensional samples. The given samples are placed
on two dimensions xi and xk. Samples of Class 1 (X1) are in hollow circles, while those
of Class 2 (X2) are in hollow squares. There are two instances x1 ∈ X1, x2 ∈ X2.
Their centers are the solid ones. Circles and squares on the projection axis w are the
projections of the ones outside them.
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3.1 Between-Class and within-Class Variances

Let X1 = {x(1)1 , x
(1)
2 , . . . , x

(1)
D1
} and X2 = {x(2)1 , x

(2)
2 , . . . , x

(2)
D2
} be samples from

two different classes, and X = X1

⋃X2 = {x1, x2, . . . , xD}. Then the mean
vectors of the two classes are

μi =
1

Di

∑
x∈Xi

x, i = 1, 2.

To a vector w, they can be projected as

μ̃i = w�μi =
1

Di

∑
x∈Xi

w�x, i = 1, 2.

Then, between-class variance SSB, which is the sum of squares of between-class
scatter, is defined as

SSB = (μ̃1 − μ̃2)2 = w�(μ1 − μ2)(μ1 − μ2)�w = w�SBw. (2)

In this equation, we call

SB = (μ1 − μ2)(μ1 − μ2)� (3)

the between-class scatter matrix. Fig. 1 shows the between-class variances in a
two-dimensional case. We can find between-class variance plays an important
role in indicating the divergence between Class 1 and Class 2. For two classes,
the larger SSB gets, the more separable they are.

Correspondingly, within-class variance SSW which is the sum of squares of
within-class scatter, can be defined as

SSW =
∑
i=1,2

∑
x∈Xi

[w�(x− μi)]2

=
∑
i=1,2

w�
[∑
x∈Xi

(x− μi)(x− μi)�
]
w = w�SWw. (4)

In the equation,

SW =
∑
i=1,2

∑
x∈Xi

(x − μi)(x − μi)� (5)

is called the within-class scatter matrix. Fig. 2 shows what the within-class
variances are in a two-dimensional case. Within-class variance indicates the co-
hesiveness of two classes. The smaller SSW is, the clearer the bound gets, and
the better separability they gain.

In the linear case, we can write the Fisher’s discriminant [16] in the so-called
Rayleigh coefficient form with respect to w,

J(w) =
w�SBw
w�SWw

. (6)

depending on the between-variances and within-class variances. Fisher Liner
Discriminant (FLD) is computed to obtain the maximum J(w) and the best
projection w.
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3.2 KFDC – FLD in Reproducing Kernel Hilbert Spaces

For real-world data, a linear discriminant is not powerful enough. Therefore,
we try to use non-linear model to increase the expressiveness. Kernel idea [20]
is originally applied in SVMs and other kernel based algorithms, and RKHS is
used yielding a highly flexible algorithm which turns out to be competitive with
SVMs [15,21]. Now we introduce kernel based LDA (KDA) [15] to achieve a
better result.

Let Φ be a non-linear mapping to F . To find the linear discriminant in F we
need to maximize

J(w) =
w�SΦ

Bw

w�SΦ
Ww

. (7)

where (3) and (5) are replaced by

SΦ
B = (μΦ1 − μΦ2 )(μΦ1 − μΦ2 )�, (8)

SΦ
W =

∑
i=1,2

∑
x∈Xi

(Φ(x) − μΦi )(Φ(x) − μΦi )�, (9)

with μΦi = 1
Di

∑Di

j=1 Φ(x
(i)
j ). If F is very high-dimensional or even infinitely

dimensional, it will be impossible to solve directly. To overcome this limitation,
we seek a formulation of the algorithm using only dot-products 〈Φ(x) · Φ(y)〉 of
the training patterns instead of mapping the data explicitly.

In kernel FLD, a symmetric and positive finite matrix function called kernel
k : X × X �→ R is defined. Let F be a RKHS. To find FLD in RKHS F , we
first need a formulation of (7) in terms of only dot-products of input patterns.
Then, we replace the dot-product by a certain kernel function. For the theory of
reproducing kernels, we know that any solution w ∈ F must lie in the span of
all training samples in F . Therefore, we find an expansion for w of the form

w =

D∑
i=1

αiΦ(xi). (10)

Using the expansion (10) and the definition of μΦi , we have

w�μΦi =
1

Di

D∑
j=1

Di∑
k=1

αjk(xj , x
i
k) = α�Mi. (11)

where (Mi)j = 1
Di

∑Di

k=1 αjk(xj , x
(j)
k ) and the dot product is replaced by the

kernel function. Then, (2) can be rewritten as

SSΦ
B = w�SΦ

Bw = α�Mα (12)

where M = (M1 −M2)(M1 −M2)
�. Similarly, we have

SSΦ
W = w�SΦ

Ww = α�Nα (13)
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where N =
∑

j=1,2 Kj(I− 1Dj )K
�
j , Kj is a l × Dj matrix with (Kj)n,m =

k(xn, x
(j)
m ), I is the identity matrix and 1Dj is the matrix with all entries 1/Dj.

Combining (12) and (13), we can find FLD in F called Kernel Fisher Discrim-
inant (KFD) by maximizing

J(α) =
α�Mα

α�Nα
. (14)

In finite sample setting, we now define KFDC as the maximum ratio of variances
of between-classes and within-classes in any projection, as the maximum of J(α)
in the RHKS F .

This problem can be solved by finding the leading eigenvalue of N−1M, and
α is the corresponding eigenvector. Then, we have

KFDC[F ,X,Y] = v(N−1M), (15)

where v(A) is the leading eigenvalue of the matrix A.
But a numerical problem of finding N−1 may occur when the matrix N is not

positive. To solve this problem, a multiple of the identity matrix is simply added
to N, i.e. use N′ = N + uI with u ∈ (0, 1] instead. This can be also viewed as
a regularization on ‖α‖2 and decreasing the bias in sample based estimation of
eigenvalues [15].

3.3 Practical Implementation

Since the steganographic algorithm itself cannot be directly measured, we take
steganography for images as an instance and suggest a practical implementation
as follows:

1. A large image database of high diversity is required. Moreover, random mes-
sages and random keys are taken in embedding to obtain a stable result.

2. A feature extraction ψ is needed as a low-dimensional modelling because
images are in high dimension and they’re difficult to estimate. For JPEG
steganography we suggest CCMerge [12] feature, while SPAM [13] feature is
for spatial steganography.

3. KFDC is calculated on the features from the given cover images and stego
images via (15) with u = 0.1. Features from cover images are used as X1

while those from stego images are used as X2. We take Gaussian Radial
Basis Function (RBF) as a specific example, the kernel function is (1) where
γ = η−2 with η being the median of L2 divergences between samples.

We can safely conclude that KFDC values merely depend on the specified stegano-
graphic scheme. Compared with the benchmarking by detecting result whose
accuracy is highly depends on the selected test images, KFDC is affected by the
image database less.
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4 Experiments

At the beginning of this section, our experimental setup is described. We observe
the relationship between KFDC and SVM test, and explore whether KFDC or
MMD is a better fit. Finally, we score 15 popular steganographic algorithms by
KFDC and discuss their security.

4.1 Setup of the Experiments

We randomly selected 4000 images from BOSS v0.92 database1. Different hid-
den messages generated by a pseudo-random number generator (PRNG) were
embedded in different images. The first 1000 pairs of images (cover images and
corresponding stego images) were selected to calculate both MMD in (2) and
KFDC in (15). We used the same images for training in SVM, and the other
3000 ones were for testing. CCMerge[12] and SPAM[13] features were utilized as
dimension reduction, respectively for JPEG and bitmap files.

There are 15 steganographic schemes engaged in our tests. They are divided
into two groups by their embedding domains. Nine of them are in quantized
Discrete Cosine Transform (DCT) domain to generate JPEG files. They are:

1. F5 [10], Modified Matrix Encoding (MMEs, including MME and MME3)
[6], JSteg2, JP Hide&Seek (JPHS)3, Model Based Steganography (MB)[22].
Stego images were generated with the quality factor 90. Images with the same
quality factor from bitmaps were created by corresponding JPEG encoders
as covers.

2. PQ and its two modifications (PQe and PQt) [7]. Stego images were created
with the single-compressed quality factor 85 and the double-compressed one
with 70. Double-compressed images with the same quality factors were cre-
ated as covers.

3. OutGuess4 with fixed quality factor 75. Images with the same quality factor
from bitmaps were created by corresponding JPEG encoders as covers.

The other 6 ones are in spatial domain generating bitmap files (stored in the
“.png” format). They are:

1. HUGO [5] (with model correction S2), and StegHide [23].
2. LSBM (Least Significant Bit Matching, or LSB Matching) [24], LSBR (LSB

Replacement), DC-DM-QIM (Distortion-Compensated Quantization Index
Modulation with Dither Modulation) [25], and SSIS (Spread Spectrum Image
Steganalysis) [26] with key-controlled embedding position. In DC-DM-QIM,
the Costa parameter was α = 0.85 and the step size was 5. In SSIS, a
multiplicative noise was generated by hidden messages.

1 ftp://mas22.felk.cvut.cz/PGMs/bossbase v0.92.tar.gz
2 http://zooid.org/~paul/crypto/jsteg/
3 http://linux01.gwdg.de/~alatham/stego.html
4 http://www.outguess.org/outguess-0.2.tar.gz
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The best result of the existed steganalytic methods can be a reliable refer-
ence to benchmarking criteria. To approach the best result, LibSVM [17] with
Gaussian kernel and C-Supporting Vector Classification was taken as the clas-
sifier and a five-fold cross validation on the training set was used to search best
parameters in a fixed grid of values. The results from SVM test were reported
in the false rate (the probability of error) PFR = 1

2 (PFP + PFN).

4.2 Comparison of MMD, KFDC and Detecting Result

In this experiment, we compare MMD and KFDC values to false rates (FR) in
order to observe which is more stable to reflect the detecting results. Considering
the most efficient features recently proposed, CCMerge [12] and POMM [14]
features were extracted from JPEG images and SPAM [13] was extracted from
bitmap images respectively.
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Fig. 3. Comparison of stability of MMD and KFDC to FR of detecting results.
CCMerge and POMM were used in testing JPEG steganography and SPAM were
used in spatial steganography. Fitting curves are in the two-term exponential formula
for their better fits.

Regression method was used to explore the relationship between the criterion
value (MMD or KFDC) and FR. We found that a two-term exponential formula
y = a · exp(b · x) + c · exp(d · x) and a rational formula y = (a · x + b)/(x2 + c ·
x + d) were good fits, where x is the criterion value and y is the FR. Sample
points and their two-term exponential fitting curves are summarized in Fig.
3. Similar results are shown in KFDC and detecting result, even though they
estimate steganographic security in different ways. The smaller KFDC value is,
the stronger the steganographic algorithm gets and vice versa.

Tab. 1 lists their best coefficients and corresponding SSE (Sum of Squares
due to Error), RMSE (Root Mean Squared Error), R2 (square of the correlation
between the response values and the predicted response values, R-square) and
Adjusted R2 (degree of freedom adjusted R2) values. In both types, KFDC turns
out to be a better fit, because its SSE and RMSE are smaller, in addition, the
R2 and adjusted R2 values are closer to 1. As a result, KFDC indicates the
detectability better than MMD for its better fit.
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Table 1. Comparison of best coefficients and goodness of fit for MMD and KFDC. A
two-term exponential formula y = a · exp(b · x) + c · exp(d · x) and a rational formula
y = (a · x+ b)/(x2 + c · x+ d) is used respectively.

MMD KFDC MMD KFDC

Type Exponential Exponential Rational Rational

a 0.3323 0.3426 3.025 × 10−3 1.167 × 10−3

b −1616 −1458 8.749 × 10−6 4.786 × 10−6

c 0.0985 0.1196 4.780 × 10−2 1.800 × 10−2

d −24.75 −56.74 1.965 × 10−5 1.013 × 10−5

SSE 0.3121 0.1300 0.2725 0.1378

RMSE 0.0481 0.0310 0.0449 0.0320

R2 0.8778 0.9491 0.8933 0.9460

Adj. R2 0.8751 0.9480 0.8909 0.9448

4.3 Evaluating Steganography by KFDC

To evaluate specific steganographic algorithms, we utilized the proposed scheme
in Sec. 3.3 and plotted the result of benchmarking for steganography in Fig.
4. MMD, KFDC (with their corresponding between-class variances SSB and
within-class variances SSW ) and FR values are listed in Tabs. 2 and 3 using
CCMerge and SPAM features.

We obtained a ranking of security of steganographic schemes via KFDC (Figs.
4(c) and 4(d)). HUGO gets the lowest KFDC value, less than 10−5, and it’s more
secure than any other specified schemes, while JSteg is the weakest one since its
KFDC is more than 0.25. PQe, MMEs (MME and MME3) with a low embedding
rate (less than 0.20 bpac) are a little more detectable than HUGO, because their
KFDC values are in 0.0001–0.005. KFDC values of LSBM, LSBR, StegHide and
PQ are in 0.001–0.01 even weaker. F5 with more than 0.10 bpac, JPHS with
more than 0.15 bpac, QIM, SSIS, MB and OutGuess are a little better than
JSteg and most of their KFDC values exceed 0.02.

Here, we state some detailed analysis on the efficiency of the tested stegano-
graphic algorithms via KFDC values (Tabs. 2 and 3). PQe maintains low KFDC
values even in high payload for its meticulous selection of embedding in the re-
gions of high energy. By such mechanism, CCMerge feature, especially Markov
feature in it, is well preserved because embedding in the regions of low energy
may alter small quantized DCT coefficients and arise detectable distortion of
the Markov process. The KFDC values of PQs change a little when the em-
bedding rate goes high, because embedding distortion is hidden in the noise of
its double-compression. In contrast, the KFDC values of matrix encoding based
algorithms, such as F5 and MMEs, raise rapidly as the payload goes high. The
main reason is that, for matrix encoding algorithms large embedding block is
not enough to support highly efficient matrix encodings and they degenerate
into LSB replacement. Overall, F5 and MMEs have low between-class variances
for they change less coefficients. The KFDC values of MMEs are smaller as they
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Fig. 4. MMD, proposed KFDC and false rate of SVM test for 9 JPEG and 5 spa-
tial steganographic algorithms and different payloads. MMD and KFDC is shown as
− log10 MMD and − log10 KFDC to get a better visual correspondence among figures.
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Table 2. Test result of benchmarking for JPEG steganography using CCMerge feature

Steg bpac MMD SSB SSW KFDC FR

F5

0.05 0.00973 0.00078 0.14332 0.00546 0.1416
0.10 0.03906 0.00337 0.12613 0.02674 0.0521
0.15 0.10409 0.00947 0.12495 0.07580 0.0148
0.20 0.18354 0.01767 0.11860 0.14897 0.0046
0.30 0.35200 0.05275 0.08578 0.61499 0.0004

JP Hide

0.05 0.00641 0.00042 0.18002 0.00231 0.1966
0.10 0.01348 0.00085 0.20269 0.00420 0.1578
0.15 0.03381 0.00192 0.17544 0.01095 0.0913
0.20 0.07652 0.00412 0.15862 0.02597 0.0563
0.30 0.16211 0.01021 0.12998 0.07854 0.0218

JSteg

0.05 0.27491 0.02729 0.11426 0.23884 0.0029
0.10 0.36660 0.04943 0.07307 0.67645 0.0004
0.15 0.44741 0.06913 0.05482 1.26118 0.0002
0.20 0.48893 0.07976 0.04778 1.66945 0.0004
0.30 0.50011 0.08376 0.04431 1.89021 0.0004

MB

0.05 0.01087 0.00161 0.13907 0.01154 0.1213
0.10 0.04114 0.00568 0.15882 0.03579 0.0349
0.15 0.08526 0.01072 0.14687 0.07297 0.0084
0.20 0.13788 0.01691 0.13430 0.12591 0.0029
0.30 0.24645 0.03277 0.10545 0.31071 0.0012

MME

0.05 0.00022 0.00002 0.10836 0.00017 0.4311
0.10 0.00405 0.00031 0.15141 0.00202 0.2834
0.15 0.00827 0.00064 0.15364 0.00418 0.2224
0.20 0.06821 0.00509 0.16068 0.03166 0.0516
0.30 0.42438 0.05596 0.08187 0.68355 0.0011

MME3

0.05 0.00016 0.00002 0.07583 0.00022 0.4323
0.10 0.00280 0.00021 0.13262 0.00160 0.3041
0.15 0.00568 0.00044 0.14264 0.00311 0.2470
0.20 0.05339 0.00398 0.16342 0.02433 0.0679
0.30 0.40974 0.05248 0.08361 0.62767 0.0014

OutGuess

0.05 0.03271 0.00388 0.13219 0.02935 0.0481
0.10 0.11989 0.01333 0.11893 0.11208 0.0075
0.15 0.23205 0.02887 0.09271 0.31137 0.0028
0.20 0.23205 0.02887 0.09271 0.31137 0.0028
0.30 0.46598 0.07922 0.05101 1.55304 0.0009

PQ

0.05 0.02050 0.00209 0.15238 0.01372 0.0885
0.10 0.02752 0.00263 0.14560 0.01807 0.0680
0.15 0.02900 0.00282 0.15120 0.01863 0.0638
0.20 0.02986 0.00286 0.15059 0.01897 0.0640
0.30 0.02861 0.00297 0.16174 0.01833 0.0653

PQe

0.05 0.00014 0.00003 0.29449 0.00010 0.3621
0.10 0.00050 0.00011 0.23891 0.00044 0.2915
0.15 0.00107 0.00023 0.20833 0.00112 0.2455
0.20 0.00179 0.00042 0.20399 0.00204 0.2028
0.30 0.00918 0.00093 0.15838 0.00584 0.1683
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Table 3. Test result of benchmarking for spatial steganography using SPAM feature

Steg bpp MMD SSB SSW KFDC FR

HUGO

0.10 0.00000 0.00000 0.13834 0.00000 0.4810
0.20 0.00000 0.00000 0.09966 0.00001 0.4493
0.25 0.00001 0.00000 0.09376 0.00002 0.4308
0.30 0.00001 0.00000 0.09309 0.00003 0.4174
0.40 0.00004 0.00001 0.08543 0.00007 0.3809
0.55 0.00012 0.00003 0.13000 0.00020 0.3156

LSBM

0.05 0.00069 0.00009 0.15508 0.00060 0.2191
0.10 0.00233 0.00038 0.33255 0.00115 0.1614
0.15 0.00462 0.00070 0.44440 0.00158 0.1344
0.20 0.00736 0.00094 0.47357 0.00198 0.1108
0.30 0.01394 0.00127 0.44363 0.00286 0.0710
0.40 0.02165 0.00158 0.41670 0.00379 0.0589

LSBR

0.05 0.00066 0.00009 0.15254 0.00057 0.2181
0.10 0.00225 0.00035 0.29971 0.00118 0.1565
0.15 0.00455 0.00065 0.35190 0.00184 0.1054
0.20 0.00748 0.00089 0.30869 0.00289 0.0674
0.30 0.01539 0.00175 0.23903 0.00731 0.0355

DCDMQIM

0.05 0.01490 0.00159 0.38765 0.00411 0.0446
0.10 0.03643 0.00320 0.33781 0.00947 0.0319
0.15 0.05900 0.00524 0.33492 0.01566 0.0224
0.20 0.08221 0.00762 0.34210 0.02229 0.0186

SSIS

0.05 0.06828 0.00319 0.52515 0.00607 0.0823
0.10 0.18429 0.00753 0.52812 0.01425 0.0408
0.15 0.33815 0.01533 0.49857 0.03074 0.0200
0.20 0.57509 0.05369 0.37206 0.14431 0.0045

StegHide

0.05 0.00187 0.00053 0.54306 0.00098 0.1779
0.10 0.00545 0.00102 0.67387 0.00152 0.1318
0.15 0.00987 0.00135 0.69481 0.00194 0.1113
0.20 0.01458 0.00152 0.64509 0.00236 0.0945
0.30 0.02460 0.00170 0.51059 0.00333 0.0723
0.40 0.03486 0.00193 0.43691 0.00441 0.0589

achieve minimal distortion to cover. With lower KFDC values, JP Hide, which
uses look-up table to scramble the embedding positions, is more undetectable
than OutGuess and JSteg. Moreover, JSteg whose SSB is largest and SSW is
the smallest, is the most detectable that only LSB replacement is used.

In spatial steganography (Fig. 4(d)), HUGO is much better than any other
steganographic schemes as it preserves the co-occurrence model where the SPAM
feature takes effect. What’s more, LSB matching is a little more secure than LSB
replacement since its within-class variance gets larger. Graph-theoretic technol-
ogy based LSB (StegHide) performs worse than key-controlled LSB algorithms.
Generally, LSB based algorithms are much better than QIM and SSIS for their
less distortion to the image.
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Additionally, comparing SSW in Tabs. 2 and 3, we found that within-class
variances of CCMerge are averagely half of those of SPAM. As a merged or
fused feature, CCMerge is better to reduce the dimension of images than SPAM
in spatial ones.

5 Conclusion

We proposed a novel approach for benchmarking steganographic schemes from
the view of pattern recognition. Both between-class and within-class variances
are considered to achieve a more consistent result. Compared with KL divergence
and Maximum Mean Discrepancy (MMD), kernel Fisher discriminant criterion
(KFDC) is more reliable for its low estimation error. In KFDC, we needn’t train
a classifier or argue whether the given test set is fair or the given configuration
is the best. We demonstrate KFDC in 15 popular steganographic algorithms in
the quantized DCT and spatial domains and provide some detailed analysis on
the benchmarking result.

Besides benchmarking for steganography, KFDC can also be used to bench-
mark steganalytic features. And it’s interesting to benchmark a practical system
with different steganographic schemes. We may explore these topics in our future
work.
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20. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to
kernel-based learning algorithms. IEEE Trans. on Neural Networks 12(2), 181–201
(2001)

21. Steinwart, I.: On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research 2, 67–93 (2001)

22. Sallee, P.: Model-Based Steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.)
IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)

23. Hetzl, S., Mutzel, P.: A Graph–Theoretic Approach to Steganography. In:
Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp.
119–128. Springer, Heidelberg (2005)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


130 W. Huang et al.

24. Mielikainen, J.: LSB matching revisited. IEEE Signal Processing Letters 13(5),
285–287 (2006)

25. Chen, B., Wornell, G.: Quantization index modulation: a class of provably good
methods for digital watermarking and information embedding. IEEE Trans. on
Information Theory 47(4), 1423–1443 (2001)

26. Marvel, L., Boncelet, C., Retter, C.: Spread spectrum image steganography. IEEE
Trans. on Image Processing 8(8), 1075–1083 (1999)



Improved Tradeoff between Encapsulation

and Decapsulation of HK09�

Xianhui Lu1, Bao Li1, Qixiang Mei2, and Yamin Liu1

1. State Key Laboratory of Information Security, Graduate University of Chinese
Academy of Sciences, Beijing, 100049, China

2. School of Information, Guangdong Ocean University, Zhanjiang, 524088, China
{xhlu,lb,ymliu}@is.ac.cn, nupf@163.com

Abstract. We propose a new variant of HK09 (Proposed by Hofheinz
and Kiltz in Eurocrypt2009) which simplifies the decapsulation. Our re-
sult is a tradeoff between the efficiency of encapsulation and decapsu-
lation. Compared with original HK09 the efficiency of decapsulation is
improved by 38.9% and the efficiency of encapsulation is dropped by
11.4%.
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1 Introduction

Hofheinz and Kiltz proposed the first practical CCA secure public key encryption
scheme based on the factoring assumption [10](HK09). The efficiency of HK09
was later improved by Mei et al. [13]. In [13], the authors instantiated HK09
over the semi-smooth subgroup and also proposed an ElGamal style variant
of HK09. The ElGamal style variant of HK09 in [13] can be seen as a tradeoff
between the encapsulation and decapsulation. Compared with the original HK09
scheme, the efficiency of encapsulation is dropped by 42.9% and the efficiency
of decapsulation is improved by 36.1%. In addition, the key size of the ElGamal
style variant is increased by one element.

1.1 Our Contribution

We propose a new variant of HK09 which simplifies the decapsulation without
increasing the key size. Our result is also a tradeoff between the efficiency of
encapsulation and decapsulation. Compared with original HK09 the efficiency
of decapsulation is improved by 38.9% and the efficiency of encapsulation is
dropped by 11.4%. Thus our result is better than that of the ElGamal style
variant of HK09 in [13].

� Supported by the National Natural Science Foundation of China (No.61070171), the
National Basic Research Program of China(973 project) (No.2007CB311201) and
the Postdoctoral Science Foundation of China (No.20100480514).

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 131–141, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



132 X. Lu et al.

The ciphertext of HK09 is (R = gμ2
lK+lH , S = |gμtXμ|), the encapsulated

key is K = BBSr(g
μ2lH ), where lK is the length of K, lH is the length of the

hash value t = H(R), BBSr() is a Blum-Blum-Shub pseudorandom generator
[1]. Since the exponent inversion can not be computed directly for hidden order

group, the decapsulation algorithm computes gμ2
lH by using the gcd (greatest

common divisor) skill. To simplify the decapsulation, we derive the encapsulated

key from gμt2
lH
. Thus, we can avoid the computation of exponent inversion and

compute K = BBSr((S/R
ρ)

2lH
) directly. Compared with original HK09, the

decapsulation is decreased by 3lK + 4lH multiplications, the encapsulation is
increased by lK + lH multiplications. Similarly, our new variant can also be
instantiated over semi-smooth subgroup [13].

The CCA security of the new variant is easy to understand. The security re-
duction from CCA security to BBS distinguisher is nearly the same as that
of the original HK09. Since the simulator of the original scheme can com-

pute gμ2
lH , it is easy for the simulator of the new variant to compute gμt2

lH .
The security reduction from BBS distinguisher to factoring assumption is dif-
ferent from that of the original scheme. In the new variant, the BBS distin-
guisher needs to distinguish (N, z,BBSr(u

t)) from (N, z, U). We proof that
when t = H(z) is an odd number, the BBS distinguisher can be reduced to
the factoring assumption. It is easy to construct such a hash function. Let
H′ be a target collision resistant hash function, then H(z) = H′(z) × 2 + 1
is a target collision resistant hash function that the output values are odd
numbers.

1.2 Related Work

Chosen ciphertext (CCA) security [14,15] is now widely accepted as the stan-
dard security notion of public key encryption schemes. During a long period of
time, CCA secure schemes were designed based on decisional assumptions, such
as Decisional Diffie-Hellman (DDH) assumption [4,6,12], Decisional Compos-
ite Residuosity (DCR) assumption [5,6] and Decisional Quadratic Residuosity
(DQR) assumption [5,6], whereas the construction of CCA secure schemes based
on computational assumptions, such as factoring assumption and Computational
Diffie-Hellman (CDH) assumption, remained as an open problem.

The first CCA secure public key encryption scheme based on a computational
assumption was proposed by Canetti, Halevi and Katz [2]. The authors obtained
a CCA secure scheme from the Computational Bilinear Diffie-Hellman (CBDH)
assumption. Later Cash, Kiltz and Shoup proposed a CCA secure scheme un-
der the CDH assumption [3]. The efficiency was later improved in [8,9,16]. In
these schemes the encapsulated key is generated by using the hardcore pred-
icate based on the CDH assumption. Thus, one exponentiation can only gen-
erate one bit of the key or a few bits of the key (using simultaneous hardcore
bits). Hence the computational efficiency of these schemes is not suitable for
practice.
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2 Definitions

In describing probabilistic processes, x
R← X denotes x is sampled from the

distribution X. If S is a finite set, s
R← S denotes s is sampled from the uniform

distribution on S. If A is a probabilistic algorithm and x an input, then A(x)

denotes the output distribution of A on input x. Thus, we write y
R← A(x)

to denote of running algorithm A on input x and assigning the output to the
variable y.

2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists the following algorithms:

– KEM.KeyGen(1k): A probabilistic polynomial-time key generation algorithm
takes as input a security parameter (1k) and outputs a public key PK and a
secret key SK. We write (PK, SK)← KEM.KeyGen(1k)

– KEM.Enc(PK): A probabilistic polynomial-time encapsulation algorithm
takes as input the public key PK, and outputs a pair (K,ψ), where K ∈
KD(KD is the key space) is a key and ψ is a ciphertext. We write (K,ψ)←
KEM.Enc(PK)

– KEM.Dec(SK, ψ): A decapsulation algorithm takes as input a ciphertext ψ
and the secret key SK. It returns a key K. We write K ← KEM.Dec(SK, ψ).

We require that for all (PK,SK) output by KEM.KeyGen(1k), all (K,ψ) ∈
[KEM.Enc(PK)], we have KEM.Dec(SK, ψ)=K.

Now we review the adaptive chosen ciphertext security of KEM. Note that we
use the definition in [11] which is simpler than the original definition in [6].

Definition 1. A KEM scheme is secure against adaptive chosen ciphertext at-
tacks if the advantage of any adversary in the following game is negligible in the
security parameter k.

1. The adversary queries a key generation oracle. The key generation oracle
computes (PK, SK)← KEM.KeyGen(1k) and responds with PK.

2. The adversary queries an encapsulation oracle. The encapsulation oracle
computes:

b
R← {0, 1}, (K0, ψ

∗)← KEM.Enc(PK),K1
R← KD,

and responds with (Kb, ψ
∗).

3. The adversary makes a sequence of calls to the decapsulation oracle. For each
query the adversary submits a ciphertext ψ, and the decapsulation oracle
responds with KEM.Dec(SK, ψ). The only restriction is that the adversary
can not request the decapsulation of ψ∗.

4. Finally, the adversary outputs a guess b′.

The adversary’s advantage in the above game is AdvccaA (k) = |Pr[b = b′]− 1/2|.
If a KEM is secure against adaptive chosen ciphertext attacks defined in the
above game we say it is CCA secure.
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2.2 Target Collision Resistant Hash Function

Now we review the definition of target collision resistant (TCR) hash function.
We say that a function H : X → Y is a TCR hash function, if, given a random
preimage x ∈ X , it is hard to find x′ �= x with H(x′) = H(x). Concretely, the
advantage of an adversary A is defined as:

AdvtcrA (k) = Pr[x
R← X, x′ ← A(x) : x �= x′ ∧ H(x) = H(x′)].

We say H is a TCR hash function if AdvtcrA (k) is negligible.

3 New Variant of HK09

Our new variant is described as follows.

– KeyGen: Choose uniformly at random a Blum integer N = PQ = (2p +
1)(2q + 1), where P,Q, p, q are prime numbers. Then compute:

g
R← QRN , ρ

R← [(N − 1)/4], X ← gρ2
lK+lH

, r
R← {0, 1}lN ,

pk ← (N, g,X,H, r), sk ← ρ,
where H : QRN → {0, 1}lH is a TCR hash function that the output values
are odd numbers, lH is the bit length of the output value, lK is the bit length
of encapsulated key K, lN is the bit length of N .

– Encapsulation: Given pk, the encapsulation algorithm computes:

μ
R← [(N − 1)/4], R← gμ2lK+lH

, t← H(R), S ← |gμtXμ|,
T ← gμt2lH ,K ← BBSr(T ),

where BBSr(x) = Br(x), · · · ,Br(x
lK−1), Br(x) denotes the bitwise inner

product of r and x.
– Decapsulation: Given a ciphertext (R,S) and sk, the decapsulation algo-

rithm verifies R ∈ Z∗
N , S ∈ Z∗

N ∩ [(N − 1)/2], then computes:

t← H(R), T ← (S/Rρ)
2lH
,

if T 2lK+1

= R2t then compute K ← BBSr(T ),

else return the rejection symbol ⊥ .

The correctness of the scheme above can be verified as follows:

T = (S/Rρ)
2lH

=

( |gμtXμ|
gρμ2

lK+lH

)2lH

=

(
gμtXμ

Xμ

)2lH

= gμt2
lH
.

T 2lK+1

=
(
gμt2

lH
)2lK+1

= R2t.
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Intuitively, we can derive the encapsulated key from gμ. Since t is an odd number,
we have gcd(t, 2lK+lH ) = at + b2lK+lH = 1. Thus we can compute gμ directly

from S/Rρ = gμt and R = gμ2
lK+lH by using the gcd skill as follow:

gμ = gμtagμ2
lK+lH b = gμ(at+b2lK+lH ) = gμ.

Unfortunately, it fails in the security proof. The reason is that, the simulator
gets gμ(t−t∗) instead of gμt. It is clear that t − t∗ is not an odd number and

gcd(t, 2lK+lH ) > 1. So, the simulator can only compute gμ2
lH
. Similarly, we can

not derive the encapsulated key from gμt. As a result, we can only derive the

encapsulated key from gμt2
lH .

We remark that it is easy to get a TCR hash function that the output values
are odd numbers. Let H′ be a TCR hash function, then H(x) = H′(x) × 2 + 1
is also a TCR hash function. It is clear that the output values of H are all odd
numbers.

3.1 Security Proof

Theorem 1. If factoring N is hard and H is a TCR hash function that the
output values are odd numbers, then the new variant is CCA secure.

Review the security proof in HK09, the reduction is divided into two steps. In the
first step, BBS distinguisher is reduced to factoring assumption. In the second
step, CCA security of the scheme is reduced to BBS distinguisher. We remark
that the BBS distinguisher in the new variant is different from that of HK09.
The experiment for the BBS distinguish problem in our new variant is defined
as:

AdvBBS
A = |Pr[A(N, z,BBSr(ut)) = 1]− Pr[A(N, z, U) = 1]|,

where t = H(z), z = u2
lK , U is a random bit string of length lK .

It is clear that CCA security of the new variant can also be reduced to the BBS
distinguisher above. The only difference is that the simulator need to compute

gμt2
lH . This is easy since the simulator can compute gμ2

lH . So we have:

Theorem 2. If it is hard to distinguish (N, z,BBSr(u
t)) from (N, z, U), then

the new variant is CCA secure.

Since the proof of theorem 2 above is very similar to HK09, we omit the reduc-
tion. Now theorem 1 comes from the following theorem:

Theorem 3. If factoring N is hard and H is a TCR hash function that the
output values are odd numbers, then it is hard to distinguish (N, z,BBSr(u

t))
from (N, z, U).

Proof. The reduction can be divided into five steps as follows:

Step 1: BBS distinguish to tag hard-core distinguish

The experiment for tag hard-core distinguish problem is defined as:
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1. The challenger sends (N, v, r) to the adversary.
2. The adversary replies with a tag t.
3. The challenger computes:

b
R← {0, 1}, α1 ← Br(w

t), α0
R← {0, 1},

and responds with αb. Here w
2 = v.

4. Finally, the adversary outputs a guess b′.

The adversary’s advantage in the above experiment is:

AdvTHD
A = |Pr[A(α1) = 1]− Pr[A(α0) = 1]|.

Since α0 is randomly selected, we have:

Pr[α0 = α1] = Pr[α0 = 1− α1] = 1

2
.

According to the definition of AdvTHD
A , we have:

AdvTHD
A = |Pr[A(α1) = 1]− Pr[A(α0) = 1]|

= |Pr[A(α1) = 1]− (Pr[α0 = α1] Pr[A(α1) = 1]+
Pr[α0 = 1− α1] Pr[A(1 − α1) = 1])|

= |Pr[A(α1) = 1]−
1
2 (Pr[A(α1) = 1] + Pr[A(1 − α1) = 1])|

= 1
2 |Pr[A(α1) = 1]− Pr[A(1− α1) = 1]|.

(1)

Lemma 1. If an adversary A can distinguish (N, z,BBSr(u
t)) from (N, z, U),

then there exists an adversary B which can break the tag hard-core distinguish
problem.

AdvTHD
B =

1

lK
AdvBBS

A .

We begin by describing some hybrid experiments associated to B. For 0 ≤ k ≤
lK , experiment Exp(k) is described as follows:

1. The challenger sends (N, z, V ) to the adversary, V = v1, · · · , vlK is con-
structed as follows:

vi
R← {0, 1}, i = 1, · · · , k,

vj ← Br(u
t2j−1

), j = k + 1, · · · , lK ,
where u2

lK = z, t = H(z).
2. The adversary outputs a bit b.

Let Pr[ExpH(k) = 1] denote the probability that experiment ExpH(k) returns
1. We have that:

AdvBBS
A = |Pr[A(N, z,BBSr(ut)) = 1]− Pr[A(N, z, U) = 1]|

= |Pr[ExpH(0) = 1]− Pr[ExpH(lK) = 1]|. (2)
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Now we show the construction of B. On receiving (N, v, r), B computes:

k
R← [lK ], z ← v2lK−k

, t← H(z).

The adversary B then sends t to the challenger of tag hard-core distinguish
problem. When receives αb the adversary B computes:

vi
R← {0, 1}, i = 1, · · · , k − 1,

vk ← αb,

vj ← Br(v
t2j−k−1

), j = k + 1, · · · , lK ,
V ← v1, · · · , vlK .

The adversary B sends (N, z, V ) to the adversary A. When A outputs b′, B
outputs the same b′.

We have that:

AdvTHD
B = |Pr[B(α1) = 1]− Pr[B(α0) = 1]|

= 1
lK
|∑lK

i=1(Pr[B(α1) = 1|k = i]− Pr[B(α0) = 1|k = i])|
= 1

lK
|∑lK

i=1(Pr[ExpH(i − 1) = 1]− Pr[ExpH(i) = 1])|
= 1

lK
|Pr[ExpH(0) = 1]− Pr[ExpH(lK) = 1]|

= 1
lK

AdvBBS
A .

(3)

Step 2: Tag hard-core distinguish to tag hard-core predicate

The experiment for tag hard-core predicate problem is defined as:

AdvTHP
A = |Pr[A(N, v, r) = (Br(w

t), t)]− 1

2
|,

where w2 = v, t is an odd number.

Lemma 2. If an adversary B can break the problem of tag hard-core distinguish,
then there exists an adversary C which can break the tag hard-core predicate
problem.

AdvTHP
C = AdvTHD

B .

The construction of C is described as follows:

1. On receiving the challenge (N, v, r), the adversary C sends it to B.

2. On receiving t from B, the adversary C chooses a random bit α and sends
it to B.

3. When B outputs b′, the adversary C outputs (α, t) if b′ = 1 and (1−α, t) if
b′ = 0.
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Since α is a random bit, we have Pr[Br(w
t) = α] = Pr[Br(w

t) = 1 − α] = 1
2 .

Consider the advantage of C:

AdvTHP
C = |Pr[C(N, v, r) = (Br(w

t), t)]− 1
2 |

= |Pr[Br(w
t) = α] Pr[B(α1) = 1]+

Pr[Br(w
t) = 1− α] Pr[B(1− α1) = 0]− 1

2 |
= | 12 Pr[B(α1) = 1] + 1

2 Pr[B(1− α1) = 0]− 1
2 |

= | 12 (Pr[B(α1) = 1] + 1− Pr[B(1− α1) = 1])− 1
2 |

= 1
2 |Pr[B(α1) = 1]− Pr[B(1− α1) = 1]|

= AdvTHD
B .

(4)

Step 3: Tag hard-core predicate to tag square root

The experiment for tag square root problem is defined as:

AdvTSR
A = Pr[A(N, v) = (wt, t)],

where w2 = v, t is an odd number.
Since Br(w

t) is the Goldreich-Levin (GL) hard-core predicate [7], according
to the reconstruction algorithm of GL hard-core predicate we have:

Lemma 3. If an adversary C can break the problem of tag hard-core predicate,
then there exists an adversary D which can break the tag square root problem.

AdvTSR
D = AdvTHP

C .

On receiving (N, v), the adversary D randomly selects r ∈ {0, 1}lN and sends
(N, v, r) to adversary C. The adversary C responds with (Br(w

t), t). According
to the reconstruction algorithm of GL hard-core predicate,D can compute (wt, t)

in polynomial time. Note that t = H(z) = H(v2
lK−k

) is independent of r. Since k
is randomly chosen from [lK ], when D submits (N, v, r) repeatedly with different
r, the probability that the adversary C returns (Br(w

t), t) with the same t is
1/lK . To get a reply with a certain t, we need to repeatedly run the algorithm
of hard-core predicate lK times on average.

Step 4: Tag square root to square root

The experiment for square root problem is defined as:

AdvSRA = Pr[A(N, v) = w],
where w2 = v.

Lemma 4. If an adversary D can break the problem of tag square root, then
there exists an adversary E which can break the square root problem.

AdvSRE = AdvTSR
D .
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The construction of E is very simple. On receiving (N, v) from the challenger,
E sends it to D directly. On receiving (wt, t) from D, E computes w as follow:

gcd(t, 2) = at+ b2 = 1, watvb = watw2b = wat+b2 = w.

Step 5: Square root to factoring

The reduction from square root to factoring is a well known result. The ex-
periment for factoring problem is defined as:

AdvFAC
A = Pr[A(N) = (P,Q|N = PQ)].

Lemma 5. If an adversary E can break the problem of square root, then there
exists an adversary F which can break the factoring problem.

AdvFAC
F =

1

2
AdvSRE .

Since lemma 5 is a well known result, we omit the detail of the proof. According
to the five lemmas above, we have:

AdvFAC
F =

1

2lK
AdvBBS

A .

This completes the proof of theorem 3. 
�

3.2 Efficiency

The efficiency of HK09 [10], variants in [13] and our variant is listed in table1.

Table 1. Efficiency comparison

Encapsulate(mul) Decapsulate(mul)

HK09 3272(3lN + lK + 1.5lH ) 2376(1.5lN + 4lK + 6.5lH )

S-HK 1400(3lexp + lK + 1.5lH ) 1440(1.5lexp + 4lK + 6.5lH )

E-HK 2000(4.5lexp + lK + 1.5lH) 920(1.5 × 1.2lexp + 2.5lH)

NEW 3432(3lN + 2lK + 2.5lH) 1816(1.5lN + lK + 2.5lH )

S-NEW 1560(3lexp + 2lK + 2.5lH ) 880(1.5lexp + lK + 2.5lH )

In table 1, HK09 is the original scheme in [10], S-HK is the variant instantiated
over semi-smooth subgroup in [13], E-HK is the ElGamal style variant in [13],
NEW is the proposed variant, S-NEW is the proposed variant instantiated over
semi-smooth subgroup using the skill in [13]. The parameters are the same as
those in [10] and [13], lN = 1024, lK = lH = 80, lexp = 400.

Similar to HK09, the encapsulation can first compute A = gμ and B = Xμ,

which require 3lN multiplications. The computations of A2lH = gμ2
lH

and
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S = |AtB| = |gμtXμ| require 1.5lH multiplication. The reason is that the compu-

tation of A2lH is a by-product of At. Then compute T = At2lH = gμt2
lH
, which

requires lH multiplications. Finally, compute R = A2lH+lK and K = BBSr(T ),
which require 2lK multiplications. Thus, the encapsulation requires 3lN +2lK +

2.5lH multiplications. In decapsulation, the computation of T = (S/Rρ)2
lH re-

quires 1.5lN + lH multiplications. The computation of BBSr(T ) is a by-product

of T 2lK . So the decapsulation only requires 1.5lN + lK + 2.5lH multiplications.
In [10], the authors claim that the encapsulation requires 3lN + 1lK + 2.5lH

multiplications. We point out that the computation of A2lH = gμ2
lH and S =

|AtB| = |gμtXμ| can be further optimized. The computation of A2lH is a by-
product of At. Thus, the encapsulation of HK09 requires 3lN + 1lK + 1.5lH
multiplications.

In [13], the authors claim that the encapsulation requires 4.5lexp+ lK +2.5lH
multiplications and the decapsulation requires 1.5× 1.2lexp + lK + 2.5lH multi-
plications. We point out that, g2

v

can be precomputed. Thus the computation
of R = gμ2

v

only requires lexp multiplications. As a result, the encapsulation
of E-HK requires 4.5lexp + lK + 1.5lH multiplications. For decapsulation, the

computation of K = BBS+r (R
ρ′
) is a by-product of Rρ′t. So, the decapsulation

only requires 1.5× 1.2lexp + 2.5lH multiplications.

4 Conclusion

We proposed a variant of HK09 in which the decapsulation is simplified. The
proposed variant can also be proved to be CCA secure under the factoring as-
sumption. Compared with the original HK09 scheme, the decapsulation opera-
tion is decreased by 3lK + 4lH multiplications, while the encapsulation is only
increased by lK + lH multiplications.
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Abstract. This paper gives a security model for non-interactive de-
niable authentication (NIDA) protocols. This model captures a session-
state-reveal attack and a key-compromise-impersonation attack. We
analyze some NIDA protocols in the model, and we find that no one
is satisfactory. We give a new paradigm to construct an NIDA protocol,
which is provably secure in the model.
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1 Introduction

The deniable authentication (DA) [1] means that a sender not only proves that
she/he is the communicating entity with a receiver but also leaves no evidence
to the receiver about the participating in a protocol. The deniability feature is
desirable in some applications, such as the Off-the-Record Messaging [2], and
the Internet Key Exchange protocol [3].

To make a DA protocol more efficient, Shao [4] proposed a concept of non-
interactive deniable authentication (NIDA). It claims that a one-pass transcript
is enough for the goal of a DA protocol. However, a simple replay attack can
be used to falsify the authentication goal of most NIDA protocols. A com-
mon countermeasure is to require that each message includes a time stamp by
default.

Another problem about NIDA is a gap between its security model and analysis
techniques.

– The security model of the NIDA is similar to that of a designated verifier
signature (DVS). There is no security model at the beginning [4]. Wang and
Song [5] proposed a formal model which is similar to the model of DVS.

– The analysis techniques consider various attacks. The identified attacks in-
clude an impersonation attack [4], a session-state-reveal (SSR) attack [6],
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a key-compromise-impersonation (KCI) attack [7], and a man-in-the-middle
(MITM) attack [8]. An impersonation attack means that an adversary can
impersonate an intended receiver to identify the source of a given message.
An SSR attack means that an adversary can forge a message if some session-
specific values are compromised. A KCI attack means that an adversary
who knows a sender’s private key can impersonate an honest receiver to
identify the source of a message produced by the sender. An MITM attack
means that an adversary can establish a session key with either a sender or a
receiver.

– The gap is that the security model cannot capture these attacks. The SSR
attack and KCI attack are not considered in the model [5]. Sometimes, these
attacks are considered by independent proofs [6,7]. The problem is that there
is no clear description about an adversary.

This paper focuses on the security model of NIDA protocols. We present a model
and analyze some NIDA protocols. Then we give a paradigm to construct satis-
factory NIDA protocols.

1.1 Related Works

Lu et al. [9] and Willy et al. [10] proposed protocols similar to a ring signa-
ture [11]. The protocol of Lu et al. took a receiver into a signer ring to achieve
deniability. The protocol of Willy et al. used chameleon hash functions to sep-
arate messages and signatures. Wang et al. [5] proposed a scheme based on the
DVS where a simulation procedure was used to achieve deniability. There are
many protocols based on a message authentication code (MAC) [6, 8, 12–22].
Generally, there is an MAC key to protect a message. Since the key can be cal-
culated by a receiver or by both a sender and a receiver, the deniability property
is achieved.

1.2 Contributions

– Security Model: A new model is based on that of DA protocols in [23].
An adversary in the model can deliver messages, corrupt entities and reveal
session-state values. There are definitions about authenticator, transcript
deniability, and full deniability. There is also a message identification (MI)
protocol that is an idea NIDA protocol.

– Protocol Analysis: We run some NIDA protocols in the new model. We
give a table to summarize their satisfactions to each definitions. There is
no satisfactory NIDA protocols. We detail two attacks to show an analysis
method in the model.

– New Paradigm: A new paradigm emulates an MI protocol in the model.
We give a concrete scheme based on the Rabin signature [24]. It is provably
secure in the model.
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1.3 Organizations

Section 2 is some preliminaries, including some assumptions and a traditional
description of NIDA protocols. Section 3 is the new security model, and some
analysis about NIDA protocols. Section 4 is the new paradigm to construct
NIDA protocols. The concrete scheme is shown in section 5. The comparison is
in section 6. The last section concludes the paper.

2 Preliminaries

2.1 Assumptions

– Computational Diffie-Hellman (CDH) problem: Given large primes p, q sat-
isfying q|p − 1, there is a generator g ∈ Z∗

p for a group G with an order q.
Given two random elements gx, gy ∈R G, the problem is to find gz ∈ G such
that z = xy mod q.

– Decisional Diffie-Hellman (DDH) problem: With the same parameters (p, q, g,
G), given three random elements gx, gy, gz, the problem is to decide whether
z = xy mod q.

The assumption is that there are no polynomial time algorithms to solve a
CDH (DDH) problem with non-negligible probability ε in time t when q is big
enough.

2.2 NIDA Protocols

An NIDA protocol includes four algorithms (Setup, Prove, V erify, Sim).

– On input of a security parameter k ∈ N, a Setup algorithm generates system
parameters and public/private key pairs. The key pair of a sender is usually
denoted by (pkS , skS), and a receiver by (pkR, skR);

– A Prove algorithm takes as input a message m, the public key pkR, the
secret key skS to generate an authenticator authen. Then the sender sends
c = m||authen to the receiver;

– A V erify algorithm takes as input a transcript c, the public key pkS and
the secret key skR to produce a decision bit b ∈ {0, 1}, where b = 1 means
that the receiver accepts;

– A Sim algorithm takes as input the public key pkS , the secret key skR,
and a message m to generate a simulated transcript ĉ which is computa-
tionally indistinguishable from a real transcript c associated with the given
message m.

There are some properties about NIDA protocols. We adopt the descriptions
in [5, 8, 25] with some modifications.

1. Correctness: If a sender and a receiver follow the description of an NIDA
protocol, the receiver is always able to identify the source of the message in
a transcript, which means the receiver accepts.
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2. Unforgeability: An adversary cannot generate a new valid transcript in poly-
nomial time when the adversary can obtain public keys and some qualified
transcripts, where messages are determined by the adversary.

3. Deniability: An adversary cannot distinguish a simulated transcript from a
real one in polynomial time even the adversary can obtain public keys, some
real transcripts and simulated transcripts for the adversary’s messages.

4. Resistance to impersonation attack: An adversary cannot impersonate a
qualified receiver to identify the source of a message in a transcript even
the adversary can get access to public keys and valid transcripts.

5. Resistance to SSR: A disclosed session-specific value does not affect the
secure properties of other sessions of an NIDA protocol. Note that a session
means one interaction between a sender and a receiver.

6. Resistance to man-in-the-middle attack: An adversary cannot establish ses-
sion keys with either a sender or a receiver even the adversary controls all
communication channels between the sender and receiver.

7. Resistance to KCI attack: An adversary cannot impersonate a qualified re-
ceiver, even if the adversary can get access to the private key of a sender.

3 The Security Model

The current security model [5] does not capture some common attacks to the
NIDA protocols. We here give a new model. It is based on an extension frame-
work of Raimondo et al. [23].

Message Driven Non-interactive Protocols. A non-interactive protocol is
a process that is initially invoked by a party with some initial state. Once in-
voked, the protocol waits for an activation that can happen for a message from
the network or an external request. Upon activation, the protocol processes the
incoming data together with its current internal state generating an outgoing
transcript and/or an output. Once the activation is completed, the protocol
finishes.

The Authenticated-Links Model (AM). There are n parties P1, . . . , Pn,
each running a copy of a message-driven protocol π. The computation consists
of an activation of π within different parties. The adversary A is a probabilistic
polynomial-time (PPT) algorithm with the following abilities:

– control and schedule activations: A can decide who is the next party to
activate and which incoming message or external request the activated party
is to receive.

– deliver messages: A can change the order of delivery and can choose not to
deliver some messages at all. However, A is restricted to deliver messages
faithfully. That is, we assume that each message carries the identities of the
sender Pi and of the intended receiver Pj . When a message is sent by a party,
it is added to a set M of authentic messages. Whenever A activates a party
Pj on some incoming message m, it must be that m is in the setM and that
Pj is the intended receiver of m.



146 H. Tian, X. Chen, and Z. Jiang

– corrupt parties: A learns the entire current state of the corrupted party Pi
and can add to the setM any fake messages on behalf of Pi. A special symbol
in the output of Pi is generated to signal the corruption. A will control all
the sequent activations of Pi.

In addition, on the completion of an activation, the outgoing messages, external
requests and the output generated by the protocol become known to A. We refer
to such an adversary as an AM-adversary.

With all honest parties and the AM-adversary, there is a global output of a
running protocol. Let AUTHπ,A(x, r) denote the global output of a running of
the protocol π with the n parties and the adversary A with input x = x1, . . . , xn
and random input r = r0, r1, . . . , rn, where r0 is for A and xi and ri are for
a party Pi, i > 0. Let AUTHπ,A(x) denote the random variable describing
AUTHπ,A(x, r) when r is uniformly chosen.

Remark 1. Note that the message setM is named authentic messages. The mes-
sages are not deleted after a reception. This is due to the nature of non-interactive
protocols.

Remark 2. The corrupt ability captures the KCI attack.

The Unauthenticated-Links Model (UM). The computation of
unauthenticated-links model is similar to the AM model but the restriction of
delivering messages faithfully is removed for the adversary U , referred to as an
UM-adversary. Instead, it can deliver arbitrary messages. Besides this, we give
the adversary U an ability to obtain secret information from an honest party’s
internal state.

– session-state reveal (SSR): U can learn some values in the current state of an
uncorrupted party before or after an activation is completed. The restriction
is that the disclosure of the session-specific values cannot lead to the exposure
of the party’s long term private key.

Further,there is an initialization function I that models an initial phase out-of-
band and authenticated information exchange between the parties.

The random variables UNAUTHπ,U(x, r) and UNAUTHπ,U(x) are defined
analogously to the previous ones AUTHπ,A(x, r) and AUTHπ,A(x), but with
the computation carried out in the unauthenticated-links model.

Remark 3. Note that the restriction of the SSR ability makes the ability different
to the corrupt ability. The SSR ability captures the SSR attack.

Emulation of Protocols.Whenwe say that a protocolπ′ in the unauthenticated-
links model emulates a protocol π in the authenticated-links model, we want to
capture the idea that the running π′ in an unauthenticated network has the same
effect as the running π in an authenticated network. Formally speaking:
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Definition 1. Let π′ and π be the message-driven protocols for n parties. We
say that π′ emulates π in unauthenticated networks if for any UM-adversary U
there exists an AM-adversary A such that for all inputs x,

AUTHπ,A(x)
c
== UNAUTHπ′,U(x) (1)

where
c
== denotes computationally indistinguishable.

Authenticators. An authenticator is a compiler that takes as input protocols
designed for authenticated networks, and turns them into equivalent protocols
for unauthenticated networks.

Definition 2. A compiler C is an algorithm that takes as input descriptions of
protocols and produces descriptions of protocols. An authenticator is a compiler
C where for any protocol π, the protocol C(π) emulates π in unauthenticated
networks.

In particular, authenticators translate secure protocols in the authenticated-links
model into secure protocols in the unauthenticated-links model. The simplest
protocol is a message identification (MI) protocol that transports a message from
a party to another for identification. It can be described formally as follows:

– On activation within Pi on external request (Pj ,m), the party Pi sends the
message (Pi, Pj ,m) to party Pj and outputs ‘Pi sent m to Pj ’;

– Upon receipt of a message (Pi, Pj ,m), Pj outputs ‘Pj identified the source
of m as Pi’.

A protocol that emulates the above MI protocol in unauthenticated-links model
is called an MI-authenticator.

Remark 4. The MI-authenticator captures the unforgeability property.

Definition 3. An MI-authenticator λ is transcript deniable if there exists a sim-
ulator Sλ that given a message m sent by a party A to B produces a transcript
of a session of λ for m, which is computational indistinguishable from a real one
for an adversary who does not corrupt the party B or send this real or simulated
transcript to B, and not reveal the session-state of Sλ for this transcript or that
of A for the real one.

Definition 4. An MI-authenticator λ is full deniable if there exists a simulator
SpriB
λ accessing the private key of B that given a message m sent by a party A to
B produces a transcript of a session of λ for m, which is computational indistin-
guishable from a real one for an adversary who does not reveal the session-state
of SpriB

λ for this transcript or that of A for the real one.

Remark 5. The two definitions capture the deniability property of NIDA proto-
cols. The transcript deniability means that an adversary can not distinguish a
sender from infinite possible senders. The full deniability means that an adver-
sary can not distinguish a sender from a receiver.
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3.1 Protocol Analysis

We give two examples to show an analysis method in the model.

The Protocol of Lee et al. [6] There is a report about the protocol [25].
It reported that the protocol [6] was not KCI secure since an adversary with
the private key of a receiver could impersonate a sender. However, this is just
the full deniability. It is meaningless to consider this attack if we take the full
deniability as a desirable property.

We here give a real attack to show that the scheme is not secure under the
SSR attack.

– The Protocol
• Setup The system parameter is (p, q, g,G, H), where H : {0, 1}∗ → Zq

and other symbols are the same as those in Section 2.1. For a sender
S, skS ∈R Zq and pkS = gskS mod p. For a receiver R, (skR, pkR) is
computed similarly.
• Prove Select r ∈R Zq, compute Λ = gr mod p and

MAC = H((pkR)
H(m)skS+rΛ mod q mod p||m),

where “||” denotes bits concatenation. The transcript is c = (m,Λ,MAC)

• Verify Verify whether H((pk
H(m)
S ΛΛ)skR mod p||m) =MAC.

– The Attack
• An adversary A sends a transcript (m,Λ,MAC) to an honest receiver.

It reveals a session key sk = (pk
H(m)
S ΛΛ)skR of the receiver.

• ThenAmodifiesm arbitrarily to obtainm′ �= m and sends (m′, Λ,MAC)
to the same receiver. It reveals another session key sk′ = (pk

H(m′)
S ΛΛ)skR .

• A computes gskSskR = (k/k′)(H(m)−H(m′))−1

.
• A produces a transcript (mA, ΛA,MACA) where mA is an arbitrary
message, ΛA = pkαS for a random value α ∈R Zq, and MACA =
H(kA||mA) where kA = (gskSskR)(H(mA)+αΛA mod q) mod p.
• The forged transcript can be accepted according to the protocol descrip-
tion. Thus, the protocol is not an MI-authenticator.

The Protocol of Fan et al. [18] Besides the session key, other session-specific
values may also help an adversary. The protocol in [18] is suitable to show the
help.

– The protocol. We omit the message encryption part of the scheme as it is
not related to the unforgeability property.
• Setup A key generation center (KGC) sets groups (G1,+) and (G2, ·)
with order p. The generator of G1 is P . A paring is e : G1×G1 → G2. The
KGC randomly selects s ∈R Z∗

p and sets Ppub = sP . Three hash functions
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are H1 : {0, 1}∗ → G1, H2 : G2 × Z∗
p → Z∗

p and H3 : G2 × {0, 1}∗ → Z∗
p.

The KGC computes a user’s private key as DID = sH1(ID) where ID
is the user’s identity.
• Prove A sender, IDS , computes QR = H1(IDR) and δ = e(QR, QR)

r

for r ∈R Z∗
p. Then the sender computes Λ = H2(δ, T ) where T ∈ Z∗

p

is a timestamp, and U = rQR − ΛDIDS , and MAC = H3(δ,m). The
protocol transcript is c = (IDS , Λ, U, T,MAC,m).
• Verify The receiver checks the validity of the timestamp. Then the re-
ceiver computes δ′ = e(U,QR)e(QS , DIDR)

Λ and verifies whether Λ =
H2(δ

′, T ) and MAC = H3(δ
′,m).

– The Attack

• A reveals the value δ of a session and computes

e(QS , QR)
s = (δ/e(U,QR))

Λ−1

.

• A requests IDS to send a transcript (IDS , ΛS , US , TS,MACS ,mS).
• A computes δA = e(US , QR)(e(QS , QR)

s)ΛS . A forged transcript is (IDS ,
ΛS , US , TS,MAC

′,m′), where m′ is an arbitrary message and MAC′ =
H3(δA,m′).
• The forged transcript can be accepted according to the protocol. So the
protocol is not an MI-authenticator.

Other protocols are analyzed similarly. We give a table in the Section 6 as a
summary and comparison.

4 A New Paradigm

4.1 Selectively Unforgeable But Existentially Forgeable Signatures

In the new paradigm, we use a general signature scheme (KGen, Sign, V er). The
scheme is existentially forgeable but not selectively forgeable. The existentially
forged signature should be indistinguishable from a real signature. We define its
security using the following game. We assume a simulator Sim and a PPT forger
F . They play a game as follows:

1. Sim runs KGen to produce a key pair (skS , pkS) for a signer and gives pkS
to F .

2. Sim produces a challenge message m∗ and gives it to F ;
3. F produces a signature δ∗ for m∗;
4. The forger wins if the pair (m∗, δ∗) is qualified.

We define that a signature scheme is selectively unforgeable but existentially
forgeable (SUEF) if a forger cannot win the above game in polynomial time t
with a non-negligible probability ε, and a PPT adversary cannot distinguish an
existentially forged signature from a real one.
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4.2 The Construction

We construct a deniable MI-authenticator λDMI as follows:

– The initialization function I invokes a group generation algorithm to produce
the parameters (p, q, g) for a group G, where p = 2q + 1, and g ∈R Z∗

p is a
generator with an order q. Let E denote a symmetric encryption algorithm,
such that for any key ke of length l, the function Eke is a permutation over
b-bit strings. Let H : {0, 1}∗ → {0, 1}l be secure hash functions.

Then I invokes, once for each party, the KGen algorithm to produce key
pairs (ski, pki) for Pi. Each party is assigned a secrete trapdoor key ti ∈R Zq

and a public trapdoor key Ti = g
ti .

The public information is the system parameters, all public keys and all
public trapdoor keys: I0 = (p, q, g,H,E, pk1, T1, . . . , pkn, Tn). The private
information for Pi is Ii = (ski, ti).

– When activated, within party Pi and with an external request (m,Pj), the

protocol λDMI invokes a two party protocol λ̂DMI that proceeds as follows.
Pi sends a transcript: m,Pi, e = (Tj)

r, δ = Signski(EH(m,Pi,Pj)(g
r))’ to Pj ,

where r ∈R Zq. Then Pi produces an output ‘Pi sent m to Pj ’.

– Upon receipt of ‘message: m,Pi, e, δ’, party Pj computes gr = et
−1
i and

verifies whether the signature δ is valid for the value EH(m,Pi,Pj)(g
r). If the

verification is true, party Pj outputs ‘Pj identified the source of m as Pi’.

Pictorially, the protocol is described in Fig.1.
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Fig. 1. A new paradigm for the non-interactive deniable authentication
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4.3 The Proofs

Proposition 1. If the signature scheme is (ts, εs) SUEF secure, the CDH prob-
lem is (tc, εc) hard, and the symmetric encryption E and decryption E−1 are
modeled by random oracles, the protocol λDMI emulates the protocol MI in the
unauthenticated-links network.

Proof. Let U be an UM-adversary that interacts with λDMI . We construct an
AM-adversary A such that AUTHMI,A()

c
== UNAUTHλDMI ,U().

Adversary A runs U on a simulated interaction with a set of parties running
λDMI .

– A chooses and distributes keys for the imitated parties, according to function
I.

– When U activates an imitated party A′ for sending a message (m,A′, e, δ) to
an imitated party B′, the adversary A activates the party A in the authen-
ticated network to send m to B.

– When an imitated party B′ produces ‘B′ identified the source of m̂ as A′’,
the adversary A activates the party B in the authenticated-links model with
the incoming message m̂ from A.

– When U corrupts a party, A corrupts the same party in the authenticated
network and hands the corresponding information from the simulated run
to U .

– When U reveals the session state, A hands the values from the internal states
of imitated parties to U . Finally, A produces whatever U produces.

Let B denotes the event that the imitated party B′ produces ‘B′ identified the
source of m̂ as A′’ where A′ and B′ are uncorrupted and the message (m̂, A,B)
is not currently in the authentic message set M . This implies that A was not
activated for sending m̂ to B. If the event B never happens, the simulation of A
is perfect and AUTHMT,A()

c
== UNAUTHλDMT ,U().

It remains to show that event B occurs only with negligible probability. As-
sume the event B occurs with probability ε within time t. We construct a forger
F that breaks the underlying signature scheme or solves a CDH problem. The
forger F interacts with Sim as specified in Section 4.1 to obtain (pkS ,m

∗). The
forger F also gets a CDH problem instance (gx, gy). The strategy of F is to run
the adversary U .
F provides U two random oracles OE and O−1

E for the computations of E and
E−1.

– OE maintains an Elist recording all inputs and outputs. The input to OE

includes a message m, identities of a sender P and a receiver Q, and an
element R ∈ G. If the input is not in the Elist, OE randomly selects a value
c ∈ {0, 1}|p| as an output, where |p| denotes the bit length of p. The Elist is
updated by adding the input-output record (m,P,Q,R, c).

– O−1
E maintains an Rlist which is empty at the beginning. O−1

E takes as in-
put (m,P,Q, c). If there is a match entry in the Elist indexed by the input,
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OE returns the value R. Else O−1
E produces an output R = gr ∈ G where

r ∈R Z∗
q . O

−1
E adds a record (m,P,Q,R, c) in the Elist and a record (R, r)

in the Rlist.

Now we specify the game between the forger F and the adversary U .
– F runs the function I to set parameters and keys for a set of imitated parties

who run the protocol λDMI . Then the public verification key associated with
some party P ∗, chosen at random, is replaced by the key pkS . F gives all
public information to U .

– If during the simulation, P ∗ is queried to generate a transcript for a mes-
sage m to a party Q, the forger F existentially forges a message-signature
pair (mF , δF ) w.r.t. the key pkS . Then F queries the O−1

E oracle with
(m,P ∗, Q,mF ) to get a reply R. F computes e = RtQ and replies to the
adversary U the transcript (m,P ∗, e, δF ).

– Other message delivery queries are responded according to the protocol spec-
ification with the oracle access to OE .

– If U corrupts a party, the private key of the party is given to U . If U corrupts
P ∗, F fails.

– If U queries to reveal the session states of one run of a party, F gives the
value r of that run to U . F will find a value r in the Rlist as a response if
the party is P ∗.

If a party Q∗ is uncorrupted, and outputs ‘Q∗ identified the source of m as P ∗’
but P ∗ was not activated to send m to Q∗, the forger F finds the last message
received by Q∗ such as (m,P ∗, e∗ = (TQ∗)r

∗
, δ∗ = SignskP∗ (EH(m,P∗,Q∗)(g

r∗))).

Then F tries to find a match in the Rlist indexed by e∗t
−1
Q∗ .

– If there is no match in the Rlist, F rewinds U to the point where (m,P ∗, Q∗,
e∗t

−1
Q∗ ) is queried to the oracle OE . This time the forger F sets the output

of OE as c = m∗. Then the forger F runs U again. According to the general
forking lemma [26], there is a non-negligible probability for U to produce

another qualified signature for the query (m,P ∗, Q∗, e∗t
−1
Q∗ ). The signature

is returned to Sim as a response by the forger F .
– If there is a match in the Rlist, F resets the public key of P ∗ as gx and

runs U again. If a party Q′ is uncorrupted, and outputs ‘Q′ identified the
source of m′ as P ∗’ but P ∗ was not activated to send m′ to Q′, the forger F
finds out the last message received by Q′ such as (m′, P ∗, e′ = (TQ′)r

∗
, δ∗ =

SignskP∗ (EH(m′,P∗,Q′)(g
r∗). Then F finds the match (R′, r′) in the Rlist

indexed by e
′t−1

Q′ and the match (m′, P ∗, Q′, R′, c′) in the Elist indexed by
(m′, P ∗, Q′, R′).

Then F rewinds U to the point when (m′, P ∗, Q′, c′) is queried to the
oracle O−1

E . This time the forger F sets the output of O−1
E as gy. Note that

P ∗ was not activated to send m′ to Q′. There is no session state about
(m′, P ∗, Q′) in the party P ∗. So there is no impact on the session state
real quires of U . Then the forger F runs U again. According to the general
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forking lemma, there is a non-negligible probability for U to produce another
qualified signature for the query (m′, P ∗, Q′, c′). F takes the value e′ in the
signature as an output about the CDH problem.

Next we analyze the success probability of the forger F if the forger can finish
the game. Suppose the event has a probability ε that F does not find a match in
the Rlist. In this case, the forger can succeed if the party P ∗ is just the target for
the adversary U to impersonate, and if U outputs another qualified transcript for

the same (m∗, P ∗, Q∗, e∗t
−1
Q∗ ) after the rewinding action. As there are n imitated

parties, the probability is 1/n that the special P ∗ is selected as a target. Suppose
there are qe queries to the oracle OE . Then the probability, according to the
general forking lemma, is at least ε(ε/qe − 1/q) that the adversary U produces
another qualified signature for the same query. So the success probability of the
forger F is εε/n(ε/qe − 1/q).

The other event has a probability (1 − ε) that F finds a match in the Rlist.
Since F runs U from the beginning, there is another probability (1 − ε) that F
finds a match in Rlist indexed by e

′t−1

Q′ . The party P ∗ is selected as the target by
U with a probability 1/n. Suppose there are qr queries to the oracle O−1

E . The
successful rewinding probability is still ε(ε/qr − 1/q). So the success probability
in this case is (1− ε)2ε/n(ε/qr − 1/q).

There is a bad event to make the forger stop the game abnormally. The event
is that the P ∗ is corrupted. Since P ∗ is selected randomly, the probability to
corrupt P ∗ is 1/n. The probability of F to finish the game normally is at least
(1− 1/n).

In summary, the success probability of F to the SUEF signature is

εs =
(n− 1)εε(qε− qe)

n2qqe
≥ εε(qε− qe)

2nqqe

and the success probability to the CDH problem is

εc =
(n− 1)(1− ε)2ε(qε− qr)

n2qqr
≥ (1− ε)2 ε(qε − qr)

2nqqr

Finally, we analyze the run time of the forger F . The simulation of O−1
E needs

one exponentiation time τe for each query. Suppose the existential forgery time
of F is τf . When P ∗ is queried to produce a transcript, there are two times τe
and one τf for each query. Suppose the P ∗ is queried qs times. The time is about
t + (qr + 2qs)τe + qsτf for F to wait until the event B occurs. The rewinding
needs about half the above time. So the overall time for F to break the SUEF
signature is about ts ≈ 1.5(t+ (qr + 2qs)τe + qsτf ). To solve the CDH problem,
F has to run the game again after the event B occurs. The overall time for F to
solve the CDH problem is about tc ≈ 2.5(t+ (qr + 2qs)τe + qsτf ). 
�
Remark 6. It is not new to model a symmetric encryption and decryption as ran-
dom oracles. This method appeared in [11] when the security of a ring signature
was proven.
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Remark 7. The general forking lemma is applicable in contexts other than stan-
dard signature schemes since it only considers the inputs and outputs. We refer
our readers to [26] for the detailed reasons.

Proposition 2. The protocol λDMI is transcript deniable if the DDH problem
is hard.

Proof. Suppose a simulator Sλ that on input a messagem from A to B, produces
a transcript as follows:

– Existentially forge a signature δF for a random message.
– Randomly select eF ∈R G.
– Set the simulated transcript as (m,A, eF , δF ).

Suppose an adversary D that claims to distinguish the simulated transcript from
a real one without the private key of B and session-state values for the simulated
transcript and the real one with a probability ε.

Suppose a DDH problem solver SD which takes as input a DDH problem
instance (g, gx, gy, gz). SD plays with D using Sλ.

– SD sets n-imitated parties and runs the function I for them with an exception
that the public trapdoor key of a random party B∗ is gy.

– SD answers queries of D as follows.

• When a party is required to send a real message, SD runs the party
according to the protocol specification. When a simulated message is
required, SD runs the Sλ for the party.
• When a party is required to receive a message, SD runs according to the
protocol specification.
• When D corrupts a party, the private key of the party is given to D. If
B∗ is corrupted, SD fails.
• When D tries to reveal session-state values, SD gives the values to D.

– SD produces a challenge message

m,A∗, e = gz, δ = SignskA∗ (EH(m,A∗,B∗)(g
x))

using gx, gz and the private key of A∗.
– SD continues to answer queries of D. However, the session-state values about

the challenge is not allowed to be revealed. And obviously, the challenge
message should not be received by B∗.

– Finally, D produces a bit b = 0 to denote the challenge message is a real
transcript, or b = 1 otherwise.

– SD guesses the input tuple is a DDH tuple if b = 0 and is not if b = 1.

If the input tuple is a DDH tuple, the challenge message is just a qualified
transcript. That is, it is a possible real transcript.

Comparatively, if the tuple is not a DDH tuple, the challenge message is not
qualified. It is indistinguishable from a simulated one. At first, the signature part
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is indistinguishable since it is an SUEF signature. Secondly, the value e and eF
are both random values in the group G.

So SD has the same advantage as D if the game does not fail. As B∗ is selected
randomly, the failure probability is 1/n. So the success probability of SD is at
least (1− 1/n)ε ≥ ε/2. 
�

Proposition 3. The protocol λDMI is full deniable.

Proof. Suppose a simulator SpriB
λ that on input a message m from A to B,

produces a transcript as follows:

1. Existentially forge a signature δF for a random message mF .

2. Compute R = E−1
H(m,A,B)(mF ). If R /∈ G, return to step 1. Else compute

eF = RtB .

3. Set the simulated transcript as (m,A, eF , δF ).

The values δF and δ are indistinguishable, since we use an SUEF signature.
The randomness of e in a real transcript is determined by the effective random

value r. That is, the selecting of r will lead to a valid signature. Suppose the
number of effective r is denoted by #Mr.

The randomness of eF is determined by the random message mF and the re-
computing of a forged message-signature pair. Suppose the number of effective
mF is denoted by #MF . Then when #MF ≈ #Mr, the simulated transcripts
are indistinguishable from real ones.

Remark 8. The numbers #MF and #Mr are related to concrete protocols. A
concrete protocol will prove #MF ≈ #Mr.

5 The Concrete Protocol

The signature scheme of Rabin [24] is a satisfactory SUEF scheme if the hash
function is not used. At first, if an adversary can win the attacking game in
section 4.1, the adversary can be used to solve the integer factorization problem.
So it is a secure SUEF scheme. Secondly, a forged signature has the same dis-
tribution as a real one. We set the big primes in the system parameters as the
Blum numbers, and require that the real signature is a quadratic residue, which
means that it is the principal square root. A forged signature is also a quadratic
residue by design. So it has the indistinguishable property.

The concrete protocol is as follows.

