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Abstract. Hierarchical attributes appear in taxonomic or ontology-
based data (e.g. NACE economic activities, ICD-classified diseases, an-
imal/plant species, etc.). Such taxonomic data are often exploited as if
they were flat nominal data without hierarchy, which implies losing sub-
stantial information and analytical power. We introduce marginality, a
numerical mapping for taxonomic data that allows using on those data
many of the algorithms and analytical techniques designed for numeri-
cal data. We show how to compute descriptive statistics like the mean,
the variance and the covariance on marginality-mapped data. Also, we
define a mathematical distance between records including hierarchical
attributes that is based on marginality-based variances. Such a distance
paves the way to re-using on taxonomic data clustering and anonymiza-
tion techniques designed for numerical data.

Keywords: Hierarchical attributes, Classification, Taxonomic data,
Ontologies, Descriptive statistics, Numerical mapping, Anonymization.

1 Introduction

Taxonomic attributes are common in economic, medical or biological data sets
and, more generally, in ontology-based data sets. For example, data about com-
panies often include an attribute “Economic activity” which takes values in a
standard classification, like NACE [12] or ISIC [9]; data about employees include
their position within the company’s hierarchy; data about patients include an
attribute “Diagnosis” which takes values in some classification of diseases, like
ICD9 [8]; data about plants or animals include the name of the plant or animal
in the Linnaean taxonomy [11,14], etc.

Statistical analyses tend to treat taxonomic data as if they came from flat
nominal attributes without hierarchy, thereby disregarding their hierarchical se-
mantics and losing useful information. Such a wasteful approach can be explained
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by the lack of analytical techniques and algorithms specifically designed for tax-
onomic data. Indeed, numerical data are the type of data for which a greatest
choice of techniques exists; categorical ordinal data are often mapped to integers
and treated like numerical data; nominal data, whether drawn from a flat or
hierarchical taxonomy, are most of the time treated as flat.

The situation described in the previous paragraph repeats itself for statistical
disclosure control (SDC, [6,7,17,5,10]), a.k.a. data anonymization and sometimes
as privacy-preserving data mining. SDC aims at making possible the publica-
tion of statistical data in such a way that the individual responses of specific
users cannot be inferred from the published data and background knowledge
available to intruders. If the data set being published consists of records corre-
sponding to individuals, usual SDC methods operate by masking original data
(via perturbation or detail reduction), by generating synthetic (simulated) data
preserving some statistical features of the original data or by producing hybrid
data obtained as a combination of original and synthetic data. The choice of
SDC methods is greatest for numerical data.

The attributes in a data set can be classified depending on their range and
the operations that can be performed on them:

1. Numerical. An attribute is considered numerical if arithmetical operations
can be performed on it. Examples are income and age.

2. Categorical. An attribute is considered categorical when it takes values over
a finite set and standard arithmetical operations on it do not make sense.
Two main types of categorical attributes can be distinguished:
(a) Ordinal. An ordinal attribute takes values in an ordered range of cate-

gories. Thus, the ≤, max and min operators can still be used on this kind
of data. The instruction level and the political preferences (left-right) are
examples of ordinal attributes.

(b) Nominal. A nominal attribute takes values in an unordered range of cat-
egories. The only possible operator is comparison for equality. Nominal
attributes can further be divided into two types:
i. Hierarchical. A hierarchical nominal attribute takes values from a

hierarchical classification. For example, plants are classified using
Linnaeus’s taxonomy, the type of a disease is also selected from a
hierarchical taxonomy, and the type of an attribute can be selected
from the hierarchical classification we propose in this section.

ii. Non-hierarchical. A non-hierarchical nominal attribute takes values
from a flat taxonomy. Examples of such attributes could be the pre-
ferred soccer team, the address of an individual, the civil status (mar-
ried, single, divorced, widow/er), the eye color, etc.

This paper focuses on finding a numerical mapping for taxonomic data. Such a
mapping can be used to obtain richer descriptive statistics, inspired on those for
numerical data. It also makes it possible to use on taxonomic data techniques
designed for numerical data (e.g. clustering, SDC).

