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Abstract. In this paper, we first apply random ferns for classification of
real music recordings of a jazz band. No initial segmentation of audio data
is assumed, i.e., no onset, offset, nor pitch data are needed. The notion
of random ferns is described in the paper, to familiarize the reader with
this classification algorithm, which was introduced quite recently and
applied so far in image recognition tasks. The performance of random
ferns is compared with random forests for the same data. The results of
experiments are presented in the paper, and conclusions are drawn.

Keywords: Music Information Retrieval, Random Ferns, Random
Forest.

1 Introduction

The pleasure of listening to music can be very enjoyable, especially if our favorite
instruments are playing in the piece of music we are listening to. Therefore, it
is desirable to have a tool to find melodies played by a specified instrument.
The task of automatic identification of an instrument, playing in a given audio
segment, lies within the area of interest of Music Information Retrieval. This
area has been broadly explored last years [19], [22], and as a result we can
enjoy finding pieces of music through query-by-humming [14], and identify music
through query-by-example, including excerpts replayed on mobile devices [21],
[24]. However, recognition of instruments in real polyphonic recordings is still a
challenging task (see e.g. [4], [6], [7]).

In this paper, we address the recognition of plural instruments in real music
recordings of a jazz band, and our goal is to identify possibly all instruments
playing in each audio frame; polyphony in these recordings reaches 4 instruments.
Identification of instruments is performed in short frames, with no assumption
on onset (start) nor offset (end) time, nor pitch etc., which is often the case
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in similar research, thus our methodology requires no preprocessing nor initial
segmentation of the data, and the computation can be fast.

Random ferns are classifiers introduced in 2007 [17] and named as such in
2008 [18]. This classification method combines features of decision trees and
Bayesian classifiers. Random ferns have been applied so far in image classifica-
tion tasks, including video data [1], [16], and they have also been adjusted to be
used on low-end embedded platforms, such as mobile phones [25]. Since many
audio applications are used in mobile environment, it is advisable to consider
such platforms as well. This is why we decided to use random ferns. Additionally,
we would like to compare the performance of Random Ferns (RFe) with Random
Forests (RFo), which yielded quite good results in our previous research [7], [8],
[9]. RFe are simpler and more computationally efficient than RFo [10]. We want
to use a simpler algorithm because, as more computationally efficient, it can
possibly be applied to be used on mobile devices, with limited computational
power (utilizing slower CPUs and working on battery power). We hope that the
accuracy of RFe is not much worse, and therefore it is worth using them and pos-
sibly implement on mobile devices, to get quick results without communication
with a cloud for cloud computing (which is an option which can be chosen for
low-end platforms), thus achieving low latency. Also, such a method would be
useful for massive calculations for indexing purposes, e.g. in archives, to achieve
fast computation and get quick results which are a good approximation of the
results that would be obtained using more computationally expensive search.

2 Classifiers

The classifiers applied in our research include random ferns and random forests.
RFo performed quite well in the research on instrument identification we per-
formed before [7], but their training is time consuming, whereas the training
of RFe is faster. The computational complexity of classification performed us-
ing the pre-trained classifiers is similar (linearly proportional to the number of
trees/ferns and to their average height), but in the case of ferns there is less
branching and memory accesses which should yield faster classification.

2.1 Random Forests

RFo is a classifier consisting of a set of weak, weakly correlated and non-biased
decision trees, constructed using a procedure minimizing bias and correlations
between individual trees [2]. Each tree is built using a different N -element boot-
strap sample of the training N -element set. The elements of the bootstrap sample
are drawn with replacement from the original set, so roughly 1/3 (called out-of-
bag) of the training data are not used in the bootstrap sample for any given tree.
For a P -element feature vector, K attributes (features) are randomly selected
at each stage of tree building, i.e. for each node of any particular tree in RFo
(K < P , often K =

√
P ). Gini impurity criterion (GIC) is applied to find the

best split on these K attributes. GIC measures how often an element would be
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incorrectly labeled if randomly labeled according to the distribution of labels in
the subset; the best split minimizes GIC.

Each tree is grown to the largest extent possible, without pruning. By repeat-
ing this randomized procedure Nt times, a collection of Nt trees is obtained,
constituting a RFo. Classification of an object is done by simple voting of all
trees. In this work, the RFo implementation from the R [13] package random-
Forest [11] was used.

The computational complexity CtFo of training a RFo is

CtFo = Nt ·No · logNo ·K , (1)

where No is the number of objects, K is the number of attributes tested for each
split and Nt is the number of trees in the forest; the computational complexity

CcFo = Nt · ht (2)

where ht is the average height of a tree in the forest.

