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Preface

It is our pleasure and honor to present the proceedings of the 24th IFIP
International Conference on Testing Software and Systems (ICTSS 2012), held
during November 19–21, 2012, in Aalborg, Denmark.

Testing is the most important quality assurance technique for the (partial)
verification of communication and software systems and their models. Yet, test-
ing remains very challenging in the underlying theory, methods and tools, in
industrial use, and in its systematic combined application with other verifica-
tion techniques. This important topic deserves a persistent and dedicated forum
to address the fundamental and practical problems of testing software and sys-
tems.

ICTSS is a series of international conferences that aims at being a forum
for researcher, developers, and testers to advance, discuss, and learn about
new approaches, concepts, theories, methodologies, tools, and experiences of
testing software systems in different application domains, including communi-
cation protocols, services, distributed platforms, middleware, embedded- and
cyber-physical-systems, and security infrastructures.

The previous instances of ICTSS were held in Paris, France (2011), and in
Natal, Brazil (2010). The ICTSS conference series is the successor of previous
(joint) conferences TestCom (the IFIP TC 6/WG 6.1 International Conference
on Testing of Communicating Systems) and Fates (International Workshop on
Formal Approaches to Testing of Software), that together form a traditional and
important event on testing, validation, and specification of software and systems.
The conferences have a long history: TestCom is an IFIP-sponsored series of in-
ternational conferences, previously called International Workshop on Protocol
Test Systems (IWPTS) and International Workshop on Testing of Communi-
cating Systems (IWTCS). It is devoted to testing communicating systems, in-
cluding testing of communication protocols, services, distributed platforms, and
middleware. The previous events were held in Vancouver, Canada (1988); Berlin,
Germany (1989); McLean, USA (1990); Leidschendam, The Netherlands (1991);
Montreal, Canada (1992); Pau, France (1993); Tokyo, Japan (1994); Evry, France
(1995); Darmstadt, Germany (1996); Cheju Island, South Korea (1997); Tomsk,
Russia (1998); Budapest, Hungary (1999); Ottawa, Canada (2000); Berlin, Ger-
many (2002); Sophia Antipolis, France (2003); Oxford, UK (2004); Montreal,
Canada (2005); and New York, USA (2006). Fates, Formal Approaches to Test-
ing of Software, is a series of workshops devoted to the use of formal methods in
software testing. Previous events were held in Aalborg, Denmark (2001); Brno,
Czech Republic (2002); Montreal, Canada (2003); Linz, Austria (2004); Edin-
burgh, UK (2005); and Seattle, USA (2006). From 2007 on, TestCom and Fates
have been held jointly in Tallinn, Estonia (2007), Tokyo, Japan (2008), and
Eindhoven, The Netherlands (2009).



VI Preface

This book contains the refereed proceedings of the 24th instance of the In-
ternational Conference on Testing Software and Systems (ICTSS 2012). We re-
ceived 48 submissions. Each submission was thoroughly reviewed by at least
three Program Committee members or sub-reviewers. Based on the subsequent
discussions, the Program Committee selected 16 contributions for presentation
and publication. The accepted papers were revised based on the comments made
by the reviewers. These revised papers are presented in this volume. The program
also included two invited talks:

– Klaus Havelund, Jet Propulsion Laboratory - Laboratory for Reliable Soft-
ware, USA: Requirements-Driven Log Analysis

– Frits Vaandrager, Radboud University Nijmegen, The Netherlands: Active
Learning of Extended Finite State Machines

We would like to thank all authors for submitting to ICTSS. We also wish
to thank the distinguished invited speakers for accepting our invitation and
for submitting extended abstracts for the proceedings. We are grateful to the
members of the Program Committee and other reviewers for their hard work
that made this conference possible. We appreciate their competent handling of
the submissions during the summer period.

We would also like to thank the local organizers, staff from the distributed
and embedded systems research group at Aalborg University, for arranging and
preparing for the conference. In particular, thanks to Rikke W. Uhrenholt for
her professional and friendly administrative and practical support. We thank the
providers of the EasyChair conference management system, which has been of
great value, and the Springer LNCS team for their support. Finally, we gratefully
acknowledge the financial support we received from the Centre for Embedded
Software System.

September 2012 Brian Nielsen
Carsten Weise
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Manuel Núñez University of Complutense de Madrid, Spain

(Rotating member 2009–2012)
Alexandre Petrenko CRIM, Canada (Rotating member 2010–2013)
Burkhart Wolff University of Paris-Sud, France (Rotating member,

2011–2014)
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Requirements-Driven Log Analysis

(Extended Abstract)

Klaus Havelund�

Jet Propulsion Laboratory
California Institute of Technology

California, USA

1 Background

Imagine that you are tasked to help a project improve their testing effort. In a
realistic scenario it will quickly become clear, that having an impact is difficult.
First of all, it will likely be a challenge to suggest an alternative approach which
is significantly more automated and/or more effective than current practice. The
reality is that an average software system has a complex input/output behavior.
An automated testing approach will have to auto-generate test cases, each being
a pair (i, o) consisting of a test input i and an oracle o. The test input i has to
be somewhat meaningful, and the oracle o can be very complicated to compute.
Second, even in the case where some testing technology has been developed that
might improve current practice, it is then likely difficult to completely change the
current behavior of the testing team unless the technique is obviously superior
and does everything already done by existing technology.

So is there an easier way to incorporate formal methods-based approaches
than the full fledged test revolution? Fortunately the answer is affirmative. A
relatively simple approach is to benefit from possibly already existing logging
infrastructure, which after all is part of most systems put in production. A log is
a sequence of events, generated by special log recording statements, most often
manually inserted in the code by the programmers. An event can be considered
as a data record: a mapping from field names to values. We can analyze such
a log using formal methods, for example checking it against a formal specifica-
tion. This separates running the system from analyzing its behavior. It is not
meant as an alternative to testing since it does not address the important in-
put generation problem. However, it offers a solution which testing teams might
accept since it has low impact on the existing process. A single person might
be assigned to perform such log analysis, compared to the entire testing team
changing behavior.

Note that although logging often is manually programmed, it can be per-
formed using automated code instrumentation, using for example aspect-oriented
programming. The point here, however, is that manual logging is often already

� Part of the work described in this publication was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 1–4, 2012.
c© IFIP International Federation for Information Processing 2012



2 K. Havelund

done by programmers, and we can try to benefit from this. Analyzing program
executions using formal methods is also referred to as runtime verification (RV).

2 LogScope and TraceContract

At Jet Propulsion Laboratory (JPL) some positive, although still limited, success
with this approach has been gained. Two different systems for analyzing logs
against formal specifications have been developed and applied: LogScope and
TraceContract. These systems in turn are inspired by previous work, most
specifically Ruler [6].

LogScope [3,8] checks logs against specifications written in a so-called ex-
ternal DSL - a stand-alone small Domain Specific Language with its own parser.
It is based on a parameterized automaton formalism (conceptually a subset of
Ruler) with a second layer of temporal logic which is translated to the au-
tomaton level. The temporal logic formalism is very simple and intuitive to use.
LogScope was used for a short period by the testing team for the MSL (Mars
Science Laboratory) rover, also named Curiosity [12], which landed on Mars on
August 5, 2012. LogScope was usable due to its simplicity and ease of adoption.
The testing team was, however, shut down during a period due to an otherwise
unrelated 2 year delay in the mission, and LogScope was not used when a
new team was built later. The application of LogScope on MSL was reported
in [3,8].

TraceContract [4,5] is a so-called internal DSL (an extension of an ex-
isting programming language), an API in the Scala programming language,
offering an interesting combination of data parameterized state machines and
temporal logic. It is currently being tried out by the testing team on the SMAP
project [13] at JPL (a future Earth orbiting satellite measuring soil moisture),
and by the LADEE project [10] at NASA Ames Research Center (a future Moon
orbiting satellite measuring dust in the lunar atmosphere). The attraction of
TraceContract is the expressiveness of the logic, in large part caused by
it being an extension of a high-level modern programming language. As such
TraceContract represents the use of an advanced programming language for
modeling, an interesting point in itself, as also pointed out in [9]. Furthermore,
TraceContract has a very small implementation and is exceptionally easy
to modify compared to LogScope. We shall discuss the two applications of
TraceContract to SMAP and LADEE and compare to the previous applica-
tion of LogScope to MSL.

3 Requirements Engineering and Logging

We shall furthermore discuss the possibility of relating requirements engineering
to logging, and thereby log analysis. A natural thought is to formulate require-
ments as statements, even informal, involving concrete events (data records), and
then enforce programmers to log such events. Requirements can consequently be
converted into monitors and tested on the running system. As an example, con-
sider the informal requirement:
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Requirement If a resource is granted to a task, the resource cannot be
granted to some other task without being canceled first by the first task.

We could formulate this requirement in terms of two formalized event types:

– Grant(t,r) : task t is granted the resource r.
– Cancel(t,r) : task t cancels (hands back) resource r.

The now semi-formal requirement becomes:

Requirement If a resource is granted to a task with Grant(t,r), the
resource cannot be granted to some other task with Grant( ,r) without
being canceled first with Cancel(t,r) by the first task.

Of course, a proper formalization will be more desirable, but even this informal
statement in English over formal events can be useful for subsequent testing
purposes. A monitor can for example later be programmed in a system such as
TraceContract:

class GrantToOne extends Monitor[Event] {
always {
case Grant(t, r) =>
watch {
case Grant( , ‘r ‘) => error
case Cancel(‘t ‘, ‘ r ‘) => ok

}
}

}

A specific monitor, such as GrantToOne above, sub-classes the Monitor class,
parameterized with the type of events. The Monitor class in turn offers a col-
lection of methods for writing properties, such as always and watch, taking
partial functions as argument, specified using pattern matching with Scala’s
case statements. This monitor illustrates the mixture of Scala and added DSL
constructs.

4 Future Work

Beyond expressiveness and convenience of a logic, efficiency of monitoring is of
main importance. The key problem in evaluating a set of monitors given an in-
coming event is to perform efficient matching of the event (and possibly other
facts depending on the logic) against conditions in monitors. This becomes par-
ticularly challenging when events carry data parameters, as also heavily studied
in state of the art systems [1,11]. We are investigating the combination of expres-
siveness and efficiency, with focus on expressiveness, as documented in [2]. The
field of Artificial Intelligence (AI) has itself studied a problem very similar to
the runtime verification problem, namely rule-based production systems, used for
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example to represent knowledge systems. We are specifically studying the Rete
algorithm [7] for its relevance for the RV problem. This includes implementing
it in the Scala programming language, and visualizing its operation on data
structures.
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Active Learning

of Extended Finite State Machines

Frits Vaandrager�

Institute for Computing and Information Sciences, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen

the Netherlands

Once they have high-level models of the behavior of software components, en-
gineers can construct better software in less time. A key problem in practice,
however, is the construction of models for existing software components, for
which no or only limited documentation is available. In this talk, I will present
an overview of recent work by my group — done in close collaboration with the
Universities of Dortmund and Uppsala — in which we use machine learning to
infer state diagram models of embedded controllers and network protocols fully
automatically through observation and test, that is, through black box reverse
engineering.

Starting from the well-known L∗ algorithm of Angluin [6], our aim is to de-
velop algorithms for active learning of richer classes of (extended) finite state
machines. Abstraction is the key when learning behavioral models of realistic
systems. Hence, in practical applications, researchers manually define abstrac-
tions which, depending on the history, map a large set of concrete events to a
small set of abstract events that can be handled by automata learning tools. Our
work, which builds on earlier results from concurrency theory and the theory of
abstraction interpretation, shows how such abstractions can be constructed fully
automatically for a restricted class of extended finite state machines in which
one can test for equality of data parameters, but no operations on data are al-
lowed [2,1]. Our approach uses counterexample-guided abstraction refinement
(CEGAR): whenever the current abstraction is too coarse and induces nonde-
terministic behavior, the abstraction is refined automatically. In the talk, I will
compare our approach with the related work of Howar et al [8,9] on register
automata.

Using the LearnLib [11,10] tool from Dortmund in combination with Tomte
[1], a prototype implementation of our CEGAR algorithm, we have succeeded to
learn models of several realistic software components, such as the SIP protocol
[3,1], the new biometric passport [5], banking cards, and printer controllers.

Once we have learned a model of a software component, we may use model
checking technology to analyze this model and model-based testing to automat-
ically infer test suites. This allows us to check, for instance, whether no new
faults have been introduced in a modified version of the component (regression
testing), whether an alternative implementation by some other vendor agrees
with a reference implementation, or whether some communication protocol is

� Supported by STW project 11763 Integrating Testing And Learning of Interface
Automata (ITALIA), http://www.italia.cs.ru.nl/

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 5–7, 2012.
c© IFIP International Federation for Information Processing 2012



6 F. Vaandrager

Fig. 1. Use of automata learning to establish conformance of implementations

secure. Using a well-known industrial case study from the verification litera-
ture, the bounded retransmission protocol [7], we show how active learning can
be used to establish the correctness of protocol implementation I relative to a
given reference implementation R. Using active learning, we learn a model MR

of reference implementation R, which serves as input for a model based testing
tool that checks conformance of implementation I to MR. In addition, we also
explore an alternative approach in which we learn a model MI of implementa-
tion I, which is compared to model MR using an equivalence checker. Our work
uses a unique combination of software tools for model construction (Uppaal),
active learning (LearnLib, Tomte), model-based testing (JTorX, TorXakis) and
verification (CADP, MRMC). We show how these tools can be used for learn-
ing these models, analyzing the obtained results, and improving the learning
performance [4].
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Abstract. The application of test automation tools in a safety-critical
context requires so-called tool qualification according to the applicable
standards. The objective of this qualification is to justify that verification
steps automated by the tool will not lead to faulty systems under test
to be accepted as fit for purpose. In this paper we review the tool qual-
ification requirements of the standards ISO 26262 (automotive domain)
and the new RTCA DO-178C (avionic domain) and propose a general
approach on how to qualify model-based testing tools according to these
standards in an efficient and at the same time reliable way. Our approach
relies on a lightweight error detection mechanism based on the idea of
replaying test executions against the model. We further show how the
error detection capabilities can be integrated into a convincing argument
for tool qualification, going through the necessary verification activities
step-by-step. We highlight the key steps for the RT-Tester Model-Based
Test Generator, which is used in test campaigns in the automotive, rail-
way and avionic domains. The approach avoids having to qualify several
complex components present in model-based testing tools, such as code
generators for test procedures and constraint solving algorithms for test
data elaboration.

1 Introduction

In model-based testing, a test model is used to define the expected behavior
of the system-under-test (SUT). From this formal specification of the desired
system behavior, test cases are generated, which are then executed against the
SUT1. The generation of test cases is frequently based on techniques such as ab-
stract interpretation [3] and SMT solving [8], which exercise the semantic struc-
ture of the model to automatically calculate these test cases; such techniques
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from the models. It is thus assumed that the test models have undergone review.
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are also implemented in our tool-suite RT-Tester Model-Based Test Generator
(Rtt-Mbt) [12]. The resulting test cases are then specified as sequences of input
data — including timing constraints — that stimulate computations of the SUT
conforming to the test case specifications. In addition to the input stimulations,
Rtt-Mbt automatically generates test oracles that run concurrently with the
SUT, checking the responses of the SUT against the test model on-the-fly. In
combination, the stimulation component and the test oracles form a test pro-
cedure which is compiled and executed in a test execution environment (TE).
The test execution environment then generates a so-called execution log, which
contains the data observed and recorded during test case execution.

1.1 Model-Based Testing in Industry and Tool Qualification

The success of model-based testing in industry has been stimulated by the suc-
cess of model-driven software development in general. Indeed, compared to con-
ventional approaches, model-based testing has proven to increase both, quality
and efficiency of test campaigns [10], which may explain the industrial interest in
model-based methods, especially from domains such as automotive, avionics, and
railway industry. However, all tools that automate process steps in the develop-
ment and verification of safety-critical systems (e. g. code generators, compilers,
model checkers, test automation tools) need to be qualified since they automate
a life cycle activity so that a manual inspection of its outcome (e. g., generated
source code, object code, verification or test results) is rendered superfluous. In
this situation it has to be ensured that the tool performing this automation can-
not inject errors into the artifacts produced; otherwise, this would induce the
risk of a faulty system component to be accepted as fit for purpose.

The ISO 26262 [6] standard currently implemented in the automotive domain
presents guidelines for the development of safety-related systems in road vehicles.
This standard is an exemplar of a standard prescribing required properties for
development and verification automation tools. The standard [6, Sect. 11.4] itself
expresses the aim of tool qualification as follows:

“The objective of the qualification of software tools is to provide evidence
of software tool suitability for use when developing a safety-related item
or element, such that confidence can be achieved in the correct execution
of activities and tasks required by ISO 26262.”

The key steps of providing the required evidence are defined in the standard. First
of all, qualifying a tool for a development process necessitates to determine the
tool impact and its error detection capabilities. These two factors are combined
to form an overall tool confidence level. Of course, the more severe the developed
system component, the stricter the requirements imposed onto the tool. Yet, an
interesting aspect of ISO 26262 [6, Sect. 11.4.4.1] is that tools with maximal tool
error detection capabilities do not require qualification measures at all, as long
as error detection is perfectly reliable. Hence, if a tool is capable of detecting its
own malfunctioning, the entire tool qualification process for ISO 26262 can be
simplified in a significant way.
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1.2 Tool Qualification for ISO 26262

Malfunction of a test-case and test procedure generator such as Rtt-Mbt intro-
duces two hazards which may result in a situation where a requirement allocated
to a safety-related item2 is violated, due to malfunction of this item:

– Hazard 1: undetected SUT failures. A deviation of the observed SUT
behavior from its expected behavior specified in the test model may poten-
tially remain undetected if the generator creates erroneous test oracles failing
to detect this deviation during test executions.

– Hazard 2: undetected coverage failures. The test execution fails to meet
the pre-conditions which are necessary in order to cover a given test case,
but the test oracles indicate TEST PASSED because the observed execution
is consistent with the model. If this situation remains undetected, it may be
assumed that the SUT performs correctly with respect to the specified test
case, while in fact the test procedure tested “something else”.

The qualification goal required by ISO 26262 states that any possible hazard
introduced by the tool will eventually be detected [6, Sect. 11.4.3.2]. The identi-
fication of components of model-based test generators relevant for qualification,
as well as trustworthy, yet lightweight methods for satisfying this objective are
topic of this paper. Of course, formal verification of Rtt-Mbt as a whole to
prove the absence of defects is an unrealistic mission, as the state-of-the-art rep-
resents verifying functional correctness of systems that involve approximately
10,000 lines of C code [7], and Rtt-Mbt consists of approx. 250,000 lines of
C/C++ code. To qualify Rtt-Mbt for use in the development of software of
high quality assurance levels (according to ISO 26262 and other standards such
as RTCA DO-178C), it is thus necessary to combine formal verification with test-
ing and effective tool error detection. In the following, we discuss the verification
strategies we applied to Rtt-Mbt and the tool error detection mechanism.

The key idea of our approach to tool qualification is simple: Rather than at-
tempting a priori verification for the test generator by proving conformance of
generated test procedures with the model, we focus on the a posteriori error de-
tection capabilities of Rtt-Mbt, regarding the consistency of the test execution
log with the model. This is performed by replaying the execution log on the test
model. The key functionality for replay of test execution is defined as follows:

– A simulation of the test model is generated that uses exactly the input data
to the SUT that was used during test procedure execution.

– The respective simulation contains the expected SUT outputs as calculated
from the test model. These outputs are compared to the outputs observed
during test procedure execution and documented in the test execution log.
Any deviations are recorded in the replay verification results.

– The actual model and test coverage achieved by the simulation is recorded
in the replay verification results, too.

2 That is, a software or embedded HW/SW control system tested by means of proce-
dures generated by the tool.
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Using this strategy, the impact of errors in the test generator are localized. In
essence, it suffices to show that replay detects any deviation of the concrete test
execution from the test model. Establishing this correctness argument is strictly
easier than proving correctness of the entire test generation functionality. In prin-
ciple, replay could be performed on-the-fly, concurrently to the test execution.
Yet, we describe it as an a posteriori activity, to be performed offline after the ex-
ecution has been completed, since hard real-time test engines running HW/SW
or system integration tests often do not have sufficient spare computing power
to cope with additional model executions for replay purposes.

1.3 Contributions and Outline

In summary, this paper presents the following contributions:

– We present an analysis that relates properties of model-based test generators
to requirements for tool qualification posed by ISO 26262.

– We identify classes of hazards introduced by test generators and provide an
analysis of parts of a test generator that are relevant to qualification.

– We introduce a lightweight framework for replaying concrete test executions
with the aim of identifying erroneous test case executions.

– We show how the different verification activities, consisting of design analy-
ses, formal verification, structural testing and tool error detection are com-
bined to form a convincing case in point for customers and certification
authorities.

The exposition of this paper is laid out as follows: First, Sect. 2 presents an im-
pact analysis that connects the test generator to the demands posed by the ISO
26262. Then, Sect. 3 identifies those parts of a test generator that are relevant for
tool qualification and discusses the details of the verification strategies applied.
Following, Sect. 4 studies properties of the replay and constructs a correctness
argument from the architecture, before Sect. 5 discusses differences between ISO
26262 and RTCA DO-178C w.r.t. test-case generators. Finally, the paper con-
cludes with a survey of related work in Sect. 6 and a discussion in Sect. 7.

2 Tool Classification According to ISO 26262

To assess the qualification requirements for a model-based test-case generator,
it is necessary to analyze hazards potentially inflicted by the tool, as well as the
impact of these hazards. The second important aspect are the tool error detection
capabilities of a tool with respect to its own malfunction. Based on this analysis,
particular requirements are imposed onto the tool, which are discussed in the
remainder of this section.

2.1 Impact Analysis

ISO 26262 defines two different tool impact (TI) levels for software tools of any
kind: TI0 is applicable iff malfunctioning of the tool can under no circumstances
introduce a hazard; otherwise, TI1 shall be chosen [6, Sect. 11.4.3.2].
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Assuming correctness and completeness of the test models3 potential malfunc-
tion of a model-based test-case generator introduces the hazards 1 (undetected
SUT failures) and 2 (undetected coverage failures) introduced in Sect. 1. These
hazards clearly imply tool impact level TI1 for model-based test-case generators.

2.2 Tool Error Detection Capabilities

The probability of preventing or detecting an erroneous tool output is expressed
by tool error detection classes TD [6, Sect. 11.4.3.2]. If there is high confidence
in the ability of a tool to detect its own malfunctioning, then TD1 is the ap-
propriate classification. Lower classes such as TD3 or TD4 are applicable if
there is low confidence in the tool’s error detection facilities, or if no such mech-
anism exists. To achieve TD1, we specify one tool-external measure — that is,
a guideline to be respected by the test engineers applying the tool — and three
tool-internal measures, that is, measures implemented in software.

External Measure. Every test execution of test procedures generated by Rtt-
Mbt shall be replayed.

Independently of the specific functionality of Rtt-Mbt, this external measure
is mandatory to enforce anyway, since every testing activity for safety-critical
systems requires a verification of the test results. The replay function as in-
troduced in Sect. 1 can be considered as a tool-supported review of this kind,
because it verifies whether the test execution observed complies with the model
and whether the intended test cases have really been executed. To enable the
external measure above, or, equivalently, to achieve TD1, we implement three
tool-internal measures with the following objectives:

Internal Measure #1. Every change of input data to the SUT is correctly
captured by logging commands in the test stimulator of the test procedure.

Internal Measure #2. Every change of SUT output data is correctly cap-
tured by logging commands in the test oracles of the generated test proce-
dure.

Internal Measure #3. The replay mechanism detects (1) every deviation of
the SUT behavior observed during test execution from the SUT behavior
expected according to the test model, and (2) every deviation of the test
cases actually covered during the test execution from the test cases planned
to be covered according to the test generator.

3 Since models represent abstractions of a real system, correctness and completeness
is usually defined according to some conformance relation between model and SUT.
In our case – since the SUT never blocks inputs – conformance means that for any
given timed trace of inputs (1) the SUT produces the same observable outputs as the
model, modulo tolerances regarding timing and floating point values, and (2) that
the ordering of inputs and outputs, when restricted to a sequential sub-component
of the model, is the same for model and SUT (partial ordering of observable I/Os).
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Fig. 1. Relation between tool impact (TI), error detection (TD) and automotive safety
integrity level (ASIL)

The effectiveness of internal measures 1 — 3 clear implies the desired TD1
capability, as long as test engineers comply with the external measure above.

For the tool-internal measures to be effective, two prerequisites of the overall
test system need to be satisfied: (1) All logging commands in the test procedures
are correctly executed and recorded in the execution log, and (2) the test model
is complete and correct. Clearly, the first prerequisite is delegated to the test
execution environment, a component which is independent of the functionality
discussed in this paper and has to be qualified on its own. Satisfying the second
prerequisite is the duty of test engineers that use a model-based test generator.

2.3 Tool Confidence Level

Pairing the tool impact TI with the appropriate tool error detection capability
TD yields the associated tool confidence levelTCL [6, Sect. 11.4.3.2]. It is remark-
able that for a tool with impact level TI1 and error detection class TD1 (such as
Rtt-Mbt), no qualification whatsoever is required according to [6, Sect. 11.4.4.1].
Otherwise, tool qualification measures have to be adopted according to the auto-
motive safety integrity level (ASIL) of the system under test. This situation is
depicted in Fig. 1. High confidence in the error detection capabilities of a tool
thus eases the tool qualification significantly, which motivates the desire for trust-
worthy, lightweight error detection integrated into the tool.

3 Verification for Qualification

The overall architecture of Rtt-Mbt is depicted in Fig. 2. A parser component
translates an input model written in UML or SysML, which is given as an XML
export of some modeling tool, into an intermediate model representation (IMR,
the abstract syntax tree of the model) that is used by both the test-case gen-
eration and the replay facilities. The test-case generator uses techniques such
as SMT solving, abstract interpretation and code generation in order to gener-
ate test inputs and the corresponding test procedures. In contrast to this, the
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Table 1. Functionality inRtt-Mbt affected by tool-internalmeasures for error detection

Measure Affected Functionality

#1 The method that creates the log commands associated with SUT inputs.

#2

The method that creates a conditional logic operation that shall be
executed whenever an SUT output observed is changed.
The method that creates the test oracles and inserts a log operation to be
executed whenever an SUT output observed by this test oracle is changed.
The method that stores the conditional log operations.
The method that creates the log operation in the syntax of the test oracle.

#3

The method that parses an execution log.
The interaction between the replay log and the simulator.
The methods that simulate an input from the replay log.
The method comparing the observed SUT outputs with the expected SUT
outputs calculated by the simulator
The methods that manage the internal memory during simulation.
The methods that determine whether the test cases covered during
replay are identical to those observed during a concrete execution.

sole purpose of the replay mechanism is to simulate an execution of a concrete
execution log on the test model. Test-case generation and replay are thus in-
dependent components that have also been developed with independence. The
test generator, however, is responsible for the generation of log commands in
test procedures, and the replay mechanism depends on their correct generation
(recall the tool-internal measures discussed in Sect. 2.2). Therefore this part of
the generator (it is a sub-component of the test procedure generator) receives
increased attention during verification.

3.1 Identification of Relevant Components

The parser is responsible for translating an input model into an IMR. It has
thus to be qualified as errors in this component may mask failures of the test
generator and the replay. To identify classes and methods reachable from the
parser, we use data-flow analysis and code inspection. Apart from the parser
itself, the relevant classes most notably include the IMR used within Rtt-Mbt.

As argued in Sect. 2.2, a replay that implements the tool-internal measures
eliminates the need to qualify test generation. This strategy entails that the
replay needs to be qualified, as tool error detection is delegated to the replay
component. It is noteworthy that test generation is much more complex than
replay. Complementing test generators by replay mechanisms thus reduces the
workload for qualification significantly: the existence of tool error detection turns
test generation — with the exception of the log command generator — into
a component whose outputs need not be verified. As before, we apply data-
flow analysis to identify classes and methods that are involved during replay.
The result of this analysis includes, most notably, the IMR, the memory model
storing states during model simulation, the simulator, and the parser for the test
execution log.
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Fig. 2. High-level architecture of Rtt-Mbt

3.2 Identification of Tool-Internal Measures

Additionally, we performed a design review to identify those parts of Rtt-Mbt
implementing the tool-internal measures 1—3 for error detection. The results of
this analysis are given in Tab. 1. These parts must under any circumstances be
implemented correctly. Special attention should thus be paid during the verifica-
tion of the methods highlighted in Tab. 1.

3.3 Verification Activities

To verify the correctness of each involved component, we apply different verifi-
cation activities. The main verification activity is (software integration) testing,
though this process is augmented with formal verification for the most critical
software parts. The combination of methods applied conforms to the require-
ments of RTCA DO-178B for developing software of the highest criticality (Level
A): (1) The development process for the replay component has been controlled
according to [15, Tab. A-1,A-2]. (2) High-level and low-level requirements spec-
ified for the replay mechanism have been verified with independence according
to the approach defined in [15, Tab. A-3,A-4]. (3) The source code has been
inspected, formally verified and tested according to [15, Tab. A-5, A-6, A-7]. (4)
The configuration management and software quality assurance processes have
been set up for the whole Rtt-Mbt product in a way conforming to [15, Tab. A-
8,A-9], respectively.

Requirements-based testing. For each high-level and low-level requirement
of the test generator, we provide normal behavior tests as well as robustness
tests that investigate the stability of Rtt-Mbt.
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Table 2. Verification activities for affected components

Component
Requirements

Structural testing Formal Verification
testing

Measure #1 yes yes yes
Measure #2 yes yes yes
Measure #3 yes yes no
Parser yes yes no
IMR yes yes no
Replay yes yes no
Generation no no no

Structural testing. We provide a collection of test cases that achieve MC/DC
coverage for the reachable parts of Rtt-Mbt.

Formal Verification. For certain critical components, we perform additional
formal verification and documentation of the verification results. An example
of functionality for which proofs are provided are the logging facilities. For-
mal verification is performed for small isolated functions specified by pre- and
post-conditions. The verification is performed manually using Hoare Logic.
The small size of the verified functions indicated that manual proofs were
acceptable and could be checked independently by a verification specialist.

A summary of the verification activities for each component is given in Tab. 2.
We define the following general criteria for the testing process of the involved
components, before discussing the details for the strategy applied to the parser.

Pass/fail criteria. The test passes if the expected results are produced without
deviation; otherwise, it fails.

Test end criteria. The test ends when all test cases have passed and the test
suite resulted in a 100% MC/DC coverage for the involved methods.

General test strategy. Each method shall be tested as follows:
– The test cases for verifying the methods are elaborated.
– A test model is selected which is suitable for the test cases under consid-

eration. Test cases shall cover both normal behavior and robustness.
– A replay file is selected which is based on a test execution whose test

procedure was generated with the selected model and which is suitable
for the test cases under consideration.

– The replay function is activated with the model and replay file as inputs.
– The replay results consist of the pass/fail results achieved during the

replay, and the list of test cases covered during the replay.
– The replay results are verified with respect to the expected results. It

is checked that the replay result is pass if and only if the replay file
corresponds to a correct model computation. Evaluating the replay file
against the model, it is checked against the model that the list of covered
test cases produced during replay is correct and complete.

– The MC/DC coverage achieved during the execution of the test suite is
checked whether it results in 100% for the methods identified above.
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Fig. 3. A simple state machine

– If some code portions could not be covered by the test suite designed
according to the guidelines listed here, it is admissible to perform unit
tests on the methods not completely covered so far. The unit tests shall
check the expected results by means of post conditions. The associated
unit test cases specify the data needed to cover the missing code portions
as test condition, and the post condition as expected result.

Test Strategy for the Parser Component. The IMR of a model is the basis
for all further functionality of Rtt-Mbt. Errors in the IMR can therefore mask
failures in the test data generation as well as in the replay. Thus the parser
component setting up the IMR has to be qualified. The IMR is a representation
of the abstract syntax tree (AST) of the model restricted to those UML/SysML
elements which are supported by Rtt-Mbt. An example of a simple state ma-
chine, which is part of a test model, is shown in Fig. 3. The corresponding IMR
is shown in Fig. 4. In addition to the IMR, a model of the internal memory
representation is generated, which is used during simulations to store the values
of variables and control states. Both the AST and the memory model are used
as inputs to the replay and must thus be qualified.

For requirements-based tests of the parser, models serve as input that have
been designed to specifically test one or more syntactic UML/SysML feature sup-
ported by the parser. Their respective XML representations are the test inputs
to the parser, which generates both, the IMR and the memory model, from the
test model. The IMR is then verified to be a valid representation of the model.
For each test model, we handcraft an AST corresponding to the expected IMR.
The result generated by the parser is then checked against this expected AST.

The memory model is an algorithmically simple component. Qualification
amounts to verifying that for each control state and each variable, an appropriate
entry in the internal memory is initialized. Whenever a value is stored in the
memory, its internal state shall correctly reflect the update. It also needs to be
ensured that support for data types is exhaustive. These properties are checked
using a combination of requirements-based integration tests and unit tests which,
e.g., systematically probe all data types. The inputs for the requirements-based



18 J. Brauer, J. Peleska, and U. Schulze

test procedures form equivalence classes. The structural coverage tests refine
these equivalence classes so that MC/DC coverage is eventually achieved.

As explained above, the verification strategy for the parser merely analyzes the
correct parsing and transformation of a pre-defined class of language patterns.
This approach dovetails with strategies applied to non-optimizing compilers [4,
Sect. 2.1]. There, the strategy is to verify the correct translation of each supported
symbol in a high-level programming language into the corresponding assembly
fragment. SinceRtt-Mbt does not optimize the AST, such a direct mapping from
expected inputs to outputs can also be established for the model parser.

4 Error Detection Using Replay

Objectives. In this section we elaborate a formal argument to show that replay
— if correctly implemented — enforces the tool error detection class TD1 as
required. Let us briefly recall the scenarios that may occur once a generated test
case is executed: (1) If test execution fails, manual investigation is required to
justify the deviations, identify an erroneous test case, fix the SUT, or refine the
test model. (2) If test execution passes, this may be due to one of the following
reasons: (a) The test cases were generated correctly from the test model and the
SUT conforms these test cases, or (b) some test cases were incorrectly generated4

from the test model, but the SUT behavior still conforms to these faulty cases.
Tool error detection thus needs to classify only test case executions that pass. In
the following, we build towards a correctness argument for the replay.

Fig. 4. IMR of the state machine in Fig. 3

4 This means that either the test data is inappropriate for the test objective, or the
check of expected results is faulty.
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Prerequisites. The SUT S communicates with the test environment through
finite sets of input signals I = {i1, . . . , im} and output signals O = {o1, . . . , on}
such that I ∩O = ∅. We denote the set of overall signals by S = I ∪O. Further,
each signal s ∈ S is assigned a type drawn from a finite class T = {N,B,Q, . . .}
of types using a map σ : S → T. An input to the SUT is then given as a triple
〈t, i, v〉 where t ∈ R is a time-stamp, i ∈ I is an input signal and v ∈ σ(i) is an
assignment to i. Likewise, an output from the SUT to the test environment is a
triple 〈t, o, v〉 with t ∈ R, o ∈ O, and v ∈ σ(o).

Model Semantics. The desired behavior of the SUT is specified by means of a
(deterministic) test model M. The model M is syntactically reproduced by a
parser that has been qualified. Syntactic correctness of M can thus be assumed.
Semantically, M can be interpreted as the (possibly infinite) set of (infinite)
computation paths it defines, which we denote by �M�. Since M is deterministic,
a path π ∈ �M� is uniquely determined through its observable input-output
behavior, i.e., partial (timed) assignments of the above form to the signals in S.

Test Generation. Formally, a test generator is a function that computes a finite
set of finite traces fromM, which we denote �M�TC. If correct, each πTC ∈ �M�TC
is the finite prefix of a computation path π through the test model (the prefix
relation is denoted by πTC ≺ π). Since the test generator is not qualified, and
is thus an untrusted component, we have to assume that such a corresponding
path does not necessarily exist. We define:

Definition 1. Let πTC ∈ �M�TC. The predicate correct on πTC is defined as:

correct(πTC) ⇔ ∃π ∈ �M� : (πTC ≺ π)

Test Execution. Given πTC ∈ �M�TC, the test procedure that executes πTC gen-
erates an execution log that can be interpreted as a finite trace πexec. As before,
we interpret the semantics �S� of an SUT S as the set of its feasible execution
traces; clearly, πexec ∈ �S�. Observe that πexec is not required to be identical to
πTC: timings and floating point values may deviate within specified limits, and
only a partial ordering of I/Os has to be observed as explained in Sect. 2.1. How-
ever, if πexec conforms to πTC the test passes, which we denote by passπTC

(πexec).
Since the execution log is compared to a trace from an untrusted generator, we
cannot infer correctness of the test execution with respect to M.

Proposition 1. Let πTC ∈ �M�TC and πexec ∈ �S�. Then(
correct(πTC) ∧ passπTC

(πexec)
)
⇒ (∃π ∈ �M� : passπ(πexec))

Replay. Formally, the replay mechanism can be interpreted as a predicate replay:

Definition 2. Let πexec ∈ �S� denote an execution of πTC ∈ �M�TC such that
passπTC

(πexec). The predicate replay : �S� → B is defined as:

replay(πexec) ⇔ ∃π ∈ �M� : (πTC ≺ π) ∧ passπTC
(πexec)
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Since correctness of the implementation of the replay mechanism is ensured, we
safely assume that replay(πexec) = true iff πexec is the prefix of a path π ∈ �M�
such that passπ(πexec). We thus obtain the correctness argument:

Proposition 2. Let πexec ∈ �S� denote an execution of πTC ∈ �M�TC such that
passπTC

(πexec). Then, correct(πTC) ⇔ replay(πexec).

In consequence, given a generated test πTC ∈ �M�TC and an execution πexec ∈ �S�
that passes, πTC is the finite prefix of a path π ∈ �M� iff replay(πexec) as desired,
which ultimately provides a proof of correctness of the mechanism.

5 Compatibility with RTCA DO-178C

The avionic software development standard RTCA DO-178B [15] was one of the
first standards to explicitly address tool qualification. The requirements are less
strict than the ones imposed by ISO 26262 discussed so far in this paper. The
updated standard RTCA DO-178C [16], however, devotes a whole companion
standard [17] to tool qualification. When planning to use test and verification
tools in both the automotive and the avionic domain it is thus useful to elaborate
a consolidated qualification strategy that is consistent with both standards.

Project-specific tool qualification. The avionic standards emphasize that tool
qualification cannot be unconditionally granted for any development or verifica-
tion tool, but has to be performed with respect to a specific project [17, p. 5].
Practically speaking, certain tool components may only be universally qualified
if it can be justified that these components’ behavior does not depend on a spe-
cific project or target system to be developed. All other components have to be
re-qualified for each development and verification campaign. For test automation
tools this implies that the interfaces between test tool and SUT have to be specif-
ically qualified, because correctly calculated test data may be passed along the
wrong interfaces to the SUT. Conversely, erroneous SUT outputs may be passed
along a wrong interface where the data appears to be correct. Moreover, it has
to be verified that the interface-specific refinements and abstractions performed
by the test automation tool (e. g., transforming abstract values used on model
level to concrete communication telegrams and vice versa) are correct.

Tool criticality assessment. Both ISO26262 and RTCA DO-178C / DO-330 re-
quire that the qualification effort to be invested shall depend on the impact
that tool malfunctions could have on the target system under consideration.
The automotive and the avionic standards, however, differ in one crucial aspect.
ISO26262 classifies the criticality of a tool alone on the basis whether erroneous
tool behavior may result in erroneous target system behavior, and whether tool
malfunction can be detected with high or low confidence [6, Sect. 11.4.3.2]. RTCA
DO-178C distinguishes between development tools whose outputs become part
of the airborne software and verification tools (including test automation tools)
whose malfunction could only lead to an error in the target system remaining
undetected (criteria 1 and 2 in [16, Sect. 12.2.2]).



Efficient and Trustworthy Tool Qualification for Model-Based Testing Tools 21

As a consequence, DO-178C assigns only tool qualification level TQL4 to
tools that automate verification and test of software of the highest criticality
(i.e., Level A) [16, Tab. 12-1]. This requires the elaboration of operational and
functional requirements and their verification, the verification of protection mech-
anisms, and requirements-based testing [16, Tab. T-0 – T-7]. Yet, neither tests
against the detailed design, nor code coverage of any measure are required.

By way of contrast, ISO26262 assigns TCL1 to tools classified by TI1 and
TD1, as the one considered in this paper [6, Sect. 11.4.3.2]. Since no qualification
whatsoever is required for TCL1, no requirements-based testing is is needed. It
remains to prove, however, that the tool indeed fulfills TD1 (“there is a high
degree of confidence that a malfunction or an erroneous output from the software
tool will be prevented or detected”, [6, Sect. 11.4.3.2, b)]). It is remarkable, though
that the standard does not elaborate on how error detection should be verified.
From the general qualification requirements [6, Sect. 11.], however, we conclude
that this should be done with the highest possible effort associated with the
target system’s criticality. For the highest criticality level (denoted ASIL D)
the standard requires alternatively the evaluation of the development process in
combination with a comprehensive validation or — this is the procedure applied
for Rtt-Mbt in this paper — development in compliance with a safety standard,
such as RTCA DO-178B [6, p. 23, Tab. 2, Ex. 3]. This implies, e.g., that detailed
tests to achieve MC/DC code coverage have to be performed for the replay.

We conclude that the tool qualification requirements of ISO26262 and RTCA
DO-178C / DO-330 are complementary in the sense that the former put em-
phasis on an in-depth verification of the error detection mechanism with highest
confidence, while the latter requires comprehensive requirements-based testing.

6 Related Work

The idea of replaying a test execution in a simulator is, of course, not new. The
overall approach is frequently referred to as the capture and replay paradigm,
and has long been studied in different contexts such as testing of concurrent
programs [2]. However, the classical approach of capture/replay testing is to
capture user-interaction and then replay the recorded inputs within test cases,
as opposed to automatic test-case generation. This paradigm differs from the
one implemented in Rtt-Mbt, although we integrate a replay function into our
work to detect deviations of a generated test case from the test model. To our
best knowledge, our approach is the first to combine replay with model-based
methods for error detection within a test-case generator. Our contribution is not
a theoretical one, but comes from an industrial perspective. Tool qualification
is compulsory for software that is applied in development processes of safety-
critical systems. For ISO 26262, the tool qualification requirements in a general
context were recently studied by Hillebrand et al. [5]. Most relevant to our work,
the authors study verification measures for error detection, which are classified
as prevention, review, and test [5, Sect. 4.6]. According to this classification, our
approach falls into the categories review and test, as the results of the test-case
generator undergo review and are automatically tested against the test model.
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Recently, there has been impressive progress on verified compilers [9,11] that,
in theory, do not require further qualification measures. França et al. [4] report
on their experiences of introducing the verified CompCert compiler into devel-
opment processes for airborne software. Yet, it is important to note that even a
verified compiler contains non-verified components, which may introduce bugs.
Indeed, Regehr [14] discovered defects in the CompCert front-end responsible
for type-checking, thereby showing that proofs of functional correctness of core
components do not provide sufficient evidence to construct an overall correctness
argument. Our approach can be seen as a practical response to this situation
since we evaluate the correctness of the outputs on a per test basis.

A notable difference between ISO 26262 and RTCA DO-178C is that the
latter standard distinguishes between tools that mutate the software (such as
code generators) and those that only analyze it (such as stack analyzers). The
qualification measures imposed onto analyzers or test-case generators are less
strict in RTCA DO-178C. Further details on this issue in the context of RTCA
DO-178C (that are likewise applicable to DO-178B), and also additional infor-
mation about the qualification process for formal verification tools, are given by
Souyris et al. [18]. This recent paper can be seen as a wrap-up of a paper by the
same authors that studied the same problem more than a decade ago [13], and
also contains details about how different formal methods tools are used within
Airbus. Qualification for RTCA DO-178B was mentioned earlier by Blackburn
and Busser [1]. There, the authors describe the tool T-Vec, which is used in
the qualification process to test itself. However, rather than using automatic re-
play, they manually define expected outputs and compare them to derived test
procedures [1, Sect. 5]. By way of contrast, our approach delegates the man-
ual specification of expected outputs to the design of the test model — a step
that is necessary in model-based testing anyway — and the execution of test
procedures.

7 Concluding Discussion

This paper advocates the use of replay for tool error detection in model-based
test generators as a key mechanism for qualifying such a tool according to ISO
26262, since it provides trustworthy, yet simple and cost effective, error detection.
By providing full tool error detection capabilities, the approach thus smoothly
integrates with the requirements of ISO 26262 for the highest tool confidence
level. It is noteworthy, however, that the mechanism does not ensure the absence
of errors in the entire tool, but only in the functionality that is indeed used.

We have to point out, however, that the qualification achieved for ISO 26262
cannot be directly used to gain qualification credit according to RTCA DO-
178C: the latter standard requires comprehensive requirements-based testing of
all tool capabilities, while being less strict with respect to the verification of
error detection mechanisms, which are considered simply as tool capabilities to
be verified by means of robustness tests. The verification techniques to achieve
this are the same as the ones used for qualification according to ISO 26262.
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Abstract. Nowadays, telecom software applications are expected to run
on a tremendous variety of execution environments. For example, net-
work connection software must deliver the same functionalities on dis-
tinct physical platforms, which themselves run several distinct operating
systems, with various applications and physical devices. Testing those
applications is challenging as it is simply impossible to consider every
possible environment configuration. This paper reports on an industrial
case study called BIEW (Business and Internet EveryWhere) where the
combinatorial explosion of environment configurations has been tackled
with a dedicated and original methodology devised by KEREVAL, a
french SME focusing on software testing services. The proposed solution
samples a subset of configurations to be tested, based on environment
modelling, requirement analysis and systematic traceability. From the ex-
perience on this case study, we outline the challenges to develop means
to select relevant environment configurations from variability modelling
and requirement analysis in the testing processes of telecom software.

1 Introduction

Business and Internet EveryWhere TM (BIEW) is an Internet connection soft-
ware developed by Orange, a worldwide Telecom Company. BIEW has been
designed to fulfil professional needs in mobility. It aims to provide user the abil-
ity to connect to the internet through different means, from everywhere. BIEW
is able provide an internet connection using 3G, Wifi or Ethernet protocols.
Today the application is used by more than 1.5 millions users from all around
the world. For the end user the application overrides the connection manager
of the operating system, and gathers in the same application different ways to
connect to Internet. Fig. 1 presents a screenshot of the application where the
grey panel represents state of the connection: mean, time, connexion quality, and
amount of data transferred. At the bottom, a set of icons permits users to access
to the various functionalities of the application. As it has to provide users the
ability to connect to Internet through different protocols, the application has to
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handle a large number of physical devices. The application has been specified
to behave correctly on more than 2, 000, 000 different environments, composed
of operating systems, 3G, Wifi dongles, browsers and mail clients. A the end
of the project, specifications of the application contained 1493 requirements. As
Internet connection is business critical for a company like Orange, the accep-
tance testing phase of the BIEW software is a major step in the life cycle of the
software. A major dysfunction of the application would have serious financial
and reputation consequences for the company. In the previous testing rounds
of the application most of the testing activities were based on the craft and
experience of software testers. There was no formalized acceptance test process
and test teams had no vision of the general efficiency of their test activities.

Fig. 1. Screenshot of the application

As the project grew, the number
of requirements increased and tests
activities only based on manual
craft and experience appeared to
be insufficient. The testers did not
have the necessary expertise in re-
quirements management and sys-
tematic environment modelling to
handle the growing number of dif-
ferent conditions under which the
test cases had to be executed. As
this process was highly challeng-
ing, KEREVAL, a french SME fo-
cusing on software testing services,
has been solicited to develop a dedi-
cated testing methodology based on
variability modelling, requirement analysis and systematic traceability between
requirements and test cases. To validate this application, we faced to 3 challenges.

1. The first challenge is the explosion of environment configurations, due to the
heterogeneity of devices available to the end-user. We were asked to find a
systematic selection strategy to reduce the number of configurations under
which the system has to be tested ;

2. The second challenge is the reduction of the effort to deploy a configura-
tion to run a set of test cases. To deploy an environment configuration, the
testers have to install an Operating System (OS), to set up drivers and
plug in devices, and finally to configure the application. These tasks are
time-consuming and we were asked to find ways to reuse environment con-
figurations as much as possible ;

3. The last challenge is to keep track of the relations between requirements,
environment configurations and test cases. Any change in the requirements
or the environment configurations may affect the testing strategy and then
needs to facilitated by means of a better traceability.

Unfortunately, the literature contains few industrial reports explaining how these
challenges can be efficiently handled. Olsen et al. recently presented in [1] an
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approach for testing professional printers, that has been deployed by a Big Com-
pany. The authors considered a controller having a large number of input param-
eters and chose to model the environment of the controller (i.e., logical relations
between parameters) with propositional logic formula. Based on these formula,
they generated test cases covering the pairwise combinatorial testing criterion,
and executed them on the system. In the BIEW project, a model of the envi-
ronment is insufficient to generate test cases and test cases need to be generated
from test requirements. More over, the owner of BIEW (i.e., Orange) considered
worth reaching the coverage of test requirements rather than any other testing
criterion.

This paper reports on the methodology we designed and deployed at
KEREVAL, to validate the 1493 BIEW test requirements over the different con-
figuration environments. The overall project was intended to last for 5 years. The
testing effort for validating each new version of BIEW was estimated in between
100 and 400 Person-Days, with a mean of 300 Person-Days, meaning that it
represents an important part of the overall cost of the development. This paper
details our methodology to select and run tests cases, to manage the variability
associated to the various configuration environments, to deal with the traceabil-
ity issue between requirement, test cases and environments. The contributions
of the paper are two-fold: it introduces an original methodology to manage the
complexity of the combinatorial explosion of configuration environments and it
describes the benefits and limitations of our implementation of this methodogy ;
it identifies the challenges that still have to be handled to improve the testing
of the BIEW software and more generally telecom software applications.

The rest of this article contains three sections. Sec.2 describes the testing
methodology through its main components, i.e., inputs processing, environment
variability modelling, test requirements management, test case generation and
traceability management. Sec.3 reports on the implementation of this method-
ology, its industrial adoption and discusses of its benefits and limitations. This
section also introduces new research perspectives by identifying several key sci-
entific challenges. Finally, Sec.4 concludes the paper.

2 A Methodology to Manage Test Requirements and Test
Cases on a Large Number of Configuration Environments

The French SME Kereval, specialized in testing services, designed a method-
ology to manage test requirements and test cases on a large number of
configuration environments. The complete methodology is depicted in Fig.2.
It takes both environment specifications and requirements as inputs, and
produces concrete test cases and several variability matrix that capture test
case execution verdicts. These variability matrix specify the test cases that
are executed in selected configuration environments. The process includes 5
steps showed with diamonds shapes in Fig.2, namely environment analysis,
requirement analysis, test case selection, variability matrix design and test case
execution:
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Fig. 2. Test design process

1. In the environment analysis step, the val-
idation engineer converts the specifica-
tion document into a set of environmental
features (e.g., OS, browser, etc.) ;

2. In the requirement analysis step, the
validation engineer splits the set of
customer-oriented test requirements into
environment-dependent requirements
and environment-independent require-
ments. The former ones are tagged with
the set of environmental features on
which they depend ;

3. In the test cases selection step, the vali-
dation engineer extracts test cases from
the requirement analysis phase ;

4. The variability matrix design step pro-
duces the variability matrix that asso-
ciate the set of environmental configura-
tions to each test case. The matrix also
store the test verdict for each test case
with its associated set of configurations,
when it becomes available ;

5. Finally, the test case execution is a pro-
cess where the validation engineer dis-
tributes individual tasks to the engineer
in charge of the settings of a test envi-
ronment and the execution of the tests
cases ;

The rest of the section is devoted to the
detailed presentation of these steps, which
composes the methodology introduced in this
paper.

2.1 Environment Analysis

Provided by Orange, a document specification describes an unstructured list of
environment items (e.g., OS, browsers, ...). A very first step of our process is
to analyse this document and to extract a structured view of the environment
under the form of possible configurations. By gathering items corresponding to
physical devices or software artefacts, called environmental features our process
leads to identify possible distinct configurations under the form of environment
configurations. For the BIEW software, we identified 8 distinct environmental
features:
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– OS (5): Win. 2000, Win. XP 32 bits, Win. XP 64 bits, Win. Vista 32 bits,
Win. Vista 64 bits

– Mobile (25): Novatel Xu870, GT Max GX0301, Lucent Merlin U530, Huawei
E870...

– Wifi internal (5): intel centrino 2100, 2200, 2915, 3945,
– Wifi external(8): Sagem 706 A, Sagem 703...
– Modem (8):Sagem F@st 800 USB, Thomson ST330, Siemens A100, ZTE

ZXDSL 852...
– VPN (4): Safenet, Cisco, Avasy
– Mail Client (4): Outlook, Outlook Express, Windows Live Mail, empty
– Browser (4): Firefox 2.0, Firefox 1.5, Internet Explorer 5.5, empty

Each environmental feature, except OS, is optional, that’s why each has a com-
mon value : empty. We distinguished Wifi Internal and Wifi External features
into to 2 environmental features, for 2 reasons. Wifi External devices can be
plug freely on any configuration while internal devices cannot. Wifi Internal de-
vices are already recognized by the Operating System, drivers are embedded in
the OS, on the contrary, Wifi External may sometime require external driver
provided by BIEW software.

We also specify an additional environmental feature, which is not associated
to physical devices or software artefacts. This environmental feature contains the
kind of telecommunication channel:

– Bearer (4): Mobile, Modem, Wifi, Undef

It permits validation engineer to identify certain telecommunication channel in-
dependently of any physical devices. Section 2.2 illustrates how this modelling
choice will assist the validation engineer .

A configuration, called an environment configuration, is a tuple of 9 values:
(OS, Mobile device, Internal wifi device, Wifi USB device, Mail client, VPN,
Browser,Bearer). Note that environment configurations do not necessarily rep-
resent actual configuration as, for example, nothing forbids 2 web browsers to
be installed within the same machine. Note also that some configurations are
not necessarily a valid environment configurations because some combinations
are forbidden. For example, Firefox 1.5 cannot be installed on Windows Vista
64 bits. According to our definitions, the number of possible environment con-
figurations (valid and invalid) is exactly 2560000 1.

The environmental feature Bearer will be set up at Undef (undefined) value
if a tester selects an environment configuration containing more than 1 mean of
connection. i.e. in the case of an environment configuration containing a mobile
device Novatel Xu870 and Wifi External device Sagem 706. The main weak-
ness of this step of the process is that invalid configurations are not exclude.
Informal knowledge of the tester is not captured.

1 �OS ∗ �Mobile ∗ �WiF iInternal ∗ �WiF iExternal ∗ �Modem ∗ �V PN ∗ �Mail ∗
�Browser.
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2.2 Requirements Analysis

Requirements have been produced by Orange, and used by developers to write
the specification of the BIEW application. The requirements are gathered by
functional domains, which correspond to the major functionalities of BIEW : e.g.
Power Management , POP Locator, Startup Preferences ... In this project,
43 functional domains corresponding to 1493 requirements, are identified. Fig.3
shows a requirement extracted from the functional domain Wifi Management.
Requirements are composed of a header, including a unique ID, a version num-
ber a small summary of the requirement goal, and a detailed explanation of
the expected application behaviour on a given situation. Based on the iden-
tified environmental features, validation engineers decide whether a functional
domain is dependent on the environment or not. Classification of a functional do-
main as dependent or independent of the environment is made after discussions
with project managers, software engineers and software testers. For the BIEW
application, 33 functional domains (including 841 requirements) are classified
as environment-dependent while 10 of them (including the remaining 652 re-
quirements) are environment-independent. Environment-independent functional
domains contain requirements that are not dependent of the environment. Each
requirement of an environment-dependent functional domain can be tagged with
up to 2 tags. Tags values correspond to environmental features. When a tag is
assigned to a requirement, it means that the requirement should be tested in
every possible values of the tag. For example, if a requirement r is tagged with
OS, then r should be tested over Windows XP 32 bits, Windows XP 64 bits, ...
The requirement shown in Fig.3 belongs to an environment-dependent functional
domain. As this requirement describes a situation where BIEW depends on the
devices wired to the machine, it includes a tag [WIFI]. Thus, for this require-
ment, BIEW should be tested with all the possible Wifi settings. A requirement
tagged [BEARER] means that the requirement does not directly depend of phys-
ical device, but depends on the nature of the telecommunication channel.

The identification of environment dependency is a complex task as it requires
a deep understanding of the application domain, thus requiring extensive dis-
cussions among the project members: software developers and testers. We esti-
mated that the time spent to identify requirements dependencies was about 15
Person-days.

[RQ 02000 _V8.0.1_ Select Wifi device in Settings][WIFI]
The user can also select the Wifi device in the settings. He can choose
in a listof all devices authorized by the customisation and detected by the
Client Software Suite on the PC.

Fig. 3. Environment-dependent requirement

2.3 Test Cases Selection

During this step, test cases are selected for each requirement. An example of
such a test case is given in Fig.4. Each test case is composed of:
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– A unique identification number, which links the test case with the require-
ment it originates, for traceability;

– A tag (optional), which allows validation engineers to identify the environ-
ment dependency;

– Pre-requisites that describe the necessary conditions for the test case to be
executable;

– A test objective, that is the goal of the test case;
– A test procedure, that gives the detailed plan for executing the test case.

Test case is written in Quality Center (QC), and associated to its requirement.
QC permits to maintain the traceability between requirements and test cases.
When a requirement evolves, is modified, added, or suppress,the impacted test
cases are distinguished. During a test campaign, validation engineer executes the
test case, and reports verdict in Quality Center. For BIEW, 3102 test cases are se-
lected from the requirements, among which 1231 are associated to environment-
dependent functional domain.

[353-RQ01980][WIFI]
Objective: Check the prompt display for one descriptor and one security
key WPA2.
Pre Requise:
Business EveryWhere Kit installed.
Acces Point AP1 selected
Wireless lan seted up with WPA 2 security
Test Procedure:
- Launch the BIEW application
- Click on the button connect, on the main screen
- Select the access Point AP1

Fig. 4. An example of a Test case

2.4 Variability Matrix Design

The tag is used to reduce the number of test execution to perform for a given
test case. This is basically the approach we adopted to reduce the combinatorial
explosion:

– if a test case has no tag, then only a single environment configuration is
selected for test case execution ;

– if a test case has a single dependency, all the environment configurations
related to the environmental feature are used for test case execution. For
example, if the feature is WIFI, then all the WIFI-environment configurations
are selected;

– if the test case has two tags, then all the combinations of environment con-
figurations will be selected for test case execution.
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A Variability matrix is designed for each of 43 functional domain. When the
domain is environment-independent, then the test cases have to be executed on
a single environment configuration. On the contrary, test cases originating from
environment-dependent functional domain have to be executed on several envi-
ronment configurations. A variability matrix (as the one shown in Fig.4), cap-
tures the dependency in this latter case. In this matrix, each row corresponds to
a test case, while columns represent environment configuration and environment
configurations combination. As the environment dependency has been limited to
2 environmental features, only two levels of combination are possible. In the ma-
trix of Fig.5, the first columns include informations such as the test case name,
its priority, its environmental features and its status. Of course, status are only
available once test execution has been started. A status can be either Passed,
Failed or Not completed, corresponding to the state of the test execution pro-
cess. A color is associated to each element of the matrix: grey means that the
test case, within the considered configuration, is not required to be executed,
white means that the test case has to be executed, green means Passed, red
means Failed, while N/A means Not applicable. This latter case holds for
test case that cannot be executed on a given environment configuration. When
a test cases has been run on all the environment configurations then its statuts
is turned Passed or Failed, depending on the results over all the environment
configurations. If the test case fail for at least one environment configuration
then, its status is turned Failed. Variability matrix are then associated to their
functional domain in QC. Thanks to these rules, only 10603 test case execu-
tions were run instead of 33685 + 1871, while the overall environment diversity
of the test cases was preserved. The quality of the test suite was evaluated by
2 distinct entities. Developers of the application where executed test cases dur-
ing development steps put in excerpt a several defects. This test step permits
developers to fix quickly the application. The second is an independent entity
the Orange development team.This entity is a branch of Orange group which
valid the release of a major version. The second entity identified few defects.
Now, a part the validation process of the branch, for BIEW 9, relies on our test
platform. We were not able to extract relevant metrics to illustrate the quality
of the test suite. We obtained those information thought discussions other the
different stakeholder.

Fig. 5. Variability matrix
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2.5 Test Case Management and Execution

In the BIEW project, we gathered 1493 requirements and classified them in terms
of functional domains. For each functional domain, identified as environment
dependent, we associated a specific variability matrix. As a result, test cases
were formally associated to the requirements for faciliting traceability.

In order to monitor test activities, we associated a status to each requirement
in our methodology. The status of a requirement depends on the state of execu-
tion of its associated test cases. There are five possible values for the status of
a req:

– Not Covered: if there is no test case associated to the req. ;
– Failed: if at least one of the test cases failed ;
– Passed: if all the test cases successfully passed, in all the environments

specified by the variability matrix ;
– Not Completed: at least one of the test cases associated to the req. has

not yet been executed ;
– Not Runned: none of the test cases associated to the req. has been exe-

cuted ;

Of course, the main relevant metric used during the acceptance testing phase
is the number of covered requirements (and their status). Using this metric,
the validation engineer can follow quite easily the evolution of the project and
can provide informations related to the state and quality of the deliverables to
the development team. Fig. 6 shows a screenshot of the Quality Center (QC)
tool that has been used in the BIEW project. QC centralizes and reports on
all the test activities of the project. On the left, all the requirements classified
by functional domain are shown. For each functional domain, the validation
engineer follows test activities through the diagrams shown on the right.

During test execution, the validation engineer assigns to each tester a subset
of existing variability matrix. The testers are then responsible of the execution
of test cases, as they are specified in the distinct matrix. A test case assembles
3 elements: an environment configuration, a test input and a test verdict. Note
however, that a matrix does not specify the order on which the test cases have to
be executed. Testers have to select a environment configuration according to the
availability of material (e.g., USB sticks, SIM card) and to prioritize theexecution
of test cases based on their knowledge of the fault-proness of the configuration.
When environment configurations contain items tagged as [Bearer], it means
that the test case execution does not require a particular physical device to be
set up. Then, the tester can select an environment configuration with any item
to perform test case execution.

3 Benefits, Limitations and Possible Innovations

Kereval has developed a cost-effective systematic methodology that relies on
two key-components: the formalization of execution environment as a set of
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Fig. 6. Screenshot of the test project in Quality Center

environmental features and the analysis of customer-oriented requirements to
clarify their dependency on functional domains. Since the methodology keeps
track of the link between requirements and test cases, much testing effort is
saved by limiting the number of test cases executed on each environment. The
testing effort is also reduced during test cases design, as their dependency to
environment has been explicited. Still, the methodology is perfectible. Let us
review the limitations we considered, the identification of which could serve as
a basis to improve the methodology.