– Setup: Assume a sender’s public key is (N, p, q, g,H) where N = pbqb for two
big Blum primes pb and qb satisfying |pb| = |qb|, and (p, q, g,H) is the same
as the general construction. The sender’s private key is (pb, qb). An honest
receiver’s trapdoor key is tR ∈ Zq. The public trapdoor key is TR = gtR . We
require that |p| = |N |+ 1.
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– Prove: To send a message m, the sender randomly selects r ∈ Zq and com-
putes Rp = gr. Then it computes κ = H(m, IDS, IDR). If R = Eκ(Rp) is
not bigger than N or R mod N is not a quadratic residue, another r is se-
lected. Else, the sender calculates e← (TR)

r, and δ ← (R)1/2 mod N , where
δ is the principal square root. Then the sender sends (m, IDS , e, δ) to the
receiver.

– Verify: The receiver checks the equation EH(m,IDS ,IDR)(e
t−1
R ) = δ2 mod N .

If it holds, the receiver accepts and believes that the message source is IDS ,
else rejects.

– Simulate for full deniability: With a message m and reviver’s trapdoor key
tR, a simulator works as follows. The simulator randomly selects rx ∈R Z∗

N

and computes δF = r2x mod N , mF = δ2F mod N . If δ2F ≤ N , another rx is
selected. IfRp = E−1

H(m,IDS ,IDR)(mF+τN) /∈ G, another rx is selected, where

τ ∈ {0, . . . , �p/N�} is random selected if multiple values are satisfactory. Else
eF = RtR

p . The message simulated is (m, IDS , eF , δF ).
– Simulate for transcript deniability: It is the same as the above simulation

procedure with an exception that the value eF is now randomly selected
from the group G.

We need to prove that #Mr ≈ #MF to satisfy the Proposition 3.
According to the simulation method, mF is a quadratic residue. Considering

the re-selecting, the number of effective mF is #MF = ω1/2(pb− 1)(qb− 1)/4 ≈
ωN/8, where 1 < ω < 2. That is about half of the number of quadratic residues
in the group ZN . The coefficient ω is for p > N and the real distributions of
quadratic residues in ZN and of the group G in Zp. The number of effective r,
#Mr, is about the number of elements in the set

{r|Eκ(g
r) mod N is a quadratic residue}.

That number is equivalent to the number of elements in the set

{δ|δ ∈ ZN is a principal square root ∧ E−1
κ (δ2 mod N + τN) ∈ G},

which is just the total number of δF in the simulation algorithm. So #MF ≈
#Mr.

6 Comparison

We give a table to summarize the analysis results and compare our paradigm
with other protocols. In the table, the left column is the literatures. Except
the first three rows, all schemes are MAC based. The other three columns are
the properties of NIDA protocols. If a protocol is an “MI-Authenticator”, it
is unforgeable. The meanings of “Transcript Deniability” and “Full Deniability”
are defined in the Definitions 3 and 4 in the Section 3. The symbol “Yes” denotes
that the protocol in the literature enjoys the property of that column.



Non-interactive Deniable Authentication Protocols 157

Table 1. Analysis Results of NIDA Protocols

MI-Authenticator Transcript Deniability Full Deniability

[9] Yes No Yes

[10] Yes No No

[5] Yes No Yes

[6] No Yes Yes

[8] No No Yes

[12] No No No

[13] No No No

[14] No No No

[15] No No No

[16] No Yes Yes

[17] No No Yes

[18] No No No

[19] No No Yes

[20] Yes No No

[21] Yes No No

[22] No No Yes

Ours Yes Yes Yes

From the table, we observe the following points.

– There are two protocols which enjoy the transcript deniability property.
– There are two MAC based protocols which are MI-authenticators.
– There is no protocol that is an MI-authenticator, and is transcript and full

deniable.

The above observations make our scheme unique. It is an MI-authenticator, and
enjoys the properties of transcript deniability and full deniability.

7 Conclusion

We describe a formal model for non-interactive deniable authentication proto-
cols, which captures the KCI and SSR attacks. Then we analyze some NIDA
protocols in the model, and we show the vulnerabilities of two protocols. Fi-
nally, we give a new paradigm to construct a desirable protocol with proofs and
a concrete protocol.
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Abstract. F-FCSR-H v2 is one of the 8 final stream ciphers in the eS-
TREAM portfolio. However, it was broken by M. Hell and T. Johansson
at ASIACRYPT 2008 by exploiting the bias in the carry cells of a Galois
FCSR. In order to resist this attack, at SAC 2009 F. Arnault et al. pro-
posed the new stream cipher F-FCSR-H v3 based upon a ring FCSR. M.
Hell and T. Johansson only presented experimental results but no theo-
retical results for the success probability of their powerful attack against
F-FCSR-H v2. And so far there are no analytical results of F-FCSR-H
v3. This paper discusses the probability distribution of the carry cells of
F-FCSR-H v2 and F-FCSR-H v3. We build the probability model for the
carry cells of the two stream ciphers and prove that the consecutive out-
put sequence of a single carry cell is a homogeneous Markov chain and
the inverse chain is also a homogeneous Markov chain. We also prove that
the probability of l consecutive outputs of a single carry cell to be zeros
is (1/2) · (3/4)l−1, which is a weakness of the carry cells of F-FCSR-H v2
and F-FCSR-H v3, noticing that (1/2)·(3/4)l−1 > 2−l for l > 1. FCSR is
a finite-state automata, so its distribution is stable. Based on this fact,
we construct a system of equations using the law of total probability,
and present a theoretical probability of breaking F-FCSR-H v2 by solv-
ing the equations. Applying this technique to F-FCSR-H v3, we obtain
that the probability of all the 82 carry cells of F-FCSR-H v3 to be zeros
at the same clock is at least 2−64.29, which is much higher than 2−82.
This is another weakness of the carry cells of F-FCSR-H v3. Our results
provide theoretical support to M.Hell and T.Johansson’s cryptanalysis
of F-FCSR-H v2 and establish a theoretical foundation for further crypt-
analysis of F-FCSR-H v3.
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1 Introduction

In 1993, Klapper and Goresky initially proposed the idea of using FCSRs to
generate sequences for cryptographic applications [7]. F-FCSR-H v2 [1] is a
hardware-oriented stream cipher designed by F. Arnault, T.P. Berger, and C.
Lauradoux in 2006. It was selected as one of the 4 final hardware-oriented stream
cipher candidates in the eSTREAM [3] portfolio. However, M. Hell and T. Jo-
hansson broke F-FCSR-H v2 in real time [6] at ASIACRYPT 2008 by exploiting
the bias in the carry cells of a Galois FCSR. In order to resist this attack, at
SAC 2009 F. Arnault et al. proposed the new stream cipher F-FCSR-H v3 [2]
based upon a ring FCSR.

An FCSR is similar to LFSRs, but it performs operations with carries. The
high non-linearity of the FCSR transition function provides an intrinsic resis-
tance to algebraic attacks. It has several interesting properties: proven long pe-
riod, non-degenerated states, good statistical properties [5,7,8] and it is simple
and efficient, both in hardware and software implementation. However, it also
has a weakness: the probability distribution of its carry cells is unbalanced. The
reason that F-FCSR-H v2 is broken is just the imbalance of the distribution of
the carry cells. In [6], M. Hell and T. Johansson only presented experimental
results but no theoretical results for the distribution of the carry cells. And so
far there are no analytical results for F-FCSR-H v3.

In this paper, we present the probability distribution of the carry cells of
stream ciphers F-FCSR-H v2 and F-FCSR-H v3 and analyze the success proba-
bility of breaking F-FCSR-H v2. Although it is claimed in [2] to resist the attack
in [6], our analysis shows that the distribution of the carry cells of F-FCSR-H v3
is still unbalanced. Our results provide theoretical support to Hell and Johans-
son’s cryptanalysis and establish a theoretical foundation for further analysis of
F-FCSR-H v3.

This paper is organized as follows: Section 2 briefly introduces the F-FCSR-
H v2 and F-FCSR-H v3 algorithms. Sections 3 and 4 analyze the probability
distribution of the carry cells of F-FCSR-H v2 and F-FCSR-H v3 respectively.
Finally, Section 5 concludes this paper.

2 FCSR Architectures

There are three representations of Feedback with Carry Shift Registers(FCSRs):
Fibonacci FCSRs [4], Galois FCSRs [4] and ring FCSRs [2]. A Fibonacci FCSR
has a single feedback function which depends on multiple inputs. A Galois FCSR
has multiple feedbacks which all share one common input. And a ring FCSR can
be viewed as a trade-off between the two extreme cases. F-FCSR-H v2 is based
on a Galois FCSR and F-FCSR-H v3 is based on a ring FCSR. In the following
we briefly introduce the Galois FCSR and the ring FCSR used in F-FCSR-H
v2 and F-FCSR-H v3. For more details about F-FCSR-H v2 and F-FCSR-H v3,
please refer to [1,2].
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2.1 Galois Architecture

A Galois FCSR consists of an r-bit main register (m0, · · · ,mr−1) with some fixed
feedback positions d0, · · · , dr−1. All the feedbacks are controlled by the cell m0

and r − 1 binary carry cells (c1, · · · , cr−1). At time t, the state of a Galois FCSR
is updated in the following way:

1. Compute the sums xi = mi+1 + ci+1di +m0di for all i, 0 ≤ i < r, here we
define mr = 0 and cr = 0.

2. Update the state as follows: mi = xi mod 2 for all i, 0 ≤ i ≤ r − 1 and
ci+1 = xi div 2 for all i, 0 ≤ i ≤ r − 2.

For the stream cipher F-FCSR-H v2, the size of the main register is r = 160,
and the carry register contains 82 active cells. The feedback is determined by

d = (AE985DEF26619FC58623DC8AAF46D5903DD4254E).

The Galois FCSR architecture of the stream cipher F-FCSR-H v2 is shown in

Figure 1.

Fig. 1. The Galois FCSR architecture of F-FCSR-H v2

2.2 Ring Architecture

A ring FCSR is composed of a main register of r binary cellsM=(m0, · · · ,mr−1),
and a carry register of r integer cells C = (c0, · · · , cr−1). It is updated using the
following relations: (1) M(t + 1) = T · M(t) + C(t) mod 2, (2) C(t + 1) =
T ·M(t) + C(t) div 2, where T is an r × r matrix with coefficients 0 or 1 in Z,
called transition matrix, M(t) = (m0(t), · · · ,mr−1(t)) is the state of the main
register at time t, and C(t) = (c0(t), · · · , cr−1(t)) is the state of the carry register
at time t.

For the stream cipher F-FCSR-H v3, the size of the main shift register M is
r = 160, and the carry register C contains 82 active cells. The feedback is deter-
mined by the transition matrix T = (ti,j)0≤i,j<160, which is defined as follows:

1. For all 0 ≤ i < 160,ti,i+1 mod 160=1;
2. For all (i, j) ∈ S, ti,j=1, where S = {(1, 121); (2, 133); (4, 44); (5, 82); (9, 38);
( 11, 40); ( 12, 54); ( 14, 105); ( 15, 42); ( 16, 63); ( 18, 80); ( 19, 136); ( 20, 2);
( 21, 35); ( 23, 28); ( 25, 137); ( 28, 131); (31, 102); ( 36, 41); ( 39, 138); ( 40, 31);
( 42, 126); ( 44, 127); ( 45, 77); ( 46, 110); ( 47, 86); ( 48, 93); ( 49, 45); ( 51, 17);
( 54, 8); ( 56, 7); ( 57, 150); ( 59, 25); ( 62, 51); ( 63, 129); ( 65, 130); (67, 122);
( 73, 148); ( 75, 18); ( 77, 46); ( 79, 26); ( 80, 117); ( 81, 1); ( 84, 72); ( 86, 60);
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( 89, 15); ( 90, 89); ( 91, 73); ( 93, 12); ( 94, 84); (102, 141); (104, 142); (107, 71);
( 108, 152); (112, 92); (113, 83); (115, 23); (116, 32); (118, 50); (119, 43); (121, 34);
( 124, 13); ( 125, 74); ( 127, 149); ( 128, 90); ( 129, 57); ( 130, 103); ( 131, 134);
( 132, 155); ( 134, 98); ( 139, 24); ( 140, 61); ( 141, 104); ( 144, 48); ( 145, 14);
( 148, 112); ( 150, 59); ( 153, 39); ( 156, 22); ( 157, 107); ( 158, 30); ( 159, 78)};
3. Otherwise, ti,j=0.

The ring FCSR architecture of the stream cipher F-FCSR-H v3 is shown in
Figure 2.

Fig. 2. The ring FCSR architecture of F-FCSR-H v3

3 On the Distribution of the Carry Cells of F-FCSR-H v2

As we know, the stream cipher F-FCSR-H v2 is broken because the carry register
behaves very far from random. Denote the state of the main register of F-FCSR-
H v2 at time t by M(t) = (m0(t), · · · ,m159(t)), and denote the state of the
82 active cells of the carry register at time t by C(t) = (cj1(t), · · · , cj82(t)),
where 1 ≤ j1 < · · · < j82 ≤ 160. In [6], the event EZERO is used to break
F-FCSR-H v2, which is given as follows: Event EZERO : C(t) = C(t + 1) =
· · · = C(t+16) = (0, 0, · · · , 0, 1) . And the probability of EZERO is estimated to
be Prob (EZERO) ≈ 2−25.3 by experiments. However, no theoretical analysis is
given. In this section, we theoretically discuss the distribution of the carry cells
of F-FCSR-H v2.

Since the filtering function of F-FCSR-H v2 is linear, assume all the active
carry cells to be zeros during a number of consecutive clocks, then the system
would become linear. However, the assumption that a large number of consecu-
tive zero feedback bits would push the weight of C to zero is wrong [6]. So [6]
uses the Event EZERO as defined above, where all the 82 carry cells except c2
are zeros for 17 consecutive clocks, to break F-FCSR-H v2.

Although the main register cells may not be statistically independent, for
the convenience of our analysis, here we assume that the main register cells are
independent and uniformly distributed binary random variables defined on the
same probability space, and the main register cells are independent of the carry
cells. Although this assumption is not very correct, the conclusions we get in
this section meet with our experimental results very closely.

Next we will analyze the probability of a single carry cell to be zero for l
consecutive clocks, the probability of n carry cells to be zeros at the same clock,
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and the probability of n carry cells to be zeros for l consecutive clocks. Then we
will analyze the probability of n carry cells except one to be zeros at the same
clock and for l consecutive clocks.

In theory it is possible to analyze the probability of the carry cells to be other
values, but it has little relation to breaking the stream ciphers, so we won’t
discuss it. In this paper we will only discuss the probability of all the carry cells
to be zeros and the probability of n− 1 out of the n carry cells to be zeros.

3.1 The Probability of a Single Carry Cell to Be Zero for l
Consecutive Clocks

Theorem 1. Suppose the main register cells of F-FCSR-H v2 are independent
and uniformly distributed binary random variables and the main register cells are
independent of the carry cells, then the carry cell sequence (cjk(0), cjk(1), · · · ) is
a homogeneous Markov chain, which satisfies

Prob(cjk (t+ 1) = a | cjk(t) = b) =
{
3/4 if a⊕ b = 0
1/4 if a⊕ b = 1

,

where a, b ∈ {0, 1}, 1 ≤ k ≤ 82, 1 ≤ j1 < · · · < j82 ≤ 160, and the transition

probability matrix is

(
3/4 1/4
1/4 3/4

)
.

Proof. According to the update function of a Galois FCSR, we have

cjk(t+ 1) = m0(t)cjk (t) ⊕ mjk(t)cjk(t) ⊕ m0(t)mjk(t).

This means that the state cjk at time t+1 only depends on the states m0, mjk

and cjk at time t. And m0, mjk are independent of cjk , so the sequences
(cjk(0), cjk(1), · · · ),1 ≤ k ≤ 82,1 ≤ j1 < · · · < j82 ≤ 160 are all Markov chains.
If b = 0, then cjk(t+ 1) = m0(t)mjk (t). So,

Prob(cjk(t+ 1) = a | cjk(t) = 0) =

{
3/4 if a = 0
1/4 if a = 1

.

If b = 1, then cjk(t+ 1) = m0(t)⊕mjk(t)⊕m0(t)mjk(t). So,

Prob(cjk(t+ 1) = a | cjk(t) = 1) =

{
3/4 if a = 1
1/4 if a = 0

.

Therefore,

Prob(cjk (t+ 1) = a | cjk(t) = b) =
{
3/4 if a⊕ b = 0
1/4 if a⊕ b = 1

,

so the transition probability matrix is

(
3/4 1/4
1/4 3/4

)
. And the transition probabil-

ity doesn’t depend on the time, so (cjk(0), cjk(1), · · · ) is a homogeneous Markov
chain. �
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Theorem 2. Suppose the main register cells of F-FCSR-H v2 are independent
and uniformly distributed binary random variables and the main register cells
are independent of the carry cells, then the inverse chain of a carry cell se-
quence (cjk(0), cjk(1), · · · ), which is (· · · , cjk(t+ 1), cjk(t), · · · , cjk(1), cjk(0)), is
a homogeneous Markov chain, and satisfies

Prob(cjk (t) = b | cjk(t+ 1) = a) =

{
3/4 if a⊕ b = 0
1/4 if a⊕ b = 1

,

where 1 ≤ k ≤ 82, 1 ≤ j1 < · · · < j82 ≤ 160, and a, b ∈ {0, 1}.

Proof. Suppose the current time is t+ 1. Since the sequence (cjk(0), cjk(1), · · · )
is a Markov chain, we can get that (cjk(t+2), cjk(t+3), · · · ) are all independent
of cjk(t). So cjk(t) is also independent of (cjk(t + 2), cjk(t + 3), · · · ). Therefore,
the sequence (· · · , cjk(t+ 1), cjk(t), · · · , cjk(1), cjk(0)) is a Markov chain.

According to the update function of a Galois FCSR:

cjk(t+ 1) = m0(t)cjk (t) ⊕ mjk(t)cjk(t) ⊕ m0(t)mjk(t),

we can easily get that:

Prob(cjk (t) = b | cjk(t+ 1) = a) =

{
3/4 if a⊕ b = 0
1/4 if a⊕ b = 1

.

The transition probability matrix is

(
3/4 1/4
1/4 3/4

)
, and it does not depend on

the time, so (· · · , cjk(t+ 1), cjk(t), · · · , cjk(1), cjk(0)) is a homogeneous Markov
chain. �

Theorem 3. Suppose the main register cells of F-FCSR-H v2 are independent
and uniformly distributed binary random variables and the main register cells are
independent of the carry cells, then the probability of the homogeneous Markov
chain (cjk(0), cjk(1), · · · ) to be zero for l consecutive clocks is:

Prob
(
cjk(t) = 0, cjk(t+ 1) = 0, · · · , cjk(t+ l − 1) = 0

)
=

1

2
·
(
3

4

)l−1

,

where 1 ≤ k ≤ 82 and 1 ≤ j1 < · · · < j82 ≤ 160.

Proof. If l = 1, Prob(cjk (t) = 0) = 1/2, so the theorem holds.
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Suppose the theorem holds for l − 1 consecutive clocks, then

Prob
(
cjk(t) = 0, cjk(t+ 1) = 0, · · · , cjk(t+ l− 1) = 0

)
= Prob

(
cjk(t+ l − 1) = 0

∣∣cjk(t) = 0, cjk(t+ 1) = 0, · · · , cjk(t+ l − 2) = 0
) ·

Prob
(
cjk(t) = 0, cjk(t+ 1) = 0, · · · , cjk(t+ l− 2) = 0

)
= Prob

(
cjk(t+ l − 1) = 0

∣∣cjk(t+ l − 2) = 0
) ·

Prob
(
cjk(t) = 0, cjk(t+ 1) = 0, · · · , cjk(t+ l− 2) = 0

)
=

3

4
· 1
2
·
(
3

4

)l−2

=
1

2
·
(
3

4

)l−1

,

which completes our proof. �
As we know, the probability of an independent and uniformly distributed binary
random sequence to be zero for l consecutive clocks is 2−l, and (1/2) · (3/4)l−1 >
2−l when l > 1. This shows that the output sequence of a single carry cell
of F-FCSR-H v2 has poor randomness, and it can be distinguished from an
independent and uniformly distributed binary random sequence.

3.2 The Probability of n Carry Cells to Be Zeros at the Same Clock

Theorem 4. Suppose the main register cells of F-FCSR-H v2 are independent
and uniformly distributed binary random variables and the main register cells
are independent of the carry cells, then the probability of n carry cells to be zeros
at the same clock is:

Prob
(
cji1 (t) = 0, · · · , cjin (t) = 0

)
=

1

n+ 1
,

where 1 ≤ n ≤ 82, 1 ≤ i1 < · · · < in ≤ 82 and 1 ≤ ji1 < · · · < jin ≤ 160.

Proof. If n = 1, Prob
(
cji1 (t) = 0

)
= 1/2, so the theorem holds.

If n > 1, suppose the theorem holds for all s < n, where s is the number of
carry cells. Let Prob

(
cji1 (t) = 0, · · · , cjin (t) = 0

)
= x. Next we will get x by

solving equations.

x = Prob
(
cji1 (t) = 0, · · · , cjin (t) = 0

)
= Prob

(
cji1 (t+ 1) = 0, · · · , cjin (t+ 1) = 0

)
= Prob

⎛⎝m0(t)cji1 (t)⊕mji1
(t)cji1 (t)⊕m0(t)mji1

(t) = 0,
· · ·
m0(t)cjin (t)⊕mjin (t)cjin (t)⊕m0(t)mjin (t) = 0

⎞⎠
= Prob

(
mji1

(t)cji1 (t) = 0, · · · ,mjin (t)cjin (t) = 0,m0(t) = 0
)
+

Prob

(
cji1 (t)⊕mji1

(t)cji1 (t)⊕mji1
(t) = 0, · · · ,

cjin (t)⊕mjin (t)cjin (t)⊕mjin (t) = 0,m0(t) = 1

)
= x1 + x2
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Next we compute x1 and x2 respectively.

x1 = Prob
(
mji1

(t)cji1 (t) = 0, · · · ,mjin (t)cjin (t) = 0,m0(t) = 0
)

= Prob

(
mji1

(t)cji1 (t) = 0, · · · ,mjin (t)cjin (t) = 0,m0(t) = 0,
mji1

(t) = 0, · · · ,mjin (t) = 0

)
+ · · ·+

Prob

(
mji1

(t)cji1 (t) = 0, · · · ,mjin (t)cjin (t) = 0,m0(t) = 0,
mji1

(t) = 1, · · · ,mjin (t) = 1

)
=

1

2n+1
·
((
n

0

)
+

1

2

(
n

1

)
+

1

3

(
n

2

)
+ · · ·+ 1

n

(
n

n− 1

)
+ x ·

(
n

n

))

=
1

2n+1
·
(
2 · (2n − 1)

n+ 1
+ x

)
=

2n − 1

2n · (n+ 1)
+

1

2n+1
· x

x2 = Prob

(
cji1 (t)⊕mji1

(t)cji1 (t)⊕mji1
(t) = 0, · · · ,

cjin (t)⊕mjin (t)cjin (t)⊕mjin (t) = 0,m0(t) = 1

)

= Prob

⎛⎝ cji1 (t)⊕mji1
(t)cji1 (t)⊕mji1

(t) = 0, · · · ,
cjin (t)⊕mjin (t)cjin (t)⊕mjin (t) = 0,m0(t) = 1,
mji1

(t) = 0, · · · ,mjin (t) = 0

⎞⎠+ · · ·+

Prob

⎛⎝ cji1 (t)⊕mji1
(t)cji1 (t)⊕mji1

(t) = 0, · · · ,
cjin (t)⊕mjin (t)cjin (t)⊕mjin (t) = 0,m0(t) = 1,
mji1

(t) = 1, · · · ,mjin (t) = 1

⎞⎠
=

1

2n+1
· x+ 0 + · · ·+ 0

=
1

2n+1
· x

So we get

x = x1 + x2 =

(
2n − 1

2n · (n+ 1)
+

1

2n+1
· x
)
+

1

2n+1
· x

Then we have x = 1
n+1 . �

As we know, the probability of n independent and uniformly distributed binary
random variables to be zeros at the same clock is 1

2n . When n is large enough,
1

n+1 � 1
2n . Hence Theorem 4 indicates that the distribution of the carry cells of

F-FCSR-H v2 is seriously unbalanced.

3.3 The Probability of n Carry Cells to Be Zeros for l Consecutive
Clocks

Theorem 5. Suppose the main register cells of F-FCSR-H v2 are independent
and uniformly distributed binary random variables and the main register cells are
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independent of the carry cells. Let Prob0(n, l) denote the probability of n carry
cells cji1 , · · · , cjin to be zeros for l consecutive clocks, then

Prob0(n, l) =
1

n+ 1
·
(
2n + 1

2n+1

)l−1

,

where 1 ≤ n ≤ 82, 1 ≤ i1 < · · · < in ≤ 82 and 1 ≤ ji1 < · · · < jin ≤ 160.

Proof. From Theorem 4 we know that the probability of n carry cells to be
zeros at the same clock is 1

n+1 . Suppose n carry cells are all zeros at clock t.
According to the update function of the carry cell cjk : cjk(t+1) = m0(t)cjk(t)⊕
mjk(t)cjk(t)⊕m0(t)mjk(t), next we discuss the values of

(
m0(t),m0(t+1), · · · ,

m0(t+ l − 2)
)
.

(1) If
(
m0(t),m0(t+1), · · · ,m0(t+ l− 2)

)
are all zeros, then the n carry cells

will be all zeros for l consecutive clocks.
(2) Ifm0(t+s) is 1, where 0 ≤ s ≤ l−2,mji1

(t+s),mji2
(t+s), · · · ,mjin (t+s)

must be all zeros to make cji1 , cji2 , · · · , cjin be all zeros for l consecutive clocks.
Therefore, the probability of cji1 , cji2 , · · · , cjin to be zeros for l consecutive

clocks is

Prob0(n, l) =
1

n+ 1
· 2−(l−1) ·

((
l − 1

0

)
+

1

2n

(
l− 1

1

)
+

(
1

2n

)2(
l − 1

2

)

+ · · ·+
(

1

2n

)l−1(
l − 1

l − 1

))

=
1

n+ 1
· 2−(l−1) ·

(
1 +

1

2n

)l−1

=
1

n+ 1
·
(
2n + 1

2n+1

)l−1

,

which completes our proof. �

When n = 1, Prob0(1, l) =
1
2 ·

(
3
4

)l−1
, which is the probability of a signal carry

cell to be zero for l consecutive clocks, and this coincides with Theorem 3. So
Theorem 3 is a special case of Theorem 5.

The conclusion of Theorem 5 is based on the independence assumption. How-
ever, reference [6] points out that the assumption that a large number of con-
secutive zero feedback bits would push the weight of the carry register to zero
is wrong. So in the following we analyze the probability of n carry cells except
one to be zeros at the same clock and for l consecutive clocks, which is used in
[6] to break F-FCSR-H v2.

3.4 The Probability of n Carry Cells Except One to Be Zeros at
the Same Clock

Theorem 6. Suppose the main register cells of F-FCSR-H v2 are independent
and uniformly distributed binary random variables and the main register cells
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are independent of the carry cells, then the probability of n carry cells except one
to be zeros at the same clock is 1

n·(n+1) , where 1 ≤ n ≤ 82.

Proof. Let the n carry cells be cji1 , · · · , cjin−1
, cjin , where 1 ≤ n ≤ 82, 1 ≤ i1 <

· · · < in−1 < in ≤ 82 and 1 ≤ ji1 < · · · < jin−1 < jin ≤ 160. Without loss of
generality, suppose cjin = 1 and the other carry cells are all zeros.

Since

Prob
(
cji1 (t) = 0, · · · , cjin−1

(t) = 0
)

=Prob
(
cji1 (t) = 0, · · · , cjin−1

(t) = 0, cjin (t) = 1
)
+

Prob
(
cji1 (t) = 0, · · · , cjin−1

(t) = 0, cjin (t) = 0
)

So from Theorem 4 we have

Prob
(
cji1 (t) = 0, · · · , cjin−1

(t) = 0, cjin (t) = 1
)

=Prob
(
cji1 (t) = 0, · · · , cjin−1

(t) = 0
)
−

Prob
(
cji1 (t) = 0, · · · , cjin−1

(t) = 0, cjin (t) = 0
)

=
1

n
− 1

n+ 1

=
1

n · (n+ 1)
,

which completes our proof. �

3.5 The Probability of n Carry Cells to Be (0, · · · , 0, 1) for l
Consecutive Clocks

Theorem 7. Suppose the main register cells of F-FCSR-H v2 are independent
and uniformly distributed binary random variables and the main register cells are
independent of the carry cells. Let Prob1(n, l) denote the probability of n carry
cells (cji1 , · · · , cjin−1

, cjin ) to be (0, · · · , 0, 1) for l consecutive clocks, then

Prob1(n, l) =
1

n · (n+ 1)
·
((

1

2

)2l−2

+

(
2n−1 + 1

2n

)l−1

−
(
1

2

)l−1
)
,

where 1 ≤ n ≤ 82, 1 ≤ i1 < · · · < in−1 < in ≤ 82 and 1 ≤ ji1 < · · · < jin−1 <
jin ≤ 160.

Proof. From Theorem 6 we know that the probability of n carry cells to be
(0, · · · , 0, 1) at the same clock is 1

n·(n+1) . Suppose the state of the n carry cells

are (0, · · · , 0, 1) at time t. According to the update function of the carry cell cjk :
cjk(t+1) = m0(t)cjk (t)⊕mjk(t)cjk(t)⊕m0(t)mjk (t), next we discuss the values
of (m0(t),m0(t+ 1), · · · ,m0(t+ l − 2)).
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(1) If (m0(t),m0(t+1), · · · ,m0(t+ l− 2)) are all zeros, mjin must be 1 to make
cjin still be 1.
(2) Ifm0(t+s) is 1, where 0 ≤ s ≤ l−2,mji1

(t+s), · · · ,mjin−2
(t+s),mjin−1

(t+s)

must be all zeros to make cji1 , · · · , cjin−1
, cjin be (0, · · · , 0, 1).

Therefore,

Prob1(n, l) =
1

n · (n+ 1)
· 2−(l−1) ·

((
1

2

)l−1(
l − 1

0

)
+

1

2n−1

(
l − 1

1

)
+

(
1

2n−1

)2(
l − 1

2

)
+ · · ·+

(
1

2n−1

)l−1(
l − 1

l − 1

))

=
1

n · (n+ 1)
· 2−(l−1) ·

((
1

2

)l−1

+

(
1 +

1

2n−1

)l−1

− 1

)

=
1

n · (n+ 1)
·
((

1

2

)2l−2

+

(
2n−1 + 1

2n

)l−1

−
(
1

2

)l−1
)
,

which completes our proof. �

The conclusion of Theorem 7 is a theoretical result based on the independence
assumption. When n = 82 and l = 17, the probability of all the 82 carry cells

to be (0, 0, · · · , 0, 1) for 17 consecutive clocks is Prob1(82, 17) =
1

82·83 ·
((

1
2

)32
+(

281+1
282

)16− ( 1
2

)16) ≈ 2−44.7, which is smaller than the experimental probability

Prob(EZERO) ≈ 2−25.3 in [6]. In the following we will explain why there is such
a difference between the theoretical probability and the experimental probability
in [6].

Firstly, the independence assumption will bring some bias. We assume that
the main register cells are independent and they are independent of the carry
cells, but actually they are correlated. Analyzing the Galois FCSR structure of
F-FCSR-H v2 carefully(see Figure 1), we can reach the following conclusion.
Suppose the values of all the 82 carry cells at time t are C(t) = (0, 0, · · · , 0, 1).
If the event Em : (ml(t),ml−1(t), · · · ,m2(t),m1(t),m0(t)) = (1, 1, · · · , 1, 0, 0)
occurs, thenm0 will be 0 during the next l+1 clocks, and C will be (0, 0, · · · , 0, 1)
during the next l clocks. Hence the probability of C to be (0, 0, · · · , 0, 1) for l
consecutive clocks is

Prob1(82, l) ≥ Prob
(
C(t) = (0, 0, · · · , 0, 1)) · Prob(Em) =

1

82 · 83 · 2
−(l+1) (1)

If l = 17, then Prob1(82, l) ≥ 1
82·83 · 2−18 ≈ 2−30.7. There is still a bias between

it and the experimental result Prob(EZERO) ≈ 2−25.3 in [6].
Secondly, let Ecjk

denote the event that the carry cell cjk is 1 and the other 81
carry cells are all zeros, where 1 ≤ k ≤ 82 and 1 ≤ j1 < · · · < j82 ≤ 160. Using
the independence assumption, each event Ecjk

occurs with the same probability.
However, our experiments show that the event Ec2 occurs with higher probability
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than the other 81 events. Just the event Ec2 is used in [6] to attack F-FCSR-H
v2. We randomly choose 32 sets of data as the initial states of F-FCSR-H v2,
and for each set of data, we run F-FCSR-H v2 for 230 = 1073741824 clocks. An
experimental probability distribution of Ecjk

is shown in Table 1.

Table 1. An experimental probability distribution of Ecjk

carry cell frequecnce x(Prob = 2−x) carry cell frequence x(Prob = 2−x)
2 3302174 8.345 148 121393 13.111
3 130 22.972 149 119848 13.129
4 31226 15.070 152 123167 13.090
7 128815 13.025 154 114860 13.190
9 123126 13.090 155 86848 13.594
· · · · · · · · · 156 28628 15.195

From the statistical results, we can see that Prob(Ec2 ) = 2−8.345 is the highest,
Prob(Ec3) = 2−22.972 is small, Prob(Ec158 ) = 0, and the probabilities of the other
events are very close. The average value of the probabilities of the 82 events is
2−12.725. Theorem 6 shows that the probability that only one of n carry cells is
1 and the other n− 1 carry cells are all zeros at the same clock is 1

n·(n+1) . When

n = 82, 1
n·(n+1) ≈ 2−12.733, which coincides with the statistical average value

2−12.725. In formula (1), Prob
(
C(t) = (0, 0, · · · , 0, 1)) = 1

82·83 is the theoretical
value computed on the independence assumption. Considering the Galois FCSR
structure of F-FCSR-H v2 and the correlations between the main register and the
carry cells, put the statistical value Prob

(
C(t) = (0, 0, · · · , 0, 1)) = Prob(Ec2) =

2−8.345 and l = 17 into formula (1), then we have Prob1(82, 17) ≥ Prob
(
C(t) =

(0, 0, · · · , 0, 1)) ·Prob(Em) = 2−8.345 · 2−18 = 2−26.345, which is very close to the
experimental result Prob(EZERO) ≈ 2−25.3 as in [6].

In what follows we discuss the probability distribution of the carry cells of
F-FCSR-H v3, which is based on a ring FCSR. Though it is claimed in [2] to
resist the attack in [6], our results show that the distribution of the carry cells
of F-FCSR-H v3 is still unbalanced.

4 On the Distribution of the Carry Cells of F-FCSR-H v3

F-FCSR-H v3 is based on a ring FCSR (see Figure 2). The main register has
160 cells and the carry register has 82 active cells. Denote the state of the main
register at time t by (m0(t), · · · ,m159(t)), and denote the state of the 82 active
cells at time t by (cj1(t), · · · , cj82(t)), where 0 ≤ j1 < · · · < j82 ≤ 159. For
the convenience of our analysis, we still assume that the main register cells are
independent and uniformly distributed binary random variables defined on the
same probability space, and the main register cells are independent of the carry
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cells. The conclusions we get in this section also meet with our experimental
results very closely.

For a single carry cell, the conclusions in Theorem 1, Theorem 2 and Theorem
3 still hold for F-FCSR-H v3. The consecutive output sequence of a single carry
cell is a homogeneous Markov chain, and the inverse chain is also a homogeneous
Markov chain. The probability of a single carry cell to be zero for l consecutive

clocks is 1
2 ×

(
3
4

)l−1
. Therefore, the output sequence of a single carry cell of

F-FCSR-H v3 can also be distinguished from an independent and uniformly
distributed binary random sequence.

Although the 82 carry cells do not have m0 as the common input, we found
that there are still some correlations between two or more carry cells. First we
analyze the correlations between two carry cells. For example, c2 and c132 have a
common input m133, so c2 and c132 are correlated at the same clock, and we call
this same-clock-correlation. The carry cells c1 and c119 do not have a common
input at the same clock, however, c1(t) and c119(t + 1) have a common input
m121, and we call this 1-clock-delay-correlation. In the same way, c12 and c51
have 2-clock-delay-correlation, c21 and c31 have 3-clock-delay-correlation, c31
and c94 have 7-clock-delay-correlation, and so on. The same-clock-correlation
can also be called 0-clock-delay-correlation. We analyze all the 82 carry cells,
and list the correlations between two cells in Table 2.

Table 2. The correlations between two carry cells in F-FCSR-H v3

0-clock-delay-correlation:
(2,132),(5,81),(11,39),(14,104),(16,62),(18,79),(20,1),(28,130),(36, 40),
(42,125),(49, 44),(51, 16),(63, 128),(65,129),(67,121),(77, 45),(79, 25),
(80, 116),( 86, 59),( 89, 14),( 93, 11),( 102, 140),( 104, 141),(112, 91),
(116, 31),( 118, 49),( 119, 42),(124, 12),(125, 73),(127, 148),(128, 89),
(129, 56),(130, 102),(139, 23),(144, 47),(156, 21),(159, 77)
1-clock-delay-correlation:
( 1,119),( 4, 42),( 9, 36),( 15, 40),(19,134),(44,125),(45,75),(46,108),(47, 84),
(48,91),(56, 5),(57,148),(59, 23),(62, 49),(75,16),(81,159),(108,150),(113,81),
(115,21),(131,132),(132,153),(140,59),(141,102),(145, 12),(150, 57),(158, 28),
( 4,119),(15,36),(21,121),(25,19),(39, 25),(40, 158),(44, 42),(48,112),(54, 56),
(57,127),(59, 139),(62,118),(75, 51),(84,107),(91, 84),(94,113),(113,5),
(115,156),(131,2),(140,86),(141,130),(145,124),(153,9)
2-clock-delay-correlation:
(12,51),(23,25),(25,134),(40,28),(54,5),(73,145),(90,86),(94,81),(121,31),
(153,36),(157,104),(39,19),(94,5),(121,116),(148,46),(157,14)
3-clock-delay-correlation:
(21,31),(39,134),(107,67),(134,94),(148,108),(21,116)
4-clock-delay-correlation: (84,67),(31,134)
5-clock-delay-correlation: (91,67)
7-clock-delay-correlation: (31,94)
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Now we analyze the correlations of multiple carry cells at the same clock.
We found that c93 and c11 have a common input m12, and c11 and c39 have a
common input m40, so the three carry cells c93, c11, and c39 are correlated at
the same clock, and we call this 3-cell-correlation. Also we found that c28 and
c130 have a common input m131, c130 and c102 have a common input m103, and
c102 and c140 have a common input m141, so the four carry cells c28, c130, c102,
and c140 are correlated at the same clock, and we call this 4-cell-correlation,
and so on. We list the correlations of multiple carry cells at the same clock in
Table 3.

Table 3. The correlations of multiple carry cells at the same clock in F-FCSR-H v3

3-cell-correlation:
(93,11,39),(51,16,62),(18,79,25),(118,49,44),(65,129,56),(159,77,45),(80,116,31)
4-cell-correlation: (28,130,102,140),(119,42,125,73)
6-cell-correlation: (63,128,89,14,104,141)

For convenience, let Pr(s)(c1, . . . , ck) denote the probability of k carry cells
c1, . . . , ck which have s-clock-delay-correlation to be zeros at the same clock,
where s ≥ 0, k ≥ 1. If s = 0, we write Pr(0)(c1, . . . , ck) as Pr(c1, . . . , ck). For
the same-clock-correlation between two carry cells, the conclusion in Theo-
rem 4 still holds for F-FCSR-H v3, i.e. Pr(c1, c2) = 1

3 . Next we will analyze
the correlations of two or more carry cells, then we will give a preliminary
analysis of the probability of all the 82 carry cells to be zeros at the same
clock.

4.1 The Correlations between Two Carry Cells

Theorem 8. Suppose the main register cells of F-FCSR-H v3 are independent
and uniformly distributed binary random variables and the main register cells are
independent of the carry cells, then the probability of 2 carry cells c1, c2 which
have s-clock-delay-correlation to be zeros at the same clock is Pr(s)(c1, c2) =
Prob

(
c1(t) = 0, c2(t) = 0

)
= 3·2s+1

3·2s+2 , where s ≥ 0.

Proof. For convenience, we write Pr(s)(c1, c2) as Pr
(s). If s = 0, we know that

Pr(0) = Pr(c1, c2) =
1
3 , so the theorem holds. Next we calculate Pr(s), (s ≥ 1).

Suppose the three inputs of the update function of the carry cell c1 are x0,x1
and c1, then c1(t + 1) = c1(t)x0(t) ⊕ c1(t)x1(t) ⊕ x0(t)x1(t). Because c1 and c2
have s-clock-delay-correlation, we get that c1(t) and c2(t+1) have (s−1)-clock-
delay-correlation, i.e. Prob

(
c1(t) = 0, c2(t+ 1) = 0

)
= Pr(s−1), therefore
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Pr(s) =Prob
(
c1(t) = 0, c2(t) = 0

)
=Prob

(
c1(t+ 1) = 0, c2(t+ 1) = 0

)
=Prob

(
c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0, c2(t+ 1) = 0

)
=Prob

(
c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0, c2(t+ 1) = 0,

x0(t) = 0, x1(t) = 0
)
+

Prob
(
c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0, c2(t+ 1) = 0,

x0(t) = 0, x1(t) = 1
)
+

Prob
(
c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0, c2(t+ 1) = 0,

x0(t) = 1, x1(t) = 0
)
+

Prob
(
c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0, c2(t+ 1) = 0,

x0(t) = 1, x1(t) = 1
)

=Prob
(
0 = 0, c2(t+ 1) = 0, x0(t) = 0, x1(t) = 0

)
+

Prob
(
c1(t) = 0, c2(t+ 1) = 0, x0(t) = 0, x1(t) = 1

)
+

Prob
(
c1(t) = 0, c2(t+ 1) = 0, x0(t) = 1, x1(t) = 0

)
+

Prob
(
1 = 0, c2(t+ 1) = 0, x0(t) = 1, x1(t) = 1

)
=
1

8
+

1

4
· Pr(s−1) +

1

4
· Pr(s−1) + 0 =

1

2
· Pr(s−1) +

1

8

From formula Pr(s) = 1
2 · Pr(s−1) + 1

8 and Pr(0) = 1
3 we have that

Pr(s) =
3 · 2s + 1

3 · 2s+2
,

which completes our proof. �

4.2 The Correlations of Multiple Carry Cells at the Same Clock

As defined before, Pr(c1, . . . , ck) denotes the probability of k carry cells c1, . . . , ck
which have k-cell-correlation to be all zeros at the same clock. If k = 1, Pr(c1) =
Prob(c1(t) = 0) = 1

2 . If k = 2, we know that Pr(c1, c2) =
1
3 . Next we calculate

Pr(c1, . . . , ck), 3 ≤ k ≤ 6 (see Table 3).

Theorem 9. Suppose the main register cells of F-FCSR-H v3 are independent
and uniformly distributed binary random variables and the main register cells
are independent of the carry cells, then Pr(c1, . . . , c3) = 5

24 , P r(c1, . . . , c4) =
2
15 , P r(c1, . . . , c5) =

61
720 , and Pr(c1, . . . , c6) =

17
315 .

Proof. For convenience, we write Pr(c1, . . . , ck) as Probk, k ≥ 1. First we cal-
culate Prob3. Suppose the update function of c1 is c1(t + 1) = c1(t)x0(t) ⊕
c1(t)x1(t) ⊕ x0(t)x1(t), the update function of c2 is c2(t + 1) = c2(t)x1(t) ⊕
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c2(t)x2(t)⊕ x1(t)x2(t), and the update function of c3 is c3(t+ 1) = c3(t)x2(t)⊕
c3(t)x3(t) ⊕ x2(t)x3(t). c1 and c2 have a common input x1, and c2 and c3 have
a common input x2. c1 and c3 are independent. Then we can get:

Prob
(
c1(t) = 0

)
= Prob

(
c2(t) = 0

)
= Prob

(
c3(t) = 0

)
= Prob1 =

1

2
,

P rob
(
c1(t) = 0, c2(t) = 0

)
= Prob

(
c2(t) = 0, c3(t) = 0

)
= Prob2 =

1

3
,

P rob
(
c1(t) = 0, c3(t) = 0

)
= Prob1 · Prob1 =

1

4
.

Therefore,

Prob3

= Prob(c1(t) = 0, c2(t) = 0, c3(t) = 0)

= Prob(c1(t+ 1) = 0, c2(t+ 1) = 0, c3(t+ 1) = 0)

= prob

⎛⎝ c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0,
c2(t)x1(t)⊕ c2(t)x2(t)⊕ x1(t)x2(t) = 0,
c3(t)x2(t)⊕ c3(t)x3(t)⊕ x2(t)x3(t) = 0

⎞⎠

= prob

⎛⎜⎜⎝
c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0,
c2(t)x1(t)⊕ c2(t)x2(t)⊕ x1(t)x2(t) = 0,
c3(t)x2(t)⊕ c3(t)x3(t)⊕ x2(t)x3(t) = 0,
x0(t) = 0, x1(t) = 0, x2(t) = 0, x3(t) = 0

⎞⎟⎟⎠+ · · ·+

prob

⎛⎜⎜⎝
c1(t)x0(t)⊕ c1(t)x1(t)⊕ x0(t)x1(t) = 0,
c2(t)x1(t)⊕ c2(t)x2(t)⊕ x1(t)x2(t) = 0,
c3(t)x2(t)⊕ c3(t)x3(t)⊕ x2(t)x3(t) = 0,
x0(t) = 1, x1(t) = 1, x2(t) = 1, x3(t) = 1

⎞⎟⎟⎠
= Prob(0 = 0, 0 = 0, 0 = 0, x0(t) = 0, x1(t) = 0, x2(t) = 0, x3(t) = 0) + · · ·+
Prob(1 = 0, 1 = 0, 1 = 0, x0(t) = 1, x1(t) = 1, x2(t) = 1, x3(t) = 1)

=
1

24

(
1 + Prob1 + Prob2 + 0 + Prob2 + Prob3 + 0 + 0+
Prob1 + Prob1 · Prob1 + Prob3 + 0 + 0 + 0 + 0 + 0

)
=

1

24
(
35

12
+ 2Prob3)

Solve the equation, and we get Prob3 = 5
24 .

Similarly, we can calculate: Prob4 = 2
15 , P rob5 = 61

720 , and Prob6 = 17
315 . �

4.3 The Probability of All the 82 Carry Cells to Be Zeros at the
Same Clock

In this section, we make a preliminary analysis of the probability of all the 82
carry cells of F-FCSR-H v3 to be zeros at the same clock. According to the
ring FCSR architecture of F-FCSR-H v3, Table 2 and Table 3, the correlations
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of the 82 carry cells are shown in Figure 3. They are divided into 2 groups.
Group 1 contains 76 carry cells, and Group 2 contains 6 carry cells. We take
Group 2 as an example to illustrate. (c148, c127) have 0-clock-delay-correlation,
(c46, c108), (c108, c150), (c150, c57), (c57, c148), and (c57, c127) all have 1-clock-
delay-correlation, (c148, c46) have 2-clock-delay-correlation, and (c148, c108) have
3-clock-delay-correlation.

Fig. 3. The correlations of the 82 carry cells of F-FCSR-H v3

In Figure 3, we can see that the carry cells (c48, c112, c91), (c131, c132, c2),
(c115, c21, c156) and (c57, c148, c127) have a similar structure. Let’s take (c48, c112,
c91) as an example to illustrate. (c48, c112) and (c48, c91) have 1-clock-delay-
correlation, and (c112, c91) have 0-clock-delay-correlation.We call (c48, c112, c91)
having 1-clock-triangle-correlation. Using the law of total probability, we can
get the probability of (c1, c2, c3) which have 1-clock-triangle-correlation to be
zeros at the same clock on the independence assumption, which is:

Prob(c1(t) = 0, c2(t) = 0, c3(t) = 0) =
5

24
.

We can also see in Figure 3 that (c56, c129, c65) have 0-clock-delay-correlation,
and (c54, c56) have 1-clock-delay-correlation. While (c28, c130, c102, c140) have 0-
clock-delay-correlation, and (c158, c28) have 1-clock-delay-correlation. They also
have a similar structure. On the independence assumption, we can prove that

Prob(c54(t) = 0, c56(t) = 0, c129(t) = 0, c65(t) = 0) =
57

480
,
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Prob
(
c158(t) = 0, c28(t) = 0, c130(t) = 0, c102(t) = 0, c140(t) = 0

)
=

109

1440
.

To analyze the probability of the 82 carry cells to be zeros at the same clock,
according to Figure 3, we divide the 82 carry cells into nine categories(see Table
4). Now we make a preliminary analysis. Suppose the carry cells of different
categories are independent, and the carry cells of different groups in the same
category are also independent. Let E0 denote the event of all the 82 carry cells
of F-FCSR-H v3 to be zeros at the same clock. Then from the above analysis,
we have

Prob
(
E0

) ≥(Prob2)4 · (Prob3)6 · (Prob6) · (Pr(1))4 · (Pr(2))·(
1

2

)4

·
(

5

24

)9

· 109
1440

· 57
480

=

(
1

3

)4

·
(

5

24

)6

·
(

17

315

)
·
(

7

24

)4

·
(
13

48

)
·(

1

2

)4

·
(

5

24

)9

· 109
1440

· 57
480

≈2−64.29

But for independent and uniformly distributed binary random sequences, the
probability of 82 cells to be all zeros at the same clock is 2−82. Our results show
that the distribution of F-FCSR-H v3’s carry cells is still unbalanced.

Table 4. Classification of the correlations of F-FCSR-H v3’s 82 carry cells

Classification Carry cells
1st class: 4 groups same-clock-correlation (144,47),(67,121),

(20, 1),(125,73)

2nd class: 6 groups 3-cell-correlation (80,116,31),(93,11,39),
(18,79,25),(159,77,45),
(51,16,62),(118,49,44)

3rd class: 1 group 6-cell-correlation (63,128,89,14,104,141)

4th class: 4 groups 1-clock-delay-correlation (84,107),(153,9),
(19,134),(46,108)

5th class: 1 group 2-clock-delay-correlation (90,86)

6th class: 4 groups independent carry cells 157,150, 94,75
7th class: 9 groups 1-clock-triangle-correlation (48,112,91),(131,132,2),

(15,40,36),(115,21,156),
(59,23,139),(4,119,42),
(113,81,5),(145,124,12),
(57,148,127)

8th class: 1 group (158,28,130,102,140)
9th class: 1 group (54,56,129,65)
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5 Conclusion

In [6], M. Hell and T. Johansson breaks F-FCSR-H v2 in real time using the
biased property of the carry cells. In order to resist this powerful attack, F. Ar-
nault et al. proposed the new stream cipher F-FCSR-H v3 in [2]. Reference [6]
only gives the experimental results of the success probability, but no theoretical
results about the distribution of F-FCSR-H v2’s carry cells. In this paper, we
analyze the carry cells’ probability distribution of F-FCSR-H v2 and F-FCSR-H
v3, and build a probability model for the two stream ciphers. Under the proba-
bility model, we prove that the consecutive output sequence of a single carry cell
is a homogeneous Markov chain, and the inverse chain is also a homogeneous
Markov chain. The probability of a single carry cell to be zero for l consecutive

clocks is 1
2 ·

(
3
4

)l−1
, and when l > 1, 1

2 · (34 )l−1 > 2−l, which is a weakness
of F-FCSR-H v2 and F-FCSR-H v3’s carry cells. We give theoretical results of
the carry cells’ probability distribution that are needed for breaking F-FCSR-H
v2 in [6], and explain why there exists a bias between theoretical results and
experimental results. For F-FCSR-H v3, we also analyze the correlations of the
carry cells, and prove that the probability of all 82 carry cells to be zeros at the
same clock is at least 2−64.29, which is much higher than 2−82. This is another
weakness of F-FCSR-H v3’s carry cells. Our results provide theoretical support
to M.Hell and T.Johansson’s cryptanalysis of F-FCSR-H v2 and establish a the-
oretical foundation for further cryptanalysis of F-FCSR-H v3.
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Abstract. To eliminate the need of public-key certificates from Public
Key Infrastructure (PKI) and the problem of key escrow in identity-
based cryptography, the concept of self-certified public key was put forth
by Girault. In this paper, we propose an efficient and novel self-certified
signature scheme, which requires only one modular multiplication in sign-
ing with pre-computation. One of features of our scheme lies in its batch
verification in both single-signer and multi-signer settings. Pairing com-
putations in the batch verification are independent from the number of
signatures. Our scheme is proven secure in the random oracle model.
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1 Introduction

Digital signature is an important primitive in modern cryptography. A valid dig-
ital signature can be seen as a receipt of a message from the particular sender
and can be applied to many security services such as authentication and non-
repudiation. Signature verification relies on public key or signature verification
key; therefore, proving the relationship between a public key and its owner is
essential for security of signatures. In practice, it relies on the Public Key In-
frastructure (PKI). That is, Certificate authority (CA) as a part of PKI issues
public key certificates to its users. Nevertheless, PKI might not be desirable. Of-
ten, a signature has to be distributed along with its public-key certificate. Prior
to the signature verification, a signature receiver needs to check the validity of
the corresponding certificate and store the certificate for later communications.
Certificate distribution, verification and storage add additional cost to commu-
nication, computation and storage.

The notion of identity-based signature (IBS) was introduced by Shamir in 1984
[17]. Problems of certificate verification and management are solved by using the
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signer’s identity as his public key. This idea has been applied to various signature
schemes, including several multi-user signatures (e.g., [23,9]). An identity-based
signature scheme secure in the standard model was proposed by Paterson and
Schuldt [14]. In identity-based signatures, a user’s private key is generated by
a trusted authority (TA), as a private key generator (PKG). As a drawback of
identity-based systems, PKG can sign a message on behalf of any user. It is
referred to as the so-called key escrow problem. The problem may be avoided by
sharing master secret key among several authorized parties [21], but a potential
collusion of the authorities could still be a problem. Some other efforts are also
presented in [22,5].

To fill the gap between the PKI based and identity-based signatures, Girault
[10] introduced the notion of Self-certified Public Keys, where certificate veri-
fication and management are not required and the key escrow problem can be
eliminated. The idea is that the certificate is replaced by a witness and the pub-
lic key is embeded in it. Anyone who holds a witness along with an attributive
identity can recover a correct public key for signature verification. The amount
of communication, computation and storage are also reduced. Unlike identity-
based schemes, the trusted third party (TTP) cannot extract user’s private key.
The scheme captures a strong security (level-3) defined by Girault [10]. Notice
that IBS only reaches level-1 security.

Saeednia [16] found a problem in the Girault’s scheme, namely, a malicious
TTP can compromise user private key by using a specific composite modular
of RSA. Roughly speaking, the TTP chooses two “small” prime numbers to
compute the RSA modulus n and it is helpful to solve the discrete logarithm
problem. For a more complete account, we refer the readers to [16]. Zhou, Cao
and Lu [25] prevented this attack by utilizing different user chosen modular,
whereas the size of signature is increased and the public key recovery must be
separated from the signature verification. Self-certified public key generation
protocol based on discrete logarithm was also proposed in [15].

1.1 Our Contribution

In this paper, we proposed an efficient and novel self-certified signature (SCS)
scheme, which achieves the level-3 security as defined by Girault [10]. The scheme
is based on the discrete logarithm rather than RSA. Hence, the private key
exposure problem has been resolved. In Our scheme, there is no need to separate
a certificate and a public key. Instead, we embed user’s public key in a witness,
which can be seen as a lightweight certificate. The public key can be implicitly
verified in the signature verification, while anyone who has the user identity and
the witness can explicitly extract the public key. We present both cases in our
scheme.

The efficiency of a signature scheme is normally evaluated by two aspects: sign-
ing efficiency and verification efficiency. In the signing phase, our self-certified
signature scheme only requires one exponent and two multiplication computa-
tions with no pairing calculation. We also show that our SCS scheme can be made
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more efficient by utilizing the idea of pre-computation so that only one multipli-
cation computation is needed. In the verification phase, our scheme requires two
pairing computations. However, it is reduced to one pairing computation when
the signer’s public key has been recovered explicitly. Additionally, we show that
our scheme is especially suitable for verifying large number of signatures by
batch verification. The result shows that our scheme achieves a constant number
of pairing computations in multi-signer setting. We prove that our scheme is
secure in the random oracle model.

1.2 Related Work and Comparison

The notion of certificateless public key cryptography (CL-PKC) was introduced
by Al-Riyami and Paterson [1] in 2003. The idea is similar to self-certified public
keys, since the signer is implicitly certified in signature verification and no cer-
tificate involved the scheme. Similar to TTP in SCS scheme, an authority called
Key Generation Centre (KGC) that generates partial private keys for users. An
efficient certificateless signature scheme was proposed by Choi, Park, Hwang
and Lee [4] (or CPHL for short). An efficient pairing-free security mediated cer-
tificateless signature scheme was proposed by Yap, Chow, Heng and Goi [20].
While the signing algorithm is an interactive protocol between a signer and an
online semi-trusted server. The signature generation needs the help of a third
party. Gentry [8] introduced Certificate-Based Cryptography (CBC) as another
paradigm to remove certificate and solve private key escrow problem. Indeed, the
CL-PKC and CBC schemes can easily transfer from the one to the other [19].
Liu, Baek, Susilo and Zhou [12] (or LBSZ for short) proposed a certificate-based
signature scheme without pairing computations in random oracle.

The main difference between self-certified signatures and certificateless or
certificate-based signatures is the key recoverable property. In self-certified sig-
natures, the user’s public key is computable by anyone who has his witness along
with a set of public parameters. Once the user’s public key has been recovered,
the TTP’s public key is no longer required. It implies that the cost of key certi-
fication and calculation is only needed at the initial stage of a communication as
conventional signature schemes. If we treat the witness as a “public key”, then
it can be used along with the TTP’s public key to verify a signature. In both
certificateless signatures and certificate-based signatures, on the other hand, the
signature verification always needs the KGC’s public key and the user’s public
key is uncomputable except the KGC.

We compare some efficient schemes that solved the same problems as SCS
schemes in Table 1.

1.3 Organization

The rest of this paper is organized as follows. The definition of our scheme
and complexity assumptions are given in Section 2. A formal security model of
our scheme is defined in Section 3. Our proposed scheme along with a formal
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Table 1. P: one pairing computation; E: one exponentiation computation; M: one
multiplication computation; Size: number of elements; SCS-1: our basic scheme; SCS-
2: public key is already recovered by a verifier

Signing Verification Signature Size Public Key Size

CPHL 2E 1P+2E+1M 2 1
LBSZ 1E+2M 3E+4M 3 3

Our SCS-1 1E+2M 2P+3E+1M 2 1
Our SCS-2 1E+2M 1P+2E 2 1

security proof of our scheme is given in Section 4. Further discussions on pre-
computation and batch verification are presented in Section 5 and 6, respectively.
Finally, Section 7 concludes the paper.

2 Definitions

In this section, we present the definition of self-certified signatures and the un-
derlying mathematical definitions.

2.1 Self-certified Signature

Digital signature schemes are basically consisted of three algorithms: key gener-
ation (KeyGen), signing algorithm (Sign) and verification algorithm (Verify).
Besides the basic algorithms, a self-certified signature scheme has two additional
algorithms: the system setup algorithm (Setup) for generating system param-
eters and the witness registration algorithm (WitReg) for registering a user.
The five algorithms in SCS are defined as follows:

– Setup(k1): is a PPT algorithm run by a Trusted Third Party (TTP) that
takes as input a security parameter k1, outputs the public system parameters
param and a master secret key msk.

– KeyGen(k2): is a PPT algorithm run by a user that takes as input a security
parameter k2, outputs a pair of public and private keys (pk, sk).

– WitReg(ID, pk, v): is a PPT algorithm run by the TTP that takes as input
a user’s identity ID, public key pk and the proof of the knowledge of private
key v, outputs a witness W if the proof v is valid, otherwise rejects.

– Sign(m, sk): is a PPT algorithm that takes as input a message m, private
key sk, outputs a signatures σ = (u, t).

– Verify(m,σ, ID,W ): is a deterministic algorithm that takes as input a mes-
sage m, a signature σ, user’s identity ID and the witness W , outputs true
if it is valid, otherwise outputs false.

2.2 Bilinear Maps

Let G1, G2 and GT be three multiplicative cyclic groups of same prime or-
der p. ψ is an isomorphism from G2 to G1. Let g1 be a generator of G1 and
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ψ(g2) = g1. The map e : G1 × G2 → GT is a bilinear mapping (pairing) and
(g1, g2, p, e,G1,G2,GT ) is a bilinear group. Simply, we let G = G1 = G2 in this
paper. Some properties of bilinear pairings are as follows:

– Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Z∗
p, we have the equation

e(ua, vb) = e(u, v)ab.
– Non-Degeneracy: for all g1 ∈ G1, g2 ∈ G2, if g1, g2 are generators respec-

tively, we have e(g1, g2) �= 1 is a generator of GT .
– Efficiency: There is an efficient algorithm to calculate e(u, v) for all u ∈ G1,
v ∈ G2.

2.3 Complexity Assumptions

Definition 1 (Discrete Logarithm assumption). The discrete logarithm
problem (DLP) is (t, ε)-hard if given a tuple < g, ga > that g is a generator
of a group G and a ∈R Z∗

p, there is no probabilistic polynomial time (PPT)
algorithm A to compute a in t-time with advantage at least ε.

Definition 2 (Computational Diffie-Hellman assumption). The compu-
tational Diffie-Hellman problem (CDHP) is (t, ε)-hard if given a tuple < g, ga, gb >
that g is a generator of a group G and a, b ∈R Z∗

p, there is no PPT algorithm A
to compute gab in t-time with advantage at least ε.

Definition 3 (k+1 exponent assumption). The (k+1)-exponent problem is

(t, ε)-hard, if given k+1 values < g, ga, ga
2

, . . . , ga
k

> that g is a generator of a

group G and a ∈R Z∗
p, there is no PPT algorithm A to compute ga

k+1

in t-time
with advantage at least ε.

The (k+1)-exponent problem ((k+1)-EP) is firstly introduced by Zhang, Safavi-
Naini and Susilo [24]. (k+1)-EP is proved that it is polynomial time equal to
the k-wCDHP presented by Mitsunari, Sakai and Kasahara [13]. Note that both
(k+1)-exponent problem and k-wCDHP are no harder than the CDHP.

3 Security Models

Goldwasser, Micali and Rivest [11] introduced the strongest security notion of
digital signature schemes: existential unforgeability against adaptive chosen-
message attacks (EUF-CMA). A self-certified signature scheme needs to satisfy
EUF-CMA as normal signature schemes. However, there are some differences ac-
cording to the using of self-certified public keys. Girault [10] defined the security
of self-certified public keys as three levels: 1) the TTP knows a user’s private key;
2) the attacker cannot know a user’s private key, but it can forge a false witness
without being detected by users; 3) anyone cannot know a user’s private key
and cannot forge a witness without being detected. Hence, the identity-based
signature schemes are only reach the level 1. A self-certified signature scheme
should satisfy the level 3. Following this notion, we define a security model of
self-certified signature schemes. There are two cases in our security model and
the SCS scheme is EUF-CMA iff it is secure in both cases.
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– Type I adversary (AI): plays as a malicious user who does not get a valid
witness from the TTP. The adversary tries to forge a witness that cannot be
detected in the verification phase.

– Type II adversary (AII): is considered as a corrupted TTP who tries to reveal
the user’s private key.

The security of self-certified signatures is defined by two games.

Game 1: This is a game defined as Type I attack. The challenger runs Setup and
gives public parameters to AI . AI has an ability to access user private keys, but
the master secret key is unknown. The adversary makes Corruption, WitReg,
Sign queries and outputs a forgery.

– Setup: The challenger C runs the algorithm Setup to generate public pa-
rameters param and returns to AI .

– Queries:AI has the ability to adaptively submit three types of query defined
as follows.

• Corruption Query: On an AI ’s query ID, C returns the corresponding
private key. AI can make this query at most q1 times.
• WitReg Query: On an AI ’s query (ID, pk, v), C runs the algorithm
WitReg and returns a valid witness W . AI can make this query at
most q2 times.
• Sign Query: On an AI ’s query (m, ID), C runs the algorithm Sign and
returns a signature σ of message m. AI can make this query at most q3
times.

– Forgery: AI outputs a signature σ∗ = (u∗, t∗) of a message m∗ that the
pair (m∗, ID∗) is not queried in Sign Query and W ∗ is not an output of
WitReg Query. AI wins the game if the Verify(m∗, σ∗, ID∗,W ∗) =true.
The advantage of AI is defined as

AdvAI = Pr[AI wins].

Definition 4. A self-certified signature scheme is (t, q1, q2, q3, ε)-secure against
an adaptively chosen message Type I attack, if there is no AI who wins Game 1
in polynomial time t with advantage at least ε after q1, q2, q3 queries.

Game 2: This is a game defined as Type AII attack. The challenger runs Setup
and gives public parameters to AII . Due to AII is considered as a dishonest
TTP, a master secret key is also returned, but AII has no ability to access user
private key. Then the adversary makes Public-Key, Sign queries and outputs
a forgery.

– Setup: The challenger runs the algorithm Setup, outputs public parameters
param and a master secret keymsk. C gives param andmsk to the adversary.

– Public-Key Query: On AII ’s query ID, the challenger C runs the algo-
rithm KeyGen and returns a public key. AII can make this query at most
q1 times.



Efficient Self-certified Signatures with Batch Verification 185

– Sign Query: On AII ’s query (m, ID), C runs the algorithm Sign and re-
turns a signature σ of a message m. AII can make this query at most q2
times.

– Forgery: AII outputs a signature σ∗ = (u∗, t∗) of a message m∗ that the
pair (m∗, ID∗) is not queried in Sign Query. AII wins the game if the
Verify(m∗, σ∗, ID∗,W ∗)=true. The advantage of AII is defined as

AdvAII = Pr[AII wins].

Definition 5. A self-certified signature scheme is (t, q1, q2, ε)-secure against an
adaptively chosen message Type II attack, if there is no AII who wins Game 2
in polynomial time t with advantage at least ε after q1, q2 queries.

4 The Proposed Scheme

In PKI based schemes, a certificate can be seen as a part of a signature when
the two parties initiate a communication. The verification of a certificate is
required prior to the signature verification. For stable partners who communicate
frequently, the cost of certificate transmission and verification are negligible.
However, in most cases, the participants barely know each other personally, and
hence, the verification process becomes essential. We present a novel and efficient
self-certified signature scheme that the cost of computations, transmission and
storage are all reduced.

4.1 Construction

Setup: Select a pairing e : G×G→ GT , where the order of group G and GT are
the same prime p. Let g be a generator of G. The TTP then chooses two collision-
resistant cryptographic hash functions that h1 : {0, 1}∗ → G, h2 : {0, 1}∗ → Z∗

p.
Randomly select a number α ∈R Z∗

p, set msk = α and the master public key
mpk = gα. The public parameters are (G,GT , g, p, e, h1, h2,mpk).
KeyGen: Randomly chooses x ∈R Z∗

p and computes e(g, g)x. Sets the public
and private keys as (pk, sk) = (e(g, g)x, x).
WitReg: A user interact with a TTP in this algorithm as follows.

– The user computes a proof of knowledge of private key v = gαx, where x is
the user private key, and sends (ID, pk, v) to TTP.

– TTP verifies the equation e(v, g)
?
= pkα, if it holds, then generates a witness

W = (v
1
αh1(ID))

1
α .

– The user accepts the witness if the following equations holds:

e(W,mpk)e(h1(ID)−1, g)

= e(v
1
αh1(ID), g)e(h1(ID)−1, g)

= pk.

(1)
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Sign: To sign a message m ∈ {0, 1}∗, the signer randomly selects r ∈R Z∗
p and

computes

σ = (gr,
1− rh2(m||gr)

x
)

= (u, t).

Verify: On input a signature σ = (u, t) on a message m under a witness W of
the identity ID, the verifier checks whether

e(W t,mpk)e(uh2(m||u)h1(ID)−t, g)
?
= e(g, g) (2)

or
e(g, g)xte(uh2(m||u), g) ?

= e(g, g). (3)

Outputs true if the equation holds, otherwise outputs false. The equation (3) is
to utilize once the user public key was recovered as in (1).

Correctness: Our self-certified signature scheme is correct as shown in follows:

e(W t,mpk)e(uh2(m||u)h1(ID)−t, g)

= e((v
1
αh1(ID))t, g)e(uh2(m||u)h1(ID)−t, g)

= e(gxtgrh2(m||u), g)
= e(g, g).

4.2 Security Analysis

A self-certified signature is unforgeable if it is against two types of attacks defined
in Section 3. We show that our signature scheme is secure under the strongest
security notion for signature schemes (EUF-CMA).

Theorem 1. Our SCS scheme is (t, qh1 , q2, q3, ε)-secure against an existential
forgery under Type I chosen message attack, qh1 is the number of queries on h1
hash function, assuming that the (k+1)-exponent problem is (t′, ε′)-hard, where,

ε′ ≥ 1

q2
· (1− 1

q2 + 1
)q2+1 · ε, t′ = t+ O(qh1 + q2 + q3).

Proof. Suppose a Type I adversary AI who can (t, q1, q2, q3, ε)-break our SCS
scheme. We can construct an algorithm B run by the challenger to useAI to solve
the (k+1)-exponent problem. The algorithm B is given the (k+1)-EP instance

(g, ga, ga
2

, ga
3

), where k = 3, and the goal is to output ga
4

. B interacts with AI

in game 1 as follows.

Setup: B sets ga as the generator of a group G and the master public key
mpk = g. Let the master secret key msk = a−1, which is unknown to B. B
maintains four lists Lh1 = {< ID, b, coin ∈ {0, 1} >}, Lh2 = {< M, c >},
Lc = {< ID, sk >} and Lw = {< ID, pk, v,W >}, which are initially empty.
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h1 Query: AI issues an h1 query on input IDi at most qh1 times, where 1 ≤
i ≤ qh1 . B outputs h1(IDi) if IDi is in the list Lh1. Otherwise, B tosses a coin
with the probability Pr[coin = 1] = ξ (Pr[coin = 0] = 1 − ξ), selects bi ∈R Z∗

p

and answers the query as follows.⎧⎨⎩
coini = 0 : h1(IDi) = g

abi ,

coini = 1 : h1(IDi) = g
a3bi ,

B outputs h1(IDi) and adds < IDi, bi, coini > in the list Lh1

h2 Query: AI issues an h2 query on input string Mi at most qh2 times, where
1 ≤ i ≤ qh2 . B outputs h2(Mi) if Mi is in the list Lh2. Otherwise, B randomly
selects ci ∈R Z∗

p and sets h2(Mi) = ci. Then, B outputs h2(Mi) and adds <
Mi, ci > into the list Lh2.

Corruption Query: AI issues a corruption query on input identity IDi, where
1 ≤ i ≤ q1. B outputs ski if IDi is in the list Lc. Otherwise, B outputs a random
choice ski ∈R Z∗

p and adds < IDi, ski > in the list Lc.

WitReg Query: AI issues a witness query on input (IDi, pki, vi), where 1 ≤
i ≤ q2. B outputs a witness Wi if IDi is in the list Lw. Otherwise, B retrieves
the private key ski and bi in Lc and Lh1, respectively. If coini = 0, B sets and
outputs witness Wi as

Wi = g
a2(ski+bi).

B adds < IDi, pki, vi,Wi > into the list Lw. If coini = 1, B outputs FAIL and
aborts the simulation.

Sign Query: AI issues a signing query on input (mi, IDi), where 1 ≤ i ≤ q3.
B retrieves the private key ski from the list Lc. If it exists, runs the algorithm
Sign and outputs a signature σ on message mi. Otherwise, B runs Corruption
Query first, then generates a signature as before.

Forgery: Eventually, AI outputs a forgery σ∗ = (u∗, t∗) on message m∗ under
the witness W ∗ of identity ID∗. AI wins the game if Verify(m∗, σ∗, ID∗,W ∗)
outputs true, the pair (m∗, ID∗) does not be an input of Sign Query and W ∗

is not an output of WitReg Query. We assume that sk∗ and b∗ are in Lc and
Lh1, respectively. B computes a solution of (k+1)-exponent problem (k = 3) as
follows

ga
4

= (W ∗g−a2sk∗
)

1
b∗ .

Probability: The simulator B outputs FAIL only if coini = 1 when the adversary
queries a witness. Hence, the challenger can solve the (k+ 1)-exponent problem
in condition of the simulation is success and the forgery witness is related to the
index i. The probability is ε′ ≥ 1

q2
· (1− 1

q2+1 )
q2+1 · ε and the reduction process

is as [3]. The time of an exponentiation in each query is denoted as O(1), so the
simulation time is t′ = t+O(qh1 + q2 + q3). �
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Theorem 2. Our SCS scheme is (t, q1, q2, ε)-secure against an existential forgery
under Type II chosen message attack, assuming that the DL problem is (t′, ε′)-
hard, where

ε′ = ε, t′ ≥ t+O(qh1 + q1 + 2q2).

Proof. Suppose a Type II adversary AII who can (t, q1, q2, ε)-break our SCS
scheme. We can construct an algorithm B run by the challenger to use AII to
solve the DL problem. The algorithm B is given the DL instance (g, ga), and the
goal is to output a. B interacts with AII in game 2 as follows.

Setup: B sets g as the generator of a group G and the master public key mpk =
gα. Let the master secrete key msk = α and give it to AII . B maintains three
list Lh1 = {< ID, b >}, Lh2 = {< M, c >} and Lpk = {< ID, pk, s >}, which
are initially empty.

h1 Query: AII issues an h1 query on input IDi at most qh1 times, where
1 ≤ i ≤ qh1 . B outputs h1(IDi) if IDi is in the list Lh1. Otherwise, B randomly
chooses bi ∈ Z∗

p and sets h1(IDi) = gbi . Then, B outputs h1(IDi) and adds
< IDi, bi > in the list Lh1.

h2 Query: AII issues an h2 query on input string Mi at most qh2 times, where
1 ≤ i ≤ qh2 . B answers the query as h2 Query in game 1 and adds < Mi, ci >
in the list Lh2.

Public-key Query: AII issues a public-key query on input IDi, where 1 ≤
i ≤ q1. B outputs pki if IDi is in the list Lpk. Otherwise, B randomly chooses
si ∈R Z∗

p and computes public key

pki = e(g
a, g)si .

B then outputs pki and adds < IDi, pki, si > into the list Lpk.

Sign Query: AII issues a signing query on input (mi, IDi), where 1 ≤ i ≤ q2.
B answers queries as follows:

– If IDi is not in Lpk, B runs Public-Key Query.
– Otherwise, B randomly selects ci, ri ∈R Z∗

p and computes

ui = g
1
ci (ga)−siri , ti = ciri.

