
A Study of Anomaly Detection in Data

from Urban Sensor Networks

Christoffer Brax1 and Anders Dahlbom2

1 Training Systems & Information Fusion,
Business Area Electronic Defence Systems,

Saab AB, Skövde, Sweden
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Abstract. In many sensor systems used in urban environments, the
amount of data produced can be vast. To aid operators of such systems,
high-level information fusion can be used for automatically analyzing the
surveillance information. In this paper an anomaly detection approach for
finding areas with traffic patterns that deviate from what is considered
normal is evaluated. The use of such approaches could help operators
in identifying areas with an increased risk for ambushes or improvised
explosive devices (IEDs).
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1 Introduction

In both peace keeping and peace enforcing missions, task forces mainly oper-
ate in asymmetric conflict environments where the situation most often can be
described as being in a grey area between peace and war. Threats are usually
camouflaged and hiding within the population and the regular activities of ev-
eryday life and the warfare is often carried out using terrorism, sabotage, IEDs,
smuggling operations, etc. Task force security has become an increasingly im-
portant issue during missions in these environments, and new requirements are
put on the technological support that is needed. It is not sufficient to detect the
presence of an object in order to determine the threat that it might constitute.

A common tactic in asymmetric conflicts is the use of various forms of am-
bush attacks against the least defended elements followed by subsequent rapid
movement away from the area of the attack [1]. In this way, attackers are only
exposed for a very limited amount of time. Moreover, attackers carefully avoid
open confrontation with larger and more heavily equipped forces.

In order to successfully identify these types of threats, suspicious object behav-
iors need to be detected and connected to imminent attacks or the preparation
for them. This puts requirements on detailed information about detected objects
along with robust processing of data received over time.
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Modern sensor systems are not designed to accomplish such surveillance tasks
and it is left to human operators to detect and analyze these types of situations.
Presented to an operator, all individual vehicle tracks in a city would however
become unmanageable since it is difficult to maintain focus on more than a few
tracks simultaneously. The operator, having limited cognitive ability [2], will also
have trouble finding small changes in a situation. This might pose a problem in
situations that extend over a long period of time with only small incremen-
tal changes. Additionally, there is a risk of operators experiencing information
overload, which in the end can lead to poor threat detection. Only in excep-
tional cases can sufficient situation awareness in the ground theatre be achieved
through conventional detect and track methods.

To address the situation awareness problem in urban environments, one has
to either drastically limit the area of surveillance, or one has to look for objects
that in some way deviate from a large background of similar objects (e.g. behav-
ior, position). Anomaly detection is an interesting approach which pursuits the
second alternative. The purpose of an anomaly detection function is to assist an
operator by analyzing situation data to filter out important parts and give early
warnings when suspicious behaviors are detected. When the function detects an
anomaly it must be able to characterize it in such a way that the operator can
easily understand the anomaly and make an informed assessment as to whether
to monitor the object, take preventive action or to classify it as irrelevant.

Much of the focus in previous anomaly detection approaches in the surveil-
lance domain has been on tracking and analyzing single objects to find objects
that behave anomalous [3,4,5,6]. While this is important, it requires high qual-
ity tracking of the surveyed objects, something that is not always available in
crowded urban environments.

This paper proposes a Gaussian anomaly detector which, in contrast to mod-
eling the behavior of single objects, focuses on modeling the collective behavior
of objects. This is carried out by constructing a model of normalcy based on the
average flow and speed of objects in relation to geographical areas. Measuring
the average flow and speed of objects does not require the use of advanced sensor
systems with high quality tracking, and it is thus easier to carry out in urban
areas. The proposed anomaly detector is evaluated using data from a simulation
platform that simulates traffic in an urban area.

2 Anomaly Detection

One of the first fields to use anomaly detection was IT security where anomaly
detection was used to build self-learning intrusion detection systems capable of
detecting previously unknown viruses, trojans and break-in attacks [7]. Today it
is also used in military and civilian surveillance systems. The concept of anomaly
detection is, however, somewhat vague and there is no clear definition of anomaly
detection is or even what constitutes an anomaly. Some argue that an anomaly
is something that is known beforehand (i.e. can be described by a domain ex-
pert) but which seldom occurs [1]. Others argue that an anomaly is something
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unknown that has not been seen before [6]. Anomalous objects are also referred
to variously as outliers, novelties or deviations [8]. In this paper, we adopt the
definition of anomaly detection and anomalies suggested by Tan et al.:

“Anomaly detection is the task of identifying observations whose char-
acteristics are significantly different from the rest of the data. Such ob-
servations are known as anomalies or outliers.” [9]

A large variety of anomaly detection techniques have been suggested. Many of
these have been specifically developed and tailored for specific problems and
application domains, while others are more generic. Furthermore, anomaly de-
tection has been the topic of a number of excellent surveys and review articles,
see e.g. [10,11,8,12,7]. These articles mainly address methods which model data
based on their statistical properties and use this information to investigate if the
new incoming data originates from the same distribution or not.

