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Abstract. The inconsistency of the decision maker’s preferences may
be measured as a number of violations of the transitivity rule. If the
intensity of the preference is available, then the incosistency may be
measured by measuring the inconsistency of each cycle of the preference
graph. In the Potential Method, this may be accomplished by mesuring
an angle (degree) between the preference flow and the column space of
the incidence matrix.

In this article a random study is performed to determine the upper
bound for admissible inconsistency. The degree distribution is recognized
as the Gumbel distribution and the upper bound for admissible inconsis-
tency measure is defined as a p-quantile (p = 0.05) of that distribution.

Keywords: decision making, preference graph, inconsistency measure,
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1 Introduction

This paper is about the inconsistency in the decision maker’s input data when it
is in the form of the preferences obtained from pairwise comparisons. Inconsis-
tency measure is a useful information which shows a degree of non-transitivity in
the decision maker’s preferences. The high inconsistency measure may suggests
reconsidering the input again and again if necessary. For the Eigenvalue Method
(EVM), proposed by Saaty [10], the consistency index ci is defined as

ci(A) =
λmax(A)− n

n− 1
,

where A is the positive reciprocal matrix of order n and λmax(A) is the Perron
root of A. It is well-known that ci ≥ 0 and ci(A) = 0 ⇐⇒ A is consistent. A
positive reciprocal matrix A is of admissible inconsistency if

ci(A) ≤ 0.1×mri(n)

� The author thanks to V. Šego and to the referee for valuable comments and sugges-
tions.
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where mri(n) is the mean of the random ci. The random index study in AHP
context was performed by several authors, from Crawford and Williams [4] to
Alonso and Lamata [1]. A nice overview of the results is given in Alonso and
Lamata [1, Table 1, p.449].

The Potential Method (PM) (Čaklović [5]) uses a preference graph to capture
the results of pairwise comparisons. A preference flow F is the non-negative
function defined on the set of arcs which captures the intensity of the preferences.
An example of the preference graph in a voting procedure was considered by
Condorcet [3]. He defined a social preference flow as

FC(u, v) := N(u, v)−N(v, u) (1)

where N(u, v) denotes the number of voters choosing u over v. We say that u is
socially preferred to v if FC(u, v) ≥ 0.

In the graph representation of the preferences, inconsistency is closely related
to non-transitivity and may be defined even for incomplete graphs, which is not
so straightforward for AHP. In simple words, the flow F is consistent if it is
consistent along each cycle c, i.e. if the sum Fc of the algebraic components of
the flow F along each cycle c is equal to zero, see Definition 1 and Theorem 1. In

Fα = 1

A

B

C

D

Fβ = 3

Fγ = 4

Fδ = 2

Fε = 2

Fig. 1. An example of the inconsistent flow. The sum of the flow components along the
cycle CDBC is equal to 2 + 2 + 3 = 7. The flow is consistent along the cycle ABCA.

Figure 1, the flow F is consistent along the cycle ABCA and inconsistent along
the cycle CDBC because the sum Fc along this cycle is equal to 2 + 2 + 3 = 7.
Intuitively, the inconsistency measure of the flow may be defined as the sum∑

cFc over all independent cycles c in the preference graph divided by the 2-
norm ‖F‖2. The exact definition is slightly different: this is the angle between
the flow F and the vector space of all consistent flows, see Definition 3. Please,
note that the notion of the flow consistency, as defined here, is stronger than
pure transitivity. This motivates the search for the upper bound of the admissible
inconsistency of the given flow which is done in Section 4.

