
On Modelling Virtual Machine Consolidation
to Pseudo-Boolean Constraints

Bruno Cesar Ribas1,3, Rubens Massayuki Suguimoto2, Razer A.N.R. Montaño1,
Fabiano Silva1, Luis de Bona2, and Marcos Castilho1
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Abstract. Cloud Computing is a new paradigm of distributed computing that
offers virtualized resources and services over the Internet. To offer Infrastructu-
re-as-a-Service (IaaS) many Cloud providers uses a large data center which us-
age ranges 5% to 10% of capacity in average. In order to improve Cloud data
center management and resources usage a Virtual Machine (VM) consolidation
technique can be applied to increase workloads and save energy. Using VM con-
solidation, we introduce an artificial intelligence consolidation based in Pseudo-
Boolean (PB) Constraints to find a optimal consolidation. To evaluate our PB
consolidation approach we used the DInf-UFPR and Google Cluster scenario and
the formulas are solved with two state-of-the-art solvers.
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1 Introduction

Cloud Computing is a new paradigm of distributed computing that offers virtualized
resources and services over the Internet [1,7]. Using Cloud Computing it is possible to
offer a pool of easily usable and accessible virtualized resources. These resources can
be dynamically reconfigured to adjust to a variable load (scale), allowing also for an
optimum resource utilization. This pool of resources is typically exploited by a pay-
per-use model in which guarantees are offered by the Infrastructure Provider by means
of customized SLAs [16].

One of the service model offered by Clouds is Infrastructure-as-a-Service (IaaS) in
which virtualized resource are provided as virtual machine (VM). With VMs, users
obtain a personalized and isolated execution environment to execute applications. A
VM also uses virtualized resources such virtual CPU, virtual RAM, virtual network
and virtual storage devices.

Many Cloud providers use a large data center in order to offer IaaS. Data centers
contains a huge amount of physical resources (server, disks, wired networks). Unfortu-
nately, most of large data center usage ranges from 5% to 10% of capacity on average.
In order to maximize the resources utilization by virtualized resources, a IaaS Cloud

J. Pavón et al. (Eds.): IBERAMIA 2012, LNAI 7637, pp. 361–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



362 B.C. Ribas et al.

provider can apply server consolidation technique [4,11,17] for VM reallocation on
physical servers. This consolidation is also denoted as VM Consolidation.

A server consolidation can increase workloads on servers from 50% to 85% where
they can operate more energy efficiently [5] and, in some cases, a consolidation can
save 75% of energy [3]. Reallocating virtualized resources allow to shutdown physi-
cal servers, reducing cooling costs, headcount, hardware management and energy con-
sumption costs.

To maximize Cloud data center usage, an optimal VM consolidation has been topic
of research in Cloud Computing. There are works [2,4,11,17] that uses Linear Program-
ming formulation or distributed algorithms to guarantee the optimal resource utiliza-
tion. Different from these approaches we introduce an artificial intelligence approach
based on Pseudo-Boolean (PB) [13] formulation to solve the optimization problem. We
perform experiments using DInf-UFPR datacenter and Google Cluster to evaluate our
approach based on real scenarios.

In Sect. 2 we present related works to consolidation in Clouds. Section 3 describes
the Pseudo-Boolean formulation. In Sect. 4 we evaluate the proposed approach using
data from real scenario. Finally, in Sect. 5 we present a conclusion and future works.

2 Related Works

Advances in virtualization technology allowed migration of VMs or entire virtual exe-
cution environment across physical resources. It also allowed a VM consolidation which
has been investigated with different aspects [3,12,15] such performance of VM, energy
consumption, costs of resource and costs of migration. Optimal VM consolidation has
been explored and solved using Linear Programming formulation [2,4] and Distributed
Algorithms [11] approaches.