During the past decade many different approaches for anomaly detection have
been investigated in the surveillance domain. In [3] self-organizing maps are used
together with Gaussian mixture models for detecting anomalous vessel traffic.
This type of approach is also used in combination with interactive visualization
in [13]. In [6] the focus is also on detecting anomalous vessel activity, however,
they employ semantic networks composed of connected spiking neurons that are
laid out in a grid over an area of interest. This allows for some degree of temporal
information to be modeled. Other work focusing on detecting anomalous vessel
behavior include the use of Bayesian networks [14,15], kernel density estima-
tion and conformal prediction [5,16] and trajectory clustering [17]. Besides the
maritime domain, work has also been carried out on anomaly detection based
on e.g. video data. In [18], trajectory clustering is used for detecting anomalous
traffic behavior and in [4] abstract state space modeling combined with Gaussian
models is used for detecting anomalous behaviors in public areas.

Anomaly detection approaches in the surveillance domain have mostly focused
on tracking and analyzing single objects to find objects that behave anomalous.
While this is important, it requires high quality tracking of the surveyed objects,
something that is not always available in crowded urban environments.

2.1 Anomaly Detection in Urban Environments

Urban environments are characterized by numerous closely spaced targets mov-
ing in rather confined spaces. In such crowded scenarios, the origin of observa-
tions is often highly ambiguous, meaning that it is a complex task to associate
observations to new or existing tracks. In some situations, it is even impossible
to determine the origin of the observation, no matter how advanced the tracking
algorithm is. For this type of operational environment, additional functionality
must be incorporated into the technical systems in order to analyze situation
data and support the human operator.

It is thus interesting to look at techniques that do not rely on accurate tracks
and advanced information about individual objects, but which instead make use
of the collective behavior of objects as expressed by uncorrelated observations.
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3 Gaussian Anomaly Detector

This paper investigates the use of a simple Gaussian normalcy modeling scheme
modeling the collective behavior of objects in an urban setting using average
speed and flow of objects. An assumption is that the collective behavior in an
area where a threat is located is inclined to change. Moreover, road blocks and
similar changes to trafficabillity will also have an effect on movement patterns.
The idea is that threats possibly can be detected by finding changes in the
traffic around them. It might however not be sufficient to construct a model
over the complete area of interest, but rather to construct models for subspaces
laid out in e.g. a grid, similar to [6]. In urban settings there also exists contextual
information that can be exploited, e.g. maps of road networks.

The detection performance might however vary depending on the type of
measurements that are used and on the type and degree of subdivision that is
used. These are important factors to evaluate for deciding what kind of sensors
that are appropriate and if contextual data such as road networks can be used
for improving performance. Three important questions have thus been identified:
(1) should we divide the area of interest using a simple grid or using additional
contextual road segment information, (2) should we measure the average flow or
the average speed of objects, and (3) how does the degree of subdivision affect
the detection performance?

An anomaly detection system consisting of five components has been con-
structed for addressing these questions (figure 1 shows a schematic structure).

Grid-Based
Division

Road-Based
Division

Flow
Analyzer

Speed
Analyzer

Anomaly
Detector

Data Alarms

Fig. 1. Components in the anomaly detection system

The first two components handle the division of objects into subsets based
on a grid or a road network. The next two components analyze the flow and
speed of objects in each subset. The last component is the anomaly detector.
The components at each step can be connected to any of the components at the
next step, in order to easily evaluate various configurations of the system.

3.1 Geographical Division

The Grid-Based Division component creates a grid over the area of interest. The
grid is defined by the upper right and lower left coordinates and the number of
rows and columns. Each grid cell is represented by a geographical zone. When a
new object is received by the system it will be assigned to the geographical zone
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that contains the coordinates of the object. The use of a rectangular grid may
result in e.g. roads being split into multiple grid cells and cells with few data
points due to low coherence with actual geography.