2.2 Random Ferns

A fern is defined as a simplified binary decision tree of a fixed height D (called
a depth of a fern) and with a requirement that all splitting criteria at a cer-
tain depth i (Ci) are the same. Each leaf node of a fern stores the distribution
of classes over objects that are directed to this node. This way a fern can be
perceived as a D-dimensional array of distributions, indexed by a vector of D
splitting criteria values, see Figure 1.

c1

c2 c2 c2

c1

#class A
#class B

Fig. 1. An example of a fern of depth 2 trained on a binary classification problem
(left). Splits on each level are based on the same criterion (Ci), thus the fern tree is
equivalent to a 2-dim array (right). The leaf nodes contain the counts of objects of
each class instead of just the names of dominating classes, as in classic decision trees.

The fern forest is a collection of Nf ferns. When classifying a new object,
each fern in a forest returns a vector of probabilities that this object belongs
to particular decision classes. Ferns are treated as independent, thus all those
vectors are combined by simple multiplication and the final classification results
for the forest is a class which gets the highest probability, see Figure 2.
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Fig. 2. Training and classification using a fern forest for a binary classification problem.
Bags are drawn from the training data, and used for building individual ferns, repre-
sented here as cubes (left). When a new object (represented as an ellipse) is classified,
each fern in the forest returns a vector of class probabilities; they are combined by a
simple multiplication and the class scoring maximal probability is returned (right).

While the original RFe implementation [17,18] was written for a problem of
object detection in images, we use the RFe generalization implemented in the R
[13] package rFerns [10]; it trains the fern forest model in the following way.

First, N intermediate training sets called bags are created by drawing objects
with replacement from the training set, each bag being of the same size as the
original set. Next, each bag is used to train a fern. All D splits are created purely
at random; an attribute is randomly selected and then the splitting threshold is
set as a mean of two randomly selected values of this attribute1. The distributions
of classes in leafs are calculated on a bag with adding 1 for each class (i.e.
with a Dirichlet prior); this way the problem of undefined distributions in leafs
containing no objects is resolved.

The computational complexity CtFe of training a Rfe model is

CtFe = 2D ·Nf ·No , (3)

where D — depth of ferns, No — number of objects, Nf — number of ferns; the
computational complexity CcFe of classifying one sample is

CcFe = D ·Nf . (4)

3 Sound Parameterization

The identification of musical instruments is performed for short frames of audio
data, which are parametrized before applying classifiers for training or testing.
No assumptions on audio data segmentation or pitch extraction have been made.
Therefore, no multi-pitch extraction is needed, thus avoiding possible errors re-
garding labeling particular sounds in polyphonic recording with the appropriate
pitches. The feature vector consists of basic features, describing properties of an

1 In this work we have used only numerical descriptors of sound, thus the description
of treating ordinal and categorical attributes is omitted.
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audio frame of 40 ms, and additionally difference features, calculated as the dif-
ference between the given feature but calculated for a 30 ms sub-frame starting
from the beginning of the frame and a 30 ms sub-frame starting 10 ms later.
Identification of instruments is performed frame by frame, for consequent frames,
with 10 ms hop size. Fourier transform was used to calculate spectral features,
with Hamming window. Most of the features we applied represent MPEG-7 low-
level audio descriptors, which are often used in audio research [5]. Our feature
vector consists of the following 91 parameters [7]:

– Audio Spectrum Flatness, flat1, . . . , flat25 — a multidimensional parameter
describing the flatness property of the power spectrum within a frequency
bin for selected bins; 25 out of 32 frequency bands were used;

– Audio Spectrum Centroid — the power weighted average of the frequency
bins in the power spectrum; coefficients are scaled to an octave scale anchored
at 1 kHz [5];

– Audio Spectrum Spread — RMS (root mean square) value of the deviation
of the log frequency power spectrum wrt. Audio Spectrum Centroid [5];

– Energy — energy (in log scale) of the spectrum of the parametrized sound;
– MFCC — a vector of 13 mel frequency cepstral coefficients. The cepstrum

was calculated as the logarithm of the magnitude of the spectral coefficients,
and then transformed to the mel scale, to better reflect properties of the
human perception of frequency. 24 mel filters were applied, and the obtained
results were transformed to 12 coefficients. The 13th coefficient is the 0-order
coefficient of MFCC, corresponding to the logarithm of the energy [12];

– Zero Crossing Rate; a zero-crossing is a point where the sign of the time-
domain representation of the sound wave changes;

– Roll Off — the frequency below which an experimentally chosen percentage
equal to 85% of the accumulated magnitudes of the spectrum is concen-
trated; parameter originating from speech recognition, where it is applied to
distinguish between voiced and unvoiced speech;

– NonMPEG7 - Audio Spectrum Centroid — a linear scale version of Audio
Spectrum Centroid ;

– NonMPEG7 - Audio Spectrum Spread — a linear scale version of Audio
Spectrum Spread ;

– changes (measured as differences) of the above features for a 30 ms sub-
frame of the given 40 ms frame (starting from the beginning of this frame)
and the next 30 ms sub-frame (starting with 10 ms shift), calculated for all
the features shown above;

– Flux — the sum of squared differences between the magnitudes of the DFT
points calculated for the starting and ending 30 ms sub-frames within the
main 40 ms frame; this feature by definition describes changes of magnitude
spectrum, thus it is not calculated in a static version.

