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Preface

This volume contains papers presented at the 9th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2012), held in Girona,
Catalonia, Spain, November 21–23, 2012. This conference followed MDAI 2004
(Barcelona, Catalonia), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona,
Catalonia), MDAI 2007 (Kitakyushu, Japan), MDAI 2008 (Sabadell, Catalonia),
MDAI 2009 (Awaji Island, Japan), MDAI 2011 (Perpinyà, Catalonia, France),
and MDAI 2012 (Changsha, China) with proceedings also published in the LNAI
series (Vols. 3131, 3558, 3885, 4617, 5285, 5861, 6408, and 6820).

The aim of this conference was to provide a forum for researchers to discuss
theory and tools for modeling decisions, as well as applications that encompass
decision-making processes and information-fusion techniques.

The organizers received 49 papers from 17 different countries, from Europe,
Asia, and Australia, 32 of which are published in this volume. Each submission
received at least two reviews from the Program Committee and a few external
reviewers. We would like to express our gratitude to them for their work. The
plenary talks presented at the conference are also included in this volume.

The conference was supported by the Institut d’Informàtica i Aplicacions de
la Universitat de Girona, the Fundació Privada: Girona, Universitat i Futur,
the Universitat de Girona, the Catalan Association for Artificial Intelligence
(ACIA), the European Society for Fuzzy Logic and Technology (EUSFLAT),
the Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT), the
UNESCO Chair in Data Privacy, the China Computer Federation, the Spanish
MINECO (TIN2011-15580-E), and the Spanish MEC (ARES - CONSOLIDER
INGENIO 2010 CSD2007-00004).

September 2012 Vicenç Torra
Yasuo Narukawa

Beatriz López
Mateu Villaret
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Mateu Villaret

Local Organizing Committee

Miquel Bofill
Sonia Buxeda
Pablo Gay
Xavier Manyer
Miquel Palah́ı

Additional Referees
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An Overview of Hierarchical

and Non-hierarchical Algorithms
of Clustering for Semi-supervised Classification

Sadaaki Miyamoto

Department of Risk Engineering,
Faculty of Systems and Information Engineering

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
miyamoto@risk.tsukuba.ac.jp

Abstract. An overview of a variety of methods of agglomerative hierar-
chical clustering as well as non-hierarchical clustering for semi-supervised
classification is given. Two different formulations for semi-supervised
classification are introduced: one is with pairwise constraints, while the
other does not use constraints. Two methods of the mixture of densities
and fuzzy c-means are contrasted and their theoretical properties are
discussed. A number of agglomerative hierarchical algorithms are then
discussed. It will be shown that the single linkage has different charac-
teristics when compared with the complete linkage and average linkage.
Moreover the centroid method and the Ward method are discussed. It
will also be shown that the must-link constraints and the cannot-link
constraints are handled in different ways in these methods.

Keywords: agglomerative hierarchical clustering, semi-supervised clas-
sification, pairwise constraints, K-means.

1 Introduction

Recently, semi-supervised learning [5, 24] has extensively been studied and re-
lation to cluster analysis has also been considered. Special attention has been
paid to constrained clustering and various methods have been developed [2–
4, 6, 7, 10, 11, 17, 18, 21–23].

An extensive survey is not aimed at in this paper, but it focuses on two rela-
tively unknown topics. First, the way how the method of fuzzy c-means [1, 16] is
related to the mixture of distributions [14, 24] in semi-supervised classification
is considered. Second, a class of agglomerative hierarchical algorithms with con-
straints [17, 18] are discussed. Throughout the paper, non-probabilistic models
are mostly discussed, while the standard model of the mixture of densities are
briefly referred to. Moreover, the focus is more on agglomerative hierarchical
clustering than a family of non-hierarchical techniques such as the K-means.

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 S. Miyamoto

2 Non-hierarchical Clustering and Semi-supervised
Classification

Let X = {x1, . . . , xN} be the set of objects for clustering, and an object x ∈ X
be a point of p-dimensional Euclidean space (X ⊂ Rp). The squared Euclidean
distance is denoted by

D(x, y) = ‖x− y‖2 =

p∑
j=1

(xj − yj)2 (1)

where x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ Rp. Moreover the squared Maha-
lanobis distance is denoted by

D(x, y;S) = (x− y)�S−1(x− y) (2)

where S is a positive-definite matrix.
Zhu and Goldberg [24] distinguish the concepts of semi-supervised classifi-

cation and constrained clustering, contrary to our usage that semi-supervised
classification includes constrained clustering. Let us distinguish these two con-
cepts for convenience hereafter.

Semi-supervised classification by their definition uses a set of labeled samples
{(xk, yk)} k = 1, . . . , N , where yk is the class label of xk and another set of
unlabeled samples {x′�}, � = N + 1 . . . , N + L. The purpose is to have the labels
on x′� or that for all Rp.

In contrast, constrained clustering uses two sets of constraints: ML =
{(xk, xl)} and CL = {(xi, xj)}. ML is called must-link and CL is called cannot-
link. A pair in ML such as (xk, xl) should be in the same cluster, while a pair
(xi, xj) in CL should be in different clusters.

Let us first consider semi-supervised classification.

2.1 EM Solution for Semi-supervised Classification

Zhu and Goldberg [24] show an iterative solution by the EM algorithm [14]
for the mixture of Gaussian distributions, abbreviated GMM, in the case of
semi-supervised classification. The formulation is omitted here, but the iterative
solution is as follows. The number of clusters is assumed to be c.

EM Algorithm for GMM for Semi-supervised Classification ([24], p.27)

1. Set initial values θ(t) = (π
(t)
j , μ

(t)
j , Σ

(t)
j ) for t = 0, where πj is the prior

probability, μj is the mean value, and Σj is the covariance matrix for j-th
Gaussian distribution.

2. Calculate the probability of allocating xk to cluster j:

γkj = P (yj|xk, θ(t)) =
π
(t)
j N (xk;μ

(t)
j , Σ

(t)
j )∑c

l=1 π
(t)
l N (xk;μ

(t)
l , Σ

(t)
l )

, k = N + 1 . . . , N + L,
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where N (xk;μ
(t)
l , Σ

(t)
l ) is the l-th Gaussian density function. Define γkj for

labeled samples:

γkj =

{
1 (yk = j),

0 (otherwise),
k = 1, . . . , N.

3. Calculate parameters θ(t+1):

Lj =

N+L∑
k=1

γkj , (3)

μ
(t+1)
j =

1

Lj

N+L∑
k=1

γkjxk, (4)

Σ
(t+1)
j =

1

Lj

N+L∑
k=1

γkj(xk − μ
(t+1)
j )(xk − μ

(t+1)
j )�, (5)

π
(t+1)
j =

Lj

N + L
. (6)

2.2 Fuzzy c-Means Clustering for Semi-supervised Classification

We proceed to consider fuzzy c-means clustering that is closely related to the
above solution by the EM algorithm. For this purpose it is adequate to use the
KL-information based objective function [12, 13, 16]:

J(U, V,A, S) =

c∑
i=1

N∑
k=1

[ũkiD(xk, vi;Si)− λ−1ũki logαi + ũki log |Si|

+W (uki − ũki)
2]

+

c∑
i=1

N+L∑
k=N+1

[ukiD(xk, vi;Si) + λ−1uki log
uki

αi
+ uki log |Si|], (7)

where {ũki} (k = 1, . . . , N) are membership values given beforehand, while U =
(uki) (k = 1, . . . , N + L) are variables with the constraint

∑
i uki = 1 and

uki ≥ 0; vi is a cluster center and V = (v1, . . . , vc). Other two variables are
A = (α1, . . . , αc) and S = (S1, . . . , Sc). Variable αi controls cluster sizes and
satisfies

∑
i αi = 1, αi ≥ 0. Si is a positive definite matrix used in

D(x, vi;Si) = (x − vi)
�S−1

i (x− vi).

Other constants of λ and W are positive.
An alternate minimization of J(U, V,A, S) is used: after initial values

(U, V,A, S) are set, the following steps are repeated until convergence.
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Step 1: Minimize J(U, V,A, S) w.r.t. U while (V,A, S) is fixed.
Step 2: Minimize J(U, V,A, S) w.r.t. V while (U,A, S) is fixed.
Step 3: Minimize J(U, V,A, S) w.r.t. A while (U, V, S) is fixed.
Step 4: Minimize J(U, V,A, S) w.r.t. S while (U, V,A) is fixed.

We first have
uki = ũki for k = 1, . . . , N, i = 1, . . . c. (8)

Substituting this into the above function, we have the following solutions.

uki =

αi

|Si|
1
2
exp(−λD(xk, vi;Si))∑c

j=1
αj

|Sj|
1
2
exp(−λD(xk, vj ;Sj))

, k = N + 1, . . . , N + L, i = 1, . . . , c,

(9)

vi =

∑N+L
k=1 ukixk∑N+L
k=1 uki

, i = 1, . . . , c, (10)

αi =

∑N+L
k=1 uki

N + L
, i = 1, . . . , c, (11)

Si =
1∑N+L

k=1 uki

N+L∑
k=1

uki(xk − vi)(xk − vi)
�, i = 1, . . . , c. (12)

It is easy to see that the solutions from the objective function J(U, V,A, S) are
the same as those by the EM algorithm by taking λ = 1

2 . We thus have a result
of the equivalence of the both method, and also the fuzzy c-means with the
KL information method is more general by changing λ in the semi-supervised
classification.

3 Constrained Clustering and Agglomerative Hierarchical
Algorithms

The agglomerative hierarchical clustering starts from each object as an initial
cluster, a pair of clusters is then merged at a time, and finally it ends with the
one cluster of the whole set. It uses an inter-cluster dissimilarity denoted by
D(Gi, Gj).

Many non-hierarchical algorithms for constrained clustering have been pro-
posed [2, 3, 11, 21–23]. but fewer studies are on agglomerative hierarchical clus-
tering: although theoretical considerations on some methods have been done
[6, 7], there is no comprehensive discussion that covers all well-known linkage
methods.

We note that handling ML and CL should be different, since ML defines
connected components of a graph which should be initial clusters in an agglom-
erative hierarchical algorithm, while CL cannot be handled by the initial setting
but should be considered while clusters are generated.

We hence describe the general procedure first and then discuss how the con-
straints are included. There are two options for handling CL:
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Option 1: Modify distance D(x, y) for (x, y) ∈ CL.
Option 2: Put penalty on CL when clusters are merged.

The precise definition is given after the next algorithm called AHCC.

AHCC: Agglomerative Hierarchical Clustering with Constraints

1) Let each initial cluster Gi = Ĝi be a connected component of the graph
generated from ML, i = 1, . . . ,K0, and the number of clusters K = K0. If
option 1 is used, then

D(Gi, Gj) = D(Ĝi, Ĝj) +
∑

x∈Ĝi,y∈Ĝj,(x,y)∈CL

D(xi, xj)

else D(Gi, Gj) = D(Ĝi, Ĝj). Note that D(Ĝi, Ĝj) uses the definition of dis-
similarity in each linkage method.

2) Find the pair of clusters with minimum distance:

(Gp, Gq) = argmin
i,j

{D(Gi, Gj) + P(Gi, Gj)} (13)

where P(Gi, Gj) is the penalty term when option 2 is used; if option 1 is
used, P(Gi, Gj) = 0.
Merge Gr = Gp ∪Gq at the level of dissimilarity

mK = D(Gp, Gq) = min
i,j

D(Gi, Gj). (14)

Reduce the number of clusters: K = K − 1.
3) If K = 1, stop, else update distance D(Gr, Gj), for all other clusters Gj . Go

to step 2).
End AHCC.

Option 1: Let Const . be a constant large enough to prevent linkage. Put

D(xi, xj) = Const ., for (xi, xj) ∈ CL.

Option 2: Let Const . be a constant large enough to prevent linkage. Put

P(Gi, Gj) =
∑

x∈Ĝi,y∈Ĝj,(x,y)∈CL

Const .

The two options are mutually exclusive: if option 1 is used, then we do not use
option 2, and vice versa. Note also the difference between the two options. The
modification of dissimilarity reflects the level mK , while the penalty not.

Five linkage methods for the definition of the distance between clusters are
well-known: they are the single linkage, complete linkage, average linkage, cen-
troid method, and the Ward method [9]. They have different definitions for
dissimilarity between clusters, and hence the formulas for updating D(Gr, Gj)
are different.
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The Single Linkage: The single linkage alias the nearest neighbor method has
the definition of dissimilarity between clusters given by

D(Gi, Gj) = min
x∈Gi,y∈Gj

D(x, y). (15)

We can use an updating formula in step 3):

D(Gr, Gj) = min{D(Gp, Gj), D(Gq , Gj)}.

The Complete Linkage: The complete linkage alias the furthest neighbor
method has the definition of dissimilarity between clusters given by

D(Gi, Gj) = max
x∈Gi,y∈Gj

D(x, y). (16)

We can use an updating formula

D(Gr, Gj) = max{D(Gp, Gj), D(Gq , Gj)}.

The Average Linkage: The average linkage alias the group average method
has the definition of dissimilarity between clusters given by

D(Gi, Gj) =
1

|Gi||Gj |
∑

x∈Gi,y∈Gj

D(x, y), (17)

where |Gi| is the number of elements in Gi. We can use an updating formula

D(Gr , Gj) =
|Gp|
|Gr|

D(Gp, Gj) +
|Gq|
|Gr|

D(Gq, Gj),

Note that |Gr| = |Gp|+ |Gq|.

Centroid Method: Let the centroid of a cluster G be

M(G) =
1

|G|
∑
xk∈G

xk.

The distance between two clusters is then defined by the squared distance be-
tween the two centroids:

D(Gi, Gj) = ‖M(Gi)−M(Gj)‖2. (18)

The formula for updating in step 3) of the above algorithm is omitted here.
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Ward Method: The Ward method is also based on the Euclidean distance.
Let us define

E(G) =
∑
x∈G

‖x−M(G)‖2,

which is the sum of distances between each x ∈ G and the centroid for G. Using
E(G), we put

D(Gi, Gj) = E(Gi ∪Gj)− E(Gi)− E(Gj) (19)

which is always positive. The formula for updating in step 3) of the above
algorithm is omitted here. Note also that the initial distance is given by the
following:

D(xi, xj) =
1

2
‖xi − xj‖2.

Table 1. Linkage methods and the two options: ‘Yes’ means constraints CL work
without a problem, while ‘No’ means constraints CL do not work generally. ‘Distance’
means that constraints CL work, but a problem of carefully handling distance is to be
considered. ‘Reversal’ means that CL works, but reversals in dendrograms will occur.

single linkage complete linkage average linkage centroid method Ward method

Option 1 No Yes Yes Distance Distance
Option 2 Reversal Reversal Reversal Reversal Yes

3.1 Problems in Linkage Methods with Pairwise Constraints

When these methods are used with pairwise constraints, we have problems to
be considered. Table 1 summarizes problems in the options and the linkage
methods. We note the single linkage with the constraints has problems; the
centroid method and the Ward method have another problem.

Difficulties in the Single Linkage Method: The single linkage method with
option 1 (modification of dissimilarity) does not work well, since even if a cannot-
link (xh, xl) exists between G and G′, the cannot-link does not prevent a link be-
tween G and G′. If D(xh, xl) > min

x∈G,y∈G′ D(x, y), then the dissimilarity D(G,G′)

remain the same; if D(xh, xl) = min
x∈G,y∈G′

D(x, y), then G and G′ will be merged

at the level of second smallest dissimilarity of {D(x, y) : x ∈ G, y ∈ G′}. Thus the
cannot-link is not effective unless all pairs between G and G′ have cannot-link,
which is unrealistic.

On the other hand, the single linkage method with penalty (option 2) seems
to work. However, there is another problem of ‘reversal in dendrogram’ [15]. If
the level mK is monotonic:

mK0 ≤ mK0−1 ≤ · · · ≤ m2 (20)
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c

b

a

Fig. 1. A simple example of reversal, where m3 = D(a, b) > m2 = D({a, b}, c)

then the output of dendrogram does not have a reversal. Figure 1 shows a simple
example of a reversal. The above linkage methods are known to be without a
reversal, except the centroid method. The single linkage with the constraints
handled by the penalty has reversals. To construct a simple example of a reversal
with CL is easy, but omitted here.

Note 1. For the complete linkage and the average linkage, the cannot-link works
well and reversals do not occur when option 1 is used, while reversals may occur
when option 2 is used. We omit the detail.

Problems in the Centroid Method and the Ward Method: The centroid
method and the Ward method are based on the squared Euclidean distance.
Although dissimilarity can be rather freely modified in other three methods, the
modification of dissimilarity using the large constant Const . is unacceptable in a
Euclidean space. Let us mitigate the situation by introducing a kernel space [20]
by using

DK(x, y) = ‖Φ(x)− Φ(y)‖2H
with a high-dimensional mapping Φ : Rp → H instead of the original data space.
It is also known that the centroid method and the Ward method can be used in a
kernel space [8] with appropriate changes of the initial values. Using the Gaussian
kernel, DK(x, y) with ‖x − y‖ → ∞ leads to DK(x, y) → 2. It thus seems
acceptable to use DK(x, y) = 2 instead of D(x, y) = Const . However, another
problem occurs: when such a modification is introduced, the kernel is no longer
positive-definite in general. The authors tried option 1 by this method [17], and
the results seem acceptable in typical numerical examples. However, the penalty
(option 2) for the centroid and Ward methods seems to work still better and it
is without such a theoretical problem.

4 Conclusions

Semi-supervised classification by a variation of fuzzy c-means and constrained
clustering using different linkage methods of agglomerative hierarchical cluster-
ing have been overviewed. The discussion in this paper does not seem to be found
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elsewhere. Numerical examples were omitted to save space, but the author with
his colleagues has been investigating, in particular, constrained clustering using
the centroid method and the Ward method [17–19]. The results suggest that
these methods are useful in typical examples and real data sets.

We thus showed new possibilities of fuzzy c-means and agglomerative hierar-
chical clustering; these methods will be useful in various real applications.

Acknowledgment. This work has partly been supported by the Grant-in-
Aid for Scientific Research, Japan Society for the Promotion of Science, No.
23500269.

References

1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

2. Basu, S., Bilenko, M., Mooney, R.J.: A Probabilistic Framework for Semi-
Supervised Clustering. In: Proc. of the Tenth ACM SIGKDD (KDD 2004),
pp. 59–68 (2004)

3. Basu, S., Banerjee, A., Mooney, R.J.: Active Semi-Supervision for Pairwise Con-
strained Clustering. In: Proc. of the SIAM International Conference on Data Min-
ing (SDM 2004), pp. 333–344 (2004)

4. Basu, S., Davidson, I., Wagstaff, K.L.: Constrained Clustering. CRC Press, Boca
Raton (2009)

5. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

6. Davidson, I., Ravi, S.S.: Agglomerative Hierarchical Clustering with Constraints:
Theoretical and Empirical Results. In: Jorge, A.M., Torgo, L., Brazdil, P.B.,
Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 59–70.
Springer, Heidelberg (2005)

7. Davidson, I., Ravi, S.S.: Using instance-level constraints in agglomerative hierar-
chical clustering: theoretical and empirical results. Data Min., Knowl., Disc. 18,
257–282 (2009)

8. Endo, Y., Haruyama, H., Okubo, T.: On some hierarchical clustering algorithms
using kernel functions. In: Proc. of FUZZ-IEEE 2004, CD-ROM Proc., Budapest,
Hungary, July 25-29, pp. 1–6 (2004)

9. Everitt, B.S.: Cluster Analysis, 3rd edn. Arnold, London (1993)
10. Klein, D., Kamvar, S.D., Manning, C.: From Instance-level Constraints to Space-

level Constraints: Making the Most of Prior Knowledge in Data Clustering. In:
Proc. of the Intern. Conf. on Machine Learning, Sydney, Australia, pp. 307–314
(2002)

11. Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised graph clustering: a
kernel approach. Mach. Learn. 74, 1–22 (2009)

12. Ichihashi, H., Honda, K., Tani, N.: Gaussian mixture PDF approximation and
fuzzy c-means clustering with entropy regularization. In: Proc. of Fourth Asian
Fuzzy Systems Symposium, vol. 1, pp. 217–221 (2000)

13. Ichihashi, H., Miyagishi, K., Honda, K.: Fuzzy c-means clustering with regular-
ization by K-L information. In: Proc. of 10th IEEE International Conference on
Fuzzy Systems, vol. 2, pp. 924–927 (2001)



10 S. Miyamoto

14. McLachlan, G.J., Krishnan, T.: The EM algorithms and Extensions. Wiley, New
York (1997)

15. Miyamoto, S.: Fuzzy Sets in Information Retrieval and Cluster Analysis. Kluwer,
Dordrecht (1990)

16. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer
(2008)

17. Miyamoto, S., Terami, A.: Semi-Supervised Agglomerative Hierarchical Cluster-
ing Algorithms with Pairwise Constraints. In: Proc. of WCCI 2010 IEEE World
Congress on Computational Intelligence, CCIB, Barcelona, Spain, July, 18-23,
pp. 2796–2801 (2010)

18. Miyamoto, S., Terami, A.: Constrained Agglomerative Hierarchical Clustering Al-
gorithms with Penalties. In: Proc. of 2011 IEEE International Conference on Fuzzy
Systems, Taipei, Taiwan, June 27-30, pp. 422–427 (2011)

19. Miyamoto, S., Terami, A.: Inductive vs. Transductive Clustering Using Kernel
Functions and Pairwise Constraints. In: Proc. of 11th Intern. Conf. on Intelligent
Systems Design and Applications (ISDA 2011), Cordoba, Spain, November 22-24,
pp. 1258–1264 (2011)

20. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
21. Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian Mix-

ture Models with EM using Equivalence Constraints. In: Thrun, S., Saul, L.K.,
Schölkopf, B. (eds.) Advances In Neural Information Processing Systems 16,
pp. 465–472 (2004)

22. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means Clustering
with Background Knowledge. In: Proc. of the 9th ICML, pp. 577–584 (2001)

23. Wang, N., Li, X., Luo, X.: Semi-supervised Kernel-based Fuzzy c-Means with Pair-
wise Constraints. In: Proc. of WCCI 2008, pp.1099-1103 (2008)

24. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Morgan and
Claypool (2009)



 

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 11–12, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Fuzzy Programming Approaches to Robust Optimization  

Masahiro Inuiguchi 

Graduate School of Engineering Science, Osaka University, Toyonaka, Japan 

Abstract. In the real world problems, we may face the cases when parameters of 
linear programming problems are not known exactly. In such cases, parameters 
can be treated as random variables or possibilistic variables. The probability 
distribution which random variables obey are not always easily obtained because 
they are assumed to be obtained by strict measurement owing to the cardinality of 
the probability. On the other hand, the possibility distribution restricting possi-
bilistic variables can be obtained rather easily because they are assumed to be 
obtained from experts’ perception owing to the ordinality of possibility. Then 
possibilistic programming approach would be convenient as an optimization 
technique under uncertainty.  

In this talk, we review possibilistic linear programming approaches to robust 
optimization. Possibilistic linear programming approaches can be classified into 
three cases: optimizing approach, satisficing approach and two-stage approach 
[1]. Because the third approach has not yet been very developed, we focus on the 
other two approaches. First we review the optimization approach. We describe a 
necessarily optimal solution [2] as a robust optimal solution in the optimization 
approach. Because a necessarily optimal solution do not always exist, necessarily 
soft optimal solutions [3] have been proposed. In the necessarily soft optimal 
solutions, the optimality conditions is relaxed to an approximate optimality 
conditions. The relation to minimax regret solution [4,5] is shown and a solution 
procedure for obtaining a best necessarily soft optimal solution is briefly de-
scribed.  

Next we talk about the modality constrained programming approach [6]. A 
robust treatment of constraints are introduced. Then the necessity measure op-
timization model and necessity fractile optimization model are described as 
treatments of an objective function. They are models from the viewpoint of ro-
bust optimization. The simple models can preserve the linearity of the original 
problems. We describe how much we can generalize the simple models without 
great loss of linearity. A modality goal programming approach [7] is briefly in-
troduced. By this approach, we can control the distribution of objective function 
values by a given goal.  

Finally, we conclude this talk by giving future topics in possibilistic linear 
programming [8,9,10]. 

Keywords: robust optimization, fuzzy programming, necessity measure,  
optimization approach, satisficing approach. 
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Abstract. After a short history of integration on real line, some exam-
ples of optimization tasks are given to illustrate the philosophy behind
some types of integrals with respect to monotone measures and related to
the standard arithmetics on real line. Basic integrals are then described
both in discrete case and general case. A general approach to integration
known as universal integrals is recalled, and introduced types of integrals
as universal integrals are discussed. A special stress is given to copula–
based universal integrals. Several types of integrals based on arithmetics
different from the standard one are given, too. Finally, some concluding
remarks are added.

Keywords: Choquet integral, monotone measure, Sugeno integral, uni-
versal integral.

1 Introduction and Historical Remarks

When asking a randomly chosen person whether he/she knowns something about
integrals, almost all positively reacting persons have in mind the Riemann in-
tegral. This integral is a background of the classical natural sciences, and it
acts on (possibly n–dimensional) real line equipped with the standard Lebesgue
measure. Obviously, the history of integration, at least till 1925, is related to the
Riemann integral and its genuine generalizations. As a first trace of construc-
tive approaches to integration can be considered a formula for the volume of a
frustum of a square pyramid proposed in ancient Egypt around 1850 BC (the
Moscow Mathematical Papyrus, Problem 14). The first documented systematic
technique allowing to determine integrals is the exhaustion method of the ancient
Greek astronomer Eudoxus (around 370 BC). This method was further devel-
oped by several Greek mathematicians, including Archimedes. Similar methods
were independently developed in China (Liu Hui around the third century, fa-
ther Zu Chogzhi and son Zu Geng in the fifth century describing the volume of
a sphere) and in India (Aryabhata in the fifth century). Only more than 1000
years later, several European scientists have done next important steps in the
integration area. We recall J. Kepler (his approach to computation of the volume
of barrels in now known as Simpson rule), Cavalieri (with his method of indivis-
ibles he was able to integrate polynomials till order 9), J. Wallis (algebraic law
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for integration), P. de Fermat (his was the first to use infinite series in his inte-
gration method). Modern notation for (indefinite) integral was introduced by G.
Leibniz in 1675. He adapted the integral symbol

∫
from the letter known as long

∫ , standing for “summa”. The modern notation for the definite integral was first
used by J. Fourier around 1820. In this period, A. Cauchy developed a method
for integration of continuous functions. All the roots and backgrounds for the
“integral”, including the fundamental work of I. Newton and G. Leibniz, were
known in the middle of the 19th century. It was B. Riemann in his Habilitation
Thesis at University of Göttingen [15] in 1854 who gave the first indubitable
access to integration. This integral, now called the Riemann integral, is the best
known integral, taught in each Calculus course. Its limitations (real line, stan-
dard Lebesgue measure) were challenging several scholars to generalize it. We
recall here H. Lebesgue [7] who in 1904 introduced a rather general integral,
acting on an arbitrary measurable space (X,A), and defined for an σ–additive
measurem : A → [0,∞]. Observe that this integral is a background of the proba-
bility theory, among others. The next words bring a quotation from H. Lebesgue
lecture held in May 8, 1926, in Copenhagen and entitled “The development of
the notion of the integral”: “... a generalization mode not for the vain pleasure of
generalizing, but rather for the solution of problems previously posed, is always
a fruitful generalization. The diverse applications which have already taken the
concepts which we have just examined prove this superabundantly” (for the full
text see [18]). Note that there is no concept of improper Lebesgue integral as it
is the case of Riemann integral. Therefore there is no guarantee that a Riemann
integrable function is also Lebesgue integrable. As a typical example consider
the function f : R → R given by

f(x) =

{
1 if x = 0
sin x
x else.

Then the Lebesgue integral
∫
R
f(x) dμ with μ being the standard Lebesgue

measure on Borel subsets of R does not exist (indeed,
∫
R
|f(x)| dμ = +∞), but

the (improper) Riemann integral can be computed to be finite.
All till now mentioned integrals were additive (as functionals) and defined with

respect to an (σ–) additive measure. The first known approach to integration
based on a monotone but not necessarily additive measure is due to Vitali [21]
from 1925. Approach of G. Vitali (dealing with inner and outer measures) is
a predecessor of the fundamental work of G. Choquet [4] yielding the Choquet
integral. Another fundamental integral defined for monotone measures is due to
M. Sugeno [20] in 1974.

All mentioned integrals consider the (non-negative) real values of both func-
tions and measures. There are numerous kinds of integrals defined on more
general structures. In this contribution, we consider only the framework of al-
ready mentioned integrals, i.e., we will deal with measurable spaces (X,A)
from the class S of all measurable spaces (X is a non–empty set, universe,
and A ⊆ 2X is a σ–algebra of subsets of X), with A–measurable functions
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f : X → [0,∞] from the class F(X,A) of all such functions, and with monotone
m : A → [0,∞], m(∅) = 0,m(X) > 0, from the class M(X,A) of all such
measures. Integral is then a mapping

I :
⋃

(X,A)∈S

(
M(X,A) ×F(X,A)

)
→ [0,∞]

with some special properties we will discuss in the next sections.
The aim of this paper is to discuss some approaches to integration with respect

to monotone measures. In the next section, we bring an optimisation problem
under different constraints, illustrating the philosophy of several such integrals
linked to the standard summation and multiplication of reals. These integrals
are then properly defined and further discussed, including the study of their
relationship. Section 3 is devoted to the introduction of a framework of universal
integrals recently proposed in [5]. We introduce here some universal integrals,
including copula based integrals (here we restrict our considerations to the unit
interval [0, 1]). In Section 4, pseudo-arithmetical operations based integrals are
discussed. Finally, several concluding remarks are added.

2 Optimisation of a Global Performance and Integrals

Consider a group X = {a, b, c} of three workers with working capacity f : X →
[0,∞] given in hours by f(a) = 5, f(b) = 4, f(c) = 3. A performance per hour
of a group of our workers is given by a set function m : 2X → [0,∞],

m(∅) = 0, m({a}) = 2, m({b}) = 3, m({c}) = 4,
m({a, b}) = 7, m({b, c}) = 5, m({a, c}) = 4, m({a, b, c}) = 8.
Our aim is to find a strategy to reach the optimal total performance of our

workers under given work constraints:

(1) only one group can work for a fixed time period;
(2) several disjoint groups can work (fixed working time in each group may

differ);
(3) one group starts to work, once a worker stops to work, he cannot start to

work again;
(4) several disjoint groups can start to work, in each group after some working

time we can split a working group into smaller groups, and a worker after
stopping to work cannot start again;

(5) there are no constraints.

We formalize the optimal total performances under these five constraints settings
and give the solution for our example. Hence the optimal total performance Ti

under constraints (i) is:

T1 = max {k ·m(A) | k · 1A ≤ f} = min {f(a), f(b)} ·m({a, b}) = 4 · 7 = 28;

T2 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f, (Ai)i is disjoint system
}
=

= min {f(a), f(b)} ·m({a, b}) + f(c) ·m({c}) = 4 · 7 + 3 · 4 = 40;
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T3 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f, (Ai)i is a chain
}
=

= min {f(a), f(b), f(c)}·m({a, b, c})+min {f(a)− f(c), f(b)− f(c)}·m({a, b})+

+(f(a)− f(b)) ·m({a}) = 3 · 8 + 1 · 7 + 1 · 2 = 33;

T4 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f,Ai ∩ Aj ∈ {∅, Ai, Aj} for each i,j
}
=

= min {f(a), f(b)} ·m({a, b}) + (f(a)− f(b)) ·m({a}) + f(c) ·m({c}) =

= 4 · 7 + 1 · 2 + 3 · 4 = 42;

T5 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f
}
= T4 = 42.

From the constraints settings it is obvious that the following inequalities always
hold, independently of f and m:

T1 ≤ Ti, i ∈ {1, 2, 3, 4, 5} ;

T5 ≥ Ti, i ∈ {1, 2, 3, 4, 5} ;

T4 ≥ Ti, i ∈ {1, 2, 3, 4} ,

i.e., we have the following Hasse diagram (see Figure 1).

Fig. 1. Hasse diagram for relationships between functionals T1 – T5

As another example, consider f : X → [0,∞] given by f(a) = 8, f(b) =
3, f(c) = 6, and m : 2X → [0,∞] given by,

m(∅) = 0, m({a}) = 2, m({b}) = 3, m({c}) = 4 and m(A) = 10 in all other
cases. Then:

T1 = 60, T2 = 69, T3 = 64, T4 = 73, T5 = 84,

(for more details see [19]).
All introduced functionals can be seen as special instances of decomposition

integral proposed recently by Event and Lehrer [2], and some of them are, in fact,
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famous integrals introduced in past decades. We recall them now in a general
setting, considering an arbitrary measurable space (X,A) ∈ S, as a mappings

Ii :
⋃

(X,A)∈S

(
M(X,A) ×F(X,A)

)
→ [0,∞], i ∈ {1, 2, 3, 4, 5} .

The first optimal performance T1 is linked to the Shilkret integral [17],

I1(m, f) = sup {k ·m(A) | k · 1A ≤ f} .