– In the methodology, environmental features are totally independent from
each other, while in fact, there are many dependencies among them ;

– Several configuration environments, having distinct sets of environmental
features, are in fact redundant, meaning that test efforts could be saved if
we could capture redundant environments ;

– In the methodology, we considered that a maximum of 2 tags could be asso-
ciated to each requirement for facilitating the representation of dependencies
of requirement to the environmentconfigurations ;

– Requirements and environments often change from one version to another
of the BIEW software. In our methodology, we did not consider the benefice
that could be brought by an impact analysis of these changes ;

In this section, we review each of these limitations by identifying their roots,
and, by studying existing research results, we propose and discuss potential
improvements of the methodology.

3.1 Explicit Representation of the Variability within Environment
Configurations

For BIEW, Orange provided us an informal description of the environment con-
figurations, from which, we extracted a list of environmental features. However,
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in this process, we ignored that some environment configurations may be invalids
and some others may appear in the near future. For example, nothing prevented
us to consider an environment configuration running Firefox 1.5 on a 64-bits
OS platform, even if Firefox 1.5 cannot run on 64-bits computer architecture.
This kind of informations is never explicited in the specification documents, and
typically belongs to the background knowledge of the validation engineers. In
the case of BIEW, invalid configurations are not selected because their number
is still limited. However, on other projects where the number of discrepancies
between environment artefacts is larger, such an informal approach is no more
acceptable. Another related limitation of our methodology is the limited notion
of environment configuration which disallows the validation engineer to consider
environments with several distinct browsers or client mails. For us, the root of
these limitations is the absence of a formal model able to capture the variability
within environment configurations.

In the literature, feature modelling, introduced by Kang in [2], enables com-
plex and inter-dependant environment variability representation. Feature mod-
elling introduces a tree-based graphical representation of the variability within a
set of components of a system, or a set of options within a product line, or a set
of features of an environment representation . Looking at the so-called Feature
Model, which basically captures a set of propositional logic formula represent-
ing distinct environments, we modelled the dependencies within environment
configurations of BIEW. Fig. 7 is an excerpt of this Feature Model, where the
discrepancy between Firefox 1.5 and 64-bits architecture can be explicited using
a special operator, called Mutex (i.e., exclusive disjunction). In this model, an
operator OR can be used to represent configurations with several browsers, en-
abling the selection of environments with multiple features. The overall Feature
Model we built for BIEW is composed of 66 features and implicitly represents
8, 243, 200 distinct configurations. Using a Feature Model, a number of man-
ual activities for the testing of BIEW could be automated. Benavides et al. [3]
surveyed the automated analysis of Feature Models and identified key analyses,
such as the so-called valid product and valid partial product operations that could
be useful in our case:

– Valid product verifies that a given environment configuration respects all
the constraints of a Feature Model. For example, a configuration with both
Firefox 1.5 and any 64-bits architecture will be automatically rejected. Imple-
mentations of this operation relies on the usage of SAT-solving or Constraint
Programming techniques.

– Valid partial product is a similar operation over only a subset of features,
and enables in addition the automatic completion of a partial environment
configuration.

To sum up, we think that capturing the distinct environment configurations with
a formal model of the variability will be useful to improve the test management
and execution of the BIEW software.
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Fig. 7. Excerpt of the feature model representing the execution environment of the
BIEW application

3.2 Elimination of Redundant Configuration Environments

In our methodology, the validation engineer identifies the dependency among
environmental features, through a careful analysis of the specification documents
and the customer-oriented test requirements. These dependencies are captured
within variability matrix. However, a detailed analysis of the variability matrix
shows that several test environments are redundants. In fact, requirements from
distinct functional domains can be tagged with the same features, leading to
the creation of distinct matrix, although they represent similar environment
configurations. We identified 149 such duplicated environment configurations
over the 390 configurations used during the overall test project.

3.3 Improving the Internal Representation

Our methodology involves the tagging of requirements with environmental fea-
tures, to identify their environmental dependencies. Each requirement is tagged
with 1 or 2 environmental features because we used a simple two-dimensional
representation (i.e., variability matrix) for specifying the link between the en-
vironment configurations and the requirements.Then tagged requirements are
tested under all the combinations of the items of the values.

The current modelling does not permit the validation engineer to define pre-
cisely test environments. For example, validation engineer cannot specify that a
requirement has to be tested over 1 operating system 32 bits, and 1 operating
system 64 bits, under a WLAN and a mobile connexion, with Internet Explorer,
and Firefox. To design a test environment according to the depicted process val-
idation engineer needs to 3 new environmental features ({ 1 OS 32 Bits, 1 OS
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64 Bits }, { WLAN, Mobile }, { IE,FireFox }), and remove the tag limitation.
Creating new environmental features for each specific needs is not a satisfying
solution.

The best way to handle this limitation is certainly to increase the declarativity
of our approach by allowing the validation engineer to specify at a finest coarse
the test environments. Domain specific languages would permit the validation
engineer to define precisely its test environments.

3.4 Impact Analysis for Requirements Evolution

In case of evolution of requirements or environmental features, our methodology
does not provide tools to help us quickly identify elements to modify and adapt
to properly manage these changes. Even if our test management tool, Quality
Center, can rapidly detect impacted test cases, nothing is proposed to adapt
requirements and tags, that are store in variability matrix. In practice, when
a new value for an environmental feature is introduced, test engineers have to
re-examine all the variability matrix and identify the impacted requirements.

The literature contains many propositions to handle efficiently these evolu-
tions. For example, Hartman et al. in [4] proposes to use Feature modelling with
dependencies to manage context evolutions. Metzeger et al. [5] introduced xlink
to link two distinct variability models, while Than Tun et al [6] used xlinks to
formally establish the relation between a set of requirements to a set of fea-
tures. Then, using these xlinks, their approach permits the validation engineers
to select configurations that cover a selected subset of requirements. We think
that this approach is valuable and could be implemented in our specific case for
handling the evolution of requirements or environmental features.

3.5 Test Criteria over the Environment Dependency

As exhaustive testing of every requirement on every possible environment con-
figuration is impossible, test criteria have to be introduced in any methodology
aiming at testing telecom software applications. In the case of BIEW, we im-
plicitely considered every pair of values for environmental features, meaning that
we tested the dependency to the environment with pairwise testing, a Combina-
torial Interaction Testing (CIT) criterion [7].

A limitation of original approaches of CIT is however that it did not consider
constraints among the variables [7,8]. In the case of BIEW there are constraints
among the environment features that capture the restrictions in configuration
environments (see Sec.3.1). Recently, several authors proposed means to generate
test configurations from feature models with constraints [9,10,11,12]. The authors
of this article also contributed to this domain with a similar approach based on
Constraint Programming [13]. Generating pairwise-covering configurations has
also been studied for other representations of variability and constraints, e.g.,
[14]. Another intersting extension of CIT approaches is their ability to handle
other testing criteria than pairwise. For example, it is possible to consider 3-wise
or even N-wise combinations between the variables. We think that qualifying
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our test methodology with respect to these criteria will be helpful to improve
our understanding of the achieved level of quality. This would be helpful in
the discussions with our customer to adjust precisely the methodology with the
expected level of quality.

4 Conclusion and Perspectives

This paper presents a methodology we designed at Kereval to validate a tele-
com software application on a large number of distinct environment configura-
tions. The main challenge we dealt with consisted to handle the potential com-
binatorial explosion of the number of possible configurations. In the proposed
methodology, we adopted an approach that links the requirements to the envi-
ronment through the usage of environmental features, and dedicated variability
matrix. We performed a systematic identification of the dependencies between
requirements and environmental features and thus were able to construct. We
also kept the traceability between test cases, environments and requirements by
using these elements. Thanks to this testing methodology, we showed that 70%
of the test definition/execution effort could be saved over an exhaustive testing
approach. However, we also identified several limitations in our methodology
and the paper shows that is a large room for improvements. Among them, the
absence of a formal representation of the variability (e.g., Feature Model) is the
main limitation to address the problem of the combinatorial explosion of the
number of environments to consider. We can also mention the need for impact
analysis of requirements and environment change.

Our future plan includes a better formalization of the methodology, through
the usage of variability models. Recent works on feature modelling enable au-
tomated analysis and then could be highly beneficial in the context of BIEW
[6,5,4,3]. We also plan to reason over variability models in order to generate
test configurations that respect Combinatorial Interaction Testing criteria [13].
Following an approach inspired by xlink introduced by Hartmann and Than
Tun [6,4], we will also exploit these variability models to facilitate impact anal-
ysis of change in requirements and environmental features. On another side, we
would like to evaluate the potential of our methodology on other projects. In
some sense, BIEW was a first industrial application that allowed us to identify
the limitations of the approach. Kereval is involved in several distinct telecom
application testing projects (e.g., the testing of mobile phone applications on
15 distinct platforms) and BIEW was the only project on which such a vari-
ability management approach was deployed. We are convinced that a fine-tuned
methodology for managing distinct environment configurations is essential to
save effort and cost in these kind of projects.
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Abstract. Product line developers must ensure that existing and new
features work in all products. Adding to or changing a product line might
break some of its features. In this paper, we present a technique for au-
tomatic and agile interaction testing for product lines. The technique
enables developers to know if features work together with other features
in a product line, and it blends well into a process of continuous in-
tegration. The technique is evaluated with two industrial applications,
testing a product line of safety devices and the Eclipse IDEs. The first
case shows how existing test suites are applied to the products of a 2-
wise covering array to identify two interaction faults. The second case
shows how over 400,000 test executions are performed on the products
of a 2-wise covering array using over 40,000 existing automatic tests to
identify potential interactions faults.

Keywords: Product Lines, Testing, Agile, Continuous Integration,
Automatic, Combinatorial Interaction Testing.

1 Introduction

A product line is a collection of products with a considerable amount of hardware
or code in common. The commonality and differences between the products are
usually modeled as a feature model. A product of a product line is given by a
configuration of the feature model, constructed by specifying whether features
are including or not. Testing product lines is a challenge since the number of
possible products grows exponentially with the number of choices in the feature
model. Yet, it is desirable to ensure that the valid products function correctly.

One approach for testing product lines is combinatorial interaction testing [1].
Combinatorial interaction testing is to first construct a small set of products,
called a covering array, in which interaction faults are most likely to show up
and then to test these products normally. We have previously advanced this ap-
proach by showing that generating covering arrays from realistic features models
is tractable [2] and by providing an algorithm that allows generating covering
arrays for product lines of the size and complexity found in industry [3].

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 39–54, 2012.
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In its current form, the application of combinatorial interaction testing to
testing product lines is neither fully automatic nor agile; a technique for au-
tomatic and agile testing of product lines based on combinatorial interaction
testing is the contribution of this paper, presented in Section 3. The technique
is evaluated by applying it to test two industrial product lines, a product line of
safety devices and the Eclipse IDEs; this is presented in Section 4.

In Section 4.1 it is shown how the technique can be implemented using the
Common Variability Language (CVL) [4] tool suite. (CVL is the language of
the ongoing standardization effort of variability languages by OMG.) Five test
suites were executed on 11 strategically selected products, the pair-wise covering
array, of a product line of safety devices to uncover two unknown and previously
undetected bugs.

In Section 4.3 it is shown how the technique can be implemented using the
Eclipse Platform plug-in system. More than 40,000 existing automatic tests were
executed on 13 strategically selected products, the pair-wise covering array, of
the Eclipse IDE product line, producing more than 400,000 test results that
reveal a multitude of potential interaction faults.

2 Background and Related Work

2.1 Product Lines

A product line [5] is a collection of products with a considerable amount of
hardware or code in common. The primary motivation for structuring one’s
products as a product line is to allow customers to have a system tailored for
their purpose and needs, while still avoiding redundancy of code. It is common for
customers to have conflicting requirements. In that case, it is not even possible
to ship one product for all customers.

The Eclipse IDE products [6] can be seen as a software product line. Today,
Eclipse lists 12 products (which configurations are shown in Table 1a1) on their
download page2.

One way to model the commonalities and differences in a product line is using
a feature model [7]. A feature model sets up the commonalities and differences
of a product line in a tree such that configuring the product line proceeds from
the root of the tree. Figure 1 shows the part of the feature model for the Eclipse
IDEs that is sufficient to configure all official versions of the Eclipse IDE. The
figure uses the common notation for feature models; for a detailed explanation
of feature models, see Czarnecki and Eisenecker 2000 [8].

2.2 Product Line Testing

Testing a product line poses a number of new challenges compared to testing sin-
gle systems. It has to be ensured that each possible configuration of the product

1
http://www.eclipse.org/downloads/compare.php, retrieved 2012-04-12.

2
http://eclipse.org/downloads/, retrieved 2012-04-12.

http://www.eclipse.org/downloads/compare.php
http://eclipse.org/downloads/
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Fig. 1. Feature Model for the Eclipse IDE Product Line

line functions correctly. One way to validate a product line is through testing,
but testing is done on a running system. The software product line is simply a
collection of many products. One cannot test each possible product, since the
number of products in general grows exponentially with the number of features
in the product line. For the feature model in Figure 1, there are 356, 352 possible
configurations.

Reusable Component Testing. In a survey of empirics of what is done in
industry for testing software product lines [9], we found that the technique with
considerable empirics showing benefits is reusable component testing. Given a
product line where each product is built by bundling a number of features im-
plemented in components, reusable component testing is to test each component
in isolation. The empirics have later been strengthened; Ganesan et al. 2012 [10]
is a report on the test practices at NASA for testing their Core Flight Soft-
ware System (CFS) product line. They report that the chief testing done on this
system is reusable component testing [10].

Interaction Testing. There is no single recommended approach available to-
day for testing interactions between features in product lines efficiently [11], but
there are many suggestions. Some of the more promising suggestions are com-
binatorial interaction testing [1], discussed below; a technique called ScenTED,
where the idea is to express the commonalities and differences on the UML model
of the product line and then derive concrete test cases by analyzing it [12]; and
incremental testing, where the idea is to automatically adapt a test case from
one product to the next using the specification of similarities and differences be-
tween the products [13]. Kim et al. 2011 [14] presented a technique where they
can identify irrelevant features for a test case using static analysis.

Combinatorial Interaction Testing: Combinatorial interaction testing [1] is one
of the most promising approaches. The benefits of this approach is that it deals
directly with the feature model to derive a small set of products (a covering
array) which products can then be tested using single system testing techniques,
of which there are many good ones [15].
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Table 1. Eclipse IDE Products, Instances of the Feature Model in Figure 1

(a) Official Eclipse IDE products

Feature\Product 1 2 3 4 5 6 7 8 9 101112
EclipseIDE XXXXXXXXXX X X
RCP Platform XXXXXXXXXX X X
CVS XXXXXXXXXX X X
EGit - - XXXX - - - - - -
EMF XX - - - XX - - - - -
GEF XX - - - XX - - - - -
JDT XX - - XXX - X - - X
Mylyn XXXXXXXXXX X -
WebTools - X - - - - X - - - X -
RSE - XXX - - XX - - - -
EclipseLink - X - - - - X - - X - -
PDE - X - - XXX - X - - X
Datatools - X - - - - X - - - - -
CDT - - XX - - - X - - - -
BIRT - - - - - - X - - - - -
GMF - - - - - X - - - - - -
PTP - - - - - - - X - - - -
Scout - - - - - - - - X - - -
Jubula - - - - - - - - - X - -
RAP - - - - X - - - - - - -
WindowBuilder X - - - - - - - - - - -
Maven X - - - - - - - - - - -
SVN - - - - - - - - - - - -
SVN15 - - - - - - - - - - - -
SVN16 - - - - - - - - - - - -

(b) Pair-wise Covering Array

Feature\Product 1 2 3 4 5 6 7 8 9 10111213
EclipseIDE XXXXXXXXXX X X X
RCP Platform XXXXXXXXXX X X X
CVS - X - X - X - - X - - - -
EGit - X - - XXX - - X - - -
EMF - XXXX - - XXX X X -
GEF - - XXX - XXX - - X -
JDT - XXXX - X - XX - X -
Mylyn - X - X - - XX - - - - -
WebTools - - XXX - X - - X X - -
RSE - XX - XX - - - - - - -
EclipseLink - XX - - X - XX - - - -
PDE - X - XX - X - X - - X -
Datatools - XXXX - - - X - X X -
CDT - - XX - X - XX - - - -
BIRT - - - XX - - - X - - X -
GMF - - XXX - - XX - - - -
PTP - - X - XX - XX - - - -
Scout - X - X - - X - X - - - -
Jubula - - XX - X - X - X - - -
RAP - XX - - XX - X - - - -
WindowBuilder - X - X - X - X - - - - -
Maven - XX - - - - - XX - - -
SVN - X - - XXXXX - X - X
SVN15 - X - - X - - X - - - - X
SVN16 - - - - - XX - X - X - -

There are three main stages in the application of combinatorial interaction
testing to a product line. First, the feature model of the system must be made.
Second, the t-wise covering array must be generated. We have developed an
algorithm that can generate such arrays from large features models [3]3. These
products must then be generated or physically built. Last, a single system testing
technique must be selected and applied to each product in this covering array.

Table 1b shows the 13 products that must be tested to ensure that every pair-
wise interaction between the features in the running example functions correctly.
Each row represents one feature and every column one product. ’X’ means that
the feature is included for the product, ’-’ means that the feature is not included.
Some features are included for every product because they are core features,
and some pairs are not covered since they are invalid according to the feature
model.

Testing the products in a pair-wise covering array is called 2-wise testing, or
pair-wise testing. This is a special case of t-wise testing where t = 2. t-wise
testing is to test the products in a covering array of strength t. 1-wise coverage
means that every feature is at least included and excluded in one product, 2-
wise coveragemeans that every combination of two feature assignments are in the
covering array, etc. For our running example, 3, 13 and 40 products is sufficient
to achieve 1-wise, 2-wise and 3-wise coverage, respectively.

3 See [3] for a definition of covering arrays and for an algorithm for generating them.
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Empirical Motivation. An important motivation for combinatorial interaction
testing is a paper by Kuhn et al. 2004 [16]. They indicated empirically that
most bugs are found for 6-wise coverage, and that for 1-wise one is likely to find
on average around 50%, for 2-wise on average around 70%, and for 3-wise around
95%, etc.

Garvin and Cohen 2011 [17] did an exploratory study on two open source
product lines. They extracted 28 faults that could be analyzed and which was
configuration dependent. They found that three of these were true interaction
faults which require at least two specific features to be present in a product
for the fault to occur. Even though this number is low, they did experience that
interaction testing also improves feature-level testing, that testing for interaction
faults exercised the features better. These observations strengthen the case for
combinatorial interaction testing.

Steffens et al. 2012 [18] did an experiment at Danfoss Power Electronics. They
tested the Danfoss Automation Drive which has a total of 432 possible configu-
rations. They generated a 2-wise covering array of 57 products and compared the
testing of it to the testing all 432 products. This is possible because of the rela-
tively small size of the product line. They mutated each feature with a number
a mutations and ran test suites for all products and the 2-wise covering array.
They found that 97.48% of the mutated faults are found with 2-wise coverage.

3 Proposed Technique

We address two problems with combinatorial interaction testing of software prod-
uct lines in our proposed technique. A generic algorithm for automatically per-
forming the technique is presented in Section 3.2, an evaluation of it is presented
in Section 4 and a discussion of benefits and limitations presented in Section 5.

– The functioning of created test artifacts is sensitive to changes in
the feature model: The configurations in a covering array can be dras-
tically different with the smallest change to the feature model. Thus, each
product must be built anew and the single system test suites changed man-
ually. Thus, plain combinatorial interaction testing of software product lines
is not agile. This limits it from effectively being used during development.

– Which tests should be executed on the generated products: In or-
dinary combinatorial interaction testing, a new test suite must be made for
a unique product. It does not specify how to generate a complete test suite
for a product.

3.1 Idea

Say we have a product line in which two features, A and B, are both optional
and mutually optional. This means that there are four situations possible: Both
A and B are in the product, only A or only B is in the product and neither is in
the product. These four possibilities are shown in Table 2a.
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Table 2. Feature Assignment Combinations

(a) Pairs

Feature\Situation 1 2 3 4
A X X - -
B X - X -

(b) Triples

Feature\Situation 1 2 3 4 5 6 7 8
A X X X X - - - -
B X X - - X X - -
C X - X - X - X -

If we have a test suite that tests feature A, TestA, and another test suite that
tests feature B, TestB, the following is what we expect: (1) When both feature
A and B are present, we expect TestA and TestB to succeed. (2) When just
feature A is present, we expect TestA to succeed. (3) Similarly, when just feature
B is present, we expect TestB to succeed. (4) Finally, when neither feature is
present, we expect the product to continue to function correctly. In all four cases
we expect the product to build and start successfully.

Similar reasoning can be made for 3-wise and higher testing, which cases are
shown in Table 2b. For example, for situation 1, we expect TestA, TestB and
TestC to pass, in situation 2, we expect TestA and TestB to pass, which means
that A and B work in each other’s presence and that both work without C. This
kind of reasoning applies to the rest of the situations in Table 2b and to higher
orders of combinations.

3.2 Algorithm for Implementation

The theory from Section 3.1 combined with existing knowledge about combina-
torial interaction testing can be utilized to construct a testing technique. Algo-
rithm 1 shows the pseudo-code for the technique.

The general idea is, for each product in a t-wise covering array, to execute the
test suites related to the included features. If a test suite fails for one configu-
ration, but succeeds for another, we can know that there must be some kind of
interaction disturbing the functionality of the feature.

In Algorithm 1, line 1, the covering array of strength t of the feature model
FM is generated and the set of configurations are placed in CAt. At line 2, the
algorithm iterates through each configuration. At line 3, a product is constructed
from the configuration c. PG is an object that knows how to construct a product
from a configuration; making this object is a one-time effort. The product is
placed in p. If the construction of the product failed, the result is placed in
the result table, ResultTable. The put operation on ResultTable takes three
parameters, the result, the column and the row. The row parameter can be an
asterisk, ’*’, indicating that the result applies to all rows.

If the build succeeded, the algorithm continues at line 7 where the algorithm
iterates through each test suite, test, of the product line, provided in a set
Tests. At line 8, the algorithm takes out the feature, f , that is tested by the test
suite test. The algorithm finds that in the object containing the Test-Feature-
Mapping, TFM . At line 9, if this feature f is found to be included in the current
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Algorithm 1. Pseudo Code of the Automatic and Agile Testing Algorithm

1: CAt ← GenerateCoveringArray(FM,t)
2: for each configuration c in CAt do
3: p ← PG.GenerateProduct(c)
4: if p’s build failed then
5: ResultTable.put(”buildfailed”, c, ∗)
6: else
7: for each test test in Tests do
8: f ← TFM.getFeatures(test)
9: if c has features f then
10: result ← p.runTest(test)
11: ResultTable.put(result, c, f)
12: end if
13: end for
14: end if
15: end for

configuration, c, then, at line 10, the test suite is run. The results from running
the test is placed in the result table4, line 11.

3.3 Result Analysis

Results stored in a result table constructed by Algorithm 1 allow us to do various
kinds of analysis to identify the possible causes of the problems.

Attributing the Cause of a Fault. These examples show how analysis of the
result can proceed:

– If we have a covering array of strength 1, CA1, of a feature model FM : If a
build fails whenever f1 is not included, we know that f1 is a core feature.

– If we have a covering array of strength 2, CA2, of a feature model FM in
which feature f1 and f2 are independent on each other: If, ∀c ∈ CA2 where
both f1 and f2 are included, the test suite for f1 fails, while where f1 is
included and f2 is not, then the test suite of f1 succeeds, we know that the
cause of the problem is a disruption of f1 caused by the inclusion f2.

– If we have a covering array of strength 2, CA2, of a feature model FM in
which feature f1 and f2 are not dependent on each other: If, ∀c ∈ CA2 where
both f1 and f2 are included, the test suites for both f1 and f2 succeed, while
where f1 is included and f2 is not, then the test suite of f1 fails, we know
that the cause of the problem is a hidden dependency from f1 to f2.

These kinds of analysis are possible for all the combinations of successes and
failures of the features for the various kinds of interaction-coverages.

4 Two examples of result tables are shown later, Tables 4b and 5b.
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Of course, if there are many problems with the product line, then several prob-
lems might overshadow each other. In that case, the tester must look carefully
at the error given by the test case to find out what the problem is. For example,
if every build with f1 included fails that will overshadow a second problem that
f2 is dependent on f1.

Guarantees. It is uncommon for a testing technique to have guarantees, but
there are certain errors in the feature model that will be detected.

– Feature f is not specified to be a core feature in the feature model but is
in the implementation. This is guaranteed to be identified using a 1-wise
covering array: There will be a product in the covering array with f not
included that will not successfully build, start or run.

– Feature f1 is not dependent on feature f2 in the feature model, but there is
a dependency in the code. This is guaranteed to be identified using a 2-wise
covering array. There will be a product in the 2-wise covering array with f1
included and f2 not included that will not pass the test suite for feature f1.

4 Evaluation with Two Applications and Results

4.1 Application to ABB’s ”Safety Module”

About the ABB Safety Module. The ABB Safety Module is a physical
component that is used in, among other things, cranes and assembly lines, to
ensure safe reaction to events that should not occur, such as the motor running
too fast, or that a requested stop is not handled as required. It includes various
software configurations to adapt it to its particular use and safety requirements.

A simulated version of the ABB Safety Module was built—independently of
the work in this paper—for experimenting with testing techniques. It is this
version of the ABB Safety Module which testing is reported in this paper.

Basic Testing of Sample Products. Figure 2a shows the feature model of
the Safety Module. There are in total 640 possible configurations. Three of these
are set up in the lab for testing purposes during development. These are shown
in Figure 2b and are, of course, valid configurations of the feature model of the
ABB Safety Module, Figure 2a.

The products are tested thoroughly before they are delivered to a customer.
Five test suites are named in the left part of Table 3a; the right side names the
feature that the test suite tests.

We ran the relevant tests from Table 3a. The results from running the relevant
test suite of each relevant product are shown in Table 3b. The table shows a test
suite in each row and a product in each column. When the test suite tests
a feature not present in the product, the entry is blank. When the test suite
tests a feature in the product, the error count is shown. All test runs gave zero
errors, meaning that they were successful for the three sample products. This
is also what we expected since these three test products have been used during
development of the simulation model to see that it functions correctly.
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(a) Feature Model (b) Sample Products

Feature\Product a1 a2 a3
SafetyDrive X X X
SafetyModule X X X
CommunicationBus X X X
SafetyFunctions X X X
StoppingFunctions X X X
STO X X X
SS1 X X X
Limit Values - - -
Other X X X
SSE X X X
SAR X X -
SLS X X X
SBC X X X
SBC Present X - X
SBC during STO - - -
SBC after STO - - X
SBC before STO X - -
SBC Absent - X -
SMS X X X
SIL X X X
Level2 - X -
Level3 X - X

Fig. 2. ABB Safety Module Product Line

Table 3

(a) Feature-Test Mapping

Unit-Test Suite Feature
GeneralStartUp SafetyDrive
Level3StartUpTest Level3
TestSBC After SBC after STO
TestSBC Before SBC before STO
TestSMS SMS

(b) Test errors

Test\Product a1 a2 a3
GeneralStartUp 0 0 0
Level3StartUpTest 0 0
TestSBC After 0
TestSBC Before 0
TestSMS 0 0 0

Testing Interactions Systematically. The three sample products are three
out of 640 possible products. Table 4a shows the 11 products that need to be
tested to ensure that every pair of features is tested for interaction faults; that
is, the 2-wise covering array of Figure 2a.

We built these products automatically and ran the relevant automatic test
suite on them. Table 4b shows the result from running each relevant test suite
on each product of Table 4a. If the features interact correctly, we expect that
there would be no error.

As we can see, products 2, 3, 7 and 8 did not compile correctly. This proved
to be because for certain configurations, the CVL variability model was built
incorrectly, producing a faulty code that does not compile.

For product 9, the test suite for the SMS (”Safe Maximum Speed”) feature
failed. This is interesting, because it succeeded for product 4 and 5. We investi-
gated the problem, and found that the SMS feature does not work if the break is
removed from the ABB Safety Module. This is another example of an interaction
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Table 4. Test Products and Results for Testing the Safety Module

(a) 2-wise Covering Array

Feature\Product 0 1 2 3 4 5 6 7 8 9 10
SafetyDrive XXXXXXXXXXX
SafetyModule XXXXXXXXXXX
CommunicationBus XXXXXXXXXXX
SafetyFunctions XXXXXXXXXXX
StoppingFunctions XXXXXXXXXXX
STO XXXXXXXXXXX
SS1 - - XX - X - XXX -
Limit Values - X - X - XXX - - X
Other - XX - XXXXXXX
SSE - - X - - XXXX - -
SAR - X - - XXX - - - X
SBC - XX - X - XXXXX
SBC Present - XX - X - - XX - X
SBC after STO - - - - X - - X - - -
SBC during STO - X - - - - - - X - -
SBC before STO - - X - - - - - - - X
SBC Absent - - - - - - X - - X -
SMS - - X - XX - - XX -
SLS - XX - - X - X - X -
SIL XXXXXXXXXXX
Level2 - - XX - - XXX - -
Level3 XX - - XX - - - XX

(b) Test Errors

Test\Product 0 1 2 3 4 5 6 7 8 9 10
GeneralStartUp 0 0 - - 0 0 0 - - 0 0
Level3StartUpTest 0 0 0 0 0 0
TestSBC After 0 -
TestSBC Before - 0
TestSMS - 0 0 - 1

fault. It occurs when SMS is present, and the break is absent. The inclusion of
SBC Absent means that there is no break within in the implementation.

4.2 Implementation with CVL

The pseudo-algorithm for implementing the technique with the CVL [4] tool
suite is shown as Algorithm 2. It is this implementation that was used to test
the ABB Safety Module5. The algorithm assumes that the following is given to
it: a CVL variability model object, VM ; a coverage strength, t; a list of tests,
tests; and that a mapping between the tests and the features, TFM .6

The algorithm proceeds by first generating a t-wise covering array and setting
them up as resolution models in the CVL model, VM. The CVL model contains
bindings to the executable model artifacts for the ABB Safety Module. Every-
thing that is needed is reachable from the CVL model. It can thus be used to
generate the executable product simulation models; the set of product models is
placed in P . The algorithm then loops through each product p. For each prod-
uct, it sees if the build succeeded. If it did not, that is noted in resultTable.
If the build succeeded, the algorithm runs through each test from the test set
provided. If the feature the test tests is present in the product, run the test and
record the result in the proper entry in resultTable. The result table we got in
the experiment with the ABB Safety Module is shown in Table 4b.

5 The source code for this implementation including its dependencies is found on the
paper’s resource website: http://heim.ifi.uio.no/martifag/ictss2012/

6 All these are available on the paper’s resource website.

http://heim.ifi.uio.no/martifag/ictss2012/
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Algorithm 2. Pseudo Code of CVL-based version of Algorithm 1

1: VM.GenerateCoveringArray(t)
2: P ← VM.GenerateProducts()
3: for each product p in P do
4: if p build failed then
5: resultTable.put(”buildfailed”, p, ∗)
6: else
7: for each test test in tests do
8: f ← TFM.getFeatures(test)
9: if p has features f then
10: result ← p.runTest(test)
11: resultTable.put(result, p, f)
12: end if
13: end for
14: end if
15: end for

4.3 Application to the Eclipse IDEs

The Eclipse IDE product line was introduced earlier in this paper: The feature
model is shown in Figure 1, and a 2-wise covering array was shown in Table 1b.

The different features of the Eclipse IDE are developed by different teams,
and each team has test suites for their feature. Thus, the mapping between the
features and the test suites are easily available.

The Eclipse Platform comes with built-in facilities for installing new features.
We can start from a new copy of the bare Eclipse Platform, which is an Eclipse
IDE with just the basic features. When all features of a product have been
installed, we can run the test suite associated with each feature.

We implemented Algorithm 1 for the Eclipse Platform plug-in system and
created a feature mapping for 36 test suites. The result of this execution is
shown in Table 5b. This experiment7 took in total 10.8 GiB of disk space; it
consisted of 40,744 tests and resulted in 417,293 test results that took over 23
hours to produce on our test machine.

In Table 5b, the first column contains the results from running the 36 test
suites on the released version of the Eclipse IDE for Java EE developers. As
expected, all tests pass, as would be expected since the Eclipse project did test
this version with these tests before releasing it.

The next 13 columns show the result from running the tests of the products
of the complete 2-wise covering array of the Eclipse IDE product line. The blank
cells are cells where the feature was not included in the product. The cells with
a ’-’ show that the feature was included, but there were no tests in the test setup
for this feature. The cells with numbers show the number of errors produced by
running the tests available for that feature.

7 The experiment was performed on Eclipse Indigo 3.7.0. The computer on which we
did the measurements had an Intel Q9300 CPU @2.53GHz, 8 GiB, 400MHz RAM
and the disk ran at 7200 RPM.
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Table 5. Tests and Results for Testing the Eclipse IDE Product Line, Figure 1, Using
the 2-wise Covering Array of Table 1b

(a) Tests

Test Suite Tests Time(s)
EclipseIDE 0 0
RCP Platform 6,132 1,466
CVS 19 747
EGit 0 0
EMF 0 0
GEF 0 0
JDT 33,135 6,568
Mylyn 0 0
WebTools 0 0
RSE 0 0
EclipseLink 0 0
PDE 1,458 5,948
Datatools 0 0
CDT 0 0
BIRT 0 0
GMF 0 0
PTP 0 0
Scout 0 0
Jubula 0 0
RAP 0 0
WindowBuilder 0 0
Maven 0 0
SVN 0 0
SVN15 0 0
SVN16 0 0
Total 40,744 14,729

(b) Results, Number of Errors

Feature\Prod. JavaEE 1 2 3 4 5 6 7 8 9 10 11 12 13
EclipseIDE - - - - - - - - - - - - - -
RCP Platform 0 17 90 94 0 0 90 0 91 87 7 0 0 10
CVS 0 0 0 0 0
EGit - - - - -
EMF - - - - - - - - - -
GEF - - - - - - - -
JDT 0 11 8 0 0 0 0 5 3 0
Mylyn - - - - -
WebTools - - - - - - -
RSE - - - - -
EclipseLink - - - - - -
PDE 0 0 0 0 0 0 0
Datatools - - - - - - - -
CDT - - - - -
BIRT - - - -
GMF - - - - - -
PTP - - - - -
Scout - - - -
Jubula - - - - -
RAP - - - - -
WindowBuilder - - - -
Maven - - - -
SVN - - - - - - - -
SVN15 - - - -
SVN16 - - - -

Products 4–5, 7 and 11–12 pass all relevant tests. For both features CVS and
PDE, all products pass all tests. For product 2–3 and 9–10, the JDT test suites
produce 11, 8, 5 and 3 error respectively. For the RCP-platform test suites, there
are various number of errors for products 1–3, 6, 8–10 and 13.

We executed the test several times to ensure that the results were not coin-
cidental, and we did look at the execution log to make sure that the problems
were not caused by the experimental set up such as file permissions, lacking disk
space or lacking memory. We did not try to identify the concrete bugs behind
the failing test cases, as this would require extensive domain knowledge that was
not available to us during our research.8

4.4 Implementation with Eclipse Platform’s Plug-in System

Algorithm 3 shows the algorithm of our testing technique for the Eclipse Platform
plug-in system9.

8 We will report the failing test cases and the relevant configuration to the Eclipse
project, along with the technique used to identify them.

9 The source code for this implementation including its dependencies is available
through the paper’s resource website, along with the details of the test execution
and detailed instructions and scripts to reproduce the experiment.
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Algorithm 3. Pseudo Code of Eclipse-based version of Algorithm 1

1: CA ←FM.GenerateCoveringArray(t)
2: for each configuration c in CA do
3: p ← GetBasicEclipseP latform()
4: for each feature f in c do
5: p.installFeature(f)
6: end for
7: for each feature f in c do
8: tests ← f.getAssociatedTests()
9: for each test test in tests do
10: p.installT est(test)
11: result ← p.runTest(test)
12: table.put(result, c, f)
13: end for
14: end for
15: end for

The algorithm assumes that the following is given: a feature model, FM , and
a coverage strength, t.

In the experiment in the previous section we provided the feature model in
Figure 1. The algorithm loops through each configuration in the covering array.
In the experiment, it was the one given in Table 1b. For each configuration, a ver-
sion of Eclipse is constructed: The basic Eclipse platform is distributed as a pack-
age. This package can be extracted into a new folder and is then ready to use. It
contains the capabilities to allow each feature and test suite can be installed auto-
matically using the following command: <eclipse executable> -application

org.eclipse.equinox.p2.director -repository <repository1,...>

-installIU <feature name> Similar commands allow tests to be executed.
A mapping file provides the links between the features and the test suites.

This allows Algorithm 3 to select the relevant tests for each product and run
them against the build of the Eclipse IDE. The results are put into its entry in
the result table. The results from the algorithm are in a table like the one given
in the experiment, shown in Table 5b.

5 Benefits and Limitations

Benefits

– Usable: The technique is a fully usable software product line testing tech-
nique: It scales, and free, open source algorithms and software exists for
doing all the automatic parts of the technique.10

– Agile: The technique is agile in that once set up, a change in a part of the
product line or to the feature model will not cause any additional manual

10 Software and links available on the paper’s resource website: http://heim.ifi.uio.
no/martifag/ictss2012/

http://heim.ifi.uio.no/martifag/ictss2012/
http://heim.ifi.uio.no/martifag/ictss2012/
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work. The product line tests can be rerun with one click throughout devel-
opment. (Of course, if a new feature is added, a test suite for that feature
should be developed.)

– Continuous Integration: The technique fits well into a continuous inte-
gration framework. At any point in time, the product line can be checked
out from the source code repository, built and the testing technique run. For
example, the Eclipse project uses Hudson [19] to check out, build and test
the Eclipse IDE and its dependencies at regular intervals. Our technique can
be set up to run on Hudson, and every night produce a result table with
possible interaction faults in a few hours on suitable hardware.

– Tests the feature model: The technique tests the feature model in that
errors might be found after a change of it. For example, that a mandatory
relationship is missing causing a feature to fail.

– Automatic: The technique is fully automatic except making the test suites
for each feature, a linear effort with respect to the number of features, and
making the build-scripts of a custom product, a one-time effort.

– Implemented: The technique has been implemented and used for CVL-
based product lines and for Eclipse-based product lines, as described in
Section 4.

– Run even if incomplete: The technique can be run even if the product
line test suites are not fully developed yet. It supports running a partial test
suite, e.g. when only half of the test suites for the features are present, one
still gets some level of verification. For example, if a new feature is added
to the product line, a new test suite is not needed to be able to analyze the
interactions between the other features and it using the other feature’s test
suites.

– Parallel: The technique is intrinsically parallel. Each product in the covering
array can be tested by itself on a separate node. For example, executing the
technique for the Eclipse IDE could have taken approximately 1/13th of the
time if executed on 13 nodes, taking approximately in 2 hours instead of 23.

Limitations

– Emergent features: Emergent features are features that emerge from the
combination of two or more features. Our technique does not test that an
emergent feature works in relation to other features.

– Manual Hardware Product Lines: Product line engineering is also used
for hardware systems. Combinatorial interaction testing is also a useful tech-
nique to use for these products lines [20]; however, the technique described in
this paper is not fully automatic when the products must be set up manually.

– Quality of the automated tests: The quality of the results of the tech-
nique is dependent on the quality of the automated tests that are run for
the features of the products.

– Feature Interactions: A problem within the field of feature interaction
testing is how to best create tests as to identify interaction faults occur
between two or more concrete features, the feature interaction problem [21].
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Although an important problem, it is not what our technique is for. Our
technique covers all simple interactions and gives insight into how they work
together.

6 Conclusion

In this paper we presented a new technique for agile and automatic interaction
testing for product lines. The technique allows developers of product lines to set
up automatic testing as a part of their continuous integration framework to gain
insight into potential interaction faults in their product line.

The technique was evaluated by presenting the results from two applications
of it: one to a simulation model of the ABB safety module product line using the
CVL tool suite, and one to the Eclipse IDE product lines using the Eclipse Plat-
form plug-in system. The cases show how the technique can identify interaction
faults in product lines of the size and complexity found in industry.
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Abstract. In this paper we present the design and implementation of
a framework for comprehensive performance evaluation of algorithms,
modules, and libraries. Our framework allows for the definition of well-
defined test inputs and the subsequent scheduling and execution of struc-
tured tests. In addition, the framework provides a web-based interface for
user interaction and allows for the convenient browsing, plotting, and sta-
tistical analysis of test results. We furthermore report on our experience
in using the new framework in the development of cryptographic pro-
tocols and algorithms—specifically in the context of secure multi-party
computation.

1 Motivation

When designing practical algorithms, modules, and libraries, experimental per-
formance evaluations are an essential part in determining their suitability for
real-world applications. In particular, such performance tests can provide in-
sights which cannot be determined through theoretical analysis alone.

The performance of algorithms in general depends on a variety of choices in
the test setup. First of all, more complex algorithms or modules commonly use
simpler algorithms as building blocks. When conducting performance tests, as-
sessing the impact of choosing different building blocks providing the same func-
tionality is naturally of great interest. In addition, an algorithm’s performance
behavior depends on the chosen input as well as many other parameters. When
performed manually, varying the input and a larger number of other parameters
is time consuming, error prone, and typically generates a large amount of data
which needs to be managed and stored. In particular, storing the data such that
it may be retrieved together with all the parameters used in a particular test
often poses a major challenge in practice. Finally, comprehensive performance
tests require an evaluation in a variety of testbeds including different computing
platforms and suitable network topologies.

To address these challenges we have developed a test framework which enables
structured performance tests of algorithms and modules called CaPTIF (Com-
prehensive Performance TestIng Framework). CaPTIF is a web-based system
which enables its users to define, execute, and review performance tests of algo-
rithms, modules, and libraries. The system keeps track of all parameters used,
it schedules the test runs to automatically execute on available test systems,
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and it provides extensive storage and retrieval functionality for the test results.
We have implemented CaPTIF and successfully applied it in the development
of cryptographic algorithms—specifically in the context of secure multi-party
computation [1,2]. In this paper, we motivate the design of CaPTIF, describe its
implementation, and share our experience in using the framework.

Outline: We first review related techniques in Section 2. Section 3 discusses
the required functionality of a suitable test framework. Section 4 describes our
design decisions and Section 5 details the concrete tools we used to implement
CaPTIF. Finally, Section 6 summarizes the lessons learned when developing and
using CaPTIF.

2 Related Techniques

In the software development process, performance testing is commonly conducted
to determine an application’s performance as experienced by the user. In this
context, the focus is generally not on a single application session but on the
application in its entirety, i.e., one does not test a single, isolated request of a
single user but rather the performance when many users interact with the ap-
plication simultaneously. Software testers commonly use techniques such as load
testing, stress testing, etc., to perform these kinds of tests [3]. There is a va-
riety of commercial products and free open-source tools available for the task.
For example, IBM’s Rational Performance Tester [4] and HPs LoadRunner [5]
both do scalability testing by generating a real work load on the application.
Open-source tools such as Apache’s JMeter [6] and Grinder [7] provide a similar
functionality.

Motivated by the large cost for commercial performance testing tools, Chen
et al. created Yet Another Performance Testing Framework [8]. It enables users
to create custom test programs which define the business operations to be per-
formed during the test. Chen’s framework then executes these tasks concurrently.
In [9], Zhang et al. present a cloud-based approach to performance testing of web
services. Their system provides a frontend in which users can specify test cases
which are then dispatched to Amazon EC2 [10] cloud instances for execution.
Similar to all the previous tools, their system is testing the performance under
concurrent user access to the system.

The tools described above are geared towards testing of production-stage ap-
plications or web-services. In contrast, in this paper the focus is on performance
evaluations typically conducted at an earlier stage in the development process.
Specifically, we focus on tests which are performed when individual algorithms or
protocols are initially designed and implemented. This process typically involves
the selection and performance assessment of appropriate building block for the
newly designed algorithms or protocols. In addition, these tests are used to not
only establish the feasibility of the new design but also to guide the fine-tuning
of the implementation. Unlike production-ready testing, the testing in this stage
is characterized by assessing and understanding the behavior of an isolated exe-
cution of a single protocol or algorithm. This test scenario gives rise to a set of
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Fig. 1. Matrix Multiplication utilizes the modules Integer Multiplication and Integer
Addition.
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Fig. 2. Different Instances for the module Integer Multiplication

requirements which are not directly supported by the kind of tools mentioned
above. In Section 3 we provide a detailed discussion of the requirements for
a suitable test framework. To the best of our knowledge, to date there is no
publicly available test framework which is focused on such comprehensive and
fine-grained performance evaluation of individual protocols and algorithms. It is
important to note, that we focus our discussion solely on performance evalua-
tions and leave any kind of correctness tests such as unit tests as an independent
problem.

3 Requirements for a Comprehensive Test Framework

In the following, we introduce the requirements for the design of a test framework
for comprehensive performance evaluations of algorithms, modules, and libraries.

Below, we motivate that a suitable framework should reflect the modular
design of the tested functionality and allow for the precise definition of test
inputs. Since comprehensive testing necessitates a separation of the two, they
need to be specified independently. In order to conduct a particular test, both
can then seamlessly be combined. Furthermore, the framework should provide
means for efficient retrieval and analysis of any test results. In the following, we
will describe these requirements in greater detail.

Reflecting Modular Algorithm Design: Algorithms often have modular designs.
For example, Figure 1 illustrates Schoolbook Matrix Multiplication which typi-
cally relies on the two modules Integer Multiplication and Integer Addition. In
practice, each of these modules can be instantiated by different concrete algo-
rithms which provide the same functionality, e.g., the module Integer Multipli-
cation may be instantiated by the Schoolbook Method, Karatsuba’s Algorithm, or
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FFT-based methods (compare Figure 2).1 In the following, we will refer to the
instantiations of a module as instances.

As a first requirement, the test framework should reflect the modular structure
(indicated in Figures 1 and 2). Specifically, there should be a mapping between
the modules and instances in the algorithms and how they are represented in the
test framework. In order to provide the means for comprehensively explaining
the practical behavior of an instance, the test framework should then allow for
flexible testing strategies based on this representation. In particular, a suitable
framework should account for the relationships between modules and instances
and allow for the testing of different compositions of an instance, i.e., testing for
different assignments of instances to modules (e.g., which multiplication method
is used to implement integer multiplication in Figure 2).

Test Input: The framework should allow for the definition of well-defined test
inputs which are used when conducting a test. In particular, this definition should
contain which parameters are used and which parameter(s) is (are) varied within
which range. For example, for matrix multiplication, the input consists of two
matrices and the parameters are the dimension of the matrices and the size of
the individual matrix entries. Test inputs should be defined independently from
the tested instance to allow for standardized tests in which test inputs can be
re-used in different tests.

Test Execution: A test framework should allow for the execution of tests using
a particular combination of an instance and a specific test input. In addition,
the framework should record details on the execution environment and on the
implementation of the tested instance together with the test. Moreover, in order
to enable statistical analysis of the test results, the framework should support
the repeated execution of any test.

Flexible Test Environment: The test framework should be flexible in how a par-
ticular test is conducted and it should allow for the assignment of a variable
number of test systems to a test. For example, the test of a matrix multiplica-
tion algorithm can be carried out on a single test system while protocols2 may
need to be executed in a distributed fashion across multiple networked systems.
In addition, since mobile devices increasingly gain importance as personal com-
puting platforms, the framework should support different execution platforms
such as servers, desktop machines, and mobile devices. For any test utilizing
more than one single test system, the network setting has a great influence on
for the overall performance and it should be tracked together with the test. For
any test environment, a suitable framework should ensure exact performance

1 Note that this is a simplified example which was chosen to illustrate the underlying
concept. In practice, the modular structure of matrix multiplication is not as trivial
as described.

2 A protocol is an algorithm which involves multiple parties. The involved parties
perform certain computations locally and exchange messages through some kind of
communication channel such as a network.
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measurements. In particular, this is challenging in cases where the time for a
single execution of an instance is so small that a reliable measurement is not
possible due to limitations of the operating system or the hardware.

Implementation Details: Since the performance of an instance may vary greatly
depending on the programming language used for its implementation, a test
framework should record the implementation details together with a test.

In addition, as the implementation of an instance changes over time and un-
dergoes revisions, a suitable test framework should support efficient re-evaluation
of the instance’s performance during this process. In order to facilitate a correla-
tion of the changes in the code base with the corresponding performance results,
the test framework should allow for the tracking of the respective code revision
(e.g., the commits in a version control system) of the instance under evaluation.

Analysis: Comprehensive performance evaluations tend to quickly result in large
amounts of test results which need to be organized properly in order to be of
any use. The test framework should therefore allow for a structured storing of
all test results in combination with the test that produced the specific result. It
should be possible to store all test results without prior post-processing in order
to allow the user to perform any desired analysis on the raw test results at a
later time.

After a test is completed, the test result should be available for review by the
user. In particular, the framework should allow the user to efficiently select test
results and to display, retrieve, or plot them. In addition, it should be possible to
easily compare test results originating from different tests. To assist the user in
the analysis of the test results, the framework should provide standard statistical
functionality (e.g., computation of averages and error bars based on the standard
deviation).

4 Design of the CaPTIF Framework

In this section, we introduce the design of CaPTIF, our implementation of a
test framework which meets the requirements outlined in Section 3. For this,
we will refine the description presented in Section 3 and introduce clear terms
to define all of CaPTIF ’s components. Figure 3 shows the main components of
CaPTIF and illustrates their interdependencies. At its base, CaPTIF consists
of four components: Test Configuration, Test Case, Code Base and Revision,
and Text Execution Environment. It is important to note that all four of these
components can be specified independently of each other. All four components
are combined in the definition of a Test Run. Finally, the execution of a test run
produces a Test Result.

To date, we have applied CaPTIF in the area of secure multi-party computa-
tion (SMPC) [1,2]. In SMPC, two or more parties wish to compute some function
on their private inputs. At the conclusion of an SMPC protocol all parties have
only learned the result they are entitled to and, in particular, they have learned
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nothing about the other parties’ inputs or intermediate results. It is important
to note that SMPC operates without the involvement of a trusted third party
(see [11] for an introduction to SMPC). Despite this original focus, the final de-
sign of CaPTIF is far more general and is thus applicable to much more general
settings allowing for the effective performance testing of arbitrary algorithms,
modules, and libraries. For the sake of clarity of presentation, in this paper we
will describe the design of CaPTIF on the concrete example of cryptographic
protocols in the context of SMPC.

4.1 Mapping Modules and Instances

In Section 3, we have motivated that instances commonly have modular struc-
ture. As a first step in our framework design, this section describes how this
modular structure is reflected in CaPTIF.

Input Types. Since different modules require different types of input, CaPTIF
allows for the definition of arbitrary input types such as integer or set of integers.
For each input type it is possible to specify a set P of parameters pi ∈ P
(1 ≤ i ≤ |P |) which fully define an input type. For example, a set of integers
may be specified by the parameters set cardinality and size of the individual
integers in the set.

Representing the Modular Structure. As discussed in Section 3, any in-
stance may rely on different modules to implement its functionality and each
module can be instantiated by any of the instances corresponding to that mod-
ule (see Figures 1 and 2). It is important to note that any instance of a particular
module may itself rely on other modules in performing its function.

To implement this requirement, CaPTIF allows for the specifying of any mod-
ules which are used. In this process it is required to indicate which input type
(e.g., integer, set of integers) is required to test this module. For each module it
is then possible to specify an arbitrary number of instances. In turn, for each in-
stance one can assign all the modules which it relies on as well as any parameters
(e.g., cryptographic key size) which are required for testing the instance. Overall
this yields a complex tree structure which captures the relationships between all
modules and instances as illustrated in Figure 4 on the example of a fictitious
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Higher-Level Protocol

PSIModule #1 Module #3

DT10 FNP04Inst #1 Inst #2 Inst #3

Hash Function
Add. Homomor-
phic Crypto.

SHA-256 SHA-512 Paillier Damg̊ard-Jurik

Fig. 4. Illustration of a higher-level protocol and the modules (rectangles) it utilizes.
The instances (ovals) shaded in blue represent one possible configuration of the higher-
level protocol.

cryptographic protocol. Here, a higher-level protocol instance is composed of
three modules one of which is Private Set Intersection (PSI)3 [12] (all others
are left unspecified). The PSI module can be instantiated using any of the vari-
ous PSI protocols proposed in the literature, e.g., DT10 [13] or FNP04 [12]. In
turn, DT10 uses a cryptographic hash functions and FNP04 uses an additively
homomorphic cryptosystem4 ([15,16]) as module. Again, different instances for
each of these modules exist.

Given this tree, it is possible to perform tests of any subtree rooted at an
instance. For example, in Figure 4 one may test the entire high-level protocol, the
implementation of DT10, the Paillier cryptosystem [15], or any other instance.

4.2 Test Configurations

Given a modular instance such as the one illustrated in Figure 4, one needs
to clearly define its composition, i.e., the assignment of one instance to each
module, that is to be evaluated (see Section 3). In the following we refer to this
as test configuration.

In order to define a test configuration, CaPTIF first allows the choosing of the
instance which is tested. Next, it is possible to assign one instance to each module
within the subtree rooted at the tested instance. For this, CaPTIF enables the
recursive selecting of one instance for each defined module until leaf nodes are
reached. As an example, one possible test configuration for the Higher-Level

3 PSI is a prominent SMPC protocol which has applications in a variety of contexts. In
PSI, two parties each hold a private input set and at the conclusion of the protocol
one party learns which set elements both have in common and the other party learns
nothing.

4 Informally, an additively homomorphic cryptosystem allows for the computation of
the sum of two values solely by performing an operation on their respective cipher-
texts (without knowledge of the secret key). See, e.g., [14] for an introduction.
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Protocol is marked by the blue shading applied in Figure 4. Here, Instance #2
is selected for Module #1, the DT10 PSI using the SHA-512 hash function for
PSI, and Instance #3 for Module #3. To reiterate (see Section 4.1), CaPTIF
does not require to start the test configuration with the root, i.e., Higher-Level
Protocol in Figure 4. Instead one can test any subtree, e.g., in order to test DT10
PSI, one would start at the corresponding node and one would only specify the
hash function used.

4.3 Test Cases

As established in Section 3, it is crucial to precisely define the used test input.
CaPTIF implements this by means of a so-called test case5 which is a concise
descriptions of how to generate a specific test input.

To specify a test case,CaPTIF first requires the selection of the input type (e.g.,
integer, set of integers). Note that a test case can later only be used in conjunction
with a test configuration which requires a test case of the same input type (see
Sections 4.1 and 4.2). As motivated in Section 4.1, the input type defines the set P
of all parameters pi ∈ P which need to be specified in order to fully define a test
case of the given input type. For all parameters pi it is possible to either specify the
range (and step size) in which they are varied or set a constant value which is used
for the entire test case. As an example, consider an input of type set of integerswith
p1 being the size of the individual set elements and p2 being the set cardinality.One
can then choose to vary p1 from 32 bits to 64 bits in steps of 32 bits and vary p2
from 10 to 30 in steps of 10.

A second component of the test case is to specify so called test units and test
batches—which are illustrated in Figure 5. A test unit represents a part of the
test input which is used for a single execution of the tested instance. In cases
where a single execution cannot be measured reliably (because the execution
time is below the resolution of the timing function of the operating system), m
test units are grouped together into a test batch. The execution for the tested
instance is then measured and stored for the entire batch, i.e., for allm executions

5 This is not to be confused with the notion of a test case used in software correctness
testing [17].
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in total, and thus the test result contains one data point for each batch.6 When
defining a test case, CaPTIF allows for the specification of the number m of test
units within each batch. In addition, to allow for the computation of statistics,
one can specify the desired number of batches n (see Figure 5).

Once a test case is defined in the test framework, the user can choose to
automatically generate and store the corresponding test input by means of
test generation scripts which are implemented as part of CaPTIF (see Sec-
tion 5.2). The test input encompasses all the input data that is generated from
a given test case.7 For this, CaPTIF first converts the specified parameter
ranges into sets Vpi which contain all values in the given range for parame-
ter pi ∈ P . Subsequently, the Cartesian product C =

∏
pi∈P Vpi of all values

is computed. As a result, each tuple cj ∈ C (1 ≤ j ≤ |C|) is a unique com-
bination of parameter values. For example, let P = {p1, p2} where p1 and p2
are varied as above. Then Vp1 = {32, 64}, Vp2 = {10, 20, 30}, and C = Vp1 ×
Vp2 = {(32, 10), (64, 10), (32, 20), (64, 20), (32, 30), (64, 30)} with c3 = (32, 20).
For each cj , n batches containing m units of test input each are generated.
Consequently, the overall test input consists of |C| · m · n test units and the
corresponding test result will contain a total of n · |C| data points. In the exam-
ple above, n batches with m test units each would be generated for each pair
cj ∈ {(32, 10), (64, 10), (32, 20), (64, 20), (32, 30), (64, 30)}. Once the test input is
generated, it is stored and used in all test runs involving this test case.8

4.4 Code Bases and Test Environments

Code Bases: CaPTIF allows for the definition of different code bases which
capture different implementations or programming languages, e.g., C++ or Java.
For each test run it is possible to specify which code base and which code revision
is used.

Test Environments: CaPTIF maintains information on the available test sys-
tems and their locations. To date, CaPTIF ’s design refrains from defining the
concrete network topology or latency between each pair of locations since this
information grows quadratically in the number of locations and is difficult to
maintain. Instead, keeping only the information on the location itself allows for
a very good estimate of the respective topology. Moreover, one could obtain ex-
act latency information by performing external tests on the connection between
these two location. While this approach only provides for a rough estimate on
the topology and latencies, we believe it is sufficient for modeling most practical
scenarios.

6 It is important to note that the total timing for all m execution is stored as part
of the test result. In particular, we do not average over the m units i.e., we do not
divide the measured timing by m.

7 It is important to note that the test input for a multi-party protocol includes indi-
vidual, yet correlated inputs for each party.

8 It is important to note that any test input that is not automatically generated by
CaPTIF has to be generated in a similar manner elsewhere.
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4.5 Test Runs

To compose a test run, it is necessary to select the desired test configuration and
the test case. In addition, an appropriate number of test systems is assigned to
the test run and the underlying code base and revision must be specified.

Instead of only allowing for the collection of one time measurement per test
batch, CaPTIF provides for flexibility by allowing for the collection of multiple
split times. For example, when testing a cryptosystem, one may time encryption
and decryption individually for each test batch.

5 Implementation

CaPTIF stores the details on all modules and instances, test configurations, test
cases, test inputs, and test results for all test runs in a relational database back-
end (see Section 5.1). In order to interact with the database, CaPTIF provides
a web-based front-end. In this section, we present our choices for appropriate
software frameworks, libraries, tools and the concrete implementation details.
One crucial step was the selection of the development framework for the imple-
mentation of CaPTIF. Since CaPTIF ’s data is not only accessed by the user
but also by programs and scripts, e.g., during the generation of test inputs (see
Section 5.2), the web interface should be separated logically from the data and
application logic. Thus, the Model-Viewer-Controller (MVC) pattern [18] which
supports all of these requirements was chosen as a basis for implementing CaP-
TIF. The decision for this design pattern was further supported by the fact
that MVC frameworks became state-of-the-art in web application development
in recent years.

Pyramid [19] is a Python MVC web framework which achieves modularity
through extensive usage of the Web Server Gateway Interface (WSGI). This
modularity and the resulting support for a wide range of different components,
e.g., database abstraction and templating make this framework very flexible,
light-weight, and thus well-suited for implementing CaPTIF. The current ver-
sion of CaPTIF is built using pyramid in conjunction with SQLAlchemy [20]
as Object-Relational-Mapper and Mako [21] as template engine for the web
interface.

5.1 Backend Database

As stated above, CaPTIF ’s entire data is stored in a relational database. We
use the performance-oriented MySQL database using the innoDB storage en-
gine which enforces foreign key relationships and ensures data integrity, which
is crucial for maintaining all the complex relationships between CaPTIF ’s com-
ponents [22]. The entity relationship diagram for the database was carefully de-
signed to support the efficient storage and retrieval of all required data together
with its relationships and dependencies.
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5.2 Test Input Generation

When defining a test case in CaPTIF, one can choose to automatically generate
the test input based on the description given in the test case. To facilitate test in-
put generation, an automated Python script regularly checks whether there is any
test case for which no test input was generated yet. If this is the case, the script
retrieves all information concerning this test case from the database. Based on the
input type specified for the test case, the actual test input generation is handed
off to an appropriate generator script.CaPTIF ’s functionality can be extended by
adding new generator scripts as required for any new input types that may be de-
fined in the future. SinceCaPTIF handles the entire interactionwith the database,
the input generators only need to implement the actual generation of the input.9

The resulting test input is then stored in the backend database. For efficiency rea-
sons, the entire test input per batch (see Figure 5) is stored as a database blob.
This eliminates a great number of database joins which otherwise would cause a
significant overhead when the test input is accessed. Furthermore, it makes the
database schema independent of the underlying format of the test input. In partic-
ular, we store the test input in JavaScript Object Notation (JSON) [23] and apply a
hexadecimal encoding to any integer value. In addition, since theCaPTIF API de-
scribed in Section 5.3 utilizes JSON to encode requests and responses, storing test
inputs in JSON format eliminates costly data conversion during input retrieval.
Once the generation is completed, the input is marked as being available and a
test run using this test input may start executing.

5.3 Test Execution

In order to facilitate the execution of test runs on different test systems, CaPTIF
provides an Application Programming Interface (API). The use of this API is
two-fold. First, it allows the retrieval of a test run from the database. Second,
once the test run is completed, the raw test result can be pushed back into the
framework where it is associated with the corresponding test run. This separation
enables the execution of test runs on devices which can not communicate directly
with CaPTIF . The latter is of particular importance when testing on mobile
devices. Figure 6 outlines the workflow for the execution of a test run. CaPTIF ’s
API is implemented using HTTPS requests in JSON [23] and currently three API
calls are supported:

getTestRun: Check whether a test run was scheduled to run on a particular test
system.

getTestInput: Retrieve the test input associated with a specific test run and
test system.

submitTestResult: Submit the test result from an individual test system to
CaPTIF.

9 Test generators may internally use a source of randomness to generate randomized
input for the tests. Currently, the seed for any random number generator is not stored
with the test input.
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Fig. 6. Workflow when creating and executing a test run using CaPTIF. The figure
shows the steps taken in the web interface (top), by the application server (middle),
and by the test driver executing on the test systems (bottom). Dotted lines indicate
automated events while solid lines are user actions.

Each data point in the test result includes all split times obtained for a test
batch. Currently, each split time consists of the user time, system time, real time,
and maximum memory used. However, additional metrics such as, e.g., through-
put could easily be added. Below we show CaPTIF ’s flexibility in designing the
execution setting on the example of a test execution on a Linux host and on a
mobile device.

