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Preface

The first edition of the present monograph was met with interest by the glass science
community, and at the end of 1996, it was practically already completely sold
out and, thus, open for preparation of a second edition. However, in the following
15 years to come, we, both authors of the first edition, were involved with a variety
of projects connected with experimental applications and even with the technical
realization of some of the ideas developed in our book. Particular attention was
given also by both of us to further theoretical generalizations of the results already
achieved. In particular, both authors were involved with the study and with the
development of problems, connected with the very essence of the theory forming the
basis for the understanding of the glass transition, of the apparent kinetic stability,
and of segregation processes and crystallization of glass-forming systems. In some
respect, these were projects connected with the application of glasses as a very
specific material and particular physical state of matter.

In the first edition of the present book, already the conviction was expressed
that common, e.g. silicate glasses are only the most popular, the experimentally
most frequently investigated, and, in many respects, the theoretically best-known
representatives of matter in this particular state, the vitreous state. This notion was
one of the leading ideas in writing the first edition of our book: analyzing the state
of common glasses supplies us simultaneously with valuable information on many
other systems in which matter exists as a particular frozen-in immobilized state.
Thus, it was to be expected that results, obtained on common glasses, could be
of use in many other fields of science. In this respect, the evidence obtained with
technical glasses and especially with simple model glasses could and can be, so we
hope, applied also to the vitreous-like states of matter in cases, when experimental
analysis and theoretical modeling are more difficult or even impossible. Here we
have first to mention the particular cases of unusual glasses, like vitreous ice, or
of aqueous solutions with particular biological properties, allowing even life to be
frozen-in into the vitreous-like state of absolute anabiosis. It is well known that
there are even proposals to consider cosmic objects like black holes or the excited
state of light in lasers like being in physical situations similar to those existing in
common glasses. Let us mention also the case of comets: according to present-day
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knowledge, the kernel of comets is constituted of vitreous ice. If this is so, it would
turn out that 99.9 % of water in the universe as a whole is not to be found in the form
of the common water of our oceans but exists as vitreous ice. In speaking about
such seemingly extreme cases of systems with vitreous-like behavior or vitreous-
like states, it becomes evident how significant in fact can be the knowledge and
especially the lack of knowledge in investigating glasses and glassy systems.

The years after 1995 have been a time in which many well-known specialists in
the field of glass science devoted their efforts to the development of ideas or models
to describe vitreous states in a general way. Here first we have to mention ideas
based on modeling glass-like systems in terms of statistical mechanics, for example,
based on general concepts like mode-coupling theory, energy landscape approaches,
models based on extended lattice hole approaches (with nonsymmetric two-minima
energetic wells), and many others. The results obtained with most of these statistical
physics models were however in many respects disappointing: some of the results
even contradicted experiment; others gave only commonly known information. This
is the reason why the efforts of several scientific groups were mainly concentrated
on the development of ideas connected with the phenomenology, that is, with
thermodynamics and overall kinetics of glass transition in terms of the more general
formulation of thermodynamics, especially of the thermodynamics of irreversible
processes in its simplest, linear formulations. Out of the cooperation of both authors
of the present monograph in the time elapsing between 1995 and 2012, more
than 40 common publications have been developed. They have been published in
the international literature, and most of them are devoted to the analysis of the
thermodynamic state, the structure, and the crystallization of glass-forming systems.
We have prepared in the same time (in cooperation with two Russian colleagues,
Oleg V. Mazurin and Alexander I. Priven, and two Bulgarian coworkers, Boris P.
Petroff and Snejana V. Todorova) also a second monograph (J. W. P. Schmelzer
and I. S. Gutzow, “Glasses and the Glass Transition”, Wiley-VCH, 2011) where the
interested reader can find summarized and further developed many of the problems
initiated and formulated in the first edition of the present book. A brief account of
these new developments, going at part widely beyond the results presented in latter
monograph, can be found here in Chap. 14 and in several footnotes to the text of
the present second edition. Particular efforts of both authors were also concentrated
on the development of thermodynamic problems connected with phase formation
in glass forming systems; in the framework of this subject, one of the present
authors (J.W.P.S.) developed an approach, to which particular attention is given in
the second part of the above-mentioned Chap. 14.

Thermodynamics is the science which has to decide where to put and how to
describe any state of matter. This is the reason why this great phenomenological
approach is used in the present book. However, thermodynamics was classically
derived as a science describing only systems in equilibrium and in predicting
changes, which can and have to take place between different equilibrium states,
for example, when one of them is more stable than the other. On the other hand,
vitreous states, as proven already by the first investigations of the thermodynamics
of glasses, are nonequilibrium states: this is their particular and most striking
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characteristics. Sometimes this particular feature of glasses is expressed in terms
of ergodicity and non-ergodicity: in the sense that glasses are non-ergodic systems.
However, in doing so, it is usually forgotten that even the definition of ergodicity is
at present open to discussion: this is why the use of the more generally defined
notion of equilibrium and nonequilibrium seems to be more appropriate to the
present authors at least to define a particular state in terms of properly understood,
defined, and accepted notions. It is known and discussed in details in Chap. 5 of the
first edition of our monograph that the investigations, which led to the conclusion
that glasses are nonequilibrium, systems that is, non-thermodynamic bodies were
reached in the beginning of the 1920s in connection with the efforts to verify
Nernst’s heat theorem and the third principle of thermodynamics by several of the
most outstanding representatives of twentieth century classical thermodynamics.
This problem is also summarized in Chap. 14, and its development represents an
exciting scientific story retold by the present authors in two contributions cited
there. It was F. Simon who proposed a remarkable approximation which has given
the possibility to describe for a number of purposes with sufficient accuracy both
glass transition and the thermodynamic properties of glasses. This approximation,
governing the development of ideas and their treatment and development into what
can be called the initial phenomenological theory of glass, was for more than
90 years adopted in glass science. This approximation of F. Simon was taken as
a leading tool and the main idea in writing the first edition of the present book
and in developing the ideas described there. We hope that this development, we
decided to perform beginning with the 1990s, showed the really great advantage of
Simon’s approximation. We described in its framework the glass transition itself,
vapor pressure and solubility of glasses, influence of the conditions of vitrification
on glass properties, relaxation, stabilization, and crystallization of glass-forming
systems: all this is given in the first edition of our book.

But the reader will also see how our efforts also indicated the deep limitations
of Simon’s approximation, the estimate of errors, introduced by it in both scientific
thinking and prediction: to this is devoted a particular publication of both authors,
also mentioned in Chap. 14. It turned out that the development of the basic
idea of Simon’s approximation also brought with it the further developments out
and beyond of it, to which the efforts of the present authors lead as a logical
consequence. And this consequence was that the second phenomenological stage
in the theory of glass transition and in the description of glasses has to be the
generic application to this problems of the following, the nonequilibrium stage
of thermodynamics itself, of the development of thermodynamics, already several
times mentioned in the present preface, into the thermodynamics of irreversible
processes, as it was developed by scientists like De Donder, Prigogine, de Groot,
and many others.

As indicated with the title of our book, our intention was and is also to continue
the idea of another great scientist of mid twentieth century, Gustav Tammann,
who proposed to treat glasses out of mysticism as a physical state, although as a
particular physical state, and this was what also gave the title to his little famous
booklet with the German title Der Glaszustand. We tried with the first edition of our
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monograph to continue not only a tradition introduced by Tammann in the title of
our book, but also to follow a remarkable idea formulated by this great scientist.

In adopting this idea and assuming irreversible thermodynamics to be the
key, allowing one to open a new way of the description of glass transition and
description of glasses, we had also to introduce into our book a generalized
summary of essential basic thermodynamics in the form we thought that it is most
convenient to be applied to glass science. It is introduced in the first chapters of
the first edition of our book and gives not only essentials of thermodynamics, but
also, what seemed to be even more necessary to the present authors, the direct
applications of classical thermodynamics in the form of Simon’s approximations
to vitreous states and the necessary preparation for the second step: to go beyond
classical thermodynamics. From the point of view of classical thermodynamics
the kinetics of nucleation, of crystallization, and of phase transitions in glasses
were treated in great details. The strict employment of thermodynamics led us to
a further development of Gibbs model of the thermodynamics of nucleation. In
this respect, we would like to acknowledge the close cooperation, in particular, of
V. V. Slezov, A. S. Abyzov (Kharkov, Ukraine), V. G. Baidakov, G. Sh. Boltachev
(Yekaterinburg, Russia), V. M. Fokin (St. Petersburg, Russia), and E. D. Zanotto
(Sao Carlos, Brazil). Treating both vitrification and stabilization of glasses and the
crystallization of glass-forming systems strictly and consequently in the framework
of thermodynamics – in both its classical and newer formulations – is one of
the features, in which most probably our book differs from most textbooks and
monographs devoted to glass science.

In trying to open thermodynamic thinking and application of thermodynamics to
glasses even to beginners in glass science, we introduced in the first two chapters
of the book a thermodynamic introduction beginning with the essentials of classical
thermodynamics and continuing further on to what we thought was necessary for
the next and decisive step of any-one interested in glass science, including the
thermodynamics of nonequilibrium. This basic idea was noticed by our readers and,
we may even say, appreciated by many of our colleagues. In Chap. 3 of our book
moreover, a direct introduction is given into the thermodynamics of irreversible
processes: at least into the essentials we considered necessary to understand vitreous
state and vitrification from this enlarged standpoint of thermodynamics. In this way
from a beginning with the essentials of glass science and irreversible thermody-
namics as they are introduced in Chap. 2 of our book and in developing ideas and
methods to the third chapter, the present authors also enlarged their own possibilities
to treat and analyze vitrification in the specific features of thermodynamics of
irreversible processes. Beginning in 1996, both authors made the necessary efforts
to develop their ideas on glass science in connection with the basic principles of
thermodynamics of irreversible processes.

It is also to be noted that the first edition of this book published in 1995
was born in two series of lectures on the fundamentals of glass science given by
one of the present authors in a series of courses in Bulgarian universities (at the
Assen Zlatarov Technical University in Bourgas, 1985–1995 in collaboration with
Dr. B. Bogdanov) and then (in 1996–2002 at the Chemical Technical University



Preface ix

in Sofia with Dr. I. Gugov) and after that in a joint lecture course of the two
present authors at the Physical Institute of Rostock University in Germany at the
beginning of the 1990s. In 1996–1999, this course of lectures was continued by
I. S. Gutzow in collaboration with Prof. L. D. Pye at the Alfred College of Glass
and Ceramics of the State University of New York (USA) and in 1995 also at
the Federal University of Sao Carlos in Brazil. In all these lecture courses, the
thermodynamic accent was always of significance in order to bring glass science
to students of both theoretical physics and in engineering chemistry and ceramic
materials. The generalized treatment of glasses in terms of the thermodynamics
of irreversible processes was initiated by the same author (I.S.G.) by a course
he had to give as several lectures at a Black Sea conference on the theory of
amorphous states and the structure of glasses held in the little town of Sozopol in
1996. A resume of his lectures was published as two overview contributions given
as references in Chap. 14 of the present second edition. The title of one of these
papers was formulated as The generic phenomenology of glass formation. This
title was proposed by the conference proceedings editor, a well-known American
colleague, Prof. P. Boolchand.

Of even greater significance in preparing several of the publications of both
authors in employing thermodynamics of irreversible processes to describe glasses
and glass transitions were the conferences and lecture courses organized by one of
the present authors (J. W. P. Schmelzer) annually for more than 15 years, now, at
the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear
Research in Dubna (Russia), under the title Nucleation Theory and Applications.
The presence at these conferences and the benefit of discussions with our colleagues
including outstanding well-known scientists like W. Ebeling, D. H. E. Gross, V.
P. Skripov, V. V. Slezov, V. G. Baidakov, V. P. Koverda, A. M. Gusak, B. M.
Smirnov, A. P. Grinin, A. K. Shchekin, G. E. Norman, G. T. Guria, R. Feistel, S.
A. Kukushkin, V. S. Balizkij, and colleagues from the St. Petersburg glass school
like I. G. Polyakova, V. M. Fokin, B. Z. Pevzner, V. K. Leko, L. Landa, and many
others were of greatest significance because practically any new idea developed
by the authors was first discussed and partly even published as preprints in the
proceedings of these conferences (available as pdf files via Internet at http://theor.
jinr.ru/meetings/2012/nta/) and then adopted and included in following scientific
publications and in the present book. In fact, several of the considerations of
both authors connected with the thermodynamics of glasses were initiated by their
analysis of the most significant peculiarities of crystallization of glass-forming
melts discussed in the course of these conferences. It is also a great pleasure to
acknowledge the financial support from the DFG, the DAAD, the Heisenberg-
Landau program of the BMBF, QSIL Langewiesen (Dr. F.-P. Ludwig), the Leibniz
Institute for Tropospheric Research Leipzig (Dr. O. Hellmuth), the Russian Founda-
tion for Basic Research, and other sponsors of our activities as well as the hospitality
and support of the Joint Institute for Nuclear Research in Dubna, Russia (Dr. V. I.
Zhuravlev, Mrs. G. G. Sandukovskaya, Mrs. E. N. Rusakovich). We would like to
express here our particular gratitude to the DFG for long-standing financial support
both of the stays of J. W. P. Schmelzer in Sofia and I. S. Gutzow in Germany. One
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of the authors (J.W.P.S.) would like to express his deep gratitude to the Institute
of Physical Chemistry in Sofia for long-standing hospitality and for electing him
as an Institute Associate Member and to the Bulgarian Academy of Science for
decorating him with the Marin Drinov Medal of Honour acknowledging the very
fruitful cooperation over a period of more than three decades. The other author
(I.S.G.) would like to express his deep gratitude to the Alexander von Humboldt
Foundation for the Humboldt Research Prize 2002–2003 assigned to him and for
the possibilities it opened to him for his work at German universities. Thanks are to
be expressed as well to the same organization for the grant given to Dr. J. Möller
for a stay in Sofia in 2005 allowing him to perform joint work with both authors at
the Institute of Physical Chemistry of the BAS. This prize allowed also one of the
authors to perform joint research with Prof. C. Ruessel at the Otto-Schott Institute of
the Friedrich-Schiller University in Jena. In particular, it allowed I. Gutzow et al. to
perform investigations with DARA in Cologne on crystallization experiments under
cosmic conditions discussed in details in Chap. 14. Here particular thanks are to
be expressed to DARA for the financial support for this cosmic project. Also of
significance for the development of the thermodynamic aspects of glass science
problems treatment were the three Glass and Entropy Workshops, organized in
2008, 2009, and 2012 by our colleagues L. Wondraczek and R. Conradt initiated
by discussions at the 21st ICG Congress in Strasbourg in 2007. In these discussions,
the significance of thermodynamic thinking was brought to its full development,
especially when it turned out necessary to be used in analyzing and even in
rejecting not sufficiently founded opinions. J.W.P.S. would like to express his
particular gratitude to the highly interesting cooperation with BASF Ludwigshafen
(Dr. H. Baumgartl) on technological problems of production of polymeric foams,
to Dr. F.-P. Ludwig (QSIL Langewiesen) for long-standing scientific cooperation
including the analysis of a variety of problems of the technology of silicate glass
production, and to Dr. O. Hellmuth for the cooperation on different aspects of the
physics of the atmosphere and the influence of phase formation processes on its
dynamics.

The evolution of ideas themselves, the developing knowledge of the authors in
cooperation and discussion with their protagonists or antagonist gave impetus to
new developments: development new to both authors and to their colleagues in
many parts of glass science. This development as it took place in the last 15 years
is summarized here in Chap. 14 of the present second edition of our monograph.
The first publications, in this new direction were a series of papers beginning in
2000 by one of the present authors and his Bulgarian colleagues and continued in
collaboration of both present authors. In the framework of these first publications
we have to mention our Bulgarian colleagues V. Yamakov, F. Babalievski, and D.
Ilieva and in particular our American colleague, Prof. L. David Pye. In the following
period of joint developments, we have especially to mention the contributions of J.
Möller, B. Petroff, S. Todorova, and I. Avramov. In this time, we had to introduce
into the treatment of vitrification one of the most specific notions of thermodynamic
of irreversible processes: the entropy production accompanying any irreversible
process. This analysis was then continued in a series of papers by J.W.P. Schmelzer
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with his German colleagues from the Polymer Physics Laboratory of C. Schick in
Rostock in cooperation with T. V. Tropin from Dubna, Russia, and then with R.
Pascova and quite recently in application of thermodynamics of glasses to problems
of electrochemistry with L. Wondraczek and N. Jordanov. Finally, we would like
to acknowledge the support of A. S. Abyzov in the course of the preparation of the
present book and to N. Jordanov for similar assistance and especially in writing of
Chap. 14.

In this way, the present two authors hope to have initiated and brought to a new,
higher level of understanding the analysis of vitrification and of the properties of
glasses in the most natural way possible: in the framework of thermodynamics
of irreversible processes. It turned out that the process of glass transition can be
described in a generic way out of first principles of thermodynamics of irreversible
processes without introducing additional approximations. For many years, the
peculiarities of glass and especially the complicated nature of its thermodynamics
led many authors into the belief that new and more new glassy models are necessary
in order to describe glass and improve the level of its understanding. Our experience
shows that in fact it is not the development of more and more new models but
a better understanding of the existing sound thermodynamic basis in the form of
the thermodynamics of irreversible processes which is of major significance in
developing a new understanding of glass science.

For several years, we performed intensive work trying to reorganize our first
monograph: we tried to add several new topics and to introduce new ideas and the
concepts of the thermodynamics of irreversible processes in a more advanced form
into the original structure of the first edition. The realization of this task turned out
to be a very difficult problem not solved by the present authors. So we tried to bring
to the attention of the devoted readers of our book on the thermodynamics and the
kinetics of the vitreous state in its initial formulation, adding in Chap. 14 and in
several footnotes a brief account of these new developments which followed since
1996 both from our own work and in the publications of colleagues who worked in
the same field of science. We have tried to summarize also in our already-mentioned
second monograph most of the ideas developed in the time 1996–2010.

We hope that this way of preparing the second edition of this monograph is the
most appropriate one and that most colleagues, who would like to try to begin and
continue study of glasses, would like to have the original form of our first book as an
introduction into thermodynamics in its essentials and especially also the application
of thermodynamics and kinetics to the processes of crystallization of glasses in
the form as they are given in the first edition. So following this believe and the
outspoken advise of several colleagues, we decided to prepare the second edition of
our book preserving its original kernel, however, extending it in adding the following
parts: (i) in Chap. 14, the development of the generic way of treating glasses and
glass transition in the way this was done mainly by the present authors is reviewed
briefly including also new developments in the theory of phase transformation
processes in glass-forming systems. (ii) With footnotes, some necessary corrections
and new developments are introduced which have become apparent 15 years after
the first publication. (iii) The main text is reprinted in an widely identical form as in
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the first edition except minor corrections, for example, of several misprints. (iv) In
the second edition, we have provided our book with an index.

We hope that in such a combination the interested reader will find the optimal
way to follow the developments as they have been initiated and performed by the
present authors and may be even of help to find better ways of further developing
the science of glass. In this way, we hope to bring to the attention of our colleagues
interested in the theory and the application of glasses a book which can be used
as a bridge between classical thermodynamics and the classical way of treatment
of the theory of glasses in an approximative approach following the new ideas and
possibilities opened by the thermodynamics of irreversible processes. This science
in the opinion of the present authors is the only theory, which indicates new ways
in which all these strange physical states denoted as vitreous or glassy states may
be treated from a simple and sound theoretical standpoint. For many years, glass
science is never any more the story about the Egyptian queen Hatseputh (1500 BC)
and the glassy beads of her necklace nor the story of fine wine glasses and even
not of optical glasses: it is now more and more the new material in sun-energy
convertors, of glassy quick-dissolving medicines, of frozen-in life and anabiosis,
and even of a variety of processes taking place in the universe. Time has come to
understand that although glass is not the fourth state of matter as proclaimed by
enthusiastic glass researchers of the 1920s, it is one of the most interesting physical
states, in which matter can exist. We hope that the renewed second edition of our
book will help both people, experienced in glass and its problems, and newcomers,
even students in materials science, in physics and in physical chemistry, to learn
something new about one of the oldest materials mankind has ever employed.

Sofia, Bulgaria Ivan S. Gutzow
Rostock, Germany, 2012 Jürn W.P. Schmelzer



Preface to the First Edition

The present book is devoted to problems of a physically very important state of
condensed matter – the vitreous state. We tried to summarize here the experimental
evidence and the different theoretical approaches – structural, thermodynamic, and
those of statistical physics – connected with the formation, the kinetic stability,
and with the general nature of glasses as a particular physical state. In addition, a
summary is given on the information available concerning processes of nucleation
and crystallization of glass-forming systems; on methods of preventing or, in
contrast, catalyzing crystallization in vitrifying liquids; on the kinetics of nucleation;
on the modes of crystal growth in undercooled melts; and on the devitrification of
glasses.

It was our aim to summarize in the present volume the basic principles and the
most significant developments of a newly emerging science – glass science – and
to show that, at least, in principle, any substance can exist in the vitreous state.
Moreover, we have tried to demonstrate that the characteristic properties of the
vitreous state may be attributed under certain conditions not only to systems with
an amorphous structure (like the common glasses) but also to a number of other
states of condensed matter including the crystalline one. This ambitious program
includes problems and requires the application of methods from different scientific
disciplines: classical thermodynamics and, in particular, the thermodynamics of
irreversible processes, statistical physics, structural modeling and rheology of liq-
uids, theory of phase formation, and crystal growth. In some cases, more advanced
mathematical methods have also to be used.

Proceeding with the realization of our program, we recognized that we could
not expect all our readers to be equally experienced in all of the mentioned fields.
Although they have the common interest in the fundamentals of glass science, they
may study or work in very different fields of science and technology. With this
idea in mind, we decided to include in the respective chapters short discussions
of the basic assumptions and results of different scientific approaches applied to
the interpretation of experimental results concerning the structure and properties
of vitreous materials. In this way, the present book may serve as an introduction
into glass science from two points of view: on one hand, with respect to the basic

xiii
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experimental results concerning the vitreous state and their theoretical analysis as
well as to the methods applied in this respect. On the other hand, it is intended to give
the reader the opportunity of following the argumentation in other more specialized
books and articles on glass science that already exist and, as we hope, also those
which will be written in future.

The mentioned general attitude in describing the vitreous state and its general
character – the concentration on fundamental aspects and the broad scope of
the discussion ranging from the introduction into basic ideas to the most recent
developments – distinguishes, as we hope, the present book from any other of the
existing monographs devoted to glasses, or more generally, to the description of
disordered structures. The realization of such a program is, of course, a difficult
task, and only the reader can decide whether we have succeeded in finding the right
compromise between a resume of modern results and an introduction into the basic
ideas of glass science.

Of help in this respect was a joint course of lectures we prepared and held
together at the University of Rostock in 1990 as well as lecture courses on the
fundamentals of glass, given by one of us at the Technical Universities of Bourgas
and Sofia. Both authors have been working for years on the problems the book
is devoted to. Thus, it was natural that many of our own results, obtained at part
in close cooperation, are reflected in it. This long-standing cooperation also had a
major impact on the way the book was prepared: in the present monograph, each
chapter, any page is written by both authors, is the result of manifold repeated
discussions of the respective scientific problems, of the search for the best way of
outlining the respective ideas and results. In this way, of course, both of us also have
to take the responsibility for any mistakes or shortcomings.

Many of the results, outlined in the book, were obtained with the help of col-
leagues and coworkers. We would like to express our gratitude to all our coauthors
for giving permission to use their published or even as yet unpublished results. Here
we have to mention, in particular, Dr. I. Avramov, Dr. J. Bartels, Dr. A. Dobreva-
Veleva, Dr. E. Grantcharova, I. Gerroff, F.-P. Ludwig, Dr. M. Marinov, Dr. A.
Milchev, Dr. J. Möller, E. Pancheva, Dr. E. Popov, Dr. R. Pascova, Dr. I. Penkov, B.
Petrov, Prof. B. Samouneva, Dr. F. Schweitzer, Dr. H. Tietze, and Dr. I. Tomov. In the
process of formation of the ideas outlined in the present book, we could benefit from
numerous discussions with colleagues at the institutes, at meetings, colloquia, and
conferences, from common efforts to find the most appropriate way in interpreting
and understanding the properties of vitreous materials and glasses. We are indebted
to many people who helped us in this way in writing the book. Here we would
like to mention first Prof. R. Kaischew (Sofia), Prof. S. Christov (Sofia), Prof. H.
Ulbricht (Rostock), and Prof. W. Ebeling (Berlin) who supported our work in many
respects. Major parts of the results included in the book were obtained at the Institute
of Physical Chemistry of the Bulgarian Academy of Sciences at a time when an
atmosphere of discussion and fruitful competition had been created and maintained
by a great scientist and organizer of science, the founder of the institute, Prof.
Kaischew. Many of the following pages are devoted to the results in the physics of
crystal growth obtained by him. We would like to express our sincere thanks to many
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other colleagues from Sofia, Prof. D. Kashchiev and Prof. I. Markov; from Rostock,
Prof. G. Röpke, Dr. R. Mahnke, and Dr. U. Lembke; and from the international
scientific glass and crystallization, community, Prof. O. V. Mazurin (St. Petersburg),
Prof. D. Uhlmann (Boston), Prof. L. D. Pye (Alfred University, New York), Prof. A.
A. Chernov (Moscow), Prof. V. V. Slezov (Kharkov), Prof. W. Vogel (Jena), Dr. W.
Goetz (Jena), Prof. W. C. Johnson (Pittsburgh), and Dr. W. Vogelsberger (Jena), who
helped with ideas, suggestions, fruitful criticism, or in any other form. We would
also like to commemorate here the common efforts and many results obtained with
our late colleague Dr. S. Toschev. One of us would like to remember with love
and appreciation the memory of his father, Prof. Stoyan Gutzow, who introduced
many students and also his son to his knowledge and admiration for problems of the
technology and science of glass.

As already mentioned, the present book is the result of long-standing cooperation
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Chapter 1
Introduction

Silicate glasses belong with pottery, ceramics and bronze to the oldest materials
employed by men. This early widespread application is in some respect due to
the broad distribution of glasses in nature. As an example, magmatic rocks can
be mentioned, which consist to a large degree of vitreous silicates or completely
amorphous natural glasses such as obsidian or amber. It is well-known, that the
natural glass obsidian served as a material for the preparation of the first cutting
tools of primitive men. In the ancient cultures of Central America, obsidian served
as the material for the ritual knifes of high priests.

The wide distribution of glasses in nature is not due to chance. The inner part
of the earth, characterized by very high values of pressure and temperature, is itself
an enormous glass-forming melt. Processes of crystallization and glass-formation
connected with the eruption of volcanos and the more or less abrupt cooling
processes of parts of this melt determine to a large degree the course of geological
processes and the structure and properties of the lithosphere. Natural glasses are
widespread not only on earth but also on the moon as it became evident from the
investigation of samples of lunar rocks brought to earth by the lunar expeditions
(see, e.g., Pye et al. [653]).

The first applications of glasses in primitive societies for a limited number of
purposes was followed by a long evolution to the modern glass industries and glass
science. From the point of view of the variety of properties of glasses and the
spectrum of possible applications the importance of different glasses can hardly
be even estimated. The validity of this statement becomes evident if one tries to
imagine for a while things surrounding us in everyday life without the components
made of vitreous materials. Technical glasses like chemically resistant glass or
optical glasses are also well known to everyone. Imagine, for example, a chemical
plant, a physical laboratory, a car or a dwelling house without glasses or let us
think about the importance of silicate glasses for optical devices, in particular,
in microscopy and astronomy.

In addition to the classical oxide and particularly silicate glasses in the last
decades new classes of vitreous materials have gained importance, consisting of
substances or mixtures of substances for which the possibility of existence in the
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2 1 Introduction

vitreous state was thought as being exotic or even impossible. One example in this
respect are metallic glasses. Metallic glasses in a period of about 10 years were
transferred from a stage of exotic research to the stage of production and world-wide
technological application. Similar examples are glassy polymers or vitreous carbon,
glass-forming chalcogenide or halide systems. The development of modern methods
of information technology e.g. of cable TV is also based on glass, on extremely pure,
defect-free vitreous fibres with particular optical properties.

With the increase of the number of substances, which can be obtained in the
vitreous state, also the variety of properties and possible applications of glasses
has been increased. Beyond the traditional applications in technology and science,
glassy materials are also used as substitutes for biological organs or tissues, e.g., as
prostheses even in ophthalmology. Glass-forming aqueous solutions with biolog-
ically relevant compositions are used as a carrier medium for the freezing-in
of biological tissues. Thus, it seems that even life can be frozen in to a glass
thus solving the problems of absolute anabiosis within the vitreous state. Porous
silicate glass particles are used to supply nutrient solutions to microbial populations
and slowly soluble glasses containing exotic oxides are used as an ecologically
compatible form of micro-element fertilization.

Besides pure glasses, glass-ceramics like Pyroceram, Vitroceram, Sital – partly
crystalline materials formed from devitrifying glasses – are also gaining in impor-
tance. In such materials the transformation of the melt into the desired vitro-
crystalline structure is initiated by a process of induced crystallization usually
caused by the introduction of insoluble dopants (crystallization cores or surfactants)
into the melt. As a result heterogeneous materials are formed in which the properties
of glasses and crystals are combined. In this way an astonishing variety of
new materials with extreme properties and unusual possibilities of application is
obtained: classical enamels, glass-ceramics (like Pyroceram) and so called glass
ceramic enamels give an example in this respect.

The widespread application and development of different vitreous materials and
their production was connected with a thorough study of related scientific and
technological aspects, resulting in the publication of a number of monographs,
devoted to special classes of vitreous materials or special technological processes
like the technology of silicate glasses, glassy polymers, metallic glasses. In these
books mainly specific properties of the particular glasses discussed or of the
technological processes connected with their production are analyzed.

The aim of the present book is different. The specific properties of various
vitreous materials are not studied in detail but the attempt is made to point out
the main fundamental properties and features which are common to all glasses
independent of the substrate they are formed from and the way they are produced.
Hereby particular attention is directed to the specification of the thermodynamic
nature of any glass independent of its composition or any other specific properties.
Special glasses or technologies connected with their production will be discussed
only as far as it is desirable as an illustration of general statements or conclusions.

The present monograph is structured as follows. In Chap. 2 we first give a phe-
nomenological description of processes which can be observed during the cooling of
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glass-forming melts. Properties of the melts and the glasses are described together
with the way of evolution of historically important ideas and suggestions concerning
the nature of the vitreous state and the mechanism of glass formation. The basic
definitions, derivations and equations, required for the theoretical interpretation
of the experimental results, are introduced and discussed briefly to allow even
non-specialists in glass science to follow in detail the conclusions derived later.
The experimental results summarized in this chapter give the basis for a test and
verification of theoretical developments outlined in the subsequent parts.

A detailed analysis of the experimental results and their theoretical interpretation,
given in Chap. 2, leads to the conclusion, that glasses from a thermodynamic point
of view are frozen-in non-equilibrium systems. The thermodynamic description of
such states and their specific thermodynamic properties is outlined in Chap. 3. This
discussion is based on the general postulates of the thermodynamics of irreversible
processes and, in particular, on the method of description of non-equilibrium states,
developed by De Donder. The thermodynamic analysis is followed in Chap. 4 by an
outline of basic ideas concerning the structure of different glasses.

Chapter 5 is devoted to statistical-mechanical model calculations of properties of
glass-forming melts which allow one an interpretation of experimental observations,
for example, in the framework of the free-volume theory of liquids. In Chaps. 6–10,
criteria are developed to answer the question under which conditions a given
substance can be brought into the vitreous state. Of major importance in this respect
are problems of the kinetics of nucleation (Chaps. 6 and 7) and crystal growth
(Chaps. 8 and 9) and factors determining the overall course of phase transformations
in glass-forming systems (Chap. 10). These processes may be affected considerably
by a primary liquid phase separation as outlined in detail in Chap. 11.

The crystallization of glass-forming melts, its initiation and control or inhibition,
respectively, determines to a large degree the possibility to transform a melt into
a glass or to synthesize a glass-ceramic material with a predetermined structure,
degree of crystallization and desired properties. On the other hand, crystallization
processes and phase transformations in glass-forming melts have served as model
systems for the development and verification of different concepts concerning
the kinetics of phase transformation processes also in other fields of science and
technology. By both reasons the derivation of criteria of glass formation is started
with a thorough discussion of the kinetics of nucleation and growth processes.

The criteria for glass formation derived in Chap. 10 show that there is no principal
division between different substances with respect to the ability to be transformed
into the vitreous state. For some substances the conditions for glass formation can be
realized easily in laboratory, for other materials sophisticated methods, e.g., ultra-
rapid cooling, vapor quenching or plasma sputtering have to be applied. For a third
group of substances the criteria obtained indicate that even the most elaborated of
the existing vitrification techniques developed till now with cooling rates reaching
about ten millions degrees per second are not sufficient to produce a glass. There is,
however, no principal limitation that with more powerful methods these substances
could be also vitrified in future. From such a point of view it follows as a general
consequence that the vitreous state is a possible form of existence of, in principle,
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all pure substances or mixtures. In this respect, glass science is no more the
description of a limited number of materials but a general theory for a state, possible
for practically all substances.

The transformation of more and more materials into the frozen-in non-
equilibrium state of a glass is connected also with a substantial change in the
meaning of the word glass. Originally under glasses only amorphous (in the sense
of non-structured) frozen-in non-equilibrium systems were understood. At present
every frozen-in non-equilibrium state (non-amorphous systems included) is denoted
sometimes as a glass, e.g., frozen-in crystals, crystalline materials with frozen-in
magnetic disorder (spin glasses) etc.

Glass-forming melts represent a unique material also with respect to their
rheological properties. In particular, in the vicinity of the transformation region from
the melt to a glass glass-forming systems cannot be considered usually as classical
Newtonian liquids. The specific rheological properties of glass-forming melts are
of significance for most of the technological processes in glass production and also
for processes of crystallization and cluster growth. This is the reason why these
properties are considered in detail in Chap. 12.

As it is seen from the given overview of the contents the present book is directed
to an analysis of the fundamental problems of glass science which are of importance
for the understanding of the properties of glasses, in general. In this discussion of
the basic ideas concerning the vitreous state the historic course of their evolution
is also briefly mentioned. Hereby not a chronologically exact or comprehensive
description is attempted but a characterization of the inner logic of this evolution,
the interconnection of different ideas. This approach implies that in addition to the
most fruitful concepts and ideas, which, as it turned out later, were real milestones in
the evolution of glass science, also proposals are analyzed, which already at the time
of their formulation or by the subsequent developments were shown to be incorrect
or even misleading, at least, as far as it is known today. To the opinion of the authors
only by such an approach can a correct picture of the evolution of science as a
struggle between different or even contradicting ideas be given. On the other hand,
the detailed analysis of differing proposals and the proof that some of them are not
correct is of an undoubted heuristic value. Such an approach can also prevent any
overenthusiasm with respect to insufficiently substantiated new hypotheses or to old
already refuted ideas presented in a modern form. This was one of the leading ideas
in writing the first edition of the present book. It is also followed in this second
edition.

A discussion of the vitreous state and of the history of glass science would
be incomplete without a short characterization of the contributions of, at least,
some of the men, whose names are closely connected with the development of the
modern theory of glasses. G. Tammann, O. Schott, E. Berger, I. F. Ponomaryev,
A. Winter-Klein, D. Turnbull, A. A. Lebedev, E. A. Porai-Koshits and many
others became well-known in science mainly by their investigations of basic
properties of glasses, of the nature of the vitreous state, of the interconnections
between crystallization and glass formation, of the structure of glasses. Important
insights into the understanding of glass structure are due also to such outstanding
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representatives of structural chemistry, in general, like V. M. Goldschmidt, G. Hägg,
L. Pauling and J. Bernal. V. M. Goldschmidt was the first to develop geometrical
or crystal-chemical criteria for glass formation, which allowed one the prediction
of a whole new class of glass-forming systems. Based on Goldschmidt’s ideas
W. H. Zachariasen formulated his beautiful model of glass structure while J. Bernal,
also using a geometric approach, indicated in the early 1960s the possible existence
of metallic alloy glasses.

The scientific importance of problems connected with the characterization and
the properties of the vitreous state as a specific physical state also becomes
evident from the fact that some of the most outstanding physicists and chemists
of the past century, people like W. Nernst, A. Einstein, F. Simon, L. Pauling, I.
Prigogine, Ya. I. Frenkel, L. Anderson, N. Mott were involved in the study of
glasses. Thus, A. Einstein in a famous article, devoted to the basic principles of
statistical physics, as early as in 1914, mentioned the possibility that glasses have to
be considered not as equilibrium but as non-equilibrium systems. This hypothesis
was verified many years later by F. Simon, who started his investigations trying to
reconcile the behavior of glasses with the Third law of thermodynamics, formulated
by W. Nernst. These investigations led to a reformulation of the Third law and gave
a stimulus for the extension of thermodynamics to non-equilibrium states.

G. Tammann in addition to his own pioneering work on glass properties and
the process of vitrification was also the first scientist to try to summarize the basic
results obtained at his time in his remarkable book “Der Glaszustand”, published
first in 1933. The present monograph represents an attempt to take up Tammann’s
approach and to summarize the basic principles and ideas of glass science, including
the new developments, in one volume. Hereby we tried to follow – we hope,
successfully – the advice given by Albert Einstein: “Everything should be done as
simple as possible but not simpler”.



Chapter 2
States of Aggregation, Thermodynamic Phases,
Phase Transformations, and the Vitreous State

2.1 The Vitreous State: First Attempts at a Classification

From a molecular-kinetic point of view all substances can exist in three different
states, as gases, liquids and solids. These three states of aggregation of matter (from
the Latin word: aggrego – to unite, to aggregate) are distinguished qualitatively
with respect to the degree of interaction of the smallest units of the corresponding
substances (atoms, molecules) and, consequently, with respect to the structure
and mobility of the system. Gases are characterized, in general, by a relatively
low spatial density of the molecules and a relatively independent motion of
the particles over distances significantly exceeding their size. The average time
intervals, �f , of free motion in gases are considerably larger than the times of strong
interaction (collisions, bound states) of two or more atoms or molecules. In a first
approximation the free volume in a gas is equal to the volume occupied by the
system. The molecules can be treated in a such an approximation as mathematical
points (perfect gases); however, in more sophisticated models the volume, shape and
the interaction of the molecules have to be accounted for. Gases are compressible;
with a decreasing volume of the gas the pressure increases as expressed, e.g., for a
perfect gas by Boyle-Mariotte’s law.

Liquids have a significantly higher density than gases and a considerably reduced
free volume. Thus, an independent translation of the building units of the liquid
is impossible. The molecular motion in liquids and melts gets a cooperative
character and the interaction between the particles determines to a large extent the
properties of the system. Moreover, the compressibility is much smaller than for
gases, simple liquids are practically incompressible. According to an approximation
due to Frenkel (1946) [233] liquids can be described in the following way: the
motion of the building units in a liquid can be considered as an oscillation around
temporary average positions. The temporary centers of oscillations are changed
after an average stay time, �R. The mean distance between two subsequently
occupied centers of oscillation is comparable with the sizes of the molecules. Every
displacement of the building units of the liquid requires thus a more or less distinct
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way of regrouping of the particles and an appropriate configuration of neighboring
molecules, e.g., the formation of vacancies in terms of the “hole” theories of liquids
to be discussed in Chap. 5. Though such a picture of the molecular motion in liquids
can be considered only as a first approximation it explains both the possibility of a
local order and the high mobility of the particles as a prerequisite for the viscous
flow and the change of the form of the liquids.

A quantitative measure for the ability of a system to flow is the shear viscosity, �.
According to Frenkel the shear viscosity, �, and the average stay time, �R, are
directly connected. This connection becomes evident by the following equations
(Frenkel (1946) [233])

�R D �R0 exp

�
U0

kBT

�
(2.1)

and

� D �0 exp

�
U0

kBT

�
: (2.2)

By U0 the activation energy for the viscous flow is denoted, kB is the Boltzmann
constant and T the absolute temperature. More accurate expressions for the
temperature dependence of � will be given in Sect. 2.4.1. Nevertheless, already
Eqs. (2.1) and (2.2) show in a qualitatively correct way the significant influence
of temperature both on the viscosity � and the relaxation time �R. Liquids like
gases have no own shape but acquire the shape of the vessel they are contained in.
They are amorphous in the classical sense of the word, i.e., a body without its own
shape (from the Greek word morphe: shape; amorph: without shape). This classical
meaning of the word amorphous is different from the modern interpretation. Today
amorphous bodies are understood as materials without a long range order, which is
a characteristic property of crystals.

Solids in classical molecular physics were identified initially with crystals.
Their structure can be understood as a periodic repetition in space of a certain
configuration of particles, of a certain elementary unit. In addition to the local order,
found already in liquids, a long range order is established resulting in a possible
anisotropy of the properties of the crystals. The motion of the atoms consists,
at least, for a perfect crystal of an oscillation around time-independent average
positions. This type of motion is connected with the absence of the ability to flow
and the existence of a definite shape of crystalline solids.

The properties of gases and liquids are scalar characteristics, while the periodic-
ity in the structure of the crystals determines their anisotropy and the vectorial nature
of their properties. Liquids and solid crystals belong to the so-called condensed
states of matter. In condensed states the intermolecular forces cannot be neglected,
in principle. This classification is, of course, useful only as a first rough division
between different states of matter. It has, however, its limitations. So it was shown
that some gas mixtures may undergo decomposition processes, which are the result
of the interaction of the particles. Liquids can be brought continuously into the gas
phase (see van der Waals (1873) [879]) and vice versa. Perfect absolutely regular
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crystals do not exist in nature, moreover, under certain conditions crystals can also
show some ability to flow, in particular, so-called plastic crystals. Now we also
know that, besides topological disorder, also frozen-in orientational disorder even
in crystals can produce a behavior similar to that observed in glasses.

Despite these limitations, one of the first questions discussed with the beginning
of a scientific analysis of glasses was the problem, to which of the mentioned states
glasses have to be assigned to. Experimental results indicated, on one hand, that
glasses have a practically infinite viscosity, a definite shape and the mechanical
properties of solids. On the other hand, typical properties of liquids can also be
found in glasses: the amorphous structure, i.e., the absence of a long-range order
and the isotropy of the properties.

As a solution to this problem W. Parks (1925) [623], Parks and Hoffman
(1927) [624] and E. Berger (1930) [68] (see also Blumberg (1939) [85]) and
subsequently other authors proposed to define the vitreous state as the fourth
state of aggregation in addition to gases, liquids and (crystalline) solids. In this
connection we have to mention that similar proposals have also been developed (but
not accepted generally) with respect to other systems with unusual structure and
properties (liquid crystals, elastomers, gels etc.) introducing the fourth, fifth and
further states of matter. Already the considerable increase of the number of states of
aggregation, which would follow from the acceptance of such proposals, shows that
the generalization obtained with the classical division of the states of aggregation
would be lost. A considerably more powerful argument against such proposals is
connected with the limits for existence, stable coexistence and the possibility of a
transformation between different states of aggregation.

Sometimes the partially or totally ionized state of matter, the plasma state, is
denoted as the fourth state of aggregation (compare Arcimovich (1972) [18] and
Frank-Kamenetzki (1963) [231]). The details of the transition of matter into the
plasma state cannot be discussed here, it is very different as compared with the
transformations between the different states of aggregation – gases, liquids and
crystals – discussed so far. It seems also that in attributing the term fourth state
of matter to the plasma state physicists are more or less emotionally influenced
by the beautiful schemes of ancient Greek philosophy (e.g., Anaxagoras and,
especially, Empedocles (see, e.g., J. Bernal (1957) [71]) and its four elemental forces
constituting the universe: air (! gas), water (! liquid), earth (! solid), fire (!
plasma)).

The modern concepts concerning the division of matter into different states
of aggregation and the structural characteristics of these states stem from the
molecular kinetic ideas of the eighteenth century. These ideas were supplemented
by a thermodynamic analysis. Thermodynamics defines the states of aggregation
as thermodynamic phases and the transition in between them as particular cases of
phase transformations. This fact requires a thorough discussion of the definition of
thermodynamic phases and of the thermodynamics of phase transformations as it
is presented in the following section. Here we have to mention that, if we accept
the point of view that states of aggregation are thermodynamic phases, we can call
glasses an additional state of aggregation only, if we can prove that a glass fulfils
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the requirements thermodynamics connects with the notation thermodynamic phase.
Such a proof cannot be given, however, as it is shown in the subsequent sections. In
order to enable a thorough analysis of these problems to be made in the following
sections the basic thermodynamic ideas in this respect are outlined.

2.2 Basic Thermodynamic Relationships

2.2.1 The Fundamental Laws of Classical Thermodynamics
and Some Consequences

Classical thermodynamics is based mainly on three postulates, the three fundamen-
tal laws of thermodynamics. According to the first postulate there exists a function
of state U , the so-called internal energy of the system, which depends only on the
actual state of the system and not on the way the system was brought into it. The
change of the internal energy (First law of thermodynamics) can be expressed as
(Kubo (1968) [487]; Bazarov (1976) [53])

dU D dQ C dAC dZ: (2.3)

It follows that the internal energy of a thermodynamic system is changed, if energy
is transferred to it from other bodies either in form of heat dQ (microscopic form
of energy transfer), by work dA (macroscopic form of energy transfer) or by the
transfer of some amount of matter dZ.

If one specifies the expressions for dQ, dA and dZ one obtains with the Second
law of thermodynamics, Eq. (2.4),

dS � dQ

T
; (2.4)

the following relationship between another function of state, the entropy S , the
absolute temperature T , the internal energy U , the pressure p, the volume V , the
chemical potentials �j and the mole numbers nj of the independent molecular
species (components)

dU � TdS � pdV C
X
j

�j dnj : (2.5)

This equation is valid only for homogeneous macroscopic bodies. Electromagnetic
fields, elastic strains or surface effects are not considered here; in part, they will be
discussed later.

In Eqs. (2.4) and (2.5) the equality sign holds for so-called quasi-static or
reversible processes. Reversible processes are defined by the criterion that a process
carried out with the system can be reversed without any variations in the states of
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other thermodynamic systems to remain. Reversible processes are realized in nature
if the variation in the state of the system proceeds via a sequence of equilibrium
states, i.e., when the characteristic times of change of the external parameters
are small as compared with the corresponding relaxation times of the system to
the actual equilibrium state (quasi-static or quasi-stationary processes). Equilibrium
states are distinguished by the following properties: (i) for fixed external parameters,
no macroscopic processes proceed in the system, (ii) the macroscopic properties are
determined only by the actual values of the external thermodynamic parameters and
not by the way they are established; they do not depend on the pre-history of the
system.

The second part of the first definition of an equilibrium state is needed to
distinguish between true equilibrium and stationary or frozen-in non-equilibrium
states, for which the evolution to equilibrium is hindered either by the superimposed
boundary conditions or by the inhibition of the kinetic mechanisms responsible for
approaching equilibrium. For quasi-stationary processes, Eqs. (2.4) and (2.5) may
be written as

dS D dQ

T
; (2.6)

dU D TdS � pdV C
X
j

�j dnj : (2.7)

An integration of Gibbs’s fundamental equation, Eq. (2.7), yields

U D TS � pV C
X
j

�j nj : (2.8)

From the combined First and Second laws of thermodynamics as given by
Eq. (2.7) it follows that for equilibrium states the internal energy is uniquely
determined by the values of S , V and nj . If the functional dependence U D
U.S; V; n1; n2; : : : ; nk/ is known, all thermodynamic properties of the system can
be determined by a derivation of U with respect to the independent variables, i.e.,

T D
�
@U

@S

�
V;nj

; �p D
�
@U

@V

�
S;nj

; �j D
�
@U

@nj

�
S;V;nj

: (2.9)

Thus it becomes evident, why in analogy to classical mechanics the internal energy
U (and other thermodynamic functions having analogous properties) are denoted as
thermodynamic potentials at the corresponding conditions.

For the analysis of the properties of different systems, including glass-forming
melts, two other thermodynamic functions, the enthalpy H and the free enthalpy
G (or Gibbs’s free energy) are of particular importance. This is connected with the
circumstances that condensed systems including glass-forming melts are usually
investigated at a constant external pressure, the atmospheric pressure. The variable
parameter is then the temperature of the system.
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The enthalpyH is determined thermodynamically by

H D U C pV: (2.10)

For a constant value of the external pressure, which is assumed to be equal to the
pressure inside the system (mechanical equilibrium), Eqs. (2.3), (2.7) and (2.10)
yield

dH D dQC dZ: (2.11)

Consequently, for closed systems .dZ D 0/ and isobaric conditions (p D const.)
the energy supplied to the system in form of heat is equal to the change of the
enthalpy.

From the definition of the heat capacity at constant pressure, Cp ,

Cp D
�
dQ

dT

�
p

; (2.12)

one obtains thus

Cp D
�
dH

dT

�
p

(2.13)

or, with Eq. (2.6),

Cp D T

�
dS

dT

�
p

: (2.14)

Similarly one gets for the heat capacity at a constant volume CV

CV D
�
dQ

dT

�
V

; (2.15)

CV D
�
dU

dT

�
V

; (2.16)

CV D T

�
dS

dT

�
V

: (2.17)

The Gibbs free energyG is defined by

G D H � TS (2.18)

or
G D U � TS C pV (2.19)

and with Eqs. (2.7) and (2.8)

dG D �SdT C Vdp C
X
j

�j dnj ; (2.20)
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G D
X
j

�j nj (2.21)

is obtained. In analogy to U the Gibbs free energy G is also a thermodynamic
potential if this quantity is known as a function of T , p and nj . In this case one
gets similarly to Eq. (2.9)

S D �
�
@G

@T

�
p;nj

; V D
�
@G

@p

�
T;nj

; �j D
�
@G

@nj

�
p;T;nj

: (2.22)

The application of Eqs. (2.9) and (2.22) requires the knowledge of the functions
U.S; V; nj / or G.T; p; nj /, respectively. These dependencies reflect the properties
of the particular system and cannot be established by pure thermodynamics. For the
determination of the thermodynamic potentials of a real system either calculations
based on statistical mechanics or on a distinct set of experimental measurements
have to be carried out. Following the second approach one possible way consists of
the experimental determination of the temperature dependence of the specific heats
Cp for different values of the pressure p.

Once the dependence Cp D Cp.p; T / is established experimentally, the
thermodynamic functionsH , S andG can be determined by (see Eqs. (2.13), (2.14)
and (2.22))

H.p; T / D H.p; T0/C
TZ

T0

Cp dT; (2.23)

S.p; T / D S.p; T0/C
TZ

T0

Cp

T
dT; (2.24)

G.p; T / D G.p; T0/ � S.p; T0/.T � T0/�
TZ

T0

dT

TZ
T0

Cp

T
dT: (2.25)

In most cases, the experimenter is interested in the knowledge of Cp, H , S and G
only at atmospheric pressure.

Equations (2.23)–(2.25) hold for any arbitrary reference temperature T0. They
can be simplified based on the Third law of thermodynamics. The Third law of
thermodynamics, established first by W. Nernst in 1906 (see Nernst (1918) [601];
Bazarov (1976) [53]), reads in the formulation by M. Planck (see Planck (1954)
[636]; Wilks (1961) [923]) that approaching zero of the absolute temperature the
entropy of a system in thermodynamic equilibrium becomes a constant, equal to
S0. This entropy value is independent of pressure or other possible thermodynamic
parameters and the state of aggregation of the substance considered. Since the
entropy is defined, according to Eq. (2.6), only with an accuracy of an additive
constant, this constant is set according to Planck’s well known proposal [636] equal
to zero.
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In a mathematical formulation the Third law can be written thus as

lim
T!0

S D 0 (2.26)

with the consequences

lim
T!0

Cp D 0; lim
T!0

CV D 0; (2.27)

lim
T!0

�
@G

@T

�
D lim

T!0

�
@H

@T

�
D 0: (2.28)

With the Third law Eqs. (2.23)–(2.25) are simplified to

H.p; T / D H.p; 0/C
TZ
0

Cp dT; (2.29)

S.p; T / D
TZ
0

Cp

T
dT; (2.30)

G.p; T / D G.p; 0/�
TZ
0

dT

TZ
0

Cp

T
dT: (2.31)

Another formulation of the Third law of thermodynamics can be given with
Boltzmann’s interpretation of the entropy S of a system as

S D kB ln˝: (2.32)

Here ˝ is the number of distinct microstates corresponding to one and the same
macrostate. In such an approach, the Third law is equivalent to the statement that to
the macrostate of the system for temperatures, T , tending to zero corresponds only
one (or a relatively small number, cf. Fermi (1937) [203]) of microstates.

2.2.2 General Thermodynamic Evolution Criteria, Stability
Conditions and the Thermodynamic Description
of Non-equilibrium States

So far only thermodynamic systems in equilibrium states and reversible processes
in between them have been discussed. In general, for systems in non-equilibrium
states, the inequality
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.dU /S;V;nj � 0 (2.33)

holds. For fixed values of the entropy, the volume and the number of moles of the
different components the internal energy decreases until in the equilibrium state a
minimum of U is reached. Similarly one obtains for the Gibbs free energy at fixed
values of p, T and nj

.dG/p;T;nj � 0: (2.34)

If we consider a homogeneous system and divide it artificially into two parts,
specified by the subscripts (1) and (2), respectively, then the entropy S , the volume
V and the mole number nj of the whole system can be written as

S D S1 C S2; V D V1 C V2; nj D nj1 C nj2: (2.35)

If S , V and nj are kept constant, spontaneous deviations of S1, V1 and nj1 result in
corresponding deviations of S2, V2 and nj2, i.e.,

ıS1 C ıS2 D 0; ıV1 C ıV2 D 0; ınj1 C ınj2 D 0: (2.36)

In the vicinity of equilibrium, which is characterized by a minimum ofU D U1CU2,
such changes do not vary the total value ofU . As a result one gets from the necessary
equilibrium conditions ıU D 0, e.g.,

ıU D
�
@U

@S1

�
ıS1 D

�
@U1

@S1
� @U2

@S2

�
ıS1 D 0 (2.37)

and (compare Eq. (2.9))
T1 D T2: (2.38)

Similarly one obtains

p1 D p2 (for planar interfaces) (2.39)

and
�j1 D �j2: (2.40)

In equilibrium the values of temperature, pressure and the chemical potentials are
the same throughout the system.

The sufficient equilibrium criterion

.ı2U /S;V;nj > 0 (2.41)

may be written also as (see Kubo (1968) [487])

ıSıT � ıpıV C
X
j

ı�j ınj > 0: (2.42)
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If only the temperature of a homogeneous system is changed, as a particular case
one obtains �

@S

@T

�
.ıT /2 > 0 (2.43)

and, consequently, (cf. Eqs. (2.14) and (2.17), see also Prigogine and Defay
(1954) [649])

Cp > 0; CV > 0: (2.44)

Equations (2.30) and (2.44) allow one in agreement with Eq. (2.32) the conclusion
that the entropy S of an equilibrium system for T > 0 is always positive.

Equation (2.34) shows further that, also for fixed values of p, T and nj ,
in non-equilibrium processes a change of G is possible. This statement implies
that the values of p, T and nj do not determine completely the state of a non-
equilibrium system. Suppose that it is necessary to introduce additional macroscopic
state variables �1; �2; : : : �m, which together with p, T and nj contain the whole
information about the macroscopic properties of the corresponding non-equilibrium
system. We denote these additional state variables f�g as internal or structural order
parameters. In such cases, G is determined by an expression of the form

G D G.p; T; nj ; �1; �2; : : : ; �m/: (2.45)

Since in equilibrium G is a function of p, T and nj , in this limiting case the
additional parameters �j must be also functions of p, T and nj , i.e., the relation

�
.e/
j D �

.e/
j .T; p; n1; n2; : : : ; nk/ (2.46)

has to be fulfilled. If the structural order parameters �j are defined in such a way that

they decrease with the approach to the respective equilibrium values �.e/j , we have

@G

@�j
� 0: (2.47)

The method of description of non-equilibrium states by the introduction of
additional structural order parameters was developed by De Donder (1936) [156]
(see also Prigogine and Defay (1954) [649]; Leontovich (1953) [504]). This method
will be used in Chap. 3 for the definition of the vitreous state and in order to
introduce the so-called fictive temperature as a characteristic quantity describing
the state of a glass.

2.2.3 Phases and Phase Transformations: Gibbs’s Phase Rule
and Ehrenfest’s Classification

The term thermodynamic phase (from the Greek word phasis: form of appearance)
was introduced by J.W. Gibbs (1875–1878) to characterize a definite equilibrium
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form of appearance of a substance. In Gibbs’s words the definition reads: “In
considering the different homogeneous bodies which can be formed out of any set of
component substances, it will be convenient to have a term which shall refer solely
to the composition and thermodynamic state of any such body without regard to its
quantity or form. We may call such bodies as differ in composition or state different
phases of matter considered, regarding all bodies which differ only in quantity and
form as different examples of the same phase. Phases which can exist together, the
dividing surfaces being plane, in an equilibrium which does not depend upon passive
resistances to change we shall call coexistent” (Gibbs (1928, p. 96) [249]).

According to this classical definition thermodynamic phases are different equi-
librium forms of appearance of one and the same substance. Every thermodynamic
phase is physically homogeneous and, in the absence of external fields, its thermo-
dynamic parameters are the same in each part of the volume occupied by it. In other
words, Gibbs’s definition implies that a phase is characterized by one well-defined
equation of state. Different thermodynamic phases may coexist in mutual contact in
equilibrium; the coexisting phases are divided by interfacial boundaries, where the
thermodynamic parameters of the substance change rapidly. The transformation of
a substance from one phase to the other is called phase transformation.

The notation thermodynamic phase is more restrictive than the term state of
aggregation. Inside a given state of aggregation a substance may exist in several
different phases like, e.g., the different phases of ice or the different modifications of
SiO2 (see, e.g., Tammann (1922) [818]). A thorough discussion of these problems
is given also, e.g., by van der Waals and Kohnstamm (1908) [881] and Storonkin
(1967) [808].

In a thermodynamic description of a heterogeneous system, consisting of more
than one, say r , phases, the thermodynamic potential G can be written as a sum of
the contributions of the r phases

G D G1 CG2 C : : :CGr: (2.48)

Interfacial contributions are neglected here as in the previous discussion. The
necessary equilibrium conditions read then (cf. Eqs. (2.38)–(2.40))

Tm D Tr; pm D pr; �jm D �jr ; m D 1; 2; : : : ; r � 1: (2.49)

The properties of the phase m can be determined if the functional dependence

Gm D Gm.Tm; pm; n1m; : : : ; nkm/ (2.50)

is known. According to the above given definition the properties of a phase do not
depend on the total quantity. Consequently, the state of one phase is characterized
by k C 1 variables, e.g., the temperature T , the pressure p and the independent
molar fractions xj ; j D 1; 2; : : : ; k � 1. The total number of variables needed
for the description of the properties of an r-phase system is, therefore, r.k C 1/.
In equilibrium between these variables .r � 1/.k C 2/ independent relationships
exist (compare Eq. (2.49)). The number of independent variables or the number of
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degrees of freedom is, therefore, f D r.k C 1/� .r � 1/.k C 2/ or

f D k C 2 � r: (2.51)

Equation (2.51) is denoted as the Gibbs phase rule. The way of derivation of this
rule demonstrates once more that the notation phase as it is introduced and used
by Gibbs is and has to be applied to equilibrium states only (see in this respect
also [487]).

During a change of the external parameters different types of transformations of
a substance from one phase into another one can be observed. The first classification
of such possible types of phase transformations was proposed by P. Ehrenfest (1933)
[183]. This classification will be summarized here briefly in application to one-
component systems.

For a one-component closed system the change of the Gibbs free energy in a
reversible process is given by (cf. Eq. (2.20))

dG D �SdT C Vdp: (2.52)

Since for one-component systemsG D �n holds (see Eq. (2.21)) Eq. (2.52) may be
rewritten as

d� D �sdT C vdp; (2.53)

where s and v are the molar values of entropy and volume of the system.
Equation (2.53) yields

s D �
�
@�

@T

�
p

; v D
�
@�

@p

�
T

: (2.54)

Possible dependencies G D G.T; p D constant/ and G D G.p; T D constant/
for two different phases are shown in Fig. 2.1. Only in the point of intersection of
the G.T /- or G.p/-curves the necessary conditions for equilibrium are fulfilled.
For the values of p and T corresponding to the point of intersection and denoted
here by Te and pe , a coexistence of the different phases is possible.

For fixed values of p, T and nj spontaneous processes are connected with a
decrease of the Gibbs free energy (cf. Eq. (2.34)). Consequently, in Fig. 2.1a, b the
lower branches of the curves correspond to the thermodynamically preferred more
stable state. In a process, e.g., of continuous heating, after Te is reached (Fig. 2.1a),
a transition from phase (2) to phase (1) is to be expected from a thermodynamic
point of view. The difference of the thermodynamic potentials is a measure of the
thermodynamic driving force of the process of phase transformation. The particular
way and the rate such processes proceed depend on additional thermodynamic and
kinetic factors discussed in detail in Chaps. 6 and 7.

Phase transformations of the form as depicted in Fig. 2.1a, b, according to
the classification of P. Ehrenfest (1933) [183], are denoted as first order phase
transitions. This notation originates from the fact that in an equilibrium two-phase
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Fig. 2.1 Possible dependencies (a) G D G.T; p D const./ and (b) G D G.p; T D const./
for two different phases, specified by (1) and (2), respectively. The points of intersection of these
curves determine the values of p and T for which an equilibrium coexistence of both phases is
possible. A behavior of such a type is typical for first-order phase transformations according to
Ehrenfest’s classification

state the values of the molar Gibbs free energies g of both phases coincide, while
the first derivatives with respect to p or T differ. It means that the relations

g.1/.T; p/ D g.2/.T; p/; (2.55)
�
@g.1/

@T

�
p

¤
�
@g.2/

@T

�
p

;

�
@g.1/

@p

�
T

¤
�
@g.2/

@p

�
T

(2.56)

have to be fulfilled. Here and in the following derivations small letters always refer
to molar values of the respective extensive variables.

Taking into account Eq. (2.22) the relations Eq. (2.56) are equivalent to

s.1/ ¤ s.2/; v.1/ ¤ v.2/: (2.57)

It follows that if a system is transferred from one phase to another in a first-
order phase transition, then the values of the entropy and volume per mole are
discontinuously changed. This change is connected with a qualitative variation of
the structure of the system and the release or adsorption of the latent heat of the
transformation (heat of melting, heat of sublimation, heat of evaporation). It is also
manifested in the discontinuous change of the molar enthalpy, h .h.1/ ¤ h.2//.

According to Gibbs’s phase rule a one-component two-phase equilibrium system
has one degree of freedom. Thus, the equilibrium value of the pressure can be
considered as a function of temperature. The type of dependence p D p.T / can
be derived from the equilibrium condition �.1/.p; T / D �.2/.p; T /. A derivation of
this equation with respect to T leads to the Clausius-Clapeyron equation

dp

dT
D s.1/ � s.2/
v.1/ � v.2/ : (2.58)
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Fig. 2.2 Phase diagram for
water with triple point
(Tr ; pr ) and critical point
(Tc; pc): Tr D 273:17K,
pr D 610:6 Pa; Tc D 647K,
pc D 22:1 � 106 Pa

The difference of the molar entropies can also be expressed through the molar latent
heat of the transformation q as

s.1/ � s.2/ D q

T
; (2.59)

which yields
dp

dT
D q

T .v.1/ � v.2// : (2.60)

By the determination of all possible p D p.T / curves representing different
phase equilibria of the same substance the well-known phase diagrams are obtained.
The point of intersection of three curves (triple point) corresponds to a three phase
system. According to Gibbs’s phase rule a three-phase equilibrium is possible only
for single points in the .p; T /-plane. This conclusion is illustrated in Fig. 2.2 for the
classical example of water-ice-vapor coexistence.

For second-order phase transitions both the molar free enthalpy and their first-
order derivatives are the same for both phases in the transition point, while the
second order derivatives differ. In addition to Eq. (2.55) we have to write

�
@g.1/

@T

�
p

D
�
@g.2/

@T

�
p

;

�
@g.1/

@p

�
T

D
�
@g.2/

@p

�
T

; (2.61)

�
@2g.1/

@p@T

�
¤
�
@2g.2/

@p@T

�
;

�
@2g.1/

@p2

�
T

¤
�
@2g.2/

@p2

�
T

; (2.62)

�
@2g.1/

@T 2

�
p

¤
�
@2g.2/

@T 2

�
p

:
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Fig. 2.3 Illustration of the (a) G D G.T; p D const./ and (b) G D G.p; T D const./ depen-
dencies for second-order phase transformations according to the classification of P. Ehrenfest. The
different phases are specified by (1) and (2), again

As a consequence it follows that in second order phase transformations no latent
heat is released by the system.

The second-order derivatives of the Gibbs free energy with respect to p

and T may be expressed through the thermodynamic coefficients. In general,
thermodynamic coefficients describe the reaction of a system with respect to the
variation of the external parameters of state. An often used set of independent
thermodynamiccoefficients consists of the heat capacity,Cp (cf. Eqs. (2.12)–(2.14)),
the thermal expansion coefficient, ˛, and the isothermal compressibility, �. The
thermal expansion coefficient ˛ and the compressibility � are defined by (Landau
and Lifshitz (1969) [495])

˛ D 1

V

�
@V

@T

�
p

; � D � 1

V

�
@V

@p

�
T

: (2.63)

Taking into account Eqs. (2.22) and (2.63) the inequalities Eq. (2.62), characterizing
second-order phase transitions, may be rewritten as

C .1/
p ¤ C .2/

p ; ˛.1/ ¤ ˛.2/; �.1/ ¤ �.2/: (2.64)

Equations (2.64) indicate that second-order phase transformations, according to the
classification of Ehrenfest, are connected with qualitative changes of the response
of the system with respect to a change of the external parameters. An illustration of
Eq. (2.62) and thus of second-order phase transitions is given in Fig. 2.3a, b. Here,
as seen from the figures, in contrast to first-order phase transitions, the tangents to
the curves representing both possible phases coincide in the transformation point,
while the curvatures of the G D G.T / and G D G.p/ curves differ.

For second-order phase transformations in analogy to the Clausius-Clapeyron
equation, in the form as given by Eqs. (2.58) or (2.60), relations can be derived
connecting the equilibrium values of pressure and temperature. Based on Eq. (2.61)
or the equations

s.1/ D s.2/; v.1/ D v.2/; (2.65)
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by a derivation with respect to T one obtains

dp

dT
D 1

V T

.C
.1/
p � C

.2/
p /

.˛.1/ � ˛.2//
; (2.66)

dp

dT
D .˛.1/ � ˛.2//
.�.1/ � �.2// : (2.67)

Since both these equations are equivalent, after an elimination of (dp=dT ) a relation
is obtained, connecting the changes of the thermodynamic coefficients in second-
order phase transformations

1

V T

�Cp��

.�˛/2
D 1: (2.68)

Equation (2.68) is called Ehrenfest’s equation.
Formally, Ehrenfest’s classification of phase transformations can be extended

to define transitions of any arbitrary order in dependence on the degree of the
derivatives, which become discontinuous. However, from the point of view of
an experimenter investigating the structure or the reaction of a given system in
dependence on the variation of some external parameters and identifying qualitative
changes with phase transformations, only first (qualitative changes of the structure)
and second order phase transformations (qualitative changes of the response) from
Ehrenfest’s classification scheme are of real physical significance.

We would also like to mention that Ehrenfest’s classification is far from being
complete. As it became evident by Onsager’s discussion of the Lenz-Ising model
(Onsager (1944) [611]), qualitative variations of the state or the reaction of a system
may exist, which cannot be described in the scheme discussed so far (see, e.g.,
Gebhardt and Krey (1980) [246]; Gunton, San Miguel, and Sahni (1983) [283]). For
a first discussion of the nature of the process of vitrification of glass-forming melts,
however, the remarkably simple classification of Ehrenfest is sufficiently accurate.

To allow one a direct comparison with the behavior of glass-forming melts in the
solidification range, the type of temperature dependence of the basic thermodynamic
quantities in first and second order phase transformations is summarized briefly
in Fig. 2.4. In first-order phase transformations a temperature dependence of the
thermodynamic quantities is observed as shown in Fig. 2.4a. In addition, the
Clausius-Clapeyron equation, Eq. (2.60), has to be fulfilled. Second-order phase
transformations are characterized by the curves shown in Fig. 2.4b and Ehrenfest’s
relations (2.66)–(2.68).
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Fig. 2.4 Temperature dependence of the thermodynamic functions G, H , S and of the specific
heat, Cp , of a system undergoing a first (a), respectively, second-order (b) phase transformation.
As an example for first-order phase transformations the transition melt-crystal is chosen, while
as an example for second order phase transformations an order-disorder transition with a �-type
Cp-curve is presented. In first-order phase transformations we have to expect Cp ! 1 for
T ! Tm as indicated in the figure by an arrow. Tm is the melting temperature, Te2 the second-order
transition temperature. With dashed lines the continuations of the curves into the respective region
of stability of the other phase are indicated which, however, can be realized in experiments only
for first-order transformations (metastable states)
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2.3 Crystallization, Vitrification and Devitrification
of Glass-Forming Melts: Overview on Some
Experimental Results

We now consider possible types of processes which may take place in the course of
cooling of the melt of a substance, which can be transformed, at least, under certain
conditions into a glass. The melting temperature of the corresponding crystalline
phase we denote as Tm. According to the results outlined in Sect. 2.2, Tm is at the
same time the temperature, at which at a constant pressure, the liquid and crystalline
phases may coexist in equilibrium.

Let us assume we have a crucible with a certain amount of a pure glass-forming
melt at a temperature somewhat above the melting temperature Tm. Starting with
this initial state, energy is removed in the form of heat with a constant rate from the
melt. The resulting decrease in temperature is measured by a thermocouple. Possible
T D T .t/ curves, which may be obtained in this way, are shown in Fig. 2.5.

Part (1-2) of the curve in Fig. 2.5a describes the process of cooling of the melt
down to Tm. At this temperature the melt may start to crystallize. If this is the case, a
time interval is found for which the external cooling is compensated by the release of
the latent heat of crystallization (cf. Eq. (2.59)), resulting in a temporary constancy
of temperature (part (2-3) of the curve in Fig. 2.5a). This horizontal part (2-3) is
followed then by the cooling curve (3-4) of the completely crystallized material.
Such behavior, when the new phase appears immediately without any measurable
under-cooling, is found only in some metal melts or when in an oxide melt certain
precautions are undertaken to initiate the crystallization process (i.e., introduction
of seed crystals of the same substance).

In the majority of cases a more or less pronounced degree of under-cooling
�Tmax has to be reached, before an intensive crystallization process starts. As under-
cooling the temperature difference,�T D Tm � T , is denoted. Thus, �Tmax has to
be understood as

�Tmax D Tm � Tmin: (2.69)

Here Tmin is the lowest value of the temperature which can be reached without
measurable crystallization being observed. Figure 2.5b gives an example of a
temperature vs time curve for such a case. Again, the part (1-2) corresponds to
the cooling curve of the melt, but this time the cooling curve is extended into the
metastable region (2-3), where the crystalline state and not the under-cooled melt is
stable from a thermodynamic point of view. This result is the simplest demonstration
of the well-known fact that in first-order phase transformations equilibrium has to be
more or less exceeded to allow measurable phase changes to take place. In second-
order phase transformations such an existence of a metastable phase outside the
limits of its thermodynamic stability has not been observed. The thermodynamic
and kinetic significance of these facts will be discussed in Chap. 3.

After a critical under-cooling, �Tmax , is reached, a spontaneous crystallization
process follows. The release of the latent heat accompanying the process of
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Fig. 2.5 Temperature T vs time t curves of a melt at constant cooling rates for three different
situations: (a) the crystallization of the melt proceeds immediately below Tm; (b) a significant
crystallization is observed only after some critical value �Tmax of the undercooling is reached;
(c) the melt is transformed into a solid without a measurable crystallization to occur

crystallization results in an increase of temperature until Tm is established, again.
After completion of crystallization, the cooling curve of the crystalline phase is
followed (5-6) similarly as in Fig. 2.5a. In a number of substances the possible
under-cooling may be extended to considerable values, for example, 370K for
platinum, 150K for iron melts, 20K for gallium (see Table 2.1). The values of the
undercoolings realized experimentally at normal cooling rates (10�1–102 K s�1) are
usually found to be of the order �Tmax=Tm � 0:2. This value is also predicted by
an empirical rule (Ubbelohde (1965) [871]; Skapski (1956b) [766]), which states
that

Tmin

Tm
� 0:8 � 0:9: (2.70)

This rule is valid for a large number of substances (see Table 2.1).
An example of a substance, which can be easily under-cooled, is gallium.

Gallium has a melting point of about 29 ıC. In accordance with the formulated
empirical rule, it can be preserved as an undercooled liquid at room temper-
atures T.room/ for practically unlimited periods of time (T.room/=Tm � 0:97).
Other substances, which have been frequently used in laboratory demonstra-
tions as undercooled melts, are natrium thiosulfate (Na2S2O35H2O) and salol
(HOC6H4COOC6H5). These substances have a melting point of about 50 ıC and
can be cooled down to room temperatures also without any crystallization being
detected.

An inspection of Table 2.1 shows that for substances with very different
compositions and structure (metals, oxides, salts, molecular liquids, polymer melts)
the relative critical under-cooling, which may be achieved by normal cooling
techniques, is practically the same and normally does not have values below
.0:7 � 0:8/Tm. This applies even to melts like NaPO3, lithium disilicate, glycerol,
piperine, which are representatives of typical glass-forming substances. For most of
the substances included in Table 2.1, an under-cooling to temperature values below
Tmin leads to immediate crystallization. It will be shown in subsequent chapters
that the dramatic increase of the viscosity for T � Tmin observed for typical glass-
formers has the consequence that crystallization may not occur in such substances
for longer periods of time in this temperature region.
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Table 2.1 Critical values of the under-cooling �Tmax , at which an
intensive crystallization is observed, for different classes of substances,
provided heterogeneous nucleation is inhibited. Tm is the melting tem-
perature and Tmin the lowest value of temperature the substance may
be transferred to under normal cooling conditions without detectable
crystallization. The data are collected from: Turnbull (1950, 1952b)
[859, 860], Turnbull and Cech (1950) [863], Ubbelohde (1965) [871],
Chernov (1980) [132], Umanski et al. (1955) [875], Grantcharova and
Gutzow (1986) [268], Penkov and Gutzow (1984) [632], Tammann
(1933) [820], Tammann and Jenckel (1930) [821], and Walton (1969)
[907]

First part of Table 2.1
Substance Tm (K) �Tmax (K) Tmin=Tm References

Hg 235 50 0.78 [132, 859, 860, 863]
Ga 302 36 0.87 [132, 859, 860, 863]
In 429 81 0.81 [132, 859, 860, 863]
Sn 505 105 0.79 [132, 859, 860, 863]
Bi 544 90 0.79 [132, 859, 860, 863]
Pb 610 80 0.86 [132, 859, 860, 863]
Sb 903 135 0.85 [132, 859, 860, 863]
Al 933 130 0.86 [132, 859, 860, 863]
Ag 1,234 227 0.76 [132, 859, 860, 863]
Au 1,336 190 0.82 [132, 859, 860, 863]
Cu 1,356 180 0.79 [132, 859, 860, 863]
Co 1,765 310 0.73 [132, 859, 860, 863]
Fe 1,825 295 0.84 [132, 859, 860, 863]
Pd 1,825 310 0.82 [132, 859, 860, 863]
Pt 2,042 370 0.82 [132, 859, 860, 863]

Mean value for metals: 0.81
LiF 1,121 232 0.79 [871]
LiCl 887 186 0.79 [871]
LiBr 819 94 0.76 [871]
NaF 1,285 281 0.84 [871]
NaCl 1,073 168 0.84 [871]
NaBr 1,014 163 0.84 [871]
KCl 1,045 169 0.84 [871]
KBr 1,005 162 0.83 [871]
KJ 958 155 0.85 [871]
RbCl 990 163 0.84 [871]
CsF 955 153 0.86 [871]
CsCl 915 152 0.83 [871]
CsBr 909 162 0.82 [871]
CsF 894 206 0.78 [871]

Mean value for alkali halides: 0.82
BF3 144 19 0.87 [871]
Cyclopropene 145 19 0.87 [871]
Methylbromide 179 36 0.80 [871]

(continued)
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Table 2.1 (continued)

First part of Table 2.1
Substance Tm (K) �Tmax (K) Tmin=Tm References

CH3NH2 180 36 0.80 [871]
SO2 198 34 0.83 [871]
CHCl3 209 48 0.77 [871]

Mean value for molecular liquids: 0.82
H2O 273 4.4 0.85 [875]
Ge 1,231 200 0.84 [875]
NH3 195 40 0.79 [871]
CH3Cl 176 56 0.68 [871]
C6H6 278 70 0.74 [871]
CH3Br 197 42 0.78 [871]
Thiophene 235 51 0.78 [871]
NaPO3 898 189 0.79 [268]
Li2O 2SiO2 1,313 446 0.66 [632]
Glycerol 293 57 0.80 [821]
Piperine 402 92 0.77 [820]

Mean value for glass-formers: 0.75
CBr4 363 82 0.78 [908]
CCl4 251 50 0.81 [908]
White phosphor 396 116 0.71 [908]
Diphenyl 343 86 0.75 [908]
Naphtalene 353 94 0.74 [908]
Poly(ethylene)
linear 423 55 0.87 [908]
branched 422 59 0.86 [908]
Marlex-50 505 86 0.83 [908]
Polyoxymethylene 454 84 0.82 [908]
Nylon 6 500 99 0.88 [908]
Isotactic
Poly(propilene) 459 101 0.78 [908]
Mean value for polymers: 0.80

Experimental evidence accumulated for more than 150 years for very different
classes of substances (cf. the beautiful summary on the history of phase formation
processes as it is given in the introduction to Volmer’s monograph (1939) [894]
or, with more details, in Ostwald’s classical textbook (Ostwald (1896–1902)
[616])) allow one to draw the following conclusions concerning the initiation of
crystallization processes in under-cooled melts:

• The highest possible values of the under-cooling, Tmin, can be realized
experimentally only if insoluble foreign particles, which may act as centers
of crystallization, or certain surface-active substances are removed from the
melt. However, foreign particles are not equally active in the induction of
crystallization in under-cooled melts. The highest activity with respect to initia-
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tion of crystallization show seed particles of the same substance or crystallization
cores with a structure and cell dimensions close to those of the evolving crystal.

• In some cases, mechanical effects (vibrations, stirring) may initiate crystalliza-
tion.

• The achievable under-coolings increase by increasing the degree of dispersion
of the melt. In the process of quenching of the melt, for small droplets
significantly larger values of the under-cooling may be reached as compared
with corresponding data for bulk samples of the same melt, which are to be
expected according to Eq. (2.70).

Thus, under-coolings for water droplets of about 10�6 m in size may reach the order
of �T � 40–50K, which is of a particular meteorological importance, and for
metal melts, with a relatively high melting point,�T � 200–300K is often reported
(see Table 2.1).

A relatively high degree of dispersion of the melt can be achieved, for example,
by the process of pulverization of the melt in an air stream. This method, connected
with a rapid quenching on cold surfaces, was introduced by Tammann as an effective
method for the transformation of substances into the vitreous state (Tammann (1933)
[820]; see also Fig. 2.6a). A modification of this method is shown in Fig. 2.6b.

An extension of Tammann’s ideas was performed by Turnbull (1949 [858],
1952 [860]; see also Greer (1988) [274]) and consists of the emulgation of low
temperature melting metals like tin, lead, bismuth, mercury etc. in silicon oil.
Additional emulgators, introduced into the system, prevent the coagulation of the
metallic drops. To get high temperature melting metals like iron, nickel, platinum
or chromium into the dispersed state as an emulgator silicate glass-forming melts
can be used. By vibrating and mixing the liquid with another appropriate substance
the test liquid is dispersed into a large number of small droplets. If impurities are
present in the test liquid then some of the drops will contain them while others
will remain uninfluenced by such foreign crystallization cores and may be under-
cooled to temperatures at which intensive homogenous nucleation occurs. Thus the
increase in the degree of under-cooling in small particles is due to the absence of
active foreign crystallization cores, at least, in some of the drops (Fig. 2.7a, b).

The temperature Tg, below which the under-cooled melt behaves like a solid,
is denoted, according to a proposal by Tammann, as the glass transformation
temperature. The solid resulting in such a cooling process without perceptible
crystallization is a glass. The temperature vs time curve for the process of glassy
solidification is shown in Fig. 2.5c. A horizontal part of the curve as in Fig. 2.5a, b
does not exist. This feature is an indication, that the process of vitrification is not
connected with the release of any latent heat and thus with a discontinuous change
of the structure, the entropy and the enthalpy of the system. The systems remain
spatially homogeneous and no crystallization is to be detected. For temperatures
below Tg , crystallization processes of the already vitrified melt have never been
observed. However, crystallization may occur, if the glass is reheated, again,
to temperatures above Tg. Such a crystallization process is usually denoted as
devitrification.
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Fig. 2.6 (a) Tammann’s atomizer for vitrification of molten salts: An inert gas (nitrogen) is passing
under pressure through a tube (1) dispersing the molten salt contained in tube (2). The droplets are
quenched at the metal plate (3) cooled by liquid nitrogen. The oven tube (6) as well as the tubes
(1) and (2) are made of quartz glass, so that the course of the process of dispersion can be followed
through the window (4) in the experimental device (5). (b) Modification of Tammann’s atomizer:
A crucible (1) contains a drop (2) of a metallic alloy molten in the oven (3). High pressure inert gas
(He) is supplied with valve (6) rupturing the mylar diaphragm slit (5) and forces the drop at high
speed onto a cooled metal plate (7), where it is frozen to a glass. Further metallic alloy samples are
introduced into the system by the valve (4) (After Giessen and Wagner (1972) [253])

The existence of the glass transformation temperature Tg , of vitrification and
of devitrification processes may be demonstrated more effectively as in single
cooling curves, by heating or cooling runs with differential thermal analysis (DTA).
The DTA-curves of a devitrifying glass at constant heating rates (usually 10K
per minute) show a well-pronounced salient point, when the temperature Tg is
reached. This salient point can be used to determine Tg in a standardized procedure.
Somewhat above Tg, an exothermic peak usually occurs, which corresponds to the
process of devitrification. For typical glass-forming melts, which can be vitrified at
normal cooling rates (i.e., not exceeding 10�1–102 K s�1), devitrification processes
begin usually at 30–50K above Tg . For other systems, however, like the already
mentioned glass-forming metallic alloys, which are obtained only as the result of
extreme cooling rates, the devitrification peak appears immediately above the Tg-
discontinuity. In such cases, the peak itself gives us the possibility of determination
of Tg (see Fig. 2.8).
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a b

Fig. 2.7 Droplet techniques (see text): (a) Insoluble crystallization cores in the bulk of the melt
are indicated by black dots. (b) After the dispersion of the melt, a large number of drops is
formed which do not contain insoluble crystallization cores. For such drops, crystallization by
homogeneous nucleation may be expected to occur
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Fig. 2.8 Typical DTA-curves
obtained in the process
of heating of a
(Li2O 2SiO2)-glass. A
crystallization peak at 600 ıC
is seen followed by an
endothermic peak at 1,040 ıC
corresponding to the melting
point of crystalline lithium
disilicate. Tg is indicated by
an inflexion point in the
DTA-diagram (see Penkov
and Gutzow (1984) [632])

Figure 2.9 shows the DTA-heating curve of a technical silicate glass. In the
devitrification process two different crystalline phases are formed. The respective
liquidus temperatures are also clearly to be seen. Particularly instructive are
devitrification experiments carried out by differential-scanning calorimetry (DSC)
(see Fig. 2.10). The latent heat of the crystallization or melting process can be
easily determined from the areas under the crystallization or melting peaks. The
discontinuity of the DTA- and especially of the DSC-curves at Tg is a direct
indication that the process of glassy solidification of a melt is connected with a
discontinuity in the specific heats. From these and similar experimental results
it also becomes evident that the solidification of a melt into a glass is not a
transformation in the sense of a first-order phase transition with a release of latent
heat. It looks at a first glance more similar to a second-order phase transformation
(discontinuity in Cp).
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Fig. 2.9 Heating curve of a technical solidified glass-forming melt (enstatite ceramics precursor
glass; after Gutzow et al. (1977) [328]). The devitrification process is manifested by two
crystallization peaks at 940 and 1075 ıC. The three endothermic peaks at higher temperatures
correspond to the process of melting of the three different crystalline phases formed in the
devitrification process. The transformation temperature and the softening point of the glass are
denoted by Tg and Tf , respectively

A more extended discussion, given in the following section, shows that vitrifica-
tion is described more correctly as a freezing-in process of the under-cooled melt.
Here we have to mention only, that the notation glass transformation (or glass tran-
sition) temperature, proposed by Tammann, is to some extent misleading. Correct
with respect to above indicated mechanism of vitrification is the proposal developed
by F. Simon (1930) [756] to denote Tg as the freezing-in temperature of the glass
(Glaseinfriertemperatur Te D Tg). In English literature the “neutral” notation
temperature of vitrification is preferred. It corresponds to the word Glastemperatur
used in German literature on the physics of high polymers. However, since in
technology of silicate glasses Tammann’s notation glass transformation temperature
is till now the most common one, it will be preferably applied here, especially, when
technical glasses are discussed.

It was also first mentioned by Tammann that the value of the glass transformation
temperature varies to some extent in dependence on the method of determination
and, what is of principal importance, on the value of the cooling rate q D
�.dT=dt/, reached in the in the course of vitrification of the undercooled melt:
with increasing values of q higher Tg-values are obtained. Moreover, as it was also
mentioned by Tammann, we have to speak more precisely of a transformation range,
in which the melt is solidified into a glass. Following, again, Tammann, we will
apply, in general, the notation Tf for the upper and Tg for the specification of the
lower boundary of the transformation range. However, the notation Tg is mostly
applied, when a standardized method of solidification is used, giving more or less
reproducible values for the temperature of vitrification.
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Fig. 2.10 Differential scanning calorimetry (DSC) measurements of the devitrification process of
a NaPO3-glass heated with a constant heating rate of 10K min�1. At Tg a salient point is observed
followed by an endothermic devitrification peak. At 898K the heat of melting of the crystalline
˛� NaPO3 phase is released. The areas under the crystallization, respectively, melting curves give
the latent heat of the transformation (see also Grantcharova, Avramov, and Gutzow (1986) [271])

For typical one-component glass-forming melts and normal cooling rates the
value of the glass transformation temperature, divided by the melting temperature,
is usually of the order

Tg

Tm
� 2

3
: (2.71)

This is the so-called Beaman-Kauzmann rule (Kauzmann (1948) [440]; Beaman
(1952) [55] for a first derivation of this rule see Gutzow (1972) [308]). The Beaman-
Kauzmann rule was generalized by Sakka and Mackenzie (1971) [680] to multi-
component systems. In this case, Tm is to be replaced by the respective liquidus
temperature Tl of the system. However, for glass-forming metallic alloys the value
of the ratio Tg=Tl may be considerably smaller, e.g.,

Tg

Tl
� 1

2
: (2.72)

For amorphous thin layers of a number of metals such as tin or gallium even
considerably lower values as predicted by Eq. (2.72) are reported.

In Fig 2.11a, b (see also Table 2.2 presented in Sect. 2.5.2) according to Gutzow
and Dobreva (1991) [308] distribution histograms for Tg-values of a large number
of typical glass-forming melts and vitreous metallic alloys are shown. In accordance
with the Beaman-Kauzmann rule for typical glass-formers, indeed, average values
about Tg=Tm � 0:65 are found, while for metallic alloy glasses in addition
to the peak at 0.5 a second peak at 0.3–0.4 can be noticed. The substances
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Fig. 2.11 (a) Frequency distribution histogram of experimentally observed Tg=Tm-values for 108
typical glass-formers with different compositions vitrified at normal cooling rates. (b) Frequency
distribution histogram of 80 experimental Tg=Tl – values for metallic glass-forming alloys (After
Gutzow and Dobreva (1991) [308])

taken into consideration in Fig. 2.11a include representatives of different types of
glass-forming melts: oxides (SiO2;B2O3), halides (BeF2, ZnCl), simple borate,
silicate and phosphate glasses (e.g., Na2O 2B2O3, Na2 SiO2, NaPO3), glass-forming
organic compounds (alcohols, e.g., C2H5OH, CH3OH, glycerol), organic acids and
oxiacids as well as a number of more complicated aromatic organic substances.
The Tg-values of practically all glass-forming organic polymer melts are also
included.

Similar empirical relationships were also proposed by other authors. According
to Turnbull and Cohen (1960) [865], e.g., the following equation, connecting the
glass temperature Tg with the boiling temperature Tb of the substance, is valid, i.e.,

Tg �
�
1

4
� 1

3

�
Tb: (2.73)

However, if one takes into consideration an additional empirical connection between
Tb and Tm of the form

Tb � 5

2
Tm; (2.74)

it turns out that Eqs. (2.73), (2.71) and (2.72) are to a large extent equivalent. For
organic high polymers the glass temperature Tg depends on the average degree of
polymerization, Nx. According to Flory (1940) [215]

1

Tg
� AC B

Nx (2.75)
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Table 2.2 Thermodynamic properties of typical glass-forming substances: Vitrification tempera-
ture Tg , melting temperature Tm, molar melting entropy �Sm and molar frozen-in entropy �Sg
(both in J K�1 mol�1). The �Sg-values are taken from: Simon and Lange (1926) [760], Gutzow
(1979) [301], Nemilov (1976) [596], Timura et al. (1975) [837], Weyl and Marboe (1967, vol.
2/2, p. 1327) [919], Smith and Rindone (1961, 1962) [665, 783], Grantcharova et al. (1986a, b)
[271, 272], Angell and Rao (1972) [15], Anderson (1937) [9], Tammann (1933) [820], Tammann
and Jenckel (1930) [821], Tammann (1930) [819], Greet and Turnbull (1967) [276], Simon (1931)
[757], Bestul and Chang (1964) [79], Kelley (1929) [447], Chen (1976) [130], Chen and Turnbull
(1967) [128], and Dobreva (1992) [173]

Substance Tm(K) Tg(K) Tg=Tm �Sm �Sg �Sg=�Sm References

SiO2 1,996 1,473 0.73 9:13 3:8 0.42 [302, 596]
GeO2 1,386 900 0.65 12:15 3:8 0.31 [596]
BeF2 1,076 580 0.54 15:5 4:6 0.30 [596, 837]
H2O 4B2O3 1,132 633 0.56 111:4 29:3 0.26 [783, 919]
Na2O 4B2O3 1,085 689 0.63 121:1 36:4 0.30 [783, 919]
NaPO3 898 550 0.61 24:7 11:0 0.44 [271]
B2O3 723 521 0.72 31:8 10:6 0.33 [919]
ZnCl2 535 375 0.70 16:6 [783]
H2SO4 H2O 237 157 0.66 102:2 24:72 0.24 [15]
Se 491 303 0.62 10:89 2:9 0.27 [9, 302]
Phenolph-

thaleine 534 353 0.66 95:5 10:1 0.11 [302]
Betol 368 250 0.68 54:0 19:7 0.36 [820, 821]
Orthoter-

phenyle 329 245 0.74 51:5 22:6 0.44 [276]
Benzophenone 321 158 0.49 55:3 15:1 0.27 [820, 821]
Glycerol 291 178 0.61 62:85 19:3 0.31 [757, 821]
n-Propanol 146 95 0.65 39:0 15:9 0.41 [79]
Ethanol 156 93 0.6 31:8 10:9 0.34 [15]
Methanol 175 18:1 7:62 0.42 [15]
2Methylpentane 119 78 0.65 52:8 16:8 0.32 [79]
Butene-1 88 59 0.67 43:6 12:6 0.29 [79]
Poly(propylene) 449 259 0.58 24:3 8:0 0.33 [79]
Poly(ethylene-

therephtalate) 542 342 0.63 47:9 14:3 0.30 [173]
Rubber 301 199 0.66 14:7 5:9 0.40 [79]
Pd0:775 Cu0:05

�Si0:165 636 3:3 [130]
Pd0:48 Ni0:32

�P0:20 585 7:5 [130]
Au0:77 Ge0:136

�Si0:094 624 290 0.46 19:7 6:3 0.32 [130]
Au0:814 Si0:186 636 290 0.45 6:3 [130]

holds. A and B are constants, specific for the considered substance.
In some respect similar to above dependencies is also the rule proposed by

Tammann (1933) [820]
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Tg �
�
1 � Cm

3
p
M

�
Tm: (2.76)

Here M is the molar mass of the substance and Cm a constant, which for organic
glass-forming melts has a value of about Cm D 2. As far as for most organic
compounds M � 102 holds Eq. (2.76) is in fact equivalent to the Beaman-
Kauzmann rule.

In the following sections the properties of glass-forming melts in the vitrification
range are discussed in more detail. We start with the analysis of the temperature
dependence of the viscosity, since primarily the increase of the viscosity determines
the transformation of the liquid melt into a solid glass.

2.4 The Viscosity of Glass-Forming Melts

2.4.1 The Temperature Dependence of the Viscosity
of Glass-Forming Melts

The first systematic studies of the viscosity of glass-forming melts were per-
formed by Tammann. His results are summarized in his well-known monographs
“Aggregatzustände” and “Der Glaszustand”. Tammann carried out his investigations
mainly on low melting organic model substances like salol, betol, manniol, piperine,
natural resins and colophony, which can be easily transferred into the vitreous state.
Based on the results of his investigations Tammann formulated elementary but very
instructive concepts concerning the process of glass transition. He also formulated
simple criteria for the conditions under which the quenching of a melt will lead to a
glass or, vice versa, under which conditions crystallization is preferred.

It was also Tammann, who divided the process of crystallization of an under-
cooled melt into two consecutive stages: nucleation (characterized by the nucleation
rate J , the rate of formation of centers of the crystalline phase in the bulk of the melt)
and their subsequent linear growth characterized by the linear growth velocity, v.
It was argued by Tammann that vitrification will occur, if in the range between
Tm and Tg the temperature dependencies of the curves, representing nucleation
rate J and growth rate v, respectively, do not show any significant overlapping. In
contrast, an overlapping of the nucleation and growth curves will be an indication
of the formation of a crystalline phase (see Fig. 2.12). According to Tammann both
processes, nucleation and growth, are determined by the value of the bulk viscosity
of the melt, thus underlining once more the importance of this quantity with respect
to glass formation.

Since Tammann’s time sophisticated methods for the determination of the vis-
cosity of glass-forming melts and its temperature dependence have been developed
and a large number of experimental data have been accumulated. Such data can
be found, for example, in the classic reference book by Eitel, Pirani, and Scheel
(1932) [186]. A more recent summary of properties of glasses and glass-forming
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Fig. 2.12 Possible temperature dependencies of the nucleation rate, J , and the linear growth
velocity, v. According to a proposal by Tammann the curve (a) corresponds to a melt with a
low glass-forming ability while (b) and (c) refer to the opposite situation. Tammann’s ideas are
reformulated today in terms of the so-called TTT- (time-temperature-transformation) diagrams
(see Chap. 10)

melts including viscosity data is given in the series of monographs edited by
O.V. Mazurin (1973–1981,1989, 2011) [544–546].1

From a physical point of view, the viscosity is a measure of the internal friction,
which results from the relative motion of different layers of a liquid. If the velocity
of the liquid is changed, e.g., in the x-direction, then the force F acting between the
layers is given by

F D �A
dv

dx
: (2.77)

The factor of proportionality � in Eq. (2.77) is denoted as the (shear) viscosity of
the liquid, A is the surface area of the layers. Viscosity, determining the kinetics of
flow of liquids, is, as discussed further on, a thermodynamic property of any liquid.

Equation (2.77) was proposed by Newton. Liquids, which can be described by
such an equation with a value of �, depending on temperature and the specific prop-
erties of the liquid only, are called Newtonian liquids (see also Chap. 12). The unit
“Poise” was applied earlier as the unit of the viscosity. This is the natural unit in the
cgs-system. In the international system of units the corresponding quantity is Pascal
second (Pas). Both quantities are related by 1 Poise D 0.1 Pas. To retain the numeri-
cal values, familiar in Poise, in the modern literature also the unit dPas is often used.

Already the first investigations of the temperature dependence of the viscosity
showed that with a decrease of T a very steep increase of the viscosity is found.
While at the melting temperature the viscosity seldom exceeds the value � � 102–
103 dPas, in the transformation range its value reaches � � 1013 � 1014 dPas.
Examples are shown in Figs. 2.13 and 2.14 for SiO2 melts, glycerol and selenium.

For relatively small temperature intervals the viscosity of a glass-forming melt
can be described in a good approximation by an equation usually attributed to
Andrade (1930, 1934) [13] and Frenkel (1934 [232], 1946 [233]) and denoted as

1This comprehensive information and its analysis is included and considerably extended in the
SciGlass database edited by Oleg V. Mazurin and colleagues (for details see: Mazurin (2011),
[545]).
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Fig. 2.13 Temperature
dependence of the viscosity
of two typical glass-forming
substances (SiO2 and
glycerol) according to data of
different authors (see
Landoldt-Börnstein, vol. 2b,
part 15a, Springer, Berlin,
1969, p. 120, 213 [504]). The
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Tm is the melting temperature
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Fig. 2.14 Temperature
dependence of the viscosity
of selenium (c.f. Nemilov
(1964) [595]; see also
Rawson (1967) [657])

Andrade-Frenkel or Eyring’s (1936) [193] equation

� D �0 exp

�
U0

kBT

�
: (2.78)

However, as mentioned by Andrade himself, Eq. (2.78) was first proposed as
early as 1913 by de Guzman ([158], see Besborodov (1975) [80]). Frenkel gave
the first elementary molecular kinetic interpretation of this equation, which was
reformulated later by Eyring in terms of the absolute rate theory (see Glasstone
et al. (1941) [255]).

In Eq. (2.78)U0 is the energy (or thermodynamically more precise: the enthalpy)
of activation of viscous flow, assumed to be a constant (U D U0), and �0
a temperature independent constant. Experimental results, plotted in so-called
Arrhenius coordinates log � vs .1=T /, do not give, however, a straight line (see
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Fig. 2.15), as it is to be expected from Eq. (2.78). Possible generalizations of
Eq. (2.78) are connected with the introduction of a temperature dependent activation
energy U.T / leading to

� D �0 exp

�
U.T /

kBT

�
: (2.79)

Experiments show that with decreasing temperature an increase of U.T / is
observed, generally, so that the condition

�
dU

dT

�
� 0 (2.80)

is fulfilled. As shown in further developments given below in this book, this
condition is of upmost importance in determining the process of glass transition.
The simplest temperature dependence of the activation energy, satisfying Eq. (2.80),
is given by the linear combination

U.T / D U 0
0 � U1T; (2.81)

where U 0
0 and U1 are constants (Kanai and Satoh (1954) [428]).

According to Eq. (2.78), the slope of the derivative d.log �/=d.1=T / gives
directly the activation energy, U0. However, for temperature dependent activation
energies this is not the case. In contrast, U.T / in Eq. (2.79) is determined by the
differential equation Eq. (2.82) as

d ln �

d.1=T /
D 1

kBT

�
U.T /C 1

T

dU.T /

d.1=T /

�
: (2.82)

It is evident that for temperature dependent activation energies U.T / cannot be
determined directly by an Arrhenius plot but only via Eq. (2.79) as

U.T / D kBT .ln � � ln �0/: (2.83)



2.4 The Viscosity of Glass-Forming Melts 39

A number of equations of the form of Eq. (2.79) which fulfil the condition
Eq. (2.80) were proposed by different authors. Most of them give a temperature
dependence closer to experimental results than the linear approximation Eq. (2.81)
due to Satoh and Kanai.

Here dependencies are summarized which are distinguished both by the accuracy
of description of experimental results as well as by the possibility of interpreting
them in the framework of statistical model theories of liquids. The most well-known
equation of this type is the Vogel-Fulcher-Tammann (VFT) equation

� D �0 exp

�
U �
0

kB.T � T1/

�
: (2.84)

Here �, U �
0 and T1 are empirical constants specific to the substance considered.

The Vogel-Fulcher-Tammann equation was independently proposed by the three
men giving this equation their names. Vogel (1921) [887] developed it based on
investigations of the temperature dependence of the viscosity of greases, Fulcher
(1925) [239] by an analysis of the �.T /-course of silicate glasses and Tammann
(with Hesse (1926) [822]) based on experiments with glass-forming organic sub-
stances. If the choice of the three constants in Eq. (2.84) is carried out appropriately
from measurements of values of the viscosity at sufficiently different values of
temperature and viscosity (e.g., log � � 2 � 4; log � � 6 � 8; log � � 12 � 13),
then the VFT-equation describes the viscosity in the whole temperature range,
characterized by changes of the viscosity by ten orders of magnitude, with an
accuracy better than 10 %.

For T ! T1, according to the VFT-equation, the viscosity tends to infinity. This
is the reason for the usual notation T1 for one of the constants in Eq. (2.84). The
VFT-equation corresponds to a temperature dependent activation energy of the form

U.T / D U �
0

T

.T � T1/
; (2.85)

which also tends to infinity for T ! T1.
The analysis of a large number of experimental data shows that for most of

the typical glass-forming substances (oxide glasses, silicate glasses, organic high
polymers) in a good approximation

T1
Tm

� 0:5 (2.86)

holds (Gutzow (1975) [297]). For glass-forming metallic alloys usually a somewhat
lower value

T1
Tl

� 0:33 (2.87)

is obtained. If one takes into account Eq. (2.71) then Eq. (2.86) may be written also
as



40 2 States of Aggregation, Thermodynamic Phases, Phase Transformations, . . .

T1
Tg

� 3

4
: (2.88)

Equivalent to the VFT-equation is a relation widely used in the rheology of glass-
forming organic high polymers named WLF-equation after Williams, Landel and
Ferry ((1955) [924], see also Ferry (1961) [204]). According to the WLF-equation
the relaxation time, � , or the characteristic frequency of motions, ! D 2	=� , of the
building units of the melt in the vicinity of Tg can be calculated by (Donth (1981)
[179])

log
� !
!�
	

D C1.T � T �/
.C2 C .T � T �//

: (2.89)

The parameters !� and T � are arbitrarily chosen reference values, the constants
C1 and C2 depend on the choice of the reference state. Equation (2.89) can be
transformed into the VFT-equation by a simple substitution of variables (see Gutzow
(1972) [294]).

It is of principal importance that both the VFT- and WLF-equations can be
derived in the framework of the free volume theories of liquids. According to this
theory, the free volume 
.T / determines the viscosity via (see Chap. 12)

� D �0 exp

�
B0


.T /

�
: (2.90)

Here B0 and �0 are constants, again.
Equation (2.90) is called the Doolittle equation (Doolittle (1951) [180]; Bueche

(1962) [109]). It can be considered as a generalization of an empirical expression,
proposed many years ago by Batchinski (1913) [50],

� D �0


.T /
: (2.91)

Another equation with a temperature dependent activation energy was proposed by
Cornelissen, van Leeuwen and Waterman (1957 [140], see Bezborodov (1975) [80])

� D �0 exp

�
A

T n

�
; (2.92)

corresponding to an activation energy of the form

U.T / D kBA

T n�1 : (2.93)

Here �0, A and n are three constants characteristic for a given melt. Evstropev
and Skornyakov (see Skornyakov (1955) [767]) showed that the temperature
dependence of the viscosity can be described in terms of Eq. (2.93) with n D 2

for temperatures higher than the liquidus temperature Tl with a very satisfactory
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accuracy. In such a way the three constants in Eqs. (2.92) and (2.93) are reduced to
only two. Recently, a derivation of an equation of the form of Eq. (2.92) has been
developed in the framework of a new molecular model of viscous flow in glass-
forming melts (Avramov and Milchev (1988) [26]).

Finally, we mention an equation, proposed by the well-known physico-chemist
le Chatelier (1924) [502] and by Waterton (1932) [913] (see, again, Bezborodov
(1975) [80])

� D �0 exp

�
b0 exp

�
U �

kBT

��
: (2.94)

This equation gives a particularly steep temperature dependence of the viscosity.
It was applied by Schischakov (1954) [687] to a number of glass-forming systems
and is denoted sometimes also as Schischakov’s equation. In contrast to Eq. (2.84),
Eqs. (2.92) and (2.94) do not predict a divergence of the viscosity for finite values
of temperature but only for T tending to zero. A derivation of Eq. (2.94) from a
statistical point of view is possible applying the hole theory of liquids (Sanditov,
Bartenev (1982) [683]).

Sometimes equations are also used for the interpretation of experimental results
which represent combinations of the expressions discussed above, e.g.

� D �0 exp

�
U0

kBT

�
exp

�
B0

T n

�
; (2.95)

� D �0 exp

�
U0

kBT

�
exp

�
B0

.T � T1/

�
; (2.96)

i.e., combinations of a Frenkel type temperature dependence with equations provid-
ing a steeper temperature course. Equation (2.95) was proposed by Fulcher (1925)
[239] while Eq. (2.96) is due to Macedo and Litovitz (1986) [524]. Since the number
of constants in such combinations of equations is increased to four, it is not a surprise
that, by using them, the description of experimental results can be achieved with a
higher accuracy.

The above mentioned and similar combined equations have been found in a more
or less empirical manner. However, from a theoretical point of view, combinations
of equations of the considered form with two different exponential temperature
dependencies may reflect different sides of the mechanisms of the viscous flow:
for example, separation of the individual diffusing units from their neighbors as
the first step followed by a translation over certain distances into an appropriate
vacancy (see, e.g., the discussion in Sanditov and Bartenev (1982) [683]). In this
respect equations of the form of Eq. (2.79) are less general since they describe only
one side of the complicated process of viscous flow.

Finally, we would like to mention that Eq. (2.77) with a value of the viscosity
depending only on temperature and the specific properties of the liquid, is itself only
an approximation, valid for medium values of the viscosities and velocities of the
viscous flow. Generalizations of Eq. (2.77) and the significance of Non-Newtonian
flow in vitrification kinetics and phase transformations in glass-forming melts will
be discussed in Chap. 12.
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2.4.2 Technological Significance of the Viscosity

The temperature dependence of the viscosity of glass-forming melts is also of an
exceptional technological significance, in particular, for processes of purification
and homogenization of the melt, styling and thermal treatment of the already
formed glass products. It determines the temperature range, in which one method
of machining or the other may be applied. In glass technology usually a division
between short and long glasses is made in dependence on the steepness of increase
of the viscosity in the transformation range. Usually in technological processes
long glasses with a moderate increase of viscosity are preferred, since they are less
vulnerable with respect to small temperature changes. Unfortunately, some of the
most important technical glasses behave as short glasses, which leads to a number of
technological difficulties in their fabrication. As extremely short materials metallic
glass-forming alloys have to be considered, which require the application of very
specific methods of vitrification and glass-processing (splat cooling and ultra-rapid
spinning methods).

In glass technology the transformation temperature Tg is usually identified with
a value of the viscosity of the order of 1013 dPas. The upper value of the vitrifi-
cation range Tf (Tammann’s softening temperature) corresponds to approximately
1011 dPas. In glass-processing one of the most important forms of treatment is the
annealing of a glass in order to remove strains produced in the course of formation
and manufacturing of the glass. This process may be carried out in a distinct
temperature range. Tg corresponds to the upper limit of this interval. It is denoted,
therefore, in the technological literature also as the upper annealing point. Above Tg
the form of the glass changes and crystallization processes may occur.

The lowest value of the temperature at which the annealing process can be
realized in glass-processing, the lower annealing point Ta, corresponds to a viscosity
of 1014 dPas. At the upper annealing temperature Tg strains, which may exist in
the glassy material, relax over a period of about 10–15 min, while at Ta optically
measurable strains disappear only after 10–15 h. The value of the temperature Ta
for technical silicate glasses is found to be usually 10–15 K below Tg. Below Tg
and Ta the highly viscous frozen-in melt can be considered, at least, in technological
respect, as a solid. Usually, it is assumed that a solid is characterized by a viscosity
of the order 1015 dPas or even higher. The transformation temperature Tg and the
softening temperature Tf corresponding to the lower and upper boundaries of the
transformation range, are usually determined by dilatometric measurements (see
Fig. 2.16). At Tg in the dilatometric curves a salient point is observed, while at Tf
the material breaks down. At the Littleton softening point � � 2 � 108 dPas holds.

Further important from a technological point of view temperature values of a
glass-forming melt are the flow point, corresponding to a viscosity of 7 � 104 dPas
(the Lillie flow point) or 104 dPas (Dietzel and Brückner (1955–1957) [167–169]),
the viscosity range for glass blowing (log � � 3 � 5), the seal point (log� � 6),
where an adhesion of the melt on metals becomes possible. The Littleton softening
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Fig. 2.16 Temperature
dependence of the viscosity �
(a) and dilatometric curve of
a lithium disilicate enamel
melt (b) (see Penkov and
Gutzow (1984) [632]). The
salient point in the
dilatometric curve determines
Tg , while at Tf the sample
breaks down. A comparison
with the viscosity vs
temperature curve shows that
Tg corresponds to log � � 13
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point corresponds to the lower limit of temperature for which a crystallization of
glass-forming melts may, as a rule, still be observed.

2.4.3 Temperature Dependence of Molecular Properties
Connected with the Viscosity

From the viscosity of a melt, which can be measured in a relatively simple way,
the temperature dependence of other quantities connected with the viscosity can be
determined. Though some of the relations which are discussed in the following are
in part only a qualitative estimate, they can be helpful, nevertheless, for obtaining a
first insight into the temperature dependencies of a number of parameters important
for the processes of vitrification or crystallization. Two of these quantities are the
self-diffusion coefficient of the building units of the melt D0 and the impingement
rate Z, i.e., the number of collisions of molecules of the melt with a unit area of
some hypothetical surface, embedded in it.

According to Stokes’s law the force acting on a sphere with a diameter d0 moving
with a velocity v can be expressed by

F D 3	�d0v: (2.97)
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If one applies this equation to the motion of a molecule in the melt then, following
Einstein’s approach for the description of Brownian motion, the following relation
is obtained (see Einstein (1905) [187]; Hodgdon and Stillinger (1993) [372])

D0 D kBT

3	�d0
: (2.98)

In terms of Eyring’s absolute rate theory a more correct derivation can be given
leading to (Glasstone, Laidler, and Eyring (1941) [255])

D0 D kBT

�d0
: (2.99)

Equation (2.99) is of the same form as Eq. (2.98), however, with a somewhat smaller
numerical factor of about one order of magnitude. Applying in addition Einstein’s
relation

j�rj2 D 2Dt; (2.100)

connecting the diffusion coefficient of a Brownian particle with the square of the
displacement �r from the initial position occupied at t D 0, then one may also
write

D0 � d2

�R
: (2.101)

Now we can use the idea that here �R is Frenkel’s average stay time for a particle
of the melt at a given position and d is the average displacement connected with a
jump to a new position. Usually, it can be assumed that d is of the order of the size
of building units of the liquid (d � d0), which gives

D0 � d20
�R
: (2.102)

Equations (2.99)–(2.102) yield

�R � d30 �

.kBT /
: (2.103)

Compared with the exponential dependence of the viscosity on temperature, the
terms linear in T can be considered practically as constants. Thus, � also determines
according to Eqs. (2.102) and (2.103) the temperature dependence of the relaxation
time �R and the self-diffusion coefficientD0 of the melt.

From the phenomenological equations, describing the rheological properties of
highly viscous liquids, developed by Maxwell, Kelvin and Voigt (see Chap. 12), the
macroscopic relaxation time of a melt �R is connected with the viscosity by

�R D �

G� : (2.104)
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The factor of proportionality G� in above Eq. (2.104) has the dimension and the
physical meaning of a modulus of elasticity. A comparison with Eq. (2.103) leads
us to the conclusion that highly viscous melts can be considered as elastic bodies,
characterized by a modulus of elasticity of the order

G� � kBT

d30
� kBT

vm
; (2.105)

where vm is the average volume per particle of the melt.
An elementary estimation of the impingement rate, Z, and its connection with

the viscosity can be given in the following way. If hvi is the average of the absolute
value of the velocity of translation of the melt particles and c the average number
of particles per unit volume, then Z can be expressed in analogy to the collision
frequency in gases (see Chap. 6) as

Z D 1

4
chvi: (2.106)

For condensed systems

c � 1

vm
� 1

d30
(2.107)

holds, while the average velocity of molecular translation in a liquid may be written
in accordance with Frenkel’s model as

hvi � d0

�R
: (2.108)

Equations (2.106)–(2.108) yield

Z � 1

d20 �R
(2.109)

or

Z � kBT

d50 �
: (2.110)

It is obvious that the equations outlined in this section have to be considered only
as qualitative estimates. For highly structured molecules, which are far from having
a spherical shape, additional steric factors have to be introduced, in particular, for
the calculation of the effective value of the impingement rate. The effective number
of collisions Z.eff / can be defined as the ratio & of the total number of molecular
collisions Z, which results in an incorporation of the colliding particle into the
aggregate of an evolving crystalline phase. Thus, we may write Z.eff / D &Z.
According to its definition the parameter & has values in the range 0 � & � 1.
Despite the mentioned limitations experiments show that the expressions derived
describe the temperature dependence of D0, Z and �R with a reasonable accuracy,
sufficient for a large number of applications.
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2.5 Thermodynamic Properties of Glass-Forming Melts

2.5.1 Temperature Dependence of the Heat Capacities

In the transformation range with the decrease of temperature not only a dramatic
increase of the viscosity of the melt is observed, but all properties of the under-
cooled melt change to those of the corresponding glass. It was, again, Tammann
who started the investigations of the temperature dependence of the thermodynamic
properties of glass-forming melts in the vitrification range (cf. also Winkelmann
and Schott (1894) [926]). First measurements of the mechanical properties were
performed (thermal expansion coefficient, hardness etc.) applying as usual for this
remarkable investigator relatively simple but instructive methods.

Of considerable importance for the understanding of the physical nature of
the vitreous state in addition to viscosity data are measurements of the variation
of the caloric properties of glass-forming melts in the transformation range. As
discussed in Sect. 2.3 the process of vitrification is not connected with a plateau
in the T D T .t/-curves (compare Fig. 2.5c). This behavior, as already mentioned,
is an indication that the transformation of the melt into a glass is not connected with
a discontinuous change of the entropy or enthalpy of the system. However, DTA and
DSC-curves exhibit an inflexion point in the Cp.T /-curves at Tg in the process of
glass heating. This feature is an indication for an abrupt change of the specific heat,
the second derivative of the thermodynamic potentialG at Tg.

This type of behavior is illustrated in Fig. 2.17 for the classical case of glycerol,
which is used as an example also in the following figures to illustrate the change
of the thermodynamic properties of glass-forming melts in the vitrification range.
These and all subsequent investigations of the temperature dependence of the
specific heat of glass-forming substances carried out in different laboratories in the
last 80 years have shown the same typical s-shaped decrease of the specific heat of
the under-cooled melt, first observed for glycerol and silica.

The first measurements of caloric properties of glass-forming substances were
initiated by W. Nernst in connection with the desired verification of the Third law
of thermodynamics proposed by him in 1906 (see Nernst (1918) [601]; Simon
(1930 [756], 1956 [759]); Eitel (1954) [185]). Nernst expected that the Third law
of thermodynamics and its consequences can be applied to all forms of condensed
matter – liquids, crystals and glasses.

In the classical studies, carried out by Witzel (1921) [930], Simon and Lange
(1926) [760], the specific heats of silica glass, of the corresponding crystalline phase
(quartz, cristobalite and tridymite) and the glass-forming melt were measured. The
choice of SiO2 was not very suitable, since the measurements had to be carried out
over a range of temperatures of about 2000 K, from the melting point of cristobalite
(1983 K) to temperatures of liquid hydrogen. To comprise this interval, four different
calorimetric methods had to be used. At the same time also measurements with
the much more convenient substance glycerol were performed by Gibson and
Giauque (1923) [252], Simon and Lange (1926) [760] (see Fig. 2.17). The melting
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Fig. 2.17 Typical Cp D Cp.T / curves for the fluid (C.f /), crystalline (C.c/) and vitreous forms
of a substance, here presented as an example for glycerol. The values of the specific heats for the
crystalline state (1) are specified by black triangles, the curve for the undercooled melt (2) and the
glass (3) by white circles (Data are taken from the measurements of Gibson and Giauque (1923)
[252], Simon and Lange (1926) [760], summarized in [311])

point of glycerol is about Tm � 298K, while Tg is of the order Tg � 193K and
only one crystalline phase of this substance exists (silica, in contrast, is known
to have six crystalline modifications). In both cases it is thanks to F. Simon that
the measurements were extended down to the lowest temperatures achievable at
that time, to those of liquid helium. Soon after that similar Cp-measurements on
low melting glass-forming substances were carried out by Tammann and other
investigators (organic compounds, ionic melts, metallic alloys, silica, see Fig. 2.18).
At present the results of Cp-measurements on about 150 substances are known.
Qualitatively always the same s-shaped curves were obtained for the temperature
dependence of this quantity.

Curves of the type given in Figs. 2.17 and 2.18 can be obtained reproducibly at
moderate cooling rates. With an increase in the cooling rate the jumps in the Cp.T /-
curves and, consequently, Tg are found at higher temperatures. A first example in
this respect is supplied by the results of the measurements of Zhurkov and Levin
(Fig. 2.19, [957], see also Kobeko (1952) [461]). Quantitatively the dependence
connecting cooling rate q and glass transformation temperature Tg is given by the
Bartenev-Ritland equation

1

Tg
D A� B log.q/; q D �dT

dt
; (2.111)

where A and B are constants.
In Fig. 2.20 another kinetic effect in vitrification is demonstrated. One and the

same glass sample, vitrified with different cooling rates, is heated up with a constant
heating velocity. The Tg-values obtained differ as demonstrated by experiments
performed by Moynihan with a simple inorganic glass.
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The Bartenev-Ritland equation and the experimental results underlying it are of
importance in two different aspects. First, it becomes evident, that the process of
vitrification cannot be considered as an equilibrium phase transformation, e.g., in
the sense of the Ehrenfest classification. For equilibrium phase transformations the



2.5 Thermodynamic Properties of Glass-Forming Melts 49

C
p,
 c

al
/g

.K

300 340 380

0.2

0.4

0.6

0.3

0.5

0.7

4

4

4

1

2

3

T,K

Fig. 2.20 Influence of the thermal history on the Cp.T /-curves measured in the heating process
of a vitrified substance (0:4Ca.NO3/2 0:6KNO3). The melt was quenched with different cooling
rates ((1): 0:62K min�1; (2): 2:5K min�1; (3): 10K min�1). In all considered cases the melt is
heated with the same heating rate 10 K min�1 (Moynihan et al. (1976) [581]; see also Mazurin
(1986) [543])

400

C
p.
10

-2
 , 

J/
K

. 
m

ol Tg

Tm

2

1

500

2.5

5.0

7.5

Cp

T, K

Fig. 2.21 Temperature
dependence of the specific
heats of crystalline (1) and
amorphous (2)
phenolphthalein as
determined by differential
scanning calorimetric
measurements in heating runs
(After Grantcharova et al.
(1986) [268])

transition temperature is a well-defined quantity, which does not depend on kinetic
factors.

Equation (2.111) shows, moreover that the dependence of the glass transforma-
tion temperature upon cooling rate is of a logarithmic form. This result has the
consequence that significant variations of the cooling rates are required to reach
measurable variations of the properties of the solidified to a glass melt. Moreover,
experiments show that with an increase of the cooling rate a peak in the Cp.T /-
curves develops in the vicinity of Tg as it is also seen on Fig. 2.20. A kinetic
derivation of Eq. (2.111) and a discussion of the origin of this peak will be given
in Chap. 3 in the framework of the kinetic theory of vitrification, developed by a
number of authors, and, in particular, by Volkenstein and Ptizyn ((1956) [892]; see
also Volkenstein (1959) [891]) (see also Fig. 2.21).
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It was further shown by Wunderlich (1960) [934] based on an analysis of the then
existing experimental results on about 45 substances (mainly organic and organic
high polymers) that the ratio �Cp.Tg/=�Sm is, generally, of the order

�Cp.Tg/

�Sm
� 1:5; (2.112)

indicating a certain universality in the caloric behavior of different substances. On
Fig. 2.22 the validity of Eq. (2.112) is illustrated taking into consideration practically
all known for today data on Cp.T /-measurements of glass-forming substances
(Gutzow and Dobreva (1991) [308]).

2.5.2 The Temperature Dependence of the Thermodynamic
Functions

According to Eqs. (2.29)–(2.31) the temperature dependence of the thermodynamic
functions of glass-forming melts can be expressed directly through Cp . In addition,
the values of the enthalpy H and the free enthalpy G have to be known, at least,
for one temperature. Instead of the potentialsH , G or S of the respective states we
will discuss the differences between these quantities for the liquid or vitreous states
compared with the corresponding crystalline phase. These differences are denoted
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in the following by

�H D H.f / �H.c/ �Hg D H.g/ �H.c/; (2.113)

�G D G.f / �G.c/ �Gg D G.g/ �G.c/; (2.114)

�S D S.f / � S.c/ �Sg D S.g/ � S.c/: (2.115)

The subscripts f , g, c refer to the liquid (f), vitreous (g) and crystalline (c) states of
the considered substance, respectively.

Denoting further by �Gm and �Sm the values of these quantities at the melting
point (free enthalpy and entropy of melting) Eqs. (2.23)–(2.25) may be rewritten
(identifying the arbitrary reference value of temperature T0 with the melting
temperature Tm) in the form

�S.T / D �Sm �
TmZ
T

�Cp

T
dT; (2.116)

�H.T / D �Hm �
TmZ
T

�Cp dT; (2.117)

and with G D H � TS (Eq. (2.18)) we have to write

�G.T / D �H.T / � T�S.T /: (2.118)

As a result, we obtain (see also Eq. (2.25))

�G.T / D �Sm.Tm � T / �
TmZ
T

dT

TmZ
T

�Cp

T
dT: (2.119)

In Eq. (2.119), �Gm was set equal to zero since for T D Tm the free enthalpies of
the liquid and crystalline phases coincide (compare Sect. 2.2.3).

If one takes, moreover, into consideration the experimental fact that �Cp � 0

for T < Tg (see Figs. 2.17 and 2.18), then Eqs. (2.116)–(2.119) may be approxi-
mated for T < Tg by

�S.T / D �Sm �
TmZ
Tg

�Cp

T
dT; (2.120)

�H.T / D �Hm �
TmZ
Tg

�Cp dT; (2.121)
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Fig. 2.23 Temperature dependence of the entropy difference of glycerol for the liquid and the
glass (After Simon (1931) [757]). In contradiction to Nernst’s Third law of classical thermo-
dynamics the zero point entropy difference is not equal to zero but has a finite positive value
�S.0/ � �S.Tg/. With a dashed line the entropy value of the glass is given as obtained by Oblad
and Newton (1937) [609] as the result of prolonged annealing (See also Fig. 2.34). The black dot
corresponds to a temperature of 174K

�G.T / D �Sm.Tm � T / �
TmZ
T

dT

TmZ
Tg

�Cp

T
dT: (2.122)

Since according to Eq. (2.116)

�S.Tg/ D �Sm �
TmZ
Tg

�Cp

T
dT (2.123)

holds, Eq. (2.120) is equivalent to

�S.T / D �S.Tg/ � �Sg D const. for T < Tg: (2.124)

It follows that the entropy of a glass has a nearly constant value for T < Tg and,
moreover that the entropy of the glass is not equal to zero for T tending to zero.

Following F. Simon, the behavior of S as a function of T is shown in Fig. 2.23 for
glycerol calculated from the Cp.T /-course of this substance (Fig. 2.17). Similarly,
we obtain that for T < Tg the relations

�H.T / D �H.Tg/ D �Hg; �Hg D const. for T < Tg; (2.125)

�G.T / D �H.Tg/� T�S.Tg/ for T < Tg; (2.126)

are fulfilled (see also Fig. 2.24). These equations are, again, in contradiction to
the Third law of thermodynamics, in particular, with its consequences expressed
through Eq. (2.28). In contradiction to Eq. (2.28) and the Third law we obtain
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Fig. 2.24 Temperature dependence of some thermodynamic functions of glycerol calculated from
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lim
T!0

@

@T
.�G/ D ��S.Tg/ < 0; (2.127)

lim
T!0

@

@T
.�G/ ¤ lim

T!0

@

@T
.�H/ ; lim

T!0

@

@T
.�H/ D 0: (2.128)

From these considerations the construction shown in Fig. 2.25b is found, which is to
be compared with Nernst’s �G.T /- and �H.T /-curves (Fig. 2.25a, Nernst (1918)
[601]).

All the experimental results known at present show that considerable values of
the thermodynamic functions H , G and S are frozen-in in the vitreous state. If the
glass is solidified at normal cooling rates then in the average the relations

�Sg

�Sm
� 1

3
; (2.129)

�Hg

�Hm

� 1

2
(2.130)
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are fulfilled (Gutzow (1971) [313]; Gutzow and Dobreva (1991) [308]; cf.
Figs. 2.22b and 2.26).

For a proof of the outlined generalizations of experimental results thermody-
namic properties of different glass-forming melts are summarized in Tables 2.2–2.4.
Typical glass-forming melts like SiO2;GeO2;Be2O3;NaPO3; alkali-borates and
ethanol are included as well as glass-forming molecular substances like n-propanol,
benzophenone, phenolphthalein or metallic alloy systems, which form glasses
at higher cooling rates. The following conclusions can be drawn from these
experimental results:

• Even for glass-forming substances with a very different structure the ratio Tg=Tm
is given in a good approximation by Kauzmann’s rule (compare Eq. (2.71)).
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Table 2.3 Thermodynamic properties of representative glass-forming substances: Change of the
molar specific heat �Cp at the vitrification temperature Tg and the ratio �Cp.Tg/=�Sm . The
�Cp.Tg/-values are taken from: Wunderlich (1960) [934], Grantcharova et al. (1986a, b) [268,
271], Angell and Rao (1972) [15], Dobreva (1992) [173], and Chen and Turnbull (1967) [128]

�Cp.Tg/ References
Substance .J K�1mol�1/ �Cp.Tg/=�Sm for �Cp.Tg/

B2O3 41.9 1.25 [934]
H2SO4 3H2O 175.6 1.72 [934]
NaPO3 50 2.02 [271]
ZnCl2 20.9 1.26 [15]
Se 14.7 1.33 [934]
CaNO3 4H2O 230.4 2.40 [15]
Phenolphthalein 190 2.0 [272]
Glycerol 88 1.41 [934]
Ethanol 31.8 1.21 [934]
2Methylpentane 66.6 1.26 [934]
Butene-1 66.2 1.50 [934]
2-3Dimethylpentane 66.6 1.71 [934]
Poly(styrene) 24.3 1.5 [934]
Poly(ethylenetherephtalate) 76 1.6 [173]
Au0:77Ge0:136Si0:094 23.5 1.19 [128]

Exceptions to this rule are found for metallic glass-forming alloys, for which
considerably lower .Tg=Tm/-ratios are observed.

• With respect to the �Cp=�Sm, �Sg=�Sm and �Hg=�Hm ratios the reg-
ularities, expressed through Eqs. (2.112), (2.129) and (2.130), are verified.
Moreover, also the deviations from the average values can be noticed (see also
Figs. 2.22, 2.25b and 2.26, where all experimental data, known at present, are
summarized).

It can be seen that for more complex substances (NaPO3, phenolphthalein) the
deviations from the average values are particularly significant. This tendency is a
characteristic feature of polymer systems as can also be seen from the experimental
data compiled by Privalko (1980) [650]. Possible explanations of the relative
stability of the ratios discussed above as well as of the observed deviations for some
classes of substances will be given in Chap. 5 on the basis of molecular models of
glass-forming melts.

A natural measure of the instability of the vitreous state with respect to the
crystalline phase is the difference in the Gibbs free energy �G of both states of
the substance. With Eqs. (2.126), (2.129) and (2.130) we obtain

�G.T /

Tm�Sm
D
�
1

2
� T

3Tm

�
for T < Tg: (2.131)

The largest value of �G is reached thus for T tending to zero, it is equal to
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Table 2.4 Thermodynamic properties of glass-forming substances: Molar enthalpy of melting
�Hm and molar value of �Hg for selected glass-forming melts. Data are collected from the
following references: Weyl and Marboe (1967, 2/2 p. 1327) [919], Smith and Rindone (1961)
[783], Eitel (1952) [184], Brizke and Kapustinski (1949) [105], Anderson (1937) [9], Tammann
(1933) [820], Angell and Rao (1972) [15], Chen and Turnbull (1967) [128], Mandelkern (1964)
[528], and Dobreva (1992) [173]

�Hm �Hg

Substance kJ mol�1 kJ mol�1 �Hg=�Hm References

B2O3 24:7 18:3 0.74 [783, 919]
SiO2 14:3 10:5 0.72 [184]
Se 6:7 4:4 0.65 [9, 105]
Ethanol 4:98 2:68 0.54 [820]
n-Propanol 5:72 2:895 0.51 [820]
Na2O 4B2O3 130:4 58:3 0.45 [783, 919]
LiO2 2B2O3 120:4 46:4 0.39 [783, 919]
H2O 4B2O3 126:5 72:6 0.57 [783, 919]
Benzophenone 17:9 8:5 0.48 [820]
Glycerol 18:3 8:7 0.48 [820]
Poly(ethyleneterephtalate) 25:9 12:9 0.50 [173]
Betol 19:2 7:4 0.38 [820]
2Methylpentane 6:9 3:9 0.46 [15]
ZnCl2 10:0 3:1 0.31 [15]
H2SO4 3H2O 23:3 5:1 0.22 [15]
Ca.NO3/2 4H2O 21:6 4:3 0.20 [15]
Au0:77Ge0:136Si0:094 10:6 6:3 0.59 [128]

�G.T ! 0/ D 1

2
Tm�Sm: (2.132)

From Boltzmann’s dependence Eq. (2.32) furtheron

�Sm

�Sg
D ln.˝m/= ln.˝g/ (2.133)

is obtained, resulting with Eq. (2.129) in

˝g D 3
p
˝m: (2.134)

The transition to the vitreous state occurs, therefore, then, when the number of
possible microscopic configurations ˝ , corresponding to the the same macrostate,
reaches at normal cooling rates a value, given by Eq. (2.134), which is nearly the
same for all glass-forming substances. This state of increased molecular disorder is
retained down to temperatures approaching absolute zero. This result is a violation
of the Third law of thermodynamics. Summarizing the above given thermodynamic
results we have to conclude:
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• At T � Tg in the vitrified melt considerable ratios of the values of the
enthalpy and entropy of melting are frozen in. These frozen-in values of
the thermodynamic potentials remain nearly constant in the further cooling
of the substance down to absolute zero. According to Boltzmann’s relation
(Eqs. (2.32) and (2.133)) this property is connected with a relatively high degree
of configurational disorder retained in the glass.