Marzolla et al. [11] presents a gossip-based algorithm called V-Man. Each physical
server (host) run V-Man with an Active and Passive threads. Active threads request a
new allocation to each neighbor sending to them the number of VMs running. The
Passive thread receives the number of VMs, calculate and decide if current node will
pull or push the VMs to requested node. The algorithm iterate and quickly converge to
an optimal consolidation, maximizing the number of idle hosts.

Ferreto et. al. [4] presents a Linear Programming formulation and add constraints to
control VM migration on VM consolidation process. The migration control constraints
uses CPU and memory to avoid worst performance when migration occurs.

Bossche et. al. [2] propose and analyze a Binary Integer Programming (BIP) for-
mulation of cost-optimal computation to schedule VMs in Hydrid Clouds. The for-
mulation uses CPU and memory constraints and the optimization is solved by Linear
Programming.

Different from above approaches, we introduce an artificial intelligence solution based
on Pseudo-Boolean formulation to solve the problem of optimal VM consolidation.

3 Pseudo-Boolean Optimization

A Pseudo-Boolean function in a straightforward definition is a function that maps Boolean
values to a real number. The term pseudo-Boolean is given to these functions that are not
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Boolean but remains very close to Boolean functions [8,10,13]. In a Pseudo-Boolean
(PB) formula, variables have Boolean domains and constraints, know as PB constraints
[13], are linear inequalities with integral coefficients. In PB Optimization, a cost function
is added to a PB formula.

PB functions are a very rich subject of study since numerous problems can be ex-
pressed as the problem of optimizing the value of a PB function. PB constraints offer
a more expressive and natural way to express constraints than clauses and yet, this for-
malism remains close enough to the Satisfiability (SAT) [8,10] problem to benefit from
the recent advances in SAT solving.

Simultaneously, PB solvers benefit from the huge experience in Integer Linear Pro-
gramming (ILP) and, more specifically, 0-1 programming. This is particularly true when
optimization problems are considered. Inference rules allow to solve problems polyno-
mially when encoded with PB constraints while resolution of the problem encoded with
clauses requires an exponential number of steps. PB constraints appear as a compromise
between the expressive power of the formalism used to represent a problem and the dif-
ficulty to solve the problem in that formalism [13].

In this work we use PB constraints instead of raw Boolean because each Boolean
variable has an integer coefficient that maps the structure of the servers and VMs in
terms of processing power (CPU) and memory (RAM). With this construction there is
no need to transform the formula into a CNF since PB can represent all that is necessary.

We take advantage of PB optimization [13] that are implemented on PB solvers,
where we create one more PB constraint. This constraint does not have the inequality
to express the upper bound of the constraint but is set as an objective constraint to the
solver to find the minimal value that this constraint can assume while respecting all
other constraints.

A detailed description of modern SAT solver, maximum satisfiability and Pseudo-
Boolean optimization can be found, respectively in [8,10,13].

3.1 PB Formulation to Optimal VM Consolidation

The goal of our problem is to deploy K VMs {vm1 . . . vmK} inside N hardwares
{hw1 . . . hwN} while minimizing the total number of active hardwares. Each VM vmi

has an associated needs such as number of VCPU and amount of VRAM needed while
each physical hardware hwj has an amount of available resources, number of CPU and
available RAM.

In order to create the PB Constraints each hardware consists of two variables, one
that relates hwi to the amount of RAM hwram

i and one that relates to the amount of
CPU hwproc

i . Per hardware, a VM has 2 variables, one to relate the VM vmj required
amount of VRAM vmram

j to the hardware hwi amount of RAM hwram
i , denoted as

vmram·hwi

j . The another variable relate the required VCPU vmproc
j to the amount of

CPU available hwproc
i , denoted as vmproc·hwi

j . The total amount of VM variables is
2×N variables.

Our main objective is to minimize the amount of active hardware. This constraint is
defined in 1. Each hwi is a Boolean variable that represents one hardware that, when
True, represents that hwi is powered on and powered off otherwise.
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minimize :

N∑

i=1

hwi (1)

To guarantee that the necessary amount of hardware is active we include two more
constraints that implies that the amount of usable RAM and CPU must be equal or
greater than the sum of resources needed by VM. These constraints are defined at 2 and
3, respectively.