Execution on a Linux Host: To execute a test, each test system periodically
executes a Python test driver which calls getTestRun to check whether a new test
run has been scheduled. If a new test run is found, it downloads the associated
test input by calling getTestInput and executes an appropriate test program.
Note that it is not possible to use a generic test program for all types of modules.
This is due to the fact that the test requirements vary based on the module that
is being tested. Therefore, the test driver calls a different test program10 which
can be specified in the web interface when creating the test run.

After calling the test program, the driver passes the test input via STDIN

and waits for the test program to terminate. After completion of the test run,
the driver collects the test result from STDOUT and submits them to CaPTIF

10 The test program is not part of CaPTIF but it is created and compiled by the user
ahead of time to facilitate the testing of a specific algorithm or protocol.
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Fig. 7. Screenshot of our web interface illustrating how the plot in Figure 8 was created.
The result from testing the Paillier cryptosystem [15] were selected for plotting. The
plot assigns the key size to the x-axis, the user time for the homomorphic scalar
multiplication to the y-axis, and fixes the integer size to 64 bits.

via submitTestResults. This submission also marks the test run as completed
within the test database and triggers an email to the user who created the test
run notifying her of the completed test.

Execution on a Mobile Device: If the test environment allows it, a mobile device
may use a procedure similar to the one used for Linux hosts. However, in settings
where this is not possible, a test driver can be executed on a desktop computer
to retrieve the test input and test configuration for the device and store them
in a temporary file. This file can then be transferred to the mobile device where
the user manually executes the test program using the test input copied over
from the desktop computer. Similarly, the test result is written to a file on the
device, copied back to the desktop computer, and submitted to CaPTIF.

5.4 Result Browser

The web interface provides a result browser which can be used to review the
test results. The browser displays a list of test runs which can be filtered by
test configuration, test instance, test case, etc. CaPTIF allows that any result
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Fig. 8. Example plot generated using CaPTIF showing the runtime and corresponding
error bars for the homomorphic operations of the Paillier cryptosystem [15]

data can directly be plotted in the browser which enables a quick comparison of
test results from different test runs without time-consuming data export/import,
plotting, and formatting. When a test run is selected, the corresponding plotting
options are displayed using JavaScript (see Figure 7). For each axis of the plot,
the user is presented with various choices for values to be plotted. One can either
choose one of the parameters defined in the test case or any of the collected
metrics (such as user time) for any of the recorded split times. If more than
one parameter was varied, the remaining free parameters have to be fixed in
order for the plot to be meaningful. For example, if an encryption function was
tested by varying both the key size and the size of the plaintext, plotting the
user time as a function of the plaintext size requires the specification of a fixed
key size. Furthermore, if the test involved more than one party or host, the user
can choose the party for which the test result is to be plotted.

In addition, one can specify a label to be displayed in the legend, the format of
the plot (color, width, markers, etc.), and whether error bars should be plotted.
One can also choose to fit the test result by a polynomial function. Once all
details are specified, the plot is added to the list of current plots. Our implemen-
tation in CaPTIF leverages the Python matplotlib [24] to generate publication
quality plots. Multiple test results can be selected for plotting and viewing in the
browser. The user has the option to download the resulting figure as Portable
Network Graphics PNG image or as Portable Document Format PDF. All plots
created by CaPTIF show an average taken over all batches and units. In ad-
dition, one may download the raw timings in CSV format which enables more
complex analysis using any software of choice. In addition, the web interface pro-
vides various options to customize the plot, such as the range of the axes, axes
labels, figure dimensions, and a scaling factor which is useful for unit conversions
(e.g., milliseconds to seconds). Figure 8 shows an example of a plot generated
using CaPTIF.
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6 Lessons Learned and Future Work

We have successfully used CaPTIF to conduct extensive performance evaluations
of various cryptographic algorithms (e.g., cryptosystems and other cryptographic
primitives), and complex multi-party protocols. These tests involved dedicated
servers connected via Ethernet as well as mobile devices connected via Bluetooth
and Wi-Fi. While our experience is by and large qualitative in nature and is
mostly related to cryptographic settings, we believe that the lessons learned are
directly transferable to the testing of general algorithms and protocols.

Before using CaPTIF, organizing all the parameters and details of a test
run and combining them with the corresponding test results proved challenging.
Our experience with CaPTIF shows that storing all information in a structured
fashion ensures that no information is lost and that it is easily accessible and
searchable at any given time. In addition, having all test results stored homo-
geneously in one location enables fast comparison and plotting. This centralized
data storage is particularly useful to us since we are working in a team with
members working from different locations.

In addition, the ability of conveniently re-using a test case to evaluate another
instance or the same instance using different parameters significantly simplified
testing. In particular, the obtained results can directly be compared in a mean-
ingful manner. As part of future work we plan to extend CaPTIF to store ad-
ditional details on test runs such as the versions of any libraries used as well as
details on compiler flags, etc.

Finally, test runs can efficiently be scheduled within CaPTIF and they are
then executed without requiring user interaction. As a result, it is no longer
necessary to manually log into each test system in order to start a test run.
Moreover, once a test run is completed, the next one is automatically executed
which increases the utilization of the test systems and reduces turn-around time.
It would be helpful if CaPTIF would allow for the storing of more details on the
underlying network topology—one requirement discussed in Section 3 but not
yet implemented in CaPTIF. In addition, it might be desirable to further auto-
mate the scheduling process such that test systems are assigned automatically to
queued test runs. This would not only reduce the effort required to create a new
test run, but it would also ensure that a test run does not wait for a specific test
system while others are available. Moreover, this would allow for the execution
of a single test run to be split across multiple identical test systems. Further-
more, the test driver could be extended to support the automated fetching of
the required code from a repository and the building of the tested binary.
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Abstract. Today, adaptable and distributed component based systems
need to be checked and validated in order to ensure their correctness
and trustworthiness when dynamic changes occur. Traditional testing
techniques can not be used since they are applied during the development
phase. Therefore, runtime testing is emerging as a novel solution for
the validation of highly dynamic systems at runtime. In this paper, we
illustrate how a platform independent test system based on the TTCN-3
standard can be used to execute runtime tests. The proposed test system
is called TT4RT: TTCN-3 test system for Runtime Testing. A case study
in the telemedicine field is used as an illustration to show the relevance
of the proposed test system.

1 Introduction

Nowadays, a relevant issue in the software engineering research area consists
in delivering software systems able to change their configuration dynamically
in order to achieve new requirements and avoid failures without service inter-
rupting. Therefore, they evolve continuously by integrating new components,
deleting faulty or unneeded ones and substituting old components by new ver-
sions at runtime. Dealing with such reconfiguration actions, the possibility of
unexpected errors (components failure, connections going down, etc.) during the
reconfiguration process is unavoidable.

Accordingly, a validation technique, such as testing, has to be applied in order
to detect as soon as possible such inconsistencies and to check functional and
non-functional requirements after each dynamic reconfiguration. Nevertheless,
traditional testing techniques cannot be done for these highly evolvable systems
since they are applied during the development phase.

For this reason, a recent branch of work has demonstrated the interest of
using the Runtime Testing as a new solution for the validation of the above
systems [1–8]. They have focused on building specific test infrastructures, for
instance based on the JUnit Framework. None of them have used a generic test
standard like TTCN-3 for the specification or the execution of runtime tests.
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Furthermore, they are using at most one technique to isolate runtime tests in
the aim of reducing the interference between business and test data. To the best
of our knowledge, only one approach presented in [9] uses TTCN-3 standard for
online validation and testing of internet services. However, this work did not
deal with test isolation issues when testing is applied in the production phase.

This paper makes a contribution in these directions by proposing a TTCN-
3 test system for Runtime Testing (TT4RT). The key idea is to extend the
reference architecture of the standardized TTCN-3 test system by a new module
supporting different test isolation techniques. The latter is a fundamental issue
that has to be tackled while executing runtime tests either components under
test are testable or not testable. As illustrative example, we describe a case
study in telemedicine area called Teleservices and Remote Medical Care System
(TRMCS).

The remaining of this paper is structured as follows. Section 2 introduces the
runtime testing approach and its challenges that we are facing.The TTCN-3 stan-
dard and its key elements are introduced in Section 3. The proposed approach
is illustrated in section 4. Section 5 introduces the case study. Some scenarios
are illustrated in Section 6. A brief description of related work is addressed in
section 7. Finally, section 8 concludes the paper and draws some future work.

2 Runtime Testing of Dynamic and Distributed
Component Based Systems

Runtime testing is a novel solution for validating highly dynamic systems. It
is defined in [10] as any testing method that has to be carried out in the fi-
nal execution environment of a system while it is performing its normal work.
It can be performed first at deployment-time and second at service-time. The
deployment-time testing serves to validate and verify the assembled system in its
runtime environment while it is deployed for the first time. For systems whose
architecture remains constant after initial installation, there is obviously no need
to retest the system when it has been placed in-service. On the contrary, if the
execution environment or the system behavior and architecture have changed,
service-time testing will be a necessity to verify and validate the new system in
the new situation [10].

As previously mentioned in the definition of runtime testing, any test method
can be applied at runtime such unit testing, integration testing, conformance
testing, etc. In our work, we support unit testing as well as integration testing.
On the first hand, unit testing is used to validate that the component behavior
still conforms to its specification while it is running in isolation in the execution
environment. On the other hand, integration testing is used at runtime to vali-
date that the affected component compositions by the reconfiguration action still
behave as intended. In order to minimize the number of testers to be deployed
and the number of test cases to be re-executed, we apply unit and integration
tests only on the affected parts of the system under test by a reconfiguration
action. Consequently, the testing effort, cost and time will be reduced [11].
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However, other challenges still persist such as test processes interference with
the business processes of the running system due to their parallel execution. The
best way to resolve such problem is the application of test isolation mechanisms
widely discussed in [2, 4] (such as cloning components, adding a test interface,
tagging test data, blocking components during test, etc). This challenging issue is
resolved in our approach by supporting the well known test isolation mechanisms
in the literature. It will be discussed in depth in following sections.

3 TTCN-3 Overview

TTCN-3 (Testing and Test Control Notation Language Version 3) is a test spec-
ification language used to define test procedures for reactive black-box testing
of distributed systems [12]. This test standard has been widely used in the pro-
tocol testing field and is newly addressing other kinds of applications such as
service-oriented or CORBA-based systems. It is also suitable for various types
of tests such as conformance, robustness, regression and functional testing.

TTCN-3 allows the specification of dynamic and concurrent test systems. In
fact, it offers a test configuration system made of two kinds of test components:
Main Test Component (MTC) and Parallel Test Component (PTC). For each
test case, an MTC is created. PTCs can be created dynamically at any time
during the execution of test case. Thus, test system can use any number of test
components to realize test procedures in parallel. Communications between the
test system and the SUT are established through ports.

The structure of TTCN-3 test system is depicted in Figure 1. It is made up of
a set of interacting entities where each one corresponds to a specific functional-
ity involved in the test system implementation. These entities interact together
through two major interfaces: the TTCN-3 Control Interface (TCI) [13] and the
TTCN-3 Runtime Interface (TRI) [14]. They are briefly described [15] as follows:

– The Test Management (TM) Entity manages the test execution.
– The Test Logging (TL) Entity is responsible for maintaining the test logs.
– The TTCN-3 Executable (TE) Entity executes the compiled TTCN-3 code.
– The Coding/Decoding (CD) Entity encodes and decodes test data types and

values.
– The Component Handling (CH) Entity handles the communication between

test components.
– The SUT Adapter (SA) Entity implements communication between SUT and

test system.
– The Platform Adapter (PA) Entity implements timers and external functions.

TTCN-3 is used in our context to define abstract test suites following the TTCN-
3 notation. In this case, test suites are specified at an abstract layer, Abstract
Test Suites (ATS). This feature helps to separate test design from test imple-
mentation and makes the ATS language platform independent. Furthermore, it
increases the reusability of the elaborated test cases. By doing this, we can ad-
dress complexity of testing evolvable systems which are also heterogeneous in
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Fig. 1. TTCN-3 reference architecture

structure and technologies. Hence, different network and platforms technologies
can communicate easily with the TTCN-3 test system through the adaptation
layer [16]. The latter comprises three parts of the reference architecture that
are Coding-Decoding entity, Test Adapter entity and Platform Adapter entity.
These entities provide means to adapt the communication and the time handling
between the SUT and test system in a loose coupling manner.

Due to all these features: a standardized, abstract and platform independent
test-language and offering a flexible adaptation layer with the aim of facilitating
interaction with the SUT, TTCN-3 was adopted in our work and also enhanced
to support runtime testing.

4 The Proposed Approach: TT4RT

Our main objective is to design and build a test system that handles complex-
ity of testing evolvable and heterogenous (both in structure and technologies)
systems. Therefore, we have enhanced the TTCN-3 test system by adding two
layers as depicted in Figure 2: a Test Management Layer and a Test Isolation
Layer. The main purposes of these layers are described in the following:

Test Management Layer. It intends to control the execution of runtime tests.
It includes a GUI component called TTmanGUI. The latter is responsible mainly
for starting and stopping test cases. The TTmanGUI interacts with the TM
entity offered by the classical TTCN-3 test system in order to achieve the test
execution management and also with test isolation layer in order to prepare the
test environment.

We have to mention that this layer has as input an XML file which contains
the components under test, the test components to deploy and their deployment
hosts as well as the test cases to execute. This file is called Resource Aware Test
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Fig. 2. Supported layers of TT4RT

Plan since the assignment of the test components to execution nodes must fit
some resource constraints1. The structure of this file will be introduced later.

Test Isolation Layer. It aims to reduce the interference risk between test
data and business data when testing is performed at runtime. It includes a
component which is able to choose the most adequate test isolation technique
for each component under test. This choice is suggested by using a policy called
Test Isolation Policy. For each test request, the proposed policy is executed in
order to generate the test isolation technique to apply. Our test system supports
four test isolation techniques: duplication, blocking, tagging and built-in tests.

For reasons of space, these techniques are briefly introduced through some
examples. For instance, if a component is not testable and it is under some tim-
ing constraints then it will be automatically duplicated. In this case, the test
processes are executed in the duplicate with the aim of not disturbing the ex-
ecution of the original component. Unless the component is under some timing
constraints, it can be blocked until the test processes are achieved. Also, some
components can be provided with some capabilities such as testability through
a test interface or test awareness through a flag which lets the component under
test differentiate between the test data and business data. The proposed policy
treats all these conditions and produces the best solution when a test request is
triggered.

Abstract Layer. As we have explained above, this layer is offered by the classi-
cal TTCN-3 test system in order to build abstract test suites. This feature makes
runtime tests independent of the test execution environment and enhances their
reusability and extensibility. All the specified test cases are compiled and stored
in a repository in order to make them executable.

Adaptation Layer. It includes the implemented Coding/Decoding and System
Adapter entities which facilitate the communication between TT4RT and the
SUT in production phase.

1 This assignment problem is not considered in this current work.
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Fig. 3. The proposed workflow of the TT4RT system

In order to detail the internal interactions in TT4RT system, a workflow
illustrated by the Figure 3 is given:

– When a reconfiguration action is triggered, the test plan that describes the
affected parts of the SUT by this dynamic change and the test configuration
used to validate it, is generated. This plan is considered as an input to the
TT4RT system (Step 1).

– Test isolation policy is called for each component under test in order to choose
the best test isolation technique (Step 2).

– The appropriate test isolation technique is then used to prepare the test en-
vironment (Step 3).

– After preparing the test environment, the test system user initiates the test
execution through the TTmanGUI and by calling the adequate method in the
TM entity TciStartTestCase (Steps 4-5).

– Once the test process is started, the TE entity creates the involved test com-
ponents and informs the SA entity that the test case has been started with
the aim of allowing the SA entity to prepare its communication facilities. This
is done through the call of triExecuteTestcase method (Step 6).

– Next, TE invokes the CD entity in order to encode the test data from a
structured TTCN-3 value into a form that will be accepted by the SUT. This
is done through the call of encode method (Step 7).

– The encoded test data is passed back to the TE entity as a binary string
and forwarded to the SUT via the SA entity with the triSend method (Steps
8-9-10).
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– After the test data is sent, a timer can be started. To achieve this, the TE
invokes the triStartTimer method on the PA entity (Step 11).

– The SUT returns its response to the SA entity. The given response is an
encoded value that has to be decoded in order to be understandable by the
TTCN-3 test system (Step 12).

– For doing this, the SA entity forwards the encoded test data to the TE entity
through the method triEnqueueMsg (Step 13).

– The TE entity transmits the encoded response to the CD entity with the
intention of decoding it into a structured TTCN-3 value (this is done through
the call of decode method) (Step 14).

– The decoded response is passed back to the TE that stops the running timer
by invoking the triStopTimer method on the PA and finally computes the
global verdict (Steps 15-16-17).

– At last, the test system user is notified by the generated verdict (pass, fail or
inconclusive) by the TTmanGUI (Step 18).

The gains of this design are the conformance to the TTCN-3 standard, general-
ity and platform-independency (applicable to every component based or service
oriented systems), reusability and extensibility (compiled code TTCN-3 is stored
as jar files in a repository and can be loaded at any time and also updated dy-
namically without restarting TT4RT system). Furthermore, TT4RT can be used
either at deployment time or at service time to validate the SUT. Instead the
classical TTCN-3 test systems which consider the SUT as a black-box, TT4RT
system treats the SUT as a grey-box (the SUT is composed of a collection of
interacting components and compositions under test (CUTs)). This fact can
help to localize easily the faulty component or composition and to proceed
enhancement of the quality and reliability of the SUT.

5 Case Study

To illustrate our approach, we choose a case study in the telemedicine field. In
fact, telemedicine has become an important research issue. It merges telecommu-
nication and information technologies in order to provide remotely clinical health
care. It facilitates communications between patients who suffer from chronic
health problems and medical staff. In addition, it improves the access to medical
services as well as the transmission of patient data (e.g monitored vital signs,
laboratory tests, etc.) especially when critical events or emergency situations
occur.

As widely described in the literature [17–19], telemedicine applications have
to evolve dynamically in order to fulfill new requirements such as adding new
health care services, updating the existing one in order to support improvements
in wireless and mobile technologies, etc. This adaptability is essential to ensure
that these applications remain within the functional requirements defined by
application designers, as well as maintain their performance, security and safety
properties. Furthermore, the execution environment of such applications is dis-
tinguished by its hardware heterogeneity (for instance PDA, PC and sensors) and
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the use of large range of wireless networking solutions like wireless LANs, ad-hoc
wireless networks and cellular/GSM/3G infrastructure-oriented networks.

Due to these dynamic variabilities, medical errors and degradation of QoS
parameters can occur. Therefore, runtime testing is required to validate dynamic
system changes. Thus, this validation technique can improve health care quality
and lead to the early detection and repair of medical devices malfunctions. In
the following subsections, we present the architecture of the studied telemedicine
application and also its implementation.

5.1 Architecture of TRMCS Case Study

The adopted telemedicine application is called Teleservices and Remote Medi-
cal Care System (TRMCS). The main behaviors and structure of such system
are inspired from [20]. As depicted in Figure 4, TRMCS system provides mon-
itoring and assistance to patients suffering from chronic health problems. The
interacting actors in the system are :

– Medical staff which is composed of physicians, nurses, etc. These health care
providers can be located in their own office, hospitals or even an ambulance car.

– One or more patients who are located at their home and are equipped with
wearable devices that can sense one or more vital signs such as blood pressure,
respiration rate, pulse rate, oxygen saturation and body core temperature.

The wearable medical sensors measure and transmit biomedical data to local
as well as remote medical data centers. They should operate autonomously and
have to send alert signals when emergency problems arise.

The main functionalities that the TRMCS system supports are:

– The acquisition of biomedical data from patients equipped with wearable med-
ical sensors.

– The processing of monitored data by generating reports.
– The transmission of the monitored data, medical images, laboratory tests to

a local as well as remote medical data centers for storage.
– The analysis of monitored data by sending emergency signals when critical

events are triggered or threshold conditions are reached2.

The latter functionality is highlighted and used as proof-of-concept. Within the
following studied scenario, the ability of TT4RT system to detect reconfigura-
tion faults is demonstrated.

Studied Scenario. The initial architecture of the studied scenario is outlined
in the Figure 5. Each patient sends different kind of help requests to different
help centers such as doctor’s office, nursery, hospital and ambulatory. This help
request can be issued by the patient through a user GUI or raised automatically
by the monitoring system. In this current implementation, we support three
kinds of help requests: generating call, SMS or alarm signal.

2 For instance, when the heart rate exceeds a certain level of tolerance.



TTCN-3 Test System for Runtime Testing 79

Heterogeneous
Network

Patient Home
Medical Staff

Medical Data 

Center

Nurse

Physician

Ambulatory

Nu

A bbbbbb ll tt

Fig. 4. Global view of Teleservices and Remote Medical Care System

Patient
GUI Alarm

SMS

Call

Help Service

Nurse

Doctor

Hospital

Help Center 
Service

Fig. 5. The initial configuration of the studied scenario

Reconfiguration Scenario. It comes a moment when this system is changed
to fulfill new requirements. For instance, the Alarm component is changed by
a new version with the aim of increasing SUT performance and responsiveness.
The new version sends the help request to the help center in a duration that
does not exceed 15 time units instead of 30 time units for the old version. Once
this reconfiguration is achieved, the new component and all the affected parts of
the system by this modification have to be tested.

5.2 Implementation of TRMCS Case Study

In the literature, we have found some research works that use the Open Service
Gateway initiative (OSGi) platform3 to implement such case study [17, 21]. We
follow the same technology choice due its dynamism (a powerful Framework to
create highly dynamic applications). Thus, we implement the studied scenario
using the OSGi Framework, especially OSGi iPOJO model4. Under OSGi ar-
chitecture, software components are encapsulated into bundles which is a java
archive file that contains packages and service prerequisites. These bundles are
loaded and run automatically by the Apache Felix5 1.8 implementation.

3 OSGi Alliance, http://www.osgi.org/markets/index.asp
4
http://felix.apache.org/site/apache-felix-ipojo.html

5
http://felix.apache.org/site/index.html

http://www.osgi.org/markets/index.asp
http://felix.apache.org/site/apache-felix-ipojo.html
http://felix.apache.org/site/index.html
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Without loss of generality, the proposed TT4RT system is used to validate
this service oriented application6 and to detect some previously seeded faults as
outlined in the section below.

6 Validation of TRMCS by Using TT4RT System

The key concepts presented so far have been used in order to keep the system
quality at the same level after a dynamic update has taken place. Thus, we
have applied some runtime tests to the evolvable sub-system while substituting
the Alarm component by another version dynamically. The affected components
and compositions by this modification, their testability options, the test cases
to execute are specified in the generated Resource Aware Test Plan as outlined
in the Figure 6.

Fig. 6. The main features included in the Resource Aware Test Plan XML file

Furthermore, We have to mention that some faults have been seeded in the
new configuration in order to assess the capabilities of TT4RT system to find
these reconfiguration faults. It is worth noting that some inconsistencies are
automatically detected by the OSGi Framework, for instance a required service
crashing. Nevertheless, TT4RT is still required to detect other kinds of faults
such erroneous results provided by the new service, incompatibilities between
compositions, degradation of quality of service, etc.

6.1 Specifying the Abstract Test Cases

Different test cases specified following the TTCN-3 notation are available to
detect reconfiguration faults. In fact, TTCN-3 standard is used to define not only

6 It is worthy to note that our TT4RT system can be used to validate either object
or component based applications.
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the behavior of each test component but also the dynamic and concurrent test
configuration of each test request. First of all, the Listing 1 bellow outlines the
adopted test configuration and highlights the different test components involved
in this testing process.

1 testcase tc_substitute_alarm() runs on mtcType system systemType {
2 var ptcType ptc_alarm,ptc_alarm_nurse,ptc_alarm_hospital,ptc_alarm_doctor;
3 ptc_alarm := ptcType.create("ptc_alarm");
4 map(ptc_alarm:ptcPort, system:systemPort);
5 ptc_alarm.start(ptcBehaviour_alarm());
6 ptc_alarm.done;
7

8 ptc_alarm_nurse := ptcType.create("ptc_alarm_nurse");
9 map(ptc_alarm_nurse:ptcPort, system:systemPort1);

10 ptc_alarm_nurse.start(ptcBehaviour_alarm_nurse());
11 ptc_alarm_nurse.done;
12

13 ptc_alarm_doctor := ptcType.create("ptc_alarm_doctor");
14 map(ptc_alarm_doctor:ptcPort, system:systemPort2);
15 ptc_alarm_doctor.start(ptcBehaviour_alarm_doctor());
16 ptc_alarm_doctor.done;
17

18 ptc_alarm_hospital := ptcType.create("ptc_alarm_hospital");
19 map(ptc_alarm_hospital:ptcPort, system:systemPort3);
20 ptc_alarm_hospital.start(ptcBehaviour_alarm_hospital());
21 ptc_alarm_hospital.done;
22 }

Listing 1. The test configuration

The global test process is managed by the MTC component as defined in
line 1. This MTC component is responsible for dynamically creating a PTC
checking the new Alarm component (see line 3) and also three others PTCs for
validation the communication between the affected compositions (alarm-nurse,
alarm-hospital, alarm-doctor) as indicated respectively in line 8, 13 and 18. To
start the execution of these test components, the map7 and start methods are
used and the adequate function is called (see for example line 4 and 5).

1 function ptcBehaviour_alarm() runs on ptcType {
2 timer localtimer := 15.0;
3 ptcPort.send(msg_to_alarm);
4 localtimer.start;
5 alt {
6 [] ptcPort.receive("Service invoked Successfully")
7 {setverdict (pass, "Test service alarm successfully");}
8 [] ptcPort.receive
9 {setverdict (fail, "Something else received");}

10 [] localtimer.timeout
11 { setverdict (fail, "Timeout");}
12 localtimer.stop;
13 }}

Listing 2. An example of a PTC behavior

We have to mention that the instantiation of test components and communi-
cation links are done dynamically and the execution of their behaviors is done
in a parallel manner. For instance, the next listing shows the behavior of one

7 This method aims for connecting a port of a PTC to a port of SUT.
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PTC validating the new Alarm component (ptcBehaviour alarm()). As depicted
in the Listing 2, a timer is defined in line 2 and started in line 4 when testing
data are sent (see line 3). It is used to validate the timing behavior of the new
Alarm component that transmits the help request in a period of time smaller
than 15 time units. If this deadline is not respected by the new version (see line
10) a fail verdict is generated as indicated in line 11. Otherwise, the functional
behavior is validated and accordingly a partial verdict is computed (see line 7
and 9).

For editing and compiling the specified tests, we have used respectively the
CL Editor (TTCN-3 Core Language Editor) and the TThree Compiler that are
included in the TTworkbench basic tool 8. The generated Jars are stored in the
repository for further use and can be dynamically loaded during the execution
when runtime testing is required to validate dynamic changes.

6.2 Preparing the Test Execution Environment

Before executing the compiled tests, the test isolation policy is called in order
to choose for each component under test the suitable test isolation technique.
The testability options of each component involved in the testing process are
specified in the resource aware test plan as depicted in Figure 6. In the current
scenario, the Alarm component is test aware. It differentiates between test data
and business data by using a test tag as illustrated in the test plan. The Nurse
component is not testable. Thus, we use the default test isolation technique
mentioned in the test plan file which is the duplication technique. In this case,
a new component is created which handles the test request. Such solution aims
not to disturb the original Nurse component. The same work is done for Doctor
and Hospital components.

6.3 Executing Runtime Tests

Once the Resource Aware Test Plan is loaded and the test process is started
through the TTmanGUI, the test environment is built and the test components
are created dynamically. The Figure 7 highlights the main interaction between
some components under test and the corresponding test components. For in-
stance, it shows that the test component PTC alarm is created in order to
validate the Alarm2 component. The latter is instructed to use both the testing
data and business data. Thus, PTC alarm sends inputs data which is generated
with the test tag and receive outputs in order to verify that the specified timing
constraint is respected by the new component. Furthermore, affected compo-
sitions are also checked by test components like PTC alarm nurse. Due to the
non testability of the Nurse component, it has been duplicated and the duplicate
component is used while testing the composition under test behavior.

We follow the same principles for the rest of the components under test as
specified in the resource aware test plan. Once the PTCs components terminate

8
http://www.testingtech.com/products/ttworkbench.php

http://www.testingtech.com/products/ttworkbench.php
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Fig. 7. Test components interaction with the affected components under test

their specified behaviors, they are removed from the test configuration. The
MTC component computes the global verdict which is finally displayed to the
test system user through the TTmanGUI. The latter has been implemented
using the Java language and the swing package. It has been packaged as an
OSGi bundle. The Figure 8 shows the proposed graphical user interface also the
final verdict of the executed runtime tests.

Fig. 8. Screenshot of the Prototype TTmanGUI of the TT4RT system

7 Related Work

Recent research activities have been proposed to deal with runtime testing in
dynamic environments. They aim to ensure the correctness of the running system
after reconfiguration. In fact, we distinguish approaches dealing with ubiquitous
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software systems [1], CBA systems [3–5], SOA systems [6, 7], publish/subscribe
systems [2] and autonomic systems [8].

Each of them proposes a test system tightly coupled with the system under
test (SUT). In addition, they did not concentrate on proposing a generic and
platform independent test architecture that evolves when the system under test
evolves too. Moreover, they are based on only one technique to isolate runtime
tests in the aim of reducing the interference between business and test data ex-
cept [8] which supports two kinds of test isolation techniques. These approaches
mostly used a specific language framework such as Junit to write and execute
tests. None of them have used a generic testing language such as TTCN-3.

There have been many efforts on proposing test systems based on the TTCN-3
standard. We distinguish research for testing protocol based applications [15, 22],
Web services [16, 23], Web applications [24–26] and also real time and embedded
systems [27, 28]. To the best of our knowledge, [9] is the only previous paper
presenting ideas on using TTCN-3 standard for online validation and testing of
internet services. However, this work did not deal with test isolation issues when
testing is applied in the production phase.

Unlike these approaches, our work aims at proposing a generic and platform
independent test system based on the TTCN-3 standard to execute runtime
tests. The proposed test system supports different test isolation mechanisms in
order to support testing different kinds of components: test sensitive, test aware
or even non testable components. Such test system has an important impact on
reducing the risk of interference between test behaviors and business behaviors
as well as avoiding overheads and burdens.

8 Conclusion

The work presented in this paper focuses on the use of TTCN-3 standard for
executing runtime tests to reveal component based system inconsistencies and
faults. Our main contribution consists in adding a test isolation layer in the clas-
sic TTCN-3 test system in order to reduce test data interference with business
data at runtime. Furthermore, we add a test management layer that facilitates
the interaction between a test system user and the TT4RT system through a
graphical interface. We illustrated the proposed approach by implementing a
prototype for validating OSGi bundles in the context of telemedicine applica-
tions. In addition, we shortly presented the technical solutions that we employed
for the current implementation of our TT4RT system.

Nevertheless, distributing test configurations in different nodes remains un-
solved. Hence, we are exploring solutions in this area to distribute efficiently
test components with fitting some resource and connectivity constraints. Be-
sides, this work does not deal with test cases generation. All the executed tests
are specified manually. Therefore, we aim to investigate effort in automating
TTCN-3 test cases generation, especially when behavior adaptation occurs. An-
other area to explore is the optimization of test cases selection by re-testing only
the affected parts of the system due to a reconfiguration action.
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Abstract. Passive testing is a technique that aims at testing a run-
ning system by only observing its behavior without introducing any test
input. The non-intrusive nature of passive testing makes it an appropri-
ate technique for interoperability testing, which is an important activity
to ensure the correct collaboration of different network components in
operational environment. In this paper we propose a passive interoper-
ability testing approach, especially for request-response protocols in the
context of client-server communications. According to the interaction
pattern of request-response protocols, the observed interactions (trace)
between the network components under test can be considered as a set
of conversations between client and server. Then, a procedure to map
each test case into these conversations is carried out, which intends to
verify the occurrence of the generated test cases as well as to determine
whether interoperability is achieved. The trace verification procedure has
been automated in a passive testing tool, which analyzes the collected
traces and deduces appropriate verdicts. The proposed method and the
testing tool were put into operation in the first interoperability testing
event of Constrained Application Protocol (CoAP) held in Paris, March
2012 in the scope of the Internet of Things. By using this approach, an
amount of CoAP applications from different vendors were successfully
and efficiently tested, revealing their interoperability degree.

Keywords: Interoperability Testing, Passive Testing, Request-Response
Protocol, CoAP.

1 Introduction

With the development and increasing use of distributed systems, computer com-
munication mode has changed. There is increasing use of clusters of workstations
connected by a high-speed local area network to one or more network servers.
In this environment, resource access leads to communications that are strongly
request-response oriented. This tendency resulted in a large amount of proto-
cols such as Hypertext Transfer Protocol (HTTP)1, Session Initiation Protocol

1
http://tools.ietf.org/html/rfc2616

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 87–102, 2012.
c© IFIP International Federation for Information Processing 2012
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(SIP)2, and very recently the Constrained Application Protocol (CoAP) [1], etc.
Due to the heterogeneous nature of distributed systems, the interoperability of
these protocol applications is becoming a crucial issue. In this context, inter-
operability testing is required before the commercialization to ensure correct
collaboration and guarantee the quality of services.

This paper proposes a methodology for the interoperability testing of request-
response protocols. Specifically, we apply the technique of passive testing, which
aims at testing a running system by only observing its external behavior with-
out disturbing its normal operation. The methodology consists of the following
main steps: (i) Interoperability test purposes extraction from the protocol spec-
ifications. Each test purpose specifies an important property to be verified. (ii)
For each test purpose, an interoperability test case is generated, in which the
detailed events that need to be observed are specified. (iii) Behavior analysis.
In order to verify whether the test purposes are reached, as well as to detect
non-interoperable behavior, traces produced by protocol implementations are
processed by keeping only the client-server conversations with respect to the in-
teraction model of request-response protocols. These conversations will further
be analyzed by a trace verification algorithm to identify the occurrence of the
generated test cases and to emit an appropriate verdict for each of them.

The proposed passive interoperability testing method has been implemented
in a test tool, which was successfully put into operation during ETSI CoAP
Plugtest - the first formal CoAP interoperability testing event held in Paris,
March 2012 in the context of the Internet of Things.

This paper is organized as follows: Section 2 introduces the background and
motivation. Section 3 proposes the methodology for passive interoperability test-
ing of request-response protocols. Section 4 describes the application of this
method on CoAP Plugtest as well as the experimental results. Finally, we con-
clude the paper and suggest further research directions in Section 5.

2 Background and Motivation

The request-response oriented communication is generally used in conjection
with the client-server paradigm to move the data and to distribute the compu-
tations in the system by requesting services from remote servers. The typical
sequence of events in requesting a service from a remote server is: a client en-
tity sends a request to a server entity on a remote host, then a computation is
performed by the server entity. And, finally a response is sent back to the client.

Request-response communications are now common in the fields of networks.
Request-response exchange is typical for database or directory queries and
operations, as well as for many signaling protocols, remote procedure calls or mid-
dleware infrastructures. A typical example is REST (Representational State
Transfer) [10], an architecture for creating Web service. In REST, clients initi-
ate request to servers to manipulate resources identified by standardized Uniform
Resource Identifier (URI). E.g., the HTTP methods GET, POST, PUT and

2
http://www.ietf.org/rfc/rfc3261.txt

http://www.ietf.org/rfc/rfc3261.txt
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DELETE are used to read, create, update and delete the resources. On the other
hand, servers process requests and return appropriate responses. REST is nowa-
days popular, which is applied in almost all of the majorWeb services on the Inter-
net, and considered to be used in the Internet of Things, aiming at extending the
Web to even the most constrained nodes and networks. This goes along the lines of
recent developments, such as Constrained RESTful Environments (CoRE)3 and
CoAP, where smart things are increasingly becoming part of the Internet and the
Web, confirming the importance of request-response communication.

Promoted by the rapid development of computer technology, protocols using
the request-response transaction communications are increasing. Normally, pro-
tocol specifications are defined in a way that the clients and servers interoperate
correctly to provide services. To ensure that they collaborate properly and con-
sequently satisfy customer expectations, protocol testing is an important step to
validate protocol implementations before their commercialization. Among them,
conformance testing [7] verifies whether a protocol application conforms to its
specifications. It allows developers to focus on the fundamental problems of their
protocol implementations. However, it is a well-known fact that, even following
the same standard, clients and servers might not interoperate successfully due
to several reasons: poorly specified protocol options, incompleteness of confor-
mance testing, inconsistency of implementation, etc. These aspects may cause
the interoperable issues in realizing different services. However, the heteroge-
neous nature of computer systems requires interoperability issues to be solved
before the deployment of the product. Therefore, interoperability testing [11] is
required to ensure that different protocol applications communicate correctly
while providing the expected services.

To perform interoperability testing (iop for short in the sequel), the conventional
method is the active testing approach (e.g. [8,4]). It requires to deploy a test system
(TS) that stimulates the implementations under test (IUT) and verify their reac-
tions. Although widely used, active testing has limitations: test can be difficult or
even impossible to perform if the tester is not provided with a direct interface to
stimulate the IUTs, or in operational environment where the normal operation of
IUTs cannot be shutdown or interrupted for a long period of time. On the con-
trary, passive testing represents an alternative, which aims at testing a system by
passively observing its inputs/outputs without interrupting its normal behavior.

Until now, passive testing has been studied and applied to computing systems
to supervise distributed computations, communications networks for fault man-
agement [6], protocol testing [3,5], runtime verification [12], etc. In this paper, we
will provide a passive interoperability testing methodology for request-response
protocols. We have chosen to use passive testing technique for the following ar-
guments: First, passive testing does not insert arbitrary test messages, thus is
suitable for interoperability testing in operational environment as is often con-
cerned by request-response services. Also, passive testing does not introduce
extra overhead into the networks, hence is appropriate for testing in the context
of Internet of Things, where devices are resource limited.

3
http://datatracker.ietf.org/wg/core/charter/
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The work presented in this paper is original. It involves using the non-intrusive
passive testing technique to verify interoperability, where there exist only few
works in the literature. Moreover, the method does not only verify whether the
test purposes are reached, but also detects non-interoperable behavior. Last but
not least, the procedure of trace verification is automated by implementing a tool,
which was successfully put into practice for the test of an important machine-
to-machine communication protocol CoAP. To our knowledge, it was the first
time that passive automated interoperability testing method was applied in an
interoperability testing event, which increased drastically the efficiency, while
keeping the capacity of non-interoperability detection.

3 Interoperability Testing for Request-Response Protocols

3.1 Formal Model

Specification languages for reactive systems can often be given a semantics in terms
of labeled transition systems. In this paper, we use the IOLTS (Input-Output La-
beled Transition System) model [9], which allows differentiating input, output and
internal events while precisely indicating the interfaces specified for each event.

Definition 1. An IOLTS is a tuple M = (QM , ΣM , ΔM , qM0 ) where QM is the
set of states of the systemM with qM0 its initial state. ΣM is the set of observable
events at the interfaces of M . In IOLTS model, input and output actions are
differentiated: We note p?a (resp. p!a) for an input (resp. output) a at interface
p. Γ (q) =def {α ∈ ΣM |∃q′, (q, α, q′) ∈ ΔM} is the set of all possible events at
the state q. ΔM ⊆ QM×(ΣM ∪τ)×QM is the transition relation, where τ /∈ ΣM

stands for an internal action. A transition in M is noted by (q, α, q′) ∈ ΔM .

3.2 Testing Method Overview

The passive interoperability testing architecture (c.f. Fig.1) for request-response
protocols involves a test system and a system under test, composed of two im-
plementations under test, namely a client and a server. In passive iop testing,
the test system has two main roles: (i) Observe and collect the information
exchanged (trace) between the client and the server. (ii)Analyze the collected
trace to check interoperability. Generally, trace verification can be done online
to monitor the system and report abnormalities at any time. Elsewise it can be
done offline, i.e, the traces during the test execution are stored in a file and will
be analyzed in a posteriori manner. As passive testing does not apply any stim-
ulus, testing activity is only based on an accurate level of observation, relying
on the set up of sniffer at point(s) of observation (PO) to observe the messages
exchanged between the client and the server. In this paper we consider black-box
testing: the test system is not aware of the internal structure of IUTs. Only their
external behavior can be verified during their interactions.
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Fig. 1. Passive interoperability testing architecture

The testing procedure is illustrated in Fig.2. It consists of the following main
steps:

Fig. 2. Passive interoperability testing procedure

1. Interoperability test purposes (ITP) selection from protocol specifications.
An ITP is in general informal, in the form of an incomplete sequence of
actions representing a critical property to be verified. Generally it can be
designed by experts or provided by standards guidelines for test selection.
Test purpose is a commonly used method in the field of testing to focus on
the most important properties of a protocol, as it is generally impossible to
validate all possible behavior described in specifications. Nonetheless, an ITP
itself must be correct w.r.t the specification to assure its validity. Formally,
an ITP can be represented by a deterministic and complete IOLTS equipped
with trap states used to select targeted behavior.
ITP = (QITP , ΣITP , �ITP , qITP

0 ) where:

– ΣITP ⊆ ΣSclient∪ΣSserver . where Sclient and Sserver are the specifications
on which the IUTs are based.

– QITP is the set of states. An ITP has a set of trap states AcceptITP ,
indicating the targeted behavior. States in AcceptITP imply that the test
purpose has been reached and are only directly reachable by the observation
of outputs produced by the IUTs.

– ITP is complete, which means that each state allows all actions. This is
done by inserting “∗” label at each state q of the ITP, where “∗ ” is an
abbreviation for the complement set of all other events leaving q. By using
“∗” label, ITP is able to describe a property without taking into account
the complete sequence of detailed specifications interaction.
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2. Once the ITPs chosen, an iop test case (ITC) is generated for each ITP. An
ITC is the detailed set of instructions that need to be taken in order to per-
form the test. The generation of iop test case can be either manual, as usually
done in most of the interoperability events, also for “young” protocols whose
specifications are not yet stable. ITCs can also be generated automatically
by using various formal description techniques existing in the literature such
as [11,4]. Formally, an iop test case ITC is represented by an IOLTS: ITC =
(QITC , ΣITC , ΔITC , qITC

0 ), where qITC
0 is the initial state. {Pass, Fail, In-

conclusive} ∈ QITC are the trap states representing interoperability verdicts.
Respectively, verdict Pass means the ITP is satisfied (AcceptITP is reached)
without any fault detected. Fail means at least one fault is detected, while In-
conclusive means the behavior of IUTs is not faulty, however can not reach the
ITP. ΣITC denotes the observation of the messages from the interfaces. ΔITC

is the transition function. In active testing, ITCs are usually controllable. i.e,
ITC contains stimuli that allow controlling the IUTs. On the contrary, in pas-
sive testing, ITCs are only used to analyze the observed trace produced by
the IUTs. The correct behavior of IUTs implies that the trace produced by
the IUTs should exhibit the events that lead to Pass verdicts described in
the test cases. In the sequel, an ITC is supposed to be deterministic. The set
of test cases is called a test suite. An example of ITP and ITC can be seen on
Fig.6 in Section 4.2.

3. Analyze the observed behavior of the IUTs against each test case and issue
a verdict Pass, Fail or Inconclusive. In this paper we choose offline testing,
where the test cases are pre-computed before they are executed on the trace.

3.3 Request-Response Protocol Passive Interoperability Testing

In offline passive interoperability testing for request-response protocols, the pack-
ets exchanged between the client and server are captured by a packet sniffer. The
collected traces are stored in a file. They are key to conclude whether the protocol
implementations interoperate (c.f. Fig.2).

In passive testing, one issue is that the test system has no knowledge of the
global state where the system under test SUT can be in w.r.t a test case at the
beginning of the trace. In order to realize the trace analysis, a straight way is trace
mapping [6]. This approach compares each event in the trace produced by the SUT
strictly with that in the specification. SUT specification is modeled as a Finite
State Machine (FSM). Recorded trace is mapped into the FSM by backtracking.
Initially, all states in the specification are the possible states that the SUT can be
in. Then, the events in the trace are studied one after the other: the states which
can be led to other states in the FSM by the currently checked event are replaced
by their destination states of the corresponding transitions. Other states are re-
dundant states and removed. After a number of iterations, if the set of possible
states becomes empty, SUT is determined faulty. i.e., it contains a behavior which
contradicts its specification as trace mapping procedure fails. This approach how-
ever, has some limitations. First, to model a complex network by a single FSM
maybe complex. Moreover, this approach does not suit interoperability testing: as
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the SUT concerned in interoperability testing involves several IUTs, therefore to
calculate their global behavior encounters state explosion.

In [5], another method called invariant approach was introduced. Each invari-
ant represents an important property of the SUT extracted from the specification.
It is composed of a preamble and a test part, which are cause-effect events re-
spectively w.r.t the property. The invariant is then used to process the trace: The
correct behavior of the SUT requires that the trace exhibit the whole invariant.

In this paper, we propose another solution to perform passive trace verifica-
tion. The idea is to make use of the special interaction model of request-response
protocols. As the interoperability testing of this kind of protocol essentially
involves verifying the correct transactions between the client and the server,
therefore each test case consists of the dialogues (requests and responses) made
between them, and generally starts with a request from the client. A strategy is
as follows: (i) the recorded trace is filtered to keep only the messages that belong
to the tested request-response protocol. In this way, the trace only contains the
conversations made between the client and the server. (ii) Each event in the
filtered trace will be checked one after another according to the following rules,
which correspond to the algorithm of trace verification (c.f. Algorithm 1). This
algorithm aims at mapping the test case into the trace. i.e., to match a test case
with the corresponding conversation(s) in the trace. Recall that in our work,
each test case specify the events that lead to verdicts Pass, Fail or Inconclusive
assigned on its trap states. Therefore, if a test case is identified on the trace, we
can check whether it is respected by comparing each message of the test case
with that in its corresponding conversation(s), and emitting a verdict once an
associated verdict is reached.

1. If the currently checked message is a request sent by the client, we verify
whether it corresponds to the first message of (at least one of) the test cases
(noted TCi) in the test suite TS. If it is the case, we keep track of these test
cases TCi, as the matching of messages implies that TCi might be exhibited
on the trace. We call these TCi candidate test cases. The set of candidate test
cases is noted TC. Specifically, the currently checked state in each candidate
test case is kept in memory (noted Currenti).

2. If the currently checked message is a response sent by the server, we check if
this response corresponds to an event of each candidate test cases TCi at its
currently checked state (memorized by Currenti). If it is the case, we further
check if this response leads to a verdict Pass, Fail or Inconclusive. If it is the
case, the corresponding verdict is emitted to the related test case. Otherwise
we move to the next state of the currently checked state of TCi, which can
be reached by the transition label - the currently checked message. On the
contrary, if the response does not correspond to any event at the currently
checked state in a candidate test case TCi, we remove this TCi from the set
of the candidate test cases TC.

3. Besides, we need a counter for each test case. This is because in passive
testing, a test case can be met several times during the interactions between
the client and the server due to the non-controllable nature of passive testing.
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The counter Counteri for each test case TCi is initially set to zero. Each
time a verdict is emitted for TCi, the counter increments by 1. Also, a verdict
emitted for a candidate test case TCi each time when it is met is recorded,
noted verdict.TCi.Counteri. For example, verdict.TC1.1=Pass represents a
sub-verdict attributed to test case TC1 when it is encountered the first time
in the trace. All the obtained sub-verdicts are recorded in a set verdict.TCi.
It helps further assign a global verdict for this test case.

4. The global verdict for each test case is emitted by taking into account all its sub-
verdicts recorded in verdict.TCi. Finally, a global verdict for TCi is Pass if all
its sub-verdicts arePass. Inconclusive if at least one sub-verdict is Inconclusive,
but no sub-verdict is Fail. Fail, if at least one sub-verdict is Fail.

Algorithm 1. Trace verification for request-response protocols
Input: filtered trace σ, test suite TS
Output: verdict.TCi

Initialization: TC = ∅, Counteri = 0, Currenti = q
TCi
0 , verdict.TCi = ∅ ;

while σ �= ∅ do
σ=α.σ′ ;
if α is a request then

for TCi ∈ TS do
if α ∈ Γ (Currenti) then

TC = TC ∪ TCi /*Candidate test cases are added into the candidate test
case set*/;

Currenti=Nexti where (Currenti, α,Nexti) ∈ ΔTCi

end

end

end
else

for TCi ∈ TC do
if α ∈ Γ (Currenti) then

Currenti=Nexti where (Currenti, α,Nexti) ∈ ΔTCi ;
if Nexti ∈ {Pass, Fail, Inconclusive} then

Counteri=Counteri+1 ;
verdict.TCi.Counteri=Nexti /* Emit the corresponding verdict to
the test case*/;
verdict.TCi= verdict.TCi ∪ verdict.TCi.Counteri

end

end
else

TC=TC \ TCi

end

end

end

end
return verdict.TCi

The complexity of the algorithm is O(M × N), where M is the size of the
trace, N the number of candidate test cases. The trace verification procedure
in fact, aims at looking for the possible test cases that might be exhibited in
the trace by checking each event taken in order from the trace. Regarding the
transaction mode of request-response protocols, each filtered traces are in fact
composed of a set of conversations. The objective of the algorithm is intended
to match the test cases with the conversations, so that the occurrence of the
test cases in the trace is identified. By comparing each message of the test case
with that of its corresponding conversation(s), we can determine whether IUTs
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interactions are as expected as they are described by the test cases. Moreover,
the possibility that a test case can appear several times in the trace is also taken
into account. Therefore the global verdict for a given test case is based on the
set of subverdicts, increasing the reliability of interoperability testing. Not only
we can verify whether the test purposes are reached, but also non-interoperable
behavior can be detected due to the difference between obtained subverdicts.

3.4 Passive Testing Tool

To realize trace verification, we have developed a passive testing tool [2], which
aims to automate the process of trace verification. A description of this tool is
given in Fig.3.

Fig. 3. Passive interoperability testing tool

The tool is implemented in language Python34 mainly for its advantages: easy
to understand, rapid prototyping and extensive library. The tool is influenced by
TTCN-35. It implements basic TTCN-3 snapshots, behavior trees, ports, timers,
messages types, templates, etc. However it provides several improvements, for
example object-oriented message types definitions, automatic computation of
message values, interfaces for supporting multiple input and presentation format,
implementing generic codecs to support a wide range of protocols, etc. These
features makes the tool flexible, allowing to realize passive testing.

As illustrated in Fig.3, a web interface (HTTP frontend) was developed.
Traces produced by client and server implementations of a request-response pro-
tocol, captured by the packet sniffer are submitted via the interface. Specifically
in our work, the traces should be submitted in pcap format6. Each time a trace
is submitted, it is then dealt by a preprossesor to filter only the messages rele-
vant to the tested request-response protocol, i.e., to keep only the conversations
made between the client and server.

The next step is trace verification, which takes into two files as input: the set of
test cases and the filtered trace. The trace is analyzed according to Algorithm 1,
where test cases are verified on the trace to check their occurrence and validity.

4
http://www.python.org/getit/releases/3.0/

5
http://www.ttcn-3.org/

6
http://www.tcpdump.org/

http://www.python.org/getit/releases/3.0/
http://www.ttcn-3.org/
http://www.tcpdump.org/
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Finally, unrelated test cases are filtered out, while other test cases are associated
with a verdict Pass, Fail or Inconclusive. The results are then reported from the
HTTP frontend: Not only the verdict is reported, also the reasons in case of Fail
or Inconclusive verdicts are explicitly given, so that users can understand the
blocking issues of interoperability (c.f. a use case in Section 4.3).

4 Experimentation

The proposed passive interoperability testing method for request-response pro-
tocols has been put into operation in the CoAP Plugtest - the first formal CoAP
interoperability testing event in the context of the Internet of Things.

4.1 CoAP Protocol Overview

The Internet of Things (IoT) is a novel paradigm that is rapidly gaining ground in
the field of modern wireless telecommunications. It combines the general mean-
ing of the term ‘Internet’ with smart objects, such as sensors, Radio-Frequency
IDentication (RFID) tags, mobile phones, etc. which are able to interact with
each other and cooperate to reach common goals. However, applications in the
context of IoT are typically resource limited: they are often battery powered
and equipped with slow micro-controllers and small RAMs and ROMs. The
data transfer is performed over low bandwidth and high packet error rates,
and the communication is often machine-to-machine. To deal with the vari-
ous challenging issues of constrained environment, the Constrained Application
Protocol (CoAP) has been designed by Constrained RESTful Environments
(CoRE) working group7 to make it possible to provide resource constrained
devices with Web service functionalities.

CoAP protocol is a request-response style protocol. A CoAP request is sent by
a client to request an action on a resource identified by a URI on a server. The
server then sends a response, which may include a resource representation. CoAP
is consist of two-layers (c.f. Fig.4): (i) CoAP transaction layer deals with UDP
and the asynchronous interactions. Four types of message are defined at this
layer: Confirmable (CON, messages require acknowledgment), Non-Confirmable
(NON, messages do not require acknowledgment), Acknowledgment (ACK, an
acknowledgment to a CON message), and Reset (RST, messages indicate that
a Confirmable message was received, but some context is missing to properly
process it. eg. the node has rebooted). (ii) CoAP Request/Response layer is
responsible for the transmission of requests and responses for resource manipu-
lation and interoperation. CoAP supports four request methods: GET retrieves
the resource identified by the request URI. POST requests the server to up-
date/create a new resource under the requested URI. PUT requests that the
resource identified by the request URI to be updated with the enclosed message
body. DELETE requests that the resource identified by the request URI to be
deleted.

7
http://datatracker.ietf.org/wg/core/charter/

http://datatracker.ietf.org/wg/core/charter/
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Fig. 4. Protocol stack of CoAP

4.2 Test Purposes and Test Cases

As one of the most important protocol for the future Internet of Things, the
application of CoAP is potentially wide, especially concerning energy, building
automation and other M2M applications that deal with manipulation of vari-
ous resources on constrained networks. For that CoAP applications be widely
adopted by the industry, hardware and software implementations from different
vendors need to interoperate and perform well together. Regarding the specifi-
cations of CoAP [1], a set of 27 interoperability test purposes are selected. To
ensure that the ITPs are correct w.r.t the specifications, the ITPs were chosen
and cross-validated by experts from ETSI8, IRISA9 and BUPT10, and reviewed
by IPSO alliance. The test purposes concern the following properties:

– Basic CoAP methods GET, PUT, POST and DELETE. This group of tests
involves in verifying that both CoAP client and server interoperate correctly
w.r.t different methods as specified in [1], even in lossy context as often en-
countered by M2M communication. (c.f. an example in Fig.5-(a)).

– Resource discovery11. As CoAP applications are considered to be M2M, they
must be able to discover each other and their resources. Thus, CoAP stan-
dardizes a resource discovery format defining a path prefix for resource as
/.well-known/core. The interoperability testing of resource discovery requires
verifying that: when the client requests /.well-known/core resource, the server
sends a response containing the payload indicating all the available links.

– Block-wise transfer12 : CoAP is based on datagram transports such as UDP,
which limits the maximum size of resource representations (64 KB) that can
be transferred. In order to handle large payloads, CoAP defines an option
Block, in order that large sized resource representation can be divided in
several blocks and transferred in multiple request-response pairs. The inter-
operability testing of this property therefore involves in verifying that: when
the client requests or creates large payload on the server, the server should
react correctly to the requests (c.f. an example in Fig.5-(b)).

– Resource observation13 is an important property of CoAP applications, which
provides a built-in push model where a subscription interface is provided for

8
http://www.etsi.org/WebSite/homepage.aspx

9
http://www.irisa.fr/

10
http://www.bupt.edu.cn/

11
http://tools.ietf.org/id/draft-shelby-core-link-format-00.txt

12
http://tools.ietf.org/html/draft-ietf-core-block-08

13
http://tools.ietf.org/html/draft-ietf-core-observe-04

http://www.etsi.org/WebSite/homepage.aspx
http://www.irisa.fr/
http://www.bupt.edu.cn/
http://tools.ietf.org/id/draft-shelby-core-link-format-00.txt
http://tools.ietf.org/html/draft-ietf-core-block-08
http://tools.ietf.org/html/draft-ietf-core-observe-04
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client to request a response whenever a resource changes. This push is accom-
plished by the device with the resource of interest by sending the response
message with the latest change to the subscriber. The interoperability test-
ing of this property consists of: upon different requests sent by the client to
register or cancel its interest for a specific resource, the server should react
correctly. i.e., it adds the client to the list of observers for the resource in the
former case, while remove it from the list in the latter case (c.f. an example
in Fig.5-(c)).

The following figure demonstrates some typical examples of CoAP transactions.
Fig.5-(a) illustrates a confirmable request sent by the client, asking for the re-
source of humidity. Upon the reception of the request, the server acknowledges
the message, transferring the payload while echoing the Message ID generated
by the client. Fig.5-(b) illustrate a block-wise transfer of a large payload (hu-
midity) requested by the client. Upon the reception of the request, the server
divides the resource into 4 blocks and transfers them separately to the client.
Each response indicates the block number and size, as well as whether there
are further blocks (indicated by value m). Fig 5-(c) illustrates an example of
resource observation, including registration and cancellation. At first, the client
registers its interest in humidity resource by indicating Observe option. After a
while, it cancels its intention by sending another GET request on the resource
without Observe option.

Fig. 5. CoAP transaction examples

Once the set of test purposes are defined, a test case is derived for each test
purpose. The following figure shows an example. The test purpose focuses on
the GET method in confirmable transaction mode. i.e., when the client sends
a GET request (It implies parameters: a Message ID, Type=0 for confirmable
transaction mode, Code=1 for GET method. The parameters are omitted in
the figure due to the limitation of space), the server’s response contains an
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acknowledgment, echoing the same Message ID, as well as the resource presen-
tation (Code=69(2.05 Content)). The corresponding test case is illustrated in
Fig.6-(b). The bold part of the test case represents the expected behavior that
leads to Pass verdict. Behavior that is not forbidden by the specifications leads
to Inconclusive verdict (for example, response contains a code other than 69.
These events are noted by m in the figure for the sake of simplicity). However
other unexpected behavior leads to Fail verdict (labeled by Otherwise). The test
cases are derived, validated by the experts of IRISA, BUPT, ETSI and IPSO
Alliance w.r.t the specifications of CoAP. They are implemented in the testing
tool, taking into account all the verdicts. For simplicity, during the test event,
only expected behavior to be observed is provided to the users as test specifica-
tion document (Fig.6-(c)). Nevertheless, in case of Inconclusive or Fail verdicts,
an explication will be provided to the users.

Fig. 6. Example of test purpose and test case

4.3 CoAP Plugtest

CoAP Plugtest14 is the first formal interoperability event, held in Paris, March
2012 during two days for CoAP protocol in the scope of Internet of Things. It was
co-organized by the Probe-IT15 (the European project in the context of Internet
of things), the IPSO Alliance and ETSI16 (the European Telecommunication
Standard Institute). The objective of the CoAP plugtest is to enable CoAP im-
plementation vendors to test end to end interoperability with each other. Also,
it is an opportunity for standards development organization to review the ambi-
guities in the protocol specifications. 15 main developers and vendors of CoAP
implementations, such as Sensinode17, Watteco18, Actility19, etc. participated
in the event. Test sessions are scheduled by ETSI so that each participant can
test their products with all the other partners.

14
http://www.etsi.org/plugtests/coap/coap.htm

15
http://www.probe-it.eu/

16
http://www.etsi.org/

17
http://www.sensinode.com/

18
http://www.watteco.com/

19
http://www.actility.com/

http://www.etsi.org/plugtests/coap/coap.htm
http://www.probe-it.eu/
http://www.etsi.org/
http://www.sensinode.com/
http://www.watteco.com/
http://www.actility.com/
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The testing method is based on the technique of passive testing as described
in Section 3. During the test, the participants start launching their equipments.
Packets exchanged between CoAP implementations (CoAP client and CoAP
server) were captured by using Wireshark20. Captured traces were analyzed
against the test cases by using the passive testing tool presented in Section 3.4.
For CoAP Plugtest, the tool was developed to support the message formats of the
CoAP drafts. It checks the basic message type code as well as parameters such
as token or message ID. CoAP test suite is implemented. During the plugtest,
410 traces produced by the CoAP devices were captured and then submitted
and processed by the passive validation tool. Received traces are filtered, parsed
and analyzed against the test cases. And an appropriate verdict Pass, Fail, or
Inconclusive is issued for each test purpose. A use case of the tool is as follows:

Fig. 7. Trace verification tool use case

The top left image is the user interface of the tool. Users can submit their
traces in pcap format. Then, the tool will execute the trace verification algorithm
and return back the results as shown at the top right corner in the summary
table. In this table, the number of occurrence of each test case in the trace
is counted, as well as a verdict Pass, Fail or Inconc(lusive) is given ( For a
test case which does not appear in the trace, it is marked as “none” and will
not be verified on the trace). Moreover, users can view the details about the
verdict for each test case. In this example, test case TD COAP CORE 1 (GET
method in CON mode) is met 7 times in the trace. The verdict is Inconclusive,
as explained by the tool: CoAP.code ValueMismatch (cf. the bottom of Fig.7).

20
http://www.wireshark.org/

http://www.wireshark.org/
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In fact, according to the test case, after that the client sends a request (with
Type value 0 and Code value 1 for a confirmable GET message), the server
should send a response containing Code value 69(2.05 Content). However in the
obtained trace, the server’s response contains Code value 80, indicating that the
request is successfully received without further information. This response is not
forbidden in the specification, however does not allow to satisfy the test case. In
fact, the same situation exists in all the other conversations that correspond to
this test case. Therefore, the global verdict for this test purpose is Inconclusive.

4.4 Results

The CoAP plugtest was a success with regards to the number of executed tests
(3081) and the test results (shown in the sequel). The feedback from participants
on the testing method and passive validation tool is positive mainly due to the
following aspects:

– To our knowledge, it is the first time that an interoperability event is con-
ducted by using automatic passive testing approach. In fact, conventional in-
teroperability methods that rely on active testing are often complicated and
error-prone. According to our previous experience [8], active testing requires
usually experts for installation, configuration, and cannot be run reliably by
the vendors. Also, test cases are not flexible, as they involve the ordering of
tests, needs to re-run a test, etc. Moreover, inappropriate test configuration
cause often false verdicts. By using passive testing, complicated test config-
uration is avoided. Bug fixes in the tool do not require re-running the test.
Moreover, it provides the ability to test products in operational environment.

– Also, the passive testing tool shows its various advantages: By using passive
testing tool, the participants only need to submit their traces via a web inter-
face. The human readable test reports provided by the validation tool makes
the reason of non-interoperable behavior be clear at a glance. Besides, another
advantage of the validation tool is that it can be used outside of an interoper-
ability event. In fact, the participants started trying the tool one week before
the event by submitting more than 200 traces via internet. This allows the
participants to prepare in advance the test event. Also, passive automated
trace analysis allows to considerably increase the efficiency. During the CoAP
plugtest, 3081 tests were executed within two days, which are considerable.
Compared with past conventional plugtest event, e.g. IMS InterOp Plugtest21,
900 tests in 3 days, the number of test execution and validation benefited a
drastic increase.