Mixes of the left and right channel were taken if the audio signal was stereo-
phonic. Since the recognition of instruments is performed on frame-by-frame
basis, no parameters describing the entire sound are present in our feature vec-
tor. This feature set was already used for instrument identification purposes
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using RFo, requiring no feature selection [7], and yielded good results, so we
decided to use this feature set in both RFo and RFe classification.

3.1 Audio Data

The audio data we used for both training and testing represent recordings in
44.1kHz/16-bit format. Training was based on three repositories of single, iso-
lated sounds of musical instruments, namely McGill University Master Samples
[15], The University of Iowa Musical Instrument Samples [23], and RWC Musical
Instrument Sound Database [3]. Clarinet, trombone, and trumpet sounds were
taken from these repositories. Additionally, we used sousaphone sounds, recorded
by R. Rudnicki in one of his recording sessions [20], since no sousaphone sounds
were available in the above mentioned repositories. Training data were in mono
format in the case of RWC data and sousaphone, and stereo for the rest of the
data. The testing data originate from jazz band stereo recordings by R. Rudnicki
[20], and include the following pieces played by clarinet, trombone, trumpet, and
sousaphone (i.e., our target instruments):

– Mandeville by Paul Motian,
– Washington Post March by John Philip Sousa, arranged by Matthew Postle,
– Stars and Stripes Forever by John Philip Sousa, semi-arranged by Matthew

Postle — Movement no. 2 and Movement no. 3.

To prepare our classifiers to work on larger instrument sets, training data also
included sounds of 5 other instruments that can be encountered in jazz record-
ings: double bass, piano, tuba, saxophone, and harmonica. These sounds were
added as additional sounds in training mixes with the target instruments.

4 Methodology of Training of the Classifiers

The goal of training of our classifiers is to identify plural classes, each repre-
senting one instrument. We use a set of binary classifiers (RFe or RFo), where
each set (which we call a battery) is trained to identify whether a target in-
strument is playing in an audio frame or not. The target classes are clarinet,
trombone, trumpet, and sousaphone, i.e. instruments playing in the analyzed
jazz band recordings. The classifiers are trained to identify target instruments
when they are accompanied by other instruments, and this is why we use mixes
of instrument sounds as input data in training.

When preparing training data, we start with single isolated sounds of each
target instrument. After removing starting and ending silence [7], each file rep-
resenting the whole single sound is normalized so that the RMS value equals
one. Then we perform parameterization, and train a classifier to identify each
instrument — even when accompanied by other sound. Therefore, we perform
training on 40 ms frames of instrument sound mixes, mixing from 1 to 4 ran-
domly chosen instruments with random weights and then we normalize it again
to get the RMS value equal to one.
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The battery of one-instrument sensitive RFo or RFe classifiers is then trained.
3,000 mixes containing any sound of a given instrument are fed as positive exam-
ples, and 3,000 mixes containing no sound of this instrument are fed as negative
examples. For N instruments we need N binary classifiers (N=4), each one trained
to identify 1 instrument. For RFe models, we have been training 1000 ferns of a
depth of 10; for RFo, there were 1000 trees and K was set to the default floor
of square root of the number of attributes, namely 9.

5 Experiments and Results

The RFo and RFe classifiers, according to the procedure delineated in Section 4,
were next used to identify instruments playing in jazz recordings, described in
Section 3.1. Ground-truth data were prepared through careful manual labelling
[7], based on initial recordings of each instrument track separately.

The accuracy was assessed via precision and recall scores. These measures were
weighted by the RMS of a given frame (differently than in our previous work
[7], where RMS was calculated for frames taken from instrument channels), in
order to diminish the impact of softer frames, which are very hard to perform
reasonable identification of instruments, because their loudness is near the noise
level. For this reason, our true positive score Tp for an instrument i is a sum
of RMS of frames which are both annotated and classified as i. Precision is
calculated by dividing Tp by the sum of RMS of frames which are classified as
i; respectively, recall is calculated by dividing Tp by the sum of RMS of frames
which are annotated as i. As a general accuracy measure we have used F-score,
defined as a harmonic mean of such precision and recall.