Note that all sets considered in this paper are supposed to be measurable, A ∈ A.
Evidently, our T1 = I1(m, f) for m, f given on X = {a, b, c} and A = 2X .

Concerning the second optimal performance, T2 is linked to the PAN–integral
introduced by Yang in [23],

I2(m, f) =

= sup

{
n∑

i=1

ki ·m(Ai)|n ∈ N,
n∑

i=1

ki · 1Ai ≤ f, (Ai)
n
i=1 is a disjoint system

}
.

The third optimization task describes the philosophy of the Choquet integral [4],

I3(m, f) = sup

{
n∑

i=1

ki ·m(Ai) |n ∈ N,

n∑
i=1

ki · 1Ai ≤ f, (Ai)
n
i=1 is a chain

}
.

Note that due to the definition of the classical Riemann integral it holds

I3(m, f) =

∫ ∞

0

m({f ≥ t}) dt.

The fourth approach to optimization constraints brings a new integral I4 pro-
posed recently by Stupňanová [19],

I4(m, f) = sup

{
n∑

i=1

ki ·m(Ai)|n ∈ N,
n∑

i=1

ki · 1Ai ≤ f,Ai ∩ Aj ∈ {∅, Ai, Aj}

for any i, j ∈ {1, · · · , n}} .
Finally, another recent integral is linked to T5, namely the concave integral
introduced by Lehrer [8],

I5(m, f) = sup

{
n∑

i=1

ki ·m(Ai) |n ∈ N,

n∑
i=1

ki · 1Ai ≤ f

}
.

The Hasse diagram in Figure 2 depicts the relationships between these integrals.
Each of these integrals is linked to the standard arithmetical operations on real
line, and for each of them it holds

Ii(k · 1{x}) = k ·m({x}), k ∈ [0,∞[,
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Fig. 2. Hasse diagram for relationships between integrals I1 – I5

if the singleton {x} ∈ A. However, considering a general A ∈ A, Ii(k · 1A) =
k ·m(A) holds only for i ∈ {1, 3}, in general. Consequently, integrals I2, I4 and I5
have a failure admitting the existence of m1 �= m2 such that I(m1, f) = I(m2, f)
for each f ∈ F(X,A). Note also that each introduced integral is homogeneous,
i.e., Ii(k · f) = k · Ii(f) for each k ∈ [0,∞[ and i ∈ {1, 2, 3, 4, 5}.

Considering special types of monotone measures, we have the next equalities
valid for any measurable function f ∈ F(X,A):

– if m ∈ M(X,A) is supermodular then

I5(m, ·) = I3(m, ·),

i.e., then the concave integral coincide with the Choquet integral, see [8];
– if m is subadditive then

I5(m, ·) = I2(m, ·),

i.e., then the concave integral coincide with the PAN–integral, see [19];
– if m is an unaminity measure, i.e., there is A ∈ A, A �= ∅, so that m(B) ={

1 if A ⊆ B,
0 else

, then all introduced integrals coincide, and then

Ii(m, f) = inf {f(x)|x ∈ A} , i = 1, · · · , 5,

see [19].

Obviously, if X is finite and m is additive then

Ii(m, f) =
∑
x∈X

f(x) ·m({x}), i ∈ {2, 3, 4, 5} .

Moreover, if m is a σ–additive measure, then integrals Ii(m, ·), i ∈ {2, 3, 4, 5}
coincide with the standard Lebesgue integral,

Ii(m, f) =

∫
X

f dm.



Do We Know How to Integrate? 19

3 Universal Integrals

To capture the idea of the majority of integrals proposed as functionals on ab-
stract measurable spaces, Klement et al. [5] have recently proposed the concept
of universal integrals.

Definition 1. A mapping I :
⋃

(X,A)∈S
(
M(X,A) ×F(X,A)

)
→ [0,∞] is called a

universal integral whenever it satisfies the next properties:

(UI1) I is nondecreasing in both components, i.e., I(m1, f1) ≤ I(m2, f2) when-
ever there is (X,A) ∈ S such that m1,m2 ∈ M(X,A) and m1 ≤ m2, f1, f2 ∈
F(X,A) and f1 ≤ f2;

(UI2) there is an operation ⊗ : [0,∞]2 → [0,∞] (called a pseudo–multiplication)
with annihilator 0 (i.e., a⊗ 0 = 0⊗ a = 0 for each a ∈ [0,∞]) and a neutral
element e ∈]0,∞] (i.e., a⊗ e = e⊗ a = a for each a ∈ [0,∞]) so that

I(m, k · 1A) = k ⊗m(A)

for any (X,A) ∈ S,m ∈ M(X,A), A ∈ A and k ∈ [0,∞];

(UI3) for any two pairs (m1, f1) ∈ (X1,A1), (m2, f2) ∈ (X2,A2) such that
m1 ({f1 ≥ t}) = m2 ({f2 ≥ t}) for each t ∈]0,∞] (such pairs are called inte-
gral equivalent) it holds

I(m1, f1) = I(m2, f2).

Similarly we can introduce the concept of universal integrals on the unit interval
[0, 1] (compare the concepts of measure theory and probability theory). In such
a case, we deal with normed monotone measures, m(X) = 1 (these measures are
also called fuzzy measures or capacities), measurable functions f : X → [0, 1],
and the considered pseudo-multiplication ⊗ is defined on [0, 1]2, ⊗ : [0, 1]2 →
[0, 1], with neutral element e = 1 (then ⊗ is called a semicopula, or conjuctor,
or weak t–norm, depending on the literature). For more details we recommend
[5]. Here we recall only two distinguished classes of universal integrals.

Proposition 1. Let ⊗ : [0, 1]2 → [0, 1] be a fixed pseudo-multiplication. Then
the mapping I⊗ :

⋃
(X,A)∈S

(
M(X,A) ×F(X,A)

)
→ [0,∞] given by

I⊗(m, f) = sup {t⊗m ({f ≥ t}) |t ∈ [0,∞]}

is a universal integral which is the smallest one linked to ⊗ through the axiom
(UI2).

Note that the Shilkret integral I1 is related to the standard product ·, I1 = I·,
while ⊗ = ∧ (min) yields the famous Sugeno integral [20],

I1(m, f) = Su(m, f) = sup {t ∧m ({f ≥ t}) |t ∈ [0,∞]} .
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The second type of universal integrals we recall is defined on [0, 1] and it is linked
to copulas.

Observe that a copula C : [0, 1]2 → [0, 1] is a pseudo-multiplication on [0, 1]
which is supermodular, i.e., for all x,y ∈ [0, 1]2 it holds C(x ∧ y) + C(x ∨
y) ≥ C(x) +C(y). Copulas are in a one-to-one correspondence with probability
measures on the Borel subsets of [0, 1]2 with uniformly distributed margins. This
link is fully characterized by the equality

PC ([0, u]× [0, v]) = C (u, v)

valid for all u, v ∈ [0, 1]. For more details we recommend [14].

Proposition 2. Let C : [0, 1]2 → [0, 1] be a fixed copula. Then the mapping

I(C) :
⋃

(X,A)∈S

(
M1

(X,A) ⊗F1
(X,A)

)
→ [0, 1], where

M1
(X,A) =

{
m ∈ M(X,A)|m(X) = 1

}
, F1

(X,A) =
{
f ∈ F(X,A)| Ran f ⊆ [0, 1]

}
,

given by
I(C)(m, f) = PC

({
(u, v) ∈ [0, 1]2|v ≤ m({f ≥ u})

})
is a universal integral on [0, 1].

Observe that for the product copula Π one have IΠ = T3 (restricted to [0, 1]),
i.e., the Choquet integral is obtained. Similarly, for the greatest copula Min (i.e.,
for ∧), the Sugeno integral on [0, 1] is obtained, I(Min) = Su.

Finally note that integrals I2 (PAN-integral), I4 (Stupňanová integral) and I5
(concave integral of Lehrer) introduced in the previous section are not universal
integrals.

4 Integrals and Pseudo-Arithmetical Operations

In Section 2, we have tried to answer the question how to integrate under differ-
ent constraint settings, utilizing as a basic tool for our processing the standard
arithmetical operations on the real line. There are possible several modifications
of these operations, yielding new types of integrals. First of all, we can rescale
our original scale [0,∞] by means of some automorphism ϕ : [0,∞] → [0,∞]
(i.e., ϕ is an increasing bijection). Then the standard addition + becomes a
pseudo-addition ⊕ : [0,∞]2 → [0,∞] given by

u⊕ v = ϕ−1 (ϕ(u) + ϕ(v)) .

Similarly, pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] is given by

u⊗ v = ϕ−1 (ϕ(u) · ϕ(v)) .

Modifying I1 (Shilkret integral) into

I1,ϕ(m, f) = sup {k ⊗m(A) | k · 1A ≤ f}

one gets the universal integral I⊗. However, I⊗(m, f) = ϕ−1 (I1(ϕ ·m,ϕ · f)),
i.e., we have a ϕ-transform of I1 only. Similarly, the remaining integrals Ii, i =
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2, 3, 4, 5, can be transformed. Note that the transformed Choquet integral I3,ϕ
is a special instance of Choquet-like integrals introduced by Mesiar [9].

Pseudo-addition ⊕ and pseudo-multiplication ⊗ can be introduced axiomati-
cally, see e.g. [1]. Not going more deeply into details, recall only that for ⊕ = ∨
(max, supremum), and any pseudo-multiplication ⊗ as given in Definition 1,
when replacing + by ∨ and · by ⊗, in the definition of integrals Ii, i = 1, · · · , 5,
all of them collapse into the universal integral I⊗ characterized in Proposition 1.
For a deeper overview of integrals based on pseudo-arithmetical operations (on
finite spaces) we recommend [11].

5 Concluding Remarks

We have discussed the integrals, first from historical point of view, and then
as optimization procedures when considering different constraints settings. The
concept of universal integrals on [0,∞] and on [0, 1] was also given, and several
positive and negative examples were added.

Note that the axiomatic approach to several of introduced integrals was in-
troduced several years after their constructive introduction. This is not the case
of Riemann integral only, but for example the Choquet integral was axiomatized
by Schmeidler in 1986 [16]. For an overview of axiomatic approaches to integrals
we recommend [6].

Adding some constraints on monotone measures, one can get some distin-
guished aggregation functions. So, for example, when considering universal in-
tegrals on [0, 1] and symmetric monotone measure on finite space X (i.e., m(A)
depends on the cardinality of A only), then the Choquet integral becomes OWA
operator [22], [3], and copula-based integral I(C)(m, ·) becomes OMA operator
[10] (i.e., ordered modular average).

Integrals can be also combined. So, for example, any convex combination I =
λ I(1) + (1 − λ) I(2), of two universal integrals related to pseudo-multiplications
⊗1 and ⊗2 with the same neutral element e is a universal integral related to
the pseudo-multiplication ⊗ = λ ⊗1 +(1 − λ)⊗2, independently of λ ∈ [0, 1].
For two copulas C1, C2, also C = λC1 + (1− λ)C2 is a copula, and then I(C) =
λ IC1 + (1 − λ) IC2 . Another approach to combine integrals was proposed by
Narukawa and Torra [12], and multidimensional integrals were introduced and
discussed by the same authors in [13].

As we see, though we have touched the problem how to integrate, this area
is an expanding field attracting an intensive research and we believe to see not
only many new theoretical results soon, but first of all numerous applications in
several engineering and human reasoning connected branches.

Acknowledgement. The work on this contribution was supposed by grants
VEGA 1/0171/12 and GAČR P–402–11–0378.
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Abstract. Extending the notion of belief functions to fuzzy sets leads
to the generalization of several key concepts of the classical Dempster-
Shafer theory. In this paper we concentrate on characterizing normalized
belief functions and their fusion by means of a generalized Dempster rule
of combination. Further, we introduce soft-normalization that arises by
either rising up the usual level of contradiction above 0, or by decreasing
the classical level of normalization below 1.

1 Introduction

The Dempster-Shafer theory of evidence [4,13] is a generalization of Bayesian
probability theory that allows to combine all the available informations about a
given event E into a unique one. The theory shows how all the available evidences
can be used to evaluate the degree of belief of E via a belief function bel. In fact,
in the classical setting, pieces of evidence are encoded by means of subsets of
a fixed domain X called the frame of discernment. To each piece of evidence
(i.e. to each subset of X) is attached a weight (called mass in Dempster-Shafer
theory) that is given by a probability distribution m defined over the powerset
2X . If a subset is assigned a strictly positive mass, it is called a focal element.

Specifically, our belief is encoded by a mass assignment m : 2X → [0, 1], that
is,
∑

B∈2X m(B) = 1 andm(∅) = 0. Its associated belief function bel : 2X → [0, 1]
attaches to each A ∈ 2X the sum of the masses of those pieces of evidence
supporting A, i.e.

bel(A) =
∑
B⊆A

m(B). (1)

It is worth noticing that, since every mass m is a probability distribution over
2X , the belief of A can be equivalently defined as

bel(A) = Pm(βA) (2)

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 23–34, 2012.
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where Pm is the probability measure defined over 2(2
X) and βA is the character-

istic function1 of the inclusion set {B ∈ 2X : B ⊆ A}.
Recently, several generalizations of belief function theory to the algebraic

setting of MV-algebras of continuous fuzzy sets have been proposed [9,5]. The
soft-computational setting of fuzzy sets and the related algebraic framework open
the door to the generalization of the key concepts that form the basis of classical
Dempster-Shafer theory. In this paper, after some needed preliminaries on MV-
algebras of fuzzy sets and finitely additive measures on them, called states, we
first recall those generalized notions of belief functions. For the particular class
of belief functions whose focal elements are crisp, we also study their Möbious
transform. Then, always in the generalized setting of MV-algebras of continuous
fuzzy sets, we discuss the notion of normalized belief function and characterize
it in terms of the support of the state underlying it. Finally, after recaling some
generalized forms of the Dempster rule of combination (not only conjunctive), we
consider a notion of soft-normalization that arises by either rising up above 0 the
usual levels of contradiction, or by decreasing the classical level of normalization
below 1.

2 MV-Algebras of Fuzzy Sets and States

MV-algebras were introduced by Chang [1] as the equivalent algebraic seman-
tics for the infinite-valued �Lukasiewicz calculus. They are algebraic structures
M = (M,⊕,¬, 0) of type (2, 1, 0) satisfying the following requirements: the
reduct (M,⊕, 0) is a commutative monoid, and for every a, b ∈ M , the following
equations hold: ¬¬a = a, a⊕ ¬0 = ¬0 and ¬(¬a⊕ b)⊕ b = ¬(¬b ⊕ a)⊕ a.

It is well known [2] that the class of MV-algebras forms an algebraic variety.
Moreover, in every MV-algebra the following operations are definable: a � b is
¬(¬a ⊕ ¬b); a ⇒ b is ¬a ⊕ b; a ∨ b is (a ⇒ b) ⇒ b, a ∧ b is ¬(¬a ∧ ¬b), and
the constant 1 stands for ¬0. In every MV-algebra M , a partial order relation
is defined as follows: for every a, b ∈ M , a ≤ b iff a ⇒ b = 1. An MV-algebra is
said to be linearly ordered (or an MV-chain), if the order ≤ is linear.

Example 1. (1) Every Boolean algebra is an MV-algebra. Moreover, for every
MV-algebra M , the set of its idempotent elements B(M) = {a ∈ M : a⊕a = a}
is the domain of the largest Boolean subalgebra of M , the so called Boolean
skeleton of M .

(2) Consider the real unit interval [0, 1] equipped with �Lukasiewicz operations:
for every a, b ∈ [0, 1],

a⊕ b = min{1, a+ b}, ¬a = 1− a.

Then the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an MV-chain. Chang theorem
[1,2] says that an equation holds in [0, 1]MV iff it holds in every MV-algebra.

1 Throughout the paper, we make no formal distinction between a set and its charac-
teristic function.
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It is worth noticing that in [0, 1]MV the above introduced operations have the
following form:

a� b = max{0, a+ b− 1}, a ⇒ b = min{1, 1− a+ b},
a ∨ b = max{a, b}, a ∧ b = min{a, b}.

(3) For every n ∈ N, consider the class Fn of n-place McNaughton functions,
i.e. functions from [0, 1]n into [0, 1] which are continuous, piecewise linear, each
piece having integer coefficient. The algebra (Fn,⊕,¬, 0) with operations ⊕ and
¬ defined pointwise, and where 0 here denotes the zero-constant function, is an
MV-algebra that coincides with the free MV-algebra over n generators. We will
henceforth denote this algebra by Free(n).

An MV-clan over a set X is a collection of functions from X into [0, 1] (i.e. a set
of fuzzy subsets of X) that contains the zero-constant function and that is closed
under the finitary pointwise application of ⊕ and ¬ as defined in [0, 1]MV . We will
denote by [0, 1]X the clan of all functions from X into [0, 1]. A clan M ⊆ [0, 1]X

is said to be separating if for every x1, x2 ∈ X with x1 �= x2, there exists a
function f ∈ M such that f(x1) �= f(x2). Clearly, [0, 1]

X is separating, and it is
well known that for every n ∈ N, Free(n) is a separating MV-clan as well (cf. [2,
§3.6]).

Whenever X is finite, we will call [0, 1]X a finite domain MV-clan. Finite
domain MV-clans will play a central role in this paper. The following notion
of state is the MV-counterpart of the notion of a finitely-additive probability
measure on a Boolean algebra.

Definition 1 ([11]). Let M be an MV-algebra. A state on M is a map s : M →
[0, 1] satisfying s(1) = 1, and s(a⊕ b) = s(a) + s(b) whenever a� b = 0. A state
s is said to be faithful if s(x) = 0 implies x = 0.

The following theorem, independently proved in [8] and [12], shows an integral
representation of states by Borel probability measures defined on the σ-algebra
B(X) of Borel subsets of X , where X is any compact Hausdorff topological
space.

Theorem 1. Let M ⊆ [0, 1]X be a separating clan of continuous functions over
a compact Hausdorff space X. Then there is a one-to-one correspondence be-
tween the states on M and the regular Borel probability measures on B(X). In
particular, for every state s on M , there exists a unique regular Borel probability
measure μ on B(X) such that for every f ∈ M ,

s(f) =

∫
X

f dμ. (3)

3 Belief Functions on MV-Algebras of Fuzzy Sets

In what follows we will assume X to be a finite set.
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3.1 Crisp-Focal Belief Functions

In [9], the author proposes the following generalization of belief functions. Let
M = [0, 1]X be a finite domain MV-clan and consider, for every f : X → [0, 1],
the map ρ̂f : 2X → [0, 1] defined as follows: for every B ⊆ X ,

ρ̂f (B) = min{f(x) : x ∈ B}. (4)

Remark 1. Notice that ρ̂f generalizes βA in the following sense: whenever A ∈
B(M) = 2X , then ρ̂A = βA. Namely, for every A ∈ B(M), ρ̂A(B) = 1 if B ⊆ A,
and ρ̂A(B) = 0, otherwise.

Definition 2. A map b̂ : M → [0, 1] is called a crisp-focal belief function when-

ever there is a state ŝ : [0, 1](2
X) → [0, 1] such that ŝ({∅}) = 0 and, for every

f ∈ M ,
b̂(f) = ŝ(ρ̂f ). (5)

With X being finite, Theorem 1 yields a unique probability measure μ : 2(2
X ) →

[0, 1] such that ŝ(ρ̂f ) =
∑

C∈2X ρ̂f (C) · μ({C}). Moreover, it is easy to see that,
for every C ⊆ 2X , μ({C}) = ŝ({C}). Since μ({∅}) = 0, probability measure μ
induces a mass assignment m such that m(C) = μ({C}).

In Dempster-Shafer theory, given a belief function bel : 2X → [0, 1], the mass
m that defines bel can be recovered from bel by Möbius transform:

m(A) =
∑

B⊆A(−1)|A\B|bel(B).

In case of crisp-focal belief functions, the situation is analogous.

Proposition 1. Let b̂ : [0, 1]X → [0, 1] be a crisp-focal belief function, defined

as b̂(f) = ŝ(ρf ) for some state ŝ on [0, 1]2
X

such that ŝ({∅}) = 0 and ŝ({C}) > 0
iff C(x) ∈ {0, 1}, where C �= ∅. Then

ŝ({A}) = m(A) =
∑

B⊆A(−1)|A\B|b̂(B)

for each A ⊆ X.

Proof. Definition (5) directly gives that ρ̂A(C),∈ {0, 1} for each pair of crisp
sets A,C ⊆ X and thus

b̂(A) =
∑

C∈2X ρ̂A(C) · ŝ({C}) =
∑

B⊆A ŝ({B}) =
∑

B⊆Am(B).

This implies that the restriction of b̂ to 2X is a classical belief function. See [10]
for further details. �

As a corollary, observe that, in the hypothesis of the above proposition, the
values b̂(f) for non-crisp f ∈ [0, 1]X are necessarily determined by the values of

b̂ over the crisp sets of 2X . Indeed, in [9] it shown that, for any f ∈ [0, 1]X , b̂(f)

is in fact the Choquet integral of f with respect to the restriction of b̂ over 2X .
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Moreover, this shows another characterization of crisp-focal belief functions.
Indeed, a function bel : [0, 1]X → [0, 1] is a crisp-focal belief function iff its
restriction on crisp sets 2X is a total monotone function, i.e., for every natural
n and every A1, . . . , An ∈ 2X , the following inequality holds:

bel

(
n∨

i=1

Ai

)
≥

∑
∅
=I⊆{1,...,n}

(−1)|I|+1 · bel
(∧

k∈I

Ak

)
.

3.2 General Belief Functions

The definition introduced in [5] generalizes crisp-focal belief function by intro-
ducing, for every f ∈ M , a map ρf associating with each fuzzy set g ∈ M the
degree of inclusion of g into f . Specifically, let M = [0, 1]X be a finite domain
MV-clan, and consider, for every f ∈ M , the map ρf : M → [0, 1] defined as
follows: for every g ∈ M ,

ρf (g) = min{g(x) ⇒ f(x) : x ∈ X}. (6)

The choice of ⇒ in the above definition is due to the MV-algebraic setting, but
other choices could be made in other fuzzy logics.

Those mappings ρf can be regarded as generalized inclusion operators between
fuzzy sets (cf. [5] for further details). For every f ∈ {0, 1}X (i.e. whenever f
is identified with a vector in [0, 1]X with integer components), the map ρf :
[0, 1]X → [0, 1] is a pointwise minimum of finitely many linear functions with
integer coefficients, and hence ρf is a non-increasing McNaughton function [2].

Lemma 1. The MV-algebra R2 generated by the set �2 = {ρa : a ∈ {0, 1}X}
coincides with Free(n), where n is the cardinality of X.

Proof. By [3, Theorem 3.13], if a variety V of algebras is generated by an alge-
bra A, then the free algebra over a cardinal n > 0 is, up to isomorphisms, the

subalgebra of AAX

generated by the projection functions θi : A
X → A. There-

fore, in order to prove our claim it suffices to show that the projection functions
θ1, . . . , θn belong to �2.

Consider, for every i = 1, . . . , n the point i ∈ {0, 1}X such that

i(j) =

{
0, if j = i
1, otherwise.

Then ρi = 1 − θi. In fact, for every b ∈ [0, 1]X , and for every i, j ∈ X such
that j �= i, we have b(j) → i(j) = 1, and b(i) → i(i) = 1 − b(i), so that
1− ρi(b) = θi(b) = b(i). This actually shows that the MV-algebra R¬

2 generated

by the set ¬�2 = {1 − ρa : a ∈ {0, 1}X} is isomorphic to Free(n). Clearly R2

and R¬
2 are isomorphic through the map g : a ∈ R2 �→ 1− a ∈ R¬

2 . �
Therefore, if we consider the MV-algebra R generated by � = {ρf : f ∈ [0, 1]X}
we obtain a semisimple MV-algebra that properly extends Free(n), and whose
elements are continuous functions from [0, 1]X into [0, 1]. This implies, in par-
ticular, that R is separating.
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Definition 3. Let X be a finite set and let M = [0, 1]X . A map b : M → [0, 1]
will be called a belief function on the finite domain MV-clan M provided there
exists a state s : R → [0, 1] such that for every a ∈ M ,

b(a) = s(ρa). (7)

We will denote by Bel(M) the class of all the belief functions over a finite domain
MV-clan M .

Note that if s is such that the set {f ∈ M | s({f}) > 0} is countable, then the
above expression yields

b(a) =
∑
f∈M

ρa(f) · s({f}).

As in the previous section, we will identify the mass of a belief function b with
the unique Borel regular probability measure μ over B([0, 1]X) that represents
the state s via Theorem 1.

Since belief functions on [0, 1]X are defined as states on R and different states
s1 and s2 determine different belief functions b1 and b2, the set Bel([0, 1]X) of
belief functions on [0, 1]X is in 1-1 correspondence with the set S(R) of all states

on R. Hence Bel([0, 1]X) is a compact convex subset of [0, 1][0,1]
X

. Therefore
Krein-Mil’man theorem shows that Bel([0, 1]X) is in the closed convex hull of
its extremal points. The following result characterizes the extremal points of
Bel([0, 1]X).

Proposition 2. For every x ∈ [0, 1]X, the belief function bx defined by

bx(f) = sx(ρf ) = ρf ({x}), f ∈ [0, 1]X , (8)

is an extremal point of Bel([0, 1]X).

Proof. A belief function b ∈ Bel([0, 1]X) is extremal iff its state assignment is
extremal in S(R). In fact s is not extremal iff there exist s1, s2 ∈ S(R) and a
real number λ ∈ (0, 1) such that s = λs1 + (1 − λ)s2. In particular, for every
a ∈ [0, 1]X ,

b(a) = s(ρa) = λs1(ρa) + (1 − λ)s2(ρa) = λb1(a) + (1− λ)b2(a),

whence b would not be extremal as well.
�

As we recalled above, R is separating. Therefore from Proposition 2 the extreme
points of its state space are MV-homomorphisms sx, for each x ∈ [0, 1]X . Hence
the following holds due to (8).

Theorem 2. Every belief function is a pointwise limit of a convex combination
of some elements ρ.(x

1),. . . , ρ.(x
k), where x1,. . . , xk ∈ [0, 1]X.
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3.3 On Normalized Belief Functions

In classical Dempster-Shafer theory, the notion of focal element is crucial for
classifying belief functions. Whenever X = {1, . . . , n} is a finite set, the Boolean
algebra 2X is finite, and hence the mass assignment m : 2X → [0, 1] defines
obviously only finitely many focal elements. On the other hand, the MV-algebra
[0, 1]X has uncountably many elements, and hence we cannot find in general
a mass assignment μ defined over B([0, 1]X) that defines a belief function b
through (10) which is supported by a finite set. This observation leads to the
following definition.

Definition 4. Let K be the set of all compact subsets of a finite domain MV-
clan [0, 1]X. For every regular Borel probability measure μ defined on B([0, 1]X),
we call the set

sptμ =
⋂

{K|K ∈ K, μ(K) = 1}

the support of μ.

By Theorem 1 we can regard sptμ as the support of the state s defined from μ
via (3). In particular, the following holds:

b(a) =

∫
[0,1]X

ρa dμ =

∫
sptμ

ρa dμ. (9)

Therefore, for a belief function b on [0, 1]X whose state assignment s is charac-
terized through (3) by a regular Borel probability measure μ, we will henceforth
refer to sptμ as the set of focal elements of b. We restrict our attention to those
belief functions on [0, 1]X such that their state assignment s on Free(n) satisfies
the condition

b(0) = s(ρ0) = 0. (10)

Proposition 3. The set S0 of all states on R satisfying (10) is a nonempty
compact convex subset of [0, 1]R considered with its product topology.

Proof. S0 is nonempty: let s1 be defined by

s1(f) = f(1, . . . , 1),

for every f ∈ R. This gives s1(ρ0) = ρ0(1, . . . , 1) = 0 and thus s1 ∈ S0. Let
s, s′ ∈ S0 and α ∈ (0, 1). Then the function R → [0, 1] given by

αs+ (1− α)s′

is a state on R which clearly satisfies (10). Hence S0 is a convex subset of
the product space [0, 1]R. Since the space [0, 1]R is compact, we only need to
show that S0 is closed (in its subspace product topology). To this end, consider a
convergent sequence (sm)m∈N in S0 whose limit is s. As the set of all states on R
is closed, s is a state. That s satisfies (10) follows from s(ρ0) = limm→∞ sm(ρ0) =
0. �
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The family of states S0 can be characterized by employing integral representation
of states. Namely, we will show that a state assignment s ∈ S0 iff s is “supported”
by normal fuzzy sets in [0, 1]X , i.e. fuzzy sets f ∈ [0, 1]X such that f(x) = 1 for
some x ∈ X . We will denote by NF(X) the set of normalized fuzzy sets from
[0, 1]X , i.e.

NF(X) = {f ∈ [0, 1]X | f(x) = 1 for some x ∈ X}.

Proposition 4. Let s be a state assignment on R and μ be the regular Borel
probability measure associated with s. Then sptμ ⊆ NF(X) if and only if s ∈ S0.

Proof. Let μ be a probability measure on Borel subsets of [0, 1]X such that
sptμ ⊆ NF(X). Put

s(f) =

∫
[0,1]X

f dμ, f ∈ R. (11)

Since ρ0(x) = 0 for each x ∈ sptμ, it follows that

s(ρ0) =

∫
sptμ

ρ0 dμ = 0,

hence s ∈ S0. Conversely, assume that

s(ρ0) =

∫
[0,1]X

ρ0 dμ = 0,

which implies ρ0 = 0 μ-almost everywhere over [0, 1]X . Since ρ0(x) = 0 iff
x ∈ [0, 1]X is such that xi = 1, for some i ∈ X , we obtain μ(NF(X)) = 1. �

In particular, every state assignment of a generalized belief function in the sense
of [9] belongs to S0.

4 Generalized Dempster Rule of Combination

In [5] the authors present a way to generalize the well-known Dempster rule to
combine the information carried by two belief functions b1,b2 ∈ Bel(M), into
a belief function b1,2 ∈ Bel(M). In this section we will recall the basic steps of
that construction, and we also add some remarks. We start with an easy result
about the definition of states in a product space.

Proposition 5. For every MV-algebra N , and for every pair of states s1, s2 :
N → [0, 1], there exists a state s1,2 defined on the direct product N × N such
that for every (b, c) ∈ N ×N , s1,2(b, c) = s1(b) · s2(c).
Let now M = [0, 1]X , and let R be as defined in Section 3. Also let s1, s2 be
two states on R such that b1(f) = s1(ρf ) and b2(f) = s2(ρf ) for all f ∈ M .
Furthermore, let μ1, μ2 : B(M) → [0, 1] be the two regular probability measures
of support sptμi (for i = 1, 2), such that for i = 1, 2,

si(f) =

∫
sptμi

f dμi.
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Take the mapping μ1,2 : B(M × M) → [0, 1] to be the product measure on
Borel subsets generated by M × M . Let s1,2 be a state on [0, 1]M×M defined
by integrating measurable functions M ×M → [0, 1] with respect to μ. If there
exist g, h : M → [0, 1] and f such that f(x, y) = g(x) · h(y), then Proposition 5
yields s1,2(f) = s1(g) · s2(h).

Finally, for every f ∈ M , consider the map ρ∧f : M ×M → [0, 1] defined by
ρ∧a (b, c) = ρa(b ∧ c). Then we are ready to define the following combination of
belief functions.

Definition 5 (Generalized Dempster rule). Given b1,b2 ∈ Bel(M) as
above, define its min-conjunctive combination b1,2 : M → [0, 1] as follows: for
all a ∈ M ,

b1,2(a) = s1,2(ρ
∧
a ). (12)

Regarding the support of the combined measure, it is worth noticing that by [6,
Theorem 417C (v)], sptμ1,2 = sptμ1× sptμ2, and hence, whenever μ1 and μ2 are
normalized in the sense that their support is included into NF(X), sptμ1,2 ⊆
NF(X) as well. Therefore, by Proposition 4 one might deduce that, if b1 and
b2 are normalized belief functions, then b1,2 is normalized as well. The following
example shows that it is not the case, since in the definition of b1,2, together
with the product measure μ1,2 we also use the map ρ∧ which, in fact, is not a
genuine fuzzy-inclusion operator.

Example 2. Consider two belief functions b1 and b2 on [0, 1]2 with masses con-
centrated as follows:

μ1(1, 0) = 1/4; μ1(1, 1) = 3/4; μ2(0, 1) = 1/2; μ2(1, 1) = 1/2.

Then, the product measure μ1,2 has support in the cartesian product of the
supports of the two masses, {((1, 0), (0, 1)), ((1, 0), (1, 1)), ((1, 1), (0, 1)), ((1, 1),
(1, 1))}, and it takes values

μ1,2((1, 0), (0, 1)) = 1/8, μ1,2((1, 0), (1, 1)) = 1/8, μ1,2((1, 1), (0, 1)) = 3/8,
μ1,2((1, 1), (1, 1)) = 3/8.

So, μ1,2 is normalized in the sense that each of its focal elements can be regarded
as a normalized vector of [0, 1]4. On the other hand, b1,2 is not normalized
because (0, 0) = (1, 0) ∧ (0, 1), ρ(0,0)(0, 0) = 1, and hence

b(0, 0) =
∑

b∧c=(0,0)

ρ(0,0)((0, 0)) · μ1(b) · μ2(c) = ρ(0,0)(0, 0) ·μ1(1, 0) · μ2(0, 1) = 1/8 > 0.