Assuming a hierarchy is less restrictive than it would appear, because very
often a non-hierarchical attribute can be turned into a hierarchical one if its flat
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hierarchy can be developed into a multilevel hierarchy. For instance, the preferred
soccer and the address of an individual have been mentioned as non-hierarchical
attributes; however, a hierarchy of soccer teams by continent and country could
be conceived, and addresses can be hierarchically clustered by neighborhood,
city, state, country, etc. Furthermore, well-known approaches to anonymization,
like k-anonymity [15], assume that any attribute can be generalized, i.e. that
an attribute hierarchy can be defined and values at lower levels of the hierarchy
can be replaced by values at higher levels.

1.1 Contribution and Plan of This Paper

We propose to associate a number to each categorical value of a hierarchical
nominal attribute, namely a form of centrality of that category within the at-
tribute’s taxonomy. We show how this allows computation of centroids, variances
and covariances of hierarchical nominal data.

Section 2 gives background on the variance of hierarchical nominal attributes.
Section 3 defines a tree centrality measure called marginality and presents the
numerical mapping. Section 4 exploits the numerical mapping to compute means,
variances and covariances of hierarchical nominal data. Section 5 contains a
discussion and conclusions.

2 Background

We next recall the variance measure for hierarchical nominal attributes intro-
duced in [4]. To the best of our knowledge, this is the first measure which captures
the variability of a sample of values of a hierarchical nominal attribute by taking
into account the semantics of the hierarchy. The intuitive idea is that a set of
nominal values belonging to categories which are all children of the same par-
ent category in the hierarchy has smaller variance that a set with children from
different parent categories.

Algorithm 1 (Nominal variance in [4])

1. Let the hierarchy of categories of a nominal attribute X be such that b is
the maximum number of children that a parent category can have in the
hierarchy.

2. Given a sample TX of nominal categories drawn from X, place them in the
tree representing the hierarchy of X. Prune the subtrees whose nodes have
no associated sample values. If there are repeated sample values, there will
be several nominal values associated to one or more nodes (categories) in the
pruned tree.

3. Label as follows the edges remaining in the tree from the root node to each
of its children:
– If b is odd, consider the following succession of labels l0 = (b − 1)/2,

l1 = (b−1)/2−1, l2 = (b−1)/2+1, l3 = (b−1)/2−2, l4 = (b−1)/2+2,
· · · , lb−2 = 0, lb−1 = b− 1.
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– If b is even, consider the following succession of labels l0 = (b − 2)/2,
l1 = (b−2)/2+1, l2 = (b−2)/2−1, l3 = (b−2)/2+2, l4 = (b−2)/2−2,
· · · , lb−2 = 0, lb−1 = b− 1.

– Label the edge leading to the child with most categories associated to its
descendant subtree as l0, the edge leading to the child with the second
highest number of categories associated to its descendant subtree as l1,
the one leading to the child with the third highest number of categories
associated to its descendant subtree as l2 and, in general, the edge leading
to the child with the i-th highest number of categories associated to its
descendant subtree as li−1. Since there are at most b children, the set of
labels {l0, · · · , lb−1} should suffice. Thus an edge label can be viewed as
a b-ary digit (to the base b).

4. Recursively repeat Step 3 taking instead of the root node each of the root’s
child nodes.

5. Assign to values associated to each node in the hierarchy a node label con-
sisting of a b-ary number constructed from the edge labels, more specifically
as the concatenation of the b-ary digits labeling the edges along the path
from the root to the node: the label of the edge starting from the root is the
most significant one and the edge label closest to the specific node is the least
significant one.

6. Let L be the maximal length of the leaf b-ary labels. Append as many l0 digits
as needed in the least significant positions to the shorter labels so that all of
them eventually consist of L digits.

7. Let TX(0) be the set of b-ary digits in the least significant positions of the
node labels (the “units” positions); let TX(1) be the set of b-ary digits in the
second least significant positions of the node labels (the “tens” positions),
and so on, until TX(L − 1) which is the set of digits in the most significant
positions of the node labels.