N∑

i=1

RAMhwi · hwram
i ≥

K∑

j=1

RAMvmj · vmram
j (2)

N∑

i=1

PROChwi · hwproc
i ≥

K∑

j=1

PROCvmj · vmproc
j (3)

To limit the upper bound of hardwares, we add two constraints per host that limit:

Available RAM per Hardware: This constraint dictates that the sum of needed ram of
virtual machines must not exceed the total amount of ram available on the hardware,
and it is illustrated in constraint 4;

Available CPU per Hardware: This constraint dictates that the sum of VCPU must
not exceed available CPU, and it is illustrated in constraint 5.

∀ hwram
i ∈ hwram

N

(
K∑

j=1

RAMvmj · vmram·hwi

j ≤ RAMhwi

)
(4)

∀ hwproc
i ∈ hwproc

N

(
K∑

j=1

PROCvmj · vmproc·hwi

j ≤ PROChwi

)
(5)

Finally we add one constraint per VM to guarantees that the VM is running in exactly
one hardware. These constraints can be seen on constraint 6.

∀ vmi ∈ vmK

(
N∑

j=1

vm
proc·hwj

i · vmram·hwj

i · hwproc
j · hwram

j = 1

)
(6)

With this model we have (2 × N + 2 × N × K) variables and (2 + 2 × N + K)
constraints with one more constraint to minimize in our PB formula. It is possible to
get these amounts because it is a non-linear formula since constraint 6 has a sum of four
multiplication.

Note that additional constraints, such as requiring minimal latency between VM,
minimal guarantee of bandwidth, migration costs and others will add additional com-
plexity to the problem and are left for future works.
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4 Experiments

For the implementation and evaluation of the PB Constraints, we wrote a simple pro-
gram that reads the amount of physical hardware followed by its amount of RAM and
CPU, the amount of VM and its requirements of virtual memory (VRAM) and virtual
processing power (VCPU), and solved the formula using open source PB solver/opti-
mizer Sat4j-PB [6] and BSOLO [9].

We use two workloads to perform our PB consolidation approach. The first is the
datacenter of Informatic Departament of Federal University of Paraná (DInf-UFPR),
which are used to deploy VMs to offer services and execution environments for experi-
ments of researches and students. The second is the Google Cluster Data project which
has traces about machines and tasks running in Google servers. Tasks have resource
requirements as well as VMs.

To evaluate both workloads we used the First-Fit and Round-Robin approaches to
allocate the VMs on resources to compare with our PB optimal solution. With Round-
Robin we expect to find the worst case and with First-Fit a medium case of consolidation.

We also used a subset of workloads to see the progress on the use of different amount
of VM or tasks. A subset of workload is the larger subset of VMs or tasks which sum
of VCPU requirements does not exceed σ percent of sum of physical servers CPU
capacities. In this experiment we assume σ equals to 25%, 50% and 75%.

4.1 Better Use of DInf-UFPR Datacenter

In DInf-UFPR Datacenter we separated a set of physical server and VMs totalizing 9
servers and 22 VMs. The configuration are as follows on Table 1. The number of CPU
and VCPU is given by the amount of processing cores and RAM and VRAM is given
by amount of memory in Gigabytes.

To evaluate our approach in this scenario, we took the subset of VMs present in
Table 2. The table shows information about subsets with respective sum of VCPU, sum
of VRAM and amount of VMs.

As a result, Table 3 show the execution time, in seconds, of PB solvers for cur-
rent scenario with above subsets workload. The table also shows respective amount of
variables and amount of PB constraints generated from formula. Figure 1 presents the
number of active servers for each subset. Each subset was executed using Round-Robin,
First-Fit and PB consolidation with Sat4j-PB and BSOLO solver.