The above min-conjunctive combination can easily be extended to well-known
MV-operations on fuzzy sets, such as max-disjunction ∨, strong conjunction �
and strong disjunction ⊕, by defining (b1 � b2)(a) = s1,2(ρ

�
a ), for � being one

of these operations, and defining ρ�a (b, c) = ρa(b � c). In this generalized case,
the map b�

1,2 resulting from the respective combination rule will be called the
�-combination of b1 and b2.
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Whenever the supports of μ1 and μ2 are countable, it is easy to prove that b�
1,2

is a belief function in the sense of Definition 3. In fact, in this case Definition
5 yields b�

1,2(a) =
∑

b,c∈M ρa(b � c) · μ1({b}) · μ2({c}). Notice that the above
expression reduces to

b1,2(a) =
∑
d∈M

∑
b,c∈M,b�c=d

ρa(d) · (μ1({b}) · μ2({c})) =
∑
d∈M

ρa(d) · μ∗({d}),

where
μ∗({d}) =

∑
b,c∈M,b�c=d

μ1({b}) · μ2({c})

is indeed a mass assignment and hence b�
1,2 ∈ Bel(M).

Therefore, turning back to the above Example 2 and Proposition 4, there
exists a mass μ �= μ1,2 for b�

1,2 such that sptμ �⊆ NF(X).

5 Soft Normalization for Mass Assignments

The height of a fuzzy set f ∈ [0, 1]X is defined in the literature as

h(f) = max{f(x) : x ∈ X}. (13)

The value h(f) can be interpreted as the degree of normalization of f . As a
matter of fact, a fuzzy set f is called normalized whenever h(f) = 1, otherwise
it is called non-normalized. A non-normalized fuzzy set represents a partially
inconsistent information.

Consider now a belief function b defined by a state with support sptμ. Assume
there exists a focal element f ∈ sptμ with μ({f}) > 0 that is a non-normalized
fuzzy set.2 This means that b is associating a positive degree of evidence to
a (partially) inconsistent information, which is reflected on the value that b
assigns to the 0. Indeed, in such a case we have ρ0(f) > 0, and hence b(0) ≥
ρ0(f) ·μ({f}) > 0. And in fact it is easy to see that the more inconsistent are the
focal elements of b, the greater is the value b(0). When events and focal elements
are crisp sets (and hence the unique possible not-normalized focal element is 0),
normalization consists in redistributing the mass that μ assigns to 0 to the other
focal elements of μ (if any).

Dealing with fuzzy focal elements, allows us to introduce a notion of soft
normalization for belief functions. In particular, it allows a softer redistribution
of the masses, depending on two thresholds.

Definition 6. A mass assignment μ : [0, 1]X → [0, 1] is said to be α-normalized
provided that inf{h(f) : f ∈ sptμ} = α.

In other words, a mass is α-normalized provided that each focal element of μ
has at least height α. In particular, for a belief function b we define the degree
of normalization of b as the value

2 Notice that if sptμ is not countable, the condition f ∈ sptμ does not guarantee
μ({f}) > 0.
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inf{h(f) : f ∈ sptμ},

where μ is the mass associated to b.
In what follows we assume masses μ such that their supports sptμ are count-

able. Let now μ : [0, 1]X → [0, 1] be an α-normalized mass assignment, and
assume that there exists a focal element g for m such that h(g) = β > α.

The mass μ can be renormalized to the higher degree β by defining a new
mass μβ as follows: for every f ∈ F(X),

μβ({f}) =
{
0, if h(f) < β
μ({g})
1−K , otherwise.

(14)

where K =
∑

h(l)<β μ({l}).
The idea of this β-normalization, similarly to the classical normalization, con-

sists in fixing the value β as a new level of consistency for the mass we are con-
sidering. Since α < β ≤ 1, the class of focal elements of height lower then β is
not empty. Then the process of β-normalization consists in redistributing all the
mass K =

∑
h(l)<β μ({l}), which μ assigns to the fuzzy sets of height lower than

β, to those focal elements of height greater of (or equal to) β.
Clearly a mass μ can be renormalized, up to the maximum value

βmax = sup{h(f) : f ∈ spt(μ)}.

Consider two belief functions b1 and b2 with associated masses μ1 and μ2 respec-
tively, also we assume for simplicity sptμ1 and sptμ2 to be countable. Let b�

1,2

the belief function defined by the �-combination of b1 and b2 as we introduced
in Section 4. Then the focal elements of b�

1,2 forms the following set:

{f � g : f ∈ sptμ1 and g ∈ sptμ2}.

Therefore for each focal element f � g of b�
1,2, its height is easily calculated as

h(f�g) = max{f(x)�g(x) : x ∈ X}. Therefore the level to which a � combined
belief function b�

1,2 allows to be normalized can be similarly calculated by the
height of the focal elements of the combining functions b1 and b2. It is worth
to point out that, whenever � is a conjunctive operation (like a t-norm for
instance), h(f � g) ≤ min{h(f), h(g)}.
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Abstract. The generalized Bonferroni mean is able to capture some in-
teraction effects between variables and model mandatory requirements.
We present a number of weights identification algorithms we have de-
veloped in the R programming language in order to model data using
the generalized Bonferroni mean subject to various preferences. We then
compare its accuracy when fitting to the journal ranks dataset.

Keywords: Aggregation functions, means, generalized Bonferroni mean,
weights identification, least absolute deviation (LAD) fitting.

1 Introduction

In decision-making and information processing contexts, the need often arises to
merge multiple inputs into a single representative output. For more sophisticated
aggregation functions to find use in everyday applications, ways of interpreting
their behavior and implementation tools need to be developed to make them
accessible to practitioners. In recent years, such developments include the Kap-
palab R package by Grabisch et al. [13], and AOTool and fmtools by Beliakov [1].
These tools allow the parameters and weights of aggregation functions to be au-
tomatically learned from data and used to predict unknown values or analyze
the datasets.

The Bonferroni mean [11] is an aggregation function with the ability to model
mandatory requirements, i.e. we can ensure that some criteria are at least par-
tially satisfied for a high overall score. Since it was generalized by Yager in [21] a
number of publications have followed, with generalizations refined in [8, 15, 22],
extensions to higher level fuzzy sets in [7, 18–20] and lattices [6]. As well as
modeling mandatory requirements, the Bonferroni mean could also be useful as
a non-linear function which is able to capture interaction effects. Indeed, in its
original form the terms of the function are similar to those in statistics used to
model interaction between pairs of variables in regression models.

There are a number of ways to construct aggregation functions for applica-
tions. Sometimes the parameters can be specified by experts while in other cases
we may have an existing dataset and we want a model that reflects the relation-
ship between the inputs and outputs. In the latter case, we can use optimization

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 35–44, 2012.
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techniques and perform fitting in order to learn the parameters or weights of the
function we wish to use in the model. Due to the composition of the generalized
Bonferroni mean, however, a number of issues arise in attempting to learn its
weights from data. In general, the problem is not one that can be framed as a lin-
ear or quadratic program. In this paper we give an overview of some approaches
we have taken and implemented in the R programming language [16]. The fit-
ting algorithms we have developed, as well as our datasets and preprocessing
techniques are available as R source files at our website1.

We investigate three simplifications that allow the problem to be formulated
as a linear programming problem and compare the accuracy of the resulting
Bonferroni means to other functions with a real data set.

The paper will be structured as follows. In Section 2, we give an overview
of aggregation functions and how they can be fit to data. It is here that we
also provide the definition of the generalized Bonferroni mean. In Section 3 we
show how the weights identification problem for the Bonferroni mean can be
formulated linearly, using the same techniques as are employed in fmtool. We
then show how the Bonferroni mean compares to other functions when fit to some
journal rankings datasets in Section 4. As well as fitting to each full journal set,
we also use 10-fold cross-validation tests to show the robustness of the fitting
process. We give a brief summary in Section 5.

2 Preliminaries

We will give an overview here of the definitions and methods that will be used
throughout the rest of the paper. In particular, we are concerned with Aggrega-
tion functions and techniques for learning their parameters from data.

2.1 Aggregation Functions

The study of aggregation functions for decision making and information pro-
cessing applications has become increasingly widespread. A number of recent
monographs give an overview of their use and properties, [9,14,17]. We will con-
sider aggregation functions defined over the unit interval.

Definition 1. An aggregation function f : [0, 1]n → [0, 1] is a function non-
decreasing in each argument and satisfying f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

Definition 2. An aggregation function is considered to be: averaging where
min(x) ≤ f(x) ≤ max(x), conjunctive where f(x) ≤ min(x), disjunctive where
f(x) ≥ max(x), and mixed otherwise.

Due to the monotonicity of aggregation functions, averaging behavior is equiva-
lent to idempotency, i.e. f(t, t, ..., t) = t.

1 http://aggregationfunctions.wordpress.com

http://aggregationfunctions.wordpress.com
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In this paper, we are primarily concerned with averaging aggregation func-
tions, although the Bonferroni mean uses the product f(x, y) = xy in its com-
position which is one of the archetypical conjunctive functions.

Well known means include the arithmetic mean (also commonly referred to
as the average) and the median. The arithmetic mean, as well as geometric
means and power means can be expressed as special cases of the weighted quasi-
arithmetic mean. We provide its definition here.

Definition 3. For a strictly monotone continuous generating function φ : [0, 1]
→ [−∞,∞] and weighting vector w, the weighted quasi-arithmetic mean is given
by,

QAMw(x) = φ−1

(
n∑

i=1

wiφ(xi)

)
. (1)

Special cases include weighted arithmetic means, where φ(t) = t, weighted power
means where φ(t) = tp and weighted geometric means (i.e. G(x) =

∏n
i=1 x

wi

i ) if
φ(t) = − ln t. The weights wi are usually non-negative and sum to one.

On the other hand, the median, maximum and minimum operators can be
expressed as special cases of the ordered weighted averaging (OWA) operator.
Rather than weight arguments according to their position or source, the OWA
allocates a weight depending on the relative size of the input. It was formally
defined by Yager in 1988 [23].

Definition 4. For a weighting vector w, the ordered weighted averaging (OWA)
operator is given by,

OWAw(x) =
n∑

i=1

wix(i), (2)

where the parentheses (.) indicate a reordering of the inputs such that x(1) ≥
x(2) ≥ . . . ≥ x(n).

Special cases include the maximum when w = (1, 0, . . . , 0), the minimum when
w = (0, . . . , 0, 1) and the median if wi = 1 for i = n+1

2 and 0 otherwise where n
is odd, and wi = 0.5 for i = n

2 ,
n
2 + 1 and 0 otherwise where n is even.

The Bonferroni mean was defined in 1950 [11] and later generalized by Yager
and others in the computational intelligence and decision making field. In its
original form, it is defined as follows.

Definition 5. Let p, q ≥ 0 and xi ≥ 0, i = 1, . . . , n. The Bonferroni mean is the
function

Bp,q(x) =

⎛⎝ 1

n(n− 1)

n∑
i,j=1,i
=j

xpi x
q
j

⎞⎠
1

p+q

. (3)

In the case of p = q for n = 2 the Bonferroni mean is equivalent to the geometric
mean. For q = 0 (or p = 0), it will reduce to a power mean and can therefore
express functions such as the arithmetic mean (p = 1), quadratic mean (p = 2)
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and the limiting case of the geometric mean p = 0. As the ratio p
q approaches

infinity (or 0), the mean approaches the maximum operator. When n > 2, there
must exist at least one pair (i, j) such that xi, xj > 0, for the Bonferroni mean
to return a non-zero output Bp,q(x) > 0. It is this property that makes it
possible for the generalizations of the Bonferroni mean to express mandatory
requirements.

In [8], the Bonferroni mean was expressed as a composed aggregation function,
generalizing it in terms of two means and a conjunctive function. With this
construction, the function is able to model partial conjunction [12] with respect
to any number of arguments, i.e. we can specify mandatory requirements that
must at least partially be fulfilled for the function to have a non-zero output.

The notation xj 
=i is used to denote the vector in [0, 1]n−1 that includes
the arguments from x ∈ [0, 1]n in each dimension except the i-th, xj 
=i =
(x1, . . . , xi−1, xi+1, . . . , xn).

Definition 6. [8]. Let M denote a 3-tuple of aggregation functions < M1,M2,
C >, with M1 : [0, 1]n → [0, 1], M2 : [0, 1]n−1 → [0, 1] and C : [0, 1]2 → [0, 1],
with the diagonal of C denoted by C∗(t) = C(t, t) and inverse diagonal C−1

∗ . The
generalized Bonferroni mean is given by,

BM(x) = C−1
∗

(
M1

(
C
(
x1,M2(xj 
=1)

)
, . . . , C

(
xn,M2(xj 
=n)

)))
. (4)

The original Bonferroni mean is returned where M1 = WAM(x), M2 = PMq(x)
and C = xpyq (with all weights equal).

Since M1 is an averaging function of n arguments while M2 is a function
of n − 1 arguments, they will have weighting vectors of different dimension. In
order to choose the weights appropriately, so that they are consistent with the
application and inputs, the following convention is used for the weighting vector
of M2 [8].

Given u ∈ [0, 1]n, the vectors ui ∈ [0, 1]n−1, i = 1, . . . , n are defined by

ui
j =

uj∑
k 
=i uk

=
uj

1− ui
, ui �= 1. (5)

Note that for every i, ui sum to one.
This allows one to either use the same weighting vector or differing vectors if

each stage of aggregation requires it.

2.2 Fitting Aggregation Functions to Data

The usual framework for fitting a function f to data involves an objective equa-
tion that minimizes the difference between the observed values yk and predicted
values f(xk) in some norm. In particular, we have the L2 norm or least squares
approach,

K∑
k=1

(
f(xk)− yk

)2
, (6)
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and L1 or least absolute deviation (LAD) approach,

K∑
k=1

∣∣f(xk)− yk
∣∣. (7)

For our algorithms, we are interested in the latter approach, which can be con-
verted into a linear program [2, 10].

Given a dataset with K rows (xk1, xk2, ..., xkn, yk) where each k represents
an observed value, we firstly represent each residual in terms of its positive and
negative components (one of which will be zero), i.e. rk = |f(x)k−yk| = r+k +r−k .

We then minimize the sum of these residuals subject to equality constraints
ensuring the yk are equal to the predicted function value and the residual.

Minimize
K∑

k=1

r+k + r−k ,

s.t. f(xk) + r+k − r−k = yk, k = 1 . . .K (8)

r+k , r
−
k ≥ 0.

With suitable transformations or rearrangements of the data, many interest-
ing aggregation functions can be represented in this way, for example, to fit
a weighted quasi-arithmetic mean with generating function g, we can use the
constraints: (

n∑
i=1

wig(xki)

)
+ r+k − r−k = g(yk), k = 1 . . .K

wi ≥ 0, ∀ i,
n∑

i=1

wi = 1.

Note that the residuals in this case are the differences between the transformed
data - not the actual data itself.

For ordered functions such as the OWA, the data can be transformed so that
the weights are learned from the reordered data. In both cases, although the
functions themselves are not linear, the weights are only fit to linear data.

In our AggWaFit.R source file, the commands ordfit.GenOWA and
ordfit.QAM can be used to find the weighting vector w from a given data set
where the generator and its inverse are specified. These commands are designed
for fitting to data where the outputs are ordinal and will return a stats file with
root mean squared error (RMSE), average L1 loss, prediction accuracy (for pre-
dicting the ordinal classes), a confusion matrix and the resulting w. A file with
the predicted values from the function and corresponding classes is also returned
with the original data.
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3 Formulating Weights Identification Problems

The generalized Bonferroni mean is defined with respect to the two weighting
vectors,w and u. Due to its composition, however, we cannot transform the data
and fit the weights as we do for the quasi-arithmetic mean and OWA. We look
at three simplifications that will enable us to fit generalized Bonferroni means
to data.

3.1 Fitting vij Weights to Product Pairs

We can firstly consider the case of M1,M2 weighted arithmetic means and C the
product operation with powers p, q. This leads to the following expression and
simplification.⎛⎝ n∑

i=1

wix
p
i

⎛⎝∑
j 
=i

uj

1− ui
xqj

⎞⎠⎞⎠
1

p+q

=

⎛⎝ n∑
i=1,j=1,i
=j

wiuj

1− ui
xpi x

q
j

⎞⎠
1

p+q

Although we still cannot separate the weights linearly, we can con-
sider each xixj term and consider coefficients vij . We hence transform
the instances of the dataset (xk1, xk2, . . . , xkn, yk) such that we fit to
(xpk1x

q
k2, xpk1x

q
k3, . . . , x

p
k,(n−1)x

q
kn, yp+q

k ) and introduce the following linear
constraints.

⎛⎝ n∑
i=1,j=1,i
=j

vijx
p
kix

q
kj

⎞⎠+ r+k − r−k = yp+q
k , k = 1 . . .K

vij ≥ 0, ∀ ij,
n∑

i=1

vij = 1.

The resulting vij will not be separable into the wi, ui, uj etc, however we can
gain an idea of the rough contribution of wi which is associated with the p index
and ui associated with the q index by summing the rows and columns of the vij
matrix respectively.

In our BonFit.R source file, this fitting is done to ordinal data using the
ordfit.bonf.vij command. Different p, q can be specified and further restric-
tions placed on the vij if desired.

3.2 Fitting wi Weights with Fixed u

An alternative to fitting to the pairs xpi x
q
j is to fix the weighting vector u. This

way, we can use alternative means for M1,M2 (in particular, any QAM) whereas
before we were limited to weighted arithmetic means. We hence perform fitting
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by transforming each of the input terms xki by combining with the mean of the
xk,j 
=i and using the generator functions. Denoting the generator of M1 by m1,
each of the terms will be given by

m1 (x
p
ki(M2(xk,j 
=i))

q) ,

where the weighting vector for M2 is defined separately for each i using each
of the ui determined from the supplied vector u. In this case, we introduce the
following constraints.⎛⎝ n∑

i=1,j=1,i
=j

wim1(x
p
ki(M2(xk,j 
=i))

q)

⎞⎠+ r+k − r−k = (m1(yk))
p+q,

k = 1 . . .K,

wi ≥ 0, ∀ i,
n∑

i=1

wi = 1.

This fitting is done with BonFit.R using ordfit.bonf.quasi where the genera-
tors of both M1,M2 can be specified, as well as the weighting vector u associated
with M2 and the indices p, q.

3.3 Enforcing Mandatory Requirements

In some applications, it may be desirable to define a model with one or two
mandatory requirements, but which still fits the data as well as it can. In this
case, we can use projections on w. Denoting the generator of M2 (a weighted
quasi-arithmetic mean) by m2, this will result in the following expression,⎛⎝xpim−1

2

⎛⎝∑
j 
=i

uj

1− ui
m2(xj)

⎞⎠q⎞⎠
1

p+q

.

As we can see, the ui, uj do not occur as linear cofactors, however since the
i-th variable will always be mandatory, we can transform the dataset such that
we only fit the weighting vector ui. We hence will not obtain a weight for the
relative importance of i with respect to the other variables, however this would
usually be acceptable as it is not needed in the model to calculate new values.
By rearranging the function, we then introduce the following linear constraints
into the fitting problem.⎛⎝ n∑

j=1,j 
=i

ujm2(xkj)

⎞⎠+ r+k − r−k = m2

(
y
(p+q)/q
k

x
p/q
ki

)
, k = 1 . . .K,

uj ≥ 0, ∀ j,
n∑

j=1,j 
=i

uj = 1.
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To fit a function this way in BonFit.R, we can use the command
ordfit.bonf.proj, where the variable that is to be mandatory is specified,
as well as the desired generator for M2.

4 Modeling the Journal Rankings Dataset

In our previous work [3–5], we have used a dataset synthesized from the Aus-
tralian journal rankings, which pairs the indices provided by Thomson and
Reuters’ ISI Web of Knowledge database with the quality ranks allocated by the
Australian Research Council (ARC). The motivation for using such a dataset is
that the relationship between the indices and the quality rank should be roughly
monotone, while there are also likely to exist correlations between the inputs.

Before the rankings were disbanded, we collected the 2011 data for journals
in all disciplines with both ARC and ISI data. This gave us a list of over 5000
journals spread across different fields of research (FoR) categories. For comparing
the accuracy of the Bonferroni mean, we used 17 FoR categories, each with more
than 80 journals and one (1103 Clinical Sciences) with 706 journals. The data
first had to be transformed so that each of the indices ranged between [0, 1]
and so that the distribution of the scores was such that idempotency could be
obtained. The algorithm from this is also available at the previously mentioned
website. We used the algorithms in BonFit.R for the Bonferroni means (m2 = t3

for ordfit.bonf.quasi, and m2 = t, i = 2, for ordfit.bonf.proj i.e. the
Impact Factor is made mandatory), AggWaFit.R for the WAM, OWA, power
means (p = 2, 3) and geometric mean, and fmtools for the Choquet integrals
(2-additive and general). Table 1 shows the overall standard and 10-fold cross
validation accuracy when fitting to the journals data, averaged across the 17 FoR
codes. As we can see, the Bonferroni mean performs reasonably well in fitting to
each of the datasets. Weighting each pair using vij could be interpreted similarly
to modeling interaction between pairs as is done with the 2-additive Choquet
integral, and it is worth noting that their performance is similar for the 10-fold
tests. Enforcing the impact factor as a mandatory requirement in this case did
not lead to good accuracy, however this may be necessary in some cases for
reflecting the decision maker’s preferences.

Table 1. Overall classification and L1-accuracy for various aggregation functions

B.vij B.qam B.proj WAM OWA PM2 PM3 GM Ch2−add Chgen

All
L1 0.124 0.123 0.150 0.123 0.125 0.117 0.117 0.149 0.113 0.106
Acc. 0.676 0.662 0.576 0.661 0.642 0.672 0.673 0.621 0.691 0.715

10fold
L1 0.132 0.126 0.170 0.129 0.133 0.123 0.124 0.216 0.126 0.126
Acc. 0.652 0.654 0.440 0.645 0.616 0.655 0.646 0.485 0.649 0.654
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5 Conclusion

We have introduced some methods for fitting the generalized Bonferroni mean
to data. To date, such methods have not been investigated for the Bonferroni
mean. As well as making these available, we also draw attention to the datasets
and R-code at our website, which can be used to further the study of aggrega-
tion functions and their use in decision making. We found that the generalized
Bonferroni mean offers comparable performance to other means when model-
ing data. Although it is not possible to develop linear or quadratic programs in
general, it is possible to write efficient algorithms for various special cases.
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Abstract. This paper deals with ordered weighted averages on a closed
interval, and their fundamental properties are investigated. In this paper
we focus on ordered weighted average with a truncation weight, and the
sub-additivity of a top-concentrated average is derived. Several examples
are given to understand the idea. Further we deal with ordered weighted
average from the bottom, and their relations are investigated. Finally,
ordered weighted averages based on a probability are discussed and value-
at-risks are explained as their example.

1 Introduction

Weighted averages are fundamental tools in decision making and they are repre-
sented by aggregated operators ([4,3]), and ordered weighted averages have been
studied by Yager [13,14,16]. Ordered weighted averages have a lot of applica-
tions and Beliakov et al. [3] has discussed how to choose the weights in practice.
Ordered weighted averages are described as follows: Let n be a positive inte-
ger, and let {w1, w2, · · · , wn} be a weighting sequence such that wi ∈ [0, 1](i =
1, 2, · · · , n) and

∑n
i=1 wi = 1. An ordered weighted average of a finite sequence

{x1, x2, · · · , xn} is defined by

ξ(x1, x2, · · · , xn) :=
n∑

i=1

wix(i), (1)

where x(i) is the i-th largest element in {x1, x2, · · · , xn}, i.e. {(1), (2), · · · , (n)} is
a permutation of the index set {1, 2, · · · , n} and x(i−1) ≥ x(i) for i = 2, 3, · · · , n.
Extending the ordered weighted averages, Yager [15] and Yager and Xu [17] have
studied continuous weighted ordered weighted averages with weights defined by
a fuzzy quantifier, and Torra [10], Torra and Narukawa [12], Torra and Godo [11],
Narukawa and Torra [7] and Narukawa et al. [8] have demonstrated the relation
between weighted ordered weighted averages and Choquet integral. This paper
constructs ordered weighted averages on a closed interval and investigates their
various properties. We demonstrate a top-concentrated average as one of ordered
weighted averages with a truncation weight, and we discuss its sub-additivity.

In Section 2, ordered weighted averages on a closed interval are introduced
extending the ordered weighted averages (1), and we investigate their funda-
mental properties. Next, in Section 3, we discuss ordered weighted averages with

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 45–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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a truncation weight, and we focus on a top-concentrated average. We derive the
sub-additivity of the top-concentrated average, representing the average by the
supremum of weighted averages. Several examples are given to understand the
idea. Further, in Section 4, we deal with ordered weighted averages from the
bottom, and we investigate their relations by a dual representation. Finally, in
Section 5, we discuss ordered weighted averages based on a probability and we
explain value-at-risks as its examples in finance.

2 Ordered Weighted Averages on an Interval

In this section we construct ordered weighted averages on a closed interval from
the concept of (1). Let R be the set of all real numbers, and letm be the Lebesgue
measure on R. For real numbers a, b ∈ R satisfying a < b, C([a, b]) denotes the
class of all real-valued continuous functions on [a, b]. Let w : [a, b] �→ [0,∞) be

a nonnegative measurable function such that 0 <
∫ b

a
w(x) dx < ∞. Then w is

called a weighting function. Let f ∈ C([a, b]) be a function to be estimated. The
range of f is given by a closed interval R := {f(x) | x ∈ [a, b]} = [f, f ] with the

lower bound f := infx∈[a,b] f(x) and the upper bound f := supx∈[a,b] f(x). Now

we introduce a map mf : [f, f ] �→ [a, b] as follows:

mf (α) := a+m({x ∈ [a, b] | f(x) ≥ α}) (2)

for α ∈ [f, f ]. Then a map α �→ mf (α) is left-continuous and non-increasing on

(f, f ] since
⋂

β∈(f,f ]:β<α{x ∈ [a, b] | f(x) ≥ β} = {x ∈ [a, b] | f(x) ≥ α} for

α ∈ (f, f ]. Hence we define

mf(α+) :=

{
limβ↓αm

f (β) if α ∈ [f, f)

a if α = f,
(3)

mf (α−) :=

{
limβ↑αm

f (β) if α ∈ (f, f ]
b if α = f.

(4)

Then we have mf (α−) = mf (α) for α ∈ [f, f ]. Since
⋃

α∈[f,f ][m
f (α+),m

f (α)] =

[a, b], we can define a quasi-inverse of mf (α) by

F (x) := α if x ∈ [mf (α+),m
f (α)] (5)

for x ∈ [a, b]. F is non-increasing and it is called an ordered function of f . Now

we define an ordered weighted average (from the top) OWA[a,b]
w (f) of the function

f with the weighting function w as follow:

OWA[a,b]
w (f) :=

∫ b

a

F (x)w(x) dx

/∫ b

a

w(x) dx. (6)

Here we note that F is defined by (5), which is based on the set {x ∈ [a, b] |
f(x) ≥ α}. Then it is trivial that OWA[a,b]

w (f) ∈ [f, f ]. As a weighting function
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w, we use an element of W0, where W0 is the class of nonnegative measurable

functions on [a, b] satisfying 0 <
∫ b

a w(x) dx < ∞. Instead of it, taking into

account of w(x)/
∫ b

a
w(x) dx, we may choose an element of W , where W is the

class of nonnegative measurable functions on [a, b] satisfying
∫ b

a w(x) dx = 1.
Next we need the following concepts to describe a comonotonic property of
ordered weighted averages.

Definition 1. (Dellacherie [5], Renneberg [9]).

(i) Two functions f, g(∈ C([a, b])) are called comonotonic if (f(x)−f(y))(g(x)−
g(y)) ≥ 0 for all x, y ∈ [a, b].

(ii) A map I : C([a, b]) �→ R is called comonotonically additive if I(f + g) =
I(f) + I(g) holds for all comonotonic f, g ∈ C([a, b]).

Then, the following results are known.

Lemma 1. ([5,9]). For functions f, g ∈ C([a, b]), the following three conditions
(a) - (c) are equivalent.

(a) There exist increasing functions φ, ψ : R �→ R and a function h : [a, b] �→ R
such that f = φ(h) and g = ψ(h).

(b) For all x, y ∈ [a, b], it holds that f(x) < f(y) then g(x) ≤ g(y).
(c) For all x, y ∈ [a, b], it holds that (f(x)− f(y))(g(x)− g(y)) ≥ 0.

For ordered weighted averages OWA[a,b]
w (f), we have the following fundamental

results.

Theorem 1. Let w(∈ W0) be a weighting function on [a, b]. Then the ordered

weighted average OWA[a,b]
w has the following properties:

(i) OWA[a,b]
w (f) ≤ OWA[a,b]

w (g) for f, g ∈ C([a, b]) satisfying f ≤ g. (mono-
tonicity)

(ii) OWA[a,b]
w (f + θ) = OWA[a,b]

w (f) + θ for f ∈ C([a, b]) and real numbers θ.
(translation invariance)

(iii) OWA[a,b]
w (λf) = λOWA[a,b]

w (f) for f ∈ C([a, b]) and λ ≥ 0. (positive homo-
geneity)

(iv) OWA[a,b]
w is comonotonically additive. (comonotonical additivity)

(v) Let ϕ : R �→ R be a strictly increasing continuous convex (concave)

function. Then OWA[a,b]
w (ϕ(f)) ≥ ϕ(OWA[a,b]

w (f) (OWA[a,b]
w (ϕ(f)) ≤

ϕ(OWA[a,b]
w (f)) resp.).

In Theorem 1(iv), ordered weighted averages OWA[a,b]
w have comonotonical ad-

ditivity, however it is not additive in general (Example 1(i)). In next section, we
discuss the sub-additive property regarding a special ordered weighted average
with a truncation weight. In the rest of this section, we give several examples for
ordered weighted averages on an interval to understand the idea in this section.
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Example 1

(i) Let a domain [0, 1] and let f(x) = x(1 − x), g(x) = x2 and a weighting
function w(x) = 1−x. Then from (2) we have mf (α) =

√
1− 4α, mg(α) =

1−
√
α, and their inverse functions are F (x) = 1

4 (1−x2) and G(x) = (1−x)2

respectively. Thus by (6) we get OWA[0,1]
w (f) = 5

24 and OWA[0,1]
w (g) = 1

2 .
On the other hand, we also have f(x) + g(x) = x. Then mf+g(α) = 1 − α

and we get OWA[0,1]
w (f+g) = 2

3 . We note that OWA[0,1]
w (f)+OWA[0,1]

w (g) =
5
24 + 1

2 �= 2
3 = OWA[0,1]

w (f + g).
(ii) Let a domain [0, π] and let f(x) = sinx. Then from (2) we have mf (α) =

π − arcsinα and its inverse function is F (x) = sin(π−x
2 ). For weighting

functions w(x) = π−x and w(x) =
√
π − x, by (6) we obtain OWA[0,π]

w (f) =
8
π2 = 0.810569 · · · and OWA[0,π]

w (f) = 0.744743 · · · respectively.
(iii) Let a domain [0, π] and let f(x) = 1+sin 2x. Then in the same way we have

its ordered function F (x) = 1+ sin(x+ π
2 ) (Fig.1). For weighting functions

w(x) = π − x and w(x) =
√
π − x, we obtain OWA[0,π]

w (f) = 1 + 4
π2 =

1.40528 · · · and OWA[0,π]
w (f) = 1.24105 · · · respectively.
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Fig. 1. A function f(x) = 1 + sin 2x on [0, π] and its ordered function F (x)

(iv) Let a domain [0, 2] and let f(x) = e−(x−1)2 . Then in the same way we have

its ordered function F (x) = e−x2/4. For weighting functions w(x) = 2 − x

and w(x) = e−x, we obtain OWA[0,2]
w (f) = 0.861528 · · · and OWA[0,2]

w (f) =
0.850428 · · · respectively.

(v) Let a domain [0, 2] and let f(x) = 1
1+(x−1)2 . Then in the same way we have

its ordered function F (x) = 4
4+x2 . For weighting functions w(x) = 2 − x

and w(x) = e−x, we obtain OWA[0,2]
w (f) = π−log 4

2 = 0.877649 · · · and

OWA[0,2]
w (f) = 0.869833 · · · respectively.

(vi) Let a domain [0, 2] and let

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2− 4x if 0 ≤ x < 1/4
1 if 1/4 ≤ x < 3/4
−2 + 4x if 3/4 ≤ x < 5/4
3 if 5/4 ≤ x < 7/4
10− 4x if 7/4 ≤ x ≤ 2.

(7)
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From (2) we have

mf (α) =

⎧⎨⎩
2 if 0 ≤ α ≤ 1
3− α if 1 < α ≤ 3
0 if 3 < α.

(8)

We note that (8) is a left-continuous and mon-increasing function. By (5)
we have its ordered function

F (x) =

⎧⎨⎩
3 if 0 ≤ x < 1/2
4− 2x if 1/2 ≤ x < 3/2
1 if 3/2 ≤ x ≤ 2.