– Moreover, the passive testing tool not only validates test purposes, but also
shows its capability of non-interoperability detection: Among all the traces,
5.9% reveal non-interoperability w.r.t basic RESTful methods; 7.8% for Link
Format, 13.4% for Blockwise transfer and 4.3% for resource observation. The
results help the vendors discover the blocking issues and to achieve higher
quality implementations.

21
http://www.etsi.org/plugtests/ims2/About_IMS2.htm

http://www.etsi.org/plugtests/ims2/About_IMS2.htm
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5 Conclusion and Future Work

In this paper, we have proposed a passive interoperability testing methodology
for request-response protocols. According to their interaction mode, the traces
collected during the test were analyzed to verify the occurrence of the test cases.
Also, interoperability is determined by comparing each event in the test case
with that of its related conversation(s) in the trace. The trace verification proce-
dure has been automated by implementing a testing tool, which was successfully
put into operation in the first interoperability testing event of CoAP protocol,
where an amount of protocol applications were tested, and non-interoperable
behavior was detected. Future work intends to improve the passive validation
tool. E.g online trace verification and solutions to solve message overlapping will
be considered. Also, the tool is considered to be extended to a wider range of
protocols and more complex test configurations.
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Abstract. This work focuses on testing the consistency of distributed
and adaptable systems. In this context, Runtime Testing which is carried
out on the final execution environment is emerging as a new solution for
quality assurance and validation of these systems. This activity can be
costly and resource consuming especially when execution environment is
shared between the software system and the test system. To overcome
this challenging problem, we propose a new approach to design a resource
aware test architecture. We consider the best usage of available resources
(such as CPU load, memory, battery level, etc.) in the execution nodes
while assigning the test components to them. Hence, this work describes
basically a method for test component placement in the execution en-
vironment based on an existing model called Multiple Multidimensional
Knapsack Problem. A tool based on the constraint programming Choco
library has been also implemented.

1 Introduction

Adaptable and distributed systems are characterized by the possibility of dy-
namically changing their behaviors or structures at runtime in order to preserve
their usefulness and achieve new requirements. They evolve continuously by in-
tegrating new components, deleting faulty or unneeded ones and substituting
old components by new versions without service interruption.

In order to preserve the system safety and consistency and to check functional
as well as non-functional requirements during and after dynamic adaptation, a
validation technique, such as Runtime Testing, has to be applied. It is defined
in [1] as any testing method that has to be carried out in the final execution
environment of a system while it is performing its normal work.

In a previous work [2], we have proposed a flexible and evolvable distributed test
architecturemade of two kinds of test components. These test components execute
unit tests (respectively integration tests) on the affected components (respectively
component compositions) with the aim of detecting reconfiguration faults. To do

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 103–118, 2012.
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this, they send stimuli to the System Under Test (SUT) in order to verify that it
responds as expected. The main challenging problem here is that the test execu-
tion is done while the SUT is running. Also, test components are usually deployed
and executed in the same execution environment with the SUT. Consequently,
SUT performance can be highly influenced especially when execution nodes have
scarce resources or testing processes are very resource consuming.

Therefore, placing efficiently test components can be a useful solution to re-
duce runtime testing cost. This activity has to be resource aware by respecting
all resource constraints in order not to disturb the SUT performance and not
burden the execution nodes.

Various research efforts have addressed the resource aware testing activity
such as [3,4]. They focus mainly on optimizing the generation of test cases with
the best usage of available resources. To our best knowledge, there is only two
visible research works [5,6] being carried out the issue of test component place-
ment with respecting only some resource constraints and some user preferences.
Connectivity constraints which are stated with the aim of reducing communi-
cations cost over the network between components under test and testers are
ignored in these approaches.

In this paper, we propose a resource aware test architecture design phase be-
fore executing runtime tests while the system evolves dynamically. Essentially,
we have studied the issue of test component placement in a shared execution
environment with the SUT. Two main kinds of constraints are considered : re-
source and connectivity constraints. Hence, the most important question to be
tackled in this paper is: How to place test components in the adequate nodes in
order to fit these constraints? To solve this problem, we have modeled it using
an existing model in the combinatorial optimization area, called Multiple Multi-
dimensional Knapsack Problem. In addition, an implementation of a tool based
on the Choco solver has been presented. Also, some experiments have been done
to evaluate the proposed approach.

The remainder of this paper is organized as follows. We begin by a motivating
example in Section 2. A brief description of related work is addressed in section
3. Section 4 overviews the resource aware test architecture design phase and
outlines particularly the test component placement over the execution nodes
fitting resource and connectivity constraints. In Section 5, we present our test
component placement method based on the Knapsack Problem (KP) model.
First, we introduce concisely the background of the standard KP and its diverse
forms. Next, we illustrate the mathematical modeling of the placement problem
using a new KP variant called Multiple Multidimensional Knapsack Problem.
The realization of this approach is provided in Section 6. Some experiments for
execution time measuring of the placement method are conducted in section 7.
Finally, Section 8 concludes the paper and draws some future work.

2 Motivating Example

Consider an execution environment made of four nodes (N1,N2,N3 and N4)
which are offering some free resources as illustrated in table 1. Some software
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components (C1,C2,C3,C4 and C5) are running and distributed among these
nodes. We assume that a dynamic reconfiguration occurs and all these compo-
nents are affected by this modification. Thus, they have to be tested in order to
ensure that they still behave as intended.

Table 1. Execution node characteristics

Nodes Free RAM CPU Load Components

N1 50 % 20 % C1, C2

N2 40 % 30 % C3

N3 35 % 50% C4

N4 60 % 60 % C5

Table 2. Test component characteristics

Testers Required RAM CPU usage CUTs

T1 10 % 10 % C1

T2 10 % 5 % C2

T3 15 % 10 % C4

T4 20 % 15 % C5

For this reason, some test components have to be deployed in this shared
execution environment. These test components require some computational re-
sources as depicted in table 2. With the aim of not disturbing the running SUT
and reducing test burdens, they have to be assigned to the execution nodes effi-
ciently while fitting some resource constraints. In this example, we consider just
two kinds of computational resources: RAM and CPU. It is worthy to note that
others resources like battery level and hard disk space can be included. Further-
more, we assume for simplicity that memories and processors in execution nodes
have approximately the same capacities.

Fig. 1. Execution environment modeling using graphs

Besides resource constraints, connectivity issue in the execution environment
has to be also tackled. If all nodes are connected together as a strongly connex
graph or even a connex graph (see Figure 1 (a), (b)), test components can be
assigned to any node in the environment in order to perform runtime tests.
Nevertheless, we are faced sometimes with some connectivity problems1 that
can be arisen due to Firewalls, non-routing networks [7], node mobility, etc. In
this case, connectivity constraints have to be considered while assigning test
components to nodes. For example, while non routing is performed between
the node N4 and the rest of the execution environment as depicted in Figure
1 (c) the test component T 4, which is responsible of testing the component
under test (CUT) C5, can be hosted only in the node N4. It is not allowed to
place T 4 in N1, N2 or even N3 because no route is available to communicate

1 For instance, wireless communication networks are characterized by frequent and
unpredictable changes in connectivity.
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with the component under test C5. In the same way, the other test components
can be assigned to any node except N4. This illustrative example is detailed
progressively in the following sections of the paper. Placement solutions are also
given in section 5.

3 Related Work

Since runtime testing is performed while the system is operational, the business
process execution may be affected by testing activities and the system perfor-
mance may be negatively influenced. Therefore, test isolation techniques (such
as SUT duplication, tagging, SUT blocking, etc.) are required to separate testing
processes from business processes [8,9,10]. In addition, testing activities have to
be resource aware with the aim of minimizing execution nodes burdens while
runtime tests are executed. The first issue is out of the scope of this paper. We
mainly concentrate on studying the resource aware testing activity [3,4].

Fitting resource and connectivity constraints while testing distributed and
adaptable systems at runtime is included in a larger class called context aware
testing [11,12]. The latter has recently emerged to validate especially new class
of software systems which are context aware and adaptive, also known as Ubiqui-
tous or Pervasive systems [4]. This kind of systems can sense their surrounding
environment and adapt their behavior accordingly. In [13], the author generally
defines the context as any information that can be used to characterize the sit-
uation of an entity (which can be a person, a machine or any object including
a service, a software component, or data). He divides context into two main
categories: external context (which contains information about the users, their
location, time, etc.) and resource context (which describes the available resources
on nodes and communication links like memory, CPU load, battery level, band-
width between two nodes, etc.). Various research efforts have addressed testing
activity with considering resource context such as [3,4]. They focus mainly on
optimizing the generation of test cases with the best usage of available resources
but without studying the placement and the deployment cost of test components.

To our best knowledge, there is only two visible research works related to
test component placement under resource constraints and user preferences. In
the first work [5], the authors propose a function for distributing a set of test
components, which are belonging to a test configuration implemented in TTCN-
3 standard2[14], on different test nodes (computers that are dedicated for test
execution). The proposed mathematical function is applied at deployment time
separately for each test component in order to assign it to a node where it will
be deployed and also executed. It considers two types of parameters when dis-
tributing test components in the adequate test nodes: external parameters such
as CPU load, memory consumption and internal parameters like the number of
components that can be hosted in a specific test node. The second work pre-
sented in [6] mainly focuses on the dynamic deployment of test components also

2 Testing and Test Control Notation version 3 (TTCN-3) standard offers a standard-
ized test notation and an execution platform facilitating the deployment and the
execution of test components, http://www.ttcn-3.org/

http://www.ttcn-3.org/
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implemented in TTCN-3 standard. It proposes an approach for designing load
tests and distributing test components efficiently with considering the available
workstation resources. The major problem here is that these approaches do not
define explicitly the proposed distributed function used for test components as-
signment to test nodes. Moreover, they focus mainly on computational resources
and they ignore connectivity constraints.

Unlike these approaches, our work aims at defining a novel method for assign-
ing test components to execution nodes in a way fitting both resource and con-
nectivity constraints. This challenging issue has been widely addressed in other
research areas. First, an interesting work is presented in [15] that aims to opti-
mize resource allocation and the placement of Java components by using a graph
mapping approach. The latter consists in modeling the application by a software
graph and the execution environment by a hardware graph. The main purpose
here is to map as best as possible the software graph on the hardware graph. Other
approaches have studied the placement issue based on constraint programming,
which aims to model and solve combinatory problems, such as [16,17]. By extend-
ing the Multiple Knapsack Problem model, [16] proposes a method for assigning
sensors in virtual environments. Hermenier [17] presents a flexible architecture
that adapts the placement of virtual machines in grids with response to require-
ments analysis, resources states and some placement constraints defined by the
user. The problem here is similar to Two-Dimensional Bin Packing problem. The
classical problem consists in packing objects with different volumes into a finite
number of bins having a predefined capacity in a way that minimizes the number
of bins used. Following the same principle, Hermenier’s work aims to minimize
the number of nodes in the grid involved in the placement of virtual machines
while satisfying resource constraints such as CPU load and memory consump-
tion. Both introduced approaches use the Choco solver [18] in order to solve the
placement problem. In the rest of this paper, our proposal that is inspired from
the constraint programming based approaches will be highlighted.

4 Resource Aware Test Architecture Design

After a dynamic evolution of the system, runtime testing process is started to
validate these changes. Only the affected parts of the system are considered
in the testing activity. In Figure 2, two fundamental steps are outlined: Test
Architecture Design and Test Component Placement. They will be detailed in
the following subsections.

4.1 Test Architecture Design

This activity consists in defining for each affected component or composition the
kind of test component to deploy and the test cases to execute. As illustrated
in Figure 3, the elements involved in a distributed test architecture (DTA),
their kind and their number depend on the affected parts of the system by a
reconfiguration action. In our previous work [2], we defined a Single Component
Tester (SCT) which is in charge of executing unit tests once a single component



108 M. Lahami et al.

Fig. 2. Resource Aware Test Architecture Design
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Fig. 3. Overview of a detailed Distributed Test Architecture

has been changed or newly added at runtime. Moreover,Component Composition
Tester (CCT) is introduced to validate the affected component compositions.
These two kinds of testers communicate with a Test System Coordinator (TSC)
which is charged with generating a global verdict depending on local verdicts of
SCTs and CCTs.

In this work, we suppose that for each adaptation process a test manager which
is responsible for controlling and managing all the runtime testing processes is
introduced. It defines the adequate test architecture and assigns test cases. We
also assume that during deployment phase, test cases are available and stored
in a repository for further use. They can be also updated or new ones can be
added if behavioral adaptations occur.

4.2 Test Component Placement

Once the distributed test architecture is elaborated, we have to assign its con-
stituents to the execution nodes. It is worth noting that in this work we focus on
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assigning mainly single components testers to the execution nodes. The place-
ment issue of component composition testers is out the scope of this paper.

Test component placement is more challenging when tests are executed at
runtime. In fact, test components may share the same execution environment
with the running SUT. This may burden some execution nodes of the SUT and
may have a bad impact on the SUT performance. Also, it may sometimes cause
malfunctions. To resolve this problem, we concentrate in this work on proposing
a new method for adapting the test components deployment at runtime to the
resource situation of the execution nodes and also to connectivity constraints.

– Consideration of Resource Allocation Issue

We first introduce the considered resources for nodes as well as for test compo-
nents. For each node in the execution environment, three resources are moni-
tored during SUT execution: the available memory, the provided CPU and the
battery level. The value of each resource can be directly captured on each node
through the use of internal monitors. These values are measured after the runtime
reconfiguration and before starting the testing activity.

For each test component, we introduce the memory size (the memory occu-
pation needed by a test component in execution), CPU load and battery con-
sumption properties. We suppose that these properties values are provided by
the test manager. It is also worth noting that some techniques are available in
the literature for obtaining the required resources by testers. For example in [5],
the authors propose a preliminary test to learn about some required resources
such as the amount of memory allocated by a test component, the time needed
to execute the test behavior, etc.

– Consideration of Connectivity Issue

Regarding the connectivity constraints, we consider that each test component
has to find at least one route to communicate with the component under test.
As mentioned before, this constraint can be ignored when all nodes are com-
municating together. In this case, the execution environment is modeled as a
connected graph. Recall that in the graph theory, a graph is connected if for
every pair of vertices, there is a path in the graph between those vertices. Hence,
each test component can be assigned to any node and it can communicate with
the node under test either locally or remotely.

In the worst case, whereas some connectivity problems occur [7], the execution
environment is considered not connected. In this situation, the graph is obviously
decomposed in several connected components as we have seen in the illustrative
example (see Figure 1 (c)). Therefore, for each test component we have to pin-
point a set of forbidden nodes to avoid when the placement procedure is done.
For instance, the set of forbidden nodes for the test component T 1 contains N4.
From a technical perspective, either depth-first3 or breadth-first4 algorithm can

3
http://en.wikipedia.org/wiki/Depth-first_search

4
http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
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be used to firstly identify the connected components and secondly to compute
the forbidden nodes for each test component involved in the test architecture.

We can also associate for each node a profit. While the tester is placed in
the same node with the component under test, the profit is maximal because
the communications cost over the network will be reduced. It decreases once the
tester is placed far from the component under test.

In the rest of this paper, we suppose that the execution environment has been
modeled as a connex graph. Even when the obtained graph is disconnected,
we have to compute the connected components and apply the same adopted
method for placement to these sub-graphs. In the next section, we formalize the
placement problem using a variant of the Knapsack Problem under assumptions
like: provided resources for each node are accessible and required resources for
each test component are available too.

5 Mathematical Modeling of the Test Component
Placement

5.1 Background

The Knapsack Problem (KP) is a well-studied, NP-hard combinatorial opti-
mization problem. It has been used to model different applications for instance
in computer science and financial management. It considers a set of n objects
O = o1, . . . , on and a knapsack of capacity W . Each object oj has an associated
profit pj and weight wj . The objective is to find a subset S ⊆ O in such a way
that the weight sum over the objects in S does not exceed the knapsack capacity
and yields a maximum profit [19,20,21].

The most basic form of Knapsack Problem (KP) is formulated as follows:

KP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maximize z =
n∑

j=1

pjxj

subject to
n∑

j=1

wjxj ≤ W

xj ∈ {0, 1} ∀j ∈ {1, · · · , n}

In the literature, we found many variants of this problem. Due to space limita-
tions, we describe in details only the two models used in our context:

The Multidimensional Knapsack Problem (MDKP). is also called Multi-
ply constrained Knapsack Problem or m-dimensional knapsack problem. It can
be viewed as a resource allocation model and can be modeled as follows:

MDKP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maximize z =
n∑

j=1

pjxj

subject to
n∑

j=1

wijxj ≤ ci ∀i ∈ {1, · · · ,m}

xj ∈ {0, 1} ∀j ∈ {1, · · · , n}
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Where a set of n items with profits pj > 0 and m resources with capacities
ci > 0 are given. Each item j consumes an amount wij ≥ 0 from each resource i.
The 0-1 decision variables xj indicate which items are selected. The main purpose
is to choose a subset of items with maximum total profit. Selected items must not
exceed resource capacities. This is expressed by the knapsack constraints [21].
Obviously, the KP is a special case of the multidimensional knapsack problem
with m = 1.

The 0-1 Multiple Knapsack Problem (0-1 MKP). is the problem of as-
signing a subset of n items to m distinct knapsacks having different capacities
[22,23]. It is also referenced as the 0-1 integer programming problem or the 0-1
linear programming problem. More formally, a MKP is stated as follows:

MKP =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize z =
m∑
i=1

n∑
j=1

pjxij

subject to
n∑

j=1

wjxij ≤ Wi ∀i ∈ {1, · · · ,m}
m∑
i=1

xij ≤ 1 ∀j ∈ {1, · · · , n}

xij ∈ {0, 1} ∀j ∈ {1, · · · , n} and ∀i ∈ {1, · · · ,m}

5.2 Our Mathematical Modeling

Mathematically, our placement problem can be modeled by merging the two
introduced knapsack variants: multidimensional and multiple knapsack prob-
lems. The obtained model is called Multiple Multidimensional Knapsack Prob-
lem (MMKP). It is worthy to note that this new variant of the standard KP
has been rarely addressed in the literature except in [24]. We assume that the
execution environment consists of m nodes and we have n test components that
may be assigned to them. We attempt to find an optimal solution of test com-
ponent placement not violating resource and connectivity constraints and also
maximizing their placement profit. We can formulate this problem using the
MMKP variant as follows:

MMKP =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize Z =
n∑

i=1

m∑
j=1

pijxij (1)

subject to
n∑

i=1

xijdci ≤ cj ∀j ∈ {1, · · · ,m} (2)

n∑
i=1

xijdri ≤ rj ∀j ∈ {1, · · · ,m} (3)

n∑
i=1

xijdbi ≤ bj ∀j ∈ {1, · · · ,m} (4)

m∑
j=1

xij = 1 ∀i ∈ {1, · · · , n} (5)

xij ∈ {0, 1} ∀i ∈ {1, · · · , n} and ∀j ∈ {1, · · · ,m}
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The provided resources by the m nodes are given through three vectors: C
that contains the provided CPU, R that provides the available RAM and B that
contains the battery level of each node.

C =

⎛
⎜⎜⎜⎝

c1
c2
...
cm

⎞
⎟⎟⎟⎠ R =

⎛
⎜⎜⎜⎝

r1
r2
...
rm

⎞
⎟⎟⎟⎠ B =

⎛
⎜⎜⎜⎝

b1
b2
...
bm

⎞
⎟⎟⎟⎠

In addition, the required resources for each test component are illustrated over
three vectors: Dc that carries the required CPU, Dr that contains the required
RAM and Db that contains the required Battery by each tester.

Dc =

⎛
⎜⎜⎜⎝

dc1
dc2
...
dcn

⎞
⎟⎟⎟⎠ Dr =

⎛
⎜⎜⎜⎝

dr1
dr2
...
drn

⎞
⎟⎟⎟⎠ Db =

⎛
⎜⎜⎜⎝

db1
db2
...
dbn

⎞
⎟⎟⎟⎠

Similarly, we define the two dimensional variable, xij as follows:

xij =

{
1 if tester i is assigned to node j
0 otherwise

We may find a feasible solution of test component placement if the objective
function (1) is omitted. Otherwise, an optimal solution is computed that max-
imizes the placement profit. For doing this, a matrix P has been introduced
which is filled with a profit value of each test component in response to exe-
cution nodes. This matrix depends on the length path between the node under
test5 and the node hosting the test component. The profit pij can be equal to
a predefined value maxP if the test component i is assigned to a node j which
corresponds to the node under test. It can be equal to maxP − l if the test
component i is assigned to a node j reachable from the node under test via a
path having the length l. The constraints (2),(3) and (4) ensure that the overall
required resources by the testers can not exceed the available resources in each
node. They are called knapsack constraints similar to the standard knapsack
problem. The equality (5) indicates that all testers have to be assigned to the
execution nodes and each of them has to be placed in at most one node.

It is worthy to note that in this work we have chosen the distance between
nodes as criteria for filling the matrix P . However, other placement criteria can
be used such as bandwidth utilization. Furthermore, this solution is dedicated
for a connected network. Even if some connectivity problems occur, we apply the
proposed model for each connected component in the network. Thus, we obtain
in this case partial placement solution.

5 The node hosting the component under test
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5.3 Illustration

We use the previously studied example in section 2 to illustrate the feasibility
of our proposal. In case of connectivity problem as shown in Figure 1 (c), the
node N4 is forbidden to host testers T 1, T 2 and T 3. In this case, the place-
ment problem is divided into two sub-problems. In the first one, we consider
the connected nodes (N1, N2 and N3) while searching placement solution for
test components T 1, T 2 and T 3. In the second one, we study the possibility of
assigning the test component T 4 to N4. In the following, we detail the first sub-
problem as illustrated in Figure 4. First, we introduce for instance the RAM and
CPU constraints for the node N1 when all nodes in the network are connected:

10x11 + 10x21 + 15x31 ≤ 50. (1)

10x11 + 5x21 + 10x31 ≤ 20. (2)

Next, the objective function is formed as follows with considering that the maxP
value is equal to α and maxP − 1 is equal to β in this example.

Z = αx11 + βx21 + βx31 + αx12 + βx22 + βx32 + βx13 + βx23 + αx33. (3)

Fig. 4. Illustration Example

The formed MMKP seeks to maximize the equation (3) subject to the constraints
such as defined in equations (1) and (2). In the following, we illustrate the
derivation of an exact solution of such problem using a well known constraint
programming solver called Choco.

6 Realization

To solve our test component placement problem which is modeled as MMKP, we
propose a tool illustrated in Figure 5. As inputs, it takes three XML6 files: nodes
provided resources, testers required resources and tester profits. As output, it
generates an XML based resource aware test plan which contains for each tester
the adequate host to be deployed on. The core of this tool is based on the open
source Choco Java library. In the following subsections, we first introduce the
Choco library. Next, we demonstrate the mapping between the mathematical
formalism to the Choco Java code.
6 eXtensible Markup Language.
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Testers required resources
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XML files XML file

GUI

Resource Aware Test Plan

Fig. 5. Architecture of Choco based tool

6.1 Choco Library

Choco is introduced in [18] as a Java library for constraint satisfaction problems
(CSP) and constraint programming (CP). It is an open source software which of-
fers a problem modeler and a constraint programming solver. The first one is able
to manipulate a large variety of variable types and supports over 70 constraints.
The second one can be used in satisfaction mode by computing one solution, all
solutions or iterating them. Also, it can be used in an optimization mode (maxi-
mization and minimization). We selected this solver because it seems to be one of
the most popular within the research community and because it is reliable and sta-
ble open source Java solver. In the following, we show how tomake use of these two
fundamental characteristics of Choco to model and solve our placement problem.

6.2 Modeling and Resolving Our Placement Problem with Choco

To solve the test component placement in execution nodes formulated as MMKP,
we use Choco library by defining the variables set of the problem and stating
constraints (conditions, properties) which must be satisfied by the solution.

1 //Model declaration
2 CPModel model = new CPModel();
3 // Variables declaration
4 IntegerVariable[][] X = new IntegerVariable[n][m];
5 for (int i = 0; i < n; i++) {
6 for (int j = 0; j < m; j++) {
7 X[i][j] = Choco.makeIntVar("X" + i+j, 0, 1);}}
8 //objective variable declaration
9 IntegerVariable Z = Choco.makeIntVar("gain", 1, 1000000,Options.V_OBJECTIVE);

10 //Constraints definition
11 // ...
12 Constraint[] rows = new Constraint[n];
13 for (int i = 0; i < n; i++) {
14 rows[i] = Choco.eq(Choco.sum(X[i]), 1);}
15 model.addConstraints(rows);
16 //Objective function
17 IntegerExpressionVariable []exp1=new IntegerExpressionVariable [n];
18 for (int i = 0; i < n; i++)
19 exp1[i]=Choco.scalar(g[i], X[i]);
20 model.addConstraint(Choco.eq(Choco.sum(exp1),Z));
21 //Solve the problem
22 Solver s = new CPSolver();
23 s.read(model);
24 s.maximize(s.getVar(Z), false);

Listing 1. Choco code example
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The above Listing 1 presents a brief overview of the model translation from the
mathematical representation of our problem to Choco code. In line 7, it shows the
declaration of the xij variable and its domain. Moreover, we display in line 9 the
declaration of the objective function that maximize the gain of test component
placement. Stating the constraint (5) using the Choco syntax has been illustrated
in line 14. To solve the placement problem, two cases exist : obtaining a satisfying
solution or an optimal solution. The latter case is illustrated in the line 24.

7 Experimentation

In this section, we present some experiments that are conducted to evaluate
the execution time (order of milliseconds) needed for the placement phase. Two
cases have been studied in the following subsections. First, we measure the time
needed by calculating a satisfying solution. Next, we compute the execution time
while optimal solution is required.

All of the experiments were conducted on a PC with Intel Core 2 Duo CPU
and 2 GB of main memory having as operating system Microsoft vista. The
number of nodes is equal to the number of testers in all the experiments that we
have done. Also, we have to note that each experiment is carried out five times
to derive the precise average execution time of the placement phase.

7.1 Computation of a Feasible Solution

The graph of Figure 6 shows the average execution time required by the Choco
solver to compute a satisfying solution. Analysis of the results indicates that
the average time required for assigning test components to execution nodes in-
creases with the increase in number of test components and nodes. The proposed
solver may resolve this NP-hard problem in a reasonable amount of time while
the number of test components and nodes does not exceed some dozens. Such
solution can be sufficient especially when the affected parts of the system to val-
idate after dynamic reconfiguration are not important also when the execution
environment is not large.

7.2 Computation of an Optimal Solution

Recall that in this case we search for an exact solution that maximizes the
placement profits by assigning test components to the adequate execution nodes.
By computing such solution, we aim to reduce the communication cost over
the network between the test components and the components under test. As
illustrated in Figure 7, the calculation of the optimal solution takes a significant
time especially when the number of test components and nodes increases. We
have to note that this computation technique can be opted when the dynamic
changes are not frequently done. Thus, we have enough time to validate them.
Otherwise, it can be enhanced by the use of some predefined heuristics in Choco
library.
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Fig. 6. Execution time needed for comput-
ing a feasible solution

Fig. 7. Execution time needed for comput-
ing an optimal solution

8 Conclusion

In this paper, we have studied the runtime testing of adaptable and distributed
systems after the occurrence of dynamic changes. This resource intense testing
method is often performed in a resource constrained execution environment.
For this reason, defining efficiently the distributed test architecture and the
assignment of its components to the execution nodes can be a useful solution for
either respecting resource constraints or reducing the cost of testing activity.

To do this, we have proposed a new approach for resource aware test architec-
ture design of adaptable and distributed systems. Our main contribution in this
work consists in proposing a method for test component placement in the execu-
tion nodes while respecting resource and connectivity constraints. This NP-hard
problem has been formulated as a multiple multidimensional knapsack problem.
We have also implemented a tool facilitating the resolution of our problem using
the Choco Java library.

As future work, we will enhance the proposed solution by adding other re-
source constraints such as network bandwidth or by associating different weights
with the considered resources. Moreover, it is obvious that for large scale sys-
tems or systems having hard realtime timing constraints, the proposed method
is not suitable. In this case, it might take a lot of time to find the exact solu-
tion. Therefore, we investigate effort in enhancing the proposed technique using
heuristics.
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Abstract. Model-based conformance testing of reactive systems con-
sists in taking benefit from the model for mechanizing both test data
generation and verdicts computation. On-line test case generation allows
one to apply adaptive on-the-fly analyzes to generate the next inputs to
be sent and to decide if observed outputs meet intended behaviors. On
the other hand, in off-line approaches, test suites are pre-computed from
the model and stored under a format that can be later performed on test-
beds. In this paper, we propose a two-passes off-line approach where: for
the submission part, a test suite is a simple timed sequence of numerical
input data and waiting delays, and then, the timed sequence of output
data is post-processed on the model to deliver a verdict. As our models
are Timed Output Input Symbolic Transition Systems, our off-line algo-
rithms involve symbolic execution and constraint solving techniques.

Keywords: Model-based testing, off-line testing, real-time systems,
test suite generation, verdict computation, symbolic execution, timed
output-input symbolic transition systems.

1 Introduction

Using formal methods to generate test cases and to compute verdicts has been
widely studied in the frame of Model Based Testing. In the domain of reactive
systems, models are often given as labeled transition systems which describe the
expected sequences of input and output data (called traces). Real executions of
the System Under Test (SUT) can also be seen as traces. Testing an SUT comes
to interact with it to build traces which are analyzed regarding to its model to
provide verdicts. In black box testing, an SUT is often hardly controllable at the
test execution phase, typically because, for the sake of abstraction, its reference
model may include non-deterministic situations (i.e. after a given trace, several
outputs may occur). For this reason, when dealing with automatic test case
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generation, approaches in which inputs to be sent to the SUT are computed
on-the-fly are very popular: they permit to stimulate it in a flexible manner
depending on observed SUT executions, and depending on the goal of the testing
process in terms of behaviors to cover. Such approaches are often qualified as
on-line testing.

The other alternative consists in: computing the full input sequence; submit-
ting the sequence to the SUT; storing the output sequence of the SUT during the
execution phase; computing a posteriori a verdict by analyzing the trace result-
ing from the merge of input and output sequences. Such approaches, qualified as
off-line testing ones, have several advantages. First, computed input sequences
can be stored and later translated into several formats, in particular to become
compatible with various home made test benches in different industrial contexts.
This allows one to avoid the intertwining (unavoidable in on-line approaches) of
the test generation/test execution/verdict computation processes, which may be
technically hard to achieve. Second, tests can be replayed as many times as de-
sired which makes off-line methods particularly well-adapted for non-regression
testing. Third, by construction, no constraint solving delays can interfere with
the test data execution. To sum up, off-line testing eases the deployment of input
sequences in the test environment and enables their reuse.

However, a particular source of concern about off-line testing is to know at
which instants precisely the tester has to send the successive data of the input
sequence. Those instants can be identified from the knowledge of a clock cycle or
of an hypothesis of an instantaneous reaction in synchronous frameworks (e.g.
testing from the clocked data-flow language Lustre in [10] or from Finite State
Machines –FSM– in [11]). In asynchronous systems, the waiting delay between
two successive inputs is important because the SUT takes time to compute
outputs to be sent, and because sending an input before the output computation
is complete, or after it is completed, leads to define different execution traces.
Therefore, timed models introducing time delays between communication actions
are good candidates to support input sequence generation. Moreover, in order
to properly identify the trace observed at the test execution step, one needs a
mechanism to know the order of occurrences between inputs and outputs: in
fact, measuring delays between outputs permits to reconstruct the full trace of
inputs, outputs and delays.

In this paper, we propose an off-line testing approach in a timed model-based
framework. The approach is decoupled in different steps: (a) the coverage-based
selection of an input sequence with delays; (b) the execution of the SUT for the
input sequence which generates an output sequence with delays as a result. Input
and output sequences are then merged to generate a complete execution trace;
(c) the verdict computation based on a traversal of the model guided by the
execution trace. The first and last steps are conducted off-line with Timed Input
Output Symbolic Transition Systems (TIOSTS) for models. TIOSTS are exten-
sions of Input/Output Symbolic Transition Systems (IOSTS) [8] and of Timed
Automata (TA) [1], in which both data and time properties are expressed sym-
bolically. Our framework is situated within the context of the tioco conformance
relation [5, 9, 14].
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Section 2 gives preliminaries about time and data denotation as first order
structures. In Section 3, we recall the tioco setting. Then, we present the syn-
tax of TIOSTS and give their semantics as timed traces in Section 4. We show
in the same section how to compute these traces using symbolic execution tech-
niques. In Section 5, we introduce our off-line testing algorithm. Section 6 reviews
relevant state of the art concerning timed conformance testing.

2 Data and Time Denotation

We use classical multi-typed first order logic to symbolically denote data and
time. A signature Ω is a triple (S,Op, P ) where S is a set of types, Op (resp. P ) is
a set of operations (resp. predicates) provided with a profile in S+ (resp. S∗). For
any set V of variables typed in S, we note TΩ(V ) (resp. PΩ(V )) the set of terms
(resp. predicate terms) over V and Ω inductively defined as usual. An Ω-model
M =

⋃
s∈S Ms is provided with a function f : Ms1 × · · · ×Msn → Ms (resp. a

predicate p : Ms1 × · · · ×Msn) for each f : s1 · · · sn → s in Op (resp. for each
p : s1 · · · sn in P ). Substitutions (resp interpretations) are applications from V to
TΩ(V ) (resp. M) preserving types and can be canonically extended to TΩ(V ).1

The set SenΩ(V ) of all formulas contains the predicate terms (including the
truth values � and ⊥ denoting resp. the true and false values), the equalities
t = t′ for t, t′ terms of the same type and all formulas built over the usual
connectives ¬,∨,∧ and quantifiers ∀x, ∃x with x variable of V .

The satisfaction of a formula ϕ by an interpretation ν : V → M is denoted
M |=ν ϕ where M |=ν t = t′ (resp. M |=ν p(t1, . . . , tn) with t1, . . . , tn terms of
TΩ(V )) is defined by ν(t) = ν(t′) (resp. (ν(t1), . . . , ν(tn)) ∈ p), and connectives
and quantifiers are handled as usual in more complex formulas.

We suppose that Ω contains a particular type time to denote durations. For
readability sake, Mtime is denoted D (for Duration) and is assimilated to the set
of positive (or null) real numbers.2 Op and P contain some classical operations
+ : time×time→ time,− : time×time → time, or predicates<,≤: time×time,
provided by default with their usual meanings.3. Variables of type time are
called clocks For a set of clocks T , we note Sentime(T ) the set of formulas only
containing conjunctions of formulas of the form z ≤ d, d ≤ z, z < d or d < z,
where d is a constant and z is in T .

In the sequel, Ω = (S,Op, P ) and M are supposed given.

3 System Under Test

In order to reason about Systems Under Test, we denote them as Timed Input
Output Labeled Transition Systems (TIOLTS) [6, 9, 14]. TIOLTS are automata
whose transitions are labeled either by actions (inputs, outputs) or by delays.
For simplicity, the unobservable action τ is not introduced (see [2]).

1 The set of applications from A to B is denoted as BA.
2 In practice, any set of values used in a constraint solver for approaching real numbers.
3 For simplicity, +, < . . . are also denoted by +, <.
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Let C be a set of channels. The set of actions over C, denoted ActM (C), is
IM (C) ∪OM (C) where IM (C) = {c?v | v ∈ M, c ∈ C} denotes the set of inputs
and OM (C) = {c!v | v ∈ M, c ∈ C} denotes the set of outputs. Thus, c?v (resp.
c!v) stands for the reception (resp. emission) of v by the SUT on the channel c.

Definition 1 (TIOLTS). A TIOLTS over C is a triple (Q, q0, T r) where Q is
a set of states, q0 ∈ Q is the initial state, and Tr ⊆ Q× (ActM (C) ∪D)×Q is
a set of transitions.

For any tr = (q, a, q′) of Tr, source(tr), act(tr), and target(tr) stand respectively
for q, a, and q′. The set of paths of a TIOLTS A = (Q, q0, T r) is the set Path(A) ⊆
Tr∗ containing the empty sequence ε and all sequences tr1 . . . trn such that
source(tr1) = q0, and for all i < n, target(tri) = source(tri+1).

4 Let p be a path
of A, the trace of p, denoted as trace(p), is ε if p = ε, trace(p′) if p = p′.tr with
act(tr) = 0, and act(tr).trace(p′) if p = p′.tr with act(tr) �= 0. Traces(A) is the
set of traces of all paths of Path(A). The set TTraces(A) of timed traces of A
is the smallest set containing Traces(A) and such that:

• for any σ = σ′.d.σ′′ in TTraces(A), σ′.d1.d2.σ′′ is in TTraces(A),
• for any σ = σ′.d1.d2.σ′′ in TTraces(A), σ′.d.σ′′ is in TTraces(A),
• for any σ.r in TTraces(A) with r in ActM (C)∪ (D \{0}), σ is in TTraces(A),

where d, d1 and d2 are any delays of D\{0} verifying d = d1 + d2.
We introduce a normalization operation whose purpose is to compute a trace

in which the occurring delays are the largest possible (by adding all consecutive
delays of a trace). Let σ be a trace of (ActM (C) ∪ (D\{0}))∗, σ is ε if σ = ε,
σ′.a if σ = σ′.a with a ∈ ActM (C), and σ′.(d1 + · · · + dn) if σ = σ′.d1 · · · dn
where for all i ≤ n, di ∈ D \ {0}, and σ′ is either ε or terminated by an action
in ActM (C).

We naturally define the trace duration as the sum of all delays occurring in
a trace. More precisely, for a trace σ, duration(σ) is 0 if σ = ε, duration(σ′) if
σ = σ′.r with r ∈ ActM (C), and duration(σ′) + d if σ = σ′.d with d ∈ D \ {0}.

Definition 2 (SUT ). A SUT over C is a TIOLTS S = (Q, q0, T r) over C
satisfying the following properties:

• Input enableness: ∀ q ∈ Q, c ∈ C, v ∈ M , there exists (q, c?v, q′) in Tr,
• Time elapsing: ∀q ∈ Q s.t. there is no transition of the form (q, c!v, q′) in

Tr, then there exists (q, d, q′) in Tr with d in D\{0}.

Input enableness condition is very classical: it expresses that an SUT can-
not refuse an input. Time elapsing condition expresses that the absence of a
reaction amounts to observe no reaction during a strictly positive delay.

The conformance relation tioco [5, 7, 9, 14] defines the correctness of an SUT
w.r.t a TIOLTS model.

4 A∗ is the set of words on A with ε as the empty word and “.” as the concatenation
law.



Off-Line Test Case Generation for Timed Symbolic Conformance Testing 123

Definition 3 (tioco). Let S be an SUT and A a TIOLTS, both defined over
C. S conforms to A, denoted S tioco A, if and only if for any σ in TTraces(A)
and r in OM (C) ∪ (D\{0}) we have:

σ.r ∈ TTraces(S) =⇒ σ.r ∈ TTraces(A)

In the Introduction, we argued that test data, in off-line testing, is made of a
test input sequence to be submitted to the SUT and of a test output sequence
produced by the SUT. A natural testing hypothesis expresses that when these
two sequences are grouped, they form a trace of the SUT. In order to make
the connection between test data and the SUT, we start by introducing some
functions to handle traces: the projection function allows us to extract a sub-
trace, and the merge allows to combine two traces according to delays occurring
in them. Formally, for any trace σ, the input projection of σ, denoted σ↓I , is:
ε if σ = ε; σ′

↓I
if σ = σ′.o with o ∈ OM (C), and σ′

↓I
.x if σ = σ′.x with

x ∈ IM (C) ∪ (D\{0}). Similarly, the output projection of σ, denoted σ↓O , is
defined by exchanging the roles of inputs and outputs. Let us define the merge
operation by induction on the trace structure. For that purpose, let us consider
two traces σi in (IM (C)∪ (D\{0}))∗ and σo in (OM (C)∪ (D\{0}))∗ defined over
C. Merge(σi, σo) is defined as follows:

– σo (resp. σi) if σi = ε (resp. σo = ε),
– o.Merge(σi, σ

′) if σo = o.σ′ with o ∈ OM (C),
– i.Merge(σ′, σo) if σi = i.σ′ with i ∈ IM (C) and σo = d.σ′ with d ∈ D\{0},
– with σi = di.σ

′
i, di ∈ D\{0}, and σo = do.σ

′
o, do ∈ D\{0}

• di.Merge(σ′
i, (do − di).σ

′
o) if di < do

• di.Merge(σ′
i, σ

′
o) if di = do

• do.Merge((di − do).σ
′
i, σ

′
o) if do < di.

For merging two traces beginning with an input i and then an output o, we
choose to prioritize the output o: if from the point of view of the tester, i and o
are perceived as occurring at the same time, it is likely that o follows from the
previous inputs of the input sequence, not from i. Thus, placing o before i in the
merging trace explicits that i cannot be a cause of o.

As already explained, off-line test input sequences are modeled as sequences
of inputs and strictly positive delays.

Definition 4 (input sequence). An input sequence over C is a sequence of
(IM (C) ∪ (D\{0}))∗.

Once an input sequence is considered, the test execution phase amounts to play
it on S so that it produces an output sequence σo made of outputs and strictly
positive delays. Modeling S as a TIOLTS leads to the following facts:

• there exists a trace σ of TTraces(S), such that the input (resp. output) pro-
jection of σ corresponds to the submitted input sequence (resp. the output
sequence collected when executing the input sequence);

• the duration of the test output sequence is strictly greater than the one of the
input sequence. Indeed, when collecting the output sequence, the tester will
at least wait a moment after sending the last input to the SUT.
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Definition 5 (execution). Let S be an SUT over C, and let σi be an input
sequence over C.

An execution of σi on S, is defined as a sequence σo of (OM (C) ∪ (D\{0}))∗
verifying: (1) Merge(σi, σo) ∈ TTraces(S) and (2) duration(σo)>duration(σi).

σo is called an output sequence of σi for S and we note σi �S σo.

The condition (2) ensures that the trace Merge(σi, σo) is terminated by either
an output or a delay, as verified on the example of Figure 1. Moreover, let us
point out that due to non-determinism, there can exist two distinct traces σo

and σ′
o such that σi �S σo and σi �S σ

′
o.

test input sequence
4·c?a·23·e?x·39·c?w SUT

test output sequence
12·c!b·31·e!y·65·c!m

Corresponding timeline
4·c?a·8·c!b·15·e?x·16·e!y·23·c?w·42·c!m

Fig. 1. Example of merging two test traces

Timed Input Output Symbolic Transition Systems (TIOSTS) are models where
data and time are symbolically specified. They are well-accepted concise repre-
sentations of TIOLTS: symbolic data allow one to characterize internal states, to
express firing conditions of transitions and to denote exchanged messages, while
real-time properties are handled with constraints and resets on clock variables.

Since tioco defines conformance of an SUT w.r.t. a TIOLTS specification,
TIOSTS model semantics (Definition 8) is given in the form of TIOLTS.

4 Timed Input Output Transition Systems

TIOSTS are defined over a signature Σ = (C,A, T ) where C is a set of channels,
A is a set of variables (whose type is not time) called attribute variables, and
T is a set of clocks. The set of symbolic actions Act(Σ) is I(Σ) ∪ O(Σ) with
I(Σ) = {c?x|x ∈ A, c ∈ C} and O(Σ) = {c!t|t ∈ TΩ(A), c ∈ C}.

Definition 6 (TIOSTS). A TIOSTS over Σ is a triple (Q, q0, T r), where Q
is a set of states, q0 ∈ Q is the initial state and Tr is a set of transitions of
the form (q, φ, ψ,T, act, ρ, q′) where q, q′ ∈ Q, φ ∈ Sentime(T ), ψ ∈ SenΩ(A),
T ⊆ T , act ∈ Act(Σ), and ρ : A → TΩ(A) is a substitution s.t. x does not occur
in ψ if act is of the form c?x.

When firing a transition (q, φ, ψ,T, act, ρ, q′), φ is a formula constraining the de-
lay at which the action act occurs, ψ is a firing condition on attribute variables,
ρ assigns new values to attribute variables, and clocks in T are reset. The re-
striction about the occurrence of the reception variable x in the firing condition
ψ is due to the fact that both formulas φ and ψ are evaluated precisely at the
reception instant.
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Example 1 (Trajectory module of a Flight Management System).
The Trajectory module is embedded in a plane and orchestrates the compu-

tation of plane trajectories. Figure 2 depicts its specification: it waits to receive
the current location of the aircraft (transition q0 → q1); it sends a request to
access the flight plan in less than 1 time units (transition q1 → q2); then, either
it receives the requested flight plan in less than 2 time units (transition q2 → q3)
or it does not receive it and sends an error message to its environment in less
than 3 time units (transition q2 → q0); after this step, the trajectory module
sends a request for parameters (typically, fuel quantity, speed, etc.) related to
the state of the plane (transition q3 → q4), and again either receives them in
less than 1 time unit or sends a warning message in less than 2 time units (two
transitions q4 → q5); then, the module sends in less than 1 time unit the loca-
tion, the flight plan and the parameters to a calculator (transitions q5 → q6),
which replies by sending the new trajectory of the plane in less than 2 time units
(transition q6 → q7) unless it fails to meet the time constraint, in which case
the module sends an error message in less than 3 time units; if the calculator
succeeds to react on time, the computed navigation commands are transmitted
to the environment (transition q7 → q0) in a total of less than 9 time units.

q0

q1 q2

q3

q4

q5q6

q7

dClock ≥ 1 ∧ dClock < 2
notif !cParams

data := (loc, fP lan, cParams)
{cClock}

dClock < 1
param?dParams

cParams := dParams
data := (loc, fP lan, cParams)

{cClock}

cClock ≥ 2 ∧ cClock < 3
error!timeout

location?loc
{fClock}

fClock < 1
plan!askF

{fClock, aClock} fClock < 2
plan?fP lan
{dClock}

fClock ≥ 2 ∧ fClock < 3
error!fTimeout

dClock < 1
param!askP
{dClock}

cClock < 1
calc!data
{cClock}

cClock < 2
calc?cmds

aClock < 9
nCmd!cmds

Fig. 2. TIOSTS for the Trajectory module

Executions of TIOSTS transitions are called runs and modeled as TIOLTS
transitions whose states are called snapshots:

Definition 7 (runs of transitions). Let G = (Q, q0, T r) be a TIOSTS over
Σ. The set SnpM (G) of snapshots of G is the set Q×D×MA∪T . For any tr =
(q, φ, ψ,T, act, ρ, q′) ∈ Tr, the set of runs of tr is the set Run(tr) ⊆ SnpM (G)×
ActM (C) × SnpM (G) s.t. ((q, T , ν), actM , (q′, T ′, ν′)) ∈ Run(tr) iff there exist
d ∈ D and νi : A ∪ T → M satisfying:
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• T ′ = T + d,
• for all w ∈ T , νi(w) = ν(w) + d,
• if act = c!t then for all x ∈ A, νi(x) = ν(x),
• if act = c?x then for all y ∈ A \ {x}, νi(y) = ν(y),

such that we have: actM = νi(act), ∀x ∈ A, ν′(x) = νi(ρ(x)), ∀w ∈ T, ν′(w) = 0,
∀w ∈ (T \ T), ν′(w) = νi(w), M |=νi φ and M |=νi ψ.

Based on runs of transitions, we associate a TIOLTS to a TIOSTS:

Definition 8 (TIOLTS associated to a TIOSTS). The TIOLTS over C
associated to G, denoted LTSG = (SnpM (G) ∪ {init, qδ}, init, T r′), is defined
as follows: init, qδ are two distinct states not belonging to SnpM (G) and Tr′ is
the smallest subset of (SnpM (G) ∪ {init, qδ}) × (ActM (C) ∪ D) × (SnpM (G) ∪
{qδ}) s.t.
Initialization: for any ((q0, 0, ν0), actM , (q, T , ν)) ∈ Run(tr) with tr ∈ Tr and
∀w ∈ T, ν0(w) = 0,

• if 0 < T , (init, T , (q0, T , ν0)) and ((q0, T , ν0), actM , (q, T , ν)) are in Tr′,
• else (T = 0) ((q0, 0, ν0), actM , (q, 0, ν)) is in Tr′,

Runs: for ((q, T , ν), actM , (q′, T ′, ν′)) ∈ Run(tr) with tr ∈ Tr and q �= q0,

• if T < T ′, ((q, T , ν), T ′−T , (q, T ′, ν)), ((q, T ′, ν), actM , (q′, T ′, ν′)) are in Tr′,
• else (T = T ′) ((q, T , ν), actM , (q′, T , ν′)) is in Tr′,

Quiescence: let snp in SnpM (G)∪{init} be a snapshot s.t. there does not exist
(snp, actM , snp′) ∈ Tr′ with actM ∈ OM (C) ∪ (D\{0}), then (snp, d, qδ) ∈ Tr′

for any d ∈ D\{0}.

Initialization transitions are introduced to consider any possible interpretation
of attribute variables at the beginning of executions (clocks are set to 0), Runs
transitions naturally correspond to the execution of TIOSTS transitions, and
Quiescence transitions state that if no reaction (output or delay transitions) is
specified at a given state, then waiting for any delay from this state is possible.
We note TTraces(G) for TTraces(LTSG).

In the sequel, we will reason about traces of TTraces(G) by using symbolic
execution techniques. They consist in: executing the TIOSTS for symbolic values
rather than numerical ones, and computing constraints on those values for all
possible TIOSTS executions. In order to represent symbolic values, we suppose
that a set of fresh variables F =

⋃
s∈S Fs is given. Symbolic states are structures

used to store pieces of information concerning an execution:

Definition 9 (symbolic state). A symbolic state for G is a tuple (q, θ, π, ϑ, λ)
where q ∈ Q, θ ∈ Sentime(Ftime), π ∈ SenΩ(F ), ϑ ∈ TΩ(Ftime) and λ : A∪T →
TΩ(F ) is an application preserving types.

We note S the set of all symbolic states over F .

For a symbolic state η = (q, θ, π, ϑ, λ), q denotes the state reached after an
execution leading to η, θ is a constraint on symbolic delay values called time path
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condition, π is a constraint on symbolic data values called data path condition,
ϑ denotes the duration from the beginning of the execution leading to η, and λ
denotes terms over symbolic variables in F that are assigned to variables of A.

In the sequel, ΣF stands for (F,C). Moreover for any symbolic state η =
(q, θ, π, ϑ, λ), q(η), θ(η),π(η), ϑ(η) and λ(η) stand resp. for q, θ, π, ϑ and λ. For
an application λ : A∪T → TΩ(F ), we extend it in a canonical way to TΩ(A∪T ),
SenΩ(A∪T ) and Act(Σ). All these extensions are also simply denoted by λ. The
symbolic execution of a TIOSTS is based on symbolic executions of transitions:

Definition 10 (symbolic execution of transitions). Let G = (Q, q0, T r) be
a TIOSTS over Σ and tr = (q, φ, ψ,T, act, ρ, q′) be in Tr. A symbolic execution
of tr from η in S is st = (η, actF , η

′) ∈ S × Act(ΣF ) × S such that q(η′) = q′,
ϑ(η′) = ϑ(η) + z where z ∈ Ftime is a new fresh variable, and there exists
λi : A ∪ T → TΩ(F ) satisfying:

• if act ∈ O(Σ), then that for all x ∈ A, λi(x) = λ(x),
• if act ∈ I(Σ) of the form c?y then λi(y) is a fresh variable of F and for all

x ∈ A \ {y}, λi(x) = λ(x),
• for all w ∈ T we have λi(w) = λ(w) + z,

such that actF = λi(act), for all x ∈ A, λ(η′)(x) = λi(ρ(x)), for all w ∈ (T \T),
λ(η′)(w) = λi(w), for all w ∈ T, λ(η′)(w) = 0, Finally π(η′) = π(η)∧ λi(ψ) and
θ(η′) = θ(η) ∧ λi(φ).

The variable z is called the delay of st and is denoted delay(st). source(st),
act(st) and target(st) stand respectively for η, actF and η′. In the sequel, for
any symbolic transition st = (η, actF , η

′), we note Fresh(st) = {delay(st)} if
act ∈ O(Σ) and Fresh(st) = {delay(st), λi(y)} if act = c?y. The symbolic
execution tree associated to the TIOSTS is then defined as follows:

Definition 11 (symbolic execution of a TIOSTS). A symbolic execution
of G = (Q, q0, T r) is a couple SE(G) = (Init, ST ) where:

• Init = (q0,�,�, 0, λ0) is such that ∀x ∈ T, λ0(x) = 0 and for all distinct
variables x, y in A, λ0(x) and λ0(y) are distinct variables of F ,

• ST is the set of all symbolic executions st of tr in Tr from η ∈ S with q(η) =
source(tr) and Fresh(st)∩λ0(A) = ∅. Moreover for any two distinct st1, st2 ∈
ST , Fresh(st1) ∩ Fresh(st2) = ∅.

Example 2 (Symbolic execution). Figure 3 depicts the symbolic execution of the
Trajectory module of Example 1. For the sake of clarity: only one path of the
tree is shown, representing a complete cycle of the Trajectory module, transitions
deviating from this path are cut; we show the delay of the transition together
with its symbolic action; and, only the information associated with symbolic
state η1 is detailed –note that values of clocks are actually summations of delays
(e.g. fClock1 represents the summation 0 + z1).

In order to deal with quiescence, we complete symbolic executions by new tran-
sitions. Contrarily to TIOLTS, transitions of TIOSTS carry actions that are
necessarily inputs or outputs (not delays). For this reason, we artificially intro-
duce a new symbol δ! denoting the absence of reactions.
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Init : (q0, θ0, π0, ϑ0, λ0)

η1 : (q1, θ0, π0, ϑ1, λ1)

η2 : (q2, θ1, π0, ϑ2, λ2)

η3 : (q0, θ2, π0, ϑ3, λ3)

η5 : (q1, θ2, π0, ϑ5, λ5)

z4·location?loc2

z2·error!fTimeout0

η4 : (q3, θ3, π0, ϑ4, λ4)

η6 : (q4, θ4, π0, ϑ6, λ6)

η7 : (q5, θ5, π0, ϑ7, λ7)

z6·notif !cParams0

η8 : (q5, θ6, π0, ϑ8, λ8)

η9 : (q6, θ7, π0, ϑ9, λ9)

η10 : (q0, θ8, π0, ϑ10, λ10)

z9·error!cT imeout0

η11 : (q7, θ9, π0, ϑ11, λ11)

η12 : (q0, θ10, π0, ϑ12, λ12)

z11·nCmd!cmds1

z10·calc?cmds1

z8·calc!data1

z7·param?dParams1

z5·param!askP0

z3·plan?fP lan1

z1·plan!askFp0

z0·location?loc1
η12 : (q0, θ10, π0, ϑ12, λ12)

θ10 : � ∧ fClock1<1 ∧ fClock4<2 ∧ dClock5<1

∧dClock7<1 ∧ cClock8<1 ∧ cClock9<2
∧aClock11<9

π0 : �
ϑ12 : z0 + z1 + z3 + z5 + z7 + z8 + z10 + z11
λ13 : loc ← loc1, askFp ← askFp0,

fPlan ← fPlan1, . . .

Fig. 3. Symbolic execution for the Trajectory module example

Definition 12 (quiescence enrichment). Let SE(G) = (Init, ST ) be a sym-
bolic execution. For all η ∈ S let us note React(η) the set of st in ST with
source(st) = η and act(st) ∈ O(ΣF ). The quiescence enrichment of SE(G) is
the couple SE(Gδ) = (Init, ST ∪ΔST ) where for all η ∈ S:

• Time based quiescence: Let θδ(η) be � if React(η) = ∅ and let θδ(η)
be

∧
st∈React(η) ∀delay(st).¬(θ(target(st))) otherwise. Then, (η, δ!, ηtδ) ∈ ΔST

with ηtδ = (qδ, θ(η)∧θδ(η), π(η), ϑ(η)+z, λ(η)) with z is a new variable in Ftime.
• Data based quiescence: Let πδ(η) be � if React(η) = ∅ and let πδ(η)

be
∧

st∈React(η) ¬π(target(st)) otherwise. Then, (η, δ!, ηdδ ) ∈ ΔST with ηdδ =

(qδ, θ(η), π(η) ∧ πδ(η), ϑ(η) + z, λ(η)) with z is a new variable in Ftime.

Time based quiescence transitions can be executed only if no transition la-
beled by an output can be executed anymore due to unsatisfiable time con-
straints. By noting that delay(st) is the symbolic delay associated wit the tran-
sition st, θδ(η) precisely states that for all output transitions st of source η,
whatever the delay is, the time path condition (θ(target(st))) to fire st cannot
be satisfied. Similarly, Data based quiescence transitions can be executed
only if no transition labelled by an output can be executed anymore due to
unsatisfiable data constraints.

Example 3 (Quiescence enrichment).
The Trajectory module example takes all possible deadlock situations into ac-

count. This is normal, since in an flight management system, we do not want to
have any of those situations. For illustration purposes, let us consider Init, since
there is no output transition leaving from it, a Data based quiescence is de-
tected, and as according to Definition 12, the transition (Init, δ!, ηdδ ) is added to
the tree, representing the fact that the module can remain silent until it receives a
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location from the environment. If we consider η1, let us examine if we can detect
aTime based quiescence. That is, let us examine the formula ∀z1.¬(θ1), where
θ1 = fClock1 < 1. Since fClock1 = 0+ z1, there is no way that for all z1, z1 ≥ 1
is true. Thus, no Time based quiescence is added to the tree.

SE(G)δ characterizes in an intentional way the set of all timed traces of the
TIOLTS associated to G: we define paths of SE(G)δ as finite sequences st1 · · · stn
of transitions of ST , such that source(st1) = Init and for every i < n, we
have target(sti) = source(sti+1). For any finite path p = st1 · · · stn, target(p)
is Init if n = 0 and target(stn) otherwise. We note Path(SE(G)δ) the set
of all such paths. For a path p, we note Seq(p) the sequence defined as ε
if p = ε, Seq(p′).delay(st) if p is of the form p′.st with act(st) = δ! and
Seq(p′).delay(st).act(st) if p is of the form p′.st with act(st) �= δ!. The set
TTraces(p) is defined as {σ|∃ν.(M |=ν θ(target(p)) ∧ π(target(p)) ∧ σ =
ν(Seq(p)))}.5 We note TTraces(SE(G)δ) the set

⋃
p∈Path(SE(G)δ)

TTraces(p).

5 Off-Line Testing Algorithms

We present our algorithms w.r.t. the input sequence selection, the test execution,
and the verdict computation.

Input Sequence Selection. We propose to extract input sequences, as in-
troduced in Definition 4, from SE(G)δ. Following our previous works [7, 8], we
propose to use paths of SE(G)δ as test purposes, that is, we build input se-
quences corresponding to traces of a selected path. Given a test purpose p in
Path(SE(G)δ), an input sequence is built by applying the input projection on
a trace chosen in TTraces(p). Indeed, such input sequences are clearly good
candidates to put the SUT S in a configuration where S can reach the test pur-
pose. Therefore, we introduce the set IS(p) = {σ↓I | σ ∈ TTraces(p)} of input
sequences of p. We can capture the set IS(p) by simply building the correspond-
ing normalized traces and by highlighting the interpretations which satisfy the
constraints defining the target state of p:

{ν(Seq(p))↓I | ν |= θ(target(p)) ∧ π(target(p))}

Thus, defining a normalized input sequence for p comes to exhibit an interpre-
tation ν : F → M that satisfies both the time and data path conditions of the
target of p by constraint solving techniques, to compute ν(Seq(p)), and finally
“forget” output in the result thanks to the ↓I operator. We suppose that an
SUT S, a test purpose p and an input sequence σp

↓I
are given (σp is thus a timed

trace of p, normalized or not).

Test Execution. As discussed in Section 3, the test execution is to submit σp
↓I

to S, which in turn sends an output sequence σo, such that σp
↓I

�S σo. We note

5 An interpretation ν can be extended to sequences as follows: ν(Seq(p)) = ε if p = ε,
ν(Seq(p)) = ν(ω).ν(a) if Seq(p) = ω.a with a ∈ Act(ΣF ) and ν(Seq(p)) = ν(ω).ν(d)
if Seq(p) = ω.d with d ∈ TΩ(F )time.
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σS = Merge(σp
↓I
, σo). Recall that, due to potential non determinism of G, even

in the case S tioco G, we may have σS �= σp.

Verdict Computation. Our algorithm takes as inputs three arguments,
SE(G)δ, p and σS, and computes verdicts concerning the correctness of S as-
sessment and concerning the coverage of p by σS. This algorithm can be seen
as an off-line version of the one defined in [7]. We begin by introducing some
intermediate definitions that are needed in the algorithm. A context is a math-
ematical structure denoting a path of SE(G)δ = (Init, ST ) potentially covered
by a trace, together with additional identification constraints induced by the
trace. Formally, a context is a tuple (η, ft, fd, d) where: η ∈ S denotes the target
state of the potentially covered path; ft ∈ SenTime(Ftime) expresses identifica-
tion constraints between time variables of F and numerical delays occurring in
the trace; fd ∈ SenΩ(F ) expresses identification constraints between data vari-
ables and values emitted and received in the trace; and finally, d is a numerical
delay that identifies how much time has elapsed in the given context. Intuitively,
when time elapses, if there is no modification of state, then the value d is simply
increased, else, the value d is reset to 0. In the sequel, state((η, ft, fd, d)) names
the state η. Since there may be more than one path which is covered by a trace,
we manipulate sets of contexts. We introduce the function Next(a, SC), which
computes the set of all contexts that can be reached from a given set of contexts
SC, when an action occurs or a delay elapses, i.e. a ∈ ActM (C) ∪ (D \ {0}):

Case. a ∈ ActM (C) of the form c�t with � ∈ {?, !}: if there exists (η, ft, fd, d) ∈
SC, and a symbolic transition st = (η, c�u, η′) in ST , then:

(η′, ft ∧ d = delay(st), fd ∧ (t = u), 0) ∈ Next(a, SC)

provided that both ft ∧ d = delay(st) ∧ θ(η′) and fd ∧ π(η′) are satisfiable.