Saaty’s inconsistency [10, Saaty] and flow inconsistency are closely related.
There is a theorem which states that a positive reciprocal matrix A = (aij) is
consistent if and only if

aijajk = aik, i, j, k = 1, . . ., n (2)
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Taking the logarithm of this relation, one recognizes the inconsistency condition
4 from Theorem 1 for the flow

F(i,j) := log(aij). (3)

In the stochastic preference approach [6, French, p. 101] the author introduces
a notion of the stochastic preference pab as a probability of choosing a when
offered a choice between a and b. Then, it is easy to show that if the stochastic
preference satisfies the consistency condition

pab
pba

· pbc
pcb

=
pac
pca

(4)

for all a, b, c ∈ V then, it generates a weak preference order on the set of alter-
natives V . If we define a stochastic flow F by

F(b,c) := log
pbc
pcb

, (5)

then, the stochastic preference is consistent if and only if the flow F is consis-
tent1.

Another kind of inconsistency may be considered after the ranking procedure
is over. This is the number of violations of Condition of Order Preservation
(#vcop) introduced in Costa-Vansnick [2]. This number indicates how far from
the measurable value function is the calculated potential. The precise definition
of COP is given in (15). The aim of this article is to investigate the corre-
spondence of #vcop and the flow inconsistency. This is done by performing a
random study inspired by the random index study for EVM.

The paper is organized as follows. In Section 2 we introduce the basic notation,
develop the idea of consistency and give some other equivalent conditions of
consistency.

Section 3 describes the connection of PM with the Geometric Mean, the Or-
dinal value function and the Stochastic preference model. Some elementary facts
about the PM as the social preference are mentioned.

In Section 4 we perform a randomization procedure to determine the admissi-
ble level of the flow inconsistency. The Analytic Hierarchy Process (AHP), more
precisely the Eigenvalue Method (EVM), serves as a model. It is shown that the
empirical distribution of the inconsistency measure deg may be modeled as the
Gumbel distribution. The upper bound for admissible inconsistency is defined as
the 0.05-quantile of the theoretical distribution. The randomization is performed
for complete graphs only because of the possibility to make a comparison with
AHP.

In Section 5 the Condition of Order Preservation (COP) is considered and
the number of violations #vcop is calculated for the random graph and the
random reciprocal matrix. It is shown that the consistency index (ci) is not
correlated with #vcop while the correlation between the random degree deg
and #vcop is very good.

1 Moreover, it may be shown that the corresponding potential X from formula (7) is
a measurable value function which is true for every consistent flow.
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2 Preference Graph

2.1 Consistent Preference Flow

A preference graph is a digraph G = (V,A) where V is the set of nodes and A
is the set of arcs of G. We say that the node a is more preferred than node b,
in notation a � b, if there is an arc (a, b) outgoing from b and in-going to a. A
preference flow is a non-negative real function F defined on the set of arcs. The
value Fα on the arc α is the intensity of the preference on some scale2. For the
arc α = (a, b), Fα = 0 means that the decision maker is indifferent to the pair
{a, b}. In that case the orientation of the arc may be arbitrary.

The incidence matrix A = (aα,v) of the graph is defined as the m×n matrix,
m = CardA, n = CardV , where

aα,v =

⎧
⎪⎨

⎪⎩

−1, if the arc α leaves the node v

1, if the arc α enters the node v

0, otherwise.

It is more convenient to write aij where i is the index of i-th arc and j is the index
of j-th node. The vector space R

m is called the arc space and the vector space
R

n is called the vertex space. The incidence matrix3 generates an orthogonal
decomposition

N(Aτ )⊕R(A) = R
m (6)

where R(A) is the column space of the matrix A and N(Aτ ) is the null-space
of the matrix Aτ . N(Aτ ) is called the cycle space because it is generated by all
cycles of the graph.

For example, the incidence matrix of the preference graph in Fig. 1 is given
in Table 1 (left). The arcs α, β, γ, δ, ε form the basis of the ars space. In the last
column are the components of the preference flow. Please, note that the cycles
c1 and c2 (the basis of the cycle space) are orthogonal to the columns of the
incidence matrix according to (6). The columns of the incidence matrix span the
space R(A) of the consistent flows.