• The Third law of thermodynamics formulated by W. Nernst does not hold for
glasses. In particular, according to the Third law the temperature derivatives
of H and G disappear for T ! 0, while for glasses this is not the case
(compare Eq. (2.128)). Thus, at least, in principle a glass could be used to
measure temperature differences for T ! 0, which is excluded by the Third
law.

The results, outlined in this chapter, were so surprising that many distinguished
physicists and chemists doubted initially the validity of the experimental findings
(see, e.g., Nernst’s comments from 1918). However, all the experiments carried out
in subsequent years always confirmed these results.

2.5.3 Alternative Methods of Determination of Caloric
Properties of Glass-Forming Melts

The determination of the thermodynamic potentials of glasses based on specific
heat measurements is accompanied by tedious experiments over, in general, large
temperature ranges. Thus a simpler method of their evaluation is, if possible,
desirable. An alternative approach is also of use to exclude systematic errors
possibly connected with the one specific method applied so far.

One possible method of direct determination of the frozen-in value of the
enthalpy difference �Hg consists of the measurement of the heat of chemical
reactions if the substance reacts once as a glass and another time as a crystal. Care
has to be taken that the same reaction products are formed in both cases. One known
example in this respect is the measurement of the reaction heat of quartz and the
corresponding silica glass in hydrofluoric acid according to the scheme

SiO2 C 4HF ! SiF4 C 2H2O C Q: (2.135)

�Hg can be determined then by

�Hg D Qglass �Qcrystal ; (2.136)

whereQglass andQcrystal are the respective heats of reaction.
Usually the solution of silicate glasses in hydrofluoric acid is carried out

in platinum calorimeters (Eitel (1954) [185]). Similar experiments can be also
performed with water soluble glasses or with vitrified metallic alloys dissolved
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Fig. 2.27 Schematic
illustration of the method of
determination of �Hg by
dissolution experiments with
glasses. �lg and �lc are the
heats of dissolution of the
glass and the crystal,
respectively. �le is the heat
of dissolution of the
under-cooled melt, �He the
enthalpy difference between
glass and under-cooled melt

in acid solutions and other appropriate solvents. Schematically this method is
illustrated in Fig. 2.27.

An interesting variation of this method of determination of �Hg by dissolution
experiments was developed by Jenckel and Gorke ((1952) [408]; see also Haase
(1956) [338]). According to the proposal of these authors not the heats of dissolution
and swelling of a crystalline polymer, which is difficult to prepare, are measured, but
the heats of dissolution for the vitreous state �lg and the respective under-cooled
melt �le are compared (see Fig. 2.27). This method can be applied only when in
between the melt and the solution there is practically no energetic difference (the
enthalpy of dissolution of the melt must be equal to zero); in this case �lg D �Hg

holds.
Another method of estimation of �Hg consists of the measurements of the

heat of combustion of the crystalline and glassy forms of organic substances, e.g.,
of vitreous carbon and graphite in a calorimetric bomb. The disadvantage of this
method is connected with the necessity of determining �Hg as the difference of
two comparatively large quantities, which yields relatively large uncertainties in
the values of �Hg . A comparison of �Hg, obtained by Cp.T /-measurements,
with the above discussed alternative estimates, shows a coincidence, verifying once
more the results outlined earlier.

Two further methods, which can be applied directly for a determination of �Hg

and�Sg, are measurements of the temperature dependence of the solubility and the
vapor pressure of a glass and a crystal formed of the same substance. It is to be
expected that both the solubility and the vapor pressure of the vitreous material are
higher than the corresponding values of the crystalline phase. From this difference,
the Gibbs free energy can be immediately calculated.

In a similar way, measurements of the electromotoric force of an electric element
in which a suitable conducting glass is used as the cathode, while the anode
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Fig. 2.28 Density (a) and coefficient of thermal expansion (b) of vitrifying glycerol as a function
of temperature according to the measurements by Schulz (1954) [740]. White circles in Fig. 2.29a
are experimental data for liquid and vitreous glycerol, black dots refer to the crystalline phase.
In Fig. 2.28b the full curve represents the temperature dependence of the coefficient of thermal
expansion ˛ for the melt respectively the glass, while the dashed curve refers to the crystal. Note
the sigmoidal change of ˛ at Tg and the discontinuity of ˛cryst at the melting temperature Tm

consists of the crystalline phase of the same substance, can be applied for a direct
calculation of�G.T < Tg/. However, these methods are associated with additional
peculiarities which cannot be discussed in detail here (see Sect. 3.12; Gutzow (1981)
[304]; Grantcharova and Gutzow (1986) [268]).

2.5.4 The Change of Mechanical, Optical and Electrical
Properties in the Transformation Range

Already the first systematic investigations of glass-forming systems showed that in
addition to the heat capacity, other thermodynamic coefficients such as the thermal
expansion coefficient or the compressibility also exhibit a jump in the typical
s-shaped form on vitrification. One example is given in Fig. 2.28, where the thermal
expansion coefficient ˛ (see Eq. (2.63)) for glycerol is shown as a function of
temperature according to the dilatometric measurements of Schulz (1954) [740].
The ˛.T /-curves are determined by the temperature dependence of the molar
volume v or the molar density. These v D v.T /-curves exhibit a typical salient
point at Tg (see, e.g., Fig. 2.28).

Intensive investigations, in particular, of organic polymeric glasses showed that
the transformation to a glass is initiated usually at an actual value of the relative free
volume, which corresponds to, approximately, 11–12% of the relative free volume
of the melt at the melting temperature. Hereby the relative free volume is determined
by .vf �vc/=vc . vf and vc are the molar volumes of the fluid and crystalline phases,
respectively. These experimental results encouraged Simha and Boyer (1962) [753]
to formulate the idea that the process of glassy solidification has to be considered as
a freezing-in process of a constant value of the free volume (iso-free volume theory
of vitrification). For other classes of glass-forming melts at normal cooling rates,
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e.g., for SiO2;GeO2; BeF2; Ar2S3, approximately constant values of the relative
free volume about 18–20 %, frozen-in in the glass, could be observed. For vitreous
metallic alloys the corresponding value is equal to 8–10 %. A summary of results in
this respect is given in Table 2.5.

A possible interpretation of these results was given by model experiments
performed by Scott (1960) [741]. Stimulated by a suggestion of J. Bernal (1959
[72], 1964 [74]), Scott tried to model the structure of liquids by a random packing
of steel spheres of equal size. The volume occupied by the ensemble of equally
sized spheres in the most dense hexagonal crystalline packing is about 74 % of the
total volume available, while for the so-called dense, respectively, loose random
packings 68% and 63% were obtained. These values correspond to relative free
volumes, referred to the dense hexagonal packing, between 28% and 17%, and –
as was pointed out by Gutzow (1962) [288] – to the free volume found in typical
glass-forming substances.

These model experiments are not only instructive from a structural point of view.
They show in addition the close connection between mobility and free volume (cf.
also the Doolittle or Batchinski equations, Eqs. (2.90) and (2.91)). As found for
the Cp.T /-curves, the value of the transformation temperature Tg depends on the
cooling rate in the same way as predicted by the Bartenev-Ritland equation (2.111)
(compare Figs. 2.19 and 2.29). A similar result is shown also in Fig. 2.30. Since any
thermodynamic coefficient can be represented as a second-order derivative of an
appropriately chosen thermodynamic potential glass-formation processes also show,
with respect to mechanical properties, a similarity with second-order equilibrium
phase transformations.

An equivalent behavior is also found for electric properties of glass-forming
melts, e.g., for the dielectric constant �. Figure 2.31 shows � as a function
of temperature for a vitrifying glycerol melt. It is seen from Fig. 2.31 that the
significant variation in � is found practically at the same temperature as for the
coefficient of thermal expansion, ˛, and the heat capacity, Cp (Figs. 2.17 and 2.29).
Since � can be represented as (Landau and Lifshitz (1967) [493])
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Table 2.5 Relative occupied volume ˇ of various glasses, calculated from the densities � or the
packing densities  of the glass (g) and the respective crystalline phase (c). The value of ˇ is
calculated either by ˇ D �g=�c from the density ratio of the glass versus crystal or by ˇ D
 g= c from the respective packing densities. The density data are taken from: Simha and Boyer
(1962) [753], Dietzel and Poegel (1953) [171], Sternberg et al. (1989) [799], Cargill (1975) [122],
Chen and Turnbull (1968) [129], and Zanotto and Müller (1991) [948]. For further details see also
Gutzow (1979) [301]

Structure of �g �c
Substance the crystal .g cm�3/ .g cm�3/  g  c ˇ

Organic linear polymers [753]
Various 0.89

Inorganic glass-forming polymers [753]
As2O3 3.70 4.15 0.89
GeS2 Hexagonal 2.69 3.0 0.89
Se Hexagonal 4.28 4.82 0.89
PbSiO3 5.98 6.49 0.92
Li2SiO3 Orthorhombic 2.34 2.52 0.93

Network glass-formers [171, 799]
SiO2 Hexagonal

quartz-like 2.20 2.65 0.83
GeO2 Hexagonal

quartz-like 3.63 4.28 0.85
BeF2 Hexagonal

quartz-like 1.98 2.37 0.84
AlPO4 [171] Hexagonal

(berlinite) 2.64 0.84
GaPO4 Hexagonal

quartz-like 2.37 2.72 0.87
P2O5 [948] 2.37 2.72 0.87
B2O3 [948] 1.84 2.46 0.74

Vitreous metallic alloys [122, 129]
(Co-P; Fe-P-C; Pd-Si; Ni-Pd-P; Cu-Pd-Si)

0.68 0.74 0.92
AuGeSi [129] Hexagonal

[122] close packing 0.64 0.74 0.89

Bernal-Scott mechanical models of equally-sized spheres
Loose-random Hexagonal

packing close packing 0.61 0.74 0.82
Dense-random Hexagonal

packing close packing 0.64 0.74 0.86

� D 4	

�
@2G

@E2

�
T;p;nj

C 1; (2.137)
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the similarity to other thermodynamic coefficients is obvious. E in Eq. (2.137) is
the absolute value of the electric field vector. Thus, it turns out that the mechanical,
caloric and electrical coefficients of vitrifying systems are abruptly changed in
the vitrification range. This similarity of the behavior of the thermodynamic
coefficients to the respective course in second-order phase transformations led
Boyer and Spencer (1944 [96], 1945 [97], 1946 [98]) to the idea of interpreting
vitreous solidification as a kind of second-order phase transformations. However,
this suggestion cannot be accepted, since, as mentioned by Boyer and Spencer
themselves, a thermodynamically defined value of Tg does not exist. In contrast,
Tg in all considered cases depends on the cooling rate.

In addition, the combination of the jumps in the thermodynamic parameters�˛ ,
�� and �Cp, written in form of Ehrenfest’s equation Eq. (2.68), gives a nearly
constant value also for vitrification processes (see Davies and Jones (1953) [153];
Moynihan (1976) [580]). However, this constant is not equal to unity, as is the
case for second-order equilibrium phase transformations, but is greater than one and
varies, in dependence on the specific properties of the vitrifying substance, usually
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between 2 and 5 (see also Chap. 3). Further details concerning empirical aspects of
the thermodynamics of the glass transition can be found in a paper by Angell and
Sinicha (1976) [16].

2.6 Conclusions: The Nature of the Vitreous State

Summarizing the results of the previous sections we may formulate the following
main conclusions characterizing the glass transition and the nature of the vitreous
state:

1. The transition range between the under-cooled liquid and the glass is charac-
terized by the absence of a heat of transformation, by jumps in the values of
the thermodynamic coefficients corresponding to second-order derivatives of the
thermodynamic potential G and by a steep increase of the viscosity followed by
a break-point at Tg .

2. The discontinuities in the values of the thermodynamic parameters do not
obey Ehrenfest’s equation Eq. (2.68). They follow a similar but not identical
dependence derived by Prigogine and Defay and discussed here in Sect. 3.8.

3. The glass transition does not take place at a fixed value of external thermody-
namic parameters (p; T ) but depends on kinetic factors like the cooling rate.

4. The Third law of thermodynamics and some of its consequences, as they are
known for equilibrium systems, fail for the vitreous state.

The properties (2)–(4) lead to the conclusion that the glass transition cannot
be interpreted in terms of any thermodynamic phase transformation according
to Ehrenfest’s classification. Taking into account the considerations of Sect. 2.1
it is, therefore, not reasonable to consider glasses as a state of aggregation or
a phase in the classical sense as discussed above. A solution of the problems
concerning the nature of the vitreous state and its deviation from the Third law of
thermodynamics was given first by F. Simon (1930) [756]. In this way, a significant
and useful approximation was introduced in glass science. Simon proposed to
consider glasses as kinetically frozen-in thermodynamically non-equilibrium states.
Due to the sharp increase in the viscosity relaxation processes in the melt towards
equilibrium become so slow in the transformation range that they cannot follow
the variation of the external parameters. Thus, a certain molecular configuration is
frozen-in in the glass, which results in the relatively high values of �S and �H ,
remaining approximately constant for T < Tg (Eqs. (2.125) and (2.126)). Simon’s
proposal excludes glasses from the framework of classical thermodynamics, since
thermodynamics is applicable in its classical form only to equilibrium systems.
Glasses do not obey, according to this interpretation, the Third law because they
are non-thermodynamic systems in the classical sense.

Thus thermodynamics is not violated by the existence and the particular thermo-
dynamic behavior of glasses, but glasses, as any other frozen-in states, cannot be
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Fig. 2.32 Mechanical analogy for an interpretation of the differences between the stable at T <Tm
crystalline state (a), the metastable melt (b) and the glass below Tg (After Simon and Jones (1949)
[409]). In this mechanical analogy the crystalline state corresponds to an absolute minimum of the
potential well, the under-cooled melt to a higher local minimum. In order to be transferred from the
metastable to the stable crystalline state the system has to overcome a potential barrier �Gc . �G
is the thermodynamic driving force of crystallization. The glass is represented in this analogy by
a ball glued to the wall of the potential well above the minimum (c). Crystallization is commonly
preceded by stabilization processes, the thermodynamic force of stabilization�Gs is also indicated

treated quantitatively in the framework of classical thermodynamics. This peculiar
non-thermodynamic nature of glasses has to be accounted for in analyzing glass
properties and in the definition of the vitreous state. In this sense, Simon’s statement
requires a generalization of the definition of the vitreous state given first by
Tammann. Tammann stated that glasses are under-cooled solidified melts (see also
Tammann (1933) [820]). This definition is as a first step correct but not sufficient
since nothing is said about the specific thermodynamic state of glasses. In discussing
Tammann’s definition it has also to be pointed out, that glasses at present are
obtained not only by the under-cooling of melts but also by a variety of other
methods, e.g., vapor deposition. Also from such a point of view Tammann’s original
definition has to be generalized. Several general definitions of the vitreous state are
discussed in Chap. 3 (Sect. 3.15).

Simon gave an illustration of his ideas on the nature of the vitreous state
in the form shown in Fig. 2.32. This figure demonstrates the difference between
the crystalline state, thermodynamically stable for T < Tm, the corresponding
metastable under-cooled melt and the glass. At T < Tm the metastable liquid
melt is, as any other metastable system, stable with respect to small fluctuations
but unstable with respect to sufficiently large deviations from the initial state.
Such sufficiently large changes initiate the transition to the thermodynamically
favored crystalline phase. In glasses, as will be demonstrated in Chaps. 3 and 6,
the thermodynamic driving forces towards the respective equilibrium state are far
from zero. Moreover, it can be shown that the thermodynamic driving force for
crystallization in a glass is even higher than for the respective under-cooled melt.
The particular nature of glasses as frozen-in non-equilibrium states is represented in
Fig. 2.32 by a ball glued to the wall of the potential well.

Simon’s point of view is verified by a number of additional facts, not mentioned
so far. The first of these facts was an experiment conceived by Simon and carried
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under-cooled glycerol
obtained at normal cooling
rates (full curve) and after
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out by Oblad and Newton ((1943) [609]; see Fig. 2.33). It is based on the following
argumentation. If the scenario proposed by Simon is valid, then a decrease in
the cooling rate should lead to a decrease of the values in enthalpy and entropy,
frozen-in during the transformation to a glass. It was in fact shown by Newton and
Oblad with glycerol that slow cooling processes extended over several months led
in fact to a decrease of the residual entropy (see Fig. 2.23). Due to the steep increase
in viscosity and the resulting exponential increase in the time, required to carry
out the measurements, such an extension of the experimental investigations of the
under-cooled melt below the value of Tg, corresponding to normal cooling rates
(q � 10�2 � 102 Ks�1), is possible for very narrow temperature intervals, only.
Thus, the extension to even lower temperatures can be carried out only based on
carefully performed interpolations of the curves, consistent with the principles of
thermodynamics, or on statistical mechanical investigations of model systems.

For moderate deviations from Tg , the values of �S.T / corresponding to the
metastable melt, can be approximated by a linear extrapolation of the curve
determined in the range Tg < T < Tm (see Fig. 2.23). However, if one extends
such a linear interpolation to absolute zero, negative values of the entropy of the
fictive under-cooled melt below Tg for temperatures tending to zero are obtained
(Fig. 2.34). Such a possibility is in conflict with classical thermodynamics, in
particular, with the Third law, according to which�S tends to zero for temperatures
approaching zero (cf. Eqs. (2.26)–(2.28)). It also has to be excluded from the
point of view of the statistical interpretation of entropy (see Boltzmann’s equation
Eq. (2.32)) since it would correspond to a number of microscopic realizations ˝
of such a state less than one. This extrapolation was carried out by Kauzmann
(1948) [440]; it is known as Kauzmann’s paradox and repeatedly discussed in the
subsequent literature. Kauzmann himself, as it is evident from his paper, was fully
aware of the inadmissibility of such a linear extrapolation and proposed it only as a
paradoxical possibility (Kauzmann (1948) [440]).

Another, at a first glance, paradoxical result, giving rise to prolonged discussions
in the literature (see, e.g., Blumberg (1939) [85]), was connected with erroneous
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Fig. 2.34 �S.T / curves for glycerol and Kauzmann’s paradox: The solid line represents the
under-cooled metastable liquid (for Tg < T < Tm) and the vitreous state (for T < Tg). The
dashed curve is an inadmissible linear extrapolation of the �S.T /-dependence for the melt down
to absolute zero. Only such an unrealistic linear extrapolation yields negative values of the entropy
for T ! 0. Thermodynamically forbidden consequences and paradoxa do not occur for more
realistic thermodynamically self-consistent extrapolations of the properties of the fictive under-
cooled melt as shown, e.g., by the second dashed line. The temperature is given in relative units
T=Tm. T0 is the temperature for which �S becomes practically equal to zero

�S.T /-determinations by Tammann (1922) [818], based onCp.T /-measurement of
glycerol. Due to an error in the calculations Tammann was led to the conclusion that
there may exist a point of intersection of the S.T /-curves of the glass and the under-
cooled melt. In this way, it seemed to be possible that the thermodynamic potential
of the frozen-in glass may be lower for some substances (Tammann mentioned
glycerol) as compared with the respective value for the undercooled melt. This
led Tammann (1930) [819] further to the conclusion that under certain conditions
the glass is more stable from a thermodynamic point of view than the undercooled
melt. The error in Tammann’s calculations was first mentioned by Simon. Tammann
agreed with Simon’s criticism (Tammann and Jenckel (1930) [821]) and gave a
correction of his previous incorrect statements. Despite these facts, Tammann’s
first erroneous conclusions entered some text-books on glass science and appear
in literature from time to time even today.

A second point to be mentioned, giving additional support to Simon’s ideas,
is the behavior of glasses in devitrification processes. If a glass is heated slowly
after reaching sufficiently low values of the viscosity first a relaxation into the
actual metastable equilibrium can be observed, before eventually, the transition
to the stable crystalline state occurs. The isothermal relaxation of a glass into
the corresponding metastable under-cooled liquid is denoted in glass science as
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stabilization. The stabilization of the non-equilibrium glass always precedes the
crystallization of the under-cooled melt. This is a typical feature of the process of
evolution from frozen-in disordered to equilibrium states.

A third point supporting Simon’s concept is the structural isomorphy of the
vitreous state compared with the liquid melt from which it originated. This
isomorphism is supported by X -ray measurements, IR-spectra and other methods
of structural investigations. Further arguments in favor of Simon’s interpretation
are the possibility to derive the Bartenev-Ritland equation and relations similar
to Ehrenfest’s equation based on the interpretation of vitrification as a kinetically
determined freezing-in process. This approach led to a theoretical development
which is known in literature as the kinetic theory of vitrification. The respective
derivations are given here in Chaps. 3 and 5.



Chapter 3
Non-equilibrium Thermodynamics and the
Kinetics of Glass Transition and Stabilization

3.1 The Thermodynamic Description of Non-equilibrium
States: Introduction

The preceding discussion in Chap. 2 concerning the nature of the vitreous state
has led us to the conclusion that glasses are frozen-in non-equilibrium systems.
Non-equilibrium systems cannot be described in the framework of classical ther-
modynamics, which is restricted in its scope to equilibrium states and quasi-static
processes proceeding in between them. Nevertheless, as already mentioned in
Sect. 2.2.2, a thermodynamic description can also be given for non-equilibrium
states, in general, and glasses as frozen-in non-equilibrium states, in particular. This
treatment is based on the introduction of additional structural order-parameters �i in
analogy to chemical reaction coordinates in classical thermodynamics.

The introduction of such additional parameters of state is carried out usually
in the framework of the thermodynamics of irreversible processes employing a
formalism developed by De Donder (1938) [155]. The details of this approach
are described in a number of well-known monographs. Among them we would
like to mention especially the books of Prigogine and Defay (1954) [649] and of
Leontovich (1953) [504]. The original formulation of De Donder’s ideas may be
found also in De Donder monograph published first in 1936 (De Donder and van
Rysselberghe [156]; cf. also [157]).

The application of De Donder’s approach to vitrification processes was initiated
by Davies and Jones (1953) [153] and Kanai and Satoh (1954, 1955) [428] with
the aim of giving a description of stabilization processes in glasses. Cooper (1971)
[152] used this method for a definition of the vitreous state while Grantcharova and
Gutzow (1986) [268] applied it for the analysis of the problem of the vapor pressure
and solubility of glasses. In two recent publications by Gutzow and Dobreva (1991
[308], 1992 [310]) this method was also used for a determination of the dependence
of the vitrification parameters on cooling rate.

In the course of the mentioned and similar investigations it has become evident
that for an accurate description of glasses as frozen-in non-equilibrium states, a

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 3, © Springer-Verlag Berlin Heidelberg 2013

69



70 3 Non-equilibrium Thermodynamics and the Kinetics of Glass Transition and . . .

different number of reaction parameters has to be introduced in dependence on the
desired degree of accuracy of description and the complexity of the investigated
substance. Besides one or even more parameters portraying the topological order (or
disorder), additional reaction coordinates are needed for a description of the degree
of completion of chemical reactions or molecular transformations taking place in
the melt (variation of the degree of polymerization, of molecular configuration etc.)
or corresponding to different states of mobility of the building units (rigidity or
flexibility of chain folding polymers etc.) of the considered system.

It is difficult to give a comprehensive answer to the question of how many
parameters �i have to be introduced for a proper description of the state of the
considered system (see e.g., Moynihan (1976) [580]; Nemilov (1988) [598]). It
has even been stated that it is, in principle, impossible to have more than one
independent structural order parameter for a glass. This statement is based on the
argument that different equilibration processes in glasses are interconnected. Thus,
if statistical models of a glass are formulated involving several order parameters,
one has to check whether these parameters are indeed independent or not. A
mathematical criterion to prove the independence of different order parameters is
given below.

From the experience with more or less realistic lattice-hole models of vitrifying
melts (see, for example, Gibbs and Di Marzio (1956) [251]; Gibbs (1960) [250];
Gutzow (1977 [298], 1979 [302]); Milchev and Gutzow (1982) [561]; Petrov,
Milchev, and Gutzow (1994) [634]) obtained in recent years it has become evident
that, in general, three structural parameters are needed to define, with a sufficient
degree of quantitative accuracy, the thermodynamic state of a simple or polymer
glass-forming melt. One parameter is needed for the description of the topological
disorder (i.e., the free volume of the melt), one parameter describes the degree of
complexity of the building units of the system (i.e., the degree of polymerization
or aggregation of the building units), while one additional parameter reflects the
probability of the building units to exist in different conformations with respect to
the degree of flexibility, e.g., of the polymer chains or other molecular aggregates.
In some statistical models these parameters are indeed independent variables. How-
ever, models have also been developed in which the flexibility or the configuration
of the units constituting the melt depend on the free volume of the liquid. In such
cases, between the three above mentioned parameters connections exist and they
cannot be considered any more as independent quantities.

The introduction of more than one structural order parameters was also consid-
ered for a long time as a necessary requirement in order to obtain realistic values
for the already mentioned Prigogine-Defay ratio (see Prigogine and Defay (1954)
[649] and the analysis of Rehage and Borchardt (1973) [658], Moynihan (1976)
[580] and Nemilov (1988) [598]). The Prigogine-Defay ratio is a relation similar
to the Ehrenfest equation describing properties of second-order equilibrium phase
transformations (see Eq. (2.68)). However, for a demonstration of De Donder’s
method and the derivation of the basic qualitative results attempted here we restrict
ourselves in describing vitrifying systems to only one structural parameter �. We
assume, that this parameter describes in some generalized way all the essential
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structural and configurational disorder of the vitrifying melt. By definition, the
parameter � may have values in the range 0 � � � 1. Hereby, � D 0 corresponds
to a state of complete order (crystal), while � D 1 is the state of complete
disorder. Thus, the introduction of the structural order parameter allows us to give a
unified description of the structure of the under-cooled melt, the glass and also the
respective crystalline phase of the substance.

From a mathematical point of view the introduction of additional structural order
parameters requires an extension of the fundamental equation of thermodynamics.
If we choose the pressure p, the temperature T and the reaction coordinates �1,
�2 : : : �m as independent variables, Gibbs’s fundamental equation may be written in
the form (compare Eqs. (2.20) and (2.45))

dG D �SdT C Vdp C
X
i

@G

@�i
d�i : (3.1)

It is assumed from the very beginning that the number of moles of the different
components is constant (closed system). The criterion that two order parameters �i
and �j are independent can be formulated in the following way (see Nemilov (1988)
[598]) �
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In the thermodynamics of irreversible processes the state functions,Ai , conjugate
to the structural order parameters, �i , are denoted as affinities with respect to the
generalized reactions described by �i . They are defined by

Ai D �
�
@G

@�i

�
p;T;�j

(3.3)

(compare Prigogine and Defay (1954) [649]). Introducing the affinities Ai into
Eq. (3.1) we obtain

dG D �SdT C Vdp �
X
i

Ai d�i : (3.4)

For the case of only one structural parameter this equation is simplified to

dG D �SdT C Vdp � Ad�: (3.5)

The affinity has the meaning of the thermodynamic driving force of the respective
restructuring process. It is defined in such a way that the signs of A and d�=dt
coincide for spontaneous equilibration processes.

Equation (3.5) allows us to give a simplified description of the metastable melt
as well as of the frozen-in system, the glass. It will be used in the subsequent
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sections for a discussion of different properties of glasses. In particular, analytical
expressions will be derived, describing the dependence of the thermodynamic
properties of the glass on cooling rate in vitrification. A derivation of the Prigogine-
Defay ratio is also given here in Sect. 3.8. It will be shown further that the approach
outlined is also a convenient method to treat different problems of the kinetics of
stabilization, of the vapor pressure and solubility of glasses.

3.2 Structural Order Parameters and Thermodynamic
Functions of Vitrified Systems

As outlined in Sect. 3.1 in the framework of De Donder’s method any thermody-
namic characteristic ˚ of a system becomes a function not only of pressure p,
temperature T and the number of moles of the independent components nj but
also of one or more additional structural order parameters, �i . Taking into account
only one additional order parameter and assuming the number of moles of the
independent components and the pressure to be constant, we have to write

˚ D ˚.T; �/: (3.6)

In equilibrium the structural order parameter � is a single-valued function of the
state variables (compare Eq. (2.46)) and under the discussed conditions a function
only of temperature, i.e.,

�.e/ D �.T /: (3.7)

In equilibrium, in addition, the following relations have to be fulfilled (compare
Eq. (2.47))
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�
p;T

> 0: (3.8)

Equation (3.8) determine the equilibrium value of � D �.e/. The subscript f refers
to the (fluid) under-cooled melt.

However, when the state of the system is abruptly changed (e.g., by rapid
quenching), its structure, described by the parameter �, cannot follow the alterations
of temperature immediately. In such cases, at lower temperatures the melt remains
frozen-in in a state of disorder, characterized by the value �� of the order parameter
corresponding to a different temperature T � as compared with the value of
temperature T established in the course of the rapid cooling process. For such a
sudden quench and if the relaxation processes in the final state can be neglected, we
can assume that �� corresponds to the structure of the initial state before the quench
and is determined by the initial temperature T �, i.e.,

�� D �.T �/: (3.9)
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For this non-equilibrium state, not Eq. (3.8) holds but
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If the order parameter � is larger than its equilibrium value, then the derivative in
Eq. (3.10) is positive (compare Eq. (2.47)).

From a mathematical point of view, the notation “frozen-in” reads

�
d�

dt

�
D 0: (3.11)

This equation holds for T < T �. Since � is constant for T < T � we may also write

d�

dT
D 0 for T < T �: (3.12)

From Eqs. (3.6) and (3.9) we may conclude that the thermodynamic functions and
the thermodynamic properties of the vitrified melt, i.e., the glass, are functions of
the form

˚f .T < T
�/ � ˚g D ˚.T; ��/: (3.13)

Here and further the subscript g specifies the properties of the glass. In the
subsequent derivations we will omit the superscript 	 in ��, specifying by � the
actual state of disorder and by �.e/ the respective equilibrium value of �.

The temperature T �, corresponding to the state of disorder �, is usually denoted
as Tool’s fictive temperature or the structural temperature of the respective glass (see
also Tool and Eichlin (1931) [845]). Tool derived his ideas concerning the introduc-
tion of a fictive temperature as a measure of the state of disorder of the glass on an
empirical basis (from the analysis of the densities of glasses frozen-in at different
cooling rates). This concept has been proven generally to be of great heuristic value
and is used nowadays not only in the scientific analysis but also in the discussion of
technological aspects of the vitrification process (see, e.g., Mazurin (1986) [543]).

In reality, the freezing-in process takes place in a relatively broad temperature
range, the already mentioned “transformation region” of the glass. However, follow-
ing Simon’s proposal (Simon (1931 [756, 759]) we can assume that at temperatures
T > Tg the under-cooled melt behaves as a metastable system in an internal thermal
equilibrium, while at T < Tg the melt is frozen-in to a glass. In such a simplified
treatment T � D Tg holds, where Tg is the conventional glass transition temperature.
However, even after the system is vitrified to a glass, evolution processes in the
system may take place resulting in a change of the structure and thus of the value
of the order parameter �. Consequently, the fictive temperature corresponding to the
respective value of the order parameter also varies in time. Such processes, which
proceed, of course, on large time scales, are discussed in detail in Sect. 3.9.

For vitrification processes in glass-forming melts the freezing-in temperature T �
varies with the conditions of the vitrification process. With an increase in the cooling
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rate, it is moved to higher values. Consequently, the properties of the glass may also
vary in dependence on the cooling rate in broad ranges (see Gutzow and Dobreva
(1991 [308], 1992 [310])). Taking into account, that the thermodynamic state of the
vitrifying melt is determined (for p D constant) by the two independent variables
T and �, the total differential of any thermodynamic function of the melt may be
expressed as

d˚f .T; �/ D
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�
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d�: (3.14)

Since according to the adopted definition for the crystalline phase (specified by
the subscript .c/) the order parameter � is to be taken equal to zero the analogous
expression for the crystal reads

d˚c D
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dT: (3.15)

From the definition of the specific heat at constant pressure (Eqs. (2.12)–(2.14))
we have for a quasistatic process taking place with the melt (� is a function of
temperature as determined by Eq. (3.7))
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while for the crystalline phase

C .c/
p D
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(3.17)

holds. Equation (3.17) defines the contribution to the specific heat due to the
vibrations of the particles around their respective equilibrium positions, the phonon
contributions. For a crystal these phonon contributions coincide practically with the
total value of the specific heat, i.e.,

C .c/
p D C .phon/

p : (3.18)

The specific heat of the melt in an internal equilibrium is determined according
to Eq. (3.16) by two contributions. While the first term has the same structure as
the expression for C .c/

p the second term in Eq. (3.16) is connected with variations
of the structure of the under-cooled melt. The first term in Eq. (3.16) we may
identify, consequently, with the phonon contribution while the second term refers
to the configurational part of the specific heat of the melt. This conclusion yields the
following expression for the configurational part of the specific heat (see Prigogine
and Defay (1954) [649])
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Approximately, we may identify the phonon contributions of the specific heat of the
equilibrium melt and the crystal, which yields

C .phon/
p D

�
@Hc

@T

�
p;�D0

�
�
@Hf

@T

�
p;�

: (3.20)

Using the previously mentioned approximations, we may express the specific heat
of the melt as the sum of the phonon and the configurational parts, where the phonon
contribution may be identified with the specific heat of the crystalline phase, as

C .f /
p D C .phon/

p C C .conf /
p : (3.21)

In such an approach the difference between the specific heats of the melt and the
crystal�Cp.T / is determined by the configurational contribution�C.conf /

p :

C .f /
p D C .c/

p C�Cp.T /; (3.22)

�Cp.T / D C .conf /
p : (3.23)

Based on the knowledge of the specific heat difference and the thermodynamic
functions of the crystalline phase with the general thermodynamic relationships,
outlined in Chap. 2, all thermodynamic functions of the melt may be determined
(compare Eqs. (2.113)–(2.123)). It follows as a consequence that according to
Eq. (3.22) any thermodynamic characteristic of the melt ˚f can be expressed as
the sum of two terms, corresponding to the phonon and the configurational parts of
the respective distribution function of the system
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or, approximately,
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One additional example in this respect is the thermal expansion coefficient ˛
introduced with Eq. (2.63),
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The difference between the coefficients of thermal expansion of the melt and the
crystal may be expressed, thus, as

�˛ D ˛f � ˛c D 1
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and with the same argumentation as in the derivation of Eq. (3.20), we arrive at
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By ! the relative free volume of the melt is denoted. This quantity plays a decisive
role in statistical lattice-hole models of vitrifying melts (free volume theories of
vitrification, see Chap. 5).

Upon vitrification the system is frozen-in and according to Eq. (3.12) the
configurational contributions to the thermodynamic coefficients of the vitrified melt
become equal to zero, e.g.,

�Cp.T / D C .conf /
p .T / D 0 for T < T �; (3.31)

�˛.T / D ˛.conf /.T / D 0 for T < T �; (3.32)

as it is evident from Eqs. (3.19) and (3.29). This result gives the thermodynamic
explanation of the discontinuities of the thermodynamic coefficients in devitrifi-
cation observed experimentally (compare Figs. 2.17, 2.28b, and 2.31). It follows,
moreover that upon vitrification the configurational parts of the thermodynamic
functions are frozen-in and that for T < Tg the thermodynamic functions of the
glass ˚g like volume, entropy, enthalpy etc. can be expressed as

˚g.T / D ˚.phon/
g .T /C�˚g for T � T � (3.33)

with
�˚g.T � T �/ D ˚

.conf /

f .T � T �/ � ˚
.conf /

f .T �/: (3.34)

The contributions �˚.T <T �/ are determined by the respective values at the
fictive temperature T �. They therefore depend, via the Bartenev-Ritland equation
Eq. (2.111), on the cooling rate q. In the determination of˚.phon/, as mentioned, the
respective ˚-values for the crystalline phase can be used. Of particular importance
for the determination of the thermodynamic properties of glasses is the knowledge
of the S.T /-dependencies, since the entropy is directly connected with the config-
urational order of the vitrifying melt. It follows from these considerations that the
knowledge of the fictive temperature T � or the glass-transformation temperature Tg
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and the properties of the under-cooled melt for these values of temperature are of
basic significance for the understanding of the thermodynamic properties of a glass.

3.3 Thermodynamic Functions of Undercooled Melts:
A Simple Thermodynamic Model

Since the under-cooled melt represents, from a thermodynamic point of view,
a (metastable) equilibrium system it follows from the general thermodynamic
equilibrium conditions that the inequality Cp > 0 has to be fulfilled (compare
Eq. (2.44)). The same inequality also holds for the specific heat of the crystalline
form of the substance.

The particles in the melt have additional degrees of freedom connected with
configurational restructuring processes and thus higher Cp-values than the crystal.
The number of possibilities for such restructuring processes increases with increas-
ing temperature. It follows that the configurational part of the entropy is also an
increasing function of temperature and, consequently, the inequality Eq. (3.35) is
fulfilled,

�Cp D C .f /
p � C .c/

p D T
d�S

dT
> 0: (3.35)

Here �S is the difference between the entropies of the melt and the respective
crystalline phase (compare Figs. 2.23 and 2.24).

Further consequences from Eq. (3.35) are (see Eqs. (2.13) and (2.14))

�
d�H

dT

�
p

> 0 (3.36)

and with �G D �H � T�S (cf. Eq. (2.18))

�
d�G

dT

�
p

D ��S.T / < 0; �G D Gf �Gc: (3.37)

It turns out that the differences �H.T / and �S.T / decrease with decreasing
temperature while �G.T / increases.

From the Third law of thermodynamics additional conclusions can be drawn
concerning the behavior of the discussed thermodynamic functions. In agreement
with Eqs. (2.26)–(2.28) we have

lim
T!0

�Cp.T / D 0; (3.38)

lim
T!0

d�S.T /

dT
D 0; lim

T!0
�S.T / D 0; (3.39)

lim
T!0

d�H.T /

dT
D 0; lim

T!0

�G.T /

dT
D 0: (3.40)
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Moreover, from the relation connecting G, H and S (Eq. (2.18)) immediately
Nernst’s classical formulation of the Third law of thermodynamics equation (3.41)
is obtained, i.e.,

lim
T!0

�G.T / D lim
T!0

�H.T / D 0 (3.41)

(compare Fig. 2.25).
Classical thermodynamics does not specify the value of temperature below

which Eqs. (3.38)–(3.41) are fulfilled. We denote this particular value, below which
�S.T / D 0 holds, by T0 and determine it through the extrapolation of the �S.T /-
curves in the range Tg < T < Tm to temperatures below Tg . Extrapolations of the
�S.T /- and �H.T /-curves for the fictive under-cooled melt into the temperature
region below Tg , where the substance is frozen-in to a glass, were carried out first by
Kauzmann (1948) [440], who used a linear extrapolation, and later by Angell and
Rao (1972) [15] and Gutzow and Grantcharova (1985) [311]. These extrapolations
indicate that for typical glass-forming melts the ratio T0=Tm equals 1=2, while for
vitrifying metallic alloys T0=Tl � 1=3 holds. Tl is as in Eq. (2.72) the liquidus
temperature of the melt.

The general thermodynamic condition for a two-phase equilibrium state melt-
crystal in first-order phase transformations consists of (see Eq. (2.55))

lim
T!Tm

�G.T / D 0; (3.42)

where Tm as usual denotes the melting temperature. However, the differences in S
and H remain, in general, finite at the melting temperature (see Eq. (2.57)) and we
have

�S.Tm/ D �Sm > 0; (3.43)

�H.Tm/ D �Hm D Tm�Sm > 0; (3.44)

where�Sm and �Hm are the entropy and enthalpy of melting, respectively.
Equations (3.35)–(3.44) are general thermodynamic requirements for any realis-

tic model describing the temperature dependence of the thermodynamic properties
of metastable under-cooled melts. In the following derivations the simplest, as
we believe, of such models is developed, which, at the same time, allows one a
realistic interpretation of the properties of under-cooled glass-forming melts and of
the frozen-in melts, the glasses.

We start the discussion by first establishing the temperature course of the Gibbs
free energy G in the temperature range from absolute zero to Tm. By a Taylor
expansion of �G.T / in the vicinity of Tm we obtain

�G.T / D
�
@�G.T /

@T

�
TDTm

.T � Tm/C 1

2

�
@2�G.T /

@T 2

�
TDTm

.T � Tm/
2 C : : :

(3.45)
and with the first of Eqs. (2.22) and (2.14)
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�G.T / D Tm�Sm

�
1 � T

Tm

�
� Tm�Cp.Tm/

2

�
1 � T

Tm

�2
: (3.46)

For an abbreviation of the following notations the reduced temperature

 D T

Tm
(3.47)

is introduced. With this notation Eq. (3.46) may be transformed into

�G.T / D Tm�Sm.1 � /
�
1 � �Cp.Tm/

2�Sm
.1 � /

�
: (3.48)

It is evident from Eq. (3.48) that the �G.T /-course is determined to a large
degree by the value of the parameter a0, defined by

a0 D �Cp.Tm/

�Sm
: (3.49)

With a0 D 2, Eq. (3.48) gives the well-known approximation

�G.T / D Tm�Sm.1 � /; (3.50)

proposed by Hoffman (see Gutzow (1977) [298]; Hoffman (1958) [375]). For
a0 D 1

�G.T / D 1

2
Tm�Sm.1 � 2/ (3.51)

is found (Gutzow and Dobreva (1991) [308]), while the classical approximation due
to J.J. Thomson

�G.T / D Tm�Sm.1 � / (3.52)

corresponds to a0 D 0.
An analysis, performed by Gutzow and Grantcharova (1985) [311] (see also

Battezatti and Garrone (1984) [51]; Dubey and Ramanchandrao (1984/1985) [181])
shows that the ratio �Cp.Tm/=�Sm varies for most of the typical glass-forming
substances, in particular, for hydrogen-bonded organic melts, oxide glass-forming
substances, silicates and borates in the range between 1.5 and 2. However, for
metallic alloy glass-formers this ratio is a0 � 1, while for pure metals its value
is so low that the relation �Cp.Tm/=�Sm � 0 can be used. In this way, the three
approximations mentioned find an application for different classes of glass-forming
melts. It turns out, moreover that the value of the thermodynamic parameter a0
defines which type of glasses the particular substance belongs to.

The simplest, and at the same time sufficiently accurate assumption which may
be used for the determination of the thermodynamic properties of glass-forming
melts and which is at the same time in agreement with all above mentioned general
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Fig. 3.1 Illustration of the approximation made with Eq. (3.54). The curves, specified by (1), (2)
and (3), correspond to different experimentally observed �Cp.T /-dependencies (compare also
Fig. (2.18)). Full lines represent the directly measured curves for the metastable under-cooled
melt for temperatures T > Tg and the glass, while the dashed curves refer to the most probable
continuation of the equilibrium dependencies into the region of the fictive equilibrium melt below
Tg . In (4) the construction corresponding to the simplified thermodynamic model equation (3.53)
is shown for comparison

thermodynamic requirements, consists of

�Cp.T /

�Sm
D
�
a0 D constant for 0 �  � 1

0 for 0 �  � 0

�
: (3.53)

Equation (3.53) has been proposed and discussed in detail by Gutzow (1977) ([298],
see also Gutzow (1981) [303]; Gutzow and Dobreva (1991) [308]). Figure 3.1 gives
an illustration of the type of approximation made with Eq. (3.53). As a special case,
in Fig. 3.2 this approximation is applied to glycerol as a typical representative of a
glass-forming melt (cf. also Figs. 2.17, 2.18, and 2.21).

With the approximation Eq. (3.53) for �Cp and the discussed general thermo-
dynamic relationships Eqs. (2.120)–(2.122) the following set of equations can be
derived for the configurational part of the thermodynamic functions of an under-
cooled melt:

�S.T /

�Sm
D
�
1C a0 ln  for 0 �  � 1

0 for 0 �  � 0

�
; (3.54)
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Fig. 3.2 Cp.T /-curves for
the liquid, crystalline and
vitreous forms of glycerol
(compare Fig. 2.17). In
addition to the experimental
data the curve resulting from
the assumption Eq. (3.53) is
shown by a full line

�H.T /

Tm�Sm
D
�
1 � a0.1 � / for 0 �  � 1

1 � a0.1 � 0/ for 0 �  � 0

�
; (3.55)

�G.T /

Tm�Sm
D
�
.1 � a0/.1 � /� a0 ln  for 0 �  � 1

.1 � a0/.1 � 0/� a00 ln 0 for 0 �  � 0

�
: (3.56)

As mentioned, the value of 0 D .T0=Tm/ is determined by the condition

�S.T0/ D 0: (3.57)

Thus, with Eq. (3.54), we obtain for T0 the following expression

T0 D Tm exp

�
� 1

a0

�
: (3.58)

For a large number of glass-forming melts the assumption �Cp.T / D constant
is a quite accurate approximation (see, for example, the �Cp.T /-curve for glycerol
presented in Figs. 2.17, 2.18 and 3.2). In other cases, when a monotonically
increasing or decreasing �Cp.T /-dependence is observed (see Figs. 2.18 and 3.1),
then �Cp.T / may be replaced by �Cp.Tg/ corresponding to the average value of
�Cp.T / in the temperature range T0 < T < Tm. In this case the general equation
for the determination of�Sm (see Eq. (2.30)) gives

�Sm D
TmZ
0

�Cp.T /

T
dT �

TmZ
T0

�Cp.T /

T
dT � �Cp.Tg/ ln

�
Tm

T0

�
; (3.59)

which is equivalent to Eq. (3.58).
From the preceding discussion it is evident that the simplest possible temperature

course of the thermodynamic functions of glass-forming melts should have the form
shown in Fig. 3.3. In the framework of the outlined simplified model it turns out that
the ratio �Cp=�Sm is the major and at the same time the only structural order
parameter determining the thermodynamic properties of glass-forming systems.
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3.4 Some Simple Geometrical Considerations

In a simplified form, approximated by straight lines, the �S.T /- and �H.T /-
curves from Fig. 3.3 are shown on Fig. 3.4. Upon vitrification the configurational
parts of both functions are frozen-in resulting in a representation of these functions
in Fig. 3.4 by straight lines parallel to the .T=Tm/-axis for T < Tg.

According to the Beaman-Kauzmann rule [55, 440] (Eq. (2.71)) Tg=Tm � 2=3

holds. The linear extrapolation of the entropy difference�S.T / into the temperature
region below Tg gives for typical glass-forming melts

T0 D 1

2
Tm (3.60)

or

T0 D 3

4
Tg: (3.61)

Here T0 is in fact also the value of temperature for which the viscosity � of the
melt reaches the asymptotic value � ! 1, found by extrapolating the temperature
dependence of the viscosity (i.e., T0 D T1 in the VFT-equation Eq. (2.84)).

Equations (3.60) and (3.61) follow from the geometrical construction shown in
Fig. 3.4 (triangles T0, Tg , b and T0, Tm, a), according to which

�Sg

�Sm
D Tg � T0
Tm � T0 D Tg.1 � T0=Tg/

Tm.1 � T0=Tm/ (3.62)

holds. Taking into account the mentioned experimental results (compare
Eq. (2.129))

�Sg

�Sm
� 1

3
; (3.63)

Eq. (3.62) gives with Eq. (2.71) directly Eq. (3.60).
The �H.T /-dependence differs from the �S.T /-curve, since we have to

introduce into the geometrical illustration an initially unknown quantity, the zero-
point enthalpy �H0. Based on Fig. 3.4b the following additional relation can be
derived (triangles e; f; g and d; f; h)

�Hg ��H0

�Hm ��H0

D Tg � T0

Tm � T0
: (3.64)

With the values of the ratios Tg=Tm and T0=Tm established thus and the
value of the ratio �Hg=�Hm (compare Eqs. (2.71), (3.60) and (2.130)), known
from experiment, this expression can be used for a determination of �H0. We
obtain

�H0 D 1

4
�Hm (3.65)
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or

�H0 D 1

2
�Hg: (3.66)

This result (Eq. (3.65)) is in agreement with Eq. (3.55), when the mentioned typical
values of T0 and a0 D 1:5 are substituted into it.

3.5 Thermodynamic Functions of Vitrified Melts

According to the formalism, developed in Sect. 3.2, we have to expect that below
the respective vitrification temperature the values of �Cp and�˛ drop to zero. For
the thermodynamic functions of the glass we have (cf. Eq. (3.34))
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Fig. 3.5 Temperature
dependence �H.T / and
�G.T / for the under-cooled
melt and the glass according
to Eqs. (3.55)–(3.56), (3.68)
and (3.70). Curves (abcd) and
(hfcd) correspond to the
metastable equilibrium state
of the melt while (abe) and
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�S.T /jT<T � D �S.��/ D const. D �Sg; (3.67)

�H.T /jT<T � D �H.��/ D const. D �Hg; (3.68)

!.T /jT<T � D !.��/ D const. D !g; (3.69)

i.e., constant values of the configurational entropy, enthalpy and free volume of
the system. With Eq. (2.18) we obtain for the thermodynamic potential �G.T / the
relation

�G.T /jT<T � D �Hg � T�Sg: (3.70)

Equation (3.70) shows that for every glass irrespective of the particular value
of � (i.e, irrespective of the particular value of the fictive temperature T � and the
corresponding cooling rate) we always have to expect a linear increase of�Gg with
decreasing temperature, since with the above equation

d�Gg

dT
D ��Sg < 0 (3.71)

holds. This type of temperature dependence of the thermodynamic functions for
T < Tg is in conflict with the Third law of thermodynamics (compare, e.g., with
Eqs. (3.39) and (3.40)). For T ! 0 we obtain from Eq. (3.70)

lim
T!0

�Gg.T / D �Hg: (3.72)

With the equations above, we may now construct the temperature course of
the thermodynamic properties of the vitrifying melt in the whole temperature
range from T D 0 to the melting temperature Tm of the substance (see Figs. 3.3
and 3.5). As shown in Figs. 3.2 and 3.3,�Cp.T / displays in a first approximation a
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discontinuity at Tg (or T �), while�S.T / and�H.T / both exhibit salient points at
Tg. From above discussions the �Gg.T /-curve is obtained for T < Tg as a straight
line tangent to the corresponding curve for the under-cooled melt at T D Tg. In a
more extended form the same construction is shown in Fig. 3.5 for�G and�H . In
addition to the already mentioned dependencies this figure gives also an illustration
of Eq. (3.72).

The conclusions illustrated in the figures lead to the implication that Tool’s
temperature can be determined both from the salient points of the temperature
dependence of the thermodynamic functions (�S.T /- and �H.T /-curves) as
well as from the discontinuities of the thermodynamic coefficients (�Cp.T / and
�˛.T /). Another method consists in the determination of T � from the temperature
course of �G.T /. As demonstrated in Figs. 3.3 and 3.5 in the �G.T /-diagram, the
vitrification temperature is determined as the temperature at which the �Gg.T /-
curve tangents the �G.T /-curve of the equilibrium melt. Other methods of
determination of Tool’s temperature can be based on the investigation of the
temperature dependence of kinetic quantities such as viscosity, as discussed in detail
in Mazurin’s monograph (Mazurin (1986) [543]) and in Chap. 12.

3.6 Thermodynamics and the Kinetics of Vitrification
in Terms of Simon’s Approximation

A fundamental kinetic criterion for glass-formation can be formulated in the form
that at the temperature of vitrification the time of molecular relaxation �R has to be
of the same order as the characteristic observation or stay time �t for the process
considered, i.e.,

�R � �t for T D Tg: (3.73)

For a glass the ratio �R=.�t/ is a very large number, while for the liquid in the
vicinity of the melting temperature Tm

�R � .10�12 � 10�13/s (3.74)

is to be expected, resulting in very small values of the ratio

Dh D �R

�t
: (3.75)

This ratio was introduced by Reiner (1964) [660], a well-known specialist in the
field of rheology, and is denoted by him as Deborah’s number (see also Stevels
(1971) [800]).1

1Instead of the approach followed here, we developed recently a model-independent formulation of
the glass transition criterion not employing the concept of the Deborah number (Schmelzer (2012)
[700]). In this general model-independent approach, we introduced similarly to the presented in
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According to Reiner, the notation Deborah’s number stems from a Biblical text
where the Judge Deborah (a prophetess, the wife of Lepidoth, who judged Israel
in those ancient times) says “The earth trembled . . . and the mountains melted from
before the Lord” (The Bible; Old Testament; (King James Version); Judges 5:5).

the book approach a characteristic relaxation time, �R, defined via

d�

dt
D � 1

�R.p; T; �/
.� � �e/; q D �dT

dt
;

and a characteristic time scale of change of temperature, �T , as

dT

dt
D � 1

�T
T; �T D

�
1

T

ˇ̌
ˇ̌dT
dt

ˇ̌
ˇ̌��1

:

So, provided change of temperature and change of the structural order parameter would proceed
by the same laws, the respective characteristic time scales could be then compared directly. The
criterion for glass-formation is given then by the condition that both time scales are of the same
order of magnitude, i.e.,

�R Š �T H)
�
1

T

ˇ̌
ˇ̌dT
dt

ˇ̌
ˇ̌ �R

� ˇ̌ˇ̌
TDTg

Š C; C Š 1:

Indeed, as stressed in detail in the cited paper, classical equilibrium thermodynamics implies (as
one of the conditions of its applicability) the fulfillment of the conditions �R � �T while in
the frozen-in non-equilibrium state, the glass, the inequality �R � �T holds. Latter equation
specifies thus by necessity the transition region between equilibrium liquid and glass for the case
that the glass transition is induced by a change of temperature. This general criterion contains above
mentioned particular criteria for glass formation as special cases. Moreover, above given criterion
can be extended straightforwardly to any other cases of glass-formation introducing similarly to
the case considered here characteristic times of change of pressure, external field etc.

This criterion immediately leads also to the appropriate conditions for glass formation in
application to dynamic glass transitions – glass-like transitions at periodic external perturbations.
Indeed, dynamic glass transitions may proceed at the change of the state of the system with some
characteristic frequency, 
, or angular frequency, ! D 2	
, by varying the frequency of external
perturbations. For such cases, the equilibrium value of the structural order parameter is varied in
above equation as

�e / exp.i!t/:

The characteristic time, �D , of change of the respective equilibrium state, �e , can be determined
then via the set of equations

d�e

dt
D i!�e;

d�e

dt
D � 1

�D
�e; i! D � 1

�D
:

Taking the absolute value, we arrive at
�D! Š 1:

The criterion for glass-formation at dynamic glass transitions can be written consequently as

�R Š �D H) !�R Š 1:

In other words, in above relation for the kinetic criterion of glass-formation in cooling and heating
processes, .q=T / has to be replaced by ! (for a more detailed discussion, see also Chap. 14).
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This statement implies that for the long observation times possible only for God the
mountains, having a permanent shape for a human being with his very restricted
observation times, are rapidly changing.

Taking the derivative of Eq. (3.73) with respect to temperature results in (see also
Cooper and Gupta (1982) [146])

d�R

dT
D �1

q
; (3.76)

where the cooling rate q is introduced as

q D �dT
dt
: (3.77)

Applying this definition it follows that q is a positive quantity for cooling experi-
ments.

If the already discussed expression

�R D �R0 exp

�
U.T /

kBT

�
(3.78)

is used for the description of the temperature dependence of the relaxation time
(compare Eq. (2.1) and Sect. 2.4.1) we have

d�R

dT
D �R

d

dT

�
U.T /

kBT

�
: (3.79)

When the activation energyU is considered, approximately, as a constant (U D U0)
this expression is simplified to

d�R

dT
D ��R U0

kBT 2
: (3.80)

Eqs. (3.76) and (3.80) yield

q�R D kBT
2

U0
(3.81)

The starting equation Eq. (3.73), upon which the derivation is based, holds for T �
Tg. Consequently, in Eqs. (3.78) and (3.81) we have to replace T by Tg resulting,
finally, in

q�R.Tg/ D kBT
2
g

U0
D C0 (3.82)

Above equation q�R.Tg/ D C0 with C0 D const: is usually denoted as the Frenkel-
Kobeko equation (Bartenev (1966) [45]). Hereby C0 in Eq. (3.82) is found by
Bartenev to be of the order C0 � .1–5/K for typical glass-formers.



88 3 Non-equilibrium Thermodynamics and the Kinetics of Glass Transition and . . .

Taking the logarithm from both sides of Eq. (3.82) we obtain further

1

Tg
D 2:3kB

U0
log

"
kBT

2
g

U0�R0

#
� 2:3kB

U0
log.q/: (3.83)

With the notations

C0 D kBT
2
g

U0
; C1 D C2 log

�
C0

�R0

�
; C2 D 2:3

kB

U0
(3.84)

Eq. (3.83) may be rewritten in the form

1

Tg
D C1 � C2 log.q/: (3.85)

Equation (3.85) is the well-known Bartenev-Ritland equation (Bartenev (1951)
[44]; see also Bartenev (1966) [45]; Ritland (1954) [667]). In terms of the
dimensionless variable  it may be rewritten in the form

1

g
D
�
2:3kBTm

U0

��
log

�
C0

�R0

�
� log.q/

�
(3.86)

or

g D �.�/�
log

�
C0

�R0

�
� log.q/

� ; �.�/ D U0

2:3kBTm
; (3.87)

where �R0 is the period of eigenvibrations of the building units of the melt. It is a
practically temperature independent quantity with values of the order 10�12–10�13 s.
Consequently, the term log.C0=�R0/ is nearly constant. It turns out that g depends
mainly on the cooling rate q and the value of �.�/ which reflects the properties of
the considered substance. The dependence g D g.q/ is shown for different values
of �.�/ in Fig. 3.6 (Gutzow and Dobreva (1991) [308]).

The analysis of experimental data shows furthermore (Turnbull, Cohen (1960)
[865]; Gutzow (1975) [297]; Gutzow, Avramov, and Kästner (1990) [331]), that the
ratio U0=kBTm is also a constant for large classes of glass-forming melts. For glass-
forming inorganic oxides this ratio has values of the order 15–20. For metals and
halides considerably lower values from 5 to 10 are found. With realistic parameter
values corresponding to typical glass-forming substances (U0=(kBTm) � 15–20,
respectively, �.�/ � 6 to 8; C0 � 1 to 5 K; �R0 � (10�12 � 10�13) s) and a cooling
rate q � 102 Ks�1 an estimate for g of the order 0.5–0.7 is obtained in agreement
with the Beaman-Kauzmann rule. An alternative derivation of Eq. (3.82) was given
by Volkenstein and Ptizyn (1956) [892] in the framework of a kinetic model of
vitrification with two energetic levels (see Sect. 12.6).
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Fig. 3.6 Dependence of the reduced vitrification temperature g on the cooling rate q for different
values of the parameter �.�/ according to Eq. (3.87). Curves (1), (2), (3) and (4) correspond to
values �.�/ D 10, 5, 3 and 1, respectively. The dashed lines indicate the mean values for the
experimentally observed g-data for typical glass-formers (g � 2=3) and glass-forming metallic
alloys (g � 1=2). The shaded areas correspond to the region of the standard deviation of the
experimental data (cf. Fig. (2.11))

A generalization of the derivation of the Bartenev-Ritland equation has also
been developed for the case that, instead of the constant activation energy U0, a
temperature dependent functionU.T / is employed (see Gutzow and Dobreva (1992)
[310]). In this case, U0 can be identified, approximately, with U.Tg/.

3.7 Dependence of the Thermodynamic Properties
of Glasses on Cooling Rate

From the knowledge of the temperature dependence of the thermodynamic functions
of the metastable glass-forming melt and the dependence of the temperature
of vitrification on cooling rate q it is, in principle, possible to determine the
configurational part of the thermodynamic functions of the glass for any q. If, e.g.,
the thermodynamic model, discussed in Sect. 3.3 (Eqs. (3.54)–(3.56) and (3.67)–
(3.70)), and the Bartenev-Ritland equation as given by Eqs. (3.85) or (3.87) are
applied, the following dependencies can be obtained (Gutzow and Dobreva (1991)
[308])

�Sg.q/

�Sm
D 1C a0 ln g.q/; (3.88)
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Fig. 3.7 Dependence of the frozen-in values of (a) the reduced configurational entropy�Sg=�Sm
(according to Eq. (3.88)) and of (b) the configurational enthalpy �Hg=.Tm�Sm/ (upper set of
curves) as well as of the reduced free enthalpy�Gg.T /=.Tm�Sm/ (lower set of curves) (according
to Eqs. (3.89) and (3.90)) on cooling rate q. The values of the kinetic and thermodynamic
parameters, corresponding to the different curves, are: (1) �.�/ D 10, a0 D 1:5 (typical oxide
glass-former); (2) �.�/ D 5, a0 D 1:5 (typical organic glass-forming melt); (3) �.�/ D 3, a0 D 1

(metallic alloy glass or binary halide); (4) �.�/ D 1, a0 D 1 (metallic melt). The shaded area
indicates the region of the standard deviation of the experimental �Sg=�Sm- (cf. Fig. 2.22) and
�Hg=�Hm-values (cf. Eq. (2.130))

�Hg.q/

Tm�Sm
D 1 � a0.1 � g.q//; (3.89)

�Gg.q/

Tm�Sm
D .1 � a0/.1 � g.q//� a0 ln g: (3.90)

Similar expressions can be derived also for the mechanical properties of glasses,
provided the respective temperature courses for the under-cooled metastable melt
are known.

Figure 3.7a,b illustrate the dependence of the thermodynamic functions of the
vitrifying melt on cooling rate for different values of the thermodynamic structure
factor a0 and the kinetic parameter �.�/ according to Eqs. (3.88)–(3.90). These
figures show that for every pair of parameter values (q, �.�/) similar ˚.q/ curves
are obtained.

It can be demonstrated that the specific rheological properties of glass-forming
melts, in particular, the exponential dependence of the viscosity on temperature,
transfer the influence of cooling rate on the thermodynamic properties of the glasses
onto a logarithmic scale. Only significant variations in the cooling rate result in
measurable variations of the frozen-in structure and the properties of the glass. This
result explains the relative reproducibility of the properties and of the structure of
glasses under varying technological vitrification conditions.

The dependencies, given above, and also the curves presented in Fig. 3.7a,b show,
moreover that for each class of glass-forming melts (i.e., for every pair of parameters
a0 and �.�/) a range of cooling rates exists, for which a nearly linear functional
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Fig. 3.8 Temperature dependence of �G.T /, �Gg.T / and �H.T / in reduced coordinates:
(a) a0 D 1:5, �.�/ D 10; The lines I, II and III and the respective glass temperatures correspond to
cooling rates log q D �1:9, log q D �1:3 and log q D �4:2; (b) a0 D 1, �.�/ D 3; They refer to
log q D 9:7, log q D 8:7 and log q D 7:9 (q in Ks�1). By full lines the temperature dependence of
the metastable under-cooled melt is shown, while the dashed-dotted curves represent the�Gg.T /-
dependence of the glass

dependence �˚ vs log.q/ is observed. For typical glass-formers this is the range
of the normal cooling rates (100–102) Ks�1. For metallic glass-forming alloys this
range corresponds to extreme cooling rates and can be realized only in so-called
splat-cooling experiments with quench rates from 106 to 108 Ks�1.

From Fig. 3.7a it is also evident that below the mentioned range of cooling rates
vitrification does not take place, in fact, since the degree of frozen-in disorder would
correspond to a ratio�Sg=�Sm D 0. With the above given most probable values of
the parameters �.�/ D 10 and a0 D 1:5, as they are to be expected for typical glass-
formers, and at normal cooling rates values �Hg=�Hm � 0:52 and �Sg=�Sm �
0:35 are found, again, in agreement with experimental evidence.

Figure 3.8 gives the �Gg.T /-, �G.T /- and �H.T /-dependencies in reduced
coordinates for different cooling rates. As can be seen, different curves are obtained
resulting in a fan-like structure of the �Gg.T /-functions. These quantities deter-
mine the deviations from equilibrium in glasses resulting from different cooling
rates.

As already mentioned, the highest possible value for the deviation of the entropy
of the glass compared with the under-cooled melt is of the order .�Sg=�Sm/ � 2.
Figure 3.7 shows that only for very extreme cooling rates this limit can be
surpassed substantially. Moreover, a comparison of the �Sg-values for solids
with defect structures, prepared by other possible methods (e.g., milling, grinding,
disintegration to nanometer sizes, introduction of foreign atoms or molecules)
verifies that this limit cannot be surpassed substantially even with the most effective
known at present methods of preparation of frozen-in non-equilibrium states.

On the other hand, in agreement with Eqs. (2.129), (2.130) and (3.70) it turns out
that �Gg=.Tm�Sm/ cannot exceed 1=2 (see also Fig. 3.8). Consequently, the value
1=2 specifies the state with the highest possible deviation from equilibrium. These
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findings characterize the possibilities and the limits of processes of vitrification as
methods of producing solids with an increased free energy. The existence of such
an upper limit for the degree of disorder of glasses gives also a limitation to the
possibilities of preparation of solids with an enhanced chemical reactivity, as will
be discussed in Sect. 3.13.

3.8 The Prigogine-Defay Ratio

As shown in the preceding chapters, the process of vitrification is connected with
discrete jumps in the thermodynamic coefficients, for example, in the specific heat
Cp, the compressibility � and the isothermal expansion coefficient ˛. Following
Prigogine and Defay in this chapter a relation is deduced connecting the jumps�Cp,
�˛ and �� observed in the process of vitrification of a glass-forming melt.

The derivation is based on Eq. (3.5) and the expression for the change of the
affinity A as a function of T , p and � resulting from it. This expression reads (see
Prigogine and Defay (1954) [649] for the derivation)

dA D AC hp;T

T
dT � vp;T dp C ap;T d�: (3.91)

Here the notations

ap;T D
�
@A

@�

�
p;T

D �
�
@2G

@�2

�
p;T

; (3.92)

vp;T D
�
@V

@�

�
p;T

; hp;T D
�
@H

@�

�
p;T

(3.93)

are used.
If one considers notA but � as the dependent and T , p and A as the independent

variables, Eq. (3.91) may be rewritten as

d� D 1

ap;T
dA � AC hp;T

Tap;T
dT C vp;T

ap;T
dp: (3.94)

By assumption, � is a function of A, T and p. Its total differential has the form

d� D
�
@�

@A

�
p;T

dAC
�
@�

@T

�
p;A

dT C
�
@�

@p

�
A;T

dp: (3.95)

A comparison between Eqs. (3.94) and (3.95) yields
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�
@�

@A

�
p;T

D 1

ap;T
; (3.96)

�
@�

@T

�
A;p

D �AC hp;T

Tap;T
; (3.97)

�
@�

@p

�
A;T

D vp;T

ap;T
: (3.98)

According to Eqs. (2.13) and (3.16) we may write for the under-cooled
metastable melt

Cp D Cp;� C
�
@H

@�

�
p;�

�
d�

dT

�
p

: (3.99)

With Eqs. (3.96)–(3.98) and A D 0 (the melt is in an internal equilibrium state) we
obtain

Cp D Cp;� � h2p;T

Tap;T
: (3.100)

Similarly, we may write

�
@V

@p

�
T

D
�
@V

@p

�
T;�

C
�
@V

@�

�
p;T

�
d�

dT

�
p

: (3.101)

Taking into account the equality of mixed derivatives of different order of any
function of state, in particular, of G (Theorem of Schwarz, see, e.g., Fichtenholz
(1966) [205]), we have

@2G

@p@�
D @2G

@�@p
: (3.102)

It follows, therefore, from Eq. (3.5) that the relation

�
@V

@�

�
p;T

D �
�
@A

@p

�
T;�

(3.103)

is fulfilled. Moreover, with the thermodynamic identity

�
@A

@p

�
T:�

D �
�
@A

@�

�
p;T

�
@�

@p

�
; (3.104)

derived by Prigogine and Defay (1954) [649], from Eqs. (3.92), (3.101), and (3.103)
the relation �

@V

@p

�
T

D
�
@V

@p

�
T;�

C ap;T

�
@�

@p

�2
T

(3.105)

is obtained. With the definition of the compressibility � (Eq. (2.63)) we obtain,
finally,
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� D �� � v2p;T

Vap;T
: (3.106)

For the coefficient of thermal expansion (Eq. (2.63)) the similar expression

˛ D ˛� � vp;T hp;T

V Tap;T
(3.107)

can be derived easily based on Eq. (3.27).
The first terms on the right hand sides of Eqs. (3.100), (3.106) and (3.107)

describe the values of the thermodynamic quantities for the frozen-in melt, i.e., for
the case when � is constant. The second terms refer to the contributions, connected
with the change of the structure of the melt, respectively, with the variations of
the structure parameter �. The jumps of the thermodynamic coefficients upon
vitrification can be expressed, thus, as

�Cp D h2p;T

Tap;T
; �� D v2p;T

Vap;T
; �˛ D �vp;T hp;T

V Tap;T
: (3.108)

Consequently, by a combination of these equations a relation equivalent in form to
Ehrenfest’s result, Eq. (2.68),

1

V T

�Cp��

.�˛/2
D 1 (3.109)

is obtained.
We would like to underline once more that this result does not imply that the

glass transition has to be considered as an example of second-order equilibrium
phase transformations. In addition to the already mentioned arguments (cf. Sect. 2.6)
conflicting with such a classification, this conclusion is also supported by the
experimental finding that, although the ratio of the thermodynamic coefficients,
written in the form of Eq. (3.109), has nearly the same value for different classes
of glass-forming melts, this value may vary, in general, in the range from 1 to 5.
This statement follows from experimental findings summarized by Davies and Jones
(1953) [153], Moynihan et al. (1976) [580], Moynihan and Gupta (1978) [577]
and Nemilov (1988) [598]. Examples in this respect are B2O3 with a value of the
ratio 4.7, 40 mol % Ca.NO3/2 60mol % KNO3 with 4.5, glycose (3.7), rubber (8.3),
poly(vinylacetate) (2.2) and polystyrene (16).

Deviations from Eq. (3.109) can be explained by the introduction of more than
one order parameter into the description of freezing-in phenomena as shown by
Meixner (1952) [554] and Davies and Jones (1953) ([153]; see also Moynihan
and Gupta (1978) [577]; Rehage and Borchardt (1973) [658]; Nemilov (1988)
[598]). No theoretical explanation for such a deviation from unity can be given,
if vitrification is considered as a special example of second-order equilibrium phase
transformations. In this sense, the mentioned deviations are an additional indication
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that vitrification is not a second-order phase transformation but a freezing-in
process. Moreover, the existence of the mentioned deviations can also be considered
as a strong indication that in most cases of real glass-forming melts more than one
independent order parameter has to be introduced to describe properly the structure
of the melt and the resulting in the course of vitrification glass.2

3.9 Kinetics of Stabilization Processes

The foregoing discussion has shown that in accordance with Simon’s idea, glass is
a frozen-in non-equilibrium state characterized by a larger Gibbs free energy than
the respective value for the metastable melt at the same temperature. In terms of the
kinetic coefficients describing transport properties of the substance it implies that
the self-diffusion coefficientD of the structural units has very low values. Since the
self-diffusion coefficient is connected via Eq. (2.98) with the viscosity very large
values of the viscosity have to be expected for a glass.

However, though the mobility of the basic units constituting a glass have very low
values this quantity is, nevertheless, not equal to zero and slow changes of the state
of the glass, slow relaxation processes of the system to the state of the metastable
melt may take place and, in fact, are found in experiments. Such processes are
usually denoted as stabilization of the glass and schematically shown in Fig. 2.32.
Due to the slow relaxation processes the structure of the glass and the structure
parameter � change and as the result also the value of the fictive temperature T �
varies in time. It follows, moreover that the respective vitrification temperature
Tg may be identified with T � only in cases when relaxation processes for the

2In the analysis performed in the present book, Simon’s model of the glass transition is employed.
In such approach, indeed, Eq. (3.109) is obtained as an estimate for the value of the Prigogine-
Defay ratio provided one structural order parameter is employed for the description of the system
under consideration. However, in 2006, we have developed for the first time an alternative
theoretical treatment (Schmelzer and Gutzow (2006) [706]). In this alternative approach, glass-
forming systems are described by only one structural order-parameter, again. However, in contrast
to previous approaches to the derivation of this ratio, the process of vitrification has been treated
not in terms of Simon’s simplified model as a freezing-in process proceeding at some sharp
temperature, the glass-transition temperature Tg , but in some finite temperature interval accounting
appropriately for the non-equilibrium character of vitrifying systems in this temperature range.
As the result of the theoretical analysis, we find, in particular, that the experimentally measured
values of the Prigogine-Defay ratio have to be generally larger than one for vitrification in cooling
processes. Quantitative estimates of the Prigogine-Defay ratio are given utilizing a mean-field
lattice-hole model of glass-forming melts and shown to be in good agreement with experimental
data. Some of the statements as outlined in the present section, in particular. the statement that
it is necessary to introduce more than one structural order parameters in order to interpret the
experimental values of the Prigogine-Defay ratio, are, consequently, not correct any more. The
analysis initiated in 2006 has been extended by us further in the following references: Tropin
et al. (2011) [856], Tropin et al. (2012) [857], and Schmelzer (2012) [700] (for a more detailed
discussion, see also Chap. 14).
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considered intervals of observation are negligible. The aim of the present section
consists in the theoretical description of such stabilization processes. Hereby,
we apply a phenomenological approach based on the linear thermodynamics of
irreversible processes (see also Moynihan and Lesikar (1981) [578]).

In the framework of this theoretical approach, thermodynamic fluxes J are
introduced, which characterize processes (flows) in the system. The thermodynamic
quantities which are the cause of such processes are called, in analogy to classical
mechanics, thermodynamic forces. They are usually denoted by X . For the case
under consideration that the structure of the system is described by only one
generalized scalar structural order parameter � (see Sect. 3.1) the flux J may be
expressed as

J D d�

dt
; (3.110)

while the forceX is a, in general, not known function of the affinityA of the process
under investigation, i.e.,

X D f .A/: (3.111)

If the affinity is equal to zero, i.e., .@G=@�/ D 0 (Eq. (3.3)), we have an equilibrium
with respect to variations of the structural parameter � and the thermodynamic
driving force X is also equal to zero, i.e.,

X.A D 0/ D f .0/ D 0 (3.112)

holds. The equilibrium value of � for given values of p and T we denote as �.e/,
again (compare Eq. (3.7)).

A truncated Taylor expansion of f .A/ in the vicinity of A D 0, including only
terms linear in A, results in

d�

dt
D LA; L D

�
@f .A/

@A

�
AD0

: (3.113)

Restricting ourselves in the expansion of f .A/ to linear terms in A we are working
in the framework of the linear thermodynamic theory of irreversible processes.
This theory is valid for relatively small deviations of the state of the system from
the corresponding equilibrium state. The parameter L in Eq. (3.113) is denoted
as Onsager’s coefficient. It has the meaning of a mobility coefficient connected
with the considered structural change and has to be considered in the applied
phenomenological approach as an empirical phenomenological quantity.

From Eq. (3.3) we have (see also Haase (1963) [339]; Popoff (1953, 1954) [639])

A D �
�
@G

@�

�
p;T

: (3.114)

This equation allows us to rewrite Eq. (3.113) in the form
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d�

dt
D �L

�
@G

@�

�
p;T

: (3.115)

Equation (3.115) exhibits another interesting analogy to the description of the
motion of mechanical bodies. Changes in the state of the substance are connected
linearly with the thermodynamic driving force, which may be expressed as the
derivative of the respective thermodynamic potential G for the considered state in
the same way as the change of the velocity of a mechanical body is connected with
the gradient of the respective mechanical potential.

Suppose, a system is in a frozen-in state characterized by the value � of the
structural order parameter and a corresponding value of the fictive temperature T �.
T � is different from the actual temperature T and the value of the order parameter
� differs also from the respective value �.e/, which it would have in the equilibrium
state. Introducing the quantityD instead of the Onsager coefficient L

D

RT
D L; (3.116)

denoted as the diffusion coefficient for the considered process of structural reorga-
nization, we obtain from Eq. (3.115) the following expression for the change of the
structure parameter �

d�

dt
D � D

RT

�
@G

@�

�
p;T

: (3.117)

(Different possibilities for introducing kinetic coefficients into the description
of processes of structural evolution are discussed, e.g., in Smirnov (1966)
[782]; Kirkaldy and Young (1987) [453] or Bartels et al. (1990) [42]). If the
thermodynamic potential G is expressed not as a molar quantity but refers to
one particle, then RT has to be replaced by kBT .

Since we are considering states in the vicinity of a (metastable) equilibrium state,
a Taylor expansion of the derivative (@G=@�) including second-order terms results
in �

@G

@�

�
p;T

D
�
@G

@�

�
p;T;�.e/

C
�
@2G

@�2

�
p;T;�.e/

.� � �.e//: (3.118)

From the equilibrium condition (minimum of G) we obtain (cf. Eq. (3.8))

�
@G

@�

�
p;T;�D�.e/

D 0: (3.119)

Moreover, the second-order derivative of G with respect to � is positive.
Eqs. (3.117)–(3.119) yield

d�

dt
D � D

RT

�
@2G

@�2

�
p;T;�D�.e/

.� � �.e//: (3.120)
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With Eq. (3.121)

� D 1

D

RT

�
@2G

@�2

�
p;T;�D�.e/

(3.121)

a quantity with the dimension of time is usually introduced. This quantity � is
denoted as the relaxation time of the considered process (Haase (1963) [339];
Prigogine and Defay (1954) [649]). By applying this notation Eq. (3.120) reads

d�

dt
D � .� � �.e//

�
: (3.122)

The solution of Eq. (3.122) can be written in the form

�.t/ D �.e/ C .�.0/ � �.e// exp

�
� t
�

�
; (3.123)

which allows us to express the rate of change of � also as

d�

dt
D .�.e/ � �.0//

�
exp

�
� t
�

�
: (3.124)

In terms of the applied above notations (cf. Eq. (3.11)) a frozen-in state corresponds
thus to very large relaxation times (� ! 1).

In the case of relaxation of glass-forming melts it is usually assumed that �
in Eqs. (3.121)–(3.124) is proportional to the viscosity or the time of molecular
relaxation �R of the melt (Davies and Jones (1953) [153]; Kanai and Satoh (1955)
[428]). With this reasonable assumption � may be written (compare Eqs. (2.1),
(2.79), and (2.80)) in the form

� D �0 exp

�
U

kBT

�
;

dU

dT
� 0; (3.125)

where �0 is a constant, which can be identified with the time of molecular eigen-
vibrations �R0 introduced earlier.

Dependencies of the form, as expressed by Eq. (3.122), can also be obtained
for other thermodynamic quantities ˚ , which are determined by the value of the
structural order parameter �. In equilibrium a single-valued functional dependence
˚.e/ D ˚.�/ or �.e/ D �.˚/ exists. Since we are interested in states not far from
equilibrium, in the vicinity of the actual state, these dependencies can be considered
as monotonic functions as shown, for example, in Fig. 3.9 by a full curve.

By a rapid quench, the melt can be brought into a non-equilibrium state
characterized by �.0/ and the respective initial value of ˚ , denoted as ˚.0/. This
initial state is marked in the figure by a black dot. The spontaneous stabilization
process is characterized by a decrease of � indicated in Fig. 3.9 by an arrow. If,
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(0)

( )e

( )e

Fig. 3.9 Illustration for the
derivation of Eq. (3.127)
(see text)

as assumed, the order parameter � determines the actual value of ˚ also for the
process of stabilization, a relation can be found, connecting the time dependencies
of � and ˚ . From the mentioned figure we obtain in a linear approximation

�.t/ � �.e/

˚.t/ �˚.e/
D
�
@�

@˚

�
˚D˚.e/

: (3.126)

With Eq. (3.122) we may write

d.˚ � ˚.e//

dt
D � .˚ � ˚.e//

�
: (3.127)

This differential equation has similar solutions as for � (cf. Eq. (3.123)).
Relaxation processes of all quantities, which are determined by the value of the

order parameter �, are governed, consequently, by the same kinetic equation and the
same time of relaxation � . In particular, this conclusion also holds for the fictive
temperature T �. According to Eq. (3.127) we obtain for this special case

d.T � � T /
dt

D � .T
� � T /
�

(3.128)

or (since T is kept constant during the considered stabilization process)

dT �

dt
D �b .T

� � T /

�
; (3.129)

b being a constant interrelating the viscosity � and the time of molecular relaxation
� (see Eq. (2.104)). An equivalent equation was introduced into glass science on an
empirical basis by Tool, Hill and Eichlin (1925, 1931) [845, 846] and Tool (1946)
[844]. It can be seen that this equation follows directly from the theoretical approach
outlined in this chapter.

The equations predict, moreover that the evolution to the final state should be
symmetric independent of the direction of approach, i.e., whether the initial state
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Fig. 3.10 Experimental curves for the relaxation of vitrified glass-forming melts in the vicinity
of Tg (After Davies and Jones (1953) [153]): (a) Relaxation of the enthalpy of glycerol at a
temperature T D 185 K; (b) Relaxation of the volume of glucose at a temperature T D 304K;
Crosses: Approach to equilibrium from below, Circles: Approach to equilibrium from above
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Fig. 3.11 Relaxation of the coefficient of refraction n of an optical borosilicate glass according to
the measurements of Winter-Klein (1943) [929] for two different values of temperature as indicated
in the figure. Note that in this figure the approach to equilibrium from a higher value of the fictive
temperature is given by the lower curves, while the upper curves correspond to initially lower
values of the fictive temperature

of the considered thermodynamic quantity corresponds to values higher or lower
compared with the respective equilibrium value. However, though in some cases this
symmetry is indeed observed (compare Fig. 3.10) in most experimental situations a
different behavior may also be found (Fig. 3.11). In the simplest form such effects
can be described in the following way.

As exemplified by Fig. 3.11 a non-symmetrical approach to equilibrium is found
as the rule for initially large deviations from this state. In such cases, the linear
approximation in the Taylor expansion of the function f .A/ (cf. Eq. (3.113)) is not
sufficient and has to be replaced by a more accurate expression keeping higher-order
terms. In the next approximation we thus obtain

d�

dt
D LAC L1A

2 C : : : ; L1 D 1

2

@2f

@A2

ˇ̌
ˇ̌
AD0

(3.130)
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Fig. 3.12 Stabilization of kinetic properties of glass-forming melts: Viscosity vs time curves for
two samples of a silicate glass with the same composition but different thermal histories heat
treated at 486 ıC (After Lillie (1933) [512]). Curve (1): Glass sample equilibrated before stabiliza-
tion at a lower temperature (478 ıC); Curve (2): Glass sample quenched before stabilization from
temperatures considerably above 486 ıC to room temperatures and brought to 486 ıC afterwards.
By such treatment the lower viscosity values corresponding to initially higher temperatures are
frozen-in in the sample. Note that in both cases the same equilibrium value of the viscosity is
approached with time

or

d�

dt
D LA

�
1C L1

L
AC : : :

�
: (3.131)

Proceeding in the same way as in the derivation leading to Eq. (3.122) one gets

d�

dt
D � .� � �.e//

� .�/
(3.132)

with

�.�/ D ��
1C L1

L
AC : : :

� : (3.133)

The parameters L and L1 are constants, determined by the derivatives of the
function f .A/ in the equilibrium state A D 0 (cf. Eqs. (3.113) and (3.130)). It
follows that �.�/ has different values above (� > �.e/, A < 0) and below (� < �.e/,
A > 0) equilibrium, as far as the term L1A=L is comparable in magnitude with
unity (compare also Eq. (3.5) and the comments to it).

It follows from Eq. (3.133) that the effective value of � is a function not only of
temperature (cf. Eq. (3.125)) but also of A or �, respectively, the fictive temperature
T �. With increasing values of the fictive temperature, corresponding to structures of
the metastable under-cooled melt for higher values of temperature T , the relaxation
time decreases. Consequently, the following inequality should hold
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��.T � < T / > ��.T � > T /: (3.134)

Thus, the approach to equilibrium from a fictive temperature below the actual
temperature T is expected to proceed more slowly than in the opposite situation.

Moreover, at the same time, the new concept of the non-equilibrium viscosity of
glass-forming melts is introduced, since, as can be seen, not only the thermodynamic
quantities but also the kinetic parameters describing glasses and glass-forming melts
deviate from the respective equilibrium values. The necessity of introducing non-
equilibrium values of the viscosity was demonstrated for the first time convincingly
by Lillie (1933) [512]. Lillie measured directly the change of the viscosity during
stabilization for two different cases, when the equilibrium was approached from
above and from below (see Fig. 3.12). These ideas were developed further in a
paper by Narayanaswami (1971) [592] who introduced the concept of frozen-in
values of the activation energy of viscous flow (see also Avramov et al. (1987) [29];
Avramov and Gutzow (1990) [24]). A detailed discussion of this approach is given
in Chap. 12.

3.10 Temperature Dependence of the Thermodynamic
Driving Force of Stabilization

In Sect. 3.3 an expression was derived for the difference of the free enthalpy of
a substance in the states of an under-cooled melt and of a crystal in the vicinity
of the melting point Tm (Eq. (3.48)). This enthalpy difference can be considered
also as the thermodynamic driving force for crystallization. As already mentioned,
crystallization is usually preceded by stabilization processes, i.e., the approach to
the respective metastable equilibrium state as schematically illustrated in Fig. 2.32.
The calculation of the thermodynamic driving force of this process is the aim of the
present section.

We proceed first in the same way as in Sect. 3.3, i.e., by expanding the
difference in the free enthalpy this time in the vicinity of the glass transformation
temperature and taking into account that similarly to second-order equilibrium phase
transformations, both the potentials G as well as their first-order derivatives with
respect to the independent variable (the temperature T ) coincide at Tg (compare
Sects. 3.3 and 3.4). Denoting the thermodynamic driving force of stabilization by
�Gs.T / we may write

�Gs.T / D Gg.T / �Gf .T /; (3.135)

�Gs.Tg/ D 0 (3.136)

and similarly for the entropy difference

�Ss.T / D Sg.T / � Sf .T /; (3.137)

�Ss.Tg/ D 0: (3.138)
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A Taylor expansion of �Gs.T / in the vicinity of Tg yields, thus, with the first of
Eq. (2.22) and with Eq. (2.14)

�Gs.T / D �Cp.Tg/

2Tg
.Tg � T /2; (3.139)

�Cp.Tg/ D C .f /
p .Tg/� C .g/

p .Tg/ � C .f /
p .Tg/ � C .c/

p .Tg/: (3.140)

Equation (3.139) was first derived by Mazurin, Filipovich and Shultz (1977) [547].
This expression can be applied, at least, approximately, for any temperature
T � Tg. For T > Tg it is expected to be of physical relevance only for observation
times, �t , considerably smaller than the time of molecular relaxation, �.T /.

Introducing the reduced temperature  D T=Tm, Eq. (3.139) yields

�Gs.T / D 1

2

g�Cp.Tg/

�Sm

�
1 � 

g

�2
: (3.141)

In an alternative approach we may express �Gs.T / as the difference between
�Gg D Gg �Gc and �G D Gf �Gc in the form (see Fig. 3.13)

�Gs.T / D �Gg.T / ��G.T /: (3.142)

Applying this equation we may determine �Gs.T / via �Gg and �G.T /. For
�G.T / we may use any function valid in the whole temperature range from
T D 0 to T D Tm, in particular, the thermodynamic model outlined in Sect. 3.3
(Eq. (3.56)).

With Eq. (3.70), written as

�Gg

Tm�Sm
D �Hg

Tm�Sm
�  �Sg

�Sm
(3.143)

and Eqs. (3.54) and (3.55) we obtain

�Gs./

Tm�Sm
D a0.g � / � a0 ln

�
g



�
for T0 < T < Tg; (3.144)

�Gs./

Tm�Sm
D a0.g � 0/ � .1C a0 ln g/ for 0 < T < T0; (3.145)

where in the determination of T0, again, the relation Eq. (3.58) was used. The
logarithmic term in Eq. (3.144) can be expanded into a Taylor series. For this
purpose we rewrite the logarithmic term as

ln
g


D ln

�
 C .g � /



�
D ln

�
1C .g � /



�
(3.146)
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Fig. 3.13 Temperature dependencies of the differences of the Gibbs free energies between the
vitreous and crystalline states (�Gg) and between the under-cooled melt and the crystal (�G)
(schematically, after Gutzow, Pye, and Dobreva (1994) [335]): Curve (a,g,Tm,b): Difference of the
Gibbs free energy �G.T / between the under-cooled melt and the crystal according to Eq. (3.56).
Below Tg the curve is given by a dashed line referring to the fictive under-cooled melt. These states
can be realized in experiments only for observation times �t=�.Tg/ ! 1 (compare Eq. (3.75)).
Curve (g’,g,s): Difference of the Gibbs free energies between the glass and the crystal according to
Eq. (3.70). Above Tg the curve is given by a dashed line. Such states can be realized in experiments
only for observation times �t=�.Tg/ ! 0. The values of the difference �Gs D �Gg � �G are
indicated by vertical lines. Note the asymmetric course of this difference for larger deviations from
Tg . With Ts the particular temperature value is specified, for which �Gg becomes equal to zero

and get, consequently,

ln
g


� g � 


� 1

2

�
g � 


�2
C : : : (3.147)

Substituting this expression into Eq. (3.144) for values near Tg Eq. (3.141) is
obtained, again.

For typical glass-forming systems the relations g D 2=3 and a0 D 3=2 hold and
Eqs. (3.144) and (3.145) yield

�Gs./

Tm�Sm
� 1 � 0:9 C 3

2
 ln  for T0 < T < Tg; (3.148)

�Gs./

Tm�Sm
� 1

4
� 2

5
 for 0 < T < T0; (3.149)

while for the same class of substances

�Gg./

Tm�Sm
D 1

2
� 1

3
 (3.150)

is fulfilled (compare Eqs. (3.63), (3.70) and (2.130)).
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A comparison of Eqs. (3.148)–(3.149) shows that the thermodynamic driving
force of crystallization of the under-cooled melt for T < Tg always exceeds �Gs ,
e.g., for  D 1=2 we have �Gg=�Gs.T / � 10. Moreover, it can be verified from
Fig. 3.13 that for T � Tg the inequality �Gg > �G > �Gs.T / holds, i.e., the
thermodynamic driving force for crystallization of the glass is always greater than
the thermodynamic driving force of crystallization of the under-cooled melt. For
temperatures T > Tg in the vicinity of Tm the thermodynamic driving force of
stabilization�Gs.T / can be larger than�G, if the�Gg-curve is prolonged to such
high temperature values.

The knowledge of the thermodynamic driving force of crystallization, respec-
tively, of stabilization allows one conclusions concerning the stability of the
considered state of the substance. At the same time, it allows us to make conclusions
concerning the kinetics of these processes. As shown in Sect. 3.9, the basic relation
describing relaxation processes in the vicinity of equilibrium states is given by
Eq. (3.117). Approximately, we may replace the derivative in Eq. (3.117) by the ratio
of the differences�G D G.�/�G.�.e// and�� D ���.e/. Moreover, sinceG.�/ is
the thermodynamic potential of the vitrified melt, it can be identified with the actual
value of Gg . Thus, we obtain, finally,

d�

dt
D � D

kBT

�
�Gs

��

�
with �Gs.T / D Gg �Gf (3.151)

and with Eq. (3.126) (for the particular case ˚ D T �)

d.T � � T /
dt

D � D

kBT

�
�Gs.T /

T � � T
�
1

a2
; a D

�
@�

@T �

�
T �DT

: (3.152)

With Eq. (3.141) for �Gs , again, an expression of the form of Eq. (3.129) (Tool’s
equation) is found.

3.11 Experimental Results

The first experimental investigations of stabilization phenomena in glasses in the
vicinity of Tg were directed to the analysis of variations in time of the specific
volume and quantities like density, coefficient of refraction and other properties
connected with it. Classical examples in this respect are shown in Figs. 3.10 and 3.11
(relaxation of the molar volume of glucose according to Davies and Jones (1953)
[153] and change in the coefficient of refraction in a technical glass according to
Winter-Klein (1943) [929]). From this first period of experimental investigations, we
would also like to mention the results of Tool, Hill and Eichlin (1925, 1931) [845,
846], Ritland (1954) [667], Kanai and Satoh (1954, 1955) [428], Daragan (1952)
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[152] and additional measurements carried out by Winter-Klein (1943) [929] and
Davies and Jones (1953) [592]. More recent results were reported by Moynihan
et al. (1971 [581], 1976 [154,579]) and Narayanaswami (1971) [592]. These authors
analyzed caloric properties and, in particular, the relaxation of the enthalpy of
vitrified melts (see also Bergmann, Avramov et al. (1985) [69]; Scherer (1986)
[686]).

It is evident from the results presented in Figs. 3.10 and 3.11 that for relatively
small deviations from equilibrium really a symmetric approach to equilibrium is
found. The same conclusion can be drawn to a large extent also with respect
to the time evolution of the coefficient of refraction, at least, for relatively high
temperatures (see Fig. 3.11). However, for lower temperatures a significant deviation
from such a simplified picture is observed. Particularly interesting examples in this
respect are the solubility and the vapor pressure of glasses. These topics will be
discussed below.

We want to mention also that far below Tg very slow processes of structural
transformation, so-called secular changes, have been observed, which do not seem
to fit into the outlined theoretical approach (see Morey (1954) [574]; Schönborn
(1955) [731]; Charles (1971) [127]; Cooper (1982) [153]). Such variations are of
particular importance for thermometry as described in more detail by Scholze (1965,
1967) [732] and Gutzow (1962) [315]. It has been observed that for alkali lime
silicate glasses containing a high percentage of sodium and potassium oxides,
such variations caused a measurable depression of the zero point of mercury
thermometers at temperatures 200–300 K below Tg. In a famous investigation,
carried out by Schott (1891) [734], it was shown that such secular density changes
are practically suppressed for compositions of the glass containing only sodium or
potassium.

It was established empirically that the change ıl of the zero point of the
thermometric scale can be described as

ıl D A log

�
t

t0

�
C B; (3.153)

where A, B and t0 are constants. For polymer systems it was found that similar
processes are connected with variations in the conformation of the molecules.
At present, there is no satisfactory structural theory for such secular changes
in technical glasses, although the experimental evidence has been known for a
long time (for an overview on attempts in this direction see, e.g., Hunt (1993)
[385]; Hodge (1994) [373]). Possibly, this type of behavior could be connected
with the simultaneous relaxation of more than one structural order parameter,
which is not reflected in the simple scheme as described above. In such cases,
transformations could occur even then when the main order parameter connected
with the free volume of the vitrified melt is frozen-in. Another theoretical approach
to an understanding of secular changes could be based on a non-linear description
of the viscous flow of glass-forming melts, as it will be discussed in Chap. 12.
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3.12 Vapor Pressure and Solubility of Glasses

The classical methods used for the determination of the thermodynamic functions
of glass-forming melts and glasses are based on measurements of the temperature
dependence of the specific heats of the respective substances (see Sects. 3.3–
3.5). Here and in the following section another method will be discussed which
interrelates the thermodynamic functions of glasses with the vapor pressure, the
solubility and the chemical reactivity (or affinity) of vitreous substances. The
agreement of experimental results and theoretical predictions for these properties
gives an additional proof of the expressions for the thermodynamic potentials,
derived in Sects 3.3 and 3.5.

The problem of the very existence of a well-defined value of the vapor pressure
and solubility of frozen-in systems like glasses has given rise to prolonged discus-
sions in literature. Frequently the opinion was expressed that these quantities cannot
be attributed to non-equilibrium systems like a vitrified melt. The development
of the discussions around this problem over many years can be followed in the
literature beginning with van der Waals and Kohnstamm (1908) [881], Simon
(1937) [758], Fowler and Guggenheim (1939, pages 228–229, [225]), Haase (1956,
pages 304, 564, [338]) and Kritchevski (1970, pages 400–405, [486]).

The origin of the problem of whether the mentioned quantities have well-
defined values for a glass is due to the fact that classical thermodynamics gives
us the possibility of determining vapor pressure, solubility and affinity only for
systems in an internal thermodynamic equilibrium state. Thus the only way out of
this conceptional difficulty seemed to consist of adopting a statistical-mechanical
approach, which, as mentioned first by L. Boltzmann, can be applied to determine
the thermodynamic functions of equilibrium as well as of non-equilibrium states
of matter (see Boltzmann (1896–1898) [87]). Such a point of view was used in
their argumentation also by van der Waals and Kohnstamm (1908) [881]. Authors
like Schmolke (1931) [730] argued, moreover that even to a metastable system no
definite value of the vapor pressure may be assigned.

The main postulate, underlying the thermodynamic definition of vapor pressure,
solubility and chemical affinity of a glass, applied here, is the following: These
quantities are determined by the respective values of the thermodynamic functions
of the metastable under-cooled melt at the freezing-in temperature T D T �. This
approach was first proposed by Gutzow in 1972 [294] and developed further by
Grantcharova and Gutzow in 1986 [268]. The basic assumption implies, as pointed
out first by Simon (1937) [758] that the process of condensation/evaporation (or
dissolution/recondensation) can lead to a transformation of the structure and the
properties of the glass in the direction of the state corresponding to the metastable
under-cooled melt for the actual value of temperature T . Consequently, such
quantities like vapor pressure and solubility should also change slowly with time.
However, vapor pressure and solubility of glasses have typically relatively low
values and often the mentioned and bulk relaxation phenomena may be neglected for
the actual times of observation. In these cases practically constant values of vapor
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pressure and solubility are measured. For example, the condensation coefficient
of vitreous As2O3 is of the order 10�5–10�9, the vapor pressure of vitreous SiO2

and of other typical glasses has values below 10�40 Torr (see also Gutzow (1972)
[294]; Knacke and Stranski (1952) [459]; Stranski and Wolf (1951) [811]; Bestul
and Blackburn (1960) [78]).

For a derivation of conclusions from the above formulated general definition
we make the simplest possible assumptions with respect to the properties of the
vapor phase (perfect gas composed of the same particles as the glass sample)
or the solution (perfect solution). These assumptions are reasonable since both
the vapor pressure and the solubility of glasses have, as mentioned, relatively
low values. Generalizations can be found in the papers by Gutzow (1972) [294]
and Grantcharova and Gutzow (1986) [268]. We consider first the problem of
the vapor pressure of a glass. The extension to the solubility can be performed
straightforwardly.

From the equilibrium conditions for a one-component solid with a chemical
potential �c in contact with its vapor (�v) (compare Eq. (2.40))

�c.pc; T / D �v.pc; T / (3.154)

and the similar relation for the liquid-vapor coexistence

�f .pf ; T / D �v.pf ; T / (3.155)

we obtain with the expression for the chemical potential �v of a one-component
perfect gas at pressure p

�v.p; T / D �v.p0; T /CRT ln

�
p

p0

�
(3.156)

(p0 is some reference value of the pressure, e.g., the atmospheric pressure, R
the universal gas constant) the following relation interconnecting pf , pc and the
difference in the molar values of the Gibbs free energy �G for both considered
phases

�c.pc; T / D �v.p0; T /CRT ln

�
pc

p0

�
; (3.157)

�v.pf ; T / D �f .p0; T /CRT ln

�
pf

p0

�
; (3.158)

�G

RT
D ln

�
pf

pc

�
; �G D �f � �c; (3.159)

(see, e.g., also Simon (1926, 1927) [754,755]). pf and pc are the equilibrium pres-
sures of the liquid and the crystalline phase for the actual value of temperature T .
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If one applies Eq. (3.159) to the under-cooled and to the vitrified melt, we get as
special cases

ln

�
pf

pc

�
D �G

RT
; �G D Gf �Gc; (3.160)

ln

�
pg

pc

�
D �Gg

RT
; �Gg D Gg �Gc: (3.161)

�G and�Gg in the above expressions can be determined by Eqs. (3.56) and (3.70).
With these expressions we obtain

ln

�
pg

pc

�
� �Sm

R

�
1

2
� 1

3

�
; (3.162)

ln

�
pf

pc

�
�

8̂̂
<̂
ˆ̂̂:

�Sm

2R

�
1� 1


� 3 ln 

	
for 0 �  � 1

�Sm

4R
for 0 �  � 0:

(3.163)

Eqs. (3.160)–(3.163) allow one the determination of the vapor pressure of the under-
cooled metastable melt and the glass, provided the temperature dependence of the
vapor pressure of the gas in equilibrium with the crystalline phase is known.

Eqs. (3.160) and (3.161) yield further

ln

�
pg

pf

�
D �Gs

RT
: (3.164)

It is evident from Eq. (3.164) that the vapor pressure of a glass, determined in the
above mentioned sense, always exceeds the vapor pressure of the metastable under-
cooled melt. The difference is determined by the actual value of the thermodynamic
driving force of stabilization �Gs.T / (Eqs. (3.144) and (3.145)). A substitution of
these expressions into Eq. (3.164) yields

ln

�
pg

pf

�
D

8̂̂
<̂
ˆ̂̂:

�Sm

R

�
1


� 0:9C 3
2

ln 
	

�Sm

R

�
1
4

� 2
5

	 (3.165)

A qualitative illustration of the temperature course of pf , pc and pg is shown in
Fig. 3.14.

Taking into account that�Gs.T / depends on the cooling rate, it follows that the
vapor pressure of a glass also depends on it. Moreover, as discussed in Sect. 3.9,
relaxation processes of the glass result in a change of the fictive temperature and,
consequently, also in a variation of�Gs.T / and pg, approaching with time the value
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Fig. 3.14 Temperature
dependence of the vapor
pressure of a crystal specified
by (c), the under-cooled melt
(f ) and the glass (g), frozen-in
at two different temperatures
Tg and Tg1 (Tg1 > Tg). The
change of the vapor pressure
of the glass upon stabilization
is indicated by an arrow. It is
evident from the figure and
the respective equations, that
at T D Tg no discontinuity of
the logp vs 1=T -
dependencies occurs

of the under-cooled metastable melt. This change of pg is indicated in Fig. 3.14 by
an arrow.

Quantitatively, the time dependence of �Gs.T / can be described according to
Eq. (3.127) by

d.�Gs.T //

dt
D ��Gs.T /

�
(3.166)

with the solution

�Gs.t/ D �Gs.0/ exp

�
� t
�

�
: (3.167)

A substitution into Eq. (3.164) yields

ln

�
pg

pf

�
D �Gs.0/

RT
exp

�
� t
�

�
: (3.168)

For small deviations of pg from pf by a Taylor-expansion of the logarithmic term
in Eq. (3.168) one obtains (compare Eqs. (3.146) and (3.147))

pg � pf

pf
� �Gs.0/

RT
exp

�
� t
�

�
: (3.169)

Assuming a perfect solution glass/solvent the process of dissolution of glasses
may be discussed in a totally equivalent form. The only change in the equations
derived above consists in a replacement pg ! cg, pf ! cf and pc ! cc , where
by cg , cf and cc the solubilities of the substance in the form of the glass, the under-
cooled melt and the crystal are denoted. In particular, we may write

ln

�
cf

cc

�
D �G

RT
; (3.170)
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ln

�
cg

cc

�
D �Gg

RT
; (3.171)

ln

�
cg

cf

�
D �Gs

RT
: (3.172)

Again, based on the knowledge of �G and �Gg the respective values of the
solubility can be determined and vice versa.

So far vapor pressure and solubility of glasses and their variations in time have
been discussed connected only with bulk variations of the state of the considered
sample. In addition to such processes of bulk relaxation the possible existence of
time dependent changes of the glass/vapor or glass/solution interface has also to
be taken into account. If variations of the glass-vapor or glass-solution interface
determine to a large extent the vapor pressure or the solubility, then there is indeed
no point in assuming well-defined values of vapor pressure or solubility of a glass,
as it was assumed by Simon (1937) [758]. Such surface variations are the result of
evaporation/recondensation processes leading to a removal of the kinetic barrier of
the stabilization process from the non-equilibrium state of the glass to the respective
under-cooled melt.

Generally, it can be expected, however, that the evolution of the interface
of the system is also directed to a state corresponding to the structure of the
fictive metastable melt. Thus, the equations describing the time dependence of the
discussed thermodynamic quantities will be of the same form as for the bulk changes
but possibly with a different relaxation time, �surf . For glass-vapor interfaces it has
to be expected, as discussed by Grantcharova and Gutzow (1986) [268] that �surf
is of the same order as �bulk . For glass-solution interfaces most probably �surf <
�bulk holds. In the case of a glass-solution interface a penetration of the solvent
into the surface layer of the glass may also occur. This effect is analyzed in detail
by Harvey et al. (1986 [349], 1987 [348]). Moreover, for high supersaturations
also crystallization processes may take place at the interface (for the glass-vapor
interface see, for example, Stranski and Wolf (1951) [811] and for the glass-solution
interface Grantcharova and Gutzow (1986) [268]). The influence of interfacial
effects in the determination of the vapor pressure and the solubility may be
suppressed, if in the investigation of these quantities the interface is permanently
renewed. This procedure was followed by Grantcharova and Gutzow (1986) [268]
who succeeded by this method in measuring definite values of the solubility of
phenolphthalein glasses.

Experimental results concerning vapor pressure and solubility of glasses are
relatively scarce. Practically only one more detailed measurement of the vapor
pressure of a simple one-component typical oxide glass-forming substance is
known, referring to the orthorhombic and the tetragonal crystalline modifications
of P2O5 and their under-cooled melts (see Hill et al. (1943) [359]). By using the
results of Hill et al. (1943) [359] in coordinates ln.pf =pc/ vs .1 � �1 � 3 ln /
straight lines are obtained in agreement with the theoretical prediction as expressed
by Eq. (3.163) (see Fig. 3.15). The experimental results lead, when compared with
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Fig. 3.15 Temperature
dependence of the vapor
pressure of under-cooled
P2O5 in coordinates referring
to Eq. (3.163). The
experimental data are taken
from Hill et al. (1943) [359].
White points specify the
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orthorhombic P2O5 while
black dots refer to tetragonal
P2O5. Unfortunately,
measurements have been
carried out only for two
temperatures just above Tg

the theoretical predictions, to reasonable values of the entropies of melting �Sm D
17:8 and 20.8 e.u. for both considered modifications.

An additional important aspect to be noted here is the convex character of the
logpf vs 1/T curve as to be expected from the theoretical predictions. Of particular
interest are also measurements of the vapor pressure of liquid, crystalline and
vitrified thin argon films performed quite recently (Kouchi and Kuroda (1990) [477],
see Fig. 3.16). The results are significant in two aspects, since (i) for the first time
a noble gas has been vitrified, and (ii) the temperature dependence of the vapor
pressure of a simple substance in the three condensed states has been determined.

Vitrification of argon was achieved by the mentioned authors by vapor quenching
at 10 K with an extremely high effective cooling rate corresponding to 1016 Ks�1.
In a next step of the experimental investigation the sample was heated with a rate
2 K min�1, corresponding to the rates of vitrification (101–102 Ks�1) used in the
standardized determination of Tg. Thus, Tg was found to be equal to about 20K.

This experimental result coincides with a previously given theoretical estimate,
based on the analysis of the rheological properties of this substance (Gutzow,
Kashchiev, and Avramov (1985) [330]). Above Tg a rapid process of crystallization
of the argon films is observed which leads to a completely crystalline structure of
the sample. The vapor pressure of the resulting crystalline phase corresponds to the
value for fcc-argon. Similar curves were obtained by Kouchi (1987) [476] also for
thin films of water both for the vitreous and the crystalline states of the substance
(for a further discussion see Grantcharova and Gutzow (1993) [270]).

In Fig. 3.16 also a fit of the vapor pressure curve for the amorphous argon film
is given based on Eq. (3.161). The best fit is obtained if the value of the fictive
temperature is set equal to T � D Tm. Taking into account the Bartenev-Ritland
equation Eq. (2.111) and also Fig. 3.6 such a result appears to be quite natural for
the applied extremely high cooling rates. With Eq. (3.143) we get for this special
case
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films (Grantcharova and Gutzow (1993) [270]): (a) Experimental data for the vapor pressure of
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films: Vapor pressure curves for crystalline (curve (1)) and liquid (curve (2)) argon according to
the measurements of Kouchi and Kuroda and reference data. Curve (3) corresponds to the vapor
pressure of the under-cooled liquid argon according to Eq. (3.161). Tm is the melting point of argon,
Tg the conventional vitrification temperature and T � is Tool’s fictive temperature for the vitrified
argon. T � corresponds to effective quenching rates of 1016 Ks�1 employed in the experiment

�Gg.T / D Tm�Sm.1 � /: (3.173)

If this expression is substituted into Eq. (3.161) the dashed line in Fig. 3.16b is
found. For comparison, in this figure a vapor pressure curve for vitreous argon is also
given, when the fictive temperature T � is assumed to be considerably lower than Tm
(dashed-dotted curve). It can be seen that this curve cannot fit the relatively high
values of the vapor pressure of vitreous argon measured in Kouchi’s and Kuroda’s
experiments.

Measurements of the vapor pressure of two-component glasses are reported by
Scholze and Gliemeroth (1964) [733], Hackenberg and Scholze (1970) ([341], H2O
in a Na2SiO3 H2O-glass) and Überreiter et al. (1962, 1964, 1966) ([869], benzene
in an organic high polymer). In both cases, the logp vs. 1=T curve follows the
theoretical predictions. Überreiter and Bruns (1964) [869], moreover, mentioned a
change in time of the vapor pressure into the direction of the value for the respective
under-cooled melt, when the glass is tempered for prolonged times in the vicinity of
Tg (see Fig. 3.17). This result is of principal interest, since it gives a direct evidence
of relaxation processes in glasses as predicted first by Simon (1937) [758]. However,
a quantitative analysis of the results of Scholze et al. and Überreiter et al. requires
a more detailed thermodynamic description of vitrification and relaxation in multi-
component systems which goes beyond the scope of the present discussions (see
also Gutzow (1972) [294]; Grantcharova and Gutzow (1986) [268]).
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Of even greater importance for the verification of the outlined theoretical
approach is the comparison of dissolution experiments with the same substance in
the form of the metastable under-cooled melt, in the vitreous and in the crystalline
states. The expected higher solubility of glasses can be of technological importance
and attracted the attention already many years ago. As examples in this respect the
work of Nacken (1945) [589] with SiO2 and of Kolb (1969) [463] with selenium
can be mentioned (see also Smakula (1962) [780]). This interest is connected with
the possible realization of an isothermal synthesis of monocrystals from solutions,
where the vitreous solid serves as the source of constant supersaturation.

Experimental data on the solubility of vitreous systems are given in Fig. 3.18
(Grantcharova and Gutzow (1986) [268]). It can be shown that the values of the
molar enthalpy and entropy of melting, calculated from the solubility data and
the theoretical equations Eqs. (3.170)–(3.172) (�Hm D 18:4 kJ mol�1, �Sm D
9:2 J K�1 mol�1 for SiO2) are in reasonable agreement with the values of these
parameters obtained from calorimetric measurements (�Hm D 13:2 kJ mol�1,
�Sm D 9:2 J K�1 mol�1; Witzel (1921) [930], see also Eitel (1952) [184]). From
a methodological point of view of considerable interest are the results on solubility
measurements of phenolphthalein (Grantcharova and Gutzow (1986) [268]). Phe-
nolphthalein (PhPh) exists in only one orthorhombic crystalline modification.
Moreover, UV-spectral analysis reveals that the solutions of the crystalline and
vitreous forms of this substance are formed by the same structural unit, the PhPh-
molecule.
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Fig. 3.18 Experimental results on the solubility of simple inorganic glass-forming systems in
coordinates corresponding to Eqs. (3.170)–(3.172). As a measure of the solubility the molar
fraction x of the solute in the solution is chosen. The curves refer to SiO2 in water (triangles and
squares – solubility of quartz; black and white dots – solubility of amorphous samples, according
to experimental data compiled by Iler (1979) [386]), Se in CS2 (triangles, squares and hexagons –
solubility of crystalline monocline Se according to Mitcherlich (1855) [565], Ringer (1912) [666]
(see Gmelins Handbuch der anorganischen Chemie, 8th edition, No. 10, 1952, p. 257 [256, 257]);
black and semiblack circles – amorphous Se according to Rammerlsberger and Shidai (Gmelins
Handbuch, No. 10, p. 257 [256, 257])), As2O3 in water (triangles – solubility of crystalline cubic
As2O3 according to experimental data by Anderson and Story (1923) [11] (see also Gmelins
Handbuch, 8th edition, No. 17, p. 278 [256, 257]), white circles – solubility of vitreous As2O3

according to a determination by Winkler (1885) (Gmelins Handbuch, p. 278 [256, 257]), Landolt-
Börnstein, Zahlenwerte und Funktionen, part II, 2b, 6th edition, Springer, 1962). In all three cases
the straight line is a fit through the experimental data as it would have been expected from the
outlined theoretical equations (see Eq. (3.171)) by using the caloric data

In Fig. 3.19 dissolution curves are shown for PhPh in water both for vitreous
and crystalline samples of the substance and for two different temperatures. For the
crystalline substance the approach to saturation can be described satisfactorily as a
diffusion limited process in terms of Nernst’s kinetic equation (see Nielsen (1964)
[603])

dc

dt
D D0As

ı
.c.e/ � c/: (3.174)

Here D0 is the diffusion coefficient of the solute molecules in the solvent, ı
the thickness of the diffusion layer and As the surface area of the solid/solution
interface.

Introducing a relaxation time �N via

�N D ı

D0As
; (3.175)

Eq. (3.174) may be rewritten in the same form as Eq. (3.122)
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Fig. 3.19 Kinetics of
dissolution of
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d.c � c.e//

dt
D � .c � c.e//

�N
; (3.176)

underlining the similarity between structural relaxation of glasses and kinetics
of dissolution (approach to thermodynamic equilibrium, respectively, metastable
equilibrium). The saturation plateau in the dissolution curves can be identified with
the respective equilibrium solubility. In the same figure, the dissolution curves of
the glass are also given. They follow Nernst’s equation Eq. (3.174) as well. This
coincidence gives us the right to speak, in the same sense as it was done for
crystals, about definite values of the solubility of the glass, since, as it can be
seen, the saturation value remains, again, constant for the considered observation
times. In terms of Eq. (3.122) this result means that for the considered experimental
conditions � is practically equal to infinity.

In Fig. 3.20 the results of determination of the solubility of phenolphthalein at
different values of temperature are given. It is found that the solubility of the glass
does not change in all considered cases for the characteristic times of dissolution
experiments. From the slope of the straight lines in Fig. 3.20 Grantcharova, Avramov
and Gutzow (1986) [271] determined the frozen-in values of the enthalpy and
the entropy of the glass as �Hg D .11:7 ˙ 1:3/ kJ mol�1 and �Sg D .19:6 ˙
5:4/ J mol�1 K�1.

Determinations of these quantities, based on specific heat measurements per-
formed with a differential scanning micro-calorimeter (compare Fig. 2.21), gave
the following values: �Hg D .13:8 ˙ 1:3/ kJ mol�1 and �Sg D .10:1 ˙
4:6/ J mol�1 K�1 for the same substance. Taking into account the relatively high
scattering in the determination of these quantities by the caloric measurements (up to
10–15 %) the agreement between the results obtained in the two different ways can
be considered as quite satisfactory.

In performing the solubility experiments with phenolphthalein Grantcharova
and Gutzow (1986) [268] encountered difficulties known also from other similar
experiments with glasses. When the solubility of the glass exceeds considerably the
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Fig. 3.21 Schematic illustration of the crystal growth experiments at a constant temperature, when
vitreous solids are used as the source of constant supersaturation: (a) via the gas phase (vapor
pressure of the glass); (b) via the solution (solubility of the glass). In both cases by (1) the glass
and by (2) the growing single crystal is denoted

solubility of the crystal, the solutions become highly supersaturated with respect to
crystallization and a spontaneous precipitation occurs. This effect is undesirable, if
the growth of a single crystal from the solution is attempted as tried by Nacken.
This was also the reason, why Nacken’s experiments directed to an isothermal
synthesis of quartz under hydrothermal conditions failed (see the criticism of
Nacken’s work given by Smakula (1962) [780]). Choosing temperature values only
slightly below Tg , Grantcharova and Gutzow (1986) [268] were able to obtain in
the experiments an isothermal growth of PhPh-crystals from aqueous solutions in
which the supersaturation was sustained by the dissolution of the glass. Under
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these conditions the supersaturation was sufficiently low not to cause precipitation
(see Fig. 3.21 for a schematic representation of monocrystal growth experiments by
dissolution or evaporation of glasses).

3.13 Affinity of Chemical Reactions Involving a Vitreous
Reagent

The higher values of the molar Gibbs free energy of a substance in the vitreous
state as compared with that of the under-cooled melt or of the crystalline phase also
result in higher values of the chemical reactivity. This is another problem of the
thermodynamics of glasses which can be treated in the same way as vapor pressure
and solubility of glasses (see also Gutzow (1974) [296]; Grantcharova and Gutzow
(1986) [268]).

We consider a heterogeneous chemical reaction in the gas phase described by

˛EE C ˛1A1 C ˛2A2 C : : : • ˇ1B1 C ˇ2B2 C : : : ; (3.177)

taking place at constant pressure and temperature (T < Tg). It is supposed that the
solid component E participates in it once as a crystal and another time as a glass.
More precisely, it is assumed that in the heterogeneous gas reactions not the solid
itself takes part but its vapor characterized by the vapor pressure pE . Consequently,
the course of the chemical reaction may be different depending on the vapor pressure
of the gas being in contact either with the crystal or the glass.

The stoichiometric coefficients in the above reaction are denoted, for the initial
reagents, by ˛i and ˛E (˛E refers to the vapor in equilibrium with the solid) and ˇi
for the reaction products. The degree of completion of a chemical reaction can be
described, again, by a variable �. In terms of � the change of the number of moles
of the different components is expressed as

dni D 
i d�

8<
:

i D f�˛E;�˛i g; 
i < 0 for the reactants


i D ˇi 
i > 0 for the reaction products
(3.178)

and for the change of the Gibbs free energy in a chemical reaction we may write
(for p D const:, T D const:)

dG D
X
i

�i dni D d�
X
i

�i 
i : (3.179)

According to Eqs. (3.5) and (3.179) the affinity A of the considered process can be
written as



3.13 Affinity of Chemical Reactions Involving a Vitreous Reagent 119

A D �
X
i


i �i : (3.180)

To derive further conclusions, we express first the chemical potentials �i of
the different components of the gas mixture through their values �0i for the pure
substance at a reference pressure p0 and a temperature T , the molar fractions xi and
the activity coefficients fi as

�i.p; T; x1; x2; : : :/ D �0i .p0; T /CRT ln

�
xifi

p

p0

�
: (3.181)

A substitution into Eq. (3.180) yields

A D �
"X

i

�0i .p0; T /
i CRT
X
i


i ln

�
xifi

p

p0

�#
: (3.182)

With the notation

K.T / D exp

8̂̂
<
ˆ̂:

�

X
i

�0i .p0; T /
i

RT

9>>=
>>;

(3.183)

we obtain for the equilibrium state (A D 0, compare Eq. (3.5))

K.T / D
(Y

i

.xifi /

i

) �
p

p0

�P
i 
i

: (3.184)

This equation is the general form of the well-known mass action law. It shows that
the equilibrium vapor pressure of the different components is uniquely determined
by the actual value of temperature. For a mixture of perfect gases (fi D 1, pi D
pxi ) this equation can be written (in a more extended form applying the original
notations Eq. (3.178)) as

K.T / D

Y
i

.pi /
ˇi

Y
i

.pi /
˛i .pE/

˛E
.p0/

.�P
i 
i /: (3.185)

Similar equations can be formulated if the chemical reactions proceed in solution.
The equilibrium constant K.T / of the chemical reaction is expressed according

to Eq. (3.183) through the chemical potentials of the pure components, taking part in
the chemical reaction, at the temperature T and the reference pressure p0. It is only
a function of temperature. Moreover, it follows directly that the ratio �E D Kg=Kc

can be written in the form
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�E D Kg.T /

Kc.T /
D exp

n ˛E
RT

h
�
.g/
E0.p0; T /� �

.c/
E0.p0; T /

io
: (3.186)

Here by g and c the reaction constants for the reaction in contact either with the
glass or the crystal are specified.

The difference in the chemical potentials can be expressed through the difference
of the molar values of the free enthalpy between the glass and the crystal as (for
p0 D p)

�
.g/
E0.p; T / � �.c/E0.p; T / D �Gg: (3.187)

With Eq. (3.161) these results allow one a direct estimation of the temperature
dependence of the equilibrium constant Kg.T /, when the respective expression for
the reaction taking place in contact with the crystalline solid is known. We get

Kg.T / D Kc.T /

�
pg

pc

�˛E
: (3.188)

Since pg > pc holds, the equilibrium constant of the considered chemical reaction
is always higher, when the solid takes part in the chemical reaction as a glass.

In reference literature usually the necessary data can be found, needed for
the calculation of Kc , e.g., by Ulich’s method (see Karapetyanz (1975) [432]).
Equation (3.188) gives thus a simple method for the estimation of the equilibrium
constant of a chemical reaction taking place with the participation of the glass, if
�Hg and�Sg are known or estimated according to theoretical approaches similar to
those outlined in Sect. 3.5. Such calculations can be of use in deriving the equations
describing thermodynamic and kinetic properties of chemical transport processes
taking place with vitreous solids or for the design of isothermal monocrystal growth
with chemical transport reactions (see Schaefer (1962) [684] and for a more detailed
discussion Grantcharova and Gutzow (1986) [268]).

3.14 Location of the Vitreous State in the (p; T )-Diagram

In Chap. 2 (Fig. 2.2), the equilibrium phase diagram for water is given. The different
curves in this (p; T )-diagram correspond to two-phase equilibria for liquid water, its
vapor and normal ice. For water the specific volume of the solid is larger than the
respective value for the liquid. This specific property results in negative slopes of
the melting curve. For most substances, however, the opposite situation is found as
reflected in Fig. 3.22.

In Fig. 3.22, in addition to the equilibrium vapor pressure curves also their
extensions into the one-phase regions of the solid and the liquid phases are given.
These extensions reflect the vapor pressure curves for the metastable condensed
states of the substance. The areas, bounded by the lines (ac) and (af), respectively,
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(ac’) and (ah), correspond to regions of the possible existence of a superheated solid
and an under-cooled liquid (double shaded region).

If we suppose that the considered substance can be vitrified to a glass at the
temperature of vitrification Tg, then the vapor pressure of the glass in dependence
on temperature T can also be introduced into the (p; T )-diagram. According to
Eq. (3.164) this curve is located above the respective (p; T )-dependence for the
metastable liquid and is tangent to it at T D Tg (see also Fig. 3.14).

In Fig. 3.22 only the part of the vapor pressure curve of the glass, corresponding
to temperatures T < Tg, is given (line (bg)). The region in the phase diagram,
bounded by the curves (bg) and (bf), can be considered, consequently, as the field of
possible existence of the substance in the vitreous state. It is marked by vertical lines.
In agreement with the Bartenev-Ritland equation Eq. (2.111) for higher cooling
rates Tg is transferred to higher values of temperature and the region in the (p, T)-
space with the possible existence of the glass is increased. Vice versa, for very slow
cooling processes this area shrinks to zero. In this way, it is once again evident
that glasses cannot be considered as an equilibrium state of aggregation. The area
allocated to the vitreous state in the (p; T )-diagram is determined not only by the
material parameters of the substance but also on the kinetics of the process of
vitrification.
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3.15 Discussion

It has been shown by the foregoing analysis that in the framework of the thermo-
dynamics of irreversible processes even in the simplest approach, when only one
structural order parameter � is used, numerous results may be obtained, which
describe the experimental findings quite satisfactorily, at least, qualitatively. Let
us recall, for example, that in a very general and non-contradictory way the
discontinuities in the thermodynamic coefficients can be explained, as well as
the dependence of the thermodynamic properties of glasses on cooling rate. The
agreement with experimentally observed results for simple and for polymer glass-
forming melts is even better than it could be expected in advance from such a
simplified treatment. This result gives confidence that the applied approach could
be also of use for the description of freezing-in and stabilization processes of
disordered structures of a more general nature than those considered so far. In this
respect systems with magnetic disorder (spin glasses) or even different forms of
vitrified life (frozen-in cells or even organs) could be mentioned.

However, the method applied so far also has its shortcomings. Firstly, we have
confined the analysis to the consideration of only one structural order parameter.
As mentioned in the first section of this chapter, the introduction of more than one
order parameter is essential not only for a quantitatively more correct description
of the experimental results (cf., e.g., the discussion concerning the Prigogine-Defay
ratio in Sect. 3.8). It can be shown, moreover, that essential qualitative features, e.g.,
hysteresis effects in heating and cooling, can be adequately described only if more
than one order parameter is applied for the description of vitrification. A thorough
discussion of this topic can be found in the monograph by Mazurin (1986) [543]
(see also Kovacs et al. (1977) [478]; Avramov and Milchev (1988) [26]).

The temperature of vitrification Tg was also determined within the mentioned
simplified approach. Taking into account hysteresis effects different values of Tg can
be found for heating and cooling runs. A thorough discussion of these topics is given
by Bartenev (1966) [53], Kovacs et al. (1977, 1979) [478, 479], Mazurin (1986)
[543], Avramov and Gutzow (1988) [24] and Avramov, Gnappi, and Montenero
(1992) [33]. A more rigorous standard way of definition of glass transition tempera-
tures will be analyzed in Chap. 12 in connection with the discussion of the rheology
of glasses. Further, if larger deviations from equilibrium occur, then the introduction
of non-linear equations in describing the kinetics of relaxation and the properties of
vitrifying systems is essential. With Eqs. (3.130)–(3.134) we made an attempt to
give such a more accurate description for stabilization processes of vitrified glass-
forming melts.

The analysis of vapor pressure, solubility and affinity of glasses, outlined in
Sects. 3.12 and 3.13, has, as mentioned, also a direct technological significance
in developing methods of mono-crystal synthesis. However, their main importance
from a theoretical point of view is that the experiments discussed verify the existence
of well-defined values of solubility or vapor pressure of a glass and the prescription
how these quantities can be defined and measured. It is evident that the only way



3.15 Discussion 123

5

10

15

20

t, hours

a

1

2

3

4

I,
%

25

50

75

100

t, hours

b

I,
%

0%

32%

61%

83%

0 40 40 60 0 2 104 6 8

Fig. 3.23 Solubility of different modifications of silica in a 0.1 normal NaOH aqueous solution at
298K in dependence on time: (a) Kinetics of dissolution of quartz (1), cristobalite (2), tridymite
(3) and SiO2-glass (4) (Berman, Patterson (1961) [70]); (b) Kinetics of dissolution of tribochemi-
cally amorphisized quartz with different degrees of crystallinity x (given as the parameter to each
curve) in dependence on time (Steinike et al. (1978) [797], see also Heinicke (1984) [352])

they can be determined consists of identifying them with the limiting values of the
solubility vs time (or vapor pressure vs time) curves. In this analysis, the necessary
precautions have to be undertaken (introduction of new virgin samples or creation of
fresh surfaces by milling the substance during the process of dissolution, inhibition
of crystallization) in order to obtain reproducible results.

The outlined experimental findings show, moreover that the approach in the
theoretical determination of these quantities, connecting vapor pressure and solu-
bility of a glass with �Gg , is also consistent with the caloric determinations of
�Gg. In this way, experimental data on solubility or vapor pressure may be used
for a determination of �Gg . Moreover, measurements of the solubility and the
vapor pressure of glasses may also serve as a method to follow experimentally
structural changes taking place in the glass in the course of thermal or other methods
of treatment. In this respect the results of the measurements of the kinetics of
dissolution of photoactive amorphous substances (chalcogenide glasses) in alkaline
aqueous solutions can be mentioned (see Mitkova and Boncheva-Mladenova (1987)
[566]; Ivanova and Boncheva-Mladenova (1979) [388]).

Another example in this respect are the experimental investigations of Steinike
et al. (1978) [797] of the course of amorphization of initially crystalline quartz pow-
ders under the influence of different mechano-chemical treatments (see Fig. 3.23). It
is interesting to note that from the solubility of the powders amorphisized in such a
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way thermodynamic parameters are obtained which are in good agreement with the
respective values for vitreous silica obtained by the classical methods of preparation
from the melt.

A related problem of great interest is the possibility of forming vitreous
condensates from the vapor phase or from solutions. This process is reverse of
evaporation or dissolution of a glass discussed so far. It was again Tammann (see
Tammann and Starinkevich (1913) [823]) who first obtained vitreous condensates
from the vapor phase. We would also like to mention the existence of a large amount
of evidence that the amorphous mineral hyalite can be considered as the vitreous
SiO2 precipitate formed under geological hydrothermal conditions.

Based on the results outlined in the present chapter the definition of the vitreous
state can be given in a more precise form than it has been done before. We propose
the following definition:

Glasses are thermodynamically non-equilibrium kinetically stabilized amorphous solids, in
which the molecular disorder and the thermodynamic properties corresponding to the state
of the respective under-cooled melt at a temperature T � are frozen-in. Hereby T � differs
from the actual temperature T .