Case. a ∈ D \ {0}: if there exists (η, ft, fd, d) ∈ SC, and a symbolic transition
st in ST with source(st) = η, then:

(η, ft ∧ ∃delay(st).(delay(st) ≥ d+ a ∧ θ(target(st))), fd, d+ a) ∈ Next(a, SC)

provided that ft∧∃delay(st).(delay(st) ≥ d+a∧θ(target(st)))∧θ(η) is satisfiable.
The general idea of the algorithm is to read one by one the elements of the trace σS,
and to compute either the next set of contexts or to emit a verdict. Let us suppose
that σS can be written as σpref .a.σsuf where a is an action or a delay. SC(a) is
a notation grouping the set of contexts SC reached after reading the beginning
σpref .a of the trace and the last analyzed element a. At the initialization step, when
no element of σS has been analyzed, then we use the symbol , that is SC( ). The
algorithm is then given as a set of rules of the form:

SC(a) σsuf

Result
cond

σsuf is the remaining trace to be analyzed with respect to the first analyses
stored in SC(a), to SE(G)δ, and to p; cond is a set of conditions that has to be
satisfied so that the rule can be applied; and Result is either a verdict or of the
form SC′(a′) σ′

suf . Moreover, if σsuf = ε then Result is necessarily a verdict
since the initial trace σS is fully analyzed. If Result is SC′(a′) σ′

suf , then σsuf
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can be written as a′.σ′
suf . We will access respectively to a′ and σ′

suf from σsuf

by using the usual notations head(σsuf ) and tail(σsuf ).
Rule 0 corresponds to the initialization phase: the set of contexts contains

only one context stating that we begin at the symbolic state Init, there are no
constraints identified yet, and the associated delay is 0.Rule 1 is applied to com-
pute a new set of contexts. This is done as long as SC is not empty and there are
still elements of the trace to read. There are five verdicts: FAIL is emitted when
the trace denotes an incorrect behavior (Rule 2); PASS is emitted when the
trace denotes a correct behaviors, and the test purpose is the only path covered
(Rule 3); WEAK PASS is emitted when the trace denotes a correct behav-
ior, the test purpose is covered but there exists at least one other path covered
(Rule 4); INCONCr is emitted when the trace denotes a correct behavior, a
path is covered but not the test purpose (Rule 5); INCONCi is emitted when
the trace is not included in SE(G)δ due to input under-specification (Rule 6).

Rule 0: Initialization

{(Init,�,�, 0)}( ) σS

Rule 1: An action or a delay is read from the trace, SC is not empty.

SC(a) σ

Next(head(σ), SC)(head(σ)) tail(σ)
SC �= ∅, σ �= ε

Rule 2: An unspecified output o or delay d is read from the trace.

SC(a) σ

FAIL
SC = ∅; a ∈ OM (C) ∪D \ {0}

Rule 3: The read action permits to cover the test purpose, and no other paths.

SC(a) σ

PASS
σ = ε; ∀ct ∈ SC, state(ct) = target(p);SC �= ∅

Rule 4: The read action permits to cover the test purpose, and at least one other
path.

SC(a) σ

Weak PASS

σ = ε; ∃ct ∈ SC, state(ct) = target(p);
∃ct′ ∈ SC, state(ct′) �= target(p);SC �= ∅

Rule 5: Some paths are covered but not the test purpose.

SC(a) σ

INCONCr
σ = ε;∀ct ∈ SC, state(ct) �= target(p);SC �= ∅

Rule 6: An unspecified input i is read.

SC(a) σ

INCONCi
SC = ∅; a ∈ IM (C)

In contrast with algorithms in [7,8], there are two kinds of inconclusive verdicts.
INCONCr corresponds to the classical one, while INCONCi is produced when
σS is of the form σpref .a.σsuf , where σpref is in SE(G)δ while σpref .a with
a ∈ IM (C) is not. This situation does not occur in on-line testing algorithms,
because they are in charge of stimulating the SUT so that it strictly follows the
test purpose, and emits a verdict as soon as the test purpose cannot be covered
anymore. On the contrary, unless σS can be decomposed as σpref .a.σsuf , where
σpref is a specified timed trace and σpref .a is not (in which case either FAIL
or INCONCi depending on the nature of a), all actions of σS will be analyzed
even though the emission of PASS is not possible anymore. This choice is made
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in order to always emit FAIL for a trace revealing a non conformance, even if
we may be sure (several steps before) that PASS can not be emitted anymore.

Example 4. Let us apply our rule-based algorithm to the Trajectory module
example. Let us suppose that there is a mapping between messages and integers.
Then, we choose the path of Figure 3 leading to η13, representing a complete
loop for the module, i.e., the path p:

z0·location?loc1·z1·plan!askFp0·z3 . . . z8·calc!data1·z10·calc?cmds1·z12·nCmd!cmds1.

Thus, the tester chooses the appropriate values and performs the input projection
of the trace, obtaining σp

↓I
: 0.1 location?4 2.8 plan?5 1.8 param?2 1 calc?1. Let us

assume that the SUT responds with σ↓O : 0.2 plan!8 2.1 error!6 0.1 nCmd!3 4.3 .

By applying the merge operation on σp
↓I

and σ↓O , we obtain the trace σ:

0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1 .

Figure 4 illustrates the application of the rule-based algorithm to σ.

(a) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

ft=�; fd=�;SC={(Init, fd, ft, 0)}( ); (Initialization)

(b) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(0.1, SC)−→SC={(Init, ft∧z0=0.1, fd, 0.1)}(0.1); (Rule 1)

(c) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(location?4, SC)−→SC={(η1, ft, fd∧loc1=4, 0)}(location?4); (Rule 1)
.
.
.

.

.

.
.
.
.

(d) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(2.1, SC)−→SC={(η2, ft∧z2=2.1, fd, 2.1)}(2.1); (Rule 1)
.
.
.

.

.

.
.
.
.

(e) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(nCmd!2, SC)−→SC={∅}; (Rule 2, FAIL)

Fig. 4. Off-line Test Algorithm operating on a trace of the Trajectory module. At any
iteration, before the execution of any rule, σ is the non-dark-gray-shadowed part of
the depicted trace, head(σ) is the element pointed by the arrow, a is the first element
at its left (when it applies), and queue(σ) is the right-side remainder. In (a), SC
represents the set of context after initialization. (b)–(d) represent the application of
Rule 1, updating SC by reading the first element of the trace (and applying the
Next() function). In (e), the observed delay causes the verdict to emit FAIL, since
Next() returns an empty set.

What is interesting to notice in Figure 4 is that, if use an on-line test purpose-
guided algorithm as in [7], we emit the verdict INCONC as soon as we find
the delay 2.1 of output error!6 ((d) in the figure). One advantage of this off-
line algorithm is that we can emit better verdicts (less INCONC) since we are
analyzing the entire trace.
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6 Related Work

Model-based conformance testing with tiocowas addressed in [4,5,7] wheremodels
are essentially timed automata (TA) [1] (without symbolic data). Authors in [5]
have defined a pure on-the-fly testing algorithm. Without any preprocessing on
the model, at each moment, the algorithm computes on-the-fly a random input
and its corresponding submission delay from the model and checks outputs and
their timing against the model. This is reiterated until a verdict is emitted. In [4],
authors model the testing activity with the help of test cases which are determin-
istic timed automata with inputs and outputs, whose states are labeled by ver-
dicts. These test cases are derived from a given test purpose and result from some
approximate determinisation mechanisms preserving the tioco conformance rela-
tion. Such a design of test cases tends to reduce choice points at runtime: however,
decisions have still to be made when running test cases on SUT, for example, con-
cerning the choice between waiting for a delay or sending a data to the SUT. So [4]
may be viewed as a mixed approach, off-line for the selection, by converting a test
purpose as a test case, on-line for guiding the progress in the test case during the
execution. Recently, authors of [2, 3, 7, 15] have defined seemingly different refer-
ence models where both time and data are represented symbolically as extensions
to TA or/and input output symbolic transition systems (IOSTS) [8,13], still based
on tioco. In addition, approaches [2, 7] have suggested on-line testing algorithms
guided by a test purpose: in [7], symbolic execution paths are selected as test pur-
poses while the work in [2] is conducted in the spirit of [4]. To our knowledge, we
are the first to propose in the context of the tioco conformance relation a frame-
work where test inputs are presented statically, without any further processing to
be done, while remaining executable and usable for verdict computation.

7 Conclusion

We have proposed an off-line testing approach based on the tioco conformance
relation and on TIOSTS models which handle both data and time symbolically.
The approach includes three steps: (1) first, test input sequences are extracted
from a TIOSTS; for this, traces are extracted from paths of the symbolic ex-
ecution tree by using solving constraints and projection techniques; (2) test
executions produce output sequences that are merged with input sequences to
form input output traces; (3) resulting traces are analyzed in order to provide
verdicts. We highlight a verdict, specific to our off-line approach: the verdict
INCONCi, stating that an input can become unspecified in the context of the
test execution even if it was a specified input in the context of the test selection.
Our approach has been implemented using the symbolic execution tool Diver-
sity. Diversity is an extension of the tool AGATHA [12] that integrates several
sat-solvers and can analyze several languages, in particular TIOSTS or UML
sequence diagrams extended with time constraints [3, 7].6 Concerning data, our
implementation handles booleans, presburger integers, and could be extended to

6 e.g. CVC3 http://www.cs.nyu.edu/acsys/cvc3/

http://www.cs.nyu.edu/acsys/cvc3/
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any decidable data theory as in [8]. Until now, we have not investigaged zone-
based techniques usually undertaken with timed automata, essentially because
run-time efficiency is not of primary importance in an off-line framework. We
are investigating techniques to reduce the occurrence of inconclusive verdicts. As
several reactions are possible after a given trace, the submission of an input se-
quence to SUT may result in a trace which runs outside the test purpose without
questioning conformance. To control non-determinism as much as possible, we
are studying under which hypotheses we can over constrain the input sequence
computation in order to force a correct SUT to follow a given path.
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Abstract. In Model Based Development (MBD) of embedded systems,
it is often desirable to not only verify/falsify certain formal system spec-
ifications, but also to automatically explore the properties that the sys-
tem satisfies. Namely, given a parametric specification, we would like
to automatically infer the ranges of parameters for which the property
holds/does not hold on the system. In this paper, we consider parametric
specifications in Metric Temporal Logic (MTL). Using robust semantics
for MTL, the parameter estimation problem can be converted into an
optimization problem which can be solved by utilizing stochastic opti-
mization methods. The framework is demonstrated on some examples
from the literature.

1 Introduction

Software development for embedded control systems is particularly challenging.
The software may be distributed with real time constraints and must interact
with the physical environment in non trivial ways. Multiple incidents and ac-
cidents of safety critical systems [1,2] reinforce the need for design, verification
and validation methodologies that provide a certain level of confidence in the
system correctness and robustness.

Recently, there has been a trend to develop software for safety critical embed-
ded control systems using the Model Based Design (MBD) paradigm. Among the
benefits of the MBD approach is that it provides the possibility for automatic
code generation. Based on a level of confidence on the automatic code genera-
tion process, some of the system verification and validation can be performed
at earlier design stages using only models of the system. Due to the importance
of the problem, there has been a substantial level of research on testing and
verification of models of embedded and hybrid systems (see [3] for an overview).

In [4], we investigated a new approach for testing embedded and hybrid sys-
tems against formal requirements in Metric Temporal Logic (MTL) [5]. Our
work was premised on the need to express complex design requirements in a
formal logic for both requirements analysis and requirements verification. Based
on the concept of robustness of MTL specifications [6], we were able to pose
the property falsification/testing problem as an optimization problem. In par-
ticular, robust MTL semantics provide the user with an application depended

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 136–151, 2012.
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measure of how far a system behavior is from failing to satisfy a requirement.
Therefore, the goal of an automatic test generator is to produce a sequence of
tests by gradually reducing that positive measure until a system behavior with
a negative robustness measure is produced. In other words, we are seeking to
detect system behaviors that minimize the specification robustness measure.

Unfortunately, the resulting optimizationproblem is non-linear andnon-convex,
in general. Moreover, embedded system models frequently contain black boxes as
subcomponents. Thus, only stochastic optimization techniques can be employed
for solving the optimization problem and, in turn, for solving the initial falsifica-
tion problem. In our previous research [7,8,4], we have explored the applicability
of various stochastic optimization methods to the MTL falsification problem with
great success.

In this work, we take the MTL falsification method one step further. Namely,
not only would we like to detect a falsifying behavior if one exists, but also
we would like to be able to explore and determine system properties. Such a
property exploration framework can be of great help to the practitioner. In
many cases, the system requirements are not well formalized or understood at
the initial system design stages. Therefore, if the specification can be falsified,
then it is natural to ask for what parameter values the system still falsifies the
specification.

In more detail, given an MTL specification with an unknown or uncertain pa-
rameter [9], we automatically formulate an optimization problem whose solution
provides a range of values for the parameter such that the specification does not
hold on the system. In order to solve the resulting optimization problem, we uti-
lize our MTL falsification toolbox S-TaLiRo [10], which contains a number of
stochastic optimization methods [7,8,4]. Finally, we demonstrate our framework
on a challenge problem from the industry [11] and we present some experimental
results on a small number of benchmark problems.

2 Problem Formulation

In this work, we take a general approach in modeling real-time embedded sys-
tems that interact with physical systems that have non-trivial dynamics. In the
following, we will be using the term hybrid systems or Cyber-Physical Systems
(CPS) for such systems to stress the interconnection between the embedded
system and the physical world.

We fix N ⊆ N, where N is the set of natural numbers, to be a finite set of
indexes for the finite representation of a system behavior. In the following, given
two sets A and B, BA denotes the set of all functions from A to B. That is, for
any f ∈ BA we have f : A → B.

We view a system Σ as a mapping from a compact set of initial operating
conditions X0 and input signals U ⊆ UN to output signals Y N and timing (or
sampling) functions T ⊆ RN

+ . Here, U is a compact set of possible input values
at each point in time (input space), Y is the set of output values (output space),
R is the set of real numbers and R+ the set of positive reals.
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We impose three assumptions / restrictions on the systems that we consider:

1. The input signals (if any) must be parameterizable using a finite number of
parameters. That is, there exists a function U such that for any u ∈ U, there
exist two parameter vectors λ = [λ1 . . . λm]T ∈ Λ, where Λ is a compact
set, and t = [t1 . . . tm]T ∈ Rm

+ such that m << maxN and for all i ∈ N ,
u(i) = U(λ, t)(i).

2. The output space Y must be equipped with a generalized metric d which
contains a subspace Z equipped with a metric d.

3. For a specific initial condition x0 and input signal u, there must exist a
unique output signal y defined over the time domain R. That is, the system
Σ is deterministic.

Further details on the necessity and implications of the aforementioned assump-
tions can be found in [12].

Under Assumption 3, a system Σ can be viewed as a function ΔΣ : X0×U →
Y N ×T which takes as an input an initial condition x0 ∈ X0 and an input signal
u ∈ U and it produces as output a signal y : N → Y (also referred to as
trajectory) and a timing function τ : N → R+. The only restriction on the
timing function τ is that it must be a monotonic function, i.e., τ(i) < τ(j) for
i < j. The pair μ = (y, τ) is usually referred to as a timed state sequence, which
is a widely accepted model for reasoning about real time systems [13]. A timed
state sequence can represent a computer simulated trajectory of a CPS or the
sampling process that takes place when we digitally monitor physical systems.
We remark that a timed state sequence can represent both the internal state
of the software/hardware (usually through an abstraction) and the state of the
physical system. The set of all timed state sequences of a system Σ will be
denoted by L(Σ). That is,

L(Σ) = {(y, τ) | ∃x0 ∈ X0 . ∃u ∈ U . (y, τ) = ΔΣ(x0, u)}.

Our high level goal is to explore and infer properties that the system Σ satisfies
by observing its response (output signals) to particular input signals and initial
conditions. We assume that the system designer has some partial understanding
about the properties that the system satisfies or does not satisfy and he/she
would like to be able to precisely determine these properties. In particular, we
assume that the system developer can formalize the system properties in Metric
Temporal Logic (MTL) [5], but some parameters are unknown. Such parameters
could be unknown threshold values for the continuous state variables of the
hybrid system or some unknown real time constraints.

Example 1. As a motivating example, we will consider a slightly modified ver-
sion of the Automatic Transmission model provided by Mathworks as a Simulink
demo1. Further details on this example can be found in [14,15,12].

The only input u to the system is the throttle schedule, while the break sched-
ule is set simply to 0 for the duration of the simulation which is T = 30 sec.

1 Available at: http://www.mathworks.com/products/simulink/demos.html

http://www.mathworks.com/products/simulink/demos.html
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The physical system has two continuous-time state variables which are also its
outputs: the speed of the engine ω (RPM) and the speed of the vehicle v, i.e.,
Y = R2 and y(t) = [ω(t) v(t)]T for all t ∈ [0, 30]. Initially, the vehicle is at rest
at time 0, i.e., X0 = {[0 0]T} and x0 = y(0) = [0 0]T . Therefore, the output
trajectories depend only on the input signal u which models the throttle, i.e.,
(y, τ) = ΔΣ(u). The throttle at each point in time can take any value between
0 (fully closed) to 100 (fully open). Namely, u(i) ∈ U = [0, 100] for each i ∈ N .
The model also contains a Stateflow chart with two concurrently executing Finite
State Machines (FSMs) with 4 and 3 states, respectively. The FSMs model the
logic that controls the switching between the gears in the transmission system.
We remark that the system is deterministic, i.e., under the same input u, we
will always observe the same output y.

In our previous work [12,10,7], on such models, we demonstrated how to falsify
requirements like: “The vehicle speed v is always under 120km/h or the engine
speed ω is always below 4500RPM.” A falsifying system trajectory appears in
Fig. 1. In this work, we provide answers to queries like “What is the fastest time
that ω can exceed 3250 RPM” or “For how long can ω be below 4500 RPM”.

Formally, in this work, we solve the following problem.

Problem 1 (Temporal Logic Parameter Estimation Problem). Given
an MTL formula φ[θ] with a single unknown parameter θ ∈ Θ = [θm, θM ] ⊆ R,
a hybrid system Σ, and a maximum testing time T , find an optimal range Θ∗ =
[θ∗m, θ∗M ] such that for any ζ ∈ Θ∗, φ[ζ] does not hold on Σ, i.e., Σ �|= φ[ζ].
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Fig. 1. Example 1: A piecewise constant
input signal u parameterized with Λ ∈
[0, 100]6 and t = [0, 5, 10, 15, 20, 25] and
the corresponding output signals that fal-
sify the specification

Ideally, by solving Problem 1, we
would also like to have the property
that for any ζ ∈ Θ−Θ∗, φ[ζ] holds on
Σ, i.e., Σ |= φ[ζ]. However, even for
a given ζ, the problem of algorithmi-
cally computing whether Σ |= φ[ζ] is
not easy to solve for the classes of hy-
brid systems that we consider in this
work.

An overview of our proposed solu-
tion to Problem 1 appears in Fig. 2.
The sampler produces a point x0 from
the set of initial conditions, a parame-
ter vector λ that characterizes the con-
trol input signal u and a parameter θ.
The vectors x0 and λ are passed to the
system simulator which returns an ex-
ecution trace (output trajectory and timing function). The trace is then analyzed
by the MTL robustness analyzer which returns a robustness value representing
the best estimate for the robustness found so far. In turn, the robustness score
computed is used by the stochastic sampler to decide on a next input to analyze.
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Fig. 2. Overview of the solution to the MTL parameter estimation problem on CPS

The process terminates after a maximum number of tests or when no improve-
ment on the parameter estimate θ has been made after a number of tests.

3 Robustness of Metric Temporal Logic Formulas

Metric Temporal Logic (MTL) was introduced in [5] in order to reason about the
quantitative timing properties of boolean signals. In the following, we present
directly MTL in Negation Normal Form (NNF) since this is needed for the
presentation of the new results in Section 5. We denote the extended real number
line by R = R ∪ {±∞}.

Definition 1 (Syntax of MTL in NNF). Let R be the set of truth degree
constants, AP be the set of atomic propositions and I be a non-empty non-
singular interval of R≥0. The set MTL of all well-formed formulas (wff) is
inductively defined using the following rules:

– Terms: True (�), false (⊥), all constants r ∈ R and propositions p, ¬p for
p ∈ AP are terms.

– Formulas: if φ1 and φ2 are terms or formulas, then φ1∨φ2, φ1∧φ2, φ1 UIφ2

and φ1RIφ2 are formulas.

The atomic propositions in our case label subsets of the output space Y . In other
words, each atomic proposition is a shorthand for an arithmetic expression of
the form p ≡ g(y) ≤ c, where g : Y → R and c ∈ R. We define an observation
map O : AP → P(Y ) such that for each p ∈ AP the corresponding set is
O(p) = {y | g(y) ≤ c} ⊆ Y .

In the above definition, UI is the timed until operator andRI the timed release
operator. The subscript I imposes timing constraints on the temporal operators.
The interval I can be open, half-open or closed, bounded or unbounded, but it
must be non-empty (I �= ∅) (and, practically speaking, non-singular (I �= {t})).
In the case where I = [0,+∞), we remove the subscript I from the temporal
operators, i.e., we just write U , and R. Also, we can define eventually (�Iφ ≡
�UIφ) and always (�Iφ ≡ ⊥RIφ).

Before proceeding to the actual definition of the robust semantics, we in-
troduce some auxiliary notation. A metric space is a pair (X, d) such that the
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topology of the set X is induced by a metric d. Using a metric d, we can define
the distance of a point x ∈ X from a set S ⊆ X . Intuitively, this distance is the
shortest distance from x to all the points in S. In a similar way, the depth of a
point x in a set S is defined to be the shortest distance of x from the boundary
of S. Both the notions of distance and depth will play a fundamental role in the
definition of the robustness degree.

Definition 2 (Signed Distance). Let x ∈ X be a point, S ⊆ X be a set and
d be a metric on X. Then, we define the Signed Distance from x to S to be

Distd(x, S) :=

{
−distd(x, S) := − inf{d(x, y) | y ∈ S} if x �∈ S
depthd(x, S) := distd(x,X\S) if x ∈ S

We remark that we use the extended definition of the supremum and infimum,
i.e., sup ∅ := −∞ and inf ∅ := +∞.

MTL formulas are interpreted over timed state sequences μ. In the past [6],
we proposed multi-valued semantics for MTL where the valuation function on
the predicates takes values over the totally ordered set R according to a metric d
operating on the output space Y . For this purpose, we let the valuation function
be the depth (or the distance) of the current point of the signal y(i) in a set
O(p) labeled by the atomic proposition p. Intuitively, this distance represents
how robustly is the point y(i) within a set O(p). If this metric is zero, then even
the smallest perturbation of the point can drive it inside or outside the set O(p),
dramatically affecting membership.

For the purposes of the following discussion, we use the notation [[φ]] to denote
the robustness estimate with which the timed state sequence μ satisfies the
specification φ. Formally, the valuation function for a given formula φ is [[φ]] :
(Y N×T)×N → R. In the definition below, we also use the following notation : for
Q ⊆ R, the preimage of Q under τ is defined as : τ−1(Q) := {i ∈ N | τ(i) ∈ Q}.

Definition 3 (Robustness Estimate). Let μ = (y, τ) ∈ L(Σ), r ∈ R and
i, j, k ∈ N , then the robustness estimate of any formula MTL φ with respect to
μ is recursively defined as follows

[[r]](μ, i) := r [[�]](μ, i) := +∞ [[⊥]](μ, i) := −∞
[[p]](μ, i) := Distd(y(i),O(p)) [[¬p]](μ, i) := −Distd(y(i),O(p))

[[φ1 ∨ φ2]](μ, i) := max([[φ1]](μ, i), [[φ2]](μ, i))

[[φ1 ∧ φ2]](μ, i) := min([[φ1]](μ, i), [[φ2]](μ, i))

[[φ1 UIφ2]](μ, i) := sup
j∈τ−1(τ(i)+I)

(
min([[φ2]](μ, j), inf

i≤k<j
[[φ1]](μ, k))

)
[[φ1RIφ2]](μ, i) := inf

j∈τ−1(τ(i)+I)
(
max([[φ2]](μ, j), sup

i≤k<j
[[φ1]](μ, k))

)

Recall that we use the extended definition of supremum and infimum. When
i = 0, then we simply write [[φ]](μ).

The robustness of an MTL formula with respect to a timed state sequence
can be computed using several existing algorithms [6,15,16].
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4 Parametric Metric Temporal Logic over Signals

In many cases, it is important to be able to describe an MTL specification with
unknown parameters and, then, infer the parameters that make the specifica-
tion true/false. In [9], Asarin et. al. introduce Parametric Signal Temporal Logic
(PSTL) and present two algorithms for computing approximations for parame-
ters over a given signal. Here, we review some of the results in [9] while adapting
them in the notation and formalism that we use in this paper.

We will restrict the occurrences of unknown parameters in the specification
to a single parameter that may appear either in the timing constraints of a
temporal operator or in the atomic propositions.

Definition 4 (Syntax of Parametric MTL (PMTL)). Let λ be a parame-
ter, then the set of all well formed PMTL formulas is the set of all well formed
MTL formulas where either λ appears in an arithmetic expression, i.e., p[λ] ≡
g(y) ≤ λ, or in the timing constraint of a temporal operator, i.e., I[λ].

We will denote a PMTL formula φ with parameter λ by φ[λ]. Given some value
θ ∈ Θ, then the formula φ[θ] is an MTL formula.

Since the valuation function of an MTL formula is a composition of mini-
mum and maximum operations quantified over time intervals, a formula φ[λ] is
monotonic with respect to λ.

Example 2. Consider the PMTL formula φ[λ] = �[0,λ]p where p ≡ (ω ≤ 3250).
Given a timed state sequence μ = (y, τ) with τ(0) = 0, for θ1 ≤ θ2, we
have: [0, θ1] ⊆ [0, θ2] =⇒ τ−1([0, θ1]) ⊆ τ−1([0, θ2]). Therefore, [[φ[θ1]]](μ)
= infi∈τ−1([0,θ1])(−Distd(y(i),O(p))) ≥ infi∈τ−1([0,θ2])(−Distd(y(i),O(p))) =
[[φ[θ2]]](μ). That is, the function [[φ[θ]]](μ) is non-increasing with θ. See Fig. 3
for an example using an output trajectory from the system in Example 1.

The previous example can be formalized in the following result.

Proposition 1. Consider a PMTL formula φ[λ] such that it contains a sub-
formula φ1OpI[λ]φ2 where Op ∈ {U ,R}. Then, given a timed state sequence

μ = (y, τ), for θ1, θ2 ∈ R≥0, such that θ1 ≤ θ2, and for i ∈ N , we have:

1. if (i) Op = U and sup I[λ] = λ or (ii) Op = R and inf I[λ] = λ, then
[[φ[θ1]]](μ, i) ≤ [[φ[θ2]]](μ, i), i.e., the function [[φ[λ]]](μ, i) is nondecreasing
with respect to λ, and

2. if (i) Op = R and sup I[λ] = λ or (ii) Op = U and inf I[λ] = λ, then
[[φ[θ1]]](μ, i) ≥ [[φ[θ2]]](μ, i), i.e., the function [[φ[λ]]](μ, i) is non-increasing
with respect to λ.

Proof (Sketch). The proof is by induction on the structure of the formula and
it is similar to the proofs that appear in [6].

For completeness, we present the case [[φ1 U〈α,λ〉φ2]](μ, i), where 〈∈ {[, (} and
〉 ∈ {], )}. The other cases are either similar or they are based on the monotonicity
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of the operators max and min. Let θ1 ≤ θ2, then:

[[φ1 U〈α,θ1〉φ2]](μ, i) ≤ max
(
[[φ1 U〈α,θ1〉φ2]](μ, i), [[φ1 U〈θ1,θ2〉φ2]](μ, i)

)
= [[φ1 U〈α,θ2〉φ2]](μ, i)

where 〈 ∈ {[, (} such that 〈α, θ1〉∩〈θ1, θ2〉 = ∅ and 〈α, θ1〉∪〈θ1, θ2〉 = 〈α, θ2〉. ��

We can derive similar results when the parameter appears in the numerical
expression of the atomic proposition.

Proposition 2. Consider a PMTL formula φ[λ] such that it contains a para-
metric atomic proposition p[λ] in a subformula. Then, given a timed state se-
quence μ = (y, τ), for θ1, θ2 ∈ R≥0, such that θ1 ≤ θ2, and for i ∈ N , we
have:

1. if p[λ] ≡ g(x) ≤ λ, then [[φ[θ1]]](μ, i) ≤ [[φ[θ2]]](μ, i), i.e., the function
[[φ[λ]]](μ, i) is nondecreasing with respect to λ, and

2. if p[λ] ≡ g(x) ≥ λ, then [[φ[θ1]]](μ, i) ≥ [[φ[θ2]]](μ, i), i.e., the function
[[φ[λ]]](μ, i) is non-increasing with respect to λ.

Proof (Sketch). The proof is by induction on the structure of the formula and
it is similar to the proofs that appear in [6].

For completeness, we present the base case [[p[λ]]](μ, i) where p[λ] ≡ g(x) ≤ λ.
Since θ1 ≤ θ2, O(p[θ1]) ⊆ O(p[θ2]). We will only present the case for which
y(i) �∈ O(p[θ2]). We have:

O(p[θ1]) ⊆ O(p[θ2]) =⇒ distd(y(i),O(p[θ1])) ≥ distd(y(i),O(p[θ2])) =⇒
Distd(y(i),O(p[θ1])) ≤ Distd(y(i),O(p[θ2])) =⇒ [[p[θ1]]](μ, i) ≤ [[p[θ2]]](μ, i)��

The results presented in this section can be easily extended to multiple parame-
ters. However, in this work, we will focus on a single parameter in order to derive
a more tractable optimization problem.
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Fig. 3. Example 2. Left: Engine speed ω(t) for constant throttle u(t) = 50. Right: The
robustness of the specification �[0,θ](ω ≤ 3250) with respect to θ.



144 H. Yang, B. Hoxha, and G. Fainekos

5 Temporal Logic Parameter Bound Computation

The notion of robustness of temporal logics will enable us to pose the parameter
estimation problem as an optimization problem. In order to solve the resulting
optimization problem, falsification methods and S-TaLiRo can be utilized in
order to estimate Θ∗ for Problem 1.

As described in the previous section, the parametric robustness functions that
we are considering are monotonic with respect to the search parameter. There-
fore, if we are searching for a parameter over an interval Θ = [θm, θM ], we know
that Θ∗ is going to be either of the form [θm, θ∗] or [θ∗, θM ]. In other words, de-
pending on the structure of φ[λ], we are either trying to minimize or maximize
θ∗ such that for all θ ∈ Θ∗, we have [[φ[θ]]](Σ) = minμ∈Lτ (Σ)[[φ[θ]]](μ) ≤ 0.

Example 3. Let us consider again the automotive transmission example and the
specification φ[λ] = �[0,λ]p where p ≡ (ω ≤ 4500). The specification robustness
[[φ[θ]]](ΔΣ(u)) as a function of θ and the input u appears in Fig. 4 (left) for
constant input signals. The creation of the graph required 100 × 30 = 3, 000
tests. The contour under the surface indicates the zero level set of the robustness
surface, i.e., the θ and u values for which we get [[φ[θ]]](ΔΣ(u)) = 0. From
the graph, we can infer that θ∗ ≈ 2.8 and that for any θ ∈ [2.8, 30], we have
[[φ[θ]]](Σ) ≤ 0. The approximate value of θ∗ is a rough estimate based on the
granularity of the grid that we used to plot the surface.

In summary, in order to solve Problem 1, we would have to solve the following
optimization problem:

optimize θ (1)

subject to θ ∈ Θ and [[φ[θ]]](Σ) = min
μ∈Lτ (Σ)

[[φ[θ]]](μ) ≤ 0
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Fig. 4. Example 3: Left: Specification robustness as a function of the parameter θ and
the constant input u. Right: Engine speed ω(t) as a function of the constant input u
and time t. The contours indicate the u-t combinations for which ω(t) = 4500.
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However, [[φ[θ]]](Σ) neither can be computed using reachability analysis algo-
rithms nor is known in closed form for the systems that we are considering.
Therefore, we will have to compute an under-approximation of Θ∗.

Our focus will be to formulate an optimization problem that can be solved
using stochastic search methods. In particular, we will reformulate optimization
problem (1) into a new one where the constraints due to the specification are
incorporated into the cost function:

optimizeθ∈Θ

(
θ +

{
γ ± [[φ[θ]]](Σ) if [[φ[θ]]](Σ) ≥ 0
0 otherwise

)
(2)

where the sign (±) and the parameter γ depend on whether the problem is a
maximization or a minimization problem. The parameter γ must be properly
chosen so that the optimum of problem (2) is in Θ if and only if [[φ[θ]]](Σ) ≤ 0.
In other words, we must avoid the case where for some θ, we have [[φ[θ]]](Σ) > 0
and (θ + [[φ[θ]]](Σ)) ∈ Θ. Therefore, if the problem in Eq. (1) is feasible, then
the optimum of equations (1) and (2) is the same.

5.1 Non-increasing Robustness Functions

First, we consider the case of non-increasing robustness functions [[φ[θ]]](Σ) with
respect to the search variable θ. In this case, the optimization problem is a
minimization problem.

To see why this is the case, assume that [[φ[θM ]]](Σ) ≤ 0. Since for θ ≤ θM ,
we have [[φ[θ]]](Σ) ≥ [[φ[θM ]]](Σ), we need to find the minimum θ such that we
still have [[φ[θ]]](Σ) ≤ 0. That θ will be θ∗ since for all θ′ ∈ [θ∗, θM ], we will have
[[φ[θ′]]](Σ) ≤ 0.

We will reformulate the problem of Eq. (2) so that we do not have to solve
two separate optimization problems. From (2), we have:

min
θ∈Θ

(
θ +

{
γ +minμ∈Lτ (Σ)[[φ[θ]]](μ) if minμ∈Lτ (Σ)[[φ[θ]]](μ) ≥ 0
0 otherwise

)
=

= min
θ∈Θ

(
θ + min

μ∈Lτ (Σ)

{
γ + [[φ[θ]]](μ) if [[φ[θ]]](μ) ≥ 0
0 otherwise

)
=

= min
θ∈Θ

min
μ∈Lτ (Σ)

(
θ +

{
γ + [[φ[θ]]](μ) if [[φ[θ]]](μ) ≥ 0
0 otherwise

)
(3)

where γ ≥ max(θM , 0).
The previous discussion is formalized in the following result.

Proposition 3. Let θ∗ and μ∗ be the parameters returned by an optimization
algorithm that is applied to the problem in Eq. (3). If [[φ[θ∗]]](μ∗) ≤ 0, then for
all θ ∈ Θ∗ = [θ∗, θM ], we have [[φ[θ]]](Σ) ≤ 0.

Proof. If [[φ[θ∗]]](μ∗) ≤ 0, then [[φ[θ∗]]](Σ) ≤ 0. Since [[φ[θ]]](Σ) is non-increasing
with respect to θ, then for all θ ∈ [θ∗, θM ], we also have [[φ[θ]]](Σ) ≤ 0.
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Since we are utilizing stochastic optimization methods [7,10,8,4] to solve problem
(3), if [[φ[θ∗]]](μ∗) > 0, then we cannot infer that the system is correct for all
parameter values in Θ.

Example 4. Using Eq. (3) as a cost function, we can now compute the opti-
mal parameter for Example 3 using our toolbox S-TaLiRo [10]. In particular,
using Simulated Annealing as a stochastic optimization function, S-TaLiRo re-
turns θ∗ ≈ 2.45 as optimal parameter for constant input u(t) = 99.8046. The
corresponding temporal logic robustness for the specification �[0,2.45](ω ≤ 4500)
is −0.0445. The total number of tests performed for this example was 500 and,
potentially, the accuracy of estimating θ∗ can be improved if we increase the
maximum number of tests. However, we remark that based on several tests the
algorithm converges to a good approximation within 200 tests.

5.2 Non-decreasing Robustness Functions

The case of non-decreasing robustness functions is symmetric to the case of
non-increasing robustness functions. In particular, the optimization problem is
a maximization problem. We will reformulate the problem of Eq. (2) so that we
do not have to solve two separate optimization problems. From (2), we have:

max
θ∈Θ

(
θ +

{
γ −minμ∈Lτ (Σ)[[φ[θ]]](μ) if minμ∈Lτ (Σ)[[φ[θ]]](μ) ≥ 0
0 otherwise

)
=

= max
θ∈Θ

(
θ +

{
γ +maxμ∈Lτ (Σ) (−[[φ[θ]]](μ)) if maxμ∈Lτ (Σ) (−[[φ[θ]]](μ)) ≤ 0
0 otherwise

)
=

= max
θ∈Θ

(
θ + max

μ∈Lτ (Σ)

{
γ − [[φ[θ]]](μ) if − [[φ[θ]]](μ) ≤ 0
0 otherwise

)
=

= max
θ∈Θ

max
μ∈Lτ (Σ)

(
θ +

{
γ − [[φ[θ]]](μ) if [[φ[θ]]](μ) ≥ 0
0 otherwise

)
(4)

where γ ≤ min(θm, 0).
The previous discussion is formalized in the following result.

Proposition 4. Let θ∗ and μ∗ be the parameters returned by an optimization
algorithm that is applied to the problem in Eq. (4). If [[φ[θ∗]]](μ∗) ≤ 0, then for
all θ ∈ Θ∗ = [θm, θ∗], we have [[φ[θ]]](Σ) ≤ 0.

Proof. If [[φ[θ∗]]](μ∗) ≤ 0, then [[φ[θ∗]]](Σ) ≤ 0. Since [[φ[θ]]](Σ) is non-decreasing
with respect to θ, then for all θ ∈ [θm, θ∗], we also have [[φ[θ]]](Σ) ≤ 0.

Again, if [[φ[θ∗]]](μ∗) > 0, then we cannot infer that the system is correct for all
parameter values in Θ.

Example 5. Let us consider the specification φ[λ] = �[λ,30](ω ≤ 4500) on our
running example. The specification robustness [[φ[θ]]](ΔΣ(u)) as a function of θ
and the input u appears in Fig. 5 (left) for constant input signals. The creation
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Fig. 5. Example 5. Left: Specification robustness as a function of the parameter θ and
the constant input u. Right: The robustness function [[�[12.59,30](ω ≤ 4500)]](ΔΣ(u)).

of the graph required 100 × 30 = 3, 000 tests. The contour under the surface
indicates the zero level set of the robustness surface, i.e., the θ and u values
for which we get [[φ[θ]]](ΔΣ(u)) = 0. We remark that the contour is actually an
approximation of the zero level set computed by a linear interpolation using the
neighboring points on the grid. From the graph, we could infer that θ∗ ≈ 13.8 and
that for any θ ∈ [0, 13.8], we would have [[φ[θ]]](Σ) ≤ 0. Again, the approximate
value of θ∗ is a rough estimate based on the granularity of the grid.

Using Eq. (4) as a cost function, we can now compute the optimal parameter
for Example 3 using our toolbox S-TaLiRo [10]. S-TaLiRo returns θ∗ ≈ 12.59
as optimal parameter for constant input u(t) = 90.88 within 250 tests. The
temporal logic robustness for the specification �[12.59,30](ω ≤ 4500) with respect
to the input u appears in Fig. 5 (right). Some observations: (i) The θ∗ ≈ 12.59
computed by S-TaLiRo is actually very close to the optimal value since for
θ∗ ≈ 12.79 the system does not falsify any more. (ii) The systematic testing that
was used in order to generate the graph was not able to accurately compute a good
approximation to the parameter unless even more tests (> 3000) are generated.

6 Experiments and a Case Study

The parametric MTL exploration of embedded systems was motivated by a chal-
lenge problem published by Ford in 2002 [11]. In particular, the report provided
a simple – but still realistic – model of a powertrain system (both the physical
system and the embedded control logic) and posed the question whether there
are constant operating conditions that can cause a transition from gear two to
gear one and then back to gear two. Such a sequence would imply that the
transition was not necessary in the first place.

The system is modeled in Checkmate [17]. It has 6 continuous state variables
and 2 Stateflow charts with 4 and 6 states, respectively. The Stateflow chart for
the shift scheduler appears in Fig. 6. The system dynamics and switching condi-
tions are linear. However, some switching conditions depend on the inputs to the
system. The latter makes the application of standard hybrid system verification
tools not a straightforward task.
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first_gear
entry: schedule =1;
STaliro_StateVar = 1;

transition12_shifting
entry : schedule = 2;
STaliro_StateVar = 2;

transition21_shifting
entry:schedule = 4;
STaliro_StateVar = 4;

second_gear
entry: schedule =3;
STaliro_StateVar = 3;
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Fig. 6. Left: The shift scheduler of the powertrain challenge problem. Right: Shift
schedules. The numbers on the y-axis correspond to the variables in the states of the
shift scheduler. Right Top: The shift schedule falsifying requirement φe1. Right Bottom:
The shift schedule falsifying requirement φe3[0.4273].

In [15], we demonstrated that S-TaLiRo [10] can successfully solve the chal-
lenge problem (see Fig. 6) by formalizing the requirement as an MTL specifi-
cation φe1 = ¬�(g2 ∧ �(g1 ∧ �g2)) where gi is a proposition that is true when
the system is in gear i. Stochastic search methods can be applied to solve the
resulting optimization problem where the cost function is the robustness of the
specification. Moreover, inspired by the success of S-TaLiRo on the challenge
problem, we tried to ask a more complex question. Namely, does a transition
exists from gear two to gear one and back to gear two in less than 2.5 sec? An
MTL specification that can capture this requirement is φe2 = �((¬g1 ∧Xg1) →
�[0,2.5]¬g2).

The natural question that arises is what would be the smallest time for which
such a transition can occur? We can formulate a parametric MTL formula to
query the model of the powertrain system: φe3[λ] = �((¬g1∧Xg1) → �[0,λ]¬g2).
We have extended S-TaLiRo to be able to handle parametric MTL specifica-
tions. The total simulation time of the model was 60 sec and the search interval
was Θ = [0, 30]. S-TaLiRo returned θ∗ ≈ 0.4273 as the minimum parameter
found (See Fig. 6) using about 300 tests of the system.

In Table 6, we present some experimental results. Since no other technique can
solve the parameter estimation problem for MTL formulas over hybrid systems,
we compare our method with the falsification methods that we have developed
in the past [12,7]. A detailed description of the benchmark problems can be
found in [12,7] and the benchmarks can be downloaded with the S-TaLiRo
distribution2. In order to be able to compare the two methods, when performing
parameter estimation, we regard a parameter value less than the constant in the
MTL formula as falsification. Notably, for benchmark problems that are easier
to falsify, the parameter estimation method incurs additional cost in the sense of
reduced number of falsifications. On the other hand, on hard problem instances,

2
https://sites.google.com/a/asu.edu/s-taliro/

https://sites.google.com/a/asu.edu/s-taliro/
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Table 1. Experimental Comparison of Falsification (FA) vs. Parameter Estimation
(PE). Each instance was run for 100 times and each run was executed for a maximum
of 1000 tests. Legend: #Fals.: the number of runs falsified, Parameter Estimate:
〈min, average, max〉 of the parameter value computed, dnf : did not finish.

Benchmark Problem #Fals. Parameter Estimate

Specification Instance FA PE PE

φAT
2 [λ] = ¬�(pAT

1 ∧�[0,λ]p
AT
2 ) φAT

2 [10] 96 84 〈7.7, 9.56, 16.84〉
φAT
3 [λ] = ¬�(pAT

1 ∧�[0,λ]p
AT
3 ) φAT

3 [10] 51 0 〈10.00, 10.22, 14.66〉
φAT
4 [λ] = ¬�(pAT

1 ∧�[0,λ]p
AT
2 ) φAT

4 [7.5] 0 0 〈7.57, 7.7, 8.56〉
φAT
5 [λ] = ¬�(pAT

1 ∧�[0,λ]p
AT
2 ) φAT

5 [5] 0 0 〈7.56, 7.74, 9.06〉
φe3[2.5] dnf 93 〈1.28, 2.26, 6.82〉

the parameter estimation method provides us with parameter ranges for which
the system fails the specification. Moreover, on the powertrain challenge problem,
the parameter estimation method actually helps in falsifying the system. We
conjecture that the reason for this improved performance is that the timing
requirements on this problem are more important than the state constraints.

7 Related Work

The topic of testing embedded software and, in particular, embedded control
software is a well studied problem that involves many subtopics well beyond
the scope of this paper. We refer the reader to specialized book chapters and
textbooks for further information [18,19]. Similarly, a lot of research has been
invested on testing methods for Model Based Development (MBD) of embedded
systems [3]. However, the temporal logic testing of embedded and hybrid systems
has not received much attention [20,21,4,22].

Parametric temporal logics were first defined over traces of finite state ma-
chines [23]. In parametric temporal logics, some of the timing constraints of the
temporal operators are replaced by parameters. Then, the goal is to develop
algorithms that will compute the values of the parameters that make the specifi-
cation true under some optimality criteria. That line of work has been extended
to real-time systems and in particular to timed automata [24] and continuous-
time signals [9]. The authors in [25,26] define a parametric temporal logic called
quantifier free LTL over real valued signals. However, they focus on the problem
of determining system parameters such that the system satisfies a given property
rather than on the problem of exploring the properties of a given system.

Another related research topic is the problem of Temporal Logic Queries
[27,28]. In detail, given a model of the system and a temporal logic formula
φ, a subformula in φ is replaced with a special symbol ?. Then, the problem is
to determine a set of Boolean formulas such that if these formulas are placed
into the placeholder ?, then φ holds on the model.
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8 Conclusions

An important stage in Model Based Development (MBD) of embedded control
software is the formalization of system requirements. We advocate that Metric
Temporal Logic (MTL) is an excellent candidate for formalizing interesting de-
sign requirements. In this paper, we have presented a solution on how we can
explore system properties using Parametric MTL (PMTL) [9]. Based on the
notion of robustness of MTL [6], we have converted the parameter estimation
problem into an optimization problem which we solve using S-TaLiRo [10].
Even though this paper presents a method for estimating the range for a single
parameter, the results can be easily extended to multiple parameters as long
as the robustness function has the same monotonicity with respect to all the
parameters. Finally, we have demonstrated that the our method can provide
interesting insights to the powertrain challenge problem [11].
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NSF Industry/University Cooperative Research Center (I/UCRC) on Embedded
Systems at Arizona State University and NSF awards CNS-1116136 and CNS-
1017074.

References

1. Lions, J.L., Lbeck, L., Fauquembergue, J.L., Kahn, G., Kubbat, W., Levedag, S.,
Mazzini, L., Merle, D., O’Halloran, C.: Ariane 5, flight 501 failure, report by the
inquiry board. Technical report, CNES (1996)

2. Hoffman, E.J., Ebert, W.L., Femiano, M.D., Freeman, H.R., Gay, C.J., Jones, C.P.,
Luers, P.J., Palmer, J.G.: The near rendezvous burn anomaly of december 1998.
Technical report, Applied Physics Laboratory, Johns Hopkins University (1999)

3. Tripakis, S., Dang, T.: Modeling, Verification and Testing using Timed and Hy-
brid Automata. In: Model-Based Design for Embedded Systems, pp. 383–436.
CRC Press (2009)

4. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, pp. 211–220. ACM Press (2010)

5. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2, 255–299 (1990)

6. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410, 4262–4291 (2009)

7. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: ACM International Conference on
Hybrid Systems: Computation and Control (2012)

8. Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsification
of hybrid systems. In: Proceedings of the 36th Annual Conference of IEEE Indus-
trial Electronics, pp. 91–96 (2010)
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Abstract. This paper is concerned with model-based testing of hybrid
systems. The first result is an algorithm for test generation which en-
hances the coverage of critical trajectories by using a random walk. The
second result is a framework for practical testing that includes a state
estimator. When the state of a system under test cannot be directly ob-
served, it is necessary to reconstruct the trajectory of the real system in
order to produce a verdict whether the system violates a property. To
do so, we integrate in our tester a hybrid observer, the goal of which is
to provide an estimate for the current location and the continuous state
of the system under test based on the information on the input and the
output of the system.

1 Introduction

We describe some recent progress in model-based testing of hybrid systems,
systems combining continuous and discrete dynamics. Such systems have been
widely accepted as a mathematical model for many applications in embedded
systems and cyber-physical systems. In our previous work [7], we introduced
a test coverage measure, based on the notion of star discrepancy of a set of
points, which indicates how well the states visited by a test suite represent the
whole reachable space. We then designed a test generation algorithm, called
gRRT [7] which can be seen as a coverage guided version of the RRT (Rapidly-
exploring Random Tree) algorithm for robotic planning [12]. Our algorithm has
been successfully applied to a number of analog circuits and control applications.
In this paper, we propose a new version of the test generation algorithm that
is not only guided by the coverage but also by the property to verify. We focus
on covering the trajectories that violate a property of interest and exploiting
the discrete structure of the hybrid system. More concretely, we are interested
in finding a search strategy that allows achieving a high probability of reaching
some set of states. In the current version of the gRRT algorithm, we sample a
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goal hybrid state according to some distribution reflecting the current coverage
information. The probability that a state is sampled to be a goal state depends
on the current state coverage, which tends to a ’uniform’ coverage over the
global hybrid state space. In this work, we propose a new sampling method
in order to biase the exploration towards some critical paths. To do so, we
specify some desired stationary probability distribution over the regions (which
reflect the objective of our biased exploration) and use the Metropolis-Hastings
algorithms to compute a transition probability matrix of a random walk on a
discrete abstraction of the hybrid system under study. An advantage of this
random exploration is that one can use the bound on the expected number of
transitions necessary to reach a given region as a criterion to determine the
desired stationary probability distribution and guide the exploration towards
critical behaviors more efficiently.

In addition, we address the partial observability problem to extend our frame-
work to more practical testing settings. When not all discrete transitions and
not all components of the continuous states are observable, to produce a ver-
dict it is necessary to reconstruct the trajectory of the system under test. To
do so, we integrate in our tester a hybrid observer, the goal of which is to
provide an estimate for the current location and the continuous state of the sys-
tem under test, based on the information on the input and the output of the
system.

Hybrid systems testing has recently attracted the attention of researchers,
which is attested by a number of publications on the topics (see for exam-
ple [9,4,17,10] and references therein). However, to our knowledge, partial ob-
servability is not yet considered. Our work on testing under partial observability
is inspired by a number of existing results in testing for discrete and timed
systems (see for example [11,8,1]). In some of these works (such as [8]), game
theoretic approaches are used. Applying this idea to hybrid systems is however
difficult since this often requires complex and expensive set computations. Our
approach is rather based on the idea of estimating the state of the system us-
ing the well-established results on observer design for continuous systems [14,5].
Concerning the use of random walks in test generation, this idea has recently
been intensively applied for software testing, in particular, one could mention
the tool MaTeLo developped by the company All4tec1. In this work, we make
use of Metropolis-Hastings algorithms which have been successful for network
protocol design (see for example [16]).

The paper is organized as follows. We first recall the testing framework and ba-
sic definitions. We then show how to combine a random walk with the coverage-
guided test generation algorithm. The next section is devoted to the problem
of designing an algorithm for test execution under partial observability. Finally
we present some experimental results obtained for two well-known analog and
mixed-signal circuit benchmarks.

1
http://www.all4tec.net/
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2 Model-Based Testing of Hybrid Systems

2.1 Model

We use a conformance testing framework based on the hybrid automaton
model [2]. Intuitively, a hybrid automaton is an automaton where each loca-
tion is associated with a distinct continuous mode and the switching between
the continuous modes is described by discrete transitions. In this work we focus
on discrete-time hybrid automata.

Definition 1. A discrete-time hybrid automaton is a tuple A = (X , Q,E, F,
I,G) where

– X is the continuous state space and is a bounded subset of Rn;
– Q is a (finite) set of locations;
– E ⊆ Q×Q is a set of discrete transitions;
– F = {Fq | q ∈ Q} such that for each q ∈ Q, Fq = (fq, Uq) defines a difference

equation
x[k + 1] = fq(x[k], u[k])

for each location q; x ∈ X is the continuous state, u(·) ∈ Uq is the in-
put of the form u : N+ → Uq ⊂ Rm. The set Uq is the set of admissible
inputs.

– I = {Iq ⊆ X | q ∈ Q} is a set of staying conditions;
– G = {Ge | e ∈ E} is a set of guards such that for each discrete transition

e = (q, q′) ∈ E, Ge ⊆ Iq;

A hybrid state is a pair (q, x) where q ∈ Q and x ∈ X . The initial state of the
automaton is denoted by (q0, x0). A state (q, x) of A can change in two ways as
follows: by a continuous evolution (that is, the continuous state x evolves accord-
ing to the dynamics fq while the location q remains constant) and by a discrete
evolution (that is, x satisfies the guard condition of an outgoing transition, the
system changes the location by taking this transition).

Unlike continuous evolutions, discrete evolutions are instantaneous, which
means that they do not take time. This model allows capturing non-determinism
in both continuous and discrete dynamics. This non-determinism is useful for
describing disturbances from the environment and imprecision in modelling and
implementation.

2.2 Testing Problem

Specification and System Under Test. Our testing goal is to study the
conformance relation between the behaviors of a system under test (SUT) and
a specification. The specification is modeled by a hybrid automaton A and the
system under test by another hybrid automaton As (we may not know the
hybrid automaton As). The tester applies the control inputs to the SUT and
observes the outputs to produce one of the following verdicts: ‘pass’ (the ob-
served behavior is allowed by the specification), ‘fail’ (the observed behavior
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is not allowed by the specification). In this work, we use the trace inclusion
to define conformance relation. Intuitively, the system under test As conforms
to the specification A if under every admissible control action sequence, the
set of observation sequences of As is included in that of A (see [7] for more
detail).

Inputs. An input of the system which is controllable by the tester is called a
control input; otherwise, it is called a disturbance input. All the continuous inputs
are assumed to be controllable by the tester. The discrete transitions could be
controllable or uncontrollable.

We use the following assumption about the inputs: disturbance actions are of
higher priority than control actions. This means that when a control action and
a disturbance action are simultaneously enabled, the disturbance action takes
place first.

Observations. In our previous work, the locations and the continuous states
of the hybrid automata A and As are observable. In this work, we use a less
restrictive assumption: the location and the continuous state are not directly
observable, and the tester needs to deduce this information from some continuous
observations. We define an observation function as follows: h : X → Rd. In the
following we consider only scalar observation functions, that is d = 1. Intuitively,
the tester cannot directly observe the continuous state, and the outputs of its
sensors can be modeled by: y[k] = h(x[k]).

Test Cases and Test Executions. In our framework, a test case is represented
by a tree where each node is associated with a hybrid state and each edge of
the tree is associated with a control action. A physical test execution can be
described as follows: the tester applies a control input sequence to the system
and measures the observations. This procedure leads to a set of observation
sequences since multiple runs are possible due to non-determinism. In practical
systems, due to actuator and sensor imprecision, control inputs and observations
are subject to errors. The issues related to error in measurements and actuators
are treated in [7] and we do not discuss them here.

Coverage-guided Test Generation. We proposed in [7] a notion of state
coverage that describes how ‘well’ the visited states represent the reachable set.
This measure is defined using the star discrepancy notion in statistics, which
characterises the uniformity of the distribution of a point set within a region.
Note that the reachable sets of hybrid systems are often non-convex with com-
plex geometric form, therefore considering only corner cases does not always
cover the behaviors that are important for reachabilily properties, especially in
high dimensions. Our current method for test generation is based on a random-
ized exploration of the reachable state space of the system. It is an extension
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of the Rapidly-exploring Random Tree (RRT) algorithm, a successful motion
planning technique for finding robotic trajectories in an environment with ob-
stacles [12]. Furthermore, we combine it with a guiding tool in order to achieve
a good coverage of the system’s behaviors we want to test. The new results
presented in this paper are twofold. First, we provide a new test generation al-
gorithm guided by the coverage measure and additionally by the property to
test via a random walk. Furthermore, we address a testing problem under par-
tial observability where the hybrid state should be deduced from a sequence of
observations.

3 Combining the Coverage-Guided Exploration
and Random Walks

The main steps of the coverage-guided test generation algorithm [7] are the fol-
lowing: (1) a goal state is sampled, and this sampling is guided so that the
goal state lies in the regions where the local coverage of the visited states
is still low; (2) a neighbor state of the goal state is determined, from which
an appropriate control input is applied to steer the system towards the goal
state.

When using the state coverage measure to guide the test generation pro-
cess, the whole reachable space is ’equally’ important for the exploration and
the test generation tries not to leave a large part of the reachable space un-
visited. The resulting test suite is appropriate when different qualitative be-
haviors of the system need to be explored. However, when some regions in the
state space or some traces are of particular interest, we want to bias the execu-
tion towards those regions and traces. To this end, during the test generation
we combine the coverage-guided sampling with a guiding method based on a
random walk.

To define a random walk, we first partition the continuous state space into
a set of regions and from there we construct a directed graph G which roughly
overapproximates the specification automaton A. Then, the sampling process
consists of two steps:

1. Perform a random walk on the resulting graph G to determine a goal region.
2. Within the goal region we use the coverage-guided test generation algorithm

[7] to sample the goal state.

In the following we explain the first step of the sampling process. Let G =
(VG, EG) be the underlying graph obtained by partioning the continuous state
space; VG is the set of nodes and EG is the set of directed edges between the
nodes. The partition must capture the discrete transitions of A and separate
critical regions from the rest. In this work, we use axis-aligned hyperplanes to
define a partition. As future work, more general polyhedral partitions will be
considered and this requires adapting the coverage definition which is currently
based on a box partition of the continuous state space.
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Given a node w ∈ VG, an adjacent node of w is a node v ∈ VG such that
there exists an edge in EG that connects w to v. Let AG(w) be the set of
all the adjacent nodes of w. A random walk2 on G specifies a run where the
node to be visited next is selected from the adjacent vertices at random with
a transition probability P (G) = (pwv)w,v∈VG ∈ [0, 1]VG×VG such that for all
w ∈ VG

∑
v∈AG(w) pwv = 1 and for any v ∈ VG pwv = 0 if v �∈ AG(w).

A random walk on G starting at a vertex w ∈ VG under the transition matrix
P (G) is an infinite sequence of random variables ηi ∈ VG such that η0 = w
with the probability 1, and for all i ≥ 0 the probability that ηi+1 = w′, pro-
vided that the probability that ηi = v is p(v, w′). The hitting time from w to
v under the transition matrix P (G) is defined as HP (w, v) = E [inf i | ηi = v],
which is the expectation of the smallest numbers of steps needed to reach v
from w.

In order to bias the exploration towards the critical regions, we define a target
probability distribution

π = {πv | v ∈ VG}.

The regions we want to explore are given a higher target probability. To achieve
this target probability distribution, we use the Metropolis-Hastings method since
it guarantees that the stationary distribution of such a random walk on the
graph G is the target distribution π [16]. Given two nodes w and v, we assign a
probability to the edge from w to v:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pwv =
1

deg(w)
min{deg(w)πv

deg(v)πw
, 1} if v is adjacent node of w

pwv = 1−
∑
w′ �=w

pww′ if v = w

pwv = 0 otherwise

where deg(w) is the degree of the vertex w. The additional reason we choose to
use the Metropolis-Hastings method in this work is that it has good hitting times,

which are ofO(rN2
v ) whereNv is the number of vertices and r = max{πw

πv
| w, v ∈

VG}. As mentioned earlier, this algorithm has been successfully applied to many
applications, in particulat in network protocols.

4 Hybrid State Estimation

We now proceed with our second result. As mentioned earlier, the tester needs to
deduce the current location and the current continuous state from the continuous
observations.

2 For a detailed introduction to random walks on a graph, the reader is referred to [15].



158 T. Dang and N. Shalev

4.1 Continuous State Estimation

We first describe a method for estimating the state of a continuous system,
which is used in the next section to handle hybrid systems. Thus, for simplicity
of presentation, we drop the location index q from the equations of the dynamics,
that is

x[k + 1] = f(x[k], u[k])

y[k] = h(x[k])

This method is based on the Newton observer method for non-linear systems [14].
During the test execution, to estimate x[k] at each time point k, the tester needs
a sufficient long sequence of observations. This is indeed related to observability
of the system f and is explained in the following.

Let Uk,k+N−1 be a vector of N consecutive inputs that is to be applied to the
system at time k:

Uk,k+N−1 =

⎛
⎜⎜⎝

u[k]
u[k + 1]

. . .
u[k +N − 1]

⎞
⎟⎟⎠

Under this continuous input sequence Uk,k+N−1 and starting from the state
x[k] (that we need to estimate), the system under test produces a vector of
observations

Yk,k+N−1 =

⎛
⎜⎜⎝

y[k]
y[k + 1]

. . .
y[k +N − 1]

⎞
⎟⎟⎠

We define the following vector of functions:

H(x, U0,N−1) =

⎛
⎜⎜⎝

h(x)

h ◦ fu[0](x)
. . .

h ◦ fu[N−1](x) ◦ . . . ◦ fu[0](x)

⎞
⎟⎟⎠

where ◦ denotes the following composition operator: given two functions α :
X → Y and β : Y → Z, the function resulting from composing α with β is
β ◦ α : X → Z such that for a given y ∈ Y , β ◦ α(y) = β(α(x)). In the above
since the inputs are fixed in the functions f , we write them as superscripts of f .

From the results on observativility of continuous systems, we know that if the
system is N -observable (with N ≥ 1) at state x̃ if there any sequence U of N
control inputs such that x̃ is the unique solution of the following equation:

H(x̃, U) = H(ξ, U)

In the above, ξ is the unknown variable. Here N is the minimum number of
observations required to reconstruct the state.
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We assume now that the system is N -observable [14], and thus to estimate
the state at time k ≥ 0 it suffices to solve the following equation:

Yk,k+N−1 −H(ξ, Uk,k+N−1) = 0 (1)

Intuitively, to estimate the state at time point k, we need to apply a sequence
Uk,k+N−1 of N next input values to obtain a sequence Yk,k+N−1 of observations.
Then, we solve the above equation with ξ ∈ Rn as the unknown variables. We
let N = n, so that the Jacobian matrix of the vector H of functions is square.
Then, to determine ξ, we can use Newton’s algorithm as follows3:

ξi+1 = ξi + [
∂H

∂x
(ξi, Uk,k+N−1)]

−1(Yk,k+N−1 −H(ξi, Uk,k+N−1)

A detailed discussion on the standard convergence theorem for this algorithm
can be found in [13]. The convergence of Newton’s algorithm depends on the

initial estimate and the second derivatives ||∂2H
∂x2 || which measures the nonlin-

earity degree of the equation (1). For linear systems, the initial estimate can be

arbitrarily far from the exact solution; however, when ||∂2H
∂x2 || is large (that is,

the system is very nonlinear), the initial estimate needs to be more accurate.

4.2 Testing Execution with Hybrid State Estimation

Let T be the tree generated from the specification A, starting from the initial
continuous state x0. Now we use this tree to test the system against the specifi-
cation As. From the above discussion on observablity of continuous systems, to
extend to the hybrid systems we need to assume that the discrete transitions can
occur at times of multiples of N steps. The test execution procedure described
in Algorithm 1 uses the following assumption. At any time step of the algorithm,
the tester can apply many input sequences and observe the corresponding ob-
servation sequences (which may require restarting the execution of the system
from the initial state to restore the current state). Initially, the system could be
in any location; thus Sinit covers all the locations.

At each iteration i (which corresponds to a time segment of length N), the
tester keeps a set Si of possible states visited before time iN . Since the dis-
crete transitions are instantaneous, we also need to include all possible discrete
successors (represented by the operator Succd).