Table 1. Incidence matrix of the preference graph from Table 1 and the cycle space

nodesn flow

arcsm A B C D F
α −1 1 0 0 1

β 0 −1 1 0 3

γ −1 0 1 0 4

δ 0 1 0 −1 2

ε 0 0 −1 1 2

cycle space

arcsm c1 c2

α 1 0

β 1 1

γ −1 0

δ 0 1

ε 0 1

2 For subjective pairwise comparisons the scale is {0, 1, 2, 3, 4}.
3 And matrix in general.
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Definition 1. A preference flow F is consistent if there is no component of the
flow in the cycle-space.

The following theorem is evident (the proof is left to the reader).

Theorem 1. The following statements are equivalent:
1. F is consistent.
2. F is a linear combination of the columns of the incidence matrix A.
3. There exists X ∈ R

n such that AX = F .
4. The scalar product yτF = 0 for each cycle y, i.e. F is orthogonal to the cycle

space.

We may test the consistency of the given flow F by solving the equation

AX = F . (7)

Definition 2. A solution of the equation AX = F , if it exists, is called the
potential of F .

Evidently, X is not unique because the constant column 1τ = [ 1 · · · 1 ]τ is
an element of the kernel N(A). For the consistent flow the equation (7) may be
rewritten as

Fα = X(a)−X(b), ∀α = (a, b) ∈ A (8)

which means thatX is a measurable value function i.e. it measures the preference
on the interval scale. For the consistent flow it is easy to find a potential X using
a spanning tree of the preference graph (if it is connected). The details are left
to the reader.

PM calculates the weights of the nodes in the following way. If X denotes the
potential of the flow, then the weights w are obtained using the formula

w =
aX

‖aX‖1
(9)

where ‖ · ‖1 represents l1-norm. The exponential function X 
→ aX is defined
by the components and a > 1 is a positive constant. Currently, we use the
value a = 2 but the user may precise some other value. The arguments for such
definition is that the flow F , and the potential X , are the logarithms of the data
on the ratio scale and we should go back on that scale by exponential function.

2.2 Potential of the Inconsistent Preference Flow

In practice, a decision maker, while performing pairwise comparisons, does not
give the flow which is necessarily consistent. The best approximation of that flow
by the column space of the incidence matrix may be calculated in this situation.
The approximative potential or potential X is a solution of the Laplace equation

AτAX = AτF ,
∑

v∈V

X(v) = 0 (10)
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where the second requirement is for uniqueness.
Because of the linearity of the equations it is evident that X is invariant on

the multiplication of F by a positive number, i.e. X(αF) = αX(F), α > 0. In
other words F is measured on the ratio scale.

It is easy to prove that for the complete flow (the proof is left to the reader):

X(v) =
1

n

( ∑

α∈In(v)
Fα −

∑

α∈Out(v)

Fα

)

, (11)

where Out(v) and In(v) denote the set of all outgoing and in-going arcs for v.
Formula (11) may be simplified by introducing the flow matrix F

Fij =

{
F(i,j) if (i, j) ∈ A,

−F(j,i) if (j, i) ∈ A,

with the convention Fii = 0. The matrix F is anti symmetric and the potential
X , defined by (11), is the arithmetic mean of the columns of F , i.e.

xi =
1

n

n∑

j=1

Fij , i = 1, . . . , n. (12)

Definition 3. Measure of inconsistency of the flow F , in notation deg(F), is
defined as the angle between F and the column space of the incidence matrix.

Evidently, deg(F) is the angle between F and AX , where AX is the consistent
approximation of F and deg(F) = 0 if and only if F is consistent. In case when
deg(F) = π/2 then, there is no transitivity at all in the preference graph.