(9)

For weighting functions w(x) = 2 − x and w(x) =
√
2− x, we obtain

OWA[0,2]
w (f) = 2.45833 · · · and OWA[0,2]

w (f) = 2.27058 · · · respectively.
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Fig. 2. A function f(x) in (7) and its ordered function F (x) in (9)

3 Ordered Weighted Average with a Truncation Weight

Let n be a positive integer. A weighting sequence {w1, w2, · · · , wn} is called a
truncation weight if it is given by

wi :=

{
1
l if i = 1, 2, · · · , l
0 otherwise

(10)

for a positive integer l satisfying l < n. Extending this weight to one on an
interval, we can concentrate the weight on the top values and truncate the lower
values. In this section, we discuss the sub-additivity of ordered weighted averages
on an interval using this kind of weights. We put a = 0 and b = 1 for simplicity.
Regarding weighting functions, we have W ⊂ W0, which are complete with
respect to L1-norm. Now we give a lemma to establish sub-additivity for an
ordered weighted average with a truncation weight.

Lemma 2. Let c be a constant satisfying 0 < c < 1 and let f ∈ C([0, 1]). Define
a weighting function w∗ ∈ W0 by

w∗(x) :=

{
1
c if 0 ≤ x ≤ c
0 otherwise.

(11)
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Then it holds that

OWA
[0,1]
w∗ (f) = sup

w:0≤w≤ 1
c ,

∫
1
0
w(x)dx=1

∫ 1

0

f(x)w(x) dx. (12)

Hence, the supremum is attained by the weight w∗ in (11).

The weight w∗ defined by (11) is a truncation weight, and we have w∗ ∈ W since∫ 1

0
w∗(x) dx = 1. For this weight w∗, we call OWA

[0,1]
w∗ (f) a top-concentrated

average. Lemma 2 shows that a top-concentrated average is represented by the
supremum of weighted averages.We define a class of weighting functionsW(c) :=
{w ∈ W | 0 ≤ w ≤ 1

c} for c ∈ (0, 1), and then we get the following result since
w∗ does not depend on f .

Theorem 2. Let f, g ∈ C([0, 1]). The top-concentrated average OWA
[0,1]
w∗ has

the following sub-additivity:

OWA
[0,1]
w∗ (f + g) ≤ OWA

[0,1]
w∗ (f) + OWA

[0,1]
w∗ (g). (13)

Corollary 1. Let a, b ∈ R satisfy a < b and let f, g ∈ C([a, b]). Then the

top-concentrated average OWA
[a,b]
w∗ has the sub-additivity:

OWA
[a,b]
w∗ (f + g) ≤ OWA

[a,b]
w∗ (f) + OWA

[a,b]
w∗ (g) (14)

and

OWA
[a,b]
w∗ (f) = sup

w∈W(c−a)

∫ b

a

f(x)w(x) dx, (15)

where the supremum is attained by

w∗(x) =

{
1

c−a if a ≤ x ≤ c

0 otherwise
(16)

for c ∈ (a, b).

Finally we give a example for ordered weighted averages with a truncation
weight.

Example 2. Let a domain [0, π] and let f(x) = 1 + sin 2x in Example 1(iii).
Then its ordered function is F (x) = 1+ sin(x+ π

2 ). Let c = 1 and let Γ := {x ∈
[0, π] | f(x) ≥ 1 + sin(1 + π

2 )} (Fig.3). For a truncation weight

w∗(x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise,

we obtain OWA
[0,π]
w∗ (f) =

∫ π

0
F (x)w∗(x) dx =

∫ 1

0
F (x) · 1 dx = 1 + sin(1) =

1.84147 · · · . This value is larger than the result OWA[0,π]
w (f) = 1.40528 · · · in

Example 1(iii).
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Fig. 3. A function f(x) = 1 + sin 2x, its ordered function F (x) and Γ at c = 1

4 Ordered Weighted Averages from the Bottom

Let a, b ∈ R satisfy a < b, and let f ∈ C([a, b]). In this section, we investigate
ordered weighted averages based on the set {x ∈ [a, b] | f(x) ≤ α}. The range
of f is given by R := {f(x) | x ∈ [a, b]} = [f, f ] with the lower bound f :=

infx∈[a,b] f(x) and the upper bound f := supx∈[a,b] f(x). We introduce a map

mf : [f, f ] �→ [a, b] by

mf (β) := a+m({x ∈ [a, b] | f(x) ≤ β}) (17)

for β ∈ [f, f ]. Then we havemf (β) = a+m({x ∈ [a, b] | f(x) ≤ β}) = a+m({x ∈
[a, b] | f + f − f(x) ≥ f + f − β}) = mf+f−f (f + f − β). In a similar way to (3)

and (4), we have mf (β+) = mf (β) and the corresponding ordered function is

F (x) := β if x ∈ [mf (β−),m
f (β)] (18)

for x ∈ [a, b]. Thus the ordered weighted averages based on the set {x ∈ [a, b] |
f(x) ≤ β}, which we call an ordered weighted average from the bottom is

OWA[a,b]
w (f) :=

∫ b

a

F (x)w(x) dx

/∫ b

a

w(x) dx. (19)

Putting α = f + f − β, we get mf (β) = mf+f−f (f + f − β) = mf+f−f (α) and

mf (β−) = mf+f−f (α+). Eq. (18) is reduced to

F (x) := f + f − α if x ∈ [mf+f−f (α+),m
f+f−f (α)] (20)

for x ∈ [a, b]. Therefore from (5),(6),(18),(19) and Theorem 1(ii) we obtain the
following lemma.

Lemma 3. Let a, b ∈ R satisfy a < b and let f ∈ C([a, b]).

OWA[a,b]
w (f) = f + f −OWA[a,b]

w (f + f − f) = −OWA[a,b]
w (−f). (21)
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For ordered weighted averages from the bottom OWA[a,b]
w (f), from (21) and the

results in Section 3 we have the following theorem.

Theorem 3. Let w(∈ W0) be a weighting function on [a, b]. Then the ordered

weighted average from the bottom OWA[a,b]
w has the following properties:

(i) OWA[a,b]
w (f) ≤ OWA[a,b]

w (g) for f, g ∈ C([a, b]) satisfying f ≤ g. (mono-
tonicity)

(ii) OWA[a,b]
w (f + θ) = OWA[a,b]

w (f) + θ for f ∈ C([a, b]) and real numbers θ.
(translation invariance)

(iii) OWA[a,b]
w (λf) = λOWA[a,b]

w (f) for f ∈ C([a, b]) and λ ≥ 0. (positive homo-
geneity)

(iv) OWA[a,b]
w is comonotonically additive. (comonotonical additivity)

(v) Let f, g ∈ C([a, b]). A bottom-concentrated average OWA
[a,b]
w∗ has the super-

additivity:

OWA
[a,b]
w∗ (f + g) ≥ OWA

[a,b]
w∗ (f) + OWA

[a,b]
w∗ (g) (22)

and

OWA
[a,b]
w∗ (f) = inf

w∈W(c−a)

∫ b

a

f(x)w(x) dx, (23)

where the infimum is attained a truncation weight w∗ ∈ W by

w∗(x) =

{
1

c−a if a ≤ x ≤ c

0 otherwise
(24)

for c ∈ (a, b).

We give an example for a bottom-concentrated average, using Example 1(iii).

Example 3. Let a domain [0, π] and let f(x) = 1 + sin 2x in Examples 1(iii)
and 3. Then its ordered function is F (x) = 1 − sin(x + π

2 ). Let c = 1 and let
Γ := {x ∈ [0, π] | f(x) ≤ 1− sin(1 + π

2 )} (Fig.4). For a truncation weight

w∗(x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise,

we obtain OWA
[0,π]
w∗ (f) =

∫ π

0
F (x)w∗(x) dx =

∫ 1

0
F (x) · 1 dx = 1 − sin(1) =

0.158529 · · · .
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Fig. 4. A function f(x) = 1 + sin 2x, its ordered function F (x) and Γ at c = 1
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5 Ordered Weighted Averages Based on a Probability

In this section we discuss ordered weighted averages based on a probability. Let
(Ω,P ) be a probability space, where P is non-atomic. Let X be the set of all
integrable real random variables X on Ω with a continuous distribution function
x �→ FX(x) := P (X < x) for which there exists a non-empty open interval I
such that FX(·) : I �→ (0, 1) is strictly increasing and onto. Then there exists
a strictly increasing and continuous inverse function F−1

X : (0, 1) �→ I. We note
that FX(·) : I �→ (0, 1) and F−1

X : (0, 1) �→ I are one-to-one and onto, and we put
limx↓inf I FX(x) = 0 and limx↑sup I FX(x) = 1. Let the closure of I by R, which
is the range of X and R := [X,X] with the lower bound X = ess infω∈Ω X(ω)
and the upper bound X = ess supω∈Ω X(ω). Let w(∈ W0) : [0.1] �→ [0,∞) be
a weighting function. In this section, it is not needed generally that the domain
of X coincides with the domain of w, i.e. we may take them as Ω �= [0, 1]. We
introduce a threshold probability mX : [X,X ] �→ [0, 1] by

mX(α) := P ({ω ∈ Ω | X(ω) ≤ α}) = FX(α) (25)

for α ∈ [X,X]. In this case, since the map α �→ mX(α) is continuous and
increasing on I = (X,X), its inverse function is F−1

X (x) for x ∈ [0, 1]. Now we

define an ordered weighted average from the bottom OWA[0,1]
w (X) of the random

variable X(∈ X ) with the weighting function w as follows.

OWA[0,1]
w (X) :=

∫ 1

0

F−1
X (x)w(x) dx

/∫ 1

0

w(x) dx. (26)

Then it holds that OWA[0,1]
w (X) ∈ [X,X ]. Here we give an example of criteria

which is used generally in financial engineering.

Example 4. We introduce an average value-at-risk for real random variables
([1,2]). Let p be a positive probability. The value-at-risk (VaR) at a risk proba-
bility p is given by the percentiles of the distribution function FX .

VaRp(X) :=

⎧⎨⎩
X if p = 0
sup{x ∈ R | FX(x) ≤ p} if 0 < p < 1
X if p = 1.

(27)

Then we have FX(VaRp(X)) = p and VaRp(X) = F−1
X (p) for 0 < p < 1 (Fig.5).

VaR is a risk-sensitive criterion based on percentiles, and it is one of the standard
criteria in asset management ([6,18,19]). VaR is a kind of risk values of the asset
prices at a specified risk-level probability and it is useful for selecting portfolios to
get rid of bad scenarios in investment. Further, the average value-at-risk (AVaR)
at a probability level p is also used for a risk criterion in asset management, and
it is given as follows.

AVaRp(X) :=

⎧⎨⎩X if p = 0
1

p

∫ p

0

VaRq(X) dq =
1

p

∫ p

0

F−1
X (q) dq if 0 < p ≤ 1.

(28)
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From (26) and (28), we obtain

AVaRp(X) = OWA
[0,1]
w∗ (X) (29)

with a truncation weight

w∗(x) =

{ 1
p if 0 ≤ x ≤ p

0 otherwise.
(30)

x

value-at-risk

p
probability

the mean

Fig. 5. Value-at-risk VaRp(X) at a probability p

The following results hold for the average value-at-risks from the results in The-
orem 3 and Example 4.

Corollary 2. Let p be a positive probability. The average value-at-risk AVaRp

has the following properties:

(i) AVaRp(X) ≤ AVaRp(Y ) for X,Y ∈ X satisfying X ≤ Y . (monotonicity)
(ii) AVaRp(X+θ) = AVaRp(X)+θ for X ∈ X and real numbers θ. (translation

invariance)
(iii) AVaRp(λX) = λAVaRp(X) for X ∈ X and λ ≥ 0. (positive homogeneity)
(iv) AVaRp is comonotonically additive. (comonotonical additivity)
(v) AVaRp(X+Y ) ≥ AVaRp(X)+AVaRp(Y ) for X,Y ∈ X . (super-additivity)

Concluding Remarks

(i) Narukawa and Torra [7] and Narukawa et al. [8] have introduced continuous
ordered weighted averages in a general form by Choquet integral, and they
have studied its mathematical analysis. The ordered weighted averages (6)
are the same one as those however in this paper we took a constructive
approach to discuss the sub-additivity, which will be applicable to decision
making (Section 5).

(ii) One of further researches is to find more general conditions for weighting
functions to preserve the sub-additivity for the ordered weighted averages
for applications in decision making.
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Abstract. The Choquet integral is one of the operators that can be used
for aggregation and synthesis of information. It integrates a function with
respect to a fuzzy measure. In this paper we study the Choquet integral
with respect to a symmetric fuzzy measure, which is a generalization of
the OWA operator. We present some results about the approximation of
Choquet integral for the calculation. We also present the inequalities for
Choquet integral with respect to a symmetric fuzzy measure.
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1 Introduction

Choquet integral [3] is one of the approaches used in aggregation operators [7, 8]
to combine information from several sources. Formally speaking, the integral
integrates a function with respect to a fuzzy measure, where a fuzzy measure is
a monotone set function. The Choquet integral with respect to a fuzzy measure
can be applied to the decision modeling with uncertainty and risk [2, 23].

Among the aggregation operators, the Choquet integral is well known as a
generalization of other operators as the weighted mean, the Ordered Weighted
Averaging (OWA) operator [24–26] as well as the arithmetic mean.

Due to these properties, the Choquet integral is a flexible operator that can
be used in different applications, and this has caused the interest of several
researchers for its properties.

There are a lot of papers studying the theory and applications of Choquet
integral. Most of them assume the discrete set as universal set [6, 5, 12]. Other
papers are on the abstract space [22, 13]. There are very few papers for the
Choquet integral of a function on real line [15–17].
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This paper is one of the first attempts for the calculation of Choquet integral
with respect to a fuzzy measure of a function on real line.

This paper is devoted to the study of the Choquet integral of a function on the
real line. Especially we study the Choquet integral with respect to a symmetric
fuzzy measure, which is the geralization of OWA operator. We introduce some
approximation of such integrals for particular types of fuzzy measures. Then,
we study the inequalities of the Choquet integral with respect to a special fuzzy
measure, including symmetric fuzzy measure.

The structure of the paper is organized as follows. In Section 2 some prelim-
inaries needed in the rest of the paper are given. In Section 3, we present the
results of the Choquet integral with respect to a symmetric fuzzy measure. In
Section 4, we present the inequalities of the Choquet integral. The paper finishes
with a conclusion.

2 Preliminaries

In this section, we define fuzzy measures, the Choquet integral and the OWA
operator, and show their basic properties.

Let X be a unit interval or a subset of natural numbers and B be a class of its
Borel sets, that is, the smallest σ−algebra which includes the class of all closed
sets. We say that (X,B) is a measurable space.

Definition 1. [21] Let (X,B) be a measurable space. A fuzzy measure (or a
non-additive measure) μ is a real valued set function, μ : B −→ [0, 1] with the
following properties;

1. μ(∅) = 0
2. μ(A) ≤ μ(B) whenever A ⊂ B, A,B ∈ B.

We say that the triplet (X,B, μ) is a fuzzy measure space if μ is a fuzzy measure.
A fuzzy measure is said to be continuous if An ↑ A implies μ(An) ↑ μ(A) and

An ↓ A implies μ(An) ↓ μ(A).

We assume that μ is continuous if X is a unit interval.

Definition 2. Let (X,B, μ) be a fuzzy measure space.

1. μ is said to be submodular, if

μ(A) + μ(B) ≥ μ(A ∪B) + μ(A ∩B).

2. μ is said to be supermodular if

μ(A) + μ(B) ≤ μ(A ∪B) + μ(A ∩B).

Definition 3. Let (X,B) be a measurable space. A function f : X → R is said
to be measurable if {x|f(x) ≥ α} ∈ B for all α ∈ R.
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F(X) denotes the class of non-negative measurable functions, that is,

F(X) = {f |f : X → R+, f : measurable}

Definition 4. [3, 18] Let (X,B, μ) be a fuzzy measure space. The Choquet
integral of f ∈ F(X) with respect to μ is defined by

(C)

∫
fdμ =

∫ ∞

0

μf (r)dr,

where μf (r) = μ({x|f(x) ≥ r}).
Let A ⊂ X . The Choquet integral restricted on A is defined by

(C)

∫
A

fdμ := (C)

∫
f · 1Adμ.

Let μ be a fuzzy measure on (X,B). Fμ(X) denotes the class of non-negative
measurable functions with Choquet integrable, that is,

Fμ(X) = {f |f ∈ Fμ(X), (C)

∫
fdμ < ∞}.

The next proposition is obvious from the definition of the Choquet integral.

Proposition 1. Let μ and ν be a fuzzy measure on (X,B) and a, b be a real
number. We have

(C)

∫
A

fd(aμ+ bν) = a(C)

∫
A

fdμ+ b(C)

∫
A

fdν

for f ∈ Fμ(X) ∩ Fν(X).

In relation to Choquet integral with respect to a submodular (a super-modular)
non-additive measure, we have the next famous theorem.

Theorem 1. [3, 4, 19] Let μ be a non-additive measure in (X,B)and f, g ∈ M+.

1. If μ is submodular, then

(C)

∫
(f + g)dμ ≤ (C)

∫
fdμ+ (C)

∫
gdμ.

2. If μ is supermodular, then

(C)

∫
(f + g)dμ ≥ (C)

∫
fdμ+ (C)

∫
gdμ.

Next we will introduce the general definition of aggregation operator (aggrega-
tion function [8]).
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Definition 5. Let I be a non empty real interval. An aggregation operator Ag
is a function Ag : I(N) → I with the following properties;

1. (Monotonicity)
If ai ≤ bi for all i = 1, . . . , N , a = (a1, . . . , aN ),b = (b1, . . . , bN ) a,b ∈ D,
then Ag(a) ≤ Ag(b).

2. (boundary conditions)
infx∈I(N) Ag(x) = inf I and supx∈I(N) Ag(x) = sup I.

We say that an aggregation operator Ag satisfies an idempotency (or unanimity)
if Ag(a, . . . , a) = a if a ∈ I.

In the following we assume that I be a unit interval [0, 1] and Ag is idempo-
tent.

Yager introduced the Ordered Weighted Averaging operator in [24], which is
one of the most famous aggregation operator with idempotency.

A weighting vectorw with weights (w1, . . . , wN ) is a vectorw ∈ RN satisfying∑N
i=1 wi = 1 and wi ≥ 0 for all i = 1, 2, . . . , N .

Definition 6. [24] Given a weighting vector w with weights (w1, . . . , wN ), the
Ordered Weighted Averaging operator is defined as follows:

OWAw(a) =

N∑
i=1

wiaσ(i)

where σ defines a permutation of {1, . . . , N} such that aσ(i) ≥ aσ(i+1),a =
(a1, . . . , aN ).

Definition 7. Let X := {1, . . . , N}. A fuzzy measure μ on B is said to be sym-
metric [9] if μ(A) = μ(B) for |A| = |B|, A,B ∈ B.

Symmetric fuzzy measures on (X,B) can be represented in terms of N weights

wi for i = 1, . . . , N so that μ(A) =
∑|A|

i=1 wi. Using a symmetric fuzzy measure,
we can represent any OWA operator as a Choquet integral.

Proposition 2. Let X := {1, 2, . . . , N}; then, for every OWAw, there exists a
symmetric fuzzy measure satisfying μ({1}) := w1

and μ({1, . . . , i}) := w1 + · · ·+ wi for i = 1, 2, . . . , N , such that

OWAw(a) = (C)

∫
adμ

for a ∈ RN
+ .

3 Choquet Integral with Respect to a Symmetric Fuzzy
Measure

In the following we consider the Choquet integral of a monotone increasing
function on the real line. We assume that X is a unit interval, that is, X = [0, 1].
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Let λ be a Lebesgue measure on C, that is, a measure generated by λ([a, b]) =
b− a for [a, b] ⊂ X . Let Fc(X) be a class of continuous functions on X .

We will define a continuous version of symmetric fuzzy measure.

Definition 8. Let μ be a fuzzy measure on (X,B) and μ(X) = 1. μ is said to
be symmetric, if λ(A) = λ(B) implies μ(A) = μ(B).

Remark. Let X := {1, . . . , N} and m(A) := |A| for A ⊂ X . Then m is an
additive measure on 2X . If μ is symmetric, we havem(A) = m(B) implies μ(A) =
μ(B). The symmetry in Definition 8 is essentially same as one in Definition 7.

Let μ be a symmetric fuzzy measure on ([0, 1],B). Define a function ϕ : [0, 1] →
[0, 1] by ϕ(x) := μ([0, x]). Suppose that x < y. Since [0, x] ⊂ [0, y], we have
ϕ(x) ≤ ϕ(y).

Let λ(A) := x for arbitrary A ∈ B. Then we have λ(A) = λ([0, x]).
Since μ is symmetric, we have

μ(A) = μ([0, x]) = ϕ(x) = ϕ(λ(A))

for arbitrary A ∈ B. Therefore we have the next proposition.

Proposition 3. Let μ be a symmetric fuzzy measure on (X,B). There exists a
monotone increasing function ϕ : [0, 1] → [0, 1] such that μ = ϕ ◦ λ.

Let xn → x for xn ∈ [0, 1], n = 1, 2, . . . . Define {an} and {bn} by

an = inf
k≥n

xk, bn = sup
k≥n

xk.

Since an ↑ x, we have ∪n[0, an] = [0, x]. It follows from the continuity of μ that

lim
n→∞

μ([0, an]) = μ([0, x]),

that is,
lim
n→∞

ϕ(an) = ϕ(x).

In the same way, we have
lim
n→∞

ϕ(bn) = ϕ(x).

Since ϕ is monotone and an ≤ xn ≤ bn, we have

lim
n→∞

ϕ(xn) = ϕ(x).

Therefore we have the next proposition.

Proposition 4. Let μ be a symmetric fuzzy measure on (X,B). ϕ in Proposition
3 is continuous.
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We say that a function ϕ in Proposition 1 is a weight function for a symmetric
fuzzy measure μ. Since ϕ is continuous, it follows fromWeierstrass approximation
theorem that ϕ can be approximated by the polynomial, that is , for any ε > 0,
there exists real numbers a1, · · · , aN such that |ϕ(x)−

∑N
k=1 akx

k| < ε for x ∈ X .
Therefore every symmetric fuzzy measure μ can be approximated by a fuzzy
measure

∑N
k=1 akλ

k.

Proposition 5. Let μ be a symmetric fuzzy measure on (X,B). For any ε > 0,
there exist real numbers a1, . . . , aN such that

|(C)

∫
fdμ−

N∑
k=1

ak(C)

∫
fdλk| < ε.

for f ∈ Fμ(X).

Example 1. Let μ := λ1/2, that is, ϕ(x) = x1/2. We have a sequence ϕn such
that ϕn → ϕ uniformly. In fact, ϕ1(x) = x,

ϕ2(x) = f(12 )2C1x(1− x) + f(1)2C2x
2 =

√
2x− (

√
2− 1)x2.

· · ·
Therefore we have

(C)

∫
fdλ1/2 ≈

√
2(C)

∫
fdλ− (

√
2− 1)(C)

∫
fdλ2.

Moreover suppose that ϕ in Proposition 1 be analytic. Then we can express w
by

ϕ(x) :=
∞∑
k=1

akx
k.

Then we have

(C)

∫
[0,x]

fdμ =

∞∑
k=1

ak(C)

∫
fdλk

for x ∈ [0, 1].

Example 2. Let μ(A) := log2(λ(A) + 1), that is, ϕ(x) = log2(x + 1). Since we
have

ϕ(x) =
1

log 2

∞∑
k=1

(−1)k−1

k
xk.

Therefore

(C)

∫
fd log2(λ+ 1) =

1

log 2

∞∑
k=1

(−1)k−1

k

∫
fdλk.
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4 Inequalities

In this section, we will present some basic inequalities for the Choquet integral
with respect to a fuzzy measure generated by a convex function or a concave
function.

Definition 9. Let ϕ be a real valued function on closed interval [c,d]. ϕ is said
to be convex if

ϕ(λx + (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

for x, y ∈ [c, d], 0 < λ < 1.
ϕ is said to be concave if

ϕ(λx + (1− λ)y) ≥ λϕ(x) + (1− λ)ϕ(y)

for x, y ∈ [c, d], 0 < λ < 1.

We have the next Jensen’s inequality from the definition [4].

Proposition 6. Let μ be a fuzzy measure on (X,B) with μ(X) = 1.

1. If ϕ is convex, then

(C)

∫
ϕ(f)dμ ≥ ϕ((C)

∫
fdμ).

2. If ϕ is concave, then

(C)

∫
ϕ(f)dμ ≤ ϕ((C)

∫
fdμ).

Suppose that ϕ is convex or concave and monotone. Applying the theorem above
to classical Lebesgue integral, we have∫ 1

0

ϕ(μ({x|f(x) ≥ a}))da ≥ ϕ(

∫ 1

0

(μ({x|f(x) ≥ a}))da).

Therefore we have the next inequalities.

Proposition 7. Let μ be a fuzzy measure on (X,B).

1. If ϕ : [0, 1] → [0, 1] is a non-decreasing convex function on closed interval
with ϕ(0) = 0 and ϕ(1) = 1.

(C)

∫
fd(ϕ ◦ μ) ≥ ϕ((C)

∫
fdμ).

2. If ϕ is a non-decreasing concave function on closed interval with ϕ(0) = 0
and ϕ(1) = 1,

(C)

∫
fd(ϕ ◦ μ) ≤ ϕ((C)

∫
fdμ).
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Using subadditivity of Choquet integral with respect to a submodular fuzzy
measure, we have the next proposition [14, 11].

Proposition 8. Let μ be a submodular fuzzy measure on (X,B) and p ≥ 1,
q ≥ 1, 1/p+ 1/q = 1.

1.

(C)

∫
fgdμ ≤ ((C)

∫
fpdμ)1/p((C)

∫
gqdμ)1/q

2.

(C)

∫
(f + g)pdμ ≤ ((C)

∫
fpdμ)1/p + ((C)

∫
gpdμ)1/p

Note that if ϕ : [0, 1] → [0, 1] be concave and continuous, and μ := ϕ ◦ λ. Then
μ is submodular [19].

In the following we suppose that ϕ : [0, 1] → [0, 1] be concave and continuous,
and μ := ϕ ◦ λ.

Definition 10. We say that a continuous function ϕ : [0, 1] → [0, 1] is semi
convex if there exists C > 0 such that for all x, y ∈ [0, 1] and 0 ≤ a ≤ 1

ϕ(ax + (1− a)y) ≤ C{(aϕ(x)) + (1− aϕ(y))}.

We say that a continuous function ϕ : [0, 1] → [0, 1] is strongly semi convex if
there exists C > 0 such that for all xi ∈ [0, 1], 0 ≤ ai ≤ 1 and

∑
i ai = 1,

ϕ(
∑
i

aixi) ≤ C
∑
i

aiϕ(xi).

Suppose that ϕ is continuous and concave with ϕ(0) = 0 and ϕ(1) = 1. Then
for all x ∈ [0, 1] we have x ≤ ϕ(x). Therefore we have the next proposition.

Proposition 9. Suppose that ϕ is continuous and concave with ϕ(0) = 0 and
ϕ(1) = 1. ϕ is strongly semi convex if there exists C > 1 such that for all x,
ϕ(x) ≤ Cx.

Example 3. Let ϕ(x) = x(2−x). ϕ is concave with ϕ(0) = 0 and ϕ(1) = 1. Then
we have x ≤ ϕ(x) ≤ 2x.

Next we will define a maximal function with respect to a fuzzy measure.

Definition 11. Let μ be a fuzzy measure on (X, B) and f ∈ Fμ(X).
A maximal function Mμf with respect to μ of f is defined by

Mμf(x) := sup
r

1

μ([x− r, x+ r])
(C)

∫
[x−r,x+r]

fdμ.

If μ is a classical measure, Mμf is Hardy Littlewood maximal function.
If μ is symmetric with some special conditions, we have the next theorem that

is similar to classical one.
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Theorem 2. Let ϕ be continuous and concave with ϕ(0) = 0 and ϕ(1) = 1 and
ϕ be strongly semi convex.

Let μ = ϕ ◦ λ and f ∈ Fμ(X).
There exists a constant C such that for all α > 0

μ({x|Mμf(x) > α}) ≤ C

α
(C)

∫
fdμ.

5 Conclusion

In this paper we have studied some properties of the Choquet integral. We have
given some new expressions to compute the Choquet integral with respect to a
function on the real line, We have given some inequalities.

As future work we will consider the extension of the space to multi dimensional
Euclidean space, and also the application of these results.
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Abstract. The problem of aggregating multiple criteria to form an over-
all measure is of considerable importance in many disciplines. The or-
dered weighted averaging (OWA) aggregation, introduced by Yager, uses
weights assigned to the ordered values rather than to the specific crite-
ria. This allows one to model various aggregated preferences, preserving
simultaneously the impartiality (neutrality) with respect to the individ-
ual criteria. However, importance weighted averaging is a central task in
multicriteria decision problems of many kinds. It can be achieved with
the Weighted OWA (WOWA) aggregation, introduced by Torra, cover-
ing both the weighted means and the OWA averages as special cases. In
this paper we analyze the monotonicity properties of the WOWA aggre-
gation with respect to changes of importance weights. In particular, we
demonstrate that a rank reversal phenomenon may occur in the sense
that increasing the importance weight for a given criterion may enforce
the opposite WOWA ranking than that imposed by the criterion values.

Keywords: OWA, WOWA, Multicriteria Optimization, Rank Reversal.

1 Introduction

Consider a decision problem defined by m criteria. That means the decisions are
characterized by m-dimensional outcome vectors η = (η1, η2, . . . , ηm). In order
to make the multicriteria model operational for the decision support process,
one needs to assume some aggregation function a : Rm → R. The aggregated
value can then be optimized (maximized or minimized).

The most commonly used aggregation is based on the weighted mean where
positive importance weights pi (i = 1, . . . ,m) are allocated to several criteria

Ap(η) =

m∑
i=1

piηi (1)

The weights are typically normalized to the total 1 (
∑m

i=1 pi = 1). However, the
weighted mean while being able to define the importance of criteria is not able to
model the decision maker’s preferences regarding the distribution of outcomes.
The latter is crucial when aggregating (normalized) uniform achievement criteria
like those used in the fuzzy optimization methodologies [18] as well as in the goal

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 66–77, 2012.
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programming and the reference point approaches to multiple criteria decision
support [7]. In stochastic problems uniform objectives may represent various
possible values of the same (uncertain) outcome under several scenarios [6].

The preference weights can be effectively introduced with the so-called Or-
dered Weighted Averaging (OWA) aggregation function developed by Yager [16].
In the OWA aggregation the weights are assigned to the ordered values (i.e. to
the smallest value, the second smallest and so on) rather than to the specific cri-
teria. Since its introduction, the OWA aggregation has been successfully applied
to many fields of decision making [18,19].

The OWA operator is able to model various aggregation functions from the
maximum through the arithmetic mean to the minimum. Thus, it enables mod-
eling of various preferences from the optimistic to the pessimistic one. On the
other hand, the OWA is not able to allocate any importance weights to specific
criteria. Actually, the weighted mean (1) cannot be expressed in terms of the
OWA aggregations.

Importance weighted averaging is a central task in multicriteria decision prob-
lems of many kinds, such as selection, classification, object recognition, and in-
formation retrieval. Therefore, several attempts have been made to incorporate
importance weighting into the OWA operator [17,2]. Finally, Torra [13] has in-
troduced the Weighted OWA (WOWA) aggregation defined by two weighting
vectors: the preferential weights w and the importance weights p. It covers both
the weighted means (defined with p) and the OWA averages (defined with w) as
special cases. Actually, the WOWA average is reduced to the weighted mean in
the case of equal preference weights and it becomes the standard OWA average
in the case of equal importance weights. Since its introduction, the WOWA oper-
ator has been successfully applied to many fields of decision making [15,9,10,7,8]
including metadata aggregation problems [1,5].

While considering the importance weighting of the criteria one may expect
some monotonicity properties of the aggregation with respect to the (relative)
increase of a given importance weight. The basic stability requirements with re-
spect to a given importance weight can be formalized as two properties: rank
stability and asymptotic monotonicity. We say that an aggregation satisfies the
rank stability property if whenever the aggregation ranks two vectors consis-
tently with the inequality on a given criterion it preserves this ranking for any
positive increase of importance weight for the given criterion. If despite that for
some importance weights the aggregation ranks two vectors consistently with
the relation on a given criterion, a positive increase of importance weight for the
given criterion may result in an opposite inequality, we say that the rank reversal
phenomenon occurs. We say that an aggregation satisfies the asymptotic mono-
tonicity property if for any importance weights independently from the relation
between the aggregation values for two vectors, a sufficiently large increase of the
importance weight for a given criterion enforces the aggregation ranking consis-
tently with the inequality on the given criterion values. Both stability properties
are satisfied by the weighted mean (1). We analyze how the WOWA aggrega-
tion models the importance weighting stability properties. Unfortunately, we are
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able to show a possible rank reversal phenomenon which may be considered a
serious flaw of the WOWA importance weighting scheme. However, the WOWA
aggregation fulfills the asymptotic monotonicity property.

