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Abstract. The generalized Bonferroni mean is able to capture some in-
teraction effects between variables and model mandatory requirements.
We present a number of weights identification algorithms we have de-
veloped in the R programming language in order to model data using
the generalized Bonferroni mean subject to various preferences. We then
compare its accuracy when fitting to the journal ranks dataset.
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1 Introduction

In decision-making and information processing contexts, the need often arises to
merge multiple inputs into a single representative output. For more sophisticated
aggregation functions to find use in everyday applications, ways of interpreting
their behavior and implementation tools need to be developed to make them
accessible to practitioners. In recent years, such developments include the Kap-
palab R package by Grabisch et al. [13], and AOTool and fmtools by Beliakov [1].
These tools allow the parameters and weights of aggregation functions to be au-
tomatically learned from data and used to predict unknown values or analyze
the datasets.

The Bonferroni mean [11] is an aggregation function with the ability to model
mandatory requirements, i.e. we can ensure that some criteria are at least par-
tially satisfied for a high overall score. Since it was generalized by Yager in [21] a
number of publications have followed, with generalizations refined in [8, 15, 22],
extensions to higher level fuzzy sets in [7, 18–20] and lattices [6]. As well as
modeling mandatory requirements, the Bonferroni mean could also be useful as
a non-linear function which is able to capture interaction effects. Indeed, in its
original form the terms of the function are similar to those in statistics used to
model interaction between pairs of variables in regression models.

There are a number of ways to construct aggregation functions for applica-
tions. Sometimes the parameters can be specified by experts while in other cases
we may have an existing dataset and we want a model that reflects the relation-
ship between the inputs and outputs. In the latter case, we can use optimization
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techniques and perform fitting in order to learn the parameters or weights of the
function we wish to use in the model. Due to the composition of the generalized
Bonferroni mean, however, a number of issues arise in attempting to learn its
weights from data. In general, the problem is not one that can be framed as a lin-
ear or quadratic program. In this paper we give an overview of some approaches
we have taken and implemented in the R programming language [16]. The fit-
ting algorithms we have developed, as well as our datasets and preprocessing
techniques are available as R source files at our website1.

We investigate three simplifications that allow the problem to be formulated
as a linear programming problem and compare the accuracy of the resulting
Bonferroni means to other functions with a real data set.

The paper will be structured as follows. In Section 2, we give an overview
of aggregation functions and how they can be fit to data. It is here that we
also provide the definition of the generalized Bonferroni mean. In Section 3 we
show how the weights identification problem for the Bonferroni mean can be
formulated linearly, using the same techniques as are employed in fmtool. We
then show how the Bonferroni mean compares to other functions when fit to some
journal rankings datasets in Section 4. As well as fitting to each full journal set,
we also use 10-fold cross-validation tests to show the robustness of the fitting
process. We give a brief summary in Section 5.

2 Preliminaries

We will give an overview here of the definitions and methods that will be used
throughout the rest of the paper. In particular, we are concerned with Aggrega-
tion functions and techniques for learning their parameters from data.

2.1 Aggregation Functions

The study of aggregation functions for decision making and information pro-
cessing applications has become increasingly widespread. A number of recent
monographs give an overview of their use and properties, [9,14,17]. We will con-
sider aggregation functions defined over the unit interval.

Definition 1. An aggregation function f : [0, 1]n → [0, 1] is a function non-
decreasing in each argument and satisfying f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

Definition 2. An aggregation function is considered to be: averaging where
min(x) ≤ f(x) ≤ max(x), conjunctive where f(x) ≤ min(x), disjunctive where
f(x) ≥ max(x), and mixed otherwise.

Due to the monotonicity of aggregation functions, averaging behavior is equiva-
lent to idempotency, i.e. f(t, t, ..., t) = t.

1 http://aggregationfunctions.wordpress.com

http://aggregationfunctions.wordpress.com
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In this paper, we are primarily concerned with averaging aggregation func-
tions, although the Bonferroni mean uses the product f(x, y) = xy in its com-
position which is one of the archetypical conjunctive functions.

Well known means include the arithmetic mean (also commonly referred to
as the average) and the median. The arithmetic mean, as well as geometric
means and power means can be expressed as special cases of the weighted quasi-
arithmetic mean. We provide its definition here.