The Road-Based Division component uses GIS data to create a number of
geographical zones based on the segments in the road network. The GIS data
defines a number of waypoints and information about how these are connected.
The component assumes a 10 meter wide road between every pair of connected
waypoints. When a new object is received by the system, it is assigned to one of
the zones containing the position of the object. Note that there might be over-
lapping zones where road segments meet. This should not significantly impact
the results of the experiments since the same zone is always chosen when there
are multiple overlapping zones.

3.2 Flow and Speed Analayzers

The Flow Analyzer component measures the flow in an area by counting the
average number of objects in the area over time. The analyzer handles multiple
areas at the same time and these can be supplied by any of the two subdivision
abilities. The flow analyzer could in a live system be implemented using some
form of tracking or tripwire sensor.

The Speed Analyzer component measures the average speed of objects present
in an area. Similarly to the flow analyzer, the areas can be supplied by either of
the division abilities. The average speed is measured over all the objects in the
area. In a live system, the speed could easily be measured using a doppler radar
and it would not require any tracking.

3.3 Anomaly Detector

The Anomaly Detector component is responsible for the actual detection of
anomalies. It can run in two modes: learning and detection. In learning mode,
the component receives flow or speed statistics based on grid or road division.
These statistics are saved and the mean and standard deviations are constantly
updated for each geographic zone (grid cell or road segment).

In detection mode, a previously learned normal model is loaded and used to
classify new data as normal or anomalous. This is carried out by inspecting if
the present mean value is within n standard deviations (σ) of the mean in the
previously learned model. If the new mean lay beyond this range, an alarm is sent
to the presentation system. In this context an alarm consists of time, reference to
geographical area and the actual deviation. In some cases, the standard deviation
for a geographic zone is very small and therefore a parameter called minimum
deviation (σmin) is also defined. This threshold value defines a minimum required
distance between the present mean and the model mean, for sending an alarm.

The last feature of the anomaly detector component is a sliding window that
allows the detector to set which of the new pieces of data the detector should
use when calculating the mean. The available options are: all data, last minute,
last five minutes and last fifteen minutes. Setting the sliding window value to a
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low value, e.g. last minute, will increase the reactivity of the detector but it will
also make it more sensitive to variations in the input data.

4 Experimental System

In order to investigate the questions put forth in section 3 an experimental system
has been constructed. This system has been built by integrating a number of
existing software components and by extending their functionality to support
evaluation of the proposed anomaly detection system described in section 3.
Figure 2 shows the architecture of the experimental system.

Scenario
Genera�on

(Stage)

Visualiza�on
(Google Earth)

Anomaly
Detec�on

(IBD)Tracks Tracks, Alarms
Zones

Fig. 2. High-level architecture of the experimental system

As can be seen, data sets are generated in real-time using Stage1. Individual
tracks of simulated objects are fed into the Anomaly Detection System (im-
plemented on the Intelligent Behavior Detector (IBD) platform [19]). The IBD
routes the tracks to Google Earth2 for visualization while at the same time us-
ing them internally for anomaly detection. The result of the anomaly detection
are alarms that also are sent to Google Earth together with information about
geographic zones that are used by the anomaly detector. To show information
in Google Earth overlaid on the map, we use kml files3. The information in the
kml file is regularly updated to reflect the current situation and it is generated
from the current tracks, alarms and zones defined in the IBD.

4.1 Experimental Setup

A number of different experiments have been carried out to evaluate the useful-
ness of data-driven anomaly detection for detecting threats such as roadblocks
and IEDs. Two simulated scenarios have been used for evaluation, where the first
consist of normal traffic from an area of interest. The output from this scenario
represents the training dataset that is used to train the anomaly detection algo-
rithms. The second scenario is similar to the first scenario, but with a number of
roadblocks/IEDs added to it. Due to the definition of roadblock, the generated
traffic will automatically avoid these areas and instead use alternative routes to
reach their corresponding destinations. The output from the second scenario has
been used for evaluating different settings of the anomaly detection algorithm.