The paper is organized as follows. In the next section we formally introduce
the WOWA operator and recall some alternative computational formula based
on the Lorenz curves. In Section 3 we show some examples of the rank rever-
sal phenomenon for the WOWA aggregation. Next, in Section 4 we prove the
asymptotic monotonicity showing required levels for sufficiently large increase of
the importance weight for various special cases of the WOWA aggregation.

2 WOWA Aggregation

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . ,m and

∑m
i=1 wi = 1. The corresponding OWA aggregation of

outcomes η = (η1, . . . , ηm) can be mathematically formalized as follows [16]. Let
〈η〉 = (η〈1〉, η〈2〉, . . . , η〈m〉) denote the vector obtained from η by rearranging its
components in the non-increasing order. That means η〈1〉 ≥ η〈2〉 ≥ . . . ≥ η〈m〉
and there exists a permutation τ of set I = {1, . . . ,m} such that η〈i〉 = ητ(i)
for i = 1, . . . ,m. Further, we apply the weighted sum aggregation to ordered
outcome vectors 〈η〉, i.e. the OWA aggregation has the following form:

OWAw(η) =

m∑
i=1

wiη〈i〉 (2)

Due to the strict monotonicity of the OWA aggregation with positive weighting
vectors [4], the OWA optimization generates a Pareto optimal solution.

The OWA aggregation (2) allows to model various aggregation functions from
the maximum (w1 = 1, wi = 0 for i = 2, . . . ,m) through the arithmetic mean
(wi = 1/m for i = 1, . . . ,m) to the minimum (wm = 1, wi = 0 for i = 1, . . . ,m−
1). However, the weighted mean (1) cannot be expressed as an OWA aggregation.
Actually, the OWA aggregations are symmetric (impartial, neutral) with respect
to the individual criteria and it does not allow to represent any importance
weights allocated to specific criteria.

Importance weighted averaging is a central task in multicriteria decision prob-
lems of many kinds and the ordered averaging model enables one to introduce
importance weights to affect criteria importance by rescaling accordingly its mea-
sure within the distribution of achievements as defined in the so-called Weighted
OWA (WOWA) aggregation [13]. Let w = (w1, . . . , wm) be OWA weights and
let p = (p1, . . . , pm) be an additional importance weighting vector such that
pi ≥ 0 for i = 1, . . . , n and

∑m
i=1 pi = 1. The corresponding Weighted OWA

aggregation of achievements η = (η1, . . . , ηm) is defined as follows [13]:

WOWAw,p(η) =

m∑
i=1

vi(p, η)η〈i〉 (3)
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where weights vi are defined as

vi(p, η) = ϕ(
∑
k≤i

pτ(k))− ϕ(
∑
k<i

pτ(k)) (4)

with ϕ a monotone increasing function that interpolates points ( i
m ,
∑

k≤i wk)
together with point (0.0) and τ representing the ordering permutation for η
(i.e., ητ(i) = η〈i〉). Moreover, function ϕ is required to be a straight line when
the point can be interpolated in this way, thus allowing the WOWA to cover the
standard weighted mean with weights pi as a special case of equal OWA weights
(wi = 1/m for i = 1, . . . ,m). Indeed, the WOWA defined by (3)–(4) as OWA
aggregation with modified preferential weights may be rewritten as the weighted
mean with modified weights:

WOWAw,p(η) =
m∑
i=1

πi(p, η)ηi (5)

where the weights πi are defined as

πi(p, η) = ϕ(pi +
∑

k<τ(i)

pτ(k))− ϕ(
∑

k<τ(i)

pτ(k)). (6)

Actually, the WOWA aggregation is a special case of the rank dependent util-
ity [12] with a piecewise linear probability weighting function ϕ defined by the
importance weights.

The WOWA may be expressed with a more direct formula where preferential
(OWA) weights wi are applied to the averages of the corresponding portions
of ordered outcomes (quantile intervals) according to the distribution defined
by importance weights pi [9]. Note that one may alternatively compute the
WOWA values by using rational importance weights to replicate the correspond-
ing achievements and then calculate the OWA aggregations. This approach can
be generalized to any real importance weights and the WOWA aggregation can
be equivalently defined as follows [9]:

WOWAw,p(η) =

m∑
i=1

wim

∫ i
m

i−1
m

F
(−1)

η (ξ) dξ (7)

where F
(−1)

η is the stepwise function F
(−1)

η (ξ) = η〈k〉 for
∑

j<k pτ(j) < ξ ≤∑
j≤k pτ(j), for k = 1, . . . ,m with τ representing the ordering permutation for

η (i.e., ητ(k) = η〈k〉). It can also be mathematically formalized as the quantile
function defined as the left-continuous inverse of the decumulative distribution
function, i.e., F

(−1)

η (ξ) = sup {z : F η(z) ≥ ξ} for 0 < ξ ≤ 1 with F η(z) =∑n
i=1 piζi(z) where ζi(z) = 1 if ηi ≥ z and 0 otherwise.
Formula (7), defining the WOWA value by applying preferential weights wi

to importance weighted averages within quantile intervals, may be reformulated
with the tail averages (Lorenz components):

WOWAw,p(η) =

m∑
k=1

wkmL(η,p,
k

m
) where L(η,p, ξ) =

∫ ξ

0

F
(−1)

η (ζ)dζ (8)
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and differential weights

wk = wk − wk+1 for k = 1, . . . ,m− 1 and wm = wm (9)

Note that the differential weights wi are positive in the case of positive and
strictly decreasing preferential (OWA) weights w1 > w2 > . . . > wm > 0. Graphs
of functions L(η,p, ξ) (with respect to ξ) take the form of concave piecewise
linear curves, the so-called (upper) absolute Lorenz curves. Moreover, values of
function L(η,p, ξ) for any 0 ≤ ξ ≤ 1 can be given by linear programming (LP)
optimization which enables the WOWA minimization to be implemented with a
LP model [9], in the case of positive and decreasing preferential (OWA) weights
w1 ≥ w2 ≥ . . . ≥ wm > 0.

Applying the WOWA aggregation to a multiple criteria optimization problem
we get the WOWA optimization model. For any positive weights w and p, the
WOWA aggregation is strictly monotonic [7]. Therefore, the WOWA optimal
solutions are then Pareto-optimal.

3 Rank Reversal

When considering the importance weighting of the criteria one may expect some
monotonicity properties of the aggregation with respect to changes of the im-
portance weights. Note that for any vector of importance weights p any positive
increase of a given importance weight must be accompanied by decrease of some
other weights. We will focus on weights changes represented by a positive increase
of a given importance weight pio with proportional decrease of other weights,
i.e., we will consider a parameterized importance weight modification

p(ε) =
1

1 + ε
(p+ εeio) with ε > 0 (10)

where ei denotes the ith unit vector. The basic stability requirements with re-
spect to a given importance weight can be formalized as two properties: rank
stability and asymptotic monotonicity.

Rank stability and rank reversal. Let η′ and η′′ be vectors such that η′io < η′′io
for a criterion io ∈ I. We say that an aggregation satisfies the rank stability
property if whenever for any importance weights p, the aggregation of η′ is less
or equal to that for η′′, then this inequality remains valid for any positive increase
of importance weight pio with proportional decrease of other weights. If despite
that for some importance weights p the aggregation of η′ is less than that for
η′′, a positive increase of importance weight pio with proportional decrease of
other weights may result in opposite inequality, we say that the rank reversal
phenomenon occurs.

Asymptotic monotonicity. Let η′ and η′′ be vectors such that η′io < η′′io for a
criterion io ∈ I. We say that an aggregation satisfies the asymptotic monotonic-
ity property if for any importance weights p independently from the relation
between the aggregation values of η′ and η′′, a sufficiently large increase of im-
portance weight pio with proportional decrease of other weights enforces the
aggregation ranking consistently with inequality η′io < η′′io .
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One may notice that both the stability properties are satisfied by the weighted
mean (1). Indeed, for any vectors η′, η′′ and importance weights p, while increas-
ing importance weight pio with proportional decrease of other weights, following
(10) one gets

Ap(ε)(η
′)−Ap(ε)(η

′′) =
m∑
i=1

pi(ε)(η
′
i − η′′i )

=
1

1 + ε

m∑
i=1

pi(η
′
i − η′′i ) +

ε

1 + ε
(η′io − η′′io)

=
1

1 + ε
(Ap(η

′)−Ap(η
′′)) +

ε

1 + ε
(η′io − η′′io)

(11)

This leads to the following statements.

Proposition 1. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a crite-
rion io ∈ I. If Ap(η

′) ≤ Ap(η
′′) for some importance weights p, then any positive

increase of importance weight pio with proportional decrease of other weights, fol-
lowing (10), results in strict inequality on averages Ap(ε)(η

′) < Ap(ε)(η
′′).

Proposition 2. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I. For any vector of importance weights p, a sufficiently large
increase of importance weight pio with proportional decrease of other weights,
following (10) with

ε >
max{Ap(η

′)−Ap(η
′′), 0}

η′′io − η′io

results in strict inequality on averages Ap(ε)(η
′) < Ap(ε)(η

′′).

Unfortunately, the WOWA aggregation does not guarantee the rank stability.
We will show that the rank reversal phenomenon may occur for the WOWA
aggregation even in a simple case of ordered vectors. Consider two vectors η′ =
(1000, 102, 10) and η′′ = (1000, 100, 12). While introducing preferential weights
w = (0.8, 0.1, 0.1) and assuming an equal importance of all the criteria, i.e.
p = (1/3, 1/3, 1/3), one gets:

WOWAw,p(η
′) = OWAw(η′) = 0.8 · 1000 + 0.1 · 102 + 0.1 · 10 = 811.2

WOWAw,p(η
′′) = OWAw(η′′) = 0.8 · 1000 + 0.1 · 100 + 0.1 · 12 = 811.2

Thus with equally important criteria WOWAw,p(η
′) = WOWAw,p(η

′′) and ac-
cording to the ordered aggregation both the vectors are equally good.

Suppose one wish to consider criterion η3 as much more important, say 4
times more important than those related to the first or second criterion. For
this purpose, importance weights p̄ = (1/6, 1/6, 2/3) are introduced. Note that
p̄ may be understood as a result of increasing p3 by 1 and renormalizing all
weights, i.e., p̄ = 1

1+ε (p + εe3) with ε = 1. Since η′3 < η′′3 , one may expect
WOWAw,p̄(η

′) < WOWAw,p̄(η
′′). However this is not the case, as we show

now.
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Fig. 1. Definition of function ϕ for w = (0.8, 0.1, 0.1) and WOWA weights vi for
equally important attributes p = (1/3, 1/3, 1/3) and vectors η with ordered coefficients
η1 ≥ η2 ≥ η3

To take into account the importance weights in the WOWA aggregation (3)
we introduce the piecewise linear function ϕ (Fig. 1):

ϕ(ξ) =

⎧⎨⎩
2.4ξ for 0 ≤ ξ ≤ 1/3
0.8 + 0.3(ξ − 1/3) for 1/3 < ξ ≤ 2/3
0.9 + 0.3(ξ − 2/3) for 2/3 < ξ ≤ 1.0

(12)

Actually, since vectors η′ and η′′ are both already ordered, the ordered weights vi
are identical for both of them vi(p, η

′) = vi(p, η
′′) = vi(p). In the case of equal

importance weights p = (1/3, 1/3, 1/3), obviously, vi(p) = wi (as presented in
Fig. 1). Calculating weights vi according to formula (4) with function ϕ given by
(12), as illustrated in Fig. 2, one gets v1(p̄) = ϕ(1/6) = 0.4, v2(p̄) = ϕ(1/3)−
ϕ(1/6) = 0.4 and v3(p̄) = 1− ϕ(1/3) = 0.2. Hence,

WOWAw,p̄(η
′) = 0.4 · 1000 + 0.4 · 102 + 0.2 · 10 = 442.8

WOWAw,p̄(η
′′) = 0.4 · 1000 + 0.4 · 100 + 0.2 · 12 = 442.4

Thus, despite η′′3 is 20% larger than η′3 while η′′2 is only 2% smaller than η′2,
an increase of the importance weight for the third criterion results in a lower
WOWA evaluation of η′′ in comparison to η′.

Compare with the same weights vector η′ = (1000, 102, 10) with η′′′ =
(1000, 100, 13). Assuming an equal importance of all criteria, i.e. p =
(1/3, 1/3, 1/3), one gets:

WOWAw,p(η
′) = OWAw(η′) = 0.8 · 1000 + 0.1 · 102 + 0.1 · 10 = 811.2

WOWAw,p(η
′′′) = OWAw(η′′′) = 0.8 · 1000 + 0.1 · 100 + 0.1 · 13 = 811.3

Thus with equally important criteria WOWAw,p(η
′) is a little bit smaller than

WOWAw,p(η
′′′) similar to inequality on the third criterion η′3 < η′′′3 . Consider
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Fig. 2. Definition of WOWA weights vi with w = (0.8, 0.1, 0.1) and p̄ = (1/6, 1/6, 2/3)
for vectors η with ordered coefficients η1 ≥ η2 ≥ η3

now criterion η3 as 4 times more important than those related to the first or
second criterion, i.e., importance weights p̄ = (1/6, 1/6, 2/3). Since, the vectors
are already ordered, the corresponding ordered weights calculation remains the
same as for the earlier comparison of vectors η′ and η′′ (see Fig. 2). Hence,

WOWAw,p̄(η
′′′) = 0.4·1000+0.4·100+0.2·13 = 442.6 < 442.8 = WOWAw,p̄(η

′)

Thus, despite that for equal importance weights the WOWA aggregation ranks
vectors η′ and η′′′ consistently with the inequality on the third criterion, increas-
ing the importance weight for this criterion results in a rank reversal. Note that
this phenomenon occurs despite η′′′3 is 30% larger than η′3 while η′′′2 is only 2%
smaller than η′2.

Since our examples are built on ordered vectors, the WOWA rank reversal
phenomenon can easily be explained with an analysis of the graph of function
ϕ. Note that in the case of equal importance weights (Fig. 1), weight v1 is
defined by an interval on a high slope segment of ϕ whereas both v2 and v3 are
defined on a lower slope segment. While increasing the importance weight for η3
one gets increased v3 due to expanded interval. Intervals defining v1 and v2 are
appropriately decreased. However, while v1 is indeed decreased, v2 is actually
increased since a smaller interval is applied to a higher slope, as the expansion
of p̄3 pushes p̄2 on the high slope segment of function ϕ.

4 Asymptotic Monotonicity

In the previous section, we have given a counterexample illustrating that rank
stability may not hold for the WOWA aggregation. Now, we show that nonethe-
less it satisfies asymptotic monotonicity and we give the required levels of im-
portance weight change to guarantee it.
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The WOWA aggregation is continuous with respect to importance weights.
Therefore, it obviously fulfills the property of asymptotic monotonicity. Note that
for any outcome vectors η′ and η′′ such that η′io < η′′io for a criterion io ∈ I, one
gets WOWAw,p̄(η

′) < WOWAw,p̄(η
′′) with p̄ = eio = limε→∞ p(ε), following

(10). Indeed, the following statement can be directly proven.

Proposition 3. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I. For any positive preferential weights wi ≥ 0 and any vector of
importance weights p, a sufficiently large increase of importance weight pio with
proportional decrease of other weights, following (10) with ε > Δ

Δ = max

⎧⎨⎩
max
i
=io

(η′i − η′′i )max
k∈I

wk

(η′′io − η′io)min
k∈I

wk
, 0

⎫⎬⎭+
2max

i∈I
|η′′i |(max

k∈I
wk −min

k∈I
wk)

(η′′io − η′io )min
k∈I

wk

results in strict inequality WOWAw,p(ε)(η
′) < WOWAw,p(ε)(η

′′).

Proof. Note that following (5), one gets

WOWAw,p(ε)(η
′)−WOWAw,p(ε)(η

′′) =
m∑
i=1

πi(p(ε), η
′)η′i −

m∑
i=1

πi(p(ε), η
′′)η′′i

=

m∑
i=1

πi(p(ε), η
′)(η′i − η′′i ) +

m∑
i=1

(πi(p(ε), η
′)− πi(p(ε), η

′′))η′′i

and from (6), one gets for any outcome vector η

mpi(ε)min
k∈I

wk ≤ πi(p(ε), η) ≤ mpi(ε)max
k∈I

wk,

1−m(1− pi(ε))max
k∈I

wk ≤ πi(p(ε), η) ≤ 1−m(1− pi(ε))min
k∈I

wk.

Hence, |πi(p(ε), η′)− πi(p(ε), η
′′)| ≤ m(max

k∈I
wk −min

k∈I
wk)min{pi(ε), 1− pi(ε)},

πio(p(ε), η
′) ≥ mpio(ε)min

k∈I
wk, πi(p(ε), η

′) ≤ mpi(ε)max
k∈I

wk for i �= io and

WOWAw,p(ε)(η
′)−WOWAw,p(ε)(η

′′)

≤ m[min
k∈I

wkpio(ε)(η
′
io − η′′io ) + max

k∈I
wk

∑
i
=io

pi(ε)max{max
i
=io

η′i − η′′i , 0}]

+m(max
k∈I

wk −min
k∈I

wk)[(1− pio(ε))|η′′io |+
∑
i
=io

pi(ε)max
i
=io

|η′′i |]

≤ mmin
k∈I

wk[pio(ε)− (1− pio(ε))Δ](η′io − η′′io).

Thus, for large enough ε > Δ one gets pio(ε) = (pio + ε)/(1 + ε) > Δ/(1 +Δ)
and thereby WOWAw,p(ε)(η

′) < WOWAw,p(ε)(η
′′).

Proposition 3 states that when having a WOWA optimal solution with a non
satisfactory achievement for criterion io, one may increase the importance of this
criterion, e.g., by setting new importance weights p(ε)io = (pio + ε)/(1 + ε) and
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p(ε)i = pi/(1 + ε) for all i �= io. For a sufficiently large increment ε, following
Proposition 3 it will exclude solutions with worse resulting values for criterion io.
However, the required amount of the weight increase for a general case, following
Δ in Proposition 3 is impracticably large. It can be reduced for special types of
the WOWA operators like for the case of monotonic preferential weights which
is well suited for decisions under risk [10] or fair optimization [11].

Note that, following (8), we have

WOWAw,p(η
′)−WOWAw,p(η

′′) =
m∑
i=1

wkm[L(η′,p,
k

m
)− L(η′′,p,

k

m
)]

where wk are positive differential OWA weights defined as (9) and

L(η′,p, ξ)− L(η′′,p, ξ) = max
u∈U(p,ξ)

m∑
i=1

η′iui − max
u∈U(p,ξ)

m∑
i=1

η′′i ui

with U(p, ξ) = {u = (u1, . . . , um) :

m∑
i=1

ui = ξ, 0 ≤ ui ≤ pi i ∈ I}. Hence,

L(η′,p, ξ)− L(η′′,p, ξ) ≤
m∑
i=1

η′iūi(ξ)−
m∑
i=1

η′′i ūi(ξ) =
m∑
i=1

(η′i − η′′i )ūi(ξ) (13)

where ū(ξ) is an optimal solution to the problem maxu∈U(p,ξ)

∑m
i=1 η

′
iui.

Proposition 4. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I and η′io ≥ η′i for all i ∈ I. For any positive and decreasing
preferential weights w1 ≥ w2 ≥ . . . ≥ wm > 0 and any vector of importance
weights p, a sufficiently large increase of importance weight pio with proportional
decrease of other weights, following (10) with ε > Δ

Δ = max

{
max
i
=io

η′i − η′′i
η′′io − η′io

, 0

}
results in strict inequality WOWAw,p(ε)(η

′) < WOWAw,p(ε)(η
′′).

Proof. Applying inequality (13) to importance weights p(ε) one gets

L(η′,p(ε), ξ)− L(η′′,p(ε), ξ) ≤ [ūio(ξ)−Δ
∑
i
=io

ūi(ξ)](η
′
io − η′′io )

where, due to η′io ≥ η′i for all i, ūio(ξ) = min{ξ, pio(ε)} and ūi(ξ) ≤ min{ξ −
ūio(ξ), pi(ε)} for all i �= io. Hence,

L(η′,p(ε), ξ)− L(η′′,p(ε), ξ) ≤

⎧⎨⎩
ξ(η′io − η′′io) ξ ≤ pio(ε)

(pio(ε)−Δ
∑
i
=io

pi(ε))(η
′
io − η′′io) ξ > pio(ε)
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Therefore, for a large enough ε > Δ one gets pio(ε) > Δ/(1 + Δ) and
pio(ε)−Δ(1− pio(ε)) > 0. Thus L(η′,p(ε), ξ) < L(η′′,p(ε), ξ) for any 0 < ξ ≤ 1
and, due to nonnegative differential weights w̄k, inequality WOWAw,p(ε)(η

′) <
WOWAw,p(ε)(η

′′) is valid.

Proposition 5. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I. For any positive and decreasing preferential weights w1 ≥ w2 ≥
. . . ≥ wm > 0 and any vector of importance weights p, a sufficiently large
increase of importance weight pio with proportional decrease of other weights,
following (10) with ε > Δ

Δ = max

{
max
i
=io

(η′i − η′′i )w1

(η′′io − η′io )wm
, 0

}
results in strict inequality WOWAw,p(ε)(η

′) < WOWAw,p(ε)(η
′′).

Proof. Let δ = max{maxi
=io (η
′
i − η′′i ), 0}/(η′′io − η′io). Applying inequality (13)

to importance weights p(ε) one gets

WOWAw,p(ε)(η
′)− WOWAw,p(ε)(η

′′)

≤
m∑

k=1

wkm[ūio(
k

m
)− δ

∑
i
=io

ūi(
k

m
)](η′io − η′′io)

≤ m[wmpio(ε)− δw1

∑
i
=io

pi(ε)](η
′
io − η′′io)

since ūio(
k
m ) ≥ 0 for all k, ūio(

m
m ) = pio(ε), and ūi(

k
m ) ≤ pi(ε) for all i. Thus,

for a large enough ε > Δ one gets pio(ε) > Δ/(1 +Δ) = δw1/(δw1 + wm) and
thereby WOWAw,p(ε)(η

′) < WOWAw,p(ε)(η
′′).

5 Concluding Remarks

In this paper, we have investigated the monotonicity of WOWA with respect to
weight perturbations in favor of a single criterion. Contrary to intuition, there
exist configurations where such an improvement in favor of a criterion io impact
negatively the performance of the optimal solution on that criterion. This may
reduce the controllability of WOWA when used as a scalarizing function in inter-
active exploration of feasible solutions. Hopefully, we also have established posi-
tive results showing that some controllability can be ensured for sufficiently large
weight improvements. Our results show that the WOWA importance weighting
mechanism alone is insufficient for effective multiple criteria preference model-
ing. For this purpose the WOWA aggregation should be supported by additional
control parameters like aspiration levels in the reference point methods [7]. We
think similar studies are worth investigating for a more general class of aggre-
gation operators, such as Choquet integrals.
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Abstract. In many real-world multiple criteria decision problems, the family of 
criteria has a hierarchical structure presented in the form of a tree. The leaves of 
the tree correspond to elementary criteria on which a finite set of alternatives is 
directly evaluated. Evaluations of alternatives on elementary criteria are aggre-
gated to form a sub-criterion at an upper level of the tree. Then, evaluations of 
alternatives on sub-criteria having the same predecessor in the hierarchy tree are 
aggregated again in a sub-criterion of a higher level, and so on, until the aggre-
gation at the general goal criterion, which is the root of the tree, where the al-
ternatives are finally ranked from the best to the worst. At each node of the tree, 
above the leaves, we are considering the aggregation of multiple criteria evalua-
tions using the ELECTRE-III method, based on building and exploiting out-
ranking relations for each pair of alternatives. As the result of ELECTRE-III is 
a partial preorder of alternatives, the sub-criteria are ordering the alternatives 
just partially. Therefore, in this paper we propose a new way of calculating con-
cordance and discordance indices that take part in the definition of an outrank-
ing relation aggregating the (partially ordered) evaluations on sub-criteria. A 
robustness analysis has been performed to analyze the behavior of the proposed 
method in different settings.   

Keywords: Hierarchical criteria, Multiple Criteria Decision Making, Partial 
Preorder, Outranking method.  

1 Introduction 

Ranking a finite set of alternatives evaluated on multiple conflicting criteria is not a 
trivial task. Many different methods have been proposed to support decision makers 
(DM) in this task. They are based on different models for representing the preferences 
of the DM in order to rank the alternatives taking into account a value system of the 
DM. The decision aiding process is based on three elements: (1) a finite set of alterna-
tives A (also called actions if they can be put in operation simultaneously), (2) a finite 
set of criteria G={g1, g2,..,gn}, where each criterion gj provides a performance score 
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for each alternative in A, and (3) a preference system that for each possible pair of 
alternatives assigns one of the following types of relations: indifference, preference or 
incomparability. 

The preferences over the alternatives depend on how well they perform according 
to a number of criteria. Initially the alternatives are evaluated with respect to each 
criterion separately. To aggregate the scores of the alternatives on individual criteria 
into an overall preference order of the alternatives, many methods have been pro-
posed, each with its own informational requirements and mathematical properties [1]. 

We will focus on outranking-based methods. These methods have developed rapid-
ly during the last few decades because of their adaptability to the poor structure of 
many real decision problems. An interesting characteristic of this approach is the 
treatment of heterogeneous criteria scales (numerical, qualitative and ordinal), and a 
non-compensatory character of the aggregation. This heterogeneity of scales is usual-
ly an inconvenience for many decision support systems, which often require a com-
mon scale of measurement for all the criteria.  

A well-known family of methods based on outranking is the ELECTRE family 
[2],[3]. Since the first proposal of the basic ELECTRE-I method, several parent me-
thods have been developed, e.g., ELECTRE-Is for the selection of best alternatives, 
ELECTRE-II and ELECTRE-III/IV for constructing a ranking, and ELECTRE-TRI 
for sorting problems. ELECTRE methods have been widely considered as an effective 
and efficient decision aiding tool with successful applications in different domains 
[4],[5],[6].  

In some real-world decision problems, criteria are naturally defined in a hierarchic-
al structure, distinguishing different levels of generality that model the implicit tax-
onomical relations between the criteria [7],[8],[9][10]. Such a hierarchical structure 
has the form of a tree, where the root is a general goal criterion, the nodes of the tree 
descending from the goal are sub-criteria, and nodes descending from these sub-
criteria are the sub-criteria of the lower level, and so on, until the leaves that corres-
pond to elementary criteria on which the alternatives are directly evaluated. The cur-
rent versions of ELECTRE methods, apart from a recent proposal presented in [11], 
require, however, that all criteria are defined on a common level and do not accept a 
hierarchy of criteria. Thus, to apply ELECTRE methods in case of hierarchically 
structured criteria, one needs to generalize its crucial concepts, being concordance and 
discordance indices, to take into account aggregation of sub-criteria that rank the al-
ternatives in a partial way. This is precisely the goal of our work. Let us add that the 
generalization of ELECTRE to a hierarchical set of criteria presented in [11] follows a 
different principle based on robust ordinal regression from examples. 

In this paper we focus on decision problems with the goal of finding a partial  
pre-order of the alternatives, as in [6],[12]. Therefore, the ELECTRE-III method for 
ranking will be taken as basis. To extend ELECTRE-III to a hierarchy of criteria, we 
propose to follow the hierarchical organization of the criteria to aggregate the infor-
mation at each node of the tree, according to the corresponding sub-criteria. First, the 
evaluations of alternatives on elementary criteria are aggregated to form a sub-
criterion at the lowest level of the hierarchy tree. Then, evaluations of alternatives on 
sub-criteria having the same predecessor in the hierarchy tree are aggregated again to 
form a sub-criterion of an upper level, and so on, until the aggregation at the general 
goal criterion, where the alternatives are finally ranked from the best to the worst.  
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At the nodes of the tree above the leaves we are considering the classic ELECTRE-III 
method. As the result of ELECTRE-III is a partial preorder, the sub-criteria are order-
ing the alternatives just partially. This is why we propose a new way of calculating 
concordance and discordance indices that take part in the definition of an outranking 
relation aggregating the (partially ordered) evaluations of alternatives on sub-criteria.  

The paper is organized as follows. First, in section 2, some basics of ELECTRE 
method are reminded, with a focus on the construction of outranking relations involv-
ing concordance and discordance indices. Section 3 presents the extension of the con-
cordance and discordance indices to the case of a hierarchical structure of the set of 
criteria. The results shown in section 4 illustrate the behavior of the new indices. Fi-
nally, some conclusions and directions of a future work are given. 

2 Some Basics on ELECTRE-III Method 

The ELECTRE-III method has two steps: first, the construction of an outranking rela-
tion over all the possible pairs of alternatives, and second, the exploitation of this 
outranking relation to solve the ranking decision problem [3].   

2.1 Concordance and Discordance Indices  

Given two alternatives a, b ∈ A, alternative a outranks alternative b if a outperforms 
b on enough criteria of sufficient importance, and a is not outperformed by b by hav-
ing a significantly inferior performance on any single criterion. Each alternative in the 
set of alternatives is compared to all the other members of the set in a pairwise man-
ner to determine their credibility of outranking. So, the outranking relation aSb is built 
on the basis of two tests: the concordance test, sometimes referred to as “the respect 
of the majority”, involving the calculation of a concordance index c(a,b) measuring 
the strength of the coalition of criteria that support the hypothesis “a is at least as 
good as b”; and the discordance test, sometimes referred to as “the respect of minori-
ties”, involving the calculation of discordance indices dj(a,b) measuring the strength 
of evidence provided by the j-th criterion against this hypothesis. 

Each alternative a∈A is evaluated on set G of n criteria gj, j=1,…,n, where each 
criterion gj is assigned by a DM a weight wj, and three thresholds: indifference thre-
shold qj, preference threshold pj and veto threshold vj, which, in general, can depend 
on the evaluations gj(a). For consistency: 0≤qj≤pj≤vj. We assume, moreover, without 
loss of generality that all the criteria are of the gain type, i.e. the greater the value, the 
better. The weights represent the relative importance of each criterion, which can be 
interpreted as a voting power of each criterion. The weights of criteria do not mean 
substitution rates as in the case of compensatory aggregation operators. 

Given an ordered pair of alternatives (a,b)∈A×A, the outranking relation aSb 
means: “a is at least as good as b”. Calculation of the credibility of outranking ρ(aSb) 
involves a partial concordance index cj(a,b), and a partial discordance index dj(a,b) 
for each criterion gj. The overall concordance index is computed for each ordered pair 
(a,b) of alternatives as follows: ,  ∑ ,                                      (1) 
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where ∑  , and the partial concordance index cj(a,b) is defined as: 
                                

, 1      0     
 .                              2  

The computation of the discordance index takes into account the criteria that disagree 
with the assertion aSb. In this case, each criterion is assigned a veto threshold vj. The 
veto is the maximum difference allowed between the values of a pair of alternatives 
when gj(a)<gj(b). The partial discordance index is defined as follows: 
 

,  1     0    
 .                             3  

The overall concordance and partial discordance indices are then combined to obtain 
a valued outranking relation with credibility ρ(aSb)∈[0, 1] defined by: 

  ,        , , ,     , ∏ ,,∈ , ,   otherwise,                                    (4) 

where J(a,b) is the set of criteria for which , , ,  and the credibility of 
outranking is equal to the overall concordance index when there is no discordant criterion.  

2.2 ELECTRE-III Ranking Procedure  

The exploitation procedure proposed for ELECTRE-III is an iterative distillation al-
gorithm that selects at each step a subset of alternatives, taking into account the pre-
viously established outranking relations. It starts with a value max , ∈ ,  
to compute such a binary relation in A that it is true for a credibility of outranking 
greater than , and false for a credibility of outranking smaller or equal to . This 
yields a crisp outranking relation for which the qualification Q(a) of each alternative 
is computed (i.e. the number of alternatives which are outranked by a minus the num-
ber of alternatives which outrank a). This leads to the generation of a set of alterna-
tives with the greatest qualification called the first distillate and denoted by D1. 

If D1 contains only one alternative, the procedure is repeated in A\D1. Otherwise, the 
same procedure but with a smaller λ is applied inside D1 to obtain the second distillate 
D2; if D2 result in a singleton, the procedure is repeated again in D1\D2 (except if the latter 
is empty); otherwise, it is applied inside D2 repeatedly until D1 is completely used up, 
before starting with A\D1. Notice that it may happen that two or more alternatives belong 
to one distillate because they have the same qualification and neither of them can be 
ranked better or worse than others. In this case, the alternatives are said to be indifferent 
and are assigned to the same ranking position. This procedure, which yields a first com-
plete preorder O↓ is called the descending distillation chain. 
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A second complete preorder, O↑, is obtained by an ascending distillation chain, in 
which the alternatives having the smallest qualification are first retained.  A final 
partial pre-order O is then built as the intersection of the two complete pre-orders, O↓ 
and O↑. The resulting ranking is a partial preorder, i.e. for any two alternatives from 
set A, one may be preferred over the other, or they may be indifferent, or they may be 
incomparable. The incomparability of two alternatives occurs when one of these al-
ternatives, say a, is ranked higher than the other alternative, say b, in O↓ (or O↑), and b 
is ranked higher than a in O↑ (or O↓).  