Let Mi = mi||ui and h2(Mi) = ci, B adds < Mi, ci > into the list Lh2 and
outputs the signature σi = (ui, ti).

Forgery: Eventually, AII outputs a forgery σ∗ = (u∗, t∗) on message m∗ under
a witnessW ∗ of the identity ID∗. AII wins the game ifVerify(m∗, σ∗, ID∗,W ∗)
outputs true and the pair (m∗, ID∗) is never queried to the Sign Query. Then,
B can run the same random tape and a different h2 to output another valid
signature σ∗′ = (u∗′, t∗′). The outputs of two h2 hash functions are respectively
c∗ and c∗′, where c∗ �= c∗′. We assume that s∗ is in the list Lpk. B can compute
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⎧⎨⎩
1− r∗c∗ = as∗t∗,

1− r∗c∗′ = as∗t∗′,
a =

c∗′ − c∗
s∗(t∗c∗′ − t∗′c∗) ,

as a solution of DL problem.

Probability: The simulator B does not outputs FAIL in any queries. The chal-
lenger can solve the DL problem in condition of the successful simulation. Hence,
the probability is ε′ = ε. The time consuming of an exponentiation is considered
as O(1). Therefore, the simulation time is t′ = t+O(qh1 + q1 + 2q2). �

5 Self-certified Signatures with Precomputations

Even, Goldreich and Micali introduced the notion of online/offline signatures [6]
to improve the signature generation efficiency. Their main idea is to split the
signature generation into two stages, namely offline stage and online stage. Most
heavy computations are carried out in the offline stage prior to the availability of
the message. Once the message is received, the algorithm can output a signature
quickly by conducting the online stage. They proposed a method which converts
any signature schemes into an online/offline signature scheme. However, it is
impractical. Subsequently, Shamir and Tauman presented an efficient “hash-
sign-switch” paradigm [18]. The size of signatures are largely reduced while the
efficiency is maintained.

Our scheme provides pre-computations in the signing stage as some other
schemes mentioned in [18]. It is easy to partition our scheme into two parts:
offline stage and online stage. In the offline stage, the signer picks a random
choice r′, where r′ ∈R Z∗

p. Then he/she computes u′ = gr
′
and t′ = r′

x . The
pair (u′, t′) should be securely stored. In the online stage, the signer retrieves a
pair (u′, t′), and computes u = u′, t = x−1 − t′h2(m||u′) as a signature on the
message m. Hence, in the online signature operations, it only requires a modular
multiplication and a subtraction, provided that the signer stores the inverse of
his private key x−1. In addition, the length of our self-certified signature scheme
is as short as [18].

6 Batch Verification

The notion of batch verification was introduced by Fiat in 1989 [7]. Generally,
the motivation of batch verification is to improve the verification efficiency when
verifying large number of signatures. According to the three paradigms of batch
verification scheme proposed in [2], we apply the Small Exponent Test in this
paper. The length l of the exponent is a security parameter that depends on the
security requirement in practice. Batch verification for single-signer and multi-
signer settings are both provided in this section.
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6.1 Single-Signer Batch Verification

In the single-signer setting, there is no need to implicitly verify signer public
keys in all signatures, since all public keys are the same. Therefore, we assume
that the signer’s public key has been recovered and the equation (3) is used in
the verification. Nevertheless, the equation (2) can be used in a similar way if
the public key is not computed.

Let (G,GT , g, p, e, h1, h2,mpk) be public parameters and k = |G| = |GT |.
Given a set of signatures S = {σ1, σ2, . . . , σn}, where σi = (ui, ti), on messages
M = {m1,m2, . . . ,mn} from the same singer in which pk = e(g, g)x. The verifier
checks S as follows.

– If ui /∈ G, where i = 1, 2, . . . , n, rejects all signatures and outputs false.
– Otherwise, randomly selects l-bits elements (λ1, λ2, . . . , λn) ∈ Zn

p , where
l < k, and computes:

T = λ1t1 + λ2t2 + . . .+ λntn =

n∑
i=1

λiti ,

U = u
λ1h2(m1||u1)
1 · uλ2h2(m2||u2)

2 . . . u
λih2(mi||ui)
i =

n∏
i=1

u
λih2(mi||ui)
i ,

C = λ1 + λ2 + . . .+ λi =

n∑
i=1

λi.

Accepts all signatures and outputs true if the equation holds

e(g, g)xT e(U, g) = e(g, g)C .

Correctness

e(g, g)xT e(U, g)

= e(g, g)x
∑n

i=1 λitie(g, g)
∑n

i=1 riλih2(mi||ui)

= e(

n∏
i=1

gλi−riλih2(mi||ui), g)e(

n∏
i=1

griλih2(mi||ui), g)

= e(g, g)C .

Let A be a modular addition in Z∗
p and Pa is a pairing calculation. Muls is

a modular multiplication in group s. An l-bits exponentiation in group s is
denoted as Exs(l) and a test of a group member is Gt. Computational cost of
has functions in both types of verification are ignored since they are the same.
The cost of native verification and batch verification on n signatures in single-
signer setting are respectively,

nExG(k) + nExGT (k) + nPa+ nMulGT

and
nGt+ 2nMulZ∗

p
+ 2(n− 1)A+ nExG(k) + 1ExGT (k)

+1Pa+ 1ExGT (l) + (n− 1)MulG + 1MulGT .
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Theorem 3. The batch verification of our self-certified signature scheme in
single-signer setting is secure, if there is no adversary with probability at least
2−l, where l is the length of a small exponent.

Proof. Suppose that an adversary outputs a forgery (M∗, S∗) accepted by batch
verification under identity ID. We show that the probability of a valid forgery
depends on the length l of a small exponent.

Without losing generality, we assume that the public key pk = e(g, g)x has
been recovered from (1). A signature σ∗i = (u∗i , t

∗
i ) can be considered as

σ∗i = (gri ,
1− rih2(m∗

i ||gri) + ki
x

),

where ri, ki ∈R Z∗
p. If ki = 0, the signature is valid. Otherwise, it is invalid.

Then, we can compute that

T ∗ = λ1t
∗
1 + λ2t

∗
2 + . . .+ λnt

∗
n =

n∑
i=1

λit
∗
i , U∗ = U, C∗ = C.

If the following equation holds

e(g, g)xT
∗
e(U∗, g)

= e(gx, g)
∑n

i=1 λit
∗
i e(g, g)

∑n
i=1 riλih2(m

∗
i ||ui)

= e(

n∏
i=1

gλi−riλih2(m
∗
i ||ui)+λiki , g)e(

n∏
i=1

griλih2(m
∗
i ||ui), g)

= e(g, g)C
∗
,

then
∑n

i=1 λiki ≡ 0 (mod p). Assuming that at least one signature σ∗j is invalid.
It implies the adversary can find a kj such that

λj ≡ −k−1
j

n∑
i=1,i�=j

λiki (mod p), kj �= 0.

However, small exponents λi, where i = 1, 2, . . . , n, are l-bits random choices
selected by the verifier. Hence, the probability of an adversary break the batch
verification is equal to the probability of the equation hold, where

Pr

⎡⎣λj ≡ −k−1
j

n∑
i=1,i�=j

λiki (mod p)

∣∣∣∣∣
n∑

i=1

λiki ≡ 0 (mod p)

⎤⎦ ≤ 2−l.

�

6.2 Multi-signer Batch Verification

Generally speaking, the batch verification in a single-signer setting is a special
case of that in a multi-signer setting. The amount of pairing computations nor-
mally depend on the number of signers in the multi-signer batch verification.
However, we show that our scheme only needs constant pairing computations.
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Suppose that public keys have not been recovered in this case. Let (G,GT , g, p,
e, h1, h2, mpk) be public parameters and k = |G| = |GT |. Given a set of signatures
S = {σ1, σ2, . . . , σn}, where σi = (ui, ti), on messages M = {m1,m2, . . . ,mn}
withwitnessesWT = {W1,W2, . . . ,Wn} under identity I = {ID1, ID2 . . . , IDn},
respectively. The verifier checks S as follows.

– If ui /∈ G, where i = 1, 2, . . . , n, rejects all signatures and outputs false.
– Otherwise, randomly selects l-bits elements (λ1, λ2, . . . , λn) ∈ Zn

p , where
l < k, and computes:

T =Wλ1t1
1 ·Wλ2t2

2 . . .Wλntn
n =

n∏
i=1

Wλiti
i ,

U = (u
h2(m1||u1)
1 h1(ID1)

−t1)λ1 · (uh2(m2||u2)
2 h1(ID2)

−t2)λ2

. . . (u
h2(mi||ui)
i h1(IDi)

−ti)λi

=

n∏
i=1

(u
h2(mi||ui)
i h1(IDi)

−ti)λi ,

C = λ1 + λ2 + . . .+ λi =

n∑
i=1

λi.

Accepts all signatures and outputs true if the equation holds

e(T,mpk)e(U, g) = e(g, g)C .

Correctness

e(T,mpk)e(U, g)

= e(gxih(IDi), g)
∑n

i=1 λitie(

n∏
i=1

(u
h2(mi||ui)
i h1(IDi)

−ti)λi , g)

= e(g, g)
∑n

i=1 xiλitie(g, g)
∑n

i=1 riλih2(mi||ui)

= e(

n∏
i=1

gλi−riλih2(mi||ui), g)e(

n∏
i=1

griλih2(mi||ui), g)

= e(g, g)C .

The cost of the original verification and the batch verification on n signatures
in a multi-signer setting are respectively,

3nExG(k) + nMulG + 2nPa+ nMulGT

and
nGt+ nMulZ∗

p
+ 3nExG(k) + (3n− 2)MulG + nExG(l)

+(n− 1)A+ 2Pa+ 1MulGT + 1ExGT (l).
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Theorem 4. The batch verification of our self-certified signature scheme in
multi-signer setting is secure, if there is no adversary with probability at least
2−l, where l is the length of a small exponent.

Proof. The proof is similar to the proof of Theorem 3 and we omit it.

7 Conclusion

In this paper, we proposed an efficient and novel self-certified signature scheme.
With pre-computation, our scheme requires only one modular multiplication for
signature generation. Our scheme allows the batch verification in both single-
singer and multi-signer settings. We showed that in the multi-signer setting, the
verification of n signatures requires only two pairing computations regardless of
the size of n. Our self-certified signature scheme was proven secure in the random
oracle model.
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Abstract. Public-key encryption schemes with non-interactive opening
(PKENO) allow a receiver who received a ciphertext c to non-interactively
convince third parties that the decryption of c is what he has claimed,
without compromising the scheme’s security. In this work, we present
a generic construction from identity-based encryption scheme, which is
secure against selective-ID and chosen plaintext attack (IND-sID-CPA),
to PKENO with chameleon hash instead of the one-time signature tech-
nology. Our construction gives new view of IBE-to-PKENO technique,
and some previously known PKENO schemes can be viewed as con-
crete instantiations of our generic construction. At last, we also give a
new instantiation, which is (slightly) more efficient than the best known
scheme [13].

1 Introduction

Public-key encryption (PKE) allows a receiver Bob to generate a pair of public
key and private key (pkB , skB), then he makes pkB public and keeps skB secret.
Anyone can use the public key pkB to encrypt message m, but only Bob who
knows the secret key skB can decrypt the ciphertext under pkB . Identity Based
Encryption (IBE) was introduced by Shamir [14]. The motivation of this concept
was to simplify key management and avoid the use of digital certificates. The
public key can be any information non-ambiguously identifying its owner (e.g.,
e-mail address) while the associated private keys can only be computed by a
trusted Key Generation Center (KGC) with the help of a master secret.

Consider the following situation in multiparty computations, player Alice
sends a secret message to player Bob, then Bob checks what he receives to
proceed. Otherwise, Bob can’t move forward and needs to do some “exception
handling”. A solution to this problem is to have Bob broadcast a complaint, and
Alice must broadcast what she has sent to Bob, then all players can check the
information. This solution is reasonable, but it has an important drawback that
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interaction is required. In particular, Alice must be present to help resolve the
conflict. In some cases, this is unpractical.

In 2007, Damg̊ard and Thorbek [8] introduced the notion of Public-key en-
cryption schemes with non-interactive opening (PKENO), which is a special kind
of PKE and can efficiently solve the above problem. By using PKENO, the secret
key’s owner (i.e., Bob) can convincingly prove to a verifier (e.g., Victor) that the
result of decrypting ciphertext c is actually m, without interaction and com-
promising the confidentiality of non-opened ciphertexts. In particular, Damg̊ard
and Thorbek [8] used PKENO as a building block in their scheme to prove that
a given party did not follow the protocol, namely, has sent fake ciphertext.

Technically, there is a straightforward solution to implement PKENO. We can
use a PKE combining a non-interactive zero knowledge (NIZK) to implement
PKENO, since the receiver can prove a message m is the result of decrypting c
by using NIZK. Unfortunately, with the known techniques, the above solution
is very inefficient and essentially useless in practice. Though, we can construct
efficient NIZKs in the random oracle model, but it is well-known that a security
proof in the random oracle model does not guarantee its security in the real
world, thus, should be avoided whenever possible.

Damg̊ard and Thorbek [8] suggested that PKENO can be implemented from
identity-based encryption. And in [7], Damg̊ard, Hofheinz, Kiltz and Thorbek
present a generic construction using IBEs scheme and one-time signatures. Their
method is basically adopted from CHK technique [6], which transforms any cho-
sen plaintext secure (CPA) IBE into a chosen ciphertext secure (CCA) PKE
scheme. Their construction is direct, but the strongly unforgeable one-time sig-
nature makes the construction inefficient. They also gave a concrete construction
based on Boyen, Mei and Waters’ CCA PKE [5]. But unfortunately, their con-
crete scheme was shown to be insecure by Galindo [9]. Galindo thus presented a
fixed scheme based on the adaptive-IBE version in [5]. Galindo’s new scheme is
secure under decision bilinear Diffie-Hellman (DBDH) assumption in standard
model with a price of long public keys and secret keys.

Recently, Galindo et al. [10] gave a new generic construction from any robust
non-interactive threshold encryption (TPKE) to PKENO, together with two
concrete PKENO schemes. The first one is efficient, but its security is only
guaranteed in the random oracle model. The second one uses one-time signature,
thus it is not efficient in the sense of ciphertext overhead. Lai, Deng, Liu and Kou
[13] proposed an efficient PKENO scheme, and they stated that their scheme
took advantage of the techniques in [6] and [5]. Namely, they use two types
of “identities”, one is chosen randomly for each ciphertext as in [6] (i.e., the
verification key), the other is uniquely determined by the first two elements of a
ciphertext as in [5]. It seems that Lai et al.’s strategy highly relies on particular
mathematical structure of the underlying IBE.

Our Contribution. In this paper, we demonstrate that one can achieve better
efficiency by taking advantage of underlying IBEs. In particular, we use IBEs
with special structure called separability [15]. In a separable IBE, the encryption
algorithm can be separated into two parts. One part is uniquely determined by
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the master public key mpk, the message m and the random coin r, in brief
u ← f1(mpk,m, r), and the other part is uniquely determined by the master
public key mpk, identity id and the random coin r, in brief v ← f2(mpk, id, r).
For our purpose, we emphasize that the two deterministic functions f1, f2 use
the same randomness (i.e, r) and (u, id) uniquely determines v.

In our generic construction, we use a similar technique as [15,1]. The idea is
that we use IBE’s master public key mpk as PKENO’s public key pk, and use
IBE’s master secret key msk as PKENO’s secret key sk. To encrypt message
m, we first compute u ← f1(pk,m, r1), then we hash u by using a chameleon
hash H and a random coin r2, in brief, id ← H(u, r2). Next, we compute v ←
f2(pk, id, r1). The triple (u, v, r2) is the ciphertext of m. To decrypt ciphertext
c = (u, v, r2), we just need to extract the secret skid corresponding to id =
H(u, r2), and use the IBE’s decryption algorithm to decrypt c. The receiver
just outputs a secret key skid corresponding to id = H(u, r2) as a proof for
(c = (u, v, r2),m). Note that anyone can verify whether the decryption of c is m
by decrypting c using skid.

The correctness of our generic PKENO construction is guaranteed by the cor-
rectness of underlying IBEs. The security of the PKENO can be reduced to the
chosen plaintext security of selective-IBE or the collision resistance of chameleon
hash. Our generic scheme benefits from the chameleon hash function in two as-
pects. First it makes our generic construction achieved chosen-ciphertext and
prove attacks (CCPA) security and proof soundness only by using a weaker
primitive, say selective-IBE. Second, since the trapdoor of the chameleon hash
function is only used in the security proof, and never used in the real world,
in practice, we can further improve the efficiency by using practical hash func-
tions, say SHA-1. Compared to the generic transform in [7], which needs strong
unforgeable one-time signature, we greatly improve the efficiency.

Moreover, our generic construction gives a seemingly more succinct explana-
tion of Lai et al.’s PKENO scheme [13], and we will review this later. In addition,
we also give a new construction based on the well known Boneh-Boyen IBE [2].
The resulting scheme achieves slightly better efficiency and lower computation
costs than Lai et al.’s. Finally, we summarize our methodology and compare it
with previous ones, and conclude that our methodology is very efficient.

2 Preliminaries

2.1 Notation

If x is a string, |x| denotes its length, and if S is a set, |S| denotes its size.
Denote x‖y as the bit concatenation of two strings x, y ∈ {0, 1}∗. We use 1k to
denote the string of k ones for some positive integer k. We use the notation← to
denote randomly choosing an element from some set (distribution) or indicate
the output of some algorithm. For example, s ← S means that we randomly
choose an element s from the set (distribution) S, and z ← A(x, y, . . . ) means
that the output of algorithm A with inputs x, y, . . . , is z. We say a function f(n)
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is negligible if for every c > 0, there exists a N such that f(n) < 1/nc for all
n > N . Usually, we denote an unspecific negligible function by negl(n). We say
a probability is overwhelming if it is 1− negl(n).

2.2 Bilinear Groups and Assumptions

Let positive integer k be the security parameter. G1 and G2 are two cyclic
groups of the same prime order q (2k < q < 2k+1). A bilinear pairing is a map
ê : G1 ×G1 → G2 which satisfies the following properties:

– Bilinear: ê(ua, vb) = ê(u, v)ab for all u, v ∈ G1 and a, b ∈ Z∗
q .

– Non-degenerate: there exists u, v ∈ G1 such that ê(u, v) �= 1.

– Computable: there is an efficient algorithm to compute ê(u, v) for all u, v ∈
G1.

Throughout the paper, we use G∗
1 to denote G1\{0}, i.e. the set of all group

elements except the neutral element, and use PG = {G1,G2, q, ê} as shorthand
for the description of bilinear groups.

The DBDH Assumption. Let PG = {G1,G2, q, ê} be the description of bi-
linear groups and g be a generator of G1. The decisional bilinear Diffie-Hellman
assumption (DBDH) states that the two distributions (gx, gy, gz, ê(g, g)xyz) and
(gx, gy, gz, ê(g, g)r), where x, y, z, r are randomly and independently chosen from
Zq, are indistinguishable for any polynomial time adversary. Formally, for any
polynomial time adversary A, its advantage

AdvdbdhPG,A (k) = |Pr[A(gx, gy, gz, ê(g, g)xyz) = 1]− Pr[A(gx, gy, gz, ê(g, g)r) = 1]|

is negligible in security parameter k, where the probability is over the random
choice of x, y, z, r in Zq and the random bits of A.

The q-DBDHI Assumption. Let PG = {G1,G2, q, ê} be the description of
bilinear groups and g be a generator of G1. The q-decision bilinear Diffie-Hellman
inversion assumption (q-DBDHI) states that the two distributions(g, gx, . . . , gx

q

,
ê(g, g)1/x) and (g, gx, . . . , gx

q

,ê(g, g)r), where x, r are randomly and indepen-
dently chosen from Zq, are indistinguishable for any polynomial time adversary.
Formally, for any polynomial time adversary A, its advantage

Advq-dbdhiPG,A (k) = |Pr[A (g, gx, . . . , gx
q

, ê(g, g)1/x) = 1]

−Pr[A(g, gx, . . . , gxq

, ê(g, g)r) = 1]|

is negligible in security parameter k, where the probability is over the random
choice of x, r in Zq and the random bits of A.
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2.3 Chameleon Hash Function

A chameleon hash function is a trapdoor collision resistant hash function, which
is associated with a key pair (hk, td). Anyone who knows the public key hk
can efficiently compute the hash value for each input. However, there exists no
efficient algorithm for anyone without the secret key td to find collisions for every
given input.

Formally, a chameleon hash function consists of three algorithms CMH =
(CMkg, CMhash, CMswch). The randomized key generation algorithm CMkg takes
a security parameter k as input, outputs a hash key hk and a trapdoor td,
denoted as (hk, td) ←CMkg(1k). The randomized hashing algorithm takes as
input a public key hk, an auxiliary random coin w drawn from space R and
a value x ∈ {0, 1}∗, outputs a binary string y of fixed length l, denoted as
y ← CMhash(hk, x, w). The switch algorithm CMswch takes as input the trapdoor
td, a pair (x,w) and a message x∗ �= x, outputs w∗, such that CMhash(hk, x, w) =
CMhash(hk, x∗, w∗), denoted as w∗ ← CMswch(td, x, w, x∗). Finally, for all x, x∗ ∈
{0, 1}∗ and w ∈ R, we require w∗ ← CMswch(td, x, w, x∗) is uniformly distributed
in R and we call this property the uniformness of a chameleon hash function.
We next give the security requirements for a chameleon hash, namely collision
resistance (CR).

Collision Resistance. We say a chameleon hash function is (εH, TH)-collision
resistant (CR) if any adversary A without access to the trapdoor td, the success
probability of finding collisions is at most εH within time TH in the following
experiment.

SucccrCMH,A(k) = Pr[(hk, td)← CMkg(1k);x← A(hk);w ←R;
y ← CMhash(hk, x, w); (x′, w′)← A(hk, x, w)
: (x′;w′) �= (x;w) ∧ y = CMhash(hk, x′, w′)].

We say a chameleon hash function is collision resistant, if for any polynomially
bounded TH, εH is negligible.

Implementation of chameleon hash. In 1998, Krawczyk and Rabin [12] pro-
posed several efficient chameleon hash constructions based on Factoring and
Discrete Log (DL). And the most well known construction is the one based on
the chameleon commitment scheme [4]. Intuitively, for prime number p = kq+1
(q is also a prime number) and g ∈ Z∗

p is an element of order q, choose x ∈ Z∗
q

and compute y = gx mod p. Set the hash key hk = (p, q, g, y) and trapdoor
td = x. Given message m ∈ Z∗

q , choose a random number r ∈ Z∗
q and compute

the hash value CMhash(hk,m, r) = gmyr mod p. For more details, please refer
to [12].

2.4 Identity Based Encryption

An IBE scheme consists of four algorithms IBE = (IBEkg, IBEext, IBEenc,
IBEdec). The randomized key generation algorithm IBEkg, taking a security pa-
rameter k as input, outputs a public parametermpk and a master secret keymsk,
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denoted as (pk,msk)← IBEkg(1k). The extract algorithm, possibly randomized,
takes inputs of mpk,msk and an identity id, outputs a secret key skid for id,
denoted as skid ← IBEext(mpk,msk, id), in brief skid ← IBEext(msk, id). The
randomized encryption algorithm IBEenc takes pk, an identity id and a plain-
text m taken from the message space as inputs, with internal coin flipping r,
outputs a ciphertext c, which is denoted as c ← IBEenc(mpk, id,m, r), in brief
c← IBEenc(mpk, id,m). The deterministic algorithm IBEdec takes a secret key
skid, an identity id and a ciphertext c as inputs, outputs a plaintext m, or a
special symbol ⊥, which is denoted m ← IBEdec(skid, id, c). We require for all
(mpk,msk) ← IBEkg(1k), skid ← IBEext(msk, id) and ∀ message m, we have
IBEdec(skid, id, IBEenc(mpk, id,m)) = m.

Separability. An IBE is said to be sparable if the encryption algorithm can be
arranged in two parts, such that one part is uniquely determined by mpk,m and
the random coin r, in brief u ← f1(mpk,m, r), and the other part is uniquely
determined by the mpk, id and r, in brief v ← f2(mpk, id, r). Moreover, we
require that (u, id) uniquely determines v, and this property, which was called
Unique Split Property by Abe et al. [1] , is very important in our security
proof. The ciphertext is c = 〈u, v〉. We insist that r is essentially used in both
parts, since some trivial functions, e.g., an identity function may not follow our
discussion herein.

IND-sID-CPA Security. We consider the security of indistinguishability against
selective-ID and chosen plaintext attack (IND-sID-CPA). We say an identity
based encryption with security parameter k is (ε, q, T )-IND-sID-CPA-secure if
the advantage of any adversary A is at most ε, with access q times to an extrac-
tion oracle EO within time T in the following experiment.

Adv
ind-sid-cpa
IBE,A (k) = |Pr[(id∗, s0)← A(1k); (mpk,msk)← IBEkg(1k);

(m0,m1, s1)← AEO(·)(mpk; s0); b← {0, 1};
c∗ ← IBEenc(mpk, id∗,mb); b

′ ← AEO(·)(c∗, s1)
: b′ = b]− 1/2|

where EO(·) returns the corresponding secret key on a query on identity id,
whereas A is forbidden to query id∗ at EO. For non-triviality, we also require
that |m0| = |m1|. We say an IBE is IND-sID-CPA-Secure, if for polynomially
bounded q and T , ε is negligible.

As in [7], we require that there exists an efficient algorithm IBEver that can
publicly and efficiently verify whether a given user secret key skid was properly
generated for identity id. Namely, the algorithm IBEver takes a master public key
mpk, an identity id and a secret key skid as input, outputs accept or reject. We
require that for all honestly generated key pair (mpk,msk)← IBEkg(1k) satisfies
the following: For all identities id ∈ {0, 1}∗ and strings s ∈ {0, 1}∗, we have
IBEver(id, s) = accept iff s = skid, where skid ← IBEext(mpk,msk, id). This
property seems a little bit strong, but almost all known IBE systems, to the best
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of our knowledge, can efficiently do such a verification by utilizing the underlying
mathematical structure, such as [3,2,11]. For convenience, we implicitly assume
that IBEver exists for all IBEs, and anyone with public information can run the
algorithm efficiently.

3 Public Key Encryption with Non-interactive Opening

Now, we review a definition of PKENO [7]. A PKENO scheme PKENO consists
of five algorithms: (Gen, Enc, Dec, Prove, Ver). Gen is a randomized algorithm
which takes a security parameter k as input, outputs a key pair (pk, sk). The
probabilistic algorithm Enc takes as input a public key pk and a message m,
returns a ciphertext c of m. Dec is a deterministic algorithm that takes as input
a ciphertext c and a secret sk, outputs a message m or a special symbol ⊥. The
probabilistic algorithm Prove takes a ciphertext c and a secret key sk as input,
outputs a proof π of the results of decrypting c with sk. Ver is a deterministic
algorithm that takes as input a public key pk, a ciphertext c, a plaintext m and
a proof π. It outputs a bit b ∈ {0, 1}, meaning the proof is correct or not.

For correctness, we require that for any key pair (pk, sk) ← Gen(1k), the
following two conditions hold with overwhelming probability.

1. For any messages m, we have Dec(sk, Enc(pk,m)) = m.
2. For any ciphertexts c, Ver(pk, c, Dec(sk, c), Prove(sk, c)) = 1.

We give the security definitions of PKENO, which we adapted from [10]. Consider
the following game between a challenger and an adversary A.
Setup: Given the security parameter k, the challenger generates (pk, sk) ←

Gen(1k) and gives the public key pk to A.
Phase 1: The adversary A may adaptively make a number of decryption or

proof queries on ciphertext c, the challenger responds with Dec(sk, c) or
Prove(sk, c).

Challenge: At some point, A outputs two equal-length messages m0,m1. The
challenger chooses a random bit b ∈ {0, 1} and returns c∗ ← Enc(pk,mb).

Phase 2: The adversary A makes more decryption or proof queries as in phase
1, but with a constraint that decryption or proof queries on c∗ are not al-
lowed.

Guess: Eventually, The adversary A outputs a guess b′ ∈ {0, 1}.
The adversary wins the game if b = b′. The advantage of A in the above game

is defined as Adv
ind-ccpa
PKENO,A(k) = |Pr[b = b′]− 1/2|.

Definition 1 (IND-CCPA). We say a PKENO scheme PKENO is secure
under chosen-ciphertext and prove attacks (IND-CCPA), if for any polynomial
time probabilistic A, its advantage in the above game is negligible.

For the application of PKENO, the above security is not enough. We also need
that any adversarial prover can’t prove a false claim. That’s what we called proof
soundness [7].
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Definition 2 (Proof Soundness). We say a PKENO scheme is proof sound,
if for any polynomial time probabilistic algorithm B, its advantage defined below
is negligible.

Adv
proof-snd
PKENO,B (k) = Pr[(pk, sk)← Gen(1k),m← B(pk, sk),

c = Enc(pk,m), (m′, π′)← B(pk, sk, c)
: Ver(pk, c,m′, π′) = 1 ∧m �= m′].

In [10], Galindo et al. gave two strong soundness definitions, which they called
strong proof soundness and strongly committing. In the strong proof soundness
setting, the adversary outputs the public key pk, and he might produce it in-
correctly and might not know the secret key. And in the strongly committing
setting, the adversary not only outputs the public key pk but also the ciphertext
c, and both might be produced inappropriately.

Here, we review the two definitions of soundness in Definition 3 and 4.

Definition 3 (Strong Proof Soundness [10]). A PKENO scheme is strongly
proof sound if for any PPT adversary B, his advantage defined below is negligible

Adv
sproof-snd
PKENO,B (k) = Pr[(pk,m)← B(1k), c← Enc(pk,m), (m′, π′)← B(c) :

Ver(pk, c,m′, π′) = 1 ∧m �= m′]

Definition 4 (Strongly Committing [10]). A PKENO scheme is strongly
committing if for any PPT adversary B, his advantage defined below is negligible

Adv
sproof-com
PKENO,B (k) = Pr[(pk, c,m, π,m′, π′)← B(1k) :

Ver(pk, c,m, π) = 1 = Ver(pk, c,m′, π′) ∧m �= m′]

Galindo et al. [10] showed that Definition 3 and 4 are much stronger than Defini-
tion 2. In this paper, our generic construction achieves proof soundness. However,
our practical scheme achieves strong proof soundness and strongly committing.

4 A Generic Construction from Selective-IBE to PKENO

In this section, we present our generic construction from a separable selective
IBE to PKENO and its formal security proof. We review the PKENO scheme
in [13] and give an explanation using our framework.

Let IBE= (IBEkg, IBEext, IBEenc, IBEdec) be an IBE scheme and CMH=
(CMkg, CMhash, CMswch) be a chameleon hash function which is collision resistant.
We give our PKENO scheme PKENO=(Gen, Enc, Dec, Prove, Ver) as follows.

Gen(1k): The key generation algorithm runs (mpk,msk)← IBEkg(1k) and
(hk, td)← CMkg(1k). Then it sets pk = (mpk, hk) and sk = msk (td is only
needed in security proof) and returns (pk, sk).
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Enc(pk,m): Given pk = (mpk, hk) and a message m, the encryption algo-
rithm randomly chooses r1 ← R1, r2 ← R2

1 for IBEenc and CMhash,
and then it computes u ← f1(mpk,m, r1), id ← CMhash(hk, u, r2) and
v ← f2(mpk, id, r1). Finally, it returns the ciphertext C = (u, v, r2).

Dec(sk, C): The decryption algorithm parses C = (u, v, r2), and then it com-
putes id ← CMhash(hk, u, r2) and skid ← IBEext(sk, id). Next, it uses the
IBE decryption algorithm to decrypt the messagem← IBEdec(skid, id, u||v).
Finally, it returns m.

Prove(sk, C): The prove algorithm parses C = (u, v, r2), and then it computes
id← CMhash(hk, u, r2) and skid ← IBEext(sk, id) and returns π = skid.

Ver(C,m, π): The verification algorithm parses C = (u, v, r2). Next, it computes
id ← CMhash(hk, u, r2) and checks if π is a valid secret key for id. If not,
it returns 0. Otherwise it decrypts C by running m̂ ← IBEdec(π, id, u||v),
where m̂ ∈Mk ∪ {⊥}. If m̂ �= m, it returns 0, else returns 1.

It is easy to check that the above scheme satisfies correctness.

4.1 Security

In this subsection, we show our generic PKENO scheme is CCPA secure and
proof sound, if the underlying separable IBE is selectively secure and the chameleon
hash is collision resistant. Formally,

Theorem 1. Assume IBE is IND-sID-CPA secure and CMH is collision resis-
tant. Then PKENO constructed above is IND-CCPA secure and Proof Sound.

First note that the Ver algorithm will call the IBEver algorithm to check whether
the secret key π is correctly generated. If the IBEver outputs “reject”, we will
always reject the proof. And if it outputs “accept”, the secret key π can be used
to decrypt all properly generated ciphertexts that are encrypted under id with
overwhelmingly probability. The adversary cannot output another message that
is not equal to the message which it submits to the challenger for encryption.
Thus, the proof soundness of our construction is obvious.

Therefore, in the following proof, we only consider an adversaryA that breaks
the IND-CCPA security of our scheme.

Proof. We show how to build an algorithm B breaks either the IBE or the
chameleon hash by interacting with A. Note that a ciphertext in our construction
consists of three parts u, v, r2, where r2 is the randomness used to compute
id = H(u, r2). Let q denote the total number of decryption queries and proof

queries made by A. Let C(i) = (u(i), v(i), r
(i)
2 ) be the i-th query (decryption or

proof) and id(i) = CMhash(hk, u(i), r
(i)
2 ). Let C∗ = (u∗, v∗, r∗2) be the challenge

ciphertext and id∗ = CMhash(hk, u∗, r∗2).
We distinguish the following two types of adversaries:

1 R1 and R2 are corresponding spaces of random coins for IBEenc and CMhash.
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Type 1: For all all valid query C(i) = (u(i), v(i), r
(i)
2 ), 1 ≤ i ≤ q, there is

id(i) �= id∗.
Type 2: There is at least one valid query C(i) = (u(i), v(i), r

(i)
2 ) such that id(i) =

id∗ and (u(i), r
(i)
2 ) �= (u∗, r∗2) for some 1 ≤ i ≤ q.

Note that, the probability that an adversary makes a query C(i) that is equal
to C∗ in phase 1 is negligible. And it can’t query the challenge ciphertext C∗

in the phase 2 by our security model (if he does query one, it’s invalid and the
challenger just simply reject it). So without loss of generality, we assume that
C(i) �= C∗ always holds for all the queries.

Since each pair (u, r2) determines an unique “identity” id = H(u, r2), and
(u, id) uniquely determines v by the assumption of underlying separable IBE,
(u, r2) uniquely determines v in our context. Thus for all the valid queries, we al-

ways have (u(i), r
(i)
2 ) �= (u∗, r∗2). Hence, if an adversary only queries valid cipher-

text (u, v, r2) that id = H(u, r2) �= id∗, then it must be a Type 1 adversary. Oth-
erwise, he must make at least one valid query (u, v, r2) that id = H(u, r2) = id

∗,
it’s a Type 2 adversary.

As the discussions we give above, two types of adversaries include all the
adversaries that attack our construction. Now, for the type 1 adversary, we con-
struct an algorithm that breaks the IND-sID-CPA security of IBE , and for the
type 2 adversary, we construct an algorithm that breaks the collision resistance
of chameleon hash.

Type 1 Adversary: Define B as follows.

Setup: B runs (hk, td) ← CMhash(1k). Then he randomly chooses u′ from the
domain f1, and r

′
2 from R2, and computes id∗ = CMhash(hk, u′, r′2), where

r′2 is an auxiliary random coin for chameleon hash. B then submits id∗ to
its own challenger as the identity to be challenged. After receiving public
parameters mpk from its challenger, B sets pk = (mpk, hk) and sends pk as
the public key to A.

Phase 1: After giving pk to A, B answers A’s decryption queries and proof
queries as follows:

Decryption: For decryption query C(i) = (u(i), v(i), r
(i)
2 ), B first computes

id(i) = CMhash(hk, u(i), r
(i)
2 ), if id(i) = id∗, B outputs a random bit and halts.

Otherwise, he sends id(i) to its own extraction oracle and obtain skid(i) . Then
B computes m(i) = IBEdec(skid(i) , id(i), u(i)||v(i)), and sends m(i) to A.
Proof: For proof query C(i) = (u(i), v(i), r

(i)
2 ), B computes id(i) = CMhash

(hk, u(i), r
(i)
2 ), if id(i) = id∗ , B outputs a random bit and halts. Otherwise,

he sends id(i) to its own extraction oracle and forwards to A whatever its
extraction oracle replies.

Challenge: When B receives from A a pair of plaintexts (m0,m1) that A wants
to be challenged on, B forwards (m0,m1) to its own challenge oracle. After
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receiving its challenge ciphertext (u∗, v∗) (under identity id∗), B computes
r∗2 ← CMswch(td, u′, r′2, u

∗). B then sends C∗ = (u∗, v∗, r∗2) to A as the chal-
lenge ciphertext. Due to the uniformness of the chameleon hash, the distri-
bution of the challenge is exactly as the real attack.

Phase 2: In this phase, B answers A’s queries as in phase 1:

Guess: When A outputs a guess b′, B outputs the same bit as its answer.

From the description of B, it is easy to verify that the key generation is simulated
perfectly. And because of the uniformness property, r∗2 is uniformly distributed,
the challenge oracle is also perfectly simulated. Besides, in this case, A is a type
1 adversary, we always have id(i) �= id∗ for all valid query, thus the probability
that B halts is zero. In conclusion, B simulates a perfect environment for A as
in the real attack, and if A succeeds in attacking our construction with non-
negligible probability, B will succeed in attacking the underlying PKENO with
the same probability.

Type 2 adversary: We only give the sketch. For setup, B receives hk from
its challenger. B generates (mpk,msk) ← IBEkg(1k) and sets the public key
as (mpk, hk). B keeps msk as the secret key. Since B has msk, all decryption
queries and proof queries can be answered perfectly. For challenge, upon receiving
(m0,m1) from A, B first picks b ← {0, 1} and sets u∗ = f1(params,mb, r1),
where r1 is chosen uniformly from the randomness space of IBEenc. B then
outputs u∗ to its hash challenger. After receiving r∗2 from the challenger, B sets
id∗ ← CMhash(hk, u∗, r∗2) and v

∗ = f2(params, id
∗, r1), and sends (u∗, v∗, r∗2) to

A as the challenge ciphertext. One can verify this is a valid challenge. Finally,

when decryption query or proof query (u(i), v(i), r
(i)
2 ) is queried for some i, where

CMhash(hk, u(i), r
(i)
2 ) = id∗ and (u(i), r

(i)
2 ) �= (u∗, r∗2), B outputs (u(i), r

(i)
2 ) as a

collision for its challenger. We conclude that B breaks collision resistance with
the same probability as A’s advantage in guessing b.

Summarizing the two cases, we obtain the claimed results.

4.2 A New Explanation of Lai et al.’s PKENO Scheme

In CT-RSA 2010, Lai, Deng, Liu and Kou gave an efficient PKE/PKENO scheme
[13] from identity-based techniques. Our generic construction gives a new expla-
nation of their PKENO scheme. For completeness, we review their scheme in
Table 1.

Lai et al. stated that they used two types of “identities”, one is uniquely de-
termined by the first two elements of a ciphertext (i.e., t), the other is chosen
randomly for each ciphertext (i.e., r). By using two “identities”, their scheme ob-
tained a good computation and communication efficiency. In fact, from the view
of our generic construction, this two “identities” are two inputs of chameleon
hash H(t, r) = utvr, where t ∈ Zq is its input, and r ∈ Zq is its random coin.
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First of all, their scheme based on the first Boneh and Boyen’s selective-
(H)IBE [2], and which is selective-ID secure and has separable property. In fact,
if we set f1(pk,m, s) = (m·Zs, gs) and f2(pk, id, s) = (h(id)·d)s, where h is some
collision resistant (encoding) hash function (w.l.o.g, we can set h(id) = gid).
Obviously, these two functions “used” in their scheme satisfy our conditions.
Secondly, note that if we replace the hash function h in f2 by H(t, r) = utvr,
we obtain Lai et al.’s encryption function. Now we only need to prove that
H(t, r) = utvr is a chameleon hash. Actually, H ’s collision resistant property
is guaranteed by DL assumption. And if someone knows x, y where u = gx

and v = gy, he can easily find a collision. More precisely, for any hash triple
(t, r,H(t, r)) and any message t′ �= t, the one who knows x, y can compute
r′ = y−1x(t − t′) + r and have H(t, r) = H(t′, r′).

Table 1. Lai et al.’s PKENO scheme [13]. (Let PG = {G1,G2, q, ê} be a bilinear group
and g be a generator of G1. Let H : {0, 1}∗ → Zq be a collision resistant cryptographic
hash family.)

Gen(1k) α, x, y, z ← Zq; g2 ← G1;H ←H; g1 = gα, u = gx, v = gy, d = gz;
Z = ê(g1, g2); pk = (u, v, d, Z,H), sk = (gα2 , x, y, z); Return (pk, sk).

Enc(pk,m) s, r ← Zq; C0 = m · Zs, C1 = gs; t = H(C0, C1);C2 = (utvrd)s;
Return C = (C0, C1, C2, r).

Dec(sk, C) Parse C as (C0, C1, C2, r); t = H(C0, C1);
If (C1)

tx+ry+z �= C2 then return ⊥. Else return C0/ê(C1, g
α
2 ).

Prove(sk, C) Parse C as (C0, C1, C2, r); t = H(C0, C1);
If (C1)

tx+ry+z �= C2 then return π = ⊥.
Else γ ← Zq; d

1
C = gα2 (u

tvrd)γ , d2C = gγ ; Return π = (d1C , d
2
C).

Ver(pk,C,m, π) Parse C = (C0, C1, C2, r), π = (d1C , d
2
C); t = H(C0, C1);

If ê(C1, u
tvrd) = ê(g,C2), ê(g, d

1
C) = Z · ê(utvrd, d2C) and

m = C0 · ê(C2, d
2
C)/ê(C1, d

1
C) then return 1. Else return 0.

5 A New PKENO Scheme

In this section, we present a new instantiation of our transform by employing
the second Boneh-Boyen selective-IBE [2].

Let PG = {G1,G2, q, ê} be a bilinear group as described in section 2, and g be
a generator of G1. Here we instantiate the chameleon hash by using Krawczyk
and Rabin’s chameleon hash combined with a collision resistant hash function
H : {0, 1}∗ → Z∗

q . We also assume that the plaintext space is G2. By using Boneh
and Boyen’s scheme, we obtain our PKENO scheme PKENO=(Gen, Enc, Dec,
Prove, Ver) as follows.

Gen(1k): Randomly choose x, y, z ∈ Z∗
q and compute X = gx, Y = gy, Z =

ê(g, g), and h = gz. Select a collision resistant hash function H . Set the
public key pk = (g,X, Y, Z, h,H) and secret key sk = (x, y) (z is only needed
in our security proof).
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Enc(pk,m): Parse pk = (g,X, Y, Z, h,H). Randomly choose r, s← Z∗
q . Compute

c1 = m · Zs, c2 = Y s, id = H(2‖gH(1‖c1‖c2)hr) and c3 = (gidX)s. Return
C = (c1, c2, c3, r).

Dec(sk, C): First parse sk = (x, y) and C = (c1, c2, c3, r). Then compute id =

H(2‖gH(1‖c1‖c2)hr), and check whether c
(id+x)/y
2 = c3. If no, this is an invalid

ciphertext and return ⊥. Otherwise, compute m = c1/ê(c2, g
1/y) and return

m.

Prove(sk, C): Parse sk = (x, y) and C = (c1, c2, c3, r). Then compute id =

H(2‖gH(1‖c1‖c2)hr) and check whether c
(id+x)/y
2 = c3. If no, this is an invalid

ciphertext and return π = ⊥. Otherwise, randomly choose t ∈ Zq such
that id+ x+ ty �= 0 mod q, and compute K = g1/(id+x+ty). Finally return
π = (t,K).

Ver(C,m, π): Parse C = (c1, c2, c3, r) and π = (t,K). Then compute id =
H(2‖gH(1‖c1‖c2)hr) and check if ê(K, gidXY t) = Z and ê(c2, g

idX) = ê(c3, Y ).
If not, return 0. Otherwise, compute m′ = c1/e(c3ct2,K). If m �= m′, return
0. Else return 1.

The correctness of our scheme can be easily verified. Since the underlying
IBE [2] we used here is IND-sID-CPA secure, and the collision resistance of
chameleon hash h(m, r) = H(2‖gH(1‖m)hr)) can be reduced to DL assumption
or the collision resistance of H , we can obtain the CCPA security and proof
soundness of our new scheme simply by Theorem 1.

Moreover, though our generic construction only satisfies proof soundness, our
concrete construction above can achieve strong proof soundness and strongly
committing. It is because we can check whether a secret key or ciphertext is
created properly by pairings.

5.1 Comparisons

In Table 2, we give a comparison of known PKENO schemes in the literature.
This first column indicates what methodology the corresponding scheme has
employed, as we show that there are three methodologies, and compared to the
other two methodologies, our generic construction from selective IBE to PKENO
is more efficient.

Here, we don’t list the second scheme proposed in [7], since Galindo showed
that it is insecure [9]. Galindo also gave a fixed scheme, which employed the
KEM/DEM mechanism. But as shown in Table 2, it needs long public keys lin-
ear to the security parameters n. Though, compared to other schemes in the
list, it can accept arbitrary length of plaintexts. Galindo et al. [10] proposed two
PKENO schemes based on threshold public key (TPK). The first one enjoys a
security reduction to DDH assumption in the random oracle model. The second
employed one-time signatures, which needs more computation and communica-
tion cost. Recently, Lai, Deng, Liu and Kou [13] proposed an efficient PKENO
scheme, which can be viewed as an instantiation of our generic construction.
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Table 2. Comparisons of schemes (σ denotes the one time signature and Signkey
denotes the one time signature verify key. h denotes the hash function used in each
scheme. R denotes the random space in our scheme used by chameleon hash function.)

Methodology Schemes Public Secret Ciphertext Assumption Standard
Key Key overhead Model?

Adaptive IBE [9] (n+ 2)G1 (n+ 2)Zq 2G1+ DEM DBDH
√

−→ PKENO + G2 + h

3G+ 2h Zq 3G+ 2Zq DDH ×
TPKE [10]

−→ PKENO 5G1 4Zq 5G1 + σ D-linear
√

+ Signkey

[13] 4G1 +G2 + h G1 + 3Z∗
q 2G1 +G2 DBDH

√
Selective IBE +Zq
Ours−→ PKENO Ours 4G1 +G2 + h 2Zq 2G1 +G2 q-DBDHI

√
+Zq

6 Conclusion

In this paper, a generic construction from selective-IBE to public key encryption
with non-interactive opening is proposed. The proposed construction benefits
from chameleon hash functions, since it makes our transform achieved its se-
curity from a weaker cryptographic primitive (i.e., selective-IBE), compared to
adaptive-IBE. There is a gap [9] between adaptive secure and selective secure,
thus the generic construction does have its practical meaning in this view. In ad-
dition, our generic construction gives a new explanation of an efficient PKENO
scheme [13], and it specifies the relationship among some known primitives.
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Abstract. Recently there are lots of studies on the Tate pairing compu-
tation with different coordinate systems, such as twisted Edwards curves
and Hessian curves coordinate systems. However, Jacobi intersections
curves coordinate system, as another useful one, is overlooked in pairing-
based cryptosystems.

This paper proposes the explicit formulae for the doubling and addi-
tion steps in Miller’s algorithm to compute the Tate pairing on twisted
Jacobi intersections curves, as a larger class containing Jacobi intersec-
tions curves. Although these curves are not plane elliptic curves, our
formulae are still very efficient and competitive with others. When the
embedding degree is even, our doubling formulae are the fastest except
for the formulae on Hessian/Selmer curves, and the parallel execution
of our formulae are even more competitive with the Selmer curves case
in the parallel manner. Besides, we give the detailed analysis of the fast
variants of our formulae with other embedding degrees, such as the em-
bedding degree 1, and the embedding degree dividing 4 and 6. At last, we
analyze the relation between the Tate pairings on two isogenous elliptic
curves, and show that the Tate pairing on twisted Jacobi intersections
curves can be substituted for the Tate pairing on twisted Edwards curves
completely.

Keywords: Twisted Jacobi intersections curves, Tate pairing, Miller’s
function.

1 Introduction

Pairings on elliptic curves have been used to construct new elliptic curve cryp-
tosystems which were not only based on discrete logarithm groups, such as
identity-based encryption scheme, one round protocol for tripartite Diffie-Hellman
key exchange, short signature and so on.

Miller’s algorithm [20] is the first effective algorithm to calculate the Weil
and Tate pairings in the double-and-add manner. Due to various cryptographic
applications, lots of effort have gone into efficient computation of pairings
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by improving Miller’s algorithm. To our knowledge, different forms of elliptic
curves over finite fields with different coordinate systems have been studied to
improve the efficiency of the scalar multiplication, in which Edwards form is the
fastest at present. Analogously, different forms have been considered to improve
the efficiency of the pairing computation by optimizing the formulae of Miller’s
algorithm. First, Chatterjee et al. [4] gave fast Tate pairing computation in pro-
jective coordinates of Weierstrass curves. Later, several further optimizations
were proposed on other equivalent or special forms of elliptic curves, such as
(twisted) Edwards curves [8][15][1], Weierstrass curves of the form y2 = x3 + c2

[6], Jacobi quartic curves [21], Huff curves [16], Hessian curves [12] and Selmer
curves [23] as the generalized Hessian curves [9] with j-invariant being 0. Almost
all improvements are presented in the context of the Tate pairing on elliptic
curves with even embedding degrees, since the nature of the Tate pairing allows
for a relatively simple exposition and improves efficiency through the denomi-
nator elimination and twist techniques.

The state of the art Miller’s formulae, as the faster substitutions for the for-
mulae on Weierstrass curves, are proposed on twisted Edwards curves [1] and
Hessian/Selmer curves [12][23]. It is well known that every Weierstrass curve
with a point of order 3 over a finite field (char>3) is birationally equivalent to a
Hessian curve, and every Weierstrass curve with a point of order 4 over a finite
field (char>2) is birationally equivalent to an Edwards curve. In [2], Bernstein et
al. showed that every elliptic curve with three points of order 2 is 2-isogenous to
a twisted Edwards curve, especially it is birationally equivalent to a twisted Ed-
wards curve over Fp with p ≡ 1 (mod 4). But the only overlooked form with some
similar properties is the Jacobi intersections curve (see [5][18][13][14] for the fast
addition and doubling formulae for this form). Lately, Feng et al. [10] presented
twisted Jacobi intersections curves, as a larger class containing Jacobi intersec-
tions curves, which are birationally equivalent to elliptic curves with three points
of order 2, and they gave many fast addition and doubling formulae in projective
coordinates on twisted Jacobi intersections curves.

In this paper, we propose explicit Miller’s formulae for the Tate pairing on
twisted Jacobi intersections curves, which are very efficient and competitive with
others although twisted Jacobi intersections curves are not plane curves. Spe-
cially, when the embedding degree is even, our Miller’s doubling formulae are
fastest except for the formulae on Hessian/Selmer curves. Moreover, we present
the parallel execution of our formulae which can also be competitive with the for-
mulae on Selmer curves case in the parallel manner. Besides, elliptic curves with
embedding degree 1 are applied in pairing-based cryptosysytems over composite-
order bilinear groups [11], so we modify our formulae in this case so that they
are faster than the formulae on Weierstrass forms given in [17]. According to
[7], the pairing computation can benefit a lot from the high-degree twists. For
example, there are sextic twists of Weierstrass curves, cubic twists of Selmer
curves, quartic twists of twised Jacobi quartic curves, but only quadratic twists
can be defined on twisted Edwards and twisted Jacobi intersections curves. To
make up for the lack of the high-degree twists, we use the mixed coordinates
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and the birational map to accelerate the computation of our Miller’s formulae
when the embedding degree divides 4 and 6. At last, we analyze the relation
between the Tate pairings on two isogenous elliptic curves, and show that the
faster Tate pairing on twisted Jacobi intersections curves can be substituted for
that on twisted Edwards curves completely.

The organization is as follows: Section 2 recalls some basics of Tate pairing and
twisted Jacobi intersections curves. Section 3 presents our formulae of Miller’s
functions on twisted Jacobi intersections curves. In Section 4, we analyze the
fast calculation of our Miller’s formulae in the case of even embedding degree.
In Section 5, a further analysis of our formulae is given in the cases of other
embedding degrees. At last, we analyze the relation between the Tate pairings
on twisted Jacobi intersections and twisted Edwards curves in Section 6.

2 Preliminaries

2.1 Tate Pairing and Miller’s Algorithm

Let E be an elliptic curve over the finite field Fq, where q is a power of an odd
prime, and let O denote the neutral element of E(Fq). Let n|#E(Fq) be coprime
to q, if k ≥ 1 is the smallest integer such that n|qk − 1, then k is called the
embedding degree with respect to n.

Let Div(E) be the divisor group of E. Given D =
∑

P∈E np(P ) ∈ Div(E) and
a nonzero rational function f such that div(f) and D have disjoint supports, the
evaluation of f at D is defined by f(D) =

∏
P∈E f(P )

np . For P,Q ∈ E[n], there
exist DP , DQ ∈ Div0(E) such that DP ∼ (P ) − (O) and DQ ∼ (Q)− (O) have
disjoint supports, and rational functions fP and fQ such that div(fP ) = nDP

and div(fQ) = nDQ. Let μn ⊂ F∗
qk denote the group of n-th roots of unity. The

reduced Tate pairing is given by [22]

τn : E(Fqk)[n]× E(Fqk)/nE(Fqk)→ μn, (P,Q) �→ fP (DQ)
(qk−1)/n.

For cryptographic applications, we usually assume k > 1, and take G1 = E[n]∩
Ker(πq − 1) and G2 = E[n] ∩ Ker(πq − [q]) as the eigenspaces of the Frobenius
endomorphism πq with E[n] = G1 × G2. Let fn,P ∈ Fq(E) satisfy div(fn,P ) =
n(P )− n(O), the reduced Tate pairing can be simplified as

τn : G1 ×G2 → μn, (P,Q) �→ fn,P (Q)(qk−1)/n.

Miller [20] suggested computing fn,P from the rational function fi,P satisfying
div(fi,P ) = i(P ) − ([i]P ) − (i − 1)(O) recursively. For the Weierstrass curves,
one can compute fi1+i2,P = fi1,P · fi2,P · l[i1]P,[i2]P /v[i1+i2]P , where l[i1]P,[i2]P is
the line passing through the points [i1]P, [i2]P and v[i1+i2]P is the vertical line
passing through the point [i1 + i2]P .



Fast Tate Pairing Computation on Twisted Jacobi Intersections Curves 213

Algorithm: Miller’s algorithm for Weierstrass curve

Input: s =
∑L

j=0 sj2
j ∈ N with sj ∈ {0, 1}, sL = 1; P,Q ∈ E[r] with P �= Q

Output: fs,P (Q)
1: T ← P ; f ← 1
2: for j from L− 1 downto 0 do
3: f ← f2 · lT,T (Q)/v2T (Q); T ← 2T (Doubling step)
4: if sj = 1 then
5: f ← f · lT,P (Q)/vT+P (Q); T ← T + P (Addition step)

6: return f (q
k−1)/n.

2.2 Twisted Jacobi Intersections Curves

Let K be a field whose characteristic is not 2. The projective twisted Jacobi
intersections curve over K proposed by Feng et al. [10] is defined by

Ea,b :

{
aU2 + V 2 = Z2

bU2 +W 2 = Z2,
(1)

where a, b ∈ K with ab(a− b) �= 0. A Jacobi intersections curve given in [5] is a
twisted Jacobi intersections curve with a = 1.

The neutral element is O = (0, 1, 1, 1), and the negative of (U, V,W,Z) is
(−U, V,W,Z). A point (U, V,W,Z) on Ea,b can also be represented in affine coor-
dinates as (u, v, w) = (U/Z, V/Z,W/Z). There are always four infinite points on
the intersection of Ea,b and the plane Z = 0 in P3(K), namely ∞1 = (1, α, β, 0),
∞2 = (1,−α, β, 0), ∞3 = (1, α,−β, 0), ∞4 = (1,−α,−β, 0), where ±α and ±β
are the roots of x2 + a = 0 and y2 + b = 0 in K respectively. Besides, there are
always three non-neutral K-rational points of order 2, namely O2 = (0,−1, 1, 1),
O3 = (0, 1,−1, 1), and O4 = (0,−1,−1, 1). From the group law in Theorem 2,
[2]∞1 = [2]∞2 = [2]∞3 = [2]∞4 = O4, and ∞1 +∞2 =∞3 +∞4 = O2.

The twisted Jacobi intersections curve Ea,b is called a quadratic twist of the
Jacobi intersection curve E1,b/a : U2 + V 2 = Z2, (b/a)U2 +W 2 = Z2, i.e. Ea,b

is isomorphic to E1,b/a over K(
√
a) under the isogeny (U, V,W,Z) → (

√
a ·

U, V,W,Z), if and only if a is a quadratic non-residue in K∗.

Theorem 1. ([10], Theorem 1) Let K be a field with char(K) �= 2. Then every
elliptic curve over K having three K-rational points of order 2 is isomorphic
to a twisted Jacobi intersections curve over K. Especially, let E : y2 = x(x −
a)(x − b) and Ea,b : au2 + v2 = 1, bu2 + w2 = 1 (in affine form), there exist

isomorphisms ψ : E → Ea,b, (x, y) �→ (− 2y
x2−ab ,

x2−2ax+ab
x2−ab , x

2−2bx+ab
x2−ab ) and ϕ :

Ea,b → E, (u, v, w) �→ (−a(w+1)
v−1 , au

v−1 (x− b)).
Theorem 2. ([10], Theorem 8) Let P = (U1, V1,W1, Z1), Q = (U2, V2,W2, Z2)
be two points on the twisted Jacobi intersections curve Ea,b defined over K with
ab(a− b) �= 0, let R = (U3, V3,W3, Z3) and S = (U ′

3, V
′
3 ,W

′
3, Z

′
3), where{

U3 = U1Z1V2W2 + V1W1U2Z2, V3 = V1Z1V2Z2 − aU1W1U2W2,
W3 =W1Z1W2Z2 − bU1V1U2V2, Z3 = Z2

1V
2
2 + aU2

2W
2
1 ,

(2)
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and {
U ′
3 = U2

1Z
2
2 − Z2

1U
2
2 , V ′

3 = U1V1W2Z2 −W1Z1U2V2,
W ′

3 = U1W1V2Z2 − V1Z1U2W2, Z ′
3 = U1Z1V2W2 − V1W1U2Z2.

(3)

Then P +Q = R if R �= 0, and P +Q = S if S �= 0.

Theorem 3. ([10]) Let P = (U1, V1,W1, Z1) be a point on the twisted Jacobi
intersections curve Ea,b defined over K with ab(a − b) �= 0, and S = [2]P =
(U3, V3,W3, Z3), then{

U3 = 2U1V1W1Z1, V3 = V 2
1 Z

2
1 − Z2

1W
2
1 + V 2

1 W
2
1 ,

W3 = Z2
1W

2
1 − V 2

1 Z
2
1 + V 2

1W
2
1 , Z3 = Z2

1W
2
1 + V 2

1 Z
2
1 − V 2

1W
2
1 .

(4)

There are also other fast doubling formulae dependent of a and b given in [10].
However, for constructing more efficient Miller’s formulae for the Tate pairing,
only the addition and doubling formulae independent of a and b are considered.

3 Miller’s Formulae on Twisted Jacobi Intersections
Curves

3.1 The Geometric Group Law

The chord-tangent law [22] is the famous geometric group law on Weierstrass,
Hessian and Huff curves. Recently, more complicated geometric group laws on
Edwards curves and Jacobi quartic curves are given by Arène et al. [1] and Wang
et al. [21], respectively. Luckily, there is a much simpler geometric group law (as
the spatial chord-tangent law) on twisted Jacobi intersections curves [19].

We review it as follows: Let Ea,b be defined by (1) in §2.2. For arbitrary
P1, P2 ∈ Ea,b(K), there is a plane through O, P1 and P2. Then the plane inter-
sects Ea,b at the fourth point R according to the Bézout theorem, and R is the
negation of P1 + P2, i.e. R = −P1 − P2. The negation of a point −R is given as
the residual intersection of the plane through R containing the tangent line to
Ea,b at O. Let P3 denote the point P1 + P2, then P3 = −R.

3.2 Miller’s Formulae

Given P1, P2 ∈ Ea,b(K) and P3 = P1 + P2, we can characterize the Miller’s
function fP1,P2 ∈ K(Ea,b) with div(fP1,P2) = (P1) + (P2) − (P3) − (O) as the
rational function hP1,P2/hP3 satisfying{

div(hP1,P2) = (P1) + (P2) + (P3) + (O)− (∞1)− (∞2)− (∞3)− (∞4),
div(hP3) = (P3) + (−P3) + 2(O)− (∞1)− (∞2)− (∞3)− (∞4).

Lemma 1. Assume K is a finite field Fq, where q is a power of an odd prime.
Let D = (∞1) + (∞2) + (∞3) + (∞4) ∈ Div(Ea,b). If Ea,b is defined over K,
then D is defined over K, i.e. D(q) = D. Specially, the above functions hP1,P2

and hP3 can be constructed in K(Ea,b).
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Proof. Let α, β be defined as in §2.2. Then K(α, β) is a finite normal extension
with [K(α, β) : K] ≤ 2, and q-th Frobenius map πq generates GalK(α,β)/K with

πq(α) = αq = a(q−1)/2α and πq(β) = βq = b(q−1)/2β. Note that a(q−1)/2 =
b(q−1)/2 = 1 if and only if a, b are quadratic residues. Thus D is defined over
K, i.e. D(q) = D. So both div(hP1,P2) and div(hP3) are defined over K with

div(h
(q)
P1,P2

)=div(hP1,P2)
(q)=div(hP1,P2) and div(h

(q)
P3

) = div(hP3)
(q) = div(hP3).

So there exist c1, c2 ∈ K s.t. c1 = h
(q)
P1,P2

/hP1,P2 and c2 = h
(q)
P3
/hP3 . There also

exist d1, d2 ∈ K s.t. dq1/d1 = c1 and dq2/d2 = c2. Let HP1,P2 = hP1,P2/d1 and

HP3 = hP3/d2, then H
(q)
P1,P2

= HP1,P2 and H
(q)
P3

= HP3 , i.e. HP1,P2 , HP3 ∈
K(Ea,b). 
�
According to the geometric group law, we can give the explicit formulae of hP1,P2

and hP3 in the following theorems.

Theorem 4. Let P1 = (U1, V1,W1, Z1) and P2 = (U2, V2,W2, Z2) be two non-
neutral points with P1 �= P2. Then hP1,P2 = AaU + BaV + CaW +DaZ, where

Aa = V1W2 − V2W1 + V2Z1 − V1Z2 +W1Z2 −W2Z1,
Ba = U2W1 − U1W2 + U1Z2 − U2Z1,
Ca = U1V2 − U2V1 + U2Z1 − U1Z2,
Da = −Ba − Ca = U1W2 − U2W1 + U2V1 − U1V2.

(5)

Assume P3 = (U3, V3,W3, Z3) is not a 2-torsion point, then hP3 = BV +CW +
DZ, where

B = Z3 −W3,
C = V3 − Z3,
D = −B − C =W3 − V3.

(6)

Proof. Let hP1,P2 = AaU + BaV + CaW + DaZ = 0 be the plane through
O, P1, P2. Then we can compute these coefficients Aa, Ba, Ca, Da by solving the
equation ⎛⎝ 0 1 1 1

U1 V1 W1 Z1

U2 V2 W2 Z2

⎞⎠
⎛⎜⎜⎝
Aa

Ba

Ca

Da

⎞⎟⎟⎠ =

⎛⎝0
0
0

⎞⎠ . (7)

Thus, we get these coefficients (not unique) as

Aa =

∣∣∣∣∣
1 1 1
Z1 V1 W1

Z2 V2 W2

∣∣∣∣∣, Ba =

∣∣∣∣∣
0 1 1
U1 Z1 W1

U2 Z2 W2

∣∣∣∣∣, Ca =

∣∣∣∣∣
0 1 1
U1 V1 Z1

U2 V2 Z2

∣∣∣∣∣, Da = −Ba − Ca.

Similarly, let hP3 = AU + BV + CW + DZ = 0 be the plane through P3
containing the tangent line to Ea,b at O. According to the geometric group law,
it is equivalent to the plane through O, P3, −P3. Since −P3 = (−U3, V3,W3, Z3),
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then we can solve A,B,C,D by substituting P3,−P3 for P1, P2 in the equations
(7). Then we have

A =

∣∣∣∣∣
1 1 1
Z3 V3 W3

Z3 V3 W3

∣∣∣∣∣ = 0, B =

∣∣∣∣∣
0 1 1
U3 Z3 W3

−U3 Z3 W3

∣∣∣∣∣, C =

∣∣∣∣∣
0 1 1
U3 V3 Z3

−U3 V3 Z3

∣∣∣∣∣, D = −B − C.

Note that B, C and D have the common factor 2U3. Since char(K) is not 2, and
P3 is not a 2-torsion point, then U3 �= 0. Thus 2U3 can be eliminated. 
�
Theorem 5. Let P0 = (U0, V0,W0, Z0) is a non-neutral point with Z0 �= 0.
Then hP0,P0 = AdU +BdV + CdW +DdZ, where

Ad = aU0W
2
0 − bU0V

2
0 + bU0V0Z0 − aU0W0Z0,

Bd = bU2
0V0 + V0W

2
0 − V0W0Z0,

Cd = V0W0Z0 − aU2
0W0 − V 2

0 W0,
Dd = −Bd − Cd = aU2

0W0 − bU2
0V0 + V

2
0 W0 − V0W 2

0 .

(8)

Proof. Let hP0,P0 = AdU + BdV + CdW + DdZ = 0 be the plane through
O containing the tangent line to Ea,b at P0. In the affine space A3, denote
P = (u0, v0, w0) = (U0/Z0, V0/Z0,W0/Z0) and the affine curve

Ea,b :

{
F (u, v, w) = au2 + v2 − 1 = 0
G(u, v, w) = bu2 + w2 − 1 = 0.

(9)

The tangent line at P0 is given by u−u0

τ0
u

= v−v0
τ0
v

= w−w0

τ0
w

, where

τ0u =
∂F 0

∂v

∂G0

∂w
− ∂F

0

∂w

∂G0

∂v
= 4v0w0,

τ0v =
∂F 0

∂w

∂G0

∂u
− ∂F

0

∂u

∂G0

∂w
= −4au0w0,

τ0w =
∂F 0

∂u

∂G0

∂v
− ∂F

0

∂v

∂G0

∂u
= −4bv0u0.

Fixing a new point (τ0u+u0, τ
0
v+v0, τ

0
w+w0) on the tangent line, we can construct

the equation

⎛⎝ 0 1 1 1
u0 v0 w0 1

τ0u + u0 τ
0
v + v0 τ

0
w + w0 1

⎞⎠
⎛⎜⎜⎝
Ad

Bd

Cd

Dd

⎞⎟⎟⎠ =

⎛⎝0
0
0

⎞⎠ .
The above equation can be simplified and transformed in the projective coordi-
nates as ⎛⎝ 0 1 1 1

U0 V0 W0 Z0

V0W0 −aU0W0 −bV0U0 0

⎞⎠
⎛⎜⎜⎝
Ad

Bd

Cd

Dd

⎞⎟⎟⎠ =

⎛⎝0
0
0

⎞⎠ .



Fast Tate Pairing Computation on Twisted Jacobi Intersections Curves 217

Then we can obtain

Aa =

∣∣∣∣∣
1 1 1
Z0 V0 W0

0 −aU0W0 −bV0U0

∣∣∣∣∣ , Ba =

∣∣∣∣∣
0 1 1
U0 Z0 W0

V0W0 0 −bV0U0

∣∣∣∣∣,
Ca =

∣∣∣∣∣
0 1 1
U0 V0 Z0

V0W0 −aU0W0 0

∣∣∣∣∣ , Da = −Bd − Cd.


�

4 Operation Counts with Even Embedding Degree

In this section, we give a detailed analysis of the Tate pairing computation on
twisted Jacobi intersections curves in the case of the even embedding degree.

Let K be a finite field Fq with char(Fq) > 2, and let M, S and m, s denote
multiplication and squaring in Fqk and Fq, respectively. Besides, ma and mb

denote multiplication in Fq by constants a and b.
Let Fqk have the basis {1, α} over Fqk/2 with α2 = δ ∈ Fqk/2 . The right

argument Q ∈ G2 of the Tate pairing τn(P,Q) can be chosen using the quadratic
twist technique as shown in [7]. Since Eaδ,bδ is the quadratic twist of Ea,b, Q

′ =
(UQ, VQ,WQ, ZQ) ∈ G′

1 = Eaδ,bδ(Fqk/2)[n] can be chosen with UQ, VQ,WQ, ZQ ∈
Fqk/2 . Then the point Q = (UQα, VQ,WQ, ZQ) ∈ Ea,b(Fqk) is twisted from Q′.
On the other side, the left argument can be chosen as P = (UP , VP ,WP , ZP ) ∈
G1, where UP , VP ,WP , ZP ∈ Fq.

Given P1, P2, P0 ∈ 〈P 〉. According to the denominator elimination technique,
since Q is not a 2-torsion point, then UQ �= 0. Thus one only needs to compute

fP1,P2(Q) =
AaUQα+Ba(VQ − ZQ) + Ca(WQ − ZQ)

B(VQ − ZQ) + C(WQ − ZQ)

=
Aa

UQ

WQ−ZQ
α+Ba

VQ−ZQ

WQ−ZQ
+ Ca

B
VQ−ZQ

WQ−ZQ
+ C

∈ (Aaξα+Baζ + Ca)Fqk/2 ,

fP0,P0(Q) =
AdUQα+Bd(VQ − ZQ) + Cd(WQ − ZQ)

B(VQ − ZQ) + C(WQ − ZQ)

=
Ad

UQ

WQ−ZQ
α+Bd

VQ−ZQ

WQ−ZQ
+ Cd

B
VQ−ZQ

WQ−ZQ
+ C

∈ (Adξα+Bdζ + Cd)Fqk/2 ,

where ξ =
UQ

WQ−ZQ
and ζ =

VQ−ZQ

WQ−ZQ
.

Since Aa, Ba, Ca and Ad, Bd, Cd are defined over Fq, and ξ, ζ ∈ Fqk/2 can be

precomputed, the each of Baξ, Caζ, Bdξ, and Cdζ can be computed in k
2m. So,

given Aa, Ba, Ca and Ad, Bd, Cd, both the evaluations of Miller’s function fP1,P2

and fP0,P0 at Q can be computed in km. Hence, the calculations in one Miller’s
addition and doubling step are 1M+ km and 1M+ 1S+ km, respectively.
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4.1 Addition Step

Given P1 = (U1, V1,W1, Z1) and P2 = (U2, V2,W2, Z2) with P1 �= P2, and P3 =
P1 + P2 = (U3, V3,W3, Z3), Formulae (5) and Formulae (3) can be used to
compute (Aa, Ba, Ca) and (U3, V3,W3, Z3) respectively. In order to minimize the
total operations, however, we use the variants of Formulae (3) and Formulae (5)
instead in the addition step. First, we rewrite Formulae (3) as{

U3 = (U1Z2 + Z1U2)(U1Z2 − Z1U2), V3 = U1V1W2Z2 −W1Z1U2V2,
W3 = U1W1V2Z2 − V1Z1U2W2, Z3 = U1Z1V2W2 − V1W1U2Z2.

The direct computation of the above formulae takes redundant operations. In-
stead, we use the following explicit formulae to compute (2U3, 2V3, 2W3, 2Z3),
which is equal to (U3, V3,W3, Z3) and cannot change the final value of the Tate
pairing.⎧⎪⎪⎨⎪⎪⎩

V3 −W3 = (V1W2 − V2W1)(U1Z2 + Z1U2) = ( 1©− 2©)(12©+ 7©),
Z3 +W3 = (U1V2 − U2V1)(Z1W2 +W1Z2) = ( 8©− 9©)( 4©+ 10©),
V3 − Z3 = (U2W1 + U1W2)(V1Z2 − Z1V2) = ( 5©+ 6©)(11©− 3©),
2U3 = 2(U1Z2 + Z1U2)(U1Z2 − Z1U2) = 2(12©+ 7©)(12©− 7©).

In one addition step, one needs 12m to compute 1© ∼ 12©, and 3m to compute
2V3, 2W3, 2Z3 by the linear combination of V3 − W3, Z3 + W3, and V3 − Z3.
The computation of 2U3 needs 1m. From Formulae (5), Aa, Ba, Ca can be com-
puted only with the additions of 1© ∼ 12©. Thus the cost of Aa, Ba, Ca and
(2U3, 2V3, 2W3, 2Z3) is 16m. The explicit formulae are given as follows.

1© = V1W2, 2© = V2W1, 3© = Z1V2, 4© = Z1W2, 5© = U2W1, 6© = U1W2, 6m
7© = Z1U2, 8© = U1V2, 9© = U2V1, 10© =W1Z2, 11© = V1Z2, 12© = U1Z2, 6m

E = ( 1©− 2©)(U1 + 7©), F = ( 8©− 9©)( 4©+W1), G = ( 5©+ 6©)(V1 − 3©), 3m
Aa = 1©− 2©+ 3©− 4©+W1 − V1, Ba = 5©− 6©− 7©+ U1,
Ca = 8©− 9©+ 7©− U1, 2V3 = E + F +G, 2W3 = F − E +G,

2Z3 = F + E −G, 2U3 = 2(12©+ 7©)(12©− 7©). 1m

Usually, P2 = P = (U2, V2,W2, Z2) is fixed in the calculation of the Tate pair-
ing, so we can suppose Z2 = 1. Then the cost for computing (Aa, Ba, Ca) and
(2U3, 2V3, 2W3, 2Z3) can be reduced to 13m. Hence, the total cost for one Miller’s
mixed addition step is 1M+km+13m. Finally, we list the costs for one Miller’s
addition step in different forms of elliptic curves ignoring the common cost
1M+ km in Table 1.