Definition 3. For a strictly monotone continuous generating function φ : [0, 1]
→ [−∞,∞] and weighting vector w, the weighted quasi-arithmetic mean is given
by,

QAMw(x) = φ−1

(
n∑

i=1

wiφ(xi)

)
. (1)

Special cases include weighted arithmetic means, where φ(t) = t, weighted power
means where φ(t) = tp and weighted geometric means (i.e. G(x) =

∏n
i=1 x

wi

i ) if
φ(t) = − ln t. The weights wi are usually non-negative and sum to one.

On the other hand, the median, maximum and minimum operators can be
expressed as special cases of the ordered weighted averaging (OWA) operator.
Rather than weight arguments according to their position or source, the OWA
allocates a weight depending on the relative size of the input. It was formally
defined by Yager in 1988 [23].

Definition 4. For a weighting vector w, the ordered weighted averaging (OWA)
operator is given by,

OWAw(x) =
n∑

i=1

wix(i), (2)

where the parentheses (.) indicate a reordering of the inputs such that x(1) ≥
x(2) ≥ . . . ≥ x(n).

Special cases include the maximum when w = (1, 0, . . . , 0), the minimum when
w = (0, . . . , 0, 1) and the median if wi = 1 for i = n+1

2 and 0 otherwise where n
is odd, and wi = 0.5 for i = n

2 ,
n
2 + 1 and 0 otherwise where n is even.

The Bonferroni mean was defined in 1950 [11] and later generalized by Yager
and others in the computational intelligence and decision making field. In its
original form, it is defined as follows.

Definition 5. Let p, q ≥ 0 and xi ≥ 0, i = 1, . . . , n. The Bonferroni mean is the
function

Bp,q(x) =

⎛
⎝ 1

n(n− 1)

n∑
i,j=1,i�=j

xp
i x

q
j

⎞
⎠

1
p+q

. (3)

In the case of p = q for n = 2 the Bonferroni mean is equivalent to the geometric
mean. For q = 0 (or p = 0), it will reduce to a power mean and can therefore
express functions such as the arithmetic mean (p = 1), quadratic mean (p = 2)
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and the limiting case of the geometric mean p = 0. As the ratio p
q approaches

infinity (or 0), the mean approaches the maximum operator. When n > 2, there
must exist at least one pair (i, j) such that xi, xj > 0, for the Bonferroni mean
to return a non-zero output Bp,q(x) > 0. It is this property that makes it
possible for the generalizations of the Bonferroni mean to express mandatory
requirements.

In [8], the Bonferroni mean was expressed as a composed aggregation function,
generalizing it in terms of two means and a conjunctive function. With this
construction, the function is able to model partial conjunction [12] with respect
to any number of arguments, i.e. we can specify mandatory requirements that
must at least partially be fulfilled for the function to have a non-zero output.

The notation xj �=i is used to denote the vector in [0, 1]n−1 that includes
the arguments from x ∈ [0, 1]n in each dimension except the i-th, xj �=i =
(x1, . . . , xi−1, xi+1, . . . , xn).

Definition 6. [8]. Let M denote a 3-tuple of aggregation functions < M1,M2,
C >, with M1 : [0, 1]n → [0, 1], M2 : [0, 1]n−1 → [0, 1] and C : [0, 1]2 → [0, 1],
with the diagonal of C denoted by C∗(t) = C(t, t) and inverse diagonal C−1

∗ . The
generalized Bonferroni mean is given by,

BM(x) = C−1
∗
(
M1

(
C
(
x1,M2(xj �=1)

)
, . . . , C

(
xn,M2(xj �=n)

)))
. (4)

The original Bonferroni mean is returned where M1 = WAM(x), M2 = PMq(x)
and C = xpyq (with all weights equal).

Since M1 is an averaging function of n arguments while M2 is a function
of n − 1 arguments, they will have weighting vectors of different dimension. In
order to choose the weights appropriately, so that they are consistent with the
application and inputs, the following convention is used for the weighting vector
of M2 [8].

Given u ∈ [0, 1]n, the vectors ui ∈ [0, 1]n−1, i = 1, . . . , n are defined by

ui
j =

uj∑
k �=i uk

=
uj

1− ui
, ui �= 1. (5)

Note that for every i, ui sum to one.
This allows one to either use the same weighting vector or differing vectors if

each stage of aggregation requires it.

2.2 Fitting Aggregation Functions to Data

The usual framework for fitting a function f to data involves an objective equa-
tion that minimizes the difference between the observed values yk and predicted
values f(xk) in some norm. In particular, we have the L2 norm or least squares
approach,

K∑
k=1

(
f(xk)− yk

)2
, (6)
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and L1 or least absolute deviation (LAD) approach,

K∑
k=1

∣∣f(xk)− yk
∣∣. (7)

For our algorithms, we are interested in the latter approach, which can be con-
verted into a linear program [2, 10].