The result of this exploitation stage is partial preorder O that establishes a preference 
structure on the set of alternatives A. For each possible pair of alternatives, it assigns one 
of the following four binary relations {P, P−, I, R}, having the following meaning: 

 
• a P b: a is preferred to b • a I b: a is indifferent to b 

• a P− b: b is preferred to a • a R b: a is incomparable to b 

3 Concordance and Discordance Indices for a Hierarchical 
Structure of Criteria 

We are considering a hierarchical structure of criteria. An example of this structure is 
shown in Figure 1. The main goal criterion of the DM is placed in the root of the hie-
rarchy tree. The leaves of the hierarchy tree, at the lowest level, are called elementary 
criteria and correspond to the most specific criteria. The tree nodes between the root 
criterion and the elementary criteria are called intermediate criteria or sub-criteria 
defined on the basis of other intermediate or elementary criteria directly descending 
from them. Different levels of intermediate criteria can be considered. Each criterion 
from a subset of criteria having a common predecessor in the tree has a weight to 
indicate its relative importance with respect to other criteria in the subset. 

 

Fig. 1. A hierarchy tree of criteria 

We assume that the original ELECTRE-III method is applied to aggregate evaluations 
of alternatives on the elementary criteria. For example, taking into account the hierarchy 
tree from Fig. 1, the original ELECTRE-III it is applied for subsets of elementary criteria 
separately: {g1.1.1, g1.1.2}  and {g1.2.1, g1.2.2, g1.2.3}.  The results of this application are 
partial preorders O1.1 and O1.2 , which correspond to evaluations of the considered alterna-
tives on the parent criteria g1.1 and g1.2, respectively. Then, in order to get the ranking of 
alternatives with respect to the goal criterion g1, one has to aggregate their evaluations on 
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criteria g1.1 and g1.2, i.e. to aggregate the partial preorders O1.1 and O1.2. The original 
ELECTRE-III can only deal with evaluations of alternatives on criteria, that are complete 
preorders, and thus it has to be adapted to aggregation of partial preorders.  

In the following sub-sections, we propose a new method for calculation of partial 
concordance and discordance indices for a partial preorder induced by a j-th sub-
criterion belonging to a subset of sub-criteria with a common predecessor. This partial 
preorder is composed of the four binary relations P, P−, I, R. Thus, considering any 
ordered pair of alternatives (a,b)∈A×A in this preorder, we will have to answer the 
question how each of these binary relations translates to values of cj(a,b) and dj(a,b). 

Preference and Indifference Relations, P and I. The first situation we consider is 
when a is strictly preferred or indifferent to b in a partial preorder Oj. Remember that 
the concordance index measures the support to the outranking relation defined as “a is 
at least as good as b”   . Since S=I∨P, both preference aPb and indifference aIb 
relations in Oj, give evidence that Oj clearly supports this claim. Therefore, the value 
of partial concordance index is set to 1: 1  1.  

(5) 
(6) 

According to the previous rationale, when aPb and aIb in Oj, we set the partial dis-
cordance index to 0:  0  0 

(7)  
(8) 

Inverse Preference Relation, P−. When b is preferred over a in a partial preorder Oj, 
then this fact contradicts the outranking relation .  In other words, aP−b is incom-
patible with aSb, and thus the partial concordance index is set to 0: 0. 

(9) 

However, the statement of discordance is not so direct. Having aP−b in Oj, the 
strength of the opposition of Oj against aSb depends on the number of alternatives 
“separating” b from a in Oj. According to this rationale, the partial discordance index ,  will be equal to 0 when the difference between the number of alternatives 
preferred to a and to b is smaller or equal than a veto threshold  (Eq. 10), and ,  will be equal to 1 when this difference is greater than the veto  (Eq. 11):   Γ Γ , 0, (10)   Γ Γ , 1, (11) 

where Γ  is the number of alternatives preferred to a, and Γ  is the number of al-
ternatives preferred to b in Oj. Let us consider an example of Oj shown in Figure 2. Based 
on this partial preorder, one can state the relations for all possible pairs of alternatives, as 
shown in Table 1. 

Considering n alternatives in the partial preorder, and taking into account that each 
alternative is indifferent with itself, the veto threshold must be in the range  0  1. 
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Fig. 2. Partial preorder O1 

Table 1. Matrix of preference relations in preorder O1 

 a b c d e f g  
a I P- R R R R R  1 
b P I P P P P P  0 
c R P- I I P P P  1 
d R P- I I P P P  1 
e R P- P- P- I P P  3 
f R P- P- P- P- I R  4 
g R P-  P- P- P- R I  4 

 

Incomparability Relation, R. When in partial preorder Oj, alternative a is incompar-
able with alternative , then it is impossible to state whether aPb or aIb or aP−b, thus, 
the partial preorder gives no clear support to the outranking hypothesis. In this case, 
we will take into account additional information about the alternatives  and , given 
by the function  Γ  , which indicates how many other alternatives are preferred to a 
or b. If the difference between the values of  Γ  and Γ  was negative or close to 
0, then this should enforce the conviction that aRb could rather turn to aPb or aIb,  
than to aP−b. Otherwise, if the difference between the values of  Γ  and Γ  was 
positive, then this should enforce the conviction that aRb could rather turn to aP−b, 
than to aPb or aIb.  According to this rationale, and relating the difference  Γ
Γ   to the veto threshold , two situations can be distinguished: 

 

Γ Γ , δ ,0  
(12) 

Γ Γ ,  δ ,0  
(13) 

The first situation (Eq. 12) corresponds to the belief that aRb could turn to aPb or aIb, 
because the difference between the number of alternatives preferred to a and the 
number of alternatives preferred to b is not as big as the veto threshold . In this situ-
ation, the partial concordance index is set to a constant value  ∈[0,1] plus a cor-
recting factor δ , , while keeping the partial discordance equal to 0. In the exam-
ple from Figure 2, assuming >1, this situation happens to alternative a compared to 
alternatives c, d, e, f, g (see the values of Γ   in Table 1).  

The second situation (Eq. 13) corresponds to the belief that aRb could turn to aP−b, 
because the difference between the number of alternatives preferred to a and the 
number of alternatives preferred to b is bigger than the veto threshold . In this situa-
tion, the partial discordance index is set to a constant value ∈[0,1] plus a correcting 
factor δ , , while keeping the partial concordance index equal to 0. In the exam-
ple from Figure 2, assuming >1, this situation happens to alternatives e, f, g  
compared to alternative a.  

Let us pass to explanation of  , , δ  and δ . Considering that aRb could turn 
with an equal probability to aPb, aIb, aP−b, and that S=I∨P, we conclude that only  
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two of the three possible relations confirm S. Thus, there is 2/3 chance that aRb would 
confirm aSb. Therefore, we propose to assign  the value 2/3 (Eq. 14). Analogously, 
we propose to assign  the value 1/3 (Eq. 15).   2/3 δ , , (14)   1/3 δ , . (15) 

The rationale for adding correcting factors δ  and δ  to the above formulas is 
founded on a premise that the partial concordance and discordance indices in these 
two situations should depend on the magnitude of the difference Γ Γ .  

In the example shown in Figure 2, alternative a is incomparable with alternatives c, 
d, e, f and g, but the number of alternatives preferred to a is much less than the num-
ber of alternatives preferred to f and g (1 vs. 4) while the number of alternatives pre-
ferred to a is the same as the number of alternatives preferred to c and d (1 vs. 1). This 
fact should reinforce cj(aRf) and cj(aRg), compared to cj(aRc) and cj(aRd). 

For this reason, the correcting factors δ  and δ  are introduced to slightly in-
crease or decrease the base partial concordance  or discordance  of aRb, de-
pending on the value of the difference Γ Γ .   for the Partial Concordance Index. We establish the following logical condition 
for concordance : “If alternative a is incomparable to alternatives b and d in a 
partial preorder Oj, and Γ Γ Γ Γ , then   should be 
greater than ”. According to this condition, for each pair (a,b)∈A×A, such 
that aRb and  Γ Γ  in Oj, we propose: 

 δ , Γ Γ2 , (16) 

where n is the number of alternatives in set A, and 2 is subtracted from n in the deno-
minator because there are 2 alternatives (a and b) that are indifferent with a and b, 
respectively. 

The value    has been introduced to control the maximum degree of change 
permitted to the original partial concordance index for incomparability. We set  to 
0.25, so that 0.25 δ ,  0.25  and  0.42 0.92.  for the Partial Discordance Index. We establish the following logical condition 
for : “If alternative a is incomparable to alternatives b and d in a partial 
preorder Oj, and  Γ Γ Γ Γ , then   should be greater 
than ”. According to this condition, for each pair (a,b)∈A×A, such that aRb 
and Γ Γ  in Oj, we propose: 

 δ ,  Γ Γ 2  
(17) 

Again, the value    is controlling the maximum degree of change permitted to the 
original partial discordance index for incomparability. Setting  to 0.25, we get 0.25 δ ,  0.25  and  0.08 0.58. 
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4 Analysis of Partial Concordance and Discordance Indices 

In this section, we investigate how the partial concordance and discordance indices depend 
on the values of the parameters  and . Two kinds of analysis have been performed: (1) 
fixing the parameter  to 0.25 and observing the changes due to different veto thresholds 

; (2) fixing the veto threshold  to 2 and observing the changes due to .  
To facilitate the comparison between different configurations of  and , we have 

considered a set of consecutive cutting levels for the values of the partial concordance 
and discordance indices. Values equal or above the threshold are changed to 1 and those 
below to 0. In this way, we get 0-1 matrices showing which pairs of alternatives are in 
partial concordance or discordance with aSb. A graphical representation of the number of 
pairs getting 1 will permit to compare different configurations. This kind of analysis 
permits to draw some preliminary conclusions on behavior of each of the measures pro-
posed. A similar study of the integral behavior of the generalized ELECTRE-III method 
is left for a future work. 

The tests have been performed for three different case studies, including a different 
number of alternatives with a different organization of the partial preorder (different 
relations of incomparability, preference and indifference). 

The first case study concerns set A = { a, b, c, d, e, f, g } of alternatives, structured 
in a partial preorder O2  with two branches, as shown in Figure 3. Suppose that this 
partial preorder has been generated with ELECTRE-III for a subset of elementary 
criteria. The corresponding preference relations are given in Table 2. 

 

4.1 Veto Threshold Test 

In this test we study the behavior of partial concordance and discordance indices 
when the veto threshold  v  changes, while the value of   = 0.25. 

Figure 4 and Figure 5 present the number of pairs with a partial concordance (resp. 
discordance) above a cutting level. Four veto thresholds are considered, taking into 
consideration different cutting levels.  

These results indicate that the concordance index increases when veto is increasing. 
This is due to the fact that a higher veto threshold involves a higher number of incompa-
rability relations interpreted as P or I, increasing the support to concordance, instead of 
discordance. For the same reason, the discordance index decreases with the increase of 
the veto.  

 

Fig. 3. Partial preorder O2 for case 1 

Table 2. Matrix of preference relations in preorder O2 

 a b c d e f g  
a I R P- R R P R 1 
b R I P- P P- P P 2 
c P P I P P P P 0 
d R P- P- I P- P P 3 
e R P P- P I P P 1 
f P- P- P- P- P- I P- 6 
g R P- P- P- P- P I 4 
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Fig. 4.  test for partial concordance in O2 

 

Fig. 5.  test for partial discordance in O2 

 
Comparing both figures, we observe that the effect on the number of pairs of alter-

natives with discordance is higher than on the number of pairs with concordance 
when the veto is increasing. Veto is not only affecting the incomparability relations R, 
but also the situations of P−. In case of incomparability (Eq. 12), differences in the 
partial concordance values are observed for different veto thresholds until the cutting 
level equal to 0.65. Above this value, the behavior is independent of the veto because 
we use (Eq. 13). This is not the case of discordance, where there is a fixed difference 
due to P− (Eq. 10-11). 

4.2 Test for the Parameter α  

In this test, we compare the values of partial concordance and discordance indices for 
three different values of α. The veto threshold is fixed to  = 0, because for higher 
values of veto the number of pairs of alternatives that enter the situation of discor-
dance is low in this case study. From the results displayed in Figure 6 and Figure 7, 
we observe that the number of pairs reaching value 1 is more diversified when alpha 
is high (α 0.25), having a smooth decrease in function of the cutting level. For α 0, as the partial concordance for incomparability is always set to  0.67, the 
partial concordance index has only three possible values (0, 0.67 and 1); hence, the 
decrease of this function is much more steep. This tendency is also observed in the 
partial discordance index. 

 

Fig. 6. α test for partial concordance in O2  
 

Fig. 7. α test for partial discordance in O2 
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4.3 Comparative Analysis for 3 Case Studies 

To complete this analysis, two other case studies have been considered. The partial 
preorders (O3 and O4) with different depth and structure, as shown in Figures 8 and 9. 
To check if the behavior of the indices is stable in the different case studies, a correla-
tion of the results has been measured. We have taken the number of pairs of alterna-
tives with the partial concordance index above a cutting level (changing from 0.5 to 
0.9) for  = 0.25 and  = 2. The Pearson correlation on the values obtained for the 
three case studies has been calculated. The same analysis has been done for the partial 
discordance. The correlation values obtained are shown in Tables 3 and 4. 
 

 

Fig. 8. O3 for case 2 Fig. 9. O4 for case 3 

Table 3. Partial concordances correlations 

Corr. O1 O2 O3

O1 1 0.99 0.98 
O2 0.99 1 0.99 
O3 0.98 0.99 1 

 

Table 4. Partial discordances correlations 

Corr. O1 O2 O3 

O1 1 0.99 1 
O2 0.99 1 0.99 
O3 1 0.99 1 

 

We can observe very high correlation factors for the three case studies. This is an 
indication of the high robustness of the measures proposed, regarding the structure 
and number of alternatives in the partial preorder. 

5 Conclusions and Future Work 

The well-known ELECTRE family of MCDA methods based on outranking consists of 
two main steps: construction of the outranking relation and the exploitation of this rela-
tion. ELECTRE methods have been widely considered as an effective and efficient deci-
sion aiding tool in real-world multiple criteria decision problems where criteria are con-
sidered at the same level. Many real-world decision problems involve, however, a hierar-
chical structure of the family of criteria, distinguishing different levels of generality. 

In this work, we have generalized the ELECTRE-III method in order to deal with a 
family of criteria having a hierarchical structure presented in the form of a tree. The 
leaves of the tree are elementary criteria considered as pseudo-criteria, and higher level 
criteria are sub-criteria aggregating some lower level (sub- or elementary) criteria, until 
the general goal which is the root of the tree, where the considered alternatives should be 
ranked from the best to the worst. To manage the propagation of the outranking relation 
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from the leaves to the root, we adapted the partial concordance and discordance indices 
to consideration of partial preorders induced by sub-criteria on the considered set of al-
ternatives. They are used in concordance and non-discordance tests when constructing 
outranking relations at different levels of the tree. To check the robustness of the pro-
posed definitions with respect to different structures of the partial preorders and some 
adopted parameters, we performed a simulation study which gave a positive response. 
This result motivates us to continue the study of the behavior of the generalized 
ELECTRE-III method in the context of real-world applications, where the goal is not 
obtaining an overall measure of the performance but to discover the preference relations 
between the objects. 
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Abstract. LibQUAL+ model is a web-based survey to measure the li-
brary service quality according to the users’ perceptions. Although it
is the most popular method, it presents two major drawbacks: (i) it is
devised on cardinal scale to measure the library service quality (from
1 to 9), but, due to the subjectivity, impression and vagueness of the
human beings when attempting to qualify phenomena related to human
perception, it seems natural that they use words in natural language (lin-
guistic terms) instead of numerical values to provide their preferences,
and (ii) it considers that all the users’ opinions on the library services are
equally important, however, some users should be more influential than
others in some questions as they do not play equal roles in measuring
library service quality. The aim of this paper is to present an extended
LibQUAL+ model based on fuzzy linguistic information overcoming the
above drawbacks.

Keywords: Academic library, quality evaluation, LibQUAL+, fuzzy lin-
guistic modeling.

1 Introduction

The evaluation of academic libraries is a topic and an activity of importance in
all countries with established library services. Academic libraries play a notable
role in the educational progress and their evaluation is essential to improve their
services as an important part of a learning environment [1]. Since the mission
of an academic library is to resolve user’s expectations, one of the appropriate
evaluation methods is the based on the feedback or comments point of the users.
Academic libraries are service institutions, and better service will be provided
if the nature and needs of users are known. According to user comments, ob-
served weaknesses and strengths can be understood and, in order to eliminate
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defects and develop strengths, proposals can be provided to this end. Further-
more, focusing on users in the academic libraries and the efforts to resolve their
expectations, it makes the academic libraries more dynamic [2].

One of the most important methods for evaluating the library service quality
using user’s perceptions is the survey method, because detailed information is
provided about user comments, it makes clear the concept of service, it shows
the problems, and it offers possible solutions [2]. Among the survey methods,
LibQUAL+ model [3] is the most popular and the best-known one. It was de-
veloped in the US in order to collect data on the quality of library services.
The aim of its designers was to develop a tool that would help libraries better
understand their user’s perceptions of service quality and to use this informa-
tion in planning their operations. The survey data allow identification of areas
in which service levels should be improved, and they have also been used to
identify best practices and reallocate resources accordingly [5]. Since 2000, more
than 1.100 libraries have participated in LibQUAL+, including college and uni-
versity libraries, community college libraries, health sciences libraries, academic
law libraries, and public libraries [2,4,5,6,7,8].

However, the LibQUAL+ model has some drawbacks that should be ad-
dressed. On the one hand, users answer each question giving a score from one
to nine on a 9-points Likert scale [9]. Most of the criticism about scale based on
measurement is that scores do not necessarily represent user’s preference. This is
because respondents have to internally convert preference to scores and the con-
version may introduce misrepresentation of the preference being captured [10].
In view of the fact that user service evaluation depends largely on what users
perceived, linguistics judgement is a good option in avoiding such inconvenience.
The use of words in natural language rather than numerical values is, in general,
a less specific, more flexible, direct, realistic, and adequate form to express judg-
ments. Thus, linguistic terms as for example, “satisfied”, “fair”, “dissatisfied”,
are regarded as the natural representation of the preference or judgment. These
characteristics indicate the applicability of fuzzy set theory [11] in capturing
the user’s preference, which aids in measuring the ambiguity of concepts that
are associated with human being’s subjective judgment. Since the evaluation is
resulted from the different evaluator’s view of linguistic variables, its evaluation
must therefore be conducted in an uncertain, fuzzy environment. On the other
hand, LibQUAL+ model considers that all the users have the same importance
in evaluating each question on the library service levels, but in the quality eval-
uation of library services, the information handled is not equally important, i.e.,
the framework is heterogeneous. For example, when a group of users expresses
its opinions on the community space for group learning, its assessments must
not be considered with equal relevance, given that, there will be users, such as
students, with more knowledge on the community space for group learning than
others, such as professors, and therefore, all the opinions shall not be equally
reliable; although a final and global assessment must be made using the initial
and individual assessments.
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The aim of this paper is to present an extended LibQUAL+ model based
on fuzzy linguistic information, which overcomes the above drawbacks of the
LibQUAL+ model, to evaluate the quality of academic libraries according to
user’s satisfaction. To do so, our proposed model uses the ordinal fuzzy linguistic
modeling [12] to represent the user’s perceptions and takes into account that the
users’ opinions on the library service levels are not equally important. To do
so, tools of computing with words based on the linguistic aggregation operators
LOWA [12] and LWA [13] to compute the quality assessments are used.

The rest of this paper is set out as follows. In Section 2, the tools used for de-
veloping our model are presented. Section 3 describes the extended LibQUAL+
model based on fuzzy linguistic information to evaluate the quality of academic
libraries. Finally, some conclusions are drawn in Section. 4.

2 Preliminaries

In this section, the LibQUAL+ model is described and the fuzzy linguistic ap-
proach for computing with words, which is used to design our fuzzy linguistic
extended LibQUAL+ model, is presented.

2.1 The LibQUAL+ Model

In 1999, a major project to develop a standardized measure of library service
quality was undertaken by the Association of Research Libraries (ARL) in collab-
oration with Texas A&M University. The result of this project was LibQUAL+
[3], which is an extension of the SERVQUAL (for SERVice QUALity) tool [14].
SERVQUAL has been carefully tested and widely accepted after a dozen years
of application in the private sector and elsewhere. Grounded in the gap theory
of service quality, the singular percept of SERVQUAL is that “only customers
judge quality; all other judgments are essentially irrelevant” [15]. According to
the gap model, service quality is the gap between customer’s expectations and
perceptions. When experiences exceed expectations, the quality of the service is
high, and vice versa [5]. Service quality is conceptualized as a gap between cus-
tomers’ minimum/desired expectations of service quality and their perceptions
of the service quality actually received. A positive gap indicates that the ser-
vice performance has exceeded customers’ expectations, whereas a negative gap
indicates that the service performance has fallen short of the expected service.
Gap models are intuitively appealing to many research consumers [16] since its
interpretation is straightforward. For instance, if the perceived rating on a item
is below the minimum, it clearly indicates that the subject the item evaluates
needs improvement. On the other hand, if the perceived rating on an item is very
above the desired level of service, it may suggest that the item is not a concern
to consumers.

Following that idea, LibQUAL+ is a survey administered by the ARL to
measure library user’s perception of library service quality and to help libraries
identify service areas needing improvement [3]. To do so, the LibQUAL+ survey
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is composed of 22 core questions that measure perceptions concerning three
dimensions of library service quality [4]:

– Affect of service. This dimension assesses empathy, responsiveness, assur-
ance, and reliability of library employees. It includes the following nine ques-
tions:

• q1: Employees who instill confidence in users.
• q2: Giving users individual attention.
• q3: Employees who are consistently courteous.
• q4: Readiness to respond to users’ questions.
• q5: Employees who have the knowledge to answer user questions.
• q6: Employees who deal with users in a caring fashion.
• q7: Employees who understand the needs of their users.
• q8: Willingness to help users.
• q9: Dependability in handling users’ service problems.

– Library as place. This dimension measures the usefulness of space, the sym-
bolic value of the library, and the library as a refuge for word of study. It
includes the following five questions:

• q10: Library space that inspires study and learning.
• q11: Quiet space for individual activities.
• q12: A comfortable and inviting location.
• q13: A getaway for study, learning, or research.
• q14: Community space for group learning and group study.

– Information control. This dimension measures how users want to interact
with the modern library and include scope, timeliness and convenience, ease
of navigation, modern equipment, and self-reliance. It includes the following
eight questions:

• q15: Making electronic resources accessible from my home or office.
• q16: A library Web site enabling me to locate information on my own.
• q17: Printed library materials I need for my work.
• q18: The electronic information resources I need.
• q19: Modern equipment that lets me easily access needed information.
• q20: Easy-to-use access tools that allow me to find things on my own.
• q21: Making information easily accessible for independent use.
• q22: Print and/or electronic journal collections I require for my work.

For each question, respondents are asked to indicate their minimum acceptable
service level, their desired service level, and the perception of the actual service
provided by the library by giving a score from one to nine. The minimum service
level and the desired service level reflect the importance of that service to the
user: a low level means that it is not considered very important, and vice versa
– when the minimum or desired service level receive high scores, the issue is
important. An adequacy gap (the perceived quality in relation to the accepted
minimum level) and a superiority gap (the perceived quality in relation to the
desired service) are determined based on the answers [5].
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2.2 A Fuzzy Linguistic Approach for Computing with Words

Many problems present fuzzy and vague qualitative aspects (decision making,
risk assessment, information retrieval, etc.). In such problems, the information
cannot be assessed precisely in a quantitative form, but it may be done in a
qualitative one, and thus, the use of a linguistic approach is necessary. For ex-
ample, when attempting to qualify phenomena related to human perception, we
are often led to use words in natural language instead of numerical values. The
fuzzy linguistic approach is an approximate technique appropriate to deal with
fuzzy and vague qualitative aspects of problems. It models linguistic information
by means of linguistic terms supported by linguistic variables [17,18,19], whose
values are not numbers but words or sentences in a natural or artificial language.

The ordinal fuzzy linguistic approach [12,13] is a very useful kind of fuzzy
linguistic approach used for modeling the computing with words process as well
as linguistic aspects of problems. It facilitates the fuzzy linguistic modeling very
much because it simplifies the definition of the semantic and syntactic rules.
It is defined by considering a finite and totally ordered label set S = {si},
i ∈ {0, . . . , T }, in the usual sense, i.e., si ≥ sj if i ≥ j, and with odd cardinality.
Typical values of cardinality used in the linguistic models are odd values, such
as 7 or 9, with an upper limit of granularity of 11 or no more than 13, where the
mid term represents an assessment of “approximately 0.5”, and the rest of the
terms being placed symmetrically around it. The semantics of the linguistic term
set is established from the ordered structure of the label set by considering that
each linguistic term for the pair (si, sT −i) is equally informative. For example,
we can use the following set of nine labels to provide the user evaluations: {N =
None,EL = Extremely Low, V L = V ery Low,L = Low,M = Medium,H =
High, V H = V ery High,EH = Extremely High, T = Total}.

An advantage of the ordinal fuzzy linguistic approach is the simplicity and
quickness of its computational model. It is based on the symbolic computation
[12,13] and acts by direct computation on labels by taking into account the or-
der of such linguistic assessments in the ordered structure of linguistic terms.
This symbolic tool seems natural when using the fuzzy linguistic approach, be-
cause the linguistic assessments are simply approximations which are given and
handled when it is impossible or unnecessary to obtain more accurate values.
Usually, the ordinal fuzzy linguistic model for computing with words is defined
by establishing (i) a negation operator, Neg(si) = sj | j = T − i, (ii) comparison
operators based on the ordered structure of linguistic terms: Maximization oper-
ator: MAX(si, sj) = si if si ≥ sj ; and Minimization operator: MIN(si, sj) = si
if si ≤ sj , and (iii) adequate aggregation operators. In the following, we present
two aggregation operators based on symbolic computation to complete the or-
dinal fuzzy linguistic computational model.

The LOWA Operator. An important aggregation operator of ordinal lin-
guistic values based on symbolic computation is the LOWA operator [12]. The
Linguistic Ordered Weighted Averaging (LOWA) is an operator used to aggregate
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non-weighted ordinal linguistic information, i.e., linguistic information values
with equal importance [12].

Definition 1. Let A = {a1, . . . , am} be a set of labels to be aggregated, then the
LOWA operator, φ, is defined as:

φ(a1, . . . , am) = W ·BT = Cm{wk, bk, k = 1, . . . ,m}
= w1 � b1 ⊕ (1− w1)� Cm−1{βh, bh, h = 2, . . . ,m} , (1)

where W = [w1, . . . , wm] is a weighting vector, such that, wi ∈ [0, 1] and Σiwi =
1. βh = wh/Σ

m
2 wk, h = 2, . . . ,m, and B = {b1, . . . , bm} is a vector associated to

A, such that, B = σ(A) = {aσ(1), . . . , aσ(m)}, where, aσ(j) ≤ aσ(i) ∀ i ≤ j, with
σ being a permutation over the set of labels A. Cm is the convex combination
operator of m labels and if m = 2, then it is defined as:

C2{wi, bi, i = 1, 2} = w1 � sj ⊕ (1 − w1)� si = sk , (2)

such that, k = min{T , i + round(w1 · (j − i))}, sj , si ∈ S, (j ≥ i), where
“round” is the usual round operation, and b1 = sj , b2 = si. If wj = 1 and
wi = 0, with i �= j, ∀i, then the convex combination is defined as: Cm{wi, bi, i =
1, . . . ,m} = bj.

The LOWA operator is an “or-and” operator [12] and its behavior can be con-
trolled by means of W . In order to classify OWA operators with regards to their
localization between “or” and “and”, Yager [20] introduced a measure of orness,
associated with any vector W : orness(W ) = 1

m−1

∑m
i=1(m− i)wi. This measure

characterizes the degree to which the aggregation is like an “or” (MAX) opera-
tion. Note that an OWA operator with orness(W ) ≥ 0.5 will be an orlike, and
with orness(W ) < 0.5 will be an andlike operator.

An important question of the LOWA operator is the determination of the
weighting vectorW . In [20], it was defined an expression to obtainW that allows
to represent the concept of fuzzy majority [21] by means of a fuzzy linguistic
nondecreasing quantifier Q [22]:

wi = Q(i/n)−Q((i− 1)/n), i = 1, . . . , n . (3)

When a fuzzy linguistic quantifier Q is used to compute the weights of LOWA
operator φ, it is symbolized by φQ.

The LWA Operator. Another important aggregation operator of ordinal lin-
guistic values is the Linguistic Weighted Averaging (LWA) operator [13]. It is
based on the LOWA operator and is defined to aggregate weighted ordinal fuzzy
linguistic information, i.e., linguistic information values with not equal impor-
tance.

Definition 2. The aggregation of a set of weighted linguistic opinions, {(c1, a1),
. . . , (cm, am, )}, ci, ai ∈ S, according to the LWA operator, Φ, is defined as:

Φ[(c1, a1), . . . , (cm, am)] = φ(h(c1, a1), . . . , h(cm, am)) , (4)
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where ai represents the weighted opinion, ci the importance degree of ai, and h
is the transformation function defined depending on the weighting vector W used
for the LOWA operator φ, such that, h = MIN(ci, ai) if orness(W ) ≥ 0.5, and
h = MAX(Neg(ci), ai) if orness(W ) < 0.5.

We should point out that the LOWA and LWA operators are the basis of the
fuzzy linguistic extended LibQUAL+ model. We have chosen these operators
due to the following reasons:

– Both operators are complementary (the LWA operator is defined from the
LOWA operator) and this simplifies the design of the evaluation model.

– Both operators act by symbolic computation and, therefore, linguistic ap-
proximation processes are unnecessary and this simplifies the processes of
computing with words.

– The concept of fuzzy majority represented by linguistic quantifiers acts in
their processes of computation and, in such a way, the assessments on aca-
demic libraries are obtained according to the majority of evaluations pro-
vided by the users.

3 An Extended LibQUAL+ Model Based on Fuzzy
Linguistic Information

In this section, we present the extended LibQUAL+ model based on fuzzy lin-
guistic information to evaluate the quality of academic libraries according to
user’s satisfaction. It is developed with the aim of solving the drawbacks of the
LibQUAL+ model shown in Section 1. To do so, we define a quality evalua-
tion model of academic libraries which presents two elements: (i) an evaluation
scheme that contains the twenty-two questions relating to three dimensions of
library service quality, and (ii) a computation method to generate quality as-
sessments of academic libraries and to obtain their weaknesses and strengths.

3.1 Evaluation Scheme

The evaluation scheme is based on a set of twenty-two questions relating to
three dimensions of library service quality: (i) affect of service, which relates to
user interactions with, and the general helpfulness and competency of academic
library staff, (ii) library as a place, which deals with the physical environment of
the academic library as a place for individual study, group work, and inspiration,
and (iii) information control, which relates to whether users are able to find the
required information in the academic library in the format of their choosing. It
presents the following characteristics:

– It is user driven. The evaluation scheme necessarily requires the inclusion
of questions about library service quality easily understandable to any user
rather than questions that can be measures objectively independently of
users. As the basis of our model is the LibQUAL+ model, we use the same
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twenty-two questions relating to the three dimensions of library service qual-
ity (see Section 2.1), which are easily understandable to any user. This num-
ber of questions is not excessive in order to help users in understanding it
and avoiding confusion. It is due to long and complex evaluation schemes
cause user idleness and limit their own application possibilities.

– It is weighted. The users of the academic library do not play equal roles in
measuring library service quality: i.e., some users should be more influential
than others in some questions as it is not always valid that all group of users
have equal importance with respect to the decision being made. This is be-
cause the degree of relevancy, knowledge, and experience may not be equal
among them. For example, the student’s opinion on the community space
for group learning and group study should be more important that the pro-
fessor’s opinion. Therefore, there must be an allowance for such differences
in weight or importance as the framework is heterogeneous.

3.2 Computation Method

We have designed a computation method to generate quality assessment in aca-
demic libraries that has two main characteristics:

– It is a user-centered computation method. The quality assessment in aca-
demic libraries is obtained from individual linguistic judgments provided by
their users rather than from assessments obtained objectively by means of
the direct observation of the academic libraries characteristics.

– It is a majority guided computation method. The quality assessments are
values representative of the majority of individual judgments provided by
the users of the academic library. The aggregation to compute the quality
assessments is developed by means of the LOWA and LWA operators.

First, a quality evaluation questionnaire based on the LibQUAL+ model is de-
fined, which consists of twenty-two questions relating to three dimensions of
library service quality described in Section 2.1. Users are asked for impressions
about the twenty-two questions according to minimum service level they are
willing to accept, desired service level they would like to receive, and perceived
performance level, that is, actual level of service they perceive to have been ren-
dered. The minimum service level, the desired service level, and the perceived
performance level behind each question are rated on a linguistic term set S.
For instance, the linguistic term set presented in Section 2 can be used. We
use fuzzy linguistic variables to represent user’s opinions by mean of linguis-
tic labels because they are more easily understood by the users than numerical
ones. In addition, we assume that each user does not have the same importance
in the evaluation scheme. It is assigned a relative linguistic importance degree,
I(el, qi) ∈ S, for each user, el, on each question, qi. This importance degree could
be obtained from a set of experts or the staff members of the academic library
and it may be different for each academic library.