4.2 Doubling Step

Given P0 = (U0, V0,W0, Z0) and P3 = [2]P0 = (U3, V3,W3, Z3), Formulae (8) and
Formulae (4) can be used to compute (Ad, Bd, Cd) and (U3, V3,W3, Z3). However,
we use a variant of Formulae (8) to minimize the total operations in the Miller’s
doubling step. First, using the equation of twisted Jacobi intersections curves
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aU2
0 +V

2
0 = Z2

0 , bU
2
0 +W

2
0 = Z2

0 , we have aW
2
0 −bV 2

0 = (a−b)Z2
0 . Then Formulae

(8) can be transformed as follows:

Ad = U0(aW
2
0 − aW0Z0 + bV0Z0 − bV 2

0 ) = U0((a− b)Z2
0 + bV0Z0 − aW0Z0)

= (U0Z0)(a(Z0 −W0) + b(V0 − Z0)),

Bd = V0(bU
2
0 +W 2

0 −W0Z0) = V0(Z
2
0 −W0Z0) = (V0Z0)(Z0 −W0),

Cd =W0(V0Z0 − aU2
0 − V 2

0 ) = V0(V0Z0 − Z2
0 ) = (W0Z0)(V0 − Z0).

Note that the common factor Z0 of (Ad, Bd, Cd) for the intermediate point P0
must belong to Fq. Thus Z0 can be eliminated under the final exponentiation of
the Tate paring. So one only needs to calculate

A′
d = U0(a(Z0 −W0) + b(V0 − Z0)), B

′
d = V0Z0 − V0W0, C

′
d = V0W0 −W0Z0.

In one doubling step, first, B′
d and C′

d can be computed in 3m, and A′
d can be

computed in 1m + 1ma + 1mb. Then, the calculation of Formulae (4) requires
additional 2m and 3s to compute (U3, V3,W3, Z3). Thus the cost of A′

d, B
′
d, C

′
d

and (U3, V3,W3, Z3) is 6m + 3s + 1ma + 1mb. The explicit formulae are given
as follows.

1©′ = V0Z0, 2©′ =W0Z0, 3©′ = V0W0, E = 1©′2, F = 2©′2, G = 3©′2, 3m+ 3s
A′

d = U0(a(Z0 −W0) + b(V0 − Z0)), 1m+ 1ma + 1mb

B′
d = 1©′ − 3©′, C′

d = 3©′ − 2©′, U3 = 2Z0U0 3©′, 2m
V3 = E − F +G,W3 = F − E +G,Z3 = F + E −G.

The total cost for one Miller’s doubling step is 1M+1S+km+6m+3s+1ma+
1mb. We list the calculations for one Miller’s doubling step in different forms of
elliptic curves ignoring the common cost 1M+ 1S+ km in Table 1.

Table 1. Costs of Miller’s formulae for Tate pairing with different coordinate systems.
(Denote projective coordinates by P , and Jacobian coordinates by J .)

Forms of EC Mixed Addition (mADD) Doubling (DBL)

Weierstrass (J ), [15] or [1] 9m+ 3s or 6m + 6s 1m + 11s + 1
Weierstrass (P), a4 = −3 [1] 6m+ 6s 6m + 5s
Weierstrass (P), a4 = 0 [1] 6m+ 6s 3m + 8s
Edwards (P), [15] 14m+ 4s+ 1md 8m + 4s + 1md

twisted Edwards (P), [1] 12m+ 1ma 6m + 5s + 2ma

Huff (P), [16] 13m 11m + 6s
Hessian (P), [12] 10m 3m + 6s + 3md

Selmer (P), [23] 10m 5m + 3s
twisted Jacobi quartic (P), [21] 16m+ 1s+ 3ma + 1md 4m + 8s + 1ma

twisted Jacobi intersections (P) 13m 6m + 3s + 1ma + 1mb

Note that the calculation for DBL is much more importance, since the group
order usually has light Hamming weight. Thus, if the total costs for DBL and
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mADD in two different forms are the same, we recommend the form with the
less cost for DBL. In addition, the constants a and b could be chosen as smaller
integers, we therefore can omit ma and mb in Table 1. So our formulae are
efficient and competitive.

4.3 Parallel Execution

Be similar to the parallel computation of the Tate pairing on Selmer curves,
our formulae can also be performed in a parallel way. Assume that three mul-
tiprecision multiplications can be performed in parallel, the costs of DBL and
DBL+mADD can be reduced to 1M+1S+ k

2m+3m+1s and 1M+1S+km+
10m+1s respectively, which are competitive with the costs on Selmer curves in
parallel, namely 1M + 1S + k

2m + 2m + 1s for DBL, and 1M + k
2m + 4m for

mADD, and therefore 2M+ 1S+ km+ 6m+ 1s for DBL+mADD. The details
are given in Appendix B.

5 Operation Counts with Other Embedding Degree

In the pairing computations, elliptic curves with twists of high degree can bring
many advantages. Unfortunately, there are only quadratic twists of twisted Ja-
cobi intersections curves. Instead, however, we can use the mixed coordintes
constituting of the left argument chosen on the Weierstrass form and the right
argument chosen on the corresponding twisted Jacobi intersections form. In this
section, we analyze the computations of the Tate pairing on twisted Jacobi in-
tersections curves with different embedding degrees.

5.1 Embedding Degree 1

Let z ∈ Fq(E) be a fixed local uniformizer at O. For f ∈ Fqk(E), f is called
monic or normalized, if (fz−v)(O) = 1, where v is the order of f at O. In the
computation of the Tate pairing, the Miller’s functions have to be monic when
the embedding degree is 1.

Proposition 1. Let hP1,P2 , hP3 and hP0,P0 be defined in Theorem 4 and Theo-

rem 5, respectively. Since U is a local uniformizer at O, then the orders of
hP1,P2

U ,
hP3

U2 ,
hP0,P0

U at O are all zeros. Furthermore,
hP1,P2

U (O) = Aa,
hP3

U2 (O) = −aB−bC
2 ,

hP0,P0

U (O) = Ad.

Proof. Since ordO(U) = 1, and ordO(hP1,P2) = 1, and ordO(hP3) = 2, and

ordO(hP0,P0) = 1. Then ordO(
hP1,P2

U ) = ordO(
hP3

U2 ) = ordO(
hP0,P0

U ) = 0. Since

V − Z = −aU2

V +Z and W − Z = −bU2

W+Z , then ordO(V − Z) = ordO(W − Z) = 2.

Thus we have that
hP1,P2

U (O) = AaU+Ba(V −Z)+Ca(W−Z)
U (O) = Aa,

hP0,P0

U (O) =
AdU+Bd(V −Z)+Cd(W−Z)

U (O) = Ad,
hP3

U2 (O) = (V +Z)(W+Z)(B(V −Z)+C(W−Z))
(V+Z)(W+Z)U2 (O)

= −aB(W+Z)−bC(V +Z)
(V +Z)(W+Z) (O) = −aB−bC

2 . 
�
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Hence, the new Miller’s functions h̄P0,P0 = 1
Ad
hP0,P0 , h̄P1,P2 = 1

Aa
hP1,P2 , h̄P3 =

−2
aB+bC hP3 are monic. Given P0, P1, P2, P3 ∈ E(Fq)[r] with P1 = [2]P0 and P3 =
P1 + P2 with P1 �= P2, then the explicit Miller’s formulae are given by

fP0,P0 =
h̄P0,P0

h̄P1

=
(aB + bC)(Ad

U
W−Z +Bd

V−Z
W−Z + Cd)

−2Ad(B
V −Z
W−Z + C)

=
(aB + bC)(A′

d
U

W−Z +B′
d
V −Z
W−Z + C′

d)

−2A′
d(B

V −Z
W−Z + C)

=
(aB + bC)(A′

dξ +B
′
dζ + C

′
d)

−2A′
d(Bζ + C)

,

and

fP1,P2 =
h̄P1,P2

h̄P3

=
(aB + bC)(Aa

U
W−Z +Ba

V −Z
W−Z + Ca)

−2Aa(B
V −Z
W−Z + C)

=
(aB + bC)(Aaξ +Baζ + Ca)

−2Aa(Bζ + C)
,

where ξ = U
W−Z and ζ = V −Z

W−Z .
Since the embedding degree is 1, all multiplications and squarings take place

in Fq, i.e. M = m and S = s. When Ad, Bd, Cd and Aa, Ba, Ca and B,C are
given, and ξ, ζ are precomputed, the Miller’s doubling and addition steps cost
7M+ 2S+ 1Ma + 1Mb and 7M+ 1Ma + 1Mb, respectively.

Besides, as analyzed in §4.1 and §4.2, we need 13M to compute Aa, Ba, Ca and
P3 = (2U3, 2V3, 2W3, 2Z3) in one mixed addition step, and 6M+3S+1Ma+1Mb

to compute A′
d, B

′
d, C

′
d and P1 = (U1, V1,W1, Z1) in one doubling step. Note that

B,C,D can be computed without any multiplications and squarings. Hence, the
total costs for one Miller’s doubling and addition step are 13M+5S+2Ma+2Mb

and 20M+ 1Ma + 1Mb.

Example 1. The currently known elliptic curves over Fp with embedding degree
1 are very rare. Koblitz and Menezes [17] first gave two families of such elliptic
curves over Fp, where p = A

2 + 1 is prime, which are defined by

E1 : y2 = x3 − x , if A ≡ 0 (mod 4),

E2 : y2 = x3 − 4x , if A ≡ 2 (mod 4).

Koblitz and Menezes showed that Ei(Fp) ∼= Z/AZ × Z/AZ for i = 1, 2. Note
that E1

∼= E1,−1 and E2
∼= E2,−2, where E1,−1 and E2,−2 are two twisted Jacobi

intersections curves defined by (1). Since a = −b is very small, the total costs
for one Miller’s doubling and addition step are 13M+ 5S and 20M, which are
less than the costs in Weierstrass form given in [17].

5.2 Embedding Degree Divided by 4

For choosing the right argument Q from a Weierstrass curve with a quartic twist,
the twisted Jacobi intersections curve need be chosen as

Ea,−a : aU2 + V 2 = Z2, − aU2 +W 2 = Z2,
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which is isomorphic to the Weierstrass curve E : y2 = x3− a2x under ψ given in

Theorem 1. Let D ∈ Fq be a quadratic non-residue, then Et : y2 = x3 − a2

D x is

the quartic twist of E with φ4(x, y) = (D1/2x,D3/4y) ∈ Hom(Et, E). Choosing

Q′ = (xQ, yQ) ∈ Et(Fk/4
q )[n], one has

Q = ψ ◦ φ4(Q′)

=

(−2D3/4yQ
Dx2Q + a2

,
Dx2Q − 2aD1/2xQ − a2

Dx2Q + a2
,
Dx2Q + 2aD1/2xQ − a2

Dx2Q + a2

)
= (−2D3/4yQ, Dx

2
Q − 2aD1/2xQ − a2, Dx2Q + 2aD1/2xQ − a2, Dx2Q + a2)

∈ Ea,−a(F
k
q )[n].

Then the Miller’s addition and doubling functions only need to be computed as

fP1,P2(Q) ∈
(
Aa
yQ
a2
D3/4 + (Ba − Ca)

xQ
a
D1/2 + (Ba + Ca)

)
Fqk/4

fP0,P0(Q) ∈
(
Ad
yQ
a2
D3/4 + (Bd − Cd)

xQ
a
D1/2 + (Bd + Cd)

)
Fqk/4

Since Aa, Ba, Ca and Ad, Bd, Cd are all defined over Fq, and yQ/a
2, xQ/a ∈

Fqk/4 can be precomputed, then the calculations of fP1,P2(Q) and fP0,P0(Q)

need 1M+ k
2m+ 13m and 1M+ 1S+ k

2m+ 6m+ 3s+ 1ma.

5.3 Embedding Degree Divided by 6

For choosing the right argument Q from a Weierstrass curve with a sextic twist,
the twisted Jacobi intersections curve needs to be defined by

Ea,b : aU
2 + V 2 = Z2, bU2 +W 2 = Z2,

with a = e2− e1, b = e3− e1 for some e1, e2, e3 ∈ Fq, which is isomorphic to the
Weierstrass curve E : y2 = (x− e1)(x − e2)(x − e3) = x3 +B under ψ′ = ψ ◦ φ,
where ψ is given in Theorem 1 and φ : E → E′ : y2 = x(x + e1 − e2)(x + e1 −
e3), (x, y) �→ (x− e1, y). Let D ∈ Fq be a quadratic and cubic non-residue, then
Et : y2 = x3 + B

Dx is the sextic twist of E with φ6(x, y) = (D1/3x,D1/2y) ∈
Hom(Et, E). Choosing Q′ = (xQ, yQ) ∈ Et(Fk/6

q )[n], one has

Q = ψ′ ◦ φ6(Q′) = ψ(D1/3xQ − e1, D1/2yQ) = (UQ, VQ,WQ, ZQ) ∈ Ea,b(F
k
q )[n]

where UQ = −2D 1
2 yQ, VQ = D

2
3 x2Q − 2e2D

1
3xQ + e2e3 + e1e2 − e1e3, WQ =

D
2
3x2Q−2e3D

1
3xQ+e2e3+e1e3−e1e2, ZQ = D

2
3 x2Q−2e1D

1
3 xQ−e2e3+e1e2+e1e3.

Then the Miller’s addition and doubling functions only need to be computed as

fP1,P2(Q) ∈
(
Aa
yQ
e2b
D

1
2 + (Ba + Ca)

axQ
e2b

D
1
3 −Ba

e3a

e2b
− Ca

)
Fqk/6 ,

fP0,P0(Q) ∈
(
Ad
yQ
e2b
D

1
2 − (Bd + Cd)

axQ
e2b

D
1
3 −Bd

e3a

e2b
− Cd

)
Fqk/6 .
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Note that Aa, Ba, Ca, Ad, Bd, Cd ∈ Fq, and since
yQ

e2b
,
axQ

e2b
∈ Fqk/6 , e3a

e2b
∈ Fq

can be precomputed, then the calculations of fP1,P2(Q) and fP0,P0(Q) require
1M+ k

3m+13m+2mc and 1M+1S+ k
3m+6m+3s+3mc, where mc denotes

multiplication by a constant in Fq.

6 Relation between the Tate Pairings on Twisted Jacobi
Intersections Curves and Twisted Edwards Curves

First, there exists a close relation between twisted Jacobi intersections curves
and twisted Edwards curves. Bernstein et al. [2] showed that an elliptic curve
with three points of order 2 might not be birationally equivalent to a twisted
Edwards curve. However, they gave the following statement.

Theorem 6. ([2], Theorem 5.1) Fix a field K with char(K) �= 2. Every elliptic
curve over K having three K-rational points of order 2 is 2-isogenous over K to
a twisted Edwards curve.

Indeed, we can construct the 2-isogeny and the dual 2-isogeny directly (in Ap-
pendix A), and conclude that every twisted Edwards curve is also 2-isogenous
over K to an elliptic curve over K having three K-rational points of order 2.
From Theorem 1 and Theorem 6, we can obtain the following corollary.

Corollary 1. For a field K with char(K) �= 2, every twisted Jacobi intersections
curve is 2-isogenous over K to a twisted Edwards curve, and vice versa.

Proof. The specific 2-isogeny and dual 2-isogeny are given in Appendix A. 
�
Let φ be the 2-isogeny from the twisted Jacobi intersections curve Ea,b to the

twisted Edwards curve EE,A,B, and let φ̂ be the dual 2-isogenous. We will show
the relation between the Tate pairings on Ea,b and EE,A,B.

Theorem 7. ([3], Theorem IX.9) Let φ : E → E′ be an isogeny, where E and
E′ are elliptic curves over Fq. Let n| gcd(#E(Fq),#E

′(Fq)) and suppose the
embedding degree corresponding to q and n is k. Then, up to nth powers,

τn(φ(P ), φ(Q)) = τn(P,Q)
degφ.

According to the above theorem, twisted Jacobi intersections curves can be com-
pletely substituted for twisted Edwards curves in the Tate pairing computation.
Concretely, given the twisted Edwards curve EE,A,B, compute the twisted Ja-
cobi intersections curve Ea,b with the isogeny φ : EE,A,B → Ea,b in Appendix
A. Given P,Q ∈ EE,A,B[n], compute φ(P ), φ(Q) ∈ Ea,b[n], and therefore com-
pute the Tate pairing on twisted Jacobi intersections curves τn,J(φ(P ), φ(Q))

1/2

instead of the Tate pairing on twisted Edwards curves τn,E(P,Q).
In practical pairing-based cryptosystems, the extraction of the square root

for computing τn,J(φ(P ), φ(Q))
1/2 can be omitted, since τn,J(φ(P ), φ(Q)) also
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defines a bilinear pairing. Thus τn,J (φ(P ), φ(Q)) can be completely substituted
for τn,E(P,Q) in practice.

Usually, the group order has light Hamming weight, our formulae for twisted
Jacobi intersections curves with less cost for the doubling step, may be better
than the formulae for twisted Edwards curves.

7 Conclusion

In this paper, explicit formulae for the Miller’s addition and doubling steps
on twisted Jacobi intersections curves have been presented to compute the Tate
pairing. We show that our Miller’s formulae are very efficient not only in the case
of even embedding degree but also in the case of embedding degree 1. Moreover,
we propose fast Miller’s formulae in the case of embedding degrees dividing 4
and 6 by using the high-degree twists of Weierstrass curves. In addition, we give
an analysis of the relation between the Tate pairings on two isogenous elliptic
curves and substitute the Tate pairing on twisted Jacobi intersections curves for
that on twisted Edwards curves completely. At last, we hope that pairings on
twisted Jacobi intersections curves would draw more attentions and become a
good choice in practice.
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Conversely, for every twisted Jacobi intersections curve Ea,b : au
2+v2 = 1, bu2+

w2 = 1, there exits a twisted Edwards curve EE,a,b : ax
2 + y2 = 1 + bx2y2 with

the 2-isogeny

ψ : Ea,b → EE,a,b, (u, v, w) �→
(
u,
v

w

)
.

It can be verified that ψ = φ̂ easily.

B Parallel Execution

For the further reduction of the cost, we give the explicit expression of the
product of doubling function and addition function in the addition step.

Given P0 = (U0, V0,W0, Z0), P1 = [2]P0 = (U1, V1,W1, Z1), P2 = P =
(U2, V2,W2, Z2) (is fixed), andQ = (UQα, VQ,WQ, ZQ), where UQ, VQ,WQ, ZQ ∈
Fqk/2 . In stead of the product of fP0,P0(Q) and fP1,P2(Q) in the addition step,

one only need to compute (Adξα + Bdζ + Cd)(Aaξα + Baζ + Ca) =
(
(AdBa +

AaBd)ξζ +(AdCa+AaCd)ξ
)
α+AdAaξ

2δ+(BdCa+CdBa)ζ+BdBaζ
2 +CdCa.

Note that ξ, ζ, ξ2δ, ζ2, ξζ ∈ Fqk/2 can be precomputed. Given the values of

Ad, Bd, Cd and Aa, Ba, Ca, the above product can be computed in 5
2km + 9m

instead of 1M + 2km. Then the cost of one doubling plus one addition step is
1M+ 1S+ 5

2km+ 9m, which is less than 2M+ 1S+ 2km when k ≥ 4.
Assume that three multiprecision multiplications can be performed in parallel,

then the parallel execution is given as follows:

Processor 1 Processor 2 Processor 3
Doubling step:

a1 = V0Z0; a2 = W0Z0; a3 = V0W0;
a4 = a2

1; a5 = a2
2; a6 = a2

3;
V3 = a4 − a5 + a6; W3 = a5 − a4 + a6; Z3 = a4 + a5 − a6;
Bd = a1 − a3; a7 = Z0 − W0; a8 = V0 − Z0;
a9 = a7a; a10 = a8b; a11 = U0Z0;
Cd = a3 − a2; a12 = a9 + a10; a13 = 2a11;
Ad = U0a10; U3 = a13a3; − − −

If addition step is needed:
b1 = V1W2; b2 = W1V2; b3 = Z1V2;
b4 = Z1W2; b5 = W1U2; b6 = U1W2;
b7 = Z1U2; b8 = U1V2; b9 = V1U2;
b10 = W1Z2 (Z2 = 1); b11 = V1Z2 (Z2 = 1); b12 = U1Z2 (Z2 = 1);
b13 = (b1 − b2)(b7 + b12); b14 = (b5 + b6)(b11 − b3); b15 = (b8 − b9)(b4 + b10);
Aa = b1 − b2 + b3 − b11 − b4 + b10; Ba = b5 − b6 − b7 + b12; Ca = b8 − b9 + b7 − b12;
2V3 = b13 + b14 + b15; 2W3 = b13 − b14 + b15; 2Z3 = b13 + b14 − b15;
c1 = AdBa; c2 = AdCa; c3 = BdCa;
c4 = AaBd; c5 = AaCd; c6 = BaCd;
c7 = AdAa; c8 = BdBa; c9 = CdCa;
d1 = (c1 + c4)ξζ; d2 = (c2 + c5)ξ; d3 = (c3 + c6)ζ;
d4 = c7ξ

2δ; d5 = c8ζ
2; 2U3 = 2(b12 + b7)(b12 − b7);

Else:
d1 = Adξ; d2 = Bdζ; − − −

With parallel execution, the cost of one doubling step plus one mixed addition
step (DBL+mADD) is 1M+1S+ km+10m+1s, and the cost of one doubling
step is 1M + 1S + k

2m + 3m + 1s. In fact, the real cost is less, since 1M + 1S
can also be computed in parallel.
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Abstract. MISTY1 is a Feistel block cipher with presence in many cryp-
tographic standards and applications. In this paper, according to ana-
lyzing the key schedule algorithm, a weak-key class encompassing 2102.57

weak keys of MISTY1 is found. Then we present 7-round related-key
differential characteristics of MISTY1 under the weak-key class, which
lead to the attacks on the 8-round MISTY1 without the first FL lay.
The attack requires 261 chosen ciphertexts, and the time complexities is
284.6. To the best of our knowledge, the attack reported in this paper is
the most powerful attack against MISTY1 with two related keys.

Keywords: MISTY1, weak-key, related-key, differential attack.

1 Introduction

The block cipher MISTY1 was proposed by M.Matsui [10], which was designed
based on the principle of provable security against differential and linear crypt-
analysis. MISTY1 is a 64-bit block cipher that has a key size of 128 bits. MISTY1
is used in many cryptographic standards and applications. For example, MISTY1
was selected to be in the final NESSIE portfolio of block ciphers, as well as an
ISO standard.

Several cryptanalyses of MISTY1 have been reported. Slicing attack [7], col-
lision search attack [6], integral attack [5], impossible differential attack [3,9],
higher order differential attack [1,13,12,14,15] and the related-key amplified
boomerang attack [8] can attack on reduced-round MISTY1. All of these attack
can not attack on 8-round MISTY1. And the effective attack of these methods
are higher order differential attack and related-key amplified boomerang attack,
which lead to the attacks on 7-round MISTY1.

This paper concentrates on the key schedule algorithm since it is considered to
be simple. According to our analysis of the key schedule, a weak-key class which
has 2105 pairs related keys is found. Then combining the related-key attack [4,11]
with the differential attack [2], we present a 7-round related-key differential char-
acteristic of MISTY1, which lead to the attack on the 8-round MISTY1( with-
out the first FL lay). Compared with the probability of 2−55 that the related keys
exist in [8], the probability existing in this paper is 2−23. Besides the attack re-
quires two keys and can attack on the 8-roundMISTY1( without the first FL lay).

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 227–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



228 Y.-b. Dai and S.-z. Chen

We summarize our results along with previously known results on MISTY1 in
Table 1.

This paper is organized as follows: In Section 2, we give a brief description of
the structure of MISTY1. We describe the some Propositions of MISTY1 and
introduce the related weak-key class in Section 3. In Section 4, we present the
attack on 8-round MISTY1. Section 5 concludes the paper.

Table 1. Summary of the Attacks on MISTY1

Attack Rounds FL lays Data Time

Slice attack[7] 4 3 222.25CP 245

Collision attack[6] 4 3 220CP 289

Integral attack[5] 4 3 25CP 227

Integral attack[5] 5 3 234CP 248

Impossible differential attack[3] 5† 4 241.36CP 246.35

Higher order differential attack(weak key)[13] 6 4 218.9CP 280.6

Higher order differential attack[14] 6 4 253.7CP 264.4

Higher order differential attack[15] 6 4 253.7CP 253.7

Impossible differential attack[3] 6 4 251CP 2123.4

Related-key amplified boomerang attack[8](2−55)∗ 7 3 254CP 255.3

Higher order differential attack[15] 7 4 254.1KP 2120.7

Related-key differential attack(2−23)∗ 7 4 239CC 239.5

Related-key differential attack(Sec[4])(2−25.43)∗ 8 4 261CC 284.6

CP-Chosen plaintext; CC-Chosen ciphertext; KP-Known plaintext; 5†-the attack re-
trieve 41.36 bits of information about the key; (2−55)∗ and (2−25.43)∗-the probability
of the keys that exists in the attack.

2 The MISTY1 Cipher

In this section, we briefly describe the encryption and key schedule algorithm of
MISTY1.

2.1 The Encryption Algorithm of MISTY1

MISTY1 [10] is a 64-bit block cipher with 128-bit keys. It has a recursive Feistel
structure. The cipher has eight Feistel rounds. MISTY1 is composed of two
functions: the non-linear function FO which is in itself close to a 3-round 32-bit
Feistel construction and the function FL that mixes a 32-bit subkey with the
data in a linear way.

The FO function also has a recursive structure: its round function called FI,
is a three round Feistel construction. The FI function uses two non-linear S-
boxes S7 and S9 ( where S7 is a 7-bit to 7-bit permutation and S9 is a 9-bit to
9-bit permutation ) . There is 112-bit subkey enters FO in each round 48 subkey
bits are used in the FI functions and 64 subkey bits is used in the key mixing
states.
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The FL function is a simple linear transformation which accepts a 32-bit
input and two 16-bit subkey words. One subkey word affects the data using the
OR operation, while another subkey affects the data using the AND operation.
We outline the structure of MISTY1 and its parts in Figure 1.

1iKO

1iKI

2iKO

2iKI

3iKO

3iKI

4iKO

,1ijKI ,2ijKI

1iKL

2iKL

1FL 2FL

3FL 3FL

9FL 10FL

1FO

2FO

3FO

1iFI

2iFI

3iFI

FO FI

FL

Fig. 1. Outline of MISTY1

2.2 The Key Schedule Algorithm of MISTY1

The key schedule of MISTY1 takes the 128-bit key, and treats it as eight 16-bit
words:

K = K1||K2||K3||K4||K5||K6||K7||K8

From this set of subkeys, another eight 16-bit words are generated according to
the non-linear FI function:

K ′
i = FIKi+1(Ki), 1 ≤ i ≤ 8

Table 2. The Key Schedule Algorithm of MISTY1

KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3 K i+1

2
(odd i) K′

i+1
2

+6
(odd i)

K′
i
2
+2

(even i) K i
2
+4(even i)

In each round, there are seven 16-bit words used in the FO function as the round
subkey, and each of the FL functions accepts two subkey words. We give the
exact schedule of MISTY1 in Table 2.
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3 Preliminaries and Weak-Key Class of MISTY1

In this section, we will refer to some propositions of MISTY1. Then we find a
weak-key class of MISTY1 for the 8-round related-key differential attack. Firstly,
we give some denotations: k = a709, β = a702a7, where a7 = 00100002 and 0t =

t︷ ︸︸ ︷
0 · · · 0; (K)j shows the j-th bit of K ( from the left side ) , such as K = 2000x,
(K)3 = 1.

3.1 Preliminaries

Here, we describe some propositions used in the related-key differential attack.

Observation 1. Assume that the input difference of the function FI is 016, and
the subkey difference of the function is k, then the output difference is β.

Proposition 1. Assume that the input difference of the FI function is k and
the subkey difference is β, then the output difference of the FI function is 016

with probability of 2−8.

Proof. The input difference of S9 is a702, then the output difference of S9 is 02a7

with probability of 2−8 which can kill the subkey difference, so that the output
difference of the FI function is 016 with probability of 2−8.

Proposition 2. Assume that the input bit difference of AND(or OR) operation
is 1, and the key bit difference is 0, then the output bit difference is 1(or 0) with
probability of 2−1.

Proposition 3. Assume that the input difference of the FI function is k and
the subkey difference is 0, then the output difference of the FI function is k with
probability of 2−16 (The proposition can be verified experimentally).

All of the propositions and observation described above are effectively used in the
construction of the weak-key class and the related-key differential characteristic.

3.2 Weak-Key Class of MISTY1

We define the two 128-bit master keys Ka and Kb of MISTY1 that satisfy the
following assumptions:

Ka = K1||K2||K3||K4||K5||K6||K7||K8

Kb = K1||K2||K3||K4||K5||K∗
6 ||K7||K8,

where K6 ⊕K∗
6 = k.
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According to the function FI, another two keys are generated:

K ′
a = K ′

1||K ′
2||K ′

3||K ′
4||K ′

5||K ′
6||K ′

7||K ′
8

K ′
b = K

′
1||K ′

2||K ′
3||K ′

4||K ′∗
5 ||K ′∗

6 ||K ′
7||K ′

8,

where K ′
i = FIKi+1(Ki), 1 ≤ i ≤ 8, especially K ′∗

5 = FIK∗
6
(K5), K

′∗
6 =

FIK7(K
′∗
6 ). Besides K ′

6 ⊕ K ′∗
6 = k, K ′

5 ⊕ K ′∗
5 = β. Obversely, the two keys

Ka and Kb satisfy the following conditions:

ΔKab = (0, 0, 0, 0, 0, k, 0, 0), ΔK ′
ab = (0, 0, 0, 0, β, k, 0, 0)

Then assume that we give the following 7-bit keys:

(K7)3 = 1, (K7)12 = 0, (K8)3 = 1, (K ′
4)3 = 1, (K ′

4)12 = 1, (K6)12 = 0,
(K ′

7)3 = 0,

i.e. we know the following 7-bit key:
(KL62)3 = 1, (KL62)12 = 0, (KL82)3 = 1, (KL41)3 = 1, (KL41)12 = 1,
(KL42)12 = 0, (KL10 1)3 = 0.
Besides, in order to construct the related-key differential characteristics, the
following conditions should be ensure:

Pr[FI(•,K2′)(k −→ k)] > 0

Pr[FI(•,K7′)(β −→ k)] > 0

1 Consequently, the number of the keys (K6,K7,K8) and (K2,K3) which satisfy
the conditions are 229.57, that is to say, the probability is 2−2.43.

The set of all the key pairs satisfied the conditions above is called a weak-key
class. The probability of the weak-key class is 2−23 ( = 2−16 · 2−7) , since

Pr[K ′
6 ⊕K ′∗

6 = k|K6 ⊕K∗
6 = k] = 2−16

Pr[K ′
5 ⊕K ′∗

5 = β|K6 ⊕K∗
6 = k] = 1,

according to the Proposition.3, and Pr[(K7)3=1, (K7)12=0, (K8)3 = 1, (K ′
4)3 =

1, (K ′
4)12 = 1, (K6)12 = 0, (K ′

7)3 = 0] = 2−7, which can be verified experimen-
tally. Hence, the number of the weak keys of the weak-key class is about 2102.57(
= 2128 · 2−23 · 2−2.43).

4 Related-Key Differential Attack on 8-Round MISTY1
without the First FL Lay

In this section, we present a 7-round related-key differential characteristic of
MISTY1 under the weak-key class. Then we attack on the 8-round MISTY1
without the first FL lay. The attack requires 261 chosen ciphertexts and the
time complexity is 284.6.

1 Thanks Jiqiang Lu presents the conditions.
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Table 3. The Subkeys Difference of MISTY1

Round ΔKOi1 ΔKOi2 ΔKOi3 ΔKOi4 ΔKIi1 ΔKIi2 ΔKIi3 ΔKLi1 ΔKLi2

1 0 0 0 0 k 0 0 0 0
2 0 0 0 k 0 0 β 0 0
3 0 0 0 0 0 0 k 0 0
4 0 k 0 0 0 β 0 0 k
5 0 0 0 0 0 k 0 0 0
6 k 0 0 0 0 0 0 β 0
7 0 0 k 0 0 0 0 0 0
8 0 0 0 0 β 0 0 k 0
9 – – – – – – – 0 0
10 – – – – – – – 0 0

3FL 4FL

2FO

3FO

5FL 6FL
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5FO
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Fig. 2. 8-Round Related-key Differential Characteristics
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4.1 The 7-Round Related-Key Differential Characteristic

Let the key pair (Ka, Kb) satisfies the following conditions:

ΔKab = (0, 0, 0, 0, 0, k, 0, 0), ΔK ′
ab = (0, 0, 0, 0, β, k, 0, 0)

and (KL62)3 = 1, (KL62)12 = 0, (KL82)3 = 1, (KL41)3 = 1, (KL41)12 = 1,
(KL42)12 = 0, (KL10 1)3 = 0, Pr[FI(•,K2′)(k −→ k)] > 0, Pr[FI(•,K7′)(β −→
k)] > 0 i.e. the pair (Ka, Kb) is in the weak-key class. Then we can construct
a 7-round related-key differential characteristic of MISTY1: (β016, 016k) −→
(016016, k016) (See Figure 2) with probability of 2−58, and the Table 3 gives the
subkey difference of MISTY1.

Figure 2 and Table 4 illustrate the family and the probabilities of about 7-
round differential characteristics in detail. The Proposition 1, 2, 3 are effec-
tively used in the differential characteristics. Moreover, the given seven bits
(KL62)3 = 1, (KL62)12 = 0, (KL82)3 = 1, (KL41)3 = 1, (KL41)12 = 1,
(KL42)12 = 0, (KL10 1)3 = 0 ensure the following equations right: FL4(β0

16) =
016β, FL6(0

16016) = 09a7β, FL8(k0
16) = kk, FL10(k0

16) = k016. These ele-
ments correspond to some 7-round differential characteristics with probability of
2−58, which is better than the random permutation, so that, the characteristic
can lead to an attack on the full MISTY1 without the first FL lay.

Table 4. The 7-Round Related-Key Differential Characteristic

Round(i) Difference Probability

1 (β016, 016k) -
2 (016016, β016) 2−23(Prop.1 and experiment)
3 (016016, 016016) 2−1(Prop.2)
4 (016016, 016016) 2−8(Prop.1)
5 (k016, 016016) 2−2(Prop.2, 2 bits)
6 (016016, k016) 1
7 (k016, 016016) 2−16(Prop.1 and experiment )
8 (016016, k016) 2−8(Prop.1)

output† (016016, k016) 1
†: the output difference of the last FL lay.

4.2 Attack on 8-Round MISTY1 without the First FL Lay

According to the 7-round related-key differential characteristics of MISTY1, we
attack the 7-round MISTY1.

The attack algorithm is as follows:

1. Choose m ciphertext pairs (Ca, Cb) that satisfy Ca ⊕ Cb = (016016, k016).
Ask for the decryption of all the ciphertexts under the keys Ka and Kb

respectively and denote the plaintexts corresponding to (Pa, Pb);
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2. For each plaintext pair (Pa, Pb), check P
L
a ⊕PL

b = 016k. If this is not the case,
discard the pair. After this test, about m · 2−32 pairs are expected remain;

3. For every guess KO11, KO12, KO13, KI11, KI12,2 and KI13,2, partially
encrypt the FO1, we can get the output difference of the FO1. Then if the
output difference does not match the corresponding bits of PR

a ⊕ PR
b ⊕ 032,

discard the pairs. Do as follow :

(a) GuessKO11 andKO12, we get the left 7-bit output difference of the FI11
and FI12 respectively, then we can compute the 7-bit output difference of
the FO1. Compared with the corresponding bits of (PR

a ⊕PR
b )2 . Discard

all pairs if they do not pass the test. After the test, aboutm ·2−32 ·2−7 =
m · 2−39 pairs are expected to remain.

(b) Guess KI11,2 and KI12,2, we get the right 9-bit output difference of
the FI11 and FI12 respectively, then we can compute the 9-bit output
difference of the FO1. Compared with the corresponding bits of (PR

a ⊕
PR
b ). Discard all pairs if they do not pass the test. After the test, about
m · 2−39 · 2−9 = m · 2−48 pairs are expected to remain.

(c) Guess KI11,1 and KO13(only guess 15 bits, since (KO13)3 = (K8)3 = 1
), we get two output values of the FI13. Then we can compute the
7-bit output difference of the FI13, according to (a), we get the 7-bit
output difference of the FO1. Compared with the corresponding bits of
PR
a ⊕ PR

b . Discard all pairs if they do not pass the test. After the test,
about m · 2−48 · 2−7 = m · 2−55 pairs are expected to remain.

(d) Guess KI13,2, we compute the right 9-bit output difference of the FI13.
According to (b), we can get the 9-bit output difference of the FO1.
Compared with the corresponding bits of PR

a ⊕ PR
b . Discard all pairs if

they do not pass the test; After the test, about m · 2−55 · 2−9 = m · 2−64

pairs are expected to remain. If m = 260, thus the expectation of the
remaining plaintext pairs for the wrong key guess is about 260 · 2−64 =
2−4; the expectation of the remaining plaintext pairs for the right key
guess is about 260 · 2−58 = 22;

(e) Output the subkey guess KO11, KO12, KO13, KI11, KI12,2 and KI13,2
as the correct subkey, if the number of the remaining pairs is bigger than
2. Otherwise, go to Step (3).

The attack requires about 2 · 260 = 261 chosen ciphertexts.
We analyze the time complexity of the attack. There remains 260 · 2−32 = 228

pairs after the step (2). In Step (a), the remaining pairs are treated with 232

subkey candidates for KO11 and KO12, so the time complexity is about 2 · 228 ·
232 ·1/8 = 258 and about 228 ·2−7 = 221 pairs remain; In Step (b), the remaining
pairs are treated with 218 subkey candidates for KI11,2 and KI12,2, so the time
complexity is about 2 · 232 · 221 · 218 · 1/8 = 269 and about 221 · 2−9 = 212 pairs
remain; In Step (c), the remaining pairs are treated with 222 subkey candidates
for KI11,1 and KO13, so the time complexity is about 2 · 250 · 212 · 222 · 1/8 = 282

and about 212 · 2−7 = 25 pairs remain; In Step (d), the remaining pairs are

2 We replace PR
a ⊕ PR

b with (PR
a ⊕ PR

b ⊕ 032) for short.
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treated with 29 subkey candidates for KI13,2, so the time complexity is about
2 · 272 · 25 · 29 · 1/8 = 284 and about 25 · 2−9 = 2−4 pairs remain.

Hence, the attack requires 263 chosen ciphertexts and the complexity is 258 +
269+282+284+2 ·260 ≈ 284.6. Besides, by the Possion distribution, the success
rate of the attack is 0.76.

Remark 1. The related-key differential characteristic can be used to attack on
the 7-round MISTY1. The attack requires 238 chosen ciphertexts, the time com-
plexity is 238.5 encryption.

5 Summary

In this paper, we analyze the key schedule algorithm of MISTY1 and describe a
weak-key class. Then we present a 7-round related-key differential distinguisher
of MISTY1 under the weak-key class. According to the distinguisher, we at-
tack the 8-round MISTY1 which requires 261 chosen ciphertexts and the time
complexity is about 284.6. Since our target, reduce round MISTY1, has FL func-
tion, this algorithm is more realistic and powerful than existing methods. We
require the least number of chosen ciphertexts and the time complexity is small-
est. Moreover, the attack requires two related keys and can attack on 8-round
MISTY1 without the first FL lay.

Acknowledgement. This paper is supported by the National Natural Science
Foundation of China (NO. 60673081), the opening Foundation of Key Laboratory
of Information Security of China and the postgraduate subject of the strategics.
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Abstract. KLEIN is a lightweight block cipher proposed in RFIDSec
2011 which combines 4-bit S-box with Rijndael’s byte-oriented MixCol-
umn. In this paper, we first investigate the security of KLEIN against
truncated differential analysis. We construct a 6-round truncated differ-
ential distinguisher based on a careful observation about the characteris-
tic of KLEIN round function. With the help of this new distinguisher, we
give a truncated differential analysis of 8-round KLEIN-64 with the data
complexity of 232 and time complexity of 246.8 encryptions. Furthermore,
we study the security of KLEIN against integral analysis and present an
integral analysis of 7-round KLEIN-64 and 8-round KLEIN-80 using a
5-round distinguisher, which is constructed by utilizing higher-order in-
tegral and higher-order differential properties.

Keywords: lightweight block cipher, KLEIN, integral analysis, differ-
ential cryptanalysis, complexity.

1 Introduction

With the development of electronic and communication applications, RFID tech-
nology has been used in many aspects of life, such as access control, parking
management, identification, goods tracking etc. This kind of new cryptogra-
phy environments is ubiquitous but constrained. Traditional block ciphers such
as AES are not suitable for this kind of extremely constrained environments.
Hence, in recent years, a number of lightweight block ciphers have been proposed,
e.g. PRESENT[2], HIGHT[8], mCrypton[18], DESL[16], CGEN[20], MIBS[9],
KATAN & KTANTAN[3], TWIS[19], SEA[21], LBlock[22], KLEIN[7] etc. All of
these ciphers are designed and targeted specifically for extremely constrained
environments.

KLEIN[7] is a family of block ciphers, with a fixed 64-bit block size and
variable key length-64, 80 or 96-bits. Until now, there are no cryptanalytic results
on KLEIN as far as we know. Previous cryptanalysis of KLEIN, presented by
designers, concerned differential and linear attacks on 4 rounds, integral attack
on up to 5 rounds. Key schedule attack, algebraic attack and side-channel attack
were also considered by the designers, but the truncated differentials analysis

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 237–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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was not taken into account. And the result of the integral analysis proposed by
the designers can be improved using the high order integral and the high order
differential properties.

A differential that predicts only parts of an n bit value is called a truncated
differential, which has more advantages than differential analysis in some certain
case[1]. In fact, truncated differentials have led to some successful attacks on
ciphers with a pronounced word-oriented structure[11–13].

Integral attack is extended from square attack, which is first introduced to at-
tack the block cipher Square[4]. And the designers of AES[5] used this technology
to study the security of AES. Ferguson et al.[6] improved this attack to 8 rounds
version of Rijndael-128 with the partial sum technique and the herd technique.
Knudsen and Wagner first proposed the definition of integral and analyzed it
as a dual to differential attacks particularly applicable to block ciphers with
bijective components[14]. Later, Muhammad et al. presented bit-pattern based
integral attack [23]. Integral attack applied to many kinds of block ciphers, such
as Rijndeal, ARIA [17], Serpent [23]. Higher-order differential attack and Square
like attack are different from integral attack, however, their distinguisher length
can be extended by using the integral property.

In this paper, a 6-round truncated differential distinguisher is constructed.
Based on this distinguisher, we present a truncated differential analysis of 8-
round KLEIN-64. Furthermore, we present an integral analysis of 7-round
KLEIN-64 and 8-round KLEIN-80 by using a 5-round distinguisher, which is con-
structed by utilizing higher-order integral and higher-order differential
properties.

This paper is organized as follows: Section 2 provides a brief description
of KLEIN and the notations used throughout this paper. Section 3 presents
a 6-round truncated differential distinguisher and describes truncated differen-
tial cryptanalysis of KLEIN. Section 4 presents a 5-round integral distinguisher
and describes integral cryptanalysis of KLEIN. Finally, Section 5 concludes this
paper.

2 A Brief Description of KLEIN

KLEIN is a family of block ciphers, with a fixed 64-bit block size and variable key
length-64, 80 or 96-bits. According to the different key length, we denote the ci-
phers by KLEIN-64/80/96 respectively. The number of rounds is 12/16/20 corre-
sponding to KLEIN-64/80/96. The structure of KLEIN is a typical Substitution-
Permutation Network(SPN). The round function of KLEIN includes four basic
operations: AddRoundKey, SubNibbles, RotateNibbles and MixNibbles. All in-
ternal operations except MixNibbles are nibble-wise, that is, on 4-bit words.
The last round has an additional AddRoundKey operation after MixNibbles.
Note that in the last round, MixNibbles is not omitted, unlike MixColumns in
Rijndael.
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AddRoundKey(AK): The 64-bit round key is XORed to the state. The round
keys are derived from the master key by means of key scheduling. For the details
of key scheduling algorithm, the interested readers can refer to [7].

SubNibbles(SN): A non-linear nibble substitution operation is applied to each
nibble of the state independently. Each nibble is input to the same 16 S-boxes.
The KLEIN S-box S is a 4× 4 involutive permutation.

RotateNibbles(RN): The 16 nibbles in the state are rotated left two bytes in
every round. The RotateNibbles step is illustrated in Figure 1.

0b 1b 2b 3b 4b 5b 6b 7b 8b 9b 10b 11b 12b 13b 14b 15b

0c 1c 2c 3c 4c 5c 6c 7c 8c 9c 10c 11c 12c 13c 14c 15c

Fig. 1. RotateNibbles of KLEIN Round Function

MixNibbles(MN): MixNibbles is a bricklayer permutation of the state. The
i-th round input nibbles are divided into 2 tuples, which will be proceeded the
same as MixColumns in Rijndael[5]. MixNibbles operation is byte-wise, that is,
on 8-bit words. The detail of MixNibbles is illustrated in Figure 2.

1 1 1 1
0 1 0 1 8 9

1 1 1 1
2 3 2 3 10 11

1 1 1 1
4 5 4 5 12 13

1 1 1 1
6 7 6 7 14 15

|| || ||2 3 1 1
|| || ||1 2 3 1

,
1 1 2 3|| || ||
3 1 1 2|| || ||

i i i i i i

i i i i i i

i i i i i i

i i i i i i

s s c c s s
s s c c s s
s s c c s s
s s c c s s

8 9

10 11

12 13

14 15

||2 3 1 1
||1 2 3 1

1 1 2 3 ||
3 1 1 2 ||

i i

i i

i i

i i

c c
c c
c c
c c

Fig. 2. MixNibbles of KLEIN Round Function

The matrixMC used in MixNibbles and its inverse matrixMC−1 are as follows,

MC =

⎛⎜⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎟⎠ ,MC−1 =

⎛⎜⎜⎜⎝
0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

⎞⎟⎟⎟⎠ .
In the following, we introduce some notations used throughout this paper. The
state of the encryption is denoted by Table 1, and the encryption round is de-
noted by i = 1, ..., NR, where NR = 12/16/20.
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Table 1. The state of the Encryption

0 1 8 9

2 3 10 11

4 5 12 13

6 7 14 15

–Xi: The input of the i-th round.
–ΔXi: The input difference of the i-th round.
–Yi: The input of SubNibbles in the i-th round .
–ΔYi: The input difference of SubNibbles in the i-th round .
–Xi,j : The j-th nibble of the Xi, where j = 0, 1, ...15.
–ski: The subkey of the i-th round. Since MN and RN are linear operations,

we give a definition of equivalent subkey denoted by sk∗i , sk
∗
i =RN

−1(MN−1(ski)).
–X ‖ Y : The the concatenation of X and Y.

3 Truncated Differential Cryptanalysis of KLEIN

As described in Section 2, all internal operations in KLEIN are nibble-wise except
for MixNibbles which is byte-wise. In this section, we use this characteristic
to construct a 6-round truncated differential distinguisher, based on which we
present a truncated differential analysis of 8-round KLEIN-64.

3.1 6-Round Truncated Differential Distinguisher

In this subsection, we construct a 6-round truncated differential distinguisher
with the probability of 2−29. Firstly, we give some observations of MixNibbles
which will be used in the construction of the distinguisher.

MixNibbles proceeds the same as MixColumns in Rijndael, which includes
multiplication in GF(28). The finite field used in Rijndael is GF(28) usingm(x) =
x8 + x4 + x3 + x+ 1.

Property 1. Consider a polynomial in GF(28), which has the form f(x) =
b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0. If we multiply it by x,we get:

x× f(x) =
{
(b6b5b4b3b2b1b00) if b7 = 0

(b6b5b4b3b2b1b00)⊕ (00011011) if b7 = 1

Lemma 1. If two 4-bit tuples satisfy the form (0, z), where z is a 4-bit string
and the highest bit of z is 0, then (0, z) multiply by x is equal to (0, z′), where z′

is a 4-bit string, that is the highest 4 bits of the result will stay 0.

Proof. Let f(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0, where
b7b6b5b4 = 0000. According to Property 1, we have x × f(x) = (000b3b2b1b00).
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Because the highest bit of z is 0, that is b3 = 0, x× f(x) = (0000b2b1b00). Then
the highest 4 bits of the result will stay 0. �
Based on Lemma 1, we obtain three observations as follows,

Observation 1. Equ.(1) holds with the probability of 2−1.

⎛⎜⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎟⎠×
⎛⎜⎜⎜⎝

0z

00

00

00

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0z′1
0z′2
0z′3
0z′4

⎞⎟⎟⎟⎠ (1)

where z, z′1, z′2, z′3, z′4 are 4-bit strings.
Proof. Based on Lemma 1, Equ.(1) holds if and only if the highest bit of z is

0. So Equ.(1) holds with the probability of 2−1. �

Observation 2. Equ.(2) holds with the probability of 2−2.

⎛⎜⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎟⎠×
⎛⎜⎜⎜⎝

00

00

0z1

0z2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0z′1
0z′2
0z′3
0z′4

⎞⎟⎟⎟⎠ (2)

where z1, z2, z
′
1, z

′
2, z

′
3, z

′
4 are 4-bit strings.

Proof. According to the matrix product rule,⎛⎜⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎟⎠×
⎛⎜⎜⎜⎝

00

00

0z1

0z2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
(0z1)⊕ (0z2)

3(0z1)⊕ (0z2)

2(0z1)⊕ 3(0z2)

(0z1)⊕ 2(0z2)

⎞⎟⎟⎟⎠ . (3)

Based on Lemma 1, Equ.(2) holds if and only if the highest bit of z1 and z2 are
both 0. So Equ.(2) holds with the probability of 2−2. �

Observation 3. Equ.(4) holds with the probability of 2−3.

⎛⎜⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎟⎠×
⎛⎜⎜⎜⎝

0z1

0z2

0z3

0z4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0z′1
0z′2
0z′3
0z′4

⎞⎟⎟⎟⎠ (4)

where z1, z2, z3, z4, z
′
1, z

′
2, z

′
3, z

′
4 are 4-bit strings.
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Proof. According to the matrix product rule,⎛⎜⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎟⎠×
⎛⎜⎜⎜⎝

0z1

0z2

0z3

0z4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
2(0z1)⊕ 3(0z2)⊕ (0z3)⊕ (0z4)

(0z1)⊕ 2(0z2)⊕ 3(0z3)⊕ (0z4)

(0z1)⊕ (0z2)⊕ 2(0z3)⊕ 3(0z4)

3(0z1)⊕ (0z2)⊕ (0z3)⊕ 2(0z4)

⎞⎟⎟⎟⎠ . (5)

According to Lemma 1, if the highest bit of z1, z2, z3 and z4 are all 0, Equ.(4)
holds. Furthermore, if the highest bit of z1, z2, z3 and z4 are all 1, Equ.(4) also
holds. So Equ.(4) holds with the probability of 2−4 + 2−4 = 2−3. �
Based on the observations of MixNibbles discussed above, a 6-round truncated
differential distinguisher with the probability of 2−29 is constructed.(Figure 3.)

Proposition 1. If the input difference of 6-round KLEIN are all zero except
for the 13-th nibble, after 6-round encryption, the first and the third column will
stay 0 with the probability of 2−29.

Because MixNibbles operation is byte-wise, while other operations are all nibble-
wise, observation 1–3 ensure that the difference in one column will stay in the
same column after MixNibbles. Using this characteristic, we construct a 6-round
distinguisher with high probability.

3.2 Truncated Differential Analysis of 8-Round KLEIN-64

In this subsection, the 6-round distinguisher discussed above is used in 2–7
round when we present the truncated differential analysis of 8-round KLEIN-64.
Since AddRoundKey, RotateNibbles and MixNibbles are linear operations, the
order of the AddRoundKey, RotateNibbles and MixNibbles operations can be
changed[24].

By choosing plaintexts, we add one round before the 6-round distinguisher.
Furthermore, we set the nonzero input difference in the 13-th nibble of the 6-
round distinguisher as 0001. According to the matrix product rule,

MC−1 ×

⎛⎜⎜⎜⎝
00

00

01

00

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0d

0b

0e

09

⎞⎟⎟⎟⎠ . (6)

The additional round before the 6-round distinguisher is illustrated in Figure 4.
One can refer to Figure 3 and 4 for the following analysis. The postwhitening

subkey of 8-round KLEIN is denoted by sk9.

The Analysis Procedure

Step 1. Choose a set of 216 plaintexts which have certain fixed values in all
but four nibbles X1,1, X1,3, X1,13, X1,15. We call this a structure, and one
structure can form (216 × (216 − 1))/2 ≈ 231 plaintext pairs. Generate m
structures, thus 216m plaintexts, and 231m plaintext pairs.
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AK SN RN MN

AK SN RN MN

1
1 2p

4
2 2p

AK SN RN MN 6
3 2p

AK SN RN MN 6
4 2p

AK SN RN MN 6
5 2p

AK SN RN MN 6
6 2p

Observation 1

Observation 2

Observation 3

Observation 3

Observation 3

Observation 3

means any difference

means zero difference

means the highest bit of the nibble is 0

means the highest bit of the nibbles in the same column are all 0 or 1

Fig. 3. 6-round Truncated Differential Distinguisher of KLEIN
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b
e
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d
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e
9

Fig. 4. The First Round of 8-round KLEIN
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Step 2. Guess the values of the subkey nibbles sk1,1, sk1,3, sk1,13, sk1,15 to make
sure ΔS(X1,1⊕ sk1,1) = 0xe, ΔS(X1,3⊕ sk1,3) = 0x9, ΔS(X1,13⊕ sk1,13) =
0xd and ΔS(X1,15 ⊕ sk1,15) = 0xb. This is a 16-bit filter, so the expected
number of pairs is 231 ×m× 2−16 = 215m.

Step 3. Encrypt all 215m remaining pairs for 7-round KLEIN. Check whether
the first and the third columns of the output difference of MN−1 in the last
round are zero. If not, discard the key guess. The expected number of such
pairs is 215 ×m× (2−16)2 = 2−17m.

Step 4. For every remaining pair, guess the value of the equivalent subkey sk∗9,j ,
j = 0, 1, ..., 7 to obtain the input value of S-box in 8-th round, then we obtain
the input difference of the 8-round, that is ΔX8,j , j = 0, 1, ..., 7.

Step 5. Check whether the first column of the output difference ofMN−1(ΔX8)
are zero and the highest bit of the second column of MN−1(ΔX8) are all 0
or 1. If not, discard the key guess. The probability of this condition is 2−7

as one can experimentally verify. So the expected number of such pairs is
2−17 ×m× 2−7 = 2−24m.

Step 6. Guess the remaining 16 bits key.

Success Probability and Complexity
Since the probability of the truncated differential distinguisher is 2−29, for the
right key, the expected number of pairs is 215×m×2−29 = 2−14m. Let m = 216,
then the expected number of pairs for the right key is 2−14 × 216 = 22. Thus,
according to the analysis procedure, the expected number of pairs for the wrong
key is 2−24 × 216 = 2−8. As in [10], we can calculate the success rate of the
attack by using the Poisson distribution. Thus, the probability that the number
of remaining pairs for the right key is larger than 2 is 0.908 by the Poisson
distribution, X ∼ Poi(λ = 22), PrX [X > 2] ≈ 0.908. The probability that the
number of remaining pairs for the wrong key is larger than 2 is 0 by the Poisson
distribution, Y ∼ Poi(λ = 2−8), PrY [Y > 2] ≈ 0.

For m = 216, Step 2 requires about 216 × 216/8 = 229 encryptions. Step 3
requires about 215 × 216 × 216 × 7/8 = 246.8 encryptions. Step 4 requires about
2−17×216×216×232/8 = 244 encryptions. Step 6 requires about 216 encryptions.
So the time complexity of the whole analysis is about 246.8 encryptions.

In summary, the data complexity of the analysis of 8-round KLEIN is 216 ×
m = 232 chosen plaintexts and the time complexity is 246.8 encryptions.

4 Integral Cryptanalysis of KLEIN

In this section, we will construct a 5-round distinguisher using the higher-order
integral and the higher-order differential properties, and then we present an
integral analysis of 7-round KLEIN-64 and 8-round KLEIN-80.

4.1 5-Round Distinguisher

Firstly, according to the higher-order differential cryptanalysis introduced by
[11, 15], a 3.5-round distinguisher is constructed as follows.
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Proposition 2. If we select 232 input values of RotateNibbles, after 3.5-round
KLEIN encryption2, the sum of the outputs in each nibble is 0.

Proof. Since the algebra degree of KLEIN S-box is 3, the algebra degree of 3-
round KLEIN encryption is at most 33 = 27. As we know, the linear operations
will not affect the algebra degree and another RotateNibbles and MixNibbles
operations are added before 3-round KLEIN encryption. Thus the algebra degree
of 3.5-round KLEIN encryption is at most 27. Since we select 232 input values,
the sum of the outputs in each nibble is 0. �
Secondly, we construct a 1.5-round integral distinguisher using higher-order in-
tegral properties as follows. We will denote two concatenation of Sbox operation
by T in the following, that is T = S ‖ S.
Proposition 3. If the input state is active3 in the i-th nibbles, where i =
0, 1, 2, 3, 12, 13, 14, 15, after 1.5-round KLEIN encryption4, the output is active
in the j-th nibbles, where j = 8, 9, 10, 11, 12, 13, 14, 15.

Proof. Assume the input state is M , so the active nibbles are Mi, where i =
0, 1, 2, 3, 12, 13, 14, 15, let x′0 = M0 ‖ M1, x

′
1 = M2 ‖ M3, x

′
2 = M12 ‖ M13,

x′3 =M14 ‖M15, then x
′
0, x

′
1, x

′
2, x

′
3 are all active bytes. Each of them takes 28

values independently. Since S-box is a permutation, we denote xi = T (x
′
i ⊕ ci),

where i = 0, 1, 2, 3, ci’s are some constant values. Thus xi, (i = 0, 1, 2, 3) are
active, that is, each of them takes 28 values independently.

We denote the nonzero output bytes of MixNibbles operations by y′0, y
′
1, y

′
2, y

′
3,

then y′0 = 2x2⊕3x3⊕x0⊕x1, y′1 = x2⊕2x3⊕3x0⊕x1, y′2 = x2⊕x3⊕2x0⊕3x1,
y′3 = 3x2⊕x3⊕x0⊕2x1. Since xi(i = 0, 1, 2, 3) takes 28 values independently, for
each value of x0, the x1, x2, x3 can take any fixed value, so y′0 takes 28 different
values. Similarly y′i, (i = 1, 2, 3) takes 28 different values.

Since y′0⊕ y′1 = 3x2⊕ x3⊕ 2x0, where x0, x2, x3 are independent active bytes,
y′0 and y′1 are independent active bytes. Thus, y′0, y

′
1, y

′
2 and y′3 are independent

active bytes. They together take 232 values.
After one AddRoundKey operation and one SubNibbles operation, denote the

nonzero output bytes by yj , (j = 0, 1, 2, 3), where yj = T (y
′
j ⊕ c′j), (j = 0, 1, 2, 3)

they also take 232 values because S-box is a permutation. �
According to higher-order integral and higher-order differential properties dis-
cussed above, a 5-round integral distinguisher is constructed.(Figure 5.)

Proposition 4. If the input state is active in the i-th nibbles, where i = 0, 1, 2, 3,
12, 13, 14, 15, after 5-round KLEIN encryption, the sum of the outputs in each
nibble is 0.

2 3.5-round means one RotateNibbles operation and one MixNibbles operation plus
3-round KLEIN encryptions.

3 Active means it takes all different values.
4 1.5-round means 1-round KLEIN encryption plus one AddRoundKey operation and
one SubNibbles operation.
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Fig. 5. The 5-round integral distinguisher

Based on this 5-round integral distinguisher, if we select 232 plaintexts P i, i =
1, 2, ..., 232, which are active in X1,0, X1,1, X1,2, X1,3, X1,12, X1,13, X1,14 and
X1,15 nibbles, we obtain

232⊕
i=1

X i
6,j = 0, j = 0, 1, ...15. (7)

4.2 Integral Analysis of 7-Round KLEIN-64

In this subsection, we present an integral analysis of 7-round KLEIN-64, by
adding two rounds at the end of 5-round distinguisher. Since the property of
balance5 is not affected by Round Key Addition Layer, we obtain

232⊕
i=1

Y i
6,j = 0, j = 0, 1, ...15. (8)

To reduce the time complexity, we will use the partial sum technique[6]. De-
note the postwhitening subkey of 7-round KLEIN by sk8 and the result of
RN−1(MN−1(C)) by Z7. For convenience, we rewrite some notations as fol-
lows,

θ1 = S−1(Z7,0 ⊕ sk∗8,0) ‖ S−1(Z7,1 ⊕ sk∗8,1) (9)

θ2 = S−1(Z7,2 ⊕ sk∗8,2) ‖ S−1(Z7,3 ⊕ sk∗8,3) (10)

θ3 = S−1(Z7,4 ⊕ sk∗8,4) ‖ S−1(Z7,5 ⊕ sk∗8,5) (11)

θ4 = S−1(Z7,6 ⊕ sk∗8,6) ‖ S−1(Z7,7 ⊕ sk∗8,7). (12)

Then

Y6,4 ‖ Y6,5 = T−1(R−1(0e · θ1 ⊕ 0b · θ2 ⊕ 0d · θ3 ⊕ 09 · θ4)⊕ sk∗7,4 ‖ sk∗7,5). (13)

5 Balance means the sum of all values is zero.
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The Analysis Procedure

Step 1. Select 232 plaintexts P i, i = 1, 2, ..., 232, which are active in X1,0, X1,1,
X1,2,X1,3,X1,12,X1,13,X1,14 andX1,15 nibbles. We call this a structure, and
one structure has 232 plaintexts. Generate 5 structures, thus 5× 232 ≈ 234.3

plaintexts. For each structure, encrypt all 232 plaintexts for 7 round KLEIN.
Denote all the ciphertexts by Ci

7, i = 1, 2, ..., 232.

Step 2. For each structure, we will calculate
⊕232

i=1 Y
i
6,4 ‖ Y i

6,5 =
⊕

(θ1,θ2,θ3,θ4)
Y6,4 ‖

Y6,5 in the following steps. We start with a list of 232 ciphertexts.
1. We guess the values of sk∗8,0, sk∗8,1, sk∗8,2, sk∗8,3 and compute how often

each triple (m1, θ3, θ4) occurs in the list, where m1 = 0e ·θ1⊕0b ·θ2. That
is, for each i, we compute the three-byte value (m1, θ3, θ4) as a function
of the i-th ciphertext and the guessed key material, and we count how
many times each three-byte value appears during this computation. As
there are only 224 possible values for three bytes, we do not have to list
all (m1, θ3, θ4) values, rather, we count how often each triple occurs.

2. We guess the values of sk∗8,4, sk
∗
8,5, and compute how often each tuple

(m2, θ4) occurs, where m2 = m1 ⊕ 0d · θ3. There are only 216 possible
values for two bytes.

3. We guess the values of sk∗8,6, sk
∗
8,7, and compute how often each value

(m3) occurs, where m3 = m2 ⊕ 09 · θ4. There are only 28 possible values
for one byte.

4. We guess the values of sk∗7,4, sk
∗
7,5, and compute the desired sum

⊕232

i=1 Y
i
6,4 ‖

Y i
6,5, where Y6,4 ‖ Y6,5 = S−1(R−1(m3 ⊕ sk∗7,4 ‖ sk∗7,5)).

Step 3. Check whether
⊕232

i=1 Y
i
6,4 ‖ Y i

6,5 is equal to 0. If not, discard the key
guess. The wrong key can pass this condition with the probability of 2−8,
we use 5 structures to make sure only right key can remain.

Step 4. Guess the remaining 24 bits key.

Complexity
The data complexity of the analysis is 234.3 chosen plaintexts. For each structure,

Step 2.1 requires about 232 × 216 = 248 S-box operations.
Step 2.2 requires about 224 × 216 × 28 = 248 S-box operations.
Step 2.3 requires about 216 × 216 × 28 × 28 = 248 S-box operations.
Step 2.4 requires about 28 × 216 × 28 × 28 × 28 = 248 S-box operations.
So Step 2 requires about 4× 248 = 250 S-box operations. There are 16 S-box

operations in one round encryption, so Step 2 requires about 250/(16×7) = 243.2

encryptions.
Step 4 requires about 224 encryptions.
So the total time complexity of the analysis is 5× 243.2 ≈ 245.5 encryptions.
In summary, the data complexity of the analysis of 7-round KLEIN-64 is 234.3

chosen plaintexts and the time complexity is 245.5 encryptions.

4.3 Integral Analysis of 8-Round KLEIN-80

The procedure of the integral analysis of 8-round KLEIN-80 is similar to the
integral analysis of 7-round KLEIN-64. We can guess 232 subkeys in the 8-th
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round to partly decrypt. The data complexity of the analysis of 8-round KLEIN-
80 is 234.3 chosen plaintexts and the time complexity is 277.5 encryptions.

5 Conclusion

In this paper, we described the truncated differential and integral cryptanal-
ysis against reduced-round variants of the KLEIN block cipher[7]. According
to the properties of KLEIN round function, a 6-round truncated differential
distinguisher was constructed. Based on this distinguisher, we gave a truncated
differential analysis of 8-round KLEIN-64. Furthermore, we proposed an integral
analysis of 7-round KLEIN-64 and 8-round KLEIN-80 by using a 5-round dis-
tinguisher, which was constructed by utilizing higher-order integral and higher-
order differential properties.

Table 2 summarized the complexities of all analysis results of reduced-round
KLEIN described in this paper.

Table 2. Attacks Complexities on reduced-round KLEIN block cipher

KLEIN-b Rounds Data Time Attacks Source Success Prob.

KLEIN-64 7 234.3CP 245.5 Integral Sec.4.2 –

8 232CP 246.8 TD Sec.3.2 90.8%

KLEIN-80 8 234.3CP 277.5 Integral Sec.4.3 –

† CP: Chosen Plaintext; TD: Truncated Differential Cryptanalysis.
† Time complexity is measured in encryption units.
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Abstract. Modular multiplication is widely used in cryptographic al-
gorithms. In order to improve the efficiency, most of the recent imple-
mentations adopt precomputation. Precomputation improves the speed
and in the meanwhile makes the algorithms more complex. The complex
algorithms are not suitable for hardware implementation. We propose
a new algorithm without precomputation, which is more efficient even
compared with the ones with precomputation. Our algorithm is based
on interleaving modular algorithm. The modulus in our algorithm is en-
larged, and this modification greatly reduces the number of subtractions.
By a small change of the multiplier, our algorithm does not need the last
subtraction. We also propose a pipeline scheme which can achieve high
frequency. Compared with existing work (including the precomputation
ones), our implementation improves the throughput/area by 47%.

Keywords: RSA, hardware implementation, Field Programmable Gate
Arrays, modular multiplication.

1 Introduction

Modular multiplication is widely used in cryptographic algorithms, especially
in ECC and RSA. In the past, these algorithms are mainly used in severs and
PCs. Nowadays, they are used more widely. For example, many POS, pay cards
and mobile phones have security functions. These devices usually do not have
abundant power supply and computing resources as severs and PCs do. The
implementation of the security functions should be more efficient, both faster
and smaller.

Most of the modular multiplication algorithms adopt precomputation to speed
up. Especially in recent days, the adopted precomputation is more complex than
before. Precomputation is the initial computation of an algorithm, the results of
which are then used to speed up later parts of that algorithm. Although precom-
putation can speed up the algorithm, it also makes the algorithm more complex.
The results of the initial computation need more communication and storage.
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For example, the modular multiplication has three inputs, while Montgomery
multiplication has four inputs.

Another problem is how to process the initial computation. The initial com-
putation is only required for precomputation algorithms, not in the original
algorithm. The initial computation is different from the later computation. It
requires extra hardware resources. The published work [1–3] rarely mention how
to process the initial computation and its consuming resources. The usual way is
to use a CPU. But sometimes the systems do not have a CPU or the CPU is not
powerful enough. For example, most smart cards still adopt 8-bit CPUs. We can
also implement a special module for precomputation, but the special module will
need a lot of hardware resources. Therefore the efficiency of the whole algorithm
will be compromised.

According to above discussion, an algorithm with precomputation is complex
and needs extra hardware resources. We propose an efficient modular multipli-
cation algorithm which does not need precomputation. Our implementation is
small and fast. Disregard the portion of initial computation, algorithms with
precomputation are still less efficient than ours. Our algorithm is based on in-
terleaving modular multiplication [4, 5]. One of our improvements is enlarging
the modulus, which significantly reduces the number of subtractions. By a small
change of the multiplier, our algorithm does not need the last subtraction. We
also propose a pipeline scheme, which can achieve high frequency. Compared with
existing RSA implementations, ours improves the throughput/area by 47%.

2 Related Work

The main computation of RSA is modular exponentiation: C =MD (mod N).
The main computation of modular exponentiation is modular multiplication:
C = A · B (mod N). Many algorithms have been proposed to improve the
modular multiplication. Interleaving modular multiplication [4, 5] is an early
one. Many techniques have been used to improve it. For examples, carry save
adders [6] can avoid long carry delay, and sign estimation algorithm [7] is used to
replace the comparison. An important improvement is proposed by Koç in [8].
He proposed a more accurate sign estimation technique which greatly reduces
the mount of computation. But its logic is complex and not suitable for hardware
implementation.

Montgomery algorithm [9] is proposed just after interleaving modular multipli-
cation. Now, most of the modular multiplication algorithms [2, 10, 11] are based
on Montgomery algorithm. A recent improved algorithm is called Multiple-Word
Radix-2 Montgomery Multiplication [2, 10]. These algorithms process every word
separately, which consumes very small area. Another excellent work is Shieh’s [1],
which is highly efficient.

Some work [12, 13] adopt high-radix Montgomery algorithms. They are much
faster than the 2-radix algorithm. However, they need many special resources,
for example, DSP, Multiplier and RAM. These resources may be insufficient in
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some cases. The high-radix algorithms also need a lot of other resource, which
make them less applicable than 2-radix algorithms.

Recently some researchers adopt look-up table to improve the algorithms.
Bunimov first proposed it [14, 15]. Many recent proposals are based on it [16,
17]. These algorithms need more complex precomputation than Montgomery
Multiplication. The precomputation of Montgomery Multiplication only depends
on modulus, while that of the new ones depends on both modulus and multiplier.
The multiplier is variable. Every time the multiplier changes, the look-up table
should be recomputed.

The algorithms without precomputation are rare. Knezevic improved Barrett
algorithm and Montgomery algorithm to discard precomputation [18, 19]. But
this improvement is only applicable to a specific set of modulus.

Our algorithm has no restriction on the modulus, and does not need extra
hardware resources to process precomputation. It is easier to apply. Our algo-
rithm is based on interleaving modular algorithm [4] which also adopts carry
save adder [6] and sign estimation algorithm [7]. Our algorithm reduces cal-
culation much. The amount of our calculation is almost the same as that of
Montgomery’s, while our algorithm is simpler and more suitable for hardware
implementation.

3 Modular Multiplication

We introduce our algorithm in this section. In Section 3.1 and Section 3.2, we
introduce the previous algorithms. In Section 3.3 - 3.5, we introduce our improve-
ment. In Section 3.6, we give the amount of the calculation of our algorithm.

3.1 Interleaving Modular Multiplication

Interleaving modular multiplication is a simple algorithm.

C = A ·B = A ·∑k−1
i=0 Bi2

i =
∑k−1

i=0 (A ·Bi)2
i

= 2(. . . 2(2(0 +A ·Bk−1) +A ·Bk−2) + . . . ) +A ·B0
(1)

In equation (1), Bi is the ith bit of B. Multiplication, addition and shifting
execute alternately. We can do modular operation after each addition. The al-
gorithm is as follows.
Before Step 4, we have

C < N (2)

After Step 4, we have

C = 2C +A · Bi < 3N (3)

On Step 5, we subtract N twice at most. The process is as follows.
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Algorithm 1. Interleaving modular multiplication

Input: A, B, N : k-bit Integer, where A < N ,B < N
Output: C = A ·B (mod N)

1 begin
2 initialization: C = 0
3 for i = k − 1 to 0 do
4 C = 2C + A ·Bi

5 C = C (mod N)

6 end

7 end

if C >= n then
C = C − n

end
if C >= n then

C = C − n
end

3.2 Using Carry Save Adders and Estimation Technique

The interleaving algorithm is not an efficient scheme for big numbers. The sub-
traction and addition have long carry delay, and they can not execute in one
cycle. The redundant number system can resolve this problem. We adopt Carry
Save Adders (CSA), the most used redundant number system, in our algorithm.

The interleaving algorithm needs to compare C with N . The comparison
causes long delay. We use an estimation function to replace the comparison,
which gives the right result when C is not close to N .

First, we introduce an estimation function of number X : T (X, t). T (X, t)
replaces the least significant t bits of X with t zeros. This means

T (X, t) = Xm−1Xm−2 . . . Xt 0 . . . 0︸ ︷︷ ︸
t

(4)

In other words,
T (X, t) = X − (X (mod 2t)) (5)

T (X, t) is the estimated value of X . The relation between T (X) and X can be
expressed as

T (X, t) ≤ X < T (X, t) + 2t (6)

X − 2t < T (X) ≤ X (7)

Then, we define an estimate function of the comparison.

E(C, S,N, t) =

{
1 if T (C, t) + T (S, t) > T (N, t)
0 others

(8)

E(C, S,N, t) is an estimated value of the comparison between C + S and N .
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Theorem 1. If E(C, S,N, t) == 1, then C+S > N ; Else, then C+S < N+2t+1

Proof. If E(C, S,N, t) == 1we have

T (C, t) + T (S, t) > T (N, t) (9)

Because the least significant t bits of T (C), T (S), T (N) are all zeros, we have

T (C, t) + T (S, t) ≥ T (N, t) + 2t (10)

Because T (N, t) + 2t > N , we have

T (C, t) + T (S, t) > N (11)

Then we have
C + S > N (12)

If E(C, S,N, t) == 0, we have

T (C, t) + T (S, t) ≤ T (N, t) (13)

Because T (X, t) ≤ X < T (X, t) + 2t, we have

C + S < T (C, t) + 2t + T (S, t) + 2t ≤ T (N, t) + 2t+1 ≤ N + 2t+1 (14)

We use CSA and the estimate function to improve the interleaving modular
multiplication.