8. Compute the variance of the sample as

V arH(TX) = V ar(TX(0)) + b2 · V ar(TX(1)) + · · ·

+b2(L−1) · V ar(TX(L − 1)) (1)

where V ar(·) is the usual numerical variance.

In Section 4.2 below we will show that an equivalent measure can be obtained
in a simpler and more manageable way.

3 A Numerical Mapping for Nominal Hierarchical Data

Consider a nominal attribute X taking values from a hierarchical classification.
Let TX be a sample of values of X . Each value x ∈ TX can be associated two
numerical values:

– The sample frequency of x;
– Some centrality measure of x within the hierarchy of X .



A Numerical Mapping for Enhanced Exploitation of Taxonomic Attributes 371

While the frequency depends on the particular sample, centrality measures de-
pend both on the attribute hierarchy and the sample. Known tree centralities
attempt to determine the “middle” of a tree [13]. We are rather interested in
finding how far from the middle is each node of the tree, that is, how marginal it
is. We next propose an algorithm to compute a new measure of the marginality
of the values in the sample TX .

Algorithm 2 (Marginality of hierarchical values)

1. Given a sample TX of hierarchical nominal values drawn from X, place them
in the tree representing the hierarchy of X. There is a one-to-one mapping
between the set of tree nodes and the set of categories where X takes values.
Prune the subtrees whose nodes have no associated sample values. If there
are repeated sample values, there will be several nominal values associated to
one or more nodes (categories) in the pruned tree.

2. Let L be the depth of the pruned tree. Associate weight 2L−1 to edges linking
the root of the hierarchy to its immediate descendants (depth 1), weight 2L−2

to edges linking the depth 1 descendants to their own descendants (depth 2),
and so on, up to weight 20 = 1 to the edges linking descendants at depth
L − 1 with those at depth L. In general, weight 2L−i is assigned to edges
linking nodes at depth i− 1 with those at depth i, for i = 1 to L.

3. For each nominal value xj in the sample, its marginality m(xj) is defined
and computed as

m(xj) =
∑

xl∈TX−{xj}
d(xj , xl) (2)

where d(xj , xl) is the sum of the edge weights along the path from the tree
node corresponding to xj and the tree node corresponding to xl.

Note 1 (On distances and marginality). The above construction of marginality
can be generalized by allowing other distance functions to be used in Expression
(2), not necessarily based on edge weights. For example, in [3] it is suggested to
use the semantic distance proposed in [16], in which the distance between two
categories in a taxonomy is a function of the number of non-common ancestors
divided by the total number of ancestors of the category pair.

Clearly, the greater m(xj), the more marginal (i.e. the less central) is xj . We
give next a toy running example to illustrate the computation of marginality.

Example 1. Assume a hierarchical attribute “Diagnosis”, for which a sample
is available whose nominal values can be hierarchically classified as shown in
Figure 1. The hierarchy is a pruned one, so that only leaves with some value
in the sample are depicted. The sample has one element for each diagnostic
category, except for “Epilepsy” and “Nose cold”, for each of which there are two
elements. Figure 1 also shows the weights assigned by Algorithm 2 to each edge
in the hierarchy tree.
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Fig. 1. Example pruned hierarchy of a sample of a “Diagnosis” attribute

Label the elements in the sample as follows: x1 (lung cancer), x2 (endogenous
depression), x3 (exogenous depression), x4 (anxiety), x5 (first epilepsy element),
x6 (second epilepsy element), x7 (first nose cold element), x8 (second nose cold
element) and x9 (chest cold). The distance matrix between elements is given
below, where component (j, l) represents the sum d(xj , xl) of edge weights along
the path between xj and xl (only the upper diagonal matrix is represented):

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 13 13 12 12 12 12 12 12
0 2 5 5 5 13 13 13