The results obtained in DInf-UFPR scenario show that PB optimal consolidation has
a better result of First-fit, but it is very close to optimal due to little amount of servers.
As expected, Round-Robin presents the worst-case of consolidation.

4.2 Google Cluster Data Project

Google Cluster Data 1 is a Google project to intend for the distribution of data about
workloads running on Google Cluster. The workloads contains data traces about 12k
machines describing events and resource capacity of each server. The traces also de-
scribes around 132k tasks workloads with respective resource requirements.

1 http://code.google.com/p/googleclusterdata/

http://code.google.com/p/googleclusterdata/
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Table 1. Hardwares and VM description for DInf-UFPR scenario

(a) Hardware de-
scription.

Host RAM CPU
hw1 30 4
hw2 18 4
hw3 10 8
hw6 10 8
hw5 30 4

prd3b 125 32
prd3d 125 32
prd3c 125 32
tesla1 62 16

SUM 535 140

(b) VMs desciptions.

VM VRAM VCPU VM VRAM CPU
planetmon 12 4 db 2 1

vc3-blanche 8 4 devel 4 2
alt 10 8 salinas 5 2

dalmore 10 8 vc3-colombard 8 2
mumm 10 8 vc3-educacional 2 2
priorat 5 8 vc3-newcastle 4 2
talisker 32 8 vc3-qef1 2 2

bowmore 20 12 vc3-qef2 2 2
alt-marcadle 80 16 vc3-qef3 2 2
alt-murphy 93 24 vc3-qef4 2 2

caporal 18 4 alt-guinness 120 32

SUM 451 155

Table 2. Workload subsets with σ equals to 25%, 50% and 75% and respective sums of VRAM,
VCPU and amount of VMs for DInf-UFPR scenario

Workload Percent
∑

VRAM
∑

VCPU Amount of VMs
25% 51 23 11
50% 81 39 14
75% 138 71 18

Table 3. Variables and constraints generated and execution time for DInf-UFPR scenario using
BSOLO and Sat4j-PB solvers

Formula Variables Constraints BSOLO Sat4j-PB

hw9-vm25p 108 25 0.004 0.101
hw9-vm50p 198 30 0.004 0.109
hw9-vm75p 288 35 0.004 0.118

Due to the long period to perform PB consolidation using all 12k machines and 132k
workloads we selected five subset of machines. The size of each subset are 32, 64,
128, 256, 512 machines. For each size of subset machines, we used the above subset
of workload to perform experiments. Table 4 shows the amount of resources used to
evaluate PB consolidation and others allocation approaches. Values of CPU and RAM
are normalized in a scale relative to the largest capacity of the resource on any machine
in the period of trace. The value of the largest capacity is 1.0.

As a result, Table 5 shows time results for the set of formulas explained above. For
each instance was given a time limit of 7200 seconds. When the solver run out of time
limit and did not found any solution it is show a Time Limit Exceeded (TLE). If the
solver caught a Segmentation Fault signal a Runtime Error (RTE) is thrown as a result.
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Fig. 1. Number of active hardware for each approach for DInf-UFPR scenario

Table 4. Workload subsets for each subset of machines. The workload has a σ equals to 25%,
50% and 75% and respective sum of VRAM, VCPU and amount of tasks for Google Cluster
scenario.

#Machines RAM CPU Workload %
∑

VRAM
∑

VCPU #Tasks
32 14.9813 17.0000 25% 3.7375 4.3475 98
32 14.9813 17.0000 50% 5.7048 8.5640 173
32 14.9813 17.0000 75% 9.5204 12.7674 278
64 32.2117 34.5000 25% 5.7281 8.6389 174
64 32.2117 34.5000 50% 13.8382 17.2724 371
64 32.2117 34.5000 75% 19.3733 25.8826 559
128 61.8284 68.0000 25% 13.5025 17.0473 368
128 61.8284 68.0000 50% 26.3261 34.3367 713
128 61.8284 68.0000 75% 39.0425 51.0215 1048
256 121.5035 134.5000 25% 26.2943 33.9555 712
256 121.5035 134.5000 50% 49.0585 67.2507 1407
256 121.5035 134.5000 75% 75.6842 10.08777 2119
512 246.7420 275.2500 25% 50.9854 68.8945 1432
512 246.7420 275.2500 50% 100.1324 137.8664 2771
512 246.7420 275.2500 75% 206.4426 148.0852 4035