It is evident that the definition outlined above adopts, in principle, Tammann’s
argumentation (glasses are under-cooled frozen-in liquids). It also accounts for
Einstein’s and Simon’s ideas, identifying the vitreous state with a particular non-
equilibrium state of matter. The definition is at the same time narrower and more
precise since it gives us the possibility of distinguishing glasses from other non-
equilibrium states of matter. The definition formulated above does not imply
moreover that glasses are formed only by rapid quenching of a melt. If an amorphous
solid is prepared, e.g., by vapor quenching or electrolyte deposition it can be also
denoted as a glass, if its structure and thermodynamic properties correspond to a
state of a real or fictive melt of the substance at some definite value of temperature
T �. Thus, conceptional difficulties existing in the application of previous definitions
in discussing, e.g., vapor quenching as a method to produce a glass do not occur in
this approach. The new definition may be formulated also in the more general form:

Any thermodynamically non-equilibrium (amorphous or crystalline) solid can be denoted
as a glass when a state of order or disorder is frozen-in in it corresponding to an equilibrium
state which is possible for higher temperatures (or any other values of the external
parameters).

Such a generalization includes into the class of glasses also those crystalline solids
in which a particular type of atomic, molecular or electronic structural disorder is
frozen-in corresponding to equilibrium configurations at higher temperatures (e.g.,
the mentioned already spin- or quadrupole glasses, frozen-in disordered crystals
(see, e.g., Haase (1963, p. 560) [339]). The outlined definition is applicable also
without restrictions to systems characterized by negative values of the absolute
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temperature, a problem, which may be also of principal significance, as pointed
out in a paper by I. Gutzow, J. Schmelzer, I. Gerroff, Unpublished.3

In the preceding chapters a thermodynamic description of vitrification processes
and the properties of glasses was given. Looking back to the problems discussed
and the results obtained a remark made by Earl C. Kelley (1947) [446] for a similar
situation comes into mind: “We have not succeeded in answering all our problems -
indeed we sometimes feel we have not completely answered any of them. The
answers we have found have only served to raise a whole set of new questions.
In some ways we feel that we are confused as ever, but we think we are confused on
a higher level and about more important things”.

In part the limitations in tackling the problems raised by us are due to the
fact that the approach, used in the preceding chapters, is of a phenomenological
nature and does not allow one to specify neither the number of necessary structural
order parameters nor the microscopic processes connected with vitrification and
stabilization. The more detailed microscopic approach requires the knowledge of
the basic features concerning the structure and statistical methods of description of
glasses. These topics will be discussed in Chaps. 4 and 5.

3The second formulation as discussed here connects the definition of glasses with the properties
of the initial system thermodynamic equilibrium at the initial values of the thermodynamic control
parameters. Having in mind the way of description of glasses via a set of structural order parameters
as discussed in detail in the present chapter, one could also propose as a next step in advancing
about a next step in advancing definitions of glasses as:

Glasses are thermodynamically non-equilibrium kinetically stabilized amorphous or non-
amorphous solids characterized, in addition to the f equilibrium thermodynamic state
variables, by one or more structural order parameters f�j g and use by a generalized equation
of state, in the form

˚ D ˚.p; T; fnig; f�j g/:
In equilibrium, the structural order parameters are unambiguously defined by the value of
the thermodynamic state parameters; in the vitreous state, they have values determined by
the concrete glass transition process.

Such a statement fully separates the definition of the vitreous state from the way glasses are
conventionally formed.



Chapter 4
General Approaches to the Description
of the Structure of Glasses

4.1 Introduction

Taking into account the great variety of substances with extremely different
compositions, known to exist in the vitreous state, it seems impossible at a first
glance even to formulate such a problem like the general description of the structure
of glasses. Moreover, as we already know, even from a given melt with a definite
composition glasses with different properties and structures can be prepared by
varying the cooling rates.

For many years, in the discussion of the structure of glasses in most textbooks
devoted to the vitreous state only the structure of oxide and, in particular, of silicate
glasses is analyzed. This is due, on one hand, to historic reasons, connected with the
early widespread application of such glasses and, on the other hand, because oxide
glasses represent, in fact, a striking example for a large variety of possible structures.
Thus, an extended discussion is required to describe the structural properties of
oxide glasses in a more or less comprehensive way. Other glass-forming systems, for
which thorough structural investigations have been performed, are metallic glass-
forming alloys and organic polymer glass-forming systems. A number of cases of
structure determinations for glasses with more exotic compositions have also to
be mentioned. In this connection, metallic, halide and chalcogenide glasses are of
particular interest.

In line with the general approach of the present book we will not attempt to
give a precise description of the structure of particular glasses but would like to
summarize in the following sections structural hypotheses and results of structural
investigations which allow one to draw more or less general conclusions concerning
the structural principles of glasses, valid for any type or, at least, for large classes
of glass-forming systems. From a historical point of view the first such a general
principle was developed by the Norwegian crystal-chemist G.V. Goldschmidt. This
is the reason why we start the discussion with his ideas.

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 4, © Springer-Verlag Berlin Heidelberg 2013
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4.2 Goldschmidt’s Rule

Goldschmidt noted in 1926 that for binary ionic glass-formers (oxides, halides,
chalcogenides) there exists a distinct correlation between the ability of a substance
to form a glass and the ratio of its anionic (Ra) and cationic (Rc) radii. According
to Goldschmidt’s ratio criterion for typical glass-formers the inequality

0:2 <
Rc

Ra
< 0:4 (4.1)

has to be fulfilled (Goldschmidt (1926) [262]). A review of early comments
concerning Goldschmidt’s rule can be found in glass-science literature of his
time (see, e.g., Blumberg (1939) [85]). The further development of crystallo-
chemical ideas in glass-formation, which originated from Goldschmidt’s criterion,
is discussed in a number of more recent monographs (see, e.g., Salmang (1957)
[681]; Rawson (1967) [657]; Scholze (1965, 1977) [732]; Feltz (1983) [202]) and
original publications (Poulain (1981) [643]). Goldschmidt’s rule is equivalent to the
statement that the anions (O;F) have to be able to arrange themselves around the
smaller cations (Si, Ge, Be, Al, etc.) in a tetrahedral order (see, e.g., Fig. 4.1).

Goldschmidt’s criterion is an interesting suggestion. For the first time a hypoth-
esis was formulated which should be applicable to any system consisting of anions
and cations. Substances like SiO2, GeO2, P2O5, As2O3, BeF2 and many others,
indeed, fulfil the requirements of this rule. Goldschmidt’s criterion gave, moreover,
the impetus for the synthesis of a whole new class of glass-forming substances. It
opened the wide field of beryllium fluoride based glasses, the first of them being
synthesized by Goldschmidt himself. Goldschmidt concluded from the criterion
formulated by him, that beryllium fluoride, being structurally similar to SiO2, should
be not only a typical glass-former, but has to be expected to possess crystalline
modifications similar to those of SiO2. Later it was found, indeed that BeF2 has
quartz-like, tridymite-like and cristobalite-like crystalline modifications (Roy et al.
(1950) [673]; Jahn and Thilo (1953) [399]). Goldschmidt termed BeF2-glasses
structurally weakened glasses as compared with the silicate glasses, since for
one and the same cation-anion ratio a lower interatomic binding energy is to be
expected in silicates, if one takes into account the lower valency of beryllium as
compared with silicon (compare Be � F with O D Si D O). On the other hand,
Goldschmidt predicted the existence of glass-forming systems he called structurally
strengthened, in which for the same Rc=Ra ratio a larger bonding energy is found
as compared with SiO2 .Al � N; Si�C). One excellent example in this respect are
nitrides (e.g., aluminium nitrides). Indeed, amorphous aluminium nitride thin films
and Al � N-oxinitride bulk glass samples were formed in recent years in fulfilment
of Goldschmidt’s predictions (Mackenzie and Zheng (1992) [526]).

Despite its mentioned advantages in addition to its simplicity and geometric
visuality, it has to be also noted, however that Goldschmidt’s criterion is far from
being generally valid. This remark is true even in application to ionic substances. A
large number of ionic substances exists for which Goldschmidt’s ratio criterion is
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Fig. 4.1 Tetrahedral structure elements which represent the basic units of the structure of oxide
glasses according to Goldschmidt’s rule: (a) SiO2-tetrahedron, (b) and (c) boron oxide in a trigonal
and a tetragonal configuration

fulfilled, but the substances are not glass-formers. The best known example in this
respect is beryllium oxide BeO; most of the halides are also excluded from this rule.
Goldschmidt’s approach can be also criticized from a more general point of view. In
the derivation of his criterion Goldschmidt treated the classical glass-forming oxides
as purely ionic substances while, according to present-day concepts of inorganic
chemistry, to any ionic bond also a certain percentage of covalent bonding has to be
attributed. For the Si � O bond in silicates this percentage of covalent bonding is
approximately 50 % and in phosphates, the percentage of covalent bonding reaches
60 %. For the C � C bonds of organic substances even more than 80 % covalency
is expected. It turns out, consequently that Goldschmidt’s original idea is strictly
speaking applicable only to substances like ionic halides, where the ionic character
of bonding dominates (see also Pauling (1948) [629]; Scholze (1965, 1977) [732];
Rawson (1967) [657]).

It is remarkable, nevertheless that despite these limitations, Goldschmidt’s rule
still gives a key to the understanding of the structure of glasses. In fact, all
classical glass-forming substances obey Goldschmidt’s rule. Thus, it is evident that
Goldschmidt’s original ideas have to be supplemented by additional restrictions.
This was done by Zachariasen in 1932.

4.3 Zachariasen’s Criteria for Glass-Formation

The next major step in developing geometrical criteria for glass-formation and in the
clarification of the structure of glasses was made in a beautiful form by Zachariasen
(1932, 1933) [941–943] based on his random network hypothesis of glass structure
(see also Rawson (1967) [657]; Hinz (1970) [363]). Zachariasen formulated three
remarkable rules specifying the additional structural requirements, under which a
tetrahedral arrangement of anions around smaller cations leads to glass-formation.
In this way, Goldschmidt’s main idea was reformulated by Zachariasen in a more
precise form. Zachariasen stated that only such cations are glass-formers:
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a bFig. 4.2 The structure of
(a) quartz and (b) silica glass
in a two-dimensional
representation according to
Zachariasen

• Which have valencies larger than one and outer shell electronic configurations
resembling those of the respective noble gases located in the same row of
the periodic system of elements. However, the most significant supplement to
Goldschmidt’s ideas, formulated by Zachariasen, consists of the statement that

• Tetrahedral structures result in glass-formation only in cases, when the tetrahedra
may form either linear chains of infinite length or two-, respectively, three-
dimensional networks. Moreover,

• The tetrahedra have to be interconnected only by their vertices, not by their edges
or faces.

In a second approach Zachariasen and Warren (Warren and Biscoe (1938)
[911]; Warren (1937, 1941) [909, 910]) applied the mentioned crystal-chemical
concepts for the specification of the structure of two- and multi-component oxide
and, in particular, silicate glasses. In this connection the division of substances
into network formers (glass-formers; in more recent literature also the notation
glass promoters is used) and network modifying oxides (network modifiers) was
introduced. According to Zachariasen “an oxide glass is formed, firstly, if the sample
contains a high percentage of cations, which are surrounded by oxygen tetrahedrons
or oxygen triangles; second, if these tetrahedrons or triangles share only their
vertices with each other, and, third, if some oxygen atoms are linked to only two
such cations and do not form further bonds with other cations : : : All oxide glasses
must contain appreciable amounts of various glass-forming cations or other cations,
which are able to replace them isomorphically”. A two-dimensional example for a
structure of the type as suggested by Zachariasen is shown in Fig. 4.2.

The division of oxides into network formers (SiO2, GeO2, P2O5, As2O3 etc.)
and network modifiers has entered every textbook on glass science and technology.
Modifiers, according to Zachariasen and Warren (see, also Rawson (1967) [657];
Scholze (1965, 1977) [732]; Hinz (1970) [363]) are to be divided into two classes,
in bridging (i.e., two-valent earth alkali oxides: CaO; ZnO; MgO) and in non-
bridging (NaO; CaO, etc.) oxides. This simple scheme, developed by Zachariasen
and Warren, allows us to explain in a qualitative way the influence of different oxides
on the properties of silicate glasses. As examples in this respect, the introduction of
bridging oxides can be connected with the increase of the viscosity of the melt, while
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univalent modifiers (e.g., alkali oxides) strongly reduce properties such as hardness,
chemical durability, temperature of vitrification and result also in an increase of the
molar volume. Moreover, the introduction of non-bridging oxides can be interrelated
with the formation of “long” glasses with respect to the temperature dependence of
the viscosity (see Sect. 2.4.1).

Alkali modifier atoms, according to Zachariasen, have to fit into the relatively
large holes in the tetrahedral network. This is the reason, why modifiers are, in
general, large ions with a low charge (NaC, CsC, KC, Zn2C, Pb2C etc.). Two
additional prepositions underlying implicitly Zachariasen’s approach should also
be mentioned:

• The energy of the amorphous state is assumed to be practically the same as for
the crystal.

• The univalent network modifiers are supposed to be distributed randomly in the
structure.

Zachariasen expected, moreover that the isoenergetic increase of the entropy in
the transformation of the substance into a glass can be considered as some kind
of thermodynamic stabilization of the vitreous state. Taking into account the
experimental result �Hg D .1=2/�Hm and the conclusions concerning the nature
of the vitreous state, discussed in Chaps. 2 and 3, the energetic considerations of
Zachariasen cannot be accepted from a present day point of view. The second of
the mentioned additional prepositions in Zachariasen’s approach concerning the
spatially random distribution of the network modifiers, is also highly improbable
due to energetic considerations. In fact, it was not verified by experimental evidence.

Further developments and additional critical remarks with respect to Zachari-
asen’s ideas may be found in the already cited monographs (Rawson (1967) [657];
Scholze (1965, 1977) [732]; Hinz (1990) [363]). However, it is remarkable that
more than 80 years after its development Zachariasen’s geometric approach is still
of great scientific importance (or as it is said in a reappraisal of Zachariasen’s work:
“The melody still lingers on” (Cooper (1982) [145])). Geometrical considerations
similar to those of Goldschmidt and Zachariasen also underly the structural criteria
for glass-formation developed later on by Bernal. However, before we can go over
to the discussion of these criteria, we have to describe an alternative development
to Zachariasen’s model which was proposed historically even earlier than Zachari-
asen’s random network model: Lebedev’s crystallite hypothesis of glass structure.

4.4 Lebedev’s Crystallite Hypothesis of Glass Structure

According to the crystallite hypothesis in its original form silicate glasses are to be
considered as agglomerates of submicroscopic crystallites, which are formed either
of one of the crystalline modifications of SiO2 or consist of solid solutions of these
modifications with other components. Following this hypothesis glasses are micro-
multi-phase and micro-heterogeneous in their structure. These peculiarities in the
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structure should have a number of consequences with respect to the properties of
the glass which should give one the possibility of an experimental verification of its
premises.

The crystallite hypothesis was developed by A.A. Lebedev (1921) [500] (cf. also
[192]). However, similar ideas were also expressed as early as 1835 by Franken-
heim, by le Chatelier in the investigation of the viscosity of glass-forming melts,
by Randall, Ruxby, and Cooper (1930) [655]. The term crystallite hypothesis was
coined in 1937 also by Lebedev [501] (for a historic survey see Porai-Koshits (1955
[640], 1989 [641])). Lebedev came to his ideas based on the analysis of the
temperature dependence of the coefficient of refraction, n.T /, for a number of
optical silicate glasses. It was found in these experiments that in the temperature
range from 400 to 500 ıC peculiarities were observed in the (n vs. T )-curves and
subsequently also in other properties of silicate glasses (see Porai-Koshits (1955)
[640] and Figs. 4.3 and 4.4). Lebedev connected the observed discontinuities with
the (˛ � ˇ)-transformation of the expected quartz-crystallites in the glass, which is
known to occur in this temperature range (see Fig. 4.4).

Later it was found that the mentioned effect is less pronounced for quenched
samples of the same composition. It is completely absent in SiO2-glass obtained
by vapor quenching (so-called vitreosil). It became evident also, that in quenched
samples the quartz crystallites are present in a lower percentage, in vapor quenched
vitreous materials they are completely absent. This difference is the reason why
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on heating quenched SiO2-glass samples, effects due to the transformation of the
low-temperature modification are less pronounced in experiments or why such
effects do not occur at all in such cases as in vitreosil. By thorough experimental
investigations, Tudorovskaya succeeded in finding similar effects in the (n vs. T )-
curves, however, less pronounced, in the temperature ranges 85–120 ıC, 140–165 ıC
and 180–210 ıC, which correspond to the (˛ ! ˇ)-transformations of the other two
crystalline modifications of SiO2, tridymite and cristobalite.

It was expected that the decision concerning the question which of the both
mentioned approaches is more appropriate, either the crystallite hypothesis or
Zachariasen’s random network model, could be given by X -ray methods of
structural analysis. These methods had shown their power just at that time, i.e, the
end of the 1920s, in the determination of the structure of crystalline solids. However,
it was found that for amorphous structures and, in particular, for silicate glasses,
X -ray analysis is a far less convincing method than when used for crystalline
solids. While for crystalline solids the structure may be determined more or less
unambiguously from X -ray measurements, the determination of the structure of
amorphous materials is a very complicated problem. Particularly for glasses, this
method meets serious difficulties both of an experimental and theoretical nature.

The primary result of such structural investigations are X -ray patterns, which
give the intensity of the radiation in dependence on the scattering angle,  . In
Fig. 4.5, typical examples of such curves are shown for quartz glass (a), cristobalite
(b) and silica gel (c). The aim in the interpretation of such curves consists of the
determination of the spatial distribution of atoms and molecules, giving the same
X -ray patterns. This problem can be solved both for crystalline and amorphous
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substances in two ways. In the first approach based on the intensity curves the spatial
structure is determined by using an appropriate mathematical algorithm (Fourier
transformations). The second method – of trial and error – consists of the preposition
of some hypothetical structure of the investigated object, the determination of
the intensity curve corresponding to this model and the comparison with the
experimentally observed patterns.

For a determination of the structure of glasses in most cases the second approach
was employed. As the basic assumption for the determination of glass structure
it was supposed initially, that the glass can be considered as an agglomerate of
small crystallites as proposed, e.g., by Randall et al. (1930) [655]. It follows that
in the first attempts at structure determination of glasses the crystallite hypothesis
was used as the starting point. The estimation of the sizes of the expected
crystallites was based on the theory of scattering of X -ray radiation by fragmented
crystallites (measurements of line broadening), developed by Scherrer in 1918 and
applied by him to a number of micro-crystalline materials. The main diffusive
maximum observed in the intensity curves of glasses was interpreted in these first
investigations (see Randall et al. (1930) [655]) as the result of the scattering of an
ensemble of cristobalite crystallites with a size of the order 10�7 cm.

Another method of treatment of the experimental results, which is based
from a mathematical point of view on Fourier’s integral analysis, was developed
by Debye and Menke (1931) [160] and Zernicke and Prins (1927) [456]. For
applications to amorphous structures, this theory was developed further by Warren.
Warren’s method is still the basis for modern investigations of glass structure (see
Kitaigorodski (1952) [456]). Warren and coworkers applied this method to a number
of silicate glasses and came to opposite conclusions concerning the structure of
glasses: Glasses have to be described in the framework of Zachariasen’s random
network model. A two-dimensional representation of the structure of sodium silicate
glasses according to Warren is shown in Fig. 4.6.

In discussing his results Warren mentioned that, provided the crystallite hypoth-
esis is correct, the size of the crystallites should be only slightly larger than a single
unit cell. At these small dimensions, however, the concept of crystallinity ceases to
have any meaning (see also Rawson (1967) [657]). In the analysis of quartz glass
Warren came to the following more definite conclusions. The distance between two
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silicon atoms in the Si � Si-bond equals 3.24 Å, which is characteristic for an edge
to edge tetrahedral bonding. The general distribution of the bond lengths Si � Si,
Si � O and O � O corresponds to a slightly deformed and widened infinite tridymite
skeleton, in which, however, no long range order is found. For distances exceeding
6 Å the maxima reflecting long range order disappear (see Fig. 4.7a). A similar
structure is found also for vitreous boron oxide, for sodium silicate, lead silicate and
borate glasses (see also Fig. 4.7b for a substance with a more exotic composition).

If partially ordered domains of the glass with cristobalite or quartz-like structures
are in fact responsible for the mentioned peculiarities in the temperature dependence
of the coefficient of refraction, observed upon heating of silicate glasses, then the
height of the peaks could give a measure of the percentage of quartz-like structural
units in the sample. Such an estimate was performed by Appen, it gave an upper
value of only 10�4 for the molar fraction of crystalline material actually present
in the glass. If one remembers that the size of one of such crystalline domains is
of the order 15–20 Å (as found both by the opponents and the followers of the
crystallite hypothesis), it follows, that such regions are practically of no significance
in determining, e.g., the thermodynamic properties of the glass. They have to be
taken into account only if so-called structurally sensitive properties such as the
strength of glasses are analyzed (see, e.g., Gutzow (1964) [291]).

The results obtained by Warren and coworkers and similar ones are usually
considered as the verification of Zachariasen’s structural hypothesis and this is,
indeed, to a large extent the case. It seemed that after Warren’sX -ray investigations
silicate glasses cannot be considered any more as an agglomerate of crystallites.
On the contrary, it seemed to be proven that the glass is formed by an infinite
aperiodic network, for which the average distances between the atoms are near to the
respective values for the crystalline phase. However, as it turned out later on, a large
number of unresolved problems remained, and in the solution of these problems the
crystallite hypothesis in its modified modern versions may be helpful. One of such
modifications is schematically illustrated in Fig. 4.8.

Warren himself obtained an X -ray intensity curve for a pyrex glass heat-treated
at a temperature 430 ıC for about 731 days in which one very sharp maximum and
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a b

Fig. 4.8 Schematic representation of an amorphous structure based on the Zachariasen-Warren
random network model (a) and of later reformulations of the crystallite hypothesis (b)

a number of additional less expressed maxima could be observed. This result can be
interpreted in such a way that in the process of annealing of a glass at relatively high
temperatures a process of structural reorganization takes place and the formation
of micro-heterogeneities is observed, which are difficult to be interpreted in terms
of Zachariasen’s theory. Even more interesting are the results of Valenkov and
Porai-Koshits (see Porai-Koshits (1955) [641]) on sodium silicate glasses. These
experiments showed that during heat treatment of the glass the X -ray patterns
are transformed continuously from a form typical for the vitreous state to a curve
referring to a crystalline structure.

In Fig. 4.9a, a X -ray intensity curve is shown for a vitreous Na2SiO3-sample,
the curves (b), (c) and (d) refer to the same sample after 1–3 h of heat treatment
at 430 ıC, while curve Fig 4.9e refers to the totally devitrified crystalline Na2SiO3.
The maxima due to crystalline meta-silicate can be seen, which are only indicated
slightly in the untempered glass, as well as the approach to X -ray patterns which
are typical for the crystalline structure. Thus, on Fig. 4.9 the evolution from the
amorphous state via pre-crystalline structural changes – corresponding in some
way, may be, to structures and states anticipated by the crystallite hypothesis – is
transformed to the crystalline state. Similar experiments were performed also by
other investigators with a large number of glasses. The results are equivalent to
those mentioned above. They indicate that a continuous change from structures of
the type I to type II as given in Fig. 4.9 is possible.

The discussion connected with the random network hypothesis and its relation to
the crystallite model of glass structure led to numerous experimental investigations.
It can be even said that the broad application of small-angle X -ray scattering
methods in glass science originates from the numerous attempts to verify one of
the discussed structural hypotheses for silicate glasses. In the further development,
different X -ray techniques were directed to the verification of the existence of
inhomogeneities both in one- and multi-component glasses (see Porai-Koshits
(1989) [641]). It is now confirmed that in dependence on the method of synthesis
and thermal history of the samples, inhomogeneities in the density or composition
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Fig. 4.9 Intensity curves for
a sodium silicate glass
according to Valenkov and
Porai-Koshits (see text):
(a) original glass; (b), (c),
(d) sample heat treated at
430 ıC for 1–3 h,
(e) crystalline sample with
the same composition

may be observed, ranging in size from several Å to considerably larger values. In
most cases, such inhomogeneities may be interpreted as the result of liquid-liquid
phase separation processes in the system.

Of principal importance are the recent results obtained in this respect by a number
of Russian investigators (see, again, Porai-Koshits (1989) [641]), demonstrating the
existence of density inhomogeneities in glasses of only several Å in size. These
inhomogeneities could be explained theoretically as frozen-in homophase density
fluctuations in the bulk of the glass sample (see Filipovich (1987) [208]; Porai-
Koshits and Golubkov (1979) [642]). However, frozen-in homophase fluctuations
and compositional inhomogeneities can hardly by called crystallites in the original
sense of the term as introduced by Lebedev.

The outlined results are verified also by another method of structural investiga-
tions, i.e. neutron scattering, so that considerable doubts have been accumulated
to consider complete randomness as the only paradigm in specifying the structure
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of glasses (see, e.g., Gaskell (1992) [241]). As was also pointed by Porai-Koshits,
it is impossible to answer the problem of the structure of glasses applying only
one or two methods of structural investigations, e.g., X -ray and neutron scattering.
For a comprehensive analysis and in order to obtain more or less unambiguous
results a large number of different and complementary methods has to be applied. In
fact, modern investigations of glasses require a combination of different scattering
methods (X -ray, neutron scattering) with other methods of structural investigations
like nuclear magnetic resonance (see, e.g., Bray et al. (1960 [102], 1983 [103],
1987 [101]), infrared spectroscopy (Simon and Litke (1960) [761]), optical methods
of investigation, electron microscopy, electron magnetic resonance, modern X -ray
microprobe studies, calorimetric methods (see, e.g., Hinz (1970) [363]). The critical
analysis of the crystallite hypothesis shows that crystallites in the original sense,
as anticipated by le Chatelier and Lebedev, were, in general, not found in silicate
glasses. They appear only as the result of crystallization treatments, as shown in
Fig. 4.9. It is, however, interesting to note that amorphous substances exist, like,
e.g., the so-called vitreous carbon (cf. e.g. [794]), synthesized in recent years,
which represent examples for systems in which the original ideas of the crystallite
hypothesis of glass structure may be fulfilled.

Vitreous carbon is formed in the process of thermal destruction (pyrolysis)
of carbon-rich organic compounds in an inert atmosphere at temperatures up to
2000ıC. Structural investigations showed that this material can be described as an
amorphous structure in which up to several percent of the material is embedded
in the amorphous matrix in form of graphite-like crystallites with dimensions up
to 70–80 Å. This is an example, how an interesting idea may find an unexpected
application.

4.5 The Bernal-Polk Model

Bernal’s model was developed originally in order to describe the structure of liquids.
However, since glasses according to the already given definition can be considered
as frozen-in non-equilibrium systems with a configurational disorder corresponding
to an equilibrium structure of the melt at higher temperatures as compared with the
actual temperature, this model is applicable also for the discussion of the structure of
glasses. Bernal’s geometric approach to the description of the structure of liquids is
based on the geometry of packing of equally sized spheres. It can be considered as a
continuation of the work of Barlow (1898) [37] (see also Wunderlich (1973) [935]),
who described the symmetry of crystalline structures in terms of close packing of
spheres.

It is known that in hexagonal or face-centered cubic close packing of equally
sized spheres the volume occupied by the spheres is about 74 % of the total volume
of the system. It means that about 26 % of the volume in such a three-dimensional
closest crystalline-like packing is free (see Fig. 4.10a, b). It is to be expected that
the packing density of randomly distributed ensembles of equally sized spheres
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a b

Fig. 4.10 Ensemble of equally-sized spheres in a two-dimensional close packing (top) and in
three-dimensional (bottom) (a) cubic and (b) hexagonal close packing

should have values lower as compared with the regular crystalline-like arrangement
of spheres. Thorough experimental investigations in this respect were performed
by Scott (1960) [741], who followed ideas, proposed earlier by Bernal (1959 [72],
1960 [73], 1964 [74]). Scott filled rigid containers of volume Vx with equally-
sized steel spheres (ball bearings). By using containers with different volumes and
extrapolating the results to Vx ! 1 (or, equivalently, 1= 3

p
Vx ! 0) Scott avoided

finite size effects in the determination of the packing densities (see Fig. 4.11).
The free volume for any of the arrangements of the steel spheres was determined

by introducing an appropriate liquid (oil) into the container, filled with the ensemble
of spheres. Two different shaking procedures were applied generating different
configurations of the spheres in the containers. As the result two more or less
defined spatial arrangements of the spheres were obtained: the so-called dense
random and loose random packing. In the described way it was established that
the fraction of the volume occupied by the spheres in the dense random packing
equals 0.64, while for the loose random packing a value of 0.61 was found. The
difference in the free volumes (in per cent) for the random packing (36 % and 40 %,
respectively) and the close regular crystalline-like packing (26 %) is a measure of
the increased free volume in a random array of equal spheres. Different shaking
procedures in the model experiment can be identified with different temperatures
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Fig. 4.11 Results of Scott’s
experiments with containers
of volume Vx filled with
equally sized spheres. The
extrapolation to zero gives the
packing density � for
Vx ! 1: (1) dense random
packing; (2) loose random
packing

of the liquid, respectively, with different freezing-in (or fictive) temperatures of
the glass (compare Table 2.5). As it was mentioned by Gutzow (1964) [291] and
pointed out briefly already in Chap. 2, the two different densities in the random
packing of equal spheres observed by Scott correspond, approximately, to packing
densities found in real glass-forming systems. For example, glasses of typical
network formers (SiO2, BeF2) have a free volume higher by 18–20 % than the
packing density of the respective crystal. For organic polymers this value equals 10–
12 % (see also Simha and Boyer (1962) [753]; Gutzow (1964) [291], (1972) [294])
and here the data given in Table 2.5. These estimates show that Bernal’s model
may give a key to the understanding of some of the general features concerning the
structure of any glass.

The next step in the further development of above discussed geometric ideas
was also made by Bernal. It was connected with the analysis of the distribution
of free volumes and the coordination numbers in model experiments, again, with
random ensembles of equally sized spheres (Bernal (1960) [73]; Bernal and Mason
(1960) [75]). Bernal and Mason analyzed the contact numbers sphere to sphere
and the distribution of coordination numbers. An analysis was also made of the
size distribution of holes in the investigated model random structures. It turned
out that in such ensembles, approximately, 18–20 % of the free volume consists of
octahedral voids of a size of about 0.2–0.4R in diameter, where R is the radius of
the spheres. The analysis of the experimental results showed further that along with
hexagonal coordinations also an increased percentage of pentagonal arrangements
of the building units of the randomly arranged model systems (which consisted
of non-gluing plastilin spheres) was found. The significance of above mentioned
findings consists in the following. If to a liquid, constituted of relatively large
nearly spherical atoms, e.g., of metal atoms, 20 atom % of smaller atoms are added
fulfilling the above mentioned geometric requirements to fit into the octahedral
holes, then a system with a higher packing density and a more stable structure could
be formed.
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Fig. 4.12 A sphere in a cubic
close packing of equally sized
spheres surrounded by 6 (8)
spheres of different sizes
occupying the voids in the
structure (Belov (1947) [63]).
The figure gives an
illustration of the basic idea
of the Bernal-Polk model

This consequence from Bernal’s model of liquids was drawn by Polk (1970)
[638] (Fig. 4.12; see also Sadoc et al. (1973) [679]). It led to the formulation of
composition requirements for a possible glass-formation in substances not vitrified
so far, in metallic alloy systems (see Cohen and Turnbull (1961) [138]) and to the
synthesis of a first generation of metallic alloy glasses. Subsequently, metallic alloy
glasses were obtained for Au � Si (Cohen and Turnbull (1961) [138]), Pd � S,
Au � Ge � Si, Co � C, Fe � C and other systems (see Giessen and Wagner (1972)
[253]). A more detailed description of the properties of metallic alloy glasses and
their technical applications as well as further developments in this respect may be
found, e.g., in Chen (1977) [131], Luborsky (1983) [516], Güntherodt and Beck
(1981) [284].

Different to the hexagonal face-centered packing of spheres discussed so far
other crystalline-like arrangements of equally-sized spheres are characterized by
lower values of the packing density ı as compared with the already mentioned
value ı D 0:74 for the hexagonal close packing. This statement is illustrated by the
following summary of packing densities of possible spatial structures of ensembles
of spheres of equal size characterized by different coordination numbers, z, and
different types of symmetry (see Hilbert and Cohn-Vossen (1932) [356]; Rouse
Ball and Coxeter (1961, 1974) [669]; Zhdanov (1961) [956]): (i) hexagonal close
packing with a coordination number z D 12: ı D 	=.3

p
2/ � 0:74; (ii) tetragonal

arrangement with z D 10: ı D 2	=9 � 0:70; (iii) cubic volume centered packing
with z D 8: ı D 	

p
3=8 � 0:68; (iv) simple cubic packing with z D 6: ı D

	=6 � 0:52; (v) cubic diamond-like packing with z D 4: ı D 	
p
3=16 � 0:34.

No model experiments exist to show what the increase of free volume would
be for a randomized packing of the crystalline-like structures of lower symmetry
(ii)–(v) as compared with the hexagonal close packing. Such types of packing are
difficult to realize in model experiments, because the hexagonal close packing is
the natural way in which a system of equal spherical structure elements is arranged.
The situation is different for systems with directed bonding, as it was demonstrated
first by Dietzel and Deeg (1957) [170] in model experiments with floating spheres
containing tiny magnets.

However, taking into account the data in Table 2.5, where the results of
the packing densities in the vitreous state for substances with different crystal
structures are summarized, it seems that for vitrified random structures always an



142 4 General Approaches to the Description of the Structure of Glasses

Fig. 4.13 Close packing of molecules with complex shape according to Kitaigorodski (1955)
[457]. Note the small fraction of free volume as compared with close packing of equally sized
spheres

approximately 15 % higher free volume is frozen-in as compared with the respective
regular arrangement. It has also to be mentioned that for packing of spheres or other
structural elements of different sizes higher packing densities can be found than
the limiting value 0.74 for an ensemble of equal spheres (see, e.g., in this respect
Haynes (1975) [350], Barlow (1898) [37] and Wunderlich (1973) [935]). The
same conclusion is valid for non-symmetric equally sized molecules (Kitaigorodski
(1955) [457] and Fig. 4.13). In these cases packing densities of crystalline-like
arrangements up to ı � 0:9 may be realized.

Taking into account the conclusions by Polk and his application of the Bernal
model to vitrification of metallic alloy systems, it becomes evident that the existence
of structural units of different sizes is the origin for the relatively high values
of the packing density of metallic alloys as compared with typical glass-forming
systems (see, again, Table 2.5). Bernal’s approach found an application also in
the consideration of the structure of crystalline and vitreous silicates. According
to Whittaker (1967) [920] silicates can be considered as an ensemble of nearly close
packed O2C ions, where the octahedral voids in between them are filled by silicon
cations. Additional ions may be distributed more or less randomly in the structure.
According to Whittaker, upon vitrification of molten silicates a random packing of
O2C ions is frozen-in in a similar way as in the experiments of Scott (1960) [741].

Independent of the particular application and the special features of Bernal’s
model a very general conclusion can be drawn from it. In every liquid or solid
amorphous structure different types of structural elements may be found even if they
are constituted initially of identical primary units. Already for the particular case of
an ensemble of non-aggregating equally sized spheres we have to distinguish, for
example, between spheres with pentagonal, hexagonal and tetragonal coordinations
(see Figs. 4.14 and 4.16).

In Fig. 4.14 a two-dimensional representation of a close packing of equal spheres
is shown. When the relative free volume is increased (i.e., the packing density is
diminished) pentagonal structural units appear (Fig. 4.14b). From a thermodynamic
point of view this result implies that those amorphous structures are preferred which
for similar values of energy are characterized by higher values of the entropy.
This conclusion verifies to some extent ideas proposed many years before Bernal’s
considerations by G. Hägg ((1935) [343]; see also Scholze (1965, 1977) [732]). At
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a b

Fig. 4.14 Random packing of equal spheres according to Bernal: (a) Crystalline-like close
packing: Only hexagonal symmetry connected with a coordination number 6 in a two-dimensional
representation is observed; (b) Evolution of structural elements with a coordination number 5 and
pentagonal symmetry in a random close packing
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Fig. 4.15 Possible types of chains in oxide glasses (According to Hägg)

part in contradiction to Zachariasen’s approach and partially in verification of his
ideas Hägg suggested that only those structures tend to form a glass, in which a
tendency to aggregation is found or to the formation of polymer-like uni-, two- or
three-dimensional networks exists resulting in the formation of different structural
units (see Fig. 4.15 as an illustration of possible types of linear anionic structure
elements in inorganic glasses).

Similar proposals have been made also by a number of other investigators. Here,
in particular, Berger (1930) [68] and Botvinkin (1938) [94] have to be mentioned.
Many years ago, Botvinkin, for example, even developed a semi-quantitative theory
of vitrification starting with the basic idea of a temperature dependent degree of
polymerization (or aggregation) of the primary monomeric building units of the
melt. According to Botvinkin’s approach the process of vitrification is connected
with the completion of the polymerization process, i.e., Tg corresponds to the
particular state of the substance where the degree of polymerization reaches infinity.
Taking into account the results given in Chaps. 2 and 3 (in particular, the Bartenev-
Ritland equation) such an approach cannot be accepted, since it would imply that
vitrification has to occur always at one and the same temperature. Nevertheless,
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a b

Fig. 4.16 Illustration of Voronoi polyhedra describing the structure of glasses: (a) Regular
polyhedra forming a crystalline structure; (b) Structure of a two-dimensional liquid modeled by
distorted regular polyhedra (Voronoi polyhedra). Note the appearance of pentagons in addition to
hexagons

Botvinkin’s basic idea has been fruitful in developing a number of present day
models of vitrification.

Similar ideas that glasses are most easily formed, when structurally different
polymorphic modifications are produced by aggregation or polymerization have
been also been expressed in later times in a more or less qualitative way by Goodman
(1975) [264] and Cahn (1975, 1983) [116,117]. The conclusion that aggregation and
polymerization processes are of great importance in the thermodynamics of most of
the glass-forming melts is verified by statistical-mechanical model considerations
of glass-forming substances (see Chap. 5).

4.6 Further Developments: Voronoi Polyhedra,
Polymerization and Aggregation

Crystalline structures can be described as a regular arrangement of identical
polyhedra in space. In a modification of this idea to liquids and glasses, Bernal
and Finney suggested to describe the structure of simple liquids by filling the space
with so-called Voronoi polyhedra (Finney and Bernal (1967) [209]; Finney (1977)
[210]). Voronoi polyhedra are a generalization of the classical regular polyhedra.
They represent irregularly distorted polyhedra of different types. A schematic
two-dimensional illustration of the possibility of describing regular and irregular
structures by using polyhedra of different types is given in Fig. 4.16.

Of particular importance for portraying the structure of simple liquids are,
according to Bernal, pentagonal structural elements. This idea that pentagonal struc-
tural elements prevail in simple liquids, was used in order to construct amorphous
structures by a system of neighboring pentagons. More generally noncrystalline
cluster models have been developed based on the idea that noncrystallographic
growth patterns of clusters may exist with tetrahedral, pentagonal and icosahedral
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symmetries, which are more stable than fcc-crystallites with the same number of
atoms (Hoare and Pal (1971) [371]; Hoare (1976) [369]). Such high-density (low
energy) clusters may be expected to evolve under certain conditions preferably but
they cannot be extended infinitely.

In more recent publications (see Hoare and Barker (1977) [370]; Gaskall
et al. (1977) [242] and Gupta and Cooper (1992) [285]) different variants of
construction of amorphous structures by using distorted polytops are given together
with the advantages and limitations of this method. Another of Bernal’s previously
mentioned ideas, namely that structural units of different sizes are a necessary pre-
requisite for an understanding of the structure of liquids and glasses, was formulated
earlier in a qualitative form by Fajans ((1949) [194]; see also Scholze (1965, 1977)
[732]; Thilo et al. (1964) [832]; Vogel (1979) [889]) for the development of a model
of the structure of a group of exotic binary glass-forming systems (alkali and earth
alkali nitrate glasses).

It is known that none of the alkali or earth alkali nitrates forms a one-component
glass at standard cooling rates. However, binary mixtures of alkali and earth alkali
oxides are typical glass-forming systems and are easily vitrified into stable glasses.
Fajans explained this increased glass-forming ability of binary systems assuming
that in a mixture of alkali and earth alkali nitrates the large alkali cations are
deformed by the interaction with the small higher charged earth alkali cations.
Similar explanations have also been developed in attempts to understand glass-
formation in other exotic systems like binary melts of AgJ and CsJ, where, again,
due to the existence of the large deformable Cs-cations and of the small Ag-cations
irregular structures may be formed (Nishii et al. (1985) [604]). This exotic system
is the representative of a new family of halide glasses which is expected to lead
to a new generation of optical wave guides (Hu et al. (1983) [382]; Lucas (1989)
[519]). Variations of the idea that distinct structural units with five-fold symmetry
may play a decisive role in forming the structure of liquids were also developed by
Frank (1952) [228] and Tilton (1957) [836], who used an icosahedra model.

In inorganic glass-forming systems typical polymer structures have been found,
in particular, in meta-phosphates and borates. Due to the property of boron to
establish bonds with three oxygen atoms in the formation of boric acids in borates
networks of the composition nŒBO2� evolve. These networks are formed by the
anions nŒBO2�

2�, where in between the B- and O-atoms partly covalent bonds are
established (see Figs. 4.1b, c and 4.15). A similar anionic polymer-like structure
is also developed in alkali meta-phosphates, in calcium meta-phosphate and other
earth-alkali phosphates. It is assumed, that the existence of anionic chains with a
low mobility is the origin for the large viscosity of borate melts and their ability to
vitrify easily. It has been also pointed out that a tendency for glass-formation and
higher viscosities is shown only by those inorganic melts in which the formation
of anionic chain structures is possible. Besides the already mentioned cases further
interesting examples are pentafluorides and platinum-halides (Wells (1975) [915];
Gutzow et al. (1990) [331]). The formation of cyclic structural units is also a typical
feature of inorganic glass-forming melts (e.g., S8, Se6, Na3ŒP3O9� etc.). According



146 4 General Approaches to the Description of the Structure of Glasses

to the already mentioned hypothesis by Hägg aggregation and formation of complex
structural units is a prerequisite for glass-formation.

When applying this idea to silicate melts, it has to be taken into account that
the properties of the ionic structural elements in silicates depend on the relative
ratio Si W O in the composition of the melt. If this ratio equals 0.25, then isolated
tetrahedra of orthosilicate type dominate. Linear nŒSiO3�

�
2 -chains develop if the ratio

Si W O equals 0.33; for larger values of this ratio two-dimensional layers develop.
Consequently, it is to be expected and in fact verified by experiments that in silicate
melts of intermediate composition intermediate forms of the mentioned structures
are also present. In considering the ability of a melt to form larger structural units
and to be vitrified to a glass, the type of bonding and the type of aggregation of the
elementary units of which the system is composed of has to be taken into account.

As already mentioned for typical oxide glass-formers the bonds between the
positively charged atoms and the oxygen ions are only 40–50 % ionic. The increase
in the ratio of covalent bonding contributes significantly to the relative stability
of complex anions in the melt and, thus, in the respective glass. For organic high
polymers the C � C-bonding energy is 10–15 % ionic and 85–90 % covalent. This
property explains the increased stability of polymer structures in these organic
substances compared with inorganic glasses.

In water soluble phosphate glasses the polymeric structural elements are so stable
that they can be detected by paper chromatography after dissolution of the glasses in
appropriate aqueous solvents. Paper chromatography of condensed phosphates was
developed to a high level of perfection by Thilo and Grunze (1953) [280] and many
other investigators in the 1960s. For a summary of earlier results in this field see
the monograph of van Wazer (1958) [882]. In this sense alkali phosphate glasses of
meta-phosphate and more alkaline composition allowed one the first direct proof for
the existence of linear anionic chains of the type

(O - P - O - P - : : :/n

k k
O O

in glasses (Westmann and Crowther (1954) [917]; Grunze and Thilo (1953) [280];
for its size-distributions see Jost (1962) [413]; Jost and Wodtcke (1962) [414]). In
the so-called Graham’s glass .NaPO3/x anionic chains with a degree of polymeriza-
tion of up to 300 PO4 structural units have been found. The relatively high stability
of phosphate anionic complexes in aqueous solutions also permitted the application
of other chemical and physico-chemical methods of analysis, well-known from
organic polymer physics and chemistry (end-group titration, centrifugation).

The existence of polymeric structures in the less soluble alkali earth-phosphate
glasses was also proven mainly by paper chromatography (see Schulz and Hinz
(1953) [740]; Abbe et al. (1974, 1976) [1, 2]) by using more aggressive solvents
than water (e.g., aqueous solutions of acetic acid). In a series of papers Goetz et al.
(1972 [259], 1977 [260]) developed a method for dissolution and chromatography
of silicates using appropriate solvents. As a result of these investigations anionic
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chains in metasilicates were also detected and the distribution functions for anionic
structural elements were established.

In addition to the mentioned optical and infrared investigations other methods
of verification of the existence of polymer-like structures have also been used.
One of such methods was proposed by Tarassov (1945, 1946, 1956) [824, 825].
Tarassov calculated the spectrum of vibrations of solids consisting of linear chains
or two-dimensional network structures. He came to the conclusion that for low
temperatures (T ! 0) the specific heat Cp of a solid with such an unisodesmic
structure should behave like

Cp 
 T (for linear chains) (4.2)

Cp 
 T 2 (for two-dimensional networks) : (4.3)

These dependencies differ from the well-known expression obtained by Debye
(Cp 
 T 3) for three-dimensional isodesmic network structures. The indirect proof
of the existence of linear chains in the sample, proposed by Tarassov, is based on
the measurement of the temperature dependence of the specific heat. If a linear
dependence of the form given by Eq. (4.2) is found, then this result is to be
interpreted in the sense that the sample is composed to a large extent of linear
chains or chain-like aggregates. Numerous investigations carried out by Tarassov
and coworkers showed that in all glasses of the type B2O3, SiO2, As2O3, Sb2O3 and,
in particular, in meta-borates, meta-phosphates and meta-silicates a high percentage
of anionic structural units are aggregated in chain-like elements. Such chains were
also found in elemental glasses like Se, in glasses of the composition Se � Te and in
many other systems.

For the description of the structure of Na2SiO3-glasses, Tarassov proposed a
scheme as presented in Fig. 4.17. If the alkaline character of the meta-silicate glass
is increased, then the length of the chains decreases. If, vice versa, the percentage of
SiO2 introduced into the melt is increased, the chains become connected by bridges.

Of particular interest are also the investigations of the crystalline and amorphous
forms of selenium (Krebs (1958) [484]; Richter (1972) [664]; Wells (1975) [915]).
While two of the crystalline modifications of selenium consist of cyclic Se8
molecules, the hexagonal metallic form of this element is constituted of infinite
helical �Se � Se � Se�chains. X -ray and neutron scattering analysis show that
vitreous selenium contains the same helical chains as the metallic form of the
substance together with cyclic structural elements consisting of six to eight selenium
atoms. The relative percentage of occurrence of the mentioned structural elements
depends on temperature and on the way the vitreous sample is produced. Similarly,
X -ray investigations of alkaline B2O3-glasses and melts allow one the conclusion
that, both in the melt and in the glass, planar chains are formed.

The evidence summarized above is of importance for the understanding of the
structure of glasses and, in particular, also for the description of the kinetics of
devitrification. Two limiting cases of this process may be distinguished, called
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Fig. 4.17 Structure of NaSiO3 according to Tarassov (see text): Note the similarity between the
models of the structure shown here and in Fig. 4.6. However, in the present figure the structure is
formed by one infinite chain

non-reconstructive and reconstructive crystallization. These two different mecha-
nisms of devitrification are characterized by:

• Non-reconstructive: reorganization and ordering of structural elements already
existing in the melts,

• Reconstructive: devitrification, preceded by processes of molecular reconstruc-
tion, i.e., by the formation of the basic elements of the crystalline structure, which
are absent (or present only in a limited amount) in the initial melt.

The kinetics of devitrification depends significantly upon the particular mechanism
involved in the considered process. A more detailed description of the devitrification
kinetics of glasses is given in Chaps. 6 and 7.

4.7 Homogeneous Versus Heterogeneous Models
for the Structure of Glasses

In the foregoing discussion concerning the structure of glasses, the question was
posed as to whether multi-component glasses should be considered as intrinsically
homogeneous or as heterogeneous systems. According to Zachariasen’s model in
two- or more-component silicate glasses the distribution of cations and anions is
of random character. This assumption leads to the consequence that macroscopic
regions do not exist in glasses enriched in the composition by some of the
components. However,X -ray investigations of the structure of alkali-silicate glasses
led to a different conclusion. According to these investigations, in most cases,
domains in the glass sample exist with an increased content of SiO2, while in
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Fig. 4.18 Possible types of
dependencies property n
versus composition according
to Demkina (1958) [163] (see
text)

other parts alkali oxides prevail. For a summary of results in this respect see the
already mentioned monographs by Vogel (1979) [889], Scholze (1965, 1977) [732]
and Feltz (1983) [202]. Of particular interest in this respect are investigations of
Na2O=SiO2-glasses, for which it was observed that domains with compositions are
formed which are expected to occur for the given boundary conditions according
to the equilibrium phase diagram. Dietzel (1949) [166] (see Scholze (1965, 1977)
[732]) suggested that such behavior is always to be expected for any multi-
component glass.

A similar structural micro-heterogeneity was assumed from the very beginning in
the crystallite hypothesis of silicate glass structure. Consequently, in the discussion
of the merits and disadvantages of the crystallite hypothesis the related problem
was also analyzed, namely what the effect of the assumed micro-heterogeneity
on the macroscopic properties of multi-component glasses would be. Knowing the
significance of such effects, it should be possible to decide which of the proposed
models of glass structure is more correct. Let us assume, for example that we have
two glass-forming oxides A and C , which may form some chemical compound B
of a definite composition. In Fig. 4.18 the lowest curve shows a possible equilibrium
phase diagram of such a binary system with two eutectic points E1 and E2. If
Zachariasen’s approach to glass structure and its properties is correct then the
dependence property vs. composition should be of the type as given by curve 1. If,
however, in the glass sample aggregation complexes of a definite composition are
formed resulting in some heterogeneity in the structure of the glass, then a salient
point in the curves property, .n/, versus composition is to be expected, at least, at
some singular points in the phase diagram.
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a b c

Fig. 4.19 Micro-heterogeneities in glasses modeled by distributions of black and white squares
according to a classical picture given by Laves: (a) system with a relatively slight aggregation
of white squares, (b) statistical random distribution, (c) pronounced clustering (See Vogel (1979)
[889])

Some authors, for example Evstropyev, expected that such a change in the
properties occurs at the composition B (curve 3 in Fig. 4.18), corresponding to the
formation of B-compounds while other authors who also preferred the crystallite
theory of glass structure (Kumanin, Demkina), in agreement with Botvinkin (1938)
[94] expected a behavior of the type shown with the broken line (2) in the same
Fig. 4.18, i.e., a discontinuous change in the properties at the eutectic pointsE1 and
E2. Experimental results and a thorough discussion of related topics may be found
in the monograph by Demkina (1958) [163].

The question concerning the most probable form of the property versus com-
position curves for glasses is not only of theoretical interest in giving criteria for
the proper choice of the correct model of glass structure but also of technological
significance. However, it is difficult to decide experimentally, which of the discussed
dependencies is the correct one. This is due to the fact that the expected effects
involved are small compared with the scattering of data in the experimental
determination of the properties of the glass. From a practical point of view it is
often more convenient to describe the property versus composition dependence by
one continuous curve of the type (1). Thus, measurements of the discussed type
cannot give a conclusive answer to the question which of the proposed models has
to be preferred. On the other hand, cases are also known, when the inhomogeneity
is expressed to such a degree that it is possible to assume two different micro-phases
as constituting the glass.

An example in this respect are borosilicate glasses. In such glasses one of
the micro-phases, the borate phase, may be removed by dissolution. The SiO2-
matrix remaining after such a process forms then a porous structure which may
be transformed by heat treatment into the SiO2-rich vycor glass. In some cases
the regions of inhomogeneity may reach such a size (
 600 Å) that they are just
below the limits where an optical darkening is found. In other cases, these regions
are too small to reach the limits of detectability for the applied method (
 20 Å)
(see also Figs. 4.19 and 4.20). In some glasses, such micro-heterogeneities are not
found at all. The development of micro-heterogeneities in multi-component glasses
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on heat treatment is usually connected with the process of liquid-liquid micro-phase
separation and is discussed here in more detail later. The problems of liquid-liquid
immiscibility in glasses have been analyzed mainly for silicate glasses but phase
separation processes have been also found in chalcogenide and metallic glass-
forming systems.

4.8 Superstructure of Real Glasses

It has been established experimentally that the mechanical strength of crystalline
materials is significantly lower than the theoretical predictions derived from the
energy of the molecular bonds. A similar situation is also found for glasses, where
the ratio between the measured and the theoretically determined values of the
mechanical strength is of the order 1 W 20 (Stanworth (1950) [793]).

The experiments for the determination of the mechanical strength of NaCl single
crystals in saturated NaCl aqueous solutions carried out by Yoffe showed that the
decrease of the mechanical strength of solids is connected with microcracks at
the surface of the samples. Such microcracks (or Griffith’s cracks) were proven
to exist for different systems, including glasses. It was shown that the increase in
the mechanical strength of glass fibers with a decrease in their radius observed
experimentally is connected with the decrease in the number of surface cracks
(Bartenev (1984) [46]). This is also the reason why fibers leached with fluoride
acid, a process for removing the defective surface layer of the glass, have a
higher strength. It is also known that coating the surface of the glass fibers with
hydrophobic materials preserves the initial relatively high strength for a long time
(the formation of surface cracks due to atmospheric influences is considerably
reduced).

It was also expected by some authors that in addition to the existence of surface
cracks, the whole volume of the glass sample contains cracks and inhomogeneities
(see Schischakov (1954) [687]). It was supposed, e.g. that similarly to crystalline
solids some mosaic-like structure may be found in glasses. In this direction, Smekal
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developed the idea that silicate glasses may be composed of individual grains. This
proposal is equivalent to the assumption of a system of cracks in the bulk of the
vitreous sample. Smekal estimated that the average size of such grains should be
about 0.1�m.

Opinions were also expressed that the existence of such cracks is the reason for
the permeability of glasses to gases, in particular, to noble gases (see, for example,
also the data collected in the monograph by Slavianski (1958) [772]). There exist,
in fact, experimental results (see Schischakov (1954) [687]) indicating that silicate
glasses in contact with aqueous solutions form SiO2-rich colloidal silica suspensions
with particle sizes of the order 10�3 to 10�5 cm. It has to be mentioned, however
that for most of above discussed effects, alternative explanations can be given.
Consequently, the existence of a grain-like superstructure of silicate glasses is a
question open to discussion. The only well-established result is the decrease in the
strength of the glass caused by surface cracks.

4.9 Structure of Organic High-Polymer Glasses

Organic glass-forming melts were the first models used by Tammann and his
coworkers in order to demonstrate the nature of vitrification and to study the
properties of glasses. Tammann used low melting organic molecular substances
such as salicine, piperine, glycose and natural resins like colophony, shellac etc.
His approach to the investigation of the vitreous state was followed by other
investigators in this field (see, e.g., Parks (1925) [623]; Parks and Huffman (1927))
using similar substances as the subjects of investigation. Some of these substances,
in particular glycerol, served as the model for which, for the first time, the variations
of the thermodynamic functions upon vitrification were analyzed in detail (see
Chap. 2). In more recent investigations, again, organic glass-forming systems were
studied in order to understand the process of vitrification and the specific rheological
properties of glasses and glass-forming melts (see, e.g., Ubbelohde (1965) [871]).

A first review of the thermodynamic properties of organic glasses was given
by Kauzmann (1948) [440]; later results were summarized by Wunderlich (1960)
[934] (for Cp) and by Privalko (1980) [650] (entropy measurements). Results on the
mechanical properties of organic model glasses were reviewed by Eitel, Pirani, and
Scheel (1932) [186]. Tammann’s own results were summarized in his monograph
(1933) [818]. In the course of further experimental investigations it was proven that,
as a rule, aggregation and polymerization processes take place in the melt of organic
glass-forming substances. A review of this topic was given in Kobeko’s book (1952)
[461].

Glass-forming organic high-polymer melts and the glasses formed from them
were also subjected to intensive studies (for reviews see the monographs by
Wunderlich (1973, 1976, 1980) [935]; Keinath, Miller, and Rieke (1985) [442];
Mandelkern (1964) [528]; Großberg and Chochlov (1989) [277]). As the result of
polymerization and poly-condensation processes a distribution of macromolecules
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develops in such systems, the mean degree of polymerization reaching values of
the order n 
 105 and the molecular mass 106. The kinetics of polymerization
processes and the nature of the resulting chain distributions in organic high polymers
were investigated from the very beginning of polymer chemistry (see, e.g., Flory
(1936, 1943) [215, 218]; Schulz (1936,1937,1940) [737]). The methods developed
for organic polymers were applied later also to the analysis of anion polymerization
in phosphates (Jost (1962) [414]; Jost and Wodtcke (1962) [413])) and silicates. For
a review of the methods and results in this field see Balta and Balta (1976) [35].

In physical chemistry of polymerization one may distinguish between linear and
branched polymers. Examples in this respect are shown in Fig. 4.21. HereA is some
segment of the chain, while byA0 an end group of the chain is denoted. Furthermore,
between two or more polymer chains bridges may be formed, which result in a
strengthening of the polymer structure. A classical example in this respect is the
vulcanization of rubber. In rubber the strengthening is due to the formation of cross
links between the chains. Cross linking may reach such an extent that it becomes
possible to speak of trimeric cross-linked polymers.

The application of thermodynamics and statistical physics to polymer melts
requires the solution of a very difficult problem. In considering the structure of
low molecular substances the knowledge of the topological order, e.g., described
in terms of Bernal’s model, is more or less sufficient for a characterization of
the system under investigation. Similarly, for systems with non-spherical building
units (compare Fig. 4.13) in addition to the way of ordering of the centers of the
primary building units, their mutual orientation has to be specified. However, for
polymers the length of the polymer chains becomes so large that the conformation
of the molecule itself is the subject of a separate statistical-mechanical treatment,
the conformational statistics of polymer molecules.

The conformational statistics of linear polymer chains was developed mainly in
the framework of the Flory-Huggins lattice models (see Flory (1943) [218]; Stewart
(1953, 1955) [801]; Gibbs (1960) [250]; Milchev and Gutzow (1981) [560]). In
addition to the conformational properties of polymer molecules their ability to allow
one a more or less free rotation around the C � C-bonds is of importance. In this
way, the conformations of organic chain molecules depend on the flexibility of the
C � C-chains in the substance under investigation. For polymer chains with nearly
perfect flexibility, chain folding of the molecules themselves and formation of links
between them determine to a large extent the thermodynamic properties and the
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rheology of the system. Chain folding is also of particular significance in deriving
specific models for nucleation and crystal growth in organic polymer glass-forming
systems.

In comparing inorganic polymer glass-forming substances with typical organic
polymer glass-formers two significant differences have to be mentioned:

• In most cases the stiffness of the inorganic chains like �Se � Se � Se�, �Te �
Te �Te� or �P�O �P�O �P� is much higher than that for organic polymers.

• The average degrees of polymerization in inorganic systems are restricted usually
to an order Nx < 100; in polymer chemistry such degrees of polymerization are
considered as relatively low ones and are called oligomeric systems.

An analysis of the structure of polymers based on statistical-mechanical methods
shows that the most stable configuration of the flexible polymer molecule in solution
consists of a particular coil-like structure (see, e.g., the analysis given by Flory
(1943) [218] or by Bueche (1962) [109]). Moreover, based on the above mentioned
model considerations, properties may be explained resulting from the existence of
long chains in the sample. One example in this respect is the super-elasticity found,
e.g., in rubber and other elastomers.

Comparing the summary of results concerning the structure of organic high-
polymers with the discussion given in the preceding section, it is evident that
analogies exist with respect to the basic mechanisms of structure formation. In
particular, this refers to the possibility of formation of long chains of the repeatable
structural units. For inorganic glasses the chains are usually of anionic nature. In
such glasses, cross links are intermediated by earth alkali and other bivalent cations.
The existence of such cross-links connected with the significantly reduced ability of
a free rotation around the Si � O � Si or P � O � P-bonds results in a considerably
more strengthened and inelastic structure, although the basic structural elements
in organic and inorganic polymers are similar. These differences are, of course, of
gradual character and may be diminished by a variation of the external constraints.
For example, even for typical inorganic high polymers at low temperatures the
rotation around the �C�C-bonds is significantly reduced (e.g., at low temperatures
rubber can be obtained as a solid). On the other hand, inorganic glasses exist which
show similarities in structure and properties to rubber-like polymers (inorganic
glass-forming elastomers like polynitrilchloride).

An intermediate position between both types of chains discussed – linear and
branched chains – as elements of the structure of glasses are taken up by aggregation
complexes. Aggregation complexes are formed in under-cooled melts and detected
in glasses of low-molecular organic substances like, e.g., the alcohols and glucose.
In the process of under-cooling of the melt in such liquids more or less stable
aggregates are formed. The bonds between the different structural elements are
hydrogen bonds. To some extent such additional polymerization also has to be
considered in organic polymer chains (“living chains”). It is interesting to remember,
in this connection, the aggregation theory developed by Botvinkin (1938) [94]. It
seems likely that the prerequisites underlying Botvinkin’s theory are fulfilled, may
be to a large extent, in the cases discussed above.
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Continuing the discussion of similarities and differences in the structure of
organic and inorganic glasses, it is also of interest that for glasses stabilized by
hydrogen bonds, the ratio of such bonds below Tg does not change (Volkenstein
(1955) [891]). This particular example shows that below Tg not only topological
changes but also all types of structural reorganization processes connected with
chemical reactions are frozen-in. The stability of anionic chains in inorganic glass-
forming melts can vary to a large degree. Probably, such chains are most stable in
the previously discussed phosphate glasses since the anions remain as individual
units even in aqueous solutions and separated from the cations. Organic polymer
molecules exist separately and remain stable in solution. However, there are also
cases for which the solution is connected with a dissociation, in such cases, the
solution is to be considered to be a polyelectrolyte.

Basically, as was underlined by Thilo (1955, 1958) [829–831], a strong division
between polymeric and non-polymeric anions cannot be made. For example, even
the anion ŒSO4��2 can be considered with some right as a polymeric anion, although
it is classified usually into the group of inorganic complexes. In the process of
poly-condensation and polymerization molecules with different molecular masses
and different degrees of condensation or polymerization are formed. Hereby, it
turns out that the degree of polymerization and the effective length of the chains
is determined by size-distributions similar to those derived by Flory (1943) [218]
and Schulz (1936, 1937, 1940) ([737]; see also Gutzow (1964) [291]). From these
size distributions, a mean degree of poly-condensation (or polymerization) may be
calculated. It seems probable (see, e.g., Goodman (1975, 1977) [264,265] and Hägg
(1935) [343]) that for the realization of the vitreous state, the existence of molecules
with different sizes is required as a necessary precondition. This preposition is
founded on the idea that the formation of a regular crystalline structure from
elements of different sizes is hardly realizable.

Of importance for the possibility of transformation of a given melt into the
vitreous state is obviously also the length of the chains. For sufficiently large
molecules, a folding or formation of coil-like structures is to be expected, which
inhibits crystallization. In general, steric factors of a very different nature may be
of significant importance for the possibility of obtaining a substance as a glass (see
also Eldrigde et al. (1993) [189]). It is known, for example that non-linear isomers
of a compound can be under-cooled more easily than the respective normal linear
polymers (see Kobeko (1952) [461]). On one hand, such steric factors diminish the
mobility of the molecules, on the other hand, with the increase of the complexity of
molecular configurations its stability in the under-cooled melt and the vitreous state
is facilitated: the entropy in the free energy expression is increased.

For some inorganic polymer systems the analogies to organic polymers with
respect to the structure are striking. One example of such a case is plastic sulfur
�S�S�S�S�S� with the structural unit �S�. From PCl5 and NH4Cl the already
mentioned poly-nitrile polymers with rubber-like properties may be synthesized,
described by the structural formula
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Also of interest is the process of crystallization of high-polymers. Typical organic
polymers are easily under-cooled. The mechanism of crystallization for such classes
of substances consists either of the parallel arrangement of parts of the chains to each
other (theory of Gerngross et al. (1930) [248]) or in the formation of a chain-folded
structure. Both mechanisms are discussed in details in Chap. 6.

Here we would like to mention only that in both cases one and the same molecule
takes part at the same time in the formation of the regular as well as of the irregular
amorphous structure (see also Kobeko (1952) [461]; Geil (1965) [247]; Wunderlich
(1973) [935]; Price (1969) [646] and Hoffman (1968) [379]). A more realistic chain-
folding mechanism of crystallization of organic polymer substances was proposed
by Keller (1957, 1959) [443, 444] and Fischer (1957) [211]. In Keller’s theory it is
supposed that the regular folding of the polymer chains have a length determined by
the supersaturation and thus by temperature.

4.10 Reconstructive and Non-Reconstructive Crystallization

For under-cooled melts of simple substances the crystal has the same molecular
structure and composition as the melt and crystallization can be considered as a
purely physical process. However, the preceding discussion has revealed that in
many cases, the melt and the crystalline phase may be constituted of different
structural units. It seems that this is the case in most of the phosphate and
silicate glass-forming systems in which the melt (and the glass) are formed of a
variety of different anionic structural elements which have to be transformed upon
devitrification into the building units corresponding to the respective crystalline
phase.

In Figs. 4.22 and 4.23 based on paper chromatography experiments, the trans-
formations are shown taking place in the melt upon devitrification in a well-known
model glass, Graham’s glass .NaPO3/x, and a sodium phosphate glass of another
more alkaline composition (Na8P6O19) (Gutzow (1979) [302]). For Graham’s glass,
the melt and the glass are constituted mainly of chain anions �PO � PO� with an
average degree of polymerization of the order 100 and by approximately 10 % cyclic
phosphate anions, trimetaphosphate (P3O9) and tetrametaphosphate (P4O12) anions.
Upon devitrification the orthorhombic˛�NaPO3 is formed, constituted of benzene-
like anions (P3O9). This is a classical example of reconstructive crystallization
of anionic chains, which was investigated in great detail (Gutzow (1962, 1979)
[289, 302]).
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Fig. 4.22 Change of anionic composition of NaPO3-glass semolina samples with an average
size of the particles from 0.75 to 1 mm during heat treatment at 320 ıC as revealed by paper
chromatography: (T): Chromatogram with the reference substance; (I): Initial glass; (II): Sample
after 20 min of heat treatment; (III): Sample after 80 min of heat treatment; (IV): Sample after
145 min of heat treatment; (V): Sample after 200 min of heat treatment; (VI): Sample after 360 min
of heat treatment. The reference substances are: Mo: monophosphate anion; Di: diphosphate;
TRI: triphosphate; TRM: trimetaphosphate; TTM: tetrametaphosphate; H/po: high polymer. Out
of the initial melt, constituted of high-polymeric and trimetaphosphate anions (P3O9), crystalline
˛ � NaPO3 is formed, comprising Na3ŒP3O9�-complexes, only
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Fig. 4.23 Filter paper chromatograms of hexaphosphate glass (Na8P6O19) semolina samples with
an average size of the particles ranging from 0.75 to 1 mm after different times of heat treatment
at 330 ıC: (T): Reference substance; (I): Initial glass; (II): Sample after 20 min of heat treatment;
(III): Sample after 40 min of heat treatment; (IV): Sample after 60 min of heat treatment; (V):
Sample after 80 min of heat treatment; (VI): Sample after 140 min of heat treatment; (VII): Sample
after 160 min of heat treatment; (VIII): Sample after 180 min of heat treatment; (IX): Sample after
200 min of heat treatment; (X): Sample after 360 min of heat treatment; (I–III): Formation of linear
Na3P3O10; (IV–VIII): Formation of cyclic Na3.P3O9/; (IX), (X): Complete crystallization

In the sodium metaphosphate glass and the corresponding melts, a distribution
of anion oligomers exists which may be transformed into two crystalline structures,
either the linear (NaPO3, Kuroll’s salt) or the cyclic (Na3ŒP3O9�). In glasses with a
composition of pyrophosphates of bivalent metals a distribution of different ions is
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Fig. 4.24 Anionic composition of pyrophosphates of bivalent metals (as glasses and as crystals)
according to filter paper chromatographic data of Schulz and Hinz (1955) [740]

also frozen-in. This effect was shown by filter chromatography by Schulz and Hinz
(1955) [740]. In each of the cases considered, these glasses give crystals made up of
pyrophosphate anions only.

Paper chromatography also gives us the possibility of investigating the structure
of vitreous thin films formed by vapor quenching of NaPO3 on a substrate main-
tained at temperatures T <Tg . The changes upon heat treatment in thin vitreous
NaPO3-films thus obtained are similar to those shown in Figs. 4.22 and 4.23 (see
Gutzow et al. (1976) [327]). In such experiments with thin films, the advantages
of paper chromatography as a method of investigation are obvious. Only a few
micrograms of the substance are usually needed to produce paper chromatograms of
the type shown in Figs. 4.22–4.25 (see also Grunze (1965) [278]; Grunze and Thilo
(1953) [280]).

A similar experiment was also performed with pyrophosphates and silicates as
demonstrated in Figs. 4.23 and 4.24. In these figures, the anionic composition of
pyrophosphates and vitreous Pb2SiO4 and of the resulting crystalline substance
after devitrification are shown (see Goetz et al. (1970, 1977) [259, 260]). A similar
change in the anionic structure was also observed in the process of crystallization
of LiPO3-glasses (Avramov et al. (1979) [27]) which is an interesting analog of
NaPO3. In this system the melt and the resulting glass are also constituted of
chain phosphate oligomers and of ring anions (LiŒP3O9�). However, these structural
units are transformed upon devitrification into an asbestos-like crystal constituted
of linear chains with a degree of polymerization n ! 1.

Similar processes of molecular reconstruction also have to take place in the
crystallization of selenium and chalcogenide glasses. However, the investigation
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Fig. 4.25 Composition of vitreous and crystalline Pb2SiO4 according to Goetz et al. (1977) [259]

of such processes in these systems is connected with significant experimental
difficulties when compared with phosphates, where paper chromatography gives
an easy method for determination of structural changes in the anionic part of the
system. Molecular or anionic reconstruction may considerably inhibit crystallization
processes and it can be an additional factor determining the kinetic stability of
under-cooled melts.

A thermodynamic criterion for the similarity or dissimilarity between the melt
and the crystal is the value of the entropy of melting. In cases of structural similarity
between the melt and the crystal (metallic melts, melts of noble gases), the molar
entropy of melting is of the order�Sm � .1�2/R. In cases, where a reconstructive
crystallization takes place, considerably higher values (�Sm � .5 � 10/ R) are
found. The only glass formed up to now which can be described as an ensemble of
frozen-in billiard balls is the already mentioned vitreous argon obtained in the form
of thin amorphous films by Kouchi and Kuroda (1990) [477]. These films are very
unstable and, as already discussed, transform easily at T > Tg into the respective
fcc-crystalline structure. In all other cases, more complicated structures and a more
complicated mechanism of crystallization is to be expected. A schematic illustration
of possible types of crystallization processes discussed here is given in Fig. 4.26.

4.11 The Hierarchy of Disorder and the Structure of Glasses

In discussing the structure of amorphous solids, in general, and of glasses, in
particular, we have met different types of disorder. Firstly, we have to mention

• The topological disorder in the spatial arrangement of the centers of the repeating
structural units,

• The orientational disorder with respect to the mutual orientation of molecules of
complex shape,
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Fig. 4.26 Schematic representation of melt crystallization of substances with different structures:
(a) Crystallization of a simple melt without structural changes of the building units of the substance
(metals, inorganic network polymers); (b) crystallization with structural reconstruction: formation
of crystals constituted of low molecular cyclic units from melts with polymer and cyclic structural
elements (“crystalline” cyclic structural elements are shadowed); (c) crystallization with second-
type structural reconstruction: formation of high-polymeric crystals from a melt containing cyclic
and oligomeric chains (cyclic structural units are shadowed, again); (d) crystallization of chain
folding organic polymers

• The conformational disorder of chain-like molecules constituted of a large
number of identical structural units.

In most cases, these three forms of disorder are expected to occur in real glasses and
their existence has been verified, in fact, by X -ray and other methods of structural
analysis. Only in systems like the already mentioned argon glass is a topological
disorder solely of the first type found.

An example of a system with a frozen-in orientational disorder are the so-called
frozen-in molecular crystals (CO2) (Haase (1956) [338]; see also Westerhoff and
Feile (1990) [916]), where two or more energetically similar mutual orientations of
non-symmetric molecules are frozen-in. Westerhoff and Feile described a number
of frozen-in systems which can be denoted as orientational glasses. Flory discussed
a model system consisting of flexible polymer chains with different possible
conformations. This system can be frozen-in to form a glass which can be called
Flory’s glass (see also Milchev and Gutzow (1982) [561]). In such Flory-glasses
only conformational disorder is frozen-in. In most of the real glasses as discussed
so far, all three types of molecular disorder are usually found. In dependence on the
particular structure one or the other may of course dominate.

In the theoretical description of disorder in such real glass-forming systems in
the framework of existing statistical-mechanical models, it is usually assumed that
the different forms of disorder are reflected by three more or less distinct additive
contributions to the entropy of the system. Hereby, topological disorder may be
described in terms of free volume theories as discussed in Chap. 5. For the analysis
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of orientational and conformational disorder, lattice models are usually applied (see
also Chap. 5).

Up to now, we have discussed only the types of disorder connected with the
spatial arrangement of the atomic or molecular building units of the system. How-
ever, employing the more general definition of the vitreous state, given in Chap. 3,
a frozen-in disorder not connected with the spatial arrangement of the atoms or
molecules of the substance may also be used to define a glass. Classical examples
in this respect are spin-glasses or quadrupole glasses. Here the spatial arrangement
of the building units of the substance may be far from being in an amorphous state.
Most magnetic substances are indeed crystalline. However, in magnetic materials
different types of orientational disorder may be frozen-in, connected with the
electronic subsystem of the sample under consideration. Examples in this respect
are the so-called Ising- and Heisenberg-glasses. As Ising-glasses systems are termed
with only two possible orientations of spins while the term Heisenberg-glasses is
usually attributed to systems in which any orientation of the spins is possible and
may be frozen-in (Ziman (1979) [960]).

Spin glasses represent an interesting example for a glass also from a theoretical
point of view in the following respect. So far we have always dealt, when discussing
vitreous samples, with positive values of the actual temperature T and the fictive
temperature T �. However, spin-systems represent an example in which states may
exist which have to be characterized by negative values of the absolute temperature
(Bazarov (1976) [53]; Kittel (1969) [458]). Consequently, by rapid quenching, such
states with negative values of T may be frozen-in resulting in glasses with negative
values of the fictive temperature. The peculiar properties of such glasses with
negative fictive temperatures and the kinetics of stabilization of them is discussed in
detail elsewhere (I. Gutzow, J. Schmelzer, I. Gerroff, Unpublished). Under certain
conditions, e.g., by the application of strong magnetic fields a disorder may be
frozen-in in the electronic structure (in the Fermi gases or Fermi-liquids). The
systems obtained in such a way may be denoted as Fermi glasses (see also Ziman
(1979) [960]).

In a similar way, one may also speak about other types of glasses connecting
the disorder, e.g., with the properties of colloidal subsystems of the material.
Experimental examples in this respect are solids (glasses or crystals) in which the
disorder of submicroscopic metallic colloids is frozen-in. A classical example in
this respect are gold particles with colloidal dimensions frozen-in and determining
the remarkable optical properties of gold ruby glasses. The physical nature of gold
ruby was initially recognized by Faraday. Thus, systems with a frozen-in disorder
in colloidal dimensions may be called Faraday glasses. A similar example is the
disorder caused by a frozen-in subsystem of vacancies in a crystal.

In a system vitrified to a glass not only a physically disordered state may be
frozen-in but also chemical states and structures, corresponding to a chemical
equilibrium at higher values of temperature. Examples in this respect are frozen-in
amorphous S2-condensates (the normal structures below the freezing-in temper-
ature being S8-rings and higher polymers), thin amorphous layers of condensed
phosphates (Gutzow and Avramov (1981) [307]). The process of annealing of such
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amorphous structures includes relaxation processes connected with the formation
of the structural units which are stable for the actual values of pressure and
temperature. Interesting examples in this respect are discussed in a paper by Gutzow
et al. (1976) [327], where the process of annealing of thin amorphous NaPO3-films
obtained by vapor quenching is investigated. As evident from the latter mentioned
experimental investigation, the classification of possible types of disorder in three-
dimensional structures can also be extended to include two-dimensional systems,
which similarly to the respective crystalline structures may be characterized by
peculiarities as compared with the respective bulk samples. For a more detailed
discussion of specific aspects of two-dimensional disorder and two-dimensional
glasses see, e.g., Schreiber, Ottomeier (1992) [736], Volkmann, Knorr (1989) [893],
You et al. (1986) [937], Wiekert et al. (1987) [921]. Two-dimensional amorphous
films are usually formed by vapor quenching if the quenching rate is sufficiently
high to prevent the formation of the respective crystalline phases.

Many years ago, it was claimed by Semenov (see Chap. 11, Gutzow and
Avramov (1981) [307]) that condensation of two-dimensional amorphous films
always precedes the formation of crystalline layers. This prediction was based on
the consideration of a two-dimensional van der Waals-equation of state. In this
sense, the formation of crystalline layers requires the existence of intermediate two-
dimensional liquid and frozen-in two-dimensional vitreous structures. It follows
that the possible existence of vitreous and crystalline two-dimensional states is
closely interconnected. For one-dimensional systems, it is known (e.g., Landau and
Lifshitz (1969) [494]), that phase transformations in them cannot occur. However,
there seems to be no restriction that one-dimensional glasses could exist (e.g.,
orientational disorder in a system of particles located along a linear scratch in a solid
matrix). As the highest form of frozen-in disorder, presumably, vitrified samples
resulting from a rapid quenching of biological solutions (living cells, plant and
animal tissues) have to be considered. In this way, we may speak about life frozen-
in to a glass. In such frozen-in biological solutions we have to expect a combination
of very different forms of disorder, e.g., topological and configurational disorder,
frozen-in chemical non-equilibrium states and frozen-in metabolic processes. If a
vitrified biological system can be reversed to its initial high-temperature state by an
appropriate annealing then obviously it would be possible to resolve the problem
of absolute anabiosis within the vitreous state. A number of additional important
biological and even technical applications could be suggested in this case. For a
comprehensive analysis of possible types of disorder and the possibilities of its
description the reader is referred to the already mentioned monograph by Ziman
(1979) [960].

4.12 Discussion

As mentioned in the introduction, the aim of the present chapter is not to give a
detailed description of a particular glass but to summarize some of the approaches
to an understanding of the structure of glasses, in general. In summarizing the
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structural models discussed in the previous sections it can be concluded that there
seems to be one common feature to all of them: They are in fact models of
random close packing of equal or different building units. As we know, Barlow’s
principle of close packing determines the possible crystalline structures. Similarly,
the application of this principle to disordered states, as proposed by Bernal, seems
to give the most general key to describing vitreous structures (see also Hoare (1976)
[369]; Cargill (1976) [123]).

Silicates and phosphates, halides and metallic alloys, organic molecular glasses
can be described in terms of ordered or disordered close packing of structural
elements. In vitrified melts a state of random close packing is frozen-in in which
a relatively high percentage of free volume (from 10 % for organic polymer systems
to 15–20 % for oxide glasses) is fixed. This point of view makes it possible to
understand and generalize the geometric and crystal-chemical criteria of glass-
formation formulated by Goldschmidt, Zachariasen, Polk and many other authors.
The problems connected with the crystallite hypothesis, which for many years
gave an impetus for various experimental investigations of glasses, are in fact not
problems of the structure of glasses, but are connected with the superstructure of
substances in the vitreous state. Crystallite-like formations can be verified in any
glass and they can be, as it is the case for vitreous carbon, the typical structural
element in many vitreous substances including silicate glasses. However, the extent
of detectable crystallization and of structural inhomogeneities in glasses is more or
less caused by their prehistory, method of synthesis and thermal treatment. In this
sense, crystallites are not the essential structural elements of glasses.

The results outlined in the preceding sections demonstrate the significance of
processes of aggregation (poly-condensation, polymerization, association) in under-
cooled melts and in describing the structure of glasses. Processes of aggregation
significantly change the thermodynamic behavior of glass-forming melts, as will be
discussed in the next chapter, and increase dramatically the viscosity of the system.
Thus, they are an absolutely necessary element in describing and understanding
the structure of glass-forming systems. In this sense, the ideas of Hägg and of
Goodman have to be recalled again. This is also the reason why in the next chapter
such statistical models are discussed in detail in which the attention is focused on
processes of polymerization and aggregation.

A more detailed discussion of the structure of particular glasses than given here
can be traced in a number of monographs. A systematic survey of the structure of
inorganic glass-forming systems (silicates, oxides, chalcogenides, halides, nitrates,
phosphates, sulfates) is given, for example, in Rawson’s and Feltz’s monographs
(Rawson (1967) [657]; Feltz (1983) [202]). A large number of different systems are
also reviewed in the series of proceedings of the Russian school of glass science,
edited by Porai-Koshits. An extended discussion of the problems connected with
the crystallite hypothesis of glass structure may also be found there. An analysis
of the possibilities of electron microscopic investigations on the superstructure of
glasses and the verification of the existence of micro-heterogeneities in glasses
by electron microscopy is given in Vogel’s monograph (1979) [889]. A survey of
modern problems of the structure of non-crystalline materials may be found also
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in the proceedings of the conference on physics and chemistry of glasses held in
Cambridge in 1976 (Gaskall (1977) [242]; cf. also [91]). Particular emphasis on
the verification of polymer structures in glasses is given in the monograph on the
physical chemistry of glasses by Balta and Balta (1976) [35].

In considering the structure of oxide, halide or silicate glasses up to now only
glasses have been discussed in which one and the same anion (phosphate, silicate,
fluoride) is combined with one or several cations. From a structural point of view
such glasses may be termed as mono-anionic glasses. In most of the of modern
technical glass-forming systems different oxide anions are present. Moreover, poly-
anionic systems, in which the anionic skeleton is built up of different anions become
more and more important. Main representatives of these new classes of glasses
are oxynitride, oxycarbide and oxyhalide glasses. The synthesis of such glasses is
connected with the development of unexpected structures and technical applications.
A review of these modern developments is given by Mackenzie and Zheng (1992)
[526].

Speaking about the structure of glasses, it is usually stated that glasses are
characterized by a short range order similar to that of the respective crystalline
substance but a long range order is missing. There also exists, however, a class
of non-stoichiometric crystalline phases (e.g., tellurium oxides such as SrTe5O11) in
which, in contrast, the short range order is distorted but a nearly perfect long-range
crystalline-like order is retained. These peculiar systems are called anti-glasses
by Burckhardt and Trömel (1983) [111] (see also Trömel (1988) [855]). In these
two papers, typical X -ray patterns of crystals are shown, however, the IR-spectra
exhibit a peak broadening characteristic for liquids and glasses. Thus, the short
range structure of these peculiar systems can be treated in terms of frozen-in atomic
oscillations in the otherwise perfect crystalline lattice. However, up to now, caloric
data for these substances are not available. This is another example demonstrating
the truth of the words expressed by one of the experts in the field of the structure of
glasses (Finney (1977) [210], p. 35): “For non-crystalline phases : : :, in general, it
is only our imagination that limits our models of homogeneous and heterogeneous
amorphous structures”.



Chapter 5
Statistical Physics of Under-cooled Melts
and Glasses

5.1 Introduction: Summary of Attempts at Modeling
the Liquid State

In the foreword to a collection of papers, edited by the well-known Russian
academician V.L. Bonch-Bruevich, he wrote: “The study of disordered materials -
liquids, glasses, strongly alloyed superconductors - belongs to the ‘hot spots’ of
contemporary solid state physics. The reasons for this are two and both are equally
important and incentive. Firstly, the needs of technology have to be mentioned.
Modern electronics calls for materials with such a rich and non-trivial combination
of properties that all the superpure crystals, which served mankind with fidelity so
many years, are already insufficient to fulfil the needs. Second, we have to take into
account also the intrinsic logic of scientific evolution. From perfect gases to perfect
crystals and to different types of disordered structures of condensed systems - this
is the logical way of evolution of the physics of many-particle systems” (Bonch-
Bruevich (1970) [88]). As we will see, this logical way of evolution of condensed
matter physics is exhibited very clearly, in particular, in the development of different
statistical-mechanical model approaches to the description of liquids, glass-forming
melts and glasses.

The statistical-mechanical or microscopic description of the liquid state, its
relation to other states of matter and of the kinetic processes taking place in liquids
are very complicated problems. As a first step in this direction the analysis of van
der Waals has to be mentioned, leading to the formulation of the equation of state
named after him (van der Waals (1873) [879]). This equation reads (for one mole of
the substance) �

p C a

v2

	
.v � b/ D RT: (5.1)

The result of van der Waals is based on an assumption which is denoted today as the
mean field approach. It is the basis of a large class of statistical-mechanical model
considerations of different systems including substances in the liquid state. In van
der Waals’ approach, the interaction of the molecules is accounted for by a term
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a=v2, while the effect of the volume of the molecules on the behavior of the liquid
is described by the parameter b.

In a general form, the problem of the microscopic description of the liquid state
was formulated first by Eger and Mie (see, for example, Moelwyn-Hughes (1972)
[567]). Different attempts in this direction were developed by Frenkel (1946) [233].
In Frenkel’s monograph a summary of earlier work in describing liquids based
on van der Waals like approaches may also be found. After this initial period a
number of model investigations were carried out in an empirical or semi-empirical
manner. In these attempts a qualitative or even a semi-quantitative description of
the properties of liquids was achieved. In this direction we have to note especially
the group of cell or lattice-models of the liquid state. In these models another
method was chosen for the analysis: the liquid state is investigated by introducing
appropriate deviations from a virtual crystalline-like structure. However, in such
an approach, the lattice structure superimposed from the very beginning affects,
of course, the results of the model analysis. Moreover, problems arise in the
description of short-range order and transport processes in liquids could not be
modeled, in principle, in the original versions of this approach. Further examples
for earlier theoretical attempts in describing the liquid state can be found in the
paper by Lennard-Jones and Devonshire (1939) [503] and Eyring’s monograph
(see Glasstone, Laidler, and Eyring (1941) [255]).

A further line in the development of microscopic models of the liquid state is
connected with ideas to describe appropriately the increased free volume of liquids
by introducing unoccupied cells (holes) or vacancies into the virtual lattice. This
approach can be used in describing the structure not only of simple but also of more
complicated liquids like, for example, polymer systems. As examples in this respect
the models of Flory (1942 [217], 1949 [219], 1956 [220]), Gibbs and DiMarzio
(1958) [251], Gutzow (1962a,b [288, 289], 1977 [298]), Milchev and Gutzow
(1981 [560], 1982 [561]), and Milchev (1983) [557] may be noted. The concept
of holes and the belief in the dominant effect of the free volume in describing the
properties of the liquid state stems from another classical model, the hole model
of liquids, proposed initially by Frenkel and Eyring. A beautiful description of the
basic ideas underlying this approach, its inner logic and the attempts of Altair and
Fürth to advance it to a quantitative description of liquids may be also found in
Frenkel’s already cited monograph. Hole and vacancy models were also applied
in order to describe the rheological properties of liquids (Frenkel (1946) [233];
Hirai and Eyring (1959) [365]) and, in particular, the temperature dependence of the
viscosity. Other classes of models employed for a more or less accurate description
of the properties of liquids consist of the so-called two-energy-level models (see
Angell and Rao (1972) [15]; Rao and Angell (1972) [656]) and in approaches,
where mathematical formulations of Bernal’s and Finney’s ideas concerning the
structure of liquids, as discussed in Chap. 4, are attempted to be performed (see,
e.g., Mutaftschiev and Bonissent (1977) [587]).

In discussing microscopic approaches for an understanding of the properties of
liquids, also an idea proposed originally by Bresler (1939) [104] and developed
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further, again, by Frenkel is of particular interest. In this approach two types of order
parameters are introduced, one reflecting short-range order, the other the long-range
order of the system under consideration. In the lattice and lattice-hole models, the
liquid state is described taking as the starting point a real or virtual crystalline-like
state. Liquid-like behavior in the model is achieved by introducing a temperature-
dependent number of holes into the lattice. Thus, transport properties and the general
rheological behavior of liquids can also be modeled in accordance with existing
experimental evidence. One of the main aims in most of the theoretical attempts
is to establish unified models allowing one to incorporate both the liquid-gas and
the melt-crystal transitions into the description of liquids. However, till now no
approach exists where this goal is realized in a straightforward way.1 As mentioned
by Green (1952) [273] in contemporary models the liquid passes through the melting
point without “knowing” about the existence of a crystalline state.

In discussing the models of liquids summarized briefly above, it can be men-
tioned first that a majority of them are really excellent products of imagination and
theoretical thinking. Nevertheless, for some of them grave shortcomings remain.
Thus, for most of the mentioned approaches an adequate theoretical formulation in
terms of the general methods of the statistical theory of the liquid state, i.e., in terms
of the partition function of the system does not exist. Moreover, an estimation of the
significance of the approximations introduced is often impossible. So a large number
of these models have to be considered only as fruitful semi-empirical attempts to
describe the structure and properties of liquids in molecular terms.

An exception to this is represented by the class of cellular, lattice or lattice-
hole models of the liquid state. For these models due to the efforts made, in
particular, by Kirkwood (1950) [454] and Rowlinson and Curtiss (1951) [671] (see
also Hirschfelder, Curtiss, and Bird (1954) [366]) it was possible to specify mathe-
matically the nature of the approximations made and their quantitative significance.
A summary of the formalism of the statistical mechanical approach required for the
microscopic description of the properties of liquids and the theoretical foundation
of lattice and cell-models is given in the subsequent sections.

5.2 Statistical Physics of Liquids: Basic Equations

As it is discussed in detail in the respective courses on statistical physics, in order
to give a microscopic interpretation of the properties of macroscopic bodies, in
general, and of liquids, in particular, the partition functionZ of the system has to be
calculated. For a macroscopic one-component system, consisting ofN particles, the

1The failure to develop such unified models may have a deep theoretical origin as discussed in
detail by V.P. Skripov and coworkers (Skripov and Baidakov [768]; Skripov and Faizullin [769];
Skripov and Faizullin [770]). It is reflected in the absence of a spinodal in melt crystallization as
established by cited here authors.
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partition function Z.T; V;N / can be expressed as (see, e.g., Sommerfeldt (1937)
[786]; Becker (1964) [58]; Mayer and Goeppert-Mayer (1946) [541])

Z.T; V;N / D 1

h3NN Š

Z
: : :

Z
exp

�
�H.q; p/

kBT

�
dq1 : : : dp3N : (5.2)

Here H.q; p/ or, in a more extended form, H.q1; q2; : : : ; q3N ; p1; p2; : : : ; p3N /, is
the Hamilton function of the system, fqig are the generalized coordinates and fpig
are the generalized momenta (see, e.g., Schmelzer (1992) [692]), specifying the
microscopic state of the considered N -particle system.

If the partition function Z.T; V;N / is known, the Helmholtz free energy
F.T; V;N / may be calculated via (Becker (1964) [58])

F D �kBT lnZ: (5.3)

The Helmholtz free energy F is, generally, defined as

F D U � TS; (5.4)

and similarly to the respective equations, derived in Sect. 2.2.1, we have
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From Eq. (5.6) we obtain
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and with Eqs. (5.3) and (5.4)
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Similarly, from the partition function Z also the thermal equation of state of
the considered macroscopic body may be calculated. In fact, from Eq. (5.6) we
obtain

p D �
�
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�
T;ni

; (5.10)
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resulting with Eq. (5.3) in
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.lnZ/: (5.11)

With H D U C pV and G D U � TS C pV we have, consequently,
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It follows that all the difficulties in giving a microscopic interpretation of the
properties of macroscopic bodies are connected with the determination of the
partition function,Z. IfZ is known, the set of above equations automatically defines
the thermodynamic functions of the system.

According to Eq. (5.2) for a determination of Z the Hamiltonian H.q; p/ of the
system has to be known. In classical mechanics for the considered case of a one-
component system consisting of N particlesH.q; p/ is shown to be of the form

H.q1; : : : ; p3N / D
3NX
iD1

p2i
2m

C UN .q1; q2; : : : ; q3N / (5.14)

or, equivalently,
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.pi /2

2m
C UN .r1; r2; : : : ; rN /: (5.15)

In Eqs. (5.14) and (5.15), m is the mass of a single particle, as generalized
coordinates Cartesian coordinates are chosen. Integration over all components of
the momenta results in
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It follows that Eqs. (5.3), (5.9), (5.11), (5.12) and (5.13) may be reformulated in
terms of the configurational part Q of the partition function Z. For the Helmholtz
free energy F we get immediately

F D �kBT
�

lnQ � lnNŠC 3

2
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��
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and with Stirling’s approximation

lnNŠ � N.lnN � 1/; (5.19)

valid for large values of N , the thermodynamic function F can be written in the
form

F D �kBT lnQCNkBT

�
lnN � 1 � 3

2
ln

�
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��
: (5.20)

In the absence of interactions between the different particles (UN D 0), as it is
assumed for a perfect gas, the configurational part of the partition function can be
directly calculated. As the result one obtains

Q D V N : (5.21)

Denoting by F0 the free energy in the absence of interactions between the molecules
we may write, consequently,
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Similarly, we obtain from Eq. (5.9)

U D 3

2
NkBT C kBT
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@T
.lnQ/: (5.23)

Denoting by U0 the internal energy in the absence of molecular interactions in the
system as a special case

U0 D 3

2
NkBT (5.24)

is found. Finally, for the thermal equation of state we get from the relation Eq. (5.11)

p D kBT
@

@V
.lnQ/ (5.25)

and for a system of non-interacting particles (p D p0)

p0 D kBTN

V
; (5.26)

which is the well-known expression for the thermal equation of state of a perfect
gas.

The outlined equations can be easily generalized to the case of a multi-
component system. Instead of above given equations we have to write, now
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Z D 1

hf
Q
i

Ni Š

Z
: : :

Z
exp

�
�H.p; q/

kBT

�
dq1dq2 : : : dqf dp1dp2 : : : dpf :

(5.27)
With

H D
X
i

.pi /2

2mi

C UN .q1; q2; : : : ; qf /; (5.28)

the following expression for Z is obtained
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whereQ is given by
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Here f is the total number of degrees of freedom of the system (f D 3
P

i Ni ), Ni
the number of particles of the different components andmi the mass of a particle of
the i -th component.

A simple model of non-interacting oscillators can also be used to derive the
thermodynamic functions and the equations of state of a perfect crystal. In the
partition function of both the perfect crystal and the perfect gas the determination of
Q can be carried out straightforwardly. However, for liquids (as well as for real
gases) the evaluation of Q is a very difficult task. This is the reason, why the
microscopic description of liquids causes enormous problems. It follows that all
model statistical treatments of liquids can be described in terms of more or less
suitable approximative attempts only. The approximations for the determination
of Q have to guarantee that an integration of the basic equations is possible
and either numerical or analytical results for the temperature dependencies of the
thermodynamic properties of the system can be obtained.

The particular case of a system of non-interacting particles considered with
Eqs. (5.22), (5.24) and (5.26) corresponds to the model of a perfect gas. This model
is employed as one of the starting points for the statistical-mechanical description of
real gases. Models of real gases have been used also, however, with limited success,
for the description of the properties of liquids. On the other hand, for crystalline
solids the model of an absolutely perfect crystal is applied as the basis for the
derivation of the macroscopic properties of real crystals starting from microscopic
considerations. Models of the crystalline state can also be taken as the starting point
for the development of another class of approaches to the liquid state, the cellular
or lattice models of liquids. This approach is characterized in the next sections. Up
to now a specific model of liquids does not exist but only the gas or crystalline-like
models are developed in attempting to establish the properties of liquids.
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Another fundamental method for deriving the thermodynamic characteristics of
liquids is based on the possibility of expressing them through the radial distribution
function (Zernicke and Prins (1927) [953]; Fisher (1961) [212]). This method is of
considerable interest since it allows one the determination of the thermodynamic
properties of the liquid using the results of X -ray or neutron structural investiga-
tions. However, this method merely gives a connection between thermodynamic and
structural measurements and is not a way of microscopic modeling the liquid state.

5.3 Cell or Lattice Models of Liquids

As a first step in simplifying the problem of the calculation of the configurational
part of the partition function the potential energy of the system of N interacting
particles constituting the liquid is expressed usually as the sum of the contributions
only of pair-interactions in the form

UN .r1; r2; : : : ; rN / D
X

1	i<j	N
'.jri � rj j/: (5.31)

For the specification of the potentials, ', of the pair-interactions different proposals
have been developed. The most well-known expression of such functions is the
Lennard-Jones potential, given by the equation
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with r D jri � rj j: (5.32)

The course for the '.r/-function and the meaning of the parameters " and a are
illustrated in Fig. 5.1.

The Lennard-Jones potential is a representative of a more general class of
interaction potentials, proposed earlier by Mie (see, e.g., Moelwyn-Hughes (1972)
[567]),

'.r/ D 4"
h�a
r

	m �
�a
r

	ni
: (5.33)

Here m and n are natural numbers with m > n. Mie’s potential and other types of
pairwise interactions often used in modeling liquids are illustrated in Fig. 5.2. The
analytical expressions for the different curves given in this figure are summarized
below (see also Soules (1990) [787])

Hard spheres '.r/ D
�
0 r > a

1 r � a
(5.34)

Point center of repulsion '.r/ D br�ı (5.35)
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Fig. 5.2 Schematic representation of other often used pair-interaction potentials: (a) Hard spheres;
(b) point center of repulsion; (c) rectangular potential well; (d) Sutherland potential; (e) Lennard-
Jones or Mie-potential

Reactangular potential-well '.r/ D
8<
:

1 r � a

�" a < r < R
0 R � r

(5.36)

Sutherland potential '.r/ D
� 1 r � a

�cr�� r > a
: (5.37)
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As seen from these equations, the more realistic cases of interaction potentials
may be written in the form

'.r/ D "f
� r
a

	
: (5.38)

Dealing only with pairwise interactions, the configurational part of the partition
function may be expressed, in general, as

Q D
Z
: : :

Z
exp

2
6664�

X
1	i<j	N

'.jri � rj j/

kBT

3
7775dr1 : : : drN : (5.39)

For the particular expressions of the interaction potentials which may be written in
the form given by Eq. (5.38) we have (in Cartesian coordinates)

Q D
Z
: : :

Z
exp

�
� "

kBT
� (5.40)

�
X

1	i<j	N
f

0
@
s
.xi � xj /2 C .yi � yj /2 C .zi � zj /2

a2

1
A
9=
;dx1 : : : d zN :

Introducing the reduced variables

x
.r/
i D xi

a
; y

.r/
i D yi

a
; z.r/i D zi

a
; (5.41)

Eq. (5.40) yields

Q D a3N
Z
: : :

Z
exp

�
� "

kBT
� (5.42)

�
X

1	i<j	N
f

�q
.x
.r/
i � x

.r/
j /

2 C .y
.r/
i � y.r/j /2 C .z.r/i � z.r/j /

2

�9=
;d�

with
d� D dx

.r/
1 : : : d z.r/N : (5.43)

The integral on the right hand side of Eq. (5.42) is, consequently, a function of
"=kBT and the volume of the system in reduced units, i.e., V=a3. It follows that
Q can be expressed as

Q D a3N�

�
kBT

"
;
V

a3

�
: (5.44)

With the notations

T .r/ D kBT

"
; V .r/ D V

a3
; U .r/ D U

"
; p.r/ D pa3

"
(5.45)
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we obtain from Eqs. (5.23) and (5.25)

U .r/ D U .r/


T .r/; V .r/

�
; (5.46)

p.r/ D p.r/


T .r/; V .r/

�
; (5.47)

i.e., the law of corresponding states is fulfilled. A further discussion of the validity
of the law of corresponding states, in particular, in application to noble gases can be
found, e.g., in the monograph by Fisher (1961) [212]. But even with the assumption
of a pairwise additivity of the interactions and the introduction of more or less
realistic interaction potentials an analytical calculation of the partition function is
not possible. Thus further approximations are needed.

The basic idea underlying the lattice or cell models of the liquid state is connected
with the introduction of some virtual lattice for the description of the structure of
liquids. It is assumed that each particle of the liquid moves only in a cell in the
vicinity of a knot of the lattice. For each particle the lattice cell is formed by the
neighboring particles. Translations of the molecules of the liquid from one cell to
another, possible in real liquids, are thus excluded from the consideration. Taking
into account that we are discussing models of liquids in application to glass-forming
melts the latter limitation does not seem to be a very serious one. More serious
restrictions of the validity of this approach are connected with the neglect of the
short range order of the liquids and the choice of a virtual lattice or the definition
of its properties. At part the difficulties with the description of the short-range order
may be removed in the framework of the lattice-hole models. We shall return to
these problems later.

Based on the mentioned approximations, the configurational part of the partition
function may be written as

Q D NŠQ
.1/
N ; (5.48)

where by Q.1/
N one of the possible distributions of particles of the liquid to the cells

of the lattice is denoted. It is assumed hereby that each of the cells contains only one
molecule of the liquid. In the next step, the true interaction potentialUN .r1; : : : ; rN /
is replaced by a mean field, acting on each particle in its cell. Provided all particles
are located in the centers of the respective cells, forming the virtual lattice, the total
potential energy is expressed as

U
.c/
N D 1

2
NE0: (5.49)

Here E0 is the energy of interaction of one particle with all other molecules for the
considered lattice configuration. Deviations of the positions of the particles from this
regular arrangement result in a change in the interaction energy. These variations
may be expressed through a potential function '.q/, which is assumed to be of the
same form for each particle in every cell. The ordered state is described by qi D 0;
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i D 1; 2; : : : ; N . According to the definition of E0, for this regular crystalline-like
arrangement ' is equal to zero.

In general, however, we have to write

UN D 1

2
NE0 C

X
1	i	N

'.qi /; (5.50)

resulting in

exp

�
�UN .r1; : : : ; rN /

kBT

�
D exp

�
� NE0

2kBT

� Y
1	i	N

exp

�
�'.qi /
kBT

�
: (5.51)

A substitution into the expression forQ yields (see Eq. (5.17))

Q D NŠ exp

�
� NE0

2kBT

� �Z
v

exp

�
� '.r/
kBT

�
dr
�N

: (5.52)

Here v is the volume of one of the cells, i.e.,

v D V

N
: (5.53)

With the notation

vf m D
Z
v

exp

�
� '.r/
kBT

�
dr (5.54)

we obtain, finally,

Z D
�
2	mkBT

h2

� 3N
2

exp

�
� NE0

2kBT

�
vNf m: (5.55)

vfm is usually denoted as the free volume referred to one particle of the liquid
(see, e.g., Hirschfelder et al. (1954) [366]). In the absence of repulsive interactions
(' D 0) it is equal to vf m D v. If the interactions, in contrast, are strong, then ' is
a rapidly increasing function of q, and the inequality vf m � v holds.

It follows that, more precisely formulated, the quantity vfm is a measure of the
volume free for the motion of the molecules of the liquid considered as mass-points.
This more precise meaning is specified by the additional subscriptm (from motion)
in vf m to avoid confusion with the already discussed relative free volume having
the meaning of the percentage of space not occupied by the particles (compare the
analysis of Bernal’s ideas in Chap. 4). Obviously, both quantities are interrelated,
but, at least in general, they are not identical. The free volume in Bernal’s sense we
denote by vf .

Once the partition function is known, all thermodynamic quantities of the
considered system may be calculated by using the equations given in the preceding
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section. For the free energy we obtain, for example,

F D NE0
2

� 3NkBT

2
ln

�
2	mkBT

h2

�
� NkBT ln vfm: (5.56)

However, to allow one quantitative predictions, the values of the parameters E0 and
vfm and their dependencies on temperature T and specific volume v and, may be,
other characteristics of the liquid have to be established. By considering the liquid
as a system of hard spheres with a diameter d as an estimate for vf m the expression

vfm D 8Œv1=3 � d�3 (5.57)

may be obtained (Hirschfelder et al. (1954) [366]). The quantity d3 is proportional
to the constant b in van der Waals’ equation of state, describing the effect of the
volume occupied by the particles on the behavior of the liquid. On the other hand,
the first term in Eq. (5.56) may be interconnected with the enthalpy of evaporation
of the substance. It can be expressed also in terms of van der Waals’ equation of
state, but this time through the parameter a.

For a more straightforward estimation of vf m the knowledge of the so-called
mean field potential '.q/ is required. In principle, this function can be determined
by the solution of an integral equation, derived first by Kirkwood (1950) [454].
However, due to the difficulties in the realization of such a program '.q/ is often
calculated in a simpler way by expressing this function through the contributions of
the pair-interaction potentials of the neighboring particles, applying, for example,
the Lennard-Jones potential (see, e.g., Fisher (1961) [212]). In a further step, the out-
lined model can be generalized to include the effect of a reduced or an increased free
volume on the thermodynamic properties of the model liquid under consideration.
Hereby a dependence of the free volume vf m on the relative ratio !l of empty cells
in the first coordination shell of a molecule is introduced. Different approximations
for the calculation of the vfm vs !l dependence are discussed by Hirschfelder et al.
(1954) [366] and Hill (1956) [358]. They are illustrated in Fig. 5.3. With regard
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to glass-forming melts and polymer solutions the approximation vf m D const: is
usually applied. !l -dependent solutions have been used up to now only in order
to establish the thermal equation of state of simple liquids constituted of spherical
non-associated molecules.

5.4 Lattice-Hole Models of Simple Liquids

5.4.1 General Characterization

In lattice-hole models the increased free volume of the liquid as compared with the
respective crystalline form of the same substance is attributed to the existence of
unoccupied cells or holes in the virtual lattice. It is assumed usually that the volume
of such a hole is a constant, equal to the volume of the molecule of the liquid. Such
an approximation was employed first by Eyring (see Glasstone, Laidler, and Eyring
(1941) [186]) and Frenkel (1946) [234]. More sophisticated approaches have also
been introduced, assuming, for example that the volume of the holes exceeds the
size of the molecules (e.g., Hirai and Eyring (1958 [405], 1959 [406])). A summary
of developments in this direction can be found in the monograph by Stewart (1955)
[801] and in the above cited papers by Hirai and Eyring. However, practically in
all further applications of lattice-hole models to glass-forming melts and polymer
solutions the simplest assumption of a constant volume vf m equal to the respective
volume of a molecule of the liquid is employed.

By introducing the concept of holes into the model we have to determine the
thermodynamic properties of the model system in a new way. In addition to the
calculation of the partition function of the cell system, developed in the previous
section, the contributions of the holes to the thermodynamic functions have to be
specified. Thus the analysis of the problem requires, in principle, a generalization
in terms of the formalism indicated with Eqs. (5.27)–(5.30) for multi-component
systems. However, in considering holes as a new type of particles with definite
properties the problem is usually simplified by reducing it to the calculation of the
mixing contributions to the partition function in a way known from the statistical
treatment of two-component solutions.

We consider here first the case of simple liquids, defining them as substances
consisting of particles with a nearly spherical shape, which do not exhibit aggrega-
tion or polymerization. In application to polymer melts and solutions, attention is
also concentrated on the determination of the configurational contributions to the
properties of the respective liquids due to the complex structure and non-spherical
shape of the molecules and their possible conformations. This is the reason why
polymer melts will be treated as a second step in our analysis.

A simple method in treating binary (A-B) solutions and alloy systems was
proposed in 1934 by Bragg and Williams ([99], see also, e.g., Frenkel (1946)
[233]; Hill (1956) [358]) in the framework of a mean-field approach. Hereby as a
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mean-field theory any model is denoted for which the calculation of the partition
function and the thermodynamic quantities is based on the assumption that all
possible configurations of the system have to be accounted for with the same
probability and that an averaging procedure of the A � B-interactions is possible
in determining the energy of the system. In accordance with this general approach
the basic assumptions of Bragg and Williams (1934) [99] are as follows:

• The entropy is calculated directly by a determination of the number of all possible
configurations corresponding to the same value of the internal energy of the
system.

• The energy is determined from the molecular interactions assuming that only
nearest-neighbor interactions have to be accounted for, hereby the number of
particles of the different components in the first coordination shell is assumed to
be given by their mean concentration in the system.

According to the first of these assumptions the specific nature of the A-B, A-A
and B-B interactions is neglected in the calculation of the entropy. Thus, a possible
clustering or enrichment of particles of the various components in different parts of
the system is also excluded from the consideration. In this respect, the mean-field
approach leads to the determination of the properties of a state of the system having
the highest possible degree of disorder.

A correction of the values for the configurational part of the entropy calculated
by an application of the first assumption can be carried out by the introduction of
appropriate correction factors, depending on specific properties of the A-A, B-B and
A-B interactions (Bethe-Guggenheim approach). A detailed discussion of this topic
may be found in the books by Hill (1956) [358], Guggenheim (1952) [281], and
Prigogine (1957) [647]. An argumentation of the validity of the second of the listed
above assumptions is given in the monograph by Zvetkov, Esskin and S. Frenkel
(1964) [962] and in different modifications in the books by Ya. Frenkel (1946) [233]
and Hill (1956) [358]. A proof of the validity of this assumption is also developed
in a paper by Milchev and Gutzow (1981) [560]. Considering only nearest-neighbor
interactions it is shown that the partition function of a binary A-B solution in a
mean-field approximation may be obtained.

5.4.2 The Classical Lattice-Hole Model

In applying the ideas outlined in the previous section to lattice-hole models of simple
liquids the interaction energy between two holes and a hole and a molecule of the
liquid is set equal to zero. Moreover, as an additional peculiarity compared with
the commonly discussed case of a binary solution of two different components,
we have to take into account that the number of holes in a liquid does not have
a definite value but may change in dependence on the thermodynamic parameters
like external pressure and temperature. In the subsequent derivations, we assume
the number of holes, denoted by N0, to be given first and determine its value
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later on by applying the condition of thermodynamic equilibrium. The number of
molecules of the liquid is denoted by NA and is assumed to be equal to Avogadro’s
number. Consequently, the thermodynamic functions referred to one mole of the
model substance are established in the course of the calculations.

As mentioned, the volumes occupied by one particle and a hole are assumed to
be the same and denoted by v0. Consequently, the total volume of the system can be
expressed as

V D .NA CN0/v0: (5.58)

The molar fraction of holes � is given then by

� D N0

NA CN0
: (5.59)

Here � is at the same time equal to the relative free volume of the system. Thus, by
.1 � �/ the relative ratio of the occupied volume is given, i.e.,

1 � � D NA

NA CN0
: (5.60)

The free volume can be considered as an additional order parameter in the sense
discussed in Chap. 3. This is the reason why it is denoted as �.

The total number ˝ of statistically distinct distributions of holes and molecules
on the assumed virtual lattice is given by

˝ D .N0 CNA/Š

N0ŠNAŠ
: (5.61)

With Boltzmann’s equation Eq. (2.32) the configurational part of the entropy is
obtained as

�S D kB ln

�
.NA CN0/Š

NAŠN0Š

�
: (5.62)

Applying Stirling’s formula Eq. (5.19) we get, approximately,

�S D �kB
�
NA ln

�
NA

NA CN0

�
CN0 ln

�
N0

NA CN0

��
; (5.63)

i.e., the well-known expression for the entropy of mixing. Taking into account the
definition of � and the relation

R D NAkB; (5.64)

connecting the universal gas constant R, Boltzmann’s constant kB and Avogadro’s
numberNA, we may rewrite Eq. (5.63) in the form

�Smol D �R
�

ln.1 � �/C �

1 � �
ln �

�
: (5.65)
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For the considered model the energy of bonding between the holes and the
molecules and the holes themselves is equal to zero. The configurational contri-
bution to the internal energy is given, consequently, by the decrease of the number
of bonds between the molecules due to the introduction of holes into the virtual
lattice.

By definition of � the number of molecules in the system can be expressed as
.NA C N0/.1 � �/. Moreover, the probability of finding a hole in the immediate
vicinity of a molecule of the liquid is given by z�, where z is the number of nearest
neighbors, i.e., the coordination number. Consequently, in the mean-field approach
the change of the internal energy connected with the introduction of holes into the
system, reads

�U D 1

2
EAAz.NA CN0/.1 � �/�: (5.66)

Hereby byEAA the energy of an A-A bond is denoted (see also Becker (1938) [57]).
For one mole of the liquid we get with Eq. (5.60)

�Umol D 1

2
zEAANA�; (5.67)

or, using for the energy of hole-formation the notation

�E0 D 1

2
zEAANA (5.68)

the equivalent expression
�Umol D �E0�: (5.69)

With above equations the change of the enthalpy per mole due to the introduction
of holes may be expressed as

�Hmol D �Umol C p�Vmol ; (5.70)

where p is the external pressure acting on the system. Hereby the change of volume
may be written in the form

�Vmol D N0v0 D NAv0
�

1 � � : (5.71)

Similarly, for the change of the Gibbs free energy per mole

�G D �U C p�V � T�S (5.72)

the expression

�Gmol D �E0� C pV0
�

1 � �
CRT

�
ln.1 � �/C �

1 � � ln.�/

�
(5.73)



182 5 Statistical Physics of Under-cooled Melts and Glasses

1.6

0.2

0.4

0.6

0.8

1.0

RT E0/
0.80 0.4 0.8 1.2 0 0.4 1.2

1.0

2.0

3.0

4.0

6.0

RT E0/

5.0
0 0.01

0.05

0.3

1

0
0.01 0.05

0.3

0.1

Tb

a b

S
/R

Fig. 5.4 (a) Temperature dependence of the order parameter �, reflecting the relative free volume
in the system calculated according to Eq. (5.75) for different values of the ratio .pV0=�E0/

indicated by the respective numbers to the curves in the figures. Note the appearance of a s-
shaped course of the curves indicating a first-order phase transition for parameter values .0 <
pV0=�E0/ < 0:05. (b) Temperature dependence of the configurational contributions to the entropy
of a lattice-hole model.�S is obtained by a substitution of the equilibrium values of � (Eq. (5.75))
into Eq. (5.65). The (pV0=�E0)-values are specified in the figure by giving their values as a
parameter to each curve

is found. V0 in Eq. (5.73) is the volume per mole of the substance in the absence of
holes in the system.

The equilibrium value of � is determined according to the general thermody-
namic equilibrium conditions by minimizing the Gibbs free energy �G (compare
Sect. 2.2.2). The equilibrium condition reads here

�
@�G

@�

�
p;T

D 0; (5.74)

resulting in

� D exp

�
��E0.1 � �/2 C pV0

RT

�
: (5.75)

The temperature course of the equilibrium value of the order parameter �.T /
is shown in Fig. 5.4a for different values of the ratio pV0=�E0 indicated by the
respective numbers to the curves in the figures.

From the knowledge of � as a function of temperature not only the temperature
dependence of the density of the considered model substance can be established,
but also a number of additional quantities. Taking into account that � represents,
in fact, the probability that at one of the neighboring sites of the molecule of the
liquid on the virtual lattice a hole is found, the coordination number distributions
in a liquid may also be calculated (Milchev and Gutzow (1981) [560]). In this way,
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a characterization of the short range order, being an essential feature of the liquid
state of matter, can be given, which, as already mentioned, is impossible to perform
in pure lattice or cell models.

A substitution of the temperature dependence of � according to Eq. (5.75) into
the expressions for the configurational contributions of thermodynamic functions
allows one to specify the temperature dependence of these quantities. As an example
in Fig. 5.4b the temperature dependence of the entropy is shown. It is seen that for
the temperature dependence of the configurational part of the entropy an s-shaped
curve is found indicating the existence of a first-order phase transformation. Such an
s-shaped course is always obtained for values of the parameters in the range, given
by the inequality

0 <

�
pV0

�E0

�
< 0:05: (5.76)

The temperature of the phase transformation can be determined by Maxwell’s rule
of equal areas.

A more detailed analysis of this transformation (see Milchev and Gutzow (1981)
[560]), in particular, the calculation of the change in the free volume connected
with the transition between the two states of the system, reveals that the different
states of matter described by the model correspond to the liquid and the gas phases,
respectively. The second possible type of phase transformations expected for liquids
and being of particular importance for the understanding of crystallization and
vitrification, respectively, melting, the liquid-solid transformation, is not reflected in
the model considered. It is, in fact, well-known that lattice-hole models cannot give
a straightforward description both of melting and crystallization. A possible way
of incorporating the melting transition into the framework of lattice-hole models is
discussed in the next section.

For the liquid branch of the curves, describing the configurational contributions
to the thermodynamic properties of the model substance, the fraction of holes, i.e.,
�, is a relatively small quantity. In this case, � may be approximated starting with
Eq. (5.75) by

� D exp

 
��E

˚
0

RT

!
; �E˚

0 D �E0 C pV0: (5.77)

This expression was first derived by Frenkel (1946) [234] in minimizing �G

but omitting the term p�V in Eq. (5.72). It means that not the appropriate
thermodynamic potential, i.e., the Gibbs free energy, but the Helmholtz free energy
F was chosen for the description of the state of the system. In dealing with liquids,
this difference is of no significance. However, such an (erroneous) approach fails in
the attempt to model the liquid-gas transition. By applying the condition � � 1 the
thermodynamic functions of the liquid may be approximated as follows (see also
Grantcharova and Gutzow (1986) [268]; Gutzow (1989) [305]).

For the entropy we get with a Taylor-series expansion of the logarithmic terms in
Eq. (5.65)

�S.T / Š 3R�.T / (5.78)
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and with Eq. (5.77)

�S.T / Š 3R exp

"
��E

˚
0

RT

#
: (5.79)

As a particular case, if the existence of a melting point is assumed, Eq. (5.79) reads

�S.Tm/ D �Sm Š 3R exp

"
��E

˚
0

RTm

#
(5.80)

and combining both latter equations the expression

�S.T / Š �Sm exp

�
�

�
1 � 1



��
(5.81)

is obtained.2 In Eq. (5.81), again, the introduced earlier reduced temperature  D
T=Tm (cf. Sect. 3.3) and the notation

� D �E˚
0

RTm
(5.82)

are used.

2Instead of Eqs. (3.53) and (3.54), Eq. (5.81) can be employed also as the starting point in order
to determine the frozen-in values of the entropy in the glass transition. For the case of relaxation
proceeding by an Arrhenius law,  in Eq. (5.81) has to be replaced merely by g as given by the
Bartenev-Ritland equation, Eqs. (3.85)–(3.87). In contrast to the results shown in Fig. 3.7, here
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always finite values of the entropy are frozen-in for any value of the glass transition temperature in
the range Tg > 0. Similar results are obtained as well if other relaxation laws have to be applied.
An example is shown in the figure. Here relaxation is described by the Vogel-Fulcher-Tammann
law (q D d=dt ; for the details see: Tropin et al. (2011) [856]).
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Fig. 5.5 Thermodynamic functions of under-cooled melts ((1) �H.T /, (2) �G.T /, (3) �S.T /)
calculated by a lattice-hole model as discussed in the text (Eqs. (5.81), (5.85) and (5.86)). In the
calculations the value of the parameter � D 4 has been used. This value is obtained from the
enthalpy of evaporation of liquids applying Trouton’s rule as discussed in more detail by Gutzow
and Grantcharova (1985) [311] and Gutzow (1972) [294]

With this relation for the temperature dependencies of the configurational part
of the entropy we may obtain analytical results for the configurational contributions
to the other thermodynamic functions in a mean-field approximation by substituting
the expressions for � and �S into Eqs. (5.69)–(5.73). In addition, from Eq. (2.14)
we obtain from Eq. (5.81) for the configurational specific heat the relation

�Cp.T /

�Sm
D � exp

�
�

�
1 � 1



��
1

2
: (5.83)

This relation can also be used in another direction, taking into account the following
considerations.�Cp is primarily the difference between the specific heat calculated
for the lattice-hole model and the pure cell model of the liquid. In this way, this
quantity may also be expected to determine, to a large degree, the difference in the
respective values of the liquid and the crystal. This obviously reasonable assumption
allows us to calculate, in addition, the difference in the values of the Gibbs free
energies and the enthalpies of the liquid and the crystal. From Eq. (2.23) we
obtain, choosing as the reference temperature in the corresponding integral the value
T0 D Tm,

�H.T / D �Hm �
TmZ
T

�CpdT: (5.84)

A substitution of Eq. (5.83) into this relation yields by a simple approximative
integration (see Zeldovich and Myschkis (1965) [950]),

�H.T /

Tm�Sm
D
�
1C .� � / exp

�
�

�
1 � 1



���
1

�
; (5.85)
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�G.T /

Tm�Sm
D
�
1 � 2 exp

�
�

�
1 � 1



���
1

�
: (5.86)

With these equations the curves shown on Fig. 5.5 are drawn. As it can be seen
from the figures, the curves are in a quite satisfactory agreement with the results
outlined in Chaps. 2 and 3 (cf. Figs. 2.28, 2.24, 3.2 and 3.5). It turns out, that the
values of �H.0/ and �G.0/ coincide as expected according to the Third law of
thermodynamics. Moreover, a quite reasonable value for the zero-point enthalpy
(�H.0/ D .1=4/�Hm) is found. In the above results, however, the existence of a
melting point Tm was introduced ad hoc via Eq. (5.84). In a more precise way the
existence of a melting transition can be incorporated into the description as shown
in the next section.

5.4.3 Incorporation of the Melt-Crystal Transition
into Lattice-Hole Models of Liquids

As mentioned in the preceding section, in the framework of the discussed lattice-
hole models of simple liquids the liquid-vapor transition may by described directly
but not the crystal-melt transformation. In order to fulfil this gap the following
procedure can be used, applied for the first time in a similar situation by Mott
(1934) [576]. In this approach, the liquid is described by the model developed so
far, while for the crystalline state an additional expression of the form given by
Eq. (5.55) is proposed with appropriately chosen values of the parameters vf m and
E0. Such a procedure corresponds to the application of Einstein’s approximation
for the calculation of the partition function of crystals, i.e., considering the crystal
as a system of identical oscillators. The melting temperature is then determined by
the point of intersection of the curves, representing the temperature dependencies
of the Gibbs free energies of the model liquid and the crystal, respectively. As it
became evident in the preceding section and as discussed in more detail by Milchev
and Gutzow (1981) [560], such a point of intersection can be only found in a
thermodynamically correct way, if the zero-point enthalpy of the model liquid and
the model crystal differ, the zero-point enthalpy of the liquid being higher. In terms
of the cell model applied, this statement means that different virtual lattices have to
be used in describing the liquid or the crystalline states.

The difference in the zero-point enthalpy is accompanied by higher values of the
volume of the liquid for T ! 0, i.e., we have to expect

�H.T D 0/ D 

Hliquid �Hcrystal

�
.TD0/ > 0; (5.87)

�V.T D 0/ D 

Vliquid � Vcrystal

�
.TD0/ > 0: (5.88)

The similarity in the differences of the values of the zero-point enthalpy and
zero-point volumes is also supported by experimental findings concerning the
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Fig. 5.6 Temperature dependence of the total entropy .S=R/ (curve (abcd)) and of the chemical
potential (��=kBT ) of the liquid (AB), the vapor (CD) and of the crystal (EF). Tc and pc are the
critical values of pressure and temperature of the system. The dashed curve in the figure represents
the entropy of the substance in the state of a perfect crystal using Einstein’s approximation in the
calculation of the partition function. By Tb the boiling point is indicated. With Tm the melting point
is denoted, again, i.e., the temperature, where the�� curves of the liquid and the crystal intersect.
In order to illustrate the position of the melting point more clearly the slope of the ��-curve of
the crystal has been increased by a factor five (For further details see Milchev and Gutzow (1981)
[560])

temperature dependence of the density of liquids. Extrapolations of the density
versus temperature curves of simple under-cooled liquids to T D 0 result in values
of the zero-point density, which are about 3% lower than the packing densities of
a system of spheres (Bondi (1968) [89]), respectively, the packing densities of the
crystalline state. This finding is related to the existence of different values of the
energy of the two assumed virtual lattices: Higher energy values have to be assigned
to the stretched lattice of the liquid.

It turns out that both statements as described by Eqs. (5.87) and (5.88), can
be explained in terms of lattice-hole models by one and the same assumption,
the introduction of different virtual lattices for each of the condensed states of
the substance considered. It is difficult to suggest any realistic picture of the
virtual lattice describing the structure of the fictive under-cooled melt in internal
equilibrium at T D 0. However, the introduction of two such different lattices is
essential, if both evaporation and melting are to be described in the framework of
one and the same model. In Fig. 5.6 the temperature dependence of the entropy and
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Fig. 5.7 Temperature
dependence of the order
parameter � introduced by
Bresler (1939) [104]. In
comparing these curves with
the results shown in Fig. 5.4a
note that � (and 1� �)
describe, in fact, the order and
� the disorder in the system

the chemical potentials is given for the model substance for all three states of matter
according to an investigation performed by Milchev and Gutzow (1981) [560].

It turns out that in terms of lattice-hole mean-field models in their simplest
form an adequate, at least, qualitative picture of the thermodynamic properties of
stable and metastable undercooled melts, their crystalline and gaseous phases and
the transformations in between them can be given. In application to the melting
transition this approach is, of course, far from being a first-principles calculation.
Nevertheless, these results give a useful theoretical picture for discussing crystal-
lization, vitrification and stabilization of glasses.

5.4.4 Discussion of Some Further Developments

In further developments of lattice-hole models, additional order parameters have
been introduced into the theory to describe the long-range order. In this way
the possibility of a direct description of the melt-crystal transformation could be
expected to be realized. One of the first attempts in this direction was performed by
Bresler (1939) [104],who introduced, instead of �, a long-range order parameter � as

� D .1 � �/z D
�
1 � exp

�
� U 0

kBT

��z

; (5.89)

where the energy of hole formation is given by

U 0 D U0 C U1�: (5.90)

The �.T /-dependence, according to Bresler’s proposal, is shown schematically
in Fig. 5.7. Taking into account Fig. 5.4a, where � is depicted, it is seen that no
qualitative improvement as compared with the results of the previous analysis is
found. The sigmoid s-shaped dependence resulting from Eq. (5.89) has, again, to
be interconnected with a liquid-vapor transformation. Moreover, since the way of
introduction of the order parameter � as used by Bresler is more or less arbitrary
this approach is today only of historical interest.
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Another direction in developing lattice-hole models of liquids is connected with
the work of Lennard-Jones and Devonshire (1939) [503]. These authors introduced
two lattices, one crystalline-like and one liquid-like. However, their �S -curves do
not have a s-shaped course and fail in this way to describe a phase transformation in
the model: they correspond in fact to the �S vs T curve in Fig. 5.4b with pV0 D 0.
Due to this feature of their model and a number of ad hoc assumptions applied in the
formulation of it, their investigation also has to be considered as only of historical
interest (for a critical review see Frenkel (1946) [234]).

Another interesting approach is connected with the efforts of Altair and Fürth
(see, again, Frenkel (1946) [234]; Moelwyn-Hughes (1972) [567]) to treat holes
in liquids as really existing physical objects and to determine the internal energy
and the heat of evaporation of liquids by calculating the work required for the
formation of a hole of molecular dimensions in the liquid, assigning macroscopic
values of the surface tension to it. This procedure is, however, open to criticism
from various points of view and led to physically not meaningful results. From its
basic assumptions similar to lattice-hole models are also the so-called broken bond
models developed, in particular, by Angell and coworkers (see, e.g., Angell and Rao
(1972) [15, 656]). In these types of models instead of the energy of hole formation
the somewhat less definite concept of bond-breaking between neighboring particles
is employed.

Other models like the dislocation theory of melting or the description of melting
as a break-down of the modulus of elasticity are also only of historical interest in
so far as they do not even give a qualitatively correct picture of this process. For
other attempts to describe the structure of liquids the interested reader is referred to
the respective literature (e.g., Frenkel (1946) [234]; Moelwyn-Hughes (1972) [567];
Hirschfelder et al. (1954) [366], Green (1952) [273]).

5.5 Statistical Models of Polymer Glass-Forming Systems

5.5.1 Introductory Remarks

Experimental evidence accumulated over the past 60 years shows that simple
liquids in the sense introduced above, consisting of spherical monomers exhibiting
no aggregation or polymerization processes, are rather the exception than the
rule. Examples for simple liquids are provided by noble gases (liquid argon) and
some organic liquids with a high symmetry of the molecules, e.g., tetrabromo
methane. In most other liquids, as verified byX -ray analysis, infrared and Ramann-
spectroscopy, with decreasing temperature processes take place which may be
described in terms of aggregation, poly-condensation and polymerization.

As discussed already in more detail in Chap. 4, in organic molecular liquids
aggregates and polymer-like chains are formed mainly due to H-bonding. Most
typical cases in this respect are organic alcohols, oxycarbonic acids etc. H-bonding
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may be verified in these cases commonly by infrared spectroscopy. A substantial
experimental evidence on different processes of aggregation in under-cooled melts
can be found in Kobeko’s monograph (1952) [461], where a summary of classical
results in this respect is given.

Even in metallic glass-forming melts, especially in the under-cooled melts of
semi-metals like gallium, bismuth, antimony etc. detailed X -ray measurements and
specific heat determinations have revealed the existence of dimers like Ga2, Sb2 and
even higher-order aggregates. It was also mentioned in Chap. 4 that in organic glass-
forming phosphates linear -P-O-P-O- structural elements are the main structural
constituent. Similar processes of formation of branched and linear anionic chains
are detected also in silicate melts and in other typical glass-forming substances
(selenium, sulfur) by different methods of structural analysis.