Algorithm 2. CSA and estimation technique algorithm

Input: A, B, N : k-bit Integer, where A < N ,B < N
Output: C,S : (k+1)-bit Integer, where (C,S) = A ·B (mod N),

and(C,S) < N + 2k−3

1 begin
2 initialization: (C,S) = (0, 0)
3 for i = k − 1 to 0 do
4 (C,S) = 2C + 2S + A ·Bi

5 While E(C,S,N, k − 4) == 1 then (C,S) = C + S −N

6 end

7 end

Step 4 adopts CSA. Step 5 adopts CSA and the estimate function. When
C + S is greater than N , we subtract N from C + S.

From Theorem 1, E(C, S,N, k − 4) == 1 means that C + S > N , so the
subtraction does not cause overflow.

For the first time of Step 4, C and S are zeros. For other situations, C and
S are the results of Step 5. So we have E(C, S,N, k − 4) == 0 before Step 4. It
means

T (C, t) + T (S, t) ≤ T (N, t) (15)
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N is k-bit integer, and C , S are (k + 1)-bit integers. Then the kth bits(most
significant bit) of C and S are both zero, and the (k − 1)th bits of C and S
cannot be ones simultaneously. So the kth bits of 2C and 2S cannot be ones
simultaneously. A ·Bi only has k bits, so the kth bit of A ·Bi is zero. On Step 4,
we use CSA to compute 2C + 2S + A · Bi, and the carry-out bit of the kth bit
is zero. So the addition does not cause overflow.

Since neither the subtraction or the addition causes overflow, the whole algo-
rithm will not have overflow.

We estimate the calculation of this algorithm. After Step 5, we have

E(C, S,N, k − 4) = 0 (16)

From Theorem 1, we know

C + S < N + 2k−3 (17)

After Step 4, we have

2C+2S+A·Bk−1−i < 2(C+S)+2k < 2N+2k−2+2k < 2N+N+2N = 5N (18)

So Step 5 needs 4k subtractions totally. And Step 4 needs k additions totally.
One substraction or one addition needs one CSA. The whole calculation is 5k
CSA. This algorithm needs 5k cycles if one cycle is needed for one CSA.

3.3 Enlarging Modulus

In previous algorithm, most of the calculation are subtractions. We enlarge the
modulus, which significantly reduces the number of subtractions.

The modulus is enlarged by 2e times. e is a variable parameter. Usually, we
select e = �log2 k�.

Algorithm 3. Enlarging modulus algorithm

Input: A, B, N : k-bit Integer, where A < N ,B < N
Output: C,S : (k+1+e)-bit Integer, where (C,S) = A ·B (mod N),

(C,S) < N + 2k−3, e = max(�log2 k�, 6)
1 begin
2 initialization: (C,S) = (0, 0), N ′ = N · 2e, B′ = B · 2e
3 for i = k + e− 1 to 0 do
4 (C,S) = 2C + 2S + A ·B′

i

5 While E(C,S,N ′, k + e− 4) == 1 then (C,S) = C + S −N ′

6 end
7 (C,S) = (C/2e, S/2e)

8 end

Compared with the previous algorithm, N and B are enlarged by 2e times
at the beginning, while the (C, S) is divided by 2e at the end. e cannot be too
small, and it is bigger than 6.
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Theorem 2. In the enlarging modulus algorithm, after Step 6, both C and S
are divisible by 2e.

Proof. When i = e, C and S are divisible by 20.
Assume when i = e − u(u is an integer, 0 ≤ u ≤ e − 1), both C and S are

divisible by 2u.
When i = e− u − 1, B′

i is zero, and A · B′
i is zero. After Step 4, both C and

S are divisible by 2u+1. The least significant e bits of N ′ are zero, so after Step
5, both C and S are still divisible by 2u+1.

From the induction, we know after i = 0, both C and S are divisible by 2e.

Steps from 3 to 6 are similar to those in the previous algorithm. After step 6,
we have

(C, S) ≡ A ·B′ (mod N ′) (19)

(C, S) ≡ A ·B · 2e (mod N · 2e) (20)

(C/2e, S/2e) ≡ A ·B (mod N) (21)

After Step 7, we have
(C, S) ≡ A · B (mod N) (22)

Compared with the previous algorithm, this algorithm increases little hardware
resource. Enlarging by 2e and dividing by 2e are shift operations, which do not
need extra hardware resources.

Before we estimate the calculation of this algorithm, we show a theorem.

Theorem 3. In the enlarging modulus algorithm, at most two subtractions exe-
cute on Step 5 when i = m(m is an integer,0 ≤ m < k+ e); When i = m, if two
subtractions execute on Step 5, then when i = m− 1 no subtraction will execute
on Step 5.

Proof. We firstly prove the first part of the theorem. After Step 5, we have

E(C, S,N ′, k + e− 4) = 0 (23)

Form Theorem 1, we know

C + S < N ′ + 2k+e−3 (24)

After Step 4, we have

(C, S) = 2C + 2S +A · Bi < 2(N ′ + 2k+e−3) + 2k = 2N ′ + 2k+e−2 + 2k (25)

Because N ′ has k + e bits,
(C, S) < 3N ′ (26)

So, at most two subtractions execute on Step 5.
Now, we prove the second half. Assume two subtractions execute on Step 5 when
i = m.
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Before Step 5, from the proof of the first half, we know

(C, S) = 2C + 2S +A · Bi < 2(N ′ + 2k+e−3) + 2k = 2N ′ + 2k+e−2 + 2k (27)

On Step 5, two subtractions execute. We have

(C, S) < 2k+e−2 + 2k (28)

After Step 5, the algorithm goes back to Step 4, and i = m− 1. On Step 4, we
have

(C, S) = 2C + 2S +A ·Bi < 2(2k+e−2 + 2k) + 2k = 2k+e−1 + 2k+1 + 2k (29)

The most significant bits of (C, S) are less than those of 2k+e−1 + 2k+1 + 2k.

T (C, k + e− 4) + T (S, k + e− 4) ≤ T (2k+e−1 + 2k+1 + 2k, k + e− 4) (30)

Because e ≥ 6, we have

T (C, k + e− 4) + T (S, k + e− 4) ≤ 2k+e−1 (31)

T (C, k + e− 4) + T (S, k + e− 4) ≤ N ′ (32)

E(C, S,N ′, k + e− 4) = 0 (33)

So, no subtraction executes on Step 5 when i = m− 1.

Theorem 4. The number of subtractions on Step 5 for i = k+ e− 1 to i = 0 is
no more than k + e+ 1.

Proof. Step 5 may have no subtraction, one subtraction or two subtractions, by
which the steps are divided into three parts. n0, n1 and n2 are the number of
respective parts. Step 5 executes k + e times. So

n0 + n1 + n2 = k + e (34)

And the number of the total subtractions on Step 5 is

0 · n0 + 1 · n1 + 2 · n2 = n1 + 2 · n2 (35)

From Theorem 3, we have

n2 ≤ n0 + 1 (36)

Thus,

n1 + 2 · n2 ≤ n1 + n2 + (n0 + 1) = k + e + 1 (37)

So, the number of the total subtractions on Step 5 is no more than k + e+ 1.

e is much less than k. The number of the subtractions on Step 5 is about k,
which is 1/4 of that of the previous algorithm.
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Step 4 needs k+e additions. One substraction or one addition needs one CSA.
The whole calculation is (k + e+ 1)+ (k + e) = 2(k+ e) + 1 CSA at most. This
algorithm needs 2(k + e) + 1 cycles if one cycle is needed for one CSA.

3.4 Pipeline

In function E(C, S,N ′, k + e − 4) , the most significant 5 bits of (C, S) are
compared with the corresponding bits of N , while others are not. The CSA
number is not suitable for comparison. We should add C and S before the
comparison. We use one number to replace the most significant 5 bits of (C, S),
called head. The other k + e− 4 bits are still expressed by two numbers (C, S).
We use expression (head, C, S) to replace the original (C, S). (head, C, S) =
head · 2k+e−4 +C + S . The assignment is shown in Fig.1. In the figure, head is
in red color.

...

...

head C

S

...

N’

A

...

Fig. 1. The alignment of C, S, N ′ and A

In the new expression, E(C, S,N ′, k+ e− 4) is E(head, 0, N ′, k+ e− 4). It is
the comparison between head and T (N ′, k + e− 4).

We use a new register nextE to storage the comparison result. The new al-
gorithm adopts two-stage pipeline. The first stage is the computation of nextE.
The second stage is the computation of (head, C, S). The algorithm is shown in
Algorithm 4.

Step 5 and Step 6 execute in parallel. Step 9 and Step 10 execute in parallel.
On Step 4, newhead has the same value as head after Step 6. On Step 5 nextE is
the value of (newhead > T4(N

′)). It is also the estimation of ((head, C, S) > N ′)
after Step 6. On Step 8, newhead has the same value as head after Step 10. On
Step 9 nextE is the value of (newhead > T4(N

′)). It is also the estimation of
((head, C, S) > N ′) after Step 10. nextE is similar to E(C, S,N ′, k+e−4) in the
previous algorithm. The only difference is computing sequence. In the previous
algorithm, we compute (C, S) first, then compute E(C, S,N ′, k + e− 4). In this
algorithm, we compute the two parts in parallel.
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The critical path of the previous algorithm contains E(C, S,N ′, k+e−4) and
one CSA. In this algorithm, the two parts execute in parallel, and the critical
path is much shorter. The E(C, S,N ′, k+ e− 4) of the previous algorithm needs
to add the most five significant bits of C and S, while the new algorithm only
needs to add one or two bits of C and S. The implementation of the pipeline
algorithm can achieve high frequency. The proof of the algorithm is the same as
the previous one, and the calculation is also the same. It needs 2(k+ e)+1 CSA
at most. It needs 2(k + e) + 1 cycles if one cycle is needed for one CSA.

Algorithm 4. Pipeline algorithm

Input: A, B, N : k-bit Integer, where A < N ,B < N
Output: head:5-bit Integer, C,S : (k+e-4)-bit Integer, where

(head,C, S) = A · B (mod N), (head,C, S) < N + 2k−3,
e = max(�log2 k�, 6)

1 begin
2 initialization: (head,C, S) = (0, 0, 0), N ′ = N · 2e, B′ = B · 2e
3 for i = k + e− 1 to 0 do
4 newhead = 2 · head+ Ck+e−5 + Sk+e−5 + carry(Ck+e−6, Sk+e−6, 0)
5 nextE = compare(newhead,T4(N

′))
6 (head,C, S) = 2(head,C, S) + A · B′

i

7 while nextE == 1 do
8 newhead = head− T4(N

′)− 1 + carry(Ck+e−5, Sk+e−5,∼ N ′
k+e−5)

9 nextE = compare(newhead, T4(N
′))

10 (head,C, S) = (head,C, S)−N ′

11 end

12 end
13 (head,C, S) = (head,C, S)/2e

14 end
15 Note:
16 Function carry(X,Y, Z) = X&Y |Y&Z|Z&X

17 T4(N
′) = T (N ′, k + e− 4)/2k+e−4

18 Function compare(newhead, T4(N
′) is the comparison result of newhead and

T4(N
′)

3.5 Implementation of Modular Multiplication

The output of a modular multiplication may be an input of another modular
multiplication. As the input requirement, it must be a single number and less
than N . The output of Algorithm 4 is (head, C, S), which is not qualified. The
typical steps to solve this are as follow.

S = (head,C, S)
if S >= N then

S = S −N
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From theorem 1, we know S < N + 2k−3 after the addition. So we need to
subtract N once at most.

We have an improved scheme. We do not do the subtraction, but release the
restriction on the input. After the addition, the output is one single number,
but it may be more than N . We adjust the input of Algorithm 4, and we allow
that the input are k + 1 bits. The new one is shown in Algorithm 5. It has
one more i loop because of the enlarging of A and B .We use signal isfinal to
indicate whether we need the final result. If we need the final result, we do the
last subtraction, and the result is less than N .

Algorithm 5. Modular multiplication algorithm

Input: A, B: k+1-bit Integer; N : k-bit Integer;
Input: isfinal: 1-bit Integer
Output: S : (k+e+1)-bit Integer, where S = A · B (mod N), If (isfinal)

S < N ,else S < N + 2k−3, e = max(�log2 k�, 6)
1 begin
2 initialization: (head,C, S) = (0, 0, 0), N ′ = N · 2e, B′ = B · 2e
3 for i = k + e to 0 do
4 newhead = 2head+ Ck+e−5 + Sk+e−5 + carry(Ck+e−6, Ck+e−6, 0)
5 nextE = compare(newhead,T4(N

′))
6 (head,C, S) = 2(head,C, S) + A · B′

i

7 while nextE == 1 do
8 newhead = head− Ts(N

′)− 1 + carry(Ck+e−5, Ck+e−5,∼ N ′
k+e−5)

9 nextE = compare(newhead, T4(N
′))

10 (head,C, S) = (head,C, S)−N ′

11 end

12 end
13 S = (head,C, S)/2e

14 if isfinal & S ≥ N then
15 S = S −N
16 end

17 end
18 Note:
19 Function carry(X,Y, Z) = X&Y |Y&Z|Z&X

20 T4(N
′) = T (N ′, k + e− 4)/2k+e−4

21 Function compare(newhead, T4(N
′) is the comparison result of newhead and

T4(N
′)

The last addition, comparison and subtraction rarely execute, so the speed
of this part is not critical. We just use one 32-bit addition to realize them. The
operands are divided into k/32 groups, and one group has 32 bits. These groups
are added sequentially, from the low-order group to the high-order group. It
needs k/32 cycles. The comparison and subtraction can transform to addition.
So they can use the same hardware resources.
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The architecture of modular multiplication is shown in Fig.2. It has three main
parts: the addition (Step 6), the subtraction (Step 10), and the last addition
(Steps from 13 to 16). The first two parts are two CSA, and consume most of
the whole area. The last addition is a 32-bit addition.

A

B

N
Register

(head,C,S)
<<2t

S

Control 
logic

start done

>>2t

Last 
add

isfinal

Bi

ABi

N’

nextE

Fig. 2. The architecture of modular multiplication

Because i loops increase one, both the addition and the subtraction increase
one. The calculation is about 2(k + e + 1) + 1 CSA. If isfinal == 0, it needs
2(k + e + 1) + 1 + k/32 cycles at most;else, it needs 2(k + e + 1) + 1 + 3k/32
cycles at most.

3.6 The Average Number of Cycles of Modular Multiplication

The number of cycles of the previous algorithm is 2(k+e+1)+1+k/32, which is
about 2k. The additions consume about k cycles, and the subtractions consume
about k cycles. From Theorem 4, the subtractions consume no more than k+e+1
cycles (it is k + e+ 2 in Algorithm 5). Next, we estimate the average number of
subtractions.

From the proof of Theorem 3, after Step 4 of Algorithm 3,

C + S < 2N ′ + 2k+e−2 + 2k

2k+e−2 + 2k is much less than N ′. If C + S is evenly distributed, it has about
50% chance to exceed N ′. So Step 5 has 50% chance to have one subtraction.
The average subtractions are (k + e)/2 (it is (k+ e+ 1)/2 in Algorithm 5). The
average number of cycles of Algorithm 5 is 3(k + e+ 1)/2 + k/32.
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Fig. 3. The average number of cycles for 2048-bit multiplication

Table 1. The statics of the average number of cycles

k 512 1024 2048 4096

cycles 832 1650 3282 6551

cycles 1.63k 1.61k 1.60k 1.60k

This is only a rough estimation. We have also done experiments to evaluate it.
We selected k = 2048. We produced three random integers: A, B and N , where
A and B are (k+1) bits, and N is k bits. Then, we replaced the most significant
and the least significant of N by 1. A,B and N are input to Algorithm 5. We
produced one thousand groups of A,B,N for test. The numbers of cycles are
shown in Fig.3.

The average number of cycles is 3282, about 1.60k. It is very closed to our
previous estimated value 3(k+e+1)/2+k/32 = 3154. The range of the numbers
is very small, which has 99% chance in (1.5k, 1.7k). We also do the experiments
for k = 512 and k = 1024. The result is shown in the Table 1. Generally, the
average number of cycles is about 1.6k.

4 RSA

In work [5], the author reviewed the most popular modular exponentiation algo-
rithms: Left-to-Right (LR) and Right-to-Left (RL). The difference is the direc-
tion in which the bits of e are scanned. The LR binary method is more widely
used (shown in Algorithm 6).

The RL binary method used twice as much area as LR’s, but only increases
50% speed. So we adopt LR binary method. LR binary method uses one mod-
ular multiplication, which executes 1.5h times. h equals to k in our algorithm.
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Algorithm 6. LR Binary Method

Input: M , N : k bits Integer
Input: e : h bits Integer
Output: C = Me (mod N)

1 initialization:C = 1 begin
2 for i = h− 1 to 0 do
3 C = C · C (mod N)
4 if ei = 1 then
5 C = C ·M (mod N)
6 end

7 end

8 end

The input isfinal is 1 for only once, in the last multiplication of RSA. The last
comparison and subtraction (Steps from 13 to 16) just execute once in the whole
RSA.

5 Result and Comparison

5.1 Analysis

The calculation of the original interleaving modular algorithm (Algorithm 2) has
5k CSA at most, while that of our improved algorithm has 2k CSA at most. The
calculation of Montgomery algorithm has also 2k CSA. Although Montgomery
algorithm adopts precomputation, it does not have advantage in calculation
over our algorithm. The comparison between Montgomery algorithm and our
algorithm are shown in Table 2.

Montgomery multiplication needs one more input than our algorithm. Mont-
gomery RSA needs twice domain transitions. The transitions do not increase
the calculation much, but they make the algorithm more complex, which also
needs more hardware resources. If a system contains Montgomery RSA, it must
process the initial computation, and needs extra communication and storage for
the result of the initial computation. These disadvantages make Montgomery
algorithm less efficient. One advantage of Montgomery algorithm is that it does
not have comparison, but this is not important for 2-radix algorithm. We can
use the estimate function to replace the comparison.

5.2 Comparison

We select Xilinx XC2V6000 as our hardware platform, which is the most used
platform by other researchers. Our RSA implementation is very small, only half
of other implementations. Our implementation improves the Throughput/Area
by 47%. Other implementations do not include the consuming resource of the
initial computation, even if they adopt precomputation.
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Table 2. Comparison between Montgomery algorithm and our algorithm

Montgomery Proposal

Modular multiplication
four inputs three inputs

none need comparison

RSA need domain transition none

whole system
need initial computation none

extra communication and storage none

Montgomery algorithm is currently the most efficient modular multiplica-
tion algorithm. Huang [2] proposes an improved one based on multiple words.
Shieh [1] proposes an improved one based on CSA. The efficiency is shown in
Table 3.

Amanor implements the look-up table algorithm [17] proposed by [14, 15].
These algorithms need initial computation for each multiplication, which need a
lot of resources. The actual efficiency is not as good as that shown in the table.

AbdelFattah implements an improved interleaving modular algorithm [20],
which does not need the precomputation. His implementation only has half
throughput as ours, and needs double slices. Its Throughput/Area is 1/4 of
ours.

Table 3. Comparison for modular multiplication implementation

Key size Work
Freq Latency Area Throughput Throughput/Area

(MHz) cycles ( slices ) (Mbps) (Mbps/slice))

1024 McIvor [3] 123.6 1025 8294 123.5 0.015

1024 Huang [2] 100 1088 4178 94.1 0.023

1024 Shieh [1] 219.06 1028 8000 218.2 0.027

1024 Amanor [17] 69.4 1025 4608 69.5 0.015

1024 AbdelFattah [20] 181.0 4078 7546 45.4 0.006

1024 Proposed 181.6 1650 4534 112.7 0.025

2048 McIvor [3] 110.6 2049 12490 110.5 0.009

2048 Huang [2] 100 2176 8337 94.1 0.011

2048 Proposed 181.6 3282 8950 113.3 0.012

4096 McIvor [3] 92.81 4049 25474 92.7 0.004

4096 Huang [2] 100 4176 16648 98.1 0.0059

4096 Proposed 181.6 6551 17765 113.5 0.0064

Our modular multiplication has the highest efficiency among existing works
expect Shieh’s, which is a little higher than ours. Actually, Shieh’s algorithm is
less efficient than ours. This can be known from RSA implementation, shown
in Table 4. His RSA adopts LR binary method, which is the same as ours. His
implementation consumes twice as much area as ours, and the speed is similar to
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Table 4. Comparison for RSA implementation

Key size Work
Freq Latency Area Throughput Throughput/Area

(MHz) cycles ( slices ) (Kbps) (bps/slice))

1024 Mclvor [21] 95.9 1025*1024 23208 93.5 4.0

1024 Shieh [1] 152.49 1028*1536 12537 98.9 7.9

1024 Proposed 176.6 1650*1536 6174 71.4 11.6

ours. Our throughput/area is 47% more than Shieh’s. Our RSA is implemented
according to LR Binary Method. It does not need precomputation, while Shieh’s
needs precomputation which is not implemented in his work.

The reason of the comparison result has been shown in Table 2. Shieh’s algo-
rithm needs twice domain transition, which makes the algorithm more complex.
Its implementation needs more area, and the frequency decreases significantly.
From modular multiplication to RSA, Shieh’s implementation increases 57%
area, while ours increases only 36% area, and Shieh’s implementation decreases
30% frequency, while ours is almost unchanged. These comparisons are shown
in Table 5.

Table 5. From modular multiplication implementation to RSA implementation

Key size Work Freq decreases Area increases

1024 Shieh[1] 30% 57%

1024 Proposed 2.8% 36%

Our algorithm is highly efficient. Compared with the algorithms without
precomputation, throughput/area of our RSA implementation improves three
times. Compared with the algorithms with precomputation, throughput/area of
our RSA implementation improves 47%. Our algorithm does not need precom-
putation, and does not need extra hardware resource, which is easier to apply.

6 Conclusion

In this paper, we present an efficient RSA algorithm. Our algorithm is based on
interleaving modular multiplication, and significantly reduces the calculation.
Our algorithm has a great improvement compared with other algorithms with-
out precomputation. Even compared to algorithms with precomputation, our
algorithm is still more efficient. The algorithms without precomputation have
many advantages. They do not need initial computation, extra communication
and storage. They usually are simple and suitable for hardware implementation.
If precomputation can not bring more advantages, we can try algorithms without
precomputation.
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Abstract. The core of the 3rd Generation Partnership Project (3GPP)
encryption standard 128-EEA3 is a stream cipher called ZUC. It was
designed by the Chinese Academy of Sciences and proposed for inclusion
in the cellular wireless standards called “Long Term Evolution” or “4G”.
The LFSR-based cipher uses a 128-bit key. In this paper, we first show
timing attacks on ZUC that can recover, with about 71.43% success rate,
(i) one bit of the secret key immediately, and (ii) information involving
6 other key bits. The time, memory and data requirements of the attacks
are negligible. While we see potential improvements to the attacks, we
also suggest countermeasures.

Keywords: Stream cipher, cache timing attack, key recovery.

1 Introduction

ZUC [8] is a stream cipher designed by the Data Assurance and Communication
Security Research Center (DACAS) of the Chinese Academy of Sciences. The
cipher forms the core of the 3GPP mobile standards 128-EEA3 (for encryption)
and 128-EIA3 (for message integrity) [7]. It is presently being proposed by the
European Telecommunications Standards Institute (ETSI) for inclusion in the
Long Term Evolution (LTE) or the 4th generation of cellular wireless standards
(4G).1 ZUC is LFSR-based and uses a 128-bit key and a 128-bit initialization
vector (IV). Some key points in the evolution of ZUC are listed in the following
timeline.

Timeline:

– 18th June 2010: The Security Algorithms Group of Experts (SAGE) of the
ETSI published a document providing the specifications of the first version
of ZUC. The document was indexed “Version 1.0”.

1 Strictly speaking, LTE is not 4G as it does not fully comply with the International
Mobile Telecommunications Advanced (IMT-Advanced) requirements for 4G. Put
differently, LTE is beyond 3G but pre-4G.

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 269–288, 2012.
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– 26th–30th July 2010: Improvements and minor corrections were made succes-
sively to the C implementation of the ZUC algorithm of Version 1.0. These
resulted in versions 1.2 and 1.3 of the ETSI/SAGE document. The preface
to Version 1.3 was corrected and the resulting document released as Version
1.4.

– 02nd–03rd December 2010 (First International Workshop on ZUC Algorithm):
A few observations on the algorithm of Version 1.4 were reported (see [6])
but none of these posed any immediate threat to its security.

– 05th–09th December 2010 (ASIACRYPT): The algorithm of Version 1.4 was
cryptanalysed by Wu et al. [20] and the results were presented at the rump
session of ASIACRYPT 2010.

The attack reduces the effective key size of ZUC to about 66 bits by
exploiting the fact that a difference set between a pair of IVs may result in
identical keystreams.

– 08th December 2010: Gilbert et al. reported an existential forgery attack on
the 128-EIA3 MAC algorithm.

The attack allows, given any message and its MAC value under an un-
known integrity key and an initialization vector, to predict the MAC value
of a related message under the same key and the same initialization vector
with a success probability of 1/2.

Gilbert et al. also gave a modified version of the 128-EIA3 algorithm (cf.
[9, Algorithm 2]).

In the original 128-EIA3 construction, some 32-bit keystream words are
used in computing the universal hash function, and then the next whole word
of keystream is used as a mask. But in [9, Algorithm 2], the first keystream
word is used as the mask. The latter algorithm better fits the standard
Carter-Wegman construction [5].

– 04th January 2011: In response to Wu et al.’s key recovery attack, the ini-
tialization of ZUC was modified. Version 1.5 contains the new algorithm
[8]. This algorithm is the one we analyse in this paper; we have been and
shall henceforth be simply calling it “ZUC” (i.e., without any accompanying
version numbers).

– 05th–06th June 2011 (The 2nd International Workshop on ZUC Algorithm
and Related Topics): Gilbert et al. presented an updated version (cf. [9])
of their paper. In this they argue that [9, Algorithm 2] might have slightly
greater resistance against nonce reuse.

– 07th June 2011 – present: Changing the ZUC integrity algorithm of 128-
EIA3 to [9, Algorithm 2] was being considered by the ETSI/SAGE in June
2011. Although [9, Algorithm 2] offers some advantages, they appear to
be marginal. To the best of our knowledge, it is not yet decided by the
ETSI/SAGE as to which keystream word will be used as the mask word.

In this paper, we present two timing attacks on ZUC, each of can (in
the best case) recover with (nearly) 0.7143 success probability, (i) one bit
of the key immediately, and (ii) information involving 6 other bits of the
key. Before describing how this paper is organised, we shall discuss timing
attacks briefly.
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Timing attack: This is a side-channel attack in which the attacker exploits tim-
ing measurements of (parts of) the cryptographic algorithm’s implementation.
For example, in the case of unprotected AES implementations based on lookup
tables, the dependence of the lookup time on the table index can be exploited
to speed up key recovery [4]. A cache timing attack is a type of timing attack
which is based on the idea that the adversary can observe the cache accesses of
a legitimate party. The cache is an intermediate memory between the CPU and
the RAM and is used to store frequently used data fetched from the RAM. The
problem with the cache memory is that, unlike the RAM, it is shared among
users sharing a CPU.2 Hence, if Bob and Eve are sharing a CPU and Eve is
aware that Bob is about to encrypt, Eve may initiate her cache timing attack as
follows. She first fills the cache memory with values of her choice and waits for
Bob to run the encryption algorithm. She then measures the time taken to load
the earlier cache elements into the CPU; loading is quick if the element is still in
cache (such an event is called a cache hit ; its complement is a cache miss) and
not overwritten by one of Bob’s values. This technique is known as Prime+Probe
[15]. Cache timing attacks have been successfully mounted on several ciphers,
notably the AES [4,15,22,11].

In [15], two types of cache timing attacks are introduced – synchronous and
asynchronous. In a synchronous attack, the adversary can make cache measure-
ments only after certain operations of the cipher (e.g., a full update of a stream
cipher’s internal state) have been performed. In this attack scenario, the plaintext
or the ciphertext is assumed to be available to the adversary. An asynchronous
cache adversary, on the other hand, is able to make cache measurements in par-
allel to the execution of the routine. She is able to obtain a list of all cache
accesses made in chronological order [22]. Here, there are different viewpoints
on the resources available to the adversary. According to Osvik et al., the ad-
versary has only the distribution of the plaintext/ciphertext and not sample
values [15]. Zenner differs in [22] where he argues that the adversary can (par-
tially) control input/output data and observe cache behaviour. Asynchronous
attacks are particularly effective on processors with simultaneous multithread-
ing. One of the timing attacks in this paper is an asynchronous cache timing
attack, and the other is a straightforward timing attack that does not involve the
cache.

Organisation: Section 2 provides the specifications of ZUC along with some
notation and convention. The preliminary observations that lead us to timing
attacks are listed in Sect. 3 and the attacks are detailed in Sect. 4. We follow
this with an analysis of some design/implementation modifications that resist
the attacks, in Sect. 5. In Sect. 6, we see possible improvements to the timing
attacks and find that the proposed design modifications resist these improved
attacks too. In addition, we see several highlights of our attacks such as the

2 Actually, in most modern CPUs the cache is simply the static RAM (SRAM) and
the dynamic RAM (DRAM) is the other, predominant type of computer memory
that we simply call “the RAM”.
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novelty of an employed technique. The paper concludes with a suggestion for
future work, in the same section.

2 Specifications of ZUC

In this paper, we use several of the notation and convention followed in [8] in
addition to that provided in Table 1.

Table 1. Notation and convention

Notation Meaning

LSB Least significant bit

MSB Most significant bit

� Multiplication modulo (231 − 1)

ti(j) The jth bit (j = 0 denoting the LSB) of ti
[β1β2 . . . βn] β1||β2|| . . . ||βn

YH [Y(30)Y(29) . . . Y(15)] , when |Y | = 31 bits
[Y(31)Y(29) . . . Y(16)] , when |Y | = 32 bits

YL [Y(15)Y(14) . . . Y(0)]

As previously mentioned, the inputs to the ZUC cipher are a 128-bit key and
a 128-bit IV. The algorithm has three parts or “layers” – a linear feedback shift
register (LFSR) layer, a bit-reorganisation (“BR”) layer and a nonlinear func-
tion F . The execution of the algorithm proceeds in two stages – an initialization
stage and a “working” stage. Each iteration of the algorithm in the working
stage generates 32 bits of keystream output. We shall now detail the layers and
stages to the level that is required for the understanding of the results to follow.
For the complete specifications, the interested reader is referred to [8, Sect. 3].

The LFSR layer: ZUC uses one LFSR that contains sixteen 32-bit cells con-
taining 31-bit values s0, s1, . . . , s15. However, none of the 31-bit elements can
assume the value 0; the remaining 231 − 1 values are allowed. The steps of the
LFSR layer in the initialization mode comprise Algorithm 1.

Algorithm 1. The LFSR layer in the initialization mode

1: v := 215 � s15 + 217 � s13 + 221 � s10 + 220 � s4 + 28 � s0 + s0 mod (231 − 1);
2: s16 := (v + u) mod (231 − 1); /* u is derived from the output of F */
3: if s16 = 0 then
4: s16 ← 231 − 1;
5: (s1, s2, . . . , s15, s16)→ (s0, s1, . . . , s14, s15);

The steps of the LFSR layer in the working mode comprise Algorithm 2.
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Algorithm 2. The LFSR layer in the working mode

1: s16 = 215 � s15 + 217 � s13 + 221 � s10 + 220 � s4 + 28 � s0 + s0 mod (231 − 1);
2: if s16 = 0 then
3: s16 ← 231 − 1;
4: (s1, s2, . . . , s15, s16)→ (s0, s1, . . . , s14, s15);

The BR layer: In this layer, 128 bits are extracted from the cells of the LFSR
and four 32-bit words are formed. Three of these words (X0, X1, X2) are used
by the nonlinear function F , and the fourth word (X3) is used in producing the
keystream.

The nonlinear function F : This function involves two 32-bit values in mem-
ory cells (R1, R2), one 32 × 32 S-box (S), two linear transforms (L1, L2) and the
aforementioned three 32-bit words produced by the BR layer. The output of the
function F is a 32-bit word W . The 32-bit keystream word Z, that is produced
in every iteration of the working mode of the ZUC algorithm, is simply W ⊕X3.
The F function is defined as follows:

F (X0, X1, X2){
1: W = (X0 ⊕R1) +R2 mod 232;
2: W1 := R1 ⊕X1;
3: W2 := R2 ⊕X2;
4: R1 = S(L1(W1L||W2H));
5: R2 = S(L2(W2L||W1H));}

Key loading: The key loading procedure expands the 128-bit secret key and the
128-bit IV to form the initial state of the LFSR. In [8], this key is denoted as k (=
k0||k1|| . . . ||k15, where each ki is a byte) and the IV as iv (= iv0||iv1|| . . . ||iv15,
where each ivi is a byte). In addition to k and iv, a 240-bit constant D (=
d0||d1|| . . . ||d15) is used in the key loading procedure. We shall now provide the
binary representations of the di’s first (in Table 2), followed by the key loading
procedure.

Given this, the key loading is a set of very simple and straightforward steps
given by:

si = ki||di||ivi , for i ∈ {0, 1, . . . , 15} . (1)

The execution of ZUC: As mentioned earlier, the execution of the ZUC al-
gorithm proceeds in two stages. We shall now describe these stages.

The initialization stage: This stage is given by Algorithm 3.
The working stage: This stage, in turn, has two sub-stages that are given by
Algorithms 4 and 5.
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Table 2. The constants di, i ∈ {0, 1, . . . , 15}, used in the key loading procedure

d0 100010011010111 d8 100110101111000

d1 010011010111100 d9 010111100010011

d2 110001001101011 d10 110101111000100

d3 001001101011110 d11 001101011110001

d4 101011110001001 d12 101111000100110

d5 011010111100010 d13 011110001001101

d6 111000100110101 d14 111100010011010

d7 000100110101111 d15 100011110101100

Algorithm 3. The initialization stage of ZUC execution
1: ctr = 0;
2: repeat
3: Execute the BR layer;
4: Compute the nonlinear function F taking as inputs the outputs X0, X1 and X2

of the BR layer;
5: Run Algorithm 1;
6: ctr ← ctr + 1;
7: until ctr = 32

Algorithm 4. First sub-stage of the working stage of ZUC execution

1: Execute the BR layer;
2: Compute the nonlinear function F taking as inputs the outputs X0, X1 and X2 of

the BR layer;
3: Discard the output W of F ;
4: Run Algorithm 2;

Algorithm 5. Keystream generating sub-stage of the working stage of ZUC
execution
1: repeat
2: Execute the BR layer;
3: Compute the nonlinear function F taking as inputs the outputs X0, X1 and X2

of the BR layer;
4: Compute the keystream as Z = W ⊕X3;
5: Run Algorithm 2;
6: until one 32-bit keystream word more than the required number of words is gen-

erated
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3 Motivational Observations

We start with the following two trivial observations.

Observation 1. The ZUC key is initially loaded directly into the 16 LFSR cells.

Observation 2. Multiplication and addition in the initialization mode and work-
ing mode of the LFSR layer are modulo (231− 1). Other additions and multipli-
cations are modulo 232.

Addition modulo (231 − 1) of two 31-bit integers x and y is performed in [8]
as follows. First, they are stored in 32-bit cells and z = x + y mod 232 is com-
puted. If the end carry, meaning the carry-in at the MSB position of a 32-bit
word/register/memory cell, is b, the MSB of the 32-bit z is first discarded and
then this 31-bit word is incremented by b. This is implemented in C in [8] as:

u32 Add(u32 x, u32 y) {

u32 z = x + y;

if (z & 0x80000000)

z = (z & 0x7FFFFFFF) + 1;

return z;

}

It is to be noted that the increment step in Add() cannot regenerate end carry3

because x, y ∈ {1, 2, . . . , 231 − 1} implies that u32 z has at least one zero in its
31 LSBs.

An end carry of 1 brings in one extra 32-bit AND operation and one 32-bit
addition in the software implementation (in hardware implementation, we have
32 bitwise AND operations and one 32-bit ripple carry addition). Let Tcarry
denote the total time taken by the processor to perform these additional oper-
ations and T denote the time taken to run the Add() subroutine without the
step where z is incremented. We now have the following simple observation that
forms the base of our timing analysis.

Observation 3. If the attacker observes that the time taken to run the Add()
subroutine is T + Tcarry, then she necessarily concludes that the end carry is
1, and can use this to retrieve some information on the summands x and y in
general and their MSBs in particular.

In Sect. 4, we shall show how we exploit Observations 1–3 to mount (partial)
key recovery attacks on ZUC.

3 Throughout this paper, a ‘generated’ or ‘produced’ end carry is always 1 unless
otherwise stated.
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4 The Timing Attacks

In this section, we shall examine the first invocation of the LFSR layer in the
initialization mode. Recall that the first step of Algorithm 1 is:

v := 215� s15+217� s13+221� s10+220� s4+28� s0+ s0 mod (231− 1) . (2)

Given a 32-bit cell containing a 31-bit integer δ, the product 2n�δ is implemented
in C in [8] as ((δ  n)|(δ � (31 − n)))& 0x7FFFFFFF . Given this and the
manner in which the key bits are loaded into the cells initially (see [8, Sect. 3]),
we see that the 31-bit summands on the RHS of (2) in the first round of the
initialization mode are:

z1 := [k0(7)k0(6) . . . k0(0)d0(14)d0(13) . . . d0(0)iv0(7)iv0(6) . . . iv0(0)] ,

z2 := [d0(14) . . . d0(0)iv0(7) . . . iv0(0)k0(7) . . . k0(0)] ,

z3 := [d4(2)d4(1)d4(0)iv4(7) . . . iv4(0)k4(7) . . . k4(0)d4(14) . . . d4(3)] ,

z4 := [d10(1)d10(0)iv10(7) . . . iv10(0)k10(7) . . . k10(0)d10(14) . . . d10(2)] ,

z5 := [d13(5) . . . d13(0)iv13(7) . . . iv13(0)k13(7) . . . k13(0)d13(14) . . . d13(6)] ,

z6 := [d15(7) . . . d15(0)iv15(7) . . . iv15(0)k15(7) . . . k15(0)d15(14) . . . d15(8)] .

In the C implementation of ZUC in [8], the zi’s are added modulo (231 − 1) as
((((z1 + z2) + z3) + z4) + z5) + z6,

4 using the Add() subroutine. Recall that the
di(j)’s are known (see Table 2). There is no vector [z1(30)z2(30) . . . z6(30)] such
that an end carry is not produced. This is because d0(14) = 1 and d15(7) = 1. Let
c1 denote the carry bit produced by the addition of z1(29), z2(29) and the carry
coming in from bit position 28 (bit position 0 denotes the LSB), in the first step
of the Add() subroutine. The sum bit in this addition is added with z3(29) and
the corresponding carry coming in from bit position 28.5 Let c2 denote the carry
bit produced therefrom. Similarly c3, c4 and c5 are defined. The only binary
vectors Γ := [c1c2 . . . c5z1(30)] that are capable of producing end carry exactly
once are:

Γ1 := [0 0 0 0 0 0] ,

[Γ2Γ3Γ4Γ5Γ6Γ7]
T := I6 ,

where I6 is the identity matrix of size 6.

4 Evidently there are other orders in performing the modular additions; e.g., ((((z1 +
z3) + z2) + z4) + z5) + z6. However, a similar analysis as that in this paper can be
performed for each of these orders.

5 Strictly speaking, the sum bit may be flipped before it is added with z3(29) and the
carry-in from bit position 28. This is because of the increment-by-1 step in Add().
However, the sum bit is flipped only (i) when there is an end carry and (ii) if all the
29 LSBs in the sum are 1’s. The probability for such an event is intuitively negligible,
even considering that many bits of the zi’s are constants. We therefore ignore such
bit flips.



The Stream Cipher Core of the 3GPP Encryption Standard 128-EEA3 277

Clarification: Among the MSBs of the 31-bit zi’s, all but the MSB of z1 are
known to us. Let us, for example, suppose that this unknown bit is 1. Then, we
are bound to have a carry-out (in other words, carry-in at the bit position 31
or ‘end carry’). Since the zi’s are added progressively modulo (231 − 1), we can
have end carry produced many times (λ, say, in total). If the MSBs of the zi’s
are all variables, λ is bounded from above by 5, the number of additions modulo
232. (For the case at hand, though, this upper bound is conjectured to be 3 by
means of a simulation.)

Now, what must be the carry-in’s at the bit position 30, for each of these
additions, such that we have only one carry-out? It is rather straightforward to
see that the answer is [00000] for the 5 additions. If one of these bits is 1 instead
of 0, then we would certainly have one more carry-out. Thus, when the MSB of
z1 is 1, the only favourable carry vector is [00000]. This is what Γ7 means. We
similarly have Γ1, Γ2, . . . , Γ6 as the favourable binary vectors for the case when
the MSB of z1 is 0. 
�

Reverting back to the Γi’s, one can see that in 5 out of 7 cases, z1(30) = 0
and c1 = 0. In each of z1, z2, . . . , z6, we have the unknown key bits, (un)known
IV bits and known d-bits. If all the 31 z-bits are unknown variables, one could
assume that they are uniformly distributed at random6 and evaluate the like-
lihood of the occurrence of each of Γ1, Γ2, . . . , Γ7.

7 Because at least 15 bits of
each of z1, z2, . . . , z6 are constants, the assumption of uniform distribution can-
not be right away made anymore. If the IV is a known constant, one can assume
that the 40 key bits k0||k4||k10||k13||k15 are uniformly distributed at random
and compute Pr(Γi), for i ∈ {1, 2, . . . , 7}, by running a simulation. Otherwise,
the 40 IV bits iv0||iv4||iv10||iv13||iv15 may also be assumed to be uniformly dis-
tributed at random, and the probabilities Pr(Γi) estimated theoretically. How-
ever, the latter approach appears to be highly involved, so we instead performed
Experiment 1.

Experiment 1. The key/IV bytes k0 and iv0 are exhaustively varied, setting
every other key/IV byte to 0x00, and the cases where end carry is produced
exactly once, when the z1, z2, . . . , z6 are added modulo (231 − 1), are examined.

We found 6995 such cases (out of a total of 256 × 256 = 65536 cases). In 3444
of the cases, the vector was Γ6; in 3030 cases, Γ5; and in the remaining 521
cases, the vector was Γ3. (A few of these cases are listed in Appendix A.) Firstly,
this affirms that there are binary vectors that occur in practice. Next, if these
are the only such vectors that occur in practice, then we have recovered z1(30),
or the MSB of k0, with probability 1 when the time taken to execute (2) is at

6 The probability distribution here is a priori.
7 Here, one may choose to ignore negligible biases in the carry probabilities. For exam-
ple, when two 32-bit words are added modulo 232, the carry-in at the MSB position
is likely to be 0 with a very small bias probability of 2−32. Bias probabilities of the
carries generated in modular sums have been examined in several works [19,14,17,16].
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its minimum. This minimum time period would naturally be Tconst+Tcarry, with
Tconst being the constant time component (i.e., the sum total of the execution
times of the steps, of the Add()’s invoked for (2), that are independent of the
respective x’s and y’s). With this, let us proceed to the second step of the
initialization mode, viz.,

s16 = v + u mod (231 − 1) , (3)

where u =W � 1 (see Sect. 2). We shall now argue that there are significantly
many cases where (3) does not involve an end carry generation.

We performed Experiment 1 again, this time counting the frequency at which
the MSB of v took the value 0. The total number of such cases was 32840,
translating to a probability of 0.5011. Therefore, v30 appears to be uniformly
distributed at random. The first value that u takes after it is initialised is W =
(X0 ⊕R1(ini)) +R2(ini) mod 232, where R1(ini) and R2(ini) are the initial values
of R1 and R2, respectively. From [8, Sect. 3.6.1], we infer that R1(ini) = 0 and
R2(ini) = 0. Hence, W = X0 and

u =W � 1 = X0 � 1

= s15H ||s14L � 1

= [s15(30)s15(29) . . . s15(15)]||[s14(15)s14(14) . . . s14(1)]
= k15(7)||{0, 1}30 ; (4)

and this is value of u that goes into step 2 of the first invocation of Algorithm 1.
Since k15(7) is an unknown key bit, u30 can be reasonably assumed to be uni-
formly distributed at random. Given this, even if the carry-in at the bit position
30 were to be heavily biased towards 1, with 0.25 probability we would still have
the carry-out to be 0. In summary, the minimum execution time of Algorithm 1
can reasonably be expected to be T ′

const+Tcarry, T
′
const being the constant time

component, for anywhere between 25% and 50% of the key-IV pairs. We shall
now show two ways to measure the execution time of Algorithm 1 and, using it,
recover key-dependent information.

1. Through Cache Measurements: In [22], Zenner makes a mention of a side-
channel oracle ACT KEYSETUP() that provides an asynchronous cache adversary a
list of all cache accesses made by KEYSETUP(), the key setup algorithm of HC-256,
in chronological order. Similarly, we introduce an oracle ACT Algorithm-3() that
provides the adversary with a chronologically ordered list of all cache accesses
made by Algorithm 3. Zenner does not mention in [22] whether or not such an
ordered list normally contains the time instants of the cache accesses as well.
We assume that the instants are contained in the list. This is a rather strong
assumption because in the absence of the oracle, the adversary has to have
considerable control over the CPU of the legitimate party, in order to obtain the
cache access times.

Given this assumption, the adversary scans through the list and calculates
the time difference between the third and the fourth accesses of the S-box S.
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The first access to S is when it is initialised. Before Algorithm 1 is invoked for
the first time, the nonlinear function F is computed (see Algorithm 3). During
this computation, S is accessed twice (see the definition of F in Sect. 2). The
next (i.e., the fourth) access of S happens after a few constant-time operations
(e.g., executing the BR layer, computing W ) that follow the first invocation
of Algorithm 1. Let the time taken to perform these operations be denoted by
T ′′
const. Then, the aforesaid time difference between the third and the fourth cache

accesses of S provides the adversary with T ′
const+λTcarry+T

′′
const, λ ∈ {1, 2, 3}.

The adversary can easily measure Tcarry, T
′
const and T ′′

const by simulating with
an arbitrarily chosen key-IV pair (in practice, quite a few pairs will be required
for precision). Thereby, the adversary obtains the value of λ. When λ = 1, the
adversary is able to recover the MSB of k0 immediately with probability 1.

Now, since Experiment 1 cannot be performed over all key-IV pairs, we rea-
sonably assume that Γ1, Γ2, . . . , Γ7 are equally likely to occur in practice. Under
this assumption, Pr(k0(7) = 0) falls to 6/7 = 0.8571. This probability is further
reduced to 5/7 = 0.7143 if we are to additionally have c1 = 0.

The timing analysis above assumes that S is in cache. This is a very realistic
assumption for the following reason. In [8, Appendix A], the S-box S is imple-
mented using two 8 × 8 lookup tables, viz., S0 and S1. Encryption performed
many times on a single CPU would ideally result in the elements of these tables
to be frequently accessed. And, every element of S0 and S1 could be expected to
be accessed frequently if each encryption, in turn, invokes Algorithm 5 multiple
times (i.e., long keystream is generated). This would ideally place the lookup
tables in the cache.

2. Using Statistical Methods That Do Not Involve Any Cache Mea-
surement: The execution time of Algorithm 1 can also be estimated without
performing cache measurements. Let us recall that Algorithm 1 is run 32 times
during the initialization process (see Algorithm 3). Following this, Algorithm 2
is run once (along with constant time steps of Algorithm 4 and Algorithm 5)
before the first 32-bit keystream word is output (see Algorithms 4 and 5). Now,
the first step of Algorithm 2 is identical to the first step of Algorithm 1. The
subsequent steps of Algorithm 2 are constant time operations.8 Thereby, the
total execution time till the first keystream word is generated is

T ′′′
const + Tcarry · (

31∑
j=0

λj) + T
(w)
const + λ

(w)
1 · Tcarry , (5)

where
8 Throughout this paper, we ignore steps 3 and 4 of Algorithm 1 (and, naturally, steps
2 and 3 of Algorithm 2) because the event s16 = 0 occurs randomly with probability
2−31 which is negligible when compared to the probability that end carry is generated
exactly once. Besides, the step 4 of Algorithm 1 is just an assignment operation and
consumes only a small fraction of the time it takes to perform one 32-bit AND and
one 32-bit addition. Therefore, we can safely assume that steps 3 and 4 of Algorithm 1
have negligible influence on the timing analysis.
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1. T ′′′
const is the sum total of 32 · T ′

const and the constant-time steps of Algo-
rithm 3;

2. λj , j ∈ {0, 1, . . . , 31}, is the number of times end carry is generated in the
(j + 1)th iteration of Algorithm 1;

3. T
(w)
const is the sum total of the execution times of the constant time steps of

Algorithm 2, plus the time to compute steps 1–3 of Algorithm 4 and steps
2–4 of Algorithm 5;

4. λ
(w)
1 is the λ of the first run of Algorithm 2;

5. λj , λ
(w)
1 ∈ {0, 1, . . . , 5}, ∀j ∈ {0, 1, . . . , 31}.

Let us now try to estimate the mean of the λ’s assuming the z-terms are uni-
formly distributed from iteration 17 of Algorithm 1 onwards. This assumption
is very reasonable at iteration 17, when every LFSR element has been updated
once, and the subsequent iterations. We performed Experiment 2 to determine
the mean.

Experiment 2. The new [z1(30)z2(30) . . . z6(30)] is exhaustively varied, and so is
[c1c2 . . . c5]. The λ for each [z1(30)z2(30) . . . z6(30)c1c2 . . . c5] is counted.

We obtained the frequencies 12, 220, 792, 792, 220, and 12 for λ = 0, 1, 2, 3, 4, 5,
and 6 respectively.

From these frequencies we obtain that the mean λ,

λ̄ =
0 · 12 + 1 · 220 + 2 · 792 + 3 · 792 + 4 · 220 + 5 · 12

211
= 2.5 . (6)

For the iterations 17–32 of Algorithm 1 and iteration 1 of Algorithm 2, the
expected cumulative λ is 17 · λ̄ = 42.5. The cumulative λ (expected) can be
computed for iterations 2–16, but in these computations one needs to make
certain assumptions. This is because, in any iteration before the 17th, at least
one of the z-vectors is composed of bits loaded directly from the key, IV and
the d-constants. Assuming that the incoming carries at the bit position 30 are
uniformly distributed can make the λ calculations erroneous. One may instead
resort to simulations, but even then would have to perform extrapolations. For
example, if the IV is unknown, then in iteration 2, to determine

– Pr(c1 = 0), the simulation takes O(215) time (15 unknown key and IV bits);
– Pr(c2 = 0), the simulation takes O(215 · 216) = O(231) time (16 unknown

key and IV bits and 215 possible outputs of the previous simulation);
– Pr(c3 = 0) or Pr(c4 = 0), the simulation takes O(231 · 216) = O(247) time

(similar reasoning as the above);
– Pr(c5 = 0), the simulation takes O((231 − 1) · 231) = O(262) time (because
s15 has been changed at the end of iteration 1 and the new s15 can assume
any value in the set {1, 2, . . . , 231 − 1}).

From these probabilities, it is rather easy to compute the average λ by building
a truth table of the λ-values and the corresponding vectors [z1(30) z2(30) . . .
z6(30) c1 c2 . . . c5]. Such a table would consist of 27 rows because z2(30), z3(30),
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z4(30) and z5(30) are known constants. Looking at the O(262) time complexity,
however, one can at the best perform a partial simulation and extrapolate the
result. This means that there is always an error in computing the expected λ for
each of the iterations 2–16. Hence, we can instead assume that the expected λ
is λ̄ for each of these iterations. This is also error-prone, but we can construct
an appropriate credible interval to mitigate the error. This is done as follows.
First, upon performing Experiment 2 with more z- (and hence c-) bits and
observing the resultant frequencies (i.e., similar to those corresponding to (6)),
we will observe that λ is near-normally distributed. Given this, we first choose a
confidence level9 (say, α) and construct a credible interval around λ̄. To reduce
the error in assuming that the λ’s of iterations 2–16 are also near-normally
distributed, we widen the credible interval corresponding to α while maintaining
that the confidence level is α.

Let λmin and λmax denote the lower and upper limits of the resulting credible
interval around λ̄. Now, let us suppose that the attacker clocks the encryption
up to the generation of the first keystream word. If this duration falls within the
interval (see (5)):

[T ′′′
const + 31 · Tcarry · (λ̄− λmin) + T

(w)
const + Tcarry · (λ̄− λmin) + Tcarry ,

T ′′′
const + 31 · Tcarry · (λ̄− λmin) + T

(w)
const + Tcarry · (λ̄− λmin) + 2 · Tcarry)

= [T ′′′
const + T

(w)
const + 81 · Tcarry − 32 · λmin · Tcarry ,

T ′′′
const + T

(w)
const + 82 · Tcarry − 32 · λmin · Tcarry) , (7)

then the attacker concludes that the λ for iteration 1 of Algorithm 1 is 1 (just

like T ′
const and Tcarry, the attacker can measure T

(w)
const). When this is the case,

the attacker concludes that k0(7) = 0 and c1 = 0 with probability 5/7. 
�

Given that k0(7) and c1 are recovered, using [d0(14)d0(13) . . . d0(7)] = [10001001],
we arrive at Theorem 1.

Theorem 1. When c1 = 0 and k0(7) = 0, we have:

(k0(1) · k0(2) · k̄0(3) + k0(3)) · k0(4) · k0(5) · k0(6) = 0 , (8)

with the ‘+’ symbol denoting standard integer addition.

Proof. We begin by examining the addition of [k0(7)k0(6) . . . k0(0)] and [d0(14)d0(13)
. . . d0(7)] while performing the first step of Add(u32 z1, u32 z2). We know that the
incoming carry at the MSB position (of the 31-bit z1 or z2) is c1. Let c1[−1], c1[−2],
. . . , c1[−7] denote the incoming carries at the bit positions of k0(6), k0(5), . . . , k0(0),
respectively. For the sake of simplicity and clarity, we denote c1 by c1[0]. Now,
we know that

c1[i+1] = k0(i+7) · d0(i+14) + c1[i] · (k0(i+7) ⊕ d0(i+14)) , i = −1,−2, . . . ,−7 , (9)

where the ‘+’ denotes standard integer addition. Solving the recurrence equa-
tion (9), we arrive at (8). 
�
9 The term ‘confidence level’ is accepted in Bayesian inference also.
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4.1 Complexities and Success Probabilities

The cache attack requires a few cache timing measurements for precision. If the
S-boxes S0 and S1 are not in the cache, then Eve performs a few encryptions,
using key-IV pairs of her choice, until the instant when Bob starts encrypting.
We recall from Sect. 2 that the S-boxes are accessed twice in every iteration
of Algorithm 5. From [8, Appendix A], we infer that 4 elements of S0 and S1
are used in every iteration of Algorithm 5. In the initialization mode, we have
32 similar iterations where F is computed and, hence, S0 and S1 accessed. Let
η denote the number of iterations of Algorithm 5. Then, the total number of
iterations per key-IV pair is 32 + 1 + η = 33 + η (includes one iteration of
Algorithm 4). This translates to a total of 2 · (33 + η) (= η′, say) draws of
elements from each of S0 and S1. Assuming that the draws are uniform and
independent, the probability that every 8-bit S-box element appears at least θ
times in the list of draws is given by:

1

256η′ ·

⎛⎜⎜⎜⎜⎝
∑

ω0,ω1,...,ω255∈N ,
ω0+ω1+...+ω255=η′ ,
ω0≥θ,ω1≥θ,...,ω255≥θ

(
η′

ω0, ω1, . . . , ω255

)⎞⎟⎟⎟⎟⎠ , (10)

where θ is the number of quickly successive RAM-fetches after which the con-
cerned memory element is placed in the cache. The problem now is to find the
smallest η such that the probability given by (10) is reasonably close to 1. We are
not aware of any simple method to solve this problem. However, when η′ = 256·θ,
one expects that every element appears θ times in the list of uniform and in-
dependent draws. Given this, η = 128 · θ − 33. Therefore, the attack requires
128 · θ − 33 keystream words to be generated with one key-IV pair. The time
cost is (128 · θ − 33) · TKGA + Tini, where TKGA is the execution time of one
iteration of the keystream generating algorithm (i.e., Algorithm 5) and Tini is
the initialization time. Alternatively, the attack can be performed with many
key-IV pairs with each generating fewer keystream words. The time complexity
in this case will obviously be higher than (128 · θ− 33) · TKGA + Tini. But since
the attacker does not require the keystream words for the attack (so it is an
asynchronous attack even in the stricter viewpoint of Osvik et al. [15]), the data
complexity is irrelevant here. Hence, we choose one key-IV pair and mount the
attack in order to minimise its time complexity.

As an example, when θ = 100, the pre-computation phase of the single-
(key, IV) attack is expected to require 213.64 ·TKGA+Tini time. In practice, θ is
such that the time complexity is not significantly larger than that for θ = 100, we
believe. Besides, if the S-boxes are already in the cache, key recovery is almost
immediate.

For the statistical timing attack, when the IV is unknown, the attack requires
one 32-bit keystream word and the time needed to generate it. The success
probability is less than 5/7 because of the errors caused by the approximations
involved in the attack. While it seems extremely tedious to accurately compute
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the error, its magnitude can intuitively be made negligible by choosing a wide
credible interval as stated earlier.

4.2 Implications of the Attacks to 128-EEA3

The 3GPP encryption algorithm 128-EEA3 is also a stream cipher that is built
around ZUC [7]. It uses a 128-bit “confidentiality key” (denoted in [7] as CK)
and encrypts data in blocks of size ranging from 1 bit to 20 kbits. Aside from
the ZUC algorithm, the 128-EEA3 contains the following main steps.

Key Initialization: The confidentiality key CK initialises the ZUC key in
a straightforward manner as follows [7].

Let CK = CK0||CK1|| . . . ||CK15, where each CKi is a byte. Then,

ki = CKi , for i ∈ {0, 1, . . . , 15} . (11)

IV Initialization: The IV of ZUC is initialised using three parameters of
ZUC, viz., COUNT , BEARER and DIRECTION . The parameter COUNT
(= COUNT0||COUNT1|| . . . ||COUNT4, where each COUNTi is a byte) is a
counter, BEARER is a 5-bit “bearer identity” token and DIRECTION is a
single bit that indicates the direction of message transmission [7]. Given these,
the IV of ZUC is initialised as:

ivi = COUNTi, for i ∈ {0, 1, 2, 3} ,
iv4 = BEARER||DIRECTION ||002 ,
iv5 = iv6 = iv7 = 000000002 ,

ivj = ivj−8, for j ∈ {8, 9, . . . , 15} .
From (11), it trivially follows that the timing attacks on ZUC are also attacks on
the 128-EEA3, with the corresponding bits of the confidentiality key CK being
(partially) recovered. In other words, if bit ki(j) of the ZUC key is recovered then
the bit CKi(j) of the 128-EEA3’s confidentiality key is recovered as well.

5 Countermeasures

In the previous sections, we described timing weaknesses that are mainly at-
tributable to the design/implementation flaws listed in Observations 1 and 2.
Consequently, we see the following countermeasures for the attacks that stem
from these weaknesses:

1. A constant-time implementation of the modulo (231−1) addition in software
and hardware.

2. A more involved key loading procedure.

Of course, a conservative approach would be to complicate the key loading pro-
cedure as well as implement the modulo (231 − 1) addition as a constant-time
operation.
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For the key loading procedure, we suggest the following alternatives:

1. Applying a secure hash function to the si’s of (1): A preimage and timing
attack resistant hash function would solve our problem, ideally, if applied to
the si’s of (1). The size of the string [s15s14 . . . s0] is 496 bits. For the coun-
termeasure, this string is fed (after padding) into the compression function
of a secure hash function, such as SHA-512 [13], on which there is no known
preimage or timing attack despite years of scrutiny.10 The 512-bit output is
truncated to 496 bits, replacing [s15s14 . . . s0].

2. Employing 16 carefully chosen, secret N × 31 (N ≥ 31) S-boxes: The inputs
to the S-boxes (call them Bi, i ∈ {0, 1, . . . , 15}) are the si’s of (1). When the
S-boxes are all secret, N = 31 can suffice even though at least 15 input bits
are known constants. This is because (i) S-boxes are secret, and (ii) S-boxes
with outputs larger than inputs can still accomplish Shannon’s confusion
[18] (note that Shannon’s diffusion, as interpreted by Massey in [12], does
not apply to stream ciphers) [1].
Recall that the timing attacks of Sect. 4 can recover only one bit of B0(s0)

and some information on 6 other bits. While these may be improved in the
future (directions for this are provided in Sect. 6) to possibly recover more
key bits, recovering an entire 31-bit block seems far-fetched. Actually, with
the use of secret S-boxes it is no longer possible, in the first place, to perform
the exact same analysis as in Sect. 4. This is because we will have unknown
bits in place of the di(j)’s that constitute the MSBs of z1, z2, . . . , z6 (see
Sect. 4). Therefore, even upon making precise timing measurements, the
attacker will very likely have to guess the bits in place of the di(j)’s before
trying to determine the bits in the LFSR. The attacker can, given precise
timing measurements, find the number of 0’s in [z1(30)z2(30) . . . z6(30)], but
is unlikely to be able to ascertain which bits are 0’s. For example, the six
z-bits being uniformly distributed (given that the S-boxes are secret) and
the carries into the bit position 30 being distributed close to uniformly (see
footnote 4), there is about 2−7.42 probability that there is no end carry.11

Given that there is no end carry, the attacker deduces that there are fewer
than two 1’s in [z1(30)z2(30) . . . z6(30)]. Consequently, the attacker is able to
recover at least 4 of the 6 z-bits but she cannot immediately ascertain if a
particular bit guess is correct.

Despite the seeming infeasibility, even if an entire 31-bit block Bi(si) is
recovered somehow, the input key bits cannot be recovered because Bi is
secret.
Caveat: As mentioned earlier, an S-box implemented as a lookup table is
stored in the cache if its elements are used frequently. One should therefore

10 There are, however, preimage attacks on step-reduced SHA-512 (see e.g. [2,10]). The
best of these, due to Aoki et al. [2], works on 46 steps (out of the total 80), has a
time complexity of 2511.5 and requires a memory of about 26 words.

11 This probability is simply the ratio of the frequency corresponding to λ = 0 to the
total of the frequencies corresponding to (6). The probability was 0 in the timing
attacks of Sect. 4 because d0(14) = 1 and d15(7) = 1.
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ensure that the Bi, i ∈ {0, 1, . . . , 15}, are placed directly in the processor
registers so that memory accesses are avoided. We borrow this idea from
[15] where the authors also state that some architectures like the x86-64 and
PowerPC AltiVec have register files sufficiently large to store large lookup
tables.

Secret S-boxes have previously been used in ciphers (see e.g. GOST [21]). How-
ever, security through obscurity is in direct violation of the Shannon’s maxim
[18]. Using a hash function like SHA-512 may be practical provided that the
ZUC key is not changed very often.

For the constant-time implementation in software, our suggestion is to change
the Add() subroutine to the following (we call it “AddC()”, with the ‘C’ denoting
‘constant-time’):

u32 AddC(u32 x, u32 y) {

u32 z = x + y;

z = (z & 0x7FFFFFFF) + ((z & 0x80000000) >> 31);

return z;

}

Osvik et al. provide some generic countermeasures against cache timing attacks
in [15, Sect. 5]. We have already stated one of them, i.e., avoiding memory
accesses by placing lookup tables in CPU registers wherever the architecture
permits to do so. Some of the other suggestions of [15, Sect. 5] that are relevant
to our cache timing analysis are:

1. disabling cache sharing,
2. disabling the cache mechanism per se,
3. adding noise to the cache access pattern (only mitigates the cache timing

attack),
4. adding noise to the timing information (again, only mitigates the attack),

and
5. providing secure execution of cryptographic primitives as operating system

services.

Nomenclature: To facilitate future reference, we label some of the above, secure
modifications of ZUC in Appendix B.

6 Conclusions

In this paper, we have presented timing attacks on the stream cipher ZUC that
recover, under certain practical circumstances, one key bit along with some key-
dependent information with about 0.7 success probability and negligible time,
memory and data. To the best of our knowledge, these are the first attacks on
the ZUC cipher of Version 1.5. The following are other highlights of this paper.

– This is one of the very few and early papers analysing the cache timing
resistance of stream ciphers. As noted in [11], block ciphers (mainly the
AES) have been the prominent targets of cache timing attacks. Besides, cache
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timing analyses of stream ciphers are recent additions to the cryptanalysis
literature, with the first paper (viz., [22]) being published as late as 2008
[11].

– The statistical timing attack is novel, to the best of our knowledge.

– The timing attacks of this paper warn that algorithms must be designed or
implemented to resist single-round/iteration timing weaknesses. This single
round can even belong to the key/IV setup of the cipher.

The weaknesses we have found that lead us to the attacks may be certificational.
Nonetheless, we see a possibility for improving the attacks to recover a few other
key bits by, for example, examining the cases where end carry is generated twice.

We have also proposed modifications to ZUC that resist not only the initiatory
timing attacks but, evidently, also their potential improvements suggested above.
Analysis of these new schemes comes across to us as an interesting problem for
future research.

Acknowledgements. The author would like to thank Steve Babbage, Hongjun
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A Practical Occurrences of Γ3, Γ5 and Γ6

Table 3 provides some example key-IV values that produce the favourable Γ -
vectors (i.e., the vectors that generate end carry exactly once).

Table 3. Some practical occurrences of the vectors Γ3, Γ5 and Γ6 (all entries except
those in the last column are in hexadecimal); in each of these examples, ki, ivi=0∀ i �= 0

k0 iv0 z1 z2 z3 z4 z5 z6 [c1c2 . . . c5z1(30)]

0 0 44D700 44D70000 10000AF1 1AF1 1A0000F1 56000047 [000010] (Γ6)

5 5 2C4D705 44D70505 10000AF1 1AF1 1A0000F1 56000047 [000010] (Γ6)

2F 2B 17C4D72B 44D72B2F 10000AF1 1AF1 1A0000F1 56000047 [000100] (Γ5)

31 2E 18C4D72E 44D72E31 10000AF1 1AF1 1A0000F1 56000047 [000100] (Γ6)

6E 5C 3744D75C 44D75C6E 10000AF1 1AF1 1A0000F1 56000047 [010000] (Γ3)

75 E 3AC4D70E 44D70E75 10000AF1 1AF1 1A0000F1 56000047 [010000] (Γ3)

B ZUC Modifications

We list our proposed algorithm/implementation modifications in Table 4.

Table 4. ZUC modifications: To each label we suffix a ‘+’ if one or more of the generic
countermeasures suggested by Osvik et al. in [15] are applied

Label Reference

ZUC-1.5C Constant-time software implementation of modulo (231 − 1) ad-
dition

ZUC-1.5H Involved key loading: hash function

ZUC-1.5S Involved key loading: S-boxes

ZUC-1.5CH Constant-time implementation of modulo (231−1) addition along
with involved key loading using a hash function

ZUC-1.5CS Constant-time implementation of modulo (231−1) addition along
with involved key loading using S-boxes
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Abstract. It is becoming more and more important to make use of per-
sonal or classified information while keeping it confidential. A promising
tool for meeting this challenge is secure multi-party computation (MPC).
It enables multiple parties, each given a snippet of a secret s, to compute
a function f(s) by communicating with each other without revealing s.
However, one of the biggest problems with MPC is that it requires a vast
amount of communication. Much research has gone into making each pro-
tocol (equality testing, interval testing, etc.) more efficient. In this work,
we make a set of multiple protocols more efficient by transforming these
protocols to be batched and propose four protocols: “Batch Logical OR,”
“Batch Logical AND,” “Batch Logical OR-AND,” and “Batch Logical
AND-OR.” Existing logical OR and logical AND protocols consisting of
t equality testing invocations have a communication complexity of O(�t),
where � is the bit length of the secret. Our batched versions of these pro-
tocols reduce it to O(�+t). For t interval testing invocations, they reduce
both communication complexity and round complexity. Thus they can
make the queries on a secret shared database more efficient. For example,
the use of the proposed protocols reduces the communication complexity
for a query consisting of equality testing and interval testing by approxi-
mately 70% compared to the use of the corresponding existing protocols.
The concept of the proposed protocols is versatile and can be applied to
logical formulas consisting of protocols other than equality testing and
interval testing, thereby making them more efficient as well.

Keywords: Multi-party Computation, Secret Sharing, Secret Shared
Database.

1 Introduction

Although gathering personal information (e.g., age, address, and buying history)
and using it directly or via data mining enable the provision of higher quality
services, leakage of such information has become a serious problem. Likewise,
sensor logs can provide valuable information, but data leakage can be a problem.
Moreover, in cloud computing, the confidentiality of remotely located personal
or classified information must be guaranteed. It has thus become more important
to balance data availability against information confidentiality.
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A promising tool for meeting this challenge is secure multi-party computa-
tion(MPC). Here we focus on MPC based on Shamir’s (k, n) threshold secret
sharing [9] in which a “share,” or snippet, of secret information is distributed to
n parties, and the parties can reconstruct the secret by gathering k shares.

MPC based on Shamir’s scheme enables multiple parties to obtain a function
value for secrets without revealing them. Various existing protocols (e.g., ad-
dition, multiplication, equality testing, and comparison) [1, 4–7, 10] enable the
construction of such a function for using personal or classified information and
thus can be used to balance data availability against information confidentiality.

However, one of the biggest problems with MPC is that it requires a vast
amount of communication. The multiplication protocol, which obtains the prod-
uct of secrets a, b ∈ Zp, requires n(n − 1) times communication since n parties
communicate with each other. The complexity of MPC for protocols other than
multiplication, such as comparison and equality testing, is evaluated in terms of
communication complexity and round complexity. The communication complex-
ity indicates the number of times the multiplication protocol is used. The round
complexity indicates the number of invocations of the parallelized multiplication
protocol.

Much research has gone into reducing the communication and round com-
plexity of each protocol. For example, the communication complexity of equality
testing for secrets a, b ∈ Zp is 81
 multiplication invocations, and the round
complexity is 8 parallelized multiplication invocations (8 rounds), where 
 is the
bit length of prime number p [7]. However, in the case of a 32-bit secret, the
equality testing requires 2, 592 multiplication invocations, and the total amount
of communicated data reaches 202.5 Kbytes for five participants. Hence, to ex-
ecute larger computation in practical applications, MPC will need to be made
more efficient.

Our Contribution. In this work, we make such logical formulas as formula (1)
more efficient.

F1 ∨ F2 ∨ · · · ∨ Ft (1)

These logical formulas consist of multiple protocols (Fi) that are connected by
logical operators (∨ and ∧). The symbol Fi denotes a Boolean protocol (e.g.,
equality testing, comparison, interval testing) that outputs truth value. The
logical formulas taken up are used in many applications such as querying for a
secret shared database, searching a file for a character string, and determining
whether the given information is included in a list or not. It is therefore important
to make such a logical formula more efficient.

Existing Boolean protocols (Fi) output shares of 1 as true or shares of 0 as
false. The proposed batched protocols use F ′

i , which outputs shares of 0 as true
or shares of non-zero value as false. We refer to the alternative protocol of Fi as
F ′
i . The basic concept in this approach is to represent truth values by shares of

0 and shares of a non-zero value using alternative protocols F ′
i that are more

efficient than Fi, and to make a logical formula consisting of multiple protocols
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Table 1. Complexities of logical formulas using existing or proposed protocols

Logical Communication Round
formula Existing Proposed Existing Proposed∨t

i=1 Fi

∑t
i=1 ci

∑t
i=1 c

′
i max(r1, . . . , rt) max(r′1, . . . , r

′
t)∧t

i=1 Fi +t− 1 +t+ cEQ − 1 +�log2 t� +rEQ + �log2 t�∨u
i=1

∧v
j=1 Fi,j

∑u,v
i,j=1 ci,j

∑u,v
i,j=1 c

′
i,j max(r1,1, . . . , ru,v) max(r′1,1, . . . , r

′
u,v)∧u

i=1

∨v
j=1 Fi,j +uv − 1 +uv + cEQ − 1 +�log2 uv� +rEQ + �log2 uv�

Table 2. Complexities of the logical formula consisting of equality testing or interval
testing in Table 1

Communication Round
Fi Existing Proposed Existing Proposed

xi = yi 81�t+ t− 1 81� + t− 1 8 + �log2 t� 8 + �log2 t�
di < xi < ei 110�t + 2t− 1

∑t
i=1(ei − di) 13 + �log2 t� 8 + �log2 t�
−t+ 81�− 1 +max(�log2(ei − di − 1)�)

more efficient by batching the truth values and converting them into shares of 1
and shares of 0.

Suppose the complexities for Boolean protocol Fi are ci multiplications and
ri rounds, and the complexities for its alternative protocol F ′

i are c′i multipli-
cations and r′i rounds. Moreover, the complexities for equality testing are cEQ

multiplications and rEQ rounds. Table 1 shows that the complexities of the log-
ical formulas depend on Fi and F

′
i . If t = u× v, the effects of using the proposed

protocols are equal since both the complexities of the existing and proposed pro-
tocols are represented by the same formula. As shown in Table 2, if all the Fi
protocols in a logical formula are equality testing (xi = yi), although proposed
protocols do not reduce round complexity, they reduce the upper bound of the
communication complexity from O(
t) to O(
 + t), where 
 is the bit length of
prime number p used in xi, yi ∈ Zp. For example, for equality testing with 
 = 32
bits and t = 3, the proposed protocols reduce the communication complexity by
approximately 67%. If all the Fi protocols in the formula are interval testing
(di < xi < ei), proposed protocols reduce both communication and round com-
plexity for some di and ei. For interval testings with 
 = 32 bits and t = 3,
proposed protocols reduce the communication complexity and round complexity
by approximately 75% and 3 rounds.

The proposed protocols are applied to a secret shared database in Section
5. A search example shows that a proposed protocol reduces the communica-
tion complexity and round complexity by approximately 70% and 1 round for a
query consisting of equality testing and interval testing. An information presence
example shows that a proposed protocol reduces the communication complex-
ity to approximately 1

81� for a query designed to determine whether the given
information is in a list or not.
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The organization of this paper is as follows. In Section 2, we explain MPC
based on Shamir’s (k, n) threshold secret sharing scheme. In Section 3, we in-
troduce our batched protocols and discuss their complexity, correctness, and
security. In Section 4, we describe how the logical protocols are modified, en-
abling them to be batched, and discuss the complexity, correctness, and security
of the batched protocols. In Section 5, we describe two example applications of
these protocols and their complexities. We conclude in Section 6 with a summary
of the key points.