Once the group of users, {e1, . . . , eL}, have filled all the questionnaires for
a given academic library, the model calculates the quality assessments of the
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academic library and obtains its weaknesses and strengths using the linguistic
aggregation operators LWA and LOWA in the following steps:

– For each question, qi, its global quality assessment of the minimum service
level, MSLi, its global quality assessment of the desired service level, DSLi,
and its global quality assessment of the perceived performance level, PPLi,
are obtained by aggregating the evaluation judgments provided by the group
of users on the question, qi, by means of the LWA operator Φ:

MSLi = ΦQ((I(e1, qi), e1(q
MSL
i )), . . . , ((I(eL, qi), eL(q

MSL
i ))) ,

DSLi = ΦQ((I(e1, qi), e1(q
DSL
i )), . . . , ((I(eL, qi), eL(q

DSL
i ))) ,

PPLi = ΦQ((I(e1, qi), e1(q
PPL
i )), . . . , ((I(eL, qi), eL(q

PPL
i ))) ,

(5)

where el(q
MSL
i ) ∈ S is the minimum service level provided by the user el on

question, qi, el(q
DSL
i ) ∈ S is the desired service level provided by the user

el on question, qi, el(q
PPL
i ) ∈ S is the perceived performance level provided

by the user el on question, qi, and I(el, qi) ∈ S is the linguistic importance
degree of the user, el, on question, qi. Therefore, MSLi, DSLi and PPLi,
are the linguistic measures that represents the minimum service level, the
desired service level and the perceived performance level, respectively, with
respect to question, qi, according to the majority (represented by the fuzzy
linguistic quantifier Q) of linguistic evaluation judgments provided by the
group of users.
Then, gap analysis is done for each item. According to LibQUAL+ model,
the minimum and the desired scores establish the boundaries of a zone of
tolerance within which the perceived scores should desirably float. The dif-
ference between the perceived and minimum scores is called the service ad-
equacy gap, and the difference between the desired and perceived scores is
called the service superiority gap. Taking into account these considerations,
it is defined two scores which can obtain the strengths and weaknesses of an
academic library according to the users’ answers:

SAi = J(PPLi)− J(MSLi) ,
SSi = J(PPLi)− J(DSLi) ,

(6)

where SAi is the service adequacy score on question, qi, SSi is the service
superiority score on the question, qi, and

J : S → {0, . . . , T } | J(si) = i, ∀si ∈ S . (7)

The SA is calculated by subtracting the minimum score from the perceived
score on any given question. It is an indicator of the extent to which aca-
demic libraries are meeting the minimum expectations of their users. The
SS is calculated by subtracting the desired score from the perceived score
on any given question and is an indicator of the extent to which academic li-
braries are exceeding the desired expectations of their users. Figure 1 depicts
the three possible cases for gaps SA and SS. The cases when the perceived
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level of service falls out of the zone of tolerance are denoted as SA− and
SS+. SA− means that the academic library is not meeting its users mini-
mum expectations, i.e., the perceived score is lower than the minimum one.
Likewise, SS+ means that the academic library is exceeding its users desired
expectations, i.e., the perceived score is higher than the desired one. There-
fore, SA− can be used to identify academic library functionalities needing
improvement, whereas SS+ is an indicator of the extent to which academic
library functionalities are exceeding the desired expectations of the users.

Fig. 1. Possible cases for gaps SA and SS

– Finally, for the academic library, the following quality assessments are cal-
culated:

• Its quality assessment on the affect of service dimension, ASD, by ag-
gregating the perceived performance level, PPLi, from questions q1 to
q9, by means of the LOWA operator φ:

ASD = φQ(PPL1, . . . , PPL9) , (8)

where ASD is a measure that represents the quality assessment of the
affect of service dimension for the academic library, according to the
majority (represented by the fuzzy linguistic quantifier Q) of linguistic
evaluation judgments provided by the group of users about questions
{q1, . . . , q9}.

• Its quality assessment on the library as place dimension, LPD, by ag-
gregating the perceived performance level, PPLi, from questions q10 to
q14, by means of the LOWA operator φ:

LPD = φQ(PPL10, . . . , PPL14) , (9)

where LPD is a measure that represents the quality assessment of the
library as place dimension for the academic library, according to the
majority (represented by the fuzzy linguistic quantifier Q) of linguistic
evaluation judgments provided by the group of users about questions
{q10, . . . , q14}.

• Its quality assessment on the information control dimension, ICD, by
aggregating the perceived performance level, PPLi, from questions q15
to q22, by means of the LOWA operator φ:

ICD = φQ(PPL15, . . . , PPL22) , (10)
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where ICD is a measure that represents the quality assessment of the
information control dimension for the academic library, according to the
majority (represented by the fuzzy linguistic quantifier Q) of linguistic
evaluation judgments provided by the group of users about questions
{q15, . . . , q22}.

• Its global quality assessment, r, by aggregating the perceived perfor-
mance level, PPLi, from all questions, by means of the LOWA operator
φ:

r = φQ(PPL1, . . . , PPL22) , (11)

where r is a measure that represents the global quality assessment for
the academic library, according to the majority (represented by the fuzzy
linguistic quantifierQ) of linguistic evaluation judgments provided by the
group of users about questions {q1, . . . , q22}.

4 Conclusions

In this paper we have presented an extended LibQUAL+ model based on fuzzy
linguistic information to obtain both the strengths and the weaknesses of the
academic library services according to user satisfaction. Using the ordinal fuzzy
linguistic modeling to represent the user’s perceptions and taking into account
that the users’ opinions on the library service levels are not equally important,
some drawbacks of the LibQUAL+ model have been overcome. Considerable
use has been made of fuzzy set technology to provide the ability to describe the
information by using linguistic label in a way that is particularly user friendly.
Furthermore, we have applied automatic tools of fuzzy computing with words
based on the LOWA and LWA operators to compute quality assessments of
academic libraries. In the future, we will extend the concept of quality to other
new services of the academic libraries, such as Library 2.0.
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7. López-Gijón, J., Ávila-Fernández, B., Pérez, I.J., Herrera-Viedma, E.: The quality
of biomedical academic libraries according to the users. Profesional de la Infor-
mación 19, 255–259 (2010)

8. Thompson, B., Kyrillidou, M., Cook, C.: Library users’ service desires: A
LibQUAL+ study. Library Quarterly 78, 1–18 (2008)

9. Likert, R.: A technique for the measurement of attitudes. Archives of Psychol-
ogy 22, 1–55 (1932)

10. Tsaur, S.H., Chang, T.Y., Yen, C.H.: The evaluation of airline service quality by
fuzzy MCDM. Tourism Management 23, 107–115 (2002)

11. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
12. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: Direct approach processes in group

decision making using linguistic OWA operators. Fuzzy Sets and Systems 79, 175–
190 (1996)

13. Herrera, F., Herrera-Viedma, E.: Aggregation operators for linguistic weighted in-
formation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans 27, 646–656 (1997)

14. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: A multiple-item scale for measuring
consumer perceptions of service quality. Journal of Retailing 64, 12–40 (1988)

15. Zeithaml, V.A., Berry, L.L., Parasuraman, A.: Delivering Quality Services - Bal-
ancing Customer Perceptions and Expectations. The Free Press, New York (1990)

16. Thompson, B., Cook, C., Heath, F.: The LibQUAL+ gap measurement model: the
bad, the ugly, and the good of gap measurement. Peformance Measurement and
Metrics 1, 165–178 (2000)

17. Zadeh, L.A.: The concept of a linguistic variable and its applications to approxi-
mate reasoning. Part I. Information Sciences 8, 199–249 (1975)

18. Zadeh, L.A.: The concept of a linguistic variable and its applications to approxi-
mate reasoning. Part II. Information Sciences 8, 301–357 (1975)

19. Zadeh, L.A.: The concept of a linguistic variable and its applications to approxi-
mate reasoning. Part III. Information Sciences 9, 43–80 (1975)

20. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190
(1988)

21. Kacprzyk, J.: Group decision making with a fuzzy linguistic majority. Fuzzy Sets
Systems 18, 105–118 (1986)

22. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages.
Computer & Mathematics with Applications 9, 149–184 (1983)



Measure of Inconsistency

for the Potential Method

Lavoslav Čaklović�
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Abstract. The inconsistency of the decision maker’s preferences may
be measured as a number of violations of the transitivity rule. If the
intensity of the preference is available, then the incosistency may be
measured by measuring the inconsistency of each cycle of the preference
graph. In the Potential Method, this may be accomplished by mesuring
an angle (degree) between the preference flow and the column space of
the incidence matrix.

In this article a random study is performed to determine the upper
bound for admissible inconsistency. The degree distribution is recognized
as the Gumbel distribution and the upper bound for admissible inconsis-
tency measure is defined as a p-quantile (p = 0.05) of that distribution.

Keywords: decision making, preference graph, inconsistency measure,
condition of order preservation, randomization.

Subject Classifications: 62C25, 90B50, 91B06.

1 Introduction

This paper is about the inconsistency in the decision maker’s input data when it
is in the form of the preferences obtained from pairwise comparisons. Inconsis-
tency measure is a useful information which shows a degree of non-transitivity in
the decision maker’s preferences. The high inconsistency measure may suggests
reconsidering the input again and again if necessary. For the Eigenvalue Method
(EVM), proposed by Saaty [10], the consistency index ci is defined as

ci(A) =
λmax(A)− n

n− 1
,

where A is the positive reciprocal matrix of order n and λmax(A) is the Perron
root of A. It is well-known that ci ≥ 0 and ci(A) = 0 ⇐⇒ A is consistent. A
positive reciprocal matrix A is of admissible inconsistency if

ci(A) ≤ 0.1×mri(n)

� The author thanks to V. Šego and to the referee for valuable comments and sugges-
tions.
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where mri(n) is the mean of the random ci. The random index study in AHP
context was performed by several authors, from Crawford and Williams [4] to
Alonso and Lamata [1]. A nice overview of the results is given in Alonso and
Lamata [1, Table 1, p.449].

The Potential Method (PM) (Čaklović [5]) uses a preference graph to capture
the results of pairwise comparisons. A preference flow F is the non-negative
function defined on the set of arcs which captures the intensity of the preferences.
An example of the preference graph in a voting procedure was considered by
Condorcet [3]. He defined a social preference flow as

FC(u, v) := N(u, v)−N(v, u) (1)

where N(u, v) denotes the number of voters choosing u over v. We say that u is
socially preferred to v if FC(u, v) ≥ 0.

In the graph representation of the preferences, inconsistency is closely related
to non-transitivity and may be defined even for incomplete graphs, which is not
so straightforward for AHP. In simple words, the flow F is consistent if it is
consistent along each cycle c, i.e. if the sum Fc of the algebraic components of
the flow F along each cycle c is equal to zero, see Definition 1 and Theorem 1. In

Fα = 1

A

B

C

D

Fβ = 3

Fγ = 4

Fδ = 2

Fε = 2

Fig. 1. An example of the inconsistent flow. The sum of the flow components along the
cycle CDBC is equal to 2 + 2 + 3 = 7. The flow is consistent along the cycle ABCA.

Figure 1, the flow F is consistent along the cycle ABCA and inconsistent along
the cycle CDBC because the sum Fc along this cycle is equal to 2 + 2 + 3 = 7.
Intuitively, the inconsistency measure of the flow may be defined as the sum∑

cFc over all independent cycles c in the preference graph divided by the 2-
norm ‖F‖2. The exact definition is slightly different: this is the angle between
the flow F and the vector space of all consistent flows, see Definition 3. Please,
note that the notion of the flow consistency, as defined here, is stronger than
pure transitivity. This motivates the search for the upper bound of the admissible
inconsistency of the given flow which is done in Section 4.

Saaty’s inconsistency [10, Saaty] and flow inconsistency are closely related.
There is a theorem which states that a positive reciprocal matrix A = (aij) is
consistent if and only if

aijajk = aik, i, j, k = 1, . . ., n (2)
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Taking the logarithm of this relation, one recognizes the inconsistency condition
4 from Theorem 1 for the flow

F(i,j) := log(aij). (3)

In the stochastic preference approach [6, French, p. 101] the author introduces
a notion of the stochastic preference pab as a probability of choosing a when
offered a choice between a and b. Then, it is easy to show that if the stochastic
preference satisfies the consistency condition

pab
pba

· pbc
pcb

=
pac
pca

(4)

for all a, b, c ∈ V then, it generates a weak preference order on the set of alter-
natives V . If we define a stochastic flow F by

F(b,c) := log
pbc
pcb

, (5)

then, the stochastic preference is consistent if and only if the flow F is consis-
tent1.

Another kind of inconsistency may be considered after the ranking procedure
is over. This is the number of violations of Condition of Order Preservation
(#vcop) introduced in Costa-Vansnick [2]. This number indicates how far from
the measurable value function is the calculated potential. The precise definition
of COP is given in (15). The aim of this article is to investigate the corre-
spondence of #vcop and the flow inconsistency. This is done by performing a
random study inspired by the random index study for EVM.

The paper is organized as follows. In Section 2 we introduce the basic notation,
develop the idea of consistency and give some other equivalent conditions of
consistency.

Section 3 describes the connection of PM with the Geometric Mean, the Or-
dinal value function and the Stochastic preference model. Some elementary facts
about the PM as the social preference are mentioned.

In Section 4 we perform a randomization procedure to determine the admissi-
ble level of the flow inconsistency. The Analytic Hierarchy Process (AHP), more
precisely the Eigenvalue Method (EVM), serves as a model. It is shown that the
empirical distribution of the inconsistency measure deg may be modeled as the
Gumbel distribution. The upper bound for admissible inconsistency is defined as
the 0.05-quantile of the theoretical distribution. The randomization is performed
for complete graphs only because of the possibility to make a comparison with
AHP.

In Section 5 the Condition of Order Preservation (COP) is considered and
the number of violations #vcop is calculated for the random graph and the
random reciprocal matrix. It is shown that the consistency index (ci) is not
correlated with #vcop while the correlation between the random degree deg
and #vcop is very good.

1 Moreover, it may be shown that the corresponding potential X from formula (7) is
a measurable value function which is true for every consistent flow.
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2 Preference Graph

2.1 Consistent Preference Flow

A preference graph is a digraph G = (V,A) where V is the set of nodes and A
is the set of arcs of G. We say that the node a is more preferred than node b,
in notation a � b, if there is an arc (a, b) outgoing from b and in-going to a. A
preference flow is a non-negative real function F defined on the set of arcs. The
value Fα on the arc α is the intensity of the preference on some scale2. For the
arc α = (a, b), Fα = 0 means that the decision maker is indifferent to the pair
{a, b}. In that case the orientation of the arc may be arbitrary.

The incidence matrix A = (aα,v) of the graph is defined as the m×n matrix,
m = CardA, n = CardV , where

aα,v =

⎧⎪⎨⎪⎩
−1, if the arc α leaves the node v

1, if the arc α enters the node v

0, otherwise.

It is more convenient to write aij where i is the index of i-th arc and j is the index
of j-th node. The vector space Rm is called the arc space and the vector space
Rn is called the vertex space. The incidence matrix3 generates an orthogonal
decomposition

N(Aτ )⊕R(A) = Rm (6)

where R(A) is the column space of the matrix A and N(Aτ ) is the null-space
of the matrix Aτ . N(Aτ ) is called the cycle space because it is generated by all
cycles of the graph.

For example, the incidence matrix of the preference graph in Fig. 1 is given
in Table 1 (left). The arcs α, β, γ, δ, ε form the basis of the ars space. In the last
column are the components of the preference flow. Please, note that the cycles
c1 and c2 (the basis of the cycle space) are orthogonal to the columns of the
incidence matrix according to (6). The columns of the incidence matrix span the
space R(A) of the consistent flows.

Table 1. Incidence matrix of the preference graph from Table 1 and the cycle space

nodesn flow

arcsm A B C D F
α −1 1 0 0 1

β 0 −1 1 0 3

γ −1 0 1 0 4

δ 0 1 0 −1 2

ε 0 0 −1 1 2

cycle space

arcsm c1 c2

α 1 0

β 1 1

γ −1 0

δ 0 1

ε 0 1

2 For subjective pairwise comparisons the scale is {0, 1, 2, 3, 4}.
3 And matrix in general.
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Definition 1. A preference flow F is consistent if there is no component of the
flow in the cycle-space.

The following theorem is evident (the proof is left to the reader).

Theorem 1. The following statements are equivalent:
1. F is consistent.
2. F is a linear combination of the columns of the incidence matrix A.
3. There exists X ∈ Rn such that AX = F .
4. The scalar product yτF = 0 for each cycle y, i.e. F is orthogonal to the cycle

space.

We may test the consistency of the given flow F by solving the equation

AX = F . (7)

Definition 2. A solution of the equation AX = F , if it exists, is called the
potential of F .

Evidently, X is not unique because the constant column 1τ = [ 1 · · · 1 ]τ is
an element of the kernel N(A). For the consistent flow the equation (7) may be
rewritten as

Fα = X(a)−X(b), ∀α = (a, b) ∈ A (8)

which means thatX is a measurable value function i.e. it measures the preference
on the interval scale. For the consistent flow it is easy to find a potential X using
a spanning tree of the preference graph (if it is connected). The details are left
to the reader.

PM calculates the weights of the nodes in the following way. If X denotes the
potential of the flow, then the weights w are obtained using the formula

w =
aX

‖aX‖1
(9)

where ‖ · ‖1 represents l1-norm. The exponential function X �→ aX is defined
by the components and a > 1 is a positive constant. Currently, we use the
value a = 2 but the user may precise some other value. The arguments for such
definition is that the flow F , and the potential X , are the logarithms of the data
on the ratio scale and we should go back on that scale by exponential function.

2.2 Potential of the Inconsistent Preference Flow

In practice, a decision maker, while performing pairwise comparisons, does not
give the flow which is necessarily consistent. The best approximation of that flow
by the column space of the incidence matrix may be calculated in this situation.
The approximative potential or potential X is a solution of the Laplace equation

AτAX = AτF ,
∑
v∈V

X(v) = 0 (10)
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where the second requirement is for uniqueness.
Because of the linearity of the equations it is evident that X is invariant on

the multiplication of F by a positive number, i.e. X(αF) = αX(F), α > 0. In
other words F is measured on the ratio scale.

It is easy to prove that for the complete flow (the proof is left to the reader):

X(v) =
1

n

( ∑
α∈In(v)

Fα −
∑

α∈Out(v)

Fα

)
, (11)

where Out(v) and In(v) denote the set of all outgoing and in-going arcs for v.
Formula (11) may be simplified by introducing the flow matrix F

Fij =

{
F(i,j) if (i, j) ∈ A,

−F(j,i) if (j, i) ∈ A,

with the convention Fii = 0. The matrix F is anti symmetric and the potential
X , defined by (11), is the arithmetic mean of the columns of F , i.e.

xi =
1

n

n∑
j=1

Fij , i = 1, . . . , n. (12)

Definition 3. Measure of inconsistency of the flow F , in notation deg(F), is
defined as the angle between F and the column space of the incidence matrix.

Evidently, deg(F) is the angle between F and AX , where AX is the consistent
approximation of F and deg(F) = 0 if and only if F is consistent. In case when
deg(F) = π/2 then, there is no transitivity at all in the preference graph.

3 Potential and Other Methods

3.1 Potential and Geometric Mean

In AHP the results of pairwise comparisons are measured on the ratio scale
and stored in a positive reciprocal matrix A. The logarithm of A, taken by
components,

Fij = loga aij , a > 0

is an anti-symmetric matrix F which is the flow matrix of some flow F . The
potential X of F may be expressed in terms of the matrix A, using the formula
(12), as

xi =
1

n

∑
j

Fij =
1

n

∑
j

loga aij = loga

(∏
j

aij

) 1
n

,

and the weight wi, using (9), may be written as the row geometric mean

wi =
(∏

j

aij

) 1
n

, i = 1, . . ., n.
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3.2 Potential as Ordinal Value Function

Suppose, for the moment, that F is an uni-modular flow, i.e. Fα ∈ {0, 1}, ∀α ∈ A.
In that case, we may define the relation

u �F v ⇔ F(u,v) ≥ 0.

If �F is a weak preference relation, then the potential X is an ordinal value
function, i.e.

F(a,b) ≥ 0 ⇔ X(a)−X(b) ≥ 0.

The proof may be found in Čaklović [5].

3.3 Potential of the Stochastic Flow

For the complete stochastic flow defined by the formula (4) we may calculate
the potential X using the formula (12) and formula (5).

X(a) =
1

n

∑
b
=a

Fab = log

(∏
b
=a

pab
pba

) 1
n

and the weight of the node a is, by formula (9),

wa =

(∏
b
=a

pab
pba

) 1
n

.

3.4 Potential as the Social Preference

Let us give a few comments about the social preference and the PM. The starting
point is the Condorcet flow FC defined by (1). There are two possibilities how
PM may be used for ranking the candidates. One of them is direct PM ranking,
and another one is indirect PM ranking. The first one calculates the potential X
of the Condorcet flow FC , and another one calculates the potential Xu of the
unimodular flow Fu

C , where the uni-modular flow of a given flow is obtained by
taking the sign of the given intensity. A candidate with the maximal Xu value
we call the PM-winner.

It is easy to prove that the Condorcet winner4 is the PM-winner. This may
not be true if the social ranking is taken to be direct PM-ranking. It can be also
proved the PMwinner is in theminimal domination set, and that the indirect PM
ranking is clone independent. The exhaustive list of the social choice properties
of PM is under the reconstruction.

4 The Condorcet winner is defined as the winner in all pairwise confrontations with
other candidates.
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4 Admissible Inconsistency

In this section we shall determine the distribution of the inconsistency measure
of the random flow (Definition 3). For n ≥ 4 this distribution is recognized as
the Gumbel distribution

e(x) =
e−e

−x+α
β +−x+α

β

β
, (13)

which parameters depend5 upon the number of nodes in the graph, see Table 2.
For instance, if the randomization is made as a log-normal perturbation of the
random consistent flow defined in formula (14), the inconsistency measure is the
Gumbel Distribution E(α = 17.61, β = 7.03) (Figure 4).

Fig. 2. The simulated distribution of the inconsistency measure (dots). 0.05-quantile
(9.9) is taken as the upper bound for admissible inconsistency (105 simulations).

4.1 Randomization

A random index study in the AHP context was performed by several authors,
from Crawford and Williams [4] to Alonso and Lamata [1]. An overview of the
results is given in [1, Table 1, p. 449].

The randomization of the preferences may be designed, generally speaking,
as: random perturbation (of the consistent situation) and random distribution.
We performed the following randomizations:

1. normal perturbation of the consistent flow (reciprocal matrix),

5 We also performed a uniform perturbation of the consistent flow and the results are
slightly different.
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Table 2. Quantiles of random degree as a function of the nodes number (105 simula-
tions)

The Gumbel Distribution E(α, β)

number perturbation 0.05-quantile Parameters

of nodes (σ = 1) from data theoretical α β

4 normal 6 5.3 15.01 8.83

5 normal 10 9.9 17.61 7.03

6 normal 13 12.7 19.18 5.91

7 normal 15 14.7 20.24 5.07

8 normal 16 16.1 21.03 4.47

9 normal 17 17.2 21.64 4.02

10 normal 18 18.0 22.06 3.67

11 normal 18 18.8 22.49 3.38

12 normal 19 19.3 22.77 3.16

13 normal 19 19.8 23.04 2.96

14 normal 20 20.2 23.28 2.79

15 normal 20 20.6 23.47 2.66

2. uniform perturbation of the consistent flow (reciprocal matrix),
3. unrestricted randomization of the flow (reciprocal matrix).

We present here only the results of the first type of perturbation. The results of
the uniform perturbation are just slightly different and the unrestricted random-
ization generates highly inconsistent flows with the average greater than 50o. We
believe that the decision maker’s preferences in real life are well described by
the first process.

A random positive reciprocal matrix is obtained as the normal perturbation
of the random consistent reciprocal matrix with elements

aij = wij ∗ exp(N(0, σ)) (14)

where σ = 1 and wij := int(rand(1-9))α (i < j), is the random choice from
the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, powered by α which is the random choice from
{−1, 1}, and wij := w−1

ji , for j < i, and wii = 1, ∀i = 1, . . . , n.
The random consistent flow is made by random choice of the orientation of

the arc and by random choice of the flow value in the set {0, 1, 2, 3, 4}. Normal
perturbation has a standard deviation σ = 1. The randomization procedure was
performed by Perl and data analysis was done by R.

In the AHP context our results are exactly the same as in Noble [9].

4.2 Admissible Inconsistency

It seems reasonable to determine the upper bound for admissible inconsistency
as a p-quantile of the theoretical random degree distribution. Those values for
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p = 0.05 are given in Table 2 in the column theoretical. The quantiles of the
generated data are given in the column from data.

If the number of vertices in the preference graph is n = 3 the distribution
is not the Gumbel distribution. The reason may be in the severe restriction on
the stochastic flow values, i.e Fα ∈ {0, 1, 2, 3, 4}. The randomization in this case
should be recalculated in a slightly different way, perhaps with less restrictions.

5 Condition of Order Preservation

We say that the potential X satisfies the Condition of Order Preservation (COP)
if

F(i,j) > F(k,l) =⇒ Xi −Xj > Xk −Xl. (15)

In contrast to the measure of inconsistency deg(F), which is an ‘a priori’ in-
consistency measure, the number of violations of COP may be regarded as an
‘a posteriori’ measure of inconsistency which shows ‘how far’ the calculated po-
tential X is from the measurable value function.

For a reciprocal positive matrix A, we say that COP is satisfied if

(aij > 1 & akl > 1 & aij > akl) =⇒ wi

wj
>

wk

wl
,

where w is the Perron eigenvector of A.
In this section we present the results of a statistical comparison of the num-

ber of violations of the COP (#vcop) between EVM and PM. For this pur-
pose we performed 104 simulations of 5× 5 positive reciprocal matrix. For each
randomly generated reciprocal matrix we calculate its consistency index ci and
#vcop(evm) for EVM. Then, we calculate the measure of inconsistency deg(F)
of the flow F defined by formula (3), and #vcop(pm) generated by PM. The
correlation matrix of the random vector (deg, #vcop(pm), ci, #vcop(evm))
is given in Table 3. The correlation between ci and #vcop equals 0.460128
while the correlation between deg and #vcop equals 0.811266 which suggests
that deg may better predict the #vcop than ci (in average). We do not impose
the zero value of #vcop as a standard, we just want to say that #vcop gives
some new information about the inconsistency from the metric topology’s point
of view.

Table 3. Correlation matrix of the random vector (deg, #vcop(pm), ci,
#vcop(evm))

deg #vcop(pm) ci #vcop(evm)

deg 1. 0.811266 0.55142 0.817288

#vcop(pm) 1. 0.449875 0.950875

ci 1. 0.460128

#vcop(evm) 1.
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5.1 Post Festum

The consistency ratio has been criticized because it allows contradictory judg-
ments in matrices (Bana e Costa and Vansnick [2]) or rejects reasonable matrices
(Karapetrovic and Rosenbloom [7]). Several authors (Wang-Chin-Luo [11], Ko-
rhonen [8]) argued that the implicit information about priority judgments in
the AHP matrix should be taken into account and that the above criticism is
not justified. That implicit information, according to them, is of the form aijajk
which is the element of A2. But A2 is ‘more consistent’6 than A regarding the
iterative procedure wn = Ane/‖Ane‖, n ∈ N of obtaining the Perron vector. The
consistency of A should not be measured by the ‘consistency’ of A2. It seems
that the criticism of the criticism is not well-founded either.

During the randomization process we found an 4×4 AHP matrix with λmax =
4.107 and the consistency ratio cr = 0.04, while its inconsistency degree is
deg = 73.278. According to Table 2, the upper bound for admissible inconsis-
tency is 5.3 degrees. Here is the matrix:

A =

⎛⎜⎜⎜⎜⎝
1. 1.024 0.852 1.521

0.976 1. 1.41 0.719

1.174 0.709 1. 1.197

0.658 1.391 0.835 1.

⎞⎟⎟⎟⎟⎠
The preference graph associated with this matrix is given in Figure 3.

The reader who is more familiar with graphs may immediately conclude from
Figure 3 that the inconsistency degree of the flow is high. First, a spanning tree
should be chosen. In our example, the maximal spanning tree of the graph is
drawn (solid line), together with the corresponding chords (dashed lines) which
generate the base in the cycle space. Here we have 3 basic cycles, one for each
chord. For example, the chord 2 → 4 generates the cycle 2 → 4 → 3 → 1 → 2,
and the sum of the flow components along this cycle equals 0.476 + 0.259 −
0.231− 0.034 = 0.47. This number is written in the parentheses beside the flow
component (Σ-value). This value is also the scalar product of the flow with this
cycle.

According to the decomposition (6), the arc space may be decomposed as the
orthogonal sum of the cycle space and the range space of the incidence matrix
M which is given bellow. To be a bit more precise let us fix the canonical base in
the arc space: (2 → 1, 1 → 3, 4 → 3, 3 → 2, 2 → 4, 4 → 1). The first 3 elements
of the base are the arcs of the spanning tree, the rest are the chords. The cycle
space is generated by the first three columns of the matrix B

6 It is meaningless to speak about the consistency index of A2 because it is not re-
ciprocal and its Perron root is generaly smaller that the dimension of A. But its
columns are closer to the Perron eigenvector than those of A and from this point of
view we may say that it is more consistent than A.
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Fig. 3. The flow obtained from the matrix A

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0

−1 0 1 0

0 0 1 −1

0 1 −1 0

0 −1 0 1

1 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 1 −1 0

1 −1 1 −1 0 0

0 1 −1 0 0 −1

1 0 0 0 1 0

0 1 0 0 −1 1

0 0 1 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the other three columns form the base of the column space of the inci-
dence matrix. For example, the first column of B is the cycle 3 → 2 → 1 → 3
determined by the chord 3 → 2. Σ-values are the scalar products of the flow

F = (0.034, 0.231, 0.259, 0.496, 0.476, 0.605)

with the first 3 columns of the matrix B. Because of the high Σ-values it is
obvious that the flow inconsistency is also high. The precise calculation gives
the inconsistency of 73.278 degrees.

6 Conclusion

This paper explains the properties of the Potential Method and the randomiza-
tion procedure for obtaining the upper bound for admissible inconsistency of the
input data. The upper bound is determined as a 0.5-quantile of the theoretical
distribution if deg which is recognized as the Gumbel distribution (Table 2).
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A comparison with the Eigenvalue Method is given, regarding the correlation
of the inconsistency measure and the number of violations of the Condition of
Order Preservation (COP). The Potential Method and the Eigenvalue Method
are ‘equally good’ from the point of view of the number of violations (#vcop) of
the COP. On the other side, the inconsistency measure of PM correlates better
with #vcop than the consistency index of AHP (Table 3).
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vances in Methodology and Statistics) 2(1), 205–212 (2005)

6. French, S.: Decision theory - An introduction to the mathematics of rationality.
Ellis Horwood, Chichester (1998)
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Abstract. Several types of hierarchical fuzzy integral models in decision theory
have been proposed and been investigated by many researchers. Some of them
aim to simplify the models. Others aim to build a high modeling capability. Re-
cently, the notion of hierarchical bipolar Sugeno integral has been proposed by
Sugeno and Nakama in order to represent/model almost all admissible preference
orderings. It is known that the ordinary Sugeno integral can be represented as
a hierarchical Choquet integral. However, it has never been known whether the
hierarchical bipolar Sugeno integral can be represented as some types of Cho-
quet integrals, or not. This paper will show that the hierarchical bipolar Sugeno
integral can be represented as a hierarchical bipolar Choquet integral.

Keywords: hierarchical Sugeno integral, bi-cooperative game, Choquet integral.

1 Introduction

The Choquet and Sugeno integrals are one of the most important integrals with respect
to fuzzy measures. In decision theory, the Choquet integral model is well-known and
used as a cardinal preference model and the Sugeno integral an ordinal one. Since 1995,
hierarchical Choquet integrals have been studied by many researchers (e.g., Sugeno,
Fujimoto, and Murofushi [12,15], Mesiar, Vivona, and Benvenuti [1,9]), Narukawa and
Torra [14,17] ...). Recently, the notion of hierarchical bipolar Sugeno integral, i.e., hier-
archical Sugeno integral with respect to bi-capacities, has been proposed by Sugeno and
Nakama [16,13] in order to model/represent almost all admissible, in a natural/common
sense, preference orderings. While, Narukawa and Torra [14] investigated relations with
the Choquet and Sugeno integrals. They have proved that the Sugeno integral can be
represented as a (2-step) hierarchical Choquet integral (with a constant). However, it
has never been known whether the bipolar Sugeno integral can be represented as some
types of the Choquet integrals, or not. In this paper, we shall show that the hierarchical
bipolar Sugeno integral can be represented as a hierarchical bipolar Choquet integral.