3 Potential and Other Methods

3.1 Potential and Geometric Mean

In AHP the results of pairwise comparisons are measured on the ratio scale
and stored in a positive reciprocal matrix A. The logarithm of A, taken by
components,

Fij = loga aij , a > 0

is an anti-symmetric matrix F which is the flow matrix of some flow F . The
potential X of F may be expressed in terms of the matrix A, using the formula
(12), as

xi =
1

n

∑

j

Fij =
1

n

∑

j

loga aij = loga

(∏

j

aij

) 1
n

,

and the weight wi, using (9), may be written as the row geometric mean

wi =
(∏

j

aij

) 1
n

, i = 1, . . ., n.
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3.2 Potential as Ordinal Value Function

Suppose, for the moment, that F is an uni-modular flow, i.e. Fα ∈ {0, 1}, ∀α ∈ A.
In that case, we may define the relation

u �F v ⇔ F(u,v) ≥ 0.

If �F is a weak preference relation, then the potential X is an ordinal value
function, i.e.

F(a,b) ≥ 0 ⇔ X(a)−X(b) ≥ 0.

The proof may be found in Čaklović [5].

3.3 Potential of the Stochastic Flow

For the complete stochastic flow defined by the formula (4) we may calculate
the potential X using the formula (12) and formula (5).

X(a) =
1

n

∑

b�=a

Fab = log

(
∏

b�=a

pab
pba

) 1
n

and the weight of the node a is, by formula (9),

wa =

(
∏

b�=a

pab
pba

) 1
n

.

3.4 Potential as the Social Preference

Let us give a few comments about the social preference and the PM. The starting
point is the Condorcet flow FC defined by (1). There are two possibilities how
PM may be used for ranking the candidates. One of them is direct PM ranking,
and another one is indirect PM ranking. The first one calculates the potential X
of the Condorcet flow FC , and another one calculates the potential Xu of the
unimodular flow Fu

C , where the uni-modular flow of a given flow is obtained by
taking the sign of the given intensity. A candidate with the maximal Xu value
we call the PM-winner.

It is easy to prove that the Condorcet winner4 is the PM-winner. This may
not be true if the social ranking is taken to be direct PM-ranking. It can be also
proved the PMwinner is in theminimal domination set, and that the indirect PM
ranking is clone independent. The exhaustive list of the social choice properties
of PM is under the reconstruction.

4 The Condorcet winner is defined as the winner in all pairwise confrontations with
other candidates.
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4 Admissible Inconsistency

In this section we shall determine the distribution of the inconsistency measure
of the random flow (Definition 3). For n ≥ 4 this distribution is recognized as
the Gumbel distribution

e(x) =
e−e

−x+α
β +−x+α

β

β
, (13)

which parameters depend5 upon the number of nodes in the graph, see Table 2.
For instance, if the randomization is made as a log-normal perturbation of the
random consistent flow defined in formula (14), the inconsistency measure is the
Gumbel Distribution E(α = 17.61, β = 7.03) (Figure 4).

Fig. 2. The simulated distribution of the inconsistency measure (dots). 0.05-quantile
(9.9) is taken as the upper bound for admissible inconsistency (105 simulations).

4.1 Randomization

A random index study in the AHP context was performed by several authors,
from Crawford and Williams [4] to Alonso and Lamata [1]. An overview of the
results is given in [1, Table 1, p. 449].

The randomization of the preferences may be designed, generally speaking,
as: random perturbation (of the consistent situation) and random distribution.
We performed the following randomizations:

1. normal perturbation of the consistent flow (reciprocal matrix),

5 We also performed a uniform perturbation of the consistent flow and the results are
slightly different.
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Table 2. Quantiles of random degree as a function of the nodes number (105 simula-
tions)

The Gumbel Distribution E(α, β)

number perturbation 0.05-quantile Parameters

of nodes (σ = 1) from data theoretical α β

4 normal 6 5.3 15.01 8.83

5 normal 10 9.9 17.61 7.03

6 normal 13 12.7 19.18 5.91

7 normal 15 14.7 20.24 5.07

8 normal 16 16.1 21.03 4.47

9 normal 17 17.2 21.64 4.02

10 normal 18 18.0 22.06 3.67

11 normal 18 18.8 22.49 3.38

12 normal 19 19.3 22.77 3.16

13 normal 19 19.8 23.04 2.96

14 normal 20 20.2 23.28 2.79

15 normal 20 20.6 23.47 2.66

2. uniform perturbation of the consistent flow (reciprocal matrix),
3. unrestricted randomization of the flow (reciprocal matrix).