In the preceding chapter it was already pointed out that some of the earlier
investigators in glass-science even assumed that aggregation is a prerequisite of
vitrification (remember, for example, the aggregation theories of vitrification of
Botvinkin and Berger (Blumberg (1939) [85])). From classical physical chemistry
of organic polymers it is well-known that a decrease in temperature is usually
accompanied by an increase in the degree of polymerization. Hereby, the increase
of the average chain-length is commonly connected with chain-branching and
intra-chain bonding and may lead, finally, to the formation of a complete three-
dimensional network. Compared with simple spherical primary building units of
liquids a polymeric chain molecule is characterized by an increased number of
possible configurations. Due to this peculiarity the existence of polymeric chains
or of equivalent aggregates should considerably increase the total number of
possible spatial configurations and, thus, the entropy of the system. In addition, an
increase in the entropy is to be taken into account, connected with the formation of
different types of structural elements and resulting in additional entropy of mixing
contributions.

So far and subsequently in the following discussions, the notation conformation
is used to describe the possible configurations of complex aggregative structural
elements of the liquid. In general, these complex building units are formed by
primary repeatable units of different types (atomic inorganic polymers like sulfur,
monomeric units in organic polymers and in anionic chains). In these cases the
statistical-mechanical treatment of the topological order, respectively, disorder in
the liquid, which can be described in terms of free volume in lattice hole-models,
has to be supplemented by a configurational statistics accounting for the different
conformations of the complex building units of the melt. This can be done by
generalizing the lattice-hole model outlined in the preceding sections. Different
versions of Ising-type models are usually employed.

In application of Ising-models to the description of liquids the different states
in the model are identified with A- (molecules of the liquid) and B-particles
(holes). Models of this type were developed for a description of polymer solutions
beginning in the 1930s (Flory-Huggins cell or lattice models (see Stewart (1955)
[801] and also Fig. 5.8)). In the simplest form in the framework of this model
conformational contributions to the thermodynamic properties may be described
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Fig. 5.8 One of many
possible conformations of a
flexible chain (black points)
embedded in solute
molecules (white circles) in a
two-dimensional lattice

by using the classical mathematical solution of the problem of finding the number
of possible configurations ˝ of a chain consisting of n identical elements. For a
two-dimensional chain (d D 2)

˝dD2 D 2n�1 (5.91)

is found, while for a three-dimensional lattice (d D 3) with z nearest neighbors the
relation

˝dD3 D .z � 1/n�1 (5.92)

is obtained. A survey of the classical literature on lattice models of polymer
solutions may be found in the monographs by Flory (1943) [218], Volkenstein
(1959) [891] and Prigogine (1957) [647].

Gibbs and DiMarzio (1958) ([251]; see also Gibbs (1960) [250]) were the first
to apply Flory’s approach to melts considering them as an ensemble of chains of
different length and holes, introduced into the lattice. A similar model was also
employed by Gutzow (1964) [291] and Milchev and Gutzow (1981 [560], 1982
[561]) to describe the zero-point entropy and the temperature dependence of the
thermodynamic functions of glass-forming melts. In this model a possible change
in the length of the chains as a function of temperature was incorporated.

In calculating the number of possible conformations of chain-like or more
complicated primary units of the melt it is essential to take into account possible
variations of bond-stiffness in dependence on the considered substance and thermo-
dynamic parameters like temperature. In calculations of the stiffness of polymeric
chains, a proposal made first by Flory is usually employed. It is assumed that an
n-meric chain is constituted of f absolutely flexible and .1�f / totally rigid bonds.
If the rigidity of the chains is considered as a temperature independent quantity, then
the paradoxical result is obtained that for temperatures approaching zero, negative
values of the entropy for a system in a metastable equilibrium state are obtained
(see Gutzow and Milchev (1981) [560]; Milchev (1983) [557]) in contradiction to
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the Third law of thermodynamics. In this way it turns out that the stiffness of the
polymeric chains has also to be considered as a temperature dependent quantity.

In this and similar situations, a very general premise in constructing statistical
models and applying them to the description of thermodynamic properties of
different systems has to be taken into account. It has to be checked always
whether the models employed fulfil the requirements which follow from the three
fundamental principles of thermodynamics. If this is not the case, the model has
to be discarded. This criterion which statistical models have to fulfil was first
formulated by L. Szilard (1929) [815] (see also J. von Neumann (1932) [897] and in
application to idealized thermodynamic models by Vukalovich and Novikov (1952)
[903]). Therefore, we may denote this principle as Szilard’s principle; for a more
popular discussion of Szilard’s principle see Bennett (1987) [66]. In this way, more
or less realistic lattice-hole models of under-cooled polymer or polymer-like melts
can be developed, allowing us to treat three types of structural changes, namely
(i) a variation in the free volume as a function of temperature, (ii) a change in the
conformations of the complex units of the melt, (iii) a variation in length of the
polymer chains with temperature. The second type of variation is connected with
the temperature dependence of chain-stiffness.

5.5.2 Lattice-Hole Models of Polymer Liquids

In attempting to calculate the thermodynamic properties of a model polymeric
liquid consisting of holes and polymeric molecules of different length and varying
stiffness two approaches were applied, both originally developed by Flory. In the
first approach, the probability of introduction of an i -th molecule into the lattice is
examined, assuming that .i � 1/ molecules already have been incorporated into it.
In determining the possible conformations of the i -th molecule it has to be taken
into account that a considerable amount of lattice places is already occupied by the
molecules introduced before. Consequently, the number of mathematically possible
configurations .z � 1/n�1 (compare Eq. (5.92)) has to be multiplied by a probability
function depending on the ratio of already occupied to empty lattice places. This
model approach is discussed in more detail in Flory’s original publications (1942,
1949, 1956) [217, 219, 220] and his monograph [218] in application to polymer
solutions. It is employed practically without modifications by Gibbs and DiMarzio
(1958) [251] to polymer melts.

In the second of the approaches developed by Flory it is assumed that all the
polymer molecules, monomeric units and holes are arranged in a first stage of the
calculations to form a so-called super-chain. This super-chain is introduced then
into the lattice considering it as a mathematical chain where all configurations are
allowed (see Fig. 5.9). This process has to be repeated for all statistically different
super-chains which can be formed out of the constituting the model system building
units. After that an estimate is made to account for the effects due to possible
multiple occupations of lattice sites. In making these estimates Flory used the
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Fig. 5.9 Illustration of the
second of the methods
proposed by Flory for the
determination of the number
of possible configurations of
polymeric solutions:
Introduction of a polymer
super-chain into a
two-dimensional lattice

Fig. 5.10 Two-dimensional
representation of a lattice
occupied by holes, monomers
and polymeric molecules

results of his first method. In comparing both approaches, it may be stated, that
the second of the discussed methods gives an easier opportunity for the calculation
of the mixing contributions of molecules of different types, i.e., in considering
more complex glass-forming melts. Figure 5.10 gives a schematic two-dimensional
illustration of the structure resulting when the filling-process is completed.

It has to be noticed that Flory’s first approach has a serious short-coming not
noticed for a long time. As pointed out by Milchev (1983) ([557]; see also Milchev
and Gutzow (1981) [560]), Flory’s original method in calculating the conformations
of macromolecules gives negative values for the entropy at temperatures T tending
to zero. Thus, it seems, as if according to Szilard’s principle this method has to be
abandoned as contradicting one of the fundamental laws of thermodynamics. Flory
supposed, in fact, in his analysis that in the process of filling the lattice with polymer
chains of different types a number of configurations cannot be realized because
a certain percentage of the lattice sites are inaccessible, blocked by previously
introduced molecules. In this way, Flory assumed in the model analysis a real
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Fig. 5.11 Dependence of the configurational entropy .�S=R/ on temperature .RT=�E/ (in
reduced units) for a polymer system constituted of chains of infinite length in a lattice without
holes: (1) According to Milchev’s proposal; (2) According to Flory’s original model. The dashed
area gives the temperature range, where Flory’s model leads to negative values of the entropy
in contradiction with the Third law of thermodynamics. At T2 according to Gibbs and DiMarzio
(1958) [251] a second-order phase transformation should occur

filling process of the primary units onto the lattice. This approach leads, in fact,
to an underestimation of the possible number of configurations. Milchev (1983)
[557] proposed an exact alternative procedure, guaranteeing that all the building
units of the system (holes and polymer molecules) are introduced into the lattice.
In this way results are obtained which are in agreement with the Third law of
thermodynamics and Szilard’s principle (Fig. 5.11). It has also to be noted that if the
second super-chain method of Flory is used without his restrictive corrections (i.e.,
if the super-chain is introduced into the lattice like a mathematical chain according
to Eq. (5.92), Gutzow (1962 [289], 1977 [298])), again, no violation of the Third
law of thermodynamics is observed. An overestimation of the number of possible
configurations is probably made in this way, which is, however, of no principal
significance.

Going over to the derivation of the basic equations of a simple model of polymer
melts we consider a three-dimensional lattice with a coordination number, z. It is
assumed that, at a given temperature, from the N C N0 lattice sites N sites are
occupied and N0 are vacant (or filled with holes). Again, the interaction energies
between holes themselves and holes and molecules are set equal to zero. By NN the
total number of chain molecules is denoted characterized by an average degree of
association Nx. Denoting by Ni the number of chains with the length, xi , we may
introduce the average degree of polymerization, Nx, as
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Nx D

1X
iD1

xiNi

1X
iD1

Ni

: (5.93)

Consequently, we may write for the number of occupied places in the lattice

N D NN Nx: (5.94)

As in the case of simple liquids we assume, again that the number of monomers
equals N D NA, i.e., we are considering one mole of monomeric building units
of the liquid (in German literature Grundmol). The individual monomeric building
units in each chain are interconnected on average with ( Nx � 1) intermolecular
bonds. These bonds in the case of organic high polymers are of covalent nature. In
other systems also H-bonding (organic molecular liquids), ionic bonding (inorganic
anionic polymers) or metallic bonding (in under-cooled metals) play an important
role.

Following Flory’s approach it is assumed further that from the . Nx � 1/ bonds of
any polymer molecule, a fraction f is in an absolutely flexible state and that the
remaining fraction of (1 � f ) bonds are in the absolutely rigid ground state. By
using the second super-chain method from those described above, it can be shown
(Gutzow (1962 [289], 1977 [298])) that the configurational entropy, calculated via
Boltzmann’s equation from the total number of distinct microscopic configurations,
is given by several additive contributions, i.e.,

�.conf /S.T / D �.�/S C�. Nx/S C�.f /S C�.c/S: (5.95)

In this equation �.�/S describes the contributions to the entropy due to the free
volume. This contribution is given by (compare Eq. (5.65))

�.�/S D �R
�

�

1 � �
ln � C 1

Nx ln.1 � �/

�
: (5.96)

Here, however, the relative free volume is determined by

� D N0
NN Nx CN0

: (5.97)

The other contributions in Eq. (5.95) reflect (see Gutzow (1962 [289], 1977 [298]);
Gutzow and Milchev (1981) [560]):

• A mixing contribution arising from the existence of chains of different length.
This contribution may be written as
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�. Nx/S D R

Nx Œ Nx ln Nx � . Nx � 1/ ln. Nx � 1/� ; (5.98)

• A mixing contribution arising from the possible interchange of the places of f
“excited” and (1 � f ) “ground state” intermolecular bonds, described by

�.f /S D �R
�
1 � 1

Nx
�
Œf lnf C .1 � f / ln.1 � f /� ; (5.99)

• A contribution accounting for the configurational possibilities of an Nx-membered
chain with a flexibility f , expressed in the form

�.c/S D R

�
1 � 1

Nx
�
f ln

�
.z � 1/

e

�
: (5.100)

It is interesting to note that the entropy�S is not determined by the specific form of
the size distribution of the polymer molecules but only by the average characteristics
of this distribution, expressed through the average degree of polymerization, Nx.

For different processes of polymerization and poly-condensation, various size
distributions have been established and verified experimentally by authors like
Schulz (1936, 1937, 1940) [737, 738], Hosemann (1939) [380], Flory (1940, 1943,
1971) [216, 218, 221] and Stewart (1953, 1955) [801]. It can be shown that using
any of these size distributions, one and the same equation Eq. (5.98) results for the
entropy of mixing of polymer molecules of different sizes. From Eq. (5.98) it can
also be seen that within the limits NxD 1 (simple liquid) and Nx! 1 the entropy term
�. Nx/S vanishes. A maximum for this term is found for NxD 2. In this respect, it is of
interest to recall that in some glass-forming metallic alloy systems, associates and
aggregates with such a small average length do indeed dominate.

In addition to the entropy, the expression for the internal energy also has to be
modified. Instead of Eq. (5.69) we may express the internal energy referring to one
mole of monomeric units as

�U.T / D U0N0 C .U1f � U2/ NN. Nx � 1/: (5.101)

While the parameter U0 describes, as earlier, the energy change connected with
the formation of holes, U1 denotes the energy required for the excitation of an
absolutely rigid bond in the ground state. U2 is a parameter connected with
intermolecular bonding and variations in the degree of association. By substituting
these expressions into Eq. (5.72), the Gibbs free energy of the system under
consideration can be determined. Taking into account that we have three different
order parameters �, Nx and f in this generalized model, for a determination of the
equilibrium values of these quantities partial derivatives of the Gibbs free energy
have to be calculated and set equal to zero for each of them. As the result of these
calculations the equilibrium values of the structural order parameters of the system
are obtained in the form
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Fig. 5.12 Temperature dependencies of (a) the relative free volume, (b) the flexibility and (c) the
mean degree of polymerization for a model melt in mean-field-approximation according to Gutzow
(1979) [302]. With dashed lines the frozen-in values of the order parameters are indicated,
corresponding to a vitrification temperature T=Tm D 0:3
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�
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; (5.102)

f D exp

�
� U �
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RT

���
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�
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���1
; (5.103)

Nx D 1C 1

1 � f

�
.1 � �/ exp

�
U �
2

RT

��
: (5.104)

Here by the superscript (*) the values of the parameters U0, U1 and U2 referred to
one mole are specified.

In Fig. 5.12 it is illustrated, how the order parameters of a model system
representing an under-cooled polymer melt vary in dependence on temperature. The
respective curves are calculated using typical U0, U1 and U2-values. Introducing
these equilibrium values of the order parameters into Eqs. (5.96) and (5.98)–(5.100),
the temperature dependence of the thermodynamic functions of the system can be
obtained. Results from such calculations are given in Fig. 5.13a, b. A polymer-like
model of under-cooled glass-forming melts similar to the one described above was
also used by Gibbs and DiMarzio (1958 [251], 1960 [250]). Within this model the
temperature dependence of the configurational entropy was calculated. It turned out
that at temperatures below Tg a second-order phase transformation temperature T2
is to be expected (cf. Fig. 5.11).

In considering these results of Gibbs and DiMarzio the following remarks have
to be taken into account:

• Gibbs and DiMarzio used Flory’s statistics in the original form. In order to
avoid negative S.T /-values for temperatures approaching the zero of absolute
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Fig. 5.13 (a): Temperature dependence of (1) the configurational entropy and (2) the specific
heats of polyethylene (in reduced variables) calculated by Milchev and Gutzow (1981) [560] in
the framework of a mean-field lattice model with energy constants reflecting the real system.
(b): Temperature dependence of the specific heat difference �Cp determined by lattice-hole
models in MFA-approximation for three model melts with different degrees of complexity
by Petrov, Milchev and Gutzow (1996) [634]: (1) Simple liquid without polymerization or
aggregation, (2) liquid with flexible linear living polymer aggregates, (3) liquids with very short
aggregates resembling metal-like structures

temperature, a second low-temperature statistics was introduced in addition. In
this way a peculiar point in the S.T /-curve occurs at T D T2. It is seen that the
existence of such a temperature T2 and the possibility of a second-order phase
transformation is obtained by Gibbs and DiMarzio to some extent artificially. The
significance of this peculiarity in the S.T /-curves found by Gibbs and DiMarzio
gave rise to prolonged discussions. A critical reappraisal of this subject can be
found in papers by Gutzow (1977) [298].
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• In Gibbs and DiMarzio’s analysis only polymer systems with a very high degree
of polymerization are considered. Further processes of aggregation including
changes of polymer length are not investigated. However, for most glass-forming
melts (see Chap. 4) such processes are of essential significance.

A thorough investigation of a variety of possible lattice-hole models and their
features has been carried out by Gutzow (1979) [302] and more recently by Milchev
(1983) [557] and Petrov, Milchev, and Gutzow (1994) [634]. By changing the values
of the parameters U0, U1 and U2 the structure and the thermodynamic properties
of a great variety of glass-forming systems with differing structures (polymer-
like, metallic, molecular glasses etc.) were investigated. The mean-field models
described above in combination with Monte-Carlo simulation techniques proposed
by Jaric̆ (see Jaric̆, Benneman (1983) [404]; Jaric̆ (1983) [403]) were used. The basic
conclusions of the analysis can be summarized in the following way:

• The type of temperature dependence of the configurational contributions to the
specific heat is determined to a large degree by the particular structure and the
complexity of the building units of the model system. For simple liquids mono-
tonically increasing concave �Cp-curves are found. However, if polymerization
or aggregation processes are possible in the system then a �Cp-course with a
maximum in the range 0 < T < Tm is generally observed. Moreover, in the
range Tg < T < Tm a dependence of the form �Cp D constant is found to
be a good approximation. It turns out, consequently that measurements of the
specific heats of real glass-forming systems can give information concerning the
presence or absence of aggregation or polymerization processes in the melt. This
approach resembles to some extent the method proposed by Tarassov, who tried
to prove the existence of polymeric chains in solids also by measurements of
the phonon specific heat (compare Sect. 4.6). The method described here has
the advantage that it is not necessary, as in Tarassov’s approach, to extend the
measurements to temperatures near to absolute zero, which is a very tedious
task from an experimental point of view. The analysis shows that all types of
temperature dependencies of the specific heat which are observed experimentally
can be modeled (cf. Figs. 2.17, 2.21, 3.2 and especially 2.18).

• The analysis of the temperature dependence of the entropy and of other ther-
modynamic functions shows that in the framework of mean-field theories a
non-catastrophic approach to zero-entropy states is found without any indication
that a second-order type phase transformation occurs. Usually the value�S D 0

is approached for temperatures .T=Tm/ � 0:1 � 0:2. In this way, computer
modeling of polymeric liquids in the framework of mean-field lattice theories
does not support the prediction, made by Gibbs and DiMarzio (1958) [251] and
Gibbs (1960) [250], of a second-order phase transformation at a temperature T2
below Tg.

• In applying Monte-Carlo simulations to lattice models containing flexible
polymer molecules similar to those analyzed in the framework of mean-field
approaches it was found in the same investigation that for certain model
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structures very steep �-like temperature dependencies of �Cp are observed.
This result may be an indication of the possibility of the existence of an order-
disorder transition at T2 < Tg . It is caused by the ordering of semi-flexible
polymer molecules with a temperature dependent flexibility. Further computer
modeling and theoretical analysis is necessary to determine the nature of this
process for which, however, no experimental evidence can be obtained since
�Cp measurements below Tg give no information on the state of the fictive melt,
but refer to the glass.

In discussing the results of the already mentioned and similar model calculations
it has to be taken into account that both in mean-field-approaches as well as in
Monte-Carlo simulations discrete lattices are used to describe continuous systems.
This principal shortcoming of the models may significantly affect the conforma-
tional possibilities of the arrangement of the macromolecules as compared with real
systems. Nevertheless, computer-modeling based on lattice models is at present the
only way to prove or disprove theoretical expectations concerning the temperature
dependence of the properties of glass-forming melts below the temperature of
vitrification. In addition, the assumption of only linear aggregation processes may
also be an oversimplification compared with real polymeric systems, where cross-
linking and the formation of two- or three-dimensional structures is possible. In this
sense, the application of models consisting of linear chains has to be considered
only as a first step in examining processes of aggregation and polymerization and
their influence on the thermodynamic properties of real glass-forming melts. Up
to now no computer modeling of the process of vitrification for such complex
polymer systems has been carried out, the efforts being concentrated mainly to the
investigation of the temperature dependence of the thermodynamic properties of the
considered system.

5.6 Configurational Statistical Determination
of the Zero-Point Entropies of Glasses

5.6.1 Comparison of Theoretical and Experimental Results
and the Correlation of the Entropy with the Structure
of Glasses

In many respects the zero-point entropy of glasses �Sg is the focus where the
problems of the structure, the thermodynamics and the statistical physics of the
vitreous state converge to a single point. Values of the zero-point entropy greater
than zero, measured experimentally, initiated the discussion concerning the nature
of the vitreous state (see Chaps. 2 and 3). It was mentioned in the introduction
that Albert Einstein was the first to foresee the possibility that for glasses and for
solid solutions as states of constant (we would say: frozen-in) statistical disorder
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zero-point entropies �S0 > 0 have to be expected. “However, too little is known
at present about the structure of glasses”, Einstein mentioned 1914 in the cited
paper [188], “in order to determine the possible value of their zero-point entropy”.
It was also Einstein who proposed the procedure which has to be followed: The
number ˝ of thermodynamically distinct microstates of the system at T ! 0 has
to be calculated and the entropy �S0 has to be determined in accordance with
Boltzmann’s formula Eq. (2.32). The possibility that glasses may be an exception
with respect to the applicability of the Third law of thermodynamics was also
suggested by Lewis and Gibson (1920) [507] even before the major part of
theoretical and experimental work clarifying the problem was performed.

Using Einstein’s proposal first estimates of possible values of the zero-point
entropy of solid solutions were given by Stern (1916) [798] and Schottky (1921)
[735]. For binary solutions consisting of two types of particles with particle numbers
N1 and N2 they obtained from

�.1=2/S.0/ D kB ln
.N1 CN2/Š

N1ŠN2Š
(5.105)

the following expression for the molar entropy

�.1=2/S.0/ D R ln 2; (5.106)

provided the molar fractions of both components are equal. Similar �S.0/-
values were derived also for three-component solutions. Experimental verifications
were soon found both for solid solutions as well as for molecular crystals (i.e.,
orientational glasses in the sense as discussed in Sect. 4.11; see Kaischew (1938)
[416], Haase (1956) [338], and Levich (1954) [505]).

In a next attempt L. Pauling and R.C. Tolman (1925) [630] tried to estimate in a
more general way the value of the zero-point entropy by an imagined evaporation-
condensation process. The expression for the zero-point entropy of glasses was
found by them to be of the form

�Sg D R ln a.o/g : (5.107)

According to Pauling and Tolman “the quantity a.o/g may be regarded as the average
number of ways in which a single molecule can be rearranged in the under-cooled
liquid : : : It is evident on the basis of this interpretation”, they continued, “that
a
.o/
g will be a small number which increases as the complexity of the molecules

increases”. It follows from this citation that Pauling and Tolman and even later – in
1939 – Fowler and Guggenheim [225] did not differentiate between under-cooled
liquids and glasses; a clear distinction in this respect was made first, as mentioned in
Chap. 2, by Simon (1931) [757]. However, the second part of their statement turned
out to be prophetic.
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A first detailed quantitative analysis of the possible values of the zero point
entropy of glasses was performed by Gutzow (1962 [288], 1964 [291]). His analysis
was carried out on the basis of lattice-hole models as discussed in Sect. 5.5. It
was shown that the frozen-in entropy consists of several additive contributions
reflecting

• The general topological disorder determined in the simplest case via the relative
free volume � or from the relative occupied volume ˇ as (compare Eq. (5.78))

�.�/S Š 3R� Š 3R.1� ˇg/; ˇg D �glass

�crystal
; (5.108)

where �glass and �crystal are the densities of the glass and the liquid. Taking
into account the ˇ-values summarized in Table 2.5 (ˇg � 0:85 � 0:89) typically
�.�/S Š .0:4�0:6/ R is found. For polymeric systems we have to use Eq. (5.96)
instead of Eq. (5.78). For long chain molecules the second term in the brackets
may be neglected and we obtain

�.�/S Š �R �

1 � �
ln � Š RI (5.109)

• The disorder of mixing of polymeric chains of different lengths. The highest
value of �. Nx/S is obtained for Nx D 2, it equals (see Eq. (5.98))

�. Nx/S D R ln 2: (5.110)

For systems with a degree of polymerization higher than oligomeric ( Nx > 10),
this contribution is negligible;

• The disorder resulting from the different possible conformations of the chain
molecules frozen-in at Tg and the exchange of excited and non-excited inter-
molecular bonds (see Eqs. (5.99) and (5.100)). In dependence on the value of the
chain stiffness, f , the quantity�.f=c/S D �.f /S C�.c/S varies in between

�
0:1 ln

�
z � 1

e

�
� 0:2

�
� �.f=c/S

R
�
�
0:1 ln

�
z � 1

e

�
� 0:1

�
: (5.111)

With realistic values of the coordination number z (i.e. for z D 4 and for z D 12)
values in between 0 and 4R are found;

• The disorder resulting from different possible orientations. For linear molecules
with two different possible orientations we get according to Eq. (5.106)

�.or/S D R ln 2: (5.112)

It turns out that the overall configurational entropy �Sg cannot exceed, in general,
a value of about (3 � 5)R.
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Table 5.1 Comparison of theoretical estimates and experimental data for the zero-point entropy
of glasses. The relative occupied volume ˇ is calculated from the density data given in Table 2.5.
The ˇ-data for glycerol are taken from Fig. 2.28, for NaPO3 from Gutzow (1970) [292]

Substance ˇg �.theor/Sg �.exper/Sg Source for �.exper/Sg

SiO2 0.83 0.51 R 0.45 R Simon and Lange (1926) [760]
GeO2 0.85 0.45 R 0.45 R Nemilov (1976) [596]
BeF2 0.84 0.47 R 0.55 R Timura et al. (1975) [837]

Nemilov (1976) [596]
AlPO4 0.84 0.50 R
GaPO4 0.87 0.40 R
P2O5 0.87 0.40 R
B2O3 0.74 0.78 R 1.28 R Weyl and Marboe (1967) [919]
As2O3 0.89 0.32 R
GeS2 0.89 0.32 R
Se 0.89 0.32 R 0.35 R Anderson (1937) [9]
Organic
Linear polymers 0.89 0.32 R (0.70–1.0)R cf. Table 2.2
Vitreous
Metallic alloys 0.9–0.95 0.30 R (0.4–0.9)R cf. Table 2.2
NaPO3 0.99 0.03 R 1.3 R Grantcharova et al. [268, 271]
Glycerol 0.98 0.06 R 2.3 R Simon (1931) [757]
Bernal-Scott models
Loose random 0.82 0.53 R
packing
Dense random 0.86 0.40 R
packing

Further it becomes evident that in agreement with the expectations of Pauling and
Tolman a well-expressed correlation exists between this value and the complexity
of the basic building units of the substance and the structure of the glass. For
glasses where only one type of disorder dominates (simple non-associating glasses,
orientational glasses) the highest possible value should not exceed R or (Rln 2)
(compare Eqs. (5.109), (5.110) and (5.112)). A classical example in this respect
are the network forming glasses (SiO2, Ge2, BeF2, AlPO4 etc.; see Gutzow (1962)
[288]). As shown in Table 5.1 the theoretical estimates for this case are in good
agreement with the experimental results as obtained first by Witzel (1921) [930]
and Simon and Lange (1926) [760].

Based on the outlined derivations, Gutzow (1962 [288], 1964 [291]) predicted
�Sg-values for BeF2 and GeO2, for which at that time experimental data were not
known. In subsequent years the predictions were verified experimentally (compare
Table 5.1 and the summary of experimental data given by Nemilov (1976 [596],
1977 [597])). Similar low values of �Sg are also found for glasses where only
orientational disorder occurs (spin-glasses, frozen-in crystals (Jäckle (1981, 1986)
[391, 392]; Johari (1980) [410])). In systems we denoted in Sect. 4.11 as Flory’s
glasses with perfect flexibility i.e. with (f D 1) a value�Sg � Rln..z � 1/=e/ is to
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be expected. Relatively low values of �Sg are found also for Se. For this substance
the chain stiffness f has so low and the degree of polymerization Nx so high values
that �.c=f /S � 0 holds. Of particular interest are also the estimates for AlPO4 and
P2O5, where values similar to those of SiO2 have to be expected.

The relatively high �Sg-value for B2O3 may be considered as an indication
that besides the topological also orientational and mixing contributions to �Sg
have to be taken into account. In metallic alloy glasses mixing effects seem to be
of particular importance. This result can be understood taking into account that
metallic glasses are, indeed, binary or even ternary systems. As seen, moreover,
glycerol and NaPO3 represent exceptions from the estimates given above. They
represent examples of systems where the crystal and the glass have qualitatively
different structures and crystallization occurs via a reconstruction of the building
units of the melt. These particular properties, also known from direct structural
investigations, are reflected in Table 5.1 by ˇ-values near to unity.

It is seen from the results outlined in Table 5.1 that with respect to the frozen-in
configurational part of the entropy, lattice-hole models also allow us to derive
simple (although approximative) relations giving us the possibility of calculating
this quantity from known thermodynamic parameters of the system and, for this
case, in particular from the relative occupied volume ˇ. Table 5.1 shows, moreover,
in accordance with Fox and Flory (1951) [226] that vitrification of simple liquids
occurs in fact at nearly the same values of the free volume, corresponding in
general, to the respective values of Bernal’s and Scott’s mechanical models of
random packing of equally sized spheres. Additional support to this conclusion
is given by molecular dynamic simulations of systems of hard spheres, showing
that vitrification is connected with a volume densification of the system (see Kanno
(1980) [429]; Gordon et al. (1976) [266]; Hoover and Ree (1968) [379]). In such
simulations vitrification is shown to occur at a packing density � Š 0:6 which
corresponds to ˇ Š 0:89.

5.6.2 Further Attempts

The further development of theoretical determinations of the zero-point entropy of
glasses is characterized by a more specific account of the particular structure of
the considered substance. First attempts in this respect were developed by Hicks
(1966) [355], Beal and Dean (1968) [54] and Smyth (1971) [784]. Beal and Dean
performed their calculations by analyzing the process of construction of a model of
vitreous SiO2, i.e., by counting the number of ways a tetrahedron can be added to a
typical site of the disordered network, either

• To a site, where it is bound by its three corners (triple bonding, which can be
realized by one way only),

• To a site, where it is bound by two corners (double bonding, which can be realized
by one or two possibilities),
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• To a site, where it is bound by only one corner (single bonding, which can be
realized on average in four different ways).

As the result of the analysis the following expression for �S was obtained

�S Š R

�
"ˇ

2
ln 1C .1 � "ˇ/ ln 2C "ˇ

2
ln 4

�
Š R ln 2 Š 0:69R: (5.113)

The pre-factors to the logarithmic terms in Eq. (5.113) are proportional to the
frequency of occurrence "ˇ of the respective type of bonding (0 � "ˇ � 1).
However, since approximately ln 2 Š .1=2/ ln4 holds, the numerical result is
widely independent of the actual value of this parameter. It is close to the data given
in Table 5.1 for typical network formers. Beal and Dean identified this result with
�Sg, although no proof was given for the validity of this assumption. With the same
justification, an identification of this quantity with �Sm should also be possible.

An elaborated configurational statistics of disordered SiO2-structures were devel-
oped by Smyth (1971) [784]. At a less advanced level a similar model was
earlier proposed by Urnes (1961) [876]. Smyth calculated the total number of
bonding of silicon and oxygen atoms for disordered structures having different
coordination numbers with either silicon or oxygen ions. The configurational parts
of the thermodynamic functions of silicate melts are determined in this approach
by the presence and frequency of occurrence of different structural elements which
are correlated with the composition (e.g., Na2O=SiO2, Si=O, etc.). However, no
indication is given by the author of how the thermodynamic functions depend on
temperature and other external parameters.

Theoretical attempts at a determination of�Sg were also carried out based on the
Bernal-Scott model of liquids (see Sects. 4.5 and 4.6). One of these methods is used
to calculate the number of possibilities a random sequential filling of mono-layers
may be performed – by the so-called Matheson algorithm of computer modelling of
random close packing (Matheson (1974) [537]; Woodcock (1976) [931]; Bonissent,
Finney, Mutaftschiev (1979) [90]). In such approaches configurational entropies
of the order of R are usually obtained, however, without giving a specification
to what temperatures (Tg or Tm) this value should be assigned to (the packing
density of the Matheson liquid equals 0.59; in the molecular dynamics studies of
hard sphere systems carried out by Woodcock packing densities close to values
reported by Scott are found; for the hard sphere model the glass transition is, indeed,
characterized by values of �Sg near 1 R). Other developments are based on more
or less realistic lattice-hole models of liquids as antipicated already by Cernuschi
and Eyring (1939) [124]. As mentioned already, in the simplest version, when only
the division between occupied and unoccupied lattice places (holes) is made, a
great variety of possible local configurations can be found as illustrated in Fig. 5.14
(Milchev, Gutzow (1981) [560]).

In the framework of mean-field theories also the frequency distributions for
the different configurations may be calculated (see Milchev and Gutzow (1981)
[560] and Fig. 5.15). Assuming that each of the configurations shown on Fig. 5.14
represents a statistically independent structural unit the configurational entropy of
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Fig. 5.14 The 14 possible local configurations in the first coordination sphere of a 2-dimensional
lattice-hole model of simple liquids: Possible configurations in the vicinity of an atom (top) and a
hole (bottom)

6 7 8 9 10 11 12

0.1

0.2

0.3

No.of neighbors

F
re

qu
en

cy

Fig. 5.15 Distribution diagram for atoms with different numbers of neighbors in the first
coordination sphere of a liquid. The calculation was carried out in the framework of a mean-field
approach. Parameter values were chosen referring to the properties of liquid argon in the vicinity
of the melting temperature (Milchev and Gutzow (1981) [560])

the system may be calculated as a mixing entropy via

�S.conf / D
X
i

ci ln ci : (5.114)

With the distribution given on Fig. 5.15, a value �S.conf / of the order 1.5 R is
obtained close to the entropy of melting of liquid argon (�Sm Š 1:7R).

By applying another method to describe the structure of liquids - in terms of
the statistics of Voronoi polyhedra (see Fig. 4.16) – Barker et al. (1975) [36] also
determined frequency distributions but this time of faces of the polyhedra with a
given number of edges. The results obtained for temperatures near Tm are given on
Fig. 5.16. Applying Eq. (5.114) again, values of the configurational entropy of the
order�S.conf / Š 1:4 R are found. Employing the empirical relation Eq. (2.129) we
could expect a value of �Sg of the order
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Fig. 5.16 Distribution
diagram for the face
frequency of Voronoi
polyhedra modelling Bernal’s
hard sphere liquids at
temperatures near Tm (After
Barker et al. (1975) [36])

�Sg Š 1

3
�S.conf / � .0:35 � 0:4/R; (5.115)

which agrees with alternative estimates of the frozen-in entropy of a Bernal-Scott’s
glass as shown in Table 5.1 and also with the results obtained by the mean-field
approach.

In both of the discussed approaches – considering either different local
configurations in the melt or different types of Voronoi polyhedra – the real
system was replaced by a model system characterized by different structural units
occurring with a defined frequency (distribution of structural units, cf. [149]). The
configurational entropy was calculated then as the entropy of mixing. Such an
approach can be used in very different, but of course, in part, semi-empirical ways
for a description of disordered systems, in general. Let us suppose, for example
that by some appropriate method, all the distances di between neighboring building
units in an amorphous solid have been determined. For a simple mono-atomic
system the mean interatomic distance d0 and the dispersion D0 can be determined
then as (see, e.g., Ventzel (1969) [883])

d0 D
C1Z

�1
dif .di /d.di /; (5.116)

D0 D
C1Z

�1
f .di /.di � d0/2d.di /; (5.117)

where f .di / is the distribution function of interatomic distances. Assuming that
the average coordination number in the system equals Nz, the number of interatomic
bonds for one mole of the substance equals (NzNA=2).

The entropy of mixing can be written then similarly to Eq. (5.114) as

�.mixing/S D �2
�
RNz
2

� C1Z
0

f .di / lnŒf .di /� d.di /: (5.118)
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Assuming a Gaussian distribution

f .di / D 1p
2	D0

exp

 
� .di � d0/

2

2D0

!
(5.119)

we obtain (Ventzel (1969, p. 497) [883])

�.mixing/S D Nz
2
R ln.2	D0/: (5.120)

For the crystal, atomic oscillations around the lattice sites cause also a relatively
small dispersion in the lattice spacings. If we apply, consequently, the above

equation both for the melt (characterized by �.mixing/

.m/ S ; D.m/
0 ) and the crystal

(�.mixing/

.c/ S ; D.c/
0 ) we obtain

�S.conf / D �
.mixing/
.m/ S ��

.mixing/

.c/ S D NzR
2

ln

0
@D.m/

0

D
.c/
0

1
A : (5.121)

A similar expression was derived for the first time – for the determination of the
temperature dependence of the viscosity � – by Avramov and Milchev ((1988)
[26]; see also Avramov (1990, 1991) [20, 21], cf. also [121]). It can be extended
to the description of polymer melts, e.g., in the following way. Suppose in a system
consisting initially of NA building units (i.e., one mole) polymerization processes
take place. As a result, NN polymer molecules are formed with an average degree
of polymerization Nx (compare Eqs. (5.93) and (5.94)). To each (monomeric or
polymeric) molecule, two intermolecular valencies may be attributed. While in
the initial state 2NA valencies are present this number is reduced on average to
2NA= Nx in the polymerized system. The number of intramolecular bonds formed
upon polymerization equals therefore 2NA(. Nx � 1/= Nx).

Applying Eq. (5.114) we arrive easily at the already discussed result (Eq. (5.98))
determining the configurational entropy of a system with a given distribution of
polymer chain molecules. In the same way the entropy of mixing of “ground-state”
and “excited” intermolecular bonds can be calculated resulting in Eq. (5.99) as well
as the conformational entropy term given by Eq. (5.100). Consequently, the full
set of equations determining the configurational entropy of polymer melts may be
calculated showing the strength of the described method.

Further extensions of the problems connected with the calculation of the zero-
point entropy of glasses could include the analysis of the influence of defects, e.g.,
caused by radiation, of minor additives (Zakis (1984) [944]), micro-heterogeneities
(e.g., as defined in the crystallite hypothesis (Gutzow (1964) [291]) and other
possible forms of superstructure in glasses. Accounting for the logarithmic structure
of the expression for the entropy of mixing, it is evident that the influence of such
effects should be of minor importance except, may be, in cases like vitreous carbon,
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where different structural units (amorphous and graphite like) exist in comparable
amounts. The values of the entropy and of the thermodynamic functions, in general,
are relatively insensitive to moderate structural changes. This effect is both a
valuable advantage (when the problems of the overall structure are considered)
as well as a disadvantage (since it does not allow us to decide, e.g., whether a
superstructure exists or not).

In order to obtain definite results from Eq. (5.121) the values of the parameters
D0 both for the crystal and the melt have to be known. One way of obtaining

the required information in this respect would be to connect the ratio (D.m/
0 =D

.c/
0 )

with the broadening of X -ray diffraction peaks of amorphous solids as compared
with the crystalline state (for details see Frenkel’s monograph (1946) [234], in
particular, the Prins model of structural diffusivity discussed there and also Fisher’s
book (1961) [212], where expressions connecting the thermodynamic properties of
liquids with the radial distribution function are given). Another method could consist
of expressing the mentioned ratio through the relative free volume. A detailed
analysis of these problems is, however, reserved to future developments of both
theory and experiment.

From the point of view of the general theory of information, entropy is a
measure of the uncertainty of our knowledge of the state and the microstructure
of the system (Shambadal (1963) [745]; Ventzel (1969) [883]). From such a
point of view, in glasses, a residual entropy and thus a lack of information is
frozen-in. An under-cooled melt corresponds to a state of temperature dependent
increased informational disorder, glasses are systems with a frozen-in degree of
structural information and crystals are the condensed state of matter with the
highest possible degree of structural information. Stabilization of a glass is, in this
sense, a process in which states with a higher degree of structural information are
reached. Similarly, crystallization represents an evolution leading from states of
informational uncertainty to a state with full structural information.

5.7 Specific Heats of Glasses at Ultra-low Temperatures

In discussing his own results on the Cp-measurements of SiO2-glass Witzel (1921)
[930] mentioned that there is the hypothetical possibility that below hydrogen
temperatures (corresponding to the lowest temperatures 9 K reached by him) an
unexpected change in the specific heats could occur, which could possibly lead to
�S0 ! 0 at T ! 0 and reconcile the properties of glasses with the predictions
of the Third law of thermodynamics. Simon’s experiments (see Simon and Lange
(1926) [760]) which were performed down to helium temperatures (4 K) seemed to
exclude such a possibility.

Many years later it turned out, however that at ultra-low temperatures (below 1 K)
in amorphous solids, in fact, a dramatic rise ofCp can be observed as compared with
the respective value for the crystal. One of the first substances where such effects
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Fig. 5.17 Temperature dependence of the specific heats of (a) SiO2 and of (b) GeO2 at ultra-low
temperatures in logarithmic coordinates. Full lines: Experimental data for the specific heats of the
substances in the amorphous state; dashed curves: Experimental data for the specific heats of the
crystalline phase (According to Zeller and Pohl (1971) [951])

were detected was, again, SiO2; many others followed (see Zeller and Pohl (1971)
[951]; Johari (1992) [411]). An illustration is given on Fig. 5.17. This anomaly
cannot be explained in terms of classical models of phonon contributions to the
specific heats.

An interpretation turned out to be possible, however, via a model of phonon
assisted quantum mechanical tunneling formulated by Anderson et al. (1972) [12]
and Philips (1972) [635]. According to the mentioned authors in amorphous solids
localized groups of atoms are frozen-in which at ultra-low temperatures tunnel
between two ground states of nearly the same energy. It turned out (see Johari
(1992) [411]) that the ultra-low temperature rise ofCp is possible only in amorphous
structures, it depends on the conditions of vitrification in a way similar to the
dependence of the temperature of vitrification on cooling rate. It can be shown,
however that the ultra-low temperature change in Cp does not affect the value of the
zero-point entropy measurably. After integration over the small temperature range
even a considerable change in Cp is not sufficient to result in significant variations
of the thermodynamic functions of the system.

Another anomaly typical for vitrified silica glass is the negative value of its
coefficient of thermal expansion ˛ for temperatures below approximately 190K.
This negative value of ˛ is retained down to T ! 0. It can be explained in terms
of classical statistical physics as the result of a change in the mode of harmonic
oscillations below the mentioned temperature. A thorough discussion of this effect
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and a summary of the literature may be found in Novikova’s monograph (1964)
[607].

Further, it is interesting to note that crystalline quartz samples, totally amorphi-
sized by heavy doses of neutron bombardment, display both anomalous effects. This
result is an additional confirmation of the possibility of transforming crystals into
a glass by heavy radiation damage (see also Samwer and Ettl (1994) [682]). In
analyzing this process, it is to be taken into account that under neutron irradiation
along the neutron tracks in the crystal temperature changes of up to 10,000 K are
to be expected. In this sense the seemingly anomalous transformation quartz !
glass is indeed a transformation which has to be described as a sequence crystal !
superheated melt ! quenched glass.

5.8 Atomistic Approach to the Kinetics of Stabilization

Lattice-hole models have been used also in different applications for the description
of the properties of vitrified glass-forming melts and of the process of vitrification
itself. Historically, the first attempt to describe from a microscopic point of view
processes of vitrification of glass-forming melts was made by Alfrey, Goldfinger and
Mark (1943) [8], who considered a glass as a lattice-hole system with a frozen-in
number of holes. In a similar approach, Wunderlich (1960) [934] employed lattice-
hole models of simple liquids for the calculation of the specific heats, while Hirai
and Eyring (1958 [364], 1959 [365]), Bartenev (1966) [45], Bartenev et al. (1969)
[49], and Sanditov and Bartenev (1982) [683] applied such models for an analysis
of the viscosity and, in general, of the rheological properties of glass-forming melts.

Free-volume approaches for understanding the viscosity of liquids go back to
Batchinski (1913) [50], who drew attention to the fact that the viscosity of liquids
is determined primarily not by temperature but by the free volume of the liquid.
Batchinski’s suggestion turned out to be of great heuristic significance as will be
elaborated in more detail in Chap. 12.

In the present section, we will restrict ourselves to a discussion of the atomistic
interpretation of stabilization processes in the simple form given in Chap. 3 from
a macroscopic point of view. As the order parameter, again, � is considered,
describing the effect of free volume on the properties of the glass-forming melt.
The freezing-in process in terms of the applied model is equivalent to a fixing of
the number of holes, respectively, of the value of �. We will employ the notations as
introduced in Chap. 3.

According to the already discussed lattice-hole model of simple liquids, the
equilibrium value of the order parameter �.e/ can be approximated for T < Tm by
Eq. (5.77). This approximation is valid since, in the considered temperature range
T < Tm, the order parameter � does not exceed 0.05 (� � 1), (see also Hirai
and Eyring (1958 [364], 1959 [365]); Dobreva and Gutzow (1994 [176])). The
configurational contributions of the holes to the thermodynamic functions of simple
liquids may be then written (compare Eqs. (5.69)–(5.71) and (5.73)) as
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�U Š �E˚
0 �; (5.122)

�V Š V0NA�; (5.123)

�H Š .�E0 C pV0/�; (5.124)
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Suppose, the system is frozen-in at a temperature of vitrification T � � Tg . The
frozen-in structural parameter � can be expressed in the form
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��E
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#
: (5.126)

With Eqs. (5.80) and (5.126) we may write
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By a Taylor-expansion of the logarithmic term the relation
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is obtained and applying the approximations (T 
 T � 
 Tg)

� � �.e/
�.e/

� �E˚
0

RT 2g
.T � � T / (5.129)

is found. It turns out that for relatively small deviations from the respective
metastable equilibrium �� is indeed a linear function of (T � � T ), as assumed
by the phenomenological approach as developed in Chap. 3. However, in knowing
the more exact relations connecting T � and � it is possible, now, to give an estimate
of the region of applicability of the linear approximation.

For silicate glasses, stabilization processes take place at temperatures 40–50 K
below Tg. Tg is of the order Tg � 1;000K. For organic glasses �T D T � � T

is of the order 10–20 K with values of Tg about 400–500 K. It turns out that
for both cases, above given linear relation is a quite accurate approximation.
The thermodynamic driving force for processes of stabilization, proceeding at a
temperature T , may be expressed for the considered case as

�Gs D �G.T; �/��G.T; �.e//: (5.130)



5.8 Atomistic Approach to the Kinetics of Stabilization 213

A Taylor-expansion of the logarithmic terms in �G.T; �/ in the vicinity of �.e/

(cf. Eq. (5.125)) including second-order terms results in

�G D .�E0 C pV0/.� � �.e//C .� � �.e//RT ln �.e/ C RT

2�.e/
.� � �.e//2: (5.131)

Taking into account Eq. (5.77) the terms linear in .���.e// vanish and Eqs. (5.130)–
(5.131) yield

�Gs D RT

2
�.e/

�
� � �.e/
�.e/

�2
: (5.132)

With this equation the second-order derivative (@2�Gs=@�2) can be calculated
which occurs in the equations of the phenomenological theory of stabilization
derived in Chap. 3 (cf. Eqs. (3.120)–(3.121)). As the result one obtains

�
@2�Gs

@�2

�
�!�.e/

� RT

�.e/
: (5.133)

With this expression an atomistic interpretation of the relaxation time � defined with
Eq. (3.121) may be given as

� D �.e/

D
; (5.134)

where by D the diffusion coefficient of the considered process of structural
reorganization is denoted as defined by Eq. (3.116). Moreover, with Eq. (3.122)

d�

dt
D �D.� � �.e//

�.e/
(5.135)

is found. Thus, the rate of change of � is proportional to the mobility coefficient D
and the relative deviation of the order parameter � from its equilibrium value �.e/.
Moreover, taking into account the linear relationship Eq. (5.129) Tool’s equation
(Eq. (3.129)) is obtained as the result of the present atomistic approach.

With �Cp D T .@�S=@T / or Eq. (3.19) we obtain

�Cp D T

�
@�S

@�.e/

�
d�.e/

dT
(5.136)

and

�Cp D .�E˚
0 /

2

RT 2
�.e/: (5.137)

A substitution of Eqs. (5.137) and (5.129) into Eq. (5.132) directly gives Eq. (3.141),
again. Thus, a comparison with the results obtained by the phenomenological
considerations outlined in Chap. 3 shows an expected agreement with the atomistic
approach. Moreover, some of the parameters introduced phenomenologically get
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a microscopic interpretation. A first attempt at giving an atomistic interpretation
of stabilization phenomena was made in the above terms by Dobreva and Gutzow
(1994) [176].

It can be verified in this way that in the framework of the simple atomistic
model analyzed, it is possible to calculate some of the constants introduced
earlier phenomenologically. We have, however, to take into account that the model
employed is, in fact, a very crude description of real glass-forming melts. Thus, if
we use more sophisticated models, quantitative corrections can be expected. The
simple model considered also has a principal disadvantage. It cannot give, as with
any two-level model of liquids with only two possible states of a lattice site and
one activation energy, a description of memory effects in relaxation processes of
glasses. For a quantitatively more correct description and an incorporation of such
qualitatively new features, models of the type discussed here for polymer liquids are
required, where three different activation energies are introduced describing hole
formation, chain flexibility and association.

5.9 Model Statistical Treatments of Vitrification

The first attempts to describe the process of vitrification in molecular terms were
made by Tammann (1922 [818], 1933 [820]), Botvinkin (1938) [94], Berger (1930)
[68], and Alfrey, Goldfinger, and Mark (1943) [8]. Tammann connected vitrification
with the freezing-in of molecular motion in the liquid, in particular, with the
inhibition of the rotation of molecules. This decrease of the degree of rotational
mobility should result, according to Tammann, in the discontinuity of the specific
heat at the transformation temperature, Tg. Botvinkin and Berger supposed that, at
Tg, temperature dependent processes of aggregation result in the formation of an
infinite network which they assumed to be equivalent to the formation of the glass.
Similar aggregative, polymeric or micellar approaches in vitrification can be found
also in other earlier work in glass science (see e.g., Blumberg (1939) [85]). Alfrey,
Goldfinger, and Mark (1943) [8], as already mentioned, considered vitrification as
a freezing-in process of the fraction of holes in a lattice-hole model. The same
assumption was adopted also by Hirai and Eyring (1958 [364], 1959 [365]).

The derivations outlined in the preceding sections in the framework of lattice-
hole models show that, in general, the ideas discussed historically (freezing-in of
free volume, inhibition of molecular motion due to increased molecular stiffness,
formation of polymeric structures) are indeed of importance in vitrification. An
illustration is given in Fig. 5.12. The steep variation of the three structural order
parameters �, f and Nx with decreasing temperature dramatically increases the
viscosity of the system and the time of molecular relaxation. Thus, it may cause
vitrification. In vitrification, as indicated in the same Fig. 5.12, constant values of
the structural order parameters are frozen-in. At present, however, it is difficult to
decide, which of above discussed processes is the dominant one.
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The first attempts to describe the kinetics of vitrification in molecular terms were
made by Bartenev (1951) [44]. In the derivation of his equation the assumption
is made that self-diffusion and relaxation in the under-cooled vitrified melt are
determined by a single activation energy. Thus with the assumption that vitrification
takes place at � � �t (time of observation) the Bartenev-Ritland equation can be
easily derived, as shown in Sect. 3.6. A similar model, i.e., a liquid in which two
states (a ground state and an activated state) of the buiding units are possible was
used by Volkenstein and Ptizyn (1956) [892] to derive in a more straightforward
way the Bartenev equation (given by Eq. (3.85)). In the literature (Mazurin (1986)
[543]) this derivation is denoted as the starting point of the molecular kinetic theory
of vitrification. Further developments and ideas connecting more complicated
rheological behavior in vitrification and qualitative ways of explaining the kinetics
of vitrification and especially of stabilization (the so-called stretched exponential
formula for relaxation of glass-forming systems, see Chap. 12) may also be found
in Mazurin’s monograph (1986) [543].

As already mentioned, two-level models cannot give an explanation of memory
effects in the rheology of glasses and in their behavior on annealing. This is
the reason, why neither the Volkenstein-Ptizyn model nor the phenomenological
treatment applying one activation energy can describe the complicated behavior of
real organic and inorganic polymer glasses when they are quenched to different
temperatures and are exposed afterwards to different heat treatments. In this respect,
a significant step forward was made in a recent publication by Avramov and Milchev
(1984) [25], in which a three-level model was used in order to obtain at least a
qualitative description of memory effects in the rheology and the thermal behavior
of glasses in molecular terms. Although a third level is introduced by these authors
in a somewhat formal way the Avramov-Milchev model gives an indication of the
necessary directions of further developments.

Of particular interest is also a new approach in the microscopic description of
vitrification developed in a series of papers by Götze (1985) [261], Bengtzelius,
Götze, and Sjölander (1984) [65], and Bengtzelius and Sjögren (1986) [64].
In this approach the dynamics of vitrification is described from first principles
governing molecular processes and relaxation in condensed systems. It is shown
that the solution of certain non-linear equations for the correlation functions of the
liquids exhibits anomalies which coincide qualitatively with those known from the
liquid-glass transition, described in Chaps. 2 and 3. It turns out that from such a
general point of view, the liquid-glass transition can be understood as a dynamic
transformation of many-particle systems from ergodic to non-ergodic behavior.
Although in this approach a number of approximations and simplifications are used
(for example, only one-component systems are considered) it seems also to be a
fruitful direction of further research in a generalized description of vitrification
processes. For a somewhat different approach and an overview on attempts of a
theoretical description of the structure of substances in the condensed state including
glasses see also Turski (1989)[868].
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5.10 Conclusions

The results of the preceding sections show that even relatively simple lattice-hole
models may give a qualitatively correct description of the temperature dependence
of the thermodynamic properties of glass-forming melts, of the process of vitrifica-
tion and stabilization of glasses. As mentioned in the introduction to this chapter,
lattice-hole models were applied preferably, because they may be derived from the
general concepts of statistical physics. Hereby, the nature of the approximations
used is relatively clearly seen and also the directions of possible improvements. This
is also the reason why we have used lattice models for Monte-Carlo simulations of
polymer melts as first done by Jaric̆ (1983) [404].

It has also to be noted that the molecular approaches in the description of glass-
forming systems are at their very beginning (for a recent overview on atomistic
modeling of polymeric systems see Monnerie and Suter (1994) [573]). This is the
part of glass-science, which, when compared with other theoretical aspects of the
description of the vitreous state (structure, thermodynamics, theory of nucleation
and crystallization, rheology), seems to be at the lowest level of development.
However, attempts in this direction reap the rewards accruing from any innovatory
investigation of a scientific problem: Here the efforts of the interested scientists can
still be of utmost significance and new ideas can bring the benefit of unexpected
results. Nevertheless, it seems also that the time has come to bring to an end the
kaleidoscopic generation of new atomistic models of liquids and glasses. Any
development which is not based on the general principles of statistical physics and
which cannot be derived by calculating the partition function of the system has little
chances of success.

Very interesting results can be expected from computer simulations (Monte-
Carlo and molecular dynamics) with the intention of studying the kinetic and
structural effects in liquid-glass transitions by varying the cooling rates (see, e.g.,
Soules (1990) [787]; Lai et al. (1993) [491] and references cited therein). Taking
into account the encouraging results obtained with the simplest but well-founded
models it seems it would be fruitful to try to continue in the described way the
development of simple models in order to test new ideas. In this connection we
would like to recall the remarkable words of two of the greatest scientists working
in the field of statistical physics – J.W. Gibbs and Ya.I. Frenkel. Gibbs noticed in
1881 in his letter to the American Academy of Arts and Sciences on the occasion
of being awarded the Rumford medal (see Rukeyser (1964) [675]): “One of the
principal objects of theoretical research in any department of knowledge is to find
the point of view from which the subject appears in its greatest simplicity”, while
Ya. Frenkel wrote (see Frenkel (1947) [234]): “The more complex the system is, the
simpler its theoretical description should be : : : The theory should be required only
to provide a correct interpretation of the more general characteristics and laws
of the system : : : The theoretical physicist is in this respect like a cartoonist who
does not reproduce all the details of the original, but simplifies it so as to throw
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into relief its most typical features only. Photographic precision can and should be
required in the description of the simplest systems. The adequate theory of complex
systems should only amount to a good caricature which emphasizes the properties
that are most typical and ignores deliberately all the features which are less
relevant.”



Chapter 6
Kinetics of Crystallization and Segregation:
Nucleation in Glass-Forming Systems

6.1 Kinetics of Phase Formation and Its Relevance for Glass
Science and Technology

Processes of phase formation, of nucleation and growth of crystals are of particular
significance in glass science and technology in many respects. First, the rate of
crystallization of a glass-forming melt determines to a large degree the conditions
under which a substance may be transformed into a glass. Thus, at least, a qualitative
understanding of the factors determining the rate of formation of clusters of the
new phase and their rate of growth is a prerequisite in glass-technology if the
production of a homogeneous glass is desired (cf. S. Gutzow (1963) [290]). Second,
in many cases the technological process requires an induced crystallization of
glass-forming melts in order to produce a partly crystalline material, e.g., a glass-
ceramic with a predetermined structure and properties. In this case, a prevention of
crystallization is not the aim but the factors have to be known which allow one to
undertake appropriate measures in order to reach an acceleration of crystallization
by the introduction of certain dopants (nucleation catalysts: insoluble crystallization
cores or surfactants) or other manipulations on the melt. In some cases the glassy
matrix acts only as a carrier medium for substances dissolved and undergoing phase
transformations in it. A classical example in this respect is the formation of pho-
toactive silver chloride micro-crystals in photochromic glasses or the precipitation
of colloidal metal particles in gold ruby glasses. Since for the desired applications of
such glasses, in general, dispersions with distinct particle numbers and distributions
of the newly evolving phase with well-defined characteristics have to be produced,
the question has to be answered in which way the nucleation and growth process
may be influenced in order to obtain the desired properties of the segregating phase.
In other cases, crystallization of the major constituents of the glass-forming melt
itself takes place either during its cooling to vitrification temperatures or after
reheating of the already formed glass (devitrification).

In the production of glass-ceramic materials the melt and the glass are exposed
to one or several more or less prolonged heat-treatments in temperature regions

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 6, © Springer-Verlag Berlin Heidelberg 2013
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where maximal nucleation frequency and crystal growth rates are to be expected.
This method of treatment guarantees an optimal or even maximal percentage of
crystallization in the system. In contrast, in the synthesis of glassy metallic alloys
or in vitrifying life in biological solutions, these temperature regions have to be
passed with extreme cooling velocities (exceeding 102–106 Ks�1) in order to prevent
crystallization. In this way glasses with practically no crystallization centers in them
can be obtained from melts with unusual or even exotic compositions. In most cases
in glass-technology particular attention is devoted to the prevention of processes
of liquid phase separation which is possible in multi-component glass-forming
melts. Such processes cause undesirable effects in optical glasses. As mentioned
by Morey (1938, [574], p. 29): Devitrification is the chief factor which limits the
composition range of practical glasses, and it is an ever-present danger in all glass
manufacture and working, and takes place promptly with any error in composition
or technique.

However, there are also optical glasses and glass-ceramic materials, in which
particularly important properties are obtained when, in the course of formation of
the material, processes of controlled phase separation have taken place. In this way,
processes of nucleation and controlled crystal growth belong to the most powerful
methods of synthesis of fully crystalline, semicrystalline or vitro-crystalline materi-
als, which are representatives of a new generation of materials. Many other examples
in this respect could be given. The technological aspects determine, however,
only one side of the interest in the kinetics of processes of phase formation and
crystallization in glasses. On the other hand, glass-forming melts are a remarkable
experimental model, as an example of metastable systems, in which processes of
crystallization, of liquid phase separation and precipitation can be easily initiated
and conveniently studied. This is another reason why glass-forming melts have been
the source of a considerable experimental evidence on the kinetics and mechanisms
of crystallization phenomena. The unusual thermodynamic properties of the vitreous
state and the structural changes taking place upon crystallization of glass-forming
melts have attracted the interest of theoreticians and experimenters. This interest
represents an additional cause leading to numerous investigations in both theory
and experiment in crystallization of glass-forming melts.

By both reasons in the following analysis, the basic ideas underlying the
theoretical description of nucleation and growth of a newly formed phase, in general,
and in melts, in particular, are outlined. In the first part of the discussion, we will
try to formulate the basic prepositions, assumptions and postulates of the relevant
theories and the most important results obtained in this field. In the derivation of
the theoretical results only a sketch is given in some cases since a detailed analysis
would go beyond the scope of this book. Nevertheless, for the interested reader
it should be no problem to reestablish the details of the derivations based on the
outline of the general ideas and the additional references given in the course of the
discussion.

For a more detailed overview of basic ideas connected with phase formation pro-
cesses and different applications see, e.g., the monographs by Volmer (1939) [894]
and Hirth and Pound (1953) [368] as well as the review articles by Mc Donald
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(1963) [548], Wegener and Parlange (1970) [914], Zettlemoyer (1969 [954], 1977
[955]), Feder et al. (1966) [198], Binder and Stauffer (1976) [83], Gunton et al.
(1983) [283], Hodgson (1984) [374], and Mutaftschiev (1993) [585]. In Volmer’s
monograph (Volmer (1939) [894]) a remarkable outline is given concerning the
historical development of the experimental investigations on phase formation and
crystallization and on the concepts which led to their theoretical explanation.1

It was J.W. Gibbs who formulated the idea that in order to understand the
experimental results accumulated in the eighteenth and nineteenth centuries on
crystallization of under-cooled melts, on condensation and boiling – in all the
different cases, when a new phase is formed – it is necessary and sufficient to
account for the surface properties of the aggregates of the new phase emerging
in the ambient system to explain the processes of phase transformation, at least,
qualitatively. Gibbs arrived at this conclusion in the framework of the general
thermodynamic treatment of surface properties of matter. This is the reason, why in
the theoretical explanation of phase transformation processes, one has to start with
an analysis of the thermodynamic properties of heterogeneous systems, in general,
and specific properties of small clusters, in particular.

6.2 Thermodynamics and Nucleation Phenomena

6.2.1 Thermodynamics of Heterogeneous Systems

As already mentioned, the first comprehensive thermodynamic theory of het-
erogeneous systems was developed by J.W. Gibbs ((1875-1878) [249]; see also
Rowlinson and Widom (1982) [672]; Schmelzer (1985) [689]; Ulbricht, Schmelzer
et al. (1988) [874]). In the framework of Gibbs’s theory the real system consisting
of the homogeneous bulk phases and the interfacial region between the coexisting
phases is replaced by an idealized model of two homogeneous bodies divided
by a mathematical surface, representing the interfacial zone (Fig. 6.1). The devi-
ations from additivity of the thermodynamic quantities are expressed through the

1A variety of new monographs devoted to the outline and extension of the classical concepts of
nucleation and growth was published in the time since the publication of the first edition of the
present book. Out of this spectrum, we would like to mention here, in particular, the following
references: Kashchiev [439], Mutaftschiev [586], Milchev [558], Markov [534], Jackson [396],
Kelton and Greer [450]; and a series of books edited by one of the authors (J.W.P. Schmelzer,
Ed.): Schmelzer et al. [721], Schmelzer [695], Skripov and Faizullin [770], Baidakov [34], Ivanov
[387], Slezov [773], Gusak et al. [286] as well as the series of workshop proceedings Schmelzer
et al. [720]. For a current review on the state of affairs with respect to experimental and theoretical
investigations of crystallization of glass-forming melts, see also the following articles: Fokin et al.
[224], Schmelzer [696], Schmelzer [698], Zhuravlev et al. [958], Schmelzer [699], and Schmelzer
and Schick [711]. Some particularly important to our point of view own contributions into this field
are described briefly in the Chap. 14 and in some of the footnotes to this and subsequent chapters.
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Fig. 6.1 Illustration of the basic idea used in Gibbs’s approach in describing surface phenomena.
By a full curve a possible real density profile c.x/ is shown, while the dashed line refers to Gibbs’
idealized model consisting of two homogeneous parts, divided by a mathematical surface of zero
thickness. Here, xd denotes the position of the dividing surface, x being the spatial coordinate
perpendicular to it

introduction of superficial quantities formally attributed to this mathematical surface
(postulate 1). For the internal energy U , the entropy S and the mole numbers of the
different components nj we get, for example,

U D U1 C U2 C U� ; (6.1)

S D S1 C S2 C S� ; (6.2)

nj D nj1 C nj2 C nj� : (6.3)

The superficial quantities U� , S� and nj� depend both on the properties of the
interfacial region and on the choice of the dividing surface. The specification of
the particular dividing surface, which we will use, is given somewhat later.

For the bulk contributions to the thermodynamic quantities, denoted by the
subscripts (1) and (2), the common postulates and results of the thermodynamics
of homogeneous phases hold (see Sect. 2.2), while the superficial quantities obey a
relation similar to the fundamental equation (2.7) (postulate 2)

dU� D T�dS� C
X
j

�j�dnj� C �dA C C1dc1 C C2dc2 : (6.4)

Here A is the surface or interfacial area, � the interfacial tension or specific
interfacial energy, c1 and c2 are the principal curvatures of the considered surface
element, while the parameters C1 and C2 describe the effect on the variation of the
internal energy caused by changes of the curvature of the surface element. If one
restricts, as we will do (assumption 1), the considerations to spherical interfaces,
then Eq. (6.4) is simplified to (c1 D c2 D c, C1 C C2 D C )

dU� D T�dS� C
X
j

�j�dnj� C �dA C Cdc : (6.5)
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An integration of this equation results in

U� D T�S� C
X
j

�j�nj� C �A : (6.6)

A derivation of Eq. (6.6) and comparison with Eq. (6.5) yields the well-known Gibbs
adsorption equation in the general form

S�dT� C Ad� C
X
j

nj�d�j� D Cdc : (6.7)

It was shown by Gibbs that for a definite choice of the dividing surface the
parameter C in Eqs. (6.5) and (6.7) becomes equal to zero. This particular dividing
surface is usually denoted as the surface of tension (Gibbs (1928) [249]; Rusanov
(1978) [676]; Schmelzer (1985) [689]). Taking the surface of tension as the dividing
surface, as we will do (assumption 2), Eqs. (6.5) and (6.7) are simplified to

dU� D T�dS� C
X
j

�j�dnj� C �dA ; (6.8)

S�dT� C Ad� C
X
j

nj�d�j� D 0 : (6.9)

The form of Eq. (6.6) is independent of the particular choice of the dividing surface.
In the subsequent applications it will be assumed (assumption 3) that the

coexisting phases, e.g., a cluster of the newly formed phase and the ambient
phase, are both in a state of an internal thermodynamic equilibrium while the
system as a whole is not (e.g., the cluster may grow or shrink). This assumption
resembles the preposition of a local thermodynamic equilibrium employed in
the thermodynamics of irreversible processes (Haase (1963) [339]). To complete
the thermodynamic description of heterogeneous systems a third postulate has to
be introduced. Following an argumentation, expressed by Prigogine in the form “a
surface phase has no real autonomy, in general” (Prigogine and Bellemans (1980)
[648]; see also Defay et al. (1966) [161]) or by Rowlinson and Widom as “we cannot
measure or define unambiguously and independently the thermodynamic properties
of the surface phase” ((1982) [672]; see also Rusanov (1978) [676]; Schmelzer
(1985) [689]), we assume that the intensive superficial quantities �j� and T� are
equal to the corresponding values of the phase with the higher density (postulate 3).

The outlined considerations are strictly applicable for isotropic phases only.
However, it has been shown that, at least in a qualitative manner, a reasonable
description of the thermodynamic properties of small crystallites embedded in a
melt can be attempted using only one scalar quantity. In this case, to � , some value
of the specific interfacial energy has to be assigned, averaged over the different
crystallite-melt or crystallite-vapor interfaces (Skripov, Koverda (1984) [771];
Woodruff (1973) [932]; Jackson (1969, 1984) [394, 395]; Mutaftschiev (1993)
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Fig. 6.2 Illustration of the
model: formation of a
spherical cluster in a solid or
liquid quasi-binary solution

[585]). The parameter R has to be considered in these cases as a properly chosen
measure of the size of the crystallite. For a more detailed study of the possible ways
of describing the properties of small crystallites and, in particular, their equilibrium
shapes (Gibbs-Wulff construction) see, e.g., Mutaftschiev (1993) [585].

6.2.2 The Origin of Metastability: Critical Clusters

We will now consider the process of formation of a cluster in a solid or liquid
solution formed as a result of a segregation process (see Fig. 6.2 for an illustration)
and calculate the change of the characteristic thermodynamic potential connected
with such a process in dependence on the cluster size expressed by the radius R.
Denoting the quantities describing the cluster phase by the subscript ˛ and the
matrix characteristics by ˇ, one obtains for the internal energy

U˛ D T˛S˛ � p˛V˛ C
X
j

�j˛nj˛ ; (6.10)

Uˇ D TˇSˇ � pˇVˇ C
X
j

�jˇnjˇ ; (6.11)

U� D T�S� C �AC
X
j

�j�nj� : (6.12)

Based on the third of the mentioned postulates of the thermodynamics of surface
phenomena (see Sect. 6.2.1) we may write

T˛ D T� ; (6.13)

�j˛ D �j� ; (6.14)

and with the abbreviations

n�
j˛ D nj˛ C nj� ; S �̨ D S˛ C S� (6.15)
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we obtain

U D T˛S
�̨ � p˛V˛ C

X
j

�j˛n
�
j˛ C TˇSˇ � pˇVˇ C

X
j

�jˇnjˇ C �A ; (6.16)

dU D T˛dS�̨ � p˛dV˛ C
X
j

�j˛dn�
j˛ C TˇdSˇ � (6.17)

� pˇdVˇ C
X
j

�jˇdnjˇ C �dA :

For an isolated system with the boundary condition

V D V˛ C Vˇ D const. (6.18)

the equilibrium condition reads (compare Eq. (2.33))

.ıU /V;S;n D 0 : (6.19)

Considering possible variations of the independent variables S �̨, n�
j˛ and V˛ and

taking into account that for a spherical cluster the surface area and the volume of
the cluster are dependent quantities Eq. (6.19) yields (see, e.g., Gibbs (1928) [249];
Schmelzer (1985) [689]; Ulbricht, Schmelzer et al. (1988) [874])

�j˛ D �jˇ ; j D 1; 2; : : : ; k ; (6.20)

T˛ D Tˇ ; (6.21)

p˛ � pˇ D 2�

R
; (6.22)

whereR is the radius of the cluster. While the first two of the equilibrium conditions
remain the same as for macroscopic bodies (cf. Eqs. (2.38) and (2.40)), it turns
out that in equilibrium the pressure inside a spherical cluster is larger than the
pressure in the surrounding phase. This pressure balance equation determines to
a large degree the specific properties of small clusters when analyzed from a
thermodynamic point of view (see Sect. 6.2.4). It is denoted usually as the Young-
Laplace equation.

For processes of cluster formation in glass-forming melts and a large number
of further applications, a constant external pressure, p, and temperature, T , can
be assumed. For these constraints the process of cluster formation is described
thermodynamically by the Gibbs free energy, G. Since the pressure in the ambient
phase is equal to the external pressure the total Gibbs free energy of the system
consisting of a cluster embedded in the ambient phase is defined by

G D U � TS C pV with p D pˇ (6.23)
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(for comparison see Eq. (2.19), where p denotes the external pressure). This
definition yields with Eq. (6.16) the following expression for the thermodynamic
potential of the considered heterogeneous system (cluster in the ambient phase)

G D V˛.pˇ � p˛/C �AC
X
j

�j˛nj˛ C
X
j

�jˇnjˇ : (6.24)

In this and all subsequent equations the superscript .	/ is omitted for simplicity of
the notations (compare Eq. (6.15)).

The chemical potential of the cluster phase can be considered as a function of
the pressure p˛ and the independent molar fractions xj˛ D nj˛=

P
nj˛ . Instead of

�˛.p˛/, however, usually the chemical potential of the cluster phase at the external
pressure p is applied in the calculations (�˛.p/). The connection between both
quantities can be obtained by a truncated Taylor-expansion as

�j˛.p˛/ D �j˛.p/C
�
@�j˛

@p˛

�
p˛Dp

.p˛ � p/ : (6.25)

Since for the bulk part of the cluster phase

dG˛ D �S˛dT˛ C V˛dp˛ C
X
j

�j˛dnj˛ (6.26)

holds, we obtain immediately

@�j˛

@p˛
D @V˛

@nj˛
: (6.27)

Moreover, the sum of the partial molar volumes multiplied by the mole numbers
gives the volume of the considered body (Haase (1956) [338]), i.e.,

V˛ D
X
j

nj˛

�
@V˛

@nj˛

�
: (6.28)

Consequently, Eq. (6.24) may be written also as

G D
X

�j˛.p/nj˛ C
X
j

�jˇ.p/njˇ C �A : (6.29)

We calculate, now, the change of the Gibbs free energy, if in a binary system one of
the components (say component 1) segregates to form a cluster. The change of the
Gibbs free energy,�G.cluster/, connected with the formation of a cluster of size, R,
in the initially homogeneous system

�G.cluster/ D Ghet �Ghom (6.30)
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is obtained then as

�G.cluster/ D n˛Œ�˛.p/� �1ˇ.p; xˇ/�C �AC
X
j

nj Œ�jˇ.p; xˇ/ � �jˇ.p; x/� :

(6.31)

Here �1ˇ is the chemical potential of the segregating particles in the ambient
phase, �˛.p/ denotes the chemical potential of the segregating particles of the
newly evolving phase at a pressure, p. According to the equilibrium conditions at
a planar interface �˛.p/ D �ˇ.p; xeq/ is assumed to be fulfilled, where by xeq the
equilibrium value of the molar fraction of the segregating particles in the matrix is
denoted. n˛ is the number of moles in a cluster of the evolving phase.

In the derivation of Eq. (6.31) the condition n˛ C n1ˇ D n1 D const: was taken
into account. Moreover, it was realized that the state of the ambient phase may
change as the result of the formation of a cluster, i.e., the molar fraction is changed
from x to xˇ . These molar fractions x and xˇ are determined by

x D n1

.n1 C n2/
; xˇ D n1 � n˛

n1 C n2 � n˛
: (6.32)

However, if we restrict the considerations to relatively small clusters and sufficiently
large volumes of the matrix then such changes may be neglected and Eq. (6.31) is
reduced to

�G.cluster/ D n˛Œ�˛.p/ � �1ˇ.p/�C �A : (6.33)

This equation is usually taken as the starting point for the discussion of nucleation
phenomena in melts. However, the limits of validity of this expression, evident from
the outlined derivation, must always be taken into account. Moreover, the derivation
outlined allows one a direct generalization of the results to multi-component
systems. The necessary condition for a phase transition to take place consists of
�˛.p/ < �1ˇ.p/ (compare Sect. 2.2.3). Therefore, �� can be considered as the
thermodynamic driving force of the transformation.

With the notation
�� D �1ˇ.p/� �˛.p/ (6.34)

Eq. (6.33) can be rewritten as

�G.cluster/ D �n˛��C �A : (6.35)

Since the clusters evolving in the course of the phase transformation consist initially
of relatively few particles we will use in their description also the number of
particles, j , contained in them. Using this notation Eq. (6.35) may be rewritten as

�G.cluster/ D �j��C �A : (6.36)
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�� in Eq. (6.36) is referred to one particle and not to one mole as in Eq. (6.35). Here
and in the following derivations it is also assumed that the cluster has a spherical
shape. In this case the volume V˛ and the surface area A are given by

V˛ D 4	

3
R3 ; A D 4	R2 : (6.37)

For small clusters the term �A dominates, while for larger clusters the bulk term
j�� determines the behavior of �G as a function of R. As the result of these two
opposite tendencies an extremum is found determined by

@�G.cluster/

@R
D �c˛4	R2��C 8	R� D 0 : (6.38)

Here c˛ is the volume concentration of particles in the cluster phase. Instead of c˛ ,
the volume per particle v˛ is often used, defined by

v˛ D 1

c˛
: (6.39)

The radius of the cluster corresponding to the extremum of �G.cluster/ is denoted as
critical cluster radius, Rc . It may be obtained from Eq. (6.38) as

Rc D 2�

c˛��
: (6.40)

Equation (6.40) is usually called Gibbs-Thomson equation.
A second derivation of �G.cluster/ with respect to R results in

�
@2�G.cluster/

@R2

�
RDRc

D �8	� ; (6.41)

verifying that the extremum is a maximum. With Eq. (6.40) the expression Eq. (6.36)
for�G.cluster/ gets the following form

�G.cluster/ D 1

3
�A

�
3 � 2 R

Rc

�
; A D 4	R2 ; (6.42)

which gives for R D Rc the well-known result

�G
.c/

.cluster/ D 1

3
�A.c/ ; A.c/ D 4	R2c (6.43)

or

�G
.c/

.cluster/ D 16	

3

�3

c2˛.��/
2
: (6.44)
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An expression equivalent to Eq. (6.42) is

�G.cluster/ D �G
.c/

.cluster/

"
3

�
R

Rc

�2
� 2

�
R

Rc

�3#
: (6.45)

Equations (6.40), (6.43), and (6.44) were first derived by Gibbs. An alternative
derivation of Eq. (6.44) was developed by Volmer (1939) [894]. In his book also
a historical survey of alternative attempts in the calculation of �G.c/

.cluster/ can be
found. Its determination for different cases of phase transformation processes is
given, for example, in Frenkel’s monograph (1946) [233]; for the formulation for
crystals see Kaischew (1952 [417], 1957 [421]) and Mutaftschiev (1993) [585].

For further derivations also some additional expressions are needed equivalent to
those given above. With

j D V˛

v˛
; j D 4	

3

R3

v˛
; (6.46)

Eq. (6.45) is transformed into

�G.cluster/ D �G
.c/

.cluster/

"
3

�
j

jc

�2=3
� 2

�
j

jc

�#
: (6.47)

In terms of jc and �� the work of formation of critical clusters �G.c/

.cluster/ may be
written also as (see Hirth and Pound (1963) [368]; Kashchiev (1982) [436]; Oxtoby
and Kashchiev (1994) [619])

�G
.c/

.cluster/ D 1

2
jc�� : (6.48)

Finally, we have also to note the following relations

@�G.cluster/

@j
D 2�G

.c/

.cluster/

 
j�1=3

j
2=3
c

� 1

jc

!
; (6.49)

�
@2�G.cluster/

@j 2

�
jDjc

D �2
3

�G
.c/

.cluster/

j 2c
; (6.50)

needed in the subsequent derivations.
Equation (6.43) is valid not only for the case of segregation of a cluster in a

binary melt, considered here, but also for any case of iso-concentration nucleation
(formation of liquid or crystalline clusters having the same composition as the
ambient phase). It is only necessary to define the thermodynamic driving force��
in an appropriate way (as will be done in the next section). The result Eq. (6.43)
also remains valid if multi-component clusters with a composition different from
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Fig. 6.3 (a) Dependence of the change of the Gibbs free energy, �G.cluster/, resulting from the
formation of a cluster, on its size, R, according to Eq. (6.45). Two curves (1) and (2) are given cal-
culated for different values of the chemical potential (��.1/ > ��.2/, respectively, R.1/c < R

.2/
c ).

By Rc the critical cluster size is specified corresponding to a maximum of the thermodynamic
potential difference. For �� < 0, �G.cluster/ is a monotonically increasing function of R and no
maximum exists (curves (3) and (4); (j��.3/j < j��.4/j)). (b) The same dependence but this time
as a function of the number of particles, j , in the cluster (curves (5) and (6) with��.5/ > ��.6/)

the ambient phase are formed. Employing Gibbs’ theoretical approach, in such a
case one has to assume in addition that the composition and density of the clusters
are widely the same as for the newly evolving bulk phase.

The function �G.cluster/ vs. R, respectively, vs. j is shown in Fig. 6.3. The most
probable way of further evolution of the cluster in dependence on its size is indicated
by arrows. The direction of evolution follows from the thermodynamic criterion
given by Eq. (2.34). According to this criterion a cluster grows spontaneously only
after a sizeR > Rc is reached (deterministic growth of clusters). This property is the
reason why a critical cluster is sometimes called a nucleus or, applying a biological
analogy, an embryo of the new phase. The formation of critical or supercritical
clusters requires the existence of spontaneous fluctuations which are not considered
in the framework of classical thermodynamics (fluctuational growth of subcritical
clusters).

Systems, which are stable with respect to small but unstable with respect to
large fluctuations, are called metastable systems (compare Chap. 2). Processes
of cluster formation and growth may proceed in thermodynamically metastable
systems. Thus, to initiate a first-order phase transition, a fluctuation of a sufficiently
large size is needed to initiate the further growth of the new (thermodynamically
favored) phase. This process takes some time and explains the kinetic stability
of thermodynamically metastable systems observed experimentally. It also gives,
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consequently, the possibility of a kinetic interpretation of glass-formation and the
derivation of kinetic criteria for it.

It is known from fluctuation theory (see Landau and Lifshitz (1969) [494])
that the probability, w, of a fluctuation (i.e., of a spontaneous deviation from the
equilibrium state) can be expressed by the work W , which is needed to create, in
a reversible process, the same change of the state of the system as the considered
fluctuation, i.e.

w 
 exp

�
� W

kBT

�
: (6.51)

For the considered constraints (p D const:, T D const:) this work is, on the other
hand, equal to the change of the Gibbs free energy connected with the considered
variation of the state. Thus we obtain

w 
 exp

�
��G.cluster/

kBT

�
: (6.52)

The mentioned relation betweenW and�G.c/

.cluster/ is the reason why this quantity is
also denoted commonly as the work of formation of a critical cluster. The probability
of a phase transformation is determined, consequently, to a large extent by the values
of �G.c/

.cluster/.Rc/ or � and ��, respectively, as it is evident from Eq. (6.44).
Equations (6.43)–(6.52) show more precisely, that the probability of formation

of critical clusters depends significantly on the surface energy of the critical cluster
�A, respectively, on �3 and the square of the thermodynamic driving force .��/2.
Thus small variations of � or�� may be expected to result in significant variations
of the nucleation rate. This expectation is confirmed by experimental results as well
as by nucleation theory.

6.2.3 General Expression for the Thermodynamic Driving
Force of First-Order Phase Transformations

In the special case considered so far in this chapter, only one of the components
is assumed to segregate to form a cluster. Qualitatively, the results outlined are not
changed if one considers the more realistic situation that the cluster phase is com-
posed of particles of different components with, in general, arbitrary composition.
According to the conditions for thermodynamic equilibrium in such more general
cases, the thermodynamic driving force of the transformation is determined by the
change of the bulk contributions to the thermodynamic potential referred to one
mole of the transformed substance. Thus we have to write, in general,

�� D ŒG.initial state/ �G.final state/�X
j

nj˛
; (6.53)



232 6 Kinetics of Crystallization and Segregation: Nucleation in Glass-Forming Systems

where
P
nj˛ is the total number of moles transformed from the initial to the new

phase. In Eq. (6.53) only the bulk contributions to the Gibbs’s free energies of both
phases have to be taken into consideration.

In considering phase transformations in supersaturated solutions or from the gas
phase the thermodynamic driving force of the process is expressed usually in terms
of the generalized or relative supersaturation �, defined by

� D ��

kBT
: (6.54)

More generally this expression can be employed as a measure for the relative
deviation from thermodynamic equilibrium. Equation (6.53) allows us to apply
the derivations outlined so far for segregation processes in binary and multi-
component solutions to another case of phase transformation processes which is
directly connected with the conditions of glass-formation: crystallization in glass-
forming melts. In these cases the difference in the chemical potentials is determined
by the under-cooling.

At a constant pressure, as discussed in Sect. 2.2.3, a definite value of the tem-
perature exists at which an equilibrium coexistence of the melt and the crystalline
phase is possible. At this temperature, the melting temperature, the molar values
of the Gibbs free energy are the same in the liquid and crystalline phases of
the substance considered (compare Sect. 2.2.3). The thermodynamic driving force
of the crystallization process, which may take place at temperatures T < Tm, is
determined, according to Eq. (6.53), by the differences of the Gibbs free energies
corresponding to the liquid and crystalline phases, i.e., by

�� D G.liquid/.p; T / �G.crystal/.p; T /

n
: (6.55)

Here n is the total number of moles of the substance considered. It is assumed, in
deriving the above equation, that the compositions of the melt and the crystalline
phase are the same. In this way, the thermodynamic functions depend only on
pressure p and temperature T .

Taking into account the constancy of the external pressure p and choosing as
the reference temperature for the calculation of the Gibbs free energies the melting
temperature Tm, Eq. (2.25) reads

G.p; T / D G.p; Tm/ � S.p; Tm/.T � Tm/ �
TmZ
T

dT

TmZ
T

Cp

T
dT : (6.56)

Moreover, since the Gibbs free energies of both phases are equal at the melting
point, Eq. (6.55) is transformed to
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�� D �Œs.liquid/.Tm/� s.crystal/.Tm/�.T � Tm/ �
TmZ
T

dT

TmZ
T

c
.liquid/
p � c.crystal/

p

T
dT :

(6.57)
Introducing the notations

�s D s.liquid/ � s.crystal/ ; �sm D �s.Tm/ ;

where�sm is the molar heat of melting and

�cp D c.liquid/
p � c.crystal/

p ;

the differences in the molar entropies and the molar specific heats, respectively,
Eq. (6.57) may be rewritten in the form

�� D �sm.Tm � T / �
TmZ
T

dT

TmZ
T

�cp

T
dT : (6.58)

Taking into account the definition of the specific heats Eq. (2.14) �cp=T may be
replaced by

�cp

T
D
�
d�s

dT

�
p

: (6.59)

In this way, Eq. (6.58) is transformed to

�� D
TmZ
T

�s.T / dT : (6.60)

The same result was obtained in an approximative derivation by Volmer ((1939)
[894]; see also Frenkel (1946) [233]; Hoffman (1958, 1964) [375, 376]; Gutzow
(1972) [294]). Moreover, a truncated Taylor-expansion of �s.T / in the vicinity of
Tm gives

�s.T / D �sm C
�
@�s

@T

�
Tm

.T � Tm/ ; (6.61)

resulting after a substitution into Eq. (6.60) in already discussed dependencies (see
Eqs. (3.48)–(3.52) and also Gutzow et al. (1975) [297]; Gutzow and Dobreva (1991)
[308])

�� D �sm.Tm � T /

�
1 � �cp.Tm/

2�sm

.Tm � T /

Tm

�
: (6.62)
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As mentioned in Sect. 3.3 for typical glass-forming melts the ratio a0 D
.�cp=�sm/ is of the order

�cp.Tm/

�sm
� 1 � 2 : (6.63)

Taking into account this experimental result, an estimate of the thermodynamic
driving force of crystallization can be given. According to Eqs. (6.62) and (6.63)
the thermodynamic driving force for crystallization should vary in dependence on
temperature in the range from Tm to Tg in the limits

�sm.Tm � T /
T

Tm
� �� � �sm.Tm � T /

1

2

�
1C T

Tm

�
: (6.64)

For small under-coolings .T=Tm/ � 1 holds and, approximately, the often applied
expression

�� D �sm.Tm � T / (6.65)

is obtained (for the cases a0 D 1 and a0 D 2, see Sect. 3.3). The equivalence, with
respect to expressions for the thermodynamic driving force of crystallization derived
in Chap. 3, gives an additional proof of the validity of the general definition of the
driving force of crystallization, introduced with Eq. (6.53). The method outlined
here has the advantage that it allows us to calculate the thermodynamic driving
force also for the more complicated case when crystallization is accompanied by
changes in composition.

The approximations Eq. (6.64) may be applied, strictly speaking, only for
moderate under-cooling. More general temperature dependencies for the thermo-
dynamic driving force of the transformation may be derived, as done in Sect. 3.3,
when a definite thermodynamic model for the temperature dependence of �Cp
is introduced. As discussed in application to the particular model employed, it
follows from the Third law of thermodynamics that there always exists a value of
temperature T0 below which�� remains practically constant (compare Eq. (3.56)).
In this way, it is to be expected that below some temperature T0, a further increase
in the undercooling no longer varies the thermodynamic driving force of the phase
transformation (Gutzow, Konstantinov, and Kaischew (1972) [325]; Gutzow (1981)
[304]).

As also already mentioned in Chap. 3, T0 generally has values in the range
(T0 < Tg , Tm=3 � T0 � Tm=2). Thus, from a theoretical point of view, the upper
value of the thermodynamic driving force of crystallization of under-cooled melts is
reached at T0. For practical purposes (as far as Tg > T0 holds) even smaller limiting
values are to be expected corresponding to the vitrification temperature Tg . The
values of the thermodynamic driving force of crystallization, calculated according to
above given equations, are such that only moderate under-cooling can be realized in
typical glass-forming melts. This result is an indication that glass-forming systems
can be used as convenient model systems for a test of the predictions of the classical
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theories of nucleation and crystal growth since their basic premises are fulfilled for
these systems to a large extent.

6.2.4 Size Dependence of the Thermodynamic Properties
of Small Clusters

In the application of Gibbs’ original thermodynamic analysis of heterogeneous
systems to nucleation processes it is assumed, in general that the bulk thermo-
dynamic properties of small clusters of the newly formed phase are the same as
for the corresponding bulk samples.2 This simplifying assumption was adopted in
most of the subsequent derivations of the kinetic equations describing nucleation
and growth, though, of course, such an extension of macroscopic properties to
small clusters is doubtful from a principal point of view. Indeed, the results of
a variety of modern investigations of the properties of clusters of nano-sizes
show that their thermodynamic, mechanical, rheological and other properties may
significantly deviate from the respective values for the bulk samples (Cahn and
Hilliard (1958/59) [119]; Petrov (1982) [633]; Halpern (1967) [344]; Haberland
(1994) [340]). Once such assumption is made, then corrections may be introduced
into the theoretical description of cluster formation and growth only via the account
of a size-dependence of the surface terms in the thermodynamic treatment. By this
reason, of particular interest with respect to nucleation theory is the size or curvature
dependence of the specific interfacial energy � , since this quantity determines the
nucleation rate in a significant way (compare Eq. (6.44)).3

2This assumption is based on the analysis of Gibbs’ equilibrium conditions determining the bulk
properties of critical clusters and leading to this consequence.
3An alternative approach to the the description of spatially inhomogeneous thermodynamic
systems (denoted by us as generalized Gibbs approach) and its application to the determination
of the properties of critical clusters was developed by the present authors and coworkers in the
last decade starting with a paper published in 2000 (Schmelzer et al. [722]). For an illustration,
the method is applied there to phase formation processes in solid and liquid solutions. However, it
is applicable quite generally and not restricted to this particularly important but anyway special
case. The presented there approach is a generalization of the classical Gibbs’ method. It is –
like the classical Gibbs method – conceptually simple and directly applicable to real systems, but
avoids its shortcomings. Central to this method was originally (later the consequences have been
shown to follow directly from the modification of Gibbs classical approach developed by us) the
formulation and application of a well-founded principle we denoted as generalized Ostwald’s rule
in nucleation. The method allows one the determination of the dependence of the bulk properties
of the critical clusters and the work of critical cluster formation in dependence on cluster size
provided the bulk properties and the macroscopic values of the surface tension (at planar interfaces)
for the possible different states of the system under consideration are known. As it turns out, in the
framework of the generalized Gibbs approach the bulk properties – and as a consequence also the
interfacial properties – of the critical clusters depend significantly on supersaturation (or the size
of the critical clusters). Similarly to the van der Waals, Cahn, and Hilliard and density functional
calculations in the determination of the work of critical cluster formation, the newly developed
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Various methods exist for the theoretical analysis of the specific properties of
small clusters. A first attempt in this direction can be made, as we will do, based
on a thermodynamic approach. We consider, in the following, the size dependence
of the thermodynamic properties of small clusters (droplets, crystallites) from a
thermodynamic point of view and compare them with the corresponding properties
of the bulk phases. From the very beginning of our analysis we assume a thermal
equilibrium to be established in between the cluster and the ambient phase (T˛ D
Tˇ D T ). For a one-component system the equilibrium conditions are reduced then
to (cf. Eqs. (6.20)–(6.22))

�˛.p˛; T / D �ˇ.p; T / ; (6.66)

p˛ � p D 2�

R
: (6.67)

In the classical Gibbs’ thermodynamic approach the deviations of the properties
of the cluster phase from the bulk properties of a macroscopic phase in equilibrium
with a coexisting second phase, divided from it by a planar interface, are due to
the deviations of the pressure as expressed through the Young-Laplace equation,
Eq. (6.67). Replacing p˛ , used as the independent variable for the determination of
the chemical potential �˛ , according to the Young-Laplace equation we get

�˛.p˛/ D �˛

�
p C 2�

R

�
: (6.68)

A Taylor-expansion of �˛ and subsequent substitution into Eq. (6.66) yields then

�˛.p˛; T / D �˛.p; T /C v˛.p; T /

�
2�.p˛; T /

R

�
D �ˇ.p; T / : (6.69)

method reproduces the results of the classical Gibbs’ nucleation theory (involving the capillarity
approximation) for small values of the supersaturation. However, in contrast to the classical and in
agreement with van der Waals-type methods of descriptions of inhomogeneous systems, for initial
states approaching the spinodal curve, the work of critical cluster formation, determined via the
newly developed approach, is shown to tend to zero. As an immediate additional consequence, the
method gives a more accurate description of the experimental results on nucleation rates also in
the intermediate ranges of the initial supersaturation. This method was further developed then in
a series of papers and applied also to the determination of the properties of sub- and supercritical
clusters (Schmelzer et al. [725]; Schmelzer et al. [3]). The theoretical foundation of the generalized
Gibbs approach is given in: Schmelzer et al. [729]. An overview on further developments and the
application of this method to the analysis of experimental data is given in: Schmelzer and Abyzov
[702]; Abyzov and Schmelzer [3]; Schmelzer [697]; Schmelzer et al. [728]; Abyzov et al. [4];
Schmelzer and Abyzov [703]; Schmelzer and Abyzov [704] (a more detailed overview is given in
the Chap. 14). In the present book, however, we employ the classical approach treating the clusters
widely as small aggregates with the bulk properties of the newly evolving macroscopic phases and
introduce corrections via a curvature dependence of the surface tension.
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In the derivation of Eq. (6.69) in addition the relation

v˛ D
�
@�˛

@p

�
T

(6.70)

is used.
In Eq. (6.69) the independent variables are p, T and R. The variable R

denotes here those cluster sizes for which the necessary thermodynamic equilibrium
conditions are fulfilled. If one changes one of the independent variables, then, in
order to retain the equilibrium, a variation of one or both of the other variables
is required. Consequently, by a calculation of the total differential of the r.h.s of
Eq. (6.69) one obtains with Eq. (2.54) the expression

.v˛ � vˇ/dp C d

�
2�v˛

R

�
D .s˛ � sˇ/ dT : (6.71)

From this general equation a number of consequences can be derived:

• Cluster size dependence of the equilibrium pressure of a droplet in the vapor
If the temperature is kept constant in the system, Eq. (6.71) is reduced to

.v˛ � vˇ/dp D �d
�
2�v˛

R

�
: (6.72)

For a droplet in the vapor v˛ � vˇ holds. If in addition the perfect gas law pvˇ D
kBT is applied, Eq. (6.72) yields (W. Thomson (Lord Kelvin) (1870, 1871)[834])

peq.R/ D peq.R ! 1/ exp

�
2�v˛

kBT

1

R

�
: (6.73)

Here v˛ and vˇ are the volumes per particle in the cluster and the ambient phase,
respectively. The vapor pressure of a cluster of size R existing in equilibrium
in its vapor is, consequently, higher than the respective value for a planar
equilibrium coexistence of both phases (R ! 1).

• Cluster size dependence of the solubility
A similar equation can be obtained directly from the Gibbs-Thomson equation,
Eq. (6.40), also for the case of segregation in binary melts. If we express in this
equation the chemical potential of the segregating particles in the matrix via the
perfect solution law

�.p; T; x/ D �0.p; T /C kBT lnx (6.74)

and denote by xeq.1/ the molar fraction of the segregating component for a
stable coexistence at a planar interface, we obtain with the equilibrium condition
for coexistence at a planar interface

�˛.p; T / D �ˇ.p; T; xeq.1// (6.75)
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the relation

xeq.R/ D xeq.R ! 1/ exp

�
2�

c˛kBT

1

R

�
: (6.76)

If instead of the molar fraction the volume concentration, c, is used and c˛
is replaced by c˛ D .1=v˛/ the similarity with Eq. (6.73) becomes even more
obvious

ceq.R/ D ceq.T ! 1/ exp

�
2�v˛

kBT

1

R

�
: (6.77)

• Cluster size dependence of the melting temperature of small crystallites
If the pressure is kept constant (dp D 0), Eq. (6.71) gives a relation between the
(equilibrium) melting temperature of a crystallite and its size, i.e.,

.s˛ � sˇ/dT D d

�
2�v˛

R

�
: (6.78)

Here � is the specific interfacial energy of the crystal-melt interface. Denoting
the heat of melting as usual by q D T .sˇ � s˛/ we get with the approximation
q � constant the expression

Teq.R/ D Teq.R ! 1/ exp

�
�2�v˛

q

1

R

�
Š Teq.R ! 1/

�
1 � 2�v˛

q

1

R

�
;

(6.79)

giving the melting temperature of a crystallite in its melt (compare, e.g., Meiwes-
Broer and Lutz (1991) [553]). The same equation also determines the equilibrium
of a droplet in the vapor at constant pressure. In this case, q denotes the heat of
evaporation and � the liquid-vapor surface tension. In both cases the equilibrium
temperature decreases with a decreasing cluster size. Moreover, from Eq. (6.71)
a relation between the equilibrium values of pressure and temperature for fixed
values of the cluster radius may be derived, e.g., for a drop in its vapor or
a crystallite in the melt. This gives a generalization of the already discussed
Clausius-Clapeyron equation, Eq. (2.58).

Of particular interest in treating problems of formation of liquid and crys-
talline condensates from vapors is the size dependence of the melting temperature
of a crystalline cluster in equilibrium with its own vapor and liquid phases. This
problem requires the investigation of the equilibrium of both a droplet and a
crystallite of equal masses in a common vapor phase (see Prigogine and Defay
(1954) [649]; Hanszen (1960) [347]; Avramov and Gutzow (1988) [24]). The
result of such a calculation is

Tm.R/ D Tm.1/� 2�cvvc

�smR

"
1 � �fv

�cv

�
vf

vc

�2=3#
: (6.80)
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Here the following notations are used: �cv, �fv – specific interfacial energies of
the crystal/vapor and liquid/vapor interfaces; vf , vc – molar volumes of the liquid
and the crystal, respectively.

• Curvature dependence of surface tension
For a constant temperature and a one-component substance the Gibbs adsorption
equation, Eq. (6.9), has the form

Ad� C n�d�˛ D 0 : (6.81)

From Eq. (6.81) it follows with the Gibbs-Duhem relation Eq. (6.82) written for
the cluster phase

S˛dT˛ � V˛dp˛ C
X
j

nj˛d�j˛ D 0 ; (6.82)

that � for isothermal conditions and a one-component system is a function of the
pressure p˛ (or the density), only. Indeed, according to Eq. (6.82) we have in this
special case

V˛dp˛ D n˛d�˛ ; (6.83)

verifying above statement.
From the equilibrium conditions and the Gibbs adsorption isotherm Eq. (6.81)

the following differential equation for the curvature dependence of � may be
derived (for details see Gibbs (1928) [249]; Tolman (1948, 1949) [842, 843];
Kirkwood, Buff (1949) [455]; Buff, Kirkwood (1950) [110]; Ono, Kondo (1960)
[612]):

d�

�
D � 2ı

1C 2ı

R

d

�
1

R

�
; ı D �0

c˛ � cˇ
: (6.84)

The Tolman-parameter, ı, is determined according to Eq. (6.84) by the superficial
particle density �0 D .n�=A/ and the particle concentrations, c, in both phases.
It is a measure of the width of the inhomogeneous region between the coexisting
phases. If the Tolman-parameter, ı, is set equal to a constant ı.1/, corresponding
to its value for a planar interface between both coexisting phases, an expression
for the curvature dependence of the surface tension can be obtained by an
integration of Eq. (6.84) as

�.R/ D �.1/

1C 2ı.1/

R

: (6.85)

This equation is usually denoted as Tolman’s equation. The dependence of � on
R as predicted by this equation is shown in Fig. 6.4 (as a function of ı1=R).
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Fig. 6.4 Curvature
dependence of the surface
tension as predicted by
Tolman’s equation, Eq. (6.85)
(curve (1)) and work of
formation of critical clusters
(curve (2)) when a curvature
dependence of the surface
tension according to Tolman’s
proposal is used
(Toschev-Parlange formula,
Eq. (6.90))

On the other hand, since the surface tension � is also a function of p˛ and T ,
a truncated Taylor-expansion of �.p˛; T / yields

�.p˛; T / D �.p; T /C
�
@�

@p

�
T

�
2�.p˛; T /

R

�
(6.86)

or with �.p; T / D �.1/ and �.p˛; T / D �.R/ we have

�.R/ D �.1/

1 � 2

R

�
@�

@p

�
T

: (6.87)

A comparison of Eqs. (6.85) and (6.87) shows that the Tolman-parameter
ı.1/ may be determined as

ı.1/ D �
�
@�

@p

�
T

: (6.88)

Equation (6.88) allows one the determination of ı.1/ based on measurements of
the pressure dependence of � (compare Hill (1952) [357]; Gorski (1989) [267]).
Since direct measurements of the pressure dependence of � are not available,
estimates may be given through equations connecting the interfacial tension with
bulk properties like, e.g., McLeods’s equation (see Rowlinson and Widom (1982)
[672])

�1=4 D const .c˛ � cˇ/ : (6.89)

Equation (6.85), introduced into the expressions for the work of formation
of the critical cluster and the probability of cluster formation (cf. Eqs. (6.43)
and (6.52)) results in a considerable decrease of �G.c/

.cluster/ and in an increase of
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the probability of cluster formation (see, e.g., Toschev (1969 [847], 1973 [848]);
Parlange (1970) [625]). The final result in the form obtained first by Toschev
reads

�G
.c/

.cluster/.�.R// D �G
.c/

.cluster/

1

4

�
�.R/

�.1/

�4 �
3 � �.R/

�.1/

�2
: (6.90)

Here �G.c/

.cluster//.�.R// denotes the work of cluster formation when the size-

dependence of � is accounted for, while �G
.c/

.cluster/ refers to the classical
expression obtained by assuming constancy of � . The above dependence is also
illustrated in Fig. 6.4.4

It can be seen from Eq. (6.90) that in the range of cluster radii, for which
Tolman’s equation can be expected to describe more or less correctly the change
of �.R/ as compared with �.1/, the deviations in the values of the work of
critical cluster formation are smaller than 20 %. Nevertheless, such a decrease in
the work of formation of critical clusters may result in a considerable increase
of the nucleation rate, as will be discussed in more detail in the subsequent
sections.

Following Tolman’s derivations a number of different proposals has been
developed to account for the most appropriate description of finite size effects
in application to nucleation theory. A summary of such attempts is given by
Schmelzer and Mahnke (1986) [708] and Schmelzer [690]. It turns out that
the majority of such proposals can be obtained from one simple assumption
concerning the size-dependence of the Tolman-parameter ı. In most cases,
the �.R/-curves are quite near to Tolman’s prediction. Consequently, similar
conclusions can be drawn also with respect to alternative curvature corrections
to the work of formation of critical clusters (for a more detailed analysis, see
Schmelzer et al. (1995) [690, 708, 719]).

As for the surface tension, similar size dependencies may also be derived for
other quantities characterizing a cluster, like the latent heat of evaporation

q.R/ D q.1/� 2�v˛

R
(6.91)

4Note as well that independent of the specific expression for the curvature dependence of the
surface tension, always the equation

�G
.c/

.cluster/.�.R// D �G
.c/

.cluster/.�.R ! 1//

�
�.R/

�.1/

�3

holds, if the surface of tension is chosen as the dividing surface (cf. Parlange (1970) [625], Ulbricht,
Schmelzer et al. (1988) [874]). Latter result was already well-known to J.W. Gibbs and the effects
of a curvature dependence of the surface tension on nucleation have been also already discussed in
detail by him [249].
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or the specific heat of a cluster

cp.R/ D cp.1/� 2�T

R

�
@2v˛

@T 2

�
: (6.92)

Additional information concerning the properties of small clusters may be found in
a number of specialized monographs or conference proceedings (see, e.g., Petrov
(1982) [633]; Echt and Recknagel (1991) [182]; Berry et al. (1993) [76]; Jena,
Khanna, Rao (1992) [406]; Haberland (1994) [340]).

6.3 Kinetics of Homogeneous Nucleation

6.3.1 Classical Nucleation Theory

Classical nucleation theory was developed in the 1920–1940s by a number
of scientists. First of all the names Farkas (1927) [196], Volmer and Weber
(1926) [896], Volmer (1939) [894], Kaischew and Stranski (1934) [425], Becker
and Döring (1935) [59], Frenkel (1946) [233], and Zeldovich (1942) [949], Turnbull
and Fisher (1949) [866] have to be mentioned. As noted by Farkas, the basic kinetic
model, underlying classical nucleation theory, was proposed in fact already by L.
Szilard. The analysis was initially directed mainly to the case of droplet formation
in a one-component vapor (Farkas (1927) [196]; cf. also [197]). Kaischew and
Stranski [425] investigated, as early as 1934, the formation of crystals from
vapors. The first derivation of nucleation kinetics for the case of crystallization
of an undercooled melt was also developed relatively early by Volmer and Weber
(1926) [896], while Reiss (1950) [661] was the first to apply the outlined ideas
to nucleation in multi-component systems. A summary and thorough discussion
of earlier attempts at determining nucleation rates for different systems may be
found in Volmer’s and Frenkel’s monographs (Volmer (1939) [894]; Frenkel (1946)
[233]). Further developments are summarized in the monographs by Hirth and
Pound (1963) [368] and Zettlemoyer (1969 [954], 1977 [955]) and the review
article by Mutaftschiev (1993) [585]. Here we will develop the theory taking as an
example precipitation in a quasi-binary solid or liquid solution, when only one of
the components segregates to form clusters of the newly evolving phase.

The theory developed by the authors cited above and others, with modifications,
is still the most widely applied tool for the interpretation of nucleation processes
in many fields. Therefore we will start the discussion of nucleation with an
outline of its basic ideas. In classical nucleation theory, a spatially homogeneous
system is considered (assumption 1), where, in the simplest case, particles of
one of the components (atoms, molecules) aggregate to form clusters of the new
phase. Moreover, it is supposed that clusters Bj consisting of j ambient phase
molecules (also denoted as monomers, building units) grow and decay by addition
or evaporation of monomersB1 only according to the scheme (assumption 2)
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B1 C Bj • BjC1 (6.93)

as in a binary chemical reaction. Such an assumption is quite reasonable since the
number of monomers exceeds, by many orders of magnitude, the concentration
of clusters with particle numbers j > 1. Monomers have, moreover, the highest
mobility. Reactions of other types are excluded in this scheme.

At the advanced stages of cluster formation and for highly mobile clusters, the
probability of collisions between clusters of equal or different sizes is, in general,
not equal to zero and assumption 2 has to be replaced by a more general scheme
involving in addition reactions of the type Bi C Bj • BiCj . In these cases,
relations similar to Smoluchowski’s coagulation equations describe the kinetics
of the transformation (von Smoluchowski (1916) [898], (1917) [899]; Kashchiev
(1984) [437]). In phase transformation processes, proceeding in solids, in general,
and glass-forming melts, in particular, the low mobility, respectively, high viscosity
of the system excludes such reaction paths to a large extent.

With assumption 2 the change of the number of clusters per unit volume Nj ,
consisting of j monomers, is connected with two possible reaction channels, with
two processes of the form as given with Eq. (6.93) involving (Bj�1; Bj ; B1) and
(Bj ;BjC1; B1), respectively. The basic equations for the kinetic description of these
processes are given by (assumption 3)

dN.j; t/

dt
D J.j � 1; t/� J.j; t/ for j � 2 (6.94)

with
J.j; t/ D w.C/.j; t/N.j; t/ � w.�/.j C 1; t/N.j C 1; t/ : (6.95)

Here w.C/.j; t/ is the average number of monomers which is incorporated into
a cluster of size j per unit time, while w.�/.j; t/ describes similarly the rate of
decay processes. Equation (6.94) is implicitly subject to the assumption that the
state of the cluster is determined solely by the number of monomers contained in it
(assumption 4: equilibrium shape of clusters). This assumption is motivated by the
argument that a cluster rapidly goes over into the equilibrium shape and structure
corresponding to the respective monomer number contained in it, representing thus
the only configuration which has to be taken into account.

An investigation of the kinetics of nucleation, considering non-equilibrium
configurations of the clusters and the resulting additional reaction paths, may be
found, e.g., in the following references (Ziabicki (1968) [959]; Kaischew and
Stoyanov (1969) [424]). The results obtained confirm, in general, the assumption
made above. The kinetic coefficients w.C/ and w.�/ have to be determined based
on the analysis of the growth and decay kinetics of the clusters which may differ
in dependence on the particular system considered, while the general equations,
Eqs. (6.94)–(6.95), remain the same as far as the assumptions 1–4 are fulfilled.
Once the kinetic coefficients w.C/ and w.�/ are known, the evolution of the cluster
size distribution and related quantities can be determined numerically (see, e.g.
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1

2

Fig. 6.5 Schematic representation of Szilard’s model used in the derivation of the classical
expression for the steady-state nucleation rate here shown for the process of vapor condensation.
In an isothermal chamber, connected with a reservoir of ambient phase particles, the process of
condensation takes place and a population of subcritical and supercritical liquid clusters is formed.
The clusters with particles numbers j 
 g � jc are removed from the chamber instantaneously
via the semipermeable grate (2). It is impenetrable for clusters with sizes j < g. Simultaneously an
equivalent number of monomers is assumed to enter the system through the membrane (1), which is
impenetrable for clusters with monomer numbers j > 1. In such a way, a constant supersaturation
is sustained in the system and a time-independent nucleation rate may be established

Bartels (1991) [39]; Bartels et al. (1991) [43]). However, an analytic approach is also
possible and this was the way the theory of nucleation was originally developed. The
analytical results are obtained for the case that the state of the system is not changed
in the course of nucleation, or in other words, if the supersaturation remains constant
during the process (assumption 5).5

In classical nucleation theory this situation is realized by using the following
model proposed by Szilard (see Fig. 6.5; Becker and Dring (1935) [59]; Kaischew
(1957) [418]; Becker (1964) [58]). It is assumed that in a certain volume of the initial
phase clusters are formed by processes of the type as expressed through equations
Eqs. (6.93)–(6.95). Once a cluster reaches an upper limiting size j D g  jc it
is removed from the system and g monomers are added to it (assumption 6).
Consequently, the condition

N.j; t/ D 0 for j � g  jc (6.96)

is always fulfilled in the model system. Moreover, since the number of monomers is
conserved, in addition, the relation

5A complete analytical theoretical description of nucleation-growth processes in solutions account-
ing for depletion effects – i.e. changes of the state of the ambient phase due to the formation of
clusters of the newly evolving phase – is given in Slezov and Schmelzer [776, 778]; and in Slezov
[773] as well as in cited there papers.
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N.1; t/C
g�1X
jD2

jN.j; t/ � N D constant (6.97)

holds. Starting with a distribution of monomers only, after a certain time interval,
�.ns/, a time-independent steady-state distribution with respect to cluster sizes is
established in the system. In the classical theory, the steady-state is assumed to be
established immediately (assumption 7: steady-state approximation).

As an intermediate step in the development of the classical theory also the
so-called equilibrium distribution of clusters N.e/.j / is determined. This distribu-
tion is calculated based on the following additional assumptions (assumptions 8–10,
see Frenkel (1946) [233]) that

• The ensemble of clusters in the matrix can be considered as a perfect solution
(similar to a perfect mixture of gases if vapor condensation is discussed),

• The equilibrium distributionN.e/.j / corresponds to a restricted minimum of the
Gibbs free energy G, for which the constraints Eqs. (6.93), (6.96), and (6.97)
have to be fulfilled,

• The number of monomers aggregated in clusters with sizes j � 2 is small as
compared with their total number,N .

Based on these assumptions this distribution may be obtained in the form (Frenkel
(1946) [233]; Springer (1978) [791]; Demo, Kozicek (1993) [164]; Mutaftschiev
(1993) [585])

N
.e/
j D N exp

�
��G.cluster/.j /

kBT

�
; (6.98)

which is used as a reference state for the determination of the kinetic coefficients,
w.�/. In Becker-Döring’s approach this equation is introduced as a postulate.

In the assumed steady state, the cluster size distribution in the system is not
changed with time. Consequently, J.j � 1/ D J.j / holds for all values of j in the
range 2 � j � .g � 1/. With this condition from Eq. (6.94) the following set of
relations

w.C/1 N1 � w.�/2 N2 D J

w.C/2 N2 � w.�/3 N3 D J

w.C/3 N3 � w.�/4 N4 D J (6.99)

: : :

w.C/g�2Ng�2 � w.�/g�1Ng�1 D J

w.C/g�1Ng�1 D 0
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is obtained. A multiplication of the second of these equations with
�

w.�/2 =w.C/2

	
, the

third with
�

w.�/2 =w.C/2 /.w.�/3 =w.C/3

	
etc. and a subsequent addition of all equations

yields (see Becker and Döring (1935) [59]; Volmer (1939) [894]; Kaischew (1957)
[418]; Becker (1964) [58])

J D w.C/1 N10
@1C

g�1X
jD2

w.�/2

w.C/2

w.�/3

w.C/3

: : :
w.�/j

w.C/j

1
A
: (6.100)

While the attachment rates, w.C/, may be determined more or less easily based on a
macroscopic approach (see Bartels et al. (1990) [43]; Slezov and Schmelzer (1994)
[775]) and the subsequent discussion of growth phenomena) the calculation of the
rate of detachment of monomers from the cluster requires, in principle, microscopic
considerations.

Though first attempts for a microscopic determination of the detachment rates
have been formulated in the last years (Narsimhan, Nowakowski and Ruckenstein
(1989, 1991) [593, 608, 674]) the most common approach till now remains the
application of the principle of detailed balancing (assumption 11, see, e.g., Your-
greau et al. (1966) [939]). In such a line of development in the classical derivation
of Becker and Döring the rates of evaporation were determined by the Gibbs-
Thomson equation. A similar argumentation was given also by Frenkel (1946) [233].
According to the principle of detailed balancing in an equilibrium state the fluxes in
each of the reaction channels are in balance (compare Eqs. (6.93)). This condition
yields applying the reference distribution N.e/

j (compare Eq. (6.99))

w.C/1 N
.e/
1 � w.�/2 N

.e/
2 D 0

w.C/2 N
.e/
2 � w.�/3 N

.e/
3 D 0

w.C/3 N
.e/
3 � w.�/4 N

.e/
4 D 0 (6.101)

: : :

w.C/j N
.e/
j � w.�/jC1N

.e/
jC1 D 0 :

As a first consequence from these equations we obtain with Eq. (6.98)

w.C/j

w.�/jC1
D N

.e/
jC1
N
.e/
j

D exp

�
��G.cluster/.j C 1/��G.cluster/.j /

kBT

�
: (6.102)

Moreover, a combination of above equations gives (with N.e/
1 � N )
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w.�/2

w.C/2

w.�/3

w.C/3

: : :
w.�/j

w.C/j

D N
.e/
1 w.C/1

N
.e/
j w.C/j

: (6.103)

After a substitution into Eq. (6.100) we obtain with N.e/
1 � N1 � N the result

J D 1

g�1X
jD1

1

Œw.C/j N
.e/
j �

: (6.104)

For a further evaluation of this expression the monomer number j is considered
approximately as a continuous variable (assumption 12). With this approximation
we get

J D 1

.g�1/Z
1

dj

Œw.C/j N
.e/
j �

: (6.105)

Assumption 12 is a good approximation only for systems where the critical cluster
sizes are sufficiently large (jc  1). In the opposite case an alternative approach can
be developed which is denoted as the atomistic model in the theory of nucleation. It
is discussed in one of the subsequent sections.

The distribution, N.e/
j , has a sharp minimum at the critical cluster size, jc . Thus

one may replace the attachment rate by its value for the critical cluster size and take
it out of the integral. In this way one may write, approximately, taking into account
Eq. (6.98)

J D w.C/.jc/N
.g�1/Z
1

exp

�
�G.cluster/.j /

kBT

�
dj

: (6.106)

A Taylor-expansion of �G.cluster/.j / in Eq. (6.106) in the vicinity of j D jc (or
R D Rc), including second order terms, reads

�G.cluster/.j / D �G.cluster/.jc/C 1

2

�
@2�G.cluster/

@j 2

�
jDjc

.j � jc/2 C : : : (6.107)

Employing Eq. (6.50), Eq. (6.107) may be rewritten in the form

�G.cluster/.j / D �G
.c/

.cluster/

"
1 � 1

3

�
j

jc
� 1

�2#
: (6.108)
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derivation of the expression
for the classical steady-state
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Equation (6.108) is one of the main approximations used throughout the whole
theory of nucleation. It was applied by Becker and Döring (1935) [59] instead of
Eq. (6.47).

With this expression the basic equation of the classical nucleation theory in the
form

J D w.C/.jc/�.z/N exp

 
��G

.c/

.cluster/

kBT

!
(6.109)

is obtained. Hereby in the determination of the integrals in Eq. (6.106) as a new
variable x D j � jc was introduced and the interval of integration was taken
as (�1;C1) reducing the problem to the calculation of the well-known error
function. The quantity �.z/ in Eq. (6.109) is usually denoted as the Zeldovich-factor.
It is defined by

�.z/ D
(

� 1

2	kBT

�
@2�G.cluster/.j /

@j 2

�
jDjc

) 1=2
: (6.110)

By a calculation of the second-order derivative in Eq. (6.110) one obtains with
Eq. (6.50)

�.z/ D 1

2	c˛R2c

�
�

kBT

�1=2
: (6.111)

This parameter is typically of the order �.z/ � 10�2 (for a more full account
of possible �.z/ values see Toschev (1973) [848]). An illustration of some of the
peculiar properties of the integral in Eq. (6.106) used in the derivation of the steady-
state nucleation rate is given in Fig. 6.6.

Historically the first derivation of the classical expression for the steady-state
nucleation rate in the form
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J D constN1w
.C/.Rc/ exp

�
��G.cluster/.Rc/

kBT

�
(6.112)

was obtained by Volmer and Weber (see Volmer (1939) [894]) by a simple
intuitive argumentation. It was assumed that the concentration of critical clusters
in a metastable system is given by Eq. (6.98) and that the nucleation rate, J , is
proportional to this concentration multiplied by the probability that a critical cluster
passes the maximum of the�G.cluster/.j /-potential. This probability was assumed to
be proportional to the attachment rate, w.C/, of ambient phase molecules to clusters
of critical size. To this simple argumentation the further development of theory
added in fact the specification of the value of the constant in above equation to
const. D �.z/, the Zeldovich-factor.

6.3.2 Analysis of Important Special Cases

The application of Eq. (6.109) requires the knowledge of the attachment rate,
w.C/.jc/, for any particular case of phase formation. This quantity can be deter-
mined by the analysis of the growth mechanism of a cluster evolving in the ambient
phase. This analysis will be performed in Chaps. 8 and 9. However, to allow one
estimates for J here w.C/ is determined for two important cases, the condensation
of droplets from a one-component vapor and the crystallization of a melt, when the
initial and the newly formed condensed phases have the same composition.

For the discussion of the first case, we start with the velocity distribution of
identical molecules of mass m in a one-component gas, which can be written as
(Maxwell’s distribution, see, e.g., Becker (1964) [58])

dw.vx; vy; vz/ D
�

m

2	kBT

�3=2
exp

�
� mv2

2kBT

�
dvxdvydvz : (6.113)

A calculation of the average of the absolute value of the velocity with Eq. (6.113)
yields

hvi D
�
8kBT

	m

�1=2
: (6.114)

If one considers a unit surface area oriented perpendicular, e.g., to the z-axis, the
number of collisions of the molecules of the gas with this surface element per unit
time (the impingement rate, Z) can be expressed through the volume density of
monomers,N , and the average velocity in z-direction, hvzi, as

Z D N hvzi : (6.115)

A determination of hvzi and comparison with Eq. (6.114) yields



250 6 Kinetics of Crystallization and Segregation: Nucleation in Glass-Forming Systems

Z D 1

4
N hvi D 1

4
N

�
8kBT

	m

�1=2
: (6.116)

By the definition of w.C/ this quantity is connected with the impingement rate,
Z, by

w.C/j D ZAj ; Aj D 4	R2j : (6.117)

Here Aj is the surface area and Rj the radius of a spherical cluster consisting of
j monomers. In employing Eq. (6.117) for the determination of the steady-state
nucleation rate the quantities Aj have to be identified with the surface area of the
critical cluster.

Moreover, if one applies in addition the perfect gas law for the description of the
vapor phase (pV D NkBT with V D 1), we obtain, finally,

J D 1

c˛

�
p

kBT

�2 �
2�

	m

�1=2
exp

 
��G

.c/

.cluster/

kBT

!
: (6.118)

Similarly, for crystallization processes in the melt we get as an estimate for w.C/.Rc/
applying the already derived expressions Eqs. (2.106)–(2.110)

w.C/j D ZAj D kBT

d50 �
Aj : (6.119)

Taking into account that for melt crystallization N � c holds we obtain from
Eq. (6.109)

J D c&

d50 �c˛

�
�

kBT

�1=2
exp

 
��G

.c/

.cluster/

kBT

!
: (6.120)

For melt crystallization the densities of the melt and the crystal are nearly the same
and the relation c � c˛ is fulfilled.

In the above equation, again, the correction factor & is introduced (compare
Sect. 2.4.3), which reflects changes of the probability of attachment of ambient
phase particles to the critical nucleus in dependence on its state and the complexity
of the ambient phase molecules incorporating into it. For crystalline clusters
values of & of the order 10�3–10�5 have to be expected, while for the case of
liquid-liquid phase separation, which can be treated similarly, & � 1 holds (see
Gutzow and Toschev (1968) [318]; Gutzow, Kashchiev, Avramov (1985) [330]).
The introduction of the correction factor & implies that an effective impingement
rate is applied. This effective impingement rate is given by Z.eff / D Z& resulting in

w.C/j D Z.eff /Aj D &
kBT

d50 �
Aj : (6.121)
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For crystallization of melts the thermodynamic driving force of phase formation,
��, can be expressed through the difference T � Tm, for example, by Eq. (6.65). In
this case we get assuming, again that nearly spherical clusters are formed

J D &

d50

�
�

kBT

�1=2
1

�
exp

�
�16	

3

�3v2m
kBT .�sm.Tm � T //2

�
: (6.122)

Here vm is the molar volume of the crystalline phase.
Similar expressions may be also derived if more complicated relations for

the description of the thermodynamic driving force of crystallization have
to be employed (compare Sect. 3.3). Generally, it turns out that the term
exp.��G.c/

.cluster/=kBT / depends strongly on temperature. However, the temperature
dependence of the steady-state nucleation rate is determined not only by this term
but also by the temperature course of the viscosity, �. If we apply a Frenkel-type
equation with a constant activation energy,U0, for the description of the temperature
dependence of the viscosity (compare Eq. (2.78)) Eq. (6.122) obtains the form

J D B
.˚/
1 exp

�
� U0

kBT

�
exp

 
� B

.˚/
2

T .Tm � T /2
!
; (6.123)

B
.˚/
1 D &

d50 �0

�
�

kBT

�1=2
; B

.˚/
2 D 16	

3

�3v2m
kB.�sm/2

; (6.124)

where the quantities B.˚/
1 and B.˚/

2 are relatively slightly varying functions of

temperature. The temperature dependence of B.˚/
2 and, at part also of B.˚/

1 , is
connected with the temperature dependence of the specific surface energy. In a first
approximation the relation

�.T /

�.Tm/
Š .1 � ���.T // ; � > 0 ; ��.T / > 0 (6.125)

can be derived (Gutzow, Kashchiev and Avramov (1985) [330]). A consideration
of the possible temperature dependence of � is of importance both for analyzing
nucleation but also crystal growth data, when such processes are analyzed in the
whole temperature region from Tg to Tm.

The temperature dependence of the steady-state nucleation rate, J , according
to Eq. (6.123) is characterized by the following features. The nucleation rate tends
to zero both for T ! Tm (the thermodynamic driving force of the transformation
becomes equal to zero) and for values of temperature near and below Tg (here the
mobility of the ambient phase particles tends to zero). There exists a maximum of
this curve at T D T nucl

max , which can be determined, as calculated first by Frenkel
(1946) [233], applying the relation for the temperature dependence of the viscosity,
proposed by him, via the relation
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Tm�sm
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: (6.126)

Similar estimates for the value of temperature for which J.T / has a maximum based
on more realistic �.T /-dependencies have been made by Filipovich (1963) [206].
In contrast, attempts have also been developed to apply the knowledge of the J.T /-
course for a specification of the constants employed for the description of the
temperature dependence of the viscosity. This was done, for example, by Stoycev
et al. (1973) [807] for the VFT-equation applied to simple organic melts.

The first experimental results on the temperature dependence of the nucleation
rate in glass-forming melts confirmed the theoretical expectations, at least, qualita-
tively. One of the first examples in this respect are Tammann’s results from 1898 on
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the temperature dependence of the nucleation rate of piperine (see Tammann (1933)
[820]) shown in Fig. 6.7 as well as similar results on glycerol (Fig. 6.8). However,
no quantitative comparison between experiment and theory can be made based on
these early investigations. This is due to the fact that steady-state nucleation was
assumed without any experimental proof.

The experimental results were obtained applying Tammann’s method of nucleus
development which was accepted and employed by most other investigators of
this time. In Tammann’s method, the melt is heat-treated first at temperatures
corresponding to relatively large values of the nucleation rate, for which, as seen
in Fig. 6.8, the growth rates are relatively small. The temperature is increased in
a next step and the supercritical clusters formed at lower temperatures (higher
supersaturations) are allowed to grow to macroscopically observable sizes. For
the higher values of temperature the formation of new nuclei may be excluded
practically. The outcome of nucleation is then connected with the experimentally
observed number of clusters developed to macroscopic sizes. However, Tammann’s
method of nucleus development has also some shortcomings as it becomes evident,
for example, from Fig. 6.3. Clusters formed at lower values of temperature (higher
under-cooling) may be converted to a subcritical size when the system is exposed to
higher temperatures (lower supersaturations). In this way, a part of the supercritical
clusters formed initially will decay and not grow to macroscopic dimensions.

In Fig. 6.9, results of more recent investigations of the temperature dependence
of the nucleation rate as obtained by several authors are given for another glass-
forming system (lithium disilicate Li2Si2O5). Despite the considerable scattering
in the experimental data for the values of the nucleation rate, the position of the
maximum is practically the same for all of the different studies shown. The observed
scattering is due mainly to the presence of different amounts of insoluble particles in
the melt which, as it will be discussed in detail in the next chapter, may considerably
increase the rate of nucleation. In systems like lithium disilicate the high number
of nucleation dopants may be explained taking into account that even platinum
crucibles are corroded during silica and phosphate glass synthesis and may provide
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in this way a perceptible population of foreign nucleation cores (see the results of
Gutzow, Popov and Streltzina (1968) [323]).

6.3.3 Problems, Generalizations and Improvements:
An Overview

In application of the basic equations of the classical nucleation theory it is usually
assumed that the work of formation of the critical clusters can be expressed
in terms of Gibbs’ formula, Eq. (6.43), with a value of the specific interfacial
energy, � , determined for a planar interface between both coexisting phases
(assumption 13: capillarity approximation). As already mentioned this extension of
macroscopic concepts to the properties of small clusters, consisting of relatively few
particles only, gives rise to serious criticism and originated a number of alternative
approaches for the calculation of �G.c/

.cluster/ (curvature dependent surface tension
and the Toschev-Parlange correction; atomistic approach to nucleation). A review
of the basic ideas of the atomistic approach to nucleation is given in Sect. 6.3.8.
In addition, in our derivations, entropy effects connected with the incorporation of
rotational and translational degrees of freedom – with the so-called Lothe-Pound
factor (see Kuhrt (1952) [488]; Lothe, Pound (1962) [514], (1966) [515]; Hirth,
Pound (1963) [368]) – are not accounted for. A thorough discussion in recent
years showed that such a correction factor can be of great importance for vapor
condensation but is of little significance for melt crystallization (see Mutaftschiev
(1993) [585]).

In the application of nucleation theory to processes of crystallization in the melt,
the problem arises of how an independent estimation of the specific interfacial
energy between the melt and the evolving small crystallites can be carried out.
According to the Skapski-Turnbull rule [764–766, 788, 789]

� D �
qm

N
1=3
A v

2=3
m

; � D 0:4 � 0:6 (6.127)

is usually fulfilled.6 Here qm is the molar heat of melting, vm the molar volume of the
melt, NA Avogadro’s number. This rule is a particular formulation of a very general
dependence proposed many years ago by Stefan ((1886) [796]; see also Moelwyn-
Hughes (1972) [567]). According to this rule, the specific interfacial energy for any
case of phase equilibrium is determined by the ratio of the molar enthalpy of the
transformation (�H ) divided by the number of molecules at the surface of one

mole of the substance
�
N
1=3
A v2=3

	
. The specific interfacial energy melt-crystal is

determined by the heat of melting, while the interfacial tension of the melt-vapor

6A derivation of this relation and some additional discussion can be found in Chap. 14.
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interface is proportional to the heat of evaporation. Similarly, the specific interfacial
energy of the crystal-vapor interface is determined by the enthalpy of sublimation.
For interfaces between crystals and aqueous solutions of the respective substance
according to a suggestion of Kahlweit (1961) [415] the heat of dissolution can be
used for a determination of � .