1 More information about Stage can be found at http://www.presagis.com/

products services/products/modeling-simulation/simulation/stage/
2 Information about Google Earth can be found at http://www.google.com/earth/
3 Keyhole Markup Language, http://code.google.com/intl/sv-SE/apis/kml/

http://www.presagis.com/products_services/products/modeling-simulation/simulation/stage/
http://www.presagis.com/products_services/products/modeling-simulation/simulation/stage/
http://www.google.com/earth/
http://code.google.com/intl/sv-SE/apis/kml/
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4.2 Simulated Road-Block Scenario

To create the two versions of the previously described scenario, it has been
identified that Stage needs to be extended to fulfill the requirements in table 1.

Table 1. Requirements for creating simulated road-block scenarios

1. It should be possible to generate traffic that follows a road network.
2. It should be possible to dynamically spawn vehicles at multiple locations.
3. Vehicles should be able to take different routes though the road network to

simulate different driving behaviors.
4. It should be possible to set the spawn interval for each spawn location.
5. It should be possible to set the parameters of spawned vehicles such as speed,

type and initial heading.
6. It should be possible to turn the spawning on and off to simulate an uneven

flow of new vehicles.
7. It should be possible to alter the road network and add roadblocks where

traffic cannot pass.
8. It should be possible to extract the ground truth from the simulation as well

as objects detected by simulated sensors.

The requirements are fulfilled by creating three new entities in Stage: (1)
a spawner entity, (2) a spawn controller entity and (3) a vehicle entity. The
spawner entity is responsible for spawning new vehicles and it can be configured
to spawn vehicles at different intervals. The spawn controller entity is responsible
for turning the spawner entity on and off at certain intervals, to simulate an
uneven flow of traffic. The vehicle entity represents individual objects in the
simulation. Each spawned vehicle is given a mission that it starts to implement
as soon as it is spawned. The mission tells the entity how to behave. A number
of different missions are defined such as Go to beach, Exit the area east, Go to
shopping centre and Go to beach and then to a specific parking lot.

Figure 3 shows the area of interest and it also illustrates a single road block
that has been placed outside a shopping mall in the evaluation scenario.

4.3 Experimental Process

The process that has been used for evaluation includes 7 steps:

1. Start the simulation with the normal flow scenario. Wait for the system to
reach a stable state (usually five minutes).

2. Start the Anomaly Detector in learning mode and let it run for one hour.
3. Turn off the Anomaly Detector and save the normal model.
4. Turn off the simulation.
5. Start the simulation with the scenario including a number of flow interrupt-

ing elements. Wait for the simulation to reach a stable state.
6. Start the Anomaly Detector in detection mode. Wait five minutes to let the

statistics settle and start measuring which anomalies are found.
7. Stop the anomaly detector and the simulation. Evaluate the results.
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Fig. 3. The area-of-interest used in the simulation. The figure shows spawners and
spawn controllers as blue triangles and the location of the road-block as a red circle.

A stable state means that there is a constant flow of traffic on the roads.
When the simulation starts there is no traffic on the roads and vehicles begin
to spawn at the spawning locations. After a while, when enough vehicles have
been removed after reaching their destinations with new vehicles simultaneously
spawning, the simulation will behave in a stable manner, i.e. the roughly the
same number of vehicles are present in the simulation at any time.

5 Results

The first set of experiments is based on the ground truth from the simulation,
i.e. the correct position for all objects at all times. This is not possible in real-
world scenarios where real sensors must be used. Therefore, a simple sensor was
implemented in the Stage tool for the second set of experiments. The sensor
corresponds to the Saab SIRS 1600 short range radar sensor [20] that has a
detection range of 1600 meters and a field-of-view of about 15 degrees. The
SIRS 1600 can detect and track objects such as humans, cars, buses and trucks.

5.1 Results Using Ground-Truth Data

The default parameters in the experiments were n = 2 and σmin = 0. In some
experiments, the parameters have been altered in order to find any anomalies.

A total of eight experiments have been carried out in order to answer the
questions in section 3. Each experiment has been carried out using the process
described in section 4.3. Table 2 shows the results from the experiments.
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Table 2. Results from experiments with ground truth data

Experiment Division Analyzed parameter Result

1 Road Speed Works very well, no false alarms in normal data or
during evaluation. An example of the alarms can be
found in figure 4.

2 Road Flow Works very well, no false alarms in normal data or
during evaluation.

3 Grid (10x10) Speed Hard to find the anomalies with the default thresh-
olds. With σmin = 0.2 some anomalies are found
but the output are intermittent.