0 5 5 5 13 13 13
0 4 4 12 12 12

0 0 12 12 12
0 12 12 12

0 0 4
0 4

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The marginality m(xj) of element xj can be obtained by adding all distances
in the j-th row of the above matrix. Marginalities for all elements are shown in
Table 1. It turns out that x1 (lung cancer) is the most marginal element, which
is consistent with the layout of the hierarchy in Figure 1. On the other hand,
x5 and x6 are the least marginal elements, due to both the central position of
epilepsy in the hierarchy and the fact that there are two epilepsy elements. In
fact, the higher frequency of epilepsy is what makes the marginality of x5 and x6

lower than the marginality of x4 (anxiety); otherwise, epilepsy and anxiety have
equally central positions in the hierarchy. This illustrates that marginality is a
function of both the hierarchy of categories and their frequency in the sample.

Some properties are next stated which illustrate the rationale of the distance
and the weights used to compute marginalities.
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Table 1. Marginalities of elements in the “Diagnosis” sample of Figure 1

xj m(xj)

x1 0 + 13 + 13 + 12 + 12 + 12 + 12 + 12 + 12 = 98
x2 13 + 0 + 2 + 5 + 5 + 5 + 13 + 13 + 13 = 69
x3 13 + 2 + 0 + 5 + 5 + 5 + 13 + 13 + 13 = 69
x4 12 + 5 + 5 + 0 + 4 + 4 + 12 + 12 + 12 = 66
x5 12 + 5 + 5 + 4 + 0 + 0 + 12 + 12 + 12 = 62
x6 12 + 5 + 5 + 4 + 0 + 0 + 12 + 12 + 12 = 62
x7 12 + 13 + 13 + 12 + 12 + 12 + 0 + 0 + 4 = 78
x8 12 + 13 + 13 + 12 + 12 + 12 + 0 + 0 + 4 = 78
x9 12 + 13 + 13 + 12 + 12 + 12 + 4 + 4 + 0 = 82

Lemma 1. d(·, ·) is a distance in the mathematical sense.

Being the length of a path, it is immediate to check that d(·, ·) satisfies reflexiv-
ity, symmetry and subadditivity. The rationale of the above exponential weight
scheme is to give more weight to differences at higher levels of the hierarchy;
specifically, the following property is satisfied.

Lemma 2. The distance between any non-root node nj and its immediate an-
cestor is greater than the distance between nj and any of its descendants.

Proof: Let L be the depth of the overall tree and Lj be the depth of nj . The
distance between nj and its immediate ancestor is 2L−Lj . The distance between
nj and its most distant descendant is

1 + 2 + · · ·+ 2L−Lj−1 = 2L−Lj − 1

�
Lemma 3. The distance between any two different nodes at the same depth is
greater than the longest distance within the subtree rooted at each node.

Proof: Let L be the depth of the overall tree and Lj be the depth of the two
nodes. The distance between two different nodes is shortest when they have the
same parent and it is

2 · 2L−Lj = 2L−Lj+1.

The longest distance within any of the two subtrees rooted at the two nodes at
depth Lj is the length of the path between two leaves at depth L, which is

2 · (1 + 2 + · · ·+ 2L−Lj−1) = 2(2L−Lj − 1) = 2L−Lj+1 − 2

�

4 Statistical Analysis of Numerically Mapped Nominal
Data

In the previous section we have shown how a nominal value xj can be associ-
ated a marginality measure m(xj). In this section, we show how this numerical
magnitude can be used in statistical analysis.
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4.1 Mean

The mean of a sample of nominal values cannot be computed in the standard
sense. However, it can be reasonably approximated by the least marginal value,
that is, by the sample centroid.

Definition 1 (Marginality-based approximated mean). Given a sample
TX of a hierarchical nominal attribute X, the marginality-based approximated
mean is defined as

MeanM (TX) = arg min
xj∈TX

m(xj)

if one wants the mean to be a nominal value, or

Num meanM (TX) = min
xj∈TX

m(xj)

if one wants a numerical mean value.

Example 2. It can be seen from Table 1 that, for the sample of Example 1, the
marginality-based mean is “Epilepsy” (which is the least marginal value) and
the numerical marginality-based mean is 62.