We present here only the results of the first type of perturbation. The results of
the uniform perturbation are just slightly different and the unrestricted random-
ization generates highly inconsistent flows with the average greater than 50o. We
believe that the decision maker’s preferences in real life are well described by
the first process.

A random positive reciprocal matrix is obtained as the normal perturbation
of the random consistent reciprocal matrix with elements

aij = wij ∗ exp(N(0, σ)) (14)

where σ = 1 and wij := int(rand(1-9))α (i < j), is the random choice from
the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, powered by α which is the random choice from
{−1, 1}, and wij := w−1

ji , for j < i, and wii = 1, ∀i = 1, . . . , n.
The random consistent flow is made by random choice of the orientation of

the arc and by random choice of the flow value in the set {0, 1, 2, 3, 4}. Normal
perturbation has a standard deviation σ = 1. The randomization procedure was
performed by Perl and data analysis was done by R.

In the AHP context our results are exactly the same as in Noble [9].

4.2 Admissible Inconsistency

It seems reasonable to determine the upper bound for admissible inconsistency
as a p-quantile of the theoretical random degree distribution. Those values for
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p = 0.05 are given in Table 2 in the column theoretical. The quantiles of the
generated data are given in the column from data.

If the number of vertices in the preference graph is n = 3 the distribution
is not the Gumbel distribution. The reason may be in the severe restriction on
the stochastic flow values, i.e Fα ∈ {0, 1, 2, 3, 4}. The randomization in this case
should be recalculated in a slightly different way, perhaps with less restrictions.

5 Condition of Order Preservation

We say that the potential X satisfies the Condition of Order Preservation (COP)
if

F(i,j) > F(k,l) =⇒ Xi −Xj > Xk −Xl. (15)

In contrast to the measure of inconsistency deg(F), which is an ‘a priori’ in-
consistency measure, the number of violations of COP may be regarded as an
‘a posteriori’ measure of inconsistency which shows ‘how far’ the calculated po-
tential X is from the measurable value function.

For a reciprocal positive matrix A, we say that COP is satisfied if

(aij > 1 & akl > 1 & aij > akl) =⇒ wi

wj
>

wk

wl
,

where w is the Perron eigenvector of A.
In this section we present the results of a statistical comparison of the num-

ber of violations of the COP (#vcop) between EVM and PM. For this pur-
pose we performed 104 simulations of 5× 5 positive reciprocal matrix. For each
randomly generated reciprocal matrix we calculate its consistency index ci and
#vcop(evm) for EVM. Then, we calculate the measure of inconsistency deg(F)
of the flow F defined by formula (3), and #vcop(pm) generated by PM. The
correlation matrix of the random vector (deg, #vcop(pm), ci, #vcop(evm))
is given in Table 3. The correlation between ci and #vcop equals 0.460128
while the correlation between deg and #vcop equals 0.811266 which suggests
that deg may better predict the #vcop than ci (in average). We do not impose
the zero value of #vcop as a standard, we just want to say that #vcop gives
some new information about the inconsistency from the metric topology’s point
of view.

Table 3. Correlation matrix of the random vector (deg, #vcop(pm), ci,
#vcop(evm))

deg #vcop(pm) ci #vcop(evm)

deg 1. 0.811266 0.55142 0.817288

#vcop(pm) 1. 0.449875 0.950875

ci 1. 0.460128

#vcop(evm) 1.