4 Grid (10x10) Flow No anomalies found. The road block is located on
the border between two grid cells.

5 Grid (5x5) Speed No anomalies found. With σ = 1 and σmin = 0.1
some anomalies are found as well as false alarms.

6 Grid (5x5) Flow No anomalies found. With σ = 1 and σmin = 0.1
some anomalies are found as well as false alarms.

7 Grid (25x25) Speed Anomalies are found. Some intermittent false
alarms.

8 Grid (25x25) Flow Anomalies are found. Some intermittent false
alarms.

Should we divide the area of interest using a simple grid or using additional
contextual road segment information?

Based on the results it is more efficient to use road segment information for
subdivision, compared to using a simple grid. The optimal size of grid cells is
however not obvious although the finest grid (25x25) yielded the best results
in the experiments. The results from using the grid approach also resulted in
unstable statistics in some cells. The normal variations were sometimes higher
than two standard deviations which resulted in false alarms when feeding normal
data into the anomaly detector. The road segment approach is therefore preferred
if such data is available; otherwise the grid based approach can be used.

Fig. 4. Alarms from experiment 1
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Should we measure the average flow or the average speed of objects?
In the experiments, the normal model based on both approaches performed

similar. An advantage of using flow is however that the flows can be measured
with simpler sensors.
How does the degree of subdivision affect the detection performance?

The experiments show that having too coarse a grid will decrease the ability
to detect anomalies. The finest grid resulted in the most detected anomalies and
the fewest false alarms.

5.2 Results Using Simple Sensors

Both the grid cell and the road based division of the geographic area were eval-
uated with the flow and speed analyzers. It was however decided that the grid
cell approach should only be evaluated using the grid parameters that gave the
best results, i.e. 25x25 grid cells. Each experiment has been carried out using
the process described in section 4.3. The results are presented in table 3.

Table 3. Results from experiments using simple sensors

Experiment Division Analyzed parameter Result

9 Road Speed Works very well, three anomalies detected in the
vicinity of the road block.

10 Road Flow Works very well, two anomalies detected in the
vicinity of the road block.

11 Grid (25x25) Speed Six anomalies are found. Four in the vicinity of the
road block and one in each of the east and south
entrances to the road network.

12 Grid (25x25) Flow Two anomalies are found. One near the road block
and one at the west entrance to the road network.

The conclusion of the experiments with simple sensors is that the anomaly
detection work almost as well as with ground truth data. This is however very
dependent on the placement of the sensors and the number of sensors used. In
the experiments, seven sensors were used to cover the most important roads in
the area of interest. With fewer sensors, the performance would not be as good.

6 Conclusions

The detection of threats in urban asymmetric conflict environments, e.g. am-
bushes and IEDs, has become an increasingly important objective for increased
task force security. Urban environments are characterized by numerous moving
objects in crowded areas, making it difficult to only rely on detect and track
methods. In this paper a Gaussian Anomaly Detector has been suggested for
generating early warnings that can be used to assist human operators in the
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detection of threats in such environments. The proposed anomaly detector fo-
cuses on modeling the collective behavior of objects of interest through the use
of average speed and flow in relation to small geographic areas.

The initial experiments that have been carried out using a simulated urban
threat scenario have investigated (1) different ways of dividing the area of in-
terest, i.e. square grid cells or based on road-segments, and (2) if the average
speed or flow was the best measure for modeling the normal behavior of a set of
vehicles. The evaluation shows that, using the proposed anomaly detector, there
is only small difference in performance between measuring speed and flow. It also
shows that the use of contextual map information to divide the area based on
road segments, yields more stable performance than using a grid cell approach.
A conclusion is that road network information should be used if it is available;
otherwise, acceptable performance can be achieved using grid cells.

An advantage of using an anomaly detector that operates on average speed or
flow information is that it puts lower requirements on sensor systems and their
tracking performance. It is not critical to have perfect tracking of all objects at
all times; instead, it is sufficient to be able to measure the number of objects or
the average speed of objects. This can be achieved using simple sensors.

Although it has been shown that the proposed anomaly detector can be used
for detecting anomalies in a simulated urban scenario, more research and de-
velopment is needed to achieve an operational system. The normalcy modeling
scheme should be extended to handle more contextual information and to better
capture variations in the data. Moreover, it is not enough to evaluate the fea-
sibility using only simulated data. Data from a real sensor network deployed in
an urban area should be collected and used for evaluation.
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