4.2 Variance

In Section 2 above, we recalled a measure of variance of a hierarchical nominal
attribute proposed in [4] which takes the semantics of the hierarchy into ac-
count. Interestingly, it turns out that the average marginality of a sample is an
equivalent way to capture the same notion of variance.

Definition 2 (Marginality-based variance). Given a sample TX of n values
drawn from a hierarchical nominal attribute X, the marginality-based sample
variance is defined as

V arM (TX) =

∑
xj∈TX

m(xj)

n

Example 3. It can be seen from Table 1 that, for the sample of Example 1, the
marginality-based variance is

98 + 69 + 69 + 66 + 62 + 62 + 78 + 78 + 82

9
= 73.78

The following lemma is proven in the Appendix.

Lemma 4. The V arM (·) measure and the V arH(·) specified by Algorithm 1 in
Section 2 are equivalent.
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4.3 Covariance Matrix

It is not difficult to generalize the sample variance introduced in Definition 2 to
define the sample covariance of two nominal attributes.

Definition 3 (Marginality-based covariance). Given a bivariate sample
T(X,Y ) consisting of n ordered pairs of values {(x1, y1), · · · , (xn, yn)} drawn from
the ordered pair of nominal attributes (X,Y ), the marginality-based sample co-
variance is defined as

CovarM (T(X,Y )) =

∑n
j=1

√
m(xj)m(yj)

n

The above definition yields a non-negative covariance whose value is higher when
the marginalities of the values taken by X and Y are positively correlated: as
the values taken by X become more marginal, so become the values taken by Y .

Given a multivariate data set T containing a sample of d nominal attributes
X1, · · · , Xd, using Definitions 2 and 3 yields a covariance matrix S = {sjl}, for
1 ≤ j ≤ d and 1 ≤ l ≤ d, where sjj = V arM (Tj), sjl = CovarM (Tjl) for j �= l,
Tj is the column of values taken by Xj in T and Tjl = (Tj, Tl).

4.4 Variance-Based Distance

Based on variances (whether plain numerical or marginality-based), we can define
the following distance for records with numerical, hierarchical or flat nominal
attributes.

Definition 4 (S-distance). The S-distance between two records x1 and x2 in
a data set with d attributes is

δ(x1,x2) =

√
(S2)112
(S2)1

+ · · ·+ (S2)d12
(S2)d

(3)

where (S2)l12 is the variance of the l-th attribute over the group formed by x1

and x2, and (S2)l is the variance of the l-th attribute over the entire data set.

We prove in the Appendix the following two theorems stating that the distance
above satisfies the properties of a mathematical distance.

Theorem 1. The S-distance on multivariate records consisting of hierarchical
attributes based on the hierarchical variance computed as per Definition 2 is a
distance in the mathematical sense.

Theorem 2. The S-distance on multivariate records consisting of ordinal or
numerical attributes based on the usual numerical variance is a distance in the
mathematical sense.

By combining the proofs of Theorems 1 and 2, the next corollary follows.
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Corollary 1. The S-distance on multivariate records consisting of attributes of
any type, where the hierarchical variance is used for hierarchical and flat nominal
attributes and the usual numerical variance is used for ordinal and numerical
attributes, is a distance in the mathematical sense.

The above distance can be used for a variety of purposes, including cluster-
ing. Specifically, it allows microaggregating hierarchical data [1,2] in view of
anonymization.

5 Discussion and Conclusions

We have presented a centrality-based mapping of hierarchical nominal data to
numbers. We have shown how such a numerical mapping allows computing
means, variances and covariances of nominal attributes, and distances between
records containing any kind of attributes.

Such enhanced flexibility of manipulation can be used to adapt methods in-
tended for numerical data to the treament of hierarchical attributes. If reverse
mapping to nominal categories is required at the end of the treatment, two
situations arise:

– Each numerical output of the method exactly equals one of the input marginal-
ities. E.g. this happens for SDC methods that involve swapping input values
that are within a certain distance of each other. In this case, each numerical
output m is mapped back to the nominal category having marginality m.