Table 1. Precision, recall and F-score of the classifiers for jazz band recordings. Each
M ±S data entry represents mean M and standard deviation S over 10 replications of
training and testing, accumulated over all target band instruments.

Algorithm Precision [%] Recall [%] F-score [%]

Mandeville

RFe 88.4±0.6 67±1 76.4±0.6
RFo 92.7±0.2 63±1 75.2±0.7

Washington Post

RFe 82.36±0.2 73±2 77±1
RFo 87.76±0.3 69±1 77.3±0.5

Stars & Stripes 2

RFe 79.8±0.4 72±1 76±1
RFo 91±2 68±1 78±1

Stars & Stripes 3

RFe 94.5±0.2 77±1 84.8±0.7
RFo 94.4±0.3 74±1 83.1±0.9
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While in this initial phase of the research we have used PC implementations of
the classification algorithms, the timings have been performed on a single core
of a Xeon E5620 Linux workstation. R version 2.15.0, rFerns version 0.3 and
randomForest version 4.6-6 were used.

Both RFo and RFe are stochastic algorithms, so is the process of creating
training sets for the battery. Thus, to assess the stability of the results and make
a fair comparison of methods, the whole procedure of creating training sets,
training RFe and RFo batteries and testing them on a real recordings has been
repeated 10 times.

5.1 Comparison of Random Forests and Random Ferns

The results of performance analysis of RFe and RFo models are given in Table 1.
As one can see, for three pieces RFo had superior precision over that of RFe;
on the other hand, ferns tend to provide better recall. However, the overall
performance of both classifiers measured with the F-score is similar for all pieces.

The detailed comparison of performance analysis of RFe and RFo models for
particular instruments is given in Table 2. Sousaphone and trumpet are always
quite precisely identified, whereas trombone usually yields lower precision in
all pieces, and clarinet in one piece. Recall is lower than precision, but still
much improved comparing to our previous results [7]. Again, quite high recall
is obtained for sousaphone and is rather good for trumpet, whereas the worst
recall is scored by RFo for trombone samples.

Table 2. Precision and recall of both methods on real music; data shown for each
instrument independently. The symbol M ±S denotes that given number has mean M
and standard deviation S over 10 replications of training.

Precision [%] Recall [%]

clarinet sousaphone trombone trumpet clarinet sousaphone trombone trumpet

Mandeville

RFe 91.5±0.2 98.3±0.2 76±2 89.0±0.2 70±2 67±1 71±2 59±2
RFo 91.4±0.2 98.6±0.3 87.3±0.6 90.8±0.2 65±4 80±2 46±2 58±2

Washington Post

RFe 80.9±0.4 92.2±0.7 63.6±0.4 92.5±0.5 79±3 76±3 61±2 73±2
RFo 85±1 93.2±0.7 70.3±0.8 96.4±0.6 67±4 88±1 46±2 72±3

Stars & Stripes 2

RFe 48.4±0.4 99.4±0.1 78±2 97.8±0.3 81±2 70±4 58±2 77±2
RFo 62±6 99.4±0.1 91±2 99.9±0.1 53±5 94±1 31±3 67±3

Stars & Stripes 3

RFe 96.9±0.6 99.2±0.2 88.6±0.6 94.7±0.2 92±2 62±4 61±2 88±1
RFo 95.4±0.4 99.7±0.1 87.8±0.7 94.7±0.1 80±5 83±4 50±2 88±1

On average, RFe and RFo perform classification respectively 25x and 8x faster
than the actual music speed; this means RFe offer over 3x speed-up in comparison
to RFo, see Table 3.
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Table 3. Time taken by each battery of classifiers to annotate the whole testing piece

Piece
Classification time [s]

Piece length [s]
Random Ferns Random Forest

Mandeville 5.7 17.6 139.95
Washington Post 6.0 19.0 148.45
Stars & Stripes 2 2.8 8.3 68.95
Stars & Stripes 3 1.0 3.6 26.2

6 Summary and Conclusions

Experiments presented in this paper show that identification of all instruments
playing in real music recordings is possible using both RFo- and RFe-based
classifiers, yielding quite good results. We observed improved recall comparing
to our previous research [7]; we improved here the RMS weighting, which was
previously calculated for separate instrument channels, and in this work, the
RMS of all channels together was used for weighting. Our results still are worth
improving, but the obtained recall (and precision) are satisfactory, because the
task of identification of all instruments playing in a short segment is difficult,
and is challenging also for human listeners.

The measured classification speed of RFe suggests that it is a promising
method for performing real time annotation, even on low performance devices.
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