For liquid-vapor interfaces the parameter � in Eq. (6.127) is usually of the order
� � 0:5. For phase equilibria with crystalline phases � depends significantly not
only on the substance involved but also on the modification of the crystalline
phase. A detailed investigation of these problems was performed by Kaischew and
Krastanov (1933) [423]. However, experimental methods for a direct determination
of � for the melt-crystal interface do not exist and the estimates of this quantity are
often based on nucleation experiments themselves. With Eq. (6.127) the estimate for
T nucl

max given by Eq. (6.126) may be rewritten in the form

Tm

T nucl
max

D 1C
�
32	

3�˚

�1=3
�

�
�Sm

R

�1=3
; �˚ D U0

kBTm
: (6.128)

By substituting typical values of �˚ in the range �˚ Š 20�40 and�Sm=R Š 1�2
as an estimate T nucl

max Š .0:5 � 0:6/Tm is found. Similar estimates but carried out
with more realistic expressions for the temperature dependence of the viscosity yield
T nucl

max Š .0:6 � 0:7/Tm (Filipovich (1963) [206]).
In the derivation of the classical theory of nucleation, it was assumed that the

number of particles in the critical cluster is sufficiently large, so that a continuous
description can be used. Such a procedure is questionable taking into account
experimental findings that in most cases of nucleation taking place in the formation
of thin films, in electro-crystallization, critical clusters constituted of only a few
atoms or molecules are to be expected at the high supersaturations involved in such
processes. For nucleation processes taking place in glass-forming melts, estimates
show (Gutzow (1981) [304]) that here, at least, in processes of homogeneous
nucleation and liquid-liquid phase separation, the number of molecules in the critical
clusters is sufficiently large even at the highest possible supersaturations (i.e., in
the vicinity of Tg). Thus both the capillarity approximation and the transition from
a discrete to a continuous description should here to be more acceptable with
respect to the validity of the final results. This circumstance can be considered as
an additional advantage for using glass-forming systems in order to test the theory
of nucleation experimentally and to apply, on the other hand, the classical theory to
the interpretation of experimental results in crystallization of glasses.

In the outlined derivations, it was assumed that the ambient phase molecules
which have to be incorporated into the growing cluster are of nearly spherical
shape resembling billiard balls (cf. Fig. 4.26). However, in most glass-forming
melts such a picture has to be modified accounting for the complexity of the
basic building units of the new phase. Another limitation of the classical approach
consists of the application of the principle of detailed balancing, valid strictly
only for equilibrium states, for the determination of the decay rates w.�/ for the
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non-equilibrium processes under consideration. In this respect, it is of interest to
note that recently a new method of determination of these kinetic quantities was
developed avoiding the application of the principle of detailed balancing for clusters
of supercritical sizes (for the details see Slezov and Schmelzer (1994) [775]), i.e., in
the region of cluster sizes for which the application of the above mentioned approach
is particularly doubtful. The final results of the classical theory, modified in such a
way, remain practically the same, but they have got a sound foundation. In this
approach the decay rates are, again, expressed through a function of the type as
given by Eq. (6.98), however, this function is to be interpreted, now, as an auxiliary
mathematical quantity. In the same paper [775], the generalization of the outlined
results to the case of phase formation processes in multi-component solid or liquid
solutions is also given for the case that aggregates of a well-defined stoichiometric
composition are formed.7

Severe restrictions with respect to the applicability of the classical theory are also
connected with the assumptions 5 and 7, the supposed constancy of the state of the
system in the course of nucleation, i.e., the steady-state character of this process. The
intrinsic non-steady character of nucleation arises, in general, from two factors:

• In the model system and also in real situations it takes some induction time, if
attainable at all that a stationary cluster size distribution and, consequently, a
steady-state nucleation rate, having the same value for clusters of every size, is
established via a series of supposed bimolecular reactions (transient nucleation).

• Processes of formation and growth of the clusters change, in general, the
supersaturation and the state of the system, where the phase transformation takes
place. Consequently, constant nucleation rates cannot be sustained for prolonged
periods of time without external interference.

It is evident that this change of the state of the system essentially determines the
basic characteristics of the nucleation process as, e.g., the total number of clusters
formed in the system in the initial stage of phase formation.

In the case of non-steady state nucleation, problems also arise with respect
to the meaning and the definition of the term nucleation rate. For the classical
model analyzed so far the nucleation rate J is usually identified with the rate of
formation of critical clusters J.jc/ given by Eqs. (6.109), (6.118), and (6.120). In the
framework of the considered model, this definition is not restrictive since, due to the
assumption of a steady state, the formation rates of clusters of each size are the same.
The situation is, however, changed, if nucleation under non-steady state conditions
is considered. In both of the mentioned cases the rates of formation of clusters of
different sizes differ. This fact requires a more detailed discussion of the meaning
of the term nucleation rate and of the consequences arising from the changes of

7For a more recent as compared with [775] formulation of these results including further
developments, in particular, accounting for depletion effects on the course of first-order phase
transitions, see the already cited references Slezov and Schmelzer [776, 778]; Slezov et al. [779];
and Slezov [773] and further cited there papers.
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the state of the system with respect to nucleation and the phase transformation as a
whole.

In the subsequent sections, first transient nucleation is discussed. Hereby two
possibilities exist. The first one is connected with a numerical description of
nucleation based on the solution of the set of kinetic equations underlying the
classical nucleation theory or equivalent expressions. The second, the classical way,
consists of the derivation of approximative analytical solutions. In the subsequent
section we proceed in line with the first of the mentioned approaches going over
afterwards to a derivation of analytical expressions for the nucleation rate, the time-
lag and other characteristics of transient nucleation. The analysis is supplemented by
a more detailed discussion of some generalizations and modifications of the classical
theory (nucleation of chain-folding polymers, atomistic approach to nucleation,
thermal and athermal nucleation) mentioned briefly above.

6.3.4 General Description of the Time Evolution of the Cluster
Size Distribution: The Zeldovich-Frenkel Equation

The calculation of the steady-state nucleation rate is a major but only a first step
in the description of phase transformation processes. A comprehensive characteri-
zation of the nucleation process as well as of the whole course of the transition is
obtained only if the cluster size distribution is established as a function of time
for the whole transformation. In the framework of the numerical approach, the
determination of the cluster size distribution can be carried out by a numerical
solution of the system of kinetic equations Eqs. (6.94)–(6.97) underlying classical
nucleation theory. Here, as examples, the first attempts by Turnbull (1949) [942] and
Courtney (1969) [148] are to be mentioned as well as later elaborated calculations
by Kelton, Greer et al. (1983) [448]. The numerical calculations are time consuming
since the number of equations which have to be solved simultaneously has to exceed
the number of particles in the largest cluster evolving in the course of time in the
system. For processes of liquid phase separation such calculations could involve a
number of equations greater 103. Moreover, for an analytical discussion of different
stages of the transformation a more compact description is also desirable. It can be
obtained in the following way.

First, we rewrite Eqs. (6.94)–(6.95) in the form

@N.j; t/

@t
D �Œw.C/j Cw.�/j �N.j; t/CŒw.C/j�1N.j�1; t/Cw.�/jC1N.jC1; t/� : (6.129)

Considering j as a continuous variable by a Taylor-expansion of the quantities
w.C/j�1Nj�1 and w.�/jC1NjC1, including second order terms, a Fokker-Planck type
equation (see, e.g., Röpke (1987) [668]) for the time evolution of the cluster size-
distribution function is obtained, i.e.,
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o
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(6.130)

The Fokker-Planck equation was developed originally to describe flow and diffusion
processes in real space and later extended to processes in phase space or, as in the
present investigation, to a description of the kinetics of cluster formation and growth
in cluster size space. At the same level of approximation as inherent in the derivation
of Eq. (6.130) this equation may be rewritten also as (see Slezov and Schmelzer
(1994) [775])

@N.j; t/

@t
D � @

@j

�h
.w.C/j � w.�/jC1/N.j; t/

i
� 1

2

�
.w.C/j C w.�/jC1/

@

@j
N.j; t/

��
:

(6.131)

This equation has the same structure as the relation describing the macroscopic
deterministic flow as well as diffusion processes of particles characterized by a
volume concentration c, i.e.,

@c

@t
D �r fŒc.r; t/v� �Drc.r; t/g : (6.132)

Here v is the macroscopic (hydrodynamic) velocity of the particles while D is
the diffusion coefficient, connected with the diffusive Brownian motion of the
considered component in real space.

Similarly, the quantity vj , defined by

vj D hw.C/j � w.�/jC1i ; (6.133)

has the meaning of the macroscopic (average) growth velocity of a cluster of size j ,
while the quantityDj , given by

Dj D hw.C/j C w.�/jC1i
2

(6.134)

represents the diffusion coefficient for stochastic motions in cluster size space. Since
the coefficients w.C/ and w.�/ describing growth and decay are relatively smooth
functions of the number of particles, j , approximately, the relations

vj D hw.C/j � w.�/j i ; (6.135)

Dj D hw.C/j C w.�/j i
2

; (6.136)

may also be used. These relations allow one to give, in addition, also a kinetic
definition of the critical cluster size.
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In agreement with thermodynamics, the critical cluster is characterized by the
property that the macroscopic (deterministic) velocity of growth is equal to zero.
Consequently, for the critical cluster the relations

w.C/j .Rc/ D w.�/j .Rc/ ; D.Rc/ D w.C/j .Rc/ (6.137)

are fulfilled. With Eq. (6.102) the deterministic rate of growth of clusters of size j
may be expressed through the attachment rate w.C/j and �G.cluster/.j / as

vj D w.C/j

�
1 � exp

�
��G.cluster/.j C 1/��G.cluster/.j /

kBT

��
: (6.138)

For small values of the quantity Œ�G.j C 1/ � �G.j //=kBT � a Taylor-expansion
of the exponential function yields, approximately,

vj D �w.C/j

1

kBT

@�G.cluster/

@j
: (6.139)

Both equations given above will be of particular significance in discussing different
mechanisms of cluster growth (see Chaps. 8 and 9).

Neglecting second-order terms in the Taylor-expansion of Eq. (6.133) a
continuity equation of the form

@N.j; t/

@t
D � @

@j

n
Œw.C/j � w.�/j �N.j; t/

o
(6.140)

is obtained as a special case from the Fokker-Planck equation. This continuity
equation, giving the time dependent change of the concentration of j -meric clusters,
can be expressed also in a somewhat different way. Starting with Eq. (6.95)

J.j; t/ D w.C/j N.j; t/ � w.�/jC1N.j C 1:t/ ; (6.141)

rewriting it in the form

J.j; t/ D w.C/j N
.e/
j

"
N.j; t/

N
.e/
j

� w.�/jC1N.j C 1; t/

w.C/j N
.e/
j

#
(6.142)

and applying Eq. (6.101)

w.�/jC1 D w.C/j

N
.e/
j

N
.e/
jC1

; (6.143)

we have
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J.j; t/ D w.C/j N
.e/
j

"
N.j; t/

N
.e/
j

� N.j C 1; t/

N
.e/
jC1

#
: (6.144)

A truncated Taylor-expansion of the second term in the brackets gives

J.j; t/ D �w.C/j N
.e/
j

@

@j

 
N.j; t/

N
.e/
j

!
: (6.145)

Moreover, by a Taylor-expansion of J.j � 1; t/ Eq. (6.94) may be rewritten also as

@

@t
N.j; t/ D J.j; t/ C @J.j; t/

@j
.�1/C : : : � J.j; t/ D �@J

@j
: (6.146)

A combination of Eqs. (6.144) and (6.146) yields, finally,

@

@t
N.j; t/ D @

@j

"
w.C/j N

.e/
j

@

@j

 
N.j; t/

N
.e/
j

!#
: (6.147)

This relation is usually denoted as Zeldovich-Frenkel equation. It was derived first
by Zeldovich (1942) [949] in a discussion of the problem of cavitation (bubble
formation in a liquid).

The classical derivation of this equation can be found also in Frenkel’s mono-
graph (1946) [233]. Frenkel’s approach is somewhat different from the derivation
given above. Frenkel started directly with Eqs. (6.94), (6.95), (6.98), and (6.99) and
obtained

@N.j; t/

@t
D J.j � 1; t/� J.j; t/ ; (6.148)

J.j � 1; t/ D w.C/j N
.e/
j�1

 
N.j � 1; t/

N
.e/
j�1

� N.j; t/

N
.e/
j

!
; (6.149)
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.e/
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!
: (6.150)

Applying the relations

J.j � 1; t/ D J.j; t/ � @

@j

"
w.C/j N

.e/
j
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.e/
j

� N.j C 1; t/
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.e/
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; (6.151)
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N
.e/
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N.j; t/

N
.e/
j

C : : : ; (6.152)
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Fig. 6.10 (a) Change of the nucleation rate as a function of reduced time, Qt , for clusters of different
sizes (R D 1:08 nm (curve (1)) andR D 2:76 nm (curve (2)) obtained by the numerical solution of
the set of kinetic equations, Eqs. (6.94)–(6.95). In the calculations the supersaturation in the system
is kept constant. (b) and (c) Evolution of the cluster size distribution in nucleation taking place at
constant supersaturation expressed through the cluster radius (.dN=dR/, (b)) and the number of
particles, j , contained in it (c) for different moments of reduced time Qt : Qt D 460 (1); Qt D 1; 160

(2) and Qt D 2; 310 (3)

which may be obtained from Taylor-expansions of the respective quantities, the
relation, Eq. (6.147), is re-derived, again. With Eq. (6.98) the term in the brackets
in Eq. (6.147) can be rearranged to give

@

@t
N.j; t/ D @

@j

�
w.C/j

@N.j; t/

@j

�
C @
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�
w.C/j N.j; t/
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�
�G.cluster/.j /

kBT

��
:

(6.153)

The flux in cluster size space may be expressed, consequently, as

J.j; t/ D �w.C/j

�
@N.j; t/

@j
CN.j; t/

@

@j

�G.cluster/.j /

kBT

�
: (6.154)

Equation (6.153) has a similar form as the equation describing diffusion in a force
field (see Kramers (1940) [482]; Chandrasekhar (1943) [126]; Hänggi et al. (1990)
[346]; Feder et al. (1966) [198]). In this case the generalized thermodynamic “force”
is proportional to (@�G.cluster/.j /=@j ). This analogy of the Zeldovich-Frenkel
equation to equations describing processes of diffusion in force fields initiated the
first attempts of deriving solutions describing the kinetics of transient nucleation as
performed by Zeldovich (1942) [949] and Collins (1955) [139].

Results of the solution of the basic set of kinetic equations (Eqs. (6.94)
and (6.95)) and of the Fokker-Planck equation, Eq. (6.130), for diffusion limited
growth with appropriately chosen rate coefficients w.C/ and w.�/ (see Bartels et al.
(1991) [43]) for the case of segregation of one of the components in a quasi-binary
glass-forming melt are shown in Figs. 6.10 and 6.11. The parameter values used
refer to the process of segregation of silver chloride clusters in a sodium metaborate
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Fig. 6.11 (a) Evolution of the cluster size distribution dN=dR in a finite (closed) system, where the
total number of particles is conserved. The actual critical cluster size is indicated by arrows. For
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Qt : 116 (1); 231 (2); 380 (3); 588 (4); 1,051 (5); 7,851 (6); 12,330 (7); 18,821 (8); 37,267 (9).
(b) Average cluster radius, hRi, total number of clusters, N , and relative supersaturation as
functions of time when the total number of particles is conserved. In the calculations only clusters
with a radius larger than 0.6 nm are taken into account to allow one a better comparison with
experimental results. In experiments, in general, characteristics of the cluster size distribution can
be measured only for sizes exceeding a given limit of detectability determined by the experimental
method applied

melt also investigated experimentally (see also Fig. 6.12; Specific interfacial energy
� D 0:09 Jm�2; particle concentration in the cluster phase c˛ D 2:3 � 1028 m�3;
concentration of segregating particles in the matrix c D 8:6 � 1027 m�3; equilibrium
concentration of segregating particles in the matrix ceq D 4:2�1026 m�3; temperature
458 ıC; diameter of matrix building units d0 D 6:06 � 10�10 m. Moreover, a
dimensionless time scale Qt D tD=d20 was introduced). It is assumed in the
calculations that the segregating phase is distributed initially in the matrix in form of
monomeric structural units (atoms or molecules) only. Starting with such an initial
state, the rates of formation of clusters of different sizes can be calculated. Hereby
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it is supposed first that the state of the system is not changed in the course of the
transformation (constant supersaturation).

The curves representing the time evolution for the nucleation rate for two
different cluster sizes are shown for these conditions in Fig. 6.10a. It can be seen
that it takes some time until the steady-state nucleation rate, having the same value
for clusters of each size, is established. However, the induction period needed for
the establishment of the steady-state nucleation rate is different for different cluster
sizes. Figure 6.10b illustrates for the same conditions the time evolution of the
cluster size distribution expressed through the variable R (cluster radius) and j
(number of particles in the cluster).

If the condition of constant supersaturation is replaced in the numerical calcu-
lations by the constraint, which is more natural for segregation processes that the
total number of particles of the segregating component (number of monomers) is
not changed in the course of the transition

X
j

j N.j; t/ D constant ; (6.155)

a new situation arises. The evolution of the cluster size distributions f .R; t/ or
N.j; t/ and related quantities like the average cluster size

hRi D
1Z
0

Rf .R; t/dR ; (6.156)

the total number of clusters in the system N , the relative supersaturation depend
in this case on time in a form as depicted in Fig. 6.11. Only for a limited
interval of time is the supersaturation in the system practically unchanged and,
consequently, a constant nucleation rate is observed. In the case discussed, the
relative supersaturation � is defined by the actual concentration of free monomers
of the segregating component in the ambient phase. Considering the ambient phase
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as a perfect solution, according to the definition of the relative supersaturation
(Eq. (6.54)), we obtain

� D ��

kBT
D ln

�
cˇ

ceq

�
; (6.157)

where cˇ and ceq are the actual and the equilibrium concentrations of the monomers
in the ambient phase for a stable coexistence of both phases divided by a planar inter-
face. Moreover, in Fig. 6.11a a stage of the transformation with a time dependence
of the average cluster size described by the power law hRi2 
 t can be seen. Via an
intermediate interval with a relatively low growth rate of the average cluster size, the
growth kinetics is transferred further to an hRi3 
 t law. An analytical description
of these later stages is given in Chap. 9 concerned with diffusion-limited segregation
and a process in the transformation denoted commonly as Ostwald ripening.

Results of experimental investigations of the discussed process of formation
of silver chloride clusters in a sodium borate melt are shown in Fig. 6.12. It is
seen that, at least, qualitatively a coincidence between theoretical predictions and
experimental results is found. The results of the numerical calculations modeling
phase formation processes in real systems exhibit the complicated character of the
changes occurring in the course of the phase transformation and the difficulties
attempts of an analytical description of such processes are encountered with.

Going over, now, to a derivation of such analytical results we have to note
first that previously obtained expressions for the steady-state nucleation rate may
be rederived easily from the Zeldovich-Frenkel equation. Indeed, starting with
Eqs. (6.145)–(6.147) and assuming steady-state conditions we may write

J.j; t/ D J D �w.C/j N
.e/
j

@

@j

 
N.j /

N
.e/
j

!
D constant : (6.158)

An integration of this equation with respect to j in the limits from j D 1 to j D 1
yields  

N.j /

N
.e/
j

!ˇ̌̌
ˇ̌
jD1

jD1
D �

1Z
1

J

w.C/j N
.e/
j

: (6.159)

Taking into account the boundary conditions

N.j /

N
.e/
j

' 1 for j ! 1 ; (6.160)

N.j /

N
.e/
j

' 0 for j > g  jc (6.161)

Eq. (6.105) is re-derived and can be evaluated by the same methods as discussed
earlier.
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6.3.5 Transient Nucleation: Time Dependence of the
Nucleation Rate and the Number of Supercritical
Clusters

An analytical description of the numerical results, outlined in the previous section,
requires a solution of the Zeldovich-Frenkel equation or equivalent expressions.
Important problems in this direction are the determination of the time dependence
of the nucleation rate in the initial period of the transformation and the evaluation of
the induction period. Different approaches have been developed in order to solve this
task (for a discussion of classical attempts in this direction see, for example, Mason
(1957) [536]; Lyubov and Roitburd (1958) [518]; Kashchiev (1969) [434], Frisch
and Carlier (1971) [236]; Toschev (1973) [848] and for more recent developments
Binder and Stauffer (1976) [83]; Trinkaus and Yoo (1987) [854]; Shi et al. (1990)
[752]; Wu (1992) [933]; Shneidman (1988 [746], 1992 [747], 1994 [748]). Hereby
it is commonly assumed that in the initial stage of the transformation the segregating
phase consists of monomeric units (atoms, molecules) only, i.e. that

N.j; t/ D 0 at t D 0 for j > 1 (6.162)

holds.
In the initial period of the transformation the supersaturation in the system is

practically not changed and the kinetic coefficients w.C/ and w.�/ can be considered
as time-independent quantities. A derivation of Eq. (6.154) with respect to time
yields, consequently,

@J.j; t/

@t
D �w.C/j

�
@2N.j; t/

@t@j
C @N.j; t/

@t

@

@j

�G.cluster/.j /

kBT

�
: (6.163)

Changing the order of the partial derivatives and applying Eq. (6.146) this relation
may be rewritten in the form

@J.j; t/

@t
D w.C/j

�
@2J.j; t/

@j 2
C @J.j; t/

@j

@

@j

�G.cluster/.j /

kBT

�
: (6.164)

In the vicinity of the critical cluster size Œ@�G.j /=@j � � 0 holds and Eq. (6.164) is
reduced to

@J.j; t/

@t
D w.C/j

@2J.j; t/

@j 2
; (6.165)

i.e., to a diffusion equation in cluster size space with a constant value of the diffusion
coefficient.

A remarkably simple solution of this equation was proposed first by Zeldovich
in 1942 using an analogy to Ornstein’s and Uhlenbecks classical analysis of a
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mathematically equivalent diffusion problem (see Ornstein and Uhlenbeck (1930)
[614]). The expression given by Zeldovich for the time dependence of the rate of
formation of critical clusters J.jc; t/ reads

J.jc ; t/ D J.jc/ exp

�
��

.ns/

t

�
: (6.166)

J.jc/ in above equation is the steady-state nucleation rate and �.ns/ a characteristic
time scale of the process, the so-called time-lag in nucleation. It has the meaning of
the time determining the approach to the steady-state rate of formation of clusters of
critical sizes. The time dependence J.jc; t/ according to Zeldovich’s equation has,
in agreement with experimental evidence and the numerical calculations, a typical
s-shaped form. Moreover, for t ! 0 the relation dJ=dt D 0 holds.

Both these properties of Zeldovich’s solution are absent in another approximative
result proposed by Wakeshima (1954) [906] (cf. also Probstein (1951) [651],
Kantrowitz (1951) [430])

J.jc; t/ D J.jc/

�
1 � exp

�
� t

� .ns/

��
(6.167)

which is given as an example in most standard texts on nucleation kinetics
(see Lyubov and Roitburd (1958) [518]; Feder et al. (1966) [198]; Springer
(1978) [791]). While Eq. (6.166) resembles a solution of a diffusion type problem,
Wakeshima’s expression can be considered as the simplest example of a dependence
with a relaxation or retardation type behavior. A more exact description of the
J.jc; t/ dependence in terms of infinite power series was derived by Collins
(1955) [139] and Kashchiev (1969) [434]. Both authors obtained expressions of
the form

J.jc ; t/ D J.jc/

"
1C 2

1X
nD1
.�1/n exp

�
� n2t

�.ns/

�#
: (6.168)

As mentioned by Shneidman (1988) [746] this expression may be written in a more
compact form as

J.jc ; t/ D J.jc/�4

�
0; exp

�
� t

� .ns/

��
(6.169)

by introducing the so-called elliptic theta function �4 [652].
Numerical solutions of the set of kinetic equations (6.94) and (6.95), underlying

the theoretical description of nucleation processes, and a comparison with analytical
expressions were carried out by Kelton et al. (1983) [451]. These authors came to the
conclusion that for the applied set of parameter values a quite satisfactory agreement
between numerical and theoretical results, expressed by Eq. (6.168), is found when
the solution and the value of �.ns/ as proposed by Kashchiev (1969) [434] is
used (see, however, also the critical remarks made in Wu’s paper (1992) [933]).
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In the further development of the theory Trinkaus and Yoo (1987) [854] as well
as Shi et al. (1990) [752] and Shneidman (1988, 1992) [746, 747]), Shneidman
and Hänggi (1994) [748] made an important additional step in deriving analytical
solutions to the problem of the kinetics of transient nucleation and in reconciling
theoretical and experimental results. They take into account that experimentally,
in general, not the process of formation of critical clusters is investigated but the
rate of formation of clusters of considerably larger sizes determined by the reso-
lution limit of the experimental method employed. Critical cluster sizes (generally
of the order 10�7–10�9 m) are beyond the possibilities of most microscopic and
electron-microscopic techniques.

As it is also evident from the numerical calculations given in the previous section,
the induction period both for the nucleation rate, J.t/, and the number of clusters,
N.t/, as functions of time have different values for clusters of different sizes (see
also Kelton et al. (1983) [451]). This result is connected with the finite value of time
needed for the growth of a critical cluster to experimentally detectable supercritical
sizes. In a qualitative way this point was mentioned already by Gutzow and Toschev
(1968) [333] who introduced a correction factor for the time-lag, �.ns/, which was
assumed to depend on the growth rate of the supercritical clusters. Shneidman
(1988) [746] proposed an expression of the form

J.j; t/ D J exp

�
� exp

�
t � t.inc/.j /

�.ns/

��
(6.170)

for the time dependence of the nucleation rate for clusters of sizes j � jc . Here
with t.inc/ a second characteristic time scale is introduced reflecting the deterministic
growth of the clusters. It is defined by

t�1.inc/ D
�
@

@j

�
dj

dt

��
; (6.171)

where (dj=dt) is the deterministic growth rate of clusters of size j (without
considering fluctuations). The size-dependent induction time is given according to
Shneidman by

t.ind/ D t.inc/ C ��.ns/ with � D 0:5772 ; (6.172)

�.ns/ being the time-lag for the formation of clusters of critical size. Similar J.j; t/-
curves were obtained also by Shi and Seinfeld (1990) [752] and Trinkaus and
Yoo (1987) [854]. In Fig. 6.13a the time dependence of the nucleation rate is
given for clusters of critical sizes (J.jc; t/) as obtained by Zeldovich, Wakeshima,
Collins-Kashchiev, and Shi et al. The solution of the latter mentioned authors
predicts a somewhat steeper dependence J vs. t than the Collins-Kashchiev and
the Zeldovich results.

For practical applications, and in particular if qualitative consequences from
the existence of a time-lag in nucleation are discussed, as a first approximation,
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expressions with a relatively simple analytical description, like the Zeldovich’s
equation, and even the step function

J.jc; t/ D
8<
:
0 ; for 0 � t � b�.ns/

J ; for b�.ns/ � t � 1

9=
; (6.173)

may be used (see Gutzow and Toschev (1970, 1972) [319,851]; Gutzow, Kashchiev
(1970, 1971) [313]; Shneidman, Weinberg (1993) [749]). This approximation is
illustrated in Fig. 6.13b together with the Collins-Kashchiev result.

Once the time-dependence of the nucleation rate is known also the dependencies
describing the time evolution of the number of clusters in the system may be
calculated. The time dependence of the number of critical clusters can be obtained
assuming, as done throughout this section that the state of the system is not
changed significantly by cluster formation and growth, i.e., assuming constant
supersaturation. With

N.jc; t/ D
tZ

0

J.jc; t/ dt (6.174)

we get for the special case �.ns/ D 0 (i.e., when transient effects are neglected) the
steady-state solution

N.jc; t/ D J.jc/t : (6.175)

N.t/-curves of this type, going through the origin of theN vs. t coordinate system,
are, consequently, an indication that for the considered experimental situation,
transient effects are of no importance (see Fig. 6.14b).

Applying Zeldovich’s solution for the J.jc; t/-dependence we have instead of
Eq. (6.175) (see Gutzow and Toschev (1971) [320])

N.jc; t/ D J t

�
exp

�
��

.ns/

t

�
C t Ei

�
��

.ns/

t

��
: (6.176)
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Here Ei denotes the integral exponential function. An integration of the
Collins-Kashchiev equation, as performed by Kashchiev (1969) [434], yields

N.jc; t/ D J

"
t � 	2

6
�.ns/ � 2�.ns/

1X
nD1

.�1/n
n2

exp

�
� n2t

�.ns/

�#
: (6.177)

For large times this and similar solutions are well-approximated by

N.jc; t/ D J


t � b��.ns/

�
; (6.178)

where for the Kashchiev solution b� D 	2=6 holds. Above result implies that the
N.jc; t/-curves are shifted by a time interval �t D 	2�.ns/=6 into the positive
direction of the t-axis as compared with the dependencies obtained from Eq. (6.175).
N.jc; t/-curves can be determined experimentally only, if Tammann’s two-stage

cluster development technique is used as done by James (1974) [400] and Kalinina
et al. (1976) [427] in investigating the kinetics of nucleation in a lithium disilicate
glass. In any isothermal experiment on nucleation, as mentioned, commonly the
formation of clusters with sizes j considerably exceeding the critical cluster size
j  jc are measured. The N.j; t/-curves are shifted along the time-axis compared
with the N.jc; t/-dependencies due to the finite time t.inc/ the critical clusters need
to grow up to detectable sizes. Consequently, an adequate direct interpretation of
experimental N.t/-curves can be given only applying Shneidman’s or equivalent
equations.

The solution of Eq. (6.174) with Shneidman’s equation (6.170) gives an expres-
sion for the time evolution of the number of supercritical clusters with sizes j � jc .
One obtains

N.j; t/ D �.ns/J Ei

�
exp

�
� t � t.inc/.j /

�.ns/

��
: (6.179)

For large times this expression yields
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N.j; t/ D J Œt � t.inc/.j /� : (6.180)

In the first proof of the significance of non-steady state effects in nucleation in glass-
forming melts (for crystallization of NaPO3, given by Gutzow et al. (1966) [321]
and Gutzow and Toschev (1971) [320]), a similar N.t/-dependence as expressed
with Eq. (6.180) was also anticipated. The possible value of t.inc/ was estimated and
found to be much smaller than �.ns/ by using growth rate data obtained from electron
microscopic measurements at the same temperature. By solving the Zeldovich-
Frenkel equation expressions for the time evolution of the cluster size distribution
function N.j; t/ are also obtained. The solution given by Kashchiev (1969) [434]
reads

N.j; t/

N
.e/
j

D 1

2
�.j�jc/�.z/� 2

	

1X
nD1

1

n
sinŒn	�.z//.j�jc/� exp.�n2	w.C/.jc/� 2

.z/t/ :

(6.181)
In the steady state, i.e., for t ! 1 we have for the near-critical region

N.j; t/

N
.e/
j

D 1

2
� .j � jc/�.z/ : (6.182)

It follows that for j D jc the relation N.j; t/ D N
.e/
j =2 holds and that the slope of

the steady-state distribution function is determined by the Zeldovich factor, i.e., by

@

@j

N.j; t/

N
.e/
j

D ��.z/ : (6.183)

An expression similar to Eq. (6.182) but valid in the whole range of cluster sizes
was given by Trinkaus and Yoo (1987) [854]. It reads

N.j; t/

N
.e/
j

D 1

2
erfc

�
�.z/p
	
.j � jc/

�
: (6.184)

A schematic representation of above dependencies as they are formulated in
the framework of the classical theory of transient nucleation is given in Fig. 6.15.
In addition to the nucleation barrier and the construction of the critical zone of
unconstrained diffusive motion the N.j; t/-curves are given for different moments
of time as well as the N.e/

j and N.j; t/=N .e/
j -dependencies. The similarity with

the respective curves obtained by computer calculations for constant values of the
supersaturation is obvious (see Figs. 6.10–6.11; Bartels et al. (1989–1991) [39–43],
cf. also [275, 449]).
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Fig. 6.15 Schematic representation of basic ideas and main results of the theory of transient
nucleation: (a) nucleation barrier and critical region �; (b) size distribution in steady-state
nucleation (full curve) and its time evolution under constant supersaturation (dashed and dotted
curves). By (1) the “equilibrium” and by (2) the steady-state distribution functions are specified.
The numbers (3) and (4) refer to consecutive stages of the process (t3 > t4). (c) Random walk
of a cluster (black dot) along the size axis. (d) .N.j /=N .e//-curve for steady-state conditions and
for the approximation given with Eq. (6.182) (5). Curves (7) and (8) refer to consecutive stages
corresponding to (3) and (4) in (b)

6.3.6 The Time-Lag in Transient Nucleation

As mentioned in the previous section the time-lag in nucleation is a measure of the
time-interval required for the establishment of the steady-state nucleation rate for
clusters of critical sizes. However, its primary definition, which is connected with
above given meaning, was introduced in a different way. In the initial formulation
of the theory by Zeldovich (1942) [949], used in all subsequent investigations, the
definition of the time-lag is introduced as the time of diffusive motion of an average
cluster along the size axis in an appropriately defined region in the vicinity of the
critical cluster size. For an illustration let us consider briefly the process of motion
of clusters in cluster size space as illustrated in Fig. 6.15.

According to the thermodynamic picture given earlier and in agreement with the
Frenkel-Zeldovich equation the random walk of an average cluster is superimposed,
in general, by a deterministic flow determined by a driving force proportional to
.�@�G=@j /. For j < jc this term stimulates the decay of the clusters (and growth
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may proceed only via stochastic fluctuations) while for j > jc it supports the further
increase of the size of the cluster. Only in the vicinity of the critical size jc , can
the evolution of the clusters be described as an unconstrained random walk along
the size axis similar to the Brownian motion of a colloidal particle in a solution. The
coefficient of diffusion for this type of motion is given according to Eqs. (6.137)
and (6.165) by D D w.C/. Approximately, in the near-critical region we may
consider w.C/ as a constant equal to w.C/.jc/. This unconstrained random walk
takes place, according to Zeldovich, in a region of cluster size space for which the
inequality

�G
.c/

.cluster/ ��G.cluster/

kBT
� 1 (6.185)

holds. The method of determination of the diffusion zone and of the width of the
interval of random walk � D j2 � j1 is illustrated in Fig. 6.15.

If one employs, in addition, Eq. (6.108) the width of the of the region of
unconstrained random walk becomes� D 2.jc�j1/. With Eqs. (6.185) and (6.107)
we arrive at

� D
vuuuut

8kBT

�
�
@2�G

@j 2

�
jDjc

: (6.186)

and with Eq. (6.50) we get the equivalent relation

� D
r
kBT

	�
: (6.187)

Applying Einstein’s formula equation (2.103) the average displacement of a col-
loidal particle in real space is given by j�rj2 D 2Dt . Consequently, for a cluster
starting the random motion at the size axis in the vicinity of j D jc a relation of the
form .�=2/2 D 2w.C/.jc/t� should hold. The average time interval, required for a
cluster to pass the critical region from j1 to j2, can be approximated, consequently,
by 2t�. This time interval is identified, as done for the first time by Zeldovich, with
�.ns/. One obtains thus

�.ns/ Š �2

4w.C/.jc/
(6.188)

or in a more general form with Eq. (6.186)

�.ns/ D a�
0 kBT

w.C/.jc/

ˇ̌̌
ˇ̌
�
@2�G.cluster/.j /

@j 2

�
jDjc

ˇ̌̌
ˇ̌
�1
: (6.189)

A critical analysis of different approaches in determining �.ns/ is made by Binder
and Stauffer (1976) [83]. Adopting the form for �.ns/ given with Eq. (6.189) these
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approaches lead to different values of the constant a�
0 in the range from a�

0 D
1 � 4. According to above derivation we have a�

0 D 2, Kashchiev’s estimate is
a�
0 D 	2=6 Š 1:64. Equivalent expressions for �.ns/, which are of use in different

applications, are given below. Applying Eq. (6.187) we have

�.ns/ D kBT

4	�w.C/.jc/
: (6.190)

Similarly, with Eq. (6.50) one obtains from Eq. (6.189)

�.ns/ D 3a�
0

2

kBT

�G
.c/

.cluster/

jc

w.C/.jc/
: (6.191)

The time-lag �.ns/ may be expressed also through the Zeldovich factor �.z/ intro-
duced with Eqs. (6.110)–(6.111) as

�.ns/ D a�
0

2	w.C/� 2
.z/

: (6.192)

Taking into account this relation it follows that the exponent in Eq. (6.181) can be
written, again, as a function of t=�.ns/. Thus �.ns/ becomes in a third interpretation
the time required for a steady-state distribution of clusters to be established.

More generally the meaning of �.ns/ may be given as the parameter determining
the ability of the system to reorganize itself after it was brought into a supersaturated
state (Toschev (1973) [848]). In this sense �.ns/ has the meaning of a time
of relaxation or retardation similar to respective parameters introduced in the
phenomenological theory of viscoelastic behavior (see Chap. 12). This similarity
also explains why most solutions of transient nucleation result in expressions which
are more or less complicated functions of exp.�t=�.ns//.

Equation (6.192) is usually employed for an evaluation of �.ns/ in different cases
of phase formation (see, e.g., Gutzow and Toschev (1971) [320]). For crystallization
in undercooled melts in the above cited paper, the expression

�.ns/ D 2a�
0 d

5
0

��

&.��/2
(6.193)

was given. It follows directly from Eqs. (6.37), (6.40), (6.111), and (6.121). With
the same equations one may rewrite above relation also in the form

�.ns/ Š a�
0 d0

&�
�j 2=3c : (6.194)

Taking into account the connection between viscosity � and time of molecular
relaxation �R (see Chap. 2, Eq. (2.110)) it follows from Eq. (6.194) that
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�.ns/ Š constant �Rj 2=3c (6.195)

holds with

constant D a�
0 kBT

&�d20
: (6.196)

Typical values of the constant in Eq. (6.195) are in the range of 102–103.
Thus it turns out that the time-lag in nucleation �.ns/ is, in fact, determined by

the product of the time of molecular relaxation �R of the ambient phase with the
number of particles in the surface of the critical cluster (j .2=3/c ). Moreover, according
to the equations derived above and accounting for the extremely high values of the
viscosity of glass-forming melts, in particular, near the vitrification temperature Tg
relatively high values of �.ns/ have also to be expected for such systems. It turns out,
consequently that a qualitatively correct description of nucleation in glass-forming
melts can be given only if transient effects are taken into account.

The time-lag in nucleation may reach in glass-forming melts values of the order
of hours or even days. This is due to the mentioned high values of the viscosity. In
most cases �.ns/ can expected to be of the order �.ns/ Š 102 � 103 s. In contrast, for
vapor condensation as a rule very small values �.ns/ Š 10�5 � 10�7 s follow from
above formulas. For phase formation processes in solutions �.ns/ Š 10�1�101 s was
found (Gindt and Kern (1968) [254]). A summary of estimates for �.ns/ in different
cases of phase formation may be found also in the review article by Toschev and
Gutzow (1971) [320].

The possible importance of non-steady state effects for nucleation in glass-
forming melts was first mentioned by Zeldovich as early as in 1942 [949], later by
Collins (1955) [139] and Hammel (1967) [345]. A more extended analysis in this
respect was performed by Gutzow (1981) ([304]; for experimental determinations
of �.ns/ see James (1974) [400]; Fokin et al. (1980) [223]; Gutzow (1980) [328];
Kelton, Greer (1986) [448]). In this way, the classical picture drawn by Tammann
according to which the essential parameters determining the kinetic stability of
under-cooled melts are the steady-state nucleation rate J and the growth rate v, has
to be supplemented by a third essential factor – the non-steady state time-lag �.ns/.
The temperature dependencies of the three quantities �.ns/, v and J , as they follow
from the theoretical predictions, are shown in Fig. 6.16. As already mentioned
by Tammann, a necessary requirement for intensive crystallization consists in a
sufficiently large degree of overlapping of the v.T /- and J.T /-curves. However,
such an overlapping will be effective – and this is the new point – only, when the
time-lag is lower than a given critical value. The schematic representation given
in Fig. 6.16 shows also the temperature dependence of the viscosity � of the melt,
which determines to a large extent all three characteristics of the nucleation process:
�.ns/, v and J .

It is interesting to note further that though both the steady-state nucleation rate
and the time-lag are strongly dependent on the viscosity or the time of molecular
relaxation, the product J�.ns/ is not. Indeed, according to Eqs. (6.109) and (6.192)
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holds, verifying the above statement. This result is of particular importance taking
into consideration that for many glass-forming melts sufficiently accurate viscosity
measurements are still lacking. In this way, Eq. (6.197) gives a simple way for
a qualitative self-consistent analysis of experimental results on phase formation
processes using only nucleation data (see Kashchiev (1984) [437]; Penkov and
Gutzow (1984) [632]).

6.3.7 Nucleation in Processes of Reconstructive
Crystallization: Nucleation of Chain-Folding Polymers

As mentioned in one of the previous sections, modifications of the classical theory
of nucleation have to be developed accounting for the possible complexity of
the ambient phase molecules forming the new phase. Such a generalization is of
particular importance in applying the theory to phase formation in polymer systems.
Following a classification introduced by Korshak (1965) [468] we will denote as a
polymeric structural unit (or polymeric building unit of the new phase) any complex
aggregate in which primary particles are held together by covalent bonds.

In addition to structural units formed in the melt by covalent bonding, the notions
“associate” and “aggregate” are also used. As associates in organic melts, usually
structural units are denoted formed by hydrogen bonding (Kobeko (1952) [461]).



276 6 Kinetics of Crystallization and Segregation: Nucleation in Glass-Forming Systems

Fig. 6.17 Illustration of the
Gerngross model of polymer
crystallization (After Price
(1969) [646])

With the term aggregate a more general meaning is connected as a structural element
with a non-specified type of bonding. In typical cases the C-C covalent bonding is
by a factor 10–20 stronger as compared with van der Waals forces acting in between
the chain molecules. Thus crystallization in polymer melts proceeds in a way as
illustrated in Fig. 4.26d: the polymer chains exist in both the melt and the crystalline
phase. Associates as defined above may undergo structural changes. Association
processes in the ambient phase reduce, in general, the rate of phase formation when
the newly formed phase is constituted of monomeric building units: association
processes diminish the concentration of building units which can be incorporated
into the growing cluster.

A quantitative determination of the nucleation kinetics when dimer associates
are formed in the ambient phase was developed, for example, by Kashchiev
(1985) [438]. In any such cases, the actual concentration of the building units has
to be determined based on the mass action law. In a first approximation it can
be assumed (see, e.g., Knacke and Stranski (1953, 1956) [459, 460]) that in the
presence of associates the impingement rate Z has to be multiplied by Arrhenius
type exponential factors of the form exp.�U˚=kBT /, where U˚ is the activation
barrier determining the dissolution of complex aggregates into monomeric structural
units. In this way the time-lag in nucleation is enlarged and the stationary nucleation
rate is reduced as compared with the expressions given in the preceding section.

In the reverse case, when crystallization is connected with the formation of
polymer-like modifications from an initially monomeric melt, again, the chemical
equilibrium reaction constant for the respective reaction of polymerization has to
be known. In the description of the kinetics of nucleation of chain-folding polymer
melts the length of the chain molecule may reach such enormous values that one
and the same molecule may belong to several crystalline-like configurations.

For a description of such processes of phase formation, two basic models
have been developed. One of these models was formulated may years ago by
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Fig. 6.18 Models of crystalline polymer nucleation (two-dimensional schematic representation):
(a) Keller’s direct reentry chain folding cluster model; (b) Fisher’s irregular reentry chain folding
model; (c) Flory’s switchboard loose end chain folding polymer crystal growth; (d) bundle-like
nucleus in a fringed micelle model of polymer melt crystallization (Gerngross’ model). l�: critical
thickness; b0: monomer width (See Gutzow and Dobreva (1992) [309, 310])

Gerngross ([248]; see Price (1969) [646]). In his approach it is assumed that
a bundle-like nucleus is formed in a region where several polymeric molecular
chains are arranged in a nearly parallel way (fringed micelle model). A schematic
representation of the basic idea underlying this model is given in Fig. 6.17. Here the
critical size of the chains lc is determined by a relation similar to the Gibbs-Thomson
equation.

However, experimental evidence (X -ray analysis of polymer crystallites) gives
a strong support to another model of polymer crystallization and nucleation, the
so-called chain-folding crystallization model. A first modification of this type of
model (with direct reentry chain folding) was formulated by Keller ((1957) [443],
see also Keller (1991) [445]). Different versions of chain folding crystallization, as
they are classified by Price (1969) [646], are illustrated in Fig. 6.18.

It is essential to remember that in polymer chain-folding processes, two types of
specific interfacial energies are of importance: one of them (the end energy �b)
corresponding to crystal faces formed of polymer chain bends and another one
(the lateral energy �s) which is correlated with the faces of the stretched part of
the polymer molecules. In this way, the work of formation of clusters in polymer
crystallization is usually written as (see Geil (1963) [247]; Price (1969) [646])
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.cluster/
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Here Y D l= l� gives the relative length of the chain folds, depending on the
supersaturation, .
=
c/ is the relative number of chain foldings which form the
cluster and ! denotes as usual a steric shape factor (equal to 16	=3 for clusters
with spherical shape).

In addition to the modification of the thermodynamic description, the kinetics
of polymer crystallization is also varied. In the framework of the latter discussed
model, processes of polymer crystallization are connected with the probability of
incorporation of chain folds with a length l > l�. These folds are formed as a rule
by one molecule constituting even several growing clusters. Thus we have to define,
as done by Gutzow and Dobreva (1992) [310], the process of cluster growth on the
size axis in a new way: as a process of fluctuational (
 < 
c), diffusional (
 Š 
c) or
deterministic (
 > 
c) incorporation of chain folds. From Eqs. (6.198) and (6.199)
and Fig. 6.19 it is evident that for Y < 0:5 no stable growth of clusters is possible.
Only for Y � 0:5 does a growth across the nucleation barrier occur.

Figure 6.19 taken from above cited paper shows, moreover that the optimal
growth path of crystalline polymeric clusters corresponds to Y � 1. Inserting this
value into Eq. (6.198) one gets

�G.polymer/.
/ D �G
.c/

.cluster/

"
1 �

�




c
� 1

�2#
: (6.200)

This expression is similar to Eq. (6.108) except, however, the additional factor 1/3
resulting there from the Taylor-expansion of the Gibbs free energy for j � jc .

The nucleation barrier as given by Eq. (6.200) is illustrated in Fig. 6.20. In
addition also the curve given by Eq. (6.108) is shown. In the vicinity of j D jc
the relation resulting from the Taylor-expansion obviously gives the best fit to the
�G.j /-curve. However, for the whole range of physically meaningful j -values
Eq. (6.200) is a more reasonable approximation. Consequently, Eq. (6.200) may be
used as an improved version of an inverted parabola model of the thermodynamic
barrier of nucleation also for the description of the�G.cluster/.j /-dependence in the
case of phase formation of low molecular substances instead of Eq. (6.108).

The non-steady state time-lag in polymer crystallization can be determined,
again, assuming that the process of formation of supercritical clusters is governed
by the diffusive motion of the aggregates in cluster size space. Hereby the evolution
is assumed to proceed via the saddle-point as expressed by Eq. (6.200) (see
also Fig. 6.19). Similarly to the earlier considered cases we may write (compare
Eqs. (6.188) and (6.189))

�
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4D.
c/
D � a�

0 kBT
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�
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@
2

�

D
c

(6.201)

and with Eqs. (6.200)
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The nucleation rate (primary nucleation in the terminology of polymer physics)
can be given again in the form of Eq. (6.109), using Eq. (6.199) for �G.c/

.cluster/
and assuming that N1 is here proportional to the number of chain folds. The
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determination of w.C/.
c/ becomes, however, in polymer crystallization a very
tricky problem because of possible chain entanglements and strains along the chains
produced in the process of crystallization. A discussion of such problems is beyond
of the scope of the present book. The interested reader is referred to the already cited
and additional specific references on polymer crystallization.

A similar procedure – the construction of �G.cluster/-surfaces as functions of
several independent parameters and the determination of the most probable way
of phase formation determined by the saddle point of this surface – has to be
followed also in other cases of phase formation, e.g., in considering nucleation in
multi-component systems or cluster formation near and at interfaces (see Schmelzer
et al. (1994) [716]). For the first time this method was employed in the calculation
of the steady-state nucleation rate for binary nucleation by Neumann and Döring
(1940) [602] and later by Reiss (1950) [661]. A non-steady state treatment of
nucleation for such cases was given recently by Kozisek and Demo (1993) ([481],
see also Kozisek (1991) [480]).

We would like to mention finally an additional similarity between nucleation
and chemical reaction kinetics. Both the rates of nucleation and chemical reactions
are limited by kinetic barriers. It is the specific feature of nucleation kinetics that the
barrier can be constructed based on thermodynamic models. The inverted parabolas,
given by Eqs. (6.200) and (6.108), turn out to be a very convenient approximation for
determining the barrier to nucleation as this is also known from the general theory of
reaction kinetics (see, e.g., the problems of approximating the reaction barrier by an
inverted parabola as this is described in Christov’s monograph (1980) [136]). It has
also to be mentioned in this connection that quite recently Shneidman and Weinberg
(1992) [749] showed that the replacement of the classical barrier of nucleation or its
approximations by barriers of a different shape does not lead to significant changes
in nucleation kinetics.

6.3.8 Atomistic Approach to Nucleation

In the preceding derivations the capillary approximation was generally employed.
The application of the capillary approximation implies that the clusters considered,
in particular, the clusters in the vicinity of the critical cluster size j D jc , are
sufficiently large (e.g., jc > 20). Only in this case can the notion of a specific
surface energy be applied. Moreover, only for sufficiently large critical clusters is
the continuum’s approach in deriving the main equations of the theory applicable.

In most cases of crystallization in glass-forming melts the classical capillarity
approximation may be used, at least, qualitatively: the expected critical clusters
vary in size for homogeneous nucleation from several thousand molecules near the
melting temperature to 
102 at T ! Tg. However, for vapor condensation, for the
process of formation of clusters on active solid substrates, electrolytic deposition of
metals and other cases of phase formation clusters consisting of only a few particles
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are proven to be capable of further deterministic growth. One way of overcoming
problems with the thermodynamic description of clusters of relatively small sizes
consists of the application of different expressions for the curvature dependence
of surface tension. Such an approach may be extended even to cluster sizes where
macroscopic parameters lose any meaning (see, e.g., Schmelzer (1986) [690]). In
this case, � or �A have to be considered as appropriately chosen correction terms
allowing us to give a correct description of the thermodynamics of the process,
however, without assigning any definite physical meaning to them.8

There have also been attempts to develop a theoretical scheme where from the
very beginning an atomistic approach is applied for the description of the nucle-
ation process omitting the introduction of a specific surface energy � . Following
Kaischew (1965) [422] in this approach the critical cluster is defined kinetically
as the cluster size for which the probabilities of decay and further growth are the
same (compare Eq. (6.137)). Such an approach was developed for the first time
by Walton (1962) [477] and Rhodin and Walton (1964) [663] in application to
vapor condensation on surfaces. In its further development, attempts have been
made to reconcile this approach with the classical model of nucleation (see, e.g.,
Lewis (1967) [506] and, in particular, Stoyanov (1973) [804]; Milchev, Stoyanov,
and Kaischew (1974, 1976) [562, 563]). Stoyanov et al. started their analysis with
Eq. (6.104). Realizing that for small values of j one of the summands in Eq. (6.104)
dominates and, neglecting the others, an alternative expression for the steady-state
nucleation rate is derived. In this expression the work of formation of critical clusters
is written in the general form

�G
.c/

.cluster/ D �jc��C �s.jc/ : (6.203)

The analogy with the classical expression for the work of formation of critical
clusters is obvious. For large values of the size of the critical clusters the correction

8Indeed, in terms of the classical Gibbs approach, the bulk properties of the cluster phase are
determined by Gibbs equilibrium conditions, equality of temperature in the cluster (specified by
˛) and ambient (ˇ) phases, T˛ D Tˇ , and equality of chemical potentials, �i˛ D �iˇ , of all
i D 1; 2; : : : ; k components. Provided the cluster is considered to be of spherical shape and the
surface of tension is chosen as the dividing surface, then the properties of the critical clusters (Wc

work of critical cluster formation; Rc radius of the cluster referred to the surface of tension) are
defined via

Wc D 1

3
�Ac ; Ac D 4	R2c ; p˛ � pˇ D 2�

Rc
:

ProvidedWc is known (for example, from experiment or statistical-mechanical computations) then
always Rc and � can be determined from above set of equations, i.e., one can always construct
a spherical cluster – in terms of Gibbs thermodynamic theory – leading to the same value of
the work of critical cluster formation as observed in experiment. Of course, in experiment the
shape of the critical cluster can be much different as compared to a sphere or the cluster may
be too small to allow one a thermodynamic description, anyway, such Gibbs’ model cluster can be
uniquely defined. Similar considerations hold also in the case that the generalized Gibbs approach
is employed in the analysis.
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term �s.jc/ tends to approximate the classical expression �A with � D �.1/ (or,
equivalently, �s.jc/ / j

2=3
c ), corresponding to the already discussed Eqs. (6.36)

and (6.48).
It should also be noted that generally the derivative (d�G.c/

.cluster/=d��) gives
for any model of nucleation the number jc of building units in the critical cluster
(see the corresponding theorem formulated by Kashchiev (1982) [436] and also
Oxtoby and Kashchiev (1994) [619]9). For the considered cases of critical clusters
with jc ! 1 the time-lag in non-steady state nucleation is of the order of the time
of molecular relaxation as it follows both from the general principles of statistical
physics as well as from an extrapolation of the results for �.ns/ obtained in the
previous section (Eq. (6.195)).

While the classical theory allows one an estimate of the surface tension to the
power 3 (i.e. �3) based on flogJ vs. 1=ŒkBT .��/2�g-plots (compare Eqs. (6.109)
and (6.44)) the atomistic theory of nucleation implies another type of analysis of
experimental data applying [logJ vs.��]-dependencies. In such coordinates, more
or less distinct ranges of supersaturation are found with linear [logJ vs. ��]-
behavior and different slopes. In terms of the atomistic model, this result implies
that in certain ranges relatively independent of supersaturation, some stable atomic
configuration determines the critical cluster size. For lower ��-values, the slope of
the linear parts is increased and a continuous curve is approached corresponding to
the classical flogJ vs. 1=ŒkBT .��/2�g plot.

However, for the most interesting case of small jc-values the function �s in
Eq. (6.203) is not known, a priori, in contrast to the classical theory, where, at
least as a first approximation, the capillarity model may be used. This gap leads
to serious difficulties in the application of the atomistic model to the analysis
of experimental results as it was demonstrated in a recent attempt by Pascova
and Gutzow (1993) [626] to apply the atomistic approach to the description of
crystallization of under-cooled glass-forming melts. It is relatively easy to interpret

9For a comprehensive discussion of this circle of problems, cf. Schmelzer [693, 694]. In these
publications, a detailed analysis of the initial formulation of the nucleation theorem as given
by Kashchiev in 1982 [436] is presented. In a next step, a new formulation of the nucleation
theorem, mathematically widely equivalent to the form, as derived by Oxtoby and Kashchiev in
1994 [619] employing the classical Gibbs’s approach, is developed in above cited publications.
This formulation is, however, more easily applicable to the interpretation of experimental results
as compared with the original expressions given by Oxtoby and Kashchiev. It can be utilized
straightforwardly also in cases where the original version cannot be employed and allows one, in
addition, a variety of further theoretical developments. It is shown, moreover, first in the framework
of Gibbs’s theory of heterogeneous systems that the nucleation theorem holds not only for critical
clusters but for clusters of arbitrary sizes as well. The new formulation of the nucleation theorem
is applied then to the analysis of different cases of phase formation. It is shown further on that
an alternative thermodynamic derivation of the nucleation theorem both for clusters of critical as
well as for arbitrary sizes can be given at certain specified conditions based on the van der Waals
approach to the description of heterogeneous systems. The limits of validity of the nucleation
theorem are analyzed with respect to its applicability to real systems; i.e., the problem is discussed
to what extent the nucleation theorem may give an adequate description of properties of the real
critical clusters determining the nucleation process in nature.



6.3 Kinetics of Homogeneous Nucleation 283

G
(c

lu
st

er
)

(c
)

(R)-CORRECTION
REGION

0 1 10 100

AT OMISTIC
MODEL

CAPILLARY THEORY

jc
2/3

Fig. 6.21 Illustration of the
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experimental results in terms of the atomistic model of nucleation, however, little
information is obtained in trying to predict the parameters of nucleation processes in
advance. In this respect the classical model is undoubtedly of more use. The regions
of applicability of both approaches in the theory of nucleation – of the classical
model and the atomistic approach – are illustrated in Fig. 6.21. For sufficiently large
cluster sizes a linear dependence �G.c/

.cluster/ vs. j 2=3c is to be expected according to
the capillarity approximation valid only for large cluster sizes. In the other limiting
case (jc ! 1) no definite statement can be made in advance from Eq. (6.203) for
the (�G.c/

.cluster/ vs. jc)-dependence.
In the intermediate region the approximation � D �.1/ is unacceptable and

corrections as discussed by Gibbs, Tolman, Toschev, Parlange, Schmelzer (see
Sect. 6.2.4) and many others have to be introduced into the theory in order to get
a quantitatively correct description. It is seen that at present only the classical model
gives a definite possibility of predicting the nucleation rate while the atomistic
approach merely provides a tool for the theoretical explanation of experimental
results. The advantages of the classical theory over the atomistic approach also
become evident from the fact that a quantitative description of catalyzed nucleation,
as discussed in the next chapter, is based practically totally on the classical theory
of nucleation.

6.3.9 Thermal and Athermal Nucleation

As already mentioned, in classical nucleation theory the term nucleation rate is
usually identified with the rate of formation of critical clusters. For constant external
and internal conditions this rate is at the same time equal to the change of the
total number of clusters exceeding the critical size, jc . However, if the state of the
system is changed in the course of the transformation, either due to a variation of
the external conditions or internal processes (decrease of supersaturation), then the
rate of formation of critical clusters is not equal to the rate of change of the total
number of clusters exceeding the critical size. Indeed, if we introduce the notations
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N.j � jc; t/ D
1Z
jc

N.j; t/ dj ; (6.204)

where N.j � jc; t/ is the number of clusters with sizes j � jc at time t in the
system, and

J.j � jc; t/ D dN.t/

dt
(6.205)

for their rate of formation, then

J D @

@t

1Z
jc

N.j; t/ dj (6.206)

holds. With the continuity equation, Eq. (6.146), one gets for time-independent
supersaturations (jc D constant)

J.j � jc; t/ D J.jc; t/ ; (6.207)

while for time-dependent situations

J.j � jc; t/ D J.jc; t/ �N.jc; t/@jc
@t

(6.208)

is obtained. The first term in Eq. (6.208) describes the stochastic process of forma-
tion of supercritical clusters connected with thermal fluctuations in the system. The
second term accounts for the process of athermal nucleation which is a consequence
of the change in the critical cluster size. However, if the changes in the external or
internal conditions proceed too fast, then any analytical approach breaks down and
the numerical solution of the system of rate equations, Eqs. (6.94)–(6.95), remains
the only tool for the description of nucleation. In the discussion above the process of
formation of critical or supercritical clusters is denoted as athermal nucleation due
to a change of the state of the system and a resulting variation of the critical cluster
size.

In the literature (Avrami (1939, 1940, 1941) [19]) those clusters of supercritical
sizes are also denoted as athermal nuclei which are formed in the sample in
the course of previous thermal treatments and brought afterwards to a state of
higher supersaturation. In these cases, the clusters formed earlier are capable of
a further deterministic growth. In terms of nucleation theory, for such populations
of athermal supercritical clusters, the nucleation rate is equal to infinity and the
time-lag equals zero (see Kashchiev (1969) [434]). In application to glass-forming
melts, populations of athermal clusters may be formed in the course of cooling of the
melt. In devitrification processes, such clusters serve as centers for devitrification at
which an intensive crystallization is observed. Such a possibility always has to be
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taken into consideration if the overall crystallization kinetics of different substances
and, in particular, of glasses and glass-forming melts is discussed (for the details see
Chap. 10).

Finally we have to mention that there is little experimental evidence on the
kinetics of homogeneous nucleation in which it is guaranteed that different sources
of nucleation catalysis in the melt are excluded. In some cases, as it seems to be
for organic polymer melts, it is even impossible to obtain an ambient phase free of
active nucleating agents. By this reason experimental evidence on the kinetics of
nucleation in glass-forming melts is given in the next chapter only after the possible
influence of different catalytic effects on nucleation has been discussed in detail.

6.3.10 General Scenario for the Overall Course of First–Order
Phase Transformations in Finite (Closed) Systems:
Conclusions from a Thermodynamic Analysis

In the previous sections, the kinetics of nucleation in systems with constant super-
saturation was investigated. Only in the case of the computer calculations given in
Sect. 6.3 were results also mentioned obtained for closed (or finite) systems, where
the supersaturation changes with time in the course of the phase transformation. As
already pointed out briefly in Sect. 6.3.3 the change in the state of the system in
the course of the transformation can be expected to affect quantitatively nucleation
processes and, as will be shown, it determines qualitatively the whole course of the
transformation.

In the present section results of a thermodynamic analysis are summarized
allowing one, at least, in an approximative form an understanding of the overall
course of phase transformations in a finite (closed) system. This analysis is
supplemented in Chaps. 8–10 by a kinetic description of growth of the aggregates
of the newly evolving phase and of the overall course of the transformation. We
assume in the simplified thermodynamic model approach, discussed in the present
section that the evolving phase is concentrated in N clusters each of them having
the same size and characterized by the same radius R. Comparing the model with
a real ensemble of clusters the variable R can be identified with the average cluster
size of the real more or less disperse cluster ensemble evolving in the ambient phase.
Note, that although this model represents a considerable simplification of the real
picture, it allows us to understand both qualitatively and quantitatively a number of
results on phase transformation processes observed experimentally (see Schmelzer
and Ulbricht (1987) [712]; Schmelzer (1985, 1990) [688, 691]).

The change of the Gibbs free energy�G.N/ due to the formation of N identical
clusters, all of them having the same size R, depends, in such an approach, on
the two parameters N and R. For a given value of N the thermodynamic function
�G.N/ may be expressed in accordance with Eqs. (6.31) and (6.32) as
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Fig. 6.22 Thermodynamic model for the description of the overall course of a phase transfor-
mation (Schmelzer (1985) [689]; Schmelzer, Ulbricht (1987) [712]): (a) change of the Gibbs free
energy due to the formation ofN clusters of a new phase in a segregation process in a solid or liquid
solution, each of them having the same size, R. In addition to the maximum a minimum is found
caused by the reduction of the monomer concentration of the segregating particles in the ambient
phase (decrease of the supersaturation). (b) Change of the Gibbs free energy as a function of the
cluster size for different values of the number of clusters in the system (N1 < N2 < : : : < Nc).
Three major stages of the phase transformation may be distinguished according to this simplified
model: a stage of dominating nucleation and simultaneous growth of the already formed critical
clusters (dotted curve), a stage of practically independent growth of the clusters their number being
nearly constant (dashed–dotted curve) and a third stage of competitive growth (dashed curve),
where the average size of the clusters is increased and their number decreased

�G.N/ D Nn˛Œ�1ˇ.xeq/��1ˇ.xˇ/�CN�AC
2X
iD1
Œ�iˇ.xˇ/��iˇ.x/�ni ; (6.209)

where the molar fractions are determined by

x D n1

n1 C n2
; xˇ D n1 �Nn˛

n1 C n2 �Nn˛
: (6.210)

Qualitatively, the change of the Gibbs free energy as a function of the radius R of
the N clusters is shown on Fig. 6.22a.

Changes in the state of the ambient phase due to the decrease of the concentration
of the segregating particles result, in general, in a second extremum, a minimum,
in addition to the maximum, which is caused by the interplay of bulk and surface
contributions. For the case of N D 1 the existence of two extrema was mentioned
for the first time by Konobejewski (1939) [465] for the model of a drop in finite
volume of vapor. The extrema of �G.N/ for a fixed value of the number of clusters
are determined by

�
@�G

@R

�
N

D �4	R2c˛N
�
�1ˇ.xˇ/ � �1ˇ.xeq/ � 2�

c˛R

�
D 0 : (6.211)
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The type of the extremum is specified by the second derivative of the change of the
Gibbs free energy, which can be expressed in the form

�
@2�G.N/

@R2

�
N

D �8	�N.1CZ˚/ (6.212)

with

Z˚ D �3c˛R
2�

Nn2n˛

.n1 C n2 �Nn˛/2
@�1ˇ

@xˇ
: (6.213)

Here Z˚ is always less than zero. Moreover, for the minima, 1 C Z˚ < 0 holds;
while for the maxima, the inequality 1 C Z˚ > 0 is fulfilled. Both extrema may
coincide in a point of inflexion determined by the condition 1CZ˚ D 0.

The position of the extrema, determined by Eq. (6.211), depends on the value of
the number of clusters, N , present in the system. Taking into account the existence
of such a dependence the variation of the position of the extrema with an increasing
number of clusters can be calculated from Eqs. (6.209) and (6.211) as

dR.extr/

dN
D �R

.extr/

3N

Z˚

1CZ˚ ; (6.214)

d�G
.extr/
.N /

dN
D 1

3
�A.extr/ ; A.extr/ D 4	R2.ext r/ : (6.215)

The change of the position of the extrema with an increasing number of clusters
in the system is indicated in Fig. 6.22a by arrows. In Fig. 6.22b the curves (�G.N/
vs. R) are shown for different values of the number of clusters in the model system.
Hereby the inequalities N1 < N2 < : : : < Nc are fulfilled.

Three main different stages of the transition may be distinguished according to
this picture: a stage of dominating nucleation with a possible simultaneous growth
of the already formed supercritical clusters (dotted curve); a stage of practically
independent growth of the supercritical clusters their number being nearly constant
(dashed–dotted curve); a stage of competitive growth (dashed curve), where large
clusters grow at the expense of smaller ones. This stage, known as Ostwald ripening,
is discussed in detail in Chap. 9. From this picture, moreover, an estimate can be
derived for the highest possible number of clusters, which can be formed in the
system as a result of nucleation. It is determined by the number of clusters Nc , for
which both extrema of the curves coincide in a common point of inflexion. The value
of R corresponding to the point of inflexion and Nc represent, in addition, the most
disperse state for which the process of further deterministic structural reorganization
of the system (Ostwald ripening) may start.

In general, the process of nucleation will not proceed along the path indicated
by the dotted curve until the point of inflexion is reached, but will go over to
the second stage of practically independent growth. The particular point in the
model along the dotted curve, for which this transition occurs, may depend only
on the initial supersaturation. With an increasing supersaturation the point, where
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nucleation is followed by dominating growth, is shifted along the dotted curve into
the direction of the point of inflexion marked in the figure by P . According to the
above simplified model the number of clusters remains practically unchanged in the
second stage of independent growth. In the course of this evolution, a state along
the “valley” of the thermodynamic potential is reached. This state along the dashed
curve is determined thus also by the initial supersaturation.

Nucleation and independent growth proceed relatively fast as compared with the
third stage of the process (Ostwald ripening) depicted in the figure by the dashed
curve. It follows that in nucleation experiments usually states are observed corre-
sponding initially to a point in the “valley” (dashed curve) of the thermodynamic
potential. This result has, at the same time, the consequence that with an increasing
supersaturation the number of clusters observed in nucleation increases but their
average size decreases (cf. von Weimarn’s law (1926) [900]). It can be shown that
the results outlined do not depend on any particular properties of the system under
investigation but are consequences only of changes of the state of the system in the
course of the transformation. A proof of this statement and a more detailed analysis
is given in a series of publications (Schmelzer (1985) [689]; Schmelzer and Ulbricht
(1987) [712]; Ulbricht, Schmelzer et al. (1988) [874]; see also Vogelsberger (1982)
[890]10).

10A detailed analysis of the peculiarities of nucleation in confined space and the derivation
of conclusions concerning the general scenario of first-order phase transitions based on the
generalized Gibbs approach was performed recently by one of the authors in cooperation with
A. S. Abyzov (Schmelzer and Abyzov [703]). The general conclusions remain widely the same as
discussed in the present section and derived here based on the classical Gibbs’ approach.



Chapter 7
Catalyzed Crystallization of Glass-Forming
Melts

7.1 Introductory Remarks: Ways to Induce Nucleation

Present day theory of nucleation predicts a number of possibilities for increasing
the rate of nucleation in processes of phase formation. In science and technology,
such possibilities are applied in various methods of induced or catalyzed nucleation.
Possible approaches in nucleation catalysis are discussed in the literature beginning
with the classical monographs on nucleation theory (see, e.g., Volmer (1939) [894];
Mason (1957) [536]; Hirth, Pound (1963) [368]; Zettlemoyer (1969 [954], 1977
[955])). Here a summary of methods is given in application to crystallization of
undercooled melts.

The first possibility of nucleation catalysis was revealed as early as about
140 years ago by Gibbs [249]. Gibbs mentioned the influence of active solid
substrates on nucleation resulting from the decrease in the work of formation of
critical nuclei. In this way, he succeeded in explaining experimental evidence on
crystallization with random dopants and artificial insemination accumulated over
more than hundred years. Another case of nucleation catalysis, nucleation caused by
charged particles, was employed also relatively early in Wilson’s cloud chamber in
the first investigations of the nature of radioactivity. Such a possibility of nucleation
catalysis was of exceptional importance for atomic and nuclear physics where also a
modified device – the bubble chamber – is widely employed. In the bubble chamber
not condensation but cavitation is induced by charged particles. In both cases, the
enhanced nucleation rate can be explained by a reduction of the work of formation
of critical clusters.

It seems that for the first time the term “catalyzed nucleation” was used in 1902
by W. Ostwald (see Volmer and Weber (1926) [896]). Ostwald mentioned that in
analogy to chemical reaction kinetics, a lowering of the kinetic barrier of nucleation
should catalyze phase transformations. In glass technology, nucleation catalysis –
or induced crystallization as it is termed in technology – is used in order to produce
crystalline or semicrystalline materials from glass-forming melts. The first such
application was reported as early as 1739 by Reaumure [159], who produced the first
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glass-ceramic material – the so-called Reaumure porcelain – by surface catalyzed
nucleation. Modern attempts in this direction – in what is termed heterogeneous
nucleation – have been developed beginning with the 1950s by Lungu and Popescu
(1954) [523], Stookey (1959) [803] and many others.

In the modern technology of synthesis of glass-ceramics, foreign nucleation
cores are introduced or formed in the melt for nucleation catalysis. However, as
will be shown in the subsequent sections of this chapter, a number of alternative
methods of homogeneous nucleation catalysis can also be used. An interesting turn
in the purpose of the studies on crystallization and crystal growth took place in
connection with such developments. While in the 1920s and 1930s these processes
were analyzed mainly from the point of view of preventing crystallization and
obtaining defect-free glasses, in the 1950s and 1960s, the opposite goal became of
importance: the development of the most effective methods of nucleation catalysis.

It will be seen in the further analysis that despite the variety of possible
mechanisms underlying nucleation catalysis, the theory of heterogeneous nucleation
is, as in the first discussed examples, guided by the basic idea that nucleation activity
is determined entirely or at least to a large extent by the decrease in the work
of formation of critical clusters. Based on this idea, the experimental results are
interpreted in terms of the classical approach to homogeneous nucleation. In the
subsequent discussion of nucleation catalysis in glass-forming melts, we follow this
approach, having, however, in mind the limitations of the classical theory mentioned
in the previous chapter.

7.2 Heterogeneous Nucleation: Basic Thermodynamic
Relationships

From the very beginning of the study of precipitation and crystallization it was
established experimentally that foreign substrates – i.e., the walls of a vessel
containing the solution or the melt, foreign insoluble particles – as a rule enhance
nucleation. An account of the history of these studies can be traced in great detail in
Volmer’s monograph (1939) [894]. The basic model allowing one an understanding
of nucleation on foreign substances is the following. Let us assume that a liquid
condenses on a solid (see Fig. 7.1; Volmer (1939) [894]; Hirth, Pound (1963) [368]).
The liquid forms a spherical cap with the radius, R, and a contact (or wetting)
angle,  .

The interfacial tensions or specific surface energies between the different phases
are denoted here as �lv (liquid-vapor interface), �ls (liquid-solid interface) and �sv
(solid-vapor interface), respectively. The change of the Gibbs free energy due to the
formation of such a cap-shaped cluster of the liquid phase is given by

�G
.�/
.cluster/ D �j��C �lvAlv C .�ls � �sv/Asv : (7.1)
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Fig. 7.1 Illustration of the simplest models of heterogeneous nucleation: (a) Formation of cap-
shaped clusters on a solid planar surface;  is the wetting angle. (b) Kaischew’s cubic crystal
cluster model for nucleation on a planar solid. With decreasing ˚-values the shape and size of the
initially cubic critical cluster change as indicated by I, II and III

HereA denotes the area of the interface between liquid and vapor (Alv), respectively,
solid and vapor (Asv). The quantities referring to heterogeneous nucleation are
specified here and in the following by an asterisk (*).

Since the interfacial tension can also be defined as the force acting on a unit
element of the line of coexistence of the three considered phases, from the condition
of mechanical equilibrium one obtains

�sv D �ls C �lv cos  : (7.2)

Equations (7.1) and (7.2) allow us to express the work of formation of a critical
cluster for a given value of the wetting angle,  (Volmer (1939) [894]). One obtains

�G
.c�/
.cluster/ D �G

.c/

.cluster/˚ (7.3)

with

˚ D 1

2
� 3

4
cos  C 1

4
cos3  ; (7.4)

where �G.c/

.cluster/ is the work of formation of a critical cluster in the absence of
foreign substrates for the same value of the supersaturation (see Eq. (6.44)).

The parameter˚ , introduced with Eqs. (7.3) and (7.4), is a measure of the activity
of the substrate with respect to nucleation catalysis. By definition and physical
meaning it should have, in general, values between zero and one, i.e.,

0 � ˚ � 1 : (7.5)

It can be seen from Eq. (7.4) and Fig. 7.2 that for  D 0 (complete wetting) the work
of formation of the critical cluster tends to zero, while for  D 	 (complete non-
wetting) homogeneous nucleation occurs. For intermediate values of the contact
angle the work of formation of the clusters is more or less decreased dependent on
the values of the respective interfacial energies.
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The relation between nucleation activity, ˚ , and contact angle,  , allows one
a characterization of the nucleation activity to be made in terms of the degree of
wetting. For condensation of liquids on solids the measured macroscopic contact
angle gives, consequently, an indication of the nucleation activity of a given
substrate with respect to the overgrowing crystal. As seen from Fig. 7.2 contact
angles below 30 ı guaranty effective nucleation catalysis. This connection between
nucleation activity and wetting angle is sometimes also used for a characterization
of nucleation of a solid phase on a solid surface. In a more or less formal way it
is done by introducing the radius of the sphere enclosing the crystalline nucleus.
A more realistic model for a crystalline nucleus having a cubic shape at ˚ D 1 is
also shown on Fig. 7.1.

According to Kaischew (1952) ([417]; see also Mutaftschiev (1993) [585]) as a
general measure of the nucleating activity applicable to any case of phase transfor-
mation, the ratio of the volumes of the critical clusters formed by heterogeneous
(V �
c ) respectively homogeneous (Vc) nucleation may be used, i.e.,

˚ D V �
c

Vc
: (7.6)

This formula turned out to be a very fruitful guide in the determination of the
nucleation activity ˚ in different cases of heterogeneous nucleation. It is, of course,
also fulfilled for the case of melt crystallization considered so far.

The model of a cap-shaped nucleus on a planar surface discussed above can
be generalized, applying Eq. (7.6) to the case where the substrate is comparable in
size to the critical cluster (see Fig. 7.3), i.e., to phase formation on foreign dopants
or nucleation cores of a finite size (described by a radius of the core Rs), when
.Rc=Rs/ ! 1 or even Rc=Rs < 1 holds. The activity of such nucleation cores and,
in particular, size effects in nucleation catalysis were analyzed first by Krastanov
(1957) [483], Fletcher (1958 [213], 1962 [214]), Kaischew and Mutaftschiev (1959)
([422]; see also Mutaftschiev (1993) [585]).

The general conclusion, obtained as the result of these investigations, is that
the nucleating activity of foreign substrates is significantly reduced if the size of
the substrate, Rs , is comparable with the critical cluster size, Rc . Size effects are
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Fig. 7.3 Size effects in heterogeneous nucleation. (a) Influence of substrate curvature at constant
contact angle ( D 90 ı): (1) Homogeneous cap-shaped nucleus with critical radius Rc on a
flat surface (Rs ! 1); On substrates with an increasing (Rc=Rs)-ratio the volume of the
heterogeneously formed nucleus increases continuously from (2) to (5) and according to Eq. (7.6)
lower nucleation activities are to be expected. (b) Influence of different contact angles on the
volume (and thus on the activity ˚) of cap-shaped nuclei formed on a flat surface. (c) Influence of
contact angles on volume (and activity) of nuclei formed on crystallization cores with (Rc=Rs D
1:45). It is seen that for slightly active nuclei (e.g., for  D 140 ı) their volume is practically equal
to that of homogeneously formed critical clusters

more pronounced the lower the activity of the substrate at planar interfaces is.
The details of the respective derivations made in the framework of the capillarity
theory of nucleation can be found in the cited papers. In Fig. 7.3, a summary of
results is given illustrating the effect of both the change in the .Rc=Rs/-ratio (for
constant values of the contact angle ) and in the wetting angle,  . In any case,
Kaischew’s formula Eq. (7.6) gives the possibility of determining, on the basis of
simple geometrical considerations, possible ˚-values. Usually, sub-microscopic
foreign seed crystals with dimensions comparable with the crystalline nuclei to
be formed act as nucleation catalysts in glass-forming melts. Thus the discussed
size effects in nucleation are of particular importance for processes of induced
devitrification of glasses as recognized first by Stookey (1959) [803] and Maurer
(1958) [540]. A direct proof of size effects in catalyzed nucleation is described
by Gutzow (1980) [303] (in an investigation of the activity of gold particles of
different size on the crystallization of NaPO3-glasses). A discussion of further
applications of Kaischew’s model to substrates with a rough surface structure (on
edges, corners etc.) is given in Mutaftschiev’s review article [585] in line with results
previously obtained by Kaischew. Another generalization of the model discussed
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above consists in its application to liquid phase formation at the liquid-gas or liquid-
liquid interface (Gibbs’s lenses). A summary of results in this respect can be found,
again, in Volmer’s monograph [894].

In studying processes of heterogeneous nucleation in application to solids, the
model of a cubic nucleus formed on a planar surface also proved to be of particular
use (Fig. 7.1; Kaischew (1952) [417]). In this model the activity, ˚ , is expressed
employing another thermodynamic characteristic of the interface, the work of
adhesion ˇ. Denoting the specific interfacial energy of the crystal-melt interface
by � , according to Kaischew we have to write

˚ D
�
1 � ˇ

2�

�
: (7.7)

With such an approach, new possibilities are opened for quantitative predictions of
the nucleation activity, at least, for substrates with similar structures. At ˚ D 0, the
volume of the critical nucleus tends to zero. This result means that, in the process
of condensation on such a planar interface, practically any particle condensed is
capable of further deterministic growth. The rate of phase formation is determined
in these cases only by the impingement rate of the ambient phase molecules.

A more detailed thermodynamic analysis performed by Bauer (1958) [52],
Toschev et al. (1968) [852], and Markov and Kaischew (1973) [532] shows
that the limiting case ˚ D 0 corresponds also to the process of formation of a
layer of molecules on its own substrate via two-dimensional nucleation. Layer
formation and subsequent growth by two-dimensional nucleation is one of the
possible mechanisms of crystal growth as discussed in detail in Chap. 8. In the
above mentioned papers, it was also shown that even negative values of ˚ may
correspond to physically relevant situations. This case may be realized in the process
of formation of two-dimensional nuclei on foreign substrates when the forces of
adhesion between substrate and overgrowing crystal exceed the forces of cohesion
between the monolayer and its own crystalline bulk phase. In processes of formation
of three-dimensional nuclei at or near planar interfaces between two solids with
different values of Young’s modulus an inhibition of nucleation may take place (see
Sect. 7.7). This situation corresponds to values of ˚ larger than one.

7.3 The Kinetics of Heterogeneous Nucleation: Basic
Equations

Following the basic ideas of classical nucleation theory the steady-state nucleation
rate for heterogeneous nucleation may be written similarly to Eq. (6.109) in the form

J � D N �
.cores/�

�
.z/w

.C�/.j �
c / exp

 
��G

.c/

.cluster/

kBT
˚

!
: (7.8)
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Here N �
.cores/ denotes either the actual concentration of active centers for nucleation

at the surface of a substrate or the volume concentration of crystallization cores
in the bulk of the ambient phase. For w.C�/ we have to write, again, (compare
Eq. (6.121))

w.C�/ D Z.eff /A�
c ; (7.9)

where by A�
c the interfacial area between ambient phase and critical cluster and by

Z.eff / the effective impingement rate of ambient phase molecules are denoted.
Introducing withN �

.tot/ the total number of foreign active nucleation sites initially
present in the system and taking into account that the actual number of active centers
for nucleation decreases in the course of the transformation we obtain the following
expression for the rate of formation of critical clusters N �.t/ in the system

dN�.t/
dt

D
 
N �
.tot/ �N �.t/
N �
.tot/

!
J �
.init/ : (7.10)

Here J �
.init/ is the initial nucleation rate for heterogeneous nucleation in the system.

According to Eq. (7.8) it is given by

J �
.init/ D N �

.tot/�
�
.z/w

.C�/.j �
c / exp

 
��G

.c/

.cluster/

kBT
˚

!
: (7.11)

The solution of Eq. (7.10) can be written as

N �.t/ D N �
.tot/

"
1 � exp

 
�J

�
.init/

N �
.tot/

t

!#
: (7.12)

For the time-dependence of the nucleation rate we obtain by a derivation of this
expression

J �.t/ D J �
.init/ exp

 
�J

�
.init/

N �
.tot/

t

!
; (7.13)

i.e., the nucleation rate tends exponentially to zero with time, since all available
nucleation cores become exhausted (see Fig. 7.4). In an experimental investigation
performed by Gutzow et al. (1971) [317] it was shown in fact that the number of
crystallites formed in the process of devitrification of a NaPO3-glass is directly
determined by the number of crystallization cores (platinum micro-crystals) intro-
duced into the bulk of the melt.

Non-steady state effects in the kinetics of heterogeneous nucleation were treated
for the first time by Toschev and Gutzow (1967) [849]. Defining ��, again, similarly
to Eq. (6.189) as
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the ratio ��=�.ns/ can be written first as

��

�.ns/
D

w.C/.jc/
�
@2�G.cluster/.j /

@j 2

�
jDjc

w.C�/.j �
c /

 
@2�G

.�/

.cluster/.j /

@j 2

!
jDj�

c

: (7.15)

Taking into account Eq. (7.9) we obtain further

�� D �.ns/�.˚/ ; �.˚/ D
Ac

�
@2�G.cluster/.j /

@j 2

�
jDjc

A�
c

 
@2�G

.�/

.cluster/.j /

@j 2

!
jDj�

c

: (7.16)

The function �.˚/ has to be equal to unity for ˚ D 1.
Using as an estimate Eqs. (6.43) and (6.50) both for homogeneous and heteroge-

neous nucleation Eq. (7.16) yields with Eq. (7.3)

�� D �.ns/
�
j �
c

jc

�4=3
1

˚
: (7.17)

With Kaischew’s formula Eq. (7.6), which is equivalent to ˚ D j �
c =jc , we have,

finally,
�� D �.ns/˚1=3 : (7.18)
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In this way, a simple method for determining the activity of foreign substrates
by measuring the time-lag of nucleation is obtained. It was used in a number of
subsequent experimental investigations (see Sect. 7.8).

Taking into account transient effects, more complicated time dependencies for
the number of critical clusters, N �.t/, formed in the course of heterogeneous
nucleation and for the nucleation rate, J �.t/, are found. Applying, for example,
Zeldovich’s equation, Eq. (6.166), we have

dN�.t/
dt

D
 
N �
.tot/ �N �.t/
N �
.tot/

!
J �
.init/ exp

�
��

�

t

�
(7.19)

with the solution (see Toschev and Gutzow (1967) [850]; Gutzow, Toschev (1971)
[320])

N �.t/ D N �
.tot/

(
1� exp

"
�J

�
.init/

N �
.tot/

t exp

�
��

�

t

�#
C ��

t
Ei

�
��

�

t

�)
: (7.20)

Here, again, Ei denotes the integral exponential function. The respective N �.t/-
curves are illustrated on Fig. 7.4. It is seen that non-steady state effects result in a
shift of theN �.t/-curves along the t-axis, thus giving a simple way for an estimation
of the value of ��.

A more extended analysis of nucleation kinetics on active nucleation sites can
be found in a paper by Markov and Kashchiev (1972) [531]. A particular case
consists of heterogeneous nucleation on point defects. A treatment of this topic in
the framework of the outlined general theory is given in a paper by Stoyanov (1974)
[805].

7.4 Activity of Foreign Substrates in Induced Crystallization

First attempts at the theoretical determination of the nucleating activity of foreign
solid substrates were focused mainly on crystallographic criteria, i.e., by analyzing
the effects of structural matching or misfit between the crystallographic parameters
of the substrate and the overgrowing crystal. Typical examples in this respect are the
investigations of Turnbull and Vonnegut (1952) [867] or the epitaxy rule of Dankov.
According to such criteria, nucleation catalysis by foreign insoluble dopants takes
place only if the relative linear misfit parameter ıl , defined by

ıl D .dcrystal � dsubstrate/

dsubstrate
; (7.21)

is lower than 15%. Here di are the lattice parameters of the overgrowing crystal and
the substrate.
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In order to derive more general expressions for the nucleating activity of solid
substrates we may start with Eq. (7.7). The adhesion energy, ˇ, in between the
two crystalline phases – the substrate (specified in the following derivations by a
subscript (s)) and the overgrowing crystal (specified by (c)) – can be calculated by
using Dupre’s equation. If the lattice parameters of both crystalline phases are equal
(dsubstrate D dcrystal) and denoting by ˇ0 the value of the adhesion energy for this
case this equation reads

ˇ0 D �cf C �sf � �sc : (7.22)

Here �cf , �sf and �sc are the specific interfacial energies for the crystal-melt (cf),
substrate-melt (sf) and substrate-crystal (sc) interfaces.

If lattice parameter differences have to be taken into account (i.e., for ıl ¤ 0)
then following van der Merwe (1973) ([878]; see also Markov and Stoyanov (1987)
[533]) an additional elastic energy, Ed , is stored in the interface. This energy is
released later in form of misfit dislocations. Consequently, in the general case
(ıl ¤ 0) we have to write

ˇ D ˇ0 � Ed : (7.23)

The adhesion energy ˇ0 is proportional to the forces of molecular interaction
between the s and c faces. In order to give a quantitative estimate of ˇ0 a classical
approximation, introduced into the physical chemistry of solid solutions by van Laar
(1936) [877] and London (1930) [513], may be used.

Supposing that both the substrate and the overgrowing solid layer are ionic
crystals, i.e. that only Coulomb forces are acting between the respective building
units, the energy of cohesive interactions � in both solids and in between them are
determined by dependencies of the form

�cc 
 q2c
d0
; �ss 
 q2s

d0
; �sc 
 qsqc

d0
: (7.24)

Here qc and qs are the respective electric charges of the ions under consideration
and d0 an intermediate reference lattice parameter defined by

d0 D 2dsdc

ds C dc
: (7.25)

It follows from the above equations that the energy of adhesion, �sc , can be
expressed as

�sc D .�ss�cc/
1=2 : (7.26)

This latter equation is known in literature as the van Laar-London formula. Though
it was initially derived for ionic and van der Waals crystals only, it was shown to
be applicable, at least qualitatively, also to non-ionic crystals (Staverman (1937)
[795]).

With Eq. (7.26) the specific interfacial energies �sc , �cf and �sf in Eq. (7.22) may
be written in the form (see Gutzow (1980) [303]; Dobreva, Gutzow (1993) [175])
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�ff

	2
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�cf D 1

2d20
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�cc �p

�ff

	2
; (7.27)

which allows one a determination of ˇ0 and ˇ from the forces of cohesion. The
cohesion (or the bond energies) occurring in Eqs. (7.27) can be approximated by
the respective heats of sublimation or evaporation of both the substrate and the
overgrowing crystal. Latter quantities are proportional to the heats of melting or
to the melting temperatures of substrate T .s/m and overgrowing crystal T .c/m .

As derived in detail by Dobreva and Gutzow (1993) [175] the parameter Ed can
be also expressed in terms of �cc and �ss in the form

Ed D b0

�
�ss C x

1 � x
�cc

	
f .ıl / : (7.28)

In this equation, f .ıl / is the van der Merve misfit function having a course as shown
in Fig. 7.5. For ıl D 0 this function equals zero while for ıl > 15% it is practically
equal to unity. x in Eq. (7.28) is a dimensionless adjustable parameter of the order
0.5 and b0 a constant.

Above given equations result in a parabolic dependence of the nucleating activity
˚ on the quantity

p
�ss=�cc in the form

˚ D A.�/ � B.�/
s
�ss

�cc
C C .�/

 s
�ss

�cc

!2
: (7.29)

For systems with zero lattice misfit C .�/ D 0 holds and Eq. (7.29) is reduced to

˚ D A.�/ � B.�/
s
�ss

�cc
: (7.30)

In general, A.�/, B.�/ and C .�/ are constants, which do not depend on �.
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Replacing the ratio (�ss=�cc), approximately, by the ratio of the melting tempera-
tures of the substrate, T .s/m , and the overgrowing crystal, T .c/m , experimental evidence
concerning the nucleation activity of different substances can be correlated and new
effective crystallization cores may be proposed. For the case of one and the same
overgrowing crystal (i.e., at �cc D constant) a simple dependence of˚ on �cc (or the
heat of melting, respectively, the melting temperature) is to be expected. It follows
that the activity of a substrate changes with its melting temperature (cf. also Gutzow
et al. (1978) [329]).

The formalism sketched in the present section was developed in two papers by
Dobreva and Gutzow (1993) [175] where the details of the derivations are given. It
is seen that by using Eqs. (7.29) and (7.30) it is possible to determine the change of
˚ in a series of substrates, having equal (or at least similar) lattice parameters but
different melting temperatures, i.e., different values of the cohesive energies.

7.5 Homogeneous Nucleation Catalysis: The Influence
of Surfactants

With Eqs. (6.122), (6.193), (7.8) and (7.18) we may write the following expressions
for the steady-state nucleation rate, J �, and the time-lag, ��, in heterogeneous
nucleation

J � D B1

�
exp

�
�B2 �3

.��/2
˚

�
; (7.31)

�� D B3
�

&

�

.��/2
˚1=3 ; (7.32)

B1 D &

d50

�
�

kBT

�1=2
; B2 D 16	

3

v2m
kBT

; B3 D 2a0d
5
0 :

An inspection of above equations shows that for a given value of the supersaturation
there exist, in principle, three possibilities to induce nucleation in under-cooled
glass-forming melts (i.e., to increase the nucleation rate and to decrease the time-
lag) by

• A lowering of the viscosity of the melt, i.e., by lowering of the kinetic barrier of
crystallization,

• The introduction of crystallization cores with ˚ < 1 and by
• A lowering of the specific interfacial energy at the crystal-melt interface.

The first of the mentioned ways of nucleation catalysis can be applied in the
technology of organic polymers by introduction of monomeric plastifiers. Another
extreme possibility in this respect consists of the dissolution of the glass in an
appropriate solvent. Such a process has been observed by Grantcharova and Gutzow
(1986) [268] in the dissolution of phenolphthalein glass in water. This possibility is,
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however, of no technological significance. The other two methods of enhancing the
rate of nucleation are aimed at decreasing the thermodynamic barrier of the process.
The second of the mentioned methods, the introduction of insoluble nucleation
cores, has already been discussed in the previous section. The third of the possible
methods, consisting of lowering the specific interfacial energy � , may be realized
by the introduction of surface active dopants into the system. Thus homogeneous
nucleation catalysis can be achieved.

The possibilities of modifying � by the addition of surfactants have been
described by Bliznakov (1958) [84], Kaischew and Mutaftschiev (1959) [422],
applying classical nucleation theory. It seems that Hillig (1964) [360] was the first to
mention the possible application of this method to processes of formation of silicate-
glass ceramic materials. For the considered case in the expression for the work of
formation of critical clusters, Eq. (6.44), the specific interfacial energy, � , has to
be replaced by � ) .� � ��/, where �� is the change of the specific interfacial
energy caused by the addition of surfactants to the system. We get

�G
.c�/
.cluster/ D �G

.c/

.cluster/

�
1 � ��

�

�3
: (7.33)

Consequently, Eqs. (6.122), (7.31) and (7.32) yield (with ˚ D 1)

J � D J

�
1 � ��

�

�
exp

(
� B2�

3

.��/2

"�
1 � ��

�

�3
� 1

#)
; (7.34)

�� D �.ns/
�
1 � ��

�

�
: (7.35)

Since the nucleation rate depends exponentially on �3 this method may lead to a
dramatic increase in the rate of phase formation.

In general, if insoluble active dopants are also present in the system the
introduction of surfactants may result in a variation of the specific interfacial energy
melt-substrate. In this case, the energy of adhesion ˇ, determining ˚ via Eq. (7.7),
may be decreased more drastically than � . As the result the inequality

ˇ.surf /

2�.surf /
>
ˇ

2�
(7.36)

may be fulfilled resulting in an increase in ˚ and a relative deactivation of the
crystallization cores. By the subscript (surf) the respective values of the quantities
ˇ and � after the introduction of surfactants are specified.

If nucleation proceeds at insoluble crystallization cores in the presence of soluble
dopants we have to write, taking into account the results outlined in the present and
the previous sections, instead of Eqs. (7.33) and (7.35)
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�G
.c�/
.cluster=surf / D �G

.c/

.cluster/

�
1 � ��

�

�3
˚.surf / ; (7.37)

��
.surf / D �.ns/

�
1 � ��

�

�
˚
1=3

.surf / ; ˚.surf / D 1 � ˇ.surf /

2�.surf /
: (7.38)

In the above given equations, � denotes as usual the specific interfacial energy melt-
crystal. However, in most cases not � but only the value of the interfacial energy
�f v at the melt/vapor or melt/air interface is known. The change of �f v due to
the addition of surfactants can be measured relatively easily, e.g., by contact angle
determinations. In this connection it is of interest to have the possibility of making
predictions with respect to the variations of � knowing the change of �f v .

In a paper devoted to problems of surfactant-induced nucleation (Gutzow
and Penkov (1989) [316]) a formalism was developed connecting the interfacial
concentration of surfactant molecules, ns , with the change of the specific interfacial
energy. It was shown that in general a relation of the form

��

�
Š const.

��f v

�f v
(7.39)

holds. This relation gives a simple theoretically founded rule for choosing the most
appropriate surfactants for melt crystallization. According to this rule substances
resulting after addition to the melt in a significant relative decrease in �f v are
also expected to be most effective for a lowering of � and for homogeneous
crystallization catalysis. In the already cited and a previous paper (Penkov and
Gutzow (1984) [632]) it was shown that MoO3 – the universal oxide dopant,
lowering surface energies in silicate technology – is also the most powerful
nucleator in homogeneous nucleation catalysis of silicate glass-forming melts. Other
promising oxides in this respect are V2O3 and Cr2O3.

In order to correlate �� or ��f v with the volume concentration, ns , of dopants
Sziszkowski’s equation

��

�
D bs ln

�
1C ns

as

�
(7.40)

may be used, as and bs are two constants. For relatively low values of the ratio
.ns=as/ this equation yields

��

�

 ns : (7.41)

In most cases of melt crystallization the possible influence of surfactants on the pre-
exponential factors in Eq. (7.31) and particularly on the viscosity may be neglected.
However, there is also the possibility that the adsorption of surfactants at the
interface of the clusters inhibits the process of cluster growth. Thus, an optimal
concentration of the dopants has to be chosen.

Both mechanisms of nucleation catalysis discussed above have their merits and
disadvantages. The main advantage of heterogeneous nucleation catalysis consists
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of the possibility of determining, by introducing nucleation cores with ˚ � 0, in
advance the number of active nucleation sites and thus of crystallites formed in
the system in the course of the transformation. Moreover, a wide variety of active
substances may be employed (in silicate glass-forming melts: noble metals like Pt,
Au, Ag etc., oxides like TiO2, CeO2 etc.; in polymers TiO2 and other fillers) in
order to find the most appropriate dopant. To some extent it is possible to predict in
advance the nucleating activity ˚ applying theoretical methods as discussed above.

An obvious shortcoming of heterogeneous nucleation catalysis consists of the
two-stage character inherent in it (formation of crystallization cores in the first
stage of heat pretreatment and crystallization in the second stage). In addition,
each of the crystallites formed by heterogeneous nucleation contains the foreign
crystallization core, which may have a negative effect on the properties of the
material produced.

Homogeneous nucleation catalysis by surfactants proved to be in a number of
cases a more efficient method of initiating crystallization than the heterogeneous
process. It provides uniformly distributed crystallization centers free of foreign
nucleation cores. However, the dispersity of the size distribution of crystallites is
larger and determined by nucleation and growth mechanisms. The most obvious
shortcoming of nucleation catalysis by surfactants is due to the fact that the number
of active substances is very limited. In the case of silicate melts it is restricted to the
three or four substances mentioned above.

In the previous sections, the nucleating effect of insoluble substrates (or crys-
tallization cores) and of completely soluble dopants was discussed. In some
applications, the nucleating effect of soluble or slightly soluble nucleation cores may
be of significance (e.g., nucleating activity of hygroscopic condensation cores in
atmospheric processes of nucleation: condensation of water on NaCl-substrates). It
can be shown that in such cases the thermodynamic potential (or the vapor pressure)
of the nucleus formed on the soluble substrate is diminished (because the substrate
is partially dissolved in the nucleus) when compared with the homogeneous case
or with the case of condensation on an absolutely insoluble particle. The detailed
thermodynamics of this interesting form of nucleation catalysis is discussed in detail
in the literature concerned with atmospheric condensation (see, e.g., Mason (1957)
[536]; Boucher (1969) [95]).

Nucleation of silicate melts on oxide substrates, as frequently employed, may
also be in fact a case of this type: solubility of oxide or silicate crystals overgrowing
an oxide substrate can never be excluded. This fact may explain some of the results
of extraordinarily high activity of certain oxide crystallization cores. It has also
to be mentioned that the activity of substrates with distorted lattices or even of
amorphisized crystallization cores may be much higher than the activity of defect
free crystalline solids. A thorough discussion of these topics and the necessary
formalism for the calculation of the change of ˚ upon amorphization of a solid
may be found in the already cited paper by Gutzow (1980) [303], where a number
of relevant experimental results are given. Those of most significance seem to be
the increased activity of mixed oxide substrates (Cr2O3VO5) or the influence of
radiation damage on the activity of condensation cores.
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7.6 Nucleation on Charged Particles and in Electromagnetic
Fields

Condensation on electrically charged particles, or more general, phase formation
processes under the influence of electric and magnetic fields are of exceptional
physical significance. A first discussion of this topic was given by J.J. Thomson
(see Thomson (1906) [835]; Thomfor and Volmer (1936) [833]) and is reviewed
in a number of monographs (e.g., Volmer (1939) [894]; Frenkel (1946) [233];
Leontovich (1953) [504]; Mason (1957) [536]; Hirth and Pound (1963) [368]).
Taking into account the change of the energy of the electric field in the process
of formation of a cluster (characterized by a dielectric constant �.cluster/) around an
ion with a charge q and a radiusR.ion/ in an ambient phase (with a dielectric constant
�.matrix/) we may write the following modified expression for the change of the Gibbs
free energy of cluster formation (compare Eq. (6.36))

�G.cluster/.j / D �j��C �AC q2

8	

�
1

�.cluster/
� 1

�.matrix/

��
1

Rion
� 1

R

�
: (7.42)

The dependence of �G.cluster/ on the cluster radius R for �.cluster/ > �.matrix/ accord-
ing to above equation is shown in Fig. 7.6a. For comparison the same function is
presented also for qD 0. The respective vapor pressure curves are given in Fig. 7.6b.

The existence of the electrically charged particles influences nucleation in two
ways. First, as can be seen in Fig. 7.6, the existence of the charge results in
the formation of an additional extremum (a minimum) for small cluster sizes. In
accordance with the thermodynamic equation given above it is to be expected
that around each charged particle the condensation of ambient phase molecules
takes place spontaneously until the cluster size corresponding to the minimum of
�G.cluster/ is reached. The further growth of the cluster is hindered by a nucleation
barrier equal to the difference between the values of�G.cluster/.j / for the maximum
and the minimum, respectively. This nucleation barrier is lower than in the case
of homogeneous nucleation. Moreover, for sufficiently large supersaturations the
nucleation barrier may completely disappear.

By a derivation of Eq. (7.42) with respect to R a modified Gibbs-Thomson
equation of the form

�� � 2�

c˛R
� 1

2c˛

� q

4	R

	2 � 1

�.cluster/
� 1

�.matrix/

�
D 0 (7.43)

is obtained. For vapor condensation on charged ions – the classical situation
encountered in Wilson’s cloud chamber – we have (considering the vapor as a
perfect gas (compare Eq. (6.34)))

�� D �ˇ.p/ � �˛.p/ D �ˇ.p/� �ˇ.peq.1// Š kBT ln

�
p

peq.1/

�
; (7.44)
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Fig. 7.6 Change of the Gibbs free energy and of the vapor pressure of clusters with radius
R in condensation on charged particles of a radius Rion. Simultaneously also the respective
dependencies are given for the case qD 0 (homogeneous nucleation). (a) Gibbs free energy
�G.cluster/ vs R=R.ion/; (b) vapor pressure ln.p=p.eq// vs. R. In both cases the curve (1) refers
to homogeneous nucleation (q D 0) while curve (2) illustrates heterogeneous nucleation on a
charge q with a radius R.ion/

resulting with Eq. (7.43) in

ln

�
peq.R/

peq.1/

�
D 1

c˛kBT

�
2�

R
C 1

2

� q

4	R

	2 � 1

�.drop/
� 1

�.vapor/

��
: (7.45)

Here peq.R/ is the equilibrium vapor pressure of a drop of size R, while peq.1/

is the respective value for a planar interface (see also Eq. (6.73) and Fig. 7.6b).
Similarly, we have for segregation processes around ions in quasi-binary melts (see
Eqs. (6.74)–(6.77))

ln

�
ceq.R/

ceq.1/

�
D 1

c˛kBT

�
2�

R
C 1

2

� q

4	R

	2 � 1

�.cluster/
� 1

�.melt/

��
: (7.46)

The work of formation of critical clusters in condensation processes on charged
particles was calculated first by Volmer (1939) [894]. From the above given
formalism one obtains in a good approximation

�G
.c�/
.cluster/ D 4	

3
�.R2c�R2ion/C

q2

8	

�
1

�.cluster/
� 1

�.matrix/

��
1

Rion
� 1

Rc

�
: (7.47)

This result can be rewritten as

�G
.c�/
.cluster/ D �G

.c/

.cluster/

("
1 �

�
Rion

Rc

�2#
C (7.48)
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��
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��
;

which gives in the limit Rc  Rion

�G
.c�/
.cluster/ Š �G

.c/
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�
1C 3q2

32	2�R2c

�
1

�.cluster/
� 1

�.matrix/

�
1

Rion

�
: (7.49)

For q D 0, Eq. (6.44) is obtained, again, as a special case.
Up to now, induced crystallization of glass-forming melts by electrically charged

particles has hardly been studied. Only some relatively early investigations exist
of the effect of radium radiation on crystallization of a number of simple model
melts (for sulfur by Frischauer (1909) [238]; Kuznetsov (1925) [490]; for piperin
by Kondogoury (1926, 1928, 1930) [466]). An overview on these investigations and
the respective literature can be found in Kuznetsov’s monograph (1954) [489]. In
the cited investigations, an increased nucleation rate was observed for irradiated
samples. It remains, however, unclear whether this effect is due to ion formation in
the matrix and thus to a charged induced initiation of nucleation or to more complex
mechanisms.

Another possibility of influencing the kinetics of phase formation consists of the
application of electric or magnetic fields generated externally. Two different effects
may be of importance here:

• The applied fields may cause an orientation of the ambient phase particles.
This will be the case, in particular, when the basic units are of non-symmetric
shape and exhibit a significant permanent or induced polarization or magneti-
zation. Such effects should be of importance with respect to the value of the
impingement rate of ambient phase molecules. The theoretical estimation of
the possible magnitude of the influence of electromagnetic fields on steady-
state nucleation rate and time-lag is, however, associated with difficulties since
it depends strongly on the specific properties of both the initial and the newly
evolving phases. An account of possible approaches with respect to the kinetics
of this process is given by Gattef and Dimitriev (1979, 1981, 1987) [243–245].

• The ambient and the newly evolving phases are, in general, characterized by
different values of the dielectric constants which are again denoted by �.matrix/

and �.cluster/. Similarly to the already considered situation of cluster formation
around ions, phase formation under the influence of an external electric field
is connected with additional thermodynamic contributions to the free energy of
cluster formation.

It seems that the first time the described thermodynamic mechanism of influence
of electric and magnetic fields on phase formation processes was recognized by
Sirota (1967 [762], 1968 [763]; cf. also Koslovski et al. (1976) [470]). However, his
contributions were published in little known conference proceedings.

In 1972, Kashchiev [435] and later Izard (1974 [389], 1977 [390]) developed
the general thermodynamic formalism for nucleation in an ambient phase subjected
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to external electromagnetic fields evidently without being aware of Sirota’s results.
Kashchiev carried out his investigation within the framework of the more general
non-steady state formulation of the theory of nucleation discussed in the previous
sections. The final results obtained by Sirota, Kashchiev and Izard on the thermo-
dynamic barrier of nucleation may be rewritten in the form

�G
.c=field/
.cluster/ D �G

.c/

.cluster/

�
1 � �.E/E2

��

��2
; (7.50)

R.field/
c D 2�vm

.�� � �.E/E2/
;

�.E/ D
vm�.matrix/

�
1 � �.cluster/

�.matrix/

�

8	

�
2C �.cluster/

�.matrix/

� : (7.51)

Here �� denotes the thermodynamic driving force of the transformation in the
absence of electric fields, E is the electric field applied externally.

In considering the influence of electric fields on processes of phase formation
in under-cooled melts it has to be taken into account that typically �.melt/ >

�.crystal/ holds. It can be recognized easily that in dependence on the sign of �.E/

the polarization work �.E/E2 either increases (the steady-state nucleation rate J
decreases) or decreases (J increases) the work of formation of the critical clusters.
For the time-lag, Kashchiev obtained a result which may be rewritten in the form

�.field/ D �.ns/
�
1 � �.E/E2

��

�2
: (7.52)

For nucleation in magnetic fields the equations remain the same but E, �.matrix/

and �.cluster/ have to be replaced by the magnetic field vector, H, and the magnetic
permeabilities of the ambient (�.matrix/) and the newly evolving (�.cluster/) phases
(Sirota (1968) [763]; Kashchiev (1972) [435]). It should be noted that Kashchiev’s
and Izard’s results are equivalent except for the definition of �.E/, which in the
articles of both authors differs by a minus sign. A possible resolution of the
mentioned discrepancy and a criticism of Kashchiev’s result can be found in Izard’s
publication.

There exist a number of experimental investigations on nucleation and crystal
growth in under-cooled melts taking place under the influence of external electric
and magnetic fields. A summary of results in this respect may be also found
in Kuznetsov’s monograph as well as in subsequent literature (Koslovski et al.
(1976) [469]). The only evidence known to the authors, where such effects are
investigated in application to crystallization of silicate glass-forming melts is a paper
by Hülsenberg (1993) [384]. An exceptionally interesting example are processes of
the mentioned type taking place in so-called Ovonics-devices, i.e., in the processes
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of crystallization of thin amorphous semiconducting layers and their subsequent
melting and vitrification. For these systems by cycles of crystallization and melting
under applied external fields information may be stored or erased again.

A detailed analysis of such processes was performed by Gattef and Dimitriev
(1979, 1981, 1987) [243–245] by using the formalism given with Eqs. (7.50)
and (7.51). It was assumed that by electro-induced crystallization in line with
the above given theoretical considerations a conducting state was generated while
melting and subsequent vitrification led to a non-conducting state. Electro-induced
nucleation on charged particles (trapped electron sites in solid solutions) was ana-
lyzed in two papers by Stoyanov et al. (1970) [806] in application to photographic
processes. This theoretical investigation also opens possibilities for applications still
not employed in solid-state nucleation kinetics.

7.7 Surface Induced Crystallization of Glasses

7.7.1 Inhibition of Bulk Crystallization by Elastic Strains

The experimental fact that glasses crystallize preferentially from internal and
external surfaces was mentioned already by Tammann in his monograph “Der
Glaszustand” in 1933 [820]. A bit earlier, a detailed discussion of this topic was
given by Tabata (1927) [816]. In addition to an experimental overview, Tabata drew
attention to the possible catalytic role of “sharp edges” and “cicatrices” on the glass
surface in crystallization.

Crystallization processes in glasses initiated by surface-induced nucleation in
application to glass technology were analyzed first by Sack in 1959 [678]. Accord-
ing to Sack, surface-induced nucleation can be more effective than any other method
of nucleation catalysis. Sack worked with samples which were sinter-crystallized
in order to produce a glass-ceramic material. Similar glass-ceramic materials later
found applications in architecture under the name “Neoparies” (see Tashiro (1985)
[827], Karamanov et al. (1994) [334, 431]). In subsequent years the investigation
of the kinetics of surface induced crystallization was continued mainly by Zanotto
et al. (1983) [945], Zanotto (1991) [947], Müller (1989 [582], 1990 [584]), Müller,
Hübert, and Kirsch (1986, 1988) [383,583] and Yuritsyn, Fokin et al. (1992) ([940];
see also Köster (1988) [474] for metallic glasses).

Different hypotheses have been developed to explain the ability of the free
glass surface to act as a catalyst for crystallization. Tabata connected it with “the
surface contraction : : : caused by the surface tension of the glass”. According to
Blumberg (1939) [85] the chemical corrosion of the free glass surfaces and the
formation of silica rich gels may facilitate surface crystallization of silica glasses.
The existence of dust particles and contaminations (Neely and Ernsberger (1966)
[594]; Matox (1967) [538]; Burnett, Douglas (1971) [112] or powdered glass of
the same composition at the surface (Gutzow and Slavtschev (1971) [317] were also
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proposed as possible sources of preferential surface crystallization. Other theoretical
approaches associate surface crystallization with the concentration differences in the
bulk and at the surface of the sample, with a decrease in the total surface energy or
an easier stress relaxation by viscous flow near or at the surface.

Omitting a detailed discussion of these various attempts, we would like to draw
the attention to a relatively new hypothesis connecting the nucleating activity of the
free glass surface or of small glass particles with reduced values of the energy of
elastic deformations evolving in the course of the transformation from the glass to
the crystalline phase near or at interfaces or in small particles compared with the
same processes in the bulk (for the details see Schmelzer et al. (1993 [715], 1995
[716])). This approach starts with the following considerations. According to exist-
ing rheological data and the concepts of phenomenological rheology (see Chap. 12)
glass-forming liquids have to be treated as viscoelastic bodies, i.e., as viscous bodies
with an elastic response. The relative significance of the elastic properties of the
melts is determined by the value of the viscosity. Near and below the temperature
of vitrification, Tg, corresponding to viscosities of the order 1013�1014 dPas, glass-
forming liquids behave as isotropic elastic bodies. With an increase in temperature,
elastic properties become less important and viscous properties dominate. In the
subsequent analysis we neglect possible viscous relaxation processes due to viscous
properties of the matrix in order to demonstrate

• That elastic strains significantly diminish the thermodynamic driving force for
bulk devitrification and

• That this decrease is sufficiently less for devitrification near and at free surfaces
and in samples with linear dimensions of the order of the critical cluster size
(�10Rc).

As it is discussed in detail in the mentioned papers [715, 716] viscous stress
relaxation proceeds more easily for devitrification near surfaces as compared with
the bulk. Consequently, it even amplifies the analyzed effect.1

The basic idea of the argumentation is the following: Since crystallization is
connected, in general, with a change of the molar volume of the crystallizing
substance, this process results in a volume dilation of both the matrix and the
crystallite and, consequently, in the evolution of elastic strains. The strength of
this effect is determined by the relative volume dilatation, ı0, in the transformation
defined as

ı0 D vglass � vcrystal

vcrystal
; (7.53)

where vglass and vcrystal are the molar volumes of the substance as a glass and
a crystal, respectively. Calculations show that the total energy of elastic defor-

1A detailed analysis of the interplay between stress development and stress relaxation and its effect
on crystal nucleation and growth processes in highly viscous glass-forming melts is given in Möller
et al. [571]; Schmelzer et al. [723]; Schmelzer et al. [724]; Schmelzer et al. [727] (see also the
Chap. 14 for further details).
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mations connected with the evolution of a cluster of volume, V˛ , in an isotropic
homogeneous elastic solid can be expressed as (Nabarro (1940) [588]; Gutzow
(1973) [295]; Ulbricht, Schmelzer et al. (1988) [874])

�."/ D "0V˛ D ��
0 ı

2
0V˛: (7.54)

Here ��
0 is, in general, some combination of elastic constants of the matrix and the

newly evolving crystalline phase.
Taking into account the possible evolution of elastic strains in crystallization, the

change of the Gibbs free energy in cluster formation now obtains the form (compare
Eq. (6.36))

�G.cluster/.j / D �j��C �AC �."/: (7.55)

Denoting by c˛ , as usual, the density of particles in the crystalline (cluster) phase
Eqs. (7.54) and (7.55) yield

�G D �j Œ�� ���
."/
0 �C �A ; ��

."/
0 D "0

c˛
: (7.56)

It follows that elastic strains of the considered type evolving in crystallization
processes of glasses or, more generally, in recrystallization processes of solids lead
to a decrease in the thermodynamic driving force of the transformation by a constant
amount,��."/0 , and, consequently, to an inhibition of crystallization. The magnitude
of this effect is determined by the value of the ratio

˛0 D ��
."/
0

��
: (7.57)

Obviously, all equations describing phase formation in the presence of elastic strains
have the same form as discussed earlier with the only difference being that the
thermodynamic driving force, ��, has to be replaced by �� ) Œ�� � ��

."/
0 �.

The parameter ˛0 can be determined based on Eq. (6.62) and the knowledge of
the elastic constants of both phases. Estimates of the values of ı0, ˛0 and other
relevant quantities are given in Table 7.1 (for the details of the calculations and
further information see Schmelzer et al. (1993) [715]).

Neglecting possible variations in the viscosity and the specific interfacial energy
due to elastic strains the ratio of the steady-state nucleation rate affected by elastic
strains J ."/ to J may be written as (compare Eq. (6.120))

J ."/ D J

"
exp

 
��G

.c/

.cluster/

kBT

!#ˇ�1
; ˇ D .1 � ˛0/

�2 : (7.58)

For the respective ratios of the time-lags we have further (compare Eq. (6.193)),
within the same approximation,
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Table 7.1 Summary of experimental data and theoretical estimates concerning the influence of
elastic strains on crystallization in the bulk of highly viscous glass-forming melts for different
classes of glass-forming substances near the temperature of vitrification, Tg . ı0: relative volume
dilatation, ˛0 D ��."/=��, J (J ."/): Steady-state nucleation rates without (and with) an account
of elastic strains, � ."/ (� .ns/): time-lag for the rate of formation of critical clusters with (and without)
the influence of elastic strains

Inorganic glass- Organic glass- Metallic glass-
forming oxides forming polymers forming alloys

ı0 10�1 � 2 � 10�1 �10�1 �5 � 10�2

˛0 0.56 � 2.7 0:6� 0:68 0:08� 0:1

log.J ."/=J / <�300 <�130 �2:6
� ."/=� .ns/ 10 � 1 6.3 � 10 1.2

�."/

� .ns/
D .1 � ˛0/

�2: (7.59)

Applying the Zeldovich equation, Eq. (6.166), for the description of transient
nucleation we may write for nucleation under the influence of elastic strains the
similar relation

J ."/.jc; t/ D J ."/.jc/ exp

�
��

."/

t

�
: (7.60)

With Eqs. (7.58) and (7.59) we have, finally,

J ."/.jc; t/ D J.jc; t/

"
exp

 
��G

.c/

.cluster/

kBT

!
exp

�
��

.ns/

t

�#ˇ�1
; (7.61)

showing in a compact form the effect of elastic strains on the nucleation rate for
clusters of critical sizes.

It can be seen from the estimates of the values of the nucleation rate and the time-
lag that at and below the temperature of vitrification, elastic strains inhibit strongly
crystallization, in particular, for inorganic glass-forming oxides and organic glass-
forming polymers. This effect is less important for metallic glass-forming alloys.
In this way, we arrive at the conclusion that in addition to the rapid decrease in
the mobility (or increase in the viscosity) of the building units of the glass-forming
melts at and below the temperature of vitrification, discussed in Sect. 2.4, also a
thermodynamic inhibition of crystallization occurs in the vicinity of Tg connected
with the evolution of elastic strains. As seen from the results presented in the table
the inhibiting term may even exceed (˛0 > 1) the thermodynamic driving force of
crystallization.
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Fig. 7.7 Illustration of the model investigated. (a)–(d) A cluster is formed at the surface
(z=R0 	 1) or in the bulk (z=R0 > 1) of a solid matrix. The shape of the cluster is determined
by the radius of curvature R (or R0) and the distance z of the center of the sphere to the surface
of the ambient phase. (e) Notations used in the calculation of the free energy of cluster formation
at planar interfaces. �c is the specific free energy of the surface between crystal and air, �m the
corresponding value for the matrix, while �mc refers to the crystallite-matrix interface. For the
description of the shape of clusters formed at the interface instead of z (compare Fig. 7.7a–d) also
the parameter h is used, connected with z by the relation h D z C R

7.7.2 Elastic Strains and the Catalytic Effect of Planar
Interfaces

We consider now the problem of how the energy of elastic deformations, generated
by the process of formation of a solid cluster having a spherical shape or the form of
a segment of a sphere, depends on the distance of the cluster from a planar surface as
well as of the geometry of the newly evolving phase. Both solid phases are assumed,
again, to be homogeneous and isotropic. The problem analyzed is illustrated in
Fig. 7.7 for two possible situations. Denoting by z the distance between the center of
the spherical cluster and the planar surface and byR its radius, the situation depicted
in Fig. 7.7a,b corresponds to z=R > 1, while Fig. 7.7c–e refer to �1 < z=R < 1.
Alternatively to the variable z also the parameter h may be used for a description of
the shape of the evolving phase connected with R by the relation h D z CR.

A detailed analysis shows (Möller et al. (1993a,b) [569,570]) that for finite values
of the ratio z=R, in particular, in the range �1 < z=R < 2 for the same amount
of crystallizing substance the energy of elastic deformations �."/ is significantly
reduced as compared with the case of crystallization in the bulk (z=R ! 1). The
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ratio  .z=R/ D �."/.z=R/=�."/.z=R ! 1/ is shown in Fig. 7.8 for the case of
equal elastic constants of both solid phases and a value of Poisson’s number � D
0:3. It turns out in this way that the energy of elastic deformations connected with
the formation of a cluster of shapes as depicted in Fig. 7.7 can be written similarly
to Eq. (7.54) as

�."/
� z

R

	
D "

� z

R

	
V˛ ; "

� z

R

	
D "0 

� z

R

	
: (7.62)

Taking into account only configurations as represented in Fig. 7.7a, b (i.e., clusters
of spherical shape located totally inside the solid matrix) the work of formation of
critical clusters formed at a distance z from the interface may be expressed in the
form (compare Eqs. (6.45), (7.56) and (7.62))

�G
.c/

.cluster/.z/ D 16	

3

�3

c2˛Œ�� ���."/�2 ; ��."/ D 1

c˛
"
� z

R

	
: (7.63)

With the notation ˛ D .��."/=��/ (compare Eq. (7.57)) we may write also

�G
.c/

.cluster/.z/ D �G
.c/

.cluster/.z ! 1/˚ ; ˚ D .1 � ˛0/
2

.1 � ˛/2
: (7.64)

Generally, the inequalities ˛ < ˛0 and ˚ < 1 hold (the inhibition of nucleation by
elastic strains is less expressed near interfaces compared with the bulk).

The reduction of the energy of elastic deformations has, for the considered cases
illustrated in Fig. 7.7a, b, a maximum for critical clusters formed tangentially to
the planar interface of the ambient solid. This reduction of the energy of elastic
deformations, compared with crystallization in the bulk, leads to a considerable
decrease in the critical cluster size, the work of formation of critical clusters and,
consequently, to a decrease in the inhibiting effect of elastic strains in crystallization
of glasses. However, according to the dependence shown on Fig. 7.8 the minimum
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of the value of the specific energy of elastic deformations refers to .z=R/ D 0, i.e.,
to the formation of hemispherical clusters (Fig. 7.7d).

At a first glance, deviations from such a shape surprisingly result in higher
values of the energy of elastic deformations referred to the same amount of the
crystallizing substance. Qualitatively such a minimum can be explained if one takes
into account that for the same amount of the crystallizing substance the volume of
the solid matrix affected by elastic strains has a minimum compared with all other
considered geometrical configurations. Taking into account only the influence of
elastic strains, it seems therefore probable that critical clusters with a hemispherical
shape are formed with the highest probability and determine the rate of formation
of the newly evolving phase. On the other hand, interfacial contributions also play
an important role in cluster formation. Therefore, in considering the problem of
what the most probable shape of a critical cluster will be, both elastic energy and
interfacial contributions have to be taken into account.

The analysis of the problem, which of the both mentioned factors dominates, can
be carried out in the following way. Assume an aggregate of the new phase at the
surface of a solid is formed in the range of z=R-values given by .�1 � z=R �
C1/. The shape of the newly evolving solid phase will be characterized then by
two parameters, the radius of curvature R and h (see Fig. 7.7e). In terms of h, the
considered range of (z=R)-values corresponds to 0 � h � 2R. Note that the case
of crystallization on surfaces of a solid, considered here, differs from processes of
phase formation at the interface of two liquids, respectively, a liquid and a gas. In
the latter cases, the new phase commonly has the form of a lens (see Volmer (1939)
[894]). For solids, as in the considered example, the surface forces are not large
enough to result in considerable changes of the shape of the newly evolving phase
as compared with the initial one.

Denoting the specific values of the interfacial energies by �c (newly evolving
phase – surrounding air), �m (ambient phase – air) and �mc (ambient phase –
newly evolving solid), the change of the Gibbs free energy, �G, connected with
the formation of a segment of a sphere at the interface is given by

�G.cluster/ D �j��C .�c � �m/Ac C �mcAmc C "V˛ : (7.65)

Applying well-known expressions for the volume and the surface area of a segment
of a sphere (see, e.g., Korn and Korn (1968) [467]) we get

�G.cluster/.h;R/ D � c˛
�
	h2

3
.3R � h/

��
�� � "

c˛

�
(7.66)

C .�c � �m/	ŒR
2 � .R � h/2�C �mc2	Rh :

For h D 2R the case of a spherical cluster formed in the bulk of the matrix tangent
to the interface is obtained as a special case (compare Fig. 7.7b). It is evident from
Eq. (7.66) that �G is uniquely determined by two parameters R and h. Critical
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clusters which are formed with the highest probability, correspond, consequently, to
the saddle-point of the �G.cluster/ D �G.R; h/ surface.

For an analytical determination of the values of R and h, corresponding to the
saddle-point (and denoted as Rc and hc), the partial derivatives of �G with respect
to R and h have to be calculated and set equal to zero. After some straightforward
calculations we obtain (see Schmelzer et al. (1995) [716])

hc D 2�mc

c˛

�
��� "

c˛

� .1C�/ ; � D �c � �m

�mc
; (7.67)

Rc D 2�mc

c˛

�
�� � "

c˛

� : (7.68)

It follows from Eqs. (7.67) and (7.68) that the shape of the critical cluster,
corresponding to the saddle-point of the �G.R; h/-surface, is determined to a large
extent by the ratio � D .�c � �m/=�mc. Indeed, Eq. (7.68) may be rewritten in the
form

hc

Rc
D 1C �c � �m

�mc
D 1C� ; (7.69)

verifying above statement. A substitution of the parameters of the critical clusters
into Eq. (7.66) gives, after some straightforward transformations, the following
expression for the work of formation of a critical cluster for phase formation at
the interface

�G
.c/

.cluster=surface/ D 4	

3
R2c�mc g.�/ ; g.�/ D 1

4
.1C�/2.2 ��/ : (7.70)

The function g.�/ describes the influence of shape effects on the work of
formation of the critical clusters. Its value is determined by the parameter � only.
It is independent of the degree of inhibition of the phase formation by elastic
strains. Elastic strains affect the work of formation of the critical clusters only via
modifications of the critical cluster size Rc . Physically reasonable values of � are
those in the range �1 � � � C1 (compare Eq. (7.69)). In this range g.�/ changes
monotonically from zero (for � D �1) to one (for � D C1) (see also [716]).

Denoting by Rc.z ! 1/ the critical cluster radius for nucleation in the bulk of
the sample (" D "0) Eq. (7.70) may also be written in the form

�G
.c/

.cluster=surface/ D �G
.c/

.cluster/.z ! 1/˚ ; ˚ D �.˛; ˛0/g.�/ ; (7.71)

�.˛; ˛0/ D .1 � ˛/2

.1 � ˛0/2
:

Since the relation ˛�˛0 always holds (the influence of elastic strains on crystal-
lization is less near the surface than in the bulk) in addition to g.�/ � 1 the relation
�.˛; ˛0/ � 1 is always fulfilled. The parameter ˚ describes here the nucleating
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Fig. 7.9 Work of formation of critical clusters in dependence on the distance z of the center of
the cluster from the planar interface (in coordinates z=Rc). Poisson’s number � was chosen equal
to � D 0:3. The upper curve corresponds to ˛0 D .��
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0 =/.��/D 0, when the inhibiting effect of

elastic strains on bulk nucleation is negligible. With an increasing value of this parameter (˛0 D0.1,
0.2,: : :,0.9) a shift of the curves occurs represented in the figure by the dependencies below the
upper one. As it is to be expected the activity of the interface with respect to nucleation catalysis
increases with increasing values of the parameter ˛0, i.e., with an increasing degree of inhibition
of bulk crystallization by elastic strains

activity of the surface similarly to nucleation catalysis by insoluble dopants. The
value ˚ D 1 in the considered case corresponds to bulk nucleation while ˚ < 1

yields a decrease in the work of formation of critical clusters, hence, a catalysis of
nucleation.

The function .�G.c/

.cluster=surface/=�G
.c/

.cluster/.z ! 1// is shown in dependence
on .z=Rc/ for the whole range of possible z-values in Fig. 7.9. It turns out that for
all possible values of � the work of formation of critical clusters at the surface
of the solid is always less than in the case of cluster formation near the surface
or in the bulk. From the possible �-values, of particular interest in application
to crystallization processes of glasses is the case � D C1. Indeed, for a one-
component system of the same composition of glass and crystal the difference
(�c��m) is relatively small. However, taking into account that according to Stefan’s
law (Stefan (1886) [796]) the specific surface energy � is proportional to the heat of
the phase transition, q, we obtain with qs D qev C qm (qs: heat of sublimation; qev :
heat of evaporation; qm: heat of melting) the relation �mc=�c��m. Consequently, for
systems for which these estimates hold, at least, in a good approximation� � C1
should be fulfilled. The case of formation of a cluster tangent to the interface, as
already discussed in detail previously, thus, turns out to be a very important special
case. This special case is also realized for � > C1. In these cases, the reduction
of the work of formation of the critical clusters is due only to the decrease in the
energy of elastic deformations for cluster formation near interfaces. However, for all
values of � different from this limiting value, in general, considerably lower values
for the work of formation of the critical cluster are obtained (see, again, Fig. 7.9). In
this way, an explanation is given for preferential surface crystallization of glasses,
in particular for those having relatively high ı0-values.
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Fig. 7.10 Illustration of the model applied for the analysis of the effect of the degree of
smoothness of the surface of a solid on the work of formation of critical clusters in crystallization
processes at the surface. The parameters of the newly evolving phase are the radius of curvature,
R, and the angle, O . O ! 	=2 corresponds to a planar surface. Low values of O model surfaces
with a rough structure (i.e., cones on the surface) while values of O in the range 	=2 	 O 	 	

refer to conically shaped holes in the surface of the solid sample

7.7.3 The Influence of Surface Roughness on Crystallization
of Glasses

The influence of surface roughness on crystallization processes of solids, in general,
and glasses, in particular, can be studied by a simplified model as illustrated in
Fig. 7.10. The surface roughness is described by the existence of cones or edges of
different types. The analysis is carried out here for the case of cones located on the
surface as shown in the figure. Edges and their influence on the catalytic activity of
surfaces can be treated similarly with qualitatively equivalent results. In dependence
on the angle O (see Fig. 7.10) the degree of smoothness of the surface can be changed
in the model. Values of O near 	=2 correspond to a nearly planar surface, while
O ! 0 refers to the opposite situation of a very rough surface structure. Values of
O > 	=2 model conically shaped holes in the surface.