– Numerical outputs do not correspond to marginalities. E.g. such is the case if
numerical outputs are the result of applying a regression model on the input
marginalities. In this case, a reasonable option is to map each numerical
output m back to the category having marginality closest to m.

Reverse mapping may be problematic if there are categories which are semanti-
cally very different and have similar marginalities or the same marginality. For
example, if the nose colds are suppressed from the sample depicted in Figure 1,
then chest cold and lung cancer would have exactly the same marginality. A way
to prevent semantic confusion in reverse mapping is to use blocking, that is, to
split the hierarchy tree into several subtrees based on semantic criteria and treat
each subtree separately: e.g divide the sample of Example 1 into a subsample
of cancers, a subsample of nervous diseases and a subsample of colds, and treat
subsamples separately to avoid big confusions during reverse mapping (we are
assuming that confusing two categories within the same subtree is tolerable).

Future research will involve developing real-life applications of marginality,
for example data anonymization of hierarchical attributes using SDC methods
intended for numerical data (like multiple imputation or microaggregation).

Appendix

Proof (Lemma 4): We will show that, given two samples TX = {x1, · · · , xn}
and T ′

X = {x′
1, · · · , x′

n} of a nominal attribute X , both with the same cardinality
n, it holds that V arM (TX) < V arM (T ′

X) if and only if V arH(TX) < V arH(T ′
X).
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Assume that V arM (TX) < V arM (T ′
X). Since both samples have the same

cardinality, this is equivalent to

n∑

j=1

m(xj) <

n∑

j=1

m(x′
j)

By developing the marginalities, we obtain

n∑

j=1

∑

xl∈TX−{xj}
d(xj , xl) <

n∑

j=1

∑

x′
l∈T ′

X−{x′
j}
d(x′

j , x
′
l)

Since distances are sums of powers of 2, from 1 to 2L−1, we can write the above
inequality as

d0 + 2d1 + · · ·+ 2L−1dL−1 < d′0 + 2d′1 + · · ·+ 2L−1d′L−1 (4)

By viewing dL−1 · · · d1d0 and d′L−1 · · · d′1d′0 as binary numbers, it is easy to see
that Inequality (4) implies that some i must exist such that di < d′i and dî ≤ d′

î

for i < î ≤ L − 1. This implies that there are less high-level edge differences
associated to the values of TX than to the values of T ′

X . Hence, in terms of
V arH(·), we have that V ar(TX(i)) < V ar(T ′

X(i)) and V ar(TX (̂i)) ≤ V ar(T ′
X (̂i)

for i < î ≤ L− 1. This yields V arH(TX) < V arH(T ′
X).

If we now assume V arH(TX) < V arH(T ′
X), we can prove V arM (TX) <

V arM (T ′
X) by reversing the above argument. �.

Lemma 5. Given non-negative A,A′, A′′, B,B′, B′′ such that
√
A ≤ √

A′+
√
A′′

and
√
B ≤ √

B′ +
√
B′′ it holds that

√
A+B ≤ √

A′ +B′ +
√
A′′ +B′′ (5)

Proof (Lemma 5): Squaring the two inequalities in the lemma assumption,
we obtain

A ≤ (
√
A′ +

√
A′′)2

B ≤ (
√
B′ +

√
B′′)2

Adding both expressions above, we get the square of the left-hand side of Ex-
pression (5)

A+B ≤ (
√
A′ +

√
A′′)2 + (

√
B′ +

√
B′′)2

= A′ +A′′ +B′ +B′′ + 2(
√
A′A′′ +

√
B′B′′) (6)

Squaring the right-hand side of Expression (5), we get

(
√
A′ +B′ +

√
A′′ +B′′)2

= A′ +B′ +A′′ +B′′ + 2
√
(A′ +B′)(A′′ +B′′) (7)



378 J. Domingo-Ferrer

Since Expressions (6) and (7) both contain the terms A′+B′+A′′+B′′, we can
neglect them. Proving Inequality (5) is equivalent to proving