Given a dataset with K rows (xk1, xk2, ..., xkn, yk) where each k represents
an observed value, we firstly represent each residual in terms of its positive and
negative components (one of which will be zero), i.e. rk = |f(x)k−yk| = r+k +r−k .

We then minimize the sum of these residuals subject to equality constraints
ensuring the yk are equal to the predicted function value and the residual.

Minimize
K∑

k=1

r+k + r−k ,

s.t. f(xk) + r+k − r−k = yk, k = 1 . . .K (8)

r+k , r
−
k ≥ 0.

With suitable transformations or rearrangements of the data, many interest-
ing aggregation functions can be represented in this way, for example, to fit
a weighted quasi-arithmetic mean with generating function g, we can use the
constraints: (

n∑
i=1

wig(xki)

)
+ r+k − r−k = g(yk), k = 1 . . .K

wi ≥ 0, ∀ i,
n∑

i=1

wi = 1.

Note that the residuals in this case are the differences between the transformed
data - not the actual data itself.

For ordered functions such as the OWA, the data can be transformed so that
the weights are learned from the reordered data. In both cases, although the
functions themselves are not linear, the weights are only fit to linear data.

In our AggWaFit.R source file, the commands ordfit.GenOWA and
ordfit.QAM can be used to find the weighting vector w from a given data set
where the generator and its inverse are specified. These commands are designed
for fitting to data where the outputs are ordinal and will return a stats file with
root mean squared error (RMSE), average L1 loss, prediction accuracy (for pre-
dicting the ordinal classes), a confusion matrix and the resulting w. A file with
the predicted values from the function and corresponding classes is also returned
with the original data.
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3 Formulating Weights Identification Problems

The generalized Bonferroni mean is defined with respect to the two weighting
vectors,w and u. Due to its composition, however, we cannot transform the data
and fit the weights as we do for the quasi-arithmetic mean and OWA. We look
at three simplifications that will enable us to fit generalized Bonferroni means
to data.

3.1 Fitting vij Weights to Product Pairs

We can firstly consider the case of M1,M2 weighted arithmetic means and C the
product operation with powers p, q. This leads to the following expression and
simplification.

⎛
⎝ n∑

i=1

wix
p
i

⎛
⎝∑

j �=i

uj

1− ui
xq
j

⎞
⎠
⎞
⎠

1
p+q

=

⎛
⎝ n∑

i=1,j=1,i�=j

wiuj

1− ui
xp
i x

q
j

⎞
⎠

1
p+q

Although we still cannot separate the weights linearly, we can con-
sider each xixj term and consider coefficients vij . We hence transform
the instances of the dataset (xk1, xk2, . . . , xkn, yk) such that we fit to
(xp

k1x
q
k2, xp

k1x
q
k3, . . . , x

p
k,(n−1)x

q
kn, yp+q

k ) and introduce the following linear
constraints.

⎛
⎝ n∑

i=1,j=1,i�=j

vijx
p
kix

q
kj

⎞
⎠+ r+k − r−k = yp+q

k , k = 1 . . .K

vij ≥ 0, ∀ ij,
n∑

i=1

vij = 1.

The resulting vij will not be separable into the wi, ui, uj etc, however we can
gain an idea of the rough contribution of wi which is associated with the p index
and ui associated with the q index by summing the rows and columns of the vij
matrix respectively.

In our BonFit.R source file, this fitting is done to ordinal data using the
ordfit.bonf.vij command. Different p, q can be specified and further restric-
tions placed on the vij if desired.

3.2 Fitting wi Weights with Fixed u

An alternative to fitting to the pairs xp
i x

q
j is to fix the weighting vector u. This

way, we can use alternative means for M1,M2 (in particular, any QAM) whereas
before we were limited to weighted arithmetic means. We hence perform fitting
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by transforming each of the input terms xki by combining with the mean of the
xk,j �=i and using the generator functions. Denoting the generator of M1 by m1,
each of the terms will be given by

m1 (x
p
ki(M2(xk,j �=i))

q) ,

where the weighting vector for M2 is defined separately for each i using each
of the ui determined from the supplied vector u. In this case, we introduce the
following constraints.⎛

⎝ n∑
i=1,j=1,i�=j

wim1(x
p
ki(M2(xk,j �=i))

q)

⎞
⎠+ r+k − r−k = (m1(yk))

p+q,

k = 1 . . .K,

wi ≥ 0, ∀ i,
n∑

i=1

wi = 1.