We assume, again that the new phase is formed as a sector of a sphere
characterized by a radius of curvature R and an angle O , as shown in Fig. 7.10.
The critical cluster radius and the work of formation of a critical cluster for such a
situation may be calculated in the same way as done in the preceding sections. From
Eq. (7.65) we get

�G.cluster/ D �j
�
�� � "

c˛

�
C �mc.Amc C�Ac/ : (7.72)

Taking into account the geometrical relations (see Korn and Korn (1968) [467])
determining the volume and the interfacial area of the newly evolving solid phase,
we obtain with Eq. (7.72)
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�G.cluster/ D �c˛
�
��� "

c˛

�
2	

3
R3.1 � cos O/C (7.73)

C�mcŒ2	R2.1� cos O/C�	R2 sin O� :
By a derivation of Eq. (7.73) with respect to R expressions for the critical cluster
radius and the work of formation of critical clusters are found as

Rc D 2�mc

c˛

�
�� � �

c˛

�
 
1 � cos O C 1

2
� sin O

.1 � cos O/

!
; (7.74)

�G
.c/

.cluster=cone/ D 2	

3
�mcR

2
c

�
1� cos O C 1

2
� sin O

�
; (7.75)

which may be written also in the form

Rc

Rc.z ! 1/
D
�
.1 � ˛0/

.1 � ˛/

� "
.1 � cos O C 1

2
� sin O/

.1 � cos O/

#
; (7.76)

�G
.c/

.cluster=cone/ D �G
.c/

.cluster/.z ! 1/˚. O;�; ˛; ˛0/ ; (7.77)

˚ D
�
.1 � ˛0/

2

.1 � ˛/2

�264
�
1 � cos O C 1

2
� sin O

	3
2.1� cos O/2

3
75 : (7.78)

It turns out that the nucleating activity of surface inhomogeneities is determined by
the product of two terms, again, expressed by the functions �.˛; ˛0/ and f . O;�/
(compare Eq. (7.71)), i.e.,

˚ D �.˛; ˛0/f . O;�/ ; f D
�
1 � cos O C 1

2
� sin O

	3
2.1� cos O/2 : (7.79)

Here �.˛; ˛0/ describes the influence of the decrease in the energy of the elastic
strains on phase formation.

As already mentioned, in general, the relation ˛ < ˛0 holds for the considered
cases. The value of ˛ depends on the shape and the location of the new phase in the
sample. For our model we may expect

lim
O!0

˛ D 0 ; lim
O!0

�.˛/ D .1 � ˛0/2 ; (7.80)
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Fig. 7.11 Course of the function f . O ; �/ for different values of � (see text). The curves on the
left hand side of the figure refer to the following values of the parameter � (from the top down):
� D 0, -0.2, -0.4, -0.6, -0.8, -1. Similarly the curves on the right hand side of the figure are drawn
for the following parameter values (again, from the top down): � D 1, 0.8, 0.6, 0.4, 0.2, 0.0

since for such a limiting case practically all the strains may relax easily. In other
words, the part of the volume of the matrix which is affected by the elastic
deformation tends to zero.

The function f . O;�/ reflects properties of the surfaces of the different phases
(via the ratio of the specific interfacial energies �) and the mechanical structure of
the surface (via the parameter O ). A particularly simple case consists of � D 0. In
this case, the function f is reduced to

f .� D 0; O/ D 1 � cos O
2

(7.81)

and for O ! 0 the relations f ! 0 and ˚ ! 0 hold.
The course of the function f . O;�/ is shown in dependence on O (0 � O � 	)

for different values of � (�1 � � � C1) in Fig. 7.11. It turns out that independent
of the value of the function �.˛; ˛0/, describing the influence of elastic terms, for
.� � 0/ there is always a finite value of O D O0 for which the work of formation
of critical clusters becomes equal to zero. Consequently, in this range of �-
values surface effects alone stimulate crystallization on rough surface structures (for
O � O0 the nucleation barrier �Gc vanishes or the transformation is even favored
thermodynamically). This is the range of parameter values for which Tabata’s
explanation of preferred surface crystallization would be of some relevance.

For the opposite case (0 < � < C1) till � � 0:8, there are always values for
the angle O in the range (0 < O < 	=4) for which f < 1 holds, i.e., for which
crystallization is catalyzed for cones of the respective geometry compared with
nucleation in the bulk. However, for glasses in the particularly relevant parameter
region � � 1, surface energy effects do not favor crystallization. A nucleation
catalysis can be connected for these cases only with a decrease in the elastic strains
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for small (but not zero) values of O as expressed with Eq. (7.80). This effect is
expected to be of importance, in particular for cases when the inhibiting term due
to elastic strains for bulk crystallization��."/0 is comparable in magnitude with the
thermodynamic driving force of crystallization.

Finally, in this subsection we would like to mention the following interesting
fact: Taking into account the relations describing the volume and the surface area
of the crystalline phase, the work of formation of critical clusters Eq. (7.75) may be
expressed also through the volume of the critical cluster Vc as

�G
.c/

.cluster=cone/ D Vc�mc

Rc

 
1 � cos O C 1

2
� sin O

1 � cos O

!
: (7.82)

Similarly, for cluster formation in the bulk of the matrix we may write

�G
.c/

.cluster/.z ! 1/ D 4	�mc.Rc.z ! 1//2

3
D Vc.z ! 1/�mc

Rc.z ! 1/
: (7.83)

A comparison of Eqs. (7.82) and (7.83) yields with Eq. (7.76)

�G
.c/

.cluster=cone/

�G
.c/

.cluster/.z ! 1/
D Vc

Vc.z ! 1/

�
1 � ˛
1 � ˛0

�
: (7.84)

Neglecting the influence of elastic strains on the value of the critical cluster radius
Eq. (7.84) leads to

�G
.c/

.cluster=cone/

�G
.c/

.cluster/.z ! 1/
Š Vc

Vc.z ! 1/
: (7.85)

It turns out that for the considered approximation, the nucleating activity of “cones”
on the surface can be expressed through the ratio of the volumes of the critical
clusters at the surface and in the bulk similarly to the theorem formulated first by
Kaischew (see Eq. (7.6)) for nucleation processes on surfaces or on foreign particles.

Note that this theorem also holds for the cases considered here, however,
modified, in general, by a term specifying the ratio of degrees of inhibition of the
transformation by elastic strains in the bulk and at the interface. The conclusions
of the theoretical analysis are illustrated in Fig. 7.12. In the upper part of Fig. 7.12
various possible shapes of a droplet formed in vapor condensation on solid surfaces
for two values of the contact angle  are given. Following from Eq. (7.2), the contact
angle is determined by the values of the different specific interfacial energies in the
same way as � in the analysis performed in the present section. Due to surface
effects, the work of formation of critical clusters corresponding to shapes specified
by (b) and (d) is smaller than in the cases (a) and (b). An interpretation can be given
directly by applying Kaischew’s equation (7.6). In the lower part of the figure for
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two values of � , possible shapes of the critical clusters both for planar and rough
surface structures are shown. For planar surfaces the shapes specified by (f) and
(j) refer to the critical clusters formed with the highest probability at � D 1 and
� D 0, respectively. Due to a lower value of the work of formation of critical
clusters for rough surface structures they are formed preferably at the tips of the
cones (see Fig. 7.12g, k) and not in positions specified by (h) and (i). Consequently,
preferential surface crystallization is to be expected along scratches or on surfaces
seeded with cones with characteristic angles O < 	=2 (see also Schmelzer et al.
(1994) [716]). As a heuristic rule, it can be stated that crystallization of the solid
matrix occurs preferably at positions where the volume of the solid matrix deformed
elastically has a minimum.

The discussion above is restricted to cases where the shape of the cluster of the
new phase can be characterized by only one parameter, the radius of curvature, R.
Even for this particular case it could be shown that free surfaces of solid samples
catalyze nucleation. However, it is probable that there are geometrical configurations
which are even more active with respect to nucleation catalysis than the considered
ones. Generally, from the assumed isotropy of both phases – the ambient and the
newly evolving phase – it follows that the critical cluster – corresponding to the
saddle point of the �G-surface – should have, near planar interfaces, a shape with
cylindrical symmetry. The detailed analysis of the most probable shapes of the
critical clusters in dependence on the particular properties of the phases involved
in the transformation requires a more detailed separate analysis (cf. Nabarro (1940)
[588]). First estimates show (Möller (1994) [568]) that near free planar surfaces,
the formation of clusters having an ellipsoidal form with the axis of symmetry
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perpendicular to the interface should be favored. Moreover, if the vitreous matrix
is in contact with a solid having a higher value of Young’s modulus than the matrix,
a catalysis of nucleation is not found but a further depression of phase formation.
This inhibition of phase formation would correspond to ˚ > 1.

In addition, the shape of the critical clusters, formed with the highest probability
(corresponding to the saddle-point configuration), is changed to disc-like structures.
In this way, the consideration of the influence of elastic strains on phase formation
may give not only a key to the understanding of preferred surface crystallization of
glasses and small glass particles but also for orientational effects in phase formation.

7.7.4 Crystallization of Glass Powders and Elastic Strains

For a qualitative explanation of the decrease in the inhibiting effect of elastic strains
in crystallization at and near interfaces of a solid it was proposed above that this
effect is proportional to the deformed part of the volume of the solid matrix.
Following such an idea, it has to be expected that the inhibiting effect of elastic
strains is also diminished for crystallization in small solid particles comparable in
size with the critical cluster size in nucleation.

For a verification of this consequence we will consider the following simplified
model. Suppose in the center of a spherical sample of a solid with the radius R2, a
cluster with the radius R1 is formed. Due to the misfit between both phases elastic
strains occur which in the case of equal elastic constants (E – Young’s modulus,
� – Poisson’s number) of matrix and cluster may be expressed in the form (see
Möller et al. (1993a,b) [569, 570], Heinrich and Ulbricht (1981) [353])

�."/ D Eı20
9.1 � �/

�
1 � R31

R32

�
V ; V D 4	

3
R31 : (7.86)

Within the limit .R2 ! 1/ the case of formation of a spherical cluster in the bulk
of a solid matrix is obtained as a special case. This special case is reached in a
good approximation already when the inequality R2 > 5R1 is fulfilled. Even more,
significant variations of the energy of elastic deformations due to finite size effects
are found only for R2 < 2R1. However, if this condition is fulfilled, a significant
dependence of the total energy of elastic deformations on the radius of the cluster
R1 (at a fixed size of the matrix R2) has to be expected. �."/ is equal to zero for
R1 D R2 and R1 D 0, it has a maximum at R1 D R2=

3
p
2. Moreover, the quantity

�."/.R1/=R
3
1 is a monotonically decreasing function of R1.

In application to nucleation catalysis, we may conclude from these results that
glass powders with characteristic dimensions of the particles less than 5 Rc should
exhibit a catalytic activity similar to “cones” on the surface of a glass sample.
Moreover, elastic strains may even stimulate the crystallization since, as shown,
the crystallization of small samples may be accompanied by a decrease in the total
energy of elastic deformations. The discussed effect of nucleating activity of small
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glass particles should be even larger if the new phase is formed not in the center
but near the boundaries of the sample or if the sample is not spherical but irregular
having “sharp edges” and “cicatrices” as denoted by Tabata [816].

7.8 Kinetics of Nucleation and Induced Crystallization
of Glass-Forming Melts: Experimental Evidence

In the first investigations on the temperature dependence of the rate of nucleation,
mentioned in Chap. 6, no special analysis was performed concerning the character
of the process investigated. As a rule only the number of detectable crystallization
centers was counted under the assumption that steady-state nucleation takes place
so that the course of the N.t/-curves is given by Eq. (6.175). The first experimental
evidence on the non-steady state character of the nucleation process in glass-forming
melts was given in an investigation of heterogeneous crystallization in NaPO3-melts
on submicroscopic crystallization cores of the noble metals (Ir, Rh, Pd, Pt, Au and
Ag) (see Gutzow et al. (1966) [322]; Gutzow, Toschev (1971) [320]; Gutzow (1980)
[303]). The initial part of theN.t/-curves obtained in this study clearly manifests the
non-steady state character of nucleation in glass-forming melts (Figs 7.13 and 7.14).

These results were obtained for temperatures below the maximum of the
nucleation rate, in the vicinity of the temperature of vitrification. When the activity
of substrates is taken into account Eqs. (7.8) and (7.14) can be combined to give
similarly to Eq. (6.197) the result

��J � D a0N
�
.cores/

2	�
.�/
.z/

exp

 
��G

.c/

.cluster/˚

kBT

!
: (7.87)

If one defines t�1 as the average time interval when a cluster is formed under steady-
state conditions (i.e., t�1 
 .J �/�1) one obtains with Eqs. (6.65) and (6.44)
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An inspection of this equation shows that ��  t�1 holds most probably for low
temperatures, i.e., in the vicinity of Tg and for active substrates (˚ < 0:5). Under
these conditions it is always to be expected that the non-steady state time-lag is
considerably greater than the time, t�1 , to form the first nuclei (or a given number
of nuclei, N ). These conditions were in fact chosen in the above cited investigation
to give in 1966 the first proof of the non-steady state nucleation kinetics in glass-
forming melts.

The growth rate of spherulites in NaPO3-melts was also investigated in the
framework of the same study (Gutzow (1980) [303]) and it was shown that the
induction periods, t.ind/, exceed considerably the expected shift of the N.t/-curves
along the t-axis due to growth effects (see Fig. 7.14). A further proof of the non-
steady state character of the nucleation process in a NaPO3-glass was made by
analyzing the size distribution curves of NaPO3-crystallites in the heat-treated
partly crystallized samples: It turned out that they correspond to the theoretical
prediction for a non-steady state process of nucleation (Toschev and Gutzow (1967)
[927, 929]). In a number of subsequent papers, the same shape of the N.t/-curves,
initially found for NaPO3 glass, was confirmed by several authors for crystallization
in the vicinity of Tg for other model systems (Fig. 7.15). Here the paper by James
(1974) [400] is of particular importance.

As already mentioned in a previous section, this author used Tammann’s two-
stage method of crystallization development of the initially formed crystalline
nuclei. In this way, an influence of growth effects on the induction period was
omitted. James showed also that the experimentally determined N.t/-curves for
the crystallization of lithium disilicate glass may be satisfactorily described in
coordinates corresponding to the solution of the Zeldovich-Frenkel equation given
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Fig. 7.15 Non-steady state N.t/-curves obtained upon crystallization of various glass-forming
melts. (a) Li2O � 2SiO2 (Kalinina et al. (1976) [427]); (b) Glass with a composition 16.7 % Na2O
16.7 % BaO 66.6 % SiO2 (Burnett and Douglas (1971) [112]); (c) Glass with a composition
21.2 % Na2O3 21.2 % CaO 57.5 % SiO2 at two different temperatures (Strnad (1986) [812]);
(d) Li2O � 2SiO2 (James (1974) [400])

by Collins and Kashchiev. The nucleation kinetics in the same glass (Li2O2SiO2)
was also very thoroughly investigated by Kalinina, Fokin, and Filipovich (1974)
[427] for different conditions of crystallization.

Further results in the study of crystallization of glass-forming systems made
by Gutzow et al. (1977) [328] and by Penkov and Gutzow (1984) [632] showed
that the non-steady state nature of the nucleation process can be confirmed also in
the crystallization of multi-component glass-forming systems used as precursors in
the formation of glass-ceramics and glass-ceramic enamels. The nuclei number vs.
time curves obtained in these two cases correspond to the N.t/-dependencies with
a typical saturation plateau (see Fig. 7.4). The high spherulitic density normally
reached in the crystallization of technical glass-ceramic precursor melts greatly
hampers the quantitative study of the crystallization process. In order to overcome
this difficulty the nucleation kinetics in the mentioned technical glass-forming melts
was examined in thin films blown from the initial glass in the same way as soap
bubbles.

According to Eqs. (6.193) and (7.18) the value of �� in the region of large under-
coolings (in the vicinity of Tg) is determined mainly by the temperature dependence
ofZ, i.e., from the temperature dependence of the viscosity �. Figures 7.16 and 7.17
show the temperature dependence (plotted in coordinates log � vs. 1=T ) of the non-
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(1977) [222]); (c) Crystallization of Fe0:8P0:13C0:07-glass (Scott and Ramachandrao (1977) [742])
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Fig. 7.17 Experimental results for induced crystallization of NaPO3 on various metal cores
presented as a log �� vs. 1=T plot. The data for different nucleants are shifted with respect to
pure NaPO3 by log˚ into parallel straight lines and determine the activation energy as U0 D
270 kJmol�1. The mean activation energy for viscous flow of NaPO3 in the same temperature
range is U0.j/ D 334 kJmol�1 (Gutzow and Toschev (1971) [320])

steady state induction period in the crystallization of several glass-forming melts.
The activation energies determined in these coordinates are close to the activation
energy for the viscous flow in the corresponding melts as it is to be expected in
fact according to the mentioned equations. The log �� vs. 1=T -curves for the case
of heterogeneous nucleation in the NaPO3-melts are shifted along the ordinate axis
by the value log˚ , as it is to be expected from the formula Eq. (7.18) derived by
Toschev and Gutzow for the time-lag in heterogeneous nucleation. In Fig. 7.18, the
final results of the experimental determinations of induction periods in a NaPO3-
glass are given together with the theoretical curve describing the temperature
dependence of �� multiplied by a factor & D 10�5.
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T for crystallization of pure
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Toschev (1968) [318]):
experimental induction
periods �� calculated from
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growth measurements (open
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Table 7.2 Lattice misfit, ıl , and nucleation activity, ˚ , in the catalyzed nucleation of NaPO3 and
poly(ethylenetherephtalate) (PET) on noble metal crystallization cores. Lattice parameters: NaPO3

(orthorhombic): a D 7.93 Å, b D 13.14 Å, c D 7.75 Å. PET (triclinic): a D 4.56 Å, b D 5.94 Å, c D
10.74 Å. The percentage misalignment, ıl , is in both cases given as the optimum value calculated
assuming ıNaPO3 D 100.1� 2d=c/ and ıPET D 100.1� d=a/

Metal Activity
Contact Lattice Lattice

substrate
angle misalignment parameter

˚  ı ıl [%] d [Å]

NaPO3

Ir 0.007 15 C1.17 3.83
Pt 0.009 18 �1.15 3.92
Pd 0.022 29 �0.13 3.88
Rh 0.058 37 C1.94 3.80
Ag 0.058 37 �5.29 4.08
Cu 0.05–0.06 34–38 C6.84 3.61
Au 0.125 30 �4.97 4.07

PET
Au 0.670 103 10.75 4.07
Pt 0.86 122 14.03 3.92
Ir 1.00 180 16.00 3.83

N.t/-curves obtained in the crystallization of amorphous silicon layers (Köster
(1978) [472]) confirmed the transient character of the nucleation process in another
interesting class of glass-forming systems, amorphous semiconductors. In recent
times Köster ((1984) [473]; Köster and Herold (1981) [475]) and Spassov and
Budurov (1988) [790] supplied a number of results on the kinetics of nucleation
in the devitrification of metallic alloy glasses. Non-steady effects in the nucleation
of polymer systems were also proven in the devitrification of glass-forming polymer
systems. The results of these investigations obtained in studying the kinetics of
overall crystallization of the respective melts, performed by Dobreva and Gutzow
(1993) [174], are given in Chap 10.
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Fig. 7.19 Activity ˚ of
metallic crystallization cores
in the case of induced
crystallization of NaPO3 (ı)
and polyethyleneterephthalate
(PET) () melts in
coordinates ˚ vs. .�m/1=2.
Here �m is the heat of melting
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Considerable evidence was collected in the earlier literature on the efficiency of
different nucleants in the induced nucleation of glass-forming melts and especially
in silicate melts. A typical example in this respect is the paper of Rabinovich
(1963) [654] where connections between crystallographic matching and activity
of substrates were the primary object of investigation (cf. also [86]). A thorough
investigation was performed on the heterogenously induced crystallization of
sodium metaphosphate glasses and organic polymer melts (Gutzow (1980) [303];
Dobreva, Gutzow (1993) [175]). As initiators the noble metal cores mentioned
were used. It was shown that the principle of lattice disregistry and matching
cannot explain the considerable differences existing between the activities of these
crystallographically very similar nucleants (see Table 7.2 and Fig. 7.19). Moreover,
it was proven by Dobreva and Gutzow (1993) [175] that the activity of nucleants
employed obeys the predictions of the formalism developed in Sect. 7.4. Further
experimental evidence in this respect may be traced in the cited papers where it is

shown, in particular that ˚ vs.
q
T
.s/
m or ˚ vs.

p
�m-plots may be used in order to

correlate and predict activities of different substrates in the induced heterogeneous
nucleation of glass-forming melts (see Fig. 7.19).

Size effects in the activity of substrates can be directly demonstrated to be of
importance in the nucleation of glass-forming systems. The first pioneering results
in this direction were obtained by Maurer (1958) [540] who found a difference in
the activities of differently sized crystallization cores in the formation of technical
glass-ceramic materials. In papers by Gutzow and Toschev (1968) [318] and Gutzow
(1980) [291] a similar effect is described for the crystallization of NaPO3-melts
initiated by gold crystallization cores.

In Fig. 7.20, an experimental example for surface catalyzed devitrification is
shown. For a rod of sodium metaphosphate glass, in the vicinity of Tg surface
crystallization is observed in the form of thousands of ’ � NaPO3-needles,
growing from the surface into the bulk of the glass matrix. Also of interest is
the observation (see Fig. 7.21) that newly formed surfaces are less active with
respect to crystallization than surfaces exposed for prolonged times to a laboratory
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Fig. 7.20 Surface and bulk devitrification of NaPO3-glass rods heat treated for 150 min at 320 ıC.
(left side) Crystalline layer at the surface of a NaPO3-sample. (right side) Crystallization of
a sample in which bulk devitrification is initiated by the addition of 5�10�3 wt % platinum
forming a population of platinum crystallization cores. Despite the addition of the bulk initiator of
crystallization, surface nucleation is clearly visible (micrograph of thin slides at 50 magnification,
crossed nicols)

Fig. 7.21 Surface devitrification of a corroded and a newly formed NaPO3-glass surface. A glass
rod was broken in vacuum immediately before the heat treatment. In this way, in addition to the
corroded surface (upper left corner) a new surface was generated (bottom part). While at the newly
formed surface only a few spherulites are detected, the corroded surface is covered by thousands
of crystalline needles growing perpendicular to the surface

atmosphere. This observation can be connected with an additional decrease in the
work of formation of critical clusters due to a roughening of the surface by corrosion
processes. Numerous results in this respect were also collected by Zanotto and
James (1985) [946].

Devitrification of some glasses is facilitated if glass powders of the same
composition are deposited on the surface (Gutzow and Slavtschev (1971) [317];
Schmelzer et al. (1993 [716], 1995 [717])). This effect can be explained in the
framework of the outlined theory taking into account the catalytic activity of small
glass particles. Other examples are discussed by Avramov et al. (1981) [29] in
analyzing crystallization of glass semolina samples.

A strong indication that elastic strains are responsible for the inhibition of
bulk devitrification consists of the experimental finding that B2O3-glasses do not
crystallize even after long heat treatments in the vicinity of Tg. For B2O3, the misfit
parameter ı0 is of the order ı0 � 0:37, which results in very large values of the
energy of elastic deformations in crystallization. Other examples in this respect are
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given by Gutzow and Slavtschev (1971) [317], Zanotto and Müller (1991) [948].
Zanotto and Müller showed that out of approximately 20 glass-forming substances,
bulk devitrification was observed only when the misfit parameter ı0 was less than
0.04. In the other cases, only surface crystallization was found. In line with the
discussed theoretical concept a second observation of Zanotto and Müller is also
of interest: surface induced nucleation occurs preferably in substances where the
maximum of the nucleation rate is located in temperature regions below Tg . In
such cases, bulk nucleation is most effectively suppressed by elastic strains. Further
experimental examples giving a verification of the outlined theoretical results were
given by Schmelzer et al. (1993 [716], 1995 [717]).

Summarizing the results concerning surface induced nucleation we may conclude
that in addition to the possible existence of foreign nucleation cores preferential
surface crystallization of glasses is due, on one hand, to the decrease in the work
of formation of critical clusters connected with the decrease in the energy of
elastic deformations for crystallization near or at interfaces or in small particles.
On the other hand, as an additional factor stimulating crystallization at the interface,
the reduction of the surface of the newly formed critical clusters may play also
an important role. However, for isoconcentration crystallization of glasses, the
decrease in elastic strains for crystal formation near or at glass interfaces dominates
in nucleation catalysis. Both effects are significantly enhanced for rough surface
structures. In this way, a key is given also for understanding the effects of
mechanical treatments of glass surfaces on the intensity of devitrification processes
occurring on them.

In analyzing the literature on the kinetics of nucleation in glass-forming melts
and on the possibilities of inducing crystallization in order to obtain glass-ceramic
materials, the following conclusions can be drawn:

• Quantitative results on the temperature dependence of the rate of nucleation and
on the activity of substrates in the induced nucleation of glasses can only be
obtained if the transient character of the process involved is accounted for.

• The general theory of nucleation in its classical formulation can be used to predict
criteria for nucleation catalysis in agreement with experimental findings. Up
to now, heterogeneous nucleation and surface energy modifications have been
mainly employed. The theory indicates, however that there are still alternative
possibilities (effect of strained and unstrained nucleation, influence of surfaces
and surface structure, electric fields and charged particles), which are still either
not or insufficiently employed in producing high-tech materials.

We would like to mention as well that it was mainly the application of the theory
of crystal nucleation and growth which changed the character of production of
glasses and of glass-ceramic materials from an art to a modern theoretically based
technology. However, the demands of the technology of glass-ceramics also opened
a new development in the theory and in the field of experimental investigation of
catalyzed nucleation.

The history and details of the technological developments connected with the
production of glass-ceramic materials cannot be given here. The interested reader
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is referred for detailed information to a number of exceptional books on this
subject. Among them we would like to mention the monographs of Buckley (1951)
[106], McMillan (1964) [549], Filipovich (1965) [207], Vogel (1969, 1971) [888],
Pavlushkin (1970) [631], Bereshnoi (1981) [67], Strnad (1986) [812] and the review
articles of Stookey (1957 [802], 1959 [803]), James (1982) [402] and Hülsenberg
(1993) [384]. Details concerning the significance of surface induced crystallization
in the production of glass ceramic materials can be found in the papers of Tashiro
(1985) [827] and Karamanov et al. (1994) [431] and the respective parts of Strnad’s
monograph.2

2Some recent new developments are briefly reviewed also in the Chap. 14.



Chapter 8
Theory of Crystal Growth and Dissolution
in Under-cooled Melts: Basic Approaches

8.1 Introduction

The theoretical considerations concerning the description of crystal growth are
based on three very general models, i.e.,

• Normal (or continuous) growth,
• Growth determined by processes of formation of two-dimensional nuclei and

their subsequent enlargement and
• Growth mediated by screw dislocations.

According to the theory of normal growth, initially proposed by Wilson at the
beginning of the last century (see Cahn et al. (1964) [120]) and reformulated later
by Frenkel (1934) [185] and Volmer (1939) [894], it is assumed that the interface
between the growing crystal and the surrounding medium displays a sufficiently
high concentration of growth sites. On these growth sites the incorporation of
ambient phase molecules takes place in a continuous way. As growth sites in the
theory of crystal growth, such configurations on the interface are denoted where
an impinging ambient phase molecule is bound to the evolving phase at least as
strongly as being in the so-called half-crystal position (see Fig. 8.1). In this half-
crystal position, an ambient phase molecule has equal values of the probability either
to remain in this position or to evaporate (dissolve).

A first theoretical analysis of the energetics of different sites on the crystal face
and their significance with respect to the process of crystal growth was performed
by Stranski (1928) [809] and Kossel (1929) [471] who introduced into the theory
of crystal growth the fruitful concept of the half-crystal position. The particular
importance of this position is, on one hand, due to its property that aggregation of a
building unit onto such a position is a repeatable step in crystal growth. On the other
hand, a building unit at this particular position on the interface has a value of the
work of separation equal to one half of the energy of evaporation of the same crystal
building unit for the bulk of the crystal. In this sense, the energetic properties of the
half-crystal position also determine the thermodynamic potential of the infinitely
large crystal.

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 8, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 Typical possible positions of building units of the evolving phase on a crystal plane:
(1): half-crystal position; (2): adsorbed atoms; (3): a hole at the interface; (4): adsorption at a step
on the interface

In the simplest of the possible growth modes mentioned – the normal growth –
the crystal face advances continuously (hence its second name) into the direction of
its normal with a velocity proportional to the impingement rate of ambient phase
molecules. For this case, it is assumed that a sufficiently large surface concentration
of growth sites is sustained in the course of growth. Such a high concentration of
growth sites is found only at crystal faces which are rough on an atomic or molecular
scale. According to the classical theory, only defective or non-equilibrium crystal
faces have this property. However, more recent theoretical approaches, introduced
by Jackson (1958) [393], Jackson et al. (1967) [398], Cahn (1960) [115], Cahn
et al. (1964) [120], Temkin (1962) [828] into the theory of melt crystallization,
subsequent computer simulations and experimental results show that an equilibrium
form crystal face in contact with its own melt may also become atomically rough
and thus growth may proceed on it via the normal mode.

The specification of the thermodynamic and structural conditions for the devel-
opment of a roughened diffusive melt-crystal interface growing according to
the normal growth mode was the subject of prolonged discussions (see Jackson
et al. (1967) [398]). It turned out that normal growth is possible for equilibrium
crystal faces only if melt and crystal possess basic building units with a similar
structure. This is the reason why, for the discussion of phase transformations in
glass-forming systems, this problem is of particular interest in connection with
the kinetics of reconstructive and non-reconstructive crystallization. As already
mentioned (compare Sect. 4.10), in glass-forming melts, considerable differences
in the structure of the basic building units may occur between crystal and melt. This
result has to be taken into account when the normal growth mode for equilibrium
shaped crystal faces is discussed in the following sections.

In contrast to normal growth, the other two mentioned mechanisms of crys-
tallization are characterized by processes of growth of layers originating from
permanently existing (screw dislocation-mediated) or fluctuationally appearing (sur-
face nucleation-mediated) growth sites. In the latter case, the growth proceeds via
a lateral aggregation of ambient phase building units to permanent or stochastically
appearing edges. In this way, the dislocational and the surface nucleation mediated
growth proceed more or less periodically in the sense that a new crystal layer starts
to evolve, in general, only after the growth of the foregoing layer is completed.
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This periodicity of growth in the direction normal to the interface is the main
characteristic feature of the layer by layer growth model proposed by Kaischew and
Stranski (1934 [425]; see also Kaischew (1957) [418]). In this classical model, it is
assumed that the rate of lateral growth surpasses by many orders of magnitude the
frequency of formation of two-dimensional nuclei. Also further developments are
given where the mentioned restriction is replaced by more general assumptions. The
idea of a possible formation of two-dimensional nuclei on ideally smooth growing
crystal faces was expressed originally by Gibbs (see the frequently quoted footnote
in his work on the thermodynamics of heterogeneous substances [249]). The kinetic
formulation of this idea in attempts to describe crystal growth was developed by
Volmer at the end of the 1920s (see also Volmer (1939) [894]) and by Kaischew
and Stranski (1934) [425]. The connection between screw dislocations and crystal
growth was established by F. C. Frank in 1949 [227].

An overview on the historical development of ideas concerning possible models
of crystal growth can be found in the monographs of Volmer (1939) [894], Frenkel
(1946) [233] and Buckley (1951) [106] as well as in a number of more recent
books and review articles (see, e.g., Honigman (1958) [378]; Pamplin (1975) [622];
Stricland-Constable (1968) [813]) and conference proceedings (Discussions of the
Faraday Chemical Society No. 5 (1949): Crystal Growth and Perfection of Crystals).
In Buckley’s book a number of more or less intuitively formulated ancient ideas
on crystal growth modes are also given, most of them rejected by the further
development of the theory of crystal growth. An account of the development of
the theory of crystal growth as seen by one of the main participants can be found in
one of Kaischew’s articles (Kaischew (1981) [420]).

In the following sections, the three basic growth modes mentioned will be
discussed in detail in application to melt crystallization. Hereby, the discussion is
not restricted, as done in most of the literature on crystal growth, to the consideration
of growth of planar crystal faces (i.e., of infinitely large crystals) but includes also
the analysis of size effects in crystal growth, i.e., the growth of small crystallites
(Chap. 9). Only by taking into account such size effects, can a quantitatively
correct description of the kinetics of nucleation (remember that the application
of Eqs. (6.94) and (6.95) and also of the set of kinetic equations, Eqs. (6.129),
requires the knowledge of the rates of attachment w.C/ in dependence on cluster
size) and of overall crystallization be given as well as that of the late stages of the
transformation (Ostwald ripening).

8.2 The Normal or Continuous Mode of Growth
and Dissolution: The Transition Frequency

We consider in the following discussion a crystal, characterized by a value, gc , of the
Gibbs free energy per particle, in contact with a supersaturated ambient phase, e.g.,
a melt (with a Gibbs free energy, gf , per particle in the melt) at a planar interface.
If we denote, moreover, the number of nucleation or growth sites per unit surface
area of the interface by ngs and the total number of building units of the melt in
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the vicinity of this part of the interface by nf , then the relative number, �.f=c/0 , of
growth sites on the crystal face may be introduced defining it by

�
.f=c/
0 D ngs

nf
: (8.1)

In addition to the relative number of growth sites the kinetics of the growth or
dissolution process is determined by energetic properties of the interface.

Following the basic ideas of the absolute rate theory (see Glasstone, Laidler and
Eyring (1941) [255]) it is usually assumed that in order to determine the frequency
of interface exchanges of molecular building units an activated state of the molecules
has to be assumed. In this activated state the Gibbs free energy equals g.�/. The
activation energies we denote by uf!� for the transformation of a particle from
the melt into the activated state and by uc!� for the respective process from the
crystalline state. These quantities are determined as

uf!� D g.�/ � gf ; uc!� D g.�/ � gc : (8.2)

According to Eyring’s theory (see Glasstone et al. (1941) [255]) the frequency of
transformation of ambient phase molecules from the melt into the activated state is
given by

!f !� D
�
kBT

h

�
exp

�
�uf!�
kBT

�
; (8.3)

while for the transformation from the crystalline into the activated state

!c!� D
�
kBT

h

�
exp

�
�uc!�
kBT

�
(8.4)

holds. Here h is Planck’s constant. The two possible situations with respect to
the energetics of the two-phase system melt-crystal are depicted in Fig. 8.2. The
activated state of the complex corresponds to the maximum of the potential barrier
separating the crystal from the liquid.

Let us assume first that the Gibbs free energy per particle is higher in the liquid
than in the crystalline state of the same substance (undercooled melt in contact with
its own crystal). The net frequency of transitions from the melt to the crystalline
state is given in this case by

!.f=c/ D !f!� � !c!� D !f !�
�
1 � exp

�
�uc!� � uf!�

kBT

��
(8.5)

or taking into account Eq. (8.2) as
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Fig. 8.2 Diagram illustrating
the energetic conditions at the
interface melt-crystal for
(a) the case of crystal growth
and (b) the case of crystal
dissolution (schematically)

!.f=c/ D !f !�

"
1 � exp

 
���

.f=c/

.particle/

kBT

!#
; ��

.f=c/

.particle/ D gf � gc > 0 :

(8.6)

It turns out that the frequency of incorporation of ambient phase building units
at a given crystalline growth site is completely determined by !f!� and the
thermodynamic driving force of crystallization, ��.f=c/ (compare Eqs. (6.53),
(6.55) and (6.64)).

Based on the equations outlined above the rate of crystal growth, v.f=c/n , into the
direction normal to the interface can be written as

v.f=c/n D �
.f=c/
0 !.f=c/dcr ; (8.7)

where by dcr the width of the crystal lattice spacings in the direction of growth is
denoted. Equations (8.6) and (8.7) yield

v.f=c/n D �
.f=c/
0 dcr!f !�

"
1 � exp

 
���

.f=c/

.particle/

kBT

!#
: (8.8)

Note the similarity between this expression and Eq. (6.138) derived earlier in a quite
different way.

If one assumes that the frequency !f !� is determined by the mobility of the
ambient phase particles of the melt above equation can be simplified. Using the
earlier applied notations, !f!� can be expressed through the flux of particles to a
nucleation site, i.e., as

!f !� Š Z.eff /d 20 ; (8.9)

where Z.eff / is the effective impingement rate (compare Eqs. (2.106)–(2.110) and
(6.121)). Here d20 is the area of an active nucleation site, with d0 the mean
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intermolecular distance in the ambient phase is denoted. Equations (8.8) and (8.9)
yield

v.f=c/n D �
.f=c/
0 Z.eff /d 30

"
1 � exp

 
���

.f=c/

.particle/

kBT

!#
: (8.10)

In the derivation of this expression the approximation d30 Š d20 dcr was used
realizing as in the derivation of Eq. (8.9) that the average intermolecular distances
and the average sizes of the ambient phase particles in the melt differ only by a few
percent from the respective values for the crystal (see, e.g., Frenkel (1946) [233]
and experimental evidence summarized by Ubbelohde (1965) [871]).

A substitution of Eq. (6.121) for the effective impingement rate into Eq. (8.10)
finally gives

v.f=c/n D &�
.f=c/
0 kBT

d20 �

"
1 � exp

 
���

.f=c/

.particle/

kBT

!#
: (8.11)

For small values of the under-cooling (of the ratio ��.f=c/.particle/=kBT ) we obtain
instead of Eqs. (8.10) and (8.11)

v.f=c/n Š �
.f=c/
0 Z.eff /d 30
kBT

��
.f=c/

.particle/ ; (8.12)

v.f=c/n Š &�
.f=c/
0

d 20 �
��

.f=c/

.particle/ : (8.13)

Moreover, at small under-cooling the thermodynamic driving force of the transfor-
mation referred to one mole may be expressed through the difference .Tm � T / via
Eq. (6.65). A substitution into Eqs. (8.12) and (8.13) yields

v.f=c/n Š �
.f=c/
0 Z.eff /d 30�sm

Rg

�
Tm � T

Tm

�
(8.14)

or

v.f=c/n Š &�
.f=c/
0 Tm�sm

d20 �NA

�
Tm � T
Tm

�
: (8.15)

In above equations, Rg and NA are the universal gas constant and Avogadro’s
number, respectively.

For the considered case it is assumed that the temperature dependence of !f !�
is determined by the temperature dependence of the viscosity of the melt. If,
however, more complicated processes proceed at the interface as a precondition
for the incorporation of ambient phase molecules to the crystal, then also a
more complicated temperature dependence of the pre-exponential factors are to be
expected. In the opposite case that the Gibbs free energy of the particles in the
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crystalline state, gc , is higher than the respective value for the melt (e.g., superheated
crystal), the transition frequency per growth (or dissolution) site, !.c=f /, is given by

!.c=f / D !c!� � !f!� D !c!�
�
1 � exp

�
�uf!� � uc!�

kBT

��
: (8.16)

If we define ��.c=f /.particle/, again, as a positive quantity then similarly to Eq. (8.6) we
arrive at

!.c=f / D !c!�

"
1 � exp

 
���

.c=f /

.particle/

kBT

!#
; ��

.c=f /

.particle/ D gc � gf : (8.17)

The rate of dissolution, v.c=f /n , of the crystal can be expressed then as

v.c=f /n D �
.c=f /
0 !.c=f /dcr (8.18)

or

v.c=f /n D �
.c=f /
0 !c!�dcr

"
1 � exp

 
���

.c=f /

.particle/

kBT

!#
: (8.19)

It is usually assumed and confirmed by experiment (see Fig. 8.17 and the subsequent
discussion) that the ratio of growth sites, �.f=c/0 , is nearly equal to the ratio of

dissolution sites, �.c=f /0 .
The determination of !c!� is connected with difficulties. Therefore, another way

to express the rate of dissolution is used. Starting with Eq. (8.16) we may write

!.c=f / D !f!�
�
!c!�
!f!�

� 1
�

(8.20)

resulting in

!.c=f / D !f!�

"
exp

 
���

.f=c/

.particle/

kBT

!
� 1

#
(8.21)

and

v.c=f /n D �
.c=f /
0 dcr!f !�

"
exp

 
���

.f=c/

.particle/

kBT

!
� 1

#
: (8.22)

If it is assumed, again that the frequency!f !� is determined by the mobility of the
ambient phase molecules in the bulk of the liquid, we arrive similarly to Eqs. (8.11)–
(8.15) at

v.c=f /n D &�
.c=f /
0 kBT

d20 �

"
exp

 
���

.f=c/

.particle/

kBT

!
� 1

#
; (8.23)
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v.c=f /n Š ��
.c=f /
0 Z.eff /d 30

kBT
��

.f=c/

.particle/ ; (8.24)

v.c=f /n Š �&�
.c=f /
0

d 20 �
��

.f=c/

.particle/ ; (8.25)

and, finally, for Tm ! T at

v.c=f /n Š ��
.c=f /
0 Z.eff /d 30�sm

Rg

�
Tm � T

Tm

�
; (8.26)

v.c=f /n Š �&�
.c=f /
0 Tm�sm

d20 �NA

�
Tm � T

Tm

�
: (8.27)

Taking into account the relation �.f=c/0 � �
.c=f /
0 we come to the conclusion that

for the considered case of small supersaturations the absolute values of the rates
of growth and dissolution coincide and depend linearly on the thermodynamic
driving force of the transformation, ��. In the opposite case of relatively large
absolute values of the supersaturation the growth or dissolution rate, vn, becomes
independent of the thermodynamic driving force of the transformation and is
determined by kinetic factors only. For this case we obtain, e.g., from Eq. (8.10)

v Š �0Z
.eff /d 30 : (8.28)

These simple model considerations were carried out for the first time by Volmer
(1939) [894] and reformulated later by Turnbull (1965) [861].

8.3 Crystal Growth Determined by Two-Dimensional
Nucleation

According to the theory of normal growth outlined in the previous section, the rate
of growth is strongly dependent on the concentration of growth sites which are
provided at a sufficiently large concentration only by atomically rough crystal/melt
interfaces. The growth of a perfect atomically smooth crystal requires the formation
of two-dimensional nuclei on the interface (see Fig. 8.3). In this case, the rate of
growth is determined by processes of formation of such nuclei. Consequently, for
a calculation of the growth rate, knowledge of the kinetics of formation of two-
dimensional nuclei is required.

The thermodynamics and kinetics of two-dimensional nucleation on smooth
crystal faces can be developed similarly as for the case of formation of three-
dimensional clusters (see Sect. 6.3) as was done first by Brandes (1927) [100]; in
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ba

Fig. 8.3 Quadratic two-dimensional nuclei on a perfect crystal face. (a) Two-dimensional nucleus
with a row of newly added atoms just attached to it in lateral direction according to the Kaischew-
Stranski model; (b) two-dimensional nucleus with a kinked edge (see Hillig (1966) [361]) formed
in the vicinity of a kinked step

his classical derivation (see also Volmer (1939) [894]). Instead of Eq. (6.36) we
have to write

�G
.2/

.cluster/ D �j��C �lL : (8.29)

Here �l is the so-called specific edge energy (or line tension) which plays the
same role in two-dimensional nucleation as the specific interfacial energy (surface
tension) in the three-dimensional case, while the surface area, A, of a three-
dimensional cluster is replaced now by the length,L, of the perimeter of the edge of
the two-dimensional nucleus. Let us assume that the nucleus is of nearly spherical
shape with a radius, R, and a surface density of building units, c.2/˛ , equal to

c.2/˛ D j

A
.2/

.cluster/

with A
.2/

.cluster/ D 	R2 ; L D 2	R : (8.30)

The critical cluster size in two-dimensional nucleation and the work of formation of
two-dimensional critical clusters are, consequently, given by

R.2/c D �l

c
.2/
˛ ��

; (8.31)

�G
.2=c/

.cluster/ D 1

2
�lLc : (8.32)

If one assumes, in addition that

c˛

c
.2/
˛

D 1

dcr
;

�

�l
D 1

dcr
(8.33)

holds then for the same value of the supersaturation as an estimate for the critical
cluster radius in two-dimensional nucleation
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R.2/c D Rc

2
(8.34)

is found.
The second of Eq. (8.33) follows directly if one takes into account that both �

and �l can be determined through the mean work of separation, �1, of one particle
from the crystal lattices as (Kaischew and Stranski (1934) [425])

� D �1

d2cr
; �l D �1

dcr
: (8.35)

Taking into account above given considerations we may also write

�G
.2=c/

.cluster/ D 	�2l
c˛dcr��

D 	�2dcr

c˛��
(8.36)

and (compare Eq. (6.44))

�G
.2=c/

.cluster/

�G
.c/

.cluster/

D 3

16

��

�d2crNA
: (8.37)

As discussed in detail by Kaischew (1957, 1965) [418, 419] and by Hirth (1959)
[367] the steady-state nucleation rate for two-dimensional nucleation can be written
similarly to the three-dimensional result as (compare Eqs. (6.109) and (6.110))

J.2/ D w.C/.2/ .R
.2/
c /�

.2/

.z/ Ns exp

 
��G

.2=c/

.cluster/

kBT

!
; (8.38)

�
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�G

.2=c/

.cluster/

4	kBTj
2
.2=c/

!1=2
: (8.39)

Here Ns denotes the number of ambient phase molecules adsorbed per unit surface
area of the crystal face and j.2=c/ is the number of particles in a two-dimensional
critical cluster.

The attachment rate w.C/.2/ .R
.2/
c / is defined for two-dimensional nucleation as the

rate at which ambient phase particles are incorporated to the edge of the critical
cluster (compare Eqs. (6.119) and (6.121)). Denoting the effective impingement rate
for two-dimensional nucleation by Z.eff /

.2/ we obtain

w.C/.2/ .R
.2/
c / D Z

.eff /

.2/ Lc (8.40)

or introducing a two-dimensional sticking coefficient &.2/
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w.C/.2/ .R
.2/
c / D Z.2/&.2/Lc : (8.41)

Z.2/ is the lateral impingement rate of ambient phase molecules to the edges of the
two-dimensional critical cluster. Assuming, again, a nearly spherical shape of the
critical cluster,Lc can be replaced through the number of building units in it, which
gives, finally

w.C/.2/ .R
.2/
c / Š Z.2/&.2/d 2crj

1=2

.2=c/ : (8.42)

In considering melt crystallization it can be assumed in a first approximation that
Ns is given by the number of ambient phase molecules in a layer of thickness, d0,
adhering to the growing crystal face. In this case,Z.2/ can be determined directly via
Eqs. (2.106)–(2.110). Two different models have been developed in this respect:

• According to the classical model, a row of molecules of a critical length has to
be formed at an edge of a two-dimensional nucleus before a further deterministic
growth is possible (see Fig. 8.3a; Kaischew and Stranski (1934) [425]). In some
respects, such a model represents a repetition of two-dimensional nucleation at
the next uni-dimensional level.

• In an alternative approach it is assumed (as done by Hillig (1966) [361]) that
the peripheral edges of the two-dimensional nucleus are kinked in such a way
as to provide a roughening on an atomistic scale (compare Fig. 8.3b) and thus
to guarantee a sufficiently large concentration of growth sites. In this model,
&.2/ is connected with the density of growth sites (kinks) at the edges of the
two-dimensional cluster. In this respect the second model is connected with a
modification of one of the already discussed mechanisms of normal growth.

Simple considerations concerning the energy of kink formation, the energetics
of adsorption and desorption of building units at the edges of two-dimensional
crystalline layers as well as arguments for the possible formation of diffusive
interfaces between crystal and melt give a distinct preference for the second of the
discussed models.

For a calculation of the growth rate determined by two-dimensional formation of
growth sites, a connection has to be established between the nucleation rate, J .2/,
and the rate, vn, of crystal growth normally to the interface. Again, two basic models
have been developed in this direction. Suppose that �.2d/.av/ is the average time interval
elapsing between the formation of two successive layers on the growing crystal.
Then vn can be expressed as

vn D dcr

�
.2d/

.av/

: (8.43)

The two models mentioned correspond to two limiting cases in the determination of
�
.2d/

.av/ :

• At high tangential growth rates vt , when the inequality �.2d/.av/  Lf =vt holds for

a crystal face with a characteristic size parameter Lf , then �.2d/.av/ is simply the
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1 2 3 4

1 2 3 4

a

b

Fig. 8.4 Consecutive stages of growth mediated by two-dimensional nucleation. The cross
sections through the growing crystal illustrate schematically (a) layer by layer growth and
(b) polynucleus mode of growth. The numbers (1), (2), (3) and (4) refer to different moments
of time after the process has started

average time interval between two subsequent nucleation events. In the steady
state �.2d/.av/ D 1=.J .2/L2f / holds and Eq. (8.43) gives

vn Š J .2/L2f dcr : (8.44)

This model is the layer by layer growth mechanism developed by Kaischew and
Stranski (1934) ([425]; see also the derivation given by Kaischew (1957) [418];
Fig. 8.3a). The respective mode of growth results in perfectly smooth surface
structures (Fig. 8.4).

• If in contrast �.2d/.av/ � Lf =vt holds we have to expect the appearance of new
two-dimensional nuclei before the growth of the first layers are completed (see
Fig. 8.3b). For this poly-nucleus growth model the time �.2d/.av/ can be calculated
according to Nielsen (1964) [603] and Hillig (1966) ([361]; see also Chernov
(1980) [132]) from the condition

�
.2d/
.av/Z
0

J .2/	.vt t/
2 dt D 1 : (8.45)

It determines the average time interval after which on the upper surface of the
growing layer, having a surface area 	.vt t/2, a new two-dimensional nucleus
appears. For steady-state nucleation we obtain from this relation

�
.2d/

.av/ D
�

3

J .2/	v2t

�1=3
(8.46)

and
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vn D dcr

�
J .2/	v2t
3

�1=3
: (8.47)

In contrast to the layer by layer mechanism for poly-nucleus growth a rough
interface profile develops in time which is preserved during the further growth
(see Fig. 8.4).

A more elaborate analysis of the second of the models discussed was given by
Vetter (1967) [886] as well as in the papers by Bertocci (1969) [77], Borovinski and
Zindergosen (1969) [92]. Equations (8.38), (8.41), (8.44) and (8.47) yield

vn / Z.2/ exp

 
��G

.2=c/

.cluster/

kBT

!
; (8.48)

for layer by layer growth and

vn / .Z.2//1=3 exp

 
��G

.2=c/

.cluster/

3kBT

!
(8.49)

for multi-nucleus growth. If Z.2/ is determined mainly by the viscosity of the melt
according to Eq. (6.119) and the thermodynamic driving force of the transformation
by Eq. (6.65) then we have with Eqs. (8.31) and (8.32)

vn / 1

�
exp

�
� B2

Tm � T

�
; (8.50)

for layer by layer growth

vn /
�
1

�

�1=3
exp

�
� B2

3.Tm � T /
�

(8.51)

for multi-nucleus growth. For both cases

B2 D 	�2dcrNA

kBTmc˛�sm
(8.52)

holds.
According to the classical concepts given in this section, processes of dissolution

of perfect crystal faces proceed via the formation of negative two-dimensional nuclei
(holes) in the smooth crystal surface. In this way, a dependence of dissolution rate
v
.�/
n vs. �� similar to the one obtained for growth processes can be derived. From

the above equations governing crystal growth via two-dimensional nucleation, it
becomes evident that at small under-cooling (T ! Tm) a threshold in the (vn vs.
�T )-curves is to be expected. Only by exceeding this threshold should perceptible
growth occur.
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Quantitative estimates, made by introducing reasonable values for the respective
materials constants into above equations, prove that this threshold is reached for
values of the relative supersaturation, �, of the order �20 % (compare Eq. (6.54)).
However, experimental evidence showed that perceptible crystal growth rates are
observed at considerably lower values of the supersaturation (of the order � < 5%
and even lower). In this way, at the end of the 1940s the experimental evidence
on crystal growth began more and more to contradict the theoretical predictions as
outlined in the present section. The differences between theoretical predictions and
experimental results concerning the growth rate reached an order of magnitude of
exp.100/ (see Kittel (1969) [458]). A way out of this discrepancy and an explanation
of the possibility of perceptible growth even at low supersaturations was found in
a remarkable idea formulated by Frank (1949) [227]. According to Frank lattice
defects, known as screw dislocations, emerging at a growing crystal face lead to
surface structures at the interface providing a constant source of growth sites (cf.
also [230]). Frank’s ideas of crystal growth mediated by screw dislocations are
discussed in the subsequent section.

8.4 Screw Dislocations and Crystal Growth

A screw dislocation emerging on a crystal face is schematically shown in Fig. 8.5. It
serves as the origin for the development of crystallization fronts as indicated also in
Fig. 8.6. In an isotropic approximation the crystal fronts developed have the form of
Archimedean spirals. Archimedean spirals have been frequently observed in optical
and electron-microscopic investigations of crystal faces (see Verma (1953) [884]
for first observations; Wunderlich (1973–1980) [935] and Geil (1963) [247] for
examples in organic polymers; Kaischew, Budevski and Malinovski (1955) [426],
Nanev and Kaischew (1979) [590] for growth spirals in electrolyte deposition).
These investigations gave the first proof of the validity of Frank’s idea. Further
evidence giving support to this mechanism may be found in the monographs of
Stricland-Constable (1968) [813], Pamplin (1975) [622] and Chernov (1980) [132].

Simple considerations show (Burton, Cabrera and Frank (1951) [114]) that the
spiral growth edge developed on the crystal face is stable, when

• The distance ıs between the spiral coils is larger than the radius of the
corresponding two-dimensional nucleus (see Fig. 8.5) and

• The edge of the growth spiral is kinked guaranteeing the existence of a
sufficiently large number of growth sites.

In this way there is no need to form a two-dimensional nucleus on the growing
interface. The energetic barrier for crystal growth is considerably diminished and
growth is observed for supersaturations significantly lower than one would expect it
according to the mechanism of two-dimensional nucleation.
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l*

b

b'

Fig. 8.5 Screw dislocation
on a crystal face and
mono-atomic growth step
formed by it. With (bb0) the
so-called Burgers vector of
the dislocation is indicated

1

3
5

a b cFig. 8.6 Screw dislocations
and crystal growth. The
snapshots (1)–(5) in (a), (b)
and (c) refer to consecutive
stages of development of a
spiral growth front on the
crystal face (After Verma
(1953) [884])

dcr

s

Fig. 8.7 Illustration of the determination of �˚

0 for growth mediated by screw dislocations. In the
figure a perpendicular cut through the growing crystal face is given with a growth spiral formed
on it

Following Turnbull and Cohen (1958) [864] the relative number �˚
0 of growth

sites on a crystal face, where a growth spiral has been developed, is given by
(see Fig. 8.7)

�˚
0 D dcr

ıs
: (8.53)

As an estimate for ıs for Archimedean spirals, Burton, Cabrera and Frank (1951)
[114] found

ıs D 2	R.2/c D 4	�

c
.2/
˛ ��

: (8.54)

A similar relation for the case of polygonized spirals was given by Kaischew,
Budewski and Malinovski (1955) [426]. Considering the special case of relatively
low under-cooling Eq. (8.12) yields

v.f=c/n Š const..1/�˚
0 Z

.eff /�� ; const..1/ D d30
kBT

(8.55)
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and a substitution of Eq. (8.54) into this relation gives

v.f=c/n / .Tm � T /2 for moderate undercoolings : (8.56)

We may conclude that for relatively small undercoolings the growth rate referring
to the spiral growth mechanism is proportional to .�T /2.

For large under-cooling (compare Eq. (8.28)) the velocity of normal growth is
independent of supersaturation. However, since for dislocational crystal growth �˚

0

is proportional to �� we arrive this time at a linear dependence (vn vs. �T ), i.e., at

v.f=c/n / .Tm � T / for large undercoolings : (8.57)

Applying the Skapski-Turnbull rule in the determination of � from Eqs. (8.53) and
(8.54) both parameters ıs and �˚

0 can be calculated. An estimate shows that for
T ! Tg values of �˚

0 in the range from 0.05 to 0.1 are found, which guarantees
relatively high growth rates. The temperature dependence of the rate of dissolution
of crystals containing screw dislocations can be determined in the same way,
provided the spiral front is not destroyed in the process of dissolution. Consequently,
also for dissolution processes a relation vn / .�T /2 has to be expected for medium
supersaturations.

8.5 Further Developments of the Basic Models: Diffusive
Melt-Crystal Interfaces, Transient Effects
in Two-Dimensional Nucleation and Crystal Growth

In the theory of crystal face structures a distinction is made between singular
and non-singular equilibrium crystal faces (see Landau, Lifshitz (1969) [494]).
Singular faces have low crystallographic indices and they are atomically smooth.
Non-singular (or vicinal faces) are highly indexed, they are atomically rough.

Burton and Cabrera (1949) ([113]; see also Burton, Cabrera and Frank (1951)
[114]) demonstrated the possibility of a singular – non-singular transition for a
crystal face in contact with its own vapor by applying a simple mean-field model.
According to their derivations a critical temperature, the roughening temperature
T.rough/, should exist where the atomically smooth singular equilibrium face is trans-
formed into an atomically rough non-singular face. This idea was also connected
with the problem of surface melting (for further results see Nenov (1984) [599];
Nenov and Trayanov (1989) [600]) and widely discussed subsequently. Transfor-
mations of facetted crystal shapes into skeleton or dendritic forms and problems of
the stability of crystal faces are also discussed in Nanev’s review (1994) [591].

For our analysis, the most significant aspect of this development is that the
theory predicts criteria for the existence of thermodynamically stable but atomically
rough surface structures, allowing growth via the normal growth mode. In this way,
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new dimensions for the classical continuous growth models are opened. From a
morphological point of view, the transition singular – non-singular face is connected
with a transformation from a polygonized equilibrium shape of the crystal to non-
faceted crystal forms (in the limiting case, to a sphere). It was Jackson (1958) ([393];
see also Jackson, Uhlmann and Hunt (1967) [398]) who developed the first simple
but realistic mean-field model of the melt-crystal boundary predicting a roughening
transition at the melt-crystal interface.

A more elaborate model was soon developed by Cahn (1960) ([115]; see, in
addition, Cahn, Hillig and Sears (1964) [120] but also the critical remarks of Jackson
et al. (1967) [398]). An atomistic model derived by Temkin (1962) ([828]; see also
Chernov (1980) [132]) followed as well as numerous computer simulations of this
phenomenon. According to Cahn’s theory it is to be expected that a diffusive layer
is developed at the crystal-melt interface. The thickness of this layer is determined
thermodynamically, it depends on the value of the parameter �Sm=R and on
the undercooling. The macroscopically observable morphological instability (non-
singular crystal faces, rounded crystal shapes) is connected with the formation of the
diffusive interfacial layer (see the experimental evidence in this respect summarized
by Jackson et al. (1967) [398]). For �Sm=R < 2 a diffusive atomically rough
interface develops with rounded crystal faces. In this case, a continuous mode of
growth should be expected to occur for any temperature T below Tm.

Surface nucleation and screw dislocation mediated growth dominate for sub-
stances with high values of the molar entropy of melting (�Sm=R > 4). For
substances having values of this ratio in the range (2 � �Sm=R � 4) an
intermediate type of behavior is found. For low values of the under-cooling the
crystal faces remain atomistically smooth. Only after a certain critical under-cooling
is reached is a transition from smooth to rough surface structures found. This
transition is accompanied by a transition from dominating lateral (mediated by
two-dimensional nucleation or screw dislocations) to normal growth. The value of
the critical undercooling is determined hereby mainly by the parameter �Sm=R.
Below the transition temperatureT.rough/ the thickness of the diffusive layer changes
dependent on the undercooling. As a result the parameter �0 also varies.

The decisive role of the parameter �Sm=R for growth and dissolution can
be understood taking into account that this parameter represents a measure of
the similarity respectively dissimilarity of the structures of melt and crystal. For
melts iso-structural with their own crystal, as it is the case for most metals,
�Sm=R � 1 holds (see Ubbelohde (1965) [871], [125] and Chap. 3) and continuous
growth modes are, in fact, observed. If melting is accompanied by more significant
structural changes, higher values of this ratio are found. Thus for substances
going over from the melt into the solid phase by reconstructive crystallization (cf.
Sect. 4.10) significantly higher values of �Sm=R are found and, as a rule, lateral
crystal growth modes are observed experimentally.

Another generalization of the theoretical considerations outlined above consists
of the incorporation of non-steady state effects into the model of two-dimensional
nucleation and the determination of its importance for nucleation-mediated crystal
growth. For the first time this problem was formulated by Lyubov (1966) [517].
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A detailed analysis was given somewhat later by Gutzow and Toschev (1970) [319]
for the classical layer by layer growth model and by Stoyanov (1973) [804] for the
multi-layer growth mode. If the time-lag in two-dimensional nucleation is defined
similarly to Eqs. (6.189) and (6.110) as

�.2=ns/ D a0kBT

w.C/.j.2=c//

ˇ̌̌
ˇ̌
ˇ
 
@2�G

.2/

.cluster/

@j 2

!
jDj.2=c/

ˇ̌̌
ˇ̌
ˇ
�1

D a0

2	w.C/.2/ .j.2=c//�
2
.2=z/

(8.58)
then, e.g., for the layer by layer growth mode the average time interval between two
successive nucleation events �.2d/.av/ (cf. Eq. (8.43)) may be approximated in analogy
to the three-dimensional case by

�
.2d/

.av/ Š �.2=ns/ C 1

J .2/L2f
: (8.59)

A substitution into Eq. (8.44) yields

vn Š J .2/L2f dcr

 
1

1C J .2/L2f �
.2=ns/

!
: (8.60)

It turns out that for relatively small under-cooling (1  J .2/L2f �
.2=ns/) the classical

expression, Eq. (8.44), derived by Kaischew holds. In the opposite case of large
under-cooling in the vicinity of Tg, in contrast,

vn Š dcr

�.2=ns/
(8.61)

is obtained. In this limiting case, the growth rate is determined mainly by the time-
lag for two-dimensional nucleation. A substitution of Eq. (8.58) into the above
expression and a comparison with the derivations, outlined in Sect. 8.2, shows
that in this case growth proceeds via the normal growth mechanism. Thus, it
becomes evident that, in general, non-steady state effects in two-dimensional growth
modify the growth mechanism (Gutzow and Toschev (1970) [319]). However, in
contrast to nucleation theory, time does not enter the equations explicitly. The same
conclusion can be also drawn with respect to the multi-layer growth mode analyzed
by Stoyanov.

Another point of further development and discussion is connected with the
determination of the temperature dependence of the impingement rate, Z. In
classical approximations, applied at part also in above given derivations, a relation
of the form Z 
 1=� is assumed. From a more detailed analysis of layer growth it
has, however, to be expected that the incorporation of ambient phase particles into
a given growth site is determined not only by the direct impingement from the bulk
(the mobility of the ambient phase particles) but also could involve drift processes
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of the particle adsorbed at the interface. As a consequence, in the calculation of the
effective transition frequency melt-crystal the particular properties of such adsorbed
ambient phase molecules also become important (see e.g. Chernov (1980) [132];
Avramov, Grantcharova, and Gutzow (1981, 1988) [28, 30]).

Avramov et al. (1988) assumed that the activation energy for diffusion of the
ambient phase molecules at the melt-crystal interface Ui can be expressed as

Ui Š .1 � x/Ubulk C xUsurf ; (8.62)

where by Ubulk, the activation energy for viscous flow in the bulk, and by Usurf , the
activation energy for diffusion at the interface are denoted. x in above equation is
an adjustable parameter. According to current concepts (see Burton, Cabrera, and
Frank (1951) [114]; Chernov (1980) [132]) it is commonly assumed that

Usurf D
�
1

5
� 1

6

�
Udes (8.63)

holds. Udes is the energy of desorption, it has a value of the order of the energy of
sublimation. In application of this estimate to crystallization phenomena in metallic
melts or to ionic structures, where the activation energy for surface diffusion is always
lower than Udes , effective values of Ui lower than the value of Ubulk are found.

However, for many systems like As2O3, sulfides and oxides it turned out in
contrast that Usurf > Udes holds. In these cases a motion of the adsorbed particles
on the crystal face would result in higher effective activation energies (cf. Knacke
and Stranski (1952) [459]). Such considerations may give an explanation of the
experimental finding that in many cases the activation energy for crystal growth
of glass-forming melts determined experimentally is considerably lower than the
activation energy for viscous flow in the bulk in the same temperature range. This
result is also an indication that the analysis of crystal growth data in coordinates,
where the activation energy of viscous flow is introduced as a decisive characteristic,
may be quite misleading.

8.6 Modes of Crystal Growth in Chain-Folding Polymer
Melts

The structure and mechanisms of nucleation of chain-folding polymers have been
discussed already in Sects. 4.6, 4.9 and 6.3.8 with particular attention directed
to organic chain-folding polymers. The same physical models as employed for
the description of nucleation of chain-folding polymers have been applied also
to a study of the further growth of the lamellae forming the spherulites which
are the typical morphological elements of organic polymer melt crystallization
(see Fig. 8.8). The lamellae in spherulitic growth as well as the plate-like single
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Fig. 8.8 Morphology of a
spherulite formed in an
organic high polymer melt.
The spherulite is constituted
by lamellae growing in a
radial direction from a
common center, formed
initially by nucleation
processes as discussed, for
example, in Sect. 6.3.8
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Fig. 8.9 Illustration of possible modes of polymer crystal growth. (a) A plate-like polymer crystal
of thickness, l�, growing in the x � y-plane via the formation of two-dimensional regular reentry
nuclei. With (bb0) the position of the Burgers vector of a screw dislocation is indicated around
which a growth front could have been developed. Screw dislocation growth fronts can be formed
only on flat non-growing surfaces of the lamellae. (b) Polymeric lamellae growing from a common
spherulitic center

crystallites growing preferably from dilute polymer solutions consist of folded
polymer chains of thickness, l�, which is determined by the actual supersaturation
in the system (see Figs. 6.18 and 8.9).

A detailed discussion of spherulitic growth and of other morphological elements
of polymer crystallization may be found in the literature (Geil (1963) [247];
Mandelkern (1964) [528]; Price (1969) [646]; Wunderlich (1973–1980) [935]). In
the physics of polymer melt crystallization it is usually assumed that formation of
two-dimensional polymeric nuclei at the growing crystal faces is the typical (or
even the only) mode of growth of polymer crystals. Lauritzen and Hoffman ((1959
[498], 1960 [499]); see also Frank and Tosi (1961) [229]) developed a theory of
formation of two-dimensional polymer nuclei (see Fig. 8.9a) being a prerequisite
of the growth of the polymer crystal. This model resembles, to some extent, the
already discussed mode of growth by two-dimensional nucleation developed for
low molecular substances. However, in comparing the previously discussed models
with growth in polymer melts, one has to take into account that
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• Two different specific interfacial energies, the specific end energy �b and the
lateral energy �s (cf. Sect. 6.2.2), have to be accounted for in considering polymer
nucleation and growth,

• The tangential spreading of two-dimensional nuclei is possible only into two
directions normal to the chain-folding (Fig. 8.9a),

• The growth of the crystallites via two-dimensional nucleation is possible only
into the directions indicated in Fig. 8.9a by x and y. A thickening of the crystallite
proceeds through complicated mechanisms, it is a very slow process and requires
separate considerations,

• The same molecule may form many two-dimensional nuclei. Entanglements
between the coils of one and the same molecule or in between different molecules
play a major role in the determination of the essential factors governing two-
dimensional nucleation.

• The thermodynamic barrier of two-dimensional nucleation is given in analogy to
Eq. (8.36) by

�G
.2=c/

.cluster/ D !�b�s

.��/2
: (8.64)

Together with Eq. (6.199) for the three-dimensional case it allows one the
determination of �b and �s , provided both �G.2=c/

.cluster/ and �G.c/

.cluster/ are known
from experiments on polymer nucleation and growth.

These conclusions can be verified from the following considerations.
Suppose that a screw dislocation emerges on a polymer crystal plane as shown

in Fig. 8.9a or b. In order to allow a growth the height of the spiral coils should
be approximately equal to l�: only in this way a growth into the z-direction, i.e., a
thickening of the crystals could take place. However, the directions of rapid growth
are located in the x�y-plane. On these rapidly growing lateral planes the formation
of screw dislocational growth fronts is excluded, even if screw dislocations occur.
As outlined in Sect. 8.4 there is some limitation on the distance between the coils
of a stable crystal growing by spiral growth. As the thickness of the crystal plate is
of the order of l� growth spirals should be either larger than the growth front (see
Fig. 8.10) or they should violate the theoretical requirements for stable growth. Both
conditions are unacceptable from a physical point of view. For the description of the
process of formation of two-dimensional nuclei all three models of chain-folding are
applied as already mentioned in Sect. 6.3.8 (Keller’s direct reentry chains, Fisher’s
irregular reentry model and Flory’s switchboard model (see Fig. 6.18)).

8.7 Experimental Investigations on the Mechanisms
of Crystal Growth in Glass-Forming Melts

Going over to a comparison between the outlined theoretical approaches in the
description of crystal growth from melts and the experimental observations it can
be noted that it was, again, Tammann (1903 [817], 1922 [818]) who made the
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Fig. 8.10 Illustration of the conclusion that dislocational spirals cannot develop on the growth
front of a polymer chain-folding crystal. The number (1) indicates a growth spiral having the
necessary inter-coil distance allowing a further growth. The number (2) shows a growth spiral with
a size adjusted to the growing crystal front, it has inter-coil distances lower than required for a
stable growth
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Fig. 8.11 Temperature
dependence of the rates of
nucleation, J , and crystal
growth, v, in under-cooled
.NaPO3/x-melts. Open
circles: crystal growth and
(above the melting point)
dissolution rates of
˛ � NaPO3 from its own melt
(according to Gutzow and
Konstantinov (1970) [314]);
black dots: nucleation
frequency in undercooled
NaPO3-droplets
(Grantcharova and Gutzow
(1990) [269])

first steps in this direction. Tammann used a number of low melting model organic
glass-forming substances to determine the temperature dependencies of the rates of
nucleation and linear growth v. An example in this respect is given in Fig. 6.8.

The well-expressed maximum in the v.T /-curves, as it is to be expected from
the theoretical considerations given above, was the most essential feature of these
early results. As discussed in detail above, the maximum occurs as the result
of two opposite tendencies, the increase in the thermodynamic driving force of
the transformation on one hand and the decrease in the mobility (increase in the
viscosity of the melt) on the other. Figure 8.11 gives an example of a thorough
investigation of the temperature dependence of the rates of crystal growth and
dissolution of a simple and convenient for experimental studies glass-forming model
substance .NaPO3/x (Graham’s glass). Measurements of the nucleation frequency
for the same substance are also shown.

Experiments for a determination of the particular mechanisms of crystal growth
were carried out as a further step after the basic ideas concerning possible crystal
growth modes were formulated. Based on their investigations of the temperature
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dependence of the growth rates of glycerol, Volmer and Marder (1931) [895]
concluded that the growth of this substance may be described as being mediated by
two-dimensional nucleation. However, subsequent analysis showed that, at least for
lower under-cooling, growth by screw dislocations prevails in this case (see Turnbull
and Cohen (1960) [865]).

The first experimental example where growth mediated by two-dimensional
nucleation was comparatively unambiguously established experimentally – char-
acterized by a threshold in the supersaturation which has to be surpassed to initiate
growth – was described by Danilov and Malkin (1934) [151]. In these investigations,
salol was used as a model substance. A series of further experimental investigations
on crystal growth mechanisms was initiated by the formulation of the theory
of spiral growth. Typical experimental work of this period was summarized by
Hillig and Turnbull (1956) [362]. Similarly considerable efforts have also been
directed to the investigation of the mechanism of normal growth after its theoretical
reformulation by Jackson (1958) [393], Cahn et al. (1964) [120] and Temkin (1962)
[828].

The kinetics of crystallization of more complicated (mainly silicate) multi-
component glass-forming systems was studied simultaneously with the investigation
of the simple model one-component organic melts. From the first investigations in
this direction performed by Zschimmer and Dietzel (1926) [961] (although they
have been more of a technological orientation) the temperature dependence of the
growth rate of silicate glasses and their dependence on composition were deduced
for the first time.

Of particular importance in this respect are also the papers by Preston (1940)
[645] and Swift (1947) [814]. In Swift’s article for the first time in addition to
growth modes also processes of dissolution of crystals in the melt were analyzed
based on experimental results. Crystal dissolution experiments are of considerable
importance for the determination of the mode of growth respectively dissolution at
small under-cooling. Moreover, such investigations allow one a precise determina-
tion of the melting or liquidus temperatures. The main experimental problem which
has to be solved in performing crystallization experiments in under-cooled melts is
to maintain the interface melt-crystal at a temperature, at least, nearly equal to the
temperature of the melt. In this direction, capillary techniques have proven to be
very useful.

In classical modifications of the capillary technique crystallization in thin-
bored capillary tubes or in between two parallel glass slides (“two-dimensional
capillary”) is investigated. A detailed analysis of experimental techniques employed,
methodological problems and possible solutions can be found in a review article by
Gutzow ((1977a) [299]; see also Gutzow (1977b) [300]). In metallic or metal-like
under-cooled glass-forming melts with rapidly growing crystal fronts, the heat of
crystallization cannot be dissipated at sufficiently high rates and instead of the well-
expressed maximum of the v.T /-curves a temperature region is observed where
the growth of the crystal front is determined not by the actual value of the under-
cooling but by the latent heat and by the rate of the processes of heat conduction (see
Tammann’s saturation plateau curves given on Fig. 8.12). In typical glass-forming
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Fig. 8.12 Rates of linear growth, v, for the crystallization of under-cooled melts (schematically).
(a) Normal type of temperature dependence when the temperature of the melt-crystal interface
is the same as in the bulk of the melt. (b) Tammann’s saturation plateau type curve for rapidly
crystallizing substances. In the range corresponding to the plateau the growth rate is dominated by
the latent heat of crystallization and processes of heat conduction and not by the under-cooling

melts, crystal growth rates are so low that, as a rule, the normal Tammann v.T /-
curves with a well-expressed maximum determined by the degree of under-cooling
are found.

In interpreting experimental v.T /-curves, one has to take into account, however
that although the analysis of these curves allows us to draw certain conclusions
concerning the type of possible modes of growth the results are, in general, mostly
far from being fully convincing. This conclusion is connected from a theoretical
point of view with the different possibilities how the impingement rate Z varies
with temperature (see Sect. 8.5). Moreover, also for the temperature dependence of
the thermodynamic driving force,��, of the transformation different dependencies
can be expected depending on the structure of the melt and the ratio a0 D
�Cp.Tm/=�Sm (cf. Sects. 3.7 and 6.2.3).

In most cases, especially when the complex structures of silicate, borate and
phosphate glasses are to be considered, the determination of the structural unit
taking part in flow and restructuring processes at the interface, the definition and the
choice of�Sm and, thus, of the relevant temperature dependence of�� can be more
than arbitrary. These circumstances have been completely ignored by many authors
and are also not accounted for in the v.T /-analysis performed by Jackson, Uhlmann
and Hunt (1967) [398]. The same difficulties arise when molar values of the melting
entropy are used to estimate, in accordance with the �Sm=R-criterion proposed by
Jackson, Cahn and others, the conditions for the appearance of a diffusive crystal-
melt interface and morphological instabilities.

These considerations are the reason why in under-cooled melts the specification
of the type of growth modes should rely mostly on the analysis of the v.T /-
curves at small under-cooling and especially on a comparison of the growth
and dissolution rates (see Gutzow (1977) [299, 300]). If growth and dissolution
proceed in a symmetric way with respect to �� for the three growth mechanisms
discussed above a dependence of the growth rate v on �� is to be expected as
shown in Fig. 8.13. For processes of growth on substrates by condensation from
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Fig. 8.13 Symmetrical with respect to the value of the chemical potential difference curves for
the rates of growth and dissolution of crystals for the different growth mechanisms discussed
above. Cv: rate of growth; �v: rate of dissolution; (a) normal growth, (b) spiral growth, (c) two-
dimensional nucleation. As far as the process of direct incorporation and dissolution of particles
proceeds on the same sites for normal growth the same linear dependence is to be expected for
growth and dissolution. Spiral growth or dissolution starts with relatively low absolute values of
��, while for growth mediated by two-dimensional nucleation a threshold has to be reached,
before perceptible growth takes place. Such symmetric curves are found experimentally only for
small supersaturations

the vapor phase such a symmetry is, indeed, observed (see Stricland-Constable
(1968) [813]). The same conclusion is valid with respect to melt crystallization
and dissolution experiments with relatively large crystals. As an example in this
direction the results of Gutzow and Pancheva (1976) [315] can be mentioned
where the growth of superheated gallium crystals in two-dimensional capillaries
was analyzed experimentally and a symmetric growth-dissolution behavior was
found. However, the dissolution of initially faceted crystals begins at corners or
edges where a weaker bonding of the molecules to the crystal is to be expected.
Therefore, a rounded crystal shape and atomically rough melt-crystal interfaces
develop and a dissolution law corresponding to that of normal growth is found even
at low superheatings (see Fig. 8.14). In such a case, for spiral growth, a parabola (for
growth) is replaced for negative values of�� by a straight line representing normal
mode dissolution.

The same result is obtained also in growth and dissolution experiments with
glass-forming substances. The thin needle-like crystallites typically observed in
devitrified glasses rapidly develop a rounded non-equilibrium crystal-melt interface
and the normal mode of dissolution is observed (see Fig. 8.14a, b). For such cases,
the dissolution proceeds always via the normal mode independent of the mode
of growth (see Fig. 8.14c). The first experimental investigations concerning the
mechanism of growth and dissolution of crystals in typical silicate and oxide glass-
forming melts seemed to indicate a normal mode as exemplified on Fig. 8.15.
Further investigations confirmed the normal growth and dissolution mode also for a
number of other glass-forming substances with low values of the molar entropy
of melting. In Fig. 8.16, rates of growth and dissolution of two such cases for
temperatures in the vicinity of the melting temperature Tm are shown. Most of the
substances for which continuous growth was observed have values of the molar
entropy of the order �Sm=R < 2. Gutzow and Pancheva (1976) [315] showed that
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Fig. 8.14 Dissolution morphology of a large crystal front (a) and of small crystallites (b): the
formation of a rounded melt-crystal interface and consecutive stages of dissolution are shown by
the numbers (1), (2), : : : (5). (c): v.T /-curves corresponding to normal (1), dislocational (2) and
to growth mediated by two-dimensional nucleation (3), while dissolution proceeds via the normal
mode (4)
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Fig. 8.15 Results of the first investigations of the temperature dependence of growth and
dissolution rates in typical glass-forming melts. (a) Rates of crystal growth and dissolution in a
Na2O�CaO�SiO2 melt (Swift (1947) [814]); (b) Crystallization of tetragonal P2O5 from its own
melt according to Cormia et al. (1963) [147] (See also Rawson (1967) [657])

even in growth and dissolution of CBr4 (with �Sm=R D 1:2) absolutely spherical
crystals are formed developing according to the normal growth mode.

From a structural point of view the SiO2-crystal phase cristobalite can be
considered as being formed of a rigid three-dimensional network, going through
the melt-crystal interface. This is the reason why, for SiO2, a continuous growth
mechanism has also been predicted from a purely structural point of view (see
Cooper (1971, 1977) [142–144]). Applying Jackson’s criteria for normal growth,
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Fig. 8.16 Continuous growth and dissolution kinetics of simple glass-forming melts: results of
detailed measurements in the vicinity of Tm. (a) Crystallization of GeO2 according to Vergano
and Uhlmann (1970) [885]; (b) Growth and dissolution of cristobalite (�Sm D 0:6R) from a
SiO2-melt (Wagstaff (1969) [905])

some of the considered examples (SiO2, GeO2) should belong to substances where
a diffusive crystal-melt interface is to be expected. However, in some cases, e.g., for
P2O3 and Na2B4O7, the respective criterion is not fulfilled since values of the molar
entropy of �Sm=R D 3:4 (for P2O5) and�Sm=R D 8:6 are found.

An explanation of this discrepancy in the theory can be given taking into account
that the structural unit determining the process of crystallization must not be
identical with the molar composition. In crystallization of sodium borate melts,
for example, the structural unit determining diffusion and transport through the
crystal-melt interface is much smaller than Na2B4O7 (see also Gutzow (1977b)
[300]). It turns out that the Jackson criterion has to be applied to glass-forming
melts with caution. Only in cases when the real structural units involved in
the transformation are described by the gross formula of the substance under
consideration (noble gases, metals, oxides) is the molar value of�Sm a real criterion
for the determination of the growth mode. The first case where reliable experimental
evidence on spiral growth in a typical glass-forming melt was reported seems to be
the paper by Meiling and Uhlmann (1967) [551] on crystallization of Na2O � 2SiO2.
The results of Meiling and Uhlmann and additional evidence for this mode of growth
are shown on Fig. 8.17.

In each of the cases given in Fig. 8.17, a parabolic temperature dependence of
the growth rate in coordinates v vs. �T and a linear dependence for dissolution is
observed. Consequently, in

p
v vs.�T coordinates straight lines for the temperature

dependence of the crystal growth rate are found (see Fig. 8.18). Spiral growth is
generally observed for substances with high values of the molar entropy of melting,
characterized, in addition, by considerable differences in the structure of the melt
and the crystalline phase. Clearly faceted interfaces are always observed in cases
when such lateral growth modes are obtained (reconstructive crystallization).

It turns out, consequently that the growth of real crystals in typical glass-forming
melts proceeds in two ways:
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Fig. 8.17 Typical examples for growth by screw dislocations: Parabolic dislocational growth and
linear dissolution according to the normal mode. (a) Data of Meiling and Uhlmann (1967) [551] on
Na2O � 2SiO2; (b) Dislocational growth and continuous dissolution of the anionic chain-polymer
glass (LiPO3) according to Avramov, Pascova et al. (1979) [27]
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Fig. 8.18 Experimental
verification of the
dislocational mechanism of
growth (data on spiral growth
in NaPO3-melts). In
accordance with Eq. (8.56) in
coordinates v1=2 vs. �T a
straight line is observed for
the temperature dependence
of the growth rate of
˛ � NaPO3 from its own melt
at small under-cooling

• For cases when crystal and melt have a similar structure and the formation of a
diffusive melt-crystal interface becomes possible, continuous growth prevails;

• When crystallization is connected with structural changes (as it is found for
inorganic anionic chain polymers like NaPO3, LiPO3, Na2Si2O5 etc. (see also
Sect. 4.10)) as a rule, dislocational growth is observed.

The third of the discussed theoretically possible growth mechanisms – via the
formation of two-dimensional nuclei – can be obtained only if precautions are
undertaken to prepare really perfect crystals free of dislocations. Thus, it seems
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Fig. 8.19 Crystallization cell with glass capillary in which the mode of growth mediated by two-
dimensional nucleation was demonstrated for Na2S2O3 � 5H2O: A, B – sealed glass capillary; W –
optical window; S1, S2 – input and output for thermostat water; F – advancing crystal front. A seed
crystal was initially introduced atR (According to Gutzow, Razpopov, and Kaischew (1970) [324])

as if many of the initial claims made for a verification of this growth mechanism
have to be rejected.

Experiments with simple molecular organic melts (the already mentioned case of
salol or the results obtained by Gutzow et al. (1972) [326] for thymol) showed that
only in melts purified by multi-fold vacuum distillation in which possible lattice
defects have been eliminated by prolonged heat treatments can a threshold in the
(v.T / vs. �T )-dependence be found, being the most typical characteristic feature
of surface nucleation mediated growth. Also the opposite conclusion is obviously
true: If growth proceeds by two-dimensional nucleation then the crystal has a perfect
lattice structure.

A detailed analysis of the possibility of verification of the surface nucleation of
growth in melt crystallization was performed by Gutzow, Razpopov and Kaischew
(1970) [324]. A simple low-melting glass-forming system (Na2S2O3 � 5H2O with a
melting temperature of about 48 ıC) was chosen as the model substance. Growth and
dissolution were analyzed by applying the already mentioned capillary technique.
An important advantage of this technique consists of the possibility of producing
dislocation-free mono-crystals as was demonstrated by Budewski et al. (1966)
([107]; see also Kaischew and Budewski (1967) [421]) in an investigation of elec-
trolytic growth of silver single crystals in glass capillaries. In these investigations for
the first time a direct experimental verification of the mode of growth mediated by
two-dimensional nucleation was given. The capillary technique in this new version –
as a method for producing dislocation-free crystals – was applied by Gutzow et al.
(1970) [324] by means of an apparatus shown in Fig. 8.19 (for the details see the
original paper). The experimental results obtained are presented in Fig. 8.20.

At the beginning of each of the series of measurements on initially defect
crystal faces the growth velocity of the Na2S2O3 � 5H2O-front depends on under-
cooling according to a parabolic relationship as given with curve 2 on Fig. 8.20a.
However, after a prolonged growth in the capillary tube at small under-cooling,
the crystallization velocity decreases as a rule, reaching with time immeasurably
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Fig. 8.20 (a) Growth and dissolution rates as functions of temperature for ˛-Na2S2O3 � 5H2O
crystals: (1) Perfect crystal with a growth mode mediated by two-dimensional nucleation;
(2) Mechanically damaged crystal growing via spiral growth; (3) Dissolution of rounded crystals by
normal growth. The experimental data are taken from Gutzow et al. (1970) [324]. (b) Temperature
dependence of the growth rate mediated by surface nucleation (curve (1) from (a)) in coordinates
(log v vs. 1=T�T )

low values. Single crystals treated in such a way exhibit perceptible growth only at
higher under-cooling as it is seen from curve 1 in the same figure. This shape of the
v.T /-curve is typical for growth mediated by two-dimensional nucleation. Thus,
similarly to the results of Budewski et al. [107] the possibility of such a growth
mode was demonstrated also for crystallization of glass-forming melts.

A mechanical damage of the dislocation free crystal faces inside the capillary
leads almost immediately to a growth behavior as represented by curve 2 in
Fig. 8.20, i.e., to growth mediated by screw dislocations. It could not be decided
finally whether the growth of the Na2S2O3 � 5H2O-crystals proceeds by layer for
layer or by multi-nucleus modes of growth, though it seems as if some preference
should be given to Hillig’s polynucleus model (see Gutzow et al. (1970) [324]). It
should be mentioned also that Wunderlich (1980) [935] obtained results for growth
and dissolution of organic polymers giving a direct proof for the two-dimensional
nucleation model of growth.

Summarizing, the investigations mentioned have shown that

• Continuous growth mechanisms prevail in crystallization of glass-forming melts
when melt and crystal have a similar structure;

• In all other cases, dislocational growth modes dominate as the rule;
• Two-dimensional nucleation in undercooled melts can be observed only when

measures are undertaken to eliminate dislocations, i.e., to obtain perfect crystals.
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Fig. 8.21 Temperature dependence of the rate of linear growth of ˛�NaPO3 from its own melt in
coordinates log v vs. 1=T . The growth rate determined experimentally is given by a full line. The
theoretical prediction obtained according to the dislocational growth mechanism when viscosity
data are used for the determination of the impingement rate Z is shown by a dashed curve

On the other hand, the occurrence of growth mediated by two-dimensional
nucleation is an indication that a perfect crystal grows.

The analysis of the mechanism of crystal growth for higher values of the supersatu-
ration has to be carried out with caution. As an example, in Fig. 8.21, the linear rate
of crystal growth of ˛ � NaPO3 is shown in coordinates (logv vs. 1=T ).

As shown in Figs. 8.11, 8.17 and 8.18 for small under-cooling dislocational
growth dominates for this substance. This implies that according to Eq. (8.56) we
should expect a dependence of the type

v / .Tm � T /2

�
: (8.65)

If this dependence is extrapolated to lower values of temperature the temperature
dependence of the growth rate should be determined mainly by the steep increase in
the viscosity. However, comparing the results of the temperature dependence of the
growth rate with the respective dependence of the viscosity of the same substance
it turns out that the rate of growth of NaPO3 cannot be described by applying the
relation Z / 1=� (see Avramov et al. (1987) [29]). In contrast,

• Much smaller values for v are obtained applying Eq. (8.65) (dashed line in
Fig. 8.21) as compared with the experimental data;

• Much smaller activation energies are found experimentally for the growth rate as
compared with the data for the viscosity vs. 1=T -dependence.

The observed deviations between experimental curves and theoretical predictions
can be interpreted in terms of the considerations given by Avramov et al. (1988)
[30] and discussed in Sect. 8.5.
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Fig. 8.22 Revolver-type
crystallization furnace.
(1): metallic block with eight
sample holding tubes;
(2): revolving metallic bottom
disc with aperture;
(3): platinum crucibles with
glass samples;
(4): thermocouple with
platinum shoe; (5): handle for
bottom disc; (6): water-cooled
copper quenching block
(After Gutzow (1977) [298])

From a technical point of view experiments on crystal growth of low-melting
substances are possible by direct microscopic observations (see, e.g., Fig. 8.19).
For a number of glass-forming substances with higher values of the melting point
only samples obtained by quenching can be investigated. In such experiments the
so-called revolver quenching furnace proved to be useful. It allows one to perform
the simultaneous heat treatment of 12 samples (see Fig. 8.22).

The linear growth velocity, v, is usually determined from .L� t/-measurements.
Hereby L denotes the size of the crystal at time t (see Fig. 8.23). The linearity
of the L vs. t dependence is an indication that the latent heat of the transformation
does not significantly influence the growth or dissolution. In Fig. 8.23, an example is
given for growth at relatively small under-cooling. At high under-cooling non-steady
state induction periods in nucleation have also to be accounted for. As shown, for
example, in Fig. 8.24 a considerable induction time is observed in the L.t/-curve,
which may be interconnected with the time-lag in nucleation.

Additional information on experimental techniques and results on crystal growth
may be found in the literature (e.g., Zschimmer and Dietzel (1926) [528]; Eitel
(1954) [185]; Mandelkern (1964) [528]; Gutzow (1977) [298]; Chernov (1980
[132], 1988 [133])). Also of particular interest in the last decades have been
problems connected with instabilities of the melt-crystal interface and the resulting
pattern selection in fingered growth phenomena and growth of fractal aggregates.
For a detailed overview on results and directions of research on these topics see,
e.g., the review articles by Kessler et al. (1988) [452], Meakin (1988) [550], Botet
and Jullien (1988) [93] as well as the monograph by Feder (1988) [199].

Generally, in studying crystal growth and, in particular, the growth of a single
crystal in a capillary tube, when it is observed how vividly it responds to mechanical
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damage, how it reacts upon any external influence (change of temperature, addition
of impurities), one is almost involuntarily reminded of Goethe’s words written in
“Grundzüge einer allgemeinen Naturbetrachtung” (1823): “: : : we must : : : regard
the process of crystallization arising out of the basic principles of nature as a form
of life, but life petrifies in the dead structure of the crystal; so the crystal is the relic,
the caput mortuum of life.”. Similarly Haeckel wrote in his booklet “The souls of
crystals: Studies in inorganic life” (1917) [342]: “: : : the process of crystallization
is to be regarded as a true manifestation of life : : : Growth is typical for both
living organisms and crystals and growth determines the nature of every individual
organism and the properties of every individual crystal”.



Chapter 9
Growth of Clusters and of Ensembles
of Clusters: Ostwald Ripening and Ostwald’s
Rule of Stages

9.1 Introductory Remarks: General Observations

In the foregoing chapter, the basic mechanisms of growth were analyzed for the case
when the ambient phase-crystal interface has a radius of curvatureR ! 1, i.e., we
discussed the growth of infinitely extended crystals. However, when processes of
phase formation in the bulk of the ambient system are considered we have to take
into account pecularities connected with the growth of small clusters. Here we have
to consider clusters with sizes beginning with radii of an order of 10�8 � 10�7 cm.
Typically Gibbs-Thomson radii in the initial stages of growth are found in a range
from 10�6 up to 10�4 cm. For such cluster dimensions, it can be expected that the
classical capillary theory and its consequences, e.g., the Gibbs-Thomson equation
Eq. (6.40), are directly applicable. For larger clusters Gibbs-Thomson corrections
in the thermodynamic description are frequently negligible. However, in general,
Gibbs-Thomson corrections have also to be considered in the growth kinetics in
establishing the kinetics of overall-crystallization and in considering the further
structure formation in a system undergoing phase transformations. A particular
important example in this respect is the competitive growth of ensembles of clusters,
the so-called Ostwald ripening process.

Such corrections of the growth equations are also of importance in analyzing
the problem which of the possible different modifications of a substance is formed
preferably and what the sequence of their transformations from one to the other
is. An attempt of solving the latter problem is given with the so-called Ostwald
rule of stages outlined in one of the subsequent sections. For ultra-small clusters
with sizes less than 10�7 cm, not only the applicability of the capillarity theory
is more than doubtful but it is even difficult to make definite conclusions in what
state of aggregation of matter the substance forming the cluster is: e.g., liquid or
crystalline in vapor condensation processes (see Halpern (1967) [344]; Avramov and
Gutzow (1980) [23]). Sometimes it is even necessary to consider some particular
non-defined cluster like states of matter (Petrov (1986) [633]) which are observed
in computer modelling experiments.

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 9, © Springer-Verlag Berlin Heidelberg 2013
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Of particular significance for the mechanism of growth of clusters is also the
state of the respective interface. In most cases a roughened interface boundary
crystal-melt and thus a normal-like growth mode in the sense as discussed in
Sect. 8.2 should be expected. Hereby, it is probable that the degree of roughening
of the interface increases with diminishing sizes. In most cases of the theoretical
description of the growth of small clusters it is assumed that direct impingement of
ambient phase molecules dominates the growth of clusters, i.e. that every molecule
reaching the cluster ambient phase interface adheres to the growing center. In
processes of vapor condensation this mode of growth is called the ballistic growth
model.

In the growth of clusters three regions have to be distinguished as already
discussed in Sect. 6.3. Fluctuational growth of subcritical clusters (for j < jc),
diffusion-like growth in the near-critical region (j D jc) and deterministic growth
for j > jc . The deterministic growth range is of particular interest in the present
chapter. In a first approximation it is usually assumed (see Lifshitz and Slezov
(1958, 1959, 1961) [508–511]; Shneidman and Weinberg (1993) [750]) that the
size dependence of deterministic growth rates of clusters with a radius R may be
expressed (at least, for small deviations from Rc) as

vR Š v
.1/
R

�
1 � Rc

R

�
; (9.1)

where v
.1/
R denotes the growth rate of the infinitely large crystal. This type

of dependence is obtained immediately if one assumes that the growth rate is
proportional to the difference of the chemical potentials of a particle in the ambient
phase and the cluster, i.e., vR / �� D .�ˇ.p; T / � �˛.p˛; T //. By a Taylor-
expansion of �˛ (compare Eqs. (6.66)–(6.78)) we get

vR / �ˇ.p; T / �
�
�˛.p; T /C

�
2�vm

R

��
D ��.p; T /

�
1 � 2�vm

��.p; T /R

�
;

(9.2)

resulting with Eq. (6.40) directly in Eq. (9.1). More exact dependencies for vR, valid
for the whole region Rc < R < 1, may be traced in the above mentioned paper by
Shneidman and Weinberg (1993) [750].

In the development of the classical theory of phase transformations other
possibilities for the description of cluster growth have also been utilized. Thus in the
classical derivation of the Kolmogorov-Avrami kinetics of overall-crystallization it
is assumed that the clusters formed initially are so large (crystallization centers)
that they grow with a constant time-independent rate, v.1/

R . From a purely ther-
modynamic argumentation it is to be expected that new phase clusters retain their
equilibrium shape at any dimension (a sphere if the cluster is a liquid; an equilibrium
shaped crystal if it is a crystalline nucleus). This assumption is inherent in the
classical formulation of the theory of nucleation (assumption 4, Sect. 6.3.1).
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a

b

Fig. 9.1 Kaischew-Stranski model for surface mediated growth of equilibrium shaped crystalline
clusters. (a): Formation of three two-dimensional nuclei on three opposite faces of the cubic cluster
guarantees growth leading from one equilibrium shaped cluster (having n building units per edge)
to the next one having nC 1 building units per edge. (b): Three successive stages of growth

In the classical model of crystal nucleation proposed in 1934 by Kaischew and
Stranski, the equilibrium shape of crystalline clusters is assumed from the very
beginning of the process. Supposing that the crystal has a cubic shape (see Fig. 9.1)
the mentioned authors argued that the equilibrium form is preserved only if on
the three opposite faces of the cluster three two-dimensional clusters are formed
simultaneously (when two-dimensional nucleation determines the growth of the
crystalline nucleus). The probability, w, of such an event is proportional to 
3

where 
 is the frequency of nucleus formation per unit area of one of the crystal
faces. Consequently, the assumption of growth via equilibrium shaped crystals
mediated by two-dimensional nucleation implies a considerable inhibition of the
growth of small crystallites when compared with the growth of liquid droplets or
the mechanism of growth of crystalline-like clusters via the normal mode.

The model of Kaischew and Stranski was adopted in a paper by Gutzow and
Toschev (1968) [318]. It was shown that it leads to probabilities of the order of
w � 10�3 to 10�5. Knowing the rate of growth of crystallites with R ! 1 and
the ambient phase impingement rate Z then in a first approximation, assuming the
Kaischew-Stranski model, we have to expect

w D v
.1/
R

Z
: (9.3)

In most cases of segregation (and particularly when crystallization or, more gener-
ally, segregation from a multi-component ambient phase is considered) nucleation
and growth is governed by diffusion fluxes towards the segregating particles. In
these cases, diffusion-limited growth has to be considered taking in account, in
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addition, size effects in cluster formation, decay and growth described by the Gibbs-
Thomson equation. Such an analysis is given in the next section.

9.2 Diffusion-Limited Segregation

We consider a cluster developing in an ambient phase by a process of precipitation
as shown in Fig. 6.2. Once a cluster of supercritical size is formed, its further
growth is determined by diffusion fluxes of the condensing particles to it from
relatively distant parts of the matrix. The determination of the growth rate for such
a mechanism of growth is usually based on the following simplified model (see
also Crank (1975) [150]). It is assumed that at some distance r D R from a center
of spherical symmetry and at large distances (r ! 1) the concentrations of the
segregating particles are fixed, i.e. that the relations

c.r D R/ D cR ; c.r ! 1/ D c : (9.4)

hold. The density of fluxes of particles ji of the different components are determined
by the diffusion equation

ji D �Dici

kBT
grad �i : (9.5)

Here Di is the partial diffusion coefficient of the i -th component and ci its volume
density in the system.

We consider for simplicity of the notations, again, a quasi-binary system, where
only one of the components segregates to form a cluster of the new phase. In this
case the expression Eq. (9.5) is simplified to

j D � Dc

kBT
grad � : (9.6)

For a perfect solution, the relation

�.p; T; x/ D �0.p; T /C kBT lnx (9.7)

holds and Eq. (9.6) can be written in the well-known form of the first Fick’s law

j D �Dgrad c : (9.8)

In this expression D is the partial diffusion coefficient of the segregating particles
and c (respectively x) their volume concentration (molar fraction). With the
continuity equation, Eq. (9.9)

@c

@t
C div j D 0 ; (9.9)
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which reflects the conservation of the number of segregating particles, the diffusion
equation is obtained (for the spherically symmetric case) as

@c

@t
D @

@r

�
r2D

@c

@r

�
: (9.10)

By applying the boundary conditions, Eq. (9.4), for large times (t ! 1), a
stationary concentration field is established. This concentration field is found, from
the stationary solution of Eq. (9.10), to be

c.r/ D �c � cR

r
R C c : (9.11)

The density of fluxes through the surface with the radius R is given in this case by

jR D �D
�
@c

@r

�
rDR

(9.12)

or
jR D �Dc � cR

R
: (9.13)

If one assumes that in the vicinity of a growing cluster at each moment of time
a practically stationary concentration profile is established as given by Eq. (9.11)
(steady-state approximation for cluster growth (compare Zener (1949) [952])), the
change of the cluster radius with time may be described by

dR

dt
D � 1

c˛
jR (9.14)

or by
dR

dt
D 1

c˛

c � cR
R

: (9.15)

Hereby it is assumed, in addition that in the immediate vicinity of the clusters in the
matrix a local equilibrium concentration is established. Thus cR may be expressed
as (compare Eq. (6.77))

cR D ceq.1/ exp

�
2�v˛

kBT

1

R

�
: (9.16)

The concentration c in the undisturbed matrix corresponds, on the other hand, to a
critical cluster size Rc , determined by

c D ceq.1/ exp

�
2�v˛

kBT

1

Rc

�
: (9.17)
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A substitution of Eqs. (9.16) and (9.17) into Eq. (9.15) and a subsequent Taylor-
expansion of the exponential functions yields

dR

dt
D 2�Dceq.1/

c2˛kBT

1

R

�
1

Rc
� 1

R

�
: (9.18)

Equation (9.18) is the basic relation for the description of diffusion-limited segre-
gation processes. It can be generalized to describe other mechanisms of growth as
well.

The result of such an extension can be written in the general form (see Slezov
and Sagalovich (1987) [774])

dR

dt
D 2�Dceq.1/

c2˛kBT

an�1

Rn

�
1

Rc
� 1

R

�
; (9.19)

where a is a length parameter reflecting specific properties of the considered
growth mechanism. Different growth mechanisms are described by this equation
for different values of n (n D 0: ballistic or interface kinetic limited growth; n D 1:
diffusion-limited growth; n D 2: diffusion along grain boundaries; n D 3: diffusion
in a dislocation network (Slezov and Sagalovich (1987) [774]). Equation (9.18)
serves, moreover, as one of the basic equations for the development of the theoretical
description of Ostwald ripening, the competitive growth of an ensemble of clusters
in the late stages of the phase transformation, which we are going to discuss in the
next section.

9.3 Growth of Ensembles of Clusters: The
Lifshitz-Slezov-Wagner Theory

If the state of the system is not changed significantly by nucleation and growth
processes of the already formed supercritical clusters, the critical cluster size is
nearly constant, the supercritical clusters grow at the expense of primary building
units in the ambient phase and (for R  Rc) from Eq. (9.18) a time dependence
of the average cluster radius as hRi2 
 t is to be expected for diffusion-limited
growth (compare Fig. 6.11). The situation becomes different if due to the growth
of the ensembles of clusters the number of segregating particles is decreased to
a value near the equilibrium concentration in the matrix and the critical cluster
radius is increased to a size comparable with the dimensions of the majority of
clusters formed (Fig. 6.11). In this stage, according to Eq. (9.18) and the results of
the thermodynamic analysis, clusters with radii R < Rc shrink and are dissolved
supplying in this way the larger clusters with monomers for a further growth. The
critical cluster radius cannot be considered any more as a constant but has to be
determined in a self-consistent way.
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From a kinetic point of view this mechanism is determined by the cluster size
dependence of the equilibrium solubility, ceq (compare Eq. (6.77)). Small clusters
are characterized by higher values of ceq , thus, for a given value, c, of the average
concentration of the segregating particles in the melt clusters with equilibrium
solubilities larger this value (R < Rc) shrink, while clusters with a lower value
of the solubility (R > Rc) are capable to a further growth. The thermodynamic
driving force of dissolution, respectively, growth is hereby proportional to the
differences (c � ceq) or (�.c/ � �.ceq.R//). The dissolution of the smaller clusters
provides the monomeric building units for the growth of the supercritical ones.
From a macroscopic thermodynamic point of view the evolution of the ensemble of
clusters is governed by the general thermodynamic evolution criteria, the decrease
in the respective thermodynamic potential due to the decrease in the interfacial
contributions to it (compare Sect. 6.3.10). The process is completed, in general,
only after one super-large cluster has won the competition process. However, the
situation may be different, if additional factors – like elastic strains – influence the
coarsening process (see Sect. 9.4).

Though the process of competitive growth considered here has been a well-
known experimental fact since the first detailed investigation by W. Ostwald (see
Ostwald (1901) [617]), a satisfactory theory was developed first in the 1950s by
Lifshitz and Slezov (1958, 1959, 1961) [508–511] and repeated for kinetically
limited growth by Wagner (1961) [904]. The Lifshitz-Slezov theory was formulated
initially for diffusion-limited growth, described by Eq. (9.18). Here the main
assumptions and results are summarized briefly.

If we denote by R�
co the critical cluster radius for the homogeneous metastable

initial state, as a first step a dimensionless time scale may be introduced by

t� D 2�Dceq.1/

c2˛kBTR
�3
co

t (9.20)

and Eq. (9.18) can be rewritten in the simpler form

dR

dt�
D R�3

co

R

�
1

Rc
� 1

R

�
: (9.21)

As a next step the dimensionless variables u, x and Q are introduced via

u D R

Rc
; x D Rc

R�
co

; Q D 3 lnŒx.t�/� : (9.22)

In these reduced variables the growth equation, Eq. (9.21), reads

du3

d Q D �. Q/Œu � 1�� u3 with �. Q/ D 1

x2
dx

dt�

: (9.23)
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Fig. 9.2 Possible types of
curves (vu vs. u). For the late
stage of coarsening only the
situation corresponding to
� D .27=4/ is relevant

Possible curves for the growth rate, vu, in reduced variables

du

d Q D vu D �. Q/Œu � 1�� u3

.3u2/
(9.24)

are shown in Fig. 9.2.
From a physical point of view for large times only the situation corresponding to

a value of � equal to � D .27=4/ in Fig. 9.2 is of relevance (only one cluster size
exists for which the growth rate is equal to zero). This particular value of � is found
taking into account that in the asymptotic region �. Q/ is determined by

vu D @vu

@u
D 0 : (9.25)

With these conditions Eqs. (9.24) and (9.25) yield

� D 27

4
; u D 3

2
: (9.26)

In this way with Eq. (9.23)

dx3

dt�
D 4

9
or R3c.t

�/ D R�3
co .1C t�/ (9.27)

is obtained. Thus, for diffusion-limited growth the critical cluster radius grows as

Rc.t/ 
 t1=3 (9.28)

in agreement with the numerical results, shown in Fig. 6.11.
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In the Lifshitz-Slezov theory in addition to the cluster size distribution,
f .R; t/, describing the cluster ensemble in absolute variables, also the cluster size
distribution function, '.u; Q/, in reduced variables is introduced. It is connected
with f .R; t/ by

f .R; t/dR D f .R; t/Rc.t/d

�
R

Rc.t/

�
D '.u; Q/du (9.29)

or
'.u; Q/ D f .R; t/Rc.t/ : (9.30)

For the determination of '.u; Q/ only the condition of conservation of the number
of monomers is used.

The derivation is somewhat lengthy and cannot be given here. The main results
are the following (see Lifshitz and Slezov (1958, 1959, 1961) [508–511]):

• The cluster size distribution function '.u; Q/ can be expressed in the form

'.u; Q/ D A exp.� Q/P.u/ ; A � constant : (9.31)

• The time-independent part of the cluster-size distribution function, P.u/, obeys
the normalization condition

1Z
0

P.u/ du D 1 : (9.32)

For diffusion-limited growth in addition the relations

P.u/ D
34eu2 exp

�
� 3

2Œ.3=2/� u�

�

25=3.u C 3/7=3Œ.3=2/� u�11=3
(9.33)

1Z
0

uP.u/du D 1 (9.34)

hold, resulting in
hRi D Rc.t/ : (9.35)

• According to Eqs. (9.31) and (9.32) the evolution of the number of clusters is
determined by the pre-factor A exp.� Q/ only, which gives

N.t/

N.0/

 exp.� Q/ D

�
Rco

Rc

�3

 1

t
: (9.36)
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In this way, the whole process of structural reorganization considered is character-
ized by two equations giving the time-dependence of the average cluster size and
the number of clusters in the system. Both the average cluster size and the critical
Gibbs-Thomson cluster radius behave for diffusion-limited growth as 
 t3. For
t ! 1, only one very large cluster will survive this process of competitive growth.

9.4 Modifications and Generalizations

Equations (9.28)–(9.36) form the basic content of the theoretical description of
Ostwald ripening as developed first by Lifshitz and Slezov (1958, 1959, 1961)
[508–511]. This theory was modified and extended subsequently, the main results
remained, however, unchanged (see also Voorhees (1985) [901]; Slezov, Schmelzer,
Möller (1993) [777]). The series of extensions of the theory to different growth
mechanisms, e.g., of the type given by Eq. (9.19), was opened by Wagner (1961)
[904], who applied the outlined ideas to the case of kinetically limited growth (for
other results in this direction see the overview given by Slezov and Sagalovich
(1987) [774]).

A second line of generalizations of the theory is connected with the incorporation
of direct diffusion interactions of the clusters into the kinetic description of Ostwald
ripening (Voorhees and Glicksman (1983, 1984) [902]; Marqusee and Ross (1984)
[535]; Tokuyama and Kawasaki (1984) [841]; Marder (1987) [530]). The analysis
shows, however that the asymptotic power laws remain unchanged, only some
additional pre-factors in the expressions for Rc and hRi occur, which are functions
of the volume fraction of the segregating phase. In the case of diffusion interactions,
a time-independent cluster size distribution is also established in the course of
time, however, the curves are more symmetric than those of the Lifshitz-Slezov
distribution. As another factor, which may diminish the gap between experiment
and theory the influence of thermal (stochastic thermal fluctuations) or externally
generated noise has recently found to be of importance (Ludwig, Schmelzer, and
Bartels (1994) [521]; Möller (1994) [568]). An extended discussion of further
factors which may account for a deviation from the Lifshitz-Slezov distribution is
given by Jayanth and Nash (1989) [405].

Other generalizations of the Lifshitz-Slezov theory deal with an alternative
approach to the theory of Ostwald ripening, allowing the description of the first non-
asymptotic stage of coarsening (Schmelzer (1985) [689]; Schmelzer and Ulbricht
(1987) [712]) and a thermodynamic interpretation of this process. This approach is
based on the thermodynamic analysis outlined in Sect. 6.3.10. A further problem of
intensive research is connected with the influence of elastic strains on the process
of Ostwald ripening, in particular, its asymptotic behavior (Schmelzer (1985) [689];
Schmelzer, Gutzow (1988) [705]; Kawasaki, Enomoto (1988) [441]; Pascova et al.
(1990a,b) [627, 628]; Schmelzer et al. (1990a,b) [713, 714]). For the case that only
elastic matrix-cluster interactions have to be taken into account it can be shown that
qualitatively the growth kinetics is modified as compared with the results obtained
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Fig. 9.3 Time dependence of the average size of AgCl-clusters segregating in a model sodium
metaborate glass-forming melt. The temperature of the system, at which segregation takes place, is
indicated at each curve. Note that a finite stationary value of the average cluster size is established
in the system asymptotically in contrast to the type of behavior as one would have to expect it from
the classical LSW-theory of coarsening (After Pascova et al. (1990a,b) [627, 628]). Precipitation
of silver halides in glass-forming melts is the first step in the technology of formation of so-called
photochromic glasses (See Arayo (1980) [17]; Fanderlik and Prodhomme (1973) [195])

first by Lifshitz and Slezov, if the total energy of elastic deformations due to the
formation and growth of one cluster increases more rapidly than linear with the
volume of the cluster.
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Fig. 9.4 Time evolution of the cluster size distribution, f .R; t/, and related quantities like the
critical cluster radius Rc.t/, the number of clusters in the system N.t/, the average cluster radius
hR.t/i and the fraction of matter in the peak for the process of Ostwald ripening in a system of
rigid pores of equal size. On the left hand side the cluster size distribution is shown for different
moments of time. Rco and N.0/ are the critical cluster size and the number of clusters in the initial
state of coarsening

One experimental example, when elastic strains in coarsening modify the growth
kinetics qualitatively, is shown in Fig. 9.3. In this figure the time dependence of the
average size of an ensemble of clusters, segregating in a sodium metaborate glass-
forming melt, is shown for the stage of coarsening. In the course of evolution a
relatively mono-disperse distribution is established consisting of a large number
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of clusters. This distribution remains practically unchanged for prolonged times
(Pascova et al. (1990a) [627]). A thorough analysis of the experimental results
shows (Pascova et al. (1990b) [628]; Schmelzer et al. (1990a,b) [713, 714]) that in
the considered case the process of Ostwald ripening is inhibited by the interaction
of the growing clusters with the matrix, which behaves as a viscoelastic Kelvin’s
body (cf. Chap. 12). In the considered experimental example each AgCl-cluster is
growing in a viscoelastic cage in the matrix formed by the segregation process itself.
Qualitative changes of the ripening kinetics as shown in Fig. 9.3 may occur generally
if the diffusion coefficient of the segregating particles is considerably higher as
compared with the self-diffusion coefficient of the matrix building units.

A theoretical interpretation of the experimental results, discussed here briefly,
can be given based on the following simplified model (which is also of interest
in a different aspect, for the consideration of coarsening in porous materials). It
is assumed in the model that clusters are formed and grow exclusively inside the
pores of a solid matrix. Hereby in a first approximation a mono-disperse pore size
distribution is assumed here. The evolution of the cluster size distribution and related
quantities for Ostwald ripening in a solid with a mono-disperse pore size distribution
are illustrated in Fig. 9.4. It exhibits typical features which are found also in the
experimental investigations of AgCl-segregation discussed above. For the details of
both analytical and numerical methods in the description of coarsening processes in
elastic and viscoelastic solids as well as in porous materials see the original papers
(Slezov, Schmelzer, and Möller (1993) [777], Schmelzer, Möller, and Slezov (1994)
[717]; Schmelzer and Möller (1992) [710].1

9.5 Growth of Clusters with Different Structures
and Ostwald’s Rule of Stages

9.5.1 Introduction

In 1897, W. Ostwald [615] formulated a rule, denoted today as Ostwald’s rule
of stages, which according to his belief was the manifestation of a very general
principle applicable to any process in nature (including chemical reactions).
However, Ostwald’s rule of stages is in fact only the generalization of a
relatively small number of experimental results on the sequence of appearance of
different crystalline modifications in precipitation in supersaturated solutions or in
crystallization from undercooled melts. According to Ostwald’s experience in such
processes as a rule not the thermodynamically most stable modifications are formed

1An more detailed overview on the theoretical description of coarsening including results obtained
by one of the present authors together with him can be found in the monograph of one of the
authors of the theory of coarsening, V.V. Slezov (2009) [773] (see also Chap. 14).
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initially; in Ostwald’s words: “: : : in the course of transformation of an unstable (or
metastable) state into a stable one the system does not go directly to the most stable
conformation (corresponding to the modification with the lowest free energy) but
prefers to reach intermediate stages (corresponding to other possible metastable
modifications) having the closest free energy difference to the initial state”. As a
particular case, applying Ostwald’s rule, one has to expect that the first stage of
vapor condensation should always consist of the formation of a liquid phase, which
can be transformed in a next step into crystalline condensates. Such an idea was, in
fact, adopted also by Semenov ((1930) [744]; see also Palatnik and Papirov (1964)
[620]) and formulated by him as a general requirement for any case of condensation
of supersaturated systems. Semenov’s argumentation in favor of such a rule was
based on a two-dimensional modification of a van der Waals type equation of state.

Experimental findings as the preferential formation of liquid-like precipitates in
crystallization of a number of organic substances from solution (see also Feenstra
et al. (1981) [200, 201] for amorphous Ca-phosphate precipitates from aqueous
solutions) seem to support the general validity of this rule. Abundant evidence in
this respect was also accumulated on crystallization of metastable modifications
from vapors, melts and solutions. The most striking example of an application
of Ostwald’s rule of stages seemed to consist of the synthesis of the metastable
modification of carbon, of diamonds, under conditions, where graphite is the
thermodynamically stable carbon modification (see Meisel (1972) [552]; Deryaguin
and Fedosseev (1973) [165]; Novikov, Fedosseev et al. (1987) [606]). However,
similarly as in other cases of empirically formulated rules, in the course of time
many exceptions from Ostwald’s rule have been found. One of the most well-known
examples in this respect is the direct formation of crystalline condensates from the
vapor phase.

As a method to reconcile such exceptions to his rule, Ostwald himself discussed
the possible existence of very short-living intermediate metastable modifications
(see also Palatnik and Papirov (1964) [620] for a discussion of the existence of
intermediate liquid condensates in vapor quenching). However, such an explanation
is not applicable to each of the observed exceptions. The existence of exceptions
to Ostwald’s rule of stages shows that it cannot be considered as a general
thermodynamically founded law. In contrast, experience has demonstrated that both
the origin for its validity and the explanation of possible deviations have to be
interconnected with kinetic factors.

The first step in a kinetic argumentation of the region of applicability and the
limits of validity of Ostwald’s rule of stages was made by Stranski and Totomanov
((1933) [810]; see also Volmer (1939) [894]). According to Stranski and Totomanov
the type of the phases formed from a supersaturated ambient phase is determined
by the magnitude of the activation energy, �G.c/, required for the formation of
the corresponding phases: in this way, the competition of the rates of formation of
clusters of different modifications or of different phases, which can be formed under
the given thermodynamic conditions, determines the dominant appearance of one
of them.
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The original ideas of Stranski and Totomanov in the kinetic interpretation of
Ostwald’s rule of stages were developed subsequently in three directions2:

• A more exact formulation of the problem in the framework of the classical
capillary theory of nucleation considering the dependence of the height of the
barriers to nucleation on the thermodynamic parameters of the process (e.g.,
on supersaturation, cf. Palatnik and Zorin (1959) [621]; Defay, Prigogine et al.
(1966) [161]; on the activity of substrates, cf. Gutzow and Avramov (1974)
[306]);

• Introduction of the more general non-steady state formulation of nucleation
theory (Gutzow and Toschev (1968) [318]);

• Account of the possibility of transformations between two or more fluxes of
different new phase clusters (e.g., of the possibility of melting of crystalline clus-
ters and of crystallization of liquid clusters (Avramov and Gutzow (1980)[23];
Gutzow, Avramov (1981) [307])) and thus of introducing cluster transformations
into the consideration.

According to Ostwald’s original formulation the process of formation of different
phases is determined by the magnitude of the free-energy differences for the
formation of the different clusters. The Stranski-Totomanov treatment and its above
mentioned further developments reflect, as it will become evident from the consider-
ations outlined in the two subsequent sections, consecutive stages of development of
a very general idea: The preferential formation of the thermodynamically less stable
phases is, in fact, the result of predominant formation of the kinetically favored
states. Thus, it turns out that Ostwald’s rule of stages is the consequence of the gen-
eral premise that the activation energy of a process and not the affinity of the possible
reactions determines its rate. This governing idea can (and has to be) explained in
terms of the existing kinetic models of formation, growth and possible transforma-
tions of clusters of different structures from one modification to another one.

9.5.2 The Classical Kinetic Treatment of Ostwald’s
Rule of Stages

In the framework of the classical capillary formulation of the theory of nucleation,
as given in Chap. 6, the dominant formation of one of two possible phases or
modifications, specified by the subscripts c (e.g., crystallites) and f (e.g., liquid

2As already mentioned, a generalization of Ostwald’s rule of stages was employed originally by
us in the development of the generalized Gibbs approach in application to nucleation and growth
processes (Schmelzer et al. (2000) [722]; Schmelzer et al. (2010) [728]). This approach implies the
possibility and necessity of changes of the bulk properties of the clusters in dependence on cluster
size and state of the ambient phase. The realization of Ostwald’s rule of stages in connection with
elastic stresses and variations of external pressure is discussed in detail in Möller et al. (1988)
[572].
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droplets), is determined by the respective values of the steady-state nucleation rates
J or by the value of the ratio

� D ln

�
Jf

Jc

�
: (9.37)

Here Jf and Jc are the steady-state rates of formation of the two phases or
modifications, both of which are assumed to be more stable from a thermodynamic
point of view as compared with the initial state (specified by a subscript v, e.g.,
for vapor condensation). This is the case, when the thermodynamic driving forces
for the formation of clusters of both considered phases ��.v!f / and ��.v!c/ are
greater than zero. Moreover, let us assume, in addition that the phase, specified by
the subscript c is, for the considered thermodynamic boundary conditions, more
stable from a thermodynamic point of view, i.e., that the inequality

��.v!c/

��.v!f /

� 1 (9.38)

holds.
In the framework of the classical theory of nucleation the steady-state nucleation

rate for homogeneous nucleation is given by Eq. (6.109) and for heterogeneous
nucleation by Eq. (7.8). The thermodynamically less stable phase (specified by the
subscript f ) is, according to the classical approach, formed predominantly if the
inequality � > 0 holds or, equivalently,
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If we assume, in addition that the pre-exponential factors J0, which are determined
according to the cited equations by the attachment rate, the Zeldovich factor, the
density of monomeric building units, respectively, foreign nucleation cores, are the
same for the process of formation of both of the considered phases then Eq. (9.39)
is reduced to
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or to  
1� �G

f

.cluster/˚f

�Gc
.cluster/˚c

!
> 0 : (9.41)

Remember, however that for liquid phase formation the sticking coefficient, & , is
nearly equal to unity, while for the process of formation of crystallites & � 1 holds.
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In the particular case of competition between the formation of liquid and crystalline
clusters this difference has also to be accounted for (see Sects. 9.5.5 and 11.3).

A substitution of the expressions for the work of formation of the critical clusters,
Eq. (6.43), and the critical cluster radius, Eq. (6.44), yields, finally, the following
expression as the condition for validity of Ostwald’s rule of stages (preferential
formation of the f -phase)

�
˚c

˚f

��
�c

�f

�3 �
vc

vf

�2
>

�
��.v!c/

��.v!f /

�2
(9.42)

and with Eq. (9.38)

�
˚c

˚f

��
�c

�f

�3 �
vc

vf

�2
>

�
��.v!c/

��.v!f /

�2
> 1 : (9.43)

Equation (9.43) was derived first by Gutzow and Avramov (1974) [306] assuming
that the specific volumes of both phases vc and vf are nearly the same (vc Š vf ).
Such an assumption is quite permissible in cases like the formation of amorphous
condensates (compare Sect. 7.7.1), in other applications, e.g., for metastable dia-
mond synthesis from the vapor phase, such density differences may have to be
accounted for.

If one assumes, in addition to vc Š vf that the nucleation activities, ˚ , of the
possible nucleation cores are also of the same order of magnitude for the process
of formation of both types of clusters considered and that, moreover, ��.v!c/ Š
��.v!f / holds, then the inequality Eq. (9.43) is reduced to

�
�c

�f

�3
> 1 : (9.44)

This is the relation originally derived by Stranski and Totomanov (1933) [810]. It
turns out, provided the mentioned conditions are fulfilled that Ostwald’s rule of
stages is obeyed if the specific interfacial energy between the ambient phase and
phase .c/ (the more stable phase) is higher than the respective value for the interface
between ambient phase and phase .f / (the less stable phase). Taking into account
Stefan’s rule (cf. Eq. (6.127)) it is to be expected that for cases, when (f) and (c)
denote the liquid, respectively, crystalline state of a substance, this rule is always
fulfilled (as far as the heat of sublimation always exceeds the heat of melting).
Equation (9.44), as evident from the derivation, can be considered, however, only as
a first estimate compared with the more general condition Eq. (9.43).

The conditions for fulfilment of Ostwald’s rule of stages may be formulated also
in a somewhat different form. Taking into account that the thermodynamic driving
forces of the v ! f , v ! c and f ! c transformations are connected by an
equation of the form

��.v!c/ D ��.v!f / C��.f!c/ (9.45)
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Eq. (9.42) may be rewritten as
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or as

C0 � ��.f!c/

��.v!f /

� 0 ; (9.47)

where C0 is defined as

C0 D 1 �
"
vc

vf

�
�c

�f

�3=2 �
˚c

˚f
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By introducing the respective Gibbs-Thomson radii Rc.v ! c/ and Rc.v ! f /

above given general condition can be written also in the form

0 � Rc.v ! c/ � mRc.v ! f / ; m D C0
�c

�f
: (9.49)

This inequality shows that Ostwald’s rule is fulfilled, when the thermodynamically
less stable modification is characterized by smaller values of the critical cluster
radius or, when the subscript (f) and (c) refer to different modifications of the same
substance, it is constituted of a smaller number of building units. The equations,
derived above, have been applied by Gutzow and Avramov (Gutzow and Avramov
(1974) [306, 307]; Avramov and Gutzow (1980) [23]) in order to analyze in detail
the formation of amorphous (liquid or vitreous) condensates. This process will be
discussed in more detail in Sect. 9.5.5.

9.5.3 Influence of Non-Steady State Effects and Sticking
Coefficient Differences

The present section is devoted to the analysis of the problem, to what extent the
conclusions outlined in the previous section are modified, if non-steady state effects
in nucleation and sticking coefficient differences are taken into account. For the
description of non-steady state effects in nucleation we will apply Zeldovich’s
solution of the Frenkel-Zeldovich equation as given by Eq. (6.166). Thus, the
condition that clusters of the less stable phase (f) are formed preferentially at any
moment of time may be written in the form

� D ln

�
Jf .jc; t/

Jc.jc; t/

�
> 0 (9.50)
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(9.51)
If in the pre-exponential factors J0 of the steady-state nucleation rate only the
sticking coefficients & significantly differ (for example &f  &c for the formation
of droplets (f ) or crystallites (c)) then Eq. (9.51) may be reformulated to give
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(9.52)

For larger times (t ! 1) Eq. (9.52) is reduced to Eq. (9.40), again, but modified
by the additional term ln.&f =&c/. Accounting for the mentioned &-values this term
may reach a value of the order 10.

It is evident that the formation of the metastable modification (f) is guarantied
when Eq. (9.52) is fulfilled for any moment of time (see Fig. 9.5a). The account
of non-steady state effects enlarges the number of possibilities of formation of
the metastable phase. If �.ns/c � �

.ns/

f holds, then the formation of (f)-phase
clusters may dominate initially even when in the steady state preferably (c)-phase
clusters are formed (Jc.jc/ > Jf .jc/) (see Fig. 9.5b). If, in contrast, the relation

�
.ns/
c � �

.ns/

f holds, then initially preferably (c)-phase clusters are formed (see
Fig. 9.5c). The exclusive formation of the thermodynamically more stable phase
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is to be expected only when both inequalities Jc.jc/ > Jf .jc/ and �
.ns/
c �

�
.ns/

f hold simultaneously (see Fig. 9.5d). A detailed quantitative evaluation and
discussion of above conditions for the case of amorphous thin film formation may
be found in the already cited paper by Gutzow and Toschev (1968) [307] (see also
Sect. 9.5.5).

9.5.4 Further Developments and Applications

The kinetic treatment of Ostwald’s rule of stages, as given in the preceding
two sections, is based on the analysis of two independent fluxes in cluster size
space: one flux representing the formation of c-clusters and one for f-clusters
(cf. Fig. 9.6a: applying the notation introduced above). In terms of vacuum
condensation experiments, for example, an independent formation both of liquid
and crystalline clusters have been assumed so far. Transformations between these
two types of clusters were excluded from the considerations. However, in general,
transformations of liquid into crystalline clusters (f ! c) and vice versa (c ! f )
are possible and have to be accounted for. The thermodynamic driving force of
such transformations in the case of vacuum deposition is determined by the melting
respectively crystallization temperatures of both types of clusters embedded in
the vapor phase and, in particular, by the size dependence of these quantities
(compare Sect. 6.2.4). To account for such transformations in the structure of the
clusters probabilities ! for a (f ! c)-transformation (crystallization of droplets:
!.f!c/) as well as for the (c ! f )-change (melting of crystallites: !.f!c/) have
to be introduced into the theoretical description. The particular expressions for
these transformation probabilities depend on the process considered. Moreover, in
general, these quantities are cluster size dependent.

Taking into consideration such transformations in the structure of the clusters
of different types the classical Becker-Döring scheme of nucleation (Sect. 6.3.1),
underlying the estimates made in the previous sections, has to be generalized.
The respective generalization, proposed by Gutzow and Avramov (1981) [307],
is illustrated in Fig. 9.6b. Let us introduce with w�

c the overall probability that a
complex of type c (e.g., a crystalline cluster) grows starting from a size, j1, to some
sufficiently large size, j �, without being transformed into an f-complex (without
melting). The probability that such a transformation occurs, is given, consequently,
by .1 � w�

c /. Similarly, w�
f is the probability that a complex consisting of j1

particles with an f-structure reaches a size, j �, without undergoing the f !
c-transformation (without crystallization). The probability that such a process takes
place is, again, given by (1 � w�

f ).
In above definitions by j1 the number of ambient phase particles in the smallest

cluster is denoted for which a distinction between f- or c-clusters is meaningful. It
is evident that such a lowest limit has to exist since below some cluster size the
division between different macroscopic states of matter loses any meaning. The
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c and w�

f can be determined from the transition probabilities !.c!f /.j /
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It was shown by Gutzow and Avramov (1981) [307] that for the considered case of
two fluxes (crystalline and liquid clusters) the classical expressions for the steady-
state nucleation rates for clusters of critical sizes have to be modified to

J .mod/c .jc/ D Jcw
�
c .jc/ ; (9.55)

J
.mod/

f .jc/ D Jf C Jc.1 � w�
c .jc// ; (9.56)

when the possibility of transformations between the clusters of different types is
taken into account. The condition for fulfillment of Ostwald’s rule, Eq. (9.37), gets
thus the form (Gutzow and Avramov (1981) [307])

� D ln

" fŒJf C Jc.1 � w�
c .jc//�w

�
f .jc/g

fJcw�
c .jc/C ŒJf C Jc.1 � w�

c .jc//�.1 � w�
f .jc//g

#
: (9.57)
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The classical Stranski-Totomanov result is retained for the special case w�
c D

w�
f D 1. Of particular interest is also the case Jc Š Jf . In such a situation, not the

values of the nucleation rate but the overall transition probabilities determine the
phase which will be formed preferentially. Additional special cases are discussed in
the already cited paper (Avramov and Gutzow (1981) [307]).

The kinetic interpretation of Ostwald’s rule of stages, even in its simplest
formulation as given with Eq. (9.39), gives a large number of possibilities for an
explanation of the sequence of appearance of different phases in undercooled melts.
The understanding of the kinetic origin of Ostwald’s rule of stages also gives the
possibility of manipulating the process of the transformation in the desired direction,
e.g., by introducing active substrates having different activities with respect to the
desired and undesired phases (for example, by introducing crystallization cores
with ˚f D 0 or ˚c D 0; see Gutzow and Avramov (1974) [306]). One of the
simplest methods in this direction consists of the introduction of microcrystallites
of the desired phase itself (metastable synthesis of diamonds). Ostwald’s rule of
stages allows one also to give a kinetic interpretation of the sequence of appearance
of different crystalline modifications of one and the same substance (e.g., of
cristobalite, tridymite and quartz) in under-cooled melts.