For each of possible states (q, x) in Si, the tester chooses from the tree a
possibly feasible sequence of N inputs. It is important to note that, according to
our assumption during the next N steps no discrete transition can occur. The
tester then applies the chosen sequence to the system under test and observes the
corresponding sequence Y of outputs. Using Newton’s algorithm, we compute
an estimator ξ of the state at time iN . There are two cases:

3 In the case that there are more equations than states, the inverse should be replaced
by a pseudo-inverse [13].
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Algorithm 1. Test execution

/* Input: Test tree T */

i = 0
Sinit = {(q, x0) | q ∈ Q}
Sn = Sinit ∪ Succd(Sinit)
repeat

Si = Sn ∪ Succd(Sn)
Sn = ∅
for all (q, x) ∈ Si do

U = InputSeq(T, (q, x)) /* Choose an input sequence U of length N and
feasible at (q, x) */
Y = Observation(U) /* Apply the input sequence U to the system and observe
the corresponding outputs */
ξ = Newton(q, U, Y ) /* Using Newton’s algorithm to estimate the state at the
current time iN */

if (||ξ − x|| ≤ ε) then
Sn = Sn ∪ {Succc((q, x), U)} /* Adding all the continuous successors to the
set Sn, they will be explored in the next iteration */

end if
end for
if (Sn = ∅) then

RETURN ’fail’ verdict
end if
i++

until i = imax ∨ Sn = ∅

1. If the estimator ξ is ε-close to the corresponding state x in the tree, we add
it to the set Sn of new possible states which will be treated in the next
iteration. The threshold ε is used to account for numerical error in Newton’s
algorithm and possible measurement error.

2. Otherwise, we continue with another possible current state in Si.

After applying the above treatment to all the possible states in Si, if the set Sn of
new possible states is empty, the algorithm declares the verdict ’fail’; otherwise
it continues. Note that to initialize the estimates in Newton’s algorithm we use
the last estimates of the previous iteration, in order to obtain a good convergence
of the estimation algorithm.

Theorem 1. If the algorithm returns the ’fail’ verdict, the system under test
does not conform to the specification.

Proof. We first prove the following proposition by induction. Let us suppose that
the set Si+1 at the beginning of the loop ’REPEAT... UNTIL’ contains all the
visited state during the interval [iN, (i + 1)N ] (this is true for i = 0), we prove
that the set Si+2 contains all the visited states up to time (i+ 2)N .
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Indeed, for any state (q, x) ∈ Si+1, all the states which can be reached from
(q, x) by a discrete transition are already included in Si+1. Hence, in order to in-
clude all the state reachable in N next step from Si+1, it suffices to consider only
the continuous dynamics. Since by applying Newton’s algorithm to each state
(q, x) ∈ Si+1 as above we can estimate the continuous states, if the estimates
do not match the expected states stored in the tree T , the successors of (q, x)
are not the states visited so far. It then follows that in the iteration i + 2, the
algorithm discards only the states which cannot be visited up to time (i+ 2)N ,
and at the same time the algorithm includes all the states which are possibly
visited up to time (i+ 2)N . Thus, the proposition is proved.

From this proposition, it is easy to see that when the algorithm returns ’fail’,
that is the set of possible states is empty, the system under test is not conform
to the specification.

5 Experimental Results

We implemented the above algorithms and incorporated their implementations
in the tool HTG [6]. The enhancement of the test generation algorithm allowed
us to increase the efficiency of the tool. In addition, the tool can now be used
for test execution in practical settings with partial observability. In this section,
to show the improvement in the test generation, we present the results obtained
for a well-known benchmark of ring oscillator circuit. The second case study is
a Delta-Sigma circuit, which is used to illustrate the state estimation feature.

Fig. 1. Ring oscillator circuit

5.1 Ring Oscillator

The ring oscillator circuit is described in Figure 1, given in SPICE netlist for-
malism4. This circuit has one input variable, which is the source voltage of the
circuit. Its values is between 1.6V and 2.4V . There are 9 state variables, which
are the output voltages of each inverter. We want to test whether the output
voltages could reach a value lower that −2.15V .

In the result of the test generation without using random walk (shown in
Figure 2), the maximum value of the output voltage of the last inverter is 0, and
its minimum value is −2.1458V . The computation time for generating 10000
points is 60s.

4 The tool HTG can accept SPICE netlists as input. For more detail on the tool,
see [6].
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Fig. 2. The output voltage of the last inverter, obtained without using random walk

In the next experiment, we partitioned the continuous state space into
two regions corresponding to two ’binary’ states of the outputs of the
inverters:

v1 = (low, high, low, high, low, high, low, high, low)

v2 = (high, low, high, low, high, low, high, low, high)

We used a random walk with the target probability distribution for these two
regions: π1 = 0.8 and π2 = 0.2. The Metropolis-Hastings algorithm produced
the following transition probability matrix:

from → to 0 1
0 0.875 0.125
1 0.5 0.5

In the result of the test generation using random walk (shown in Figure 3), the
maximum value of the output voltage of the last inverter is 0, and its minimum
value is −2.1725V . The computation time for generating 10000 points is 55s. We
can see that by favoring the region corresponding the low level of the voltage,
a lower value of the voltage was discovered, and a violation of the property was
detected.
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Fig. 3. The output voltage of the last inverter, obtained with a random walk

5.2 Delta-Sigma Circuit

The second case study is a third-order Delta-Sigma modulator [3], which is a
mixed-signal circuit shown in Figure 4. When the input is positive and its value
is less than 1, the output takes the +1 value more often and the quantization
error is fed back with negative gain and accumulated in the integrator 1

z−1 . Then,
when the accumulated error reaches a certain threshold, the quantizer switches
the value of the output to −1 to reduce the mean of the quantization error.

The specification of a third-order Delta-Sigma modulator is modeled as a
hybrid automaton, shown in Figure 4. The discrete-time dynamics of the system
is as follows: x[k + 1] = Ax[k] + bu[k] − sign(y[k])a, y([k] = c3x3[k] + b4u[k]
where x[k] ∈ R3 is the integrator states, u[k] ∈ R is the input, y[k] ∈ R is the
input of the quantizer. Thus, its output is v[k] = sign(y[k]), and one can see
that whenever v remains constant, the system’s dynamics is affine continuous.

In this study we first generated the test tree for the above hybrid automaton
used as the specification automaton (see Figures 5 and 6). Our system under
test is an implementation of the Delta-Sigma in SPICE netlists. The observation
function h(x) = 0.1x1 + 0.2x2 + 0.5x3. The initial state is in [−0.01, 0.01]3 and
the input values u ∈ [−0.5, 0.5].

Figure 7 shows the result of the test execution using the hybrid state estima-
tion, which state that for a bounded time the implementation is conform to the
specification automaton. In this figure, the horizontal axis is time. The points
drawn with ∗ sign are the estimates of x2 obtained from the observations on the
implementation. The circle points correspond to the possible states in the first lo-
cation and the + points correspond to the possible states in the second location.
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c3x3[k] + u[k] >= 0

+bu[k]− a

c3x3[k] + u[k] < 0

v[k] = −1
x[k + 1] = Ax[k]+

bu[k] + a
x[k + 1] = Ax[k]
v[k] = +1

Fig. 4. Model of a third-order modulator: Saturation blocks model saturation of the
integrators

Fig. 5. Test generation result for the first location. The points drawn with the + sign
correspond to the states from which a discrete transition to the second location takes
place.
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Fig. 6. Test generation result for the second location. The points drawn with the circle
sign correspond to the states from which a discrete transition to the first location takes
place.

Fig. 7. Test execution result (over time) for the Delta-Sigma circuit
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With ε = 1e − 2, no violation of the conformance between the implementation
and the specification automaton was detected.

6 Conclusion

In this work, we contributed two new results for hybrid systems testing: one is
a method for test generation guided by the properties to test, and the other
is a procedure for test execution with partial observability. The results were
implemented and successfully applied to two case studies in circuit validation.
One direction for future work is the development of a coverage measure which
can capture interesting qualitative behaviors. We also plan to use this procedure
for test execution to tackle the problem of checking equivalence between different
models with different abstraction levels and to model identification.
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Abstract. Code coverage is usually used as a measurement of testing
quality and as adequacy criterion. Unfortunately, code coverage is very
sensitive to modifications of the code structure, and, therefore, the same
test suite can achieve different degrees of coverage on the same program
written in two syntactically different ways. For this reason, code coverage
can provide the tester with misleading information.

In order to understand how a testing criterion is affected by code
structure modifications, we introduce a way to measure the sensitivity
of coverage to code changes. We formalize the modifications of the code
structure using semantic preserving code-to-code transformations and we
propose a framework to evaluate coverage robustness to these transfor-
mations, extending actual existing coverage criteria.

This allows us to define which programs and which test suites can
be considered robust with respect to a certain set of transformations.
We can identify when the obtained coverage is fragile and we extend the
concept of coverage criterion by introducing an index that measures the
fragility of the coverage of a given test suite. We show how to compute
the fragility index and we evidence that also well-written industrial code
and realistic test suites can be fragile. Moreover, we suggest how to deal
with this kind of testing fragility.

1 Introduction

The notion of code coverage and testing criteria dates back to the early six-
ties [14,19]. Although, as Dijkstra claimed in 1972 [6], “program testing can be
used to show the presence of bugs, but never their absence”, the initial research
focused on finding ideal testing criteria, i.e. those capable, under certain assump-
tions, of demonstrating the absence of errors in programs by testing them [10].
Researchers soon realized that finding such ideal testing criteria was impractical
if not impossible [23] and the community started to introduce, compare, and
study testing criteria, which are not ideal but they have proved to be useful to
measure the quality of testing and to find faults in programs. However, there
still exists some skepticism around the actual significance of coverage criteria. It
is well known that some faults may be completely missed by test suites adequate
to some coverage criteria (for instance statement coverage cannot discover omis-
sion faults) and that testing criteria are very sensitive to the structure and to
the syntax of the code, regardless its actual behavior. Rajan et al. [17] show that
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the MCDC, required by FAA for software on commercial airplanes, and often
considered a very tough criterion to achieve, can be easily cheated by simple
folding/unfolding of conditions inside guards.

Despite their weakness, coverage criteria give an immediate and easy to com-
pute (at least for simple criteria) feedback about the quality of the testing ac-
tivity. Once a test suite has been developed or built, one wants to know which
parts of the code are exercised and which are not, and this information can be
simply obtained by running the code with the tests. Coverage is often used as
acceptance threshold: if a test suite achieves a given coverage, it is considered
adequate, and the tested software accepted as good. For this reason, reaching a
given level of coverage becomes a critical factor during the testing activity.

We can state that the coverage data are easily obtained and are widely used as
acceptance measure, but have a questionable significance. In this paper we try to
augment the information one can retrieve from the coverage data by considering
also the structure of the code and its possible transformations.

There are two main scenarios in which it is important knowing how the cov-
erage offered by a test suite behaves with respect to the changes in the code
structure.

A. The code has been transformed in the past before being tested and the cov-
erage may depend on the transformations applied. In this way, testing crite-
ria can easily be cheated, and hence an additional measure of the coverage
fragility helps in identifying well-tested classes from poorly tested ones.

B. The code structure will change in the future without changing the seman-
tics of the program by applying some refactoring rules, by some automatic
transformations, or by introducing particular patterns. This may influence
the coverage after the application of these transformations. In this context,
the tester would like to know if the level of coverage provided by the test
suite will be preserved, i.e., if the coverage is robust w.r.t. future changes.

In this paper we make use of code transformations that preserve code functional
behavior to model code changes. We formally define when a test suite achieves
a fragile vs robust coverage. Roughly speaking, a fragile coverage depends on
the structure and syntax of the code, and the test suite would not achieve the
same level of coverage on the transformed code. A robust coverage and a robust
test suite do not suffer from modifications of the code structure. We introduce
a measure of fragility by extending the usual coverage criteria.

In Section 2 we present some related work on testing, coverage, and code
transformations. Section 3 presents the theoretical framework in which our work
will be integrated and contains some examples of useful code transformations.
In Section 4 we show the limitations of actual coverage criteria in terms of their
fragility with respect to code changes by giving several examples in which the
obtained coverage is fragile. We introduce and formally define the concept of
coverage robustness and several measure of coverage fragility. Section 5 reports
some experiments. In Section 7 we present our conclusions.
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2 Related Work

The concept of code coverage was first clearly introduced by Miller and Maloney
from the US Chemical Corps in 1963 [14], although some similar concepts were
already introduced by Senko from IBM [19]. Miller and Maloney observed that
it is not sufficient to know that a program passes all the tests, since each test
case checks a portion of the program and some portions may be not tested at all.
They developed a model of programs based on flow charts and logical trees and
required that every case is tested at least once. Following their approach, various
notions of code coverage have been proposed as a measure for test suite quality,
including statement coverage, branch coverage, method coverage, MCDC, and
others [15]. These criteria consider the code structure, give a measure of the
adequacy of the testing activity, and they can be used to drive the testing activity
itself, for instance, requiring that certain tests must be generated. These criteria
do not guarantee that the program is correct if it passes adequate testing, i.e.
they are not ideal [10]. However, they have practical utility and they are generally
required for commercial software. For instance, the Modified Condition Decision
Coverage (MCDC) [5], is required for safety critical aviation software by the
RCTA/DO-178B standard. The basic assumption is that a test suite is likely to
be effective at revealing faults if it exercises the code where the fault is located.
Therefore, increased code coverage is expected to correlate with more revealed
faults, although other factors may influence the actual outcome [16]. Staats et al.
[20] show that test suites generated specifically to satisfy coverage criteria achieve
poor results in terms of effectiveness, whereas the use of coverage criteria as a
supplement to random testing provides an improvement in the effectiveness of
the generated test suites.

It is well known that coverage criteria can be very sensitive to code structure
both if they are used for measuring test adequacy and if they are used for test
generation. Regarding the adequacy, there are several works arguing that code
coverage is not robust to code structure transformations. In [13], the authors
show how very simple transformations (like adding a new empty line) can con-
fuse code coverage tools. More severe issues are presented in [17]. In that paper,
the authors prove that the MCDC metrics is highly sensitive to the structure of
the implementation and can therefore be misleading as a test adequacy criterion.
They present six programs in two versions each: with and without expression
folding (i.e., inlining). They find that the same test suites performed very di-
versely on the two versions. Their suggestion is either (1) to introduce a new
coverage metrics that takes the use of inlined condition into consideration, or
(2) a canonical way of structuring code so that such conditions do not occur
in the first place. Their approach differ from ours, since we propose a frame-
work able to evaluate existing coverage criteria with respect to their robustness
to code structure and syntax changes and to extend them by computing some
information about their robustness/fragility. No change of the existing code is
required in our approach either.

So far, the main solution in the literature to overcome coverage criteria weak-
nesses has been trying to introduce more powerful and tough testing criteria. For
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instance, testing criteria that consider also the information flow can be intro-
duced. In [18], the authors define a family of program test data selection criteria
derived from data flow analysis techniques similar to those used in compiler opti-
mization. We believe that introducing complex coverage criteria may be avoided
if code transformations are taken into account as proposed in our approach.

Testing criteria are very sensitive to code structure also when used for test
generation. Often the structure of the code makes hard the generation of tests,
i.e. it reduces its testability, especially when test generation is performed auto-
matically. The automated generation of adequate test data can be impeded by
properties of the code itself (for example, flags, side effects, and unstructured
control flow). For this reason testability transformations are introduced [11]. A
testability transformation is a code-to-code transformation that aims to improve
the ability of a given test generation method to generate test data for the original
program. A first difference between our approach and the work of Harman et al.
is that we do not tackle the problem of test suite generation but we only want
to measure the robustness of a given test suite in order to obtain a measurement
of how much the coverage is affected by modifications in the code structure. An-
other difference is that testability transformations are not semantic preserving
while the transformations defined in our work do not modify the semantics of
the program. We will also show that the use of testability transformations should
be carefully considered because the test suite generated from a transformed pro-
gram P ′ that achieves a certain coverage C′ may not achieve the same level of
coverage C on the original program P .

Transformations and code coverage is studied by Weissleder [22]. In this case
the transformation is used to obtain information of the coverage over the original
code from the information about the coverage over the transformed code. The
goal is to find a transformation such that if a test suite achieves the coverage
C1 over the transformed code, than the same test suite achieves the coverage C2

over the original code. In this case C1 simulates the coverage C2.
The fact that transformations can disrupt coverage is also tackled by Kirner.

In [12], he addresses the challenge of ensuring that the structural code cover-
age achieved for a program P is preserved when P is transformed. If the code
transformation fulfills some formal properties, than it preserves also the cover-
age. The considered code transformations allow to obtain machine level code
from higher level programs. He also identifies three classes of transformations:
1. the ones that change the reachability of program elements, 2. the ones that
add new paths to the program and 3. the ones that preserve the coverage. His
work is more focused on preserving structural code coverage into compilers and
code generators, whereas our work is more focused on measuring the impact of
transformations of the code structure on the coverage.

3 Theoretical Background

Testing criteria, often called coverage criteria, have the main goal of measuring
the test quality. They are used as a metrics to quantify the coverage of the
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control flow of a program achieved by a test suite. Usually they are also used
as a stopping rule to decide when the testing process can stop and the software
can be accepted. Studying coverage criteria, defining new ones, and providing
empirical evidence of their fault detection capability have been a major research
focus for the last three decades. First of all, we introduce a framework defining
them formally, mainly taken from [24], where the reader can find an exhaustive
treatment of the subject. For the purpose of our paper we do not consider directly
the use of testing criteria for test suite generation, and we focus on program based
structural testing, that does not consider the specification and defines testing
requirements only in terms of program elements (statements, conditions, and so
on). Given the set of programs P and the set of all the test suites TS, we define
a testing criterion in the following way.

Definition 1. Testing Criteria. A testing criterion is a function C, C : P ×
TS → [0, 1]. C(p, ts) = r means that the adequacy of testing the program p by
the test set ts is of degree r according to the criterion C. The greater the real
number r, the more adequate the test suite ts is.

Given a fixed value r′, such that 0 ≤ r′ ≤ 1, which represents the lower expected
coverage for the criterion C applied to the program p ∈ P , we can consider the
test suite ts ∈ TS as adequate for testing program p iff C(p, ts) ≥ r′.

In program based structural testing, coverage requirements are expressed in
terms of the coverage achieved over a particular set of elements in the structure of
the program under test (e.g. the set of all the statements for statement coverage
or the set of all the conditions for condition coverage). We will focus on classical
coverage criteria [3,15], including the statement and branch coverage and the
Modified Condition Decision Coverage (MCDC) [5].

3.1 Code Transformations

There exist several, theoretically infinite, programs which have the same be-
haviour but have different code structure and thus can achieve different results
in terms of coverage for a particular criterion. So how, given a program p ∈ P ,
can we obtain new programs with the same behaviour of p? We can do this by
means of code-to-code transformations, which are functions that take as input
a program p and return another program p′. Formally, a transformation t is a
function P −→ P , where P is the set of all the programs.

However not all the transformations produce a transformed program with
the same behaviour of the original program. This kind of transformations are
called Semantic Preserving Transformations (SPT). A SPT [2] is a code-to-code
transformation that modifies the syntax of the program to which it is applied,
without changing its semantics. Thus given a SPT t ∈ T , where T is the set of
all the SPTs, and a program p ∈ P , p and t(p) must have the same behaviour.
In the following of the paper we will consider only SPTs and, thus, we will call
them just transformations.

In the following we present five SPTs which we will use in the paper as a
case study. Each transformation is identified by using a transformation schema,
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composed by two snippets of code. The first one, called input pattern, defines
on which snippets of code the transformation can be applied. The second one,
called output pattern, defines how the transformed piece of code will look like.

Several new transformations can be obtained by combining already defined
transformations. Given a sequence of transformations T , we define the trans-
formation tseqT as the application of the transformations in T in sequence, i.e.
tseqT = t1 ◦ . . . ◦ tn where tseqT , t1, . . . , tn ∈ T . Given a transformation t, we de-
fine the transformation t̃ as the iterative application of t until the program is no
longer modified by t. Given a certain transformation t, we can define the inverse
transformation t−1 by exchanging the input pattern and the output pattern.

In this paper, we consider the following transformations.

Externalized Complex Flag. This transformation was already identified by
Rajan et al. [17], which showed its effects on MCDC criterion, and by Harman et
al. [11], which showed how it can be used in order to enhance the test generation
phase. It has the following schema:
boo lean x ;
. . .
x = complexBoolExpr ; //A
. . .
i f ( . . . x . . . ) {//B

. . .
}

tecf⇒

boo lean x ;
. . .
x = complexBoolExpr ;
. . .
i f ( . . . complexBoolExpr . . . ) {

. . .
}

In the schema, complexBoolExpr is a Boolean expression that contains at least
one Boolean operator, and the statements between the point A and B do not
change the value of x, and of the variables referenced in complexBoolExpr. We
briefly call this transformation tecf . By applying ˜tecf to a program p we obtain
a new program ˜tecf(p) in which all the flags in if statements are expanded to
their definition. Several refactoring patterns [8] can be partially mapped on this
transformation or its inverse, i.e. Inline Temp Variable (in case the variable is
boolean and it is inlined in an if statement), Remove Control Flag, Introduce
Explaining Variable.

Boundary Extraction. This transformation tb acts on an if statement and
splits it into several if statements if it contains a condition in the form of a �
x � b, where a, b, and x are numerical constants or variables. It has the following
schema:

. . . t0 . . .
i f ( a<=x && x<=b ) {

. . . t1 . . .
} e l s e {

. . . t2 . . .
}

tb⇒

. . . t0 . . .
i f ( x==a ) {

. . . t1 . . .
} e l s e i f ( x==b ) {

. . . t1 . . .
} e l s e i f ( x>a && x<b ) {

. . . t1 . . .
} e l s e {

. . . t2 . . .
}

Reverse Conditional. The transformation trc is associated with the Reverse
Conditional refactoring pattern [1]. It simply inverts the condition of the if
statement and exchange the then block and the else block between them, and
cond is a boolean expression. It has the following schema:
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i f ( cond ) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}

trc⇒
i f ( ! cond ) {

. . . t2 . . .
} e l s e {

. . . t1 . . .
}

Flattening Conditional Expression. The transformation tfbc splits all the
expressions used as guards in conditional statements until every if statement
has only an atomic Boolean expression as a guard. It can be defined using two
schema. The first schema represents how the transformation splits a conjunctive
condition:

i f ( cond1 && cond2 ) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}

tfbc⇒

i f ( cond1 ) {
i f ( cond2 ) {

. . . t1 . . .
} e l s e {

. . . t2 . . .
}

} e l s e {
. . . t2 . . .

}
The second schema represents how the transformation splits a disjunctive
condition:

i f ( cond1 | | cond2 ) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}

tfbc⇒

i f ( cond1 ) {
. . . t1 . . .

} e l s e i f ( cond2 ) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}
In both schema cond1 and cond2 are boolean expressions. It is a generalization
of the Consolidate Conditional Expression refactoring pattern [8]. Note that a
similar transformation may be performed during compilation (e.g. in the byte
code) and therefore, a test suite that achieves the decision coverage of the original
program, may not achieve the same coverage of the compiled program. This
problem is also studied in [12] and it is a common transformation done when the
source code is transformed into assembly code (for conjunctive expressions).
Remove Consolidate Conditional Fragment. The transformation tcdcf is
the inverse transformation of the one associated with the Consolidate Condi-
tional Fragment refactoring pattern [8]. It simply moves into the then block and
the else block the first statement after the if statement. It has the following
schema:

i f ( cond ) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}
s ta tement ;

tcdcf⇒

i f ( cond ) {
. . . t1 . . .
s ta tement ;

} e l s e {
. . . t2 . . .
s ta tement ;

}

Meaning of Transformations. The meaning of code transformations regard-
ing the testing activity depends on which of two scenarios explained in the in-
troduction we assume. If we suspect that the code was transformed in the past,
code transformations bring the code to its original structure, while, if we assume
that the code will be changed in the future, code transformations model the
changes the code will be subject to. For instance, ˜tecf would undo the insertion
of flags for conditions in if statements done in the past.
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4 Coverage Robustness

4.1 Code Transformations and Coverage

Code coverage is very sensitive to the code structure and it can therefore be mis-
leading as test adequacy criterion. This fact is well explained in [17] for MCDC
in case of inlining and outlining of Boolean variables (addressed by our tecf and
tecf

−1 transformations). Even though examples in literature are focused only on
the extrapolation of a complex flag, the sensitivity of coverage criteria to code
structure can be generalized for any code transformation and any code coverage
criterion. Indeed we show several code fragments with the same semantics that
achieve different coverage degrees with the same coverage criteria and the same
test sets.

Example 1. For instance consider the following code fragment, in which in_1
and in_2 are two inputs and the guard of the conditional statement has been
outlined, i.e. the guard is simply a Boolean variable defined in terms of other
Boolean variables or expressions.
boo lean expr_1 = in_1 | | in_2 ;
i f ( expr_1 ) {

. . .
}

tecf⇒
i f ( in_1 | | in_2 ) {

. . .
}

A test suite containing only two tests (in_1=true, in_2=false) and (in_1=false,
in_2=false) covers the MCDC for the if statement, which has a simple variable
as guard, so two tests are enough. However, if we apply tecf , the transformed
code were written with the condition inlined and thus the same test suite would
not achieve the MCDC of the same code.

These simple patterns recur quite often in software and in models [17]. However,
it would be not acceptable to force the developer to choose only the inlined
version, in order to avoid that a full MCDC coverage is achieved with less test
cases. The outlined version is more readable and maintainable since a complex
expression is re-factored in an auxiliary variable. This situation can be also the
result of an explicit extract local variable refactoring operation [8]. It could also
perform better, since the Boolean flag is computed only once.

Example 2. Consider the following code, where x is an integer variable and a
simplified form of boundary extraction is applied:
. . .
i f ( x>=2) x=x+1;
e l s e x=x+2;

tb⇒
. . .
i f ( x==2) x=x+1;
e l s e i f ( x>2) x=x+1;
e l s e x=x+2;

A test suite containing only two tests (x=0) and (x=5) achieves 100% of branch
coverage. However the same test suite achieves only 75% of branch coverage on
the transformed code.

Example 3. Consider the following code fragment, in which a and b are Boolean
variables. To achieve a full decision coverage a test suite containing only two
tests (a = true, b = true) and (a = false, b = true), is enough.
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i f ( a && b ) {
. . . . // body

}

tfbc⇒
i f ( a ) {
i f ( b ) {

. . . . // body
}

}
The transformation does not change the behaviour of the program, but the
original test suite would cover only the first decision on the transformed program.

Example 4. Consider the following code fragment in which a is a Boolean vari-
able and i an Integer variable:

i f ( a )
i = i +1;

e l s e
i = i +2;

System . out . p r i n t l n ( i ) ;

tcdcf⇒

i f ( a ) {
i = i +1;
System . out . p r i n t l n ( i ) ;

} e l s e {
i = i +2;
System . out . p r i n t l n ( i ) ;

}
The test suite containing only one test (a = true) achieves 60% of statement
coverage. However on the code transformed by using the tcdcf transformation,
the same test suite achieves only 50% of coverage.

All the examples show that several programs with the same behaviour can
achieve the same value of coverage with different effort from a testing point
of view, i.e. the number of test cases in the test suite, only because they have a
different structure. This is valid for all the structural coverage criteria.

4.2 Coverage Fragility and Robustness

First of all, we want to formalize the sensitivity of the coverage obtained by
testing a program P with a test suite, with respect to a set of possible transfor-
mations of P .

Definition 2. Fragility. Given a program p ∈ P , a coverage criterion C and
a set of transformations T , we say that a test suite ts fragilely covers p, if there
exists a transformation t ∈ T such that C(p, ts) > C(t(p), ts).

Fragilely covered programs can be modified by some transformation t ∈ T in a
way that, also if the behaviour of the program remains the same, the coverage
provided by ts on the transformed program t(p) diminishes with respect to the
coverage on the original program p.

If a test suite fragilely covers the program under test, the confidence in the
measurement of the coverage is reduced because the possible high level of cover-
age may be due to the structure of the code. It may happen that the developer
has used in the past a particular pattern that has increased the coverage but if
the code were written in another way then the test suite would be not as good
in terms of achieved coverage. Fragile coverage is not robust to transformations
of the code that may be performed in the future either, such as refactoring tech-
niques or compiler optimizations. This is a problem because, usually, after a
SPT is applied, the test suite is not updated by the developer because he/she
does not feel the need of new tests, and thus the old test suite can achieve lower
coverage on the resulting code. For this reason, fragilely covered programs may
need more testing, regardless the level of coverage achieved so far.
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In order to reduce the fragility of a test suite, new tests must be added.
Generally, the new tests are built looking at the transformed program and then
added to the original test suite. However, using the transformed program to
derive a completely new test suite to be applied also to the original program can
cause an unexpected loss of coverage, as proved by the following theorem.

Theorem 1. Let C be a coverage criterion, ts and ts′ be two test suites, gen-
erated respectively for p and for t(p), such that ts � ts′, ts′ � ts, and t ∈ T be
a transformation, C(t(p), ts′) > C(t(p), ts) does not imply C(p, ts′) > C(p, ts).

Proof. We prove the theorem by showing a case in which the converse –
C(t(p), ts′) > C(t(p), ts) implies C(p, ts′) > C(p, ts) – is false. Consider the
transformation tecf and the following program p and its transformed version
tecf(p):

x = a && b && c ;
i f ( x ) {

. . .
}

tecf⇒
x = a && b && c ;
i f ( a && b && c ) {

. . .
}

Given the test suite ts, which has two test cases (a = true, b = true, c = false)
and (a = true, b = true, c = true), and considering the condition coverage
criterion, the coverage is C(p, ts) = 1.0 while C(tecf (p), ts) = 4/6 = 0.66. If we
consider then a test suite ts′ that has two test cases (a = false, b = true, c =
true) and (a = true, b = false, c = true), the coverage that ts′ achieves on
tecf(p) is 5/6 = 0.83 and thus it improves the coverage of ts over tecf(p), i.e.
C(tecf (p), ts

′) > C(tecf (p), ts). Moreover, ts � ts′, ts′ � ts is true. However, the
coverage of ts′ over p dimishes, since C(p, ts′) = 0.5 whereas C(p, ts) = 1.0.

Theorem 1 states that, given a program p fragilely covered by a test suite ts
and a transformation t, if we want to achieve a better coverage than the one
obtained using the test suite ts on the program p we cannot simply generate a
new test suite ts′ on the program t(p), because ts′, also if increases the coverage
on t(p) with respect to ts, maybe does not increase the coverage achieved on p.

Note that transformations allowing testers to obtain programs from which
tests can be generated more easily are also called testability transformations [11].
Theorem 1 states that the use of testability transformations should be carefully
considered since they may not increase the coverage obtained on the original
program, even though the coverage is increased on the transformed program.

Sometimes we want to refer to the coverage as either fragile or robust. In
accordance with Def. 2, we can introduce the following definition.

Definition 3. Fragile [Robust] Coverage. Given a coverage criterion C, a
program p, a test suite ts for p, and T a set of code transformations, we say
that the coverage of p provided by ts with respect to the coverage criterion C and
the code transformations T is fragile [ robust], if and only if the program p is [is
not] fragilely covered by ts with respect to C and T .

The fact that a coverage is fragile or robust strongly depends on the set of
transformations T one considers. With a small set T any coverage is likely to
be robust, but with a large T only the best test suites will provide the ro-
bust required coverage. For this reason, the client who requires certain levels of
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coverage and robustness has to provide the tester with adequate transformations
in order to ensure the desired confidence in the code coverage. The given set of
transformations T should depend on the expected set of SPTs that will be ap-
plied on the program or on the set of transformations applied in the past on the
program. It is important to define such programs whose coverage is not affected
by the application of transformations, we call them robust programs.
Definition 4. Robust program Given a coverage criterion C and a set of code
transformations T , we say that a program p has robust structure if any test suite
that provides the coverage C for p, C is robust.
Code with robust structure is of great interest for testers, since its coverage
during testing cannot be diminished by code transformations, i.e. the coverage
achieved by any test suite on a robust program will not diminish regardless
the sequence of SPTs t1, . . . , tn ∈ T applied to it. Given a program p and a
test suite ts, which achieves a certain level of coverage C(p, ts) for a coverage
criterion C, there are two ways to increase the achieved coverage. If the program
p is robust, we can generate a new test suite ts′ also transforming the program,
because generating a test suite ts′ that achieves a coverage higher than C(p, ts)
assure also that C(p, ts′) ≥ C(p, ts). If the program is not robust the only way
to increase the coverage is extending the test suite ts, because the Theorem 1
proves that generating a new test suite ts′ that achieve higher coverage on a
transformed version of p does not assure to obtain a better coverage on p.

4.3 Fragility and Robustness Measures

We define a measure to express how much the coverage achieved by the test suite
ts on the program p with respect to the criterion C is robust to the changes in
the code structure introduced by a set of SPTs T . Our metrics works with any
existing coverage criterion C, without the need to introduce new and possible
more complex testing criteria. This allows the tester to re-use existing criteria
(and associated tools) which he/she is already familiar with.

The metrics is called extended coverage (because extends the usual coverage
measurement with an information on how much the coverage offered by the test
suite is sensitive to transformations), and it consists of a couple of values (a, b)
where a = C(p, ts) represent the usual coverage obtained by applying ts to the
program p, whereas b is a fragility index such that b ∈ [0, 1], and it measures the
sensitivity of the coverage to modifications in the code structure. For a coverage
measure in the form (a, b), b = 0 means that a is the robust coverage, while as
b → 1 the coverage a is increasingly sensitive to the transformations of the code
structure. If b = 1 the coverage a is completely fragile.

Let p be a program, ts a test suite, and C a coverage, we define Δ(t) =
C(p, ts) − C(t(p), ts) where t is a transformation. Let pos(x) be a function de-
fined as max(0, x). We define three fragility indexes. The first one is simply the
averaged fragility:

baf = pos

(∑
t∈T Δ(t)

|T |

)
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The second one is called weighted fragility and it is defined as

bwf =
∑
t∈T

ρ(t) ∗ pos(Δ(t))

where ρ(t) is a function that defines the weight of each transformation t ∈ T ,
such that

∑
t∈T ρ(t) = 1. The weighted fragility is a useful metrics in case we

want to assign a different weight to some transformations for a particular reason,
e.g. the weight can represent the likelihood that a certain transformation will be
applied to the code. The third fragility index is called worst case loss of coverage.
It is an indicator of what is the maximum loss of coverage between the original
program and any transformed one, and it is expressed as

bwc = pos(maxt∈T (Δ(t)))

In this case if the index bwc = 0 it means that a is the robust coverage, otherwise
bwc indicates the maximum loss of coverage and thus the real coverage in the
worst case is C(p, ts)− bwc.

The extended coverage is a very useful metrics, especially if it is measured
during the development phase. For instance with respect to unit testing, once
the developer has measured the extended coverage, if it is not a robust coverage
he/she can act in two ways to increase the robustness of the coverage: (a) he/she
could extend the test suite with new test cases, maybe generated from a trans-
formed version of the program, (b) he/she could change the structure of the
code in order to remove all the points that introduces fragility issues. However,
removing fragility points may be not straightforward nor possible every time
(this fact highly depends on the transformations in T ). Moreover transforming
the code would increase the robustness at the expenses of the coverage, which
would diminish. To maintain the same level of coverage, the tester should add
new tests in any case.

5 Experiments

In order to evaluate how much the transformation of a program influences the
robustness of the coverage offered by a test suite we have analyzed several Java
programs. The selected programs vary from toy examples to complex Java li-
braries. The programs are the following:
LEAP: It contains one method checking whether the passed year is leap or not.
TRI: It contains a triangle classification method, which takes as input the

length of the three sides and computes the type of the triangle [3].
WBS: The Wheel Brake System (WBS) is a Java implementation of the WBS

case example found in ARP 4761 [4,17]. The WBS determines what pressure
to apply to braking based on the environment.

TCAS: It is the Java implementation of a Traffic Collision Avoidance System
(TCAS) II, required on all commercial aircraft flying in US airspace.

ASW: The Altitude Switch (ASW) is a synchronous reactive component from
the avionics domain that controls the power of some devices according to
the airplane altitude.
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Table 1. Results in percentage of the robustness analysis for LEAP, TRI, and TCAS
and their test suites, where a = C(p, ts). Random1 test suite contains 100 tests, and
Random2 contains 1000 tests for all projects. Evosuite has 4 tests for LEAP, 13 for
TRI, and 16 for JTCAS. Handmade has 1 test for all the projects.

Program p LEAP TRI TCAS
LOC 10 35 155
Coverage Stmt Branch MCDC Stmt Branch MCDC Stmt Branch MCDC
Test suite ts a bwc a bwc a bwc a bwc a bwc a bwc a bwc a bwc a bwc

Random1 100 0 100 0 100 50 93 0 94 0 95 5 65 15 23 13 18 8
Random2 100 0 100 0 100 50 93 0 94 0 95 5 - - - - - -
Evosuite 100 0 100 0 100 13 100 0 100 0 100 0 94 22 87 43 74 30
Handmade 100 0 100 0 100 63 100 0 100 0 100 20 26 7 3 2 3 1

JTOPAS: It is a simple, easy-to-use Java library for the common problem of
parsing arbitrary text data.

ANT: Apache Ant is a Java library and command-line tool widely used to
compile and build Java applications.

NXML: NanoXML is a small XML parser for Java.

Code for TACAS, JTOPAS, ANT, NXML and their unit tests can be found in
the SIR repository [7]. The Java implementation of ASW is included in the Java
Path Finder distribution [21].

In our study we have considered statement, branch and MCDC coverage cri-
teria. We have studied all the transformations presented in Section 3.1, and thus
T = { ˜tecf , t̃rc, t̃b, ˜tfbc, ˜tcdcf}. For each example we have considered an handmade
test suite (for TACAS, JTOPAS, ANT and NXML the considered test suite is
the one presented in the SIR repository). For the smallest case studies (LEAP,
TRI, WBS, and TCAS), we have also considered a test suite automatically gen-
erated by means of Evosuite [9] and random test suites with a fixed dimension
of 100 and 1000 test cases. Experiments with random test suites are repeated 10
times, with different seeds, and only the averaged results are presented in this
paper. For each test suite ts, for each coverage criterion C and for each program
under test p, we have computed the coverage1 achieved by ts for the criterion C
on the program p and for any transformed program t(p), for each t ∈ T .

Table 1 presents the results of the robustness analysis for the smallest case
studies (LEAP, TRI, and TCAS). For each program and test suite, the table
shows the results in terms of coverage a and the worst case loss of coverage bwc

fragility index.
Table 2 shows the results of our study on the biggest case studies (ASW,

TOPAS, NXML, and ANT). For each program, the table shows the results in
terms of coverage achieved by the provided test suite and the two fragility in-
dexes, the worst case loss of coverage bwc and averaged fragility baf .

Table 3 shows the detailed results of the robustness analysis for the WBS
program. For each test case and coverage criterion, the table shows the results
1 We use the CodeCover tool http://codecover.org/

http://codecover.org/
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Table 2. Results in percentage of the robustness analysis for ASW, TOPAS, NXML,
and ANT

ASW TOPAS NXML ANT
LOC/Classes 1497/47 10115/91 3696/34 104304/1266
Test suite size (LOC) 965 4725 4231 24384
Coverage a bwc baf a bwc baf a bwc baf a bwc baf
Statement 32.5 0.6 0.1 78.5 30.4 10.2 10.6 3.2 0.7 10.9 8.4 1.8
Branch 27.8 1.0 0.2 69.8 28.3 7.5 4.1 2.1 0.5 7.6 5.7 1.2
MCDC 31.1 1.1 0.2 69.4 30.6 7.6 4.8 2.6 0.5 7.6 5.9 1.3

Table 3. Results in percentage of the robustness analysis for WBS (194 lines of code)

Statement Coverage Branch Coverage MCDC

Test suite size C
Δ

C
Δ

C
Δ

˜tcdcf ˜tecf ˜tfbc ˜tcdcf ˜tecf ˜tfbc ˜tcdcf ˜tecf ˜tfbc
Random1 100 58.1 34.9 0 17.7 51.4 33.7 0 19.1 50.0 31.8 4.5 17.7
Random2 1000 74.2 56.1 0 22.5 74.3 59.7 0 28.3 71.2 56.4 10.3 25.2
Evosuite 6 74.2 56.1 0 22.5 74.3 59.7 0 28.3 71.2 56.4 10.3 25.2

Handmade 1 58.1 42.4 0 17.7 50.0 39.5 0 20.2 46.3 35.8 8.1 16.5

in terms of coverage achieved by the test suite and the losses in terms of coverage
on the transformed versions of the program. The table shows only the results
for the tfbc, tecf and tcdcf transformations, because the WBS program is not
influenced by the trc and tb transformations.

All the programs and test suites considered in our study suffer from fragility
problems: semantically equivalent programs achieve different results in terms
of coverage, and thus SPTs can influence greatly the coverage achieved by test
suites. Our results highlight the fact that some transformations influence only
certain coverage criteria, e.g. tecf influences only MCDC in our study, whereas
other transformations, such as trc, seems to not influence the coverage at all.
For this reason, the choice of the transformations considered in the robustness
analysis can significantly influence the results of the analysis itself.

No apparent correlation can be identified between the size of the test suite
and their fragility: indeed, significant losses in terms of coverage exist also for
big test suites, e.g. Table 3 shows that also the random test suite with 1000
test cases has high losses. Note that even if the losses in terms of coverage may
be small in some cases, this is usually due to the low coverage achieved by the
test suites. For instance, in the ANT case the maximum loss is 8.4%, but the
coverage achieved on the original program is only 10.9%.

Test suite with high coverage, can be fragile as well: from the results, it seems
that test suites generated by hand explicitly to achieve good coverage, are those
with higher losses in terms of coverage. This is due both to the fact that these
test suites have small sizes and also to the fact that they are created ad-hoc
to obtain full coverage of the program with a particular structure and thus the
coverage is more fragile than the one of a not ad-hoc test suite.
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6 Threats to Validity

There are three main aspects that can pose a threat to the validity of our work.
Transformations: Although the set of selected transformations is small, in our
opinion it can demonstrate the effectiveness of our approach. By extending the
given set of transformations, test suites become likely less robust. The selected
transformations are meaningful examples. Indeed tecf is already used in several
works [11,17], whereas tcdcf , trc, tecf and tfbc are extracted from common refac-
toring techniques [8,1].
Coverage Criteria: We have considered three common structural coverage cri-
teria, i.e. statement coverage, branch coverage and MCDC. Rajan et al. [17] show
that MCDC is highly sensitive to the structure of the implementation and our
experiments confirm that. Test suites adequate to other non structural coverage
criteria may be less fragile.
Experiments: Our work has focused only on a limited set of Java programs.
However we think that chosen programs are representative of several classes of
systems, i.e. toy examples (LEAP, TRI), critical systems (WBS, ASW, TCAS),
and complex Java libraries (JTOPAS, NXML, ANT). Our experiments involved
1442 classes and more than 120kLOC, and therefore the selected programs are,
in our opinion, a representative sample of real Java programs. We have also used
different test suites which range from manually built test suites, to test suites
generated by using well-known tools.

7 Conclusions and Future Work

In this paper we have proposed a framework to evaluate the robustness of a
test suite with respect to semantic preserving transformations applied to the
program under test. We have introduced the concept of fragile and robust cov-
erage and we have identified the conditions for a code to have a robust structure
with respect to a certain set of transformations. Moreover, we have defined a
new extended coverage metrics that takes into account the fragility of the cov-
erage. The extended coverage does not require either a modification of the code
or the introduction of new original testing criteria. It uses a fragility index to
quantitatively measure the quality of test suite in terms of its robustness. In
presence of fragile code, we suggest either to (1) find and remove fragility points
by modifying the code or (2) increase the test suite until its robustness reaches
a desired level. We have evaluated the fragility of several Java programs (from
toy examples to Java library code) together with their test suites and we have
found that the fragility problem occurs in all the considered programs.

In the future we plan to study the correlation between the fragility of the test
suite and its fault detection capability. We also plan to define a language for the
formalizationanddefinitionof semantic preserving transformations. In thisway,we
can easily model other transformations and also extend the theoretical framework.
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to Optimise Regression Test Sets
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Abstract. Where a software component is updated or replaced regres-
sion testing is required. Regression test sets can contain considerable
redundancy. This is especially true in the case where no formal regres-
sion test set exists and the new component must instead be compared
against patterns of behaviour derived from in-use log data from the pre-
vious version. Previous work has applied search-based techniques such
as Genetic Algorithms to minimise test sets, but these relied on code
coverage metrics to select test cases. Recent work has demonstrated the
advantage of behaviour inference as a test adequacy metric. This paper
presents a multi-objective search-based technique that uses behaviour
inference as the fitness metric. The resulting test sets are evaluated us-
ing mutation testing and it is demonstrated that a considerably reduced
test set can be found that retains all of the fault finding capability of the
complete set.

1 Introduction

Where a software component is updated or replaced regression testing is re-
quired. It is often the case that there is no documented specification for the be-
haviour of the component. In the absence of a specification for the component,
regression tests can be used to attempt to determine that a de-facto specification
— the behaviour of the previous version — is adhered to.

In the absence of regression test sets, the only available regression test is the
replay of trace data from in-service logs of the previous version. This trace data
contains sequences of inputs and outputs, or sequences of function calls that are
applied to the component. The traces can identify both sequences of behaviour
that must be accepted, and sequences that should not occur. When sufficient log
data is available this provides an accurate picture of the behaviour that the rest
of the system expects from the component, so replay of traces forms a meaningful
regression test.

Running regression tests is often expensive, usually due to the large number
of tests that comprise a test suite. Often, multiple regression tests will exercise
the same behaviour, resulting in time being spent on tests that add no value.
This is especially true of test sets derived from in-service data.

An improved test suite can be developed by selecting a subset of the traces
with enough traces to exercise each part of the behaviour for the lowest overall
cost. Figure 1 illustrates the minimisation process. In the example, a subset of
the eight regression tests is selected (1, 4, 5), and must then be evaluated for its

B. Nielsen and C. Weise (Eds.): ICTSS 2012, LNCS 7641, pp. 184–199, 2012.
c© IFIP International Federation for Information Processing 2012



Using Behaviour Inference to Optimise Regression Test Sets 185

Fig. 1. Problems facing test set selection

suitability. The naive, exact solution is to repeat this process for all subsets of
the test suite, but this is impractical for most test suites, and impossible for test
suites generated from log data that can contain billions of lines [18]. It has been
shown in [12] that finding a suitable regression test subset is NP complete and so
heuristic approaches are required. A detailed survey of regression test selection
literature can be found in [3].

The problem has two distinct elements. Firstly, given that considering all
candidate sets is infeasible, the selection step must be performed more intelli-
gently. Secondly, once a candidate is selected, difficulty remains in assessing its
suitability as a reduced test set.

Genetic Algorithms (GAs) are one solution to the selection problem. They are
a class of heuristic approaches that have been used successfully in many software
engineering problems [9] and provide efficient selection of possible solutions from
large search spaces. In a GA, a pool of good solutions is recombined to locate
better solutions. This relies on measurement of the “fitness” of these solutions.
Despite its efficiency, a GA will still consider a large number of solutions before
it locates a suitable result, making its execution time highly dependent on both
the accuracy and the speed of the evaluation mechanism.

Previous work has used code coverage to address the evaluation problem.
Genetic Algorithm approaches to the selection of subsets were presented in [13]
and [19], and sought to identify the minimum set of traces that achieves complete
code coverage. Test sets selected for code coverage have been shown to provide a
low “behavioural adequacy” [6] — that is, their fault finding ability is lower than
test sets selected for behavioural coverage. An alternative measure of a test set
is provided by behaviour inference. Using behaviour inference as a measure of
test adequacy was first suggested in 1983 [17], and has been shown to provide a
better foundation for selecting test sets [6]. While behavioural inference requires
some computation time this grows with the number of test cases, regardless of
their content. However, the time taken to execute a test set is unbounded as
each test may depend on external factors such as communication, which may
take an arbitrarily long time.
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The contribution of this work is to apply the behaviour inference approach to
the problem of regression test set reduction using multi-objective search tech-
niques. The work is directed at the following three Research Questions:

RQ1. What reduction in test set size can be obtained using a GA with the
behavioural inference fitness metric?

RQ2. Is behavioural inference a good selector of high quality test subsets?
RQ3. How intelligently does the GA search technique use a constrained budget?

This paper makes the following contributions:

– A fitness metric for test subsets based on comparisons of inferred behaviour
between the subset and its parent.

– A multi-objective search approach based on the NSGA-II algorithm that
applies this metric to identify a Pareto front of fast, accurate test sets.

– An evaluation of the solutions found by this approach that demonstrates the
search efficiency and validates the results by comparing mutation testing
outcomes between the subsets and their parent.

The remainder of this paper is organised as follows:

– Section 2 introduces the vending machine example that is used throughout
this paper.

– Section 3 and Section 4 present the process of evaluating a test set using pas-
sive learning algorithms, and the genetic algorithm for efficiently searching
the possible test subsets.

– The results of the process are evaluated in Section 5.
– Section 6 contains conclusions.

2 The Vending Machine Example

The example used throughout this paper is a simple vending machine simula-
tion. The case study was implemented in Erlang1 but the techniques developed
operate on traces and are independent of the implementation language. The
implementation consists of 60 lines of Erlang code. The module presents an in-
terface with a number of functions that represent operations on the machine –
start,coin,choc,toffee — some of which take parameters and all of which
produce a return value.

The behaviour of the vending machine program can be best understood with
reference to the state machine shown in Figure 2, which presents a convenient
abstraction. The format for the transition labels is a triple with the name of
the function, a list of arguments, and the expected return value. For example,
{coin,[2],ok} represents a call to the coin function with the parameter 2 and
the expected response ok. The machine is initialised with the start function, and
can be re-initialised at any point, resetting it to the initial state. The machine

1 Erlang is a concurrent, functional programming language developed by Ericsson and
used extensively in the telecoms industry [2].
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1

4

{start,[],ok}

2 {choc,[],no}
{coin,[2],no}

3

{coin,[1],ok}

{start,[],ok}
{toffee,[],toffee}

{toffee,[],toffee}

{coin,[2],no}
{coin,[1],no}

{start,[],ok}
{choc,[],choc}

{coin,[1],ok}

{coin,[2],ok}

{start,[],ok}
{toffee,[],no}
{choc,[],no}

Fig. 2. The vending machine state machine

accepts 1p and 2p coins and charges 1p for toffee and 2p for choc. Since 2p is
the most expensive item, the machine will reject coins that would take its stored
value above 2p (this serves to make the machine’s state space finite).

In the scenario in this example, a test set was generated randomly according
to the following process. Elements of the trace alphabet were randomly selected
and conjoined to produce traces. In this example the trace alphabet consists of
the interface functions, combined with the valid arguments and valid responses
for each function. These were then passed to a program that attempted to ex-
ecute the generated sequence of function calls and checked that the returned
values were consistent with those generated. Where there was an inconsistency
— or where there was an exception thrown by the program— the trace was trun-
cated at that point and marked as negative. If all elements of a trace completed
successfully then it was marked as a positive trace. This forms a prefix-closed
language describing the behaviour of the program.

+ {start,[],ok} {coin,[1],ok} {coin,[2],no} {coin,[1],ok}

+ {start,[],ok} {start,[],ok} {toffee,[],no} {choc,[],no}

- {start,[],ok} {coin,[2],ok} {toffee,[],no}

+ {start,[],ok} {coin,[2],ok} {toffee,[],toffee}

Fig. 3. Some example traces from the case study test set

A random test set was constructed by adding random traces to it until the set
covered all the behaviour of the state machine inFigure 2. This produced a test
set of 190 traces; some example traces are shown in Figure 3. The third trace
is listed as negative because it expects the response no to the toffee call after
giving the machine a 2p coin, when the implementation will instead respond
toffee. This observed behaviour is listed in the fourth trace.
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3 Using Behaviour Inference to Assess the Suitability
of a Test Subset

As discussed in Section 1, a technique is needed to select possible test subsets
and then evaluates their adequacy. This section defines an evaluation strategy
using behaviour inference. This will form the fitness function for the selection
technique presented in Section 4. The aim of this fitness function is to assess
the behaviour exercised by the test cases, addressing the shortcomings present
in previous work that uses code coverage.

In the example in Figure 1, the adequacy of the subset (1,4,5) must be eval-
uated against the full set (1,2,3,4,5,6,7,8). To do this a model is inferred of the
behaviour covered by the full set, and then a model is inferred of the behaviour
covered by the subset. These are then compared to assess the extent to which
coverage has been maintained. This is particularly pertinent in the regression
case where the only specification of correct behaviour is the log data of an ex-
isting system, so the model inferred from the complete set is the only available
standard against which test set coverage can be measured.

3.1 Behaviour Inference

Behaviour inference builds finite state machine models from trace data using
algorithms inspired by language learning models.

Passive learners aim to learn state machine language representations from
partial data, usually a subset of the possible sequences of the language. Evidence
driven state merging (EDSM) algorithms such as BlueFringe [11] operate on a set
of positive and negative traces from a system or language and produce a state
machine that accepts positive traces and rejects (in the form of a transition
to a failure state) negative traces. It was shown to be highly effective in the
“Abadingo One” [11] competition for learning algorithms.

We use the StateChum system [1], which was developed to implement an
EDSM algorithm based on BlueFringe with the objective of reverse engineering
state machine representations of software behaviour from software trace data
[16]. The algorithm operates on prefix closed languages, which are a good model
of software execution traces since traces cannot exist with failing prefixes. The
supplied traces are merged into a Prefix Tree Automaton (PTA), which rep-
resents an accurate but excessively large FSM representation of the behaviour
covered by the supplied traces. The algorithm proceeds by merging states to re-
duce the size of the state machine without altering the accepted language. The
choice of states to merge is based on various evidence, such as similar outgoing
traces, and the absence of explicit negative traces in the test set that would
become accepted after the merge.

3.2 State Machine Comparison

A key component of the evaluation mechanism presented in this section is the
comparison of inferred state machines. This paper will use what is called the
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Balanced Classification Rate (BCR) measure to compare state machines, and
thus compare the behaviour coverage of the test sets that produced them.

The BCR metric measures the accuracy of a state machine against a refer-
ence machine in terms of the correct classification of traces as either positive
(accepted) or negative (rejected). Each of the possible traces of the reference
machine are classified by the machine being measured and four sets are pro-
duced: true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). For machines with cycles the set of possible traces is infinite;
this paper uses the W-Method [4] to produce a suitable set of traces that cover
all of the behaviour in a finite set. For example, in Figure 4 the right hand FSM
accepts traces that do not start with {start,[],ok}, whereas the correct model
does not, so these form false positives.

{s ta r t , [ ] ,ok}

{choc,[] ,no}
{s ta r t , [ ] ,ok}
{coin,[2] ,no}

{toffee,[] , toffee}

{coin,[1],ok}

{coin,[1],ok}

{choc,[] ,no}
{toffee,[] ,no}
{s ta r t , [ ] ,ok}

{coin,[2],ok}

{s ta r t , [ ] ,ok}
{toffee,[] , toffee}

{coin,[1] ,no}

{choc,[] ,choc}

{coin,[2] ,no}

(a) Parent

{coin,[2],no}

{coin,[1],ok}

{start,[],ok}
{toffee,[],toffee}{toffee,[],toffee}
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{start,[],ok}

(b) BCR:0.81

Fig. 4. The vending machine behaviour as inferred from the complete random trace
set, and a behaviour model with a BCR score of 0.81 inferred from less than 4% of the
trace set

These figures are used to compute two numbers, Cplus and Cminus, where
Cplus = TP/(TP + FN) and Cminus = TN/(TN + FP ). The BCR value is the
harmonic mean between Cplus and Cminus and is defined as: BCR = (2 ∗Cplus ∗
Cminus)/(Cplus + Cminus). This produces a “score” between 0.0 and 1.0, where
1.0 represents correct classification of all traces, and smaller numbers represent
decreasing levels of accuracy.

3.3 Subset Evaluation Metric

With these components in place, each candidate test subset can be compared to
a reference model to produce a numeric adequacy value. The behaviour inference
process is applied to the complete test suite and the inferred model forms the
reference for all subset evaluations. This inference only needs to be conducted
once, at the beginning of the process.

Each candidate test subset is compared to the reference set by inferring a
model from the subset and then computing the BCR score (as described in
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Section 3.2) of that model against the reference model. The BCR score gives a
numeric metric to the accuracy of the model, and permits the user of the process
to allow a trade-off between speed and accuracy. In cases where the optimal,
completely accurate regression test still requires many hours to run it may be
useful to produce a regression test that can be run in minutes and still find 80%
of faults. This could serve as a quick regression test during the development
program, that is supplemented by the full regression test at the conclusion of
a development phase. By using a numeric metric of accuracy, such as BCR,
this process allows quantitative decisions to be made about the appropriate
accuracy/speed trade-off that would not be possible using less semantic measures
such as code coverage.

Inferring a model from a set of recorded traces is much faster than actually
performing tests themselves. Thus using recorded traces, either from in-service
log data or a run of the existing regression test set, the time taken to evaluate
the behavioural coverage of a regression test subset can be minimised versus
running the tests to evaluate it. For example, the inference process on the 146
line trace set takes under 1 second, whereas evaluating the complete set of traces
against an implementation takes over 50 seconds. It is shown in Section 5.3 that
model inference allows many thousands of candidates to be evaluated in less
than an hour. Model inference therefore provides a process by which candidate
solutions can be quickly evaluated, allowing many thousands of possible subsets
to be evaluated in a reasonable time.

4 Test Subset Selection Using Multi-objective Search

Having developed a suitable fitness function, the other component of the tech-
nique is the selection of candidate test subsets. This section presents a multi-
objective search algorithm using the NSGA-II algorithm.

4.1 Genetic Algorithms

This paper uses genetic algorithms to approach the NP complete problem of
selecting test subsets from a given test suite. The field of Search-Based Software
Engineering [9] includes various techniques that provide general, meta-heuristic
approaches to problems for which it is impossible or impractical to find perfect
solutions. Genetic Algorithms (GAs) are one such technique that uses an evolu-
tionary metaphor to direct and optimise a limited search of a very large search
space. This makes them ideal for a task such as test suite optimisation where
the search space is large, and while the best solution is desirable, there is a large
space of sub-optimal, but still satisfactory solutions that a GA can discover.

The critical elements of a GA are: a representation of an individual candidate
solution as a collection of “genes”, and a “fitness function” that produces a
numerical measure of the “correctness” of this candidate.

The search consists of the application of operators on a population comprised
of a number of chromosomes, each of which containing one or more genes. The
minimum operators required are selection, crossover and mutation.
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The selection operator uses the fitness values of the chromosomes to deter-
mine which are selected in the next generation. Crossover and mutation are con-
cerned with exploring the search space. Crossover models reproduction, where
two individuals are mixed together to produce offspring. Crossover operators
traditionally consist of a series of swap operations, however more complicated
ones exist. The mutation operator serves to prevent the search from remaining
in local optima by ensuring diversity in the population. It operates by randomly
altering one or more genes in an individual to produce a new individual.

4.2 Chromosome Representation and Genetic Operators

The chromosome representation for a test set subset consists of a set of bits
where each bit represents a trace or test from the original test set. Bits set
to 1 represent that that trace is included in this subset, 0 represents that the
trace is not included. Each bit is considered a gene by the implementation. The
chromosome is therefore comprised of Tc bits, where Tc is the number of traces
in the original set. Crossover is enacted by picking some n where n < Tc; the
new chromosome is formed from bits 1 to n from one parent, and bits n+ 1 to
Tc from the other.

Random mutation of a bit would simply invert it. As the number of bits set to
1 or 0 decreases (i.e. the chromosome is “mostly 1s” or “mostly 0s”) this becomes
less effective, since inverting a random bit becomes decreasingly likely to further
reduce the number of 0s or 1s. This is a significant issue for test set minimisation
in cases where a significant optimisation is possible, or very little optimisation is
possible, since the ideal solution may have very few traces included (1s) or very
few traces excluded (0s).

This implementation uses two mutation operators: one that randomly “turns
on” a bit, and one that randomly “turns off” a bit. This ensures that every
generation contains some new solutions with more traces and some with fewer
traces, even as the population tends towards one extreme or the other.

The binary nature of the individual genes also has a significant impact on the
generation of the initial population for the search. If the initial chromosomes
are simply generated randomly then they will all have approximately 50% of
the bits set and approximately 50% unset. In theory the crossover and mutation
will eventually correct for this, but it was found that producing a more even
distribution of initial individuals allowed the search to focus more rapidly. Con-
sequently, individuals for the initial population are created by first selecting a
random number of bits to be set, and then a random distribution of those bits
across the chromosome. This results in an even distribution of individuals from
some with 0 bits set to some with Tc bits set.

4.3 Multi-objective Search Algorithms

The test set reduction problem involves optimising for both test speed and fault
identification. In such instances where there are multiple, independent variables
to optimise, this can be achieved by weighting the squares of each variable and
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using this as the fitness function for a conventional GA, however this has the
possibility that a solution with a very high score for one objective will overpower
solutions that have a more balanced profile. Consequently, this work uses a spe-
cialised multi-objective genetic algorithm, which has a more intricate selection
process that seeks to avoid this drawback.

The search heuristic used in this paper is based on the “Non-dominated Sort-
ing Genetic Algorithm II” (NSGA-II) [5], which has been demonstrated as ef-
fective in test set reduction by [19]. For each candidate solution the NSGA-II
selection mechanism measures the number of other solutions that “dominate”
this one, where dominance is defined as being superiour in all objectives. Those
that are undominated represent the Pareto front of the currently explored solu-
tions. These are retained as the population for the next generation.

Where there are many Pareto-optimal solutions it becomes necessary to se-
lect a subset. The subset is chosen to avoid clustering — that is, the selection
mechanism attempts to distribute the chosen solutions evenly over the Pareto
front. This distribution creates a much more effective basis for the next gener-
ation, since breeding solutions that excel in different objectives should produce
offspring which posses both qualities. As an example: breeding a very accurate
test set with a very fast one may produce offspring that retain most or all of the
accuracy but are considerably quicker.

4.4 Fitness Evaluation

The minimisation process has two variables to be optimised: fault identification
and cost.

Fault identification is estimated using the BCR score for the learned machine
from a candidate individual as described in Section 3.3.

The “cost” of the test set may be defined as the time taken. For the purpose
of the case study in this paper, uniform cost is assigned to all tests in a candidate
subset, therefore the “cost” is a function of the size of the test set. In a more
complex testing scenario it would be important to consider other costs, such
as the execution time of each test. This may not be related to trace length, as
some tests may include features such as external synchronisation that causes
them to take arbitrarily long times. Wherever trace count (Tc) is used in the
subsequent discussion this could be substituted for trace cost, which would be
the sum of individual costs of tests in a test set. The trace improvement of a
subset is defined as the number of test cases removed from the total set, (i.e.
the number of 0 bits in the chromosome). This is expressed as a fraction of the
total chromosome size: Trace Improvement = Tc−Tcindividual

Tc .

4.5 Selection

The two values, BCR score and Trace Improvement, measure the solution’s
fitness in each objective dimension. A solution’s dominance is then measured
by comparison to the other solutions in the current population. The selector
proceeds by choosing undominated solutions. If the number of them exceeds a
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defined limit then it begins to reduce the set by measuring the “distance” be-
tween solutions. The distance is measured as the sum of the absolute difference
between the accuracies and the trace improvements. Solutions with identical
accuracy and trace improvement have a zero distance and one of the pair will
be removed. If the size is still excessive then a threshold distance is established
at 0.01 and steadily increased. Any solutions within the threshold distance are
pruned and the threshold increased until the population size falls below the limit.