This fitting is done with BonFit.R using ordfit.bonf.quasi where the genera-
tors of both M1,M2 can be specified, as well as the weighting vector u associated
with M2 and the indices p, q.

3.3 Enforcing Mandatory Requirements

In some applications, it may be desirable to define a model with one or two
mandatory requirements, but which still fits the data as well as it can. In this
case, we can use projections on w. Denoting the generator of M2 (a weighted
quasi-arithmetic mean) by m2, this will result in the following expression,⎛

⎝xp
im

−1
2

⎛
⎝∑

j �=i

uj

1− ui
m2(xj)

⎞
⎠

q⎞
⎠

1
p+q

.

As we can see, the ui, uj do not occur as linear cofactors, however since the
i-th variable will always be mandatory, we can transform the dataset such that
we only fit the weighting vector ui. We hence will not obtain a weight for the
relative importance of i with respect to the other variables, however this would
usually be acceptable as it is not needed in the model to calculate new values.
By rearranging the function, we then introduce the following linear constraints
into the fitting problem.⎛

⎝ n∑
j=1,j �=i

ujm2(xkj)

⎞
⎠+ r+k − r−k = m2

(
y
(p+q)/q
k

x
p/q
ki

)
, k = 1 . . .K,

uj ≥ 0, ∀ j,
n∑

j=1,j �=i

uj = 1.
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To fit a function this way in BonFit.R, we can use the command
ordfit.bonf.proj, where the variable that is to be mandatory is specified,
as well as the desired generator for M2.

4 Modeling the Journal Rankings Dataset

In our previous work [3–5], we have used a dataset synthesized from the Aus-
tralian journal rankings, which pairs the indices provided by Thomson and
Reuters’ ISI Web of Knowledge database with the quality ranks allocated by the
Australian Research Council (ARC). The motivation for using such a dataset is
that the relationship between the indices and the quality rank should be roughly
monotone, while there are also likely to exist correlations between the inputs.

Before the rankings were disbanded, we collected the 2011 data for journals
in all disciplines with both ARC and ISI data. This gave us a list of over 5000
journals spread across different fields of research (FoR) categories. For comparing
the accuracy of the Bonferroni mean, we used 17 FoR categories, each with more
than 80 journals and one (1103 Clinical Sciences) with 706 journals. The data
first had to be transformed so that each of the indices ranged between [0, 1]
and so that the distribution of the scores was such that idempotency could be
obtained. The algorithm from this is also available at the previously mentioned
website. We used the algorithms in BonFit.R for the Bonferroni means (m2 = t3

for ordfit.bonf.quasi, and m2 = t, i = 2, for ordfit.bonf.proj i.e. the
Impact Factor is made mandatory), AggWaFit.R for the WAM, OWA, power
means (p = 2, 3) and geometric mean, and fmtools for the Choquet integrals
(2-additive and general). Table 1 shows the overall standard and 10-fold cross
validation accuracy when fitting to the journals data, averaged across the 17 FoR
codes. As we can see, the Bonferroni mean performs reasonably well in fitting to
each of the datasets. Weighting each pair using vij could be interpreted similarly
to modeling interaction between pairs as is done with the 2-additive Choquet
integral, and it is worth noting that their performance is similar for the 10-fold
tests. Enforcing the impact factor as a mandatory requirement in this case did
not lead to good accuracy, however this may be necessary in some cases for
reflecting the decision maker’s preferences.

Table 1. Overall classification and L1-accuracy for various aggregation functions

B.vij B.qam B.proj WAM OWA PM2 PM3 GM Ch2−add Chgen

All
L1 0.124 0.123 0.150 0.123 0.125 0.117 0.117 0.149 0.113 0.106
Acc. 0.676 0.662 0.576 0.661 0.642 0.672 0.673 0.621 0.691 0.715

10fold
L1 0.132 0.126 0.170 0.129 0.133 0.123 0.124 0.216 0.126 0.126
Acc. 0.652 0.654 0.440 0.645 0.616 0.655 0.646 0.485 0.649 0.654
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5 Conclusion

We have introduced some methods for fitting the generalized Bonferroni mean
to data. To date, such methods have not been investigated for the Bonferroni
mean. As well as making these available, we also draw attention to the datasets
and R-code at our website, which can be used to further the study of aggrega-
tion functions and their use in decision making. We found that the generalized
Bonferroni mean offers comparable performance to other means when model-
ing data. Although it is not possible to develop linear or quadratic programs in
general, it is possible to write efficient algorithms for various special cases.
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