2 Related Work

2.1 Notation

– p: an 
-bit prime number
– [a]p: a set of shares of secret a ∈ Zp

– [a]p + [b]p: shares of addition [a+ b (mod p)]p, where secrets a, b ∈ Zp

– [a]p × [b]p: shares of multiplication [a× b (mod p)]p, where secrets a, b ∈ Zp

– [a = b]p: shares of result of equality testing a = b, where secrets a, b ∈ Zp

2.2 Shamir’s (k, n) Threshold Secret Sharing

Given a secret s ∈ Zp, Shamir’s (k, n) threshold secret sharing scheme generates
a polynomial,

f(x) = s+ r1x+ r2x
2 + · · ·+ rk−1x

k−1 (mod p), (2)

where ri ∈ Zp is a random number (1 ≤ i ≤ k− 1). Each of n parties Pd is given
a share, f(d) (1 ≤ d ≤ n). To reconstruct the secret, the parties must gather k
shares.

2.3 Multi-Party Computation Based on Secret Sharing Scheme

Because MPC requires a vast amount of communication, complexity for MPC
is evaluated in terms of communication. Basic protocols for MPC are addition
and multiplication.

Addition Protocol. Given secrets a, b ∈ Zp, the addition protocol obtains
[c]p = [a+b (mod p)]p without revealing a, b. To compute [c]p, each party simply
adds [a]p and [b]p on Zp independently. The complexity of the addition protocol
is negligible since communication is unnecessary.

Multiplication Protocol. Given secrets a, b ∈ Zp, the multiplication protocol
obtains [c]p = [a × b (mod p)]p without revealing a, b. The details are reported
elsewhere [1, 5]. The communication complexity of the multiplication protocol
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is evaluated on the basis of the number of times the parties communicate with
each other. As mentioned above, one invocation of the multiplication protocol
requires n(n− 1) communications since n parties communicate with each other.
However, if secret a ∈ Zp and public value e ∈ Zp are given, the computation of
[c]p = [a×e]p requires no communication. Moreover, the complexity of computing
any second-order polynomial, such as [c]p = [a2 + b2]p, is one multiplication
operation [8].

Communication and Round Complexity. The complexities of MPC are
evaluated in term of the communication complexity and round complexity. The
communication complexity is represented as the number of multiplication pro-
tocol invocations. The round complexity represents the parallelized number of
multiplication protocols. For example, the complexities of [a]p× [b]p× [c]p× [d]p
are 3 (invocations of) multiplications and 3 rounds if we obtain [a]p × [b]p,
[a]p× [b]p× [c]p , and [a]p× [b]p× [c]p× [d]p in sequence. On the other hand, if we
obtain [a]p× [b]p and [c]p× [d]p in parallel, the complexities are 3 multiplications
and 2 rounds. We evaluate the round complexity of a protocol by performing
the multiplication protocol in parallel as much as possible.

Equality Testing Protocol. Given secrets a, b ∈ Zp, this protocol outputs [1]p
if a = b and [0]p if a �= b without revealing a, b.

Cramer and Damg̊ard proposed an equality testing protocol using Fermat’s
little theorem [3]. It was implemented by Burkhart et al. [2]. The complexities
of this protocol are O(
) multiplications and O(
) rounds, and round complexity
depends on 
. Damg̊ard et al. proposed an equality testing protocol that requires
98
+94
 log2 
 multiplications and 39 rounds and that uses a bit-decomposition
protocol [4]. The round complexity of this protocol is independent of 
. Nishide
and Ohta proposed an equality testing protocol that requires 81
 multiplications
and 8 rounds [7]. However, in the case of a 32-bit secret, it requires 2, 592 multi-
plications, and the total amount of communicated data is 202.5 Kbytes for five
participants. Hence, as mentioned above, MPC will need to be more efficient for
larger computation with practical efficiency.

Although much research has gone into reducing the complexity of each pro-
tocol, there have been no proposals for making operations that require multiple
protocols more efficient.

3 Proposed Protocols

3.1 Key Ideas

Existing Boolean protocols (Fi) output [1]p as true or [0]p as false. The pro-
posed protocols use secure MPC protocols (F ′

i ) that output [0]p as true or a set
of shares of a non-zero value as false. We call protocol F ′

i the alternative proto-
col of protocol Fi. The key ideas are to represent truth values by [0]p and a set of
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F1 · · · Ft

�
· · ·

�[1]p/[0]p����

Logical operation

�
[1]p/[0]p

Existing Protocol

F ′
1 · · · F ′

t

�
· · ·

�
[0]p/[s ∈ Z∗

p]p����

Arithmetic operation

�
[1]p/[0]p

Proposed Protocol

Fig. 1. Key ideas of proposed protocols

shares of non-zero value by using the alternative protocols (F ′
i ) that are more

efficient than Fi, and to make a logical formula consisting of multiple protocols
(Fi) more efficient by batching the truth values and converting them into [1]p
and [0]p using arithmetic operations (Fig. 1).

In this section, we describe four protocols that make a logical formula con-
sisting of Boolean protocols (Fi’s) more efficient by using alternative protocols
(F ′

i ’s).

3.2 Batch Logical OR Protocol

The Batch Logical OR protocol obtains the result of the following logical formula
consisting of Fi’s by using alternative protocols F ′

i ’s for 1 ≤ i ≤ t.

F1 ∨ F2 ∨ · · · ∨ Ft (3)

It outputs [1]p if the formula is true and [0]p if the formula is false. Protocol 1
shows the steps in this protocol. Let F ′

i be as follows.

F ′
i =

{
[0]p if Fi = true[
v ∈ Z∗

p

]
p
if Fi = false

(4)

Protocol 2 shows the sub protocol used in the proposed ones. Given an operation
◦ and shares [x1]p, . . . , [xt]p, it obtains shares of (x1 ◦ x2) ◦ · · · ◦ (xt−1 ◦ xt) in
parallel with t− 1 multiplications and "log2 t# rounds.

Correctness of Batch Logical OR Protocol. If logical formula (3) is true,
there exists j such that Fj is true. Thus, there exists F ′

j such that F ′
j = [0]p.

Hence, the output of the Batch Logical OR protocol is as follows.

Protocol 1. Batch Logical OR

1: [temp]p ← DoParallel(×, F ′
1, . . . , F

′
t ) // DoParallel is defined in Protocol 2

2: return [0 = temp]p
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Protocol 2. DoParallel(◦, [x1]p, . . . , [xt]p)
1: if 1 < t then
2: foreach i ∈ {1, . . . , � t

2
�} do in parallel

3: [yi]p ← [x2i−1]p ◦ [x2i]p
4: end foreach
5: if t is even then
6: [z]p ← DoParallel(◦, [y1]p, . . . , [y� t

2
�]p)

7: else
8: [z]p ← DoParallel(◦, [y1]p, . . . , [y� t

2
�]p, [xt]p)

9: end if
10: else
11: [z]p ← [x1]p
12: end if
13: return [z]p // z = (x1 ◦ x2) ◦ · · · ◦ (xt−1 ◦ xt)

1: [temp]p ← DoParallel(×, F ′
1, . . . , F

′
t ) // [temp]p = [0]p

2: return [0 = temp]p // [0 = temp]p = true= [1]p

Therefore, the Batch Logical OR protocol outputs “true” if logical formula (3)
is true.

If logical formula (3) is false, all Fi’s output “false”. Thus, all F ′
i ’s output a

non-zero value. Although DoParallel(×, F ′
1, . . . , F

′
t ) is computed over Zp, the

product is a non-zero value since p is a prime number. Hence, the output of the
Batch Logical OR protocol is as follows.

1: [temp]p ← DoParallel(×, F ′
1, . . . , F

′
t ) // [temp]p = [v ∈ Z∗

p]p
2: return [0 = temp]p // [0 = temp]p = false= [0]p

Therefore, the Batch Logical OR protocol outputs “false” if logical formula (3)
is false.

Since the output of Batch Logical OR is equal to that of formula (3), the
Batch Logical OR protocol is correct.

Complexity of Batch Logical OR Protocol. Let the complexities of a pro-
tocol Fi be ci multiplications and ri rounds, and let the complexities of its
alternative protocol F ′

i be c′i multiplications and r′i rounds. Moreover, let the
complexities of equality testing be cEQ multiplications and rEQ rounds.

For the existing protocols, the complexities of logical formula (3) are as fol-
lows. First, the parties obtain t Fi’s in parallel. The complexities of this step
are

∑t
i=1 ci multiplications and max(r1, . . . , rt) rounds, where max(x1, . . . , xt)

is the maximum of x1, . . . , xt. Then, the parties obtain logical OR in parallel.
For sets of shares [a]p, [b]p of truth values a, b ∈ {0, 1}, the logical OR [a ∨ b]p
is computed using [a ∨ b]p = [a]p + [b]p − [a × b]p. Thus, the complexities of a
set of logical OR [a ∨ b]p are 1 multiplication and 1 round. For logical formula
(3), the complexities of t − 1 sets of logical OR are t − 1 multiplications and
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Table 3. Complexities of logical formula (3)

Protocol Communication Round

Existing (
∑t

i=1 ci) + t− 1 max(r1, . . . , rt) + �log2 t�
Batch Logical OR (

∑t
i=1 c

′
i) + t+ cEQ − 1 max(r′1, . . . , r

′
t) + rEQ + �log2 t�

"log2 t# rounds. Therefore, the total complexities of logical formula (3) with the
existing protocols are (

∑t
i=1 ci) + t − 1 multiplications and max(r1, . . . , rt) +

"log2 t# rounds.
On the other hand, the complexities of logical formula (3) using the Batch

Logical OR protocol are as follows. First, the parties obtain t F ′
i ’s in parallel.

The complexities of this step are
∑t

i=1 c
′
i multiplications and max(r′1, . . . , r

′
t)

rounds. Then, the parties obtain [temp]p by multiplying the F ′
i ’s in parallel,

as shown in Figure 2. The complexities of this step are t − 1 multiplications
and "log2 t# rounds. Finally, the parties obtain the result [0 = temp]p. The
complexities of this step are cEQ multiplications and rEQ rounds. Therefore, the

total complexities are (
∑t

i=1 c
′
i)+t+cEQ−1 multiplications and max(r′1, . . . , r

′
t)+

rEQ + "log2 t# rounds. Table 3 shows the complexities of logical formula (3).
The conditions for the Batch Logical OR protocol to be more efficient than the

existing protocols are as follows. The condition for communication complexity is(
t∑

i=1

c′i

)
+ t+ cEQ − 1 <

(
t∑

i=1

ci

)
+ t− 1 (5)(

t∑
i=1

c′i

)
+ cEQ <

t∑
i=1

ci. (6)

This inequality means that the sum of the communication complexity of alterna-
tive protocols F ′

i ’s and equality testing is less than that of the original protocols
Fi’s. The condition for round complexity is

max(r′1, . . . , r
′
t) + rEQ + "log2 t# < max(r1, . . . , rt) + "log2 t# (7)

max(r′1, . . . , r
′
t) + rEQ < max(r1, . . . , rt). (8)

This inequality means that the sum of the round complexity of equality testing
and the maximum of the round complexity of alternative protocols F ′

i ’s is less
than the maximum of the original protocols Fi’s.

3.3 Batch Logical AND Protocol

The Batch Logical AND protocol obtains the result of the following logical for-
mula consisting of Fi’s by using alternative protocols F ′

i ’s for 1 ≤ i ≤ t.

F1 ∧ F2 ∧ · · · ∧ Ft (9)



Batching Multiple Protocols to Improve Efficiency of MPC 297

F ′
1 F ′

2 F ′
3 F ′

4 · · · F ′
t
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. . . ���

F ′
1 × F ′

2 F ′
3 × F ′

4

...
		
 ���
F ′
1 × F ′

2 × F ′
3 × F ′

4

		
 ...

Fig. 2. Parallelized operation of Batch Logical OR (Step 1)

Protocol 3. Batch Logical AND

Require: p ≡ 3 (mod 4)
1: [temp]p ← DoParallel(�, F ′

1, . . . , F
′
t ) // [a]p � [b]p := [a]2p + [b]2p

2: return [0 = temp]p

It outputs [1]p if the formula is true and [0]p if the formula is false. We construct
this protocol assuming prime number p ≡ 3 (mod 4) and then modify it to
remove the requirement for prime number p. Protocol 3 shows steps in this
protocol.

Correctness of Batch Logical AND Protocol. If logical formula (9) is true,
all F ′

i ’s output [0]p. Thus, [temp]p in Protocol 3 is always [0]p, and the output is
[1]p. Therefore, the Batch Logical AND protocol outputs “true” if logical formula
(9) is true.

If logical formula (9) is false, there exists j such that F ′
j �= [0]p. We rewrite

the operation � in Protocol 3 as follows for simplicity.

γ ← α2 + β2 (mod p) (10)

Let 0 ≤ α < p and 0 < β = F ′
j < p. We show that γ is a non-zero value.

For α = 0, γ �= 0 since γ = β2 (mod p), β �= 0.
For α �= 0, if γ = 0, the following equation is true.

−α2 = β2 (mod p) (11)

The Legendre symbol on the left-hand side of equation (11) is as follows since
p ≡ 3 (mod 4). (−α2

p

)
=

(−1
p

)
= (−1) p−1

2 = −1 (12)

The Legendre symbol on the right-hand side of the equation is as follows.(
β2

p

)
= 1 (13)

We now have a contradiction between the left-hand side and the right-hand side.
Hence, γ �= 0.
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Table 4. Complexities of logical formula (9)

Protocol Communication Round

Existing (
∑t

i=1 ci) + t− 1 max(r1, . . . , rt) + �log2 t�
Batch Logical AND (

∑t
i=1 c

′
i) + t+ cEQ − 1 max(r′1, . . . , r

′
t) + rEQ + �log2 t�

Thus, γ �= 0 for 0 ≤ α < p and 0 < β = F ′
j < p. This means temp is a

non-zero value if there exists j such that F ′
j �= [0]p. Therefore, the Batch Logical

AND protocol outputs “false” if logical formula (9) is false.
Since the output of the Batch Logical AND is equal to that of formula (9),

the Batch Logical AND protocol is correct.

Complexity of Batch Logical AND Protocol. For the existing protocols,
the complexities of logical formula (9) are as follows. First, the parties obtain
t Fi’s in parallel. The complexities of this step are

∑t
i=1 ci multiplications and

max(r1, . . . , rt) rounds. Then, the parties obtain logical AND in parallel. For
sets of shares of [a]p, [b]p, where truth values a, b ∈ {0, 1}, the logical AND
[a ∧ b]p is computed using [a ∧ b]p = [a× b]p. Thus, the complexities of a set of
logical AND [a ∧ b]p are 1 multiplication and 1 round. For logical formula (9),
the complexities of t−1 sets of logical AND are t−1 multiplications and "log2 t#
rounds. Therefore, the total complexities of logical formula (9) with the existing
protocols are (

∑t
i=1 ci) + t − 1 multiplications and max(r1, . . . , rt) + "log2 t#

rounds.
On the other hand, the complexities of logical formula (9) for the Batch Log-

ical AND protocol are as follows. First, the parties obtain t F ′
i ’s in parallel.

The complexities of this step are
∑t

i=1 c
′ multiplications and max(r′1, . . . , r

′
t)

rounds. Then, the parties obtain [temp]p at Step 1 in Protocol 3 in parallel. Since
[a]2p + [b]2p is second-order, the complexity of this formula is 1 multiplication, as
mentioned in Section 2. Thus, the complexities of this step are t − 1 multipli-
cations and "log2 t# rounds. Finally, the parties obtain the result [0 = temp]p.
The complexities of this step are cEQ multiplications and rEQ rounds. There-
fore, the total complexities of formula (9) with the Batch Logical AND protocol
are (

∑t
i=1 c

′
i) + t+ cEQ − 1 multiplications and max(r′1, . . . , r′t) + rEQ + "log2 t#

rounds. Table 4 shows the complexities of logical formula (9).
As shown in Tables 3 and 4, the complexities of the Batch Logical AND are

equal to those of the Batch Logical OR, and the complexities of the correspond-
ing existing protocols are also equal. Hence, the conditions for the Batch Logical
AND protocol to be more efficient than the existing protocols are the same as
those for the Batch Logical OR protocol. Therefore, the condition for commu-
nication complexity is formula (6), and the condition for round complexity is
formula (8).
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Protocol 4. Batch Logical OR-AND

Require: p ≡ 3 (mod 4)
1: foreach i ∈ {1, . . . , u} do in parallel
2: [rowi]p ← DoParallel(�, F ′

i,1, . . . , F
′
i,v) // [a]p � [b]p := [a]2p + [b]2p

3: end foreach
4: [temp]p ← DoParallel(×, [row1]p, . . . , [rowu]p)
5: return [0 = temp]p

Requirement Removal. Protocol 3 requires p ≡ 3 (mod 4). We can modify
Step 1 of Protocol 3 as follows for p ≡ 1 (mod 4).

[temp]p ← DoParallel($, F ′
1, . . . , F

′
t ), (14)

where [a]p$[b]p := [a]2p+y[b]
2
p and y is a public value defined such that

(
y

p

)
= −1.

We can see that the correctness of this protocol is the same as above. Further-
more, its complexity is the same as above.

3.4 Batch Logical OR-AND Protocol

The Batch Logical OR-AND protocol obtains the result of the following logical
formula consisting of Fi,j ’s by using alternative protocols F ′

i,j ’s for 1 ≤ i ≤ u, 1 ≤
j ≤ v.

{F1,1 ∧ F1,2∧ · · · ∧F1,v}∨
{F2,1 ∧ F2,2∧ · · · ∧F2,v}∨

· · · ∨
{Fu,1 ∧ Fu,2∧ · · · ∧Fu,v} (15)

It outputs [1]p if the formula is true and [0]p if the formula is false. Protocol 4
shows the steps in this protocol for prime number p ≡ 3 (mod 4). We can modify
these steps for p ≡ 1 (mod 4) by applying the same technique as in Section 3.3.

Correctness of Batch Logical OR-AND Protocol. The Batch Logical OR-
AND protocol is a combination of the Batch Logical OR and Batch Logical AND
protocols. [rowi]p is [0]p if the following logical formula is true and is a set of
shares of a non-zero value if it is false.

Fi,1 ∧ Fi,2 ∧ · · · ∧ Fi,v (16)

This step is part of the Batch Logical AND protocol, and its correctness is shown
in Section 3.3. The remaining steps, which determine whether [0]p is present in
u sets of shares, are the same as those in the Batch Logical OR protocol. Since
the correctness of the Batch Logical OR protocol is shown in Section 3.2, the
Batch Logical OR-AND protocol is correct.
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Complexity of Batch Logical OR-AND Protocol. For the existing proto-
cols, the complexities of logical formula (15) are as follows. First, the parties ob-
tain u×v Fi,j ’s in parallel. The complexities of this step are

∑u
i=1

∑v
j=1 ci,j mul-

tiplications and max(r1,1, r1,2, . . . , ru,v) rounds. Then, the parties obtain (v−1)u
sets of logical AND in parallel. The complexities of this step are (v−1)umultipli-
cations and "log2 uv# rounds. Finally, the parties obtain u− 1 sets of logical OR
in parallel. The complexities of this step are u − 1 multiplications and "log2 u#
rounds. Therefore, the total complexities are (

∑u
i=1

∑v
j=1 ci,j) + uv − 1 multi-

plications and max(r1,1, r1,2, . . . , ru,v) + "log2 uv# rounds.
On the other hand, the complexities of logical formula (15) using the Batch

Logical OR-AND protocol are as follows. Since the step that obtains [rowi]p for
each i is the same as that in the Batch Logical AND protocol, the complexities of
this step are

∑u
i=1

∑v
j=1 c

′
i,j +(v− 1)u multiplications and max(r′1,1, . . . , r

′
u,v)+

"log2 v# rounds. Then, the parties obtain logical OR in parallel. Since this step is
the same as that in the Batch Logical OR protocol for u sets of Fi’s, the complex-
ities of this step are u−1 multiplications and "log2 u# rounds. Finally, the parties
obtain the result [0 = temp]p. The complexities of this step are cEQ multiplica-
tions and rEQ rounds. Therefore, the total complexities are (

∑u
i=1

∑v
j=1 c

′
i,j) +

uv+cEQ−1 multiplications and max(r′1,1, r′1,2, . . . , r′u,v)+rEQ+"log2 uv# rounds.
The conditions for the Batch Logical OR-AND protocol to be more efficient

than the existing protocols are as follows. The condition for communication
complexity is ⎛⎝ u∑

i=1

v∑
j=1

c′i,j

⎞⎠+ cEQ <
u∑

i=1

v∑
j=1

ci,j . (17)

The condition for round complexity is

max(r′1,1, r
′
1,2, . . . , r

′
u,v) + rEQ < max(r1,1, r1,2, . . . , ru,v). (18)

3.5 Batch Logical AND-OR Protocol

The Batch Logical AND-OR protocol obtains the result of the following logical
formula consisting of Fi,j ’s by using alternative protocol F ′

i,j ’s for 1 ≤ i ≤ u, 1 ≤
j ≤ v.

{F1,1 ∨ F1,2∨ · · · ∨F1,v}∧
{F2,1 ∨ F2,2∨ · · · ∨F2,v}∧

· · · ∧
{Fu,1 ∨ Fu,2∨ · · · ∨Fu,v} (19)

It outputs [1]p if the formula is true and [0]p if the formula is false. Protocol 5
shows the steps in this protocol for prime number p ≡ 3 (mod 4). We can modify
these steps for p ≡ 1 (mod 4) by applying the same technique as in Section 3.3.
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Protocol 5. Batch Logical AND-OR

Require: p ≡ 3 (mod 4)
1: foreach i ∈ {1, . . . , u} do in parallel
2: [rowi]p ← DoParallel(×, F ′

i,1, . . . , F
′
i,v)

3: end foreach
4: [temp]p ← DoParallel(�, [row1]p, . . . , [rowu]p) // [a]p � [b]p := [a]2p + [b]2p
5: return [0 = temp]p

Correctness of Batch Logical AND-OR Protocol. The Batch Logical
AND-OR protocol is a combination of the Batch Logical OR and Batch Logical
AND protocols. [rowi]p is [0]p if the following logical formula is true and is a set
of shares of a non-zero value if it is false.

Fi,1 ∨ Fi,2 ∨ · · · ∨ Fi,v (20)

This step is part of the Batch Logical OR protocol, and its correctness is shown
in Section 3.2. The remaining steps, which determine whether a set of shares
of a non-zero value is present in u sets of shares, are the same as those in the
to Batch Logical AND protocol. Since the correctness of Batch Logical AND is
shown in Section 3.3, the Batch Logical AND-OR protocol is correct.

Complexity of Batch Logical AND-OR Protocol. For the existing proto-
cols, the complexities of logical formula (19) are as follows. First, the parties ob-
tain u×v Fi,j ’s in parallel. The complexities of this step are

∑u
i=1

∑v
j=1 ci,j mul-

tiplications and max(r1,1, r1,2, . . . , ru,v) rounds. Then, the parties obtain (v−1)u
sets of logical OR in parallel. The complexities of this step are (v − 1)u multi-
plications and "log2 v# rounds. Finally, the parties obtain u − 1 sets of logical
AND in parallel. The complexities of this step are u − 1 multiplications and
"log2 u# rounds. Therefore, the total complexities are (

∑u
i=1

∑v
j=1 ci,j) + uv− 1

multiplications and max(r1,1, r1,2, . . . , ru,v) + "log2 uv# rounds.
On the other hand, the complexities of logical formula (19) using the Batch

Logical AND-OR protocol are as follows. Since the step that obtains [rowi]p for
each i is the same as that in the Batch Logical OR protocol, the complexities of
this step are

∑u
i=1

∑v
j=1 c

′
i,j +(v− 1)u multiplications and max(r′1,1, . . . , r′u,v)+

"log2 v# rounds. Then, the parties obtain logical AND in parallel. Since this
step is the same as that in the Batch Logical AND protocol for u sets of F ′

i ’s,
the complexities of this step are u − 1 multiplications and "log2 u# rounds. Fi-
nally, the parties obtain the result [0 = temp]p. The complexities of this step
are cEQ multiplications and rEQ rounds. Therefore, the total complexities are

(
∑u

i=1

∑t
j=1 c

′
i,j) + uv + cEQ − 1 multiplications and max(r′1,1, r

′
1,2, . . . , r

′
u,v) +

rEQ + "log2 uv# rounds.
Since the complexities of the Batch Logical AND-OR are equal to those of

the Batch Logical OR-AND and the complexities of the corresponding existing
protocols are also equal, the conditions for the Batch Logical AND-OR proto-
col to be more efficient than the existing protocols are the same as those for
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the Batch Logical OR-AND protocol. Thus, the condition for communication
complexity is ⎛⎝ u∑

i=1

v∑
j=1

c′i,j

⎞⎠+ cEQ <

u∑
i=1

v∑
j=1

ci,j , (21)

and the condition for round complexity is

max(r′1,1, r
′
1,2, . . . , r

′
u,v) + rEQ < max(r1,1, r1,2, . . . , ru,v). (22)

3.6 Summary of Proposed Protocol Complexities

As shown in Sections 3.2 and 3.3, the Batch Logical OR protocol and the Batch
Logical AND protocol both require (

∑t
i=1 c

′
i) + t+ cEQ − 1 multiplications and

max(r′1, . . . , r′t) + rEQ + "log2 t# rounds.
Furthermore, as shown in Sections 3.4 and 3.5, the Batch Logical AND-OR

and the Batch Logical OR-AND protocols both require (
∑u

i=1

∑v
j=1 c

′
i,j)+uv+

cEQ − 1 multiplications and max(r′1,1, . . . , r′u,v) + rEQ + "log2 uv# rounds.
By setting t = u × v, c′(i−1)v+j = c′i,j , r

′
(i−1)v+j = r′i,j , we can represent the

communication complexity of the four proposed protocols in one equation and
the round complexity in another. The communication complexity for the pro-
posed protocols is

(
t∑

i=1

c′i) + t+ cEQ − 1, (23)

and the round complexity is

max(r′1, . . . , r
′
t) + rEQ + "log2 t#. (24)

Similarity, by setting c(i−1)v+j = ci,j , r(i−1)v+j = ri,j , we can do likewise for the
corresponding existing protocols. The communication complexity for the existing
protocols is

(

t∑
i=1

ci) + t− 1, (25)

and the round complexity is

max(r1, . . . , rt) + "log2 t#. (26)

Furthermore, the conditions for the four proposed protocols to be more effi-
cient than the corresponding existing protocols are as follows. The condition for
communication complexity is

(

t∑
i=1

c′i) + cEQ <

t∑
i=1

ci, (27)

and that for the round complexity is

max(r′1, . . . , r
′
t) + rEQ < max(r1, . . . , rt). (28)
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3.7 Security

The proposed protocols consist of addition, multiplication, equality testing, and
an alternative protocol. As mentioned in Section 3.1, the alternative protocol is
an MPC protocol, so the proposed protocols are based on (k, n) threshold secret
sharing. Therefore, the security of the proposed protocols is reduced to that of
(k, n) threshold secret sharing. That is, for secret s, no information about s is
leaked without k shares of s.

4 Alternative Protocols and Their Complexities

As mentioned in Section 3.1, one of the key ideas of the proposed protocols is
to make a logical formula consisting of multiple Boolean protocols Fi’s more
efficient by using alternative protocols F ′

i ’s instead of Fi’s where alternative
protocol F ′

i of Fi is an MPC function.

F ′
i =

{
[0]p if Fi = true[
v ∈ Z∗

p

]
p
if Fi = false

(29)

In this section, we construct an alternative protocol for equality testing and eval-
uate its complexities. Similarly, we construct an alternative protocol for interval
testing and evaluate its complexities.

4.1 Equality Testing

Given shares of secrets [a]p, [b]p, the equality testing protocol obtains [a = b]p
without revealing them, where a, b ∈ Zp. The equality testing of Nishide and
Ohta requires cEQ = 81
 multiplications and rEQ = 8 rounds [7].

The alternative protocol of equality testing F is

F ′ = [a− b]p. (30)

The complexities of F ′ are 0 multiplications and 0 rounds. Now we show that F ′

is an alternative protocol of F . If F is true, F ′ = [0]p since a = b. If F is false,
F ′ = [v ∈ Z∗

p]p since a �= b. Note that the operation “− ” is done over GF (p).
Thus, F ′ is an alternative protocol of F .

If all Fi’s are equality testing for the Batch Logical OR protocol, the logical
formula is

(a1 = b1) ∨ (a2 = b2) ∨ · · · ∨ (at = bt). (31)

The complexities of this formula for the existing protocols are 81
t+ t− 1 mul-
tiplications and 8 + "log2 t# rounds since ci = cEQ and ri = rEQ in Table 3. On
the other hand, its complexities for the Batch Logical OR protocol are 81
+t−1
multiplications and 8+ "log2 t# rounds since c′i = 0 and r′i = 0 in Table 3. Thus,
the Batch Logical OR protocol reduces the upper bound of the communication
complexity from O(
t) to O(
 + t) though it does not reduce round complex-
ity. As shown in Section 3.6, the complexities of the Batch Logical OR protocol
are equal to those of the other proposed protocols. Thus, the other proposed
protocols similarly reduce communication complexity.
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4.2 Interval Testing

Given shares of a secret [a]p and public values d, e, the interval testing protocol
obtains [d < a < e]p without revealing a, where a, d, e ∈ Zp, d < e. The interval
testing protocol of Nishide and Ohta requires 110
 + 1 multiplications and 13
rounds [7].

The alternative protocol of interval testing1 F is

F ′ = (a− (d+ 1))× (a− (d+ 2))× · · · × (a− (e− 2))× (a− (e− 1)). (32)

The complexities are e−d− 2 multiplications and "log2(e−d− 1)# rounds. Now
we show that F ′ is an alternative protocol of F . If F is true, F ′ = [0]p since a is
an integer from d+ 1 to e− 1. If F is false, F ′ = [v ∈ Z∗

p]p since all factors have
a non-zero value. Thus, F ′ is an alternative protocol of F .

If all Fi’s are interval testing for the Batch Logical OR protocol, the logical
formula is

(d1 < a1 < e1) ∨ (d2 < a2 < e2) ∨ · · · ∨ (dt < at < et). (33)

The complexities of this formula for the existing protocols are as follows since
ci = 110
+ 1 and ri = 13 in Table 3. The communication complexity is(

t∑
i=1

ci

)
+ t− 1 = 110
t+ 2t− 1, (34)

and the round complexity is

max(r1, . . . , rt) + "log2 t# = 13 + "log2 t#. (35)

On the other hand, the complexities of this formula for the Batch Logical OR
protocol are as follows. Since c′i = ei − di − 2 and r′i = "log2(ei − di − 1)# in
Table 3, the communication complexity is(

t∑
i=1

c′i

)
+ cEQ + t− 1 =

t∑
i=1

(ei − di)− t+ 81
− 1, (36)

and the round complexity is

max(r1, . . . , rt) + rEQ + "log2 t# =

max("log2(e1 − d1 − 1)#, . . . , "log2(et − dt − 1)#) + 8 + "log2 t#.(37)

Now we show the conditions for the Batch Logical OR protocol to be more ef-
ficient than the existing protocols. Let cEQ = 81
, ci = 110
 + 1, rEQ = 8 and

1 Though we deal with interval testing here, it can be generalized to set membership
testing easily where the set includes non-consecutive values.



Batching Multiple Protocols to Improve Efficiency of MPC 305

ri = 13 for the protocols of Nishide and Ohta [7]. The condition for communi-
cation complexity is (

t∑
i=1

c′i

)
+ cEQ <

t∑
i=1

ci (38)

t∑
i=1

(ei − di − 2) + 81
 < (110
+ 1)t (39)

∑t
i=1(ei − di)

t
<

(
110− 81

t

)

+ 3, (40)

and that for round complexity is

max(r′1, . . . , r
′
t) + rEQ < max(r1, . . . , rt) (41)

max(r′1, . . . , r
′
t) < 5 (42)

"log2(ei − di − 1)# < 5 (43)

ei − di < 17, (44)

where max(r′1, . . . , r
′
t) = r

′
i = "log2(ei − di − 1)#. These results are equal to the

those of the other proposed protocols as they were for equality testing above.

5 Application of Proposed Protocols

We apply the proposed protocols to two example applications using a secret
shared database and evaluate their complexities for the example queries. For the
database, we suppose that

– each value is distributed by (k, n) threshold secret sharing as a secret and
that

– n database servers store each share as parties

The secret shared database leaks no information about the values even if an
adversary breaks into k − 1 database servers.

5.1 Example 1: Patient Database Searches

In the first example, the proposed protocols are used to search a patient database
(Table 5) for a male with heart disease aged between 10 and 19. The values for
patient ID, age, gender, and disease in the ith row of the table are idi, ai, gi,
and di, respectively. The values representing male and heart disease are m and
h, respectively.

If the existing protocols are used straightforwardly, the steps are as follows.

1. The parties perform the following steps in parallel for each row i.
2. The parties obtain [Ai]p ← [10 ≤ ai ≤ 19]p, [Gi]p ← [gi = m]p, and [Di]p ←

[di = h]p using the equality testing and interval testing protocols in parallel.
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Table 5. Patient database

Patient ID Age Gender Disease

001 43 female pneumonia

002 16 male heart disease

003 59 male stomach cancer
...

...
...

...

Table 6. Results of patient information
search

Patient ID Age Gender Disease

0 0 0 0

002 16 male heart disease

0 0 0 0
...

...
...

...

3. The parties obtain [Ti]p ← [Ai ∧Gi ∧Di]p = [Ai]p × [Gi]p × [Di]p.
4. To record values of 0 if the record does not satisfy the condition, the parties

perform the following operations in parallel.
[idi]p ← [idi]p × [Ti]p, [ai]p ← [ai]p × [Ti]p, [gi]p ← [gi]p × [Ti]p, [di]p ←
[di]p × [Ti]p

The results of this search are shown in Table 6.
On the other hand, since the query can be represented as (10 ≤ ai ≤ 19)∧(gi =

m) ∧ (di = h), the Batch Logical AND protocol can be used as follows.

1. The parties perform the following steps in parallel for each row i.
2. The parties obtain the results of the following alternative protocols in par-

allel.
[A′

i]p ← [ai − 10]p × [ai − 11]p × · · · × [ai − 19]p
[G′

i]p ← [gi −m]p
[D′

i]p ← [di − h]p
3. The parties obtain the result of [A′

i]p ∧ [G′
i]p ∧ [D′

i]p in the form of [0]p or
shares of a non-zero value
[T ′

i ]p ←
(
[A′

i]
2
p + [G′

i]
2
p

)2
+ [D′

i]
2
p

4. The parties convert [T ′
i ]p into the form of [0]p or [1]p.

[Ti]p ← [T ′
i = 0]p

5. To record values of 0 if the record does not satisfy the condition, the parties
perform the following operations in parallel.
[idi]p ← [idi]p × [Ti]p, [ai]p ← [ai]p × [Ti]p, [gi]p ← [gi]p × [Ti]p, [di]p ←
[di]p × [Ti]p

Complexity. We evaluate the complexities for this query using existing and the
proposed protocols assuming that the equality testing protocol requires 81
 mul-
tiplications and 8 rounds and that the interval testing protocol requires 110
+1
multiplications and 13 rounds. These protocols were proposed by Nishide and
Ohta [7].

With the existing protocols, Step 2 requires 110
 + 1 + 81
 × 2 = 272
 + 1
multiplications and 13 rounds, Step 3 requires 2 multiplications and 2 rounds,
and Step 4 requires 4 multiplications and 1 round. Thus the total complexities
are (272
+ 7)x multiplications and 16 rounds, where x is the number of rows.

On the other hand, with the Batch Logical AND protocol, Step 2 requires
19−10 = 9 multiplications and "log2(19−10+1)# = 4 rounds, Step 3 requires 2
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multiplications and 2 rounds, Step 4 requires 81
 multiplications and 8 rounds,
and Step 5 requires 4 multiplications and 1 round. Thus, the total complexities
are (81
+ 15)x multiplications and 15 rounds. Therefore, for this example, the
Batch Logical AND protocol reduces the communication complexity by approx-
imately 70% and the round complexity by 1 round.

5.2 Example 2: Information Presence Search

In the second example application, the proposed protocols are used to determine
whether information is present in a list. An immigration officer might want to
search a terrorist watch list to see whether a person entering the country is on
the list. The values for the person’s name, nationality, gender, and age are a, b, c,
and d, corresponding to xi, yi, zi, and wi in the ith row. The number of rows is
v. The query is represented as a logical formula:

{(a = x1) ∧ (b = y1) ∧(c = z1) ∧ (d = w1)} ∨
{(a = x2) ∧ (b = y2) ∧(c = z2) ∧ (d = w2)} ∨

...

{(a = xv) ∧ (b = yv) ∧(c = zv) ∧ (d = wv)}. (45)

The complexities with the existing protocols are (
∑u

i=1

∑v
j=1 ci,j)+ uv− 1 mul-

tiplications and max(r1,1, . . . , ru,v) + "log2 uv# rounds as shown in Section 3.4.
Since ci,j = 81
, u = 4, and ri,j = 8, the complexities are 324
v + 4v − 1 mul-
tiplications and 10 + "log2 v# rounds. On the other hand, we can apply the
Batch Logical OR-AND protocol to this logical formula straightforwardly. If
we do, the complexities are (

∑u
i=1

∑v
j=1 c

′
i,j) + uv + cEQ − 1 multiplications

and max(r′1,1, . . . , r′u,v) + rEQ + "log2 uv# rounds. Since c′i,j = 0, u = 4, cEQ =
81
, r′i,j = 0, and rEQ = 8, the complexities are 81
+4v− 1 multiplications and
10+"log2 v# rounds. Since v is dominant in practical use, the Batch Logical OR-
AND protocol reduces the communication complexity for this query to 1

81� . As
shown by these two examples, the proposed protocols are practically applicable
to database queries and reduce the complexities drastically.

6 Conclusion

The biggest problem with multi-party computation is that it requires a vast
amount of communication. Much research has gone into reducing the communi-
cation and round complexity of each protocol (equality testing, interval testing,
etc.). In this work, we proposed following four efficient protocols.

–
∨t

i=1 Fi : Batch Logical OR protocol

–
∧t

i=1 Fi : Batch Logical AND protocol
–
∨u

i=1

∧v
j=1 Fi,j : Batch Logical AND-OR protocol

–
∧u

i=1

∨v
j=1 Fi,j : Batch Logical OR-AND protocol
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If all Fi’s (Fi,j ’s) in the logical formulas are equality testing protocols and uv = t,
the proposed protocols reduce the upper bound of the communication complexity
from O(
t) to O(
+ t), where 
 is the bit length of a prime number p and secrets
are over Zp. If all Fi’s (Fi,j ’s) are interval testing (di < xi < ei), the proposed
protocols reduce both communication and round complexity depending on di
and ei.

We applied the proposed protocols to a secret shared database and presented
two examples. The first showed that a proposed protocol reduces the communica-
tion complexity by approximately 70% and the round complexity by 1 round for a
query consisting of equality testing and interval testing. The second showed that
a proposed protocol reduces the communication complexity to approximately
1

81� for a query that determines whether the given information is included in a
list. The concept of the proposed protocols is versatile and can be applied to
protocols other than equality testing and interval testing, thereby making them
more efficient as well.
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Abstract. The idea exploiting social networks for threshold signing was
proposed to help average users better protect their private keys. In or-
der to investigate the attack-resilience of the whole system, we propose
a weight based attack strategy, which is more powerful than those pre-
viously proposed. We also investigate some important factors affecting
the attack-resilience of the system, and based on the results, we pro-
pose a new design for delegate selection which can efficiently improve
the attack-resilience of the whole system.

Keywords: social networks, threshold cryptography, attack-resilience.

1 Introduction

A threshold secret sharing scheme enables a dealer to distribute a secret among
a set of users, by giving each user a piece of information called a share such
that only a sufficient number of users will be able to reconstruct the secret,
while a smaller number of users gain no information on the secret. Because
of this significant security feature, threshold cryptography techniques play an
important role in protecting cryptographic keys [1] [2] [3]. In general, a user can
employ multiple servers to run a threshold cryptosystem. However, in order to
make such techniques more widely available in the real world, allowing average
users better protect their private keys, there have been some work [4] [5] [6]
proposing employing threshold cryptography in social networks.

Our work is mainly based on [4] that proposed exploiting social networks for
threshold signing whereby users take advantage of their trusted ones to help
secure their private keys. The attack-resilience of the resulting system has been
studied in [4] under various attack strategies, due to the compromise of some
computers and thus the compromise of the cryptographic key shares stored on
them. However, while identifying the optimal attack strategy is known to be NP-
hard [7], there is a problem how to heuristically identify a relatively powerful
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attack. Although [4] proposed an attack strategy called RemainderDegreeBased
Attack which always picks the highest degree node in remainder graphs to com-
promise, it is not powerful enough in most cases. Besides, [4] carried out all
its experiments only with simulated data and didn’t give any advice of how to
improve the attack-resilience of the resulting system based on a given network.

Following the work of [4], we further investigate the attack-resilience of exploit-
ing social networks for threshold signing. Our work and contributions include:

– We propose an attack strategy called WeightBased Attack. It is more power-
ful than those already known. Moreover the adversary doesn’t need to know
the topology of the whole network beforehand. The adversary can launch
the attack just with the local knowledge of those compromised nodes.

– We study the factors affecting the attack-resilience of the whole system,
including network topology and network average degree.

– For a given network, we propose a new design for delegate selection in order
to improve the attack-resilience. Experiments show that our design exhibits
better attack-resilience than the one defined in [4].

– We carry out our experiments not only with simulated data but also with
real data of social networks. In fact, we do experiments with three types
of data. One follows Watts-Strogatz small world model [8]; another follows
power law model [9]; and the third is a facebook data set [10].

The remainder of the paper is organized as follows: in section 2 we introduce the
background knowledge and system model. In section 3 we propose our attack
strategy. In section 4 we investigate some important factors affecting the attack-
resilience of the whole system. In Section 5, we propose a new design to improve
the attack-resilience for given social networks. In Section 6, we introduce some
related works. At last, in section 7 we make a conclusion and discuss some open
problems.

2 Background and System Model

In this section, we introduce the system model and some important notions of [4]
on which our work is mainly based.

Social networks can be modeled as an undirected graph G = (V,E), where
each node or vertex u ∈ V represents a user, and an edge (u, v) ∈ E means that
there is a strong mutual trust between u and v. When exploiting social networks
for threshold signing, each u ∈ V picks some nodes he trusts in the network to
hold his private key shares. We let Delegates(u) denote the set of nodes whom
u picks to hold his private key shares , and Principals(u) the set of nodes who
pick u to hold their shares. In both Delegates(u) and Principals(u), u itself
is not included. In [4], the author assume a user only trusts his direct friends
and picks all his direct friends as delegates. In such a design, Delegates(u) and
Principals(u) are symmetric, such that if v ∈ Delegates(u), then it is true
u ∈ Principals(v).
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We define α = k
n for a (k,n)-threshold scheme, and suppose it is a system-

wide parameter. If we directly apply secret sharing schemes to social networks,
there may be an undesirable situation that compromising T nodes results in
compromising S ≥ T private keys. For example, consider the simple case of
|V | = 3 and α = 0.5, where each node shares his private key to all the three
nodes using a (2, 3) secret sharing. In this case, compromising any two nodes
immediately causes the compromise of all three private keys. So the resulting
security is worse than the one where each user holds his own private key. To
avoid this drawback, it is proposed in [4] each user distributes his secret shares
using a two-tier secret sharing method. A user u ∈ V first uses a (2, 2) threshold
secret sharing method to split his private key sku into two shares sku1 and sku2.
Then, a ("α · deg(u)#, deg(u)) threshold secret sharing method is used to split
sku2 into deg(u) shares (sku2,1, . . . , sku2,deg(u)), where deg(u) denotes the degree
of node u. As a result, u holds sku1 and erases sku as well as sku2, and each
neighbor of u holds a share of skuu2. Using the above two-tier secret sharing
method, in order to comprise the private key of u, an adversary has to comprise
u and a sufficient number of u’s friends.

In the adversary model, an adversary who wants to steal private keys of
users can compromise user computers, and thus the secret shares stored on the
computers. We assume the adversary has the ability to compromise any other
users in the social network and we don’t consider the price of compromising a
single user. All the compromised nodes are under control of the adversary. It is
also assumed that the adversary knows the topology of the social networks and
compromising of a node by an adversary doesn’t jeopardize its availability. This
assumption is realistic since unavailability of infected machines can signal to the
owner to scan and clean his computer from malicious software.

There are three states for each node: not yet compromised; compromised but
the private key is not compromised; compromised and also the private key. We
respectively use Sh, Snc and Skc to denote the three sets of nodes. Note the
intersection of any two sets is empty. We let Sc denote those compromised nodes
despite the states of their private keys, so we have Sc = Snc

⋃
Skc.

Intuitively, if the adversary can only compromise a few private keys when he
compromise lots of nodes, we say the security of the system is high, and vice
verse. Precisely, the security of the resulting system is measured by the definition
of attack-resilience:

AR(G,D,A) =

1
|V |

∑
0<T≤|V |(S(G,D

∗, A, T )− S(G,D,A, T ))
(|V | − 1)/2

=
2

|V ||V − 1|
∑

0<T≤|V |
(T − S(G,D,A, T ))

In the above equation, G = (V,E) is a given social network. D denotes the set
of possible designs on how the users hold private keys shares of each other, and
A denotes the set of possible attacks. S(G,D,A, T ): G× D× A×N→ N is the
function that returns the number of compromised private keys when 0 ≤ T ≤ |V |
nodes are compromised according to A ∈ A. D∗ is the benchmark design where
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Fig. 1. Attack-resilience

each user holds his own private key. It is obvious that S(G,D∗, A, T ) = T for
any A ∈ A. The definition of attack-resilience can be explained by the average
distance between the line S(G,D∗, A, T ) = T and the curve S(G,D,A, T ) as
shown in figure 1.

We focus our study on the attack-resilience of the whole system, and the
availability is not within the scope of our work, which means we don’t consider
the situation when computers are not responsive. In fact, we can make the same
assumption as [5] : a user sending a request to an off-line delegate simply waits
till the latter is available.

3 Our Weight Based Attack

3.1 Motivation

To accommodate the worst-case scenario, it makes sense to identify the most
powerful attack strategy, which turns out to be NP-hard. We thus need to heuris-
tically present an often powerful attack strategy. However, although some attack
strategies have been presented, they are far from the optimal attack strategy.
In other words, they are not powerful enough. The most powerful attack de-
fined in [4] is called RemainderDegreeBased Attack. The adversary heuristically
picks the highest degree node in remainder graphs to compromise. Remainder
graphs are referred to the subgraphs after removing the nodes whose private
keys have been compromised and relevant edges. The intuition behind this attack
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is that compromising the highest degree nodes in remainder graphs means the
compromise of many private key shares, and thus may cause the compromise
of many private keys that have yet to be compromised. However, compromising
more shares doesn’t actually mean the compromise of more private keys. In
fact, given α is a system-wide parameter, it is more difficult to compromise
the private key of the node with a higher degree, which is at odds with the
intuition. For example, in a specified network topology, the adversary following
RemainderDegreeBased Attack may compromise some nodes all holding many
shares, but most of their friends are not compromised, so the adversary has
actually compromised few private keys.

A powerful attack strategy implies that the adversary tries to compromise as
many private keys as possible by compromising as few nodes as possible. Because
of the two-tier secret sharing method, compromising n nodes results in at most
n private keys compromised. This ideal situation happens if and only if for each
u ∈ Sc, it has at least α · deg(u) friends in Sc. So intuitively the adversary
should compromise those nodes preferentially: those who have a large fraction of
friends in Sc, and those who are friends of u ∈ Snc whose large fraction of friends
are in Sc. For example, in the case of figure 2, supposing α = 1, all friends of
N7 belong to Sc, and N10 is a friend of N6 whose most friends belong to Sc,
so N7 and N10 should be compromised preferentially. In fact, compromising N7
leads to the compromise of N7’s private key immediately, and compromising N10
leads to the compromise of N6’s private key immediately. Based on this idea, we
propose our attack strategy. Experiment results show it is more powerful than
those previously proposed.

3.2 Attack Algorithm

In our attack strategy, the adversary heuristically decides the node next to be
compromised based on Sc. Sh can be viewed as a candidate list from which
the adversary picks node to compromise. For each u ∈ Sh, we assign u a value
weight(u) measuring if we compromise u, its effect on the current system, which
is composed of two parts: one measuring how much its own private key is com-
promised, the other measuring how much the private keys of these nodes in
Snc are compromised. We let W (u, v) denote the function which returns the ef-
fect on the safety of v’s private key if u is compromised. Denote by nd(u) the
number of delegates of u, ncd(u) the number of compromised delegates of u.
Define k(u) = α ∗ nd(u), where k(u) represents the threshold number of shares
needed to compromise u’s private key, then the curves of W (u, v) are shown
in Figure 3 when v respectively is u itself and v ∈ Principals(u) ∩ Snc; oth-
erwise, W (u, v) = 0, which means compromising u has no effect on the safety
of v’s private key. Here we ignore the effect if v ∈ Sh because compromising
v is the precondition of compromising the private key of v. So if u �= v we
only consider the nodes in Snc. From the curves we can see that we put more
attention to the nodes whose private keys are approximately compromised. In
other words, our attack is a local optimal or greedy algorithm that gives prior-
ity to the nodes who currently contribute most to compromising private keys.
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Fig. 2. A simple example of social network being compromised
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Fig. 3. Effect on v if compromising u

We have: weight(u) = W (u, u) +
∑

v∈Principals(u)∩Snc
W (u, v) and weight(u)

can be treated as the priority of u to be compromised.
Our attack strategy is processed as the following steps:

1. Pick the node with the maximum value of weight in Sh(the candidate list)
to compromise. If there are multiple ones eligible, a random one is chosen.

2. Remove the node from Sh, and update the weights of those nodes in Sh
3. Repeat the above two steps until the number of compromised nodes reaches

the previous assigned value.

Algorithm 1 gives the process of our attack strategy in detail and algorithm 2
elaborately describes the update process. Note Algorithm 1 is also applicable
to the directed situation where u is v’s friend but v is not u’s friend so u ∈
Delegates(v) but v �∈ Delegates(u). In fact, any edge in undirected graphs can
be represented by two directed edges.
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Algorithm 1. WeightBasedAttack

Input: G = (V,E), 0 < α ≤ 1, T (the number of allowed compromised
nodes,T ≤ |V |)

1 begin
2 Sh = V, Snc = ∅, Skc = ∅, cnt = 0
3 foreach u ∈ Sh do /*Initialize weights for each node*/
4 weight(u) = 0
5 end
6 while cnt ≤ T do
7 u = Random{v ∈ Sh|weight(v) == maxx∈Sh{weight(x)}}
8 Sh = Sh − u
9 UpdateWeight(G,u, α, Sh, Snc, Skc)

10 cnt = cnt + 1

11 end

12 end

Algorithm 2. UpdateWeight

Input: G = (V,E), n ∈ V (the node just compromised), 0 < α ≤ 1, Sh, Snc, Skc

1 begin
2 k = α ∗ nd(n)
3 if ncd(n) ≥ k then
4 Skc = Skc ∪ {n}
5 else
6 Snc = Snc ∪ {n}
7 foreach u ∈ Delegates(n) ∩ Sh do

8 weight(u) = weight(u) + ncd(n)+1
k

9 end

10 foreach u ∈ Principals(n) do
11 k = α ∗ nd(u)
12 ncd(u) = ncd(u) + 1
13 if u ∈ Sh and ncd(u) ≤ k then
14 weight(u) = weight(u) + 1

k

15 else if u ∈ Snc then
16 w = 0
17 if ncd(u) < k then
18 w = 1

k

19 else
20 w = −1
21 Snc = Snc − u
22 Skc = Skc ∪ {u}
23 foreach v ∈ Delegates(u)∩ Sh do
24 weight(v) = weight(v) + w
25 end

26 end

27 end
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3.3 Experiments and Analysis

In order to identify our attack strategy, we carry out our experiments with three
types of data set. One follows Watts-Strogatz small world model, with average
degree 10 and rewiring probability 0.8 (thus this network has short average path
length and a small clustering coefficient). Another follows power law model, with
average degree approximately 10 and power law exponent −2.5. Both graphs are
generated with |V | = 1000. The third is a facebook data set with 63, 731 nodes
and 817, 090 edges.

We compare our attack strategy which is called WeightBased Attack with two
other strategies:

– Random Attack: The adversary always randomly picks a non-compromised
node in Sh to compromise.

– RemainderDegreeBased Attack: The adversary heuristically picks the
highest degree node in remainder graphs to compromise.
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Fig. 4. Ratio of compromised keys vs. Ratio of compromised nodes: Small World
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Fig. 5. Ratio of compromised keys vs. Ratio of compromised nodes: Power Law

Figure 4 plots the simulated ratio of compromised keys vs. the ratio of com-
promised nodes in the small world graph case. It is shown that our attack is
always more powerful than RemainderDegreeBased Attack, which in turn is al-
ways more powerful than Random Attack. Specially, when α is low (α = 0.6
in our experiments), the curve of our attack is close a straight line, indicating
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Fig. 6. Ratio of compromised keys vs. Ratio of compromised nodes: Facebook

the effect of our attack is almost ideal. Besides, our attack starts to compro-
mise private keys after compromising a much smaller number of nodes than the
other attacks, which is particularly significative when there is an upper limit
on the number of nodes that can be compromised. Taking α = 0.6 for exam-
ple, Random Attack and RemainderDegreeBased Attack starts to compromise
private keys after compromising about 30 percents of nodes, while our attack
starts to compromise private keys almost at the beginning. That is because our
attack can be regarded as a local optimal or greedy strategy which is eager to
compromise private keys as early as possible. Figure 5 plots the simulated ra-
tio of compromised keys vs. the ratio of compromised nodes in the power law
graph case, where the results are almost the same as in Figure 4. Figure 6 plots
the simulated ratio of compromised keys vs. the ratio of compromised nodes
in facebook case. However, although our attack is still powerful than Remain-
derDegreeBased Attack, the difference between them is not obvious. This may
be because the facebook data set we use exhibits the power law characteristic
whose absolute value of power law exponent is rather small. In such a graph,
after compromising a small number of nodes with high degree, it is likely that
when compromising a node its private key is also compromised since a large
fraction of its friends belong to Sc, which is the ideal situation. So, when using
facebook data set, RemainderDegreeBased Attack performs well and the effect
is close to our attack.

In conclusion, our attack strategy are more powerful than others under var-
ious social network topologies and various values of α. Besides, compared with
RemainderDegreeBased Attack, ours just make use of the local knowledge of the
already compromised nodes. The adversary doesn’t need to know the topology
of the whole network beforehand. In the rest of the paper, we will only consider
our attack so as to accommodate the worst-case scenario.

4 Important Factors Affecting the Attack-Resilience of
System

In this section we investigate the factors affecting the attack-resilience of the
whole system under our WeightBased Attack, including the network topology
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and the average degree. The impact of network topology and α have already
been studied in [4] under RemainderDegreeBased Attack. It is clear the attack-
resilience of the whole system increases with the increasing of α, so we won’t
study this factor any more.

4.1 On the Impact of Network Topology

Figure 7 plots the simulated ratio of compromised keys vs. the ratio of compro-
mised nodes under various network topologies. Results show small world graphs
always exhibit better attack-resilience than power law graphs.

Here we try to give some explanations of the results from the perspective
of graph theory. When α = 1, identifying the optimal attack strategy can be
translated to the NP-hard problem known as vertex expansion [4]. Meanwhile,
expander graphs for which any small subset of nodes has a relatively large neigh-
borhood have high value of vertex expansion according to its definition. Thus, we
suppose an expander graph is more likely to have good attack-resilience. On the
other hand, expander graphs are well local connected. For small world graphs,
any node arrives another node in a few steps while for power law graphs, lots
of nodes have only few friends. So small world graphs are much more well local
connected than power law graphs, which cause small world graphs exhibit better
attack-resilience than power law graphs.
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Fig. 7. The Impact of Network Topology

4.2 On the Impact of Average Degree

Figure 8 plots the simulated attack-resilience vs. the average degree respectively
for small world graph topology and power law graph topology. Results show that
the attack-resilience increases with the increase of average degree at a dropping
rate.

Here we also give some explanations of the results from the perspective of
graph theory: for a well local connected graph, increasing its average degree
contribute less to its local connectivity, and vice versa. So when average degree
is low, the attack-resilience increases quickly. On the contrary, when average
degree is high, the increase is not obvious.
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Fig. 8. The Impact of Average Degree

5 Delegate Selection Model and Design

For a given social network, how can we improve the attack-resilience of the
whole system? In this section, we give a possible design which will increase the
attack-resilience efficiently.

From the results of section 4, we know network topology and average degree
have significant impacts on the attack-resilience, so we consider improving the
attack-resilience by constructing an overlay over the original topology. If we
make sure the overlay has a higher average degree and a better topology, the
attack-resilience of the whole system under the new design will increase.

5.1 Delegate Selection Algorithm

The key point of our new design is to construct such an overlay. In the design
of [4], the author assumes a user only trusts his direct friends and he picks all the
friends as his delegates. Here we extend the limitation such that a user not only
trusts his friends but also the friends of his friends based on the acknowledge
that people are more likely to trust a friend of a friend than a random stranger
[11] [12]. Now a user’s trust list includes his friends and friends of friends whom
can be regarded as the candidates where the user selects his delegates. And we
are able to construct an overlay by the selection of delegates. We observe that
the overlay can be modeled as a directed graph.

Now the problems are:

– Is it necessary to select all candidates as one’s delegates?
– If not, how to select delegates to make system have better attack-resilience?

It is known from the experiment results that the increase of the attack-resilience
is not obvious when average degree is high. At the same time, for a user, the
communication consumption increases proportionally to the number of his del-
egates. Here we suppose a user can directly communicate with his delegates, so
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Algorithm 3. SelectDelegates

Input: G = (V,E), u ∈ V (the node ready to select delegates)
1 begin
2 Delegates(u) = ∅
3 Candidates(u) = Friends(u)

⋃
FriendsOfFriends(u)

4 while |Delegates(u)| ≤ 20 and Candidates(u) �= ∅ do
5 m = minx∈Candidates(u){sharesNum(x)}
6 v = Random{x ∈ Candidates(u)|sharesNum(x) == m}
7 Delegates(u) = Delegates(u)

⋃{v}
8 Candidates(u) = Candidates(u)− {v}
9 sharesNum(v) = sharesNum(v) + 1

10 end

11 end

the communication consumption is unrelated with the number of hops in social
networks. Thus, it is necessary for us to set a value indicating the maximum
number of delegates a user can select. Here we let the value be 20 as an ex-
periment parameter. Of course other appropriate values are available according
to the experiment result of figure 8. On the other hand, in order to make the
overlay well local connected, we try to make each node hold approximately the
same number of shares.

Based on the above considerations, for each node, we process our delegate
selection algorithm as follows, which is described detailedly in algorithm 3:

– In each round, a node select the candidate which currently keeps the mini-
mum number of shares until its delegate number reaches 20 or the candidate
list is empty.

– When there are more than one nodes possessing the minimum number of
shares, randomly select one.

5.2 Experiments and Analysis

We compare our design with the design in [4] in which a user selects all the friends
as his delegates. Figure 9 plots the simulated ratio of compromised keys vs. the
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Fig. 9. Ratio of compromised keys vs. Ratio of compromised nodes: Small World
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(c) α = 1.0

Fig. 10. Ratio of compromised keys vs. Ratio of compromised nodes: Power Law
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Fig. 11. Ratio of compromised keys vs. Ratio of compromised nodes: Facebook

ratio of compromised nodes in the small world graph case. Figure 10 plots the
simulated ratio of compromised keys vs. the ratio of compromised nodes in the
power law graph case. And Figure 11 plots the simulated ratio of compromised
keys vs. the ratio of compromised nodes in facebook case. It is observed that our
design performs better under various network topologies and various values of
α.

6 Related Work

Employing threshold cryptography to improve the security of system has been
discussed in various scenarios. For example, [1], [2], [3] respectively proposed
utilizing threshold cryptography to improve Kerberos, protect private keys of
networked cryptographic devices, and revoke certificates quickly and safely. The
main idea of [1], [2] and [3] is simply to split a private key into two pieces such that
one piece is kept on the user’s computer and the other on some remote server. In
addition, [13] discussed applications and usability of threshold cryptography in
P2P and mobile ad hoc networks, and [14] presented a distributed certification
system for decentralized varying-size P2P networks, in which signing a certificate
needs the collaboration of a fixed ratio of the nodes.

Besides [4], there are also some other works employing threshold cryptogra-
phy in social networks. [5] proposed employing threshold-based secret sharing
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schemes in distributed online social networks for the purpose of key recovery,
which is different from ours. On the other hand, [5] discussed the security of
the whole system only under some simple attack strategies, including Random
Attack and DegreeBased Attack. [6] introduced a social secret sharing scheme
in which shares are allocated based on a play’s reputation and the way he in-
teracts with other participants. However, the scheme in [6] is designed from the
perspective of a single user. The security of the whole system is not studied.

7 Conclusion and Discussion

When exploiting social networks for threshold cryptography, in order to inves-
tigate the attack-resilience of the whole system, we propose a powerful attack
strategy. We also investigate some factors which have significant effects on the
attack-resilience. Meanwhile, we propose a new design to improve the attack-
resilience for given social networks.

Although our attack is powerful than those previously proposed, there should
be better attack strategies since identifying the optimal attack strategy is NP-
hard. However, our attack strategy provides a closer solution to such problems.
On the other hand, in our model some assumptions are ideal, which are much
more complicated in the real world. For example, in the real world, the difficulties
of compromising various nodes are different. So, when each node is assigned a
value indicating the difficulty to be compromised, how to compromise as many
private keys as possible with as low price as possible is an interesting problem
and may be our future work.
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Abstract. Sahai and Waters [34] proposed Attribute-Based Encryption
(ABE) as a new paradigm of encryption algorithms that allow the sender
to set a policy to describe who can read the secret data. In recent years,
lots of attribute-based schemes appeared in literatures, but almost all the
schemes, to the best of our knowledge, are constructed from pairings. In
this work, we present a ciphertext policy attribute-based encryption (CP-
ABE) scheme, which supports and-gates without pairings. Our scheme
is defined on q-ary lattices, and has a very strong security proof based
on worst-case hardness. More precisely, under the learning with errors
(LWE) assumption, our CP-ABE scheme is secure against chosen plain-
text attack in the selective access structure model. Though our scheme
only encrypts one bit at a time, we point out that it can support multi-
bit encryption by using a well-known technique. Besides, our result can
be easily extended to ideal lattices for a better efficiency.

1 Introduction

Sahai and Waters [34] introduced the notion of attribute-based encryption as
an extension of identity-based encryption (IBE), where users’ secret keys are
produced by a trust authority according to a set of attributes. In an ABE system,
a user’s secret keys, and ciphertexts are labeled with sets of descriptive attributes
and a particular key can decrypt a particular ciphertext only if there is a match
between the attributes of the ciphertext and the user’s key.

Goyal, Pandey, Sahai and Waters [14] further extended the idea of ABE and
introduced two variants: key policy attribute-based encryption (KP-ABE) and
ciphertext policy attribute-based encryption (CP-ABE). In a KP-ABE system,
the ciphertext is associated with a set of descriptive attributes, while the private
key of a party is associated with an access policy which is defined over a set of
attributes and specifies which type of ciphertexts the key can decrypt. A CP-
ABE system can be seen as a complementary form to KP-ABE system, where the
private keys are associated with a set of attributes, while a policy defined over a
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set of attributes is attached to the ciphertext. A ciphertext can be decrypted by
a party if the attributes associated with its private keys satisfy the ciphertext’s
policy.

Cheung and Newport [9] proposed the first CP-ABE system that supports
and-gates, and proved its security under decision bilinear Diffie-Hellman (DBDH)
assumption. Since then, there are many attribute-based encryptions that sup-
port various access structures. Such as and-gates schemes in [9,27,10], tree-based
schemes in [13,19,16], and directly linear secret sharing scheme (LSSS) based
constructions in [17,18,36].

All the schemes mentioned above are constructed from pairings, and there
are no implications that an (efficient) ABE scheme can be constructed based on
other cryptographic assumptions than pairings. Moreover, those pairing related
assumptions are known to be vulnerable as we step into a post-quantum era.
In contrast, lattice is an ideal choice to construct secure cryptographic schemes
according to the following two facts:

– There is no known algorithm that can efficiently solve lattice hard problems
even for quantum computers;

– Lattice based cryptographic constructions enjoy several potential advan-
tages: asymptotic efficiency, conceptual simplicity and security proofs based
on worst-case hardness.

Unfortunately, there are few attribute-based cryptographic constructions from
lattices, though lattice cryptography has gained fruitful results in recent years.

The seminal work of Ajtai [5] brought lattice cryptography into our sight. He
gave the first collision-resistant hash function on random lattices in 1996. Later
in 2002, Micciancio [25] constructed a hash function on ideal lattices and proved
its one-wayness. In 2006, Lyubashevsky and Micciancio [21], Peikert and Rosen
[29] independently proved that the hash function in [25] is collision-resistant
with some restriction on the domain. As for public encryption setting, in 2005,
Regev [31] introduced the learning with error (LWE) problem, and proved that
its average-case hardness could be reduced by a quantum algorithm to some
standard lattice problems in the worst-case. He also proposed an elegant en-
cryption scheme based on LWE. Later, plenty of constructions based on LWE
were proposed (e.g.,[30,32]). In 2009, Peikert [28] gave a classic reduction for
LWE problem under an extension hard problem on lattices. In 2008, Gentry,
Peikert and Vaikuntanathan [11] gave a famous algorithm that could efficiently
sample elements from the distribution (i.e., DΛ,s,c, see section 3.1). They also
gave a digital signature scheme on lattices which was proved to be secure in the
random oracle model. Some other signature schemes on lattices have appeared
in literatures (e.g., [22,20,12]). Based on the sample algorithm in [11] and the
LWE assumption in [31], many IBE and Hierarchical IBE schemes have been
proposed (e.g.,[1,2,8]).

More recently, two schemes [3,4] were posted on eprint.iacr.org. Agrawal et al.
[3] constructed a fuzzy identity based encryption from lattices. Their construc-
tion employed the technique in [1] together with Shamir secret-sharing scheme.
If we consider each identity “bit” in their scheme as an attribute, then we obtain
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a KP-ABE that supports threshold gate policy. They also pointed out that it
was difficult to generalize their construction to support more expressive policies.
In addition, Agrawal, Freeman and Vaikuntanathan constructed a functional
encryption for inner product predicates based on the LWE assumption. They
utilized the technique in [1], and also presented a new technique that could
transform the ciphertext lattice into a lattice that matches the key lattice (while
two lattices are already matched once they are generated in [1]). Their scheme
can also be viewed as a ABE scheme that supports inner product policy.

Our contribution. In this paper, we investigate ciphertext policy attribute-
based encryption (CP-ABE), which supports and-gates on positive and nega-
tive attributes. In this setting, each attribute is associated with two types of
attributes, namely positive attribute and negative attribute. And if a user has
attribute i, we say he has positive attribute i. Otherwise, we say he has neg-
ative attribute i. Actually, positive attribute i and negative attribute i are
two different attributes, and denoted by i+ and i− respectively. Each user
in this system has one and only one of the two attributes, since a user ei-
ther has attribute i or doesn’t. For instance, for a real attribute system which
has four attributes {att1, att2, att3, att4}, we extend these four attributes into
{att+1 , att−1 , att+2 , att−2 , att+3 , att−3 , att+4 , att−4 } in our system. If a user has at-
tributes {att1, att3} in the real world, we implicitly define his attributes set
as {att+1 , att−2 , att+3 , att−4 }. Moreover, all access structures are organized by and-
gates in this setting. E.g., a user can decrypt a ciphertext if he has all the positive
attributes and doesn’t have any negative attributes, which are specified in the
ciphertext’s policy. For instance, a ciphertext encrypted under access structure
W = (att+1 and att−2 and att+3 ) can only be decrypted by those who have at-
tributes att1, att3 and doesn’t have attributes att2, and we don’t care about
whether he has att4.

We propose a ciphertext policy attribute-based encryption that supports and-
gates on positive and negative attributes. The basic idea of our construction
is that, in the positive and negative setting, each user in this system has an
“identity” (i.e., the set of his positive and negative attributes), which is unique
in the sense of attribute sets, thus we can use this “identity” to do some things
as we do in IBE systems. Specifically, we associate each (positive or negative)
attribute with a matrix, actually a matrix uniquely defines a lattice by a well-
known definition in lattice cryptography [5]. Thus a user’s “identity” uniquely
defines a set of lattices. When we generate secret keys for a user with attribute
set S, we use his lattices set determined by S to share a public vector, which is
used for encryption, by utilizing a trapdoor (i.e., short basis) of these lattices,
and the secret key for each attribute in S is a short vector in a lattice (strictly,
a coset defined by the lattice) determined by the attribute. As two users with
different attribute sets have different “identities”, they share the same public
vector in two different methods (i.e., in two different lattice sets). The security
of this method is guaranteed by Inhomogeneous Small Integer Solution (ISIS)
problem [26], which was shown to be as hard as some lattice hard problems. For
details see section 4.
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To the best of our knowledge, our construction is the first CP-ABE scheme
without pairings. Though our construction seems to be not much efficient, it
gives light to the possibility of constructing attribute schemes under other hard
problem assumptions (e.g., lattice problems), instead of the pairing-related as-
sumptions. Our scheme has a very strong security proof based on worst-case
hardness. More precisely, under the learning with errors (LWE) assumption, our
CP-ABE scheme is secure against chosen plaintext attack in the selective access
structure model.

Our basic construction only encrypts one bit at a time, but as we show later,
one can obtain a multi-bit encryption with a small ciphertext expansion (respect
to the one bit setting) by using a well-known technique [1]. We also point out
that our result can be easily extended to ideal lattices for a better efficiency.

2 Preliminaries

2.1 Notation

The set of real numbers (integers) is denoted by R (Z, resp.). The function log
denotes the natural logarithm. Vectors are in column form and denoted by bold
lower-case letters (e.g., x). We view a matrix simply as the set of its column
vectors and denoted by bold capital letters (e.g., X).

Denote l2 and l∞ norm by ‖·‖ and ‖·‖∞ respectively. Define the norm of a ma-
trix X as the norm of its longest column (i.e., ‖X‖ = maxi ‖xi‖). If the columns

of X = {x1, . . . ,xk} are linearly independent, let X̃ = {x̃1, . . . , x̃k} denote the
Gram-Schmidt orthogonalization of vectors x1, . . . ,xk taken in that order. For
X ∈ Rn×m and Y ∈ Rn×m′

, [X‖Y] ∈ Rn×(m+m′) denotes the concatenation
of the columns of X followed by the columns of Y. And for X ∈ Rn×m and
Y ∈ Rn′×m, [X;Y] ∈ R(n+n′)×m is the concatenation of the rows of X followed
by the rows of Y. If S is an attribute set and W is an access structure, S & W
means that S satisfies W .

The natural security parameter throughout the paper is n, and all other quan-
tities are implicitly functions of n. Let poly(n) denote an unspecified function
f(n) = O(nc) for some constant c. We use standard notation O,ω to classify the
growth of functions. If f(n) = O(g(n) · logc n), we denote f(n) = Õ(g(n)). We
say a function f(n) is negligible if for every c > 0, there exists a N such that
f(n) < 1/nc for all n > N . We use negl(n) to denote a negligible function of n,
and we say a probability is overwhelming if it is 1− negl(n).

2.2 Ciphertext Policy Attribute-Based Encryption

A ciphertext policy attribute-based encryption (CP-ABE) schemeABE ={Setup,
KeyGen, Enc, Dec} consists of four algorithms:

– Setup(λ,R). Given a security parameter λ and an attribute set R, the al-
gorithm returns a public key pk and a master key msk. The public key is
used for encryption. The master key, held by the central authority, is used
to generate users’ secret keys.
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– KeyGen(msk, S). The algorithm takes as input the master key msk and an
attribute set S ⊆ R, returns a secret key skS .

– Enc(pk,W,M) Given the public key pk, an access structureW , and a message
M , Enc returns the ciphertext C.

– Dec(skS, C) The algorithm takes a secret key skS and a ciphertext C as
input, it first checks whether the attribute set of skS satisfies the access
structure W in C. If not, the algorithm returns ⊥. Otherwise, it decrypts C
and returns the result.

For correctness, we require that, for any message M ∈ {0, 1}∗, access structure
W , attribute S ⊆ R that S & W , Dec(ENC(pk,W,M), skS) = M holds with
overwhelming probability.

Here, we review the security model for CP-ABE in [9,15], in which the at-
tacker specifies the challenge access structure before the setup phase. The formal
description of this model is given below:

Init. The adversary chooses the challenge access structure W ∗ and gives it to
the challenger.

Setup. The challenger runs the Setup algorithm, gives pk to the adversary and
keeps the master key msk secret.

Key Generation Query: The adversary can adaptively make a number of key
generation queries on attribute sets S except that he is not allowed to query
an attribute set S that satisfies W ∗.

Challenge. At some time, the adversary outputs two messages M0,M1, and
|M0| = |M1|. The challenger randomly chooses one bit b ∈ {0, 1}, computes
C∗ = Enc(pk,W ∗,Mb), and returns C∗ to the adversary.

Guess. The adversary makes more key generation queries on any attribute set
S with a restriction that S doesn’t satisfy W ∗. Finally, the adversary will
output a bit b′.

The advantage of an adversary A in the above IND-sCPA game is defined as

Adv
ind-scpa
ABE,A (λ) = |Pr[b = b′]− 1

2
|

Definition 1. A CP-ABE scheme ABE is said to be secure against selective

chosen plaintext attack (sCPA) if the advantage Adv
ind-scpa
ABE,A (λ) is a negligible

function in λ for all polynomial time adversary A.

3 Lattices

Let Rn be the n-dimensional Euclidean space. A lattice in Rn is the set

L(bi, . . . ,bm) =

{ m∑
i=1

xibi : xi ∈ Z

}
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of all integral combinations of m linearly independent vectors b1, . . . ,bm ∈ Rn.
The integers m and n are called the rank and dimension of the lattice, re-
spectively. The sequence of vectors b1, . . . ,bm is called a lattice basis and it is
conveniently represented as a matrix

B = [b1, . . . ,bm] ∈ Rn×m.

The dual lattice of Λ, denoted Λ∗, is defined to be

Λ∗ =
{
x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z

}
Let Bm(0, r) = {x ∈ Rm : ‖x‖ < r} be the m-dimensional open ball of radius
r centered in 0. For any m-dimensional lattice Λ, the ith minimum λi(Λ) is
the shortest radius r such that Bm(0, r) contains i linearly independent lattice
vectors. Formally,

λi(Λ) = inf{r : dim(span(Λ ∩ Bm(0, r))) ≥ i}.