5 Evaluation

This evaluation seeks to assess the test set improvement that can be obtained us-
ing the multi-objective behavioural adequacy approach, as well as to validate the
testing capability of the solutions it generates compared to that of the original test
set. The research questions this evaluation answers are those defined in Section 1.

The evaluation was conducted on the vending machine example given in Sec-
tion 2. A test was produced containing 190 randomly generated traces, which
covered all behaviour in the program, such that running the EDSM algorithm
(Section 3.1) on it will produce the state machine in Figure 2. The random na-
ture of the test set means it is likely to contain duplication — traces that exercise
the same behaviour, offering no value. The objective of the evaluation was to
determine how much of this duplication the GA removed

5.1 RQ1: Reduction in Test Set Size

This research question is answered in terms of the trace improvement (as defined
in Section 4.4) the search yields for test sets that exercise the same behaviour
as an unoptimised test set.

The test set was optimised using the multiobjective genetic algorithm as de-
tailed in Section 4.3. The individuals were assessed in terms of the constituent
variables that make up their fitness (BCR and trace improvement).

The genetic algorithmused a 100% crossover rate, generating one extra individ-
ual for every pair of parents, a population size of 10 after each round of selection,
and a mutation rate matched to the size of the trace set so that each individual in
the population produces one mutant with one gene altered. Crossover and muta-
tion were only applied to the surviving members of the previous fitness evaluation.
Fitness values were recorded for all individuals evaluated as the search progressed.
The search was repeated 30 times to ensure statistical significance.

The genetic algorithmwas limited to 75 generations,which produced an average
of 3500 evaluations of distinct individuals. A random set of 3500 individuals was
generated and evaluated in the same way. This process was repeated 30 times to
produce 30 sets of evaluations, each of a size that is comparable to a run of the GA.

5.2 Results

RQ1: Reduction in Test Size. The individual with the highest trace im-
provement and a 1.0 BCR was selected from each of the 30 sets of individuals
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Table 1. Trace Improvement scores for the best individual with a 1.0 BCR score from
each iteration for both search types

Min Max Median Mean St. Dev. N p-value

GA 0.757 0.936 0.921 0.909 0.037 30
< 0.005

Random 0.710 0.873 0.808 0.806 0.028 30

Trace Improvement
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Fig. 5. Histogram of the trace improvement of the best individual with a 1.0 BCR
score from each GA search

from the minimisation step. This was performed for both the genetic algorithm
implementation as well as the random set. Statistics for the trace improvement
values of these two samples are shown in Table 1 as well as visually for the GA
in Figure 5.

The results demonstrate that a high reduction in test case size is achieved us-
ing the approach. Both search algorithms located reduced test sets with a high
trace improvement, with the minimum being over 0.7. Consistency is demon-
strated by the small standard deviation, which equates to a difference of 4% of
the original test set size.

5.3 RQ2: Efficacy of the Behavioural Adequacy Metric

The validity of the behavioural adequacy metric as a measure of the fault iden-
tification of a test subset is assessed using mutation testing. Mutation testing
[8] evaluates test sets by simulating faults in a software system and measuring
the test set’s ability to identify the faults.
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Mutation testing modifies the software’s source code to produce a “mutant”.
The mutant code is recompiled and then tested by the test suite. If the mutant
fails the test suite it is referred to as “killed”, if not then it is “alive”. A large
percentage of simple syntactic mutations result in code that does not compile;
many of those that do compile have no functional change. Semantic mutation
testing (SMT) [10] is intended to improve on this by applying mutation to a
parsed form of the program. The muTestErl [7] system for Erlang semantic
mutation testing was used in this evaluation.

To use mutation testing to evaluate BCR, the complete test set was first run on
4807mutants. The complete set kills all but 386 of these mutants. These remaining
mutants contain modifications that do not alter the observable behaviour of the
program—many change the type of the internal representation of the stored coin
value from integer to floating point, for example, but the Erlang implementation
performs suitable implicit casting at each application of an arithmetic operator to
allow all the updates and comparisons to continue to operate.

A selection of 288 randomly generated individuals were then subjected to
mutation testing. Each of these individuals was a reduced test set, for which the
BCR was calculated. The same set of mutants was then run on each of these
reduced test sets, each killing some number of mutants. The result of these runs
are shown in a scatterplot in Figure 6.
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Fig. 6. Scatter-plot showing number of mutants killed against BCR for a selection of
random test sets

The scatterplot shows that mutant killing power does not correlate highly
with BCR (Pearson r = 0.457), however, it also shows that for particularly high
values of BCR that the mutant killing power is as high as the original test set.
In this evaluation BCR is observed to be prone to false negatives, but does not
appear to suffer from false positives: of all the test sets with a BCR of 1.0, none
killed fewer mutants.
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These results suggest that BCR is likely to be too conservative, as smaller
test sets with an equal mutant killing power will be discarded if they have a
low BCR score. The multiobjective search used in this approach can mitigate
this problem; adjacent solutions to test sets with a high trace improvement but
low BCR score may still be explored, possibly yielding better adjacent solutions.
This also has the implication that individuals on the Pareto front with sub-1.0
BCR scores (but better trace improvement) should not be rejected outright, as
they are potentially more suitable minimisations of the test set.

RQ3: How Intelligently does the GA Search Use a Constrained
Budget? The search space for an exhaustive approach for the case study is
2190. The results for RQ1 demonstrate the search reliably finds a test set that is
significantly smaller than the original regression test set, despite only exploring
a small fraction (30, 000 candidates) of the total search space.

Fig. 7. Scatter-plot of the individuals evaluated by each search

Figure 7 shows a scatterplot of the trace improvement versus BCR score for
each of the individuals selected by both the random and the genetic algorithm
searches. Maximised values in both direction represent objectively better solu-
tions. The plot clearly shows a Pareto front has been located by the genetic
algorithm, which is beyond the region explored by the random searcher. Along
this front are the best individuals found by the search. This front demonstrates
the tradeoff between behavioural adequacy (BCR) and trace improvement. As
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Fig. 8. Violin plots of BCR score and trace improvement of all individuals generated
by each search

the findings for RQ2 suggest that some solutions with sub 1.0 BCRs may be
equally suitable as those with 1.0 BCR scores, the individuals to the right of the
plot may actually be better overall.

The random search results exhibit a pattern where a large number of individ-
uals with a widely varied trace improvement have the same BCR score. This is
due to the common lack of a critical trace amongst this subset of the population
and illustrates the difficulty of the selection problem, as well as demonstrating
the benefit of intelligently searching the space, rather than randomly sampling it.

The “p-value” column of Table 1 gives the p-value for a one-sided Wilcoxon
test. The p-value gives an indication of the likelihood that the null hypothesis
(H0) is true. In this case, H0: median(GA) �> median(Random). As the p-value
is small, the null hypothesis is rejected, indicating the difference in medians
is statistically significant, demonstrating that the GA outperforms the random
searcher.

Figure 8 shows a visualisation of the BCR scores and trace improvements of
the solutions considered by both search algorithms. The higher density towards
the higher BCR scores for the random searcher can be explained by the uniform
distribution of trace improvement - solutions with more traces (i.e a lower trace
improvement) are more likely to have a high BCR score. The genetic algorithm
exhibits a more varied distribution of BCR scores, accounted for by the amount
of solutions with higher trace improvement it considered; this corresponds to the
Pareto front that is illustrated in Figure 7.

5.4 Threats to Validity

There are several factors that constitute potential threats to validity.

The performance of the GA may be due to chance. It is possible that the
results of the genetic algorithm may be entirely due to random chance. This
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risk is mitigated firstly by the large number of repetitions of the search,
reducing the possibility of a non-representative sample being observed. The
comparison of the GA against the random set shows that its performance is
higher than a purely stochastic search process, meaning that this threat is
eliminated.

The case study may not be representative of software systems.
This may impact the amount of improvement observed for other systems.
The trace improvement that can be obtained is dependent on the amount
of duplication in the test set; the technique presents no benefit if a test set
is already minimal. This does not impact the findings shown however, as it
demonstrates that, given a means to calculate the BCR score of a candidate
test set (and a test set that can be minimised), a reduction is possible using
this technique.

6 Conclusions and Future Work

This work presents an application of a genetic algorithm to the test suite min-
imisation problem. Although genetic algorithms have been used before, this is
the first instance where the behaviour exercised by the tests has been used as
a selection criterion. The evaluation demonstrates that the approach is able to
locate high-quality minimised test sets using BCR to estimate the behaviour
exercised by the tests, identifying a test set that exhibits the same behaviour,
despite having 90% of the traces removed from it. This is validated in two as-
pects, comparison with a random algorithm, as well as the muation testing of
the results to compare BCR accuracy.

The findings show this is a promising algorithm, however the survey only
applies it to a small example. Real world performance is not likely to vary,
however, as the learning process occurs separately from the software. GAs can
handle large search spaces well, so larger test sets should be reduicible using this
technique as well as smaller ones (albeit with a higher fitness evaluation budget).
Immediate future work will seek to apply the minimisation process to larger and
more varied case studies to test this hypothesis.

Although in this work BCR worked well, it is possible to utilise other com-
parison techniques [15,14] that aim to ensure that a less than perfect score cor-
responds to a small change in an inferred model. Whereas BCR is generally
sensitive to transitions close to the initial state, these methods aim to ensure
the measure of difference computed is relatively equally sensitive to a missing or
added transition anywhere in an automaton. Future work could use these alter-
natives to improve the accuracy of the test adequacy measure, therefore allowing
potentially better trace improvement scores to be reached.
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Abstract. This paper deals with an approach based on the similarity
of mutants. This similarity is used to reduce the number of mutants to
be executed. In order to calculate such a similarity among mutants their
structure is used. Each mutant is converted into a hierarchical graph,
which represents the program’s flow, variables and conditions. On the
basis of this graph form a special graph kernel is defined to calculate
similarity among programs. It is then used to predict whether a given
test would detect a mutant or not. The prediction is carried out with
the help of a classification algorithm. This approach should help to lower
the number of mutants which have to be executed. An experimental
validation of this approach is also presented in this paper. An example
of a program used in experiments is described and the results obtained,
especially classification errors, are presented.

Keywords: mutation testing, machine learning, graph distance, classi-
fication, test evaluation.

1 Introduction

Software testing is a very important part of building an application. It can be also
described as a process aiming at checking if the application meets the starting
requirements, works as expected and satisfies the needs of all involved in.

Software testing, depending on the testing method employed, can be applied
at different stages of the application development process. Traditionally most of
the testing happens during the coding process and after it has been completed,
but there exist approaches (for example agile), where testing is on-going. Thus
the methodology of testing depends on the software development approach se-
lected. This paper deals with mutation testing, called also mutation analysis
or program mutation - a method of software testing, which involves introducing
small changes in the source code (or for some programming languages byte code)
of programs. Then the mutants are executed and tested by collections of tests
called test suites. A test suite which does not detect mutant(s) is considered de-
fective. The mutants are generated by using a set of mutation operators which
try to mimic typical programming errors. This method aims at helping the tester
assess the quality and derive effective tests.
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One of the problems with mutation testing concerns the number of mutants
generated for even a small program/method, what leads to the need of compil-
ing and executing a large number of copies of the program. This problem with
mutation testing had reduced its use in practice. Over the years many tools sup-
porting mutation testing were proposed, but reducing the number of mutants is
still important aspect of mutation testing and there is a lot of research in this
domain, which is briefly reviewed in the next section.

In this paper an approach based on the similarity of mutants is used. This
similarity is used to reduce the number of mutants to be executed. In order to
calculate such a similarity among mutants their structure is used. Each mutant is
converted into a hierarchical control flow graph, which represents the program’s
flow, variables and conditions. On the basis of this graph form a similarity is
calculate among programs. It is then used to predict whether a given test would
detect a mutant or not. The prediction is carried out with the help of a classi-
fication algorithm. This approach should help to lower the number of mutants
which have to be executed and at the same time help to assess quality of test
suits without the need of running them. This approach shows some proximity
to mutant clustering approach [8,17] as it also attempts to measure similarity of
mutants, but we represent mutants in a graph form and use graph based measure
rather then converting them to a special space which allows for the use of Ham-
ming distance. Graphs have been for a long time considered to have too high
computational cost to be of practical use in many domains but recently there
has be a large growth of research on them, which resulted in the development
of many algorithms and theoretical frameworks. Much of this research, which is
briefly reviewed in the next section, deals with bio- and chemoinformatics, but
some other domains were also touched upon.

The main contribution of this paper is a method to reduce the number of
mutants that have to be executed in a dynamic way i.e. depending on the pro-
gram for which they are generated rather than statically for a given language or
the operator. Moreover this paper introduces a representation of programs that
allows for comparing programs and it also proposes several measures of such a
comparison. This approach was applied to two examples and the results seem to
be encouraging.

The paper is organized in the following way, in the next section a related
work concerning both the mutation testing and different approaches to graph
analysis is briefly presented. Then, in section 3 some preliminary notion con-
cerning classification, graphs, edit distance and graph kernels is presented, It
is followed by a section 4, which presents fundamental components of our ap-
proach i.e. a hierarchical control flow graph and methods for calculating edit
distance and kernel for such a graph. In section 5 experiments are presented,
including the setup, and the results are discussed. Finally section 6 summa-
rizes the paper by presenting conclusions drawn from the research presented
here as well as some possible extensions, improvements and directions for future
work.
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2 Related Work

In this paper a number of issues from different domains is discussed. Thus in this
review of related work several domains are taken into account, such as mutation
testing and especially reduction approaches, different approaches to classification
problem, graph analysis and, in particular, different approaches to calculating
distances among graphs, (like edit distance and using kernel methods for graph
data) and learning methods based on them.

Mutation testing goes back to the 70s [12] and it can be used at different
stages of software development. It has also been applied to many programming
languages including Java [9,10,21,22,23,24] (used in this paper). A lot of research
work has also been concerned with defining mutation operators that would mimic
typical errors [25]. As mentioned in the introduction one of the main problem of
mutation testing is the cost of executing large number of mutants so there has
been a great research effort concerning reduction costs. Two main approaches to
reduction can be divided into two groups: the first containing methods attempt-
ing to reduce the number of mutants and the second - those aimed at reducing
the execution costs.

One of the methods used to mutant number reduction is sampling. It was
first proposed firstly by Acree [1] and Budd [6]. They still generate all possible
mutants but then a percentage of these mutants is then selected randomly to
be executed, and all other are discarded. Many studies of this approach were
carried out, for example Wong and Mathurs [31,45] conducted an experiment
using a random percentage of mutants 10% to 40% in steps of 5%.

Another approach to mutant number reduction used clustering [8,17]. It was
proposed by Hussain [17] and instead of selecting mutants randomly, a subset is
selected by a clustering algorithm. The process starts by generating all first order
mutants, then clustering algorithm is used to put these mutants into clusters
depending on the killable test cases. Mutants put into the same cluster are
killed by a similar set of test cases, so a small selection of mutants is used from
each cluster. All the other are then discarded.

Third approach to reduction was based on selective mutation, which consists
in selecting only a subset of mutation operators thus producing smaller number
of mutants [30,32]. A much wider survey of the domain of mutation testing,
including approaches to reduction was carried out by Jia et al. [19].

The approach proposed in this paper is partially similar to the first two
described above, as it also generates all mutants, but then only randomly se-
lected number of them is executed and the test performance for others is assessed
on the basis of their similarity to the executed mutants for which performance
of test suites is thus known.

The similarity of mutants is measured using graph representation of each
mutant. The use of graphs as a mean of object representation has been widely
researched. They are used in engineering, system modeling and testing, bioin-
formatics, chemistry and other domains of science to represent objects and the
relations between them or their parts. For use in computer aided design different
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types of graphs were researched, not only simple ones but also hierarchical graphs
(called also nested graphs [7]).

In this paper a machine learning approach based on similarity is used to
analyse graphs. The need to analyze and compare graph data appeared in many
domains and thus there has been a significant amount of research in this di-
rection. Three distinctive, although partially overlapping, approaches can be
noticed in the literature.

The first one is mainly based on using standard graph algorithms, like finding
a maximal subgraph or mining for frequently occurring subgraphs to compare or
classify graphs. The frequent pattern mining approach to graph analysis has been
researched mainly in the domain of bioinformatics and chemistry [2,15,18,46,47].
The main problem with this approach is its computational cost, and a huge
number of frequent substructures usually found.

The second approach is based on transforming graphs into vectors by finding
some descriptive features Among others Bunke and Riesen ([4,33,34,35,36]) have
done a lot of research on vector space embedding of graphs, where as features
different substructures of graphs are selected. Then their number is counted in
each graph and these numerical values combined in a predefined order result
in a vector that captures some of the characteristics of a graph it represents.
Having a graph encoded in a vector a standard statistical learning algorithms can
be applied. The main problem is in finding appropriate features/substructures
and in enumerating them in each graph. It usually leads to problems similar to
those in frequent pattern mining (which is often used to find features counted in
vector representation). Nevertheless, this approach has successfully been applied
in many domains like image recognition [5], and especially the recognition of
handwritten texts [26,27].

The third direction, which was proposed, among others, by Kashima and
Gartner ([13,20]), is based on the theory of positive defined kernels and ker-
nel methods [40,41]. There has been a lot of research on different kernels for
structured data, including tree and graph kernels [3,13,14,20]. Tree kernels were
proposed by Collins and Duffy [11] and applied to natural language processing.
The basic idea is to consider all subtrees of the tree, where a subtree is defined
as a connected subgraph of a tree containing either all children of a vertex or
none. This kernel is computable in O(|V1||V2|), where |Vi| is the number of nodes
in the i− th tree [14].

In case of graph kernels there is a choice of several different ones proposed
so far. One of them is based on enumerating all subgraphs of graphs Gi and
calculating the number of isomorphic ones. An all subgraph kernel was shown
to be NP-hard by Gartner et al [13]. Although, taking into account that in case
of labelled graphs the computational time is significantly lower such a kernel
is feasible in design applications. Another interesting group of graph kernels is
based on computing random walks on both graphs. It includes the product graph
kernel [13] and the marginalized kernels [20]. In product graph kernel a number
of common walks in two graphs is counted. The marginalized kernel on the other
hand is defined as the expectation of a kernel over all pairs of label sequences
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from two graphs. These kernels are computable in polynomial time, (O(n6) [14]),
although for small graphs it may be worse then 2n, when the neglected constant
factors contribute stronger.

The main research focus is on finding faster algorithms to compute kernels
for simple graphs, mainly in bio- and chemoinformatics. Yet, to author’s best
knowledge, no research has been done in the area of defining and testing kernels
for different types of graphs, such as hierarchical control flow graphs proposed
in this paper..

3 Preliminaries

Classification is one of main tasks being part of machine learning. It consists
in identifying to which of a given set of classes a new element (often called
observation) belongs. This decision is based on a so called training set, which
contains data about other elements (often called instances) whose class mem-
bership is known. The elements to be classified are analysed on the basis of their
properties, called features. These features can be of different types (categorical,
ordinal, integer-valued or real-valued), but some known algorithms work only if
the data is real-valued or integer-valued based. An algorithm which implements
classification is known as a classifier. In machine learning, classification task is
considered to be a supervised learning algorithm, i.e. learning process uses a
training set of elements classified correctly.

There is a number of known classification algorithms. One of them is k−NN
(k nearest neighbours, where k is a parameter), used in this paper. In k −NN
classifier training set consists of vectors in a multidimensional space, for which
a class membership is known. Thus training stage of the classifier consists only
in storing the vectors and class labels of the elements of the training set. Then,
during the actual classification for elements of unknown class membership, a
distance from the new element to all elements of the training set is calculated
and it is assigned to the class which is most frequent among the k training
examples nearest to that new one.

In majority of known classification algorithms, including k −NN an instance
to classify is described by a feature vector containing properties of this instance.
As in this paper graphs are used, not vectors, to represent objects to classify a way
of calculating distance between two graphs is needed. Two such methods, graph
edit distance and graph kernel, are briefly presented in the following, together with
some basic notions. Then, in the next section, we show how these concepts can be
extended to deal with hierarchical flow graphs proposed in this paper.

3.1 Graphs

A simple graph G is a set of nodes (called also vertices) V and edges E, where
E ⊂ V 2. Each node and edge can be labeled by a function ξ, which assigns labels
to nodes and edges. A walk w of length k − 1 in a graph is a sequence of nodes
w = (v1, v2, . . . , vk) where (vi, vj) ∈ E for 1 ≤ i, j ≤ k. If vi �= vj for i �= j then
a walk w is called a path.
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Graph Edit Distance. A graph edit distance (GED) approach is based on the
fact that a graph can be transformed to another one by performing a finite num-
ber of graph edit operations which may be defined in a different way, depending
on algorithms. GED is then defined as the least-cost sequence of such edit oper-
ations. Typically edit operation sequences include node edge insertion,node and
edge deletion, node and edge substitution (label change). A cost function has to
be defined for each of the operations and the cost for the edit operation sequence
is defined as the sum of costs for all operations present in a given sequence. It
has to be noticed that the sequence of edit operations and thus the cost of the
transformation of a graph into another one is not necessary unique, but the low-
est cost is and it is used as GED. For any given domain of application the two
main issues are thus the way in which the similarity of atoms (nodes and edges)
is defined and what is the cost of each operation. For labelled graphs, thus hav-
ing labels for nodes, edges, or both of them, the deletion/insertion/substitution
costs in the GED computations may depend on these labels.

Graph Kernels. Another approach to use traditional classification algorithms
for non vector data is based on the so called kernel trick, which consists in map-
ping elements from a given set A into an inner product space S (having a natural
norm), without ever having to actually compute the mapping,i.e. graphs do not
have to be mapped into some objects in space S, only the way of calculation
the inner product in that space has to be well defined. Linear classifications in
target space are then equivalent with classifications in source space A. The trick
allowing to avoid the actual mapping consists in using the learning algorithms
needing only inner products between the elements (vectors) in target space, and
defining the mapping in such a way that these inner products can be computed
on the objects in the source the original space by means of a kernel function. For
the classifiers a kernel matrix K must be positive semi-definite (PSD), although
there are empirical results showing that some kernels not satisfy this requirement
may still do reasonably well, if a kernel well approximates the intuitive idea of
similarity among given objects. Formally a positive definite kernel on a space X
is a symmetric function K : X2 → R, which satisfies

∑n
i,j=1 aiajK(xi, xj) ≥ 0,

for any points x1, . . . , xn ∈ X and coefficients a1, . . . , an ∈ R.
The first approach of defining kernels for graphs was based on comparing all

subgraphs of two graphs. The value of such a kernel usually equals to the number
of identical subgraphs. While this is a good similarity measure, the enumeration
of all subgraphs is a costly process. Another approach is based on comparing all
paths in both graphs. It was used by Kashima [20] who proposed the following
equation:

K(G1, G2) =
∑

path1,path2∈V ∗
1 ×V ∗

2

p1(path1)p2(path2)KL(lab(path1), lab(path2)),

(1)
where pi is a probability distribution on V ∗

i , and KL is a kernel on sequences of
labels of nodes and edges along the path pathi. It is usually defined as a product
of subsequent edge and node kernels. This equation can be seen as a marginalized
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kernel and thus is a positive defined kernel [43]. Although computing this kernel
requires summing over an infinite number of paths it can be done efficiently
by using the product graph and matrix inversion [13]. Another approach uses
convolution kernels [16], which are a general method for structured data (and
thus very usefull for graphs). Convolution kernels are based on the assumption
that structured object can be decomposed into components, then kernels are
defined for those components and the final kernel is calculated over all possible
decompositions.

4 Data Preparation

To carry out an experiment a number of steps was needed to prepare the data.
Firstly, two relatively simple, but nevertheless representative, examples were
selected and mutants for them were generated by using Mujava tool [29]. One of
the examples was a simple search presented in Fig. 1, For this example Mujava
generated 38 mutants; for the second examples there were 87 mutants. The
mutants were then converted into graph form described below.

public int search(int v){ public int search(int v){

int i; int i;

for(i=0;i<size;i=i+1) for(i=0;++i<size;i=i+1)

if(values[i]==v) return i; if(values[i]==v) return i;

return -1; return -1;

} }

Fig. 1. A simple search method and one of its AOIS (Arithmetic Operator Insertion
[29]) mutants

4.1 Hierarchical Control Flow Graphs

Although a well known method of representing programs or their components
(methods) is a control flow diagram (CFD), it cannot be directly used to compare
programs, as we need to compare each element of any expression or condition
separately and a traditional CFD labels its elements by whole expressions. So in
this paper a combination of CFD and hierarchical graphs is proposed. It adds
a hierarchy to this diagram enabling us to represent each element of a program
in a single node and thus making the graphs more adequate to comparison. An
example of such a hierarchical control flow graph (HCFG) is depicted in Figs.
2a and b. It represents a method Search(...) and its mutant depicted in Fig. 1a
and b, respectively. It can be noticed that the insertion of ++ into variable i in
a for loop is represented by an appropriate expression tree replacing a simple
node labelled i inside node labelled for.
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Let for the rest of this paper RV and RE be the sets of node and edge labels,
respectively. Let ε be a special symbol used for unlabelled edges. The set of node
labels consists of the set of all possible keywords, names of variables, operators,
numbers and some additional grouping labels (like for example declare or array
shown in Fig. 2. The set of edge labels contains Y and N .

Definition 1. (Labelled hierarchical control flow graph) A labelled hierarchical
control flow graph HCFG is defined as a 5-tuple (V,E, ξV , ξE , ch) where:

1. V is a set of nodes,

2. E is a set of edges, E ⊂ V × V ,

3. ξV : V → RV is a node labelling function,

4. ξE : E → RE ∪ {ε} is an edge labelling function,

5. ch : V → P (V ) is a function assigning to each node a set of its children, i.e.
nodes directly nested in v.

Let, for the rest of this paper, ch(v) denotes the set of children of v, and |ch(v)|
the size of this set. Let anc be a function assigning to each node its ancestor and
let λ be a special empty symbol (different from ε),anc : V → V ∪ {λ}, such that
anc(v) = w if v ∈ ch(w) and λ otherwise.

4.2 Hierarchical Control Flow Graphs Distance

HCFG Edit Distance. To define edit cost for a particular graph a cost func-
tion for edit operations must be defined. In case of HCF graphs it was defined to
mimic as much as possible the influence of a given operation over the similarity.
Costs for changing labels were set separately for all pairs of possible keywords,
variable names and operators. For example cost of changing the operator in a
condition from < into <= is lower than changing == into ! = as the perceived
difference between them is higher. Changing the conditional expression into ar-
bitrary true or false will be even higher, and it is well represented in the edit
distance concept as replacing the expression tree with a single node requires
significantly more delete/insert operations.

HCFG Kernel. The edit distance does not take into account the additional in-
formation contained in the hierarchical structure HCFG. To incorporate this in-
formation into similarity calculations a hierarchical substructure kernel KHCFG

is proposed in this paper. It takes into account the label of a given node, number
of its children (and thus the internal complexity), the label of its hierarchical
ancestor (and thus its position within the structure of the program), and the
number and labels of edges connecting this node with its neighbourhood nodes
(both incoming and outgoing edges are taken into account) This substructure
kernel uses node, edge and tree kernels. The node and edge kernels are defined
below. The tree kernel, used within the node one to compare expression trees,
is a standard one [11].



208 J. Strug and B. Strug

a) b)

Fig. 2. Examples of flow graphs a) a graph for program from Fig. 1a, b) a flow graph
for one of AOIS mutants (from Fig. 1b)

Definition 2. A node kernel, denoted kV (v, w), where v, and w are nodes of a
hierarchical control flow graph, is defined in the following way:

kV (v, w) =

⎧⎪⎪⎨
⎪⎪⎩

1 : ξV (v) = ξV (w) ∧ |ch(v)| = |ch(w)| = 0
kV (ch(v), ch(w)) : ξV (v) = ξV (w) ∧ |ch(v)| = |ch(w)| = 1
KT (ch(v), ch(w)) : |ch(v)| > 1 ∨ |ch(w)| > 1
0 : ξV (v) �= ξV (w).

It can be observed that for nodes having more than one child, thus containing
an expression tree, a tree kernel KT is used to compute the actual similarity.
For nodes having different labels the kernel returns 0, while for nodes containing
one children the node kernel is called recursively.

Definition 3. An edge kernel, denoted kE(ei, ej), where ei, and ej are edges of
a hierarchical flow graph, is defined in the following way:

kE(ei, ej) =

{
1 : ξE(ei) = ξE(ej)
0 : ξV (ei) �= ξV (ej).

On the basis of the above kernel a similarity for HCFG is computed.

Definition 4.

KHCFG(Gi, Gj) =
m∑
i=1

n∑
j=1

KS(Si, Sj), (2)
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where m and n, is the number of hierarchical nodes in each graph and

KS(Si, Sj) = knode(vi, vj) + knode(anc(vi), anc(vj)) +

Cn∑
r=1

Cm∑
t=1

knode(cr(vi), ct(vj))

+
∑

wj∈Nb(vj)

∑
wj∈Nb(vj)

kedge((vi, wi), (vj , wj))knode(wi, wj), (3)

where each Si is a substructure of Gi consisting of node vi, its direct ancestor
anc(vi), all its children ch(vi) (where with Cn is the number of children and
cn(vi) - the n− th child of vi) , and its neighbourhood Nb(vi).

This kernel is based on the decomposition of a graph into substructures accord-
ing to the concept of R − convolution kernels and thus is positive semidefinite
[16], and so acceptable as a kernel function [40].

Remark on Computational Costs. Both edit distance and graph kernel are
known to have a high computational cost, what was mentioned in sections 1 and
2. But in case of HCFG we have a special situation, i.e. as each graph represents
a first order mutant, any two graphs can differ in at most two places. Moreover
we know a priori where the change happened, and all the remaining elements
of both graphs are identical. As a result the actual computation of both edit
distance and HCFG kernel can be done much more efficiently than in general
case of two arbitrarily chosen graphs.

5 Experiments and Results

For each set of mutants a k-NN classification algorithm was run using two dif-
ferent distance measures, an edit distance and a distance computed from HCFG
kernel. For the first example three test suites were used and the set of mutants
was randomly divided into three parts of similar size, the first was used as a
training set and the other as instances to classify. The classification was then
repeated using subsequent subsets as training sets. The whole process was re-
peated five times using different partitions of the set of mutants and the results
obtained were averaged. Table 1 presents the results obtained for this example
using HCFG edit distance to compute distances in k−NN classifier. Parameter
k was, after some experimental tuning, set to 5 for all experiments. The first
column of the table shows the percentage of instances classified correctly. The
results for mutants classified incorrectly are presented separately for those clas-
sified as detectable, while actually they are not (column labelled incorrect killed)
and for those classified as not detected, while they actually are detected by a
given test suite (column labelled incorrect not killed). Calculating these results
separately was motivated by the meaning of these misclassifications. While clas-
sifying a mutant as not detected leads to overtesting, the misclassification of the
second type can result in missing some errors in code, what is more dangerous.
As the results are also used to evaluate the quality of test suites used, incorrectly
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classifying a mutant as not detected leads to giving a test suite lower score than
actual one, why the second misclassification leads to overvaluation of a given
test suite. Again, while the first situation is surely not desired, the second one
poses more problems, especially as it may lead to a situation when a mutant
not detected by any test suite would be labelled as detected, thus resulting in
undetected errors in code.

It can be observed that the classification performed reasonably well for all
test suits, with the exception of TS1. Deeper analysis of this case seems to
suggest that it results from the random partition of the set of mutants for this
test suite in which the training set contained unproportionally large number of
undetectable mutants. This situation also suggests to perform the partition of
mutants in a ”smarter” way instead of random. One possible way to do it is
to select proportional number of mutants of each type (generated by a given
type of mutation operators). The results obtained with the use of HCFG kernel,
presented in Table 2, are slightly better in general, especially the classification for
TS1 improved significantly, although it may be due to better choice of training
sets. It can be also noticed that, while the percentage of correctly classified
mutants for test suite 3 is a bit lower, (but the difference is small), less mutants
were incorrectly classified as detectable, although this gain happened at the
expense if larger classification error in the last column. The results show that
the classification improvements for the kernel method are not very significant,
but more experiments are needed to decide whether this approach is worth its
slightly higher computational cost.

Table 1. The classification of mutants of example 1 with the use of GED

correct incorrect killed incorrect not killed

TS 1 65.2% 13.06% 21.74%

TS 2 78.25% 8.7% 13.5%

TS 3 82.6% 8.7% 8.7%

Table 2. The classification of mutants of example 1 with the use of kernel

correct incorrect killed incorrect not killed

TS 1 75.55% 5.45% 19.00%

TS 2 84.1% 6.65% 9.25%

TS 3 82.2% 4.7% 12.7%

For the second example five test suites were used and, as there were more
mutants, their set was divided into four parts of similar size, with, like in first
example, the first part being used as a training set and the others as instances to
classify. The classification was then repeated using subsequent subsets as training
sets. The whole process was also repeated five times with different partitions of
the set of mutants and the results obtained were averaged. Table 3 presents the
results obtained with the use of edit distance and Table 4 - with the use of
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kernel based distance. Similarly to the first example the kernel based approach
has produced slightly better results for correct classifications, with the exception
of TS 2, where the error is slightly higher, but only by 0.2%. However a slightly
higher improvement can be observed in having a lower percentage of mutants
incorrectly classified as detectable. It can also be noticed that the results for
TS 3 were visibly worse than for other suits. Closer inspection seems to suggest
that this is also a problem with randomly partitioning set of mutants. As TS
2 detects only 22 out of 87 mutants there may occur an over representation
of detectable mutants in the training set thus leading to incorrectly classifying
many mutants as detectable. As in the first example it suggests replacing random
partitioning by another one. Here a useful idea seems to be selecting into training
set mutants in such a way that would preserve the proportion of both detectable
and undetectable mutants close to the one in the whole set.

Table 3. The classification of mutants of example 2 with the use of GED

correct incorrect killed incorrect not killed

TS 1 75.7% 12.1% 12.2%

TS 2 73.4% 6.5% 20.1%

TS 3 60.5% 26.2% 16.3%

TS 4 78.2% 10.3% 11.5%

TS 5 76.4% 11.3% 12.3%

Table 4. The classification of mutants of example 2 with the use of kernel

correct incorrect killed incorrect not killed

TS 1 79.1% 6.3% 14.6%

TS 2 73.2% 4.5% 22.3%

TS 3 61.5% 22.6% 20.9%

TS 4 85.1% 4.6% 10.5%

TS 5 79.2% 9.53% 11.3%

6 Conclusions and Future Work

In this paper an approach to classification of mutants was proposed as a tool to
reduce the number of mutants to be executed and to evaluate the quality of test
suits without executing them against all possible mutants. This method deals
with reducing the number of mutants that have to by executed in a dynamic way
i.e. depending on the program for which they are generated rather than statically
for a given language or the operator.The approach needs still more experiments
to fully confirm its validity, but the results obtained so far are encouraging.

However, several problems were noticed during the experiment that require
further research. Firstly, a random selection, although performing reasonably
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well, causes problems for some test suits. Possible solutions, as suggested in the
discussion of results, include selecting mutants to assure they represent diversity
of mutation operations thus avoiding selecting to the training set mutants gen-
erated by the same type of operations. The second solution is to select a number
of detectable and undetectable mutants to preserve proportions from the full set.
We plan to investigate both approaches to check whether they improve results
in a significant way.

Another direction for future research is connected with the use of kernels.
To make better use of them one of kernel based classifiers, for example support
vector machines, could be used instead of k −NN . The kernel itself also offers
some possibilities for improvements. The node kernel proposed in this paper
is based on the label of the node independently form its position (”depth”) in
the hierarchy; adding some factor proportional to the depth of the node is also
planned to be researched.
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Abstract. Although proven to be an effective way for detecting errors,
generic program invariants (also known as fault screeners) entail a con-
siderable runtime overhead, rendering them not useful in practice. This
paper studies the impact of using simple variable patterns to detect the
so-called system’s collar variables to reduce the number of variables to
be monitored (instrumented). Two different patterns were investigated
to determine which variables to monitor. The first pattern finds variables
whose value increase or decrease at regular intervals and deems them not
important to monitor. The other pattern verifies the range of a variable
per (successful) execution. If the range is constant across executions, then
the variable is not monitored. Experiments were conducted on three dif-
ferent real-world applications to evaluate the reduction achieved on the
number of variables monitored and determine the quality of the error
detection. Results show a reduction of 52.04% on average in the number
of monitored variables, while still maintaining a good detection rate with
only 3.21% of executions detecting non-existing errors (false positives)
and 5.26% not detecting an existing error (false negatives).

Keywords: Error detection, program invariants, automatic oracles,
dynamic execution.

1 Introduction

An application’s development phase is usually restricted by the budget allowed
for development and/or time-to-market. These restrictions provide a trade-off
with the reliability of the system, which leads to an increase in defects that can
lead to catastrophic results. In these cases proper error detection is vital in order
to ensure the recognition and recovery from faults during the deployment phase
as soon as possible [1]. One possible way of implementing error detection on a
system is with the use of generic invariants, also known as fault screeners. They
may present a higher rate of false positives (faults detected when none exist)
and false negatives (the non detection of an error) when compared to hard coded
error detection methods (such as asserts), due to the latter detecting anticipated
faults. Despite this, generic invariants have the great benefict of being generated
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and intrumented automatically into the code. This along with the fact that (1)
the invariants can be trained automatically during the testing phase and (2)
hard coded solutions are cumbersome and time consuming to implement, might
give an edge to generic invariants. Having generated automatically the invariants
and trained them during the testing phase, they are ready for being used during
the deployment phase, where the invariant detects deviations from the learned
behaviour [2]. Generic invariants have been subject of study for many years,
spawning various types like range screeners, bitmask screeners, and screeners
that leverage Bloom filters [2,3]. They are mostly used for fault localization [4]
and error detection [3].

Despite the benefits of generic invariants, their use on real-world, large soft-
ware applications is currently impeded by the overhead that monitoring all the
system’s variables requires. However, monitoring every variable may not be re-
quired, as only a subset of variables, known as collar variables, truly affect the
outcome of a system in a meaningful way [5]. Applications like TAR3 and TAR4.1
have some algorithms that already experiment on the detection of collar vari-
ables [6], but the use of these collar variables has not been applied on the re-
duction the number of generic invariants needed to monitor a system effectively.

To tackle this, two algorithms were devised to detect exectution patterns of
variables both during executions and between them. These algorithms, called
variable evolution pattern detectors in this paper, are executed during the train-
ing phase of the invariants and collect information from successful executions.
During the operational phase, when the impact of the instrumentation overhead
needs to be minimized, the data collected from the pattern detectors allows
variables deemed unimportant to be ignored.

This paper makes the following contributions:

– Proposes two methods to detect variables that do not require monitoring (in
other words, methods to detect the collar variables of the program under
analysis).

– Investigates the reduction achieved on the number of used invariants on real
world applications.

– Evaluates the quality of the error detection when comparing with the results
obtained using the test suite of the applications.

– Reports the increase in execution time with the use of the invariants.

The paper is organized as follows. Section 2 gives a quick overwiew of how a fault
screener works, along with a more detailed explanation of the used screener for
the study, the dynamic range screener. In Sect. 3 explains the functioning of the
two variable evolution pattern detectors. The experimental setup and results are
shown in Sect. 4. Section 5 presents work related to this paper. Finally Sect. 6
gives some final thoughts and some insight on future work.

2 Fault Screeners

First used by Ernst et al. [7], fault screeners, also known as program invariants,
are fault tolerance mechanisms that use historical data recovered from previous
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executions to determine the expected behaviour from a system’s variables, is-
suing a warning when the expected behaviour is not met [2]. Hence, the use of
fault sceeners is a possible way to achieve automatic error detecting by monitor-
ing the system’s variables. However, for the detection to be effective, a training
phase is required. During this phase the spectrum of valid variable values is
determined. This constitutes the expected behaviour for a variable that should
raise a warning in case a value that does not fit the spectrum is detected [8].
Formally, screeners are not effective at detecting errors that involve the use of
random values, or variables that store things like current timestamp.

There are various types of invariants, each with its own algorithms for train-
ing and error detecting. In this paper it is focused on the dynamic range in-
variants [2], due to its simplistic nature, reduced overhead, and known to work
in practice [4]. The dynamic range invariant stores the bounds of valid variable
values. During the training phase, when a new value is found, the range of values
allowed by the screener is extended according to the following equations:

l := min(l, v) (1)

u := max(u, v) (2)

If the new value is lower than the lower bound l, the lower bound is updated.
Likewise, if the value is greater than the upper bound u, that bound is updated.
Table 1 shows an example of how the training works for the dynamic range
screener. At first the invariant does not consider any value valid since no ob-
servation was made yet. After the first observation, in this case 5, both bounds
need to be updated leading to a valid range of [5, 5]. The second observation
is a 72. This value is greater then the upper bound of the range and not lower
then the lower bound, so the upper bound is updated. With an updated range
of [5, 72], the new observed value 6 is compared to both bounds. It is between
the upper bound and lower bound so no change is made. Lastly, the value 5004
is observed, again greater then the upper bound. This bound is updated leading
to a final valid range of [5, 5004].

Table 1. Dynamic Range Screener training

New Result Value Range Point

5 ∅
72 [5, 5]

6 [5, 72]

5004 [5, 72]

[5, 5004]

When on error detection phase, every observed value is checked against the
range of values allowed by the invariant. If the value goes outside the range of
permitted values, a violation to the expected behaviour is detected:

violation = ¬(l < v < u) (3)
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The dynamic range invariant can use a larger number of ranges in order to restrict
the allowed spectrum [2]. While the concept is the same, additional ranges require
more memory and more execution time. When using more then one range, the
objective during the training phase is: when a new value is observed, the updated
range is the one that increases the valid spectrum by the least amount of values.
Table 2 shows an example of a dynamic range invariant with two ranges. The
invariant begins with two empty ranges. Once it observes the value 5, one of
the ranges becomes [5, 5]. On the second observed value, 72, since there is still
one range that is empty, that range becomes, [72, 72]. Now that both ranges,
when new values are observed, the invariant tries to make the ranges as short
as possible to learn the least amount of unseen values. When 6 appears, there
would be two range choices, [5, 6] and [72, 72] or [5, 5] and [6, 72]. Since the first
has the smaller ranges, this is the selected option. The last value 5004 provides
an interesting twist. At first glance it would seem that this update would lead to
[5, 6] and [72, 5004], however that is not the case. The ranges are actually updated
to [5, 72] and [5004, 5004]. This happens because the amount of values that is
learnt is a lot smaller (from 6 to 72 compared to from 72 to 5004) and it still
guarantees both the acceptance of the values from the values before the update
and the new value observed. In this paper, the only version of the dynamic range
invariant used is the single range one.

Table 2. Dynamic Range Screener training with two segments

New Result Value Range Point 1 Range Point 2

5 ∅ ∅
72 [5, 5] ∅
6 [5, 5] [72, 72]

5004 [5, 6] [72, 72]

[5, 72] [5004, 5004]

One of the challenges for using generic invariants is the accuracy of the error
detection, as the more training the invariants suffer, the number of false posi-
tives, errors detected that do not exist, tends to decrease, while the number of
false negatives, the non detection of existing errors, increases [9]. This happens
because of the increase of accepted values by the invariant.

Figure 1 displays a possible setup for a dynamic range invariant. During the
training phase the invariant learnt that the values between −2 and 2 were the
valid set of possible values. However the real case is that the values should be
valid between −3 and −1, as 1 and 2, as well as between 3 and 4. This leads to
some false positives and false negatives. Values observed that withing the ranges
[−3,−2[ or ]3, 4] issue a detected error warning, hence they are false positives.
Likewise, observations between −1 and 1 do not issue any warnings when they
should.
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-4 -3 -2 -1 0 1 2 3 4

Valid Values

Accepted Values by Invariant

False Positives

False Negatives

Fig. 1. False positive and false negative example

In the same scenario, if the invariant had been subject to more training, then
more values would be added into the accepted range. On Fig. 2 the number
4 was such a value (even though 4 should not appear during executions if ).
This led to the values ranging from 3 to 4 to become valid, eliminating those
false positives, but the ones from 2 to 3 also became valid, becoming new false
negatives. In other words, there was an increase of false negatives and decrease
of false positives. With more training the false positive rate tends to lead to 0
because the entire possibility of values become valid.

On the other side, the number of false negatives increases because since it
accepts a lot more values then it should, it does not detect any values outside
the huge accepted range.

Note that there are other types of invariants, each with their own behaviour
regarding accuracy of error detection and performance [4]. Among them are
bitmask invariants, which use a bitmask with the bits that were changed during
the training when compared with the first observed value. Another one is the
Bloom filter, an invariant that saves the entire history of values observed during
the training phase. In this paper, the results were obtained by only using the
dynamic range invariant. However the approach proposed is easily extensible to
other invariant types.

-4 -3 -2 -1 0 1 2 3 4

Valid Values

Accepted Values by Invariant

False Positives

False Negatives

Fig. 2. False positive and false negative example with increased training



220 J. Santos and R. Abreu

3 Variable Evolution Pattern Detectors

In this section, the two methods created to detect patterns on the variable values
are presented. These patterns were designed to be as simple as possible, while
still detecting constants and other variables, like counters. It is important to
note that a variable is never classified as not important to monitor if it was only
used on one execution of the system.

3.1 Delta Oriented Pattern Detector

The Delta Oriented Pattern Detector is the first of two algorithms created to
detect collar variables. With this detector, the main objective is to discover vari-
ables that throughout its life cycle evolve in a constant fashion. These variables
are then deemed not essencial since during every execution its value increases
or decreases in the same manner, no matter what the input is, in other words
variables with such detected pattern do not need to be monitored. This is ac-
complished by using a delta value (Δ), that is the difference between the last
value observed and the current one:

Δ := current value− last value if last value �= ∅ (4)

Δ := 0 if last value = ∅ (5)

Algorithm 1 demonstrates how this detector can determine which variables are
important to monitor. Every variable in the system has a Δ associated to it.
During the training phase, when the first value is observed, Δ is given the value
0 and the last value is updated to the observed one. On the next observation, Δ
will be updated accordingly, using the current value and the last value, as seen
in Line 8. After this, the pattern detection begins. With each observation, an
updated Δ is generated (Δ2) and is compared to the current Δ. If the new Δ is
equal to the current one, the pattern detection continues as the evolution of the
variable remains the same. In case the Δ is different, since the pattern is broken,
a flag is stored indicating that this pattern does not exist for the variable being
evaluated. There is, however, an exception to this. When the new Δ is 0, then
it is not compared to the previous Δ (Line 12). This is done because variables
can be accessed without their values being changed.

After each execution, the value of Δ is saved along with a flag indicating
whether the pattern was broken or not. Subsequent executions use the Δ from
the first execution and starts the pattern detection after the first two values,
instead of after the third like the first run.

With this detector it is possible to detect constant values (Δ = 0), as well
as counters and loop variables that always increment/decrement with the same
pace. A good example of this is the Java code presented on Fig. 3. Of all the
variables from this small code sample, j is the one that has the least impact on
the outcome. It only serves as an auxiliary variable for the loop.
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Algorithm 1. Delta Oriented Pattern Detector
1: pattern := true
2: for all Execution

∧
pattern do

3: for all Observation
∧

pattern do
4: if first observation then
5: Δ := 0
6: LastV alue := ObservedV alue
7: else if second observation

∧
nRuns = 0 then

8: Δ := ObservedV alue− LastV alue
9: else
10: Δ2 := ObservedV alue− LastV alue
11: LastV alue := ObservedV alue
12: if Δ �= Δ2

∧
Δ2 �= 0 then

13: pattern := false
14: end if
15: end if
16: end for
17: nRuns++
18: end for

The delta oriented pattern detector can be used to mark this variable as not
essencial. It does not matter what the input of this function is, because j will
always increment in the same manner. Δ will always be 1 (j always starts with
the value 0 and increments by one on every access), so the pattern is never
broken. Since this pattern is never broken, the variable will not be monitored
during the error detection phase.

3.2 Range Oriented Pattern Detector

One of the main differences between this pattern and the previous one is that
the range oriented pattern detector requires one full execution before it can
determine a broken pattern. The basis of this detector is that if the range of
values that a variable has between every run is the same, then it is not important
to monitor. This is the reason why one full execution is required. The detector
only has the range of the full execution at the end of it.

The functions of updating the bounds of the range are the same as the dynamic
range invariant:

l := min(l, v) (6)

u := max(u, v) (7)

The main difference between the dynamic range invariant and the range oriented
pattern detector is that the bounds of the detector are only updated on the first
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public int funcExample ( int i ) {
int accumulator = i ;
for ( int j = 0 ; j < 3 ; j++) {

i f ( accumulator == 1)
break ;

accumulator ∗= accumulator ;
}
int r e s u l t = accumulator ∗ 3 ;
return r e s u l t ;

}

Fig. 3. Delta Detector code example

execution that a variable appears in. On the following executions, every time
a new value is observed, it is determined if it is within the range of the first
execution:

broken = ¬(l < v < u) (8)

Algorithm 2 shows how the detector works. During the first execution (Lines 4
and 5) the range is constantly updated with every observation of a given vari-
able. Once the first execution is over, the pattern detector is ready to discover
a pattern. Hence, on the following executions, each observed value is com-
pared to the pattern detector range, as seen in Line 7. If the new value is
not within the range determined by the first execution, then the pattern was
broken. If this never happens then it is determined that there is a pattern in
the execution and the variable will not be monitored during the error detection
phase.

With this detector it is possible to detect variables that although do not evolve
in a linear way that can be detected by the delta oriented pattern detector, are
restricted in some way during the execution. This is the case of loop variables
that are affected within the cycle. This can be seen in the example shown on
the example shown on Fig. 4. In this case, variable j is not a very important
variable to be monitored. Taking into account the previous, detector, it is easy
to understand that it would not be marked as not essencial (as Δ can be both 1
or 2). However the range oriented detector can find a pattern. On every execu-
tion, despite what input is received, the range of values j takes is always [0, 5].
During the first execution, this range would be given to the pattern detector
and the following runs would follow the pattern, so the variable would not be
monitored.
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Algorithm 2. Range Oriented Pattern Detector
1: pattern := true
2: for all Execution do
3: for all Observation do
4: if nRuns = 0 then
5: updatePatternRange(ObservedValue)
6: else
7: if ObservedV alue /∈ PatternRange then
8: pattern := false
9: end if
10: end if
11: end for
12: nRuns++
13: end for

public int funcExample ( int i ) {
int accumulator = i ;
for ( int j = 0 ; j < 5 ; j++) {

i f ( accumulator == 1 && j < 3)
j=j +2;
accumulator ∗= accumulator ;

}
int r e s u l t = accumulator ∗ 3 ;
return r e s u l t ;

}

Fig. 4. Range Detector code example

4 Empirical Results

In this section the experimental setup is presented, along with the workflow of
the experiments themselves. After that the experimental results are discussed.

4.1 Experimental Setup

Application Set. During the experimentation, three real world applications
were used:

– NanoXML 1 - a XML parser.
– org.jacoco.report 2 - a report generator for the JaCoCo library.
– XML-Security - a XML signature and encryption library from the Apache

Santuario 3 project.

In Table 3 some details of the applications used are shown. These details include
the number of lines of code and the number of test cases.
1 NanoXML – http://devkix.com/nanoxml.php
2 JaCoCo – http://www.eclemma.org/jacoco/index.html
3 Apache Santuario – http://santuario.apache.org/

http://devkix.com/nanoxml.php
http://www.eclemma.org/jacoco/index.html
http://santuario.apache.org/
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Table 3. Application details

Subject LOC Test Cases

NanoXML 5393 9

org.jacoco.report 5979 235

XML-Security 60946 462

NanoXML is a free, easy to use and non-GUI based and non-validating XML
parser for Java. It has three different components:

– NanoXML/Java, the main standard parser.
– NanoXML/SAX, an SAX adapter for the standard parser.
– NanoXML/Lite, an extremely small version of the parser with limited fun-

cionality.

NanoXML is available under the zlib/libpng license, which is Open Source
compliant.

JaCoCo is an open source code coverage library for Java, being developed by
EclEmma. The current goal of JaCoCo is to provide a code coverage library
that is able to provide coverage reports. To do this there is a bundle called
org.jacoco.report. This bundle is able to provide reports in three formats:

– HTML, for end users.
– XML, to be processed by external tools.
– CSV, suitable for graph creation.

XML-Security is one of the libraries available on the Apache Santuario project, a
project that aims at providing security standards for XML. It is distributed un-
der the Apache Licence Version 2.0 which is compatible with other open source
licenses. The XMLSecurity data format provides encryption and decryption XML
payloads at different levels, namely Document, Element and Element Content.
XPath can be used for multi-node encryption/decryption. There exist two ver-
sions of XML-Security: a Java one and a C++ one. The Java version is used for
the experiments.

Workflow of Experiments. In order to determine if the pattern detectors
were effective at reducing the number of instrumented points and if the error
detection maintained a good quality, the system’s variables is subject to training
first. Each application is instrumented in order to train the fault screeners. This
training is achieved by executing a random number of test case (roughly 50%
of the tests in the original suite) of the target program. We did not use the
complete suite in order not to influence the results positively.

Once the training of the fault screeners is complete, the error detection phase
begins. To evaluate the quality of the error detection, each application is exe-
cuted five times. On each execution a different bug is inserted into the code and
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the number of false positives and false negatives are collected. An additional ex-
ecution is performed without any inserted bug to determine the execution time
in a regular scenario.

Each application’s test suite was executed without any instrumentation as
well to determine the increase of time the instrumentation brings.

Figure 5 shows the different phases of the experiments. First, during the train-
ing phase, the test are executed with the instrumented code. Everytime a vari-
able is used, the update function of the screener is called in order to update the
accepted values. In addition, the screener uses the pattern detectors to detect
broken patterns. At the end of the execution, both the invariant and the data
collected from the detector are saved. On the operational phase the test cases
are executed with the instrumented code once again. However, this time instead
of monitoring every variable, only the variables that did not have a detected
pattern are observed. On each observation the value is then validated by the
screener using information gathered during the training.

Fig. 5. Workflow of experiments

Injected bugs are of different types to guarantee a more varied input. Some
examples of inserted bugs are:

– Change an operator when assigning values (i.e. change + to −).
– Change a random numeric value.
– Change comparation operator of a conditional clause (i.e. change a > to <

on an if clause).
– Change the value of an argument of a function call.

With this setup the expected results are:

– Value of the reduction obtained in the number of used invariants.
– Comparison of execution times between executions with and without instru-

mentation.
– Accuracy of the error detection with the use of pattern detectors.
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4.2 Results

Table 4 shows the number of variables that were trained and the number of
variables that are considered collar variables by the pattern detectors. It is im-
portant to note that only numerical variables are subjected to training, in other
words, only variables of the types int, long, double and float.

Table 4. Variable reduction

Subject Variables trained Collar Variables Reduction

NanoXML 40 17 57.5%

org.jacoco.report 55 28 49.09%

XML-Security 325 164 49.54%

On average, a reduction of 52.04% is achieved with the use of the two pattern
detectors. However the execution time of the program with instrumentation is
also important to take into consideration. Table 5 presents the execution times
of the test suites both with and without instrumentation. This instrumentation
uses only collar variables.

Table 5. Execution time increase

Subject
Execution time with Execution time without

Increase
instrumentation (ms) instrumentation (ms)

NanoXML 270 827 206.3%

org.jacoco.report 3469 5162 48.8%

XML-Security 25005 63088 152.3%

The average increase in the execution time is 135.8%. Although this seems
like a high value, it is greatly impacted by the increase noticed on NanoXML that
is only a few miliseconds.

Having the data on the reduction of variables monitored and execution time
increase, the quality of the error detection is what remains. To test the quality
of the detection using these collar variabes, the number of false positives (Nfp)
and false negatives (Nfn) was determined. A false positive is considered when
the fault screener detects an error in the execution that does not exist. Likewise,
a false negative is counted when a faulty execution has no objections raised from
any fault screener.

The results shown on Table 6 were obtained by comparing the total number
of false positives (Nfp) and false negatives (Nfn) with the number of tests on
the test suite of the target program (Nt):

fp :=
Nfp

Nt
(9)

fn :=
Nfn

Nt
(10)
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Table 6. False positive (fp) and false negative rate (fn)

Subject
Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

fp % fn % fp % fn % fp % fn % fp % fn % fp % fn %

NanoXML 0 0 0 0 0 0 0 66.67 0 0

org.jacoco.report 0 0 3.4 2.13 3.4 0 3.83 2.13 5.96 0

XML-Security 2.81 0.21 13.64 7.14 1.95 0.22 12.99 0.22 0.22 0.22

With an average of 3.21% rate of false positives and 5.26% rate of false
negatives, the rate of these false results is considerably low, especially on the
smaller applications. On the largest application, XML-Security, although hav-
ing a higher rate of false results, the worst case scenario detected was a 13.64%
fp and 7.14% fn.

In conclusion, with only the use of two pattern detectors, the decrease of used
invariants is quite significant and the error detection quality remains very high,
appart from some special cases. In terms of execution time, it may still not be
enough to allow their use on real world markets, but perhaps the creation of
even more detectors could be a solution.

4.3 Threats to Validity

The main threat to the validity of these results is the fact that only three test
subjects were used during the experimentation. Despite these subjects being
real world applications being diverse in both the size of the application (lines of
code) and size of the test suite, the limited number of subjects implies that not
all types of system’s are tested. This means that a system with characteristics
that are completly different might present different results.

Another threat is that the number of injected bugs is not enough to lead to
accurate results, as these bugs might simply be “lucky bugs” that intercept a
collar variable.

Naturally, there are also threats that are based on the implementation of the
invariants, the instrumentation or the pattern detector algorithms themselves.
The reduce these threats, additional testing was made prior to the experimen-
tation to guarantee the quality of the experimental results in this regard.

5 Related Work

Since being introduced, generic invariants have been subject of study along the
years with very different goals in mind. These goals range from study of program
evolution [7,10], fault detection [2] and fault localization [3,11]. Invariants have
also been used as an alternative way of error detection on a fault localization
technique known as SFL [4,9].

Daikon [10] is a tool that reports likely invariants. It runs a program and
then reports the properties observed during the executions. Besides storing
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pre-defined invariants like constants, range or linear relationships, it can be
extended by the user with new invariant types. It is compatible with various
programming languages, including C, C++, Java and Pearl.

Carrot [11] is a tool createdwith the purpose of using generic invariants for fault
localization. It uses a smaller set of invariants than Daikon. The results obtained
were negative which lead to the belief that invariants alone are insuficient as a
means of debugging. However, in [9] the use of invariants for fault localization was
successful when used as the input for the fault localization technique SFL.

DIDUCE [3] is yet another tool that uses dynamic bitmask invariants. Al-
though the results appear to be good on four real world applications, the error
that is detected is on a variable that is constant during the training phase and
changed when it was on error detection mode (an error that is easily detected by
a bitmask invariant, an invariant that detects differences on the allowed active
bits of a variable value).

IODINE [12] is a framework for extracting dynamic invariants for hardware
designs. It has been shown that accurate properties can be obtained from using
dynamic invariants.

Zoltar [13] is a tool that applies a fault screener on every occurrence of a
variable and tries to detect errors by finding perturbations on their behavior. In
addition to detecting errors, Zoltar uses the errors detected to help debugging
using SFL.

Another tool that works with fault screeners is PRECIS [14]. PRECIS intro-
duces a different type of invariant based on pre- and post-conditions. The results
obtained suggest the existance of some advantages over Daikon.

iSWAT [15] is a framework that uses invariants for error detection of a hardware
level. It uses LLVM to instrument the source code to monitor the store values.

In [2] various invariants were subjected to performance evaluations. Among
the tested invariants were dynamic range, bitmask, Bloom filters and TBL. Al-
though the results show that bitmask outperforms Bloom filters and dynamic
range, the errors used on the experimentation consisted of random bit switching,
which is better suited for bitmask invariants and are not very common.

On the topic of collar variables, this term was used by Tim Menzies to describe
the subset of variables that affect the output of an application in a meaninful
way [5].

In [6] the algorithms of TAR3 and TAR4.1 are explained. These algorithms
allow to obtain a ranking of “usefulness” of the different components of an ap-
plication. TAR3 uses the concepts of lift, the change that a decision makes on a
set of examples, and support. TAR4.1 uses Naive Bayes classifiers for the scor-
ing heuristic in order to obtain an overall better performance in comparison to
TAR3.1.

KEYS [16] is yet another algorithm that tries to discover the collar variables,
called keys by the author. It is used to optimize requirement decisions and is
faster then the TAR3 algorithm. In [17], an improved KEYS algorithm is shown
called KEYS2. It outperforms the original version by four orders of magnitude in
terms of speed.
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In [18], the concept of collar variable is once again used, this time by the
name of back doors. They were using these back doors to solve CSP/SAT search
problems and suggest by formal analisys the potencial improvement of some
hard problems from an exponential to polynomial time.

6 Conclusions and Future Work

In this paper two simple detectors were used to evaluate what were the collar
variables in each of the systems. Experimenting on real world applications led to
a more accurate take on the impact of the use of invariants for error detection.
By only using two detectors, the reduction of number of invariants used was
above 50% while still maintaining good quality detection. Still the increase in
execution time might still be too severe for use and the inability of the detectors
to view patterns on non numeric values is still an obstacle.

In this regard, for future work in order to reduce the overhead, a further
decrease in the number of invariants used is necessary. The study of additional
detectors that would filter even more variables would be a possibility to achieve
such a decrease. Another option is the use of an algorithm similar to the one
used on TAR4.1 [6] to make the decision of what variables to monitor. There
are also plans to combine this method with static analysis in orther to try to
achieve better results.

Futher work will also be invested in tackling one of the main issues of the
current approach, the ability to only evaluate numeric variables. Efforts will be
made to use invariants and create detectors that would evaluate patterns for
other variable types like String or char. These variables may prove invaluable
to increasing the effectiveness of this method.
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Abstract. In this paper, we focus on Mobile Ad-hoc Networks
(MANETs) with non-uniform node density distribution such as Vehicu-
lar Ad-hoc Networks (VANETs) and Delay Tolerant Networks (DTNs),
and propose a technique for protocol testing and performance evaluation.
In such MANETs, node density varies depending on locations and time,
and it dynamically changes every moment. In the proposed method, we
designate node density distributions and their dynamic variations in a
target area. Then, we construct a graph called TestEnvGraph where all
node density distributions are treated as its nodes and they are con-
nected by edges whose weights denote differences of two node density
distributions. We specify a set of edges to be tested in the graph, for-
mulate a problem for efficiently reproducing all the given node density
distributions and their dynamic variations as a rural postman problem,
find its solution and use it as the order of reproduction of designated
node density distributions and their variations. Protocol testing is car-
ried out by reproducing node density distributions in the derived order.
We have designed and developed a method and its tool for mobility gen-
eration on MANETs, which can reproduce any designated node density
distribution and its dynamic variations in a target area. From our exper-
iments for a VANET protocol, we have shown that our method can give
a similar trend in network throughput and packet loss rates compared
with realistic trace based protocol testing.