Möller (1994) [568] recently directed the attention to the fact that in processes
of solid-to-solid phase transformations the energy of elastic deformations, resulting
from cluster formation, may be of major significance for the sequence of formation
of different phases. According to Möller’s suggestion in such processes those phases
are formed preferably for which the difference in the molar volumes, compared with
the ambient phase, is the lowest one. For systems, for which elastic effects determine
the sequence of formation of different phases, according to this proposal, the degree
of stability or metastability is correlated with the molar volume of the respective
phases (compare Sect. 7.7.1).

9.5.5 Ostwald’s Rule of Stages and the Formation
of Vitreous Condensates

The interest in thin amorphous films produced by vapor condensation has consid-
erably increased in the last decades. According to this technique vapors of a given
substance are brought into contact with a substrate cooled to temperatures below the
melting point, Tm (or the vitrification temperature Tg) of the vaporized substance.
The vapor quenching method turned out to be both a simple and very effective
method of vitrification for an unexpectedly large variety of substances (oxides,
metals, metal alloys, halides, chalcogenides, organic substances; see Behrnd (1970)
[60]; Secrist, Mackenzie (1964) [743]; Novick (1970) [605]; Gutzow et al. (1976)
[327]; Palatnik, Papirov (1964) [620]; Chopra (1962) [134]; Grudeva, Kanev (1986)
[279]). The first experiments in this fields were carried out, again, by Tammann
(see Tammann and Starinkewitsch (1913) [823]; Tammann (1922) [818]). Tammann
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succeeded in obtaining a number of glassy layers by simple vacuum quenching
experiments. Tammann and Starinkewitsch also described a number of different
experimental realizations of vacuum quenching techniques (for modern versions
of such experimental techniques see Gutzow and Avramov (1981) [307] (static
vacuum experiments); Secrist and Mackenzie (1964) [743]; Gutzow et al. (1976)
[327]; Grudeva and Kanev (1986) [279] (dynamic vacuum quenching techniques)).

In ascertaining the possibilities of vacuum quenching firstly the thermodynamic
conditions for the stability of the considered condensate on the substrate have to
be formulated. In order to do this, imagine that in a vacuum cell maintained at a
temperature T.ev/ a sufficiently large quantity of the respective crystalline substance
to be evaporated is placed. Its vapors, having an equilibrium vapor pressure
p.Tev/, are in contact with a substrate, sustained at a temperature T.sub/ < T.ev/.
The thermodynamic condition for a condensate (either crystalline (c), liquid (f)
or vitreous (g)) to exist on the substrate is that its vapor pressure at the given
temperature T.sub/ is lower than the respective value for the crystalline substance
which is evaporated, i.e.,

pc.T.sub// � pc.T.ev// or ��.v!c/ � 0 ; (9.58)

pf .T.sub// � pf .T.ev// or ��.v!f / D ��.v!c/ ���.f!c/ � 0 ; (9.59)

pg.T.sub// � pg.T.ev// or ��.v!g/ D ��.v!c/ ���.g!c/ � 0: (9.60)

In order to construct a temperature diagram corresponding to above given thermo-
dynamic stability conditions an expression for the p.T /-dependence, e.g., in the
traditional form

lnŒp.T /� Š ��H.evap/

kBT
C const. (9.61)

has to be used to determine in accordance with the relation

��.v!c/ Š kBT.sub/ ln

�
pc.T.ev/

pc.T.sub//

�
(9.62)

the ��-values, appearing in Eqs. (9.58)–(9.60).
For ��.f!c/ the expressions discussed in Sect. 6.2.3 can be used, while for

a calculation of the vapor pressure of the vitreous condensate the argumentation
outlined in Sect. 3.12 has to be applied. In this way, as done first by Avramov and
Gutzow (1980) [23], the regions of thermodynamic stability of crystalline, liquid
and glassy condensates may be established in form of a diagram schematically
shown in Fig. 9.7a in coordinates Y D T.ev/=Tm vs. X D T.sub/=Tm for a substance
having the melting temperature, Tm. In constructing the diagram it was assumed that
the thermodynamic potential difference�G, determining��.f!c/ of the substance
in the temperature range from zero to Tm, is given with Eqs. (3.56) and (3.58)
with T0 D Tm=2 and that the glassy condensate has a vitrification temperature
Tg Š 2=3 Tm.
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Fig. 9.7 (a) The thermodynamic limits of the existence of crystalline, liquid and glassy conden-
sates; (b) The kinetic boundaries for formation of liquid and crystalline condensates according
to the kinetic treatment of Ostwald’s rule of stages based on classical nucleation theory. The
respective C0-values are given as a parameter to each curve (see text)

According to the general thermodynamic requirements, outlined above, in the
part of the figure located on the right hand side of the straight line in Fig. 9.7a no
condensate is stable. On the left of this dividing line, crystalline condensates may be
formed for any values ofX and Y . On the left hand side of the curve (Ofg’0’) liquid
condensates are also stable; however, liquid condensates are thermodynamically
unstable in the shaded area (0fg’0’c0), which is reserved for crystals, only. On
the left of the line (0gg”0) besides liquid and crystalline condensates also vitreous
thin films with the mentioned Tg-value may exist for substrate temperatures
corresponding to Tg=Tm � 2=3.

The kinetic treatment of Ostwald’s rule of stages, outlined in Sect. 9.5.2, gives,
dependent on the value of the parameter C0 (defined by Eq. (9.49)), the analytical
expressions for the kinetically determined boundaries of the regions for primary
formation of liquid, respectively, crystalline condensates. The results are shown in
Fig. 9.7b. In this figure, the lines (0fi00) are determined by

1

Y
D 1

X
� 1

C0
.1 �X/ for 0:5 < X < 1; (9.63)

1

Y
D 1

X

�
1 � 1

4C0

�
for 0 < X < 0:5: (9.64)

To the left of any of the (0fi0)-lines (with i D 1; 2; 3) the formation of liquid
condensates is to be expected; crystalline condensates can be formed only in the
area in between the (0fi00)-lines. It is seen that with increasing C0-values (compare
Eq. (9.48)) the area of primary formation of crystalline condensates is decreased,
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while the area of possible (X; Y )-values, for which Ostwald’s rule of stages is
fulfilled (i.e., where liquid condensates are primarily formed) is increased.

The comparison with Fig. 9.7a shows the dramatic change when one compares
the predictions based on a thermodynamic analysis from one side and on kinetic
considerations from the other side: In the kinetic interpretation only for a relatively
small region in parameter space, is the primary formation of crystalline condensates
allowed, though the crystalline phase is stable from a thermodynamic point of view
in the whole region where condensation may occur. The argumentation outlined
above as well as the figures are taken from two papers by Avramov and Gutzow
((1980) [23]; Gutzow, Avramov (1981) [307]). In these papers also a more detailed
analysis of conditions for the formation of vitreous condensates can be found. The
results can be summarized as follows.

As outlined already in Sect. 3.6, vitrification takes place when the time of
molecular relaxation, �R, of the system becomes larger than the characteristic times
of change of external parameters (e.g., temperature variations in cooling processes).
In application to vacuum deposition experiments this condition implies that a
vitreous condensate will be obtained, when the inequality

�R.condensate=surface/ � �.vapor deposition/ (9.65)

holds, i.e., when the time of molecular rearrangements of the surface layer of the
amorphous condensate becomes equal or larger than the average time for vapor
deposition �.vd/ at which a monolayer covers the surface of the condensate thus
burying-in its initial disorder. Defining �.vd/ through the vapor deposition rate Zv
(expressed in numbers of mono-layers per unit time) as

�.vapor deposition/ D 1

Zv
(9.66)

and assuming that �R.condensate=surface/ may be expressed via a simple
Frenkel-type temperature dependence with a constant activation energy U0 (cf.
Eq. (3.78)) it follows that the critical temperature for vitrification, Tc , of a liquid
condensate will be (see Avramov et al. (1990) [32])

1

Tc
� kB

U0

�
ln

�
1

�0

�
� ln .Zv/

�
: (9.67)

The analogy of above given expressions with Eq. (3.73) and the Bartenev-Ritland
equation Eq. (3.85) is obvious. Defining Zv in Eq. (9.67) through the (T.sub/=T.ev/)-
differences a line is obtained in the (Y vs. X )-diagram schematically indicated in
Fig. 9.7b by a dashed-dotted line (gg’). In Fig. 9.7a in the same way the Tg-value is
indicated corresponding to X D 2=3.

From the foregoing analysis it is evident that the full set of requirements
determining the possibility of formation of vitreous condensates should consist of
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• The thermodynamic conditions for the possibility of the formation of condensed
phases (Eqs. (9.58)–(9.60)),

• The kinetic conditions providing the possibility of the primary formation of a
liquid condensate (here expressed via Eq. (9.47)),

• The conditions guaranteeing vitrification (i.e., sufficiently low temperatures
and/or sufficiently high condensation rates).

In a qualitative way, conditions for the formation of solid amorphous thin films
have been formulated already years ago by Hirth and Pound (1963) [368] as well
as by Chopra (1969) [134]. The mentioned authors argued that vitreous films are
obtained when the temperature of the substrate is so low that the deposited atoms
become immobile. Dependencies similar to the expressions, Eq. (9.67), derived here
have been proposed and verified experimentally by Krikorian and Sneed (1966)
[485] and Sloope and Tiller (1965) [781]. Additional effects due to the latent heat of
condensation and a more detailed analysis of vitrification in the process of formation
of thin films may be traced in a recent paper by Avramov et al. (1990) [32].

9.5.6 Discussion

As it became evident from the analysis given in the preceding section, the
prerequisite in obtaining an amorphous thin film – either liquid or glassy – is
the fulfilment of Ostwald’s rule of stages. The analysis summarized here and
given in more detail in the cited literature shows that in most cases the kinetic
requirements for the validity of this rule are indeed fulfilled. The direct formation
of crystalline condensates, although possible from a thermodynamic point of view,
is to be regarded as an exception under normal experimental conditions (i.e., for
typical C0-values). Thus the vapor-liquid-solid (VLS) mechanism of condensation
should be the normal mode in the formation of crystalline films: they are obtained
in the process of secondary crystallization of initially formed amorphous layers. It
was Palatnik (see Palatnik and Papirov (1964) [620]), who gave the first convincing
experimental evidence for a prevailing of the VLS-mechanism in most cases, even
in the formation of metallic thin films.

It is interesting to note that the VLS-mechanism of condensation was anticipated
many years ago by one of the greatest exponents of natural philosophy, by
J.W. Goethe [258]. In the foreword to Caruz’s mineralogy, Goethe argued that a
state of partial order and of softness – that of the liquid – has always to precede
the change from the state of absolute disorder – the vapor – to that of the absolute
order – the crystal. Similar statements can be found also in Hegel’s Naturphilosophie
(1817): a jump from a state of disorder to an absolutely ordered state has to proceed
through an intermediate state – that of a liquid. Such statements can be considered
as more or less definitely formulated precursors of Ostwald’s rule of stages.

The results outlined in this section may be used as a starting point also in
the consideration of the conditions of formation of glassy layers from solutions
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or by electrodeposition. By this type of process, presumably the natural glassy
mineral hyalite (amorphous SiO2) is formed by precipitation from hydrothermal
geological solutions. In application to electrolytic deposition (i.e., under galvano-
static conditions) the electric current determining the deposition rate has to exceed
some upper value. In this way, a simple formulation of the conditions for formation
of amorphous alloys in electrodeposition processes may be derived.



Chapter 10
Kinetics of Overall Crystallization: Kinetic
Criteria for Glass-Formation

10.1 Introduction

As mentioned in Sect. 2.4.1, it was Tammann who divided the process of overall
melt crystallization into two consecutive stages: the formation of crystallization
centers and their further growth. This division allows us to investigate separately
various specific features of the process of phase transformation. However, such a
division is in some respect artificial since it separates into different parts one process
which in fact involves both nucleation and growth of clusters generally taking place
simultaneously in the same volume of the melt. In such a way we have to solve
the problem of how the knowledge obtained in exploring separately nucleation
and growth can be interconnected in a subsequent step to give a satisfactory
description of the process of overall crystallization or of the overall course of phase
transformations, in general. This reverse problem – the synthesis of the knowledge
concerning nucleation and growth into a unique description of the kinetics of the
overall process of phase transformation – is a complicated and interesting task
and a beautiful mathematical problem. Its solution was achieved initially in two
independent and different approaches by two authors, by the outstanding Russian
mathematician Kolmogorov (1937) [464], the American metallurgist Avrami (1939,
1940) [19] and simultaneously by Johnson and Mehl (1939) [412]. By this reason,
the respective resulting in the theory final equation is widely also denoted as
Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation (cf. also [135]).

The main difficulty in solving the problem of overall crystallization kinetics in
the finite volume of an under-cooled melt is to account adequately for the possibility
of contact of different crystallites and the resulting inhibition of growth when two
or more growing crystallites meet. Another point is the decrease of the ratio of
the volume in the course of the transformation where further nucleation may take
place. Such a depletion of the volume open to nucleation has also to be taken
into account in the analysis of overall crystallization. Kolmogorov used a very
elegant derivation: He determined the probability that at time, t , elapsed from the
beginning of the crystallization process there is still a volume, V0 �V.t/, accessible

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 10, © Springer-Verlag Berlin Heidelberg 2013

395



396 10 Kinetics of Overall Crystallization: Kinetic Criteria for Glass-Formation

to nucleation. Here V.t/ is the actual volume of the newly evolving phase and V0
the initial volume of the melt. The details of Kolmogorov’s calculations may be
traced in his original publication (Kolmogorov (1937) [464] or in the textbook of
Umanski et al. (1955) [875]).

It has to be mentioned, however that a similar mathematical formalism was used
by another famous mathematician (Poisson; see his book on the theory of probability
(1837) [637]) a 100 years earlier in order to solve a more idyllic problem: It rains
and every rain drop forms a concentric wave on the surface of a pond. What is the
probability for the existence of an area on the pond not affected by such a concentric
wave at time, t? The answer to this question similarly requires the consideration of
generation of waves (i.e., of “wave” clusters formed by sporadic nucleation) and its
further motion in space (growth); it leads immediately to Kolmogorov’s solution for
the kinetics of overall crystallization.

Parallel derivations of the theory of overall crystallization were also obtained
in the framework of solid state reaction kinetics. Here in most cases the problem
is considered of how to find an appropriate description of the kinetics of overall
transformation in an ensemble of equal spheres assuming that the crystallization
(or reaction) of every sphere starts from the surface. For a solution to this problem,
more or less complicated expressions have been derived employing in part methods
of physico-chemical similarity or scaling. These attempts will also be mentioned in
the following sections so far as they are connected with the general problem under
investigation and the problem of kinetic stability of undercooled melts and glasses.

The adequate theoretical description of the overall course of phase transforma-
tions is of great importance per se. However, in connection with the discussion
of criteria of vitrification it has an additional merit. It was Uhlmann (1972 [872],
1977 [873], cf. also Turnbull (1969) [862]) who succeeded in demonstrating that
the simplest and most appropriate way to formulate kinetic criteria for glass-
formation from a physical point of view is to use as the starting point the equations
describing the overall kinetics of crystallization. The derivation of kinetic criteria
for vitrification will be given in this chapter after a discussion of the overall
crystallization kinetics where in addition to classical results also effects resulting
from the non-steady state character of the nucleation process are incorporated.

10.2 The Kolmogorov-Avrami Equation

While Kolmogorov used the theory of probability to derive the basic equations
describing the process of overall crystallization, Avrami preferred another more
formalistic way of analysis of this process. Avrami’s approach starts with a
determination of the so-called extended volume Yn, given, in general, by

Yn.t/ D !n

tZ
0

J.t 0/dt 0
0
@

tZ
t 0

v.t 00/dt 00
1
A
n

: (10.1)
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Table 10.1 Values of the Avrami coefficient, m D n C 1, for different dimensions of growth
and morphology of the clusters of the newly evolving phase. With h the thickness of the discs or
the radius of the needles is denoted; J and N � refer to the density of nuclei per cubic centimeter
formed sporadically or athermally. With J2 and N �

2 the respective quantities for two-dimensional
transformations (on surfaces) are denoted

Mechanism Growth Formula
of nucleation morphology for kn m D nC 1 Author

Sporadic Spherical !n
.nC 1/

v3J 4 Avrami [19]

Athermal Spherical !n
.nC 1/

v3N � 3 Avrami [19]

Sporadic Disc-like !n
.nC 1/

v2hJ 3 Avrami [19]

Athermal Disc-like !n
.nC 1/

v2hN � 2 Avrami [19]

Sporadic Needle-like !n
.nC 1/

vh2J 2 Avrami [19]

Athermal Needle-like !n
.nC 1/

vh2N � 1 Avrami [19]

Surface Surface
sporadic growth !n

.nC 1/
v2J2 3 Vetter [886]

Surface Surface
athermal radial growth !n

.nC 1/
v2N �

2 2 Vetter [886]

Sporadic Sheaf-like
bundle-like 5, 6 Morgan [575]

Here Yn is the volume of the newly evolving phase formed till time, t , when the
interaction of the growing crystallites and its effects on the transformation kinetics
are neglected. J is the nucleation rate, v the linear growth velocity and !n a
geometrical shape factor equal to (4	=3) for spheres. The parameter n has different
values for different nucleation and growth mechanisms and dimensions of space
(see Table 10.1), where the transformation takes place.

For constant (time and cluster-size independent) values of the growth velocity, v,
Eq. (10.1) gets the form

Yn.t/ D !nv
n

tZ
0

J.t 0/.t � t 0/ndt 0 ; (10.2)
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The degree of overall crystallization, ˛n.t/, at time, t , is defined as the ratio

˛n.t/ D Vn.t/

V0
; (10.3)

where Vn.t/ is, as mentioned, the volume crystallized at time t , V0 is the initial
volume of the melt. The value of ˛n can be determined experimentally using any
property of the crystallizing system, depending monotonically on ˛n.

In the derivation made by Avrami it is assumed that the change of the degree of
crystallization with time depends on the ratio of still non-crystallized volume in the
form

d˛n.t/ D .1 � ˛n.t//dYn.t/ : (10.4)

This equation may be integrated to give

˛n.t/ D 1 � expŒ�Yn.t/� : (10.5)

Kolmogorov and Avrami supposed that both the rates of nucleation and of growth
in Eq. (10.1) can be considered as time-independent quantities (J.t/ D J D const.;
v.t/ D v D const.). Under such an assumption the extended volume becomes
equal to

Yn.t/ D !nJv
n

tZ
0

.t � t 0/ndt 0 ; (10.6)

leading after integration to the well-known classical result

˛n.t/ D 1 � exp

�
� !n

.nC 1/
J vntnC1

�
: (10.7)

The dependence of ˛n on t for .nC 1/ > 1 has the typical sigmoidal course given
in Fig. 10.1; for nC 1 D 1 an inverted radioactive decay type dependence follows,
which is also shown in the figure.

In Eq. (10.7) instead of n usually the coefficient m D .n C 1/ is introduced.
The parameter m is denoted as the Avrami coefficient of the transformation. It
is an integer number with a value depending on the dimensionality and on the
morphology of growth. A derivation of Eq. (10.7) with respect to time gives the
rate of overall crystallization in the form

d˛n.t/

dt
D kn.nC 1/tn exp


�kntnC1� with kn D !n

.nC 1/
J vn : (10.8)

The parameter kn is the so-called Avrami kinetic coefficient. Equation (10.8) may
be rewritten in the form
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Fig. 10.2 ˛n.t/-course for n D 3 and different values of the kinetic Avrami coefficient, kn
(in seconds) according to Umanski et al. (1955) [875]. The different curves are drawn with the
following kn-values: (1): kn D 5 � 100; (2): kn D 5 � 101; (3): kn D 5 � 104; (4): kn D 5 � 105;
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d˛n.t/

dt
D .nC 1/k1=.nC1/

n f .˛/ ; (10.9)

f .˛n/ D .1 � ˛n/Œ� ln.1 � ˛n/�n=.nC1/ : (10.10)

The rate of change of the degree of overall crystallization, d˛n.t/=dt , has a
maximum (for n>1) at a definite value of ˛n, it corresponds to the point of inflexion
in the ˛n.t/-curves.

For a given value of n the value of the other parameters, for example, the value
of !n affects only the time scale of the process as illustrated in Fig. 10.2. The
dependence of n on the shape and the spatial dimensionality of growing crystalline
centers (rod-like: n D 1; disc-like: n D 2; spheres: n D 3) was analyzed first by
Avrami. It was discussed in detail by Hollomon and Turnbull (1953) [377] and in a
number of monographs (e.g., Mandelkern (1964) [528]; Young (1966) [938]; Barret
(1973) [38] etc.). In these discussions also the values of n for more complicated
morphologies of growth (bundle-like, sheaf-like crystallites, with n D 5; 6) were
established (see Morgan (1954) [575]). A summary of results in this respect is given
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in Table 10.1. In present-day terminology the result given by Eq. (10.7) corresponds
to a system where sporadic steady-state nucleation takes place with constantly
growing clusters at constant temperature (thus processes of phase formation with
an insufficient degree of thermal dissipation are not considered).

As shown by Avrami, above formalism also describes cases when in the course
of the thermal prehistory of the samples (e.g., during an initial cooling run in order
to vitrify the melt) a population, N �, of supercritical clusters of the new phase is
formed and frozen-in in the melt. In the process of a subsequent secondary heat
treatment (in our case in the process of isothermal devitrification above Tg) such
clusters behave like crystallization cores with an activity ˚ D 0. Avrami called
them athermal nuclei. Avrami’s analysis showed that when a population of athermal
nuclei (or other insoluble crystallization cores with ˚ � 1) exists in the melt for
a given value of n the term tnC1 in Eq. (10.7) has to be replaced by tn�1 and J by
N �
.tot/, where N �

.tot/ is the total number of athermal nuclei in the system per unit
volume. Thus, instead of Eq. (10.7) we have

˛n.t/ D 1 � exp

�
� !n

.nC 1/
N �
.tot/v

ntn�1
�
: (10.11)

In this way, when the morphology and thus the dimensionality of growth is known
from additional experiments, the analysis of experimentally observed ˛n.t/ depen-
dencies allows us to draw conclusions concerning the mechanism of nucleation
(homogeneous or heterogeneous) taking place in the system.

The analysis of experimental data on the overall crystallization kinetics is,
according to Eqs. (10.7) and (10.11), usually performed in coordinates flnŒ� ln.1�
˛n/� vs. log tg. In such coordinates we get

lnŒ� ln ˛n.t/� D ln

�
!n

.nC 1/
J vn

�
C .nC 1/ ln t : (10.12)

The slope of the curve gives the value of n; thus, if the type of growth is
established by independent experiments, the mechanism of nucleation involved in
the considered phase transformation can be determined.

Equation (10.12) may be reformulated also in a somewhat different form intro-
ducing a characteristic time scale, �.Avrami/, of the process of overall crystallization.
We may write

lnŒ� ln.1 � ˛n.t//� D ln

�
t

�.Avrami/

�.nC1/
; (10.13)

�.Avrami/ D
�

nC1

r
!n

.nC 1/
J vn

��1
:

This characteristic time interval �.Avrami/ can be determined thus simply from
experimental ˛n.t/-curves as the value of t for which ˛n.t/ equals 0:632 (see
Fig. 10.1).
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More generally, the time interval t.˛n/ after which a particular ratio ˛n of the
newly evolving phase has developed in the system, can be written according to
Eq. (10.13) as

t.˛n/ D �.Avrami/ Œ� ln.1� ˛n/�
1=.nC1/ : (10.14)

For small values of ˛n this equation may be approximated by

t.˛n/ D �.Avrami/˛
1=.nC1/
n for ˛n ! 0 : (10.15)

Experimental determinations of ˛n.t/ are most precise in the vicinity of ˛n Š
0:5. By this reason, for an investigation of the dependence of isothermal overall
crystallization processes on temperature curves [ln t.˛n D 0:5/] vs. temperature T
are often determined (see Fig. 10.3). This time interval t.˛n D 0:5/ is denoted as
half-crystallization time.

Equation (10.15) was employed as the starting point in the derivation of kinetic
criteria for vitrification (Uhlmann (1972) [872]). In such an approach it is assumed
that the system can be considered as a glass if the time interval the system is
heat treated is less than that to reach a very low, just perceptible, degree of
overall crystallization, which for microscopic optical observation methods equals
˛n � 10�6.

The formalism developed by Avrami has been applied to a number of problems
of crystallization of thin amorphous films (two-dimensional Avrami kinetics, see
Vetter (1967) [886]), surface induced crystallization of dispersed systems, solid state
reaction kinetics (Young (1966) [938]; Erofeev (1956) [190]; Belkevich (1956) [62];
Jacobs and Tompkins (1955) [397]). With respect to crystallization of glasses the
second of the mentioned applications is of particular interest in the crystallization
of grained glass samples (glass powders, glass semolina, grained glass frits) (see
Müller et al. (1986 [583], 1989 [582]); Fokin et al. (1977) [222]; Gutzow (1979)
[302]; Zanotto (1991) [947]; Gutzow et al. (1994) [336]).

The kinetics of overall crystallization taking place in dispersed systems (ensem-
bles of equal spheres of molten droplets, grained glass samples, dust particles etc.)
can be described in terms of the theoretical models proposed first by Mampel
(1940) [527] and Todes (1940) [840] (see also the generalizations given by Young
(1966) [938] and Barret (1973) [38]). In these models it is assumed that on the
surfaces of the particles either sporadic two-dimensional nucleation takes place or
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that a definite concentration of athermal nuclei exists. The further deterministic
growth of the supercritical clusters is directed to the bulk of the particles. Closed
analytical solutions to this problem in its general form, however, do not exist; for
the application of scaling methods of analysis see Kaseev (1956) [433].

This problem is also of interest from another more general point of view.
It is a particular case of a topochemical reaction, i.e., of a reaction where the
transformation rate is determined by the interface between newly formed aggregates
and the initial phase and not by the bulk concentration of the reactants. Analytical
solutions of this problem, however, are also not found. In a first approximation, the
kinetics of surface induced crystallization of dispersed systems can be described,
again, in terms of Eqs. (10.7) and (10.8) as (see Gutzow (1979) [302])

˛n.t/ D 1 � exp

�kntnC1� : (10.16)

However, the constants kn and n lose their original meaning and become, as it was
established in a recent investigation by Gutzow et al. (1994) [336], functions of the
ratio, v=R0, of the rate of growth, v, and the average size of the particles, R0, in the
disperse system. Equations of the considered type, in particular, Eqs. (10.7), (10.8)
and (10.10) are also applied as the starting point for a theoretical interpretation
of overall crystallization in non-isothermal crystallization (Yinnon and Uhlmann
(1983) [936]; Henderson (1979) [354]; see also Dobreva and Gutzow (1991) [174]).

Methods of analysis of non-isothermal crystallization kinetics are of particular
significance when differential scanning calometry (DSC) is applied in investigating
crystallization processes in glass-forming systems. In heating run DSC-experiments
usually the formalism developed by Henderson (1979) [354] is applied; cooling run
DSC-methods, as proven by Dobreva et al. (1993) [175], give, however, a more
direct possibility of determining the activity of substances and of other parameters
of importance for nucleation.

10.3 Generalization Accounting for Non-steady State
Nucleation Kinetics

The derivations given in the preceding section did not account for the time-lag in
nucleation. Consequently, they can be valid strictly speaking only if the time-lag in
nucleation can be neglected for the experimental situation considered. First attempts
to include time-lag effects into the description of overall crystallization were made
by Gutzow and Kashchiev (1971, 1972) [313] (see also Gutzow, Kashchiev, and
Avramov (1985) [330]). In their calculations the growth rate was further considered
as a constant but a time dependent nucleation rate was used in the form as proposed
by Collins (1959) [139] and Kashchiev (1969) [434]. The time-dependence of ˛n.t/
was obtained, thus, in the form
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Weinberg correction accounting for both steady-state effects and size-dependent growth rates (for
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Kashchiev result with a shift of the curves along the time-axis according to Eqs. (10.17) and
(10.18). With ˛c a just detectable degree of crystallization is indicated, which in the case of
transient nucleation is reached after a time interval t .˛c/ D b�� .ns/ C �.Avrami/

˛n.t/ D 1 � exp

�
� !n

.nC 1/
J vntnC1�n

�
t

� .ns/

��
: (10.17)

In the above equation, �n is a well-defined but relatively complicated function of
(t=�.ns/). Its course for different values of n is given in the paper by Gutzow and
Kashchiev (1971) [313].

If one applies in the simplest possible approach a step function for the description
of time-lag effects as introduced in Sect. 6.3.6 (Eq. (6.173)), an approximative
solution of the form

�n Š
8<
:
0 for 0 � t � b��.ns/�
1 � b��.ns/

t

�nC1
for b��.ns/ � t � 1 (10.18)

is found. With Kashchiev’s definition of the time-lag we have b� D 	2=6. As seen
from Fig. 10.4, Eq. (10.18) is a quite acceptable approximation for the�n-function,
it gives even exact results in both limiting cases t ! 0 and t ! 1. As manifested
by Eq. (10.18) within such an approximation the ˛n.t/-curves are simply shifted
along the t-axis by an interval b��.ns/ (see Fig. 10.4).

The solutions of the problem of non-steady state nucleation kinetics, described
here and proposed by Gutzow and Kashchiev (1971) [313], have, however, a
limitation: no evaluation is made for a possible size dependence of the rate of
growth of the supercritical clusters (compare Chap. 9, Eqs. (9.1) and (9.2)). Two
possibilities of avoiding such a limitation exist:
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• We can assume that J describes the rate not of the formation of critical clusters
but of supercritical clusters with sizes j  jc . In such a case the growth rate can
be considered as being approximately constant. This method is in fact used in the
original Kolmogorov-Avrami approach for the calculation of Yn, where a steady
state nucleation rate is assumed to be established in the system independent of
the cluster size. In non-steady state nucleation kinetics, however, the nucleation
frequency is size and time-dependent as shown both by numerical calculations
and the more recent analytical solutions of the Zeldovich equation by Shneidman
(1988 [746], 1992 [747]), Shi, Seinfeld, and Okuyama (1990) [752] and others
(see Sect. 6.3.5). In this way, considering the rate of formation of sufficiently
large clusters the assumption vR D v

.1/
R can be retained, however, more sophis-

ticated time-dependencies for J.t/ than the Collins-Kashchiev function have to
be used. This was done in a recent paper by Shi and Seinfeld (1991) [751].

• In an alternative approach, appropriate expressions for the rate of formation
of critical clusters can be used simultaneously with size-dependent growth
rates for the supercritical clusters. This method was applied by Shneidman and
Weinberg (1993) [750], who employed Shneidman’s J.jc; t/-dependence and a
size dependent growth rate vR of the form given by Eq. (9.1).

The results obtained in these two alternative but equivalent ways were also
expressed by the authors in the form given by Gutzow and Kashchiev (see
Eq. (10.17)). For comparison, the Shneidman-Weinberg result is shown in
Fig. 10.4a. In general, again, a typical sigmoid-shaped form of the �n.t/-course
is found shifted along the t-axis. In the ˛.t/-curve, again, a shift by an induction
period is observed determined by the time-lag in nucleation and by growth
effects.

Both solutions, mentioned above, can be considered as representing a new step
in the right direction. However, the advantages in the interpretation of experimental
results are till now (from an experimental point of view) relatively insignificant,
taking into account the limitations of the different techniques employed in present-
day investigations of the overall course of crystallization and the possibilities of
computer analysis of non-linear dependencies. It turns out that for practical purposes
it is usually sufficient to interpret experimental results by ˛.t/-curves of the Gutzow-
Kashchiev form as given by Eq. (10.17), i.e., by

˛n.t/ D 1 � exp
��kn.t � t.ind//

nC1 : (10.19)

Here, however, t.ind/ accounts both for time-lag effects in nucleation and growth
(Dobreva and Gutzow (1994) [177]).
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10.4 The Kinetics of Overall Crystallization: Experimental
Results

Different experimental methods have been employed in order to investigate overall
crystallization in glass-forming melts (quantitative X -ray or IR-analysis (Gutzow
(1979) [302]); pycnometric measurements). For polymeric systems different ver-
sions of dilatometric and DSC measurements have proven to be useful. In the first
experimental investigations of overall crystallization kinetics in devitrification of
an inorganic glass (NaPO3; see Gutzow (1959 [287], 1979 [302])) IR-spectroscopy
and direct chemical determinations of the fraction of the cyclic Na3P3O9 formed
in the melt were used (see Fig. 10.5 and Sect. 4.6). In the mentioned and similar
experiments (with Na-silicate glasses, with metaphosphates of bivalent metals –
ZnPO3, Cd PO3 etc.) glass semolina samples were used and a thermally activated
surface induced crystallization was observed as a rule (Gutzow (1965) [291]). The
experimental results were analyzed in logŒlog.1 � ˛n.t//�-coordinates and straight
lines with a slope between 2 and 3 have been found. Such n-values are typically
obtained in crystallization of medium sized glass semolina samples; for very large
sample fractions (i.e., for low (v=R0)-values) nD 1 is observed as a rule (Gutzow
et al. (1994) [336]).

According to the topo-chemical nature of the devitrification process taking
place in such samples and the mentioned generalized Mampel-Todes analysis the
Avrami coefficient, n, increases with increasing dispersity reaching values of the
order n D 3 for glass-powder like specimens guaranteeing the existence of a high
concentration of athermal surface nuclei and surface induced crystallization. Quite
different results are obtained (Westman and Krishnamurthy (1962) [918]; see also
Gutzow (1979) [291]) when the crystallization of relatively large glass samples
(glass beads) with an intact fire-polished surface is analyzed. In this case, well-
expressed induction periods are found resulting from a sporadic thermal surface
nucleation and further bulk growth (see Fig. 10.5b).

Volumetric determinations of the overall crystallization in glass-forming melts
reveal also another typical feature of the crystallization process (see Fig. 10.6):
Stabilization of the glass to higher densities (indicated in the figure by a broken
line) preceeds surface induced crystallization of the samples. Non-steady state
effects in the overall crystallization were demonstrated to be of importance also
in crystallization of metallic glass-forming alloys (Budurov et al. (1987) [108])
and of organic polymers (see Fig. 10.7; Gutzow and Dobreva (1993) [175]). ˛n.t/-
curves obtained with polymer melts at temperatures near the melting temperature,
Tm, show no measurable induction period while in the vicinity of the temperature
of vitrification, Tg , a significant shift of the curves along the time-axis is observed
as it is to be expected from Eqs. (10.17) and (10.18). The change of the length of
the induction time �.ind/ follows the predictions of the Gutzow-Kashchiev analysis
taking into account time-lag in nucleation.
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Fig. 10.5 Kinetics of devitrification of NaPO3-glass samples heat treated at different temperatures
above Tg (the temperatures are given as a parameter to each curve in ıC). (a) Typical example
of surface induced crystallization by athermal nuclei: Surface induced devitrification of glass
semolina (with average diameters of glass particles of the order d D 0:75�1:00mm) investigated
by quantitative IR-analysis (Gutzow (1964, 1966) [291, 322]). (b) Devitrification of glass beads
with an intact surface (thermally activated nucleation with a typical induction period (Westman
and Krishnamurthy (1962) [918])) examined by quantitative paper chromatography. Tg for NaPO3-
glass is 275 ıC

Fig. 10.6 Pycnometric determination of surface crystallization of a Na-silicate glass at 520 ıC
(glass semolina sample with d D 0:75 � 1:0mm). Note the initial stabilization process (broken
line) preceding crystallization
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Fig. 10.7 ˛n.t/-curves for polymers: Crystallization kinetics of (poly)ethylene terephthalate with
a typical non-steady-state shift for temperatures in the vicinity of Tg (equal to Tg D 340K). The
different curves refer to (1): 371 K; (2): 369 K; (3): 367 K (Gutzow and Dobreva (1992) [310];
Dobreva (1992) [173])
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10.5 Kinetic Criteria for Glass-Formation:
Time-Temperature-Transformation (TTT) Diagrams

There are three independent possibilities of estimating the ability of a given
substance to form a glass. The first one, which involves purely structural or
geometric ideas, has already been discussed in Chap. 4. Most well-known examples
in this direction are Goldschmidt’s ratio criterion and Zachariasen’s rules. However,
definite geometric rules have been developed and can be applied only to a given class
of substances (oxides, halides etc.). More generally, often intuitively formulated
statements, e.g. that glass-forming liquids should possess structures allowing the
formation of various complexes or groupings (Hägg’s rule) that they have to be
formed of complexes permitting “mixed” types of bonding (Smekal’s criterion (cf.
Rawson’s monograph [657])), Stanworth’s electronegativity model (1946) [792]
or the “p-electron” criterion of Winter (1957) [928], although of considerable
historical interest, give only qualitative indications. They cannot be considered
as quantitatively correct approaches in formulating criteria for glass-formation. A
summary of the above mentioned and similar ideas is given in the already cited
literature (Rawson (1967) [657]; Scholze (1965, 1977) [732]).

A second approach in formulating criteria for glass-formation is based upon bond
strength considerations. In this approach, it is supposed that the stronger the bonds
in the melts the more sluggish will be the process of rearrangement of the ambient
phase particles connected with crystallization (see again Rawson’s monograph
[657]). As a realistic parameter in such a line of argumentation the ratio between
bond strength and average kinetic energy of the ambient phase particles (e.g., at the
melting point Tm) may be introduced. In this way, a classification of substances can
be carried out into potential glass-formers and easily crystallizable substances. This
second approach, as well as argumentations based on purely geometric criteria, do
not take into account the conditions, in particular, the value of the cooling rate q, at
which vitrification takes place.

In both approaches it is assumed from the very beginning that substances can
be divided into two classes – ‘vitroids’ and ‘crystalloids’ (if an older classification
already mentioned in Chap. 2 is applied) – and that a more or less sharp distinction
between both classes of substances can be made. The necessary generalization can
be obtained only in the third, kinetic group of approaches by linking the glass-
forming ability of a substance with the kinetics of crystallization of the respective
under-cooled melts or with its kinetic stability. The first author to follow this
line of argumentation, although in a qualitative way, was one of the founders of
glass-science, G. Tammann. According to Tammann’s suggestion glass-formation
is to be expected when the curves representing the temperature dependencies of
nucleation and growth rates do not overlap (compare Fig. 2.12). In the reverse case
crystallization of the melt will probably occur. In a subsequent step in this direction,
the qualitative statement concerning the connection between glass-forming ability
and crystallization parameters had to be reformulated in a quantitative way. Here a
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number of different possibilities exist because, as it is evident from Chaps. 6 and 8,
any crystallization process is determined by three main parameters

• The steady-state nucleation rate J ,
• The rate of growth of crystalline clusters v and
• The non-steady state time-lag in nucleation �.ns/.

The temperature course of these three parameters, as it is to be expected theoreti-
cally, is schematically shown in Fig. 6.16.

In the pioneering works dealing with a derivation of kinetic criteria of glass-
formation, the glass-forming ability of substances was connected with only one
of the mentioned characteristics of the crystallization process. Dietzel and Wiekert
(1956) [172] supposed that the glass-forming ability, Eg , is inversely proportional
to the growth rate v (Eg 
 1=v). Turnbull and Cohen (1960) [865] connected Eg
with the steady-state nucleation rate as Eg 
 1=J while Gutzow and Kashchiev
(1970 [312], 1971 [313]) took Eg proportional to the time-lag in non-steady state
nucleation .Eg 
 �.ns//. In choosing, intuitively, only one of the three characteristics
of the crystallization process as the dominant one, the other two were disregarded in
the above-mentioned early studies as insignificant. Thus Turnbull and Cohen (1960)
[865] assumed an infinitely fast rate of growth of the crystalline nucleus after its
formation (which is in fact approximately true only for low-viscosity liquids near
to the melting temperature, Tm). Dietzel and Wiekert (1956) [172] started from the
preposition that devitrification (i.e., crystallization in the process of reheating the
glass) takes place on already existing nucleation cores formed during the quench
of the melt. In this way, devitrification was considered by the mentioned authors as
a process of crystal growth on athermal nuclei (see also Gutzow (1959) [287], in
particular, the experimental evidence given there).

In the approximation made by Gutzow and Kashchiev (1970 [312], 1971 [313])
it was supposed that in the crystallization of an undercooled melt, the time needed
to reach a very low just detectable percentage of crystallization, ˛c , by nucleation
and growth can be neglected as compared with the non-steady state time-lag, �.ns/.
In 1972, Uhlmann ([872]; see also his paper from 1977 [873]) formulated a kinetic
criterion for vitrification based on the Kolmogorov-Avrami synthesis of nucleation
and growth via the kinetics of the overall crystallization process. However, in
Uhlmann’s analysis of the kinetic stability of under-cooled melts the time-lag
in nucleation, �.ns/, was not taken into account. The necessary generalization of
Uhlmann’s criterion, based on the extended non-steady-state formulation of the
process of overall crystallization as it is given in the preceding sections, was carried
out in a paper by Gutzow, Kashchiev and Avramov (1985) [330]. In this way, a
criterion for glass-formation was obtained dependent on the three parameters of the
crystallization process (J , v and �.ns/) listed above.

The connection of the process of glass-formation with the kinetics of vitrifica-
tion, as described above, gives general criteria for glass-formation, valid for all
substances, and general rules for glass-formation which are independent of the
particular structure and the type of bonding of the considered substance. Moreover,
the kinetic approach allows us to calculate the minimal cooling rate required to
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obtain a given substance as a glass. Such estimates are of considerable technological
and practical interest. However, the theoretical significance of such calculations
is even greater. They give as a result that a sharp distinction between so-called
‘vitroids’ and ‘crystalloids’ has no meaning and that any substance can be vitrified
provided the required cooling rate can be attained experimentally.

The kinetic criterion for vitrification as developed first by Uhlmann is most easily
formulated in terms of the so-called T T T -diagrams. These diagrams describe the
Temperature dependence of the Time interval, t.˛c/, at which a given degree,
˛c , of the melt-crystal Transformation is reached. The value of ˛c is determined
by the lower limit of detection of crystallization. According to Uhlmann (1972)
[872] the lowest value of detectable crystallization corresponds (considering typical
optical microscopic methods of investigation) to ˛ Š 10�6 � 10�5. In some cases
(depending on the method of detection and the required degree of amorphousness)
to ˛c much smaller values have to be assigned to (e.g., in glasses designed for
application in fiber optics). In contrast, in employing other methods of structural
investigations like differential scanning microscopy (DSC) or X -ray analysis ˛c
may have considerably higher values (of the order of 10�3).

It follows from the general theory outlined in Sect. 10.2 that the temperature
dependence of t.˛c/ is determined, in general, by J , v and �.ns/ and thus by the
temperature course of the viscosity, �, and the thermodynamic driving force of
the transformation ��, respectively, the undercooling �T (compare Eqs. (10.13)
and (10.15)). The natural asymptotic lines of the T T T -curves, where t.˛c/ tends to
infinity, are found in this way at the melting temperature Tm, where�� equals zero
and at T D T0, where the viscosity tends to infinity. In both limiting cases �.Avrami/
approaches zero and a finite volume fraction of the crystalline phase can evolve only
after very large time intervals tending to infinity (see Fig. 10.8).

The shaded area on the right hand side of the figure corresponds to the region
in the parameter space where pronounced crystallization occurs, the non-shaded
area refers to amorphous samples. In Fig. 10.8, three different cooling curves are
indicated corresponding to different constant cooling rates, q D �dT=dt . In T T T -
diagrams T vs. log t.˛c/ coordinates are used and thus, at q D constant, the linear T
vs. t dependencies are transformed into curves of a form as shown in the figure. The
curve, corresponding to the cooling rate q3, intersects the region of the crystalline
phase. In such cases, the cooling rate is too low to prevent crystallization while for a



410 10 Kinetics of Overall Crystallization: Kinetic Criteria for Glass-Formation

quench with a rate q1 no detectable crystallization is found. The curve q2, which is
tangent to the t.˛c/-curve at the ‘nose’ temperature, TN , corresponds to the critical
or minimal cooling rate, qc , for which the formation of a glass is still possible.
T T T -curves have been used in experimental metallography for many years in order
to determine the conditions for formation of metastable or unstable phases. In glass
science, following Uhlmann’s suggestion, they are utilized to determine qc .

Carrying out a critical quench with a constant cooling rate the temperature TN is
reached after a time tN .˛c/, i.e.,

TN D qctN .˛c/ : (10.20)

The time interval tN .˛c/ can also be determined as the time for which, at a constant
temperature TN , a critical ratio of the crystalline phase has evolved in the system
(compare Fig. 10.8). Moreover, approximating TN by

TN � 1

2
.Tm C T0/ (10.21)

we get

qc Š 1

2

�
Tm C T0

tN .˛c/

�
: (10.22)

The above considerations have to be generalized if non-steady state effects (time-lag
in nucleation) are taken into account.

As mentioned in the previous sections non-steady state effects are of particular
importance for the understanding of nucleation in glass-forming systems and also
of the overall course of melt crystallization. Consequently, such a generalization is
necessary if critical cooling rates for glass-forming melts are estimated. The desired
generalization may be based on Eqs. (10.17) and (10.18) instead of Eqs. (10.13)
and (10.15). According to Eq. (10.17) we have to write

0
B@� ln.1 � ˛/

!

nC 1
Jvn

1
CA
1=.nC1/

� ˛1=.nC1/
�

!

nC 1
Jvn

�1=.nC1/ D t
nC1
p
�n : (10.23)

It turns out that, in general, a complicated dependence has to be expected between
the classical expression for t.˛c/ and the modified version taking into account
non-steady state effects in nucleation. However, with the approximative expression
Eq. (10.18) a simple linear relationship of the form

t.˛c/ D b��.ns/ C ˛1=.nC1/
c�

!

nC 1
Jvn

�1=.nC1/ D b��.ns/ C �.Avrami/ (10.24)
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is obtained (see also Gutzow, Kashchiev, and Avramov (1985) [330], Fig. 10.4).
It allows one a simple analysis of the influence of non-steady state effects on
processes of glass-formation as done by Gutzow, Avramov and Kästner (1990)
[331]. Rewriting Eq. (10.24) in the form

t.˛c/ Š b��.ns/
"
1C ˛

1=.nC1/
c

.J vn/1=.nC1/b��.ns/

#
D b��.ns/

�
1C �.Avrami/

b��.ns/
	

(10.25)

it becomes evident that in dependence on the value of the ratio �.Avrami/=�.ns/

the time interval t.˛c/ is entirely determined either by the time-lag �.ns/ (for
�.Avrami/=�

.ns/ � 1) or by �.Avrami/ (for �.Avrami/=�.ns/  1). In the latter case,
time-lag effects may be neglected as done by Uhlmann.

The temperature dependence of �.Avrami/ is determined both through kinetic
(the viscosity, �) and thermodynamic factors (supersaturation, ��). However,
according to Eqs. (6.122), (6.194), (8.11), (8.50) and (8.55) the quantities J , v
and �.ns/ depend on viscosity, �, as J 
 ��1, v
 ��1 and �.ns/ 
 �. Consequently,
the combination of these quantities .J vn/1=.nC1/� .ns/ is independent of � and the
temperature dependence of �.Avrami/ is determined exclusively by the temperature
dependence of the thermodynamic driving force of the transformation.

A more detailed analysis given in above cited paper allows us to conclude that for
homogeneous nucleation �.Avrami/  �.ns/ holds, in general, and we may rewrite
Eq. (10.25) as

t.˛c/ Š �.Avrami/ for homogeneous nucleation : (10.26)

Considering catalyzed nucleation, in addition, the activity ˚ (cf. Eqs. (7.8)
and (7.18)) and the dependence of nucleation rate and time-lag on the concentration
of surfactants (cf. Eqs. (7.34) and (7.35)) have to be taken into account in
determining the ratio �.Avrami/=�

.ns/. However, the dependence of the nucleation
rate on these factors is much steeper (of exponential form) and, consequently,

t.˛c/ Š b��� for catalyzed nucleation (10.27)

has to be expected as supposed years ago by Gutzow and Kashchiev (1970 [312],
1971 [313]). Thus, two different estimates for t.˛c/ may be made, one for the case
if vitrification in a pure substance is considered and the other when nucleation in
glass-forming melts under more realistic conditions is analyzed, i.e., in the presence
of surface-active contaminants and crystallization cores.

After some straightforward computations, taking into account realistic values of
the parameters (e.g., the number of nucleation coresN �

.cores/ has a value of 107�108
cm�3 for natural and 1012�1013 cm�3 for artificially doped melts) and applying the
Skapski-Turnbull rule, Eq. (6.127), we arrive at
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t.˛c/ Š ˛1=4c c1c2�.TN / exp

�
�32	�

3�Sm.1 � �
0 /

�
0

3R

�
; (10.28)

for homogeneous nucleation,

t.˛c/ Š c2
R

�Sm
�.TN /

3
p
˚

�
1 � ��

�

�
; (10.29)

for catalyzed nucleation.

In writing Eq. (10.29) it was assumed that in the presence of both surface active
substances and foreign nucleation cores an additive catalytic effect on the time-lag
has to be expected (cf. Eqs. (7.18) and (7.35)). The possible combined effect of both
mentioned factors on �G.cluster/

c and, in particular, on the steady-state nucleation
rate J , has been investigated in detail by Kaischew and Mutaftschiev (1959) [422].
In the above equations, c1 and c2 are numerical constants having values of the order
c1 � 0:1, c2 � 0:25, respectively, and �

0 is defined by �
0 D .1C T0=Tm/=2.

In order to calculate t.˛c/ we have to specify the temperature dependence of the
time of molecular relaxation, �.TN /, in above equations. A thorough analysis (cf.
Gutzow, Avramov, and Kästner (1990) [331]) leads to �.TN / Š exp.U.Tm/=RTm/
as an optimal estimate for �.TN /. Introducing this estimate into above equations,
Eqs. (10.28) and (10.29), we arrive, finally, at

log qc Š 20 � U.Tm/

RTm
� 2�Sm

R
(10.30)

for homogeneous nucleation,

log qc Š 17� U.Tm/

RTm
(10.31)

for catalyzed nucleation.

In deriving these relations the value of the parameter � in the Skapski-Turnbull rule
was set equal to � D 0:45. Moreover, it has been assumed that the ratio T0=Tm
varies within the limits 0.2–0.5 that Tm varies in between 200 and 2,000 K and that
.1 � ��=�/

3
p
˚ D 0:1 holds. In this way estimates of qc may be obtained out

exclusively by knowing the molar entropy of melting �Sm and the value of the
activation energy U at the melting temperature Tm.

In Fig. 10.9, a summary of data for halides collected from the respective reference
literature is given. In the case when U.Tm/-values were not known precisely, the
values were estimated by a procedure described by Gutzow, Avramov and Kästner
(1990) [331]. By a substitution of these data the qc-values were calculated with
Eqs. (10.30) and (10.31) and plotted as a function of the cation to anion ratio
RC=RA. Based on the value of the critical cooling rate required to obtain a glass
in the process of cooling of the melt, again, a classification of substances may
be introduced into ‘vitroids’ (substances which may be easily transformed into a
glass) and ‘crystalloids’. In Fig. 10.9, for example, this division was performed
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by assigning to the boundary between both classes of substances the value qc D
1Ks�1. Such an obviously more or less artificial division allows one to establish
relationships between kinetic and structural criteria of glass-formation as discussed
in the next section.

10.6 Kinetic, Bond Energy and Structural Criteria
for Vitrification: A Comparison

When the value of the activation energy for viscous flow U.Tm/, appearing in
Eqs. (10.30) and (10.31), is calculated according to existing model theories (see
Chap. 12 and the already cited paper by Gutzow, Avramov and Kästner (1990)
[331]) it turns out that because of U.Tm/ Š �Hev , the critical cooling rate, qc ,
may be written in the form

log qc Š constant � �Hsubl

RTm
; �Hsubl D �Hev C Tm�Sm : (10.32)
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Here �Hsubl and �Hev are the molar enthalpies of sublimation and evaporation of
the melt, respectively,

Suppose, now, we introduced, as discussed in the previous section, the value
qc D 1Ks�1 of the cooling rate as the criterion for a division of the substances into
‘vitroids’ and ‘crystalloids’, then ‘vitroids’ are substances for which the inequality

�Hsubl

RTm
� constant (10.33)

holds (cf. Eq. (10.32)). Taking into account that the enthalpy of sublimation of a
substance is proportional to its bond energy it is evident that Eq. (10.33) reflects in
fact Sun’s and Rawson’s ‘bond-strength’ criterion for glass-formation already men-
tioned at the beginning of Sect. 10.5. With Eq. (10.32), the enthalpy of evaporation
can be expressed through the entropy of evaporation as �Hev D Tb�Sev , where
Tb denotes the boiling temperature of the melt. Taking into account the relation
Tb � .5=2/Tm (cf. Eq. (2.74)) we obtain from Eq. (10.31)

�Sev C�Sm

R
� constant : (10.34)

The inequality Eq. (10.34) indicates that as ‘vitroids’ substances may be considered
for which the sum of the entropies of evaporation and melting is a sufficiently large
quantity. This condition is fulfilled, as a rule, for associating liquids, i.e., for systems
with a tendency of formation of complex or mixed type structural units in the melt.
In this way, a connection may be established with the criteria formulated by Smekal
and Hägg.

In Fig. 10.9, the values of qc for about 100 binary halides are represented. It is
seen that typical halide glass-formers (BeF2, ZnCl2, ZnBr2) as well as substances
like SbF5, forming highly viscous melts, or halides acting as glass promoters in
multi-component glass-forming halide systems (CdCl2, PbCl2) are located within
the range of (RC=RA)-values suggested by Goldschmidt’s radius ratio criterion (cf.
Eq. (4.1)) if qc D 1 (or equivalently log qc D 0) is taken as the boundary between
‘vitroids’ and ‘crystalloids’. Indeed, the points of intersection of the curves drawn
as an envelope of the experimental data in ŒU.Tm/C2Tm�Sm�=.RTm/ vs. (RC=RA)
coordinates (full curves in Fig. 10.9) with the straight line qc D 1Ks�1 show that
the glass-forming halides are located inside the limits

0:2 � RC

RA
� 0:5 : (10.35)

This result may be regarded as a direct confirmation of Goldschmidt’s original
statement (Eq. (4.1)) and similar developments such as Poulain’s structural criterion
for halide substances.
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However, not all halides which fall within the limits given by Eq. (10.35) are,
indeed, glass-formers. In contrast, below the log qc D 0 line a great number of
substances are found, for which Eq. (10.30) determines such enormous qc-values
that glass-formation is practically excluded for them. This result is a verification
of the conclusion that Eq. (10.35) (like Goldschmidt’s and similar criteria) is a
necessary but not a sufficient criterion for glass-formation. A closer inspection of
the data summarized in Fig. 10.9 reveals that only halides (for which Eq. (10.35)
is fulfilled) with valencies higher than two are potential glass-formers. Moreover,
only those halides have sufficiently large U.Tm/-values for which a well-expressed
tendency of polymerization of the primary building units is found. Structural data,
available for the known or prospective glass-formers, verify, in fact that halides
like ZnCl2, ZnBr2, BeF2, PdCl2, VF5, SbBr3 etc. form polymer-like associative
structural elements in the melt and can be termed thus as polymeric halides. For
halides both these additional requirements, which have to be fulfilled together
with Eq. (10.35), guaranty a high glass-forming ability. In this sense they are
supplementary to Eq. (10.35) similarly as Zachariasen’s or Hägg’s criteria had to
be combined with Goldschmidt’s original statement.

The analysis carried out in the present section shows that, in fact, structural or
bond energy criteria for vitrification can be, at least, in principle, derived from the
more general physical picture of kinetic stability of under-cooled melts and from
the kinetic criteria for glass-formation outlined in the previous section.



Chapter 11
Liquid Phase Separation in Glass-Forming Melts

11.1 Introduction

Up to now in considering in our derivations possible phase transformations in
undercooled glass-forming melts mainly segregation and crystallization processes
were considered proceeding via nucleation and growth and independently from
each other. However, in most multi-component systems crystallization may be
accompanied by processes of liquid phase separation and vice versa.1 In addition,
another mechanism of phase separation may be also of importance denoted as
spinodal decomposition.

Let us consider, for simplicity, an idealized two-component glass-forming
system, in which both liquid phase separation and crystallization may take place.
The phase diagram is shown on Fig. 11.1. Inside the binodal curve (acb) the
homogeneous system is thermodynamically unstable with respect to decomposition

1For a recent analysis of phase separation in solutions including finite-size effects in terms of
the generalized Gibbs’ approach, cf. Schmelzer et al. (2000, 2004, 2007) [702, 722, 725, 726],
Abyzov and Schmelzer (2007) [3], Abyzov et al. (2010) [4] and Schmelzer and Abyzov (2011)
[703]. In this analysis, basic features of spinodal decomposition, on one side, and nucleation, on
the other side, and the transition between both mechanisms are analyzed within the framework
of a generalized thermodynamic cluster model based on the generalized Gibbs approach. Hereby
the clusters, representing the density or composition variations in the system, may change with
time both in size and in their intensive state parameters (density and composition, for example).
In the first part of the analysis, we consider there phase separation processes in dependence on the
initial state of the system for the case when changes of the state parameters of the ambient system
due to the evolution of the clusters can be neglected as this is the case for cluster formation in an
infinite system. As a next step, the effect of changes of the state parameters on cluster evolution
is analyzed. Such depletion effects are of importance both for the analysis of phase formation in
confined systems and for the understanding of the evolution of ensembles of clusters in large (in
the limit infinite) systems. The results of the thermodynamic analysis are employed in both cases
to exhibit the effect of thermodynamic constraints on the dynamics of phase separation processes
as it has been performed briefly in the present book, employing the classical Gibbs’S approach in
Sect. 6.3.10.

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 11, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 11.1 Schematic binary
phase diagram of a
glass-forming system with
eutectic point (e) and entirely
subsolidus liquid-liquid
immiscibility cupola with the
binodal (acb) and spinodal
(fcd) curves

processes and may separate into a two-phase system either by nucleation and growth
(approximately in the region bounded by the binodal and spinodal curves) or by
spinodal decomposition (inside the spinodal curve (fcd)) (see, e.g., van der Waals
(1899) [880]; Cahn and Hilliard (1958, 1959) [119]; Cook (1970) [141]; Langer,
Bar-on, and Miller (1975) [497]; Binder (1992) [82]; James (1975) [401]; Andreev,
Mazurin et al. (1974) [14]). If a sample is cooled from the liquidus temperature T1
to some temperature T3 (we assume that T3 > Tg is fulfilled) at a composition x,
indicated in the figure by an arrow, then, in addition to liquid phase separation, the
component A may crystallize. The driving force for the crystallization process is
determined by the under-cooling,�T D T2 � T3.

11.2 Kinetics of Spinodal Decomposition

Following van der Waals ((1893) [880]; see also Rowlinson (1979) [670]; Cahn
and Hilliard (1958, 1959) [119]) in a first approximation the Gibbs free energy of a
binary solution at constant pressure and temperature may be expressed as

G D
Z �

g.c/C �˙.rc/2

dV : (11.1)

Here c.r; t/ is the volume density of one of the components of the solution, g.c/
the volume density of the Gibbs free energy and �˙ > 0 a coefficient describing the
contributions to the thermodynamic potential due to inhomogeneities in the system
(interfacial contributions). Provided the deviations from the initial concentration c0
are relatively small, then a Taylor expansion of g results in the following expression
for the change of the Gibbs free energy �G connected with the evolution of the
concentration field c.r; t/
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�G D
Z �

1

2
g00.c0; T /.c � c0/

2 C �˙.rc/2
�
dV ; g00.c0; T / D

�
@2g

@c2

�
C0;T

:

(11.2)

In agreement with the thermodynamic stability conditions a spontaneous growth of
the density fluctuations takes place only for g00.c0; T / < 0, since only in this case
is the amplification of the density profile accompanied by a decrease of the free
enthalpy of the system. Here g00 denotes the second partial derivative of the volume
density of the Gibbs free energy, g, with respect to concentration, c.

In the framework of the Cahn-Hilliard-Cook theory the kinetics of spinodal
decomposition is described by a generalized diffusion equation interconnecting the
variations of the thermodynamic potentialG with the kinetics of the decomposition
process. This generalized diffusion equation follows from the set of equations,
Eqs. (11.3)–(11.5)

@c

@t
C divj D 0 ; (11.3)

j D jD C jB ; (11.4)

jD D �Mr ıG
ıc

; jB D �rB.r; t/ (11.5)

and has the form

@c.r; t/
@t

D Mg00.c0; T /r2c.r; t/ � 2M�˙r4c.r; t/C r2B.r; t/ : (11.6)

Here jD has the meaning of a deterministically determined density of fluxes of
particles, while jB describes the flow connected with the fluctuating scalar field
B.r; t/, superimposed on the deterministic flow. M is a mobility coefficient. The
c.r; t/ and B.r; t/ fields can be expressed through Fourier expansions via

c.r; t/ D c0 C
C1X
�1

S.kn; t/ exp.iknr/ ; (11.7)

S.kn; t/ D 1

V

Z
Œc.r; t/ � c0� exp.�iknr/dr ; (11.8)

B.r; t/ D
C1X
�1

L.kn; t/ exp.iknr/ ; (11.9)

L.kn; t/ D 1

V

Z
B.r; t/ exp.�iknr/dr : (11.10)

V is the volume of the system.
From above equations the following differential equation for a description of the

time dependence of the spectral function, S.kn; t/, can be obtained
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@S.k; t/
@t

D R.k; t/S.k; t/ � k2L.k; t/ ; (11.11)

where the amplification factor, R.k; t/, is determined by

R.k; t/ D �Mk2
"�

@2g

@c2

�
C0;T

#
: (11.12)

The subscript n in kn is omitted here and further-on for simplicity of the notations.
The value of the wave number k, for which the derivative (@S=@t) is equal to zero,
is commonly denoted as critical wave number.

From an experimental point of view processes of spinodal decomposition are
studied usually by X -ray measurements. In these and similar investigations not the
spectral function, S , itself but a quantity proportional to the average of the square of
the spectral function hSS�i is measured. The time-dependence of this quantity can
be shown to be governed by an equation of a form similar to Eq. (11.11), i.e.,

@hS2.k; t/i
@t

D 2R.k; t/hS2.k; t/i C k4Q.k/ (11.13)

with (see, e.g., Ludwig, Schmelzer, and Milchev (1994) [522])

Q.k/ D 2MkBT

V

1

k2
: (11.14)

The theory outlined so far is applicable strictly only for relatively small deviations
from the initial state. For a description of the later stages of the transformation
additional non-linear terms have to be included in the basic equations (see, e.g.,
Langer, Bar-on, and Miller (1975) [497]; Binder (1992) [82]).

However, an impression of the overall scenario of spinodal decomposition one
may also obtain by solving the above given equations but assuming that the system
where the transformation occurs is adiabatically isolated from the environment. In
such a case, the latent heat of the transformation results in a change of temperature,
which is equivalent to a decrease of the thermodynamic driving force of the
transformation. Similarly to segregation processes proceeding via nucleation and
growth one may expect that such changes of the state of the system determine
qualitatively the whole course of the transformation also for processes starting from
unstable initial states.

In Fig. 11.2a–c results of the numerical solution of the set of equations, given
above, are shown. Figure 11.2a shows the time dependence of the critical wave
vector (in reduced coordinates) as a function of time. After an initial period,
where the critical wave vector is practically not changed, a stage of rapid decrease
in kc follows going over continuously into a third state of reorganization of
the concentration field connected with the elimination of the contributions in
the Fourier expansion with higher wave numbers in favor of the smaller ones.



11.2 Kinetics of Spinodal Decomposition 421

a

-1.7

-1.5

-1.3

-1.1

-0.9

lg t

lg
 k c

b

0

0.2

0.8

1.0

1.2

g(
k/

k c
)

g(
k/

k c
)

0.6

0.4

7.0 7.5 8.0 8.5 9.0 9.5

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

c

0

0.2

0.8

1.0

0.6

0.4

k/kc k/kc

Fig. 11.2 (a): Critical wave number, kc , versus time, t , in reduced units and a logarithmic plot.
The linear part of the curve in the third stage of the decomposition process indicates the existence
of a power law for the critical wave number, kc , being proportional to t�˛. As the result of a
linear regression ˛ D 0:245 is found. (b/c): The wave number dependent part of the structure
factor g.k=kc/ for different moments of time (in reduced units). The different curves correspond
to t D 1;000 (full curve), t D 2;000 (dotted curve), t D 3;000 (dashed curve), t D 4;000

(dashed-dotted curve), t D 5;000 (double dashed curve). In the course of the evolution a time
independent distribution in reduced variables is approached as shown in figure (c). The normalized
curves obtained for t D 5;000 (full curve) and t D 9;000 (dotted curve) coincide practically

This process resembles the stage of competitive growth of ensembles of clusters
corresponding to Ostwald ripening. It is characterized by power laws kc 
 t�1=4
and a time-independence of the structure function in reduced variables .k=kc/ (see
Fig. 11.2b, c). Hereby the square of the structure function is written in the form

hS2.k; t/i D f .t/g

�
k

kc

�
(11.15)

with Z
g

�
k

kc

�
d

�
k

kc

�
D 1 : (11.16)

The results, shown in Fig. 11.2, can be verified both analytically, by so-called
Cell Dynamical Systems- (CDS; see Oono and Puri (1989) [613]) and by Monte-
Carlo simulations (for the details see Schmelzer and Milchev (1991) [709]; Ludwig
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a

b
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Fig. 11.3 Different stages of a phase transformation as obtained, as a rule, by (a) spinodal
decomposition and (b) nucleation and growth

et al. (1994) [522]; Milchev et al. (1994) [564]; Schmelzer et al. (1995) [718]).
Schematically the basic difference between the two types of transformations dis-
cussed – nucleation and growth, respectively, spinodal decomposition – is illustrated
in Fig. 11.3. The pictures are obtained based on CDS-simulation methods (for
the details see Ludwig (1993) [520]). It is to be noted, however that sometimes
nucleation and growth processes may also lead to interconnected structures typical
of spinodal decomposition and, vice versa, spinodal decomposition to localized
clusters distributed randomly in the matrix.

11.3 Liquid-Phase Separation Versus Crystallization

Whether liquid phase separation or crystallization takes place in the system depends
on the interrelation between the rates of formation of the two phases (cf. the
discussion of Ostwald’s rule of stages in Sect. 9.5). Inside the spinodal curve there is
no barrier to nucleation. Therefore, from such initial states liquid phase separation
commonly takes place well before the crystalline phase starts to develop. In
considering binodal liquid phase separation, starting from initial states as indicated
in Fig. 11.1, the process has to be described as a non-steady state nucleation process
with a time-dependent nucleation rate.

An experimental proof of the intrinsic non-steady state character of liquid phase
separation processes was given first by Ohlberg and Hammel (1965) ([610]; see also
Hammel (1967) [345]). One of the N.t/-curves obtained by these authors is shown
on Fig. 11.4. The curve corresponds to the N.t/-dependencies given in Fig. 7.4.
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Here, however, the saturation plateau is determined by exhausting the volume of
the melt accessible for phase formation. It is particularly important to note that the
experimental data of Ohlberg and Hammel give (taking into account the respective
viscosity data and Eq. (6.194)) a value of the sticking coefficient & of the order
& � 1. Such a value has to be expected having in mind the considerations made in
Sect. 6.3.2 concerning the values of & in the case of formation of isotropic phases.

This result implies that at approximately equal values of the viscosities the
time-lags for the formation of the crystalline (�c), respectively, the fluid phases
(�f ) behave as �c  �f . Moreover, it has to be expected that the value of the
specific surface energy for the liquid-liquid interface is lower than the corresponding
value for the liquid-crystal surface. Consequently, the work of formation of critical
clusters for liquid-liquid phase separation processes may be expected, in general, to
be considerably lower as compared with the respective value for crystal formation.
Thus, also Jf .jc/  Jc.jc/ holds, in general, and a situation as shown in Fig. 9.4a
is to be expected.

From the above considerations it follows that in both cases of binodal and spin-
odal liquid phase separation the liquid phase will be formed before the formation of
the crystalline phase takes place. This result is of considerable technological interest
for the kinetics of formation of glass-ceramic materials. It can be considered as a
special case of fulfilment of Ostwald’s rule of stages (see also Gutzow and Toschev
(1968) [318] and the discussion in Sect. 9.5).

11.4 On the Effect of Primary Liquid-Phase Separation
on Crystallization

The separation of the initially homogeneous phase into two or more different liquid
phases may substantially affect the course of the subsequent crystallization process
since
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Fig. 11.5 Schematic diagram illustrating possible effects of liquid-liquid phase separation on
crystallization phenomena. The initially homogeneous melt (0) is phase separated after heat
treatment (I). (A): Crystallization of the droplet phase is facilitated; .A1; A2/: Crystallized drops
serve as seeds for the subsequent crystallization of the matrix phase (A3); Partial or even complete
crystallization of the matrix follows; (B): Formation of active crystallization cores is possible
in the droplet phase (B1); Active cores cause complete crystallization of the droplet phase (B2)
followed eventually by states (A3) and (A4); (C): Crystallization of the matrix phase facilitated,
e.g., through the formation of insoluble seed crystals (C1); complete crystallization of the matrix
phase is achieved (C2) and the crystallization of the droplet phase is induced via the droplet-matrix
interface (C3). The result is a completed crystallization of both matrix and droplet phases (C4)

• The supersaturation with respect to crystallization in the different liquid phases
may be quite different than the initial homogeneous phase;

• The viscosity in the evolving new phases may differ;
• In the bulk of the melt new interfaces are created which may favor nucleation;
• Nucleation cores may be distributed differently in the newly formed phases.

The possible interdependence between liquation and crystallization phenomena is
schematically illustrated in Fig. 11.5. The different stages of the phase separation
process shown in this diagram are confirmed by well-known electron microscopic
observations made by Vogel (see, for example his monograph from (1979) [888])
and by experimental evidence reported by Tashiro (1969) [826]. Further evidence
concerning the kinetics and thermodynamics of liquid phase separation and on
the particular mode denoted as spinodal decomposition may be found in the cited
literature. The particular problems of liquid phase separation in glass-forming melts
are treated in details in James’s review article (1975) [401], in the monographs of
Andreev, Mazurin et al. (1974) [14] and Vogel (1965 [888], 1979 [889]).



Chapter 12
Rheology of Glass-Forming Melts

12.1 Introduction

Rheology, as indicated by its very name (rheos: to flow) is in its classical sense the
science describing flow processes of matter, i.e., the displacement of the building
units of a substance as a whole or parts of it under the influence of an applied force.
The modern interpretation of rheology includes both the meaning as given above
as well as the description of relaxation kinetics, i.e., the response of a system after
an initially applied stress (or, more general, an external influence) has ceased to
operate. An instructive and technically important example of the latter process is
relaxation of strains (strain birefringence) in glass-annealing. In the terminology
used in Chap. 3, annealing and relaxation of glasses may be considered as particular
examples of stabilization processes, i.e., the evolution of an initially frozen-in
system of increased disordered to the state of metastable equilibrium characterized
by a lower degree of disorder.

Two approaches have been developed in the rheology of glass-forming melts:

• A phenomenological approach, based on considerations following from a num-
ber of phenomenological models and their combinations;

• A microscopic approach involving more or less well-defined molecular model
considerations concerning the mechanism of flow.

In the phenomenological approach, the flow and relaxation of condensed matter is
described with model dependencies derived from the behavior of different idealized
systems. The two basic models, which are used in different combinations, are
Hooke’s absolutely rigid elastic body and Newton’s viscous liquid.

The classical phenomenological models of flow and relaxation of viscoelastic
bodies, due to Maxwell, Kelvin, Voigt, Zener and others, can also be obtained
as combinations of elementary mechanical elements reflecting the properties of
Hookean bodies (elastic spring) and Newtonian fluids (dashpot). An overview on
the classical phenomenological model approaches and of their significance in the
development in the theory of flow and relaxation for different systems can be

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 12, © Springer-Verlag Berlin Heidelberg 2013
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found in the respective literature (see, e.g., Reiner (1956) [659]; Freudenthal (1956)
[235]; Wilkinson (1960) [922]; Sobotka (1984) [785] for a general description of
rheological models; Treloar (1949) [853]; Stanworth (1953) [793]; Morey (1954)
[574]; Alfrey (1955) [7] for the application to glasses and polymer systems).
Of exceptional importance was the finding (due mainly to Meixner (1953, 1954)
[555, 556]; see also Zener’s model described by Dehlinger (1955) [162]) that
the most important of the classical rheological models can be derived based on
the thermodynamics of irreversible processes in its linear formulation. Zener’s
model, giving a very general description of viscoelastic bodies, turned out to be a
consequence of one of the basic relationships of the thermodynamics of irreversible
processes – the so-called dynamic equation of state (for the derivation of Zener’s
model from this fundamental equation see Meixner’s original paper [555] or Haase
(1963) [339]). In this sense the phenomenological rheology has no longer to be
considered as a random collection of more or less intuitively formulated models of
flow and relaxation but as a consequence of another more general phenomenological
theoretical approach – the thermodynamic one.

One of the most fruitful and general directions in the microscopic approach
to the description of flow turned out to be the Prandtl-Eyring model of flow
under shear stress (see Prandtl (1928) [644]; Glasstone, Laidler, and Eyring (1941)
[255] and generalizations of this model by Beaver (1986) [56]; Gutzow, Dobreva,
and Schmelzer (1993) [332]). From a more general point of view the Prandtl-
Eyring model can be interpreted as an activated complex approach in terms of the
absolute rate theory. Other important molecular concepts are connected with free
volume and hole theories of liquids, with the “thermodynamic” approach in deriving
the temperature dependence of the viscosity (developed by Adam and Gibbs (1965)
[5]), energetic level models (bond lattice models; Rao and Angell (1972) [656])
with entangled or free draining coil models of polymer solutions (Bueche (1962)
[109]) etc. Molecular models of relaxation of glass-forming melts, formulated in
terms of two-, three- or multi-dimensional energetic level models were derived by
Volkenstein and Ptizyn (1956) [892] (see also Volkenstein (1959) [891]; Mazurin
(1986) [543]; Avramov and Milchev (1984 [25], 1988 [26], 1991 [21])). The latter
mentioned authors also succeeded in giving a molecular model of vitrification and
relaxation of glasses capable of describing memory effects.

A summary of classical attempts in the molecular theory of rheology may
by found in the monographs by Frenkel (1946) [233], Glasstone et al. (1941)
[255], Bartenev, Frenkel, Sanditov (1982, 1986, 1990) [47, 48, 683], and Melvin-
Hughes (1972) [567]; more recent developments in application to polymer systems
(“tube-flow” models) are discussed by Doi (1980) [178]. In Frischat’s monograph
(1975) [237] a summary of model approaches and experimental data can be
found concerning diffusion and self-diffusion in inorganic glass-forming systems.
A thorough discussion of the different microscopic approaches to viscous flow and
molecular models of diffusion including disordered systems is given by Manning
(1968) [529]; this problem is also treated in detail by Milchev and Avramov (1983)
[559] (cf. also [121]). It turns out that in terms of different molecular models of
flow the viscosity and self-diffusion in glass-forming melts can even be described
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quantitatively. However, all efforts to interpret relaxation in simple and polymer
glass-forming melts, using either linear combinations of Newtonian and Hookean
elements or existing molecular models, failed or allowed one only a qualitative
description.

An example in this respect is the failure to describe processes of glass annealing
by using Maxwell’s equation, i.e., a linear combination of elements reflecting
Hookean elastic bodies and Newtonian viscous flow. A summary concerning this
problem is given by Morey (1954) [574]. In order to overcome the difficulties con-
nected with the description of relaxation in real systems three different attempts have
been developed:

• More than one relaxation time is introduced into the description using a set
of linear relaxation equations of Maxwellian type with more or less arbitrarily
chosen relaxation times. Hereby up to 6–10 Maxwellian exponents are employed
in order to reach a quantitatively correct description of the process. This method,
described in detail by Mazurin (1986) [543], has been widely employed by
Kovacs (cf. Kovacs et al. (1979) [479] and for earlier investigations Treloar
(1949) [853]).

• More complicated non-linear empirical dependencies are used, in particular,
relations with a time-dependent relaxation time. A classical example in this
respect is Kohlrausch’s fractional exponent formula which he first proposed in
1876 [462]. It was introduced into the rheology of silicate glass-forming melts
by Rekhson and Mazurin (1974, 1977) [542, 662]. Similar time-dependencies
were used by Jenckel (1955) [407] in order to model relaxation in organic glass-
forming melts and by Williams and Watts for a description of dielectric relaxation
(see Mazurin (1986) [543]). Another classical non-linear dependence of this type
is the Adams-Williamson annealing equation, employed for many years in the
technology of glass annealing [6], (see also Morey (1954) [574]). In a more
formalistic but more general way such generalizations can be introduced by the
method employed for the description of stabilization in Sect. 3.9 by introducing
an effective relaxation time depending on the prehistory of the system.

• A third method in the description of relaxation kinetics consists in the introduc-
tion of real Non-Newtonian flow dependencies into the corresponding kinetic
equations. In this way, the specific rheological behavior of the relaxing system
is directly accounted for. This method was indicated for the first time by Eyring
et al. (1948) [839], it was extended by using existing or appropriately modified
models of flow by Gutzow et al. (1993) [332]. It can be shown that, in this
way, existing empirical dependencies used in the description of the kinetics
of relaxation (including Kohlrausch’s formula and similar relations capable
of describing quantitatively relaxation in real glass-forming systems) can be
obtained, which are determined by the particular flow mechanism of the system
under investigation.

In analyzing the rheological properties of viscoelastic bodies, the elastic component
can be considered as the direct response of the system to external disturbances, while
the viscosity reflects its dissipative reaction. Viscoelastic bodies thus represent, with
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respect to their rheological behavior, a bridge between matter in different states of
aggregation, indicating their similarities despite their qualitative differences (or in
the words of Hegel (1817) [351] “water, like air, is fluid but its fluidity is elastic”).

The elastic component in the rheological behavior of liquids and glass-forming
melts is of importance not only for flow and relaxation but also in processes
of crystallization and segregation taking place in them. Consequently, in the
description of the kinetics of such processes modifications have to be introduced as
compared with phase formation in Newtonian liquids (cf. Chap. 6) or crystallization
of Hookean elastic solids (cf., e.g., Sect. 7.7.1). One example, where elastic strains
in segregation processes in viscoelastic melts modify the kinetics qualitatively,
was given in Fig. 9.3 in Sect. 9.4 (segregation in photo-chromic glasses). In this
way, it turned out that a quantitatively correct description of crystallization and
phase formation in glass-forming melts, especially in the vicinity of Tg , has to be
developed in terms of a theory of phase transformations in viscoelastic bodies.

12.2 Phenomenological Rheology of Glass-Forming Melts
in its Linear Approximation

The basic rheological characteristics of a liquid or plastic solid body are given by
the dependence of rate of shear flow, d�=dt, on shear stress, ˘ . For Newtonian or
ideal liquids the relation

d�

dt
D ˘

�
(12.1)

holds, where � is the Newtonian shear viscosity of the melt. It depends on
temperature but not on the applied stress. In the practice of rheological investigations
it turns out, however that Eq. (12.1) is usually fulfilled only in the limiting case of
very small applied stresses (˘ ! 0). Real liquids deviate from Newtonian liquids
in two ways: d�=dt increases either faster or slower than the linear dependence as
described by the above equation allowing one to develop a classification of Non-
Newtonian liquids into two classes discussed in the following section.

The second classical idealization used in rheology is the model of a Hookean
absolutely elastic body. The relation between stress and deformation can be written
for this case in the form

� D 1

G�˘ ; (12.2)

where G� is the modulus of elasticity for the particular type of deformation. In a
solid body without viscous flow, the relation ˘ D G�� is fulfilled at any time,
moreover, the relation

d�

dt
D 1

G�
d˘

dt
(12.3)

holds. In the presence of viscous flow strains will disappear with time at a rate
depending on the actual value of ˘ .
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Fig. 12.1 Mechanical models, combinations of springs and dashpots, reflecting the properties of
viscoelastic bodies according to several classical models. It is assumed that the reaction of the
spring (a) is described by Hooke’s law, while the dashpot (b) has the properties of a Newtonian
viscous liquid. The different combinations refer to (c) Kelvin’s, (d) Maxwell’s and (e) Zener’s
bodies

If we make the simplest possible assumption, that the rate of change of the strain
is proportional to the strain itself, then we get, by a combination of above equations,

d˘

dt
D G� d�

dt
� ˘

�R
; (12.4)

where
�R D �

G� (12.5)

is the already discussed characteristic time scale of the process – Maxwell’s time
of relaxation (cf. Sect. 2.4.3). Note that above given equations, Eqs. (12.1) and
(12.2), are obtained from Eq. (12.4) as special cases (for d˘=dt D 0, respectively,
d�=dt D 0). Equation (12.4) may be rewritten in the form

d�

dt
D ˘

�
C 1

G�
d˘

dt
; (12.6)

which is the equation of the so-called Maxwell body.
Another well-known classical relation, the Kelvin-Voigt equation, follows if, in

the second term on the right hand side of Eq. (12.6),˘ is replaced by˘ DG�� and
afterwards d�=dt, again, by a linear dependence of the form d�=dt D ��=�R. One
gets

d�

dt
D ˘

�
� 1

�R
� : (12.7)

It follows that Maxwell’s and Kelvin-Voigt’s equations are linear combinations
of Eqs. (12.1) and (12.3). A mechanical interpretation of these and of a further
rheological dependence (Zener’s equation) in terms of combinations of the basic
models is given in Fig. 12.1.

The classical rheological models – Hooke’s, Newton’s, Maxwell’s and Kelvin-
Voigt’s bodies – can be considered as particular cases of a more general rheological
equation – Zener’s equation. This equation can be derived, as mentioned in the
preceding section, by the methods of the linear thermodynamics of irreversible
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processes. It is equivalent to the dynamic equation of state. Zener’s equation may be
written in the form (see Meixner (1953) [555]; Haase (1963) [339])

d�

dt
D G�

��
˘ C �

��G�
d˘

dt
� 1

�R
� ; (12.8)

where � is the modulus of bulk elasticity (compressibility) and �� Stokes’s bulk
viscosity (cf. Haase (1963) [339]).

According to existing theoretical estimates (see Tobolsky (1960) [838]; Landau
and Lifshitz (1953 [492], 1957 [495])) the relations

��

�
D ˛1 Š 3 ; (12.9)

�

G� D ˛2 Š 2 (12.10)

hold and we obtain in a good approximation

d�

dt
D 1

2�
˘ C 1

3G�
d˘

dt
� 1

�R
� : (12.11)

It is evident that

• At small � -values, i.e., at

˘=2�  .1=3G�/d˘=dt � �=�R ;

Newton’s equation, Eq. (12.1), follows;
• At high � -values , i.e., at

˘=2�� �=�R  .1=3G�/d˘=dt ;

the Kelvin-Voigt equation, Eq. (12.7), is obtained;
• At high .d˘=dt/- and small � -values both Hooke’s equation, Eq. (12.3), for

.1=3G�/d˘=dt  ˘=2�� �=�R ;

and Maxwell’s relation, Eq. (12.6), for

˘=2�C .1=3G�/d˘=dt  �=�R

are found.

In the subsequent analysis of special cases we omit the numerical factors 2 and 3
for simplicity of the notations.

The above equations may be also applied to the description of flow in sys-
tems consisting of two or more building units. Following Arrhenius and Eyring
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(see Hirschfelder et al. (1954) [366]) the viscosity of a two-component system with
the molar fractions of the two components x, respectively, .1 � x/ may be written
in the form

ln � D x ln �1 C .1 � x/ ln �2 ; (12.12)

where �1 and �2 are the viscosities of the pure components for the same thermody-
namic conditions. Since the modulus of elasticity, G�, changes only slightly from
one substance to another, a similar expression for the relaxation time, �R, may be
obtained in the form

ln �R D x ln �R1 C .1 � x/ ln �R2 : (12.13)

12.3 Analysis of Special Cases

The solutions of Eqs. (12.1), (12.3), (12.6) and (12.7) give the degree of deformation
as a function of time for the different models considered. With the boundary and
initial conditions (˘ D ˘0 D const.) and (�.t D 0/ D 0) we have, for example,

�.t/ D ˘0

�
t (12.14)

for Newton’s liquid and

�.t/ D ˘0

G�

�
1 � exp

�
� t

�R

��
(12.15)

for Kelvin-Voigt’s model. A derivation of Eq. (12.15) with respect to time yields

d�.t/

dt
D ˘0

G��R
exp

�
� t

�R

�
: (12.16)

It follows that the rate of deformation in a viscoelastic body, described by Kelvin-
Voigt’s equation, is smaller by a factor exp.�t=�R/ than for the same process taking
place in a Newtonian liquid.

Another important special case is the relaxation of a system after an applied
external strain becomes suddenly equal to zero. In this case, Zener’s as well as
Kelvin-Voigt’s equations, are reduced to

d�.t/

dt
D � 1

�R
�.t/ (12.17)

with the solution (for �.t D 0/ D �0)

�.t/ D �0 exp

�
� t

�R

�
: (12.18)
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Fig. 12.2 Deformation
behavior of different bodies.
The letters (a) – (e) refer to
the same models as depicted
in Fig. 12.1

In application to the description of the reaction of a system, when an external strain
is suddenly applied, the characteristic time, �R, is usually denoted as retardation
time and the respective process as a process of retardation. For the considered simple
models relaxation and retardation times coincide.

Another type of reaction of a system, which is of interest in applications,
consists of the kinetics of relaxation of stress at constant deformation (i.e., at
� D �0 D const.). From Eqs. (12.1) and (12.7) it becomes obvious that Newton’s
and Kelvin-Voigt’s equations lead to quite unrealistic time-dependencies of ˘.t/
for this case (˘ D 0, ˘ D �0=G

� D const.). In contrast, Zener’s and Maxwell’s
models provide the possibility of stress relaxation, the first one in the form

1

G�
d˘

dt
D � 1

�r

�
˘

G� � �0

�
(12.19)

with the solution

˘.t/ D G�
�
�0 C

�
˘.0/

G� � �0

�
exp

�
� t

�R

��
: (12.20)

The problem of relaxation, as described by Maxwell’s model, is analyzed in more
detail in Sect. 12.5. The deformation behavior of a system described by different
rheological equations at constant values of ˘ is illustrated in Fig. 12.2.

Summarizing we may conclude that in the derivation of the classical rheological
models

• Flow is described as in an ideal Newtonian liquid;
• Elastic and flow reactions are connected by linear additive combinations;
• Elastic deformation is assumed to be proportional to the stress (i.e., validity of

Hooke’s law is assumed).
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Only a comparison with experimental flow and relaxation curves can show how far
the above assumptions are realistic approximations.

In application to glass-forming systems, such comparisons lead to the conclusion
that the first assumption is practically never fulfilled for the highly viscous glass-
forming melts. Flow of real glass-forming liquids turns out to be, in general,
Non-Newtonian; particularly strong Non-Newtonian behavior is found in polymer
melts. This result also implies that the kinetics of relaxation of stresses in glasses
does not follow the simple Maxwellian kinetics. As far as only relatively small
stresses are required to initiate a flow of liquids, Hooke’s behavior (assumption 3)
is valid in most cases. Thus, in particular, assumptions 1 and 2 require a reconsider-
ation in discussing the rheological properties of glass-forming melts.

12.4 Non-Newtonian Flow Models

In order to retain the classical form of Eq. (12.1) even for Non-Newtonian liquids
an apparent (or effective) value of the shear viscosity, �.app/, is usually introduced,
so that the relation

d�

dt
D ˘

�.app/
(12.21)

holds. When �.app/ is a decreasing function of ˘ the liquid is called pseudo-plastic
(or, in polymer literature, shear thinning). In the opposite case, when �.app/ increases
with an increasing value of ˘ , the liquid is denoted as dilatant (or shear thickening
in polymer technology). The pseudo-plasticity or dilatancy of liquids is illustrated in
Figs. 12.3a, b. In addition, also the d�=dt-dependence corresponding to Bingham’s
plastic body is given in the same figure as a limiting case of pseudo-plasticity
(Fig. 12.3c). It has the form

d�

dt
D 1

�
.˘ �˘0/ (12.22)

In experimental rheology the flow behavior of Non-Newtonian liquids is usually
described by a number of empirical relations. Of these equations particularly often
employed is the de Waele-Ostwald formula (Ostwald (1925, 1929) [618]; Houwink
(1957) [381]):

d�

dt
D A0

˘n

�
: (12.23)

It describes the flow kinetics of pseudo-plastic liquids.
Another often used equation is Darcy’s relation

d�

dt
D A0

˘.1=2/

�
(12.24)
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Fig. 12.3 Possible types of flow behavior of liquids (shear-rate vs shear-stress dependencies,
schematically). (a): Newtonian fluid (1), pseudo-plastic melt (2), dilatant liquid (3). (b): Depen-
dence of the apparent shear viscosity on stress: Newtonian liquid (1), pseudo-plastic (2) and dilatant
(3) fluids. (c): Shear rate vs shear stress dependence for pseudo-plastic liquids (dashed curve) and
for Bingham’s body approximation (full curve)

applied for dilatant liquids. Both equations can be reformulated in terms of
Eq. (12.21) with apparent viscosities of the form

�.app/ D �
1

A0˘.n�1/ (12.25)

for the de Waele-Ostwald liquid and

�.app/ D �
˘.1=2/

A0
(12.26)

for Darcy’s body. It is seen from above dependencies and from Fig. 12.3, that for
pseudo-plastic bodies �.app/ is a decreasing and for dilatant liquids an increasing
function of ˘ .

It can be shown by using well-known expressions for expansion of the sinh-
function (Gutzow et al. (1993) [333]) that the de Waele-Ostwald formula, as well as
a number of similar dependencies, used for a description of pseudo-plastic bodies,
e.g., of the form

�.app/ D �

.1CB0˘n�1/
(12.27)

can be obtained as particular cases of a very general formula, known as Prandtl-
Eyring’s equation

d�

dt
D A0

�
sinh .aˇ

0 ˘/ ; (12.28)

which yields values of the apparent viscosity of the form

�.app/ D �aˇ
0 ˘

sinh .aˇ
0 ˘/

: (12.29)

Typical glass-forming melts are, as a rule, pseudo-plastic liquids. In terms of
de Waele-Ostwald’s formula, widely employed in experimental polymer rheology,
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Fig. 12.4 Stress-induced flow of poly(methyl metacrylate) melts as an example of a pseudo-
plastic Non-Newtonian liquid. Experimental data are reported by Gul and Kulesnev (1966) [282]:
(a) log.d�=dt/ vs log.˘/ data for two temperatures interpolated by applying the de Waele-Ostwald
equation. (b) Stress dependence of the apparent viscosity. (c) Experimental (d�=dt) vs ˘ data in
coordinates according to the Prandlt-Eyring model; (black dots): data for 523 K; (circles) data for
473 K

values of the coefficient n in this equation of the order n D 1:5 are usually found.
However, the application of the Prandtl-Eyring equation should be preferred: not
only does it give a more correct description (cf. Fig. 12.4) but has also the advantage
of a molecular foundation, discussed in the next section. It is seen also on Fig. 12.4
that at low ˘ -values �.app/ approaches constant values (zero-stress approach to
Newtonian liquids). This behavior gives a simple method for determining the
Newtonian viscosity of glass-forming liquids by extrapolating the �.app/-curves to
zero stress.

12.5 Linear (Maxwellian) and Non-Maxwellian Kinetics
of Relaxation

Maxwell’s equation, Eq. (12.6), describes the kinetics of relaxation of stresses, ˘ ,
in a body at a constant deformation, � , in the form

d˘

dt
D � 1

�R
˘ (12.30)

with the well-known solution

˘ D ˘0 exp

�
� t

�R

�
: (12.31)

The above equations also give the kinetics of relaxation of the deformation (for
˘ D 0) in an initially stressed body when it is described by the Kelvin-Voigt
equation.
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From a more general point of view the relaxation of strains in a Maxwell body,
the relaxation of deformations in a Kelvin-Voigt body or relaxation processes in
real systems – relaxation of strains in glasses or the retarded response of glass-
forming melts to external disturbances – can be treated either as an evolution of the
frozen-in system towards equilibrium (relaxation as a process of glass stabilization)
or as the response of a dissipative system to a time-limited external influence. Thus
the rheology of glass-forming melts, which determines the kinetics of the most
significant processes in under-cooled melts (their vitrification and crystallization),
gives also an illustration of the behavior of dissipative systems, in general. This
similarity becomes also evident from a comparison of Eqs. (12.15), (12.17) and
(12.30) with the derivations given in Sect. 3.9.

From Eqs. (12.5) and (12.6) it is obvious that in Maxwell’s kinetics of relaxation
the assumption of a Newtonian flow behavior (with constant values of � and �R) of
the systems under consideration is inherent. A straightforward generalization of the
Maxwellian relaxation kinetics can be given, consequently, by introducing for real
systems an apparent relaxation time, �.app/

R , as

�
.app/
R D �.app/

G� : (12.32)

By this procedure, determining, in analogy to Eq. (12.30), relaxation via the relation

d˘

dt
D � ˘

�.app/
(12.33)

a large variety of possible solutions, accounting for the real flow behavior of
viscoelastic bodies, may be achieved by using �.app/-dependencies as discussed in
the previous section. In this way, in the already mentioned paper by Gutzow et al.
(1993) [333] a detailed analysis of different solutions is given for possible models
of dilatant and pseudo-plastic behavior of real liquids.

As an example, the de Waele-Ostwald equation gives for n D 2 a dependence of
the form

1

˘.t/
� 1

˘.0/
D A1

t

�0
(12.34)

corresponding to the empirically established formula by Adams and Williamson
[6, 925]. The differential equation, giving a relaxation kinetics as described by
Eq. (12.34), is of the form

d˘

dt
D � 1

�0
˘2 : (12.35)

It follows that the Maxwellian type of relaxation kinetics, according to which the
rate of stress relaxation is proportional to the stress itself, can be considered only
as the simplest possible assumption. Moreover, while in the original Maxwellian
relaxation kinetics (Eq. (12.30)) the relaxation time, �R, is considered as a constant,
in the generalized dependencies this is not the case. According to Eq. (12.33), �.app/

R

depends, in general, on the stress,˘ . But since the stress is a function of time, �.app/
R
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also becomes time dependent. This argumentation allows us to rewrite �.app/
R in the

form �
.app/
R D �R�

�.t/ and with Eq. (12.33) the result

d˘

dt
D � A2

�R��.t/
˘ (12.36)

is obtained, where A2 and �R are constants and ��.t/ is a function of time,
determined by the kind of rheological behavior of the considered liquid. In the case
where

��.t/ D tp (12.37)

holds (the effective relaxation time increases with time by a power law), p being a
real number smaller than one, an equation for the relaxation behavior proposed first
by Kohlrausch (1876) [462] is obtained as a special case. It reads

˘ D ˘.0/ exp

"
�
�
t

�k

�b#
; b D 1 � p ; �k D

�
�Rb

A2

�1=b
: (12.38)

The equation given above is usually denoted as the fractional (or stretched) exponent
relaxation function. It is used with success for a description of relaxation of glass-
forming melts.

According to the experimental evidence collected by Mazurin (1986) [543]
values of b of the order b D .0:5 � 0:75/ (i.e., p D .0:5 � 0:25/) have to be
expected for glass-forming liquids; for polymers, lower b-values are found in the
range b D .0:3 � 0:35/ (i.e., p D .0:7 � 0:65/). As shown by Gutzow et al. (1993)
[332] such values of the b-parameter are equivalent to respective n-values in the de
Waele-Ostwald equation (n Š pC1). Recalling that for relaxation in glass-forming
liquids n D 1:5 for the de Waele-Ostwald equation gives the best fit to experimental
results, therefore the above mentioned b-values are easily explained.

12.6 Molecular Models of Viscous Flow

In the discussion of molecular models of viscous flow and molecular relaxation of
glass-forming liquids it is usually assumed (see Sanditov and Bartenev (1982) [683])
that two independent steps are involved in this process, described by two different
probabilities:

• The probability of activation of a molecule to break the bonds with the neighbor-
ing molecules and

• The probability that in the vicinity of an activated molecule, a sufficiently large
void is formed, so that Nf building units responsible for the flow may enter it.

In accordance with earlier models by Eyring (see Glasstone et al. (1941) [255])
for the probability of activation of a molecule a constant activation energy, U0, is
supposed proportional to the enthalpy of evaporation,�H.ev/, of the liquid.
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The second step in molecular models of viscous flow is connected with the
determination of the probability of formation of a sufficiently large void in
the liquid, equal or larger than the volume of Nf molecules, in the vicinity of
the activated unit. Such calculations were performed in two variants by Cohen
and Turnbull (1959) [137] and by Bueche (see Bueche (1962) [109]). It turns
out that this probability depends exponentially on the reciprocal of the relative
free volume 1=�.T / as assumed, for example, in Doolittle’s empirical equation,
Eq. (2.90). In this way, equations of such a type reflect mainly the process of
hole formation as essential in the determination of the viscosity. The generalized
molecular description of flow processes in glass-forming melts, taking into account
both above mentioned steps in the description of flow, results in temperature
dependencies of the viscosity which may be written in a form similar to the Macedo-
Litovitz equation, Eq. (2.96), as

�.T / D �0 exp

�
U0

kBT

�
exp

�
B

�.T /

�
; (12.39)

where B depends on the number of molecules forming an average flow unit.
According to an analysis made by Gutzow et al. (1985) [330] B varies, in general,
from 1 (noble gas melts, liquid metals) to 6 (liquids formed by associating organic
compounds).

The Vogel-Fulcher-Tammann equation, Eq. (2.84), follows from the above equa-
tion, if � is of the form � / .T � T1/. Such a dependence has been discussed, in
fact, already in one of the previous sections (cf. Eq. (3.32)). Replacing � according to
Eq. (5.78) by the configurational entropy of the liquid Eq. (12.34) may be rewritten
in the form

�.T / D �0 exp

�
U0

kBT

�
exp

�
2:5

�Sm

�S.T /

�
: (12.40)

For simple liquids �Sm Š R holds. The second part of Eq. (12.40) is equivalent
to a relation derived by Adam and Gibbs (1965) [5]. The above combination was
proposed and discussed in detail by Gutzow et al. (1985) [330].

Summarizing, we may conclude that, as already mentioned in Chap. 2, tem-
perature dependencies of the viscosity, involving only one activation energy and
one exponential term reflect only one side of the mechanism of viscous flow (like
Frenkel’s original equation Eq. (2.78) derived in the framework of free volume and
hole theories of liquids). Additional processes which have to be taken also into
account lead to additional exponential terms as described above. Other mechanisms
of viscous flow in glass-forming liquids lead to temperature dependencies of the
form as given with Eqs. (2.92) and (2.95). Such models are essentially based on
Anderson’s idea (1958) [10] of treating structural disorder in terms of an ensemble
of energetic barriers of different heights (while an ordered system is characterized by
only one energetic barrier). By such an approach, developed in a series of papers by
Avramov and Milchev [20,22,26,559], the process of self-diffusion in both ordered
and disordered structures may be treated in a straightforward way; in disordered
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structures the activated complex may use different diffusion channels for an escape
while in an ordered state only one reaction possibility exists.

Also some additional conclusions can be drawn from the above-given deriva-
tions. Upon vitrification �S.T / (in Eq. (12.40)) or �.T / (in Eq. (12.39)) are frozen
in. Consequently, below the temperature of vitrification, we have to expect

�
d�.T /

d.1=T /

�
T<Tg

D U0

kB
D const. (12.41)

in agreement with experimental findings (cf. Figs. 2.14, 2.16 and 12.5) and with
more general considerations. It is essential to note that the freezing-in process also
implies constant values of the activation energy below Tg (see Gutzow, Dobreva, and
Pye (1994) [335]). The salient point of the log � vs (1=T )-curve gives an additional
kinetic method of determination of the temperature of vitrification (see Mazurin
(1986) [543]). The ratio

� D

 
d log �

d 1
T

!
T	Tg 

d log �

d 1
T

!
T!Tg

(12.42)

determines the so-called Narayanaswami coefficient. Methods of determination of
this coefficient are discussed by Avramov et al. (1987 [29], 1988 [31]). It has values
of the order of 0.5.

12.7 Molecular Models of Flow of Liquids Under Stress

The flow of a liquid under stress can be analyzed in terms of a molecular model
developed by Prandtl (1928) [644] in the framework of the absolute rate theory
(Glasstone et al. (1941) [255]). It gives an instructive explanation of Non-Newtonian
behavior of pseudoplastic materials. Both Prandtl and Eyring assumed that in a
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Fig. 12.6 The Prandtl-Eyring model for the change of the activation energy in a pseudo-plastic
liquid under applied stress. For zero stresses (dashed curve) the probability of motion of a particle
of the liquid is the same for both considered possible directions, while under stresses (full curve) a
preferred direction of flow exists

liquid subjected to tangential stresses the activation energy,U.T /, for self-diffusion
decreases in the direction of the applied stresses,˘ , by a quantity�" proportional to
the stress. In the opposite directionU.T / increases by the same value (see Fig. 12.6).
Thus, the rate of net flow in the direction of the applied stress becomes equal to

d�

dt
D 2D

d2
sinh

�
d3

2kBT
˘

�
; (12.43)

where D is the self-diffusion coefficient of the ambient phase building units
realizing the flow and having a volume of the order d3 (the so-called “viscous”
volume). The “viscous” volume can be expected to be proportional to the volume
d30 of the building units of the liquid. In the paper by Gutzow et al. (1993) [332],
a generalization of the above model is given accounting in addition to energetic
considerations also for entropy effects in viscous flow. This approach also allows us
a description of the flow of dilatant liquids in terms of the same activated complex
model.

Additional, more or less complicated, molecular models describing flow pro-
cesses in polymer liquid solutions under various conditions can be traced mainly in
literature on polymers. Here of particular importance are models describing the flow
of polymer molecule coils through “tubes” formed by surrounding solute molecules
(tube and coil models, see Doi (1980) [178]). The Prandtl-Eyring model, although
leading to considerable difficulties in application to polymer liquid flow (where
entropy effects are dominating), gives a safe basis in correlating experimental
evidence on Non-Newtonian flow of inorganic and metallic glass-forming melts (see
the evidence collected in a paper by Gutzow et al. (1993) [332]; the results of Li and
Uhlmann (1970) [508] on silicate glasses, of Wäsche and Brückner (1986) [912] for
phosphate melts and of Russev et al. (1990) [677] on metallic glass-forming alloys).
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12.8 Kinetics of Nucleation and Growth
in Viscoelastic Media

The incorporation of specific rheological viscoelastic properties of the matrix into
the description of the segregation kinetics in glass-forming melts was carried out in a
series of papers by Pascova et al. and Schmelzer et al. (see [627,628,710,713,714]).
It was shown, in particular that the rate of growth of clusters in segregation processes
of silver chloride particles in a highly viscous melt can be described by an equation
of the form

dV

dt
D
�
dV

dt

�
N

exp

�
� t

�.eff /

�
; (12.44)

where .dV=dt/N is the rate of growth of a cluster in a perfect Newtonian liquid and
�.eff / a parameter depending on the properties of the liquid. The integration of this
equation results in a Kelvin-Voigt type behavior of the growth kinetics and also in
a qualitative change of the coarsening behavior as shown in Fig. 9.3. Moreover,
peculiarities in the time evolution of the cluster size distribution of segregating
particles can be interpreted based on the same theoretical considerations (cf. Bartels
et al. (1991) [43]).

This approach gives a new, more general way of interpreting crystallization and
segregation phenomena in glass-forming liquids, in particular, in the vicinity of Tg .
The mentioned effects become essential in the determination of the growth kinetics
for segregation processes when the self-diffusion coefficient of the segregating
particles is considerably higher than the respective coefficient for the matrix building
units [713,714]. For nucleation processes themselves the effect is of less importance
since the velocity of deterministic growth of clusters of near-critical sizes is
practically equal to zero. These problems are discussed in detail in the cited papers.



Chapter 13
Concluding Remarks

Wrong are all those, dear friend Shuvalov, who value glass below minerals.
I am singing a song of admiration on the merits not of rubies, not of gold but of glass : : :
Mikhail V. Lomonosov
In: Poetic Letter on the Merits of Glass addressed to Ivan I. Shuvalov (1752)

In this book, we have tried to give an outline of the historical development, of
the past and the present state of understanding of a particular kind of condensed
matter, i.e., matter in the vitreous state. We have endeavored to collect all the
evidence showing that glasses, as known for many hundredth of years, represent
only particular examples of a broad class of thermodynamically non-equilibrium
systems with an or even non-amorphous structure, where an increased degree of
disorder is kinetically frozen in, corresponding to a higher temperature equilibrium
configuration.

A description has been given of the change of the properties of substances upon
vitrification and of the kinetic characteristics of such processes both by the methods
of phenomenological and statistical thermodynamics. It was demonstrated that this
process has to be considered as an example not of an equilibrium phase transition
but of a dynamic transformation, i.e., of a freezing-in process. Moreover, it has
been shown that, in principle, each substance can be transferred into the vitreous
state provided the necessary sufficiently high cooling rates or other methods of
vitrification (e.g., vapor condensation on under-cooled substrates) can be realized
experimentally. We have tried to demonstrate that vitrification as a process and
glasses as a physical state have been and can be analyzed and understood both from
macroscopic and microscopic points of view. Therefore, there is no excuse except
ignorance when authors considering the vitreous state of matter characterize it as
something unknown or unexplored.

In describing the structure of glasses we have tried to give a general outline
of principles applicable, more or less, to all vitrified substances. It has been
shown that, in fact, there are as many different structures as there are different
glasses. Nevertheless, as discussed in detail in the respective chapter, general criteria
allowing us to classify the seemingly innumerable structures of glasses do exist.

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 13, © Springer-Verlag Berlin Heidelberg 2013
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We have tried to reestablish, in the analysis, the historical course and the inner
logics of development of molecular physics from perfect gases to real liquids, on
one side, and from perfect to real crystals and their melts on the other, and from
both sides – from absolute disorder and total order – to the wide field of partially
disordered, amorphous structures and their properties, which in their multitude of
possible realizations are “limited only by our imagination”. Such an evolution of
ideas is similar to the way the thermodynamics of macroscopic systems has evolved:
from systems in an internal thermodynamic equilibrium to non-equilibrium systems
and, in particular, to frozen-in non-equilibrium systems, i.e., to glasses.

A classification was developed further of possible kinds of disorder, respectively,
order, frozen-in into the vitreous state. Moreover, evidence was given that materials
having a non-amorphous crystalline structure with respect to the atomic or molecu-
lar configuration, may also have the properties of a vitrified system. In such cases,
the frozen-in disorder is related to properties not connected with the topological
ordering (orientational glasses, spin glasses, etc.). Adopting the enlarged definition
of the vitreous state given in this book, it has also been shown that even life may be
frozen-in to a glass.

A comprehensive analysis was devoted to problems of nucleation and crystal
growth in glass-forming melts. This was done taking into account that nucleation
and cluster growth are the main factors limiting the possibilities of transforming
a given substance into the vitreous state. The understanding of the mechanisms of
crystallization is also of significant importance for obtaining defect free glasses.
It opens up the wide field of nucleation catalysis for induced crystallization of
glass-forming melts in order to produce new materials with a broad spectrum of
technological applications: glass-ceramics, semicrystalline solids and thin amor-
phous films including semiconductors and even high-temperature superconductors.
Moreover, no other systems exist in nature where non-steady state effects in
nucleation are of similar importance for the kinetics of phase transformation
processes as for glass-forming melts. A detailed analysis of non-steady state effects
is, therefore, a prerequisite for the formulation of quantitatively correct kinetic
criteria for vitrification. On the other hand, the analysis of such effects for glass-
forming melts also allows us to gain a deeper understanding of processes of phase
formation, in general. This statement is also true with respect to the understanding
of possible growth mechanisms. The three basic mechanisms of crystal growth
analyzed above have been confirmed for the first time in experiments with glass-
forming melts.

The outline of basic ideas and results concerning the rheological properties of
glass-forming melts concludes the present book. Technological aspects, possible
applications and the specific properties of particular glasses have been discussed,
as mentioned in the introduction, only in connection with the development and
verification of the general ideas and approaches to understand the vitreous state.
This gap is supposed to be closed in a subsequent specialized monograph in
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preparation which can be considered in some respect as a necessary supplement
to the present book.1

In characterizing the main features and the state of the field which is called glass
science we have tried to do our best in order to distinguish the most important lines
of evolution, the most important ideas and theories in their past and present-day
significance and possible importance for further development. Being convinced that
in the evolution of science it is also true what A. Wellesley, Duke of Wellington
(1769–1852) mentioned in another connection (“All the business of : : : life is to
endeavor to find out what you don’t know by what you do; that’s what I called
‘guessing what was the other side of the hill’.”) we hope that with the present volume
in hand it will be easier for the reader to make his own predictions concerning “what
is of the other side of the hill”. Its our belief that there are not many problems of
physics, chemistry and biology which have such a striking perspective and rapid
future development as those connected with the vitreous state.

1A considerable extension of the scope of problems outlined in the present book including the new
major developments of the last decades – sketched here only briefly in the footnotes and partly
in some more detail in Chap. 14 – can be found in the following monographs: Schmelzer (2005,
2014) [695, 701]; Schmelzer and Gutzow (2011) [707]; Gutzow et al. (2014) [337].



Chapter 14
Brief Overview on Some New Developments

The present monograph is, as mentioned, widely identical to the first edition of
our book [1] removing several printing mistakes and indicating in footnotes briefly
some new developments (in this respect, referring to this book, we have in mind
both the first and the widely identical presented here second edition). In Chap. 14,
we are attempting to give a more extended but necessarily also brief overview
on new developments, trying to summarize problems, scientific ideas and results,
as they have been developed mainly in the fields of the theory of vitrification, in
the understanding of the nature of vitreous states and in treating nucleation, phase
separation and crystallization in glass-forming systems in the years after the first
edition of this book [1] has been published. In deriving these ideas and results
and bringing them to the attention of our readers, we have followed mainly the
route of development, as it appeared in the framework of our own understanding
and interests and as far as they could be considered as a continuation of the
analysis of problems and ideas, developed in the first edition of this book. As
far as these ideas are to a great extent in line with the general main tendencies in
the present international literature, they give also an impression of general trends
and developments in glass science literature. We have tried to supplement this
presentation with additional literature, given at the end of this chapter in a separate
bibliography, which is a supplement to the initial bibliography of the first 1995
edition of our book. In order to be self-consistent in this respect, some of the
references contained in the initial bibliography are included here as well once again.

The first edition of the present monograph was written in the years before 1995
in the framework of two well established theoretical concepts, which both can
be considered as two remarkable approximations, two outstanding thermodynamic
models. One of them gives the possibility to treat thermodynamically – in the
framework of classical equilibrium thermodynamics – glasses, which are non-
equilibrium systems, and are thus out of the “normal” scope of classical equilibrium
thermodynamics. This is Simon’s model treating vitrification as the transition – at
some given discrete temperature, Tg – of a (metastable) thermodynamic equilibrium
state into a frozen-in thermodynamic non-equilibrium state, the glass [2]. For both
these states, reversible processes can be performed and classical thermodynamics,

I.S. Gutzow and J.W.P. Schmelzer, The Vitreous State,
DOI 10.1007/978-3-642-34633-0 14, © Springer-Verlag Berlin Heidelberg 2013
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at least, as far as the first and second laws are concerned, is fully applicable.
The second of the mentioned thermodynamic models is concerned with the ways
in which processes of nucleation and growth can be treated thermodynamically
although the processes considered require the consideration of nano-sized systems,
with new-phase clusters, which are, in general, also out of the scope of thermody-
namics in its classical formulations. The present chapter begins with the discussion
of developments, which are concerned with the first circle of problems: those,
connected with the description of glasses as a particular physical state, the second
section is devoted to the thermodynamic analysis of nano-systems and the kinetic
description of cluster formation and growth processes, in particular, in glass-forming
melts.

14.1 Glasses and the Glass Transition

14.1.1 Generic Phenomenology of the Glass Transition
and the Thermodynamic Properties of Glasses

We start the analysis of glasses and the glass transition by showing the ways
in which in the last 10–15 years the approximate classical approach based on
Simon’s approximation was replaced by an analysis in the framework of the
thermodynamics of irreversible processes: i.e. by a non-equilibrium thermodynamic
phenomenological treatment.

In our analysis of the properties of glasses and of the process of glass transition,
of the kinetics of vitrification and glass stabilization as we described them in
Chaps. 2 and 3 of the present book, we employed the classical thermodynamic
approaches in the form as they followed from the mentioned approximation first
proposed by F. Simon at the end of the 1920s [2] and used then by many researchers
throughout the following 90 years. Chapter 2 in our book thus begins and ends
with this fruitful approximation. However, already Simon himself mentioned that
the transition to a glass does not proceed at some fixed temperature but in some
temperature interval with a reference to Gustav Tammann [3] who already elabo-
rated this idea in detail. Simon even discussed qualitatively a possible dependence
of glass transition temperature and properties on cooling rate but considered these
effects as small.

Anyway, it became evident already at that times, since the first developments
of one of the variants of the thermodynamic treatment of non-equilibrium systems,
that thermodynamics of irreversible processes, as it has been developed by scientists
like Th. De Donder, I. Prigogine, S. R. De Groot and many others, will be and is
the phenomenological approach, opening new horizons in treating non-equilibrium
systems with frozen-in structure and thermodynamic properties, i.e., glasses, glass
relaxation and the glass transition. This is the reason why in Chap. 3 of our book a
number of problems like the process of relaxation, the definition of specific heats
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of liquids as being separated into two additive parts (a liquid-like configurational
one and a crystalline-like phonon contribution) are described theoretically already
in terms of non-equilibrium thermodynamic ideas, developed by the mentioned
authors and applied to glass science in general first mainly by Davies and Jones,
Cooper, Moynihan and also by one of the present authors (I.S.G.) to several
specific problems of glass thermodynamics: to vapor pressure and solubility of
glasses, the jump in specific heats, �Cp.T /, at glass transition temperature, the
definition of Tg and many other details as this is outlined here in the introduction
of Chap. 3 of our book. However in treating such essential problems like the
dependence of the properties of glasses on cooling rate as performed by Gutzow
and Dobreva-Veleva [4, 5], again, the simpler way of Simon’s approximation was
initially employed as shown here in Sect. 3.7. It led to results of considerable
significance, as it was confirmed and then extended in subsequent developments
given in a series of recent publications by Schmelzer, Tropin, and Schick [6, 7] and
performed now already fully in the framework of the thermodynamics of irreversible
processes. Simon’s approximation was also a useful initial approach in analyzing
vapor pressure, solubility and chemical reaction activity of glasses as they are
treated here in Sects. 3.9, 3.10, 3.12, and 3.13.

In 1934 in investigating the possibility of solidification of the structure of
metastable metallic alloy systems, Bragg and Williams [8] introduced for the first
time and in an ad-hoc manner a simple equation which we shall write here as

d�

dT
D � 1

q�.T /



� � �eq.T /

�
; q D dT

dt
: (14.1)

It describes, according to Bragg and Williams, the freezing-in of a given alloy struc-
ture as a non-isothermal relaxation process. The freezing-in process is characterized
in our presentation by the internal structural order parameter �.

In the present book, we have introduced in Sect. 3.9 the notion of � as a
generalized structural order-parameter, characterizing the structure of a glass-
forming liquid. The deviation from its equilibrium value, �eq.T /, describes in terms
of the difference (� � �eq.T /) the driving force for the approach to equilibrium.
In the thermodynamics of irreversible processes this driving force is the affinity,
A D �.dG.T; �/=d�). By a truncated Taylor expansion ofG.T; �/ in the vicinity of
� D �eq we obtain the well-known approximate expression for the thermodynamic
driving force and the formalism in treating relaxation processes, given in Sect. 3.9
of the present monograph in terms of the dependence

d�

dt
D � 1

�.T; �/



� � �eq.T /

�
: (14.2)

Equation (14.1) follows from the isothermal relaxation law, Eq. (14.2) by replacing
dt in above dependence or in Eq. (3.122) of the book via .dT=dt/ D q.

Bragg and Williams have in fact written in 1934 Eq. (14.1) using the concept
of fictive temperature, QT , of the system and constructing the kinetics of isothermal
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relaxation of the investigated alloy systems in terms of a process in which the actual
temperature, T , is changed in accordance with the second term in Eq. (14.1) and
the driving process of relaxation is assumed to be proportional to the difference
. QT � Teq/. Such an approach was used frequently in glass science in the 1930s and
later in the analysis relaxation phenomena especially in the publications of Tool
[9, 10], Narayanaswamy [11] and a variety of other colleagues. In particular, in
1956/1957 Vol’kenstein and Ptizyn [12,13] and then also Filipovich and Kalinina (in
1971 [14]) employed again Eq. (14.1) as an empirical ansatz to the development
of a kinetic treatment of vitrification, which in the Russian literature of those
times was termed “the kinetic theory of glass transition” [15]. In this series of
investigations – which found also a continuation in several well-known papers by
Moynihan, Kovacs et al. – these authors also retained the ad-hoc nature of the
assumption, on which Eq. (14.1) was based in 1934 by Bragg and Williams [8]. In
the first Vol’kenstein – Ptizyn paper [12] even the possibility of an additional semi-
quadratic dependence of .d�=dT/ on .� � �eq/ is discussed. The temperature course
of the enthalpy�H.T / or the volume�V.T /-differences upon cooling and heating
runs was given in these publications, using Eq. (14.1) and its solutions, employing
the direct proportionality between � and �H or �V , as it follows from the linear
formulations of the thermodynamics of irreversible processes and assuming the
simplest possible temperature dependence (U.T / D U0 D const.) in the classical
expression for the relaxation time

�.T / D �0 exp

�
U.T /

RT

�
(14.3)

for the activation energy, U.T /, determining the time, � , of molecular relaxation of
the vitrifying melt.

By constructing the course of �.T / for various cooling rates, q, and with
the mentioned assumption that volume, �V , or enthalpy, �H , differences are
connected via direct proportionality with the structural order parameter, �, and
its equilibrium value �eq.T /, the first dependencies of the change of thermody-
namic functions upon temperature at vitrification, taking place at different cooling
rates, were constructed in a semi-quantitative approximation (see Filipovich and
Kalinina [14], and Moynihan et al. [16]). Moreover, it was also proposed in these
series of publications to determine in the framework of the theoretical approach
developed the vitrification temperature, Tg , from the course of the �.T /-curves
obtained: it was in fact proposed to identify them with the extremal values of the
respective .d�2=dT2/-curves, as indicated many years earlier already by Tammann
in his analysis of experimental �Cp.T /-curves (see [3]). These results showed in
their generality that the simple kinetic approach to glass transition as it is given with
Eq. (14.1), can be taken as the basic starting point in deriving a thermodynamically
well founded theory and thus to develop the description of the whole process
of vitrification in an unambiguous way starting from the very foundations of the
thermodynamics of irreversible processes.
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This program was initiated by one of the present authors in a lecture course an
account of which is published in [17, 18]. The following development was to be
realized according to this program and was in fact performed in an initial series of
publications by Gutzow et al. [19–22] and then by Gutzow and Schmelzer [23, 24]
in the following years:

1. It was obvious that Eq. (14.1), ad-hoc assumed at various occasions by several
authors could be derived, as a non-isothermal continuation of Eq. (14.2) (as
given in the derivation of Eq. (3.122)), from one of the basic principles of
the thermodynamics of irreversible processes: the so called Phenomenological
Law. It was, however, also evident that for glass-forming systems the linear
dependencies, given with Eqs. (14.1) and (14.2), could lead only to trivial results,
non-consistent with the experimentally known peculiarities of relaxation in
typical glass-forming systems. The necessary formalism, as it was employed
by Gutzow and Schmelzer, in writing this law in a non-linear form is evident
from the derivation summarized here and in the first edition of our book with
Eqs. (3.110)–(3.114). In doing so it was assumed that the coefficients L in
dependencies like the one, given with Eq. (3.115), were not constants, but have to
be functions of the deviation of the vitrifying system from equilibrium. It seems
that for the first time a similar assumption for the possibility of the non-constant
character of the coefficients L in equations like the one given, with Eqs. (14.1)
and (14.2), was suggested by Callen [25].

2. The deviation of L from its constant value, as supposed in the classical linear
formulations of the thermodynamics of irreversible processes, was assumed
(see e.g. in [19]) to depend exponentially, via the value of the activation
energy U.T; �/, on the deviation from equilibrium. This assumption led us [23],
following a proposal by Prigogine [26], instead of Eq. (14.3) to

� Š �0 exp

�
U.T /

R

�
exp

�
.� � �eq/
�eq

�
(14.4)

for the coefficient � in Eq. (14.1). The relaxation time, � , becomes dependent
in this way on the current structural properties, i.e., the formation of the density-
and/or compositional fluctuations is thus dependent (i.e. via the activation energy
U.T; �/) on the structure of the system out of equilibrium. Thus, it is a process
to be governed by the fluctuation-dissipation theorem [25, 27].

Considering pressure to be constant, and in expanding the exponent U.T; �/
into a Taylor series with respect to the two independent variables (T and �)
the derivation was truncated at the first linear term in � in order to preserve
the linear character of the adopted linear formulation of the thermodynamics
of irreversible processes. For the value of U.T / in Eq. (14.3) as the simplest
assumption followsU.T / D U0�b0T , thus satisfying the condition of Kanai and
Satoh (dU.T /=dT < 0) discussed in Sect. 2.4.1 with Eqs. (2.80) and (2.81). As
the result, for the rate of non-isothermal relaxation governing glass transition, an
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expression with a semi-linear dependence on .� � �eq.T // was derived (Gutzow
et al. [23]) of the form

d�

dT
D � .� � �eq/

q�0
exp

�
�U.T /
RT

�
exp

�
�� � �eq

�eq

�
: (14.5)

It can be shown, as done by the present authors in [23] that Eq. (14.5) corresponds
in fact to the most general form of the dependence describing first-order reaction
kinetics in terms of the De Donder-Marcelin equation (see [28] and literature,
given there). From Eq. (14.5) (written for the isothermal case, i.e. in terms
of (d�=dt)) the first-order reaction kinetics, as it is written usually in its
approximated form, introduced by van’t Hoff into physico-chemical literature,
follows directly.

3. The value of the internal structural parameter, �, usually considered in the
thermodynamics of irreversible processes as a generalized De Donder reaction
coordinate was defined in our series of investigations in such a way as to be equal
to � D 0 for the crystalline state of absolute order and as approaching � D 1 in
the respective gas phase. In order to have at our disposal a suitable model for the
description of the vitrifying melt, a MFA-lattice-hole model earlier developed by
Milchev and Gutzow [29, 30] was utilized. In this way a distinct course of the
�eq.T /-function was guaranteed and the artificial second-order phase transition
point at the Kauzmann temperature Tk , introduced in glass science with the
MFA-lattice-hole polymeric chain model of Gibbs and Di Marzio [31] was
avoided, as shown by Milchev and Gutzow in the cited papers and as summarized
in Sect. 5.4.3 of the monograph. A generalization of this model to polymer
glasses was also attempted in a computer model approach, developed later on
by Petroff, Milchev, and Gutzow in 1997 [32].

4. All the considerations on the kinetics and thermodynamics of vitrification per-
formed in terms of Eq. (14.1) by authors like Bragg and Williams, Vol’kenstein
and Ptizyn, Kalinina and Filipovich, and Moynihan et al. and also the first series
of publications of the present authors (e.g. in [19]) were developed without
accounting for the possibility (and, in general, the necessity!) of introducing
entropy production terms into the analysis of the process of glass transition. This
effect was also not considered in the first edition of the present monograph. In
general, the inclusion of such effect is, however, a necessity, accounting for the
circumstance that according to the basic laws of thermodynamics, expressed in
the De Donder – Prigogine equation via

dS

dt
D deS

dt
C diS

dt
; (14.6)

entropy has to be generated in any non-equilibrium process (diS >0) and thus
also in passing the glass transition region in both directions: in heating and
in cooling runs. Starting with the general definition for diS=dt and expressing
it in a similar form as we have written it for the variation of the structural
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order parameter for the non-equilibrium process of non-isothermal relaxation,
we arrive at [24, 37]

diS

dT
D A

T

d�

dT
D R

q�.T; �/

.� � �eq.T //
2

�eq.T /
(14.7)

for the expression governing entropy production in the glass transition region.
Results of numerical computations of the entropy production in dependence on
cooling and heating rates are given here later (cf. Fig. 14.7).

The respective first quantitative analysis of entropy production in the glass
transition region was performed by the present authors in collaboration with
J. Möller [37]. This analysis on the respective values of the total entropy, �iS ,
produced in the glass transition, shows that the entropy values generated at
“normal” cooling rates through the glass transition region, T .�/g � T � T

.C/
g

with

T .C/g W upper value of the glass transition range ;

T .�/g W lower value of the glass transition range ;

are only a relatively small percentage of the entropy values, �Sg, frozen-in at
vitrification. Assuming a “classical” process of glass transition in the framework
of Simon’s approximation, according to which the glass transition interval is
degenerated to the glass-transition temperature itself, to a salient point in the
�S.T / curve and to a sharp “jump” at T D Tg, as this is assumed also according
to the “classical” model of vitrification (see here Sect. 3.2), no entropy production
at vitrification has to be expected, as mentioned already also by Simon himself
[2] and later on also by Davies and Jones [38]. Entropy production is to be
considered if the realistic course of glass-transition in a glass transition interval
is accounted for but this effect may be, and as it turns out, it is small in the
overwhelming majority of cases analyzed so far. Some numerical computations
illustrating these statements will be given here later.

By this reason, even when entropy production in the glass transition interval
is accounted for, it turns out that the entropy produced has values, which in
most applications can be neglected: even in constructing the course of the
thermodynamic functions and potentials upon vitrification, as done by Gutzow
et al. e.g. in [19]. The results of such construction is seen on Fig. 14.1 which
is in fact the first construction of the thermodynamics of vitrification done in
terms of the generic phenomenological approach based on the application of the
Bragg-Williams equation, Eq. (14.1), and its further development in a series of
investigations (cf. [24]) and now here. A comparison with experimental data is
given in Fig. 14.2.

5. On Fig. 14.3 is given the temperature course of the first, the second and the third
order temperature derivatives of the structural order parameter � in the process
of vitrification described in terms of Eqs. (14.1) and (14.2), as it was for the first
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(see text and Fig. 3.10 in [24]): (a) temperature dependence of the configurational part of
Gibbs’ thermodynamic potential difference, �G.T /, in terms of the differences liquid/crystal
or glass/crystal: (1) equilibrium course, �Ge.T /, in cooling in the range from T D Tm to
temperatures tending to zero; (2) �G.T /, course upon vitrification in a cooling run; (3) �G.T /,
course in heating from zero temperatures to temperatures near Tg ; (4) �G.T; �/ of the vitrified
melt representing the tangent to�Ge.T / of the under-cooled melt. Tm, Tg and T0 are melting, glass
transition and Kauzmann temperatures, respectively. The glass transition interval is determined by
the steep change of the specific heat, �Cp , and is bounded to the range T .�/

g 	 T 	 T
.C/
g .

With �G.0/ the extrapolated zero-point potential difference of the metastable liquid is specified;
(b) temperature dependence of the entropy difference, �S.T / liquid/crystal (2) and of glass/crystal
in cooling (3) and heating (4).�Sm is the entropy of melting and�Sg is the frozen-in entropy of the
glass; (c) change of the enthalpy difference, �H.T /, liquid/crystal (3, 4). �H.0/ is the zero-point
enthalpy corresponding to the metastable under-cooled liquid; (d) liquid/crystal or glass/crystal
specific heat differences. In cooling, �Cp decreases monotonically with decreasing temperature,
and in heating a minimum and a maximum is observed

time depicted in our paper [19]. It defines d�=dT (which thermodynamically
corresponds to �Cp.T /) as a sigmoidal curve with an inflection point at the
temperature of glass transition, T D Tg. This temperature course gives a new
unambiguous way of defining glass transition first adopted by Gutzow et al. in
2000 in [19]: as being determined by

d2�Cp.T /

dT2
D 0 (14.8)
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Fig. 14.2 Coincidence of theory and experiment in the determination of �G.T; �/ and �S.T; �/
as shown in Fig. 14.1 and employing vapor pressure, p.T; �/, and specific heat, �Cp.T; �/-data
reported by Kinoshita [33] and Schnaus et al. [34] for As2Se3 for the liquid, glassy and crystalline
forms of this substance (predicted according to [35, 36]): (a) temperature dependence of the
vapor pressure of As2Se3 at heating (curve 1) and very slow cooling (curve 2) of the melt.
(b) Temperature dependence of the specific heat difference, �Cp , of As2Se3 for liquid/crystal
at equilibrium (curve 3), for cooling (4) and heating (5) of the under-cooled liquid/crystal or the
glass. (c) Computed values of the entropy difference, �S.T /: under-cooled liquid/crystal (curve 6
obtained from curve 3); glass-liquid/crystal (curve 7 obtained from the experimental p D p.T /

curve (1)); curve 8 obtained from curve 4 and curve 9 from curve 5 (from calorimetric data).
Note the similar�S.T / course of curve 7 obtained from tensimetric measurements and of curve 9
following from calorimetric measurements on samples with similar thermal history

from the inflection point of the �Cp.T /-curve i.e. from the course of the
respective (d�=dT)-curve as .d�3=dT3/ D 0. The already mentioned maximum
(d�2=dT2)-definition of Tg , earlier proposed by Vol’kenstein and Ptizyn [12, 13]
and by Kalinina and Filipovich [14], gives not, as it is seen from Fig. 14.3, an
unambiguous way of defining Tg: there are two, or even three extremal values
on the (d�2=dT2)-curve (or on the respective (d�Cp.T /=dT)-curves) to be
expected in heating run experimentation, usually experimentally employed for
Tg-determinations.