112 L. Čaklović

5.1 Post Festum

The consistency ratio has been criticized because it allows contradictory judg-
ments in matrices (Bana e Costa and Vansnick [2]) or rejects reasonable matrices
(Karapetrovic and Rosenbloom [7]). Several authors (Wang-Chin-Luo [11], Ko-
rhonen [8]) argued that the implicit information about priority judgments in
the AHP matrix should be taken into account and that the above criticism is
not justified. That implicit information, according to them, is of the form aijajk
which is the element of A2. But A2 is ‘more consistent’6 than A regarding the
iterative procedure wn = Ane/‖Ane‖, n ∈ N of obtaining the Perron vector. The
consistency of A should not be measured by the ‘consistency’ of A2. It seems
that the criticism of the criticism is not well-founded either.

During the randomization process we found an 4×4 AHP matrix with λmax =
4.107 and the consistency ratio cr = 0.04, while its inconsistency degree is
deg = 73.278. According to Table 2, the upper bound for admissible inconsis-
tency is 5.3 degrees. Here is the matrix:

A =

⎛

⎜
⎜
⎜
⎜
⎝

1. 1.024 0.852 1.521

0.976 1. 1.41 0.719

1.174 0.709 1. 1.197

0.658 1.391 0.835 1.

⎞

⎟
⎟
⎟
⎟
⎠

The preference graph associated with this matrix is given in Figure 3.
The reader who is more familiar with graphs may immediately conclude from

Figure 3 that the inconsistency degree of the flow is high. First, a spanning tree
should be chosen. In our example, the maximal spanning tree of the graph is
drawn (solid line), together with the corresponding chords (dashed lines) which
generate the base in the cycle space. Here we have 3 basic cycles, one for each
chord. For example, the chord 2 → 4 generates the cycle 2 → 4 → 3 → 1 → 2,
and the sum of the flow components along this cycle equals 0.476 + 0.259 −
0.231− 0.034 = 0.47. This number is written in the parentheses beside the flow
component (Σ-value). This value is also the scalar product of the flow with this
cycle.

According to the decomposition (6), the arc space may be decomposed as the
orthogonal sum of the cycle space and the range space of the incidence matrix
M which is given bellow. To be a bit more precise let us fix the canonical base in
the arc space: (2 → 1, 1 → 3, 4 → 3, 3 → 2, 2 → 4, 4 → 1). The first 3 elements
of the base are the arcs of the spanning tree, the rest are the chords. The cycle
space is generated by the first three columns of the matrix B

6 It is meaningless to speak about the consistency index of A2 because it is not re-
ciprocal and its Perron root is generaly smaller that the dimension of A. But its
columns are closer to the Perron eigenvector than those of A and from this point of
view we may say that it is more consistent than A.
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Fig. 3. The flow obtained from the matrix A

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0

−1 0 1 0

0 0 1 −1

0 1 −1 0

0 −1 0 1

1 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 1 −1 0

1 −1 1 −1 0 0

0 1 −1 0 0 −1

1 0 0 0 1 0

0 1 0 0 −1 1

0 0 1 1 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the other three columns form the base of the column space of the inci-
dence matrix. For example, the first column of B is the cycle 3 → 2 → 1 → 3
determined by the chord 3 → 2. Σ-values are the scalar products of the flow

F = (0.034, 0.231, 0.259, 0.496, 0.476, 0.605)

with the first 3 columns of the matrix B. Because of the high Σ-values it is
obvious that the flow inconsistency is also high. The precise calculation gives
the inconsistency of 73.278 degrees.

6 Conclusion

This paper explains the properties of the Potential Method and the randomiza-
tion procedure for obtaining the upper bound for admissible inconsistency of the
input data. The upper bound is determined as a 0.5-quantile of the theoretical
distribution if deg which is recognized as the Gumbel distribution (Table 2).
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A comparison with the Eigenvalue Method is given, regarding the correlation
of the inconsistency measure and the number of violations of the Condition of
Order Preservation (COP). The Potential Method and the Eigenvalue Method
are ‘equally good’ from the point of view of the number of violations (#vcop) of
the COP. On the other side, the inconsistency measure of PM correlates better
with #vcop than the consistency index of AHP (Table 3).
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