Keywords: Protocol testing, Performance evaluation, MANET, Mobil-
ity, VANET, DTN, Rural postman problem.

1 Introduction

With the advance of mobile wireless communication technology, recently sev-
eral types of mobile wireless communication systems have been designed and
developed. Smart phones and car navigation systems can be used for commu-
nicating neighboring people and vehicles, respectively. Mobile Ad-hoc Network
(MANET) applications such as Vehicular Networks (VANETs) and Delay Tol-
erant Networks (DTNs) are becoming popular. VANET is the most promising
MANET applications. Also, several DTN systems using smart phones and car
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navigation systems have been proposed as emergency communication means in
disaster situations. Those systems can be used as social systems and they require
high reliability and sustainability. In general, sensor networks are stable and they
are often used in areas with uniform node density distributions. However, unlike
stable sensor networks, VANET and DTN applications are used under non-
uniform node density distributions. Node density varies depending on locations
and time, and it dynamically changes every moment. It is well-known that node
mobility and density affect reliability and performance of MANET applications
[2,18]. In order to improve reliability and performance of MANET applications,
it is important to reproduce several types of node density distributions effi-
ciently and carry out their testing in simulation using network simulators and/or
emulation using real mobile devices (e.g. mobile robots).

In this paper, we propose a protocol testing method for such MANET proto-
cols and applications. In the proposed method, first we designate a set of node
density distributions and their dynamic variations for a target area for which
we want to carry out protocol testing and performance evaluation. For example,
in VANET applications, node densities near intersections might become high
when their signals are red while they might become low when the signals be-
come green. Here, we assume that protocol designers can designate such node
density distributions and their variations for a target area through simulation
and real trace data. Then, we construct a graph called TestEnvGraph where all
node density distributions are treated as its nodes and they are connected by
edges whose weights denote differences of two node density distributions. The
graph TestEnvGraph represents a testing environment and its dynamic change
of node density distributions to be tested. As shown in [2], it is known that it
takes time to reproduce MANET with designated mobility and make it stable.
Thus, it is desirable that we can reproduce all the designated node density dis-
tributions and their variations with a small cost. In this paper we formulate a
problem for efficiently reproducing all the designated density distributions and
their variations as a rural postman problem [12] of the graph TestEnvGraph,
find its solution using a heuristic algorithm and use it as an efficient order to
reproduce all the designated node density distributions and their variations.

On the other hand, in [20], we have proposed a method for generating a way-
point mobility model with designated node density distributions for a target
area. In this paper, we slightly extend its method and use it to reproduce desig-
nated node density distributions and their dynamic variations mechanically. Fig.
1 denotes an example of a designated node density distribution and its mobility
patterns. The dark gray cells in Fig. 1 (a) denote high node density while the
light gray cells denote low node density. Fig. 1 (b) denotes example mobility
patterns. Using a rural postman tour for the graph TestEnvGraph, we reproduce
a testing environment which can treat any designated node density distributions
and their dynamic variations with a small cost.

In order to show effectiveness of the proposed method, we have compared net-
work throughput and packet loss rates of VANET applications in our approach
with those obtained in real trace based (microscopic mobility based) approaches.
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(a) node density distribution (b) example mobility patterns

Fig. 1. Example of node density distribution and its mobility patterns

In ITS research communities, it is known that vehicular densities strongly affect
the performance of vehicle-to-vehicle (V2V) communication. Therefore, trace
based data and microscopic vehicular mobility models are often used. They are
useful to reproduce typical traffic patterns. Here, we have generated vehicular
mobility patterns using both the proposed method and a microscopic traffic sim-
ulator VISSIM [21], and compared their performance. We have generated typi-
cal 10 patterns of node density distributions and their dynamic variations near
an intersection. Then, we have evaluated the performance of a protocol. The re-
sults are shown in Section 6. Our experiments have shown that the performance
based on node density distributions and their dynamic variations derived using
our proposed method and tool is rather close to that based on real trace based and
microscopic vehicular mobility based traffic patterns.

Real traces and those obtained from microscopic traffic simulators can repro-
duce typical traffic patterns easily. However, it is difficult to reproduce peculiar
traffic patterns using such methods. In general, it takes much time and costs to
reproduce rare cases. On the other hand, the proposed method can designate
any node density distribution and its variations. It can help to improve the per-
formance and reliability of MANET protocols and applications. As far as the
authors know, it is the first approach that we can designate any node density
distributions and their variations and use them for protocol testing. By finding
a rural postman tour for the graph TestEnvGraph, we minimize the cost for
reproducing the designated node density distributions and their variations.

2 Related Work

It has been recognized that node mobility and density affect the performance of
mobile wireless networks [15,23], and many mobility models have been proposed
so far [3,18]. Random-based mobility models such as the Random Waypoint
(RWP) model and the Random Direction (RD) model are often used, and some
analytical researches have revealed their properties [5,14]. The results have shown
that the node density distribution is not uniform; e.g. there is a high-density peak
at the central point of the target area. There are several works for protocol testing
of MANET. For example, Ref. [22] proposed a game theory based approach for
formalizing testing of MANET routing protocols. Ref. [8] proposed a method
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for conformance testing and applied it to Dynamic Source Routing (DSR). For
details, see a survey of Ref. [4].

On the other hand, if we want to design MANET applications for pedes-
trians with smart phones and/or running vehicles in urban districts, we need
more realistic mobility. For example, in VANET application areas, Refs. [7] and
[16] proposed adaptive protocols for efficient data dissemination from vehicles
by considering neighboring vehicular density so that we can avoid the so-called
broadcast storm problem. In [1], the authors proposed a method for estimation
of vehicular density. Ref. [17] argued the need for combining a specific road traffic
generator and a wireless network simulator. They need to be coupled bidirec-
tionally when a target VANET protocol may influence the behavior of vehicles
on streets. Recently, several microscopic vehicular mobilities are proposed as the
means for reproducing realistic vehicular mobility [6,13,19,21]. A traffic simula-
tor VISSIM [21] adopts a microscopic vehicular mobility. Ref. [19] also proposed
a microscopic vehicular mobility which can reproduce a vehicular mobility close
to real traffic traces obtained from aerial photographs of Google Earth.

MANET applications for pedestrians with smart phones have similar analysis.
In [9], we have shown that there are large variations for performance and packet
loss rates of multi-hop communications depending on node density distributions.
In DTNs, it is known that node mobility and density strongly affect the reliability
and performance of DTN applications (e.g. see [23]). Especially, if there are no
rely nodes, in many DTN protocols, intermediate nodes store their received data
and forward them to their preceding nodes when they are found. In order to show
that proposed store-and-forward mechanisms can work well, we need to check
sustainability for several types of node density distributions.

All the above research works show that reproduction of node mobility and den-
sity distributions is very important. However, there are very few works about
testing of MANET protocols, which consider non-uniform node density distri-
butions and their dynamic variations. This paper is motivated to give a solution
for protocol testing on such a MANET.

3 MANETs with Non-uniform Node Density Distribution

In general, dissemination intervals of many VANET protocols are autonomously
adjusted depending on observed node density so that we can reduce the proba-
bility of packet collisions. Many of DTN protocols have store-and-forward mech-
anisms so that packets can reach to their destinations even if node density for a
part on their routes is very low for some period. Performance of such MANET
applications cannot be evaluated by general random based mobility.

In Fig.2, we show node density distributions and average speeds of moving
vehicles near an intersection where we divide a target road segment between
intersections into three cells of 200 meters and show their node densities with
three categories: “0(low)” (white cells), “1(middle)” (gray cells) and “2(high)”
(black cells). In this figure, on the horizontal road, the densities of two cells
close to the intersection are “high” and the other cells are very low, while the
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Fig. 2. Node density and average speed at an intersection in typical conditions

293 446 517 246 80

36917145152

Fig. 3. Typical dynamic change of vehicular density distributions near an intersection

densities of the vertical road are “middle” or “low”. It is a typical situation where
vehicles on the horizontal road are stopping at the signal before the intersection
and those on the vertical road run freely.

We have generated one hour’s traffic trace data of 1 km2 square area with 5×5
checked roads using the microscopic traffic simulator VISSIM [21], and analyzed
their node density distributions (note that we have removed first 20 minutes’
trace data in simulation since the simulated traffic has not been stable at first).
In the analysis, we have made a density map like Fig. 2 at each intersection for
every unit time period where the unit time period is 60 sec. Here, totally 1025
patterns of node density distributions are derived. In Fig. 3, we have shown
typical 10 traffic patterns and their dynamic change representing a loop where
an ID number is given for each pattern. We have classified the obtained patterns
by density distribution patterns for horizontal roads, and found that the most
emergent top 14 patterns can cover about 25 % of traffic situations.

Fig. 4 denotes the transitions among the top 14 typical patterns. When we
execute typical VANET based dissemination protocols and multi-hop commu-
nications among running vehicles, the typical variations of their node density
distributions correspond to transitions (sequences of edges) whose lengths are
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Fig. 4. Transitions among top 14 typical states

three or four in Fig. 4. Thus, by reproducing all such transitions in Fig. 4 and
carrying out protocol testing for their transitions, we can check their reliability.

For example, in [16] we have proposed a dissemination protocol for propa-
gating preceding traffic information. This protocol can gather real-time traffic
information of 2-3 km ahead within 3 minutes with 60-80 % probability. Most of
such preceding traffic information is sent from neighboring vehicles within a few
hundred meters. Suppose that Fig. 4 shows variations of node density distribu-
tions for such a road section and that each edge corresponds to an one minute’s
variation of node density distributions. Then, each sequence of three edges from
a state corresponds to dynamic change of node density distributions in the tar-
get road section for 3 minutes. Thus, by collecting all sequences of three edges
from all states and by testing their performance, packet loss rates and buffer
length, we can evaluate performance characteristic and reliability of the proto-
col. When we count the number of all sequences of three transitions from states
corresponding to typical node density distributions, it becomes rather large. In
Section 5, we will propose an efficient testing method.

We will give another example. In [10], we have proposed a protocol for realistic
mobility aware information gathering in disaster areas where we combine the
notion of store-and-forward mechanisms in DTNs and geographical routing on
MANETs. In the proposed protocol, if intermediate nodes cannot relay safety
information to its home cells by multi-hop communication, they hold it until they
meet preceding nodes and re-transmit it as proxies. If shortest paths to home
cells are not available, detours are autonomously found. However, in [10], we
have only evaluated performance of DTN protocols for fixed disaster situations
such as Fig. 5 (b) and (c) where the white cells and gray cells represent movable
areas and obstacle areas, respectively. On the other hand, in an early stage in
disaster, obstacle cells might be small like Fig. 5 (a), and they might become
large like Fig. 5 (b) after time passes. It is desirable that we can reproduce such
dynamic extension of obstacle cells (e.g. change from Fig. 5 (a) to Fig. 5 (b)),
and carry out testing for a target DTN protocol.
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(a) early stage in disaster (b) dense obstacles (c) sparse obstacles

Fig. 5. Expansion of obstacle cells in disaster

As we have discussed above, it is desirable that

(a) MANETs with designated node density distributions can be mechanically
generated,

(b) dynamic variations (change) of node density distributions for a givenMANET
can be mechanically generated, and that

(c) if multiple dynamic variations (change) of node density distributions need
to be tested, the total time necessary for testing should be minimized.

In the following sections, we will propose a testing method for considering those
conditions.

4 Mobility Generation with Designated Node Density
Distribution

In [20], we have proposed a method for generating a waypoint mobility model
with designated node density distributions for a target area where each node
repeats the process of (i) choosing a destination point in the target area, (ii)
moving straightly toward the destination point with a constant velocity, and
(iii) staying at the point for a certain time period. The goal of this work is to
synthesize mobility patterns that can capture real (or intentional) node density
distributions. Fig. 6 denotes typical node density distributions where dark and
thin gray colors denote high and low node densities, respectively. A target area
is divided into several subregions called cells and we can designate a favorite
node density to each cell. In order to automatically generate natural mobility
patterns realizing designated node density distributions, the method determines
probabilities of choosing waypoints from those cells, satisfying given node density
distributions. Fig. 7 denotes example mobility traces for the four types of node
density distributions. The problem is formulated as an optimization problem of
minimizing errors from designated node density distributions, and probabilities
of choosing waypoints at each cell are determined. Since the problem has non-
linear constraints, a heuristic algorithm generates near-optimal solutions.

Here, we extend the method in [20] so that we can treat variations of node
density distributions. First, we give an outline of the method about how to
determine the probabilities of choosing waypoints from each cell, satisfying given
node density distributions. Assume that the target area is divided into m × n
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(a) Gradation (b) Checkerboard (c) Manhattan1 (d) Manhattan2

Fig. 6. Snapshots for four types of node density distributions

(a) Gradation (b) Checkerboard (c) Manhattan1 (d) Manhattan2

Fig. 7. Example traces for four types of node density distributions

square cells and these cells are numbered sequentially from top left (0) to bottom
right (m·n−1) like Fig. 8 (a). Suppose that each node in cell i selects a destination
cell (say j) with probability pi,j called destination probability. These probabilities
need to satisfy the following equation.

m·n−1∑
j=0

pi,j = 1 (0 ≤ i ≤ m · n− 1) (1)
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Fig. 8. Calculation of node transition probabilities

In a steady state, the number of nodes moving from an origin cell to a destination
cell per unit time is constant. We call it as a flow rate and denote it as fj . The
flow rate fj must satisfy the following equation.

fj =

m·n−1∑
i=0

fi · pi,j (0 ≤ j ≤ m · n− 1) (2)
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Next, we define cell transit time representing time necessary for traveling from
cell i to cell j and cell transit number representing the number of nodes moving
through a cell (say, cell k). As shown in Fig. 8 (b), we denote an origin point in cell
i and a destination point in cell j as (xi, yi) and (xj , yj), respectively. The average
transit distance (denoted by Li,j) between these two points is represented as√
(xj − xi)2 + (yj − yi)2. Similarly, the transit distance on cell k (denoted Lpass

i,j,k )
for nodes traveling from cell i to cell j is shown in Fig. 8 (b). Here, (xk1, yk1)
and (xk2, yk2) denote the intersection points of the line segment between (xi, yi)
and (xj , yj) on the two sides of cell k. Assume that all the nodes move at the
same speed (denoted as V ) and that they stop for the same pause time T pause

after arriving at their destination cells. Hereafter, T pass
i,j,k denotes the average cell

transit time on cell k for nodes moving from cell i to cell j. T pass
i,j,k is represented

by the following equation. Note that the value of T pass
i,j,k is zero if cell k has no

intersection with the line segment (i.e. Lpass
i,j.k = 0).

T pass
i,j,k =

{
Lpass

i,j,k

V (j �= k)
Lpass

i,j,k

V + T pause (j = k)
(3)

Hereafter, we show how to calculate the cell transit number by destination prob-
abilities. The number of nodes moving from cell i to cell j per unit time can
be represented as fi · pi,j . The transit time for these nodes can be represented
as T pass

i,j,k . Thus the number of nodes passing cell k in the nodes moving from

cell i to cell j is calculated as fi · pi,j · T pass
i,j,k (see Fig. 8 (c)). Since nodes might

pass through cell k for different combinations of origin-destination cells, the total
number of nodes at cell k (cell transit number dk) can be represented as follows.

dk =

m·n−1∑
i=0

m·n−1∑
j=0

fi · pi,j · T pass
i,j,k (4)

Here, in order to treat the cell transit number for cell k as the node density
for cell k, we assume that the number of all nodes is 1 as shown in Eq.(5). By
applying fi to Eq.(4), we can get the node density distribution obtained by pi,j .

m·n−1∑
k=0

dk = 1 (5)

Since the problem described above has non-linear constraints, we give a heuristic
algorithm to derive a solution. A trivial solution satisfying the above constraints
is that all nodes move only in the first assigned cells. In [20], we give a proof to
show that for any node density distribution, we can generate the corresponding
non-trivial waypoint mobility satisfying designated node density distributions
like Fig. 7. For details about how to solve the problem with the above non-linear
constraints, see [20].

In order to treat dynamic change of node density distributions, we give the
following constraint when a new (next) node density distribution is generated
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from the current one. Let ˆpi,j and pi,j denote the destination probabilities from
cell i to cell j at the current and next time slots, respectively. And, let Diff
denote the sum of the differences of destination probabilities at the current and
next time slots for all cells. If we can minimize the value of Diff , the next node
mobility can be generated relatively easily from the current node mobility. Then,
when we find a solution satisfying the above constraints, we give the following
objective function Diff and find a solution minimizing the value of Diff . From
our experiences, if the value of the objective function Diff is small, time neces-
sary to generate a steady next node density distribution becomes small. Thus,
in this paper, from the obtained value of Diff , we will generate the next node
density distribution by generating slightly different intermediate node density
distributions sequentially from the current node density distribution. By using
this method, we generate any dynamic variation of node density distributions.

Diff =

m·n−1∑
i=0

m·n−1∑
j=0

{pi,j − ˆpi,j} (6)

In Table 1, designated node density distributions and measured density dis-
tributions for the two mobilities are shown in the left side table and right side
table, respectively. Although the derived mobility cannot reflect designated node
density distributions perfectly, their errors are mostly within 0.1 % (there exist
relatively larger errors for reproduction of empty node density distributions).

Table 1. Designated (left) and measured (right) density distributions (%)

3.00 4.00 3.00 4.00 3.00 3.01 3.92 2.94 4.00 3.00
4.00 6.00 4.00 6.00 4.00 4.14 6.04 4.07 6.07 4.03
3.00 4.00 3.00 4.00 3.00 2.98 3.99 3.94 4.01 2.92
4.00 6.00 4.00 6.00 4.00 3.94 5.99 4.02 6.01 3.91
3.00 4.00 3.00 4.00 3.00 3.01 3.99 3.01 4.00 3.00

(a) Checkerboard

4.00 4.50 5.00 4.50 4.00 3.95 4.41 4.96 4.41 3.95
4.50 0.00 5.50 0.00 4.50 4.39 0.41 5.34 0.41 4.39
5.00 5.50 6.00 5.50 5.00 5.00 5.43 5.92 5.43 5.00
4.50 0.00 5.50 0.00 4.50 4.39 0.41 5.34 0.41 4.39
4.00 4.50 5.00 4.50 4.00 3.95 4.41 4.96 4.41 3.95

(b) Manhattan1

5 Efficient Protocol Testing

In general, protocol testing is classified into two categories: simulation based test-
ing and real machine based testing. Real machine based testing is not realistic for
VANET applications. In such a case, using wireless network simulators and repro-
ducing several node density distributions is one possibility. As far as the authors
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know, most of wireless network simulators can only reproduce random based and
trace based mobility. On the other hand, our method can reproduce node density
distributions corresponding to several types of vehicular mobility patterns and
carry out the simulation based testing. The proposed method can be also used
for real machine based testing. For example, if multiple mobile robots can follow
the mobility patterns generated by the method described in the previous section,
movement of such robots satisfies the designated node density distribution.

Here, we construct a graph TestEnvGraph for representing the testing envi-
ronment in a target area. Let Tpatterns denote such typical dynamic transition
patterns of node density distributions. For example, suppose that the node den-
sity distributions of three cells vary from “201” to “211” and “222” in turn where
“0”, “1” and “2” denote low, middle and high node densities, respectively. We
want to carry out testing for variations of those node density distributions in this
order. In such a case, we give a transition pattern ID “ph” to this transition pat-
tern “201 → 211 → 222” and make their pair < ph, “201 → 211 → 222” >. We
call this pair as the transition pattern with ID “ph”. Here, we assume that the set
Tpatterns of transition patterns includes all the set of node density distributions
and their variations for which we want to carry out testing.

Then, we construct the following graph G = (V,E) where V denotes the set of
all transition patterns with IDs where the node < ph, ni > (1 ≤ i ≤ k) belongs to
V if and only if a transition pattern < ph, “n1 → n2 →, ...,→ nk” > is included
in Tpatterns, and the edge < ph, ni >→< ph, ni+1 > (1 ≤ i ≤ k − 1) belongs to
E if and only if < ph, “n1 → n2 →, ...,→ nk” > is included in Tpatterns. Here,
we define the difference of node density distributions. For the transition pattern
“201 → 211 → 222”, we define that the difference of node density distributions
between “201” to “211” is “1” since only low node density “0” of the second
cell is changed to middle “1”. On the other hand, the difference of node density
distributions between “211” to “222” is “2” since the node densities of the second
and third cells are changed from “1” to “2”, and the sum of their differences is
“2”. We treat such a difference as the weight of the corresponding edge in E.
Since only target transition patterns are represented as the graph G = (V,E),
G = (V,E) is not always totally connected in general. Thus, we construct the
graphs G′ = (V + V ′, E +E′) and G” = (V + V ′ + V ”, E +E′ +E”) as follows.

For the graph G′ = (V + V ′, E + E′) , let V ′ denote the set of nodes where
< ∗, n1 > and < ∗, nk > belong to V ′ if < ph, “n1 → n2 →, ...,→ nk” is
included in Tpatterns, and < ∗, n1 >→< ph, n1 > and < ph, nk >→< ∗, nk >
belong to E′ if < ph, “n1 → n2 →, ...,→ nk” > is included in Tpatterns. Here, we
treat the weights for edges in E′ as zero. Then, we construct the graph G” =
(V +V ′+V ”, E+E′+E”) as follows, and treat it as the graph TestEnvGraph for
representing the testing environment. For each pair of < ∗, ni > and < ∗, nj >
whose difference of node density distributions is d, if there does not exist a
path from < ∗, ni > to < ∗, nj > whose total sum of edges’ weights is d in
G′ = (V + V ′, E + E′), we add < ∗, ni1 >,...,< ∗, nid−1

> to the set of nodes
V ”, and add (i) edge < ∗, ni >→< ∗, ni1 >, (ii) < ∗, nip >→< ∗, nip+1 >
(1 ≤ p ≤ d− 2), and (iii) < ∗, nid−1

>→< ∗, nj > to the set of edges E” where
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Fig. 9. Example TestEnvGraph

(i) the difference of node density distributions < ∗, ni > and < ∗, ni1 >, (ii) that
of < ∗, ip > and < ∗, nip+1 > (1 ≤ p ≤ d− 2) , and (iii) that of < ∗, nid−1

> and
< ∗, nj > are one. We treat the graph G” = (V + V ′ + V ”, E +E′ +E”) as the
graph TestEnvGraph. Note that there might be several choices for < ∗, nip >→<
∗, nip+1 > (1 ≤ p ≤ d− 2). Here, any choice is acceptable as TestEnvGraph.

Fig. 9 denotes an example TestEnvGraph. Here, we assume Tpatterns = {<
p1, “222 → 221” >,< p2, “111 → 121” >,< p3, “221 → 111” >}. In this exam-
ple, there are three cells. The node density distribution “221” denotes that node
density of the first two cells is “2” (high) and that of the third cell is “1” (middle).
In Tpatterns, three variations of node density distributions are required as those to
be tested. The variation < “222 → 221” > requires that the node density distri-
bution is changed from “222” to “221”. In Fig.9, at first we construct the graph
G = (V,E). The nodes and edges with thick lines denote V and E, respectively.
The value of each edge denotes its weight (the difference of node density distribu-
tions). The nodes and edges with fine lines denote those belonging to V ′+V ” and
E′ + E” of TestEnvGraph = (V + V ′ + V ”, E + E′ + E”), respectively.

[Property of TestEnvGraph]
The graph TestEnvGraph holds the following properties.

(a) For each pair of < ∗, ni > and < ∗, nj > in TestEnvGraph = (V + V ′ +
V ”, E + E′ + E”) whose difference of node density distributions is d, there
exists a path from < ∗, ni > to < ∗, nj > (also a path from < ∗, nj > to
< ∗, ni >) whose total sum of edges’ weights is d in TestEnvGraph.

(b) If we carry out testing for all edges in E, then we can conclude that all the
transition patterns representing the designated node density distributions
and their variations in Tpatterns are tested.

[Rural Postman Problem (RPP)]
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For a given directed graph G = (V,E) and a subset E′ ⊆ E of edges (here,
we call E′ as the set of target edges to be traversed), Rural Postman Problem
(RPP) is a problem to find the cheapest Hamiltonian cycle containing each of
edges in the set E′ of target edges to be traversed (and possibly others in E).
The problem is shown to be NP-complete [12]. We call a cheapest Hamiltonian
cycle as a rural postman tour for the graph.

Note that there are several heuristic algorithms for efficiently solving Rural
Postman Problem (RPP) although such heuristic algorithms might not be able
to find its optimal solution [12].

[Assumptions for protocol testing]

(a) We can generate a waypoint-based mobility model with any designated node
density distribution using the method described in the previous section.

(b) It requires some cost (time) for generating the waypoint-based mobility
model with a designated node density distribution.

(c) In order for changing a given node density distribution to another one whose
difference of node density distributions is d, it requires some cost (time) in
proportion to d.

[Problem to find the most efficient testing order for TestEnvGraph]
For a given TestEnvGraph = (V +V ′+V ”, E+E′+E”) where E denotes the

set of all the transition patterns of node density distributions and their variations
belonging to Tpatterns, if the above assumptions hold, then the problem to find
the most efficient testing order for TestEnvGraph is formulated as a problem to
find a rural postman tour for TestEnvGraph where E is treated as the set of
target edges to be traversed.

In order for solving Rural Postman Problem (RPP), we have used a SA-based
heuristic algorithm and found an efficient testing order for TestEnvGraph.

For TestEnvGraph shown in Fig. 9, suppose that we start testing from
node < ∗, “111” >. Then, the rural postman tour (RPP) < ∗, “111” >→<
p2, “111” >→< p2, “121” >→< ∗, “121” >→< ∗, “221” >→< ∗, “222” >→<
p1, “222” >→< p1, “221” >→< ∗, “221” >→< p3, “221” >→< p3, “111” >→<
∗, “111” > denotes a shortest tour for this testing and its total weights (the sum
of the differences of node density distributions) is 6. If MANET designers gener-
ate variations of node density distributions in this order and carry out protocol
testing, then they can carry out it with the minimum cost.

[Problem to find the most efficient testing order ]
Let V = {n1, n2, ..., nk} denote the set of all designated node density distri-

butions for which we want to carry out testing (and/or performance evaluation).
Then, we designate < pi, “ni → ni” > (1 ≤ i ≤ k) as Tpatterns. Using the above
algorithm, we construct TestEnvGraph and find a rural postman tour where
E = {< pi, “ni → ni” >| 1 ≤ i ≤ k} is treated as the set of target edges to be
traversed. This modified rural postman problem (RPP) corresponds to the prob-
lem to find the most efficient testing order for carrying out tests of all designated
node density distributions.
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Table 2. The number of packet losses for trace data generated by VISSIM

Pattern [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Total

293 0 0 0 3 0 1 0 0 0 0 0 1 5
446 0 0 0 0 0 1 0 0 0 0 1 0 2
517 0 0 0 2 0 0 1 0 0 0 1 0 4
246 1 1 0 2 0 1 0 0 0 1 2 9 17
80 0 0 0 0 0 0 0 0 0 0 6 7 13
369 0 1 0 0 0 0 0 0 0 1 7 4 13
1 0 1 0 0 0 0 0 0 0 0 4 6 11
71 0 0 0 0 0 0 1 1 0 0 0 2 4
45 1 0 0 0 0 1 1 1 0 0 1 1 6
152 0 1 0 1 0 1 1 0 0 0 3 3 10

Table 3. The number of packet losses for proposed method

Pattern [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Total

293 0 0 0 2 0 2 0 0 0 0 0 2 6
446 0 0 0 0 0 1 0 0 0 0 0 0 1
517 0 0 0 2 0 0 0 0 0 0 1 0 3
246 0 0 0 2 0 1 0 0 0 1 3 8 15
80 0 0 0 0 0 0 0 0 0 0 7 6 13
369 0 0 0 0 0 0 0 0 0 0 6 6 12
1 0 0 0 0 0 0 0 0 0 0 4 6 10
71 0 0 0 0 0 0 1 1 0 0 0 2 4
45 0 0 0 0 0 1 1 1 0 0 1 1 5
152 0 0 0 1 0 1 1 0 0 0 3 3 9

6 Experimental Results and Analysis

Here, we show some experimental results and their analysis using a case study on
VANET. Our method described in Section 4 can generate a similar node density
distribution for a given traffic trace data. However, its mobility is not the same
as that of real trace data. Therefore, we use the microscopic traffic simulator
VISSIM and have measured node density distributions from the obtained typical
trace data shown in Fig. 3. We have conducted a simulation for a trace composed
of these 10 patterns to evaluate multi-hop communications by AODV protocol
[11] over the intersection. We have transmitted packets from left to right through
the intersection every 1 second. Table 2 shows the number of packet losses at
each cell in Fig. 3 for the patterns. Each row [n] denotes the number of packet
losses at the cell [n] on the horizontal road in Fig. 2. The routes by AODV
protocol were usually constructed over cells on the horizontal road. Since the
packets are transmitted from left to right and the vehicles on these cells also
moved to the same direction. Thus, there are relatively few packet losses at the
upside cells even though their densities are high.
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We have also measured the node density distributions at those cells. Based on
the obtained measured values, we have reproduced their node density distribu-
tions using the method described in Section 4 where “Manhattan1” mobility in
Fig. 6 (c) is used for generating vehicular mobility. Then, we have evaluated the
packet loss rates through network simulation. Table 3 shows the packet loss rates
for the corresponding 10 patterns in Fig. 3. As shown in the two tables, although
the results for Table 2 and Table 3 are not the same, they show that their similar-
ity is rather high. Therefore, our proposed mobility model with designated node
density distributions can expect a similar trend in network throughput/reliability
that are related to how many packet losses occurred. Note that since the packet
losses happen at different timing in the two methods, it might be difficult to
reproduce and evaluate time sensitive protocols with our proposed method.

In general, trace based testing can represent realistic situations more accu-
rately. Typical traffic patterns can be obtained easily. However, it is difficult to
obtain unusual traffic patterns and it takes much time and costs. In order to im-
prove reliability and sustainability of target protocols like VANET protocols, it
is very important to reproduce not only typical traffic patterns but also unusual
ones and evaluate the reliability and sustainability for those situations.

7 Conclusion

In this paper, we have proposed a method for efficiently carrying out protocol
testing for a set of designated node density distributions and their variations. The
method formulates the problem for finding the most efficiently testing order as
the problem to find a rural postman tour for the graph called TestEnvGraph. The
experimental results show that our method can easily reproduce node density
distributions and their variations for VANET applications and their network
throughput and packet loss rates are rather similar with those based on real
trace based traffic data.

One of our future work is to collect several types of real trace data and evaluate
the effectiveness and applicability of the proposed method.
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1 Albert-Ludwigs-Universität Freiburg
2 United Nations University Macau

Abstract. GUI testing is a form of system testing where test cases
are based on user interactions. A user interaction may be encoded by
a sequence of events (e.g., mouse clicks) together with input data (e.g.,
string values for text boxes). For selecting event sequences, one can use
the black-box approach based on Event Flow Graphs. For selecting in-
put data, one can use the white-box approach based on parameterized
unit tests and symbolic execution. The contribution of this paper is an
approach to make the principle of parameterized unit testing available
to black-box GUI testing. The approach is based on the new notion of
parameterized GUI tests. We have implemented the approach in a new
tool. In order to evaluate whether parameterized GUI tests have the po-
tential to achieve high code coverage, we apply the tool to four open
source GUI applications. The results are encouraging.

1 Introduction

GUI testing is a form of system testing where test cases are based on user
interactions. A user interaction may be encoded by a sequence of events (e.g.,
mouse clicks) together with input data (e.g., string values for text boxes). For
selecting event sequences, one can use a black-box approach based, e.g., on EFGs
(Event Flow Graphs, [9]). For selecting input data, one can use a white-box
approach based, e.g., on parameterized unit tests [14] and dynamic symbolic
execution [3].

Motivated by the established success of the black-box approach to GUI test-
ing [2,9,16], we ask the question whether the black-box approach can be in-
tegrated with techniques from the white-box approach so that the resulting
approach provides both, the selection of event sequences and the selection of
input data.

Given the established success of parameterized unit testing [3,4,6,14,15], and
given the apparent analogy between event handlers called in a GUI test and
methods called in a parameterized unit test, it seems natural to ask whether we
can obtain the desired integration by replacing method calls with event handler
calls. At first sight, this approach is not possible: the assignment of the input
data (e.g., the string value filled in by the user in a text box) cannot be found in
any event handler called in a GUI test (the assignment is done, letter by letter, in
the message loop of the GUI toolkit). There are other, more technical obstacles
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(event handlers call native code of the GUI toolkit, event handlers hold a private
access modifier which makes them unavailable for symbolic execution, etc.). I.e.,
the naive approach does not work.

The contribution of the work presented in this paper is an approach to make
the principle of parameterized unit testing available to black-box GUI testing.
The approach is embodied in a new tool, called Gazoo. Gazoo selects event se-
quences from the EFG of a GUI application and generates a set of parameterized
GUI tests. Then, Gazoo applies Pex [3] in order to instantiate the parameterized
GUI tests. Finally, Gazoo replays instantiated GUI tests on the GUI application.

In the terminology of the black-box/white-box dichotomy, Gazoo starts with a
black-box approach (using the EFG in order to select executable test sequences),
then moves on to a white-box approach (in order to generate parameterized GUI
tests and instantiate them using Pex), and finally goes back to the black-box
approach (using a replayer in order to execute the (instantiated) GUI tests on
the GUI application). To establish the appropriate interface between the black-
box approach and the white-box approach, we need to overcome a number of
technical hurdles. In particular, we build an instrumented version of the GUI
application in order to extract sequential programs as used in the parameterized
unit test. We replace GUI widgets by symbolic widgets and inject symbolic events
into the sequential programs in order to obtain what we call a parameterized GUI
test. We evaluate Gazoo on four open source GUI applications. The experimental
results indicate that parameterized GUI tests have the potential to achieve high
code coverage.

2 Example

We illustrate how our approach tests GUI applications using an over-simplified
example application given in Figure 1. The example application provides the
functionality of an address book. The main window consists of two buttons that
can add or remove a contact. When clicking the add button, a dialog window
appears which provides two text boxes, for the first name and for the last name,
and two buttons to store (OK) or discard (Cancel) the contact. In the following,
we use the term application to refer to a GUI application.

Fig. 1. Screen shot of the example ap-
plication. The AddressBook application
consists of two windows, a main window
and a dialog. Clicking on Add Contact

opens a new dialog and disables the
events of the main window. Clicking on
OK or Cancel closes the dialog and re-
enables the events of the main window.



Parameterized GUI Tests 249

2.1 Selecting Test Sequences

When testing applications through its GUI there exist different possibilities in
which order to interact with widgets. For example, one can first click the remove
button and then the add button. However, the reverse order does not work as
clicking the add button opens the dialog window, so remove cannot be clicked
until the dialog window is closed. Thus, not all sequences of events are executable
on the application. In order to avoid those non-executable event sequences, our
approach incorporates a black-box model of the GUI, the Event Flow Graph
(EFG) [9] depicted in Figure 2.

Add Contact

Remove Contact

OK

Cancel

Fig. 2. Event Flow Graph of the ex-
ample application. The events Add

Contact and Remove Contact repre-
sent initial events that can be ex-
ecuted immediately after the ap-
plication is launched. In contrast,
the events OK and Cancel can be
executed not until Add Contact is
triggered.

An Event Flow Graph, EFG = 〈E, I, δ〉, for an application is a directed graph.
Each node e ∈ E is an event of the GUI. Each event in I ⊆ E is an initial event
which can be executed immediately after the application is launched. An edge
(e, e′) ∈ δ between two events e, e′ ∈ E states that the event e′ can be executed
after the event e. If there is no edge between events e, e′ then event e′ cannot be
executed after event e.

Using the EFG one can generate a set of event flow sequences of the applica-
tion. An event flow sequence is a walk of a specific length in the EFG. Through-
out this paper we generate event flow sequences of length 2, that is, neighbors
of events. Event flow sequences do not necessarily start in an initial event, and
thus, are not executable on the application. We expand event flow sequences to
test sequences by inserting the shortest path from the first event of the event
flow sequence to an initial event of the EFG. A test sequence s = e0, . . . , en is a
sequence of events, such that e0 ∈ I and (ei, ei+1) ∈ δ for all 0 ≤ i < n. Hence,
a test sequence starts with an initial event and is executable on the application.
Figure 3 shows all resulting test sequences of the example application obtained
by event flow sequences of length 2 from the EFG. For the example application,
our approach generates 6 test sequences in total.

The benefit of the EFG is the possibility to generate test sequences which are
executable on the application. However, test sequences do not account for input
data to widgets. When executing a test sequence on a GUI, recent efforts [9,17,18]
insert random input data to widgets. We believe that the choice of input data
is both vital to the coverage that can be achieved, and to the total number of
executed tests. For example, choosing random values can result in low coverage.
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Fig. 3. Test Sequences of the
example application. The dark-
colored events represent the events
of the event flow sequence of length
2. The light-colored events repre-
sent intermediate events that make
the event flow sequence executable
on the GUI of the application.

t1 = 〈 Add Contact , OK 〉
t2 = 〈 Add Contact , Cancel 〉
t3 = 〈 Remove Contact , Add Contact 〉
t4 = 〈 Add Contact , OK , Add Contact 〉
t5 = 〈 Add Contact , OK , Remove Contact 〉
t6 = 〈 Add Contact , Cancel , Add Contact 〉

Furthermore, multiple random values can result in a prohibitive large number
of test cases (e.g., one randomly chosen value is integrated in one test case).

2.2 Generating Parameterized GUI Tests

To enable the generation of input data for test sequences, we introduce Param-
eterized GUI Tests which are test sequences parameterized by possible input
data. In the following we first outline how parameterized GUI tests are gener-
ated. Then we describe how input data to parameterized GUI tests is generated
in our approach.

1 class AddressBookWindow {
2 private ListView contacts ;
3

4 // handler for event "Add Contact "
5 private void OnAddContact() {
6 ContactDialog dialog = new ContactDialog();
7 dialog.ShowDialog(this);
8 }
9

10 class ContactDialog {
11 private TextBox lastName ;
12

13 // handler for event "OK"
14 private void OnOK() {
15 if ( 0 == lastName .Text.Length ) {
16 return;
17 }
18 if ( lastName .Text.Length > 255 ) {
19 throw new Exception("Text is too long.");
20 }
21 contacts .AddItem (lastName .Text);
22 }
23 }
24 }

Fig. 4. Excerpt of the source of the example application. The source code consists
of two classes (AddressBookWindow and ContactDialog) and three event handlers
(OnAddContact, OnRemoveContact, and OnOK). The event handler OnOK evaluates the
text of the text box lastName. A new contact is only added, if the last name is not
empty and contains less than 256 characters.

Figure 4 shows an excerpt of the underlying source code of the example
application. The method OnAddContact represents the event handler which is
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p1 = 〈 Add Contact , lastName , OK 〉
p2 = 〈 Add Contact , Cancel 〉
p3 = 〈 Remove Contact , Add Contact 〉
p4 = 〈 Add Contact , lastName , OK , Add Contact 〉
p5 = 〈 Add Contact , lastName , OK , Remove Contact 〉
p6 = 〈 Add Contact , Cancel , Add Contact 〉

Fig. 5. Parameterized GUI tests of the example application. In the PGT p1, p4, p5, the
event OnOK is prefixed with the parameter lastName. The PGTs s2, s3, s6 do not need
parameters.

t1a = 〈 AddContact , empty string , OK 〉
t1b = 〈 AddContact , ’’a string with more than 255 characters’’ , OK 〉
t1c = 〈 AddContact , ’’Last Name 3’’ , OK 〉

Fig. 6. Instantiated GUI tests of the parameterized GUI test p1. The GUI test t1a
contains as input data an empty string; t1b contains a string with a length greater than
255; and t1c contains a string with a length lesser than 255.

executed once the corresponding button in the main window is clicked. The
method OnOK is executed if the OK button in the dialog window is clicked. The
event handler OnOK adds an element to the list of contacts (line 21), if the text
of the text box lastName is not empty and contains less than 256 characters. If
the text is empty, the event handler returns without adding a contact (line 16).
If the text is too long, it returns with an exception (line 19).

Our approach detects that event handler OnOK evaluates the text of the text
box lastName in the conditions (line 15 and line 18). That is, the event handler
OnOK might need input data. We transform the test sequences from Figure 3 into
parameterized GUI tests depicted in Figure 5. In particular, we prefix the event
OnOK with the parameter lastName. The parameter lastName can adopt different
values which can lead to different execution paths in the event handler OnOK. In
our example application, only one text box is evaluated. If further text boxes are
evaluated, we add parameters to the test sequence for each of them. Our approach
does not only consider input data to text boxes, as described in Section 3.

Our approach instantiates each parameterized GUI test by an automatic com-
putation of suitable input data. In this paper we incorporate Pex [3]. In general,
input data can also be provided by alternative tools [15]. Pex uses dynamic sym-
bolic execution to identify sets of input values that execute all control-flow paths
of the program in the parameterized GUI test. E.g., for the parameterized GUI
test p1 = 〈 Add Contact , lastName , OK 〉, Pex identifies three distinct values of
lastName that have to be tested as shown in Figure 6. With the valuations for
lastName and the parameterized GUI test, we have all ingredients for a GUI
test which can be executed using our replayer. The replayer accepts a set of
GUI tests and mimics the events (user interactions) on the application. If a GUI
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test contains input data, this data is transferred to the corresponding widget.
Furthermore, the replayer integrates an oracle that determines whether a GUI
test passed or failed.

3 Approach and Implementation

In this section we present details of our approach and its implementation. As
outlined in Section 1, there exist a bunch of issues in order to make the ap-
proach of parameterized GUI tests applicable to real world applications. Our
approach depicted in Figure 7 consists of the following consecutive steps: (1)
Event Flow Construction; (2) Symbolic Widget Injection; (3) Symbolic Event
Injection; (4) Event Handler Elevation; (5) Generation of Parameterized GUI
Tests, (6) Symbolic Execution, and (7) Replayer.

Fig. 7. Our approach, consisting of seven consecutive main steps. The input to our
approach is a GUI Application. Input data is generated on the Instrumented GUI
Application. GUI tests are replayed on the original GUI Application.

3.1 Event Flow Construction

The starting step of our approach is the Event Flow Construction. It takes the
GUI of an application as input and outputs an Event Flow Graph. First, we exe-
cute the application and record its GUI structure. Second, we construct the EFG
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from the GUI structure. A GUI structure consists of widgets (e.g., windows, but-
tons, text boxes) and their corresponding properties (e.g., enabled or disabled).
While executing the application, we enumerate all widgets of the GUI. This is
done by calling specific functions provided by the GUI toolkit. For each found
widget (e.g., a button) we trigger the assigned event (i.e., a click). If the click
on the button opens a new window, we continue to record the GUI structure of
the recently opened window and so on. The process stops if all found windows
have been explored. Since a GUI represents a hierarchical structure, a depth-first
search is performed. The obtained GUI structure is transformed into an Event
Flow Graph. While the GUI structure contains information about widgets and
their properties, the EFG represents an abstract view which only contains the
events and their following events. The details of the EFG construction can be
found in [10].

In our approach we enhance the EFG construction, such that, for each wid-
get the event handler assigned to this widget is additionally stored in the GUI
structure. This information is later needed during the generation of parameter-
ized GUI tests and during the replaying of GUI tests.

3.2 Symbolic Widget Injection

In our approach we want to generate suitable input data, e.g., we want to reason
about string values of text boxes. However, in order to perform a symbolic exe-
cution, we have to replace regular widgets by symbolic widgets. There are two
main reasons: First, a change to a regular widget’s property leads to a native call
to the GUI toolkit. Including code of the GUI toolkit in the analysis is usually
not feasible, as it would significantly increase the size of the code that has to
be analyzed. Furthermore, in many cases, the code is in native format and thus
not accessible by the analysis. Second, our approach focuses on validating the
behavior of an application. In particular, we are not interested in validating the
behavior of the GUI toolkit, i.e., validating whether a redraw of a widget was
successful.

The step Symbolic Widget Injection takes the CIL1 code of an application
as input and replaces widgets by symbolic widgets. Figure 8 shows an excerpt
of the symbolic representation of a text box. Gazoo uses Microsoft CCI2 to
modify the CIL code. By default, the main widgets included in the Windows
Forms framework are considered, e.g., text boxes, check boxes, radio buttons
etc. Gazoo is highly configurable: One can define further symbolic widgets for
alternative GUI toolkits, such as Silverlight.

3.3 Symbolic Event Injection

In GUI applications, specific events do not have their own event handlers. For
example, it is not likely to have an event handler which assigns a string value to a

1
http://msdn.microsoft.com/en-us/netframework/aa569283.aspx

2
http://ccimetadata.codeplex.com/

http://msdn.microsoft.com/en-us/netframework/aa569283.aspx
http://ccimetadata.codeplex.com/
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1 class TextBox {
2

3 public string Text {
4 get {
5 // native call
6 return GetWindowText();
7 }
8 set {
9 // native call

10 SetWindowText(value);
11 }
12 }
13 }

1 class SymbolicTextBox {
2

3 string text;
4

5 public string Text {
6 get {
7 // a "getter "
8 return this.text;
9 }

10 set {
11 // a "setter "
12 this.text = value;
13 }
14 }
15 }

Fig. 8. Comparison of regular widgets (left) and symbolic widgets (right). In symbolic
widgets, native calls to the GUI toolkit are pruned (line 8 and line 12). A symbolic
representative of the widget property (line 3), i.e., text, is injected. This property can
be read and written by the get and set operations.

text box, once a user presses a key on the keyboard. This behavior is implemented
in the GUI toolkit and does not exist in the application itself. In order to assign
a string value, generated by the symbolic execution, to a text box, our approach
injects symbolic events to the application. That is, we partially re-implement
the event handlers of the GUI toolkit.

The step Symbolic Event Injection takes CIL code with symbolic widgets as
input and returns a modified version of the CIL code, including symbolic widgets
and symbolic events (see Figure 9). Gazoo visits the instructions of the CIL code.
If it encounters an evaluation of a widget property, e.g., the Text property of a text
box is evaluated, a symbolic event is added to the CIL code. A symbolic event is
a setter method that takes one parameter representing the value to be assigned
to the corresponding widget property. In our approach we separate the concerns
of having both symbolic widgets and symbolic events: Symbolic widgets address
the issue that properties of GUI widgets imply native calls. In contrast, symbolic
events provide an interface that allows to assign a value to a widget property. Fur-
thermore, in our setting we can assign values to widget properties. However, there
exist widgets that prohibit the assignment of arbitrary property values. For exam-
ple, the property Count which indicates the number of items in a list widget. In
order to change the property Count, one has first to add an item to the list widget
which increments the property Count. Those complex symbolic events are out the
scope of this work and will be addressed in a future work.

3.4 Event Handler Elevation

Usually, in programming languages like C#, event handlers are implemented
as private methods within classes. They are only visible to their surrounding
class, and thus, cannot be called directly. In order to allow an exploration of the
event handlers by the symbolic execution, we elevate event handlers. That is, for
each method of the application we change their access modifiers from private to
public; see Figure 9.
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1 // regular text box
2 private TextBox lastName ;
3

4 // regular event handler
5 private void OnOK() {
6 if (0 == lastName .Text.Length)
7 {
8 // ...
9 }

10 }

1 // symbolic text box
2 public SymbolicTextBox lastName ;
3

4 // elevated event handler
5 public void OnOK() {
6 if (0 == lastName .Text.Length)
7 {
8 // ...
9 }

10 }
11

12 // symbolic event
13 public void SetLastNameText(string

text) {
14 lastName .Text = text;
15 }

Fig. 9. Comparison of code from the original application (left), and the instrumented
application (right). The instrumented application contains symbolic widgets (line 2),
symbolic events (line 13), and elevated event handlers (line 5).

Gazoo visits the classes and methods of the executable. If it encounters a
private class or a private method, it changes the access modifier and serializes
all changes to the CIL code. Note that Gazoo also visits and modifies classes,
in case they are not visible. The output of these steps is a valid executable. In
particular, elevating classes and methods do not raise conflicts. For example, the
access modifier does not influence the unique signature of a method.

3.5 Parameterized GUI Test Generation

Having obtained the EFG of a GUI (step 1) and built an instrumented version
of the application (steps 2, 3, and 4), Gazoo generates a set of parameterized
GUI tests. This step consists of two sub-steps:

First, Gazoo generates test sequences of a specific length from the EFG. Each
test sequence represents a program that sequentially calls the event handlers of
the events in the sequence. Second, for each event in the test sequence, Gazoo
analyzes whether the event handlers rely on input data. For example, an event
handler evaluates the property of a widget. If so, Gazoo transforms the test
sequence into a parameterized GUI test. For each evaluated widget property,
we add a new parameter to the parameterized GUI test. Furthermore, we prefix
the event handler (that relies on input data) with a call to the symbolic event
that assigns the input data. The idea is that the symbolic event writes the input
data, while the selected event handler evaluates the input data. Figure 10 shows
the difference between a test sequence and a parameterized GUI test.

3.6 Symbolic Execution

Having generated a set of parameterized GUI tests, our approach instantiates
each parameterized GUI test by applying Pex. Pex takes as input a parame-
terized test and performs a dynamic symbolic execution on the instrumented
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1 // a test sequence
2 void TestSequence()
3 {
4 OnAddContact();
5 OnOK();
6 }

1 // a parameterized GUI test
2 void PGT(string lastname )
3 {
4 OnAddContact();
5 SetLastNameText(lastName );
6 OnOK();
7 }

Fig. 10. Comparison of a test sequence (left) and a parameterized GUI test (right). In
the parameterized GUI test, the call of event handler OnOK is prefixed with the symbolic
event SetLastNameText. This symbolic event sets the parameter value lastname of the
PGT to a text box.

application. The output of Pex is a set of concrete values of the parameters
in the parameterized test. For each element in this set, we create an instan-
tiated GUI test. An instantiated GUI test consists of the sequence of events
from the parameterized GUI test, and the concrete parameter values for widget
properties.

3.7 Replayer

The last step of our approach is the Replayer. The replayer takes as input a set
of instantiated GUI tests and replays them on the original application. First, the
replayer launches the application. Then, it executes the instantiated GUI test,
consisting of an event sequence and its concrete parameter values for widget
properties. After replaying a GUI test, the replayer closes the application. In
our setting, the replayer uses a crash monitor as the oracle for each instantiated
GUI test. However, the replayer is able to adopt further test oracles [11].

For each event handler in the GUI test, the replayer looks up the corresponding
event in the EFG. Moreover, the replayer looks up the associated widget of the
event in the GUI structure. Using this information, the replayer can find the
widget on the GUI and can trigger its corresponding event. Gazoo incorporates
Ranorex 3 to mimic user interactions, encoded as events, on the application.

For each parameter value in the GUI test, the replayer looks up the intended
widget property. As described above, each parameter in the parameterized GUI
tests is associated to one symbolic event. Moreover, each symbolic event writes
a specific property of a widget. Like for the events in the GUI test, the replayer
finds the widget on the GUI using the EFG and its GUI structure. Then, the
replayer assigns the value of a parameter to the corresponding widget. This
is done via Reflection and Memory-mapped files4 in order to send data across
processes (i.e., the replayer and the application under test). In Section 5 we
discuss the implication of using reflection and memory-mapped files in GUI
testing.

3
http://www.ranorex.com/

4
http://msdn.microsoft.com/en-us/magazine/cc163617.aspx

http://www.ranorex.com/
http://msdn.microsoft.com/en-us/magazine/cc163617.aspx
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AddressBook OpenImage Handbrake FareCalculator

LOC 2778 2347 520 298

Classes 98 87 30 22

Methods 163 109 19 14

Events 45 13 7 3

Fig. 11. Statistical data of the AUTs used in our experiments

4 Experiments

In this section we evaluate our approach. We compare how our approach per-
forms, (a) when the computation of input data is replaced by the use of random
values, and (b) when the Event Flow Graph is not considered for event sequence
generation. We first present the setup of the experiments. Then we discuss the
results of the experiments. We define the following two research questions:

– Q1: Is it reasonable to use Pex-generated values instead of random values
for widgets? A priori, this is not clear, for two reasons: (1) In GUI appli-
cations, events that evaluate input data might be simple, that is, they only
check whether an input is entered or not. Then, one can achieve a reason-
able coverage by providing arbitrary input (or no input). (2) Events might
evaluate input data in complex ways, that is, checking whether a specific
string is entered or not. Then, one cannot achieve a reasonable coverage due
to limitations of the symbolic execution (wrt. to the underlying constraint
solver).

– Q2: Is it reasonable to incorporate the Event Flow Graph in order to generate
parameterized GUI Tests? In principle, the idea of selecting event sequences
of an application is related to the generation of method calls of a library. In
libraries, one can call each method at any time. Hence, there exist no order,
in which library methods are allowed to call. In GUI applications one can
call an event handler at any time as well. However, a call of an event handler
may not be allowed, e.g., when the window of an event handler is not yet
displayed. This leads to GUI tests that are not executable on the GUI.

4.1 Setup of the Experiments

We evaluate our approach on four C# open source applications: AddressBook
manages contacts; OpenImage downloads images from websites; HandBrake En-
coder converts video files; FareCalculator calculates ticket prices for trains. Ex-
cept for FareCalculator [5], all other applications are fetched from CodePlex5. It
is important to observe that we use stable versions where bugs are rarely found.
We choose various applications to cover different code styles. Figure 11 shows
some statistics of each AUT (Application Under Test).

Our experiments consists of the three configurations A, B, C. The configu-
ration A generates event sequences of length 2 from the EFG, and uses Pex to

5
http://www.codeplex.com/

http://www.codeplex.com/
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generate input values for the event sequences. The choice of the parameter 2 is
motivated by previous empirical studies on bugs in GUI applications [17]. The
configuration B generates event sequences of length 2 from the EFG, but uses
random values as input data. In order to have statistical confidence, we choose
random values using 10 different seeds. Thus, each parameterized GUI tests is
instantiated 10 times containing different input data. The configuration C gen-
erates all sequences of events of length 2. That is, it does not use the EFG, and
thus, might select non-executable event sequences. By comparing configuration
A and B, we investigate the coverage that our approach can achieve. By com-
paring configuration A and C, we investigate the number of non-executable GUI
tests that our approach discards.

As a precondition of all GUI tests we define that all user settings of an AUT
have to be deleted before executing the GUI test. As a postcondition of all GUI
tests we use a crash monitor. In particular, we record any exception occurred
during test case execution, and we automatically observe if a test case is exe-
cutable on the GUI. For a discussion of alternative oracles we refer to [4,11].

The GUI tests are executed on 10 virtual Windows machines with 2.0 GHz
CPU, 2 GB RAM, 500 GB HDD. In order to mitigate the effect of randomness,
the configurations A, B and C are executed three times. The total number of
executed test cases amounts to 24,063.

4.2 Results of the Experiments

Figure 12 shows the results of the experiments. We answer Q1 with Yes: We
find that it is reasonable to use Pex-generated input values instead of random
input values. In all AUTs, the configuration A achieves a higher line and a higher
branch coverage than the configuration B. For OpenImage, the improvement of
the line coverage amounts to 19%, for AddressBook 41%, and for HandBrake
45%. FareCalculator is an outlier; the line coverage improvement is 76%. The
reason is that FareCalculator consists of event handlers that need specific input
data. Pex is able to generate this input data, while random values do not suffice.
It is unlikely to achieve 100% line and branch coverage in an application, as the
applications may also need input data that cannot be generated automatically.
For example, if an application requires a valid URL to download an image from
the web, Pex cannot generate such a valid URL. In this case, the application
depends on external test data that must be specified by a test engineer.

We answerQ2 withYes: We find that it is reasonable to incorporate the Event
Flow Graph in order to generate parameterized GUI Tests. For AddressBook,
the configuration A generates 319 PGTs which leads to 349 instantiated GUI
tests. In comparison, the configuration C generates 2025 PGTs which leads to
2352 instantiated GUI tests. Thus, 2003 out of 2352 GUI tests, that is 85%, are
not executable on the application. For OpenImage, 17% of the GUI tests are not
executable on its GUI. The reason is that in AddressBook and OpenImage it is
not allowed to execute an arbitrary event at any time. For the AUTs HandBrake
and FareCalculator, the configuration C generates the identical set of PGTs as
configuration A. In these applications, the EFG is fully-connected, and each
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AUT / Configuration A B C

AddressBook

Line Coverage (%) 74 43 74

Branch Coverage (%) 65 38 65

# PGTs 319 319 2025

# GUI Tests 349 3190 2352

Generation Time (s) 407 255 2739

Execution Time (m) 93 850 730

# Non-executable GUI Tests - - 2003

OpenImage

Line Coverage (%) 63 51 63

Branch Coverage (%) 59 29 59

# PGTs 139 139 169

# GUI Tests 148 1390 179

Generation Time (s) 278 222 336

Execution Time (m) 38 359 46

# Non-executable GUI Tests - - 31

HandBrake

Line Coverage (%) 88 48 88

Branch Coverage (%) 84 44 84

# PGTs 49 49 49

# GUI Tests 73 490 73

Generation Time (s) 71 42 71

Execution Time (m) 17 116 17

# Non-executable GUI Tests - - -

FareCalculator

Line Coverage (%) 93 22 93

Branch Coverage (%) 91 19 91

# PGTs 9 9 9

# GUI Tests 39 90 39

Generation Time (s) 49 34 49

Execution Time (m) 8 20 8

# Non-executable GUI Tests - - -

Fig. 12. Results of the experiments.

event is also an initial event. We believe that is reasonable to incorporate the
EFG by default: For large applications, our approach generates a subset of event
sequences of the GUI. The event sequences in this subset are actually executable
on the GUI. For small applications, our approach generates the same set of event
sequences which would be generated without considering the EFG.

4.3 Threats to Validity

Beyond the selection bias due to the limited availability of open source C# ap-
plications, we report one threat to external validity: We evaluated four C# open
source applications which incorporate the Windows Forms toolkit for building
the GUI. Alternative programming languages and GUI toolkits, e.g., Java Swing,
follow different paradigms of building graphical user interfaces. For example, it
might be not possible to obtain event handlers during the construction of the
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EFG. Thus, the construction of the EFG, the generation of parameterized GUI
tests, and the symbolic execution must be adapted to the corresponding envi-
ronment. In principle, there is no reason to believe that our approach is not
applicable to other environments.

5 Discussion

Why a Black-Box Model?. In this paper we use a black-box model to rep-
resent events and their corresponding event flow. An EFG is constructed by
executing the application and observing the behavior of its GUI. In principle it
is also possible to use a white-box model of the application. For example, this
white-box model might be constructed by techniques from static analysis. Since
GUI code is written in many ways, a static analysis technique must be tailored
to comprehend how a GUI is built. The use of a black-box model is justified
by the reasonable trade-off between applicability and precision. The constructed
EFG in our approach represents an approximation of the actual event flow of
the application. Thus, our approach cannot guarantee to find all events of the
application. For example, the application itself might be hostile or even faulty.

Why a Replayer?. One can argue it is not necessary to replay instantiated
GUI tests on the original application. For example, one can execute GUI tests
in a fashion of unit testing by simply calling the event handlers, and without
mimic user interactions on the application. We believe it is mandatory to replay
instantiated GUI tests on the application in order to comply with the idea of
system testing. For example, timing problems can only be detected when exe-
cuting the GUI test on the application itself. E.g., the replayer tries to execute
an event on a window, but this window is not yet displayed.

The replayer assigns values, e.g., a string value to a text box, by reflection
and memory-mapped files. In principle, this may violate an invariant of the
application. For example, it may not be allowed to access a certain text box,
since the text box is currently disabled. In our approach we use the EFG and
its corresponding GUI structure to guess that a widget is accessible. However,
since the EFG represents an approximation, it cannot be guaranteed that a
widget is actually accessible. A possible alternative is to add annotations to the
source code, stating that a value to a widget may only be assigned under specific
conditions.

6 Related Work

In [13], Symbolic Java PathFinder is used to generate test cases. The symbolic
execution is performed on unit level and combines concrete execution on system
level. The use of Pex on a parameterized GUI test can be seen as symbolic execu-
tion on unit level. However, in our approach concrete execution on system level
takes place when replaying instantiated GUI tests. Further, testing on system
level eliminates the problem of executing infeasible sequences [7].
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The approach presented in [5] generates test cases for GUI applications using
symbolic execution. Our work differs in three main aspects: First, we incorpo-
rate a black-box model (an Event Flow Graph) of the GUI in order to select
event sequences that are actually executable on the GUI. Second, we generate
parameterized GUI tests which can also be used with other techniques than sym-
bolic execution. Third, our approach is able to replay instantiated GUI tests in
a black-box fashion on the application.

The work in [8] is related to our work on an abstract level in that it combines
black-box and white-box testing. Concretely, however, the underlying technical
issues to be solved are incomparable due to the different settings (unit testing
vs. system testing, method calls vs. event handlers).

The focus in [1] (with shared co-authors) is to generate test sequences that
are at the same time executable and justifiably relevant. Random values for
widgets are used, as opposed to generated values as in this paper. We have
to use different sets of benchmarks for the experiments, corresponding to the
different programming environments (Java vs. C#). The migration of the work
in [1] to C# is in progress.

7 Conclusion and Future Work

In this paper we have proposed a novel approach to the generation of GUI
tests, implemented in a new tool called Gazoo. Gazoo selects event sequences
from the EFG of an application and generates a set of Parameterized GUI tests.
Then, Gazoo applies Pex in order to instantiate parameterized GUI tests. Finally,
Gazoo replays instantiated GUI tests on the application. In the terminology of
the black-box/white-box dichotomy, Gazoo starts with a black-box approach
(using the EFG in order to select executable test sequences), then moves on to a
white-box approach (in order to generate parameterized GUI tests and instan-
tiate them using Pex), and finally goes back to the black-box approach (using
a replayer in order to execute the (instantiated) GUI tests on the application).
As shown in the paper, we needed to overcome a number of non-trivial technical
hurdles in order to establish the appropriate interface between the black-box
approach and the white-box approach.

The scope of this paper was to show that our approach can achieve high code
coverage. Usually one expects that high code coverage translates to high bug
detection rate. For future work, we need to evaluate that this holds true in our
setting. This evaluation requires its own series of experiments where one applies
statistical methods to fault-seeded versions of AUTs, following, e.g., [11,18].

Our work opens an interesting perspective for future research because the
general scheme behind our approach goes well beyond a specific tool, here Gazoo.
We need to explore different alternatives such as, e.g., [2,16] and, e.g., [12,19]
for going back and forth between the black-box approach and the white-box
approach in the sense described above.
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Lightweight Static Analysis for GUI Testing. In: ISSRE (2012)

2. Belli, F.: Finite-State Testing and Analysis of Graphical User Interfaces. In: ISSRE,
pp. 34–43 (2001)

3. de Halleux, J., Tillmann, N.: Parameterized Unit Testing with Pex. In: Beckert, B.,
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