6. The condition, Eq. (14.8), for the course of the derivative (d2�Cp.T /=dT2)
gives, moreover, as shown by Gutzow et al. [19], a direct thermodynamic way
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Fig. 14.3 Dependence of the derivatives of the structural order parameter, �, with respect to
temperature, T , for the cooling (left) and heating (right) runs. At T D Tg , the third order derivative
of �.T / is by definition nullified which corresponds to an inflexion point in the configurational
contributions to the specific heats (see Gutzow et al. [19–22])

to define and to derive without further assumptions also the general equation of
the glass transition kinetics

q0�.T; �/ Š C1 ; (14.9)

which we have already discussed in our present book in Sect. 3.6 as the
Frenkel-Kobeko postulate. The course of the respective mathematical derivations
can be followed in [19]. This derivation gives for the constant in Eq. (14.8) the
value

C1 � x0
RT 2g

U0
Š x0

�
1

30
� 1

40

�
Tg Š 1� 5 (14.10)

for values of the ratio (RTg=U0) changing in the limits as seen from above
written dependence. Thus for substances with medium values of Tg the usually
observed value of the Frenkel-Kobeko constant (approximately equal from 1 to
5 K according to Bartenev [39]) is to be expected. The factor x0 has values
x0 D 1:62 at cooling and x0 D 0:62 at heating run experimentation according
to the derivation, given in [19]. Thus, according to above formalism it also
follows that between the glass transition temperatures at cooling and heating run
experimentation the temperature difference

T heating
g � T cooling

g � 0:012T mean
g (14.11)



14.1 Glasses and the Glass Transition 457

has to exist, where T mean
g specifies the mean value of the glass transition

temperature at the given experimental conditions. In this way, with increasing
glass transition temperatures the difference between the Tg-values in heating up
(T heating
g ) and cooling down (T cooling

g ) experimentation has to increase, as this
was in fact observed in experiment. In this way, this derivation gives (as really
observed in experiment) also the a difference in the values of Tg as they are
observed upon cooling or upon heating run experimentation.

7. Simple purely kinetic definitions of Tg and derivations of the Frenkel-Kobeko
dependence, as proposed e.g. by Reiner (or, more exactly by Stevels, see Sect. 3.6
in this book) or as also discussed below, lead to the same value of the constant
in Eq. (14.8). According to Stevels’ and Cooper’s kinetic approach, described in
Sect. 3.6 of the present monograph, it is assumed that the condition for glass
formation can be formulated as (see also Gutzow and Dobreva [18]) that at
T � Tg the time of molecular relaxation of the vitrifying system becomes equal
to the time of observation,�t D .t � t0/, i.e. that there the relation

�R.T; �/ Š �t D .t � t0/ (14.12)

holds. In a recent publication [40] one of the present authors has generalized
this kinetic approach eliminating the concepts of Deborah number and time of
observation from the description by introducing with

�T D
�
T

jqj
�

(14.13)

a characteristic time scale of the cooling and heating process. The condition for
vitrification can be now written, following Schmelzer [40], in the form that the
characteristic time of molecular relaxation has to be approximately equal to the
characteristic time of change of temperature, i.e.,

�R.T; �/ Š �T : (14.14)

Note as well that, since �R depends both on temperature and the structural order
parameter, Eq. (14.14) yields different values of Tg for cooling and heating since
�R is different for cooling and heating runs. Straightforward modifications of this
relation have been employed by Schmelzer and Tropin, in addition, in order to
determine the upper and lower boundaries and the width of the glass transition
interval in dependence on cooling and heating rates [41].

A differentiation of the combination of Eqs. (14.13) and (14.14) with respect
to T gives the same result as the Reiner and Stevels approach, i.e.,

d�R.T; �/

dT

�
dT

dt

�
Š 1 : (14.15)
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As far as �R.T; �/ is an exponential function of the type given with Eqs. (14.3)
or (14.4), with the additional assumptionU.T; �/ D U0 follows directly the result
already given with Eqs. (3.79) and (3.82) in the present book and here in Chap. 14
repeated with Eqs. (14.8) and (14.9). In this respect it is to be mentioned, that
this circumstance shows that vitrification is a consequence of the exponential
character of the dependence of intensity of flow, of the relaxation properties of
the system on reciprocal temperature. This fact can be proven also by computer
experiments as an inherent for the glass transition necessity.

The description of vitrification in terms of the characteristic time �T of change
of the external parameter gives advantages also in treating more complicated
changes of the temperature (or of other parameters causing vitrification), for
example, when the cooling rate is not a constant but a function of the time, t
(e.g. with qŠ atn) or even a periodic function of the time, in describing so-
called dynamic glass transitions. Dynamic glass transitions may proceed at the
change of the state of the system with a given characteristic frequency, 
, or
angular frequency,! D 2	
, by varying the frequency of external perturbations.
For such cases, the equilibrium value of the structural order parameter, �eq , is
varied as

�eq / exp.i!t/ (14.16)

The characteristic time, �D , of change of the respective equilibrium state, �eq ,
can be determined in the framework of above theoretical formalism [40] then via
the set of equations

d�e

dt
D i!�e ;

d�e

dt
D � 1

�D
�e ; i! D � 1

�D
: (14.17)

Taking the absolute value in the latter two dependencies we arrive at the result

�D! Š 1 : (14.18)

The criterion for glass formation at dynamic glass transitions can be written
consequently as

�R Š �D ) !�R Š 1 : (14.19)

In other words, in above relation for the kinetic criterion of glass formation
in cooling and heating processes, (jqj/T / has to be replaced by !. A first
formulation of latter equation has been given by Bartenev in 1949 [42] by
analyzing some particular model of viscoelastic behavior. The sketched here
derivation due to Schmelzer [40] is more general i.e. model-independent.

8. In analyzing the formation of glassy thin layers at processes of vapor quenching
or at electrolytic deposition of metallic alloy glasses, analogs of Eq. (14.19) have
been used by Avramov et al. [43] and by Jordanov et al. [44] to derive an
appropriate description of the kinetics of vitrification processes. In both latter
mentioned processes, the formation of amorphous thin layers, the deposition
of ad-atoms on them and their subsequent burial under the following ad-layers
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resemble periodic processes of an interesting class of dynamic glass transition
which were described using Bartenev’s equation Eq. (14.19) to derive the
necessary quantitative formalism. Another interesting case of the formation of
glassy layers in vapor quenching on super-cooled substrates (like the formation
of Ar-glass at substrates, cooled with liquid helium) is described in Sect. 3.12 of
the present book.

9. One of the main results following from the development of a phenomenological
model capable of describing, at least, in a semi-quantitative way glass transition,
is the possibility it gives to analyze the ways to form glasses with desired
properties. Of particular interest is also the possibility to derive expressions for
the prediction of dependencies leading to glasses with extreme properties (for the
details see e.g. [6, 7, 24]).

In this way, with a series of results, published in a steadily increasing sequence
of papers, recently also summarized in our second monograph [24], the present
authors hope to have succeeded in generically deriving a fundamentally safe and
sufficiently correct phenomenological picture in describing glass transitions in the
general framework of the thermodynamics of irreversible processes. It is of essence
to point out that this picture has been drawn in this series of publications in a generic
way out of the thermodynamics of irreversible processes in its linear formulation,
without introducing any particular new assumptions or “glassy” models and using
the thermodynamic model of this generalized thermodynamic description in a form
as it was derived in the already cited developments given mainly by authors like
De Donder [45] and Prigogine and Defay [46] in their classical publications. Our
approach has opened also, so we hope, the possibility of developing simple, but
nevertheless direct ways in solving a variety of additional problems connected
with the kinetics and the thermodynamics of vitrification and, moreover, with the
properties of different glasses obtained at different conditions of glass transition.
In the subsequent part, we would like to review some important consequences and
applications.

14.1.2 Glasses and the Third Law of Thermodynamics

In a comprehensive effort of the present authors and partly in cooperation with
Möller and Petroff [23, 24, 47], the behavior of glass-forming systems (and more
generally: of matter with frozen-in disorder) at temperatures approaching the
absolute zero-point was analyzed. Here the general conclusions obtained from this
analysis are summarized (for the details see above given references).

The glass transition temperature can be considered in a generalized approach
as the temperature at which the vitrifying system changes from Boltzmann’s
statistics to quantum statistics. In this respect the glass transition temperature, Tg ,
shows some analogy with the gas-degeneration temperature, Td , the temperature,
at which any gas changes its behavior from the one, corresponding to a system
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described by Boltzmann’s statistics, to a system following quantum statistics. In
this way, as predicted by Nernst even before appearance of quantum statistics as a
science, gases fulfill at absolute temperatures 0 � T � Td the requirements of the
Third Principle of thermodynamics and, in particular, its consequence that specific
heats of all forms of matter have to be equal to zero at zero temperature, i.e. that, at
T ! 0, not only C cryst

p .T / ! 0 and Cp.T /amorph ! 0 hold, but also C gas
p .T / ! 0

is fulfilled. In writing the latter relation, we should say more generally that we know
now that, in order to fulfill the requirements of the Third Principle, even the behavior
of gases is changed at T � Td in such a way as to fulfill the Third Principle in this its
form, according to which any system in any possible state cannot reach the absolute
zero of temperatures.

In the same way, at temperatures below the glass transition region, the specific
heats of glasses, Cp.T /, and the specific heat differences glass and crystal,�Cp.T /,
approach at temperatures, T ! 0, values �Cp.T / ! 0. This is so, because below
Tg in both glass and crystal the value of Cp.T / is determined only by the
oscillations of their building units, which can be considered as an ensemble of
quantum oscillators. Thus they follow the predictions of quantum statistics and
their Cp.T /-course is entirely determined by the well-known Einstein or Debye
(or Tarassov) formalism (see Chap. 4 of the present book), predicting temperature
dependencies, leading at T ! 0 to Cp.T / ! 0 both for the crystal and the glass.
At temperatures approaching zero, thus for any equilibrium crystalline substance
remains valid the classical formulation of M. Planck, according to which we have to
expect Scryst.T /T!0 D 0, now also following from the results of quantum statistics.
However, in any body with frozen-in non equilibrium (and especially in a glass!),
despite above quantum statistical expectation, confirmed by numerous experiments
showing that C glass

p .T / jT!0 D 0 both classical and quantum mechanics confirm
also another prediction of Planck: that any non-equilibrium system with frozen-in
disorder (and thus especially any glass) approaches T D 0 with a residual entropy
�S.T / jT!0 D �Sg D const. > 0. The value of this residual entropy (frozen-in
in the glasses at T � Tg) can be considered and calculated (or at least estimated!)
according to Planck in terms of Boltzmann’s statistics as an entropy of mixing (of
thermodynamically distinct real or virtual structural elements). A classical example
in this respect gives the possibility of free volume calculation of the value of �Sg
of simple and polymer glasses, as it was performed by one of the present authors
years ago [48] and as it is summarized in Sect. 5.6 of the present monograph.

In Chap. 5 of our second monograph [24] also other systems with frozen-in
disorder – crystalline alloys, defect crystals (with structural defects, frozen-in at
the melting point, T D Tm/, so-called “glassy” crystals, amorphisized crystals,
so-called spin-glasses etc. – are discussed. In all these systems above mentioned
remarkable duality, first observed in common model laboratory glasses is followed:
their specific heats Cp.T / are nullified at temperatures approaching zero point,
their zero point entropy, however, remains a positive constant. Any substance, in
equilibrium or not because in both cases Cp.T /T!0 D 0, follows the requirements
of the Third Principle, if we formulate it as a principle of the non-attainability of
the absolute zero of temperatures. With no device or process, even with the use
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of non-equilibrium systems, could we thus reach the absolute zero of temperature.
However, in approaching this temperature with a system in non-equilibrium, we will
approach it in a way different from the route, observed with a system in equilibrium
(i.e. with a crystal or with liquid helium, the only system, remaining liquid even at
T ! 0). These differences are discussed here in Sect. 2.52 and in greater details in
the cited publications of the present authors.

In these publications also a detailed discussion may be found concerning claims
of some authors [49] that vitrification processes are accompanied by an approach to
zero of the residual entropy values. In three recent our papers [50–52], a special
critical analysis of the consequences of such an approach are performed and it
is found that they contradict both in their derivation and in the final results the
Second Principle of thermodynamics. This conclusion concerns properties which
are described above T D Tg with Boltzmann statistics. For properties like the
electric conductivity of metallic alloy glasses or the thermoelectric properties of
glass/crystal contacts the respective systems follow quantum statistics and the
temperature dependencies it determines. Thus in metallic alloy glasses the thermo-
electric driving force glass/crystal, �˛.T / jT!0 D 0, as we have shown using both
theoretical and experimental evidence, despite the circumstance that this property
is determined by an entropy analog: the drift entropy of the respective electricity
carriers (for the details see [47, 51]). Thus it turns out that while in “normal”
molecular “laboratory” glasses the configurational entropy of the structural units
of the glass is frozen-in below Tg, the drift entropy of the electric carriers in the
metallic glass (i.e. the nearly fully degenerated electronic gas there) follows both
above and below Tg the requirements of Fermi’s quantum statistics and determines
at T ! 0 both specific heat and entropy dependencies, leading to Cp.T / ! 0 and
to S.T / ! 0.

14.1.3 The Prigogine-Defay Ratio

14.1.3.1 Second-Order Equilibrium Phase Transitions: Ehrenfest’s
Relations and Ehrenfest’s Ratio

Following Ehrenfest, second-order equilibrium phase transitions are characterized
by equality of Gibbs’ free energies of the different phases,

G.1/.p; T / D G.2/.p; T / ; (14.20)

and, in addition, by equality of the first-order derivatives,

�
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(14.21)
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or equality of volume, v, and entropy, s,

v.1/ D v.2/ ; s.1/ D s.2/ ; (14.22)

but inequality of the second-order derivatives,
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and the definitions of the specific heat at constant pressure, Cp, the isothermal
expansion coefficient, ˛, and the compressibility, �,

Cp D T
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we obtain, consequently,

C .1/
p ¤ C .2/

p ; ˛.1/ ¤ ˛.2/ ; �.1/ ¤ �.2/ : (14.26)

As indicated in Eq. (14.21), each of the considered identities defines the depen-
dence of pressure on temperature (or vice versa) for the states where a second-order
equilibrium phase transition may occur. These two relations can be expressed in the
form

dp

dT
D 1

V T

 
C
.1/
p � C .2/

p

˛.1/ � ˛.2/
!
;

dp

dT
D ˛.1/ � ˛.2/
�.1/ � �.2/ : (14.27)

They are denoted as Ehrenfest’s relations. Since both equations have to be equiva-
lent, we arrive from them at a relation denoted as Ehrenfest’s ratio, ˘E , i.e.,

˘E D 1

V T

�Cp��

.�˛/2
; ˘E D 1 : (14.28)

For second-order equilibrium phase transitions, the combination of jumps of the
thermodynamic coefficients as expressed via Ehrenfest’s ratio, Eq. (14.28), has to
be equal to one.
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Fig. 14.4 Dependence of the
Prigogine-Defay ratio of the
given model system on
cooling rates. Here the
cooling rate is defined via
Eq. (14.36)

14.1.3.2 The Prigogine-Defay Ratio: Beyond Simon’s Model

Treating the glass transition in terms of Simon’s model, Prigogine and Defay [46]
and Davies and Jones [38,53] arrived at similar to Eqs. (14.27) and (14.28) relations
for the description of the glass transition employing different methods. In the
simplest version, the respective results can be obtained as follows: Assuming that at
the glass transition the relations

�V D Vliquid � Vglass D 0 ; �S D Sliquid � Sglass D 0 (14.29)

hold, immediately the relations

dTg
dp

D �ˇ

�˛
; (14.30)

�ˇ

�˛
D T V

�˛

�Cp
; (14.31)

1

V T

���Cp

.�˛/2

ˇ̌
ˇ̌
TDTg

D 1 (14.32)

are obtained, provided the system under consideration is described by one structural
order parameter. Such relations and the corresponding value of the Prigogine-Defay
ratio are widely discussed and employed later by different authors. Based on these
results in addition the conclusion was drawn that glasses have to be described in
general by more than one structural order parameters since in experiment usually

˘.Tg/ > 1 ;
dTg
dp

D T V
�˛

�Cp
<
�ˇ

�˛
(14.33)

is found (Goldstein [54]).
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Fig. 14.5 Results of
measurements of the
Prigogine-Defay ratio on two
alkali-silicate glasses with
different compositions
[55, 56] (circles refer to
SiO2 � Na2O; full points to
SiO2 � K2O). The full, dotted
and dashed-dotted curves
represent the phase diagrams,
x2 is the content of the alkali
component. Note that in
agreement with Eq. (14.35) a
decrease of ˘ is found with
increasing entropy of melting

However, as elaborated by us in [1, 55] and later re-derived in more detail in
[6,7,24], employing the method of Prigogine and Defay and utilizing one structural
order parameter, the Prigogine-Defay ratio can be in a good approximation written
as

˘.Tg/ D hp;T
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:

(14.34)
Equation (14.34) holds for any given state of the system under consideration.
As shown first in [55], in order to apply these relations to the interpretation of
experimental results, the value of the affinity, A, for cooling has to be substituted
into Eq. (14.34). Here the affinity has negative values. Consequently, if the glass
transition is assumed to proceed in some temperature interval (and not at some
discrete value of temperature, Tg, as assumed if Simon’s model is employed), then
the affinity at the glass transition is not equal to zero and˘.Tg/ > 1 holds (for more
details cf. also [6,7,24]). Since the state of the glass depends on cooling rate, also the
Prigogine-Defay ratio depends, in general, not only on the properties of the system
under consideration but also on cooling rate. An example for such dependence
is shown in Fig. 14.4. Based on this approach, an approximate expression for
the dependence of the value of the Prigogine-Defay ratio on composition can be
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theoretically developed given

˘ / 30R

�Sm
; (14.35)

where �Sm is the melting entropy. Experimental data in this respect are shown in
Fig. 14.5 (for the details see [55]).

In a second alternative approach [24, 57], directly the experimentally measured
values of the Prigogine-Defay ratio were determined by us theoretically avoiding
the application of the concepts of affinity etc. by computing directly the differences
of the thermodynamic coefficients of the liquid and the glass. It is shown for a
model system that this approach also leads to values of the Prigogine-Defay ratio
larger than one. In a third independent approach to the solution of this problem, it
was shown in [40] how the glass transition temperature depends on pressure. The
resulting relations are different from Eqs. (14.27) and only in limiting cases show
some similarity. This approach gives in this way a third independent proof that the
Prigogine-Defay ratio is not necessarily equal to one from a theoretical point of view
even if only one structural order parameter is employed for the description as it was
believed widely for several decades following the classical suggestions of Prigogine
and Defay and Davies and Jones.

14.1.4 Kinetics of Vitrification at Variable Rates of Change
of Control Parameters

The first task which was solved in analyzing the dependence of vitrification kinetics
on the rates of change of the external control parameters was the analysis of
the kinetics of formation of glasses with different properties when temperature,
pressure or electric field strength are changed with a different rate. It was first
performed in the framework of the already mentioned approximation of Simon by
Gutzow in collaboration with A. Dobreva and C. Rüssel [4, 5, 58–60]. In Sect. 3.7
of this book, results are given in which it is seen how the frozen-in entropy, �Sg,
the enthalpy, �Hg and the frozen-in free enthalpy, �Gg , of glasses are changed
when vitrification is performed with different cooling rates: the analysis being, as
mentioned, performed in the framework of Simon’s approximation. Of considerable
significance in the results thus obtained is the fan-like increase of the array of
�Gg.T /-curves, as it is depicted on Fig. 3.8 of the present book. It opens a new
insight into widely unexplored so far possibilities of the application of glasses
with increased thermodynamic potential which could be used in various technical
applications. A detailed analysis of the geometry of this fan-like construction may
be found in two publications by Gutzow et al. [61,62]. A survey of such possibilities
thus opened in reaction kinetics, in galvanic batteries or even in the application to
natural phenomena is given in a recent paper by Gutzow and Todorova [63].
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In continuation of these first efforts by Gutzow, Dobreva, and Rüssel, a series of
papers was published by the same authors [59, 60] in which the effect of change of
pressure and electric field strength was investigated: leading to a change of glass
transition temperature and thus also to a corresponding change of properties. In a
recent publication [40] Schmelzer enlarged and generalized this task, calculating
directly, via the above discussed kinetic approach, the effect of pressure on the glass
transition temperature. In a further development, based upon the thermodynamic
approach outlined in the referred publications of the present authors and employing
an MFA lattice-hole model it was shown by Garden, Wondraczek et al. [64]
that an appropriate variant of the generic phenomenological approach, developed
here, is capable of representing, at least in a semi-quantitative manner, with
sufficient accuracy the change of properties (especially the temperature induced
change) of the configurational specific heats in a concrete example – an organic
polymer glass-forming melt.

14.1.5 On the Dependence of the Properties of Glasses
on Cooling and Heating Rates: Some Results
of Numerical Computations

14.1.5.1 Structural Order Parameter

In recent analysis [6,7,37,40,41], the behavior of a variety of thermodynamic prop-
erties of glass-forming melts and glasses has been analyzed by one of the present
authors (J.W.P.S.) in cooperation with T. Tropin and C. Schick in dependence on
cooling and heating rates varying its absolute value in a wide range. This renewed
interest is partly caused by the fact that such experiments are feasible, now, allowing
one to analyzing glass-forming melts for cooling and heating rates in the range
between 10�4 K/s up to 105 K/s [65,66]. In this theoretical analysis, we concentrated
the attention on the computation of several quantities which are of particular interest
in a variety of applications and for the general understanding of the nature of the
glass transition. In the computations, we employed Eqs. (14.1) and (14.4) latter one
in a form as also used in [37].

In Fig. 14.6a, the � D �.T /-curves are shown in a wide range of rates of change
of temperature. The temperature is given here as  D T=Tm and the rate of change
of temperature as

q D d

dt

�
T

Tm

�
D d

dt
;  D T

Tm
: (14.36)

As seen from the figure, with a decrease of the rate of change of temperature the
cooling-heating hysteresis loops become less expressed and the process of glass
transition approaches more and more the simplified model as suggested by Simon,
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a

b

Fig. 14.6 Dependence of the
structural order parameter
� D �./ (with  D .T=Tm/)
on cooling and heating rates
defined by Eq. (14.36) (a) in
the range 10�3s�1 	 q D
.d=dt/ 	 102s�1 (more or
less easily accessible
experimentally); (b) in the
whole range of q -values
(10�7s�1 	 q 	 108s�1)
exceeding partly the ranges of
cooling and heating rates
accessible, at least, at present,
The dashed curves refer to
cooling, the full curves to
heating runs (q is given here
in s�1, see also text and [6,7])

i.e., the system goes over to the glass suddenly at a certain temperature, Tg . Vice
versa, with increasing rate of change of the control parameters the glass transition
temperature and also the width of the glass transition region increases [41] and, as
a consequence, also the difference between glass transition temperatures in heating
and cooling as expected according to Eq. (14.11). Two questions arise in this respect:
Will such kind of behavior continue also down to even lower values of cooling-
heating rates which can be analyzed within reasonable computer times? What will
be the behavior if we similarly further increase cooling and heating rates? Or to
be more precise, provided we can reach such cooling rates that the characteristic
times of relaxation and cooling are comparable already at or even above the melting
temperature Tm, will there occur certain peculiarities or not?

The answers to these questions are illustrated in Fig. 14.6b. Here the results are
shown for the �.T /-dependencies for the cooling and heating rates in the range of
q -values (in units of s�1) given by 10�7 � q � 108 and for reduced temperatures
in the range 0:5 �  � 1:3. It is obvious that the already mentioned tendency –
approach of a behavior as reflected by the Simon model – is retained also for
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the much larger range of cooling and heating rates in the limit of cooling and
heating rates tending to zero. And, in the alternative limiting case of very high
cooling and heating rates, the curves show no peculiarity when the glass transition
temperature approaches the melting temperature, Tm, or even becomes larger than
Tm. So, provided such very high rates of change of temperature could be reached, the
transition to a glass proceeds in a qualitatively similar way independent on whether
we go over to a glass from a metastable or a stable equilibrium state of the liquid.

14.1.5.2 Entropy Production and Frozen-In Entropy

Once the dependence of the structural order parameter on time and/or temperature
is established, one can directly compute the structural contributions to the thermo-
dynamic and kinetic parameters of the system, provided the general dependence
of these properties on the structural order parameter is known. We will start the
respective computations with the determination of the entropy production following
the respective advice of Prigogine and Defay ([46], page xviii): The fundamental
problem of the thermodynamics of irreversible processes is the explicit evaluation
of the entropy production.

The hysteresis effects, shown in Fig. 14.6a and b, are deeply connected with
entropy production in cooling and heating due to irreversible relaxation processes of
the structural order parameter to the respective equilibrium value. This interrelation
is illustrated in Fig. 14.7. Here the entropy production terms are shown, again, in
dependence on the rate of cooling and heating processes. The curves are computed
via Eq. (14.37) [24, 37]

diS

d
D G

.2/
e

Tmq�
.� � �e/2 : (14.37)

Again, similar to the �.T /-curves, with increasing rates of change of temperature the
effect of entropy production becomes more expressed reconfirming the theoretical
prediction given by us in [24, 37]. From a general point of view, this effect can be
interpreted as follows: With an increase of the rate of change of external parameters,
the deviations from equilibrium, as a rule, become larger. As a result, the rate of
entropy production becomes higher.

Having at one’s disposal the dependencies of the structural order parameter on
temperature for different cooling and heating rates, one can immediately repro-
duce the respective dependencies for the configurational entropy, Sconf =R. They
coincide in its qualitative shape with the curves of the temperature dependence of
the structural order parameter (cf. [24, 37] and Fig. 3.7a of the present monograph).
For any given value of cooling and heating rate, a definite non-zero value of the
configurational entropy is frozen-in, the respective value increases with increasing
absolute value of the cooling rate. The dependence of this frozen-in value of entropy
on cooling rates is shown in Fig. 14.8.
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Fig. 14.7 Entropy production (Eq. (14.37)) in vitrification and devitrification in a cyclic cooling-
heating run experiment [6, 7]. Top: the entropy production has one maximum for cooling (full
curve) and two maxima in heating processes (dashed curve). Bottom: similar curves for different
cooling and heating rates: the cooling and heating rates are changed in the range 10�7 	 q 	 107

(q is given here in s�1, see also text). With an increase of the rate of change of temperature, the
effect of entropy production increases

A comparison of the total entropy production in a cyclic cooling and heating
experiment, being in the order of magnitude equal to

�iS

R
Š 10�4 � 10�5 ; (14.38)

with the configurational contributions, being in the order of magnitude equal to

Sconf

R
Š 10�2 ; (14.39)
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frozen-in values of the
configurational entropy, Sconf ,
of the given model system on
cooling rates [6, 7]

shows that entropy production terms are negligible as compared with the configura-
tional contributions to the entropy. This fact is established also by a more detailed
thermodynamic analysis [24, 52] reconfirming previous qualitative predictions e.g.
by Davies and Jones [38]. Davies and Jones noted as a result of their analysis of
this problem: : : : we conclude that the neglect of the irreversible production of
entropy leads to no significant error in determining the residual entropy : : : and,
at another place, to glasses the Nernst heat theorem is not applicable. Consequently,
the thermodynamic determination of the zero-point entropy of glasses – as discussed
in detail in [1, 24] – leading to non-zero values at T ! 0 is fully correct. In general
and as it follows also from the analysis of the model system employed here, while
the metastable liquid fulfils the third law of thermodynamics in the formulation
assigned commonly to Planck (cf. [24]), the frozen-in glass does not obey this
formulation.

At another place in their papers, Davies and Jones especially analyzed the
applicability of thermodynamics to glass transition. Accounting for that the effect
of entropy production is small, they concluded that thermodynamics in its classical
form is applicable to glass formation. Even more, as evident from the analysis
performed here and outlined in previous sections, the results for the model system
as derived here are obtained by non-equilibrium thermodynamic methods fully
accounting for the non-equilibrium character of the glass transition. They give as
well – and in contrast to alternative statements as summarized recently in [49] –
an additional proof of the validity of the “conventional point of view” that glasses
have a non-zero residual entropy depending on cooling rates. A detailed discussion
of a variety of additional arguments in favor of this point of view can be found in
[1, 24, 51, 52, 67, 68].

14.1.5.3 On the Value of the Viscosity at the Glass Transition Temperature

Gustav Tammann [3] connected in his well-known books the glass transition
temperature with a value of the viscosity equal to 1013 Poise. However, having
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Fig. 14.9 Dependence of the viscosity at glass transition temperature on cooling rates. Since
according to the Bartenev-Ritland equation (when the VFT-equation is employed for the descrip-
tion of the viscosity [1,6,7,24]), the ratio (1=.Tg � T0/) is a linear function of the logarithm of the
cooling rate, according to � D �0 exp.U �

a =.R.T � T0/// a linear dependence of log � on log q
has to be expected. This result is confirmed by the numerical computations [6, 7]

in mind the dependence of the glass transition temperature on cooling rate as
expressed, for example, by the Bartenev-Ritland equation, this identification cannot
be general. For example, Mazurin [69] noted that “the widespread opinion that
the glass transition temperatures for glasses of any compositions are close to
temperatures corresponding to viscosities of 1013 Poise does not hold true. However,
the glass transition temperatures determined under conditions similar to the
standard conditions for the majority of the glasses studied up to now correspond
to temperatures at which the viscosities vary in the range from 1012 to 1014 Poise”.
However, allowing the rate of change of temperature to vary in broad intervals, these
limits can be widely enhanced. Indeed, performing the computations described here
and identifying the viscosity at T Š .2=3/Tm with the conventionally assumed for
Tg value equal to 1013 Poise, we can determine the viscosity at the glass transition
temperature in dependence on cooling rate. The results are shown in Fig. 14.9. It is
evident that, at least, in terms of the model analysis where the cooling rates may be
changed in a very large interval the viscosity at Tg may considerably deviate from
the standard value and by far exceed even the commonly found experimentally range
as reported by Mazurin (1012 to 1014 Poise).

Finally, we have to mention that even such large cooling rates may be considered
in the model system that the transition to a glass proceeds not from the metastable
continuation of the equation of state of the liquid but directly by freezing-in the
equilibrium liquid. It is interesting to note here that the possibility of glass transition
above the normal melting or freezing point was realized already very early e.g.
by Jones [70] with reference to experimental work performed by Smekal [71].
However, in some contradiction to such insight the viscosity at glass transition
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was identified by them also [53, 70] – following Tammann [3] – to be equal to
1013 Poise. Jones [70] already stated as well that a melting temperature may even
have no meaning since many organic substances form glasses on cooling because
no crystalline structure can form on account of the length or complicated nature of
the molecules, a situation, which is frequently found in polymer physics.

14.1.6 The Viscosity of Glass-Forming Systems Described
in Terms of the Generic Phenomenological Approach:
The Activated State Model of Viscous Flow

In Sects. 2.4 and 12.6 of our book [1] we have given an empirical description of
several of the most popular approaches in describing viscosity. They are based on
empirical models leading to a more or less convenient and sufficiently satisfactory
description of the viscosity of glass-forming liquids and especially of its steep
temperature dependence. Flow in glass-forming liquids is based on the frequency,
!, of density or structure fluctuations. According to basic assumption of statistical
thermodynamics [27], this frequency is determined by the expression

! D !0 exp

�
�S�

R

�
: (14.40)

Here�S� indicates the entropy difference between two different states in the small
volume of the system connected with the fluctuation via some known (or assumed)
mechanism. For a sufficiently large system in thermodynamic equilibrium (provided
also that T D const. and p D const. holds) in which the fluctuation is formed, the
well known relation [27]

�S� D
�

�Wmin

T

�
D �

�
�G�.T /

T

�
(14.41)

can be then employed, where Wmin is the minimal thermodynamic work required to
form (in our case) the flow determining fluctuation. With �G�.T / is denoted (at
p D const./ the corresponding Gibbs free potential difference.

The value of �G�.T / in Eq. (14.41) can be calculated for any appropriate
thermodynamic model system. In a very general formal way this can be done in
the framework of the Activated (or Transient) State Model of the so called Absolute
Rate Theory (see [72]). In some respect any of the existing molecular models
of viscous flow can be derived (at least, in principle) as particular cases of this
thermodynamic model, formulated many years ago as a general approach for the
description of chemical reaction kinetics. It is due mostly to the efforts of Wigner,
Eyring, Laidler and many other well-known scientists of the middle 1930/1940s.
In applying this concept it is essential to note that according to the Activated State
Approach it is assumed that there exists some non-specified activated molecular
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configuration (the Activated State Complex), enabling the transport process. It is
further on assumed that this complex has the properties of a thermodynamic system
(i.e. that it is sufficiently large!) and exists for the time �0, also sufficiently large,
so that thermodynamic equilibrium can be established. Then and only then, this
imaginary activated complex could be characterized thermodynamically by the
above written Gibbs free energy excess, �G�.T /.

From elementary considerations it is obvious that both above mentioned condi-
tions can only approximately be fulfilled for the “activated” molecular complex,
constituted of not more than several molecules in the liquid and existing, most
probably, not longer than the time, elapsed between several eigen-frequency molec-
ular oscillations (�0 Š 10�12 � 10�13 s). Nevertheless these two approximations
(at least, implicitly assumed in fact also in any more or less elaborated “molecular
viscosity models” based on the existence of fluctuations) seem somehow to describe
sufficiently correctly the very essence of the decisive step of the process in both
chemical reaction kinetics (where the Activated State Approach is usually applied
in the form of the so called Absolute Reaction Rate Theory) and in self-diffusion
and molecular flow in liquids. We employed the notions of the Activated Complex
Approach in [23, 73, 74] mainly because of its disarming simplicity, demonstrating
possible error sources, remaining hidden in more sophisticated molecular models
and because of the easiness with which necessary estimates of changes in terms of
both classical and non-equilibrium thermodynamics can be performed. This is the
model we used in assessing especially the influence of non-equilibrium conditions:
this we have done in terms of Prigogine’s Taylor expansion of the activation energy,
U.T; �/, as already discussed in connection with the derivation of Eq. (14.4) also in
the present chapter.

Note that, in terms of the Eq. (14.4) and similar ones, formulated in our generic
phenomenological approach, it is possible, together with constructing the course of
change of thermodynamic functions, also to describe the change of �.T; �/ with
temperature and deviation from equilibrium (e.g. [19]). Results in this respect we
obtained in several of our recent investigations, as they are demonstrated here on
Fig. 14.10. On this picture the peculiar delay in the change of the �.T; �/-curve with
changing temperature is seen, the �.T; �/-course remains somehow “out of sched-
ule” with the initial change of temperature: in this manner then follows, however,
a peculiar “break-down” of the frozen-in non-equilibrium structure of the initial
glass. This was a somewhat unexpected result on the influence of non-equilibrium
on relaxation in typical heating-up regimes of glassy systems. It gives rise to several
interesting phenomena when connected with crystallization in heating-up of glasses,
as discussed in details in several of our respective publications [73].

Of particular interest here is the possibility of flare-up of density fluctuations in
heating-up of an initially quenched glass, following from this �.T; �/ vs. time, t ,
regime: in heating-up a glass especially in an appropriate “optimal” heating regime
and bringing-up the frozen – in system to higher temperatures. This flare-up of
fluctuations causes optical turbidity effects observed years ago, mainly by the
Russian glass structure school in St. Petersburg: by E. A. Porai-Koshits and his team
of scientists. In our paper [73] an account of these fluctuation determined flare-up
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Fig. 14.10 Results of theoretical computations of the time of molecular relaxation, �.T; �/, on
temperature: (1) temperature course of �e.T / determined employing a temperature dependence of
the activation energy as in the Vogel-Fulcher-Tammann equation (i.e., U.T / D const=.T � T0/);
(2) normal cooling; (3) heating run [19, 73]

effects near Tg is given. In some respect they can be juxtaposed (or confronted!) with
the classical flare-up of fluctuations in the vicinity of second-order phase transition
temperatures, at T � T2, as they have been theoretically analyzed e.g. by Landau
and Ginzburg (see e.g. [27]). In both cases fluctuations are promoted because both
at T ! Tg and at T ! T2, the non-equilibrium glass (in approaching Tg/ or the
system, undergoing a second-order phase transition (at T2/ become particularly and
even catastrophically unstable. An interesting difference between these two cases
of fluctuational flare-up is that, while in second-order phase transitions fluctuations
are easily generated by approaching the temperature T2 from both sides (i.e. both
upon heating up or cooling down sequences), an “easy-fluctuation state” of the
initially frozen-in system is achieved and experimentally observed only in heating-
up experimentation.

Concluding the discussion of relaxation, we would like to note that accounting
for the dependence of relaxation time on the structural order parameter, also a
variety of relaxation laws can be described [24, 75] commonly treated in terms of
several structural order parameters. Our approach predicts that, in addition to the
exponential decay near to equilibrium, relaxation may be governed in intermediate
stages by laws of the form �.t/ D .�k.0/ � .k=ak/t/

1=k . Such kind of relaxation
behavior (with k D 2) was already distinguished by Kauzmann [76] and recently
reconfirmed to dominate the dielectric ˛ process in viscous organic liquids [77].
In addition, it allows one to understand the origin of stretched exponential type
relaxation processes, it gives estimates of the coefficient ˇ in agreement with exper-
imental findings (0:3 � ˇ � 0:75). Consequently, also from such considerations the
possibility of an adequate description of glass-forming systems by employing only
one structural order parameter gets an additional support. However, this statement
does not mean that, in general, not more than one structural order parameters may
be required to appropriately describe the system under consideration. In particular,
an analysis performed in [78] shows that for the explanation of the dependence of
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viscosity on pressure and temperature, the account of the dependence of viscosity on
several structural order parameters is essential. However, as shown, this statement
does not refer to the explanation of laws of the form �.t/ D .�k.0/ � .k=ak/t/

1=k

and of stretched exponential relaxation as shown in [24, 75] and discussed here.
Such kind of relaxation behavior can be understood employing only one structural
order parameter.

14.1.7 Thermodynamic and Kinetic Fragility of Glass-Forming
Systems: Thermodynamic and Kinetic Structural
Coefficients

Following a proposal by Angell [79–81] and the results of his attempts to connect
glass dynamics and glass thermodynamics, as fragile are classified glass-forming
systems in which the change of viscosity, �.T / (or more, generally, the time of
molecular relaxation, �.T /) with temperature, T , is steeply (non-Arrhenius-like)
changing in approaching Tg (cf. Fig. 14.11). As strong on the contrary are classified
glass-forming systems in which the temperature dependence, �.T /, in approaching
T D Tg remains nearly linear (in a logarithmic scale) as corresponding to the
classical Arrhenius temperature dependence. In the German technical glass-science
nomenclature of the 1930s, glasses with the respective above mentioned two types
of temperature behavior were termed (maybe more appropriately!) as “long” and
“short” glasses.

In order to introduce a measure to quantify the kinetic fragility (or steepness in
the temperature course of the viscosity), the dynamic steepness index

m D d log10 Œ�.T /�

Tgd

�
1

T

�
ˇ̌̌
ˇ̌
ˇ̌̌
TDTg

(14.42)

is usually employed in recent literature. In the same sense, also the character of
change of structurally determined thermodynamic properties (i.e. of the config-
urational entropy, �S.T / Š Sliq.T / � Scryst.T /) can be described by the term
thermodynamical fragility. For that purpose, we could use in a way analogous to
above definition here the derivative

d�S.T /

�Smd.T=Tm/

ˇ̌̌
ˇ
TDTm

D �Cp.Tm/

�Sm
(14.43)

to define a thermodynamic steepness index of fragility; either at melting tempera-
ture, Tm, or also, as above, at T D Tg . It can be and has been shown that both these
indices are connected with (or better: through) the ratio
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Fig. 14.11 Viscosity of several glass-forming melts in Angell’s coordinates log �.T / vs. .Tg=T /
[79–81]. Note the “strong”-type rheological behavior of SiO2, GeO2 and BeF2 and the “fragile”-
type change of the viscosity in systems with temperature dependent structures and activation
energies of viscous flow, U.T /, depending on reduced temperature, T=Tg . It is, however,
interesting to note [82] (Johari, 2010, personal communication) that similar coordinates have
been employed much earlier and partly in a much more detailed description by Oldekop [83]
and Laughlin and Uhlmann [84]

a0 D �Cp.Tm/

�Sm
: (14.44)

Here, the difference�Cp.T / � C
glass
p .T /�C cryst

p .T / (with the index glass referring
to both glass or liquid) indicates the configurational specific heats of the system and
�Sm is the respective melting entropy (cf. also Fig. 14.12).

The significance of this ratio in describing both the thermodynamics and the
kinetics of glass-forming systems, as acknowledged by Angell and others (see e.g.
[81]), was elaborated by one of the present authors many years ago (see Gutzow [86]
and Gutzow and Dobreva [4, 5]). Its extraordinary significance follows from the
following considerations:

• From a general point of view it is obvious that this ratio quantifies the change
of the possible numbers of configurations or structural arrangements, ˝.T /,
of the system (e.g. via S.T / Š R ln˝.T /) with the easiness, with which its
temperature, T , is changed, when an amount of energy in form of heat, Q, is
introduced into it (determined by the value of Cp.T /).
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Fig. 14.12 Temperature dependence of the configurational entropy for several glass-forming
substances, �S.T / D Sliquid.T /� Scrystal.T / and�S.T / D Sglass.T /� Scrystal.T / (for T 	 Tg),
in Kauzmann’s coordinates .�S.T /=�Sm/ vs. .T=Tm/ [76]. Note the fan-like divergence in
the temperature dependence, the similarity in the break-points near T D Tg and the negative
values of the extrapolated �S-values below T0. Additionally, data for NaPO3 are introduced into
Kauzmann’s diagram (according to the measurements of Grantscharova et al. [85]) in order to
illustrate the “fragile” behavior of a typical inorganic glass-former

• Any structural or phase-transitional thermodynamic change in the glass-forming
system is predestined by driving forces, governed (at p D const.) by the configu-
rational part of the thermodynamic potential difference, �G.T /, between liquid
and crystal. As already discussed in Sect. 3.3, a Taylor expansion of �G.T / in
the vicinity of Tm, truncated at the second term, can be written as

�G.T / Š Tm�Sm

�
1 � �Cp.Tm/

2�Sm
.1 � /

�
.1 � / ; (14.45)

where

 D
�
T

Tm

�
(14.46)

is the reduced with respect to Tm temperature. In deriving above dependence two
well-known thermodynamic relations have been employed

�
d�G.T /

dT

�
p

D ��S.T / ;
�
d�S.T /

dT

�
p

D �Cp.T /

T
: (14.47)

As discussed in detail in Sect. 3.3 of the present monograph here and already
in the first edition, all the known dependencies, governing the driving force for
crystallization of under-cooled glass-forming melts, can be directly derived from
Eq. (14.45) by assigning different values to the ratio
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a0 D �Cp.Tm/

�Sm
: (14.48)

The values of the parameter a0 may vary according to experimental findings in the
range

1 � a0 � 2 (14.49)

in dependence on the types of structures of the systems under consideration (see
also Chap. 8 of our monograph [24]). As far as it can be assumed that in the
temperature interval (T0; Tm) (with T0 � Tg) the approximation a0 D constant
holds, the temperature dependence of the configurational part of the entropy of the
under-cooled melt can be written with above equations as

�S.T / D �Sm .1C a0 ln / : (14.50)

In this way with above dependence also the Kauzmann temperature TK D T0,
defined by the condition�S.T / D 0, is determined by the same parameter a0 as

0 D
�
T0

Tm

�
D exp

�
� 1

a0

�
: (14.51)

Consequently, the thermodynamic properties, the configurational structure, and
even the crystallization of glass-forming melts are (in the framework of the adopted
approximation) unambiguously determined by the value of the ratio a0. By this
reason, this parameter can be justly denoted as the thermodynamic structural factor.
This conclusion is supported also by additional considerations as summarized
below:

• In the framework of generalized versions of the Activated State model, expres-
sions can be derived showing that again the ratio

a0 D
�
�Cp.Tm/

�Sm

�
; (14.52)

multiplied with the factor B�, determines viscous flow, and more generally, the
dynamic behavior of the system under consideration. The factor B� depends
on the complexity of the system (and especially on configurational factors
like degree of association, polymerization and the like). The value and the
frequency of the flow determining fluctuations are determined now according
to Eqs. (14.40) and (14.41) by the thermodynamic potential difference

�G�.T / D G.T /activated state �G.T /ground state : (14.53)

The activation energy of the flow process becomes dependent again on the ratio
a0 e.g. via
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and on appropriately truncated Taylor expansions of the Planck potential function
difference .�G.T /=RT / written for different possible models, e.g. in terms of
the VFT-viscosity function or as the Adam-Gibbs viscosity model. This latter
mentioned case supplies us with a very instructive example of how a0 has to
enter the dependencies, governing the temperature dependence of viscosity of
glass-forming liquids. Equation (14.54) can be easily derived in terms of the
activated state model.

• It can be shown further-on, as we demonstrated recently [73,74] that from above
written dependence can be obtained (after appropriate transformations, at least,
in an approximative form) as particular cases most of the viscosity formulas,
discussed in Sect. 2.4.1, including the VFT-dependence and even the viscosity
formula, referred to already in Sect. 12.6, the Adam-Gibbs formula (cf. also
[685]). According to this relatively new and theoretically initially somewhat
unexpected dependence the temperature course of viscosity or, more directly,
of the time of molecular relaxation can be given as

ln �.T / D ln �0 C
�

B#

T�S.T /

�
; (14.55)

where �S.T / is the already discussed temperature dependence of the config-
urational entropy of the glass-forming melts. Taking the derivative employing
Eq. (14.42) gives for the coefficientm, Angell’s dynamic kinetic fragility coeffi-
cient, the desired connection with our thermodynamic structural factor, the ratio
a0, defined here in terms of above mentioned Adam-Gibbs dependence in the
form

m D B#

0
BB@
1C �Cp.T /

�S.T /

�S.T /

1
CCA
TDTg

� b0.1C 3a0/ : (14.56)

In writing the right hand side of above dependence, we have used one of the
invariants of glass transition (see [1, 24]) according to which

�S.Tg/ Š .1=3/�Sm (14.57)

and have employed further the notation

b0 D
�
3B#

�Sm

�
: (14.58)

In this way, in analogy with previous results obtained by Gutzow and Dobreva
[4, 5] we have connected the kinetic fragility factor, m, with the thermodynamic
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structural ratio, a0, introducing the coefficient b0, which, according to its above
introduced definition, depends in a reciprocal way (via �Sm) on the complexity
of the melt considered: the entropy of melting of a more complex liquid has
higher values.

In using one of above given dependencies (see [52]), for the value of �S.T /
a somewhat more elaborated dependence, connecting m with a0, can be written
employing above derived formula, but accounting for the scatter of existing experi-
mental data, we think that Eq. (14.58) can be used with sufficient accuracy. From
above derivations it becomes evident that the right way to generalize Fig. 14.11
is to introduce there “” as a thermodynamic quantity indicating the temperature
reduced with respect to the melting point “Tm” and not to “Tg” which is in fact a
kinetic quantity depending on the conditions of vitrification.

14.2 Phase Formation Processes in Glass-Forming Systems

14.2.1 Generalized Gibbs’ Approach to the Thermodynamics
of Heterogeneous Systems and the Kinetics
of First-Order Phase Transitions

14.2.1.1 Introduction

The description of nucleation in both its thermodynamic and kinetic aspects as
it is outlined in detail in the present book follows widely the thermodynamic
model of heterogeneous systems and of the process of nucleation as developed
by J.W. Gibbs in his series of papers 1875–1878 [87]. This theory is the basis of
classical nucleation theory as outlined in the book.

In addition, we had introduced into our book in 1995 a very substantial idea,
new and still unproven at these times: the notion that phase transitions in glass-
forming systems are substantially determined by non-steady state effects in their
nucleation kinetics. This idea was developed in 1940s by the great Russian scientist
Ya. B. Zel’dovich, as this is described in detail here in Chap. 6 and in a newer
publication [88]. In this chapter is summarized also both theoretical expectation
and experimental finding, the whole existing evidence, that the Zeldovich’s model
of non-steady-state kinetics of nucleation has to determine any process of phase
transition in glasses, and to a great extent also the kinetic stability of under-cooled
melts and glasses. In combination of transient effects with classical developments
and notions in nucleation theory, already proposed or firmly accepted, the present
authors succeeded in developing a new theoretical picture of the crystallization
in glass-forming systems, which found its experimental verification in numerous
experiments on both homogenous and heterogenous crystallization, many of them
initiated and performed by one of the present authors and his colleagues at the
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Institute of Physical Chemistry in Sofia, employing mainly simple model glasses
as described in Chaps. 6 and 7 and additionally employed in later publications
discussed below. Similar model glasses, both organic polymers and inorganic
relatively low melting glasses like NaPO3 were used also to model even technically
important processes, the synthesis of glass-ceramics, the dissolution of glasses,
and their rheological behavior. In this way a new theoretically well-founded
development of the classical theory gave a possibility to develop new ideas, to ask,
search and really bring experimental verification to a new development in phase
transition and crystallization in glasses. This development was accepted and further
expanded in several laboratories and by prominent representatives of the glass
science community and even brought with it technical developments in different
applications of new materials synthesis, in application of glasses, and even in extra-
terrestrial experiments, as they are described below.

However, as already mentioned, according to Gibbs’ theory, the bulk properties
of new phase nuclei are widely identical to the macroscopic properties of the
newly evolving bulk phase. Such an extrapolation allows one to arrive at simple
and straightforward estimates of parameters determining nucleation but, as already
indicated in the 1995 edition (see e.g. Sects. 6.2, 6.3.1, and 6.3.8), leads partly
to great difficulties of a very general nature: it opens the discussion down to
which dimensions, to complexes of how many building units can thermodynamic
terms be applied and thermodynamic calculus performed. Where to place here
the interphase layer, how to justify the assumption, that the properties of such
nano-sized complexes can be described in terms of macroscopic phases and their
extrapolated properties?

One way out of these difficulties was given by the so called atomistic model of
nucleation, initially formulated by Walton and Rhodin (see Sect. 6.3.8 of the present
book) and generalized further on by Stoyanov, Milchev, and Kaischew ([424], for
a recent overview in application to electro-crystallization see [89]). The latter men-
tioned authors also clarified the general connections of the original Walton-Rhodin
ad hoc formulated atomistic approach with the classical thermodynamic Gibbs
model and the classical kinetic models of Volmer, Kaischew-Stranski, Becker-
Döring, and Zeldovich describing the nucleation-growth course. There have been
also proposed different variants of theoretical approaches to improve or generalize
the initial model of Gibbs, introducing into it new features, bringing it nearer both
to real experimental evidence and to newly developed theoretical concepts. At the
same time authors of such approaches have to try to change the initial model in
such an order as not to disturb the peculiar, but fine balance existing in the original
picture, drawn by Gibbs, in which several obvious flaws seem to lead to a mutual
compensation of the original in direction of an acceptable semi-quantitative first
approximation of the thermodynamics of the nucleation process. Here we would
like briefly to sketch a new approach to the description of heterogeneous systems –
we denoted as generalized Gibbs approach – allowing one to retain the advantages
of Gibbs theory but avoiding its shortcomings.

As already mentioned, in the interpretation of experimental results on the
dynamics of first-order phase transitions starting from metastable (stable with
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respect to small and unstable with respect to sufficiently large fluctuations exceeding
some critical sizes, the so-called critical cluster sizes) initial states, up to now
predominantly the classical nucleation theory is employed treating the respective
processes in terms of cluster formation and growth [1, 90–103]. This theoretical
approach is discussed in detail also in the present book. In the specification of
the cluster properties, thermodynamic methods are intensively utilized based in
the majority of cases on the thermodynamic description of heterogeneous systems
developed by Gibbs [87]. As one additional simplifying assumption it is assumed
hereby frequently that the bulk properties of the clusters are widely similar to the
properties of the newly evolving macroscopic phases. This or similar assumptions,
underlying the classical approach to the description of cluster formation and growth,
are supported by the results of Gibbs’ classical theory of heterogeneous systems
applied to processes of critical cluster formation. Indeed, following Gibbs thermo-
dynamic treatment one comes to the conclusion that the critical clusters have to
have properties widely similar to the properties of the newly evolving macroscopic
phases. Treating clusters of arbitrary sizes as small particles with bulk properties of
the macroscopic phase, the process of cluster growth and dissolution is considered
then to proceed basically via addition or emission of single units (atoms, molecules)
retaining the bulk state of the clusters unchanged [90, 92, 97, 98].

As a second additional thermodynamic assumption employed widely in classical
theory of nucleation and growth processes (the so-called capillarity approximation),
the interfacial specific energy of critical clusters is supposed in a first approximation
to be equal to the respective value for an equilibrium coexistence of both phases
at planar interfaces. In order to come to an agreement between experimental and
theoretical results on nucleation-growth processes, this second assumption often
has to be released by introducing a curvature dependence of the surface tension
(or a temperature dependence of the specific interfacial energy which is, from a
theoretical point of view, widely equivalent). However, such an assumption leads
to other internal contradictions in the theory which cannot be resolved remaining
inside the concepts of Gibbs’ thermodynamic treatment of cluster properties [87,
104, 105]. This way, Gibbs’ classical treatment of surface phenomena is confronted
with serious principal difficulties in application to nucleation. Gibbs employed
in his approach a simplified but fully correct model considering the cluster as a
homogeneous body divided from the otherwise homogeneous ambient phase by
a sharp interface of zero thickness. The thermodynamic properties of the system
under consideration are described in this approach by the contributions of the both
homogeneous phases, known from classical thermodynamics, and correction terms
connected with the existence of the interface. The main problem in such approach
is then how correctly to determine these interface correction terms.

The alternative to Gibbs’ model continuum’s concept of a thermodynamic
description of heterogeneous systems was originally developed by van der
Waals [106]. It has been applied for the first time to an analysis of nucleation
by Cahn and Hilliard [107, 108]. In application to nucleation-growth processes,
Cahn and Hilliard came to the conclusion that the bulk state parameters of the
critical clusters may deviate considerably from the respective values of the evolving
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macroscopic phases and, consequently, from the predictions of Gibbs’ theory. Such
deviations occur, in particular, in the vicinity of the classical spinodal curve dividing
thermodynamically metastable and thermodynamically unstable initial states of the
systems under consideration. These results of the van der Waals’ approach were
reconfirmed later-on by more advanced density functional computations [109].

Moreover, Cahn and Hilliard developed also the alternative to the nucleation-
growth model theoretical description of spinodal decomposition (see also [110]).
According to the common believe (having again its origin in the classical analysis
of Gibbs [87]), the nucleation-growth model works well for the description of phase
formation starting from metastable initial states, while thermodynamically unstable
states are believed to decay via spinodal decomposition. As one consequence, the
problem arises how one kinetic mode of transition (nucleation-growth) goes over
into the alternative one (spinodal decomposition) if the state of the ambient phase is
changed continuously from metastable to unstable states, i.e., how the transition
proceeds in the vicinity of the classical spinodal curve. The classical Gibbs’
approach predicts here some kind of singular behavior, which is, however, not
confirmed by the Cahn-Hilliard description, statistical-mechanical model analysis
[111–113] and experiment [114]. From a more general point of view, we are
confronted here with an internal contradiction in the predictions of two well-
established theories which has to be, hopefully, and can be resolved as shown for
the first time by the present authors [115, 116].

In a first approach to the resolution of these problems, we started our analysis
with a generalization of Ostwald’s Rule of Stages to nucleation. According to
Ostwald’s experience [117] in processes, where different macroscopic phases can
be formed, as a rule not the thermodynamically most stable modifications but
intermediate ones are formed initially. In Ostwald’s words, “: : : in the course of
transformation of an unstable (or metastable) state into a stable one the system does
not go directly to the most stable conformation (corresponding to the modification
with the lowest free energy) but prefers to reach intermediate stages (corresponding
to other possible metastable modifications) having the closest free energy difference
to the initial state.” Ostwald’s rule of stages in his original formulation – as
discussed above and in more detail in Sect. 9.5.5 of the present book – gives a
selection rule for the sequence of formation of different stable or metastable phases.
But – as we will see – in a generalized interpretation, it can also be quite useful for
a theoretical understanding of processes of nucleation, when only one macroscopic
phase can be formed in the system.

According to the classical Gibbs approach, the critical clusters of the newly
evolving phase have essentially the same properties as the newly evolving macro-
scopic phases. Quantitatively, the properties are modified to some extent due to
the higher pressure in the critical cluster (Young–Laplace equation), however, this
effect is as a rule small. In the generalization both of Gibbs classical approach and
of Ostwald’s rule of stages, we abandoned this highly questionable assumption
of the classical approach and replaced it by a prescription we denoted as the
generalized Ostwald’s rule of stages. This generalization of Ostwald’s rule of
stages we formulated as follows: “In phase transformation processes, the structure
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and properties of the critical nucleus may differ qualitatively from the properties
both of the ambient and the newly evolving macroscopic phases. Those classes of
critical clusters determine the process of the transformation, which correspond to
a minimum of the work of critical cluster formation (as compared with all other
possible alternative structures and compositions, which may be formed at the given
thermodynamic constraints)”. By this approach, bulk parameters of the critical
clusters are obtained which are in agreement with the van der Waals approach and
more advanced density functional computations. However, the predictions of our
approach are now in contrast to Gibbs classical approach.1

The resolution of above mentioned circle of problems was shown by us to be
possible in the framework of a generalization of Gibbs’ classical thermodynamic
method developed by us in recent years. In this generalization, we were confronted
with the serious problem that most people are fully convinced that Gibbs “is always
right”. As it seems, meanwhile we could overcome this resistance and the early
observations and theoretical developments of W. Gerlach [121], E. Scheil [118],
and G. Masing [122] and others give additional support to our strong believe in the
necessity of generalizing Gibbs’s classical approach.

1In discussing our approach at a conference in Cherkassy, Ukraine, in June 2012, organized
by Andriy Gusak and coworkers, one of the participants (E. Rabkin, Haifa, Israel) noted that
eventually similar ideas have been anticipated earlier by E. Scheil [118] and J. N. Hobstetter [119]
in application to nucleation-growth processes in metal physics, where this approach is denoted as
Scheil-Hobstetter model [120]. As it turned out this suggestion was fully correct. Indeed, Scheil
started his paper of 1950 with the observation of W. Gerlach [121] that in segregation of nickel-
gold particles from a solid solution as a rule particles are formed which do not have the equilibrium
composition. He cited also the observation of G. Masing [122] in his book on metal physics
that such effect – the difference of the composition of the clusters from the composition of the
macroscopic phases – is not an exception but the rule in metal physics. Employing similarly to our
analysis in [115] Becker’s equation [123] for the description of the interfacial energy in dependence
on composition, he demanded similarly to our approach that the critical cluster composition is, in
general, different from the equilibrium composition of macroscopic samples and determined by
the condition of the minimum of the work of critical cluster formation, i.e., he had really expressed
the same idea as advanced by us 50 years later by us not being aware then of this earlier work.
However, Scheil presumably did not recognize that this approach is in deep conflict to Gibbs
classical theory which leads – if correctly employed – to different results. Consequently, in the
analysis of Scheil the question remains unanswered how one can employ on one side Gibbs
theory but replace one of the inherent consequences by a different assumption contradicting the
conclusions of Gibbs’ classical approach. By the way, as mentioned by Scheil as well, Becker,
developing and employing the relation for the description of the surface tension in dependence
on composition, employed in the analysis Gibbs’ classical theory, i.e., identified the composition
of the newly evolving critical clusters with the composition of the newly forming macroscopic
phase. In addition, Scheil supposed that eventually the state of the critical cluster may refer to
some metastable phase which under certain conditions may be formed macroscopically remaining
in this way to some extent at the level of the classical Ostwald’s rule of stages (but leaving open also
the possibility that such metastable states may not exist). According to our treatment formulated
in the generalized Ostwald’s rule of stages, the composition of the critical clusters is from the
very beginning supposed to refer to transient states (composition, density, structure etc.) having no
macroscopic analogon.
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In this task, while Gibbs’ thermodynamic theory is restricted in its applicability to
equilibrium states exclusively (by this reason, it is without the introduction of partly
grave additional assumptions strictly not applicable to the description of clusters
of sub- and supercritical sizes), the generalized Gibbs’ approach is aimed from the
very beginning at a description of thermodynamic non-equilibrium states consisting
of clusters of arbitrary sizes and composition in the otherwise homogeneous
ambient phase [124–128]. It was demonstrated by us that, by developing such
generalization of Gibbs’ thermodynamic approach, Gibbs’ and van der Waals’
methods of description of critical cluster formation in nucleation can be reconciled.
The consequences with respect to the properties of the critical clusters are the same
as in the case when the generalized Ostwald’s rule of stages (minimization of the
work of critical cluster formation) is employed, but they follow now directly as
special cases from the thermodynamic theory. The generalized Gibbs’ approach
was shown to lead for model systems to qualitatively and partly even quantitatively
similar results as compared with density functional approaches. In particular, it
leads to a significant dependence of the bulk and surface properties of the critical
clusters on supersaturation and – in contrast to the classical Gibbs’ approach when
the capillarity approximation is employed – to a vanishing of the work of critical
cluster formation for initial states in the vicinity of the spinodal curve.

The generalized Gibbs’ approach has also one additional advantage as compared
with existing alternative approaches to the description of cluster formation. Simi-
larly to the classical Gibbs’ approach, the van der Waals’ method as well as modern
density functional analysis of the description of heterogeneous systems have the
same common limitation: they are restricted in their applicability to thermodynamic
equilibrium states exclusively. As a consequence, the mentioned theories can supply
us with information on the properties of critical clusters, governing nucleation.
However, they cannot supply us with any theoretically founded description of the
properties of single clusters or ensembles of clusters (required for a description of
their further evolution) being not in equilibrium with the ambient phase. By this
reason, in order to describe the evolution of ensembles of clusters in first-order phase
transitions, evolving either as the result of nucleation or of spinodal decomposition,
additional assumptions have to be made concerning their properties and the
evolution of their properties with the changes in cluster size and supersaturation
in the system. However, as far as one remains inside the mentioned approaches, one
has no theoretical tool to check the degree of validity of these assumptions.

As will be demonstrated here, the generalized Gibbs’ approach supplies us –
in addition to its advantages in the specification of the properties of critical
clusters – with the basis for determining the change of the composition of the
clusters in dependence on their sizes and supersaturation allowing us in this way
a detailed description not only of nucleation but also of growth and dissolution
processes [129–131]. In addition, a variety of additional general conclusions can
be derived employing it for the interpretation of experimental results (cf. also
[104, 105, 128, 129, 132–134]). In particular, it turns out that the classical picture
of nucleation does not give, in general, a correct description of the initial stages
of cluster formation and growth. In contrast, nucleation proceeds via a scenario
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widely similar to spinodal decomposition. Vice versa, even in unstable initial
states, not spinodal decomposition but ridge-crossing nucleation (in a generalized
interpretation) may represent the basic mechanism of evolution of the new phase.
The generalized Gibbs approach allows one also the understanding of some other
typical features of spinodal decomposition. These and further consequences of the
generalized Gibbs approach will be discussed in detail briefly below.

14.2.1.2 Thermodynamics and Nucleation Phenomena

In his fundamental papers [87], published first in the period of 1875–1878,
J. W. Gibbs extended classical thermodynamics to the description of heterogeneous
systems consisting of several macroscopic phases in thermodynamic equilibrium
and gave first a theoretical interpretation of the physical origin of metastability
and instability. As one of the applications, he analyzed thermodynamic aspects of
nucleation phenomena and the dependence of the properties of critical clusters –
aggregates being in unstable equilibrium with the otherwise homogeneous ambient
phase (corresponding, in general, to saddle points of the appropriate thermodynamic
potential) – on supersaturation. Such critical clusters have to be formed by fluctua-
tions in nucleation processes in order to allow their subsequent deterministic growth
to macroscopic sizes.

Regardless of existing impressive advances of computer simulation techniques
and density functional computations [109,111,112], the method developed by Gibbs
is predominantly employed till now in the theoretical interpretation of experimental
data on nucleation phenomena. It is utilized either in order to estimate the so-called
work of critical cluster formation, or, in cases when this quantity is determined by
density functional computations or other methods, to determine the properties of the
critical clusters employing Gibbs’ model assumptions. Hereby it is often supposed
that the properties of Gibbs’ model clusters give a correct description of the real
critical clusters evolving in the systems under consideration. The thermodynamic
state parameters – size and composition – of the critical clusters (being of essential
significance for the determination of the nucleation rate) are determined in Gibbs’
classical approach via a subset of the well-known thermodynamic equilibrium
conditions (equality of temperature and chemical potentials of the different com-
ponents) identical to those obtained for the description of phase equilibria of
macroscopic systems. Employing these relations, the bulk properties of the critical
clusters turn out to be widely the same as those of the newly evolving macroscopic
phases. However, the above mentioned result of Gibbs’ theory is in contradiction
to predictions of molecular dynamics and density functional computations of the
respective parameters as demonstrated first by Cahn and Hilliard [107,108]. In such
alternative approaches it is shown that the properties of critical clusters deviate, in
general, considerably from the properties of the newly evolving macroscopic phases
the deviations being particularly significant for large supersaturation, i.e., states in
the vicinity of the classical spinodal curve. This way, the question arises what the
origin of such discrepancies is and how they can be resolved eventually.
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In order to arrive at a solution of this problem, we have to remember first
that Gibbs restricted his analysis from the very beginning to “equilibrium states
of heterogeneous substances” (the title of his analysis), exclusively. He never
even posed the problem to determine thermodynamic potentials for heterogeneous
systems in non-equilibrium states. In application to the analysis of phase equilibria
of macroscopic systems, Gibbs’ theory served so well that it is considered frequently
as being equivalent to the basic laws of thermodynamics or even as being a conse-
quence of them. Such point of view is not correct as can be traced easily following
Gibbs’ derivations. In addition, such interpretation contradicts Gibbs’ own point of
view considering his theory merely as one of the possible methods of description of
heterogeneous systems but, of course, a good one. He wrote (cf. [135]): Although
my results were in a large measure such as had been previously obtained by
other methods, yet, as I readily obtained those which were to me before unknown
or vaguely known, I was confirmed in the suitableness of the method adopted.
Mentioned point of view about the equivalence of Gibbs’ approach to the basic laws
of thermodynamics is also in contrast to different attempts to modify or replace
Gibbs’ treatment as developed, for example, by Guggenheim, Prigogine, Defay
et al. or Hill (cf. also [125–127, 129, 130, 136, 137]). However, these alternative
approaches have their own limitations as mentioned partly by the authors themselves
or as it became evident in their further discussion in the scientific community. In
most cases, these and further alternative approaches (if correct) turned out to be
widely equivalent in their consequences to the results of Gibbs’ theory.

However, Gibbs’ theory has – in application to the description of cluster
formation – one grave limitation which has not been noticed or, at least, not
further elaborated so far. Restricting the analysis to equilibrium states, Gibbs
considers exclusively variations of the state of heterogeneous systems proceeding
via sequences of equilibrium states. For such quasi-stationary reversible changes of
the states of a heterogeneous system, Gibbs’ theory leads to the consequence that
the surface tension depends on the state parameters of one of the coexisting phases
merely. This limitation is not restrictive with respect to the analysis of macroscopic
equilibrium states and quasi-stationary processes proceeding in between them.
For such cases, the properties of one of the phases are uniquely determined via
the equilibrium conditions by the properties of the alternative coexisting phase.
However, the situation is very different if Gibbs’ theory is applied to the description
of cluster nucleation and growth.

Critical clusters, determining the rate of nucleation processes, correspond to a
saddle point of the appropriate thermodynamic potential. In order to search for
saddle or other singular points of any potential surface, we have to know the values
of the potential function first for any possible states of the system. In application to
cluster formation and growth, we have to know also the thermodynamic functions
of a cluster or an ensemble of clusters not being, in general, in equilibrium with
the otherwise homogeneous ambient phase. Only having this information, we
can search for singular points by well-established rules. Since Gibbs restricts his
analysis from the very beginning to equilibrium states, his theory does not allow
us – strictly speaking – to apply the common methods of search for saddle points.
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And here we come to the basic limitation of Gibbs’ theory in application to cluster
formation and growth processes: In the search for the critical cluster we have to
compare not different equilibrium states but different non-equilibrium states of the
heterogeneous system under consideration. For the different non-equilibrium states
considered, the surface tension has to depend, in general, on the state parameters of
both coexisting phases. Gibbs’ classical approach does not allow us, in principle,
to account for such dependence and has to be generalized to open the possibility to
incorporate this essential new ingredient into the thermodynamic description.

An extension of Gibbs’ thermodynamic treatment of heterogeneous systems to
include non-equilibrium states along the lines as discussed above was initiated by
the authors of the present book [115,133] (by formulating the generalized Ostwald’s
rule of stages) and then further advanced into a comprehensive thermodynamic
theory in cooperation with Vladimir G. Baidakov and Grey Sh. Boltachev (both
Yekaterinburg, Russia [116, 124, 126–128, 138]), Alexander S. Abyzov (Kharkov,
Ukraine) [130, 131, 133, 134, 139–142] and applied to the interpretation of nucle-
ation-growth processes in glass-forming melts in cooperation with Vladimir M.
Fokin and Edgar D. Zanotto [104, 105, 129, 143–145]. This – as we denote it –
generalized Gibbs’ approach employs Gibbs’ model as well. However, Gibbs’ fun-
damental equation for the superficial or surface quantities is generalized (extending
previous approaches of one of the authors [146], assuming certain well-defined
constraints to prevent irreversible flow processes) allowing one to introduce into
the description the essential dependence of the surface state parameters (including
the surface tension) on the bulk state parameters of both coexisting phases. Then the
thermodynamic potentials for the respective non-equilibrium states are formulated.
After this task is performed, the equilibrium conditions are derived. Similarly to
Gibbs’ classical theory, the critical cluster corresponds to a saddle point of the
characteristic thermodynamic potential (a maximum with respect to variations of
the cluster size at fixed intensive state parameters of both cluster and ambient phase
and a minimum with respect to variations of the intensive bulk state parameters of
the cluster).

The equilibrium conditions, derived via the generalized Gibbs’ approach, coin-
cide with Gibbs’ expressions for the limiting case of phase coexistence at planar
interfaces; they are, however, of a different form when applied to the determination
of the properties of finite size critical clusters, the properties coincide with the
parameters determined via the generalized Ostwald’s rule of stages. These different
equilibrium conditions lead, consequently, also to different results for the work
of critical cluster formation as compared to the Gibbs’ classical treatment. In
the absolute majority of cases, the generalized Gibbs’ approach leads to lower
values of the work of critical cluster formation as compared with the classical
treatment utilizing the capillarity approximation [128]. In more detail, in application
to nucleation, the generalized Gibbs’ approach leads to the following new set of
equilibrium conditions for the determination of the properties of the critical clusters
[127, 128],
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Here T is the temperature, p the pressure, � the surface tension, A the surface
area, V the volume, s is the entropy density, �i are the particle densities and �i
the chemical potentials of the different components, R is the radius of the critical
cluster referred to the surface of tension. The subscripts ˛ specify the parameters
of the cluster phase, while ˇ denotes the state parameters of the ambient phase.
In the limit of large critical cluster sizes or, alternatively, if one assumes that for
given parameters of the ambient phase the surface tension is uniquely determined
(as supposed in the classical Gibbs’ approach [87]) then the conventional Gibbs’
equilibrium conditions 
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are obtained as special cases. The general expressions for the work of critical cluster
formation,Wc , remain in the generalization of Gibbs’ approach [127,128] the same
as in the classical Gibbs’ method [87] of description of heterogeneous systems

Wc D 1

3
�A ; (14.64)

provided in both approaches the surface of tension is chosen as the dividing surface.
However, since the properties of the critical clusters are different as compared to
the properties determined via the classical Gibbs approach, the respective values
of the work of critical cluster formation are different. As already mentioned, the
generalized Gibbs approach leads as a rule to higher values of the work of critical
cluster formation as compared to the generalized Gibbs approach, in this way, the
classical Gibbs approach allows us to determine an upper limit the real value of the
work of critical cluster formation will not exceed as a rule.

Some examples of the resulting differences between the predictions of the
classical and generalized Gibbs’ approaches and their relation to density functional
studies are given in Fig. 14.13. In Fig. 14.13, parameters of the critical clusters
are shown in dependence on supersaturation (here, as an example, boiling in
helium-nitrogen solutions is considered [126]). For the chosen temperature, the
density �liq D 24:7 kmol/m3 corresponds to the binodal curve (representing the
boundary between thermodynamically stable and metastable homogeneous states of
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Fig. 14.13 Composition of the critical cluster xgas (here a bubble of critical size), thermodynamic
driving force of nucleation ˘ , the radius, Rc , of the critical cluster for different definitions of
this parameter (full curves refer to the surface of tension while the dashed curves refer to the
equimolecular dividing surfaces in Gibbs’ classical approach) and the work of critical cluster
formation, �Gc , for bubble formation in a binary liquid-gas solution [126] (see text)

the system), while the density �liq D 22:48 kmol/m3 refers to the spinodal curve. In
Fig. 14.13, x is the molar fraction of helium in the critical bubble,˘ is a measure of
the thermodynamic driving force of critical bubble formation, Rc is a well-defined
measure (surface of tension (full curves) and equimolecular dividing surfaces for
both components (dashed curves 4 and 5, correspondingly)) of the size of the critical
bubble, �Gc is the work of critical bubble formation. The dependencies, obtained
via Gibbs’ classical approach employing the capillarity approximation, are given
by curves 1, the results obtained via the generalised Gibbs’ approach by curves 2
and the results of density-functional computations are given by curves 3 (for more
details see [126]).

It is evident that the generalized Gibbs’ approach leads to different values of
the work of critical cluster formation as compared to the classical Gibbs’ approach
employing the capillarity approximation and – similarly to density functional
computations – to vanishing values of the work of critical cluster formation for
initial states near the spinodal curve. Note as well that, according to the generalized
Gibbs’ approach, the driving force of nucleation is not a monotonously increasing
function of supersaturation. Moreover, the radius of the surface of tension in the
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generalized Gibbs approach behaves similarly as the characteristic size parameters
of the critical clusters obtained via density functional computations [107, 108].
It diverges for initial states both near to the binodal and spinodal curves. In the
intermediate range of moderate supersaturation, where nucleation processes may
occur, its size is of the same order of magnitude as the respective parameter obtained
via Gibbs’ classical method employing the capillarity approximation. Moreover,
in this range of moderate supersaturation this size parameter varies only slightly.
It turns out that, for moderate supersaturation where nucleation phenomena can
be observed commonly, the size of the critical clusters is widely independent on
supersaturation. Qualitatively similar results have been also obtained already for
segregation processes in solid or liquid solutions [116] and condensation and boiling
in one-component van der Waals’ fluids [124].

The results of above given analysis show that the generalized Gibbs’ approach
allows us to describe the parameters of the critical clusters both in one- and multi-
component systems in a way which is qualitatively in agreement with density
functional computations. As compared to the latter ones, it has the advantage that
only the thermodynamic properties of both bulk phases and the dependence of
the surface tension on the state parameters of both coexisting phases for planar
interfaces have to be known. Methods to determine such dependencies are discussed
in [126–128].

14.2.1.3 Trajectories of Cluster Evolution

Since – in the classical Gibbs’ approach – the bulk properties of the critical
clusters turn out to be widely identical to the properties of the newly evolving
macroscopic phases, one can assume then with some sound foundation that sub- and
supercritical clusters have similar properties as well. This assumption is commonly
employed so far in the theoretical description of growth and dissolution processes
[93, 98, 147]. However, the above performed analysis – based on the generalized
Gibbs’ approach – leads to the consequence that clusters of critical sizes have
properties which are different, in general, from the properties of the newly evolving
macroscopic phases. By this reason, also the properties of sub- and supercritical
clusters have to depend, as a rule, both on supersaturation and cluster size. In order
to develop an appropriate description of the course of the phase transition, one has
to establish, consequently, the dependence of the composition of arbitrarily sized
clusters on mentioned parameters.

In order to solve this task, we proposed recently as a first approximation that
the preferred path of cluster evolution is defined by some well-defined valley of
the thermodynamic potential surface [129]. This proposal was then generalized
to account in addition to thermodynamics also for the effect of the kinetics. In
such more general approach, the preferred path of evolution is identified with
the trajectory determined by the deterministic equations of cluster growth and
dissolution starting with initial states slightly above and below the critical cluster
size [129, 130]. In other words, we identify the deterministic trajectory with the
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Fig. 14.14 Illustration of the method of determination of the preferred trajectory for cluster growth
and dissolution processes. The trajectory is determined by the solution of the deterministic growth
equations – representing generally the most probable course of evolution of a stochastic process –
starting with initial states slightly above or below the critical point corresponding to the saddle
point of the thermodynamic potential surface

most probable trajectory in the stochastic realization of the respective processes.
The behavior of the system in the space of cluster variables resembles then in
the simplest cases the motion of a body in a viscous fluid in some force field
determined by the shape of the thermodynamic potential surface. This method of
determination of the most probable evolution path is illustrated in Fig. 14.14. It
is applicable regardless of the particular kind of phase transformation considered.
In application to segregation in binary solutions, the change of the state of the
clusters in dependence on their sizes (both for sub- and supercritical cluster sizes)
is illustrated in Fig. 14.15 for a metastable initial state and different values of the
ratio of the diffusion coefficients, D1 and D2, of both components (for details see
[130, 131, 134]).

The change of the composition of the clusters in dependence on their sizes leads
to a size-dependence of almost all thermodynamic (in particular, driving force of
cluster growth and surface tension) and kinetic (diffusion coefficients and growth
rates) parameters determining the dynamics of the phase transition [129,130]. Some
first results of an experimental analysis confirming these theoretical predictions are
given in [87, 104, 129, 148, 149] (see also Fig. 14.16). Taking into account such size
dependence, it can be also easily explained, in particular, why thermodynamic and
kinetic parameters obtained from nucleation experiments may not be appropriate for
the description of growth or dissolution and vice versa (cf. [150]).

14.2.1.4 Nucleation Versus Spinodal Decomposition

Following the analysis given above, we come to the conclusion that the kinetics of
nucleation and growth in solutions exhibits features typical for spinodal decomposi-
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mechanism of growth and the resulting dependencies of the concentration on cluster size are shown
for the different possible cases [130, 131]
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tion [129–131]. Indeed, according to the results illustrated in Fig. 14.15, nucleation
proceeds as follows (cf. also Fig. 14.17): in a certain part of the ambient phase with
a radius close to the critical one, the composition is changed until the properties
of the newly evolving macroscopic phase are nearly reached. Only afterwards, the
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Fig. 14.18 Composition (a), work of formation (b) and size (c) of critical clusters obtained via the
generalized Gibbs’ approach (full curves) for segregation in solutions in a wider range of the initial
supersaturation [130]. For the considered system and temperature, the left side value of the binodal
curve corresponds to x D 0:086 while the respective branch of the spinodal curve is located at
x D 0:226. By dashed curves, size, composition and work of formation of a particular ridge
cluster are shown having the same size as the critical cluster (referred to the surface of tension) in
Gibbs’ original method employing the capillarity approximation. In Fig. 14.18d, the dependence
of the rate of composition amplification on the wave number for x D 0:4 is shown [131]

classical picture – change in size of aggregates with nearly constant composition –
reflects the situation correctly. The classical model does not supply us, consequently,
with a correct description of nucleation. Note that this result is reconfirmed by
statistical mechanical analysis of model systems [111,112] giving thus an additional
confirmation of the validity of the generalized Gibbs’ approach.

So far we have restricted the analysis to thermodynamically metastable states
located between classical binodal and spinodal curves. The generalized Gibbs’
approach allows us to get also some insight into the kinetics of phase formation
processes in solutions starting from thermodynamically unstable initial states.
Indeed, in Fig. 14.18 the composition and the size of the critical clusters are shown
for a broader range of initial supersaturation including both metastable and unstable
initial states. For initial states in the unstable region, the generalized Gibbs approach
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predicts (full curves on Fig. 14.18a–c): (a) values of the composition of the critical
cluster equal to the composition of the ambient phase; (b) a value of the work
of critical cluster formation equal to zero; (c) a dependence of the critical cluster
size on supersaturation similar to the characteristic sizes of the spatial regions of
highest composition amplification [130] as obtained in the classical Cahn-Hilliard
theory of spinodal decomposition [107, 108]; and (d) a dependence of the rate of
composition amplification on the wave number similar to the growth increment as
derived in the classical Cahn-Hilliard theory of spinodal decomposition [131]. This
way, the generalized Gibbs approach allows us to assign a definite meaning – in
terms of critical cluster parameters – to some of the well-known features of spinodal
decomposition.

Summarizing the results, we conclude that nucleation and spinodal decomposi-
tion are not qualitatively different but very similar in their nature modes of first-order
phase transitions. The only qualitative difference consists in the existence (for
nucleation) or absence (for spinodal decomposition) of an activation barrier for the
evolution to the new phase.

14.2.1.5 Saddle Point Versus Ridge Crossing

Another important question is whether the system will always select the thermody-
namically favored evolution path through the saddle-point of the landscape of the
thermodynamic potential or pass via the ridge of the potential well (cf. Fig. 14.14).
As demonstrated, for example, in Fig. 14.18a–c by full curves, for states in the
vicinity of the classical spinodal curve, saddle-point crossing requires the formation
of very large in size aggregates. Although being favorable from an energetic point
of view, such path a of transition is unfavorable by kinetic reasons and alternative
trajectories of evolution gain in importance. Indeed, as shown in Fig. 14.18a–c with
dashed curves [130], in the vicinity of the spinodal curve both for metastable and
unstable initial states ridge crossing is a possible path of evolution to the new phase
with relatively low values of the activation energy and characteristic sizes of the
ridge clusters comparable in size to the critical clusters as determined via Gibbs’
classical approach employing the capillarity approximation. Consequently, ridge-
crossing nucleation (overcoming a finite potential barrier) may be the dominating
mechanism of formation of viable units of the newly evolving phase not only for
metastable but also for unstable initial states in the vicinity of the spinodal curve.
Provided the system follows such ridge crossing channels of evolution to the new
phase, no peculiarities have to be expected in the kinetics of the transformation
in the vicinity of the spinodal curve as it is exemplified also both by computer
simulations of model systems [111, 112], by numerical computations [139] and by
direct experimental analysis [114].
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14.2.1.6 Conclusions

In the present chapter we have outlined several deep controversies, connected with
the very essence of Gibbs’s thermodynamic theory underlying the classical nucle-
ation theory. Here are also summarized ideas and ways, which give possibilities
to overcome these difficulties. New, and as we hope, fruitful new notions in it
can and have to be introduced into nucleation theory in general, and especially in
its applications to vapor condensation, to phase transitions in thermodynamically
unstable systems, or at conditions of heterogenous nucleation, when the new-phase
embryo has degenerated to one or two building units only. This latter mentioned case
is of significance in the crystallization of glass-forming systems, of course, with not
as dramatic consequences as in other cases of phase formation, but nevertheless, as
discussed in Sect. 6.3.8 of the present book: it is also of great significance in treating
catalyzed nucleation of glass-forming melts. And there is also another question:
how to apply nucleation theory, developed for more or less idealized models, to
experiments, performed with and in the complicated structures of polymer melts,
of multi-component solutions, in the difficult structures of ionic or metallic glasses.
Are we here always on the right track with the most correct theoretical model? These
problems are partly still open to discussion, and they are in some respect more
difficult in comparing theory and experiment than in considering glass transition
and thermodynamics of frozen-in states: the thermodynamics of non-equilibrium,
especially in its present-day development in terms of even the linear formulations
of the thermodynamics of irreversible processes seems to give a sufficiently
sound fundament for both theory and experiment in application to glass-forming
systems. In some respects, Simon’s approximation in glass thermodynamics and
the developments, we and our colleagues had to perform, to overcome and to go
beyond it, are in many respects an easier task, than the difficulties, the problems
and the wide horizons, connected with the nucleation model that J. W. Gibbs,
one of the greatest scientists of the nineteenth century, has given us with his
remarkable approximations. There, in nucleation theory, it seems is still more urban
land remaining, and maybe there are more fields to be ploughed: there is also a
higher theoretical and experimental yield to be expected if the ground is thoroughly
upturned!

As it is evident from the outlined analysis, the correct account of changes of
thermodynamic bulk state parameters of the clusters evolving in nucleation-growth
processes in dependence on size and state of the ambient phase are, as a rule, of
outstanding significance for the correct determination, in particular, of the value
of the work of critical cluster formation in the expression for the steady-state
nucleation rates. Classical theory of nucleation and growth ignores widely such
effects. It follows as a consequence that the commonly employed equations for the
determination of the thermodynamic driving force for nucleation-growth processes,
Eqs. (6.62)–(6.65), represent – not accounting for deviation of the cluster bulk
properties from the values of the respective macroscopic phases – an approximation,
which may be or may be not fulfilled. This neglect leads generally to a significant
overestimation of the work of critical cluster formation and an underestimation of
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the steady-state nucleation rates and to deviations between theory and experiment
in the description of nucleation and of growth and dissolution processes of the
clusters. The effect of variation of cluster properties in their evolution can be
treated consistently in the framework of the generalized Gibbs approach giving a
new generally applicable tool for the treatment of nucleation-growth processes and
the theoretical interpretation of experimental results retaining the advantages of the
classical approach and avoiding its shortcomings.

Of course, in order to proceed in this direction one has to have at one’s disposal
the knowledge about the thermodynamic bulk properties of the respective phases in
dependence on the state parameters and the surface properties for planar interfaces.
However, even without such detailed knowledge one can interpret also in the
generalized Gibbs’s approach qualitatively a variety of effects in nucleation starting
with the classical relation for the work of critical cluster formation,Wc D .1=3/�A.
This expression is shown to be of the same form both in the classical and the
generalized Gibbs’s approaches. Moreover, beyond the near vicinity of a spinodal
curve the critical cluster sizes obtained via the classical and generalized Gibbs’s
approaches do not differ significantly. By this reason, in order to interpret nucleation
data, one can further use, as a good approximation, the commonly employed
expression

Wc Š ˝
�3

.���/2
˚ ; (14.65)

˝ being a numerical shape factor. Effects of heterogeneous nucleation cores (via the
specification of the parameter ˚) and nucleation catalysis by dopants via changes
of the surface energy (see Chap. 7) can be treated similarly as in the classical theory.
However, in the analysis one has also to take into account that the driving force
for critical cluster formation may be different as compared with the macroscopic
value. Consequently, the generalized Gibbs’s approach – allowing one to incorporate
into the description of nucleation-growth processes changes of the cluster properties
with their sizes – opens a new perspective in the interpretation of these phenomena
retaining on the other side the advantages of the classical approach. Such approach
can be of considerable use in applications in the sketched above highly complex
systems.

The fascination of a growing science lies in the work of the pioneers at the
very borderland of the unknown, but to reach this frontier one must pass over
well-traveled roads; of these one of the safest and surest is the broad highway of
thermodynamics. These words, written about a century ago by Lewis and Randall in
their well-known book on chemical thermodynamics [151], retain their validity till
now. Nonetheless, even the highway of thermodynamics is shown here to be in need
of improvement when applied to the description of processes of self-structuring
of matter at nanoscale dimensions. Performing these corrections, the generalized
Gibbs’ approach leads, in addition to the already discussed conclusions, to a variety
of further new insights into the course of first-order phase transformations and
to the interpretation of experimental data which have not found a satisfactory
solution so far. It allows us, for example, a new interpretation of the problem
of existence or non-existence of metastable phases in crystallization of different
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glass-forming melts – considering them not as metastable but as transient phases
of cluster evolution – and the formation of bimodal cluster size distributions for
intermediate stages of segregation processes in solutions (cf. [129]). Moreover, a
detailed analysis allows us to suggest that the temperature of the critical clusters is,
in general, different from the temperature of the ambient phase [125–128,138,152].
In addition, the generalized Gibbs’ approach supplies us with a sound basis for the
description of cluster growth and dissolution processes.

This way, we believe that the further development of the generalized Gibbs’
approach may serve in future – combining the simplicity of the classical Gibbs’
approach in nucleation with the accuracy of density functional approaches and
computer simulation methods – as a quite powerful new and generally applicable
tool in order to resolve problems in the comparison of experimental results on
processes of self-structuring of matter.

14.2.2 Some Comments on the Skapski-Turnbull Rule

The estimation of the value of the specific surface energy is a major problem in
the application of nucleation theory to crystallization in glass-forming melts both
in the classical and generalized Gibbs’s approaches. By this reason, we discuss the
Skapski-Turnbull rule giving a widely employed tool for the determination of the
specific surface energy here in somewhat more detail.

The origin of the Skapski-Turnbull relation and the values of the parameter �
(� D 0:4 � 0:6) in Eq. (6.127) in the present book as observed experimentally can
be understood as follows: Let us denote by n1 the number of particles on the
surface of a cluster consisting of n D NA (NA is Avogadro’s number) particles.
The volume, V , of the cluster and its surface area, A, is equal to V D .4	=3/R3

and A D 4	R2, where R is the radius of the cluster. If we denote by v1 and
r1 the volume and the radius of one particle, respectively, then we can write
similarly for the volume, v1, and the surface area, a1, occupied by one particle
v1 D .4	=3/r31 and a1 D 4	r21 . The number of particles in the cluster is given then
via n D .V=v1/ D .4	=3/.R3=v1/ while the number of particles on the surface of
the cluster, n1, is determined by

n1 D k
4	R2

4	r21
D k

�
R

r1

�2
D k

0
B@
3

4	
.nv1/

3

4	
v1

1
CA
2=3

D n2=3k : (14.66)

Here k is the thickness of the surface layer (that is number of monolayers which
determines the thickness of the surface layer (cf. also [153, 154]))

Now, we make the basic assumption (which may be denoted as Stefan’s rule
[155] who first formulated such an idea) that the specific surface energy, � , is
proportional to the enthalpy required to remove a part of the surface layer divided
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by the surface area, i.e.,

� / n1q1

A
D n1q1NA

ANA
D n2=3kqm

NA4	

�
3n

4	

vm

NA

�2=3 D k.36	/�1=3
qm

N
1=3
A v

2=3
m

; (14.67)

where qm is the molar heat of melting and vm is the molar volume, i.e., qm D q1NA
and vm D v1NA and q1 being the latent heat of melting per particle. As the result
we get the Skapski-Turnbull rule in the form

� D �
qm

N
1=3
A v

2=3
m

; � D k.36	/�1=3 D 0:4 � 0:6 for k D 2 � 3 :
(14.68)

In this way, the Skapski-Turnbull relation is obtained and immediately also some
tentative explanation of the values of the parameter � D 0:4 � 0:6 as found from
experiment is given.

Note, however, that Skripov and Faizullin [100] showed for 25 different liquids
that the surface tension liquid-vapor, �LV , can be nearly perfectly described via the
dependence

�LV Š A

�
�HLV

VL

�m
; m D 2:15 ; (14.69)

where �HLV is the change of the enthalpy, when the volume VL of the liquid
is transferred into the gas phase. The parameter A can be expressed hereby via
the respective parameters for an appropriately chosen reference state. Although
Eq. (14.69) refers to liquid-vapor coexistence, it nevertheless shows that the linear
proportionality of the specific interfacial energy and the enthalpy of transformation
is eventually not as obvious as widely assumed and a further detailed investigation
may be of importance.

Note as well that � in Eq. (6.127) has to be identified originally with the value of
the specific interfacial energy at the melting point. It can be and has eventually to
be modified accounting for a possible temperature dependence of this quantity, for
example, according to Eq. (6.125). Latter relation predicts a decrease of the specific
surface energy with increasing temperature similar to liquid-vapor coexistence.
However, fitting the nucleation rate data by assigning appropriate values to the
specific interfacial energy, a �.T /-dependence is found exhibiting a slight increase
of the specific interfacial energy. Fokin and Zanotto [156] tried to reconcile
this result with relations like Eq. (6.125), leading to an opposite conclusion, by
accounting for a size-dependence of the specific interfacial energy. As stated by
these authors in the abstract of their paper, the fitted �.T /-dependence arises from
two different factors: the temperature dependence of �.T / for a planar interface
(�1) and its size dependence. This paper focuses on the temperature dependence
of the macroscopic value of surface energy, decoupling it from the size dependent
part. Tolman’s equation was used to eliminate the size dependence of surface energy
from published nucleation data for two stoichiometric silicate glasses (Li2O � 2SiO2
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and Na2O � 2CaO � 3SiO2). It is shown that the Tolman parameter may be chosen
so that surface tension decreases with temperature; .d�1=dT/ < 0. The value of
.d�1=dT/ obtained in this way is close to theoretical predictions. In an alternative
analysis, in their cited here already monograph, Skripov and Faizullin [100] gave
examples of both an increase and a decrease of the specific interfacial energy melt-
crystal for different substances. In a recent study, based on molecular dynamics
investigations of crystal nucleation in Lennard-Jones liquids, V. G. Baidakov [157]
and coworkers found an increase of the specific surface energy of a planar interface
with increasing temperature while curvature corrections are found in this analysis
to be of minor significance. Consequently, also in this respect, a further detailed
investigation is expected to be of significant importance.2

14.2.3 Cluster Growth and Coarsening in Segregation
Processes, Crystallization of Glasses and Elastic
Stresses

Continuing the analysis of the effect of elastic stress on phase formation processes,
in general, of segregation in multi-component solid solutions and crystallization
processes, in particular, as reviewed in Chaps. 7 and 9 of the present book, some
further investigations in this respect have been performed. They are reflected in
[158–178]. The following problems have been treated:

• Elastic stresses in surface crystallization of glasses, in particular, in phase
transformations at spike tips [158]: In this analysis, the elastic energy, evolving
in the crystallization of the tip of a spike located at a planar interface of a solid,
is determined by finite element method calculations. The energy per volume
of the newly evolving phase is shown to depend significantly on the geometry
of the spike. In agreement with expectations expressed earlier, it tends to zero
for thin needles. The results give additional support to the theoretical concept
that differences in the degree of evolution of elastic stesses in crystallization
in the bulk and near interfaces may be the origin for the preferential surface
crystallization of solids in general, and glasses as a special case (cf. Chap. 7). In
particular, the results explain why sharp comers, edges etc. on the surface of the
glass may act as catalysts for crystallization but not all of them are indeed active.

• Elastic stress effects on critical cluster shapes [159]: In this analysis, the shape
and size of clusters of the newly evolving phase are determined which correspond
to the minimal work of cluster formation in nucleation. Both elastic field and
surface energy terms are taken into consideration. This work is not restricted to
the consideration of spherical interfaces in between cluster and ambient solid

2This section has benefitted highly from discussions with Alexander S. Abyzov which are
gratefully acknowledged.



502 14 Brief Overview on Some New Developments

phase but allows the consideration of the more general case of arbitrary shapes
of the new phase. In application to crystallization of glass-forming melts it
gives additional support to the idea that differences in the degree of evolution
of elastic stresses in crystallization in the bulk and near external or internal
surfaces of highly viscous glass-forming melts in the vicinity of the temperature
of vitrification Tg may be the origin for the preferential surface crystallization of
glasses extending the results as given here in Chap. 7.

• Specification of the optimum growth shapes of clusters near planar interfaces
[160]: The results on the optimal shape of critical clusters accounting for both
surface and elastic energy terms are extended here – employing the same model
assumptions – to the determination of the shapes of sub- and super-critical
clusters forming as the result of nucleation and subsequent growth. The optimum
shape of the newly evolving phase is again determined by the requirement that
the work of cluster formation for a given volume of the cluster has to be minimal.
It is shown that for homogeneous and isotropic solids the optimum growth shapes
of sufficiently large aggregates of the newly evolving solid phase are hemispheres
due to the dominance for macroscopic samples of elastic energy as compared to
surface energy terms.

• Effect of elastic stresses and external pressure on Ostwald’s Rule of Stages [161]:
The effect of elastic stresses on the applicability of Ostwald’s rule of stages in
solid to solid phase transformation processes (recrystallization) is analyzed in
this paper based on the classical Stranski-Totomanov kinetic interpretation of
this rule. It is shown that elastic strains favor a sequence of formation of different
solid phases characterized by a gradual decrease of the density of the solid
modifications developing subsequently. However, if a sufficiently large external
hydrostatic pressure is applied onto the system, then, as shown as well, the
kinetic interpretation of Ostwald’s rule of stages leads to the conclusion that,
in accordance with the principle of Le Chatelier-Braun, such a tendency may
be reversed and, on the contrary, phases with higher values of the differences in
the molar volumes develop preferentially. Experimental results are summarized
giving support to the conclusions derived theoretically.

• Ostwald ripening in elastic, viscoelastic and in porous materials (cf. Chap. 9 and
[102, 162, 171, 172, 174, 175]): In 1984/1985, Schmelzer and Gutzow developed
a theory of cluster growth and coarsening under the influence of elastic stresses
due to cluster-matrix interactions interpreting coarsening as the evolution along
some appropriately defined valley of the thermodynamic potential describing the
system [171,172]. It results in two differential equations describing the evolution
in time of the average cluster size, hRi, and the number of clusters, N . The
respective equations read for diffusion limited growth

d hRi
dt

D 8Dc

27c2˛kBT

1

hRi2
�
� C 3

4	hRi2
�
˚."/ � V

@˚."/

@V

��
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@hRi@V
��

d

dt
ŒlnhRi� : (14.71)

Here c is the actual concentration of segregating particles in the ambient phase,
D their diffusion coefficient, kB the Boltzmann constant and T the absolute
temperature. The quantity � reflects specific properties of the system under
consideration. In general, the relation � � 1 holds and the absolute value of
this quantity increases with increasing average cluster size. In this limit of large
j� j (and in the absence of stresses), the asymptotic solutions obtained by Lifshitz
and Slezov are included in this theoretical approach as a limiting case.

Above theory allows one to describe the whole coarsening process including
its initial stages. It allows one to describe in a relatively simple and straight-
forward way the effect of elastic stresses on coarsening and was employed
for an interpretation of experimental results obtained by Pascova and Gutzow
([173–175], cf. also Fig. 14.19 and Chap. 9). From above equations, the following
consequences can be drawn:

– If the energy of elastic deformations, due to the evolution of a cluster, is equal
to zero, ˚."/ D 0 (absence of elastic stresses) or in the case that the energy of
elastic deformations increases linearly with the volume of the cluster ˚."/ D
"V , then elastic strains do not modify the coarsening process qualitatively.
The Lifshitz-Slezov results are obtained asymptotically as limiting cases.

– If elastic stresses result in energies of elastic deformations growing more
rapidly than linear with the volume of the clusters (i.e., ˚."/ / ".V=V0/

ˇ

with ˇ > 1), then elastic strains will lead to an inhibition of coarsening.

These investigations have been further developed in cooperation with Möller and
Jacob [162,163] and one of the founders of the theory of coarsening, V. V. Slezov
(cf. Chap. 9 and [177, 178]). A comprehensive overview on the results of our
common efforts with V. V. Slezov in this respect is given in the monograph of
V. V. Slezov (2009) [102] edited by one of the authors of the present book.
Examples demonstrating some of the possible effects of elastic stresses on
coarsening are shown in Figs. 14.19–14.22.

• Interplay of elastic stress development and stress relaxation on crystallization
analyzed both for nucleation and growth processes [165–169]: In [165], a theory
of nucleation in viscoelastic bodies is developed. The theory is applicable
generally if phase formation processes are accompanied both by stress evolution
and relaxation. As a particularly important application, crystallization processes
in glass forming melts in the vicinity of the temperature of vitrification, Tg, are
analyzed here as an example. The theoretical approach developed shows that the
degree of inhibition of crystallization by elastic stresses depends basically on
the ratio of two characteristic time scales, the time-lag or time of non-steady
state nucleation, �ns , versus the time of molecular relaxation, �rel , of the system.
A general method is outlined allowing one the determination of this functional



504 14 Brief Overview on Some New Developments

466 C
o

0

50

100

240 480

508 C
o

0

50

100

240 480

4 C80
o

0

50

100

240 480

520 C
o

0

50

100

240 480

4 C95
o

0

50

100

240 480

533 C
o

0

50

100

240 480

_ d
3

81
3

.
mc ,

01

t, min t, min

_ d
3

81
3

.
mc,

01
_ d

3
81

3
.

mc,
01

50

100

150

0
0

t, s

N

d
3

15.10310.10310.1035.103

d
3

-2
4

3
(1

0
,)

m
N

(1
0

)
m

21
-3

_

Fig. 14.19 Top: time-dependence of the average size of AgCl-clusters segregating in a sodium
metaborate glass-forming melt [173]. The temperature of the system, at which segregation
processes take place, is indicated at each curve. While in the first stage of the process the coarsening
kinetics is described by the L(ifshitz)S(lezov)W(agner) asymptotic power laws hRi3 / t , N /
t�1, a finite stationary value of the average cluster size and a constant number of clusters are
established asymptotically in the system corresponding to a monodisperse cluster size distribution
([172], cf. also Chap. 9). Bottom: comparison of experimental data (dots for the average cluster size
and open circles of numbers of clusters in the system) and theoretical predictions for the process
of Ostwald ripening of AgCl clusters in a sodium borate melt [174, 175]
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Fig. 14.20 Cluster size distribution functions P.u/ for different values of time. The numbers refer
to the following reduced times: (a) small times, (b) t 0 D 6:6 � 105, (c) t 0 D 9:8 � 105 , (d) t 0 D
1:47 � 106, (e) t 0 D 2:2 � 106 (for further details see [176–178] and the recent overview on these
common results in the monograph of V. V. Slezov (2009) [102])

dependence. This method is applied then to two particularly important cases of
viscous relaxation described by Maxwell’s and Kohlrausch’s laws, respectively.
Further on, a proper definition of the work of critical cluster formation for
nucleation in viscoelastic media is advanced. The general theory developed here
contains the well-known expressions for the steady state nucleation rates in
Hookean solids (for T � Tg) as well as in Newtonian liquids (for T  Tg) as
limiting cases. Most importantly it allows an adequate description of nucleation
also in the intermediate range, for temperatures in the vicinity of Tg giving the
bridge between the mentioned limiting cases. In this way an adequate description
of the influence of viscoelastic properties of the matrix on the nucleation stage
in crystallization of glass forming melts is developed here to our knowledge for
the first time. An extended discussion of the relevance of the theory developed
in application to the interpretation of crystallization processes in glass forming
melts is given in the accompanying paper [166] and applied to particular systems
in [167]. It is shown that decoupling of diffusion and relaxation is required
in order that elastic stresses may have a significant influence on nucleation.
The situation is here similar to coarsening in multi-component solutions, when
differences in the mobility (and, consequently, the characteristic times of motion)
of segregating and ambient phase building units are the origin of evolution of
elastic stresses in cluster growth and coarsening [174, 175]. As a limiting case,
in the consideration of Ostwald ripening in porous materials, the mobility of the
ambient phase particles is equal to zero (cf. also Chap. 9).

In [168, 169], these ideas were applied to the description of growth processes
accounting for the possibility of evolution of elastic stresses with similar
conclusions as obtained for the case of nucleation.

• Inhibition of cluster formation, cluster growth and coarsening by process-induced
changes of viscosity [170]: In [170], an alternative mechanism of stabilization
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Fig. 14.21 Evolution of the cluster size distribution function for the case of nonlinear inhibition
of cluster growth. In the course of time, a mono-disperse cluster size distribution is established.
Such kind of behavior is always to be expected if the inequality ˇ > 1 is fulfilled. Note also the
peculiarities in the approach to the final distribution (for the details see [102, 178])

of the evolving cluster size distributions and the change of the coarsening
behavior was studied by us connected with technological problems of formation
of polymeric foams (styropor, styrodur) as employed by BASF. In polymer-
gas solutions, bubbles may be formed at appropriate conditions. This process
of bubble formation leads to a decrease of the concentration of gas in the
solution and may be accompanied by a considerable increase in the viscosity.
This increase of the viscosity may partly or fully inhibit the further process
of formation and growth of bubbles, so here we have a process the evolution
of which is terminated mainly by the considerable increase of viscosity of the
ambient phase in the course of cluster formation and growth.



14.2 Phase Formation Processes in Glass-Forming Systems 507

1.8.10-5

1.105 2.1051.5.1055.104
1.10-5

1.2.10-5

1.4.10-5

1.6.10-5

0
t in seconds

R
ad

ii 
in

 m
et

er

Fig. 14.22 Time development of the critical radius (lower curve) along with the mean cluster
radius (upper curve) (for the details see [162, 163]). Such oscillatory approach to conventional
coarsening has been experimentally observed earlier by Morozova [164]. These experimental data
were originally not known to us at the time when the theory was developed

In addition, possible mechanisms of evolution and the effect of elastic stresses
on crystallization processes of solid particles of finite size, in particular, on phase
selection and the initiation of pore formation have been analyzed in recent years in
[142, 179–182]. As a model of the theoretical analysis, crystallization processes in
finite spherical domains were analyzed. Two cases were considered reflecting two
possible scenarios of crystallization in particles of finite size: (i) crystallization of
the internal part of a finite domain and (ii) crystallization from the boundaries. In
order to account for the different types of response of the matrix to crystal formation,
first, the computations were performed for the case that both the ambient and newly
formed phases can be considered as Hooke’s elastic solids. In a second alternative
approach, the effect of viscous relaxation of the matrix on the magnitude of the
evolving stresses is estimated for the different situations analyzed. The results of
the analysis were applied to stress induced pore formation and phase selection in
a crystallizing stretched diopside glass, respectively, in the corresponding glass-
forming melt (Fig. 14.23).

The formation of the surface crystalline layer starts with nucleation and growth
of highly dense diopside crystals (1). At the moment of impingement of these
crystals on the sample surface, the crystallization pathway switches from diopside
to a wollastonite-like phase (2) (in (a) and (b)). This crystal phase produces less
elastic stress energy than diopside due to its lower density, which is closer to the
liquid density. Such switching effects have been comprehensively treated earlier
by us in connection with the discussion of Ostwald’s rule of stages [161]. The
relative content of the two crystalline phases can be changed by varying the sample
size. Due to the density misfit, the growth of the wollastonite-like crystalline layer
leads to uniform stretching of the encapsulated liquid and finally to formation of
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Fig. 14.23 Illustration of the possible effects of elastic stresses in the crystallization of semolina
glass samples (see text and [179–182])

one pore (marked by (3) in (b)), which rapidly grows up to a size that almost
eliminates the elastic stress and, therefore, dramatically reduces the driving force for
pore nucleation. This nucleation process occurs in a very narrow range of negative
pressures indicating that it proceeds via homogeneous nucleation. This result was
corroborated by theoretical calculations of the elastic stress fields and their effect on
nucleation. Qualitative and quantitative agreement between experiment and theory
is found. The results of this analysis are quite general because the densities of
most glasses significantly differ from those of their iso-chemical crystals, and are
thus of high technological significance for glass-ceramic development and sinter-
crystallization processes. The subject area is, consequently, of general relevance
in the field of crystallization of amorphous materials, and more specifically in
crystallization processes occurring in glass ceramics produced via the powder route.

The described above analysis can be considered as a continuation and an
extension of the work performed 1998 by the authors [183] in cooperation with
R. Pascova and A. Karamanov. In this paper, the combined kinetics of surface
induced crystallization of glass semolina or glass powders was considered in
connecting sintering and crystallization. In this combined analysis a proposal,
first expressed by R. Müller, was employed and further developed: that surface
crystallization inhibits sintering to an extent proportional to the surface area
crystallized. These investigations have been further developed simultaneously and
independently by Karamanov et al. In particular, the observation was made by
Karamanov et al. [184, 185] that in systems with considerable differences in the
molar volume ratio crystal-glass, a porous volume formation has to been expected as
it was also in fact observed. In [186], also attempts have been developed to connect
these effects with elastic stresses.

In [187] it was shown in an experimental analysis of the glass semolina
samples under consideration that the Avrami parameter may vary in the range
from one to three as was predicted in a theoretical analysis performed in the
already mentioned paper [183]. Such changes were connected theoretically in [183]
with peculiarities of surface controlled nucleation. The analysis of the overall
kinetics of surface induced crystallization in all the above cited cases of surface
induced crystallization of disperse sintering glassy systems showed an effect already
discussed in Sects. 10.2 and 10.3 of the present book, i.e., that the Avrami coefficient
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in Eq. (10.11) may have a physical background strongly differing from the original
ideas as developed by Avrami and Kolmogorov. These authors and most of the
investigators to follow them considered in fact the overall crystallization process
taking place in a volume V0  VR where VR is the mean diameter of the crystallites
formed. In the crystallization kinetics of glass semolina of any dispersed sintering
material, as first observed by Gutzow [188] many years ago, the Avrami coefficient
m in Eq. 10.11 changes fromm D 1 tom D 3, not because of changing mechanism
and interplay of nucleation and growth, but because of the changing mean diameter
of the crystallizing dispersed initial material. This change analyzed in the above
cited paper by Gutzow et al. [183] is observed in both isothermal and, as shown
now, also non-isothermal crystallization kinetics.

In a further development [189] the process of surface crystallization of dispersed
glass samples was activated by an appropriate pre-treatment process of the initial
batch constituents. In the cited investigation, the crystallization of cristobalite was
initiated in such a way that the formation and stabilization of the highly desirable
high temperature ˇ-cristobalite modification (which shows nearly a zero value
coefficient of thermal expansion) was obtained. The stabilization of ˇ-cristobalite
is in applications a necessity, because the ˇ – ˛-cristobalite transition taking
place as a first-order phase transition at temperatures in the range 250–300 ıC is
connected with a considerable volume dilatation (of 
5 %) and stress development.
In the activated sinter-crystallization process, described in [189], the stabilization
of ˇ-cristobalite was achieved by the introduction of a relatively small amount
of both Al2O3 and CaO, which stabilize the fully cross-linked three dimensional
SiO2 network of the initial glass into the high-temperature ˇ-cristobalite structure
which is metastable below 250–300 ıC. From a more general point of view, in the
cited investigation the switch of a first-order phase transition into a second-order
phase transition was achieved by the introduction of chemical toughening agents
(the mentioned CaO and Al2O3), stress induction and relaxation, leading to an
appropriate immobilization of the SiO2 network. As it is well-known, first-order
phase transitions require a mobility of the structural units forming the system. In
the discussed case the introduction of Al2O3 and CaO stabilized in so far the three
dimensional SiO2 structure, that only a second-order-like change remained possible
and was observed in the temperature region of 250–300 ıC. Landau’s theory of
continuous phase changes [27] predicts such first-order to second-order changes,
e.g., for the case, when additional, stress inducing mobility and inducing elements
are introduced into a structure.

14.2.4 Catalyzed Crystallization of Glass-Forming Melts:
Activity of Nucleants

The results, obtained in the induced sinter-crystallization of dispersed, grained or
even powdered glass samples are, it turns out, of considerable technical importance,
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especially with glasses, in which ecologically important waste products are immo-
bilized to useful glass-ceramic materials. As mentioned above, the initiation of
the crystallization process depends on the glass-air interface. The classical method
of inducing desired crystallization in glass forming melts, is, however, still the
introduction of active crystallization cores into the glass.

For many years the nucleation activity of foreign insoluble crystallization cores
in under-cooled liquids and especially in glass-forming melts has been expressed
only in terms of crystal lattice disregistry nucleant-overgrowing crystal, thus totally
neglecting the energetics of the process of heterogenous nucleation. In 1992/1993
and in the following several years by Dobreva, Gutzow et al. [190–198] was formu-
lated a new, thermodynamically founded theoretical approach, in which the value
of the nucleating activity coefficient, ˚ , was determined from the adhesion energy
nucleant-overgrowing crystal, calculated via London’s adhesion-cohesion formula
from the respective molecular cohesion. In this calculation, lattice disregistry plays
a secondary, correcting role, only. The respective results obtained in this way are
summarized in Sect. 7.5 of our book.

In the following years this adhesion-based nucleation activity approach was
applied (initially in 1997 [192, 193]) by Gutzow et al. to correlate for the first
time in a unique way practically all the existing experimental evidence for the
crystallization of aqueous aerosols, in which ice formation is initiated by natural
or artificial insoluble crystallization cores (analyzed were results for more than 80
different ecologically or meteorologically significant dopants). Further experimental
evidence, this time on the catalyzed crystallization of glass-forming systems, was
obtained in a detailed investigation, performed in the Otto-Schott-Institute on Glass
Chemistry in Jena (see [197, 198]) in which the activity of metallic crystallization
cores (of all the platinum metals, Cu, Ag and Au, carefully crystallographically
characterized) and of several other ionic and oxide crystalline nucleants was
investigated in three different model phosphate glasses (based on Ca[PO3]2 and
NaPO3) with the same result: the thermodynamic cohesion approach gave a unique
possibility not only to correlate but also to predict in advance nucleating activity
in induced crystallization of different crystallization cores, thus enabling formation
of glass-ceramic materials with distinct properties. In international literature in the
last years have been reported more than 100 cases, in which the crystallization of
nucleation filled organic polymers, glasses and aqueous systems were correlated in
terms of this thermodynamic approach.

It is of considerable interest, to analyze also crystallization of glass-forming
melts and devitrification of glasses at the conditions of micro-gravity, as they
exist in space. It was to be expected that the absence of convection and the
thus decreased thermal conductivity in the crystallizing sample could substantially
change the mechanism of crystallization and thus change the condition e.g. for
the synthesis of glass-ceramic materials in micro-gravity. In the framework of
a joint German-Bulgarian-Russian Project, supported by the Deutsche Agentur
für Raumfahrt-Angelegenheiten (DARA), a decisive experiment in this sense was
performed at the end of the 1990s on board of the Russian Space Station MIR.
It was decided to use for this experiment the crystallization in a one-component
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model phosphate glass (NaPO3), the crystallization in which is induced by Pd–
micro-crystals. The properties of this glass, its crystallization behavior, the course
of the heterogeneous nucleation process initiated by the Pd–micro-crystalline cores,
their structure and activities were studied in a series of preliminary investigations
in both the Institute of Physical Chemistry (IPC) of the Bulgarian Academy of
Sciences (BAS) in Sofia and in the Otto-Schott-Institut für Glaschemie at the
Friedrich-Schiller University in Jena. A part of the results of these measurements,
as they are described in details in [196], are also given in a summary in Sect. 7.8
of the present book. Thus to the micro-gravity crystallization experiments were
subjected samples of a relatively low melting glass, forming with its Pd nucleant an
exceptionally carefully examined system, characterized in both its thermodynamic,
rheological and crystallographic characteristics. The Pd-initiated glass samples were
filled in Pt-ampoules, vacuum-sealed at earth conditions, and a greater number of the
prepared twin-samples was simultaneously heat-treated on board of the MIR-station
at micro-gravity and (in the identical TITUS-oven) at the German MUSC Space
Center Laboratory in Cologne at terrestrial conditions. The simultaneous heat-
treatment of the samples at the MIR station and in Cologne at terrestrial and at
space conditions was performed in an integrated DTA-like arrangement, giving the
possibility for a direct electronic comparison of the kinetics of the crystallization
process at micro-gravity and at terrestrial conditions (to each of the evacuated
platinum sample holders were sealed three Pt/Rh thermo-couples). After the flight
mission was completed, both series of samples crystallized were additionally
examined at terrestrial conditions using different techniques. It was found that,
as expected, micro-gravity conditions considerably enhanced the rate of the Pd-
micro-crystal-catalyzed devitrification of the NaPO3-glass: the nucleation rate was
increased at cosmic conditions approximately by a factor of 103 (at temperatures
close above Tg). This effect, as it turned out, is determined in the vicinity of Tg
mainly by the temperature rise in the devitrifying glass samples at micro-gravity
conditions, where crystallization heat transfer is drastically decreased by diminished
convection. However, at crystallization runs close below Tm, where temperature rise
even diminishes crystallization rates, no micro-gravity effect on the crystallization
behavior was, as expected, observed.

14.2.5 Some Further New Results in the Kinetic Description
of Phase Formation Processes

14.2.5.1 Analytical Description of Phase Formation Kinetics: Finite-Size
and Depletion Effects

In Sect. 6.3.10 of the present book, the general scenario of first-order phase
transitions is described when depletion effects, i.e., the change of the state of
the ambient phase due to consumption of some of the components by cluster
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formation and growth is described. An analytical description of the first stages
of first-order phase transitions according to this scenario has been developed by
one of the authors in cooperation with Vitali V. Slezov. The analytical results are
illustrated by numerical computations covering also the effect of elastic stresses on
coarsening. These investigations have been published first in [178, 199, 200] and
recently reproduced in a comprehensive form in the monograph of V. V. Slezov
(2009) [102] (cf. also [139]). Combining these results with the theory of coarsening
developed by Lifshitz, Slezov and Wagner, this work allows one to get a complete
description of nucleation growth processes.

Depletion effects result not only in a definite scenario of the phase transition
process but affect also considerably nucleation processes in systems of finite size
(cf. Chap. 6). An overview on these problems can be found in our recent papers
[131,134,140,141], where earlier obtained results are generalized employing in the
description the generalized Gibbs approach.

14.2.5.2 Decoupling of Diffusion and Viscosity

As discussed in detail in Sects. 2.4.3 and 6.3.2, primarily the kinetic pre-factor
J0 in the expression for the steady-state nucleation rate is determined by the
diffusion coefficient of the basic units in the melt undergoing crystallization. For
one-component systems, we may write

J D
r

�

kBT

�
D

d40

�
exp

�
� Wc

kBT

�
: (14.72)

Replacing the diffusion coefficient, D, by the viscosity, �, via the Stokes-Einstein
equation,

D D kBT

d0�
; (14.73)

we get the commonly employed relation

J D
p
�kBT

d50 �
exp

�
� Wc

kBT

�
: (14.74)

However, the replacement of the diffusion coefficient by viscosity is already ques-
tionable for one-component systems (due to the possible decoupling of diffusion
and relaxation), it becomes even more questionable for crystallization processes
in multi-component systems, where an effective diffusion coefficient, Deff , deter-
mines primarily the nucleation-growth process, being a function of the partial
diffusion coefficients, Di , of the independently diffusing components in the melt
and their molar fractions, xi , both in the melt and in the evolving crystal phase (see
[178, 199, 200] for more details).

The effective diffusion coefficient is given by the following relation:
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Here d˛ and dˇ are parameters describing the average size of the independently
moving particles in the melt and the crystal cluster phase,Di andD�

i are the partial
diffusion coefficients of the respective components in the bulk of the melt and near
to the interface melt-crystal, xiˇ are the molar fractions of the different components
in the ambient melt and 
2i˛ is given by 
2i˛ D xi˛ C n.dxi˛=dn/, where n is the
total number of particles in a crystal cluster.Deff is the effective diffusion coefficient
which plays the role of D in Eq. (14.74) for multi-component crystal nucleation.
A detailed estimate of the magnitude of the error one introduces by the replacement
of the effective diffusion coefficient via viscosity is believed to represent a highly
interesting problem (for first results in this respect see [201]), however, as it seems
it is probably hardly possible to realize such analysis for a wide class of systems due
to the limited knowledge of the respective parameters.

14.2.5.3 Size of the Structural Unit

In Eqs. (14.72) and (14.74), the size parameter d0 enters having for one-component
systems the meaning of the size of the structural unit moving independently in the
liquid and being responsible for crystallization. The question arises in this respect
how such size parameter has to be defined in the cases that crystallization proceeds
in a multi-component system. In [202] this problem has been analyzed in detail.
Provided the process of crystallization is realized via an independent motion of
several components, then this parameter has to be defined as the average size of the
independently moving components. This result holds true both for the description
of nucleation and the description of growth processes. An earlier discussion in this
direction may be also found in [203].

14.2.5.4 Alternative Mechanisms of Crystallization

In the book by Skripov and Faizullin [100] one can find the following statement:
the transition from the liquid to the fcc-crystal and back cannot be accomplished
by just small (of atomic size) shifts in the positions of single atoms: for such
transitions a significant part of atoms should be moved by a distance of about
one atomic spacing. It follows that these processes cannot be interpreted via above
sketched kinetic mechanisms of crystal nucleation and growth being based on the
consideration of the more or less independent motion of the single particles of the
different components of the glass-forming melt. Similarly, Leko [204] connects in
his comprehensive analysis of crystallization of quartz glass the respective processes
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with bond switching. As it seems, a detailed specification of the kinetic pre-factor
J0 for both these mechanisms of crystallization is not performed so far.

14.2.5.5 Dependence of the Properties of Glass-Forming Melts
on Prehistory and Its Effect on Nucleation Processes

The proper account of the circle of problems sketched above is already a hard task.
However, the situation may become even more complex taking into account the
possible dependence of the properties of glass-forming melts on prehistory.

Since the structural order parameter is a function of pressure and temperature and
of the prehistory of the melt, also the thermodynamic properties of the melt depend
on the same set of parameters. It follows as a consequence that the thermodynamic
state parameters of the crystal cluster in the ambient phase are, as a rule, dependent
on prehistory as well. Once the bulk properties depend on prehistory, also the
surface properties have to depend on prehistory. Consequently, the kinetics of crystal
nucleation and growth is affected, in general, by prehistory and may proceed, in
particular, in a different way for cooling and heating processes.

In above considerations, the order parameter is assumed to have the same value
in the whole system. However, the intensity of fluctuations in the glass transition
range is as a rule higher as compared to systems in thermodynamic equilibrium. In
the glass transition range, local fluctuations are not damped out since the system
is in a non-equilibrium state. A particular experimental realization of such effects
consists in the already discussed here briefly “fluctuation flashes” in glass heating
experiments as they are described here in brief in Sect. 14.1.6 and in [73]. Since the
thermodynamic state parameters are dependent on the structural order parameter, the
kinetic parameters have to depend, in general, on the structural order parameter(s)
as well. For the case discussed here, the dependence is demonstrated in Fig. 14.10.
Employing in this way the order parameter concept for the description of glass-
forming melts, the discussion of the dependence of the crystal nucleation and growth
processes on the structure of the glass-forming melts (see e.g. [205] for more details)
can be given a quantitative basis.

14.3 Concluding Remarks

In 1995, when the first edition of the present book was published by Springer,
P. W. Anderson [206] noted in an answer on possible frontiers in the future of
science: The deepest and most interesting unsolved problem in solid state theory is
probably the theory of the nature of glass and the glass transition. This could be the
next breakthrough in the coming decade. We are quite satisfied to have been involved
intensively in these processes but, as it seems, the task is far from being finally
solved. So, we are looking forward to new may be even unexpected developments.
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47. Gutzow, I., Petroff, B., Möller, J., Schmelzer, J.W.P.: Glass transition and the third principle

of thermodynamics: reconsideration of a classical problem. Phys. Chem. Glasses B 48, 168
(2007)
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161. Möller, J., Schmelzer, J.W.P., Gutzow, I.: Ostwald’s rule of stages: the effect of elastic strains
and external pressure. Z. Phys. Chem. 204, 171 (1998)
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111. Burckhardt, H.G., Trömel, M.: Acta Cryst. C 39, 1322 (1981)
112. Burnett, D.G., Douglas, R.W.: Phys. Chem. Glass. 12, 117 (1971)
113. Burton, W.K., Cabrera, N.: Discuss. Faraday Soc. 5, 33 (1949)
114. Burton, W.K., Cabrera, N., Frank, F.C.: Phil. Trans. R. Soc. (Lond.) A 243, 299 (1951)
115. Cahn, J.W.: Acta Met. 8, 554 (1960)
116. Cahn, R.W.: Nature 257, 356 (1975)
117. Cahn, R.W.: Alloys rapidly solidified from the melt. In: Cahn, R.W., Haasen, P. (eds.)

Physical Metallurgy, 3rd edn, pp. 2399–2500. North-Holland Physics Publishing House,
Amsterdam/Oxford/New York/Tokyo (1983)

118. Cahn, R.W., Haasen, P. (eds.): Physical Metallurgy, 3rd edn. North-Holland Physics Publish-
ing House, Amsterdam/Oxford/New York/Tokyo (1983)

119. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 28, 258 (1958); 31, 688 (1959)
120. Cahn, J.W., Hillig, W.B., Sears, G.W.: Acta Met. 12, 1421 (1964)
121. Calef, D.F., Deutch, J.M.: Ann. Rev. Phys. Chem. 34, 493 (1983)
122. Cargill, G.S.: Structure of metallic alloy glasses. In: Ebenreich, H., Seitz, F. (eds.) Solid State

Physics, vol. 30, p. 227. Academic, New York (1975)
123. Cargill, S.: Recurring Themes in the Structure of Glassy Solids. In: Goldstein, M., Simha, R.

(eds.) The Glass Transition and the Nature of the Glassy State, vol. 279, p. 208. Annals New
York Academy of Sciences, New York (1976)

124. Cernuschi, F., Eyring, H.: J. Chem. Phys. 7, 547 (1939)
125. Chalmers, B., King, R. (eds.): Progress in Metal Physics, vol. 6. Pergamon Press,

London/New York (1956)
126. Chandrasekhar, S.: Rev. Mod. Phys. 15, 1 (1943)
127. Charles, R.J.: Glass Technol. 12, 24 (1971)
128. Chen, H.S., Turnbull, D.: J. Appl. Phys. 38, 3646 (1967)
129. Chen, H.S., Turnbull, D.: J. Chem. Phys. 48, 2560 (1968)
130. Chen, H.S.: J. Non Cryst. Solids 22, 135 (1976)
131. Chen, H.S.: Structure and properties of metallic glasses. In: Gaskall, P.H. (ed.) The Structure

of Non-crystalline Materials. Symposium Proceedings, Cambridge, England, p. 79. Taylor
and Francis, London (1977)

132. Chernov, A.A.: Formation of crystals. In: Modern Crystallography, vol. 3. Nauka Publishers,
Moscow (1980, in Russian)

133. Chernov, A.A.: Z. Phys. Chem. (Leipzig) 269, 941 (1988)
134. Chopra, K.L.: Thin Film Phenomena. McGraw Hill, New York (1962)
135. Christian, J.W.: The Theory of Transformations in Metals and Alloys. Oxford University

Press, Oxford (1975)
136. Christov, S.G.: Collision Theory and Statistical Theory of Chemical Reaction. Lecture Notes

in Chemistry, Ser. Ed. G. Berthier et al., Springer, Berlin/Heidelberg/New York (1980)
137. Cohen, M., Turnbull, D.: J. Chem. Phys. 59, 3639 (1959)
138. Cohen, M., Turnbull, D.: Nature 189, 131 (1961)
139. Collins, F.C.: Z. Elektrochem. 59, 404 (1955)
140. Cornelissen, J., van Leeuwen, J., Waterman, H.-I.: Chem. et. Ind. 77(1), 69 (1957)



References 529

141. Cook, H.E.: Acta Met. 18, 297 (1970)
142. Cooper, A.: J. Non Cryst. Solids 95–96, 24 (1971)
143. Cooper, A.: Crystal growth in network liquids by structure rearrangement. In: Freeman, S.W.,

Hench, I.I. (eds.) Advances in Nucleation and Crystallization in Glasses, p. 123. American
Chemical Society, Columbus (1971)

144. Cooper, A.R.: Internal parameters, ordering parameters, history and the glass transition. In:
Frischat, G. (ed.) The Physics of Non-crystalline Solids, p. 384. Aedermansdorf, Switzerland
(1977)

145. Cooper, A.R.: J. Non Cryst. Solids 49, 1 (1982)
146. Cooper, A., Gupta, A.: Phys. Chem. Glass. 23, 44 (1982)
147. Cormia, R.L., Mackenzie, J.D., Turnbull, D.: J. Appl. Phys. 34, 2239 (1963)
148. Courtney, W.G.: J. Chem. Phys. 36, 2018 (1962)
149. Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1961)
150. Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1975)
151. Danilov, V.I., Malkin, V.I.: Zh. Fiz. Khim. 28, 1837 (1934)
152. Daragan, G.: Glass Ind. 33, 307 (1952)
153. Davies, R.O., Jones, G.O.: Adv. Phys. 2, 370 (1953); Proc. R. Soc. (Lond.) A217, 26 (1953)
154. de Bolt, M.A., Easteal, A.J., Macedo, P.M., Moynihan, C.T.: J. Am. Ceram. Soc. 59, 16 (1976)
155. De Donder, T.: Bull. Acad. Roy. Belg. (Cl.Sc.) 23, 936 (1937); 24, 15 (1938)
156. De Donder, T., van Rysselberghe, P.: Thermodynamic Theory of Affinity. Stanford University

Press, Menlo Park (1936)
157. de Groot, S.R.: Thermodynamics of Irreversible Processes. North-Holland Publishers,

Amsterdam (1952)
158. de Guzman, J.: Ann. Soc. Espan. Fis. Quim. 11, 353 (1913)
159. de Reaumur, R.: Memoires l’ Academie des Sciences, Paris (1739)
160. Debye, P., Menke, H.: Ergebnisse der technischen Röntgenkunde 11 (1931)
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870. Überreiter, K., Bruns, W., Brenner, A.B.: Naturwissenschaften 49, 466 (1962)
871. Ubbelohde, A.R.: Melting and Crystal Structure. Clarendon Press, Oxford (1965)
872. Uhlmann, D.R.: J. Non Cryst. Solids 7, 337 (1972)
873. Uhlmann, D.R.: J. Non Cryst. Solids 25, 42 (1977)
874. Ulbricht, H., Schmelzer, J., Mahnke, R., Schweitzer, F.: Thermodynamics of Finite Systems

and the Kinetics of First-Order Phase Transitions. Teubner, Leipzig (1988)
875. Umanski, Y.S. et al.: Physical Metallurgy. Metallurgy Press, Moscow (1955, in Russian)
876. Urnes, S.: Trans. Br. Ceram. Soc. 60, 85 (1961)
877. van Laar, J.: Die Thermodynamik einheitlicher Stoffe und binärer Gemische. Noordhoff,
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