For any rank n lattice Λ, λ1(Λ), . . . , λn(Λ) are constants, and λ1(Λ) is the
length of the shortest vector in Λ.

There are some well-known standard hard problems related to λi on lattices,
and SIVP is one of those problems.

Definition 2 (Shortest Independent Vector Problem, SIVP). Given a
basis B of an n-dimensional lattice Λ = L(B), the goal of a SIVPγ problem
is to find a set of n linearly independent lattice vectors S = {s1, . . . , sn} ⊂ Λ,
such that ‖S‖ ≤ γ(n) · λn(Λ), where γ = γ(n) is the approximation factor as a
function of the dimension.

Let A ∈ Zn×m
q for some positive integers n,m, q, we consider two kinds of full-

rank m-dimensional integer lattices defined by A:

Λ⊥
q (A) =

{
e ∈ Zm s.t. Ae = 0 ( mod q )

}

Λq(A) =

{
y ∈ Zm s.t. ∃s ∈ Zn, ATs = y ( mod q )

}
The two lattices defined above are dual when properly scaled, as Λ⊥

q (A) =

qΛq(A)∗ and Λq(A) = qΛ⊥
q (A)∗.

For any fixed u, define the coset of Λ⊥
q (A) as

Λu
q (A) =

{
e ∈ Zm s.t. Ae = u ( mod q )

}
.

The following hard-on-average problem was first proposed by Ajtai [5], and then
was formalized by Micciancio and Regev in [26].
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Definition 3 (Small Integer Solution Problem). The Small Integer Solu-
tion (SIS) problem in l2 norm is: Given an integer q, a random matrix A ∈
Zn×m
q , and a real β, find a non-zero integer vector e ∈ Zm such that Ae = 0

(mod q) and ‖e‖ ≤ β. Equivalently, the SIS problem asks to find a vector
e ∈ Λ⊥

q (A)\{0} with ‖e‖ ≤ β.
Micciancio and Regev also defined a variant problem, called ISIS problem, which
is to find a short solution to a random inhomogeneous system.

Definition 4 (Inhomogeneous Small Integer Solution Problem). The
Inhomogeneous Small Integer Solution (ISIS) problem in l2 norm is: Given an
integer q, a random matrix A ∈ Zn×m

q , a syndrome u ∈ Zn
q , and a real β, find

a non-zero integer vector e ∈ Zm such that Ae = u (mod q) and ‖e‖ ≤ β. The
average-case problem ISISq,m,β is defined similarly, where A and u are uniformly
random and independent.

The SIS and ISIS problems were shown to be as hard as certain worst-case lattice
problems in [11].

Proposition 1 ([11]). For any poly-bounded m,β = poly(n) and any prime
q ≥ βω(√n logn), the average-case problems SISq,m,β and ISISq,m,β are as hard
as approximating the SIVP problem in the worst case to within certain γ =
β · Õ(√n) factors.

3.1 Discrete Gaussians

For any s > 0, define the Gaussian function on Λ ⊂ Zn centered at c with
parameter s:

∀x ∈ Λ, ρs,c(x) = exp
(
− π ‖x− c‖2

s2

)
.

Let ρs,c(Λ) =
∑
x∈Λ

ρs,c(x). Define the discrete Gaussian distribution over Λ with

center c, and parameter s as:

∀y ∈ Λ, DΛ,s,c(y) =
ρs,c(y)

ρs,c(Λ)
.

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.
Micciancio and Regev [26] proposed a lattice quantity called smoothing pa-

rameter:

Definition 5 ([26]). For any n-dimensional lattice Λ and positive real ε > 0,
the smoothing parameter ηε is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε.

3.2 Learning with Errors

The learning with errors problem on lattices was proposed by Regev [31]. The
hardness of the problem can be reduced by a quantum algorithm to some stan-
dard lattices problems (i.e., SIVP) in the worst case. For any α ∈ R+, Ψα is
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defined to be the distribution on T of a normal variable with mean 0 and stan-
dard α/

√
2π, reduced modulo 1.

∀r ∈ [0, 1), Ψα(r) :=

∞∑
k=−∞

1

α
· exp(−π(r − k

α
)2).

For any probability distribution φ : T→ R+ and some integer q ≥ 1, the discrete
distribution φ̄ over Zq is the random variable �q ·Xφ# mod q, where Xφ has dis-
tribution φ. By the standard tail inequality: a normal variable with variance σ2

is within distance t ·σ of its mean, except with probability at most 1
t exp(−t2/2).

We have that, for any m = poly(n) independent variables e = (e1, . . . , em) from
Ψ̄α over Zq, ‖e‖ ≤ αq√mω(

√
logm) with overwhelming probability, since each

‖ei‖ ≤ αqω(
√
logm) holds with probability negligible to 1.

For q ≥ 2 and some probability distribution χ over Zq, an integer n ∈ Z+ and
a vector s ∈ Zn

q , define As,χ ⊆ Zn
q ×Zq as the distribution of variable (a, aTs+x),

where a and x are informally chosen from Zn
q and χ respectively, and all opera-

tions are performed in Zq . For any m independent samples (a1, y1), . . . , (am, ym)
from As,χ, we simply denote it by (A,y) ∈ Zn×m

q ×Zm
q , where A = (a1, . . . , am)

and y = (y1, . . . , ym)T .

Learning with Errors (LWE). For an integer q = q(n) and a distribution
χ on Zq, we say that an algorithm solves LWEq,χ if, for any s ∈ Zn

q , given
samples from As,χ it outputs s with probability exponentially close to 1.

The decisional variant of the LWE problem is to distinguish samples chosen
according to As,χ for a uniformly random s ∈ Zn

q from samples chosen according
to the uniform distribution over Zn

q ×Zq. Regev [31] showed that for q = poly(n)
prime, LWE and its decisional version are polynomially equivalent. He proved
that for certain modulus q and Gaussian error distribution χ, LWEq,χ is as hard
as solving SIVP problems using a quantum algorithm.

Proposition 2 ([31]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such
that α · q > 2

√
n. If there exists an efficient (possibly quantum) algorithm that

solves LWEq,Ψ̄α
, then there exists an efficient quantum algorithm for approxi-

mating SIVP in the l2 norm, in the worst case, to within Õ(n/α) factors.

3.3 Some Facts

Here, we list several facts about lattices in literatures.

Lemma 1 ([26]). For any n-dimensional lattice Λ, vector c ∈ Rn, and reals
0 < ε < 1, s ≥ ηε(Λ), we have

Pr
x∼DΛ,s,c

[‖x− c‖ > s√n] ≤ 1− ε
1 + ε

· 2−n.

For a lattice Λ, define the Gram-Schmidt minimum as b̃l(Λ) = min
B
‖B̃‖, where

the minimum is taken over all (ordered) bases B of Λ.
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Lemma 2 ([11]). For any n-dimensional lattice Λ and real ε > 0, we have
ηε(Λ) ≤ b̃l(Λ) ·√(log(2n(1 + 1/ε))/π. Then for any ω(

√
logn) function, there

is a negligible ε(n) for which ηε(Λ) ≤ b̃l(Λ) · ω(√logn).
Proposition 3 ([11]). There is a probabilistic polynomial-time algorithm that,

given a basis B of an n-dimensional lattice Λ = L(B), a parameter s ≥ ‖B̃‖ ·
ω(
√
logn), and a center c ∈ Rn, outputs a sample from a distribution that is

statistically close to DΛ,s,c.

We refer to the algorithm of Proposition 3 as SampleGaussian(B, s, c), which

takes a basis B for a lattice Λ ⊂ Rm, a positive real s ≥ ‖B̃‖ · ω(√logm),
and a vector c ∈ Rm as input, outputs a random vector x ∈ Λ drawn from a
distribution statistically close to DΛ,s,c.

Proposition 4 ([11]). Let n and q be a positive integers with q prime, and let
m ≥ 2n log q. Then for all but a 2q−n fraction of all A ∈ Zn×m

q and for any

s ≥ ω(√logm), the distribution of the syndrome u = Ae mod q is statistically
close to uniform over Zn

q , where e � DZm,s.

Gentry, Peikert and Vaikuntanathan [11] showed that, for any u ∈ Zn
q , t ∈ Zm

such that At = u mod q, the conditional distribution of e � DZm,s given
Ae = u mod q is exactly t +DΛ⊥

q (A),s,−t. Furthermore, there is an algorithm

SamplePre(A,TA, s,u), that takes input a short basis TA for Λ⊥
q (A), a real

s ≥ ‖T̃A‖ · ω(
√
logm), and a vector u ∈ Zn, outputs a vector e � DZm,s

condition on Ae = u.

Proposition 5 ([6]). For any δ0 > 0, there is a probabilistic polynomial-time
algorithm that, on input a security parameter n, an odd prime q=poly(n), and
integer m ≥ (5 + 3δ0)n log q, outputs a statistically (mq−δ0n/2)-close to uniform
matrix A ∈ Zn×m

q and a basis TA ⊂ Λ⊥
q (A) such that with overwhelming prob-

ability ‖TA‖ ≤ O(n log q) and ‖T̃A‖ ≤ O(
√
n log q).

For concreteness, we use TrapGen(n,m, q) to denote the algorithm in Proposition
5. Note that if we let δ0 = 1

3 , we can choose m ≥ "6n log q#.
Lemma 3 ([1]). Let e be some vector in Zm and let y← Ψ̄m

α . Then the quan-
tity |eTy| treated as an integer in [0, q − 1] satisfies

|eTy| ≤ ‖e‖qαω(
√
logm) + ‖e‖√m/2

with all but negligible probability in m. In particularly, if x ← Ψ̄α is treated
as an integer in [0, q − 1] then |x| ≤ qαω(√logm) + 1/2 with all but negligible
probability in m.

For convenience, we give the following lemma, which is implied by Theorem 3.4
in [7].
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Lemma 4. There exists an algorithm that takes A1 ∈ Zn×m
q , . . . ,Ak ∈ Zn×m

q ,

a basis Si of Λ⊥
q (Ai), and a vector u ∈ Zn

q , a real s ≥ ‖S̃i‖ · ω(
√
log km)

as input, outputs a vector e ∼ DΛu
q (A),s with overwhelming probability, where

A = [A1‖ . . . ‖Ak], and each Ai is randomly chosen from Zn×m
q .

The algorithm first randomly chooses ej from DZ
mj ,s for all j �= i, then it com-

putes u′ = u −∑
j �=i Ajej. Finally, it computes ei ← SamplePre(Ai,Si, s,u

′)
and outputs e = [e1; . . . ; ek].

For simplicity of notation, we denote the new algorithm by SamplePre as
before.

4 A CP-ABE Scheme on Lattices

In this section, we present our CP-ABE scheme in which the access structures are
and-gates on positive and negative attributes. Basically, each negative attribute
is considered as a new attribute [9]. Namely, if a user has attribute set S ⊆ R in
the real system, we consider all of his attributes in S as positive attributes, and
the other attributes inR\S are implicitly considered as his negative ones. Hence,
each user in our system actually has |R| attributes. Without loss of generality,
we denote R = {1, . . . , |R|}.

Our construction is defined below, which is parameterized by modulus q,
dimensionm, Gaussian parameter s, and α that determines the error distribution
χ. Usually, all these parameters are functions of security parameter n, and all of
these will be instantiated later. All the additions here are performed in Zq.

Setup(n,m, q,R): Given positive integers n,m, q, and an attribute set R, first
compute (B0,TB0) ← TrapGen(n,m, q). Then for each i ∈ R, randomly
choose Bi+ ← Zn×m

q , Bi− ← Zn×m
q . Next, randomly choose a vector u ←

Zn
q , and set public key pk = (B0, {Bi+ ,Bi−}i∈R,u), and master secret key
msk = (pk,TB0). Finally, return (pk,msk).

KGen(msk, S): Given the master secret key msk and a user’s attribute set S ⊆
R, for each i ∈ R, if i ∈ S, define B̃i = Bi+ , else define B̃i = Bi− . Then for
each i ∈ R, randomly choose ei ← DZm,s, and compute y = u−∑i∈R B̃iei.
Finally, compute e0 ← SamplePre(B0,TB0 , s,y), and return secret key
skS = [e0; . . . ; e|R|].
Observe that, if let D = [B0‖B̃1‖ . . . ‖B̃|R|], we have D · skS = u.

Enc(pk,W,M): Given the public key pk = ({Bi+ ,Bi−}i∈R,u), an access struc-
ture W , and a message bit M ∈ {0, 1}, denote S+(S−) as the set of positive
(negative) attributes in W , and S′ = S+ ∪ S−. Then for each i ∈ S′, if
i ∈ S+, define B̃i = Bi+ , else, define B̃i = Bi− . Next, randomly choose
s← Zn

q and compute:

– z = uT s + xz +M� q2�, where xz ← χ,
– c0 = BT

0 s+ x0, where x0 ← χm,
– ci = B̃T

i s+ xi for each i ∈ S′, where xi ← χm,
– ci+ = BT

i+s + xi+ and ci− = BT
i−s + xi− for each i ∈ R\S′, where

xi+ ,xi− ← χm.
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Finally, return ciphertext C = (W, z, c0, {ci}i∈S′ , {ci+ , ci−}i∈R\S′).
Dec(C, sk): Given the ciphertext C and the secret key sk = [e0; . . . ; e|R|], let S

be the attribute set associated to sk, if S doesn’t satisfy W , then return ⊥.
Otherwise S &W . Define S+(S−) as the set of positive (negative) attributes
in W , and S′ = S+ ∪ S−. Obliviously, S+ ⊂ S and S− ∩ S = ∅. Parse
C into (W, z, c0, {ci}i∈S′ , {ci+ , ci−}i∈R\S′). Then let yi = ci for each i ∈
S′ ∪ {0}, and for each i ∈ R\S′, if i ∈ S, let yi = ci+ , else let yi = ci− .
Define y = [y0;y1; . . . ;y|R|], and compute a = skTy = uT s + x′, b =
z − a = xz − x′ +M� q2�. Finally, If |b− � q2�| ≤ � q4� in Z, return 1, otherwise
return 0.

4.1 Parameters and Correctness

LetD be the matrix determined by the attribute set in sk, thusD·sk = u. By the
method we choose vector y, we have y = DT s+xy, where s ∈ Zn

q ,xy ∈ χm(|R|+1)

are chosen in the encryption. Thus, a = skTy = skT (DT s+xy) = uT s+skTxy =
uT s+x′. And if |xz−x′| ≤ q/5 holds (with overwhelming probability), it is easy
to check that our decryption algorithm always outputs plaintext M correctly.

Now we set the parameters to achieve our goal.

– For algorithm TrapGen, we need m ≥ "6n log q# (i.e., by Proposition 5).
– For the security proof and SamplePre, we need
s ≥ ‖T̃B0‖ · ω(

√
log(m(|R|+ 1)) (i.e., by Lemma 4).

– For the hardness of LWE, we need αq > 2
√
n (i.e., by Proposition 2).

– For the decryption algorithm works correctly, we need |xz − x′| ≤ q/5.
Note that ‖T̃B0‖ ≤ O(

√
n log q) by Proposition 5, ‖sk‖ ≤ s√m(|R|+ 1) by

Lemma 1, |xz| ≤ qαω(
√
logm) + 1/2 and |x′| ≤ ‖sk‖qαω(√log(m(|R| + 1))) +

‖sk‖√m(|R|+ 1)/2 by Lemma 3. We obtain |xz − x′| ≤ sqα
√
m(|R|+ 1) ·

ω(
√
log(m(|R|+ 1))) + sm(|R|+ 1).

To satisfy all the conditions above, we assume δ is real such that nδ > "log q#,
and set m, s, q, α as below:

m = 6n1+δ

s =
√
mω(

√
log(m(|R|+ 1)))

q = sm(|R|+ 1) · w(√log(m(|R|+ 1)))

α = (s
√
m(|R|+ 1) · ω(√log(m(|R| + 1))))−1

4.2 Security

Theorem 1. Let m, s, q, α as above, and let χ = Ψ̄α.Then if LWEq,χ is hard,
our CP-ABE scheme is secure against selective chosen ciphertext attack (sCPA).

In particularly, if there exists an adversary A that breaks the sCPA security
of our scheme with advantage ε, then there exists an algorithm B solves LWEq,χ

with probability ε.
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Proof. Suppose there exists a polynomial time adversary A that breaks the
sCPA security of our CP-ABE scheme with advantage ε and makes at most
q key generation queries. We construct an algorithm B that solves the LWE
problem with probability negligible to ε.

Note that algorithm B has an oracle O(·), and he wants to decide whether
the samples output by O(·) is from As,χ or uniform. B runs adversary A and
simulates A’s view in the sCPA security experiment as follows:

Init. Adversary A chooses a challenge access structure W ∗ and gives it to B.
Let S+(S−) be the set of positive (negative) attributes in W ∗, and let S′ =
S+ ∪ S−.

Setup. After receiving W ∗, B compute:
– B obtains (B0,v0) ∈ Zn×m

q × Zm
q and (u, vu) ∈ Zn

q × Zq from O(·).
– For each i ∈ R\S′, B obtains (Bi+ ,vi+), (Bi− ,vi−) ∈ Zn×m

q × Zm
q from

O(·).
– For each i ∈ S+, B obtains (Bi+ ,vi+) ∈ Zn×m

q × Zm
q from O(·),

then compute (Bi− ,TBi− )←TrapGen(n,m, q).
– For each i ∈ S−, B obtains (Bi− ,vi−) ∈ Zn×m

q × Zm
q from O(·),

then compute (Bi+ ,TB
i+
)←TrapGen(n,m, q).

Finally, B sets pk = (B0, {Bi+ ,Bi−}i∈R,u), and keeps ({TBi− ,vi+}i∈S+ ,
{TB

i+
,vi−}i∈S− , {vi+ ,vi−}i∈R\S′) secret.

Key Generation Queries. After receiving a query with attribute set S ⊆ R.
If S & W ∗, B simply outputs ⊥. Otherwise, for each i ∈ R, if i ∈ S, B
lets B̃i = Bi+ , else lets B̃i = Bi− . Since S doesn’t satisfy W ∗, namely
S+ ∩ S �= S+ or S− ∩ S �= ∅,
there must exists a j ∈ R, such that B̃j is generated by TrapGen. Hence,

B knows its trapdoor TB̃j
. Let D = [B0‖B̃1‖ . . . ‖B̃n‖], B computes eS ←

SamplePre(D,TB̃j
, s,u), and returns skS = eS to A.

Challenge. When A submits M0,M1 ∈ {0, 1}, B randomly chooses b ∈ {0, 1},
and computes z = vu+Mb� q2� and c0 = v0. For each i ∈ S+, let ci = vi+ . For
each i ∈ S−, let ci = vi− . For each i ∈ R\S′, let ci+ = vi+ and ci− = vi− .
Finally, B returns C∗ = (W, z, c0, {ci}i∈S′ , {ci+ , ci−}i∈R\S′).

A can make more key generation queries on attribute set S that doesn’t satisfy
W ∗. Eventually, A outputs a bit b′ as a guess for b. if b′ = b, B outputs 1, else
outputs 0.

Note that B answers the key generation queries almost the same as the chal-
lenger does in the real game by Lemma 4. On one hand, if O(·) is a LWE oracle
for some s∗, C∗ is a valid ciphertext, thus the distribution of A’s view is sta-
tistically close to that in the real game. On the other hand, if O(·) is chosen
from uniform, then the ciphertext z is uniform on Zq, thus the probability that
A guesses the right b is exactly 1/2. So if A can break our system, B can break
the LWE assumption, which yields our claim.
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5 Multi-bit Encryption

Note that, our basic construction only encrypts one bit at a time, but as many
other encryption schemes based on LWE (e.g., [11,1]), it is secure to reuse the
same random coin s to encrypt multiple message bits.

Basically, in the ciphertext there is only one element z ∈ Zq that contains
the message information (i.e., z = uT s + xz +M� q2�). In order to encrypt N
bits message, a matrix U = (u1, . . . ,uN ) ∈ Zn×N

q is chosen instead of a vector
u ∈ Zn

q in the public key. And for the jth bit of message (M1, . . . ,MN) ∈
{0, 1}N , compute zj = uT

j s+ xzj +Mj� q2�. For a user whose attributes satisfy a
ciphertext’s policy can decrypt the ciphertext, the key generation has to generate
secret keys sk1, . . . , skN for him, where each skj are independently produced as
in our basic construction by using uj instead of u. For completeness, we present
our multi-bit encryption in Table 1.

We claim that the multi-bit encryption is also secure under the LWE assump-
tion. As in the security proof of our basic scheme, (u, vu) are drawn from the
oracle O(·). Here, we can simply get a matrix (U,vU ) ∈ Zn×N

q ×ZN
q by indepen-

dently drawing from the same oracle N times, and set zj = vj +Mj� q2� in the
challenge ciphertext. Thus, we can simulate the security experiment perfectly as
in the one bit setting.

Note that, the total ciphertext with this technique is 1 element of Zq for each
bit of messages, plus at least m|R| elements of Zq regardless of the message
length. Thus the ciphertext size is at least N + m|R| (at most N + 2m|R|)
elements of Zq.

6 On Ideal Lattices

In 2002, Micciancio constructed a hash function [25] based on a kind of special
structure lattices which called cyclic lattices or ideal lattices. Since then, many
works on ideal lattices have appeared (e.g., [23,33,24]). Usually, the schemes
based on ideal lattices have asymptotical computation efficiency and require
small storage. Using the known results showed below with some more subtle
considerations, our result can be extended to the ideal lattices with a shorter
key and ciphertext size.

Stehlé, Steinfeld, Tanaka and Xagawa [35] constructed an efficient public key
encryption algorithm on ideal lattices. In their work, they gave an algorithm
TrapGen, which can be considered as similar version of the one in Proposition
5 in the ideal lattice setting. Namely, the algorithm outputs a random vector
g ∈ (Zq[x]/f)

m, and a short basis for the lattice rotf (g)
⊥, where f is a degree

n polynomial f ∈ Z[x] and rotf (g)⊥ = {b ∈ (Z[x]/f)m|〈b,g〉 = 0 mod q}.
Recently, Lyubashevsky, Peikert and Regev [24] introduced Ring-LWE and gave
a similar quantum reduction as for the classic LWE problem. They also showed
that computational Ring-LWE can be reduced to decisional Ring-LWE.

Combining the above two facts and the results in Proposition 3, we can obtain
a secure CP-ABE scheme on ideal lattices. For more details, please refer to
[35,24].
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Table 1. Multi-bit Encryption

Setup(n,m, q,R) (B0,TB0)← TrapGen(n,m, q); Choose U = (u1, . . . ,uN )← Zn×N
q ;

For each i ∈ R, choose Bi+ ← Zn×m
q and Bi− ← Zn×m

q ;
pk = ({Bi+ ,Bi−}i∈R,U), msk = (pk,TB0);
Return (pk,msk).

KGen(msk, S) For each i ∈ R, if i ∈ S, B̃i = B+
i , else B̃i = B−

i ;
For each j ∈ {1, . . . , N} and i ∈ R, choose ej,i ← DZm,s;

Compute yj = uj −∑
i∈R B̃iej,i, ej,0 ← SamplePre(B0,TB0 , s,yj);

Set skj = [ej,0; . . . ; ej,|R|];
Return skS = (sk0, . . . , skN).

Enc(pk,W,M) // Denote S+(S−) be the set of positive (negative) attributes in W .
// Denote S′ = S+ ∪ S− and S̄′ = R\S′.
// M = {M1, . . . ,MN} ∈ {0, 1}N .
Choose s← Zn

q ;
For each j ∈ {1, . . . , N}, compute zj = uT

j s+ xzj +Mj� q2�,
where xzj ← χ;
For each i ∈ S+, compute ci = Bi+

T s+ xi+ , where xi+ ← χm;
For each i ∈ S−, compute ci = Bi−

T s+ xi− , where xi− ← χm;

For each i ∈ S̄′, compute ci+ = BT
i+s+ xi+ and

ci− = BT
i−s+ xi− , where xi+ ,xi− ← χm;

Finally, compute c0 = BT
0 s+ x0, where x0 ← χm;

Return C = (W, {zj}j∈{1,...,N}, c0, {ci}i∈S′ , {ci+ , ci−}i∈S̄′).

Dec(C, sk) // Denote S be the attribute set associated to sk.
// Denote W be the access structure in C.
// Denote S+(S−) as the set of positive (negative) attributes in W .
// Denote S′ = S+ ∪ S− and S̄′ = R\S′.
If S doesn’t satisfy W , return ⊥.
Parse C into (W, {zj}j∈{1,...,N}, c0, {ci}i∈S′ , {ci+ , ci−}i∈S̄′);
Parse sk into (sk0; . . . ; skN );
For each i ∈ S′, let yi = ci;
For each i ∈ S̄′, if i ∈ S, let yi = ci+ , else yi = ci− ;
Let y = [c0;y1; . . . ;y|R|];
For each j ∈ {1, . . . , N}, compute aj = skT

j y, bj = zj − aj ;
If |bj − � q2�| ≤ � q4 � in Z, let Mj = 1, else Mj = 0;
Return M = {M0, . . . ,MN}.

7 Conclusion

In this paper, a selective secure ciphertext policy attribute-based encryption
(CP-ABE) without pairings is proposed. To the best of our knowledge, it is
the first CP-ABE scheme from lattices. The security of the proposed scheme is
proved in standard model under the LWE assumption. Our constructions only
support and-gate access policy, and it remains an open problem to obtain a
CP-ABE scheme that can support more general access structure from lattices.

Acknowledgments. We thank Yanfei Guo, Wenhao Wang, Xiang Xie, Rui
Zhang, and the anonymous reviewers for their helpful comments and suggestions.
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Abstract. An improvement of arithmetic coding based on Markov
model (ACMM) has been proposed in the paper (Duan L.L., Liao X.
F., Xiang T., Communications in Nonlinear Science and Numerical Sim-
ulation, 2011, 16(6):2554-2562). Though, a methodology to construct
the ACMM is proposed in the above mentioned paper, it really lacks the
formal definition of the ACMM. In the current paper, we not only inves-
tigate the security analysis of the ACMM, but also put forward formal
definitions of the ACMM as well as its different security notions. Based
on those definitions, a chosen-plaintext attack is proposed to reveal the
used pseudorandom bit sequence for the encryption under the condition
that the same pseudorandom bit sequence is used to encrypt the different
messages. We also show that the ACMM does not have indistinguishable
encryptions under the ciphertext-only attack (i.e., does not have indis-
tinguishable encryptions in the presence of an eavesdropper) even if the
different pseudorandom bit sequences are used to encrypt the different
messages. Moreover, when the ACMM is combined with the random-
ized arithmetic code (RAC) (Grangetto M., Magli E., Olmo G., IEEE
Trans. Multimedia, 2006 8(5):905-917), we also explore the insecurity
of this combined encryption scheme. The analysis demonstrates that the
ACMM+RAC is also insecure. Finally, the simulated experimental results
show the correctness of all the proposed attacks.

Keywords: Randomized arithmetic code, Markov model,
Chosen-plaintext attack, Ciphertext-only attack, Indistinguishable.

1 Introduction

1.1 Research Background

With the development of the information processing technology, affording the
compression and security is of significance as the increased use of the multimedia
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files in many applications such as the digital cameras and internet [1]. Specially,
the compression removes the redundancy of the data by analyzing the statistics
of the input. The size of the output is shortened compared with the size of
the input. The typical compression algorithms are the Huffman Coding and
Arithmetic Coding (AC) [3–5]. The security makes the adversary difficult to
obtain the plaintext information without the permission. Generally speaking, it
is provided by cryptography. However, as a good cryptographic scheme provides
the output to have a pseudorandom distribution for the symbol probability, the
compression, in general, needs to be applied for dealing with the multimedia
data prior to the cryptography. This method can be called first-compression-
then-encryption approach.

In recent years, there exists another trend that the encryption and compres-
sion are performed in one single step for acting on the multimedia data [1–7].
Compared with the traditional first-compression-then-encryption approach, the
major merit of joint compression-encryption hybrid method is that the goal of
compression and encryption can be achieved simultaneously. This can simplify
the design of the system for reducing the time and computation. Moreover, it
makes the system flexible for the advanced multimedia processing [8].

1.2 Previous Works

The compression based encryption is seen as one of the choices for the multi-
media encryption. In general, the algorithm which incorporates the security into
the compression can improve the efficiency for the practical applications. Two
compression algorithms namely the Huffman Coding and the Arithmetic Coding
(AC) are always considered to be modified for encryption. However, according
to the viewpoint of Witten et al. [9], the AC has the better compression ratio
than the Huffman coding. Therefore, the AC is widely used in the recent mul-
timedia compression standards (e.g., JPEG2000, H.264/AVC), which brings the
AC based encryption into focus on a large scale.

Fig. 1. Tow components of compression: modeling and encoding component

Moreover, according to [9], the compression is separated into the modeling
component and the encoding component (see Fig. 1), where the modeling com-
ponent is used to provide, in any given context, a probability distribution for the
forthcoming symbol. Hence, there are two main kinds of methods for incorpo-
rating the security into the AC, namely, the model based encryption and coder
based encryption [2]. In Table 1, some detailed works about the modified AC
along with the corresponding attacks are listed.
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Table 1. Some existing works on modified AC and the corresponding attacks

Previous works Corresponding attack

Adaptive model based AC encryption [9] CPA [10]; ABFA [2]

Combination of model and coder based encryption [13] BHA [14]

Randomized AC (RAC) [1] COA [11]

AC with key-based interval splitting [5] ACCA [8]; ACPA/COA [12]

Markov model based AC encryption [15] Our work

CPA: Chosen-plaintext attack; ABFA: Adaptive brute-force attack; BHA:
Bergen/Hogan analysis [10] based attack; COA: Ciphertext-only attack;
ACCA/ACPA: Adaptive chosen-plaintext/ciphertext attack.

1.3 Our Contributions

In 2011, Duan et al. [15] proposed a randomized AC based on the first-order
Markov model (ACMM). This algorithm can be seen as a model based random-
ized AC. The randomness is achieved by choosing the probability of the binary
symbol from the Markov model. Specially, the used Markov model is expressed
as the tree structure which has two orders, namely, order-0 model and order-1
model. The order-0 model is the single symbol (i.e., 0 or 1) model without context
which has two values corresponding to Pr[si=0] and Pr[si=1], while the order-1
model for the binary symbol has four values of conditional probabilities of the
form Pr[si=0|si−1=0], Pr[si=1|si−1=0], Pr[si=0|si−1=1] and Pr[si=1|si−1=1]
(see Fig. 2(a)). In the current work, we formally define the ACMM scheme and
its different security notions at first. Based on these security notions, we address
some security issues about the ACMM as follows:

– Firstly, we suppose that the same pseudorandom bit sequence is generated
for encrypting different plaintext messages, and the lower bound of the en-
coding interval is considered as the ciphertext message. With this setup, we
establish that the ACMM is insecure under the chosen-plaintext attack (CPA)
by revealing the used pseudorandom bit sequence.

– Secondly, if different pseudorandom bit sequences are used to encrypt dif-
ferent plaintext messages, we show that the ACMM does not have indistin-
guishable encryptions under the ciphertext-only attack (COA). i.e., the ACMM
does not have indistinguishable encryptions in the presence of an eavesdrop-
per (see [11] about this concept).

– Thirdly, even if the two steps of the arithmetic coding (i.e., the model-
ing and encoding component) are encrypted simultaneously by the ACMM
and RAC respectively, then also it can be shown that the combined scheme
ACMM+RAC is still insecure under the COA.

Moreover, the simulation experiments are implemented for the above analyses.
The experiments results (see Tables 4 and 5) confirm our analyses which show
that both the ACMM and ACMM+RAC are insecure.
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2 Arithmetic Coding Based on Markov Model Proposed
by Duan/Liao/Xiang and Corresponding Drawbacks

2.1 Scheme Description

The ACMM [15] is a modified AC which makes use of the first-order Markov
model to predict the encoding probability for each symbol si of the binary
plaintext message S=s1s2...sN of length N . It introduces the pseudorandom
bit sequence q=q1q2...qN , generated by a pseudorandom bit generator (PRBG),
for the encryption (r=q which denotes the pseudorandom bit sequence in [15].).
This encryption is the permutation of the probability which is produced by the
Markov model and used to encode the binary plaintext message S. Specially, the
process for encrypting each symbol si is shown in Fig. 2(b).

Moreover, the ACMM does not do the encryption on the encoding process.
Then, the standard arithmetic coder (i.e., SAC) [13] can be used to encode the
binary plaintext message S. This implies that it is different from the RAC [1]
which does the encryption on the encoding process with the pseudorandom bit
sequence q. Specially, according to [15], the initial model of the Markov model
can be as Fig. 2(a), in which all the symbol counts (SC) are equal to 1. See [15],
for detailed description.

2.2 Drawbacks of ACMM

The encryption mechanism of the ACMM is the ‘randomized’ Markov model
controlled by the pseudorandom bit sequence q. According to the value of each
pseudorandom bit qi, the probability that arises from the Markov model can be
decided to encode the i-th symbol si. However, two potential drawbacks exist in
the ACMM, and have a significant effect on the security of the ciphertext C.

(a) Initial model for encoding (b) Encryption process of each symbol

Fig. 2. Initial model and encryption process of ACMM
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– The initial model in Fig. 2(a) is used to encode the 1-st symbol s1 of the
plaintext message S. However, probabilities from the order-0 model (i.e.,
Pr[s1=0] and Pr[s1=1]) correspond to the same SC (e.g., 1). This implies
that no matter what pseudorandom bit q1 is, the probability for encoding
the 1-st symbol s1 is 1/2, and the interval [0, 1) is divided into [0, 0.5) and
[0.5, 1) for 0 and 1, respectively.

– Let I(S) represent the interval of the plaintext message S. According to the
value of the pseudorandom bit qi (or qi⊕qi+1), probabilities of the order-0
model or the order-1 model are permutated. However, the positions of the
symbols 0 and 1 in the interval I(S) are not scrambled. This implies that for
an interval [x, y), I(0):=[x, z) and I(1):=[z, y) for any pseudorandom bit
qi, where x, y and z are real numbers between 0 and 1 or integers between 0
and a sufficiently large integer (e.g., 65535), and z is decided by the current
pseudorandom bit qi.

3 Insecurity of ACMM

In this section, two attacks are presented for the ACMM [15]. Note that the pseu-
dorandom bit sequences play an important role in the security of the ACMM.
Depending on the use of the pseudorandom bit sequences, we propose two at-
tacks: one is the CPA, in which the same pseudorandom bit sequence is used
to encrypt different plaintext messages (defined as Case 1), and the other one
is the COA, in which different pseudorandom bit sequences are used to encrypt
different plaintext messages (defined as Case 2). Before stating the attacks,
we first present some general assumptions for the convenience of the following
analysis:

– The initial interval of encoding is the most commonly used interval, i.e., the
interval [0, 1).

– The expression of the ciphertext C is seen as a real number (e.g., C=0.628).
Specially, for a pair of plaintext messages (S0 and S1) of same length N , the
expression precision of the ciphertexts (C(S0) and C(S1)) is the same.

The formal definition of ACMM and the related security notions are presented
in the next subsection following [11, 16].

3.1 Formal Definitions of ACMM and Related Security Notions

Formal Definition of ACMM under Case 1. The ACMM can be viewed as a
symmetric-key encryption algorithm which is a triple of probabilistic polynomial-
time algorithm

∏
=(Enc, Dec, Gen)[16]. In this definition, Enc is the encryption

function, Dec is the decryption function and Gen is the probabilistic
key-generation function. Specially, under Case 1, every plaintext message S is
encrypted by a fixed pseudorandom bit sequence q obtained through the pseu-
dorandom function F .
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Definition 1. Let n be the security parameter and N=
(n) be a polynomial in
n. Then

∏
=(Enc, Dec, Gen) can be defined as follows:

– Gen (This step is executed once): On input 1n, choose k←{0, 1}n uniformly
and randomly. Then, output k as the key.

– Enc: On input k∈{0, 1}n and a plaintext message S∈{0, 1}N , output the set
of probabilities

⋃
N
i=1Pr

a[si] :=ACMM(F (k), S). Let F (k) = q. Then, gen-
erate the ciphertext C:=SAC(

⋃
N
i=1Pr

a[si], S), where F is a pseudorandom
function which outputs a pseudorandom bit sequence of length N . ACMM(q,
S) implies performing the ACMM algorithm on the plaintext message S
using the pseudorandom bit sequence q, and SAC(p, S) implies the stan-
dard arithmetic coding is used for the plaintext S with the probability set
Pra[S] :={Pra[si]|i∈{1, 2,. . . , N}}. Pra[si] is the permuted probability (see
notations in Subsection 3.2).

– Dec: On input k, and the ciphertext C, the plaintext message S is decrypted
by producing F (k) and decoded using standard AC.

In the subsequent sections we are going to use the notions of negligible function
and pseudorandom function as defined in [16].

Definition of Security under Case 1. Let n be a security parameter and
N=
(n) be a polynomial in n. We define the experiment Privk

cpa
A,

∏(n) for the

ACMM as follow:

Experiment Privk
cpa
A,

∏(n):
– A key k is produced by using Gen(1n).
– The adversary A is given input 1n and access to the encryption oracle, and

output a pair of messages S0 and S1 of the same length N , where S0 and
S1∈{0, 1}N . Note that the adversary A can choose any pair of (S0, S1).

– The fixed F (k) = q∈{0, 1}N is used and a random bit b←{0, 1} is chosen.
The ciphertext C:=SAC(

⋃
N
i=1Pr

a[sbi ], Sb),
⋃

N
i=1Pr

a[sbi ] :=ACMM(q, Sb) is
generated by the challenger and given to the adversary A. This C is called
the challenge ciphertext.

– The adversary A is given access to the encryption oracle and request for the
encryption of a polynomial number of chosen plaintexts.

– The adversary A outputs a bit b′. If b′=b, the output of this experiment is 1,
otherwise, the output is 0. In case Privk

cpa
A,

∏(n)=1, we say that A succeeded.

Based on this experiment, the definition of the indistinguishability of ACMM
encryption under the CPA is presented below.

Definition 2. The fixed-length symmetric-key encryption algorithm
∏
=(Enc,

Dec, Gen) is CPA-secure if for any probabilistic polynomial-time adversary A,
there exists a negligible function negl(·) which satisfies |Pr[PrivkcpaA,

∏(n)= 1]−1/2|
≤negl(n), where the probability is taken over the random coins used by the ad-
versary A, as well as the random coins used in the experiment.



Cryptanalysis of Randomized Arithmetic Codes Based on Markov Model 347

The above security definition (Definition 2) actually implies that the adversary
A can not tell which message was used to achieve the ciphertext C except making
a random guess even if A is given access to the encryption oracle. However, in
the Subsection 3.2, we shall show that for ACMM, when the adversary A can
have access to the encryption oracle, the used pseudorandom bit sequence can be
revealed according to the ciphertexts from some suitable plaintexts. Therefore,
for this condition, the adversary A always succeeds in the above game with
probability 1. The details of this attack is presented in Subsection 3.2.

Definition of ACMM and Its Security Notions under Case 2. For the
ACMM, the difference between Case 1 and Case 2 is the used pseudorandom
bit sequences for the encryption. Under Case 2, for each encryption of a message
S, a new pseudorandom bit sequence is used. Therefore, the formal definition of
the ACMM under Case 2, i.e.,

∏′=(Enc′, Dec′, Gen′), is almost similar to that
of the ACMM under Case 1, i.e.,

∏
. The only difference is listed below:

– Gen′: On input 1n, and for each encryption of a binary plaintext message
S, choose k←{0, 1}n uniformly and randomly. Then, output k as the key
corresponding S.

For Case 2, the definition of the COA indistinguishability experiment
PrivkcoaA,

∏′(n) is also similar to the experiment Privk
cpa
A,

∏(n). However, in the COA,

the adversary A is not allowed to access the encryption oracle, and for each en-
cryption of a message S, a new pseudorandom bit sequence is used. Moreover,
the definition of the security under the COA is the same as in Definition 2. This
is based on the fact that PrivkcoaA,

∏′ (n) is a special case of Privk
cpa
A,

∏(n) [16]. In

Subsection 3.3, the details of the COA are presented based on the above def-
initions, which show that ACMM does not have indistinguishable encryptions
under the COA.

3.2 Insecurity of ACMM under CPA

In this subsection, we show that the ACMM is not CPA-secure by revealing the
used pseudorandom bit sequence q that is used to encrypt different plaintexts.
Before presenting the details of this attack, we state the following assumption:

– If the current interval I(S) of the plaintext message S is [C(S), C(S)+E(S)),
where E(S) is the product of probabilities of the whole symbols in S (i.e.,
E(S)=

∏
N
i=1Pr

a[si]), the endpoint C(S) is stored as the ciphertext C.

Notations and Properties. We first present some notations and results that
are important for our proposed attack.

– ni(0), ni(1): the current SC of order-0 model after updating the i-th symbol
in the Markov model.

– n0
i(0), n0

i(1), n1
i(0), n1

i(1): the current SC of order-1 model after updating
the i-th symbol in the Markov model.
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– Pr[si=0], Pr[si=1]: the order-0 probabilities of the Markov model for encod-
ing the i-th symbol si.

– Pr[si=0|si−1=0], Pr[si=1|si−1=0], Pr[si=0|si−1=1], Pr[si=1|si−1=1]: the
order-1 probabilities of the Markov model for encoding the i-th symbol si.

– Pra[si=0], Pra[si=1]: the permuted probabilities for encoding the symbol
si. They belong to the set {Pr[si= 0], Pr[si= 1], Pr[si= 0|si−1= 0], Pr[si=
1|si−1= 0], Pr[si= 0|si−1= 1], Pr[si= 1|si−1= 1]}.

Definition 3. For the initial encoding interval as [0, 1), when the i-th symbol si
needs to be encoded, the probability in the Markov model can be expressed as:{

Pr[si = 0] = ni−1(0)
ni−1(0)+ni−1(1)

Pr[si = 1] = ni−1(1)
ni−1(0)+ni−1(1)

,

⎧⎨⎩Pr[si = 0|si−1 = 0] =
ni−1
0 (0)

ni−1
0 (0)+ni−1

0 (1)

Pr[si = 1|si−1 = 0] =
ni−1
0 (1)

ni−1
0 (0)+ni−1

0 (1)

,⎧⎨⎩Pr[si = 0|si−1 = 1] = ni−1
1 (0)

ni−1
1 (0)+ni−1

1 (1)

Pr[si = 1|si−1 = 1] =
ni−1
1 (1)

ni−1
1 (0)+ni−1

1 (1)
,

(1)

where Pr[si= 0]+Pr[si= 1]=1, Pr[si= 0|si−1= 0]+Pr[si= 1|si−1= 0]=1 and
Pr[si= 0|si−1= 1]+Pr[si= 1|si−1= 1]=1.

Lemma 1. Let us consider the binary plaintext message S=s1s2...sN−1sN=00..
.01 of length N , where N≥2. Then, during the encryption of sN=1, Pr[sN=d1]�=
Pr[sN=d2|sN−1= 0], where d1, d2∈{0, 1}.
Proof. See appendix A for the proof.

Lemma 2. Let the two binary plaintext messages S1=s1s2...sm and S2=s
′
1s

′
2..

.s′ms′m+1 be encrypted by using the same pseudorandom bit sequence q, where
si=s

′
i, i∈{1,..., m}. Then, C(S1)≤C(S2). The equality is achieved when

s′m+1= 0.

Proof. This result follows from the fact that I(S2)⊆I(S1). Specially, if s
′
m+1=0,

according to the above assumption on the representation of the cipher text cor-
responding to the plaintext interval, we have, C(S1)=C(S2).

Based on Lemma 2 and the definition in [17], the ACMM can be presented as a
formula.

Theorem 1. Let us consider two plaintext messages S1=s1...sm and
S2=S1sm+1, where m≥1. Then, the encoder of the ACMM can be described
through Eq. (2):

C(S2) = C(S1) + sm+1 × Pra[sm+1 = 0]× E(S1), (2)

where E(S1) is given by Eq. (3):

E(S1) =

m∏
i=1

(Pra[si = 1])si × (Pra[si = 0])1−si . (3)

In particular, when m= 1, Pr[s0= 0] =Pr[s0= 1] = 0.5. C(S1)=s0×0.5.
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Proof. According to Lemma 2, C(S1)≤C(S2), and if sm+1=0, C(S1)=C(S2).
Hence, we haveC(S11)–C(S10)=E(S10). This implies that C(S2)=C(S1)+sm+1

×E(S10). Specially, as E(S10) is the product of the whole probabilities
corresponding to the symbols ofS10,E(S10)=E(S1)×Pra[sm+1=0]=Pra[s1=t1]×
Pra[s2=t2]...×Pra[sN=tm]×Pra[sm+1=0], where t1, t2,...,tm∈{0, 1}. This implies
that the above equations can be achieved.Whenm=1, as Pr[s0= 0] =Pr[s0= 1] =
0.5, C(S1)=s0×0.5.

Method of Attack. The security of ACMM depends on the encryption of the
Markov model by the pseudorandom bit sequence q. Therefore, the proposed
attack should try to reveal the probability for encoding each symbol at first, and
then, unveil the corresponding pseudorandom bit qi.

Pra[si=0] Recovery: Let the chosen plaintext messages, each
of length N , be S1=100...0, S2=010...0, ..., SN=000...1. Accord-
ing to the Theorem 1, the corresponding cipher text is given by
C(Si)=0+si×Pra[si=0]×E(Sj)=si×Pra[si=0]×∏i−1

k=0Pr
a[sk=0]. Therefore, after S1, S2,..., SN are encoded by the ACMM, the

corresponding ciphertexts C(S1), C(S2),..., C(SN ) are expressed as follows:

C(S1) = 0.5, C(S2) = 0.5× Pra[s2 = 0], C(S3) = 0.5× Pra[s2 = 0]
×Pra[s3 = 0], ..., C(SN ) = 0.5× Pra[s2 = 0] · · · × Pra[sN = 0]

Based on the relationship among C(S1), C(S2),..., C(SN ), we can compute
Pra[s2=0], Pra[s3=0],..., Pra[sN=0] by using Eq. (4).

Pra[si = 0] =
C(Si)

C(Si−1)
, i ∈ {2, 3, ..., N}. (4)

Pseudorandom Bit Recovery: According to the Lemma 1, it can be found
that ∀i∈{1, 2,...,N}, the revealed Pra[si=0] belongs to either the set {Pr[si=0],
Pr[si=1]} or the set {Pr[si=0|si−1=0], Pr[si=1|si−1=0]}. To estimate the order
of Pra[si=0] which is used to recover the pseudorandom bit qi, a Detector fdet(·,
·, ·) is defined as follow:

Definition 4. For an adversary A who obtains the set of probabilities {Pra[si=
0]|i∈{1, 2,...,N}}, a Detector is a function fdet(·, ·, ·) which is used to reveal the
pseudorandom bit sequence q. This function can be presented as (q, {CMi|i∈{1, 2,
...,N})=fdet(Sazp, IM, {Pra[si= 0]|i∈{1, 2,...N}}), where IM is the initial model
as in Fig. 2(a), Sazp= 00...0 is the all zero plaintext, and CMi is the updated
Markov model for encoding the i-th symbol.

According to the definition of the Detector, if the adversary A obtains the set
of probabilities {Pra[si=0]|i∈{1, 2,...,N}}, he/she can reveal the pseudorandom
bit sequence q through this Detector. In fact, the Detector can be seen as the
constructor of the updated Markov model for each symbol si. When the pseudo-
random bit qi is revealed, the corresponding Markov model can also be updated.
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Fig. 3. Example of pseudorandom bit recovery (S=0010...0), suppose that q1 and q2
are revealed

Fig. 3 is an example on the work principle of the Detector. Suppose that the
first two symbols are 00. The Markov model is updated and output after the 2-nd
symbol 0 is encoded. Then, the revealed Pra[s2=0] is compared with the prob-
abilities Pr[s2=0], Pr[s2=1], Pr[s2=0|s1=0], and Pr[s2=1|s1=0] in this model
to decide the used pseudorandom bit q2 (see Fig. 3). The construction of every
model CMi reveals each pseudorandom bit qi. Table 2 lists the revealed pseudo-
random bit qi and possible qi+1 according to the Pra[si=0] and the probabilities
Pr[si=0], Pr[si=1], Pr[si=0|si−1=0], and Pr[si=1|si−1=0] in the Markov model.

Table 2. Four states of pseudorandom bit recovery

Pra[si=0] qi qi+1

Pr[si=0] Pra[si=0]=Pr[si=0] 0 0/1

Pr[si=1] Pra[si=0]=Pr[si=1] 1 1

Pr[si=0|si−1=0] Pra[si=0]=Pr[si=0|si−1=0] 0 0/1

Pr[si=1|si−1=0] Pra[si=0]=Pr[si=1|si−1=0] 1 0

Specially, in the Markov model, if Pr[si=0]=Pr[si=1] after the (i–1)-th symbol
0 is encoded (suppose that Pra[si=0]=Pr[si=0]), the pseudorandom bit qi can
be 0 or 1. However, if qi=0 and there has existed sequence ‘00’ in front of
the (i–1)-th symbol 0, the coder should use the order-1 probability to encode
the (i-1)-th symbol 0. Hence, according to this rule, we can ensure that qi=1
when Pra[si=0]=Pr[si=0]. Moreover, if Pr[si=0|si−1=0]=Pr[si=1|si−1=0] after
the (i–1)-th symbol 0 is encoded (suppose that Pra[si=0]=Pr[si=0|si−1=0]), the
pseudorandom bit qi can also be 0 or 1. Under this situation, we can check that
whether there is an ‘escape symbol’ which is used in the standard Markov model
for telling the decoder to use order-1 probability to decode. If there exists such
an ‘escape symbol’, the encoder use the standard Markov model (i.e., qi=0),
otherwise, qi=1. Algorithm 1 is used to describe the revealing process for the
whole pseudorandom bit sequence q.
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Algorithm 1. Recovery of the Pseudorandom Bit Sequence q

1: Input: Sazp=s1s2...sN=00...0, IM, {0.5,Pra [s2=0],Pra[s3=0],...,Pra [sN=0]}
2: Output: q, {CM1, CM2,..., CMN}
3: z←Sazp;
4: ES←ACMM(Sazp); /

∗ Returning escape symbol of q ∗/
5: for g = 1 to N do
6: if g=1 then
7: (qg , CMg)←fdet(z(g), IM, 0.5);
8: else
9: (qg , CMg)←fdet(z(g), CMg−1, Pr

a[sg=0]); /∗ qg∈{0, 1, 2}. qg=2 implies that
qg can be 0 or 1. ∗/

10: end if
11: if qg=2 then
12: if Pra[sg=0]=Pr[sg=0]=Pr[sg=1] and g≥2 then
13: if g < N then
14: (qg , qg+1)=(1, 1);
15: else if g=N then
16: (qg , q0)=(1, 1);
17: end if
18: else if Pra[sg=0]=Pr[sg=0|sg−1=0]=Pr[sg=1|sg−1=0] then
19: escape symbol←ES(sg);
20: if g < N then
21: fcheck(escape symbol)=1?(qg=0):((qg, qg+1)=(1, 0)); /∗ Checking escape

symbol for recovering qg
∗/

22: else if g=N then
23: fcheck(escape symbol)=1?(qg=0):((qg, q0)=(1, 0)); /∗ Checking escape

symbol for recovering qg
∗/

24: end if
25: end if
26: end if
27: end for
28: return q, {CM1, CM2,..., CMN};

Attack Complexity. Based on the method of the proposed CPA as the above
description, we state the following propositions on the data complexity and time
complexity.

Proposition 1. For a binary sequence S=s1s2. . . sN of length N , if the length
of the corresponding pseudorandom bit sequence q is also N , the data complexity
of the CPA is N+1 chosen plaintext messages.

Proof. This proof is immediate from the description of the attack processes in
Subsection 3.2.

Proposition 2. If the encryption for one binary symbol si is considered as one
computation, the time complexity of this proposed attack is O(N2).

Proof. Two steps of the proposed attack should be considered. Specially, the
computation load of the Pra[si=0] recovery is N2 (more accurately, the compu-
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tation load is N×(N -1)). For the pseudorandom bit recovery, the computation
load is N . If there is an extra encryption for obtaining the escape symbol, the
corresponding computation load is 2×N . Therefore, the total time complexity
is O(N2+N) (or O(N2+2×N)) which can be simplified to O(N2).

3.3 Insecurity of ACMM under COA

In Subsection 3.2, the CPA is proposed for revealing the fixed pseudorandom bit
sequence q used in ACMM. In this section, the security of the ACMM is explored
if the different pseudorandom bit sequences are used to encrypt the different
binary plaintext messages. The analysis proves that the ACMM does not have
indistinguishable encryptions under the COA.

For the following analyses, two plaintext messages of the same length N are
defined as 0x1 and 1x2, where x1 and x2∈{0, 1}N−1. Moreover, based on the
initial model as Fig. 2(a), the interval [0, 1) is divided into the subinterval as
J1=[0, 0.5) and J2=[0.5, 1).

Lemma 3. Let S0= 0x1 and S1= 1x2. Choose a key k ← {0, 1}n uniformly
at random and select a random bit b←{0, 1}. Let q = F (k) be the pseudoran-
dom bit sequence of length N . Generate the ciphertext C:=SAC(

⋃
N
i=1Pr

a[sbi ],
Sb),

⋃
N
i=1Pr

a[sbi ] :=ACMM(q, Sb). Then, if C∈J1, Pr[Sb=S0|C∈J1]= 1, and if
C∈J2, Pr[Sb=S1|C∈J2]= 1. Therefore, Pr[PrivkcoaA,

∏′(n)= 1|C∈J1] = 1 and

Pr[PrivkcoaA,
∏′(n)= 1|C∈J2] = 1.

Proof. See appendix B for the proof.

According to Lemma 3, the following theorem can be achieved.

Theorem 2. The
∏′

does not have indistinguishable encryptions under the
COA.

Proof. A distinguisher D is constructed for the adversary A who uses it
in the experiment PrivkcoaA,

∏′(n). The challenge ciphertext is denoted as

C:=SAC(
⋃

N
i=1Pr

a[sbi ], Sb),
⋃

N
i=1Pr

a[sbi ] :=ACMM(q, Sb). Define the intervals
as CI0=[0, 1/2) and CI1=[1/2, 1), respectively. The distinguisher D can be
described as:

Distinguisher D:
– If the value of the challenge ciphertext C is in CI0, S0 is used to generate
C. The adversary A outputs b′=0.

– If the value of the challenge ciphertext C is in CI1, S1 is used to generate
C. The adversary A outputs b′=1.

It can be denoted that if |Pr[PrivkcoaA,
∏′(n)=1]–1/2|�negl(n), the ACMM does not

have indistinguishable encryptions under the COA. In the following, this result
can be shown.

Pr[PrivkcoaA,
∏′(n) = 1] = Pr[PrivkcoaA,

∏′(n) = 1|C ∈ J1]× Pr[C ∈ J1]
+Pr[PrivkcoaA,

∏′(n) = 1|C ∈ J2]× Pr[C ∈ J2]
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From Lemma 3, i.e., Pr[PrivkcoaA,
∏′(n)=1|C∈J1]=1 and Pr[PrivkcoaA,

∏′(n)=1|C∈J2]
=1. The above equation is simplified to

Pr[PrivkcoaA,
∏′(n) = 1] = Pr[C ∈ J1] + Pr[C ∈ J2].

As Pr[C∈J1]+Pr[C∈J2]=1, we can obtain that Pr[PrivkcoaA,
∏′(n)=1]=1=1/2+

1/2>1/2, which demonstrates that the ACMM does not have indistinguishable
encryptions under the COA.

3.4 Remark

For the ACMM, if the initial model is not as the Fig. 2(a) (e.g., in the initial
model, n0(0)=3, n0(1)=2, n0

0(0)=2, n0
0(1)=1, n1

0(0)=2, n1
0(1)=1), the ACMM

is also insecure under the proposed attack. This is due to the fact that the
proposed attack is not based on the initial model as Fig. 2(a). If the initial
model is known to the adversary A, the pseudorandom bits sequence q can be
revealed completely.

4 Security Analysis of ACMM+RAC under COA

Note that ACMM is a particular type of AC where the encryption is done in the
modeling component whereas RAC is again a particular type of AC in which the
encryption is done in the encoding component, both by using the pseudorandom
bit sequence. The Section 3 demonstrates that ACMM is insecure while Katti
et al. [11] demonstrate that RAC is also insecure. Hence, intuitively, it seems
that combination of these two encryptions, i.e., encryption at both modeling as
well as at encoding component synchronously by using different pseudorandom
bit sequences may enhance the security of the combined scheme. We refer this
combined scheme as ACMM+RAC. Let us demonstrate the combined scheme
through an example. Let the plaintext message be 11 and the corresponding
pseudorandom bit sequences be q = 11 (for ACMM) and q′ = 10 (for RAC), the
final interval for 11 is given by I(11) = [1/3, 1/2) (see Fig. 4).

Fig. 4. Encryption example according to q=11 and q′=10

Though, intuitively, it seems that ACMM+RAC gives security, the following
analysis can shows that the ACMM+RAC does not also have indistinguishable
encryptions under the COA. Let us first provide the formal definition of the
ACMM+RAC.
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4.1 Formal Definition on ACMM+RAC

We are now going to define formally the ACMM+RAC scheme denoted by∏̃
=(Ẽnc, D̃ec, G̃en).

Definition 5. Let n be the security parameter and N=
(n) be a polynomial in

n. Then
∏̃
= (Ẽnc, D̃ec, G̃en) can be defined as follows:

– G̃en: On input 1n and for each encryption of a binary plaintext message S
of length N , choose k ← {0, 1}n, k′ ← {0, 1}n uniformly and randomly.
Then, output k, k′ as the keys.

– Ẽnc: On input k, k′ and the message S, compute q = F (k), q′ = F (k′) and
output the set of probabilities

⋃
N
i=1Pr

a[si] :=ACMM(q, S). Then, generate
the ciphertext C:=RAC(q′,

⋃
N
i=1Pr

a[si], S), where the notations ACMM is
already defined in Definition 1, and RAC(q′, p, S) implies the randomized
arithmetic coding which is used to encrypt the plaintext message S with the
pseudorandom bit sequence q′ and probabilities set Pra[S] :={Prai[si]|i∈{1,
2,. . . , N}}.

– D̃ec: On input k, k′ and ciphertext C, the plaintext message S is decrypted
by producing F (k) and F (k′) and decoded through standard AC.

To analyze the security of
∏̃
, the experiment PrivkcoaA,

∏′(n) can also be used.
However, some modifications are required which are listed below:

– For each encryption of a binary plaintext message S of length N , two keys

k and k′ are generated by running the G̃en(1n). Using these two keys for
S, two pseudorandom bit sequences q and q′ are generated. The ciphertext
C:=RAC(q′,

⋃
N
i=1Pr

a[si], S),
⋃

N
i=1Pr

a[si] :=ACMM(q, S) is generated by the
challenger and given to the adversary A. This C is called the challenge cipher-
text.

Then, this experiment PrivkcoaA,
∏′(n) is redefined as PrivkcoaA,

∏̃(n) for the following

analysis. The security definition in Subsection 3.1 can be used for the analysis of
the ACMM+RAC. Moreover, for the convenience of the analysis, the assumptions
in Section 3 are still fit for the ACMM+RAC, and we also suppose that any real
number in the final interval I(S) can be seen as the ciphertext C.

4.2 Insecurity of ACMM+RAC under COA

In this section, we state that the ACMM+RAC does not satisfy the security
requirements as mentioned above. For the following analysis, two plaintext mes-
sages 10x3 and 11x4 of the same length N are considered, where x3, x4∈{0,
1}N−2. The interval [0, 1) is divided into the subintervals as [0, 1/6)

⋃
[1/6,

1/4)
⋃
[1/4, 1/3)

⋃
[1/3, 1/2)

⋃
[1/2, 2/3)

⋃
[2/3, 3/4)

⋃
[3/4, 5/6)

⋃
[5/6, 1) accord-

ing to the observation of Table 3 which is the interval distribution of the encryp-
tion of s1s2=10 and s′1s′2=11. Specially, s1s2=10 and s′1s′2=11 belong to the
messages 10y1 and 11y2 of length N (N≥3), respectively.
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Table 3. Interval partition of s1s2=10 and s′1s′2=11 with different q and q′

q′ q I(10) I(11) q′ q I(11) I(10)

10 000 [0, 1/6) [1/6, 1/2) 11 000 [0, 1/3) [1/3, 1/2)
001 [0, 1/6) [1/6, 1/2) 001 [0, 1/3) [1/3, 1/2)
010 [0, 1/4) [1/4, 1/2) 010 [0, 1/4) [1/4, 1/2)
011 [0, 1/3) [1/3, 1/2) 011 [0, 1/6) [1/6, 1/2)
100 [0, 1/6) [1/6, 1/2) 100 [0, 1/3) [1/3, 1/2)
101 [0, 1/6) [1/6, 1/2) 101 [0, 1/3) [1/3, 1/2)
110 [0, 1/4) [1/4, 1/2) 110 [0, 1/4) [1/4, 1/2)
111 [0, 1/3) [1/3, 1/2) 111 [0, 1/6) [1/6, 1/2)

00 000 [1/2, 2/3) [2/3, 1) 01 000 [1/2, 5/6) [5/6, 1)
001 [1/2, 2/3) [2/3, 1) 001 [1/2, 5/6) [5/6, 1)
010 [1/2, 3/4) [3/4, 1) 010 [1/2, 3/4) [3/4, 1)
011 [1/2, 5/6) [5/6, 1) 011 [1/2, 2/3) [2/3, 1)
100 [1/2, 2/3) [2/3, 1) 100 [1/2, 5/6) [5/6, 1)
101 [1/2, 2/3) [2/3, 1) 101 [1/2, 5/6) [5/6, 1)
110 [1/2, 3/4) [3/4, 1) 110 [1/2, 3/4) [3/4, 1)
111 [1/2, 5/6) [5/6, 1) 111 [1/2, 2/3) [2/3, 1)

Lemma 4. Let S0= 10x3 and S1= 11x4. Produce two random keys k, k′.
Let q = F (k) and q′ = F (k′). Select a random bit b←{0, 1}. Then, gener-
ate the ciphertext C:=RAC(q′,

⋃
N
i=1Pr

a[sbi ], Sb),
⋃

N
i=1Pr

a[sbi ] :=ACMM(q, Sb).
If C is in the interval J3, where J3∈{[0, 1/6), [1/3, 1/2), [1/2, 2/3), [5/6, 1)},
Pr[PrivkcoaA,

∏̃(n)= 1|C∈J3]= 19/35, b′= 0 is chosen as the output of the adver-

sary A. If C is in J4, where J4∈{[1/6, 1/4), [1/4, 1/3), [2/3, 3/4), [3/4, 5/6)},
Pr[PrivkcoaA,

∏̃(n)= 1|C∈J4]= 8/13, b′= 1 is chosen as the output of the

adversary A.
Proof. See appendix C for the proof.

According to Lemma 4, the following theorem can be achieved.

Theorem 3. The
∏̃

does not have indistinguishable encryptions under the
COA.

Proof. A distinguisher D′ is constructed for the adversary A which is used
in the experiment PrivkcoaA,

∏̃(n). Generate the challenge ciphertext C:=RAC(q′,⋃
N
i=1Pr

a[sbi ], Sb),
⋃

N
i=1Pr

a[sbi ] :=ACMM(q, Sb). Define the intervals CI2=[0,
1/6)

⋃
[1/3, 1/2)

⋃
[1/2, 2/3)

⋃
[5/6, 1) and CI3=[1/6, 1/3)

⋃
[2/3, 5/6). The

distinguisher D′ is described as follow:

Distinguisher D′:

– If the value of the challenge ciphertext C is in CI2, S0 is used to generate
C. The adversary A outputs b′=0.

– If the value of the challenge ciphertext C is in CI3, S1 is used to generate
C. The adversary A outputs b′=1.
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Then, for the PrivkcoaA,
∏̃(n), Pr[PrivkcoaA,

∏̃(n)=1] can be expressed as

Pr[PrivkcoaA,
∏̃(n) = 1] =

∑8

i=1
Pr[PrivkcoaA,

∏̃(n) = 1|C ∈ [xi, yi)]×Pr[C ∈ [xi, yi)]

where [x1, y1)=[0, 1/6), [x2, y2)=[1/6, 1/4), [x3, y3)=[1/4, 1/3), [x4, y4)=[1/3,
1/2), [x5, y5)=[1/2, 2/3), [x6, y6)=[2/3, 3/4), [x7, y7)=[3/4, 5/6), [x8, y8)=[5/6,
1). Then, according to Lemma 4,

Pr[Privkcoa
A,

∏̃(n) = 1] = 19/35× (Pr[C ∈ [0, 1/6)] + Pr[C ∈ [1/3,
1/2)]

+Pr[C ∈ [1/2,
2/3)] + Pr[C ∈ [5/6, 1)]) +

8/13× (Pr[C ∈ [1/6,
1/4)]

+Pr[C ∈ [1/4,
1/3)] + Pr[C ∈ [2/3,

3/4)] + Pr[C ∈ [3/4,
5/6)])

According to Eq. (6) (see Appendix C), the computation of Pr[C∈J3] and
Pr[C∈J4] can come from the condition Sb=S0 and Sb=S1, respectively.
Then, based on Table 3, we can obtain that Pr[C∈[0, 1/6)]=Pr[C∈[1/3,
1/2)]=Pr[C∈[1/2, 2/3)]=Pr[C∈[5/6, 1)]=35/192, Pr[C∈[1/6, 1/4)]=Pr[C∈[1/4,
1/3)]=Pr[C∈[2/3, 3/4)]=Pr[C∈[3/4, 5/6)]=13/192. Then,

Pr[PrivkcoaA,
∏̃(n) = 1] = 19/35× 140/192 +

8/13× 52/192 = 108/192

As 108/192=1/2+12/192>1/2, it demonstrates that the
∏̃

does not have indis-
tinguishable encryptions under the COA.

5 Experimental Results for Proposed Attacks

This section presents the corresponding experimental results about our analyses
on both the ACMM and ACMM+RAC.

5.1 Simulation Results of CPA on ACMM

To show the success of the CPA on ACMM, the following two simulations are
presented. Firstly, according to the attack process, the used pseudorandom bit

Fig. 5. Running time of proposed CPA
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sequences of different length N are revealed and listed in Table 4. Specially,
V alue(q) and V alue(qrv) are the decimal number of the original and revealed
pseudorandom bit sequences, respectively. i.e., V alue(q)=q1×20+q2×21+q3×22
...+qN× 2N−1. From this table, it can be found that the revealed pseudoran-
dom bit sequences are nearly the same as the original pseudorandom bit se-
quences. In some results, V alue(q) and V alue(qrv) are 1 apart. (e.g., when
N=18, V alue(q)=22531, V alue(qrv)=22530). This is based on the fact that the
first pseudorandom bit q1 is not revealed. For the first pseudorandom bit q1, the
unique method to reveal it is related to the formula kN=qN⊕q1 when qN=1. If
qN=0, q1 can not be revealed according to the proposal.

Table 4. Comparison between V alue(q) and V alue(qrv)

N V alue(q) V alue(qrv) N V alue(q) V alue(qrv)

5 30 30 24 11073787 11073787

18 22531 22530 31 1381678966 1381678966

22 1624471 1624470 34 2576196589 2576196588

39 496095156996 496095156996 40 744640262774 744640262774

44 5852185964842 5852185964842 46 36910857133194 36910857133194

51 31408458593527 31408458593526 53 3334307707163655 3334307707163654

Secondly, we test the running time of the proposed CPA for the different
values of the lengths N . Fig. 5 is the variation trend of the running time for
the different values of the lengths N . The test length of the pseudorandom bit
sequence q is in the set {5, 10, 15, 25, 40, 60, 80, 100, 125, 150, 200, 240, 256,
300}. For each length N , 10 times experiments are performed for obtaining the
average value. Note that all the experiments were done by Matlab2009 running
on Core 2 Duo CPU 1.40GHz with 2.00GB RAM.

5.2 Simulation Results of COA on ACMM and ACMM+RAC

For the COA, we implement the experiments by computing the probability that
the adversary A answers correctly. This probability corresponds to a real num-
ber in [0, 1]. Specially, in this experiment, the adversary A chooses two kinds
of plaintext message pairs for analyzing the ACMM and ACMM+RAC, respec-
tively, i.e., (S0, S1)=(0x1, 1x2) and (S0, S1)=(10x3, 11x4). x1, x2∈{0, 1}N−1

and x3, x4∈{0, 1}N−2. For each plaintext message pair, the lengths are the
same. In each experiment, the new pseudorandom bit sequence (q or (q and
q′)) is used to encrypt the plaintext message Sb. The length of S0 and S1 is
from 20 to N ′ (N ′∈{2019, 4019, 6019, 8019, 9019, 10019}). This implies that
the adversary A did 2000 experiments PrivkcoaA,

∏′(n) (or PrivkcoaA,
∏̃(n)), 4000 ex-

periments PrivkcoaA,
∏′(n) (or PrivkcoaA,

∏̃(n)),..., 10000 experiments PrivkcoaA,
∏′(n) (or

PrivkcoaA,
∏̃(n)), respectively. Table 5 lists the corresponding results about this sim-

ulation.



358 L. Zhao et al.

Table 5. Simulation results on the Pr[PrivkcoaA,
∏′(n)=1] and Pr[PrivkcoaA,

∏̃(n)=1]

Experiment times
ACMM:(S0, S1)=(0x1, 1x2) ACMM+RAC:(S0, S1)=(10x2, 11x3)
N(b′=b) N(b′ �=b) Pr[·] N(b′=b) N(b′ �=b) Pr[·]

2000 2000 0 1 1115 885 0.5575

4000 4000 0 1 2235 1765 0.5587

6000 6000 0 1 3323 2677 0.5538

8000 8000 0 1 4428 3572 0.5535

9000 9000 0 1 4987 4013 0.5541

10000 10000 0 1 5526 4474 0.5526

In Table 5, Pr[·] is Pr[PrivkcoaA,
∏′(n)=1] (or Pr[PrivkcoaA,

∏̃(n)=1]). N(b′=b) de-

notes the number of times that the adversary A answers correctly within a
fixed experiment. N(b′ �=b) denotes the number of times the adversary fails to
answer correctly within the same experiment. From the values of this table,
it can be found that for the ACMM, if (S0, S1)=(0x1, 1x2), the values of the
Pr[PrivkcoaA,

∏′(n)=1] match the deduction value of Theorem 2 in Subsection 3.3.
Moreover, for the ACMM+RAC, when (S0, S1)=(10x2, 11x3), the values of the
Pr[PrivkcoaA,

∏̃(n)=1] are near to the deduction value of Theorem 3 (i.e, 108/192).

6 Conclusions

An improved AC called ACMM was presented in [15]. In the current paper,
we put forward the formal definition of ACMM. Along with the definition, we
discussed various security notions related to ACMM. Based on these security
notions, a chosen-plaintext attack was proposed to reveal the used pseudorandom
bit sequence for the encryption under the condition that the same pseudorandom
bit sequence is used to encrypt the different messages. We also showed that the
ACMM does not have indistinguishable encryptions under the COA even if the
different pseudorandom bit sequences are used to encrypt the different messages.
To improve the security of AC, the authors Grangetto et al. [1] proposed another
variant of AC, known as randomized arithmetic coding (RAC). Unfortunately,
the authors Katti et al. [11] demonstrated that RAC is also insecure. Hence,
intuitively, it seems that combination of these two encryptions, i.e., encryption
at both modeling as well as at encoding component synchronously by using
different pseudorandom bit sequences may enhance the security of the combined
scheme referred as ACMM+RAC. However, we proved that ACMM+RAC does
not have indistinguishable encryptions under the COA. Moreover, the authors
Katti et al. [11] provided a scheme using AES in the counter mode. Nevertheless,
according to the opinion from the authors Katti et al. [11], this use can increase
the overhead. Therefore, as a future work, we will investigate the possibilities of
proposing a secure randomized arithmetic coding scheme.
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Appendix

Appendix A: Proof of Lemma 1

Proof. For the sake of the simplicity, we only prove the case for d1=0 and d2=0.
The other cases follow the similar proof and obtain the same deduction. To
prove this Lemma, it is sufficient to show that Pr[sN=0]–Pr[sN=0|sN−1=0] �=0.
According to Eq. (1), Pr[sN=0]–Pr[sN=0|sN−1=0] can be changed to

nN−1
0 (0)

nN−1
0 (0) + nN−1

0 (1)
− nN−1(0)

nN−1(0) + nN−1(1)
. (5)

When the N–1 many 0s have been encoded (i.e., the Markov model has been
updated for encoding the N -th symbol), nN−1(0), nN−1(1), n0

N−1(0) and
n0

N−1(1) should satisfy:{
nN−1
0 (1) + nN−1

0 (0) + 1 = nN−1(0) + nN−1(1) = N + 1

nN−1
0 (1) ≥ 1, nN−1

0 (0) ≥ 1, nN−1(0) ≥ 1, nN−1(1) ≥ 1

Therefore, Eq. (5) is equivalent to the following transformation:

nN−1
0 (0)× (N + 1)− nN−1(0)×N

(nN−1
0 (0) + nN−1

0 (1))× (nN−1
0 (0) + nN−1

0 (1) + 1)

where n0
N−1(1)+n0

N−1(0))×(n0N−1(1)+n0
N−1(0)+1)�=0. To estimate the

value of n0
N−1(0)×(N+1)–nN−1(0)×N , the apagoge is used. Suppose that

n0
N−1(0)×(N+1)–nN−1(0)×N=0, then, n0

N−1(0)/nN−1(0)=N/(N+1).
However, as gcd(N , N+1)=1, n0

N−1(0)<N and nN−1(0)<(N+1),
n0

N−1(0)/nN−1(0)�=N/(N+1). Hence, n0
N−1(0)×(N+1)–nN−1(0)×N �=0,

i.e., Pr[sN=0] �=Pr[sN=0|sN−1=0].

Appendix B: Proof of Lemma 3

Proof. Suppose that the plaintext message is S0, the ciphertext is
C0:=SAC(

⋃
N
i=1 Pra[s0i ], S0),

⋃
N
i=1Pr

a[s0i ]:=ACMM(q, S0). If only the encryp-
tion of the first symbol s1 is considered, according to the encryption steps of
the ACMM, Pra[s0=0]=Pra[s0=1]=0.5 for encrypting the s1. Moreover, as the
encoding component is the standard AC, for the s1=0, the corresponding inter-
val must be [0, 0.5). Then, based on the fact that I(0x1)⊆I(0), C0 must be in
J1. Similarly, if the plaintext message is S1, it can show that the corresponding
ciphertext C1 must be in J2.