√
A′A′′ +

√
B′B′′ ≤

√
(A′ +B′)(A′′ +B′′)

Suppose the opposite, that is,
√
A′A′′ +

√
B′B′′ >

√
(A′ +B′)(A′′ +B′′) (8)

Square both sides:
A′A′′ +B′B′′ + 2

√
A′A′′B′B′′ >

(A′ +B′)(A′′ +B′′) = A′A′′ +B′B′′ +A′B′′ +B′A′′

Subtract A′A′′ +B′B′′ from both sides to obtain

2
√
A′A′′B′B′′ > A′B′′ +B′A′′

which can be rewritten as

(
√
A′B′′ −

√
B′A′′)2 < 0

Since a real square cannot be negative, the assumption in Expression (8) is false
and the lemma follows. �

Proof (Theorem 1): We must prove that the S-distance is non-negative, re-
flexive, symmetrical and subadditive (i.e. it satisfies the triangle inequality).

Non-negativity. The S-distance is defined as a non-negative square root, hence
it cannot be negative.

Reflexivity. If x1 = x2, then δ(x1,x2) = 0. Conversely, if δ(x2,x2) = 0, the
variances are all zero, hence x1 = x2.

Symmetry. It follows from the definition of the S-distance.
Subadditivity. Given three records x1, x2 and x3, we must check whether

δ(x1,x3)
?≤ δ(x1,x2) + δ(x2,x3)

By expanding the above expression using Expression (3), we obtain

√
(S2)113
(S2)1

+ · · ·+ (S2)d13
(S2)d

?≤

√
(S2)112
(S2)1

+ · · ·+ (S2)d12
(S2)d

+

√
(S2)123
(S2)1

+ · · ·+ (S2)d23
(S2)d

(9)

Let us start with the case d = 1, that is, with a single attribute, i.e. xi = xi for
i = 1, 2, 3. To check Inequality (9) with d = 1, we can ignore the variance in the
denominators (it is the same on both sides) and we just need to check

√
S2
13

?≤
√
S2
12 +

√
S2
23 (10)
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We have

S2
13 = V ar({x1, x3}) = m(x1) +m(x3)

2

=
d(x1, x3)

2
+

d(x3, x1)

2
= d(x1, x3) (11)

Similarly S2
12 = d(x1, x2) and S2

23 = d(x2, x3). Therefore, Expression (10) is
equivalent to subaddivitity for d(·, ·) and the latter holds by Lemma 1. Let us
now make the induction hypothesis for d− 1 and prove subadditivity for any d.
Call now

A :=
(S2)113
(S2)1

+ · · ·+ (S2)d−1
13

(S2)d−1

A′ :=
(S2)112
(S2)1

+ · · ·+ (S2)d−1
12

(S2)d−1

A′′ :=
(S2)123
(S2)1

+ · · ·+ (S2)d−1
23

(S2)d−1

B :=
(S2)d13
(S2)d

; B′ :=
(S2)d12
(S2)d

; B′′ :=
(S2)d23
(S2)d

Subadditivity for d amounts to checking whether

√
A+B

?≤ √
A′ +B′ +

√
A′′ +B′′ (12)

which holds by Lemma 5 because, by the induction hypothesis for d−1, we have√
A ≤ √

A′ +
√
A′′ and, by the proof for d = 1, we have

√
B ≤ √

B′ +
√
B′′. �

Proof (Theorem 2): Non-negativity, reflexivity and symmetry are proven in
a way analogous as in Theorem 1. As to subaddivity, we just need to prove the
case d = 1, that is, the inequality analogous to Expression (10) for numerical
variances. The proof for general d is the same as in Theorem 1. For d = 1, we
have

S2
13 =

(x1 − x3)
2

2
; S2

12 =
(x1 − x2)

2

2
; S2

23 =
(x2 − x3)

2

2

Therefore, Expression (10) obviously holds with equality in the case of numerical
variances because

√
S2
13 =

x1 − x3√
2

=
(x1 − x2) + (x2 − x3)√

2
=

√
S2
12 +

√
S2
23

�
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