Figures 2a, 2b, and 2c respectively shows the result of amount actives machines for
32, 64, 128 and 256 subset of machines. For each subset, we perform the Round-Robin,
First-Fit and PB consolidation approaches using Sat4j-PB and BSOLO solvers.

Unfortunately none of the tested solvers were able to find a satisfiable assignment
for the larger formulas such subsets of 512 machines and 256 machines and only two
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Table 5. Execution time per instance for BSOLO and Sat4j-PB solver. Time Limit was set to
7200s and TLE represents when Time Limit was Exceeded and RTE is for RunTime Error.

Formula Variables Constraints BSOLO Sat4j-PB

hw32-vm25p 6336 164 7242.75 305.277
hw32-vm50p 11136 239 7198.01 7204.971
hw32-vm75p 17856 344 7237.44 6417.293
hw64-vm25p 22400 304 7198.02 7227.192
hw64-vm50p 47616 501 7198.02 7243.419
hw64-vm75p 71680 689 7198.19 7243.385
hw128-vm25p 94464 626 TLE 7244.51
hw128-vm50p 182784 971 TLE 7244.46
hw128-vm75p 268544 1306 TLE 7243.678
hw256-vm25p 365056 1226 TLE TLE
hw256-vm50p 720896 1921 RTE TLE
hw256-vm75p 1085440 2633 RTE TLE
hw512-vm25p 1467392 2458 RTE TLE
hw512-vm50p 2838528 3797 RTE TLE
hw512-vm75p 4132864 5061 RTE TLE

(a) Result for 32 machines. (b) Result for 64 machines.

(c) Result for 128 machines.

Fig. 2. Number of active machines using Round-Robin, First-Fit and PB consolidation with Sat4J-
PB and BSOLO solvers for Google Cluster scenario
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instances reached optimum objective assignment. A non optimum solution can be easily
identified in test case of 128 machines with 50% load where in Fig. 2c the First-Fit al-
gorithm were able to optimize better than the PB Solver. Table 5 shows that the biggest
formulas tested solver were not even able to find one satisfiable assignment to the for-
mula, as can be identified as RTE and TLE. The RTE has many possibilities of errors
caused in the solver execution, and it discussion is out of the scope of this work. The
TLE means that it took too much time to find any satisfiable assignment with 7200
seconds time limit.

With the present result, we can confirm the VM consolidation by PB formulation
approach is a valid formulation. When the Cloud has only a few resources, both physical
and virtual, state-of-the-art solvers can prove optimal consolidation very fast. Within
larger instances, PB solvers could not find the optimal, and in most of the cases they do
not found any consolidation.

5 Conclusions

This paper presented a VM consolidation model using a artificial intelligence based on
Pseudo-Boolean (PB) Constraints. A PB Constraints can be used to optimize costs, i.e
minimizing the amount of active hardware. With a PB approach it is easily add extra
restrictions to VM consolidation that would not be easily done with a First-fit or Round-
Robin algorithms.

Unfortunately, follow experimental results, PB solvers were not able to solve the
formulas of a huge test scenario such as Google Cluster. Also the benefit of running
time was not as good as others approaches such First-fit algorithm.

Despite the fact tested solvers were not powerful enough to complete all formulas in
a practical time we can use these formulas as a good benchmark to improve PB solvers.

We are interested in going on investigating some important research direction. First,
we want to extend our solution and implement it inside a Cloud Management System
(i.e. OpenNebula [14]) as an optimizer module. After we are interested to add some
important restrictions such as network dependency of VMs and create classes of VMs
to make better use of network interfaces of hosts.
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