Therefore, if the ciphertext C is in J1, the C must correspond to the plaintext
message S0, otherwise, it must be the encryption of S1. This implies that for
such plaintext messages S0 and S1, the adversaryA will succeed in the proposed
experiment.
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Appendix C: Proof of Lemma 4

Proof. For the experiment PrivkcoaA,
∏̃(n), the success of the adversary A is de-

pendent on the value of b, i.e., Pr[PrivkcoaA,
∏̃(n)=1] is decided by the condition

Sb′=Sb. For the intervals J3 and J4, both the encryptions of S0 and S1 can
be within them. Then, for these intervals, the probabilities under the condi-
tion Sb=S0 and Sb=S1 should be compared. e.g., for the interval J3, if the
probability Pr[C∈J3|Sb=S0]=Pr[C∈J3|Sb=S1], Pr[Privk

coa
A,

∏̃(n)=1|C∈J3]=1/2.

Otherwise, the adversary A should output the Sb′ which has the bigger prob-
ability for producing the ciphertext within the interval J3. This implies that if
Pr[C∈J3|Sb=S0]>Pr[C∈J3|Sb=S1], the adversary A outputs b′=0. To obtain
the probabilities of C∈J3 and C∈J4 under the condition Sb=S0 and Sb=S1, the
adversary A draws the interval distribution table of first two binary symbols 10
and 11 (see Table 3) for the analysis, where q is F (k) and q′ is F (k′). This analy-
sis is based on the fact that as I(10x3)⊆I(10) and I(11x4)⊆I(11), C(S0)∈I(10)
and C(S1)∈I(11). Then, these probabilities can be produced by computing the
following formula:

Pr[C ∈ [x, y)|Sb = Sw]
=
∑e′

d′=1
1
4 ×

∑e
d=1

|[x, y)|
|Id(s0s1)| ×

#{IF(k1)
d (s0s)=I

F (k2)
d (s0s1):F (k1) �=F (k2)}

8

, (6)

where |·| denotes the length of the interval, I(s0s1) corresponds to the plain-
text Sb=Sw, w∈{0, 1}, e′∈{1, 2}, e∈{1, 2, 3}, #{IF (k1)(s0s1)=I

F (k2)(s0s1):
F (k1)�=F (k2)} is the number of the same interval (e.g., for F (k1)=000 and
F (k2)=001, the intervals of I(10) or I(11) are the same. Then, #{10}=#{11}=
2). Specially, [x, y)∈{J3, J4}.

To achieve the Pr[PrivkcoaA,
∏̃(n)=1], each sub-interval should be consid-

ered separately. In this proof, two examples are given in details. For
J3=[0, 1/6), if s0s1=10, when F (k)∈{000, 001, 010, 011, 100, 101,
110, 111} and F (k′)=10, J3⊆I(10). According to Eq. (6), Pr[C∈[0,
1/6)|Sb=S0]=1/4×(1/2+2/3×1/4+1/2×1/4)=19/96. Moreover, if s0s1=11,
when F (k)∈{000, 001, 010, 011, 100, 101, 110, 111} and F (k′)=11, J3⊆I(11).
Then, for S1, Pr[C∈[0, 1/6)|Sb=S1]=1/4×
(1/4+1/2×1/2+2/3×1/4)=1/6.

As Pr[C∈[0, 1/6)|Sb=S0]>Pr[C∈[0, 1/6)|Sb=S1], b
′=0 is chosen as the output

of the adversary A. The Pr[PrivkcoaA,
∏̃(n)=1|C∈[0, 1/6)] should be computed as

follow,

Pr[Privkcoa
A,

∏̃(n)=1|C ∈ [0, 1/6)] =
Pr[C ∈ [0, 1/6)|Sb = S0]× Pr[Sb = S0]

Pr[C ∈ [0, 1/6)]
=

19

35

where Pr[C∈[0, 1/6)]=Pr[C∈[0, 1/6)|Sb=S0]×Pr[Sb=S0]+Pr[C∈[0, 1/6)|Sb=S1]
×Pr[Sb=S1]. For J4=[1/6, 1/4), if s0s1=10, when F (k)∈{010, 011, 110, 111},
F (k′)=10, and when F (k)∈{011, 111}, F (k′)=11, it is within I(10). Then,
Pr[C∈[1/6, 1/4)|Sb=S0]=1/4×(1/3×1/4+1/4×1/4)+1/4×(1/4×1/4)=5/96. If
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s0s1=11, when F (k)∈{000, 001, 100, 101}, F (k′)=10, and when F (k)∈{000,
001, 010, 100, 101, 110}, F (k′)=11, J4∈I(11). Then, Pr[C∈[1/6, 1/4)|Sb=S1]=
1/4×(1/2×1/4+1/3×1/4)+1/4×(1/2×1/4)=1/12.

As Pr[C∈[0, 1/6)|Sb=S1]>Pr[C∈[0, 1/6)|Sb=S0], b
′=1 is chosen as the output

of the adversary A. The Pr[PrivkcoaA,
∏̃(n)=1|C∈[1/6, 1/4)] should be computed

as follow,

Pr[Privkcoa
A,

∏̃(n)=1|C ∈ [
1

6
,
1

4
)]=

Pr[C ∈ [1/6, 1/4)|Sb = S1]× Pr[Sb = S1]

Pr[C ∈ [1/6, 1/4)]
=

8

13

where Pr[C∈[1/6, 1/4)]=Pr[C∈[1/6, 1/4)|Sb=S0]×Pr[Sb=S0]+Pr[C∈[1/6, 1/4)
|Sb=S1]×Pr[Sb=S1]. The same method can be used to analyze the other sub-
intervals, i.e., {[1/3, 1/2), [1/2, 2/3), [5/6, 1), [1/4, 1/3), [2/3, 3/4), [3/4, 5/6)}.
Then, the conclusion is achieved{

Pr[Privkcoa
A,

∏̃(n) = 1|C ∈ J3] = 19/35, b′ = 0

Pr[Privkcoa
A,

∏̃(n) = 1|C ∈ J4] = 8/13, b′ = 1
.



Concurrent Non-Malleable Witness

Indistinguishable Argument
from Any One-Way Function�

Guifang Huang and Lei Hu

State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences, Beijing, 100049, P.R. China

{gfhuang,hu}@is.ac.cn

Abstract. Non-malleable witness indistinguishability (NMWI) is a se-
curity notion against man-in-the-middle attacks which requires that the
witness encoded in the right interaction is computationally independent
of that used by honest prover in the left. In STOC 2009, Lin et al. de-
fined strongly non-malleable witness indistinguishability (SNMWI) which
is similar in spirit to NMWI, and proposed a SNMWI scheme based on
one-way function. In this paper, we firstly show that the two notions
NMWI and SNMWI are incomparable: there exists a SNMWI argument
which is not NMWI, and vice versa. Furthermore, it is pointed out that
the SNMWI construction given in STOC 2009 is not NMWI. Then, we
present a variant of LPV08 scheme [17] and show that this variant is
a concurrent NMWI argument. Compared with the concurrent NMWI
argument of [22] which was shown to be non-malleable by using non-
black-box techniques and whose difficulty assumption was claw-free per-
mutation, our new scheme is based on the existence of one-way functions
and its proof of security relies on black-box techniques.

Keywords: concurrent non-malleable witness indistinguishability,
strong non-malleable witness indistinguishability, commitment, special-
sound WI proofs.

1 Introduction

Witness indistinguishability (WI), a relaxed notion of zero knowledge proofs [16],
was first introduced by Feige and Shamir [14]. A proof system is said to be wit-
ness indistinguishable if the view of any malicious verifier is computationally
independent of the witness that the prover uses. Witness indistinguishable pro-
tocols have many applications in design of cryptographic protocols. For example,
the well-known FLS technique [13] and the closure under concurrent composi-
tion [10, 27] make witness indistinguishable protocols become a quite popular
tool in constructing zero knowledge proofs [1, 15, 19, 22, 24, 27].
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In some settings, the most basic security guarantees of cryptographic protocols
are not sufficient. Especially in an asynchronous network environment, protocols
susceptible to man-in-the-middle attacks may give rise to devastating results (e.g.
contract bidding implemented by a commitment scheme [11]). In order to ad-
dress the above concerns, Dolev et al. brought out the concept of non-malleability
and demonstrated how to achieve non-malleability with respect to encryption
schemes, signature schemes, commitments, zero knowledge proofs etc. [9]. Since
its introduction, the notion of non-malleability has received a lot of attentions
and many constructions of non-malleable zero knowledge (NMZK) [15, 19,
22, 24, 28, 29] and non-malleable commitments [2, 5–7, 12, 17, 23, 25] have
been worked out.

1.1 Related Results on NMWI and SNMWI

The notion of non-malleable witness indistinguishability was firstly considered
by Ostrovsky, Persiano and Visconti [21] (see also [22]). For a man-in-the-middle
adversary who attacks the stand-alone execution of a WI protocol (P, V ), on one
hand, he acts as a malicious verifier to interact with P on common input x in
the left (called left interaction). On the other hand, in the right he plays the role
of a prover to try to convince V the membership of a statement x′ adaptively
chosen by himself (right interaction). Informally speaking, NMWI requires that
the witness encoded in the right interaction is computationally independent of
the witness uses by prover P in the left. Concurrent NMWI is a security notion
defined with respect to a stronger man-in-the-middle adversary who has the
power of starting up any polynomial number of sessions in the left and in the
right and scheduling these sessions in an interleaving way. In [22], Ostrovsky et
al. gave a separation between NMWI and NMZK and proposed a constant-round
concurrent NMWI argument. However, because their construction was built by
using a non-black-box NMZK [24, 25] as sub-protocol, it was non-black-box and
based on claw-free permutation.

In STOC 2009, Lin et al. defined the concept of strongly non-malleable witness-
indistinguishability (SNMWI) only for a language L ∈ NP which has unique
witnesses (that is, every instance in L has a unique witness) [18]. Different from
NMWI, SNMWI for a language with unique witnesses requires the indistin-
guishability of the witnesses extracted from the right interactions, whenever
the tuples containing a statement proved in the left and an auxiliary input to
the man-in-the-middle adversary are indistinguishable. Then, they extended the
concept of SNMWI to general NP languages and presented a O(1)log∗(n)-round
(almost constant-round)SNMWI argument based on one-way function. There,
the proof of security of their SNMWI construction depends on black-box tech-
niques.

1.2 Our Results

In this paper, we firstly discuss the relation of NMWI and SNMWI, and show
that these two notions are incomparable. That is, there exists a SNMWI argu-
ment which is not NMWI, and vice versa. Furthermore, it is pointed out that
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the SNMWI construction in [18] is not NMWI, which implies that the following
problem left in [22] is still open:

Does there exist a concurrent NMWI argument for NP languages based on
the minimal assumption whose security relies on black-box techniques?

Then, we give an affirmative answer to the above question by presenting a
variant of LPV08 scheme [17] and showing that this variant is concurrent NMWI.
The main results in this paper are the following

Theorem 1. There exists a SNMWI argument that is not NMWI for language
L ∈ NP which has infinite instances with at least two witnesses.

Theorme 2. There exists a NMWI argument that is not SNMWI for language
L ∈ NP.

Theorme 3. If one-way functions exist, there exists a NMWI argument for
L ∈ NP which can be shown secure relying on black-box techniques.

It is organized as follows: In section 2, some notations and definitions are given.
Then, in section 3, we give two constructions to show the separation between
NMWI and SNMWI. At last, We present the concurrent NMWI argument in
section 4.

2 Preliminaries

For any NP language L, there is a natural witness relation RL that determines
L. RL consists of pairs (x,w), where w is a witness for the membership of x ∈ L.
Let WL(x) denote the set of witnesses for x ∈ L. A function f(n) is said to be
negligible if for every positive polynomial q(n), there exists a positive integer
N such that for all integers n ≥ N , f(n) ≤ 1/q(n). For a string x, let |x|
denote the length of x. A probability ensemble is a sequence X = {Xi}i∈I of
random variables Xi over {0, 1}p(|i|), where I is a countable index set and p(·)
is a polynomial.

Two ensembles X = {Xi}i∈I and Y = {Yi}i∈I are computationally indis-
tinguishable if no probabilistic polynomial time (PPT) algorithm can distin-
guish them with more than negligible probability. That is, for any PPT al-
gorithm D, for any positive polynomial p(·), for sufficiently long i, we have
|Pr[D(i,Xi) = 1]− Pr[D(i, Yi) = 1]| < 1

p(|i|) .
For a pair of interactive machines (P, V ), < P (y), V (z) > (x) denotes the

output of V when interacting with P on common input x, y and z are auxiliary
inputs of P and V respectively.

2.1 Witness Indistinguishability

In this paper, we consider witness indistinguishable arguments.

Definition 1 (Interactive Proof (Argument)). A pair of PPT interactive
machines (P, V ) is said to be an interactive proof (argument) for language L ∈
NP if the following conditions hold



366 G. Huang and L. Hu

– Completeness: When x ∈ L, for every y ∈ WL(x), z ∈ {0, 1}∗, we have that
Pr[< P (y), V (z) > (x) = 1] = 1.

– Soundness: When x /∈ L, for any (computatoinally-bounded) machine P ∗,
for any y, z ∈ {0, 1}∗, Pr[< P ∗(y), V (z) > (x) = 1] is a negligible function
in |x|.

Definition 2 (Witness Indistinguishable Argument). An interactive ar-
gument (P, V ) for language L ∈ NP is witness indistinguishable if for every
(expected) PPT verifier V ∗, for two sequences {w1

x}x∈L and {w2
x}x∈L such that

w1
x, w

2
x ∈ WL(x), the following two ensembles are computationally indistinguish-

able:

– {< P (w1
x), V

∗(z) > (x)}x∈L,z∈{0,1}∗

– {< P (w2
x), V

∗(z) > (x)}x∈L,z∈{0,1}∗

That is, for every PPT algorithm D, for every positive polynomial p(·), for suf-
ficiently long x ∈ L, for every z ∈ {0, 1}∗, we have

|Pr[D(x, z,< P (w1
x), V

∗(z) > (x)) = 1]− Pr[D(x, z,< P (w2
x), V

∗(z) > (x))

= 1] <
1

p(|x|) .

Special-Sound WI Proofs [4, 8]: A 3-round public-coin WI proof for language
L ∈ NP with witness relation RL is called special-sound, if for any two accepting
transcripts (α, β, γ) and (α, β′, γ′) where β �= β′, a witness w ∈ WL(x) can be
computed efficiently.

Special-soundWI proof for anyNP language can be constructed based on one-
way function. More precisely, in [3], Blum proposed a special-sound WI proof for
Hamiltonian Graphs [3]. When the commitment used in [3] is replaced by Naor’s
commitment [20], we get a 4-round special-sound WI proof for Hamiltonian
Graphs based on one-way function. Therefore, based on one-way function, any
language L ∈ NP has a 4-round special-sound WI proof. For simplicity, we use a
3-round special-sound WI proof in this paper, though our proof also works with
a 4-round special-sound WI proof.

2.2 Commitment Scheme

In this paper, we consider statistically binding commitment schemes.
A commitment scheme enables a party, called the committer to commit itself

to a secret value while keeping it secret from the receiver(hiding property).
Furthermore, in a latter stage when the commitment is revealed, it is required
that the opening can yield only a single value determined in the commit phase
(binding property). The formal definition is described as follows

Commitment Scheme: A pair of PPT interactive machines (C,R) is said to
be a statistically binding commitment scheme if the following two properties
hold:
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– Computational Hiding: For every PPT machine R∗, the two following en-
sembles are computationally indistinguishable
(a) {staR∗

(C,R)(v1, z)}v1∈{0,1}n,n∈N,z∈{0,1}∗

(b) {staR∗
(C,R)(v2, z)}v2∈{0,1}n,n∈N,z∈{0,1}∗

where staR
∗

(C,R)(v, z) denotes the random variable describing the output of

R∗ after receiving a commitment to v using (C,R).
– Statistical Binding: For any computationally unbounded committer C∗, the

probability that he succeeds in opening a given commitment in two different
ways is only negligible.

2.3 NMWI

As stated in [22], we formalize the concept of NMWI for language L ∈ NP with
respect to a special kind of argument —commit-and-prove argument, where on
common input x the prover firstly commits to a witness w ∈ WL(x) by using a
statistically binding commitment scheme and then he proves that the committed
value w is actually a witness for x ∈ L.

Suppose (Ps, Vs) is a tag-based commit-and-prove argument for language L ∈
NP, where the prover and verifier receive a “tag” as an additional common input,
besides a statement x. For a PPT man-in-the-middle adversary A with auxiliary
input z, he simultaneously participates in one left interaction and one right
interaction: In the left interaction, on common input (x, t), he acts as a verifier
to interact with Ps who has a private input w ∈WL(x) to get a proof of statement
x, using tag t. In the right interaction, he adaptively chooses (x̃, t̃) and attempts
to convince Vs the statement x̃ using tag t̃. Define wmimA(tag, x, w, z) as follows:
wmimA(tag, x, w, z) is a random variable describing the witness extracted from
the right interaction, if the right interaction is accepting and t̃ �= t; Otherwise,
wmimA(tag, x, w, z) is set to ⊥.
Definition 3 (Tag-Based NMWI Argument [22]). A family of commit-
and-prove arguments {(Ps, Vs)}s for language L ∈ NP is a tag-based non-
malleable witness indistinguishable argument with tags of length 
 if, for all PPT
man-in-the-middle adversary A, for all PPT algorithm D, there exists a negli-
gible function v such that for x ∈ L, for all tags t ∈ {0, 1}�, for two witnesses
w,w′ ∈ WL(x), for all auxiliary input z ∈ {0, 1}∗, it holds that

|Pr[D(x,w,w′, wmimA(t, x, w, z), z) = 1]− Pr[D(x,w,w′, wmimA(t, x, w′,
z), z) = 1]| < v(|x|)

For a PPT concurrent man-in-the-middle adversaryA with auxiliary input z who
opens up m = poly(k) left and right interactions (k is the security parameter),
on common inputs X = (x1, · · · , xm) and T = (t1, · · · , tm), A simultaneously
participants in m left interactions and m right interactions and controls the
schedules of these left (right) interactions in an interleaving way: In the left,
A gets a proof of statement xi by interacting with Ps who has a private input
wi ∈ WL(xi), using tag ti. In the right, A selects x̃j , t̃j and tries to prove each
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statement x̃j using tags t̃j , for j = 1, 2, · · · ,m. Let W = (w1, · · · , wm), define
wmimA(T,X,W, z) = (y1, · · · , ym) as follows: for j = 1, 2, · · · ,m, if the proof
of x̃j is accepting and tag t̃j is not contained in T , let yj be the random variable
describing the witness extracted from this interaction; Otherwise, set yj to ⊥.
Definition 4 (Concurrent NMWI Argument [22]). A family of commit-
and-prove arguments {(Ps, Vs)}s for language L ∈ NP is a tag-based concurrent
non-malleable witness-indistinguishable argument with tags of length 
 if, for any
PPT concurrent man-in-the-middle adversary A, for all any positive polynomial
m = poly(k), n = poly(k), for all PPT algorithm D, there exists a negligible
function v such that for all sequences X = (x1, · · · , xm) where each xi ∈ L ∩
{0, 1}n, for all sequences T of tags of length 
, for all sequences W and W ′ of
witnesses for X, for any z ∈ {0, 1}∗, it holds that

|Pr[D(X,W,W ′, wmimA(T,X,W, z), z) = 1]− Pr[D(X,W,W ′,

wmimA(T,X,W ′, z), z) = 1]| < v(k)

2.4 SNMWI

In [18], in order to make the witness extracted from the right interaction well-
defined, Lin et al. firstly formalized the notion of SNMWI for language L ∈ NP
with unique witnesses, and then extended this notion to general NP languages.
Here, we present the extended definition of SNMWI.

Consider a tag-based argument (Ps, Vs) for NP language L: For a man-in-
the-middle adversary A with auxiliary input z, on one hand, he participates
in the left interaction to get a proof of statement x from Ps on private input
w ∈WL(x), using tag t; On the other hand, he adaptively chooses x̃, t̃ and plays
the role of prover to prove statement x̃ using tag t̃. Let w̃ denote the random
variable describing the witness extracted from the right interaction, if this right
interaction is accepting and t̃ �= t and x̃ has only one witness; Otherwise, set
w̃ =⊥. Define mimA(x,w, z, t) to be a random variable describing w̃ and the
view of A in the above man-in-the-middle execution.

Definition 5 (SNMWI Argument [18]). A family of tag-based arguments
{(Ps, Vs)}s for language L ∈ NP with witness relation RL is strongly non-
malleable witness indistinguishable, if for every non-uniform PPT man-in-the-
middle adversary A, for every t ∈ {0, 1}∗ and every two sequences of input distri-
butions {D1

n}n∈N and {D2
n}n∈N , the following holds: if the ensembles {(x,w, z)←

D1
n : (x, z)}n∈N and {(x,w, z) ← D2

n : (x, z)}n∈N are computationally indistin-
guishable, so are the following ensembles

– {(x,w, z)← D1
n : mimA(x,w, z, t)}n∈N,t∈{0,1}∗

– {(x,w, z)← D2
n : mimA(x,w, z, t)}n∈N,t∈{0,1}∗

2.5 Security for Signature Schemes

Security for Signature Schemes: A signature scheme is a tuple (Gen, Sign,
V er), whereGen is a probabilistic key generator, Sign is a probabilistic signature
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algorithm and V er is a deterministic verification algorithm. On input 1k, Gen
outputs a random signature-key sk and the corresponding verification-key vk.
To sign a message m, Sign is run on input (m, sk) to generate a signature s.
Given pk,m, s, V er outputs 1 if s is a valid signature for the message m.

A signature scheme is existentially unforgeable against chosen-message at-
tacks if any PPT adversary, upon seeing polynomial number of signatures on
the messages adaptively chosen by himself, cannot forge a valid signature on a
new message. Based on one-way functions, signature schemes existentially un-
forgeable against chosen-message attacks do exist [26].

3 Separation of SNMWI and NMWI

In this section, we present two constructions: The first one is SNMWI but not
NMWI; The second one is NMWI but not SNMWI.

3.1 A SNMWI Argument that is not NMWI

Our construction of SNMWI argument that is not NMWI comes from the follow-
ing observations: SNMWI only requires the indistinguishability of the witnesses
used in the right with respect to well-behaved man-in-the-middle adversaries,
when the inputs in the left are computationally indistinguishable. Here “well-
behaved” means that, except with negligible probability, the man-in-the-middle
adversary only chooses a statement with unique witness in the right. Thus, a
SNMWI argument for L ∈ NP with unique witnesses must be NMWI. How-
ever, the concept of NMWI is motivated by considering the malleability of WI
arguments against all man-in-the-middle adversaries, including those who are
not well-behaved.

We use the technique used in constructing a NMZK that is not NMWI [22].
For a generalNP language L with witness relation RL and a statistically binding
commitment scheme Com, define language L1 as: L1 = {(x, c) : ∃w, r, s.t.c =
Com(w, r) ∧ (x,w) ∈ R}. From [23], we know that every language in NP has a
SNMWI argument, then suppose Π = {(Pt,Vt)}t is a SNMWI argument for L1.
The construction of protocol Γ={(Pt0,t1 , Vt0,t1)}t0,t1 forL is described in Figure 1.

Lemma 1. Protocol Γ is a SNMWI argument for language L.

Proof: From the completeness and soundness of Πt0◦0 and Πt1◦1, it follows that
Γ is an argument for L. Next, we prove the SNMWI property. For any man-
in-the-middle adversary A, for two sequences of input distributions {D1

n}n∈N

and {D2
n}n∈N , if {(x1, w1, z1) ← D1

n : (x1, z1)}n∈N and {(x2, w2, z2) ← D2
n :

(x2, z2)}n∈N are computationally indistinguishable, what we need is to prove
the indistinguishability of the following two ensembles

– {mimA(x1, w1, z1, (t0, t1))}n∈N,t0,t1∈{0,1}∗

– {mimA(x2, w2, z2, (t0, t1))}n∈N,t0,t1∈{0,1}∗ .
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Tag: (t0, t1);
Common Input: x;
Private input to prover: witness w for x ∈ L;

1. Pt0,t1 computes (com0, dec0)← Com(w) and sends com0 to Vt0,t1 ;
2. Pt0,t1 computes (com1, dec1)← Com(w) and sends com1 to Vt0,t1 ;
3. On common input (x, com0), run the SNMWI protocol Πt0◦0 in which

Pt0,t1 runs algorithm Pt0◦0 with private input (w, dec0) and Vt0,t1 runs
algorithm Vt0◦0 to prove statement (x, com0). Let trans0 be the transcript;

4. On common input (x, com1), run the SNMWI protocol Πt1◦1 in which Pt0,t1

runs algorithm Pt1◦1 with private input (w, dec1) and Vt0,t1 runs algorithm
Vt1◦1 to prove statement (x, com1). Let trans1 be the transcript;

5. Vt0,t1 outputs 1 iff trans0 and trans1 are both accepting transcripts.

Fig. 1. The description of protocol Γ

we use the hybrid argument technique to prove the above indistinguishability. For
a fixed tag (t0, t1) used in the left, for i, j, k = 1, 2, define the hybrid experiment
mimA

ijk as follows: In the left, the prover firstly computes c0 = Com(wj , rj) and
c1 = Com(wk, rk) and sends c0, c1 to adversary A whose auxiliary input is zi,
where rj , rk are random strings used in generating commitments c0, c1. Then, the
prover runs sub-protocolΠt0◦0 on common input (xj , c0) and sub-protocol Πt1◦1
on common input (xk, c1) sequentially with A in which A acts as a verifier. In
the right, A adaptively chooses a statement x̃ and tag (t̃0, t̃1) and proves x̃ ∈ L
using the tag (t̃0, t̃1). If this right interaction is accepting and (t̃0, t̃1) �= (t0, t1)
and x̃ has only one witness, mimA

ijk outputs the view of A and the witness of x̃;
Otherwise, he outputs ⊥.

From the definition of mimA
ijk, we get mimA

111 = mimA(x1, w1, z1, (t0, t1))

and mimA
222 = mimA(x2, w2, z2, (t0, t1)). Thus, the desired indistinguishability

of mimA
111 and mimA

222 can be obtained from the following

1. mimA
111 and mimA

211: The indistinguishability of these two experiments is
reduced to the indistinguishability of z1 and z2. Specifically, assume that
there exists a PPT algorithm D that distinguishes mimA

111 and mimA
211,

then we can construct a PPT non-uniform algorithm D′ to distinguish z1
and z2: On input zi and z

′ = x1 ◦w1 ◦ t0 ◦ t1, D′ firstly performs in the same
way as experiment mimA

i11. Then, he invokes algorithm D and outputs what
D outputs.

2. mimA
211 and mimA

212: The indistinguishability of these two experiments is
reduced to the SNMWI property of the sub-protocol used in step 4. Assume
that mimA

211 and mimA
212 are distinguishable, we can construct a man-in-

the-middle adversary A′ for protocol Πt1◦1 as follows: The auxiliary input
to A′ is z′ = x1 ◦w1 ◦ t0 ◦ t1 ◦ z2. On common input (xi, c1i = Com(wi, r1i))
where r1i is a random string in committing to wi, A′ invokes A and acts in
the following way:
– A′ computes a commitment c0 to w1 and feeds A with c0, c1i;
– On common input (x1, c0), A′ interacts internally with A to finish the

left and right interactions of sub-protocol Πt0◦0: In the left, A′ runs
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algorithm Pt0◦0(x1, c0) to answer A’s challenges; In the right, A′ acts as
an honest verifier Vt̃0◦0.

– On common input (xi, c1i), A′ simultaneously interacts with an honest
prover Pt1◦1 and an honest verifier Vt̃1◦1: He feeds A with what he re-
ceives in the left and right interactions and forwards A’s messages to
Pt1◦1 and Vt̃1◦1 respectively.

From the construction ofA′, it can be concluded thatA′ has the power of dis-
tinguishingmimA′

((x1, c11), (w1, r1), z2, t1◦1) andmimA′
((x2, c12), (w2, r2),

z2, t1 ◦ 1), a contradiction with the SNMWI property of the sub-protocol in
step 4.

3. mimA
212 and mimA

222: These two experiments are indistinguishable. By a
similar way as used above, we can reduce the indistinguishability between
them to the SNMWI property of the sub-protocol used in step 3.

Theorem 1. There exists a SNMWI but not NMWI argument for L ∈ NP
which has infinite instances with at least two witnesses.

Proof: It is sufficient to show that Γ is not NMWI for L ∈ NP which has infinite
instances with at least two witnesses. A man-in-the-middle adversary A can be
constructed as follows: Suppose x is a statement with at least two witnesses. In
the left, the common input is (x, (t0, t1)) and the private input to the honest
prover is w ∈ WL(x). A chooses the statement x and a tag (t0, t̃1) in the right,
where t̃1 �= t1. On auxiliary input w ∈ WL(x), A starts the malleable attacks in
the following way

– A copies and forwards what he receives in step 1 of the left interaction to
the verifier.

– In step 2 of the right interaction, A computes a commitment c1 to w and
sends c1 to the verifier.

– By simply forwarding what the verifier asks for to the prover and copying
the prover’s answers, A completes step 3 of the right interaction.

– At last, A completes step 4 of the right interaction by using the witness w.

From above construction, it is clear that the witness extracted fromA’s accepting
proof with tag (t0, t̃1) is dependent on the witness used in the left. Thus, Γ is
not NMWI.

Remark: For the SNMWI scheme given in [18], a similar man-in-the-middle
adversary can be constructed to break the NMWI property. Thus, the SNMWI
scheme proposed in [18] is not NMWI.

3.2 A NMWI Argument That Is Not SNMWI

Suppose f : {0, 1}n → {0, 1}n is a one-way permutation and b : {0, 1}∗ → {0, 1}
is its hard-core predicate. Define relation R to be R = {(f(y), y) : y ∈ {0, 1}∗},
then the language LR that R determines is in NP. From [22], we know that
there exists a NMWI argument Π = {(Pt,Vt)}t for LR.
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Next, we construct a man-in-the-middle adversary A for Π in the following
way: Suppose the statement and the tag in the left are f(y) and t. A chooses
f(y) and t̃ �= t in the right. On auxiliary input the witness y, A can prove
the statement f(y) in the right using the tag t̃. Consider the random variable
X i

n that is randomly distributed on {f(y) : y ∈ {0, 1}∗ ∧ b(y) = i}, i = 0, 1.
For {(X0

n, y
0
n, y

0
n)}n∈N and {(X1

n, y
1
n, y

1
n)}n∈N , {(X0

n, y
0
n)}n∈N and {(X1

n, y
1
n)}

are computationally indistinguishable, where yin is the witness of X i
n ∈ LR.

However, the following two ensembles are distinguishable

– {mimA(X0
n, y

0
n, y

0
n, t)}n∈N,t∈{0,1}∗;

– {mimA(X1
n, y

1
n, y

1
n, t)}n∈N,t∈{0,1}∗;

The reason is that: for an accepting right interaction generated by A, since t̃ �= t
and X i

n has unique witness, the witness extracted from this right interaction is
exactly yin satisfying X i

n = f(yin) and b(y
i
n) = i. Thus, by only computing b(yin),

we can distinguish the above two ensembles.

Theorem 2. There exists a NMWI argument which is not SNMWI.

4 Construction of Concurrent NMWI Argument

In this section, we show that a variant of LPV08 scheme [17] is concurrent NMWI
argument for language L ∈ NP .

4.1 The Message Scheduling Sub-protocol

Our concurrent NMWI construction is mainly built from the tag-based message-
scheduling protocol (Pt,Vt) depicted in Figure 2, which is used in [17]

Common Input: an instance x of length n;
Tag: t;
For i=1 to t
Pt executes designti with Vt to prove the statement x;
Pt executes design1−ti with Vt to prove the statement x;

Fig. 2. Protocol (Pt,Vt) for language L′

where design0 and design1 contain two executions (α1, β1, γ1) and (α2, β2, γ2)
of a special-sound WI proof for L′ which are scheduled in the way as in Figure 3.

Related to the message-scheduling sub-protocols, there is a notion called safe-
point from which we can extract the witness used in the right proof safely (e.g.,
without rewinding the left).

Definition 6 (Safe-Point [17]). A prefix ρ of a transcript Δ is called safe-
point, if there exists an accepting proof (αr, βr, γr) in the right, such that
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design0 design1

α1

β1

γ1

α2

β2

γ2

α1

α2

β2

γ2

β1

γ1

Fig. 3. The description of protocol design0 and design1

1. αr occurs in ρ but not βr and γr;
2. For any proof (α�, β�, γ�) in the left, if only α� occurs in ρ, then β� occurs

after γr.

In [17], it has been proved that

Lemma 2 (Safe-Point Lemma [17]). In any one-many concurrent man-in-
the-middle execution of (Pt,Vt), for any accepting right interaction with a tag
different from the left, there exists a safe-point for this right interaction.

4.2 Construction of Concurrent NMWI

Suppose f be a one-way function with efficiently recognizable range, Com is a
statistically binding commitment scheme, Sign = (Gen, Sig, V er) is a signature
scheme existentially unforgeable against adaptive chosen message attacks. Let
R be the polynomial-time relation that determines L. The concurrent NMWI
argument (P, V ) is described in Figure 4.

For x ∈ L, from the completeness of (Ppk,Vpk), we can get the completeness of
(P, V ). For x /∈ L, if there exists a malicious prover who succeeds in convincing
V the false statement with a non-negligible probability, this implies that the
prover can invert f with non-negligible probability, a contradiction with the one-
wayness of f . Thus, (P, V ) is an argument for language L. In addition, (P, V ) is
in commit-and-prove style. Therefore, we have

Lemma 3. The construction (P, V ) is a commit-and-prove argument for lan-
guage L with the witness relation R.

As in [17], the NMWI property stems from the message scheduling technique.
More precisely, for an accepting right interaction that the man-in-the-middle
adversary generates (provided that its tag is different from the left), there exists a
right proof in this right interaction which the adversary can not answer correctly
by only mauling the left interaction. The proof of security of (P, V ) is similar to
that of LPV08 scheme [17], with the difference that here we reduce the NMWI
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Common Input: An instance x of length n and a tag t.
Private Input of P : The witness w for x ∈ L.
Stage 1:
• V picks uniformly r ∈ {0, 1}n, computes u = f(r) and sends u to P .
• P aborts if u is not in the range of f .

Stage 2:
• P computes a commitment c to w by using Com and generates a pair of
(sk, pk)keys of the signature scheme Sign. Then he sends (c, pk) to V .

Stage 3:
• On common input (u, (x, c)), t, using tag pk, P runs algorithm Ppk to
prove to V (running Vpk) that there exists a value r s.t. u=f(r) or there
exist w, r, s.t. c = Com(w, r) ∧ (x,w) ∈ R. The challenge length of the
verifier is 2n. Let trans be the transcript of this interaction.
• P signs t ◦ trans to produce a signature s.

Fig. 4. The construction of concurrent NMWI argument (P, V )

property to the witness-indistinguishability of some WI argument, instead of the
computationally hiding property of some commitment scheme.

In [22], it was shown that a one-many concurrent NMWI argument is fully
concurrent NMWI. Therefore, it is sufficient to prove that (P, V ) satisfies one-
many concurrent non-malleable witness indistinguishability. In the proof, the
following notations will be used later: For a PPT one-many concurrent man-in-
the-middle adversary A with auxiliary input z, suppose A interacts with P on
common inputs x and t in the left. In the right, A opens up m = poly(k) sessions
with honest verifier V and in the j-th right interaction the statement proved by
A is xj . Let pk be the public key used in the left, pkj be the public key in the
j-th right interaction, and |pk| = |pkj | = 
.

Lemma 4. For any j ∈ {1, 2, · · · ,m}, if the j-th right interaction is accepting
and its tag tj �= t, then except with negligible probability, pkj �= pk.

Proof: If there exists a j ∈ {1, 2, · · · ,m} such that the j-th right interaction
is accepting and its tag tj �= t and pkj = pk, then we can construct a PPT
algorithm B to break the security of Sign. On input a public key pk and the
auxiliary input z′ = x ◦w ◦ z, B incorporates A and simulates the left and right
interactions internally. Specifically, in the left interaction, B does what an honest
prover does except that he gets a signature on t◦trans by querying the signature
oracle. In the right interaction, B runs the honest verifier algorithm to interact
with A. At last, B outputs the signature in the j-th right interaction. Therefore,
B gets a signature on a new message, which contradicts with the security of
Sign.

Let Γ (A, z) denote the distribution of all joint view τ of A and honest verifiers
in the right, such that A starts the right interaction directly after receiving the
messages in τ . Let Z(z, τ) = z ◦ τ ◦ x1 ◦w1 ◦ · · · ◦ xq ◦wq, where each (xi, wi) is
a statement-witness pair proved by A(z) in τ , q ∈ {1, 2, · · · ,m}.
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Lemma 5. For the argument (P, V ) constructed above, for any man-in-the-
middle adversary A, there exists a witness indistinguishable argument (P̂ , V̂ )
and an expected PPT malicious verifier V̂ ∗ for (P̂ , V̂ ) such that the following
two ensembles are computationally indistinguishable

(a) {τ ← Γ (A, z), z′ ← Z(z, τ) :< P̂ (w), V̂ ∗(z′) > (x, t)}x∈L,z∈{0,1}∗

(b) {wmimA(x,w, t, z)}x∈L,z∈{0,1}∗

Proof: The protocol (P̂ , V̂ ) can be constructed as follows: (P̂ , V̂ ) works in the
same way as (P, V ) except that in stage 2 design is executed an arbitrary number
of rounds and in each round the verifier picks i ∈ {0, 1} to ask the prover to run
designi. By the completeness, soundness and the witness indistinguishability of
Π , (P̂ , V̂ ) is an argument with witness indistinguishability.

The malicious verifier V̂ ∗ can be constructed in the following way: On common
input x, a tag t, auxiliary input z′ = z ◦ τ ◦ x1 ◦ w1 ◦ · · · ◦ xq ◦ wq, V̂

∗ interacts

with P̂ (x,w, t) to emulate the one-many man-in-the-middle of P,A, V in the
following way:

– V̂ ∗ incorporatesA(z, t) and externally interacts with P̂ to emulate the left in-
teraction of (P,A) by requesting the appropriate design expected by A(z, t).

– V̂ ∗ performs the right interactions of (A, V ) internally.
– For right interaction j ∈ {q+1, · · · ,m} which is not accepting or the tag tj =
t, set wj = ⊥. By safe-point lemma, for right interaction j ∈ {q+ 1, · · · ,m}
which is accepting and has a tag tj �= t, V̂ ∗ rewinds interaction j from
the first safe-point to extract the witness wj , without rewinding any left
interaction. At last, V̂ ∗ outputs (w1, · · · , wq, wq+1, · · · , wm).

It can be seen that the running time of V̂ ∗ is expected polynomial time and
what V̂ ∗(z′) outputs is indistinguishable from wmimA(x,w, t, z).

Lemma 6. (P, V ) is a one-many concurrent non-malleable witness indistin-
guishable argument.

Proof: From the witness indistinguishability of (P̂ , V̂ ), for the expected PPT
V̂ ∗ constructed as above, for the witnesses w,w′ ∈ WL(x), it holds that the
following two ensembles are computationally indistinguishable

- {< P̂ (w), V̂ ∗(z′) > (x, t)}x∈L,z′∈{0,1}∗

- {< P̂ (w′), V̂ ∗(z′) > (x, t)}x∈L,z′∈{0,1}∗

which implies the indistinguishability of the following two ensembles

- {τ ← Γ (A, z), z′ ← Z(z, τ) :< P̂ (w), V̂ ∗(z′) > (x, t)}x∈L,z∈{0,1}∗

- {τ ← Γ (A, z), z′ ← Z(z, τ) :< P̂ (w′), V̂ ∗(z′) > (x, t))}x∈L,z∈{0,1}∗

By lemma 5, the ensembles listed below are computationally indistinguishable

- {τ ← Γ (A, z), z′ ← Z(z, τ) :< P̂ (w), V̂ ∗(z′) > (x, t)}x∈L,z∈{0,1}∗

- {wmimA(x,w, t, z)}x∈L,z∈{0,1}∗
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Therefore, we get the computational indistinguishability of the following two
ensembles

- {wmimA(x,w, t, z)}x∈L,z∈{0,1}∗

- {wmimA(x,w′, t, z)}x∈L,z∈{0,1}∗

which concludes the proof of the following theorem.

Theorem 3. If one-way functions exist, then every language L ∈ NP has a
concurrent NMWI argument which can be shown secure relying on black-box
techniques.

On the Complexity Assumption: For simplicity of exposition, the above de-
scription of (P, V ) relies on the existence of one-way functions with efficiently
recognizable range. In fact, our protocol can be modified to work with any ar-
bitrary one-way function by simply providing a witness-hiding proof that an
element is in the range of the one-way function.

5 Conclusion

Non-Malleability is an important property that guarantees the security of crypto-
graphic protocols against man-in-the-middle attacks. Many non-malleable con-
structions such as non-malleable zero knowledge and non-malleable commit-
ments have been worked out. Witness indistinguishability, as one of the most
basic cryptographic protocols, its non-malleability is much of interest.

In this paper, we firstly give a separation between NMWI and SNMW and
point out that the SNMWI scheme based on one-way function given in [18] is
not NMWI. Then, we show that a variant of LPV08 scheme [17] is concurrent
NMWI. Compared with the NMWI construction of [22] which was built from a
non-black-box claw-free permutation based NMZK argument, our scheme relies
on black-box techniques and is based on the existence of one-way functions.

Acknowledgments. We thank anonymous referees for their helpful suggestions
to improve this paper.
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Abstract. In this article, we describe a new approach for construct-
ing pseudorandom generator using subcovers for large finite groups. The
Gennaro generator (J Cryptol 15:91-110, 2005) and Farashahi et al. gen-
erator (PKC LNCS 4450: 426-441, 2007) can be specific instances of the
new approach. We focus, in particular, on the class of symmetric group
Sn and construct the first pseudorandom generator based on non-abelian
group whose security can be proven. We successfully carry out a test of
the generator based on non-abelian group by using the NIST Statistical
Test Suite.

Keywords: Pseudorandom generator, Subcover, Finite group.

1 Introduction

Many (if not all) cryptographic algorithms rely on the availability of some form
of randomness. However, perfect randomness is a scare resource. Fortunately, for
almost all cryptographic applications, it is sufficient to use pseudorandom bits.

The concept of cryptographically strong pseudorandom bit generator was in-
troduced in papers by Blum and Micali [2] and Yao [28]. In 1989, Goldreich
[10] stated the computational indistinguishability, and H̊astad et al. [7] showed
how to construct a pseudorandom generator from any one-way function. Several
generator based on hard assumption have been presented [1, 4, 9, 21, 23, 26].
However, their hard assumptions (RSA,DLP,DDH) lie in the intractability of
the mathematical problems closer to number theory than group theory. Number
theory deals mostly with abelian groups.

Unfortunately, Shor’s quantum algorithm [24] showed that the integer factor-
ing and solving the DLP seem not hard. Some papers payed their attention to
the non-abelian group, and gave some cryptosystem based on non-abelian group
[12–17].

In 1984, Magliveras et al. [13] showed a new random number generator from
permutation groups. Marquarde et al. [18] generalized this approach to general
finite groups. However, their can not give a more rigorously mathematical proof
of the randomness of the generators, rather than statistical test.
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1.1 Our Contributions

We show that it is possible to construct an efficient non-abelian-group-based
pseudorandom generator whose security can be proven.

We generalize the DDH problem to decision subcover membership problem.
On this basis, we modify and generalize the Gennaro generator [9] and Farashahi
et al. [4] generator such that the modified version is provable secure under the
decision subcover membership problem. Actually, we describe a new approach
for constructing pseudorandom generator using subcovers for large finite groups.

We present three specific instances of the new pseudorandom generator.
The first two instances are similar to the genreators in [4, 9]. In the last

instance, we give the fist pseudorandom generator based on non-abelian group
whose security can be proven. We focus, in particular, on the class of symmetric
group Sn. We successfully carry out a test of the generator by using the NIST
Statistical Test Suite[22].

1.2 Organization

The paper is organized as follows. In Section 2 we summarize notations, defini-
tions and prior work. Section 3 presents the main contribution of our paper, the
new approach for constructing pseudorandom generator and its security proof.
In Section 4, we give three instances of our new generator and present the sta-
tistical test result of the third instance. At last, in Section 5, we draw some
conclusions.

2 Preliminaries

In this section we summarize notations, definitions and prior work which is
relevant to our result.

2.1 Pseudorandom Generators

In this subsection, we recall basic definitions about pseudorandom generators.
More details can be found in [11].

Let X and Y be random variables taking on values in a finite set S. The
statistical distance between X and Y is defined as

*(X,Y ) =
1

2

∑
γ∈S
|Pr[X = γ]− Pr[Y = γ]|.

We say that algorithm D distinguishes X and Y with advantage ε if and only if

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≥ ε.

If the statistical distance between X and Y is less than ε then no algorithm
distinguishes X and Y with advantage ε (see, e.g., [11]).
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Throughout, we let UM denote a random variable uniformly distributed on
ZM . And, we say that an algorithm is T -time if it halts in time at most T .

Consider a deterministic algorithm PRG : {0, 1}n �→ {0, 1}m, where m > n.
Loosely speaking, PRG is called a pseudorandom generator if it maps uniformly
distributed input into an output which is computationally indistinguishable from
uniform. The input is called the seed and the output is called the pseudorandom
sequence. The precise definition is given as follows.

A T -time algorithm D : {0, 1}m �→ {0, 1} is said to be a (T, ε)-distinguisher
for PRG if

|Pr[D(PRG(U2n)) = 1]− Pr[D(U2m) = 1]| ≥ ε

Definition 1. (Pseudorandom generator) Algorithm PRG is called a (T, ε)-
secure pseudorandom generator if no (T, ε)-distinguisher exists for PRG.

A (T, ε)-secure pseudorandom generator is said to be secure if time T is bounded
by the polynomial in n and ε is negligible (ε < 1

p(n) , for any positive polynomial

p(·)).

2.2 Subcovers for Finite Groups

In this section we briefly present notations, definitions and some facts about
logarithmic signature, covers, subcovers for finite group, and their induced map-
pings. For more details, the reader is referred to [12–17].

Let G be a finite abstract group, we define the width of G as the positive
integer wG = "log |G|#. Denote by G[Z] the collection of all finite sequences of
elements in G.

Suppose that α = [A1, A2, · · · , As] is a sequence of Ai ∈ G|Z| such that∑s
i=1 |Ai| is bounded by a polynomial in wG . Let S be a subset of G. We call α

a cover for S if each element h ∈ S can be expressed in at least one way as a
product of the from

h = g1 · g2 · · · gs−1 · gs (1)

for gi ∈ Ai.
In particular, if each h ∈ S can be expressed in exactly one way by Eq.(1), α is

called a logarithmic signature for S. If the elements in each set Ai, i = 1, · · · , s,
are chosen at random from the elements in G, we refer to α as a random cover.
If S = G, α is called a cover for G.

The Ai are called the blocks, and the vector (r1, · · · , rs) with ri = |Ai| the
type of α. We say that α is nontrivial if s ≥ 2 and ri ≥ 2 for 1 ≤ i ≤ s, otherwise
α is said to be trivial.

We define the order of α as the positive integer |α| = ∏s
i=1 ri and the width

of α as the positive integer wα = "log |α|#. Actually, the widths of G and α play
important roles in the construction of the pseudorandom generator. We extend
the definition of covers to subcovers.
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Definition 2. Let G, α, wG and wα be as above. We say that α is a subcover
of G if wG > wα. Denote the subset Sα of G as

Sα = {h | ∃ gi ∈ Ai, s.t. h = g1 · g2 · · · gs−1 · gs} (2)

Notice that |Sα| ≤ |α|.
Let α = [A1, A2, · · · , As] is a cover (subcover) of type (r1, r2, · · · , rs) for a

group G with Ai = [ai,1, ai,2, · · · , ai,ri ]. Let m1 = 1 and mi =
∏i−1

j=1 rj for
i = 2, · · · , s. Let τ denote the canonical bijection from Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs on
Z|α|, i.e.,

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Z|α|,

τ(j1, j2, · · · , js) :=

s∑
i=1

jimi.

Using τ , we now define the surjective mapping ᾰ induce by α:

ᾰ : Z|α| → Sα,
ᾰ(x) := a1,j1a2,j2 · · ·as,js .

where (j1, j2, · · · , js) = τ−1(x). Since τ and τ−1 are efficiently computable, the
mapping ᾰ is efficiently computable.

2.3 Decision Subcover Membership Problem

In general, the problem of finding a factorization as in Eq.(1) with respect to
a cover is presumed intractable. For finite groups, there are instances where
the problem is believed to be hard. For example, let q be a prime power for
which the discrete logarithm problem in the multiplicative group of the finite
field Fq is believed to be hard. Suppose that 2l−1 < q − 1 ≤ 2l, and let Gl be
the multiplicative group F∗

q just mentioned. let g be a generator of Gl. If αl =
[A1, A2, · · · , Al], where Ai = [1, g2

i−1

], than αl is a cover of Gl, and factorization
problem with respect to αl amounts to solving the discrete logarithm problem
(DLP) in Gl.

If we consider the group Gl × Gl and α′l = [B1, B2, · · · , Bl] where Bi =

[(1, 1), (g2
i−1

, g′2
i−1

)], we get the DDH problem. Actually, we could consider the
DDH problem as a subgroup membership problem.

There are several papers discuss the public key cryptosystem based on the
subgroup membership problem [8, 19, 20, 27]. However, their problem assump-
tion is limited on abelian groups. In this paper, we extend the problem to general
groups.

If α is a subcover for G, we always consider the membership problem respect
to α, that is

Definition 3. (Decision Subcover Membership Problem) Let α is a subcover for
G. Let X ∈ Z|α| be a random variable uniformly distributed on Z|α| and Y ∈ G
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be a random variable uniformly distributed on G. Algorithm D is said to solve
the decision subcover membership problem respect to α in G with advantage ε if
it distinguishes the random variables ᾰ(X) and Y with advantage ε, that is,

|Pr[D(ᾰ(X), 1wG )] = 1]− Pr[D(Y, 1wG ) = 1]| ≥ ε
We say that the DSM (decision subcover membership) problem is hard in G if
there is no efficient algorithm to solve the DSM problem in time T with advantage
ε where T is bounded by the polynomial in wG and ε is negligible.

3 DSM Generator

In this section, our main result is presented. We propose a new provably secure
pseudorandom generator. We call it the DSM generator, since the security of
this generator relies on the intractability of the decision subcover membership
problem in the corresponding group. In contrast with the Gennaro’s generator[9]
and the DDH generator[4], the DSM generator can be based on any group, no
matter abelian or not.

3.1 Construction of the Generator

Let G be a finite group with width wG and α be a subcover of G with width wα.
We assume that there is a bijective mapping Fun : G �→ Z|G|, which efficiently
identify elements of G with numbers in Z|G|. Thus, on uniformly distributed
input, function Fun produces uniformly distributed output.

For given |G| and |α|, let M = " |G||α|#. We denote ODE|G|,|α| as the function

with input x ∈R ZG and output unique (a, b) satisfy x = a ∗M + b, 0 ≤ a < |α|
and 0 ≤ b < M .

We present our generator in Algorithm 1. The seed of the DSM generator
is s0 ∈ Z|α|. The DSM generator transforms the seed into the sequence of k
pseudorandom numbers from ZM .

Algorithm 1. DSM Generator

INPUT: s0 ∈ Z|α|, k > 0
OUTPUT: k pseudorandom integers from ZM .

for i from 1 to k do
Set (a, b) = ODE|G|,|α|(Fun(ᾰ(si−1)))
Set si = a
Set outputi = b

end for
Return(output1, · · · , outputk)

Note that the subcover α is not part of the seed. The subcover is system
parameters that is not necessarily kept secret. This is different from the RPGM
generator based on permutation groups[14]. In the security analysis of the gen-
erator we assume that α is known to the distinguisher.
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3.2 Security Analysis

Actually, if the DSM problem is hard in G, we can consider the function ᾰ as
a pseudorandom generator with expansion factor l(wα) = wG for the reason
wα < wG .

The following theorem implies that under the DSM problem for group G an
output sequence of the DSM generator is indistinguishable from a sequence of
uniformly random numbers in ZM . We modify the proof in [4] to satisfy our
theorem.

Theorem 1. Suppose these exists a T -time algorithm that distinguishes the out-
put of DSM generator from the sequence of independent uniformly distributed
random numbers in ZM with advantage ε. The the DSM problem in G can be
solved in time T with advantage ε/k.

Proof. Suppose there exists a T -time algorithm D that distinguishes the output
of the DSM generator from a sequence of independent uniformly distributed
random numbers in ZM with advantage ε, that is ,

|Pr[D(output1, · · · , outputk) = 1]− Pr[D(U) = 1]| ≥ ε,

where U = (u1, · · · , uk), ui ∈R ZM , i = 1, · · · , k. Let j ∈R 1, 2, · · · , k. Due to
the classical hybrid argument (see, e.g., [11]Section 3.2.3),

|Pr[D(Zj) = 1]− Pr[D(Zj+1)] = 1| ≥ ε/k,

where
Zj = (u1, · · · , uj−1, output1, · · · , outputk−j+1),

the probability is taken not only over internal coin flips of D but also over the
choice of j. Now, we show how to solve the DSM problem in G using the distin-
guisher D as a building block. Let h ∈ G. A solver for the DSM problem decide
if h ∈ Sα or h are uniformly distributed random elements of G as follows.

Select j ←R 1, 2, · · · , k
Select r1, · · · , rj−1 ←R ZM

Select (a, b) = ODE|G|,|α|(Fun(h))
Set s1 = a
Set rj = b
for i = 2 to k − j do

Set (a, b) = ODE|G|,|α|(Fun(ᾰ(si−1)))
Set si = a
Set ri+j−1 = b

end for
Set Z ← (r1, · · · , rk)
Return D(Z)

If h ∈ Sα then rj is distributed as the first output of the DSM generator respec-
tively, so Z is distributed as Zj .



Pseudorandom Generators Based on Subcovers for Finite Groups 385

Otherwise, if h is a uniformly distributed random elements of G then rj+1 is
distributed as the first output of DSM generator while rj is uniformly distributed
over ZM and independent of rj+1, so Z is distributed as Zj+1.

Therefore, the above algorithm solves the DSM problem in G in time at most
T with advantage ε/k. 
�
Our generator outputs numbers in ZM rather than bits. However, converting
random numbers into random bits is a relatively easy problem. For instance,
one can use Algorithm Q2 from [6].

For the sake of simplicity, throughout this paper, we assume thatM is close to
a power of 2, that is 0 ≤ (2n−M)/2n ≤ δ for a small δ and a positive integer n.
So, the uniform element UM ∈R ZM is statistically close to n uniformly random
bits.

The following simple lemma is a well-known result

Lemma 1. Under the condition that 0 ≤ (2n −M)/2n ≤ δ, the statistical dis-
tance between UM and U2n is bounded above by δ

Proof. The proof can be found in [3] 
�
The next statement implies that ifM is close to a power of 2, the DSM generator
is a cryptographically secure pseudorandom generator under the condition the
DSM problem is hard in G.
Corollary 1. Let 0 ≤ (2n −M)/2n ≤ δ. Suppose the DSM generator is not
(T, ε)-secure. Then there exists an algorithm that solves the DSM problem in G
in time at most T with advantage ε/k − δ.
Proof. Suppose there exists a distinguisher D : {0, 1}kn �→ {0, 1} that runs in
time at most T and

|Pr[D(output1, · · · , outputk) = 1]− Pr[D(U2kn) = 1]| ≥ ε.
Let ui ∈R ZM , i = 1, · · · , k and U = (u1, · · · , uk). Lemma 1 implies that the
statistical distance *(U,U2kn) ≤ kδ. Thus,

|Pr[D(output1, · · · , outputk) = 1]− Pr[D(U) = 1]| ≥ ε− kδ
Now, the statement follows from Theorem 1. 
�

4 Specific Instances of the DSM Generator

To implement the DSM generator, one has to choose the finite group G and
function Fun that enumerates the group elements. One can construct applicable

subcover α so thatM = " |G||α|# is close to a power of 2, that is, 0 ≤ (2n−M)/2n ≤
δ for a small δ and a positive integer n. We like to emphasize that this assumption
is made for the sake of simplicity only.

In this section, we propose three specific instances of the DSM generator.
Actually, the first two instances are presented in formerly papers [4, 9] in different
models and the two instances can be evidences of the security of our DSM
generator. In the last instance, we propose the first pseudorandom generator
based on non-abelian group whose security can be proven.
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4.1 DSM Generators Based on the c-DLSE Assumption

To present the first instance of DSM generator, we modify the idea of [9] to our
generator.

Let p be a safe prime, p = 2q+1, where q is prime. Let G1 be the multiplicative
group modulo p, thus G1 = F∗

p. The bijection mapping Fun1 is the natural
mapping. Let g ∈ G1 be a generator of G1. For a parameter c ∈ Z, c < wG1

we set the subcover α1 as α1 = [A0, A1, A2, · · · , Ac] where A0 = [1, g] and

Ai = [1, g2
|wG1

|+i−c−1

], i = 1, 2, · · · , c.
Let s0 ∈R Z2c+1 be the seed. Generator DSMG1 is a deterministic algorithm

that transforms the seed into the sequence of k(wG1 − c− 1) pseudorandom bits.

Algorithm 2. DSMG1

INPUT: s0 ∈ Z2c+1 , k > 0
OUTPUT: k pseudorandom integers from Z

2
wG1

−c−1 .
for i from 1 to k do

Set (a, b) = ODE2
wG1 ,2c+1(Fun1(ᾰ1(si−1)))

Set si = a
Set outputi = b

end for
Return(output1, · · · , outputk)

Actually, the generator DSMG1 is the same as the IRGn,c presented in [9].

Theorem 2. [9] Under the c-DLSE Assumption, IRGn,c is a secure pseudo-
random number genreator.

In [9], Gennaro suggested the parameters wG1 = 3000 and c = 225.

4.2 DSM Generators Based on the DDH Assumption

In this section, wo modify the idea in [4].
Let p be a safe prime, p = 2q + 1, where q is prime. We assume that 0 ≤

(2n − q)/2n ≤ δ for a small δ and some integer n. Let G2 be a group of nonzero
quadratic residues modulo p. The order of G2 equals q. Consider the following
function f : G2 �→ Zq,

f(x) =

⎧⎨⎩
x 1 ≤ x ≤ q;
p− x q + 2 ≤ x ≤ p;
0 otherwise.

Let G2 = G2 × G2 and (u, v) ∈ G2, u, v ∈ G2. Thus, we can construction the
bijection function Fun2 as Fun2((u, v)) = f(u) ∗ q + f(v).

We set the subcover α2 as α2 = [B1, B2, · · · , Bn] where Bi =

[(1, 1), (x2
i−1

, y2
i−1

)], i = 1, 2, · · · , n, and x, y ∈ G2.
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Algorithm 3. DSMG2

INPUT: s0 ∈ Z2n , k > 0
OUTPUT: k pseudorandom integers from Z2n .

for i from 1 to k do
Set (a, b) = ODEq2,2n (Fun2(ᾰ2(si−1)))
Set si = a
Set outputi = b

end for
Return(output1, · · · , outputk)

Let s0 ∈ Z2n be the seed. Generator DSMG2 is a deterministic algorithm
that transforms the seed into the sequence of kn pseudorandom bits.

Actually, the generator DSMG2 is similar to the PRG1 in [4].

Proposition 1. [4] Suppose pseudorandom generator PRG1 is not (T, ε)-secure.
Then there exists an algorithm that solves the DDH problem in G2 in time at
most T with advantage ε/k − δ.
In [4], Farashahi et al. suggested that n = 1600. If we consider the group
G2 × G2 × · · · × G2, we can get a more efficient pseudorandom generator as
the generator NGp presented in [23].

4.3 DSM Generators Based on Non-Abelian Groups

In this subsection, we propose the first pseudorandom generator based on non-
abelian groups whose security can be proven.

Let G3 = Sl be the full symmetric group on {1, 2, · · · , l}. Let α3 =
[C1, C2, · · · , Cs] be a subcover of type (r1, r2, · · · , rs) for G3.

It is known that if Sα3 is a subgroup of G3, then the (subcover) membership
problem can be tested in polynomial time in the width and the number of the
generators of the subgroup [5]. If we assume that for every i = 1, 2, · · · , s, 1G3 ∈
Ci, then we have the following proposition,

Proposition 2. Let G3 and α3 be defined as above, and for every i = 1, 2, · · · , s,
1G3 ∈ Ci. If Sα3 is a subgroup, then it equals to the group generated by C1∪C2∪
· · · ∪ Cs.

Proof. Because that for every i = 1, 2, · · · , s, 1G3 ∈ Ci, we have that for every
a ∈ Ci, i = 1, 2, · · · , s, a ∈ Sα3 . If Sα3 is a subgroup, we have that a−1 ∈ Sα3

too. Thus, Sα3 =< C1 ∪ C2 ∪ · · · ∪ Cs >. 
�

If Sα3 is a subgroup, we can use the Schreier − Sims [25] or similar algorithm
to build ”strong generators” for Sα3 using C1 ∪ C2 ∪ · · · ∪ Cs.

Proposition 3. Let C be a subset of G3, 1G3 ∈ C. If there exists a1, a2 ∈ G3, so
that a1Ca2 is a subgroup of G3, then C is a subgroup too.
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Proof. If a1Ca2 is a subgroup of G3, then for every x ∈ C, there exists a
unique y so that a1xa2a1ya2 = 1G3 . That is a2a1xa2a1y = 1G3 , so we have
the a2a1C is a subgroup. So C is a coset of a2a1C. However, 1G3 ∈ C, so C is a
subgroup of G3. 
�
We always assume that for every i = 1, 2, · · · , s, 1G3 ∈ Ci. In any case, to
our knowledge, there is no efficient algorithm to solve the decision subcover
membership problem respect to β if Sβ is not contained in any subgroup. In this
case, the group generated by C1 ∪ C2 ∪ · · · ∪ Cs is equal to Sl.

We consider the bijection mapping Fun3 as a iterative algorithm, that is
if we can ”enumerate” the symmetric group Sl−1 then we can ”enumerate” the
symmetric group Sl. Let (k1, k2, · · · , kl) ∈ Sl, we construct the bijection mapping
Fun3 on Sl as,

Algorithm 4. bijection mapping Fun3
INPUT: (k1, k2, · · · , kl) ∈ Sl, l
OUTPUT: a number in {1, 2, · · · , l!}.

If l = 1 Return 1.
Set tmp = (k1 − 1) ∗ (l − 1)!.
Set (m1,m2, · · · ,ml−1) = (k2, k3, · · · , kl).
If mi > k1 Set mi = mi − 1, for i = 1, 2, · · · , l − 1.
Set tmp = tmp+ Fun3((m1,m2, · · · ,ml−1), l − 1).
Return tmp.

Let s0 ∈ Z|α3| be the seed. Generator DSMG3 is a deterministic algorithm
that transforms the seed into the sequence of k(wG3 −wα3) pseudorandom bits.

Let M = " |G3|
|α3|#, and assume that 0 ≤ (2n −M)/2n ≤ δ for a small δ and a

positive integer n.

Algorithm 5. DSMG3

INPUT: s0 ∈ Z|α3|, k > 0
OUTPUT: k pseudorandom integers from ZM .

for i from 1 to k do
Set (a, b) = ODE|G3|,|α3|(Fun3(ᾰ3(si−1)))
Set si = a
Set outputi = b

end for
Return(output1, · · · , outputk)

The next statement follows from Corollary 1.

Proposition 4. Suppose pseudorandom generator DSMG3 is not (T, ε)-secure.
Then there exists an algorithm that solves the DSM problem in G3 in time at most
T with advantage ε/k − δ.
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Table 1. NIST test results on DSM3

Test P-value Protortion P-value Propotion P-value Propotion

NonOverlapping 0.603841 0.9870 0.614226 0.9890 0.471146 0.9850
Template 0.628790 0.9900 0.612147 0.9920 0.104993 0.9910

0.933472 0.9860 0.984415 0.9900 0.129620 0.9870
0.886162 0.9890 0.632955 0.9870 0.668321 0.9930
0.846338 0.9920 0.082010 0.9870 0.263572 0.9870
0.856359 0.9920 0.624627 0.9940 0.864494 0.9930
0.725829 0.9870 0.877083 0.9900 0.820143 0.9900
0.834308 0.9840 0.950247 0.9900 0.059734 0.9880
0.915317 0.9880 0.192724 0.9930 0.248014 0.9900
0.560545 0.9880 0.983453 0.9870 0.664168 0.9910
0.755819 0.9940 0.867692 0.9870 0.111389 0.9870
0.846338 0.9910 0.388990 0.9860 0.858002 0.9900
0.380407 0.9920 0.026410 0.9910 0.044508 0.9990
0.254411 0.9900 0.277082 0.9920 0.104993 0.9930
0.012562 0.9890 0.227180 0.9910 0.562591 0.9880
0.366918 0.9910 0.954930 0.9950 0.488534 0.9910
0.075719 0.9870 0.169981 0.9900 0.277082 0.9910
0.371941 0.9860 0.900569 0.9910 0.979788 0.9830
0.786830 0.9880 0.314544 0.9880 0.846338 0.9910
0.965860 0.9910 0.068999 0.9870 0.099513 0.9930
0.794391 0.9860 0.524101 0.9940 0.954015 0.9870
0.264901 0.9890 0.478839 0.9900 0.894918 0.9910
0.583145 0.9920 0.864494 0.9900 0.682823 0.9870
0.798139 0.9910 0.361938 0.9970 0.892036 0.9960
0.786830 0.9940 0.639202 0.9930 0.616305 0.9870
0.486588 0.9870 0.745908 0.9910 0.717714 0.9870
0.096000 0.9870 0.562591 0.9870 0.610070 0.9900
0.717714 0.9880 0.936823 0.9890 0.968863 0.9880
0.788728 0.9960 0.323668 0.9890 0.674543 0.9940
0.267573 0.9890 0.375313 0.9910 0.783019 0.9920
0.520102 0.9980 0.310049 0.9920 0.520102 0.9880
0.221317 0.9910 0.721777 0.9930 0.131122 0.9920
0.039329 0.9940 0.955835 0.9940 0.655854 0.9910
0.021262 0.9930 0.904708 0.9920 0.560545 0.9940
0.344048 0.9950 0.893482 0.9900 0.986227 0.9920
0.610070 0.9930 0.574903 0.9920 0.292519 0.9860
0.329850 0.9900 0.676615 0.9910 0.947308 0.9910
0.827279 0.9860 0.957612 0.9940 0.382115 0.9890
0.599693 0.9870 0.512137 0.9880 0.289667 0.9940
0.769527 0.9890 0.229559 0.9890 0.165340 0.9850
0.115387 0.9910 0.277082 0.9910 0.729870 0.9900
0.927677 0.9920 0.771469 0.9950 0.329850 0.9900
0.969588 0.9920 0.138069 0.9920 0.013664 0.9910
0.597620 0.9940 0.189625 0.9890 0.556460 0.9900
0.208837 0.9930 0.965083 0.9860 0.062821 0.9890
0.689019 0.9930 0.735908 0.9890 0.765632 0.9940
0.624627 0.9860 0.715679 0.9840 0.117432 0.9870
0.442831 0.9870 0.353733 0.9900 0.769527 0.9900
0.610070 0.9860 0.536163 0.9910 0.717714 0.9920
0.649612 0.9930
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Table 1. (continued)

Test P-value Protortion P-value Propotion P-value Propotion

Frequency 0.589341 0.9870

BlockFrequency 0.908760 0.9890

CumulativeSums 0.484646 0.9820 0.721777 0.9880

Runs 0.431754 0.9890

LongestRun 0.222480 0.9920

Rank 0.807412 0.9910

FFT 0.142872 0.9880

OverlappingTemplate 0.568739 0.9900

Universal 0.896345 0.9880

ApproximateEntropy 0.192724 0.9910

RandomExcursions 0.609831 0.9821 0.916724 0.9918 0.081494 0.9853
0.741558 0.9967 0.346518 0.9902 0.522624 0.9951
0.073678 0.9918 0.837157 0.9902

RandomExcursions 0.376284 0.9918 0.792601 0.9902 0.894495 0.9886
Variant 0.851109 0.9869 0.626879 0.9935 0.579291 0.9918

0.275709 0.9918 0.535799 0.9902 0.522624 0.9918
0.579291 0.9951 0.256024 0.9837 0.142912 0.9869
0.801804 0.9853 0.721743 0.9902 0.991206 0.9918
0.021803 0.9902 0.519349 0.9918 0.519349 0.9918
0.519349 0.9918 0.061921 0.9935

Serial 0.988677 0.9930 0.686955 0.9920

LinearComplexity 0.729870 0.9870

One can set that |Ci| equals to 4 or a prime, i = 1, 2, · · · , s, to get the minimum
storage requirements. In particularly, we choose l = 200, so wS200 = 1246. We
set the type of α3 as the sequence of all the 315 prime factors (repeated) of |S200|
except 2. So, wα3 = 1049 and M = 2197. For every block Ci, we set 1S200 ∈ Ci

and (1, 2) ∈ C2k, (1, 2, · · · , 100) ∈ C2k+1. At last, we construct the rest part of
α3 by randomly choosing elements in S200. Then we get wG3 − wα3 = 197 bits
per 315 multiplications in symmetric group. We know that the multiplication in
symmetric group can be implemented very fast.

The NIST Statistical Test Suite consists of fifteen core tests that, by reason of
different parameter inputs, can be considered as 188 statistical tests. We generate
1000 sample sequences of 106 bits by the generatorDSM3. The significance level
σ was chosen to be the default of 0.01 (99% confidence), so a test has passed if the
additional P-values ≥ 0.01, and the proportion of binary sequences passing the
statistical test should lie above 0.9805607. The range of acceptable proportions

is determined using the confidence interval defined as, (1 − σ) ± 3 ×
√

σ(1−σ)
m ,

where m is is the sample size. It can be seen that the DSM3 passes the NIST
Statistical Test suite. The details can be found in Table 1.

For more discussion about covers (subcovers) on symmetric group, readers are
referred to [13–17].
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5 Conclusion

In this paper, we generalize the DDH problem to decision subcover membership
problem. On this basis, we modify and generalize the Gennaro generator [9] and
Farashahi et al. [4] generator such that the modified version is provable secure
under the decision subcover problem. Actually, we describe a new approach for
constructing pseudorandom generator using subcovers for large finite groups.

We present three specific instances of the new pseudorandom generator.
The first two instances are similar to the genreators in [4, 9]. These two

instances can be evidences of the security of our new approach.
In the last instance, we give the fist pseudorandom generator based on non-

abelian group whose security can be proven. We successfully carry out a test of
the generator by using the NIST Statistical Test Suite.
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19. González Nieto, J.M., Boyd, C., Dawson, E.: A Public Key Cryptosystem Based
on the Subgroup Membership Problem. In: Qing, S., Okamoto, T., Zhou, J. (eds.)
ICICS 2001. LNCS, vol. 2229, pp. 352–363. Springer, Heidelberg (2001)

20. Nieto, J.M.G., Boyd, C., Dawson, E.: A public key cryptosystem based on the
subgroup membership problem. Des. Codes Cryptogr. 36, 301–316 (2005)

21. Patel, S., Sundaram, G.S.: An Efficient Discrete Log Pseudo Random Generator.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer,
Heidelberg (1998)

22. Rukhin, A., et al.: Statistical test suite for random and pseudorandom num-
ber generators for cryptographic applications. NIST Special Publication 800-
22, Revised April 2010, National Institute of Standards and Technology (2010),
http://csrc.nist.gov/rng

23. Shi, H., Jiang, S., Qin, Z.: More efficient DDH pseudo-random generators. Des.
Codes Cryptogr. 55, 45–64 (2010)

24. Shor, P.: Polynomial time algorithms for prime factorization and discrete loga-
rithms on quantum computers. SIAM J. Comput. 26(5), 1484–1509 (1997)

25. Sims, C.C.: Some group-theoretic algorithms. In: Newman, M.F. (ed.) Topics in
Algebra. Lecture Notes in Math., vol. 697, pp. 108–124. Springer (1978)

26. Steinfeld, R., Pieprzyk, J., Wang, H.: On the Provable Security of an Efficient
RSA-Based Pseudorandom Generator. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 194–209. Springer, Heidelberg (2006)

27. Yamamura, A., Saito, T.: Private Information Retrieval Based on the Subgroup
Membership Problem. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS,
vol. 2119, pp. 206–220. Springer, Heidelberg (2001)

28. Yao, A.: Theory and Applications of Trapdoor Functions. In: Proc. IEEE FOCS,
pp. 80–91 (1982)

http://csrc.nist.gov/rng


Erratum: Fault Attacks against the Miller Algorithm 
in Hessian Coordinates 

Jiang Weng, Yunqi Dou, and Chuangui Ma 

Zhengzhou Information Science and Technology Institute, 
Zhengzhou, Henan Province, 450002, China 

wengjiang858@163.com, douyunqi@126.com, chuanguima@sina.com 
 

 

 

 

 

 

C.-K. Wu, M. Yung, and D. Lin (Eds.): Inscrypt 2011, LNCS 7537, pp. 102–112, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 
 

DOI 10.1007/978-3-642-34704-7_27  
 
 
 
 
The paper starting on page 102 of this publication should have included the name of 
Nadia El Mrabet as author. The names of the authors should read as follows: Jiang 
Weng, Yunqi Dou, Chuangui Ma and Nadia El Mrabet. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________________________________________ 
The original online version for this chapter can be found at 
http://dx.doi.org/10.1007/978-3-642-34704-7_9 
_______________________________________________ 



Author Index

Adhikari, Avishek 341

Bringas, Pablo G. 24

Cao, Jianyu 93
Cao, Zhengjun 77
Chen, Shan 210
Chen, Shao-zhen 227
Chen, Xiaofeng 142

Dai, Yi-bin 227
Dou, Yunqi 102

Fan, Xiao 77
Fan, Xiubin 160
Feng, Dengguo 113, 160

Gao, Neng 309
Gu, Dawu 57
Guo, Teng 86

Hu, Lei 363
Huang, Guifang 363
Huang, Wei 113

Jiang, Zhengtao 142
Jing, Jiwu 251

Kato, Ryo 289
Kiribuchi, Naoto 289

Li, Bao 131
Li, Nan 179
Li, Yajun 93
Li, Yanjun 237
Libert, Benôıt 1
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