2 Preliminaries

Throughout this paper we use the following notations and conventions. Let N be a non
empty finite set, N := {1, · · · , n}, Um and Bm a finite set of integers, Um := {0, 1, · · · ,m}
V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 115–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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and Bm = {−m, · · · ,−1, 0, 1, · · · ,m}. For a function f : N → Um (resp., f : N → Bm),
we denote σ f a permutation on N satisfying that

f (σ f (1)) ≤ · · · ≤ f (σ f (n)) (resp., | f (σ f (1))| ≤ · · · ≤ | f (σ f (n))|)
with convention f (σ f (0)) = 0, and Aσ f (k), A+σ f (k), and A−σ f (k) the subset of N such as

Aσ f (k) := {σ f (k), · · · , σ f (n)},
A+σ f (k) := Aσ f (k) ∩ {i ∈ N | f (i) ≥ 0}, and A−σ f (k) := Aσ f (k) \ A+σ f (k)

for any k ∈ N, respectively. we denote P(N) := 2N = {S | S ⊆ N} and Q(N) := 3N =

{(A1, A2) | A1, A2 ∈ P(N), A1 ∩ A2 = ∅}. Binary operators ∨, ∧ on Um and �, � on Bm is
defined as follows: For any a, b ∈ Um and c, d ∈ Bm,

a ∨ b := max{a, b} and a ∧ b := min{a, b},
c � d := sign(c + d) · (|c| ∨ |d|) and c � d := sign(c · d) · (|c| ∧ |d|),

where sign(c) := −1 if c < 0, := 0 if c = 0, and := 1 if c > 0. These operators � and
� have been introduced by Grabisch [4,5] in order to define the Sugeno integral with
respect to a bipolar scale. Moreover,

⊔
: Bm × · · · × Bm → Bm is defined as follows:

n⊔

i=1

bi := min
i∈{1, ··· , n}

bi � max
i∈{1, ··· , n}

bi.

2.1 Fuzzy Measures and Bi-Capacities

Definition 1 (fuzzy measure [13]). A function μ : P(N) → Um is a fuzzy measure (or
capacity) on P(N) to Um if it satisfies the following two conditions:

(i) μ(∅) = 0,
(ii) E, F ∈ P(N), E ⊆ F ⇒ μ(E) ≤ μ(F).

μ is said to be normalized if μ satisfies that μ(N) = max Um = m.

Definition 2 (bi-capacity [6]). When equipped with the following order : for arbi-
trary (A1, A2), (B1, B2) ∈ Q(N),

(A1, A2)  (B1, B2) iff A1 ⊆ B1, A2 ⊇ B2,

a function v : Q(N) → Bm is a bi-capacity on Q(N) to Bm if it satisfies the following
two conditions:

(i) v(∅, ∅) = 0,
(ii) A, B ∈ Q(N), A  B⇒ v(A) ≤ v(B).

If v satisfies that v(N, ∅) = max Bm = m and v(∅,N) = min Bm = −m, v is said to be
normalized. If v satisfies the condition (i), v is said to be a bi-cooperative game [2].

Definition 3 (the Möbius transform [6]). To any bi-cooperative game v : Q(N)→ Bm,
another function (bi-cooperative game) mv : Q(N) → Bl for some integer l can be
associated by

v(A1, A2) =
∑

(B1,B2)(A1 ,A2)

mv(B1, B2) ∀(A1, A2) ∈ Q(N).
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This correspondence proves to be one-to-one, since conversely, for (A1, A2) ∈ Q(N),

mv(A1, A2) =
∑

B1⊆A1
A2⊆B2⊆Ac

1

(−1)|A1\B1|+|B2\A2|v(B1, B2).

Definition 4 (support, null set). A subset S ⊆ N is said to be a support of N with
respect to a bi-cooperative game v on Q(N) if

v(A, B) = v(A ∩ S , B ∩ S ) ∀(A, B) ∈ Q(N).

So, N \ S is said to be a null set.

Definition 5 (relative bi-cooperative game). For a bi-cooperative game v on Q(N)
and a subset S on N, the bi-cooperative game w on Q(S ) is said to be the relative bi-
cooperative game of v on Q(S ) if

w(A, B) = v(A, B) ∀(A, B) ∈ Q(S ).

Proposition 1. [3] Let v be a bi-cooperative game on Q(N). The following two condi-
tions are equivalent to each other:

(i) v is a bi-capacity,

(ii)
∑

(C1 ,C2)(B1,B2)(A1,A2)

mv(B1, B2) ≥ 0

for all (C1,C2) ∈ Q(N) such as |C2| = n − 1 and all (A1, A2) ∈ Q(N).

Proposition 2. For any bi-cooperative game v on Q(N), there exist two bi-capacities
v1 and v2 on Q(N) such that

v(A1, A2) = v1(A1, A2) − v2(A1, A2) ∀(A1, A2) ∈ Q(N).

Proof. Let mv be the Möbius transform of v. Then, we define two functions m1 and m2

on Q(N) via v as follows:

m1(A1, A2) :=

⎧
⎪⎪⎨
⎪⎪⎩

mv(A1, A2) if mv(A1, A2) ≥ 0 and A2 � N.

0 if mv(A1, A2) < 0 and A2 � N,

m2(A1, A2) :=

⎧
⎪⎪⎨
⎪⎪⎩

−mv(A1, A2) if mv(A1, A2) < 0 and A2 � N.

0 if mv(A1, A2) ≥ 0 and A2 � N,

m1(∅,N) := −
∑

(B1,B2)(∅,∅)
B2�N

m1(B1, B2), m2(∅,N) := −
∑

(B1,B2)(∅,∅)
B2�N

m2(B1, B2).

Through these m1 and m2, we define v1 and v2 as

vi(A1, A2) :=
∑

(B1,B2)(A1 ,A2)

mi(B1, B2) ∀i ∈ {1, 2}.
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Then, it follows from Proposition 1 that both v1 and v2 are bi-capacities. Moreover, for
any (A1, A2) ∈ Q(N),

v1(A1, A2) − v2(A1, A2) =
∑

(B1,B2)(A1 ,A2)

m1(B1, B2) −
∑

(B1,B2)(A1,A2)

m2(B1, B2)

=
∑

(B1,B2)(A1 ,A2)

mv(B1, B2) = v(A1, A2),

from the definition of the Möbius transform (See, Definition 3). ��

2.2 The Sugeno Integral and the Choquet Integral

Let F(N,Um) be the set of all fuzzy measures on P(N) to Um, B(N, Bm) the set of all
bi-capacities on Q(N) to Bm, andB′(N, Bm) the set of all bi-cooperative games on Q(N)
to Bm.

Definition 6 (the Sugeno and Choquet integral). The Sugeno (resp., Choquet) inte-
gral, S μ( f ) (resp., Cμ( f )), of a function f : N → Um with respect to μ ∈ F(N,Um) is
given by

S μ( f ) :=
n∨

k=1

[
f (σ f (k)) ∧ μ(Aσ f (k)))

]
, (1)

Cμ( f ) :=
n∑

k=1

(
f (σ f (k)) − f (σ f (k − 1))

)
· μ(Aσ f (k)). (2)

Definition 7 (the bipolar Sugeno and Choquet integral [4,6]). The Sugeno (resp.,
Choquet) integral, BS v( f ) (resp., BCv( f )), of a function f : N → Bm with respect to
v ∈ B′(N, Bm) is given by

BS v( f ) :=
n⊔

k=1

[
| f (σ f (k))| � v(A+σ f (k), A

−
σ f (k))
]
, (3)

BCv( f ) :=
n∑

k=1

(
| f (σ f (k))| − | f (σ f (k − 1))|

)
· v(A+σ f (k), A

−
σ f (k)). (4)

Proposition 3. Suppose that S ⊆ N is a support of N with respect to v ∈ B′(N, Bm)
and that w is the relative bi-cooperative game of v on Q(S ). Then for any f : N → Bm,

BCv( f ) = BCw( f |S )

where f |S is the function on S such that f |S (i) = f (i) ∀i ∈ S .

Proof. It suffice to prove the case where supports S are represented as

S = N \ {k}
for some null k ∈ N with respect to v. When we denote g(i) instead of f |S (i), we have a
permutation σg on S = N \ {k} such as

σg(i) =

⎧
⎪⎪⎨
⎪⎪⎩

σ f (i) if i < σ−1
f (k),

σ f (i + 1) if i > σ−1
f (k).
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Then, it is easy to verify, from the fact that {k} is a null set, that

v(A+
σ f (σ−1

f (k))
, A−
σ f (σ−1

f (k))
) = v(A+

σ f (σ−1
f (k)+1)

, A−
σ f (σ−1

f (k)+1)
).

Under above notations with convention (A+σ f (n+1), A
−
σ f (n+1)) = (A+σg(n), A

−
σg(n)) = (∅, ∅),

BCv( f ) =
n∑

i=1

| f (σ f (i))|
[
v(A+σ f (i), A

−
σ f (i)) − v(A+σ f (i+1), A

−
σ f (i+1))

]

=
∑

i<σ−1
f (k)−1

| f (σ f (i))|
[
v(A+σ f (i), A

−
σ f (i)) − v(A+σ f (i+1), A

−
σ f (i+1))

]

+| f (σ f (σ
−1
f (k) − 1))|

[

v(A+
σ f (σ−1

f (k)−1)
, A−
σ f (σ−1

f (k)−1)
) − v(A+

σ f (σ−1
f (k))
, A−
σ f (σ−1

f (k))
)

]

+| f (σ f (σ
−1
f (k)))|

[

v(A+σ f (k), A
−
σ f (k)) − v(A+

σ f (σ−1
f (k)+1)

, A−
σ f (σ−1

f (k)+1)
)

]

+
∑

i>σ−1
f (k)

| f (σ f (i))|
[
v(A+σ f (i), A

−
σ f (i)) − v(A+σ f (i+1), A

−
σ f (i+1))

]

=
∑

i<σ−1
f (k)−1

| f (σ f (i))|
[
v(A+σ f (i), A

−
σ f (i)) − v(A+σ f (i+1), A

−
σ f (i+1))

]

+| f (σ f (σ
−1
f (k) − 1))|

[

v(A+
σ f (σ−1

f (k)−1)
, A−
σ f (σ−1

f (k)−1)
) − v(A+

σ f (σ−1
f (k)+1)

, A−
σ f (σ−1

f (k)+1)
)

]

+
∑

i>σ−1
f (k)

| f (σ f (i))|
[
v(A+σ f (i), A

−
σ f (i)) − v(A+σ f (i+1), A

−
σ f (i+1))

]

=
∑

i<σ−1
f (k)−1

|g(σg(i))|
[
v(A+σg(i), A

−
σg(i)) − v(A+σg(i+1), A

−
σg(i+1))

]

+|g(σ(σ−1
f (k) − 1))|

[

v(A+
σg(σ−1

f (k)−1)
, A−
σg(σ−1

f (k)−1)
) − v(A+

σg(σ−1
f (k)+1)

, A−
σg(σ−1

f (k)+1)
)

]

+
∑

n−1≥i≥σ−1
f (k)

|g(σg(i))|
[
v(A+σg(i), A

−
σg(i)) − v(A+σg(i+1), A

−
σg(i+1))

]

=

n−1∑

i=1

|g(σg(i))|
[
w(A+σg(i), A

−
σg(i)) − w(A+σg(i+1), A

−
σg(i+1))

]
= BCw(g) = BCw( f |S ). ��

Definition 8 (hierarchical bipolar Sugeno and Choquet integral [13]). Let L be a
positive integer and {Nj} j∈{1,··· ,L+1} a family of non empty sets with N1 = N, NL+1 = {1},
and Nj := {1, · · · , n j} for an integer n j for all j ∈ {1, · · · , L + 1} \ {1, L + 1}. For each
j ∈ {1, · · · , L}, let {v j

i }i∈N j+1 be a set of bi-cooperative games on Q(Nj) to Bmj , i.e.,

v j
i ∈ B′(Nj, Bmj) for any i ∈ Nj+1. Then,

HL := ({Nj} j∈{1,··· ,L+1}, {ν j
i }i∈N j+1 , j∈{1,··· ,L})

is called a system of L-step hierarchical bi-cooperative games. Then, the L-step hier-
archical bipolar Sugeno (resp., Choquet) integral, HBS HL( f ) (resp., HBCHL( f ) ), of a
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function f : N → Bm with respect to HL is given by the following procedures (e.g., see
Fig. 1.):

(i) F1(i) := f (i) ∀i ∈ N(= N1),
(ii) F j(i) := BS vj−1

i
(F j−1) (resp., F j(i) := BCvj−1

i
(F j−1))

∀i ∈ Nj, j ∈ {1, · · · , L + 1} \ {1, L + 1}.
(iii) HBS HL( f ) := BS vL

1
(FL) (resp., HBCHL( f ) := BCvL

1
(FL)).
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Fig. 1. Hierarchical bipolar Sugeno and/or Choquet integral

3 Lemmas

3.1 Binary Operators ∧, ∨, �, � and the Bipolar Choquet Integral

Lemma 1. Let N := {1, 2}. For any a, b ∈ Bm, a > 0, we define a function f : N → Bm

as f (1) = a and f (2) = b. Then

a � b = BCv( f ),

where

v(A, B) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if A = N,

0 if A = ∅ or A � N, B = ∅,
−1 otherwise.

Proof. In the case that b > a, i.e., a � b = a, BCv( f ) = a · v(N, ∅) + (b − a)v(2, ∅) = a.
In the case that a ≥ b ≥ 0, i.e., a � b = b, BCv( f ) = b · v(N, ∅) + (a − b)v(1, ∅) = b.
In the case that −a ≤ b ≤ 0, i.e., a� b = b, BCv( f ) = −b · v(1, 2)+ (a+ b)v(1, ∅) = b.
In the case that b ≤ −a, i.e., a� b = −a, BCv( f ) = a · v(1, 2)+ (−b− a)v(∅, 2) = −a.��



Hierarchical Bipolar Sugeno Integral 121

Lemma 2. Let N := {1, 2}. For any a, b ∈ Bm, we define a function f : N → Bm as
f (1) = a and f (2) = b. Then a�b can be represented as a hierarchical bipolar Choquet
integral of f as follows:

(i) Define a set of non empty set N1 and N2 as N1 = N and N2 = {1, 2, 3}.
(ii) Define a set of bi-cooperative games {v1

j} j∈N2 in B′(N, B2m) and v2 in
B′(N, B1) as

v1
1(A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if A = ∅,
1 otherwise,

, v1
2(A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if B = ∅,
−1 otherwise,

v1
3(A, B) = (|A| − |B|) · m, v2(A, B) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if A = {1, 3},
−1 if B = {2, 3},
0 otherwise,

respectively.
(iii) Define the function F2 : N2 → Bm as F2(i) := BCv1

i
( f ) ∀i ∈ N2.

Then, we have that a � b = BCv2 (F2).

Proof. Let f +(i) := max{ f (i), 0} and f −(i) := min{ f (i), 0}, for i ∈ N1.

Claim 1 : F2(1) = maxi∈N f +(i).
Now we will prove the claim 1. In the case that b ≥ a ≥ 0, i.e., max f + = b,

F2(1) = BCv1
1
( f ) = (b − a) · v1

1(2, ∅) + a · v1
1(12, ∅) = b.

In the case that a > b ≥ 0, i.e., max f + = a,
F2(1) = BCv1

1
( f ) = (a − b) · v1

1(1, ∅) + b · v1
1(12, ∅) = a.

In the case that a > −b ≥ 0, i.e., max f + = a,
F2(1) = BCv1

1
( f ) = (a + b) · v1

1(1, ∅) + (−b) · v1
1(1, 2) = a.

In the case that −b ≥ a ≥ 0, i.e., max f + = a,
F2(1) = BCv1

1
( f ) = (−b − a) · v1

1(∅, 2) + a · v1
1(1, 2) = a.

In the case that b ≥ −a ≥ 0, i.e., max f + = b,
F2(1) = BCv1

1
( f ) = (b + a) · v1

1(2, ∅) + (−a) · v1
1(2, 1) = b.

In the case that −a > b ≥ 0, i.e., max f + = b,
F2(1) = BCv1

1
( f ) = (−a − b) · v1

1(∅, 1) + b · v1
1(2, 1) = b.

In the case that −a > −b ≥ 0, i.e., max f + = 0,
F2(1) = BCv1

1
( f ) = (−a + b) · v1

1(∅, 1) + (−b) · v1
1(∅, 12) = 0.

In the case that −b > −a ≥ 0, i.e., max f + = 0,
F2(1) = BCv1

1
( f ) = (−b + a) · v1

1(∅, 2) + a · v1
1(∅, 12) = 0.

Claim 2 : F2(2) = mini∈N f −(i).
This claim can be verified similarly to the proof of Claim 1.

Claim 3 : F2(3) = (a + b) · m.
This claim can also be verified similarly to the proof of Claim 1.

Here, we consider the following three cases:
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|F2(1)| > |F2(2)|, |F2(1)| < |F2(2)|, and |F2(1)| = |F2(2)|.
In the case that |F2(1)| > |F2(2)|,
i.e., |max f + | > |min f −| and F2(3) ≥ F2(1) > −F2(2) ≥ 0. Then,

BCv2(F2) = (F2(3) − F2(1)) · v2(3, ∅) + (F2(1) + F2(2)) · v2(13, ∅) − F2(2) · v2(13, 2)

= F2(1) = max f + = a � b, since max f + ≥ 0 and |max f + | > |min f −|.
In the case that |F2(1)| < |F2(2)|,
i.e., |max f + | < |min f −| and −F2(3) ≥ −F2(2) > F2(1) ≥ 0. Then,

BCv2(F2) = (−F2(3) + F2(2)) · v2(∅, 3) + (−F2(2) − F2(1)) · v2(∅, 23) + F2(1) · v2(1, 23)

= F2(2) = min f − = a � b, since min f − ≤ 0 and |max f + | < |min f −|.
In the case that |F2(1)| = |F2(2)|,
i.e., |max f + | = |min f −| and F2(1) = −F2(2) ≥ F2(3) = 0. Then,

BCv2(F2) = F2(1) · v2(1, 2) = 0 = a � b, since a = max f + = −min f − = −b. ��
Lemma 3. There exist bi-cooperative games v and w ∈ B′(N, Bm) such that, for any
function f : N → Bm,

max
i∈N f +(i) = BCv( f ) and min

i∈N f −(i) = BCw( f ),

where f +(i) = max{ f (i), 0} and f −(i) = min{ f (i), 0} for i ∈ N.

Proof. We put v and w as

v(A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if A � ∅,
0 otherwise,

and w(A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

−1 if B � ∅,
0 otherwise.

Then, it is easy to verify that

max
i∈N f +(i) = BCv( f ), min

i∈N f −(i) = BCw( f ). ��

3.2 Ordinary Bipolar Sugeno Integral and Hierarchical Bipolar Choquet
Integral

Lemma 4. There exists a system of 4-step hierarchical bi-cooperative games H4 such
that, for any function f : N → Bm,

⊔
i∈N f (i) can be represented as a hierarchical

bipolar Choquet integral of f with respect to H4, i.e.,
⊔

i∈N
f (i) = HBCH4( f ).

Proof. Let N1 = N, N2 = {1, · · · , 2n}, and N3 = {1, 2}. Put {v1
j} j∈N2 as

v1
j (A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if A � j,

0 otherwise
if j ≤ n, v1

j(A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

−1 if B � j − n,

0 otherwise
if j > n

and put {v2
j } j∈N3 as

v2
1(A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if A � ∅,
0 otherwise,

and v2
2(A, B) =

⎧
⎪⎪⎨
⎪⎪⎩

−1 if B � ∅,
0 otherwise.
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Here, we define a function F2 on N2 as F2( j) := BCv1
j
( f ). Then

F2( j) =

⎧
⎪⎪⎨
⎪⎪⎩

f +( j) if j ≤ n,

f −( j − n) if j > n.

Next, define F3 on N3 as F3( j) = BCv2
j
(F2). Then, it follows from Lemma 3 that

F3(1) = max
i∈N

f + and F3(2) = min
i∈N f −.

Thus, ⊔

i∈N
f (i) = F3(1) � F3(2) since

⊔

i∈N
f (i) = max

i∈N
f + �min

i∈N f −.

Then, it follows from Lemma 2 that
⊔

i∈N f (i) can be represented as a 4-step bipolar
Choquet integral. ��
Lemma 5. Let N := {1, · · · , n}, and v ∈ B(N, Bm). Then, for any k ∈ N, there exists a
system of 4-step bi-cooperative games, H4

k , such that

v(A+σ f (k), A
−
σ f (k)) = HBCH4

k
(g f )

for any function f : N → Bm, where g f is the function on N ∪ {0} defined by

g f (i) =

⎧
⎪⎪⎨
⎪⎪⎩

f (i) if i ∈ N,

1 if i = 0.

Proof. We consider a 4-step bipolar Choquet integral of g f . Let N1 := N ∪ {0} =
{0, · · · , n}, N2 := {0, · · · , 2n}, N3 := {0, · · · , n}, and N4 := {1, · · · , n}. Here, we use the
notation vsign

i , on the domain considered, to denote, for any p ∈ N,

vsign
p (A, B) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if A � p,

−1 if B � p,

0 otherwise.

We put a set of bi-cooperative games {v1
i }i∈N2 as follows:

v1
i (A, B) := vsign

i (A, B) if i ≤ n,

v1
i (A, B) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if |A ∪ B| > n + 1 − k and A � i − n,

−1 if |A ∪ B| > n + 1 − k and B � i − n,

0 otherwise,

if i > n.

Here, we define a function F2 : N2 → Bm on N2 as

F2(i) := BCv1
i
(g f ) ∀i ∈ N2.

Then,

F2(i) =

⎧
⎪⎪⎨
⎪⎪⎩

g f (i) if i ≤ n,

g f (i − n) � |g f (σgf (k − 1))| if i > n.
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Next, we would define F3 : N3 → Bm as

F3(i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F2(0), i.e., 1 if i = 0,

F2(i) − F2(n + i), i.e., g f (i) − |g f (σgf (k − 1))| if f (i) ≥ 0 and σ f (i) ≥ σ f (k),

F2(i) − F2(n + i), i.e., g f (i) + |g f (σgf (k − 1))| if f (i) < 0 and σ f (i) ≥ σ f (k),

F2(i) − F2(n + i), i.e., 0 otherwise,

via some bipolar Choquet integral. To do this, {v2
i }i∈N3 should be v2

0 := vsign
0 and

v2
i (A, B) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if A � i and A � n + i,

−1 if B � i and B � n + i,

0 otherwise,

for i ∈ N2 \ {0}. Next, we would define F4 : N → Bm as F4(i) := F3(0) � F3(i), i.e.,

F4(i) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if g f (i) ≥ 0 and σgf (i) ≥ σgf (k), i.e, if f (i) ≥ 0 and σ f (i) ≥ σ f (k),

−1 if g f (i) < 0 and σgf (i) ≥ σgf (k), i.e, if f (i) < 0 and σ f (i) ≥ σ f (k),

0 otherwise,

via some bipolar Choquet integral. It is easy, from Lemma 1, to demonstrate the fact.
Finally, we have that

BCv(F4) = v(A+σ f (k), A
−
σ f (k)).

��
Lemma 6. Let N := {1, · · · , n}, For any k ∈ N, there exists a bi-cooperative game
vk ∈ B′(N, Bm) such that | f (σ f (k))| = BCvk ( f ) for any function f : N → Bm.

Proof. We have that | f (σ(k))| = BCvk ( f ) for any f : N → Bm via

vk(A, B) :=

⎧
⎪⎪⎨
⎪⎪⎩

1 if |A ∪ B| > n − k,

0 otherwise.

��
The next lemma is obtained immediately from Lemmas 1, 5, and 6.

Lemma 7. Let N := {1, · · · , n}, and v ∈ B(N, Bm). Then, for any k ∈ N, there exists a
system of 5-step bi-cooperative games, H5

k , such that

| f (σ f (k))| � v(A+σ f (k), A
−
σ f (k)) = HBCH5

k
(g f )

for any function f : N → Bm, where g f is the function on N ∪ {0} defined by

g f (i) =

⎧
⎪⎪⎨
⎪⎪⎩

f (i) if i ∈ N,

1 if i = 0.

The next lemma, obtained immediately from Lemmas 4 and 7, shows that the bipolar
Sugeno integral can be represented as a hierarchical bipolar Choquet integral.
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Lemma 8. Let N := {1, · · · , n}, and v ∈ B(N, Bm). Then, there exists a system of 9-step
bi-cooperative games, H9

k , such that
⊔

k∈N

[
| f (σ f (k))| � v(A+σ f (k), A

−
σ f (k))
]
= HBCH9

k
(g f ),

i.e.,
BS v( f ) = HBCH9

k
(g f )

for any function f : N → Bm, where g f is the function on N∪{0} defined by f g(i) := f (i)
if i ∈ N and := 1 if i = 0.

4 Theorem

Theorem 1. Let N := {1, · · · , n} and H a system of hierarchical bi-cooperative games.
Then, there exists another system of hierarchical bi-cooperative games, H′, such that

HBS H( f ) = HBCH′(g f )

for any function f : N → Bm, where g f is the function on N∪{0} defined by f g(i) := f (i)
if i ∈ N and := 1 if i = 0.

That is, the hierarchical bipolar Sugeno integral, of any functions with respect to any
systems of hierarchical bi-cooperative games, can be represented as a corresponding
hierarchical bipolar Choquet integral.

Proof. It is easy to verify from the fact that the hierarchical bipolar Sugeno integral
is represented as a hierarchical combination of bipolar Sugeno integrals and that any
bipolar Sugeno integral can be represented as a hierarchical bipolar Choquet integral.

��

5 Concluding Remarks

In this paper, we show that the hierarchical bipolar Sugeno integral of any function f
can be represented as a hierarchical bipolar Choquet integral of g f which is obtained
by extending the domain N of f to N ∪ {0} (i.e., g f (i) = f (i) if i ∈ N and =1 if i = 0).
The Choquet integral of this g f is essentially the same as the Choquet integral with con-
stant, introduced by Narukawa and Torra [14], of f . Moreover, Torra and Narukawa [17]
have demonstrated that the bipolar Choquet integral can be represented as a hierarchical
CPT-type Choquet integral. That is, the hierarchical bipolar Sugeno integral can be rep-
resented as a hierarchical Choquet integral without using bi-capacities (bi-cooperative
games).
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Abstract. This paper presents several variants of Sugeno integral, and
in particular the idea of (qualitative) desintegrals, a dual of integrals.
When evaluating an item, desintegrals are maximal if no defects at all
are present, while integrals are maximal if all advantages are sufficiently
present. This idea leads to a bipolar representation of preferences, by
means of a pair made of an integral and a desintegral, whose possibilistic
logic counterparts are outlined (in the case where criteria are binary).

Keywords: Sugeno integral, possibilistic logic, bipolar representation.

1 Introduction

In multi-criteria decision making, Sugeno integrals are commonly used as quali-
tative aggregation functions for evaluating objects on the basis of several criteria
[10]. A Sugeno integral delivers a score between the minimum and the maximum
of the partial ratings. The definition of Sugeno integral is based on a capacity (or
fuzzy measure) which represents the importance of the sets of criteria. But the
importance of the criteria can be exploited in different ways when aggregating
partial evaluations. Especially, variants of Sugeno integral can be defined when
the evaluation scale is taken as a Heyting algebra using an operator named the
residuum.

When Sugeno integral is used, the criteria are considered positive: global eval-
uation increases with the partial ratings. If we consider negative criteria, then
the global evaluation increases when the partial ratings decrease. In such a con-
text it is possible to define other variants of Sugeno integral we call desintegrals.
With these new kinds of negative aggregation functions, the better a criterion
is satisfied the worse is the global evaluation. Besides, Sugeno integral can be
encoded as a possibilistic logic base [8]. This paper partially extends this result
to the desintegrals when the partial evaluations are binary values, which comes
down to a logical encoding of monotonic set functions.

In order to illustrate our motivations, let us first present an example of how we
can intuitively use a pair of specifications that can be represented by an integral
and a desintegral, as we shall see later, for modeling preferences. We work in the
framework of possibilistic logic with symbolic weights as in [11].

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 127–138, 2012.
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Let a, b, c and d be four properties and S be a scale, supposedly discrete and
totally ordered with a greatest element denoted by 1 and a least element denoted
by 0. To illustrate the “negative properties” side, associated with the idea of a
desintegral, let us assume the following: if the properties a and b are satisfied
then the global evaluation should remain below a certain level θ < 1 and if the
property c is satisfied, the evaluation should be less than λ < 1 with λ > θ
(where λ, θ ∈ S). For the “positive properties”, modeled by an integral, let us
assume that if the property d is satisfied the global evaluation should be greater
than ρ < 1 and that if the properties a and d are satisfied the evaluation must be
greater than η with η > ρ (η, ρ ∈ S). As can be seen on the table in Figure 1, we
obtain two symbolic distributions corresponding respectively to an upper bound
of the evaluation x of the negative aspects and to a lower bound of the evaluation
y of the positive aspects, in different situations. Note that if we impose a single
evaluation rather than two, i.e; x = y, a consistency condition would be needed:
μ ≤ θ. But in the following, we consider the two types of evaluation separately.

a b c d negative aspects positive aspects

1 1 1 1 x ≤ θ η ≤ y

1 1 1 0 x ≤ θ 0 ≤ y

1 1 0 1 x ≤ θ η ≤ y

1 1 0 0 x ≤ θ 0 ≤ y

1 0 1 1 x ≤ λ η ≤ y

1 0 1 0 x ≤ λ 0 ≤ y

1 0 0 1 x ≤ 1 η ≤ y

1 0 0 0 x ≤ 1 0 ≤ y

0 1 1 1 x ≤ λ ρ ≤ y

0 1 1 0 x ≤ λ 0 ≤ y

0 1 0 1 x ≤ 1 ρ ≤ y

0 1 0 0 x ≤ 1 0 ≤ y

0 0 1 1 x ≤ λ ρ ≤ y

0 0 1 0 x ≤ λ 0 ≤ y

0 0 0 1 x ≤ 1 ρ ≤ y

0 0 0 0 x ≤ 1 0 ≤ y

Fig. 1. Symbolic distributions corresponding to the idea of desintegral (upper bound)
and to the idea of integral (lower bound)

This article deals with the bipolar representation of preferences (see [4] for
an overview on the representation of preferences) in a qualitative framework
by extending the notion of Sugeno integral. Section 3 presents two types of
integrals and two types of desintegrals, and establishes relations between them
when the criteria are binary. Section 4 studies the logical counterpart of integrals
and desintegrals in this case. Before concluding, Section 5 briefly discusses the
idea of using a pair of integral / desintegral to describe acceptable objects. But
first we present a reminder of possibilistic logic and we introduce the algebraic
framework necessary for the evaluations.
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2 Framework and Notations

This section provides a reminder on possibilistic logic, and introduces the alge-
braic framework required for the evaluations of objects using qualitative integrals
and desintegrals whose definitions are presented in the next section.

2.1 Possibilistic Logic

Let BN = {(ϕj , αj) | j = 1, . . . ,m} be a possibilistic logic base where ϕj is a
propositional logic formula and αj ∈ L ⊆ [0, 1] is a priority level [7]. The logical
conjunctions and disjunctions are denoted by ∧ and ∨. Each formula (ϕj , αj)
means that N(ϕj) ≥ αj , where N is a necessity measure, i.e., a set function
satisfying the property N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)). A necessity measure is
associated to a possibility distribution π as follows:
N(ϕ) = minω 
∈M(ϕ)(1 − π(ω)) = 1 − Π(¬ϕ), where Π is the possibility mea-
sure associated to N and M(ϕ) is the set of models induced by the underlying
propositional language for which ϕ is true.

The base BN is associated to the least informative possibility distribution
induced by the constraintsN(ϕj) ≥ αj , namely, πN

B (ω) = minj=1,...,m π(ϕj ,αj)(ω)
on the set of interpretations, where π(ϕj ,αj)(ω) = 1 if ω ∈ M(ϕj), and π(ϕj ,αj)(ω)
= 1−αj if ω �∈ M(ϕj). An interpretation ω is all the more possible as it does not
violate any formula ϕj having a higher priority level αj . Hence, this possibility
distribution is expressed as a min-max combination:

πN
B (ω) = min

j=1,...,m
max(1− αj , IM(ϕj)(ω))

where IM(ϕj) is the characteristic function of M(ϕj). So, if ω �∈ M(ϕj), π
N
B (ω) ≤

1 − αj , and if ω ∈
⋂

j∈J M(¬ϕj), π
N
B (ω) ≤ minj∈J (1 − αj). It is a description

“from above” of πN
B . A possibilistic base BN can be transformed in a base

where the formulas ϕi are clauses (without altering the distribution πN
B ). We

can still see BN as a conjunction of weighted clauses, i.e., as an extension of the
conjunctive normal form.

A dual representation in possibilistic logic is based on guaranteed possibility
measures. Hence a logical formula is a pair [ψ, β], interpreted as the constraint
Δ(ψ) ≥ β, where Δ is a guaranteed (anti-)possibility measure characterized by
Δ(φ ∨ ψ) = min(Δ(φ), Δ(ψ)) and Δ(∅) = 1. In such a context, a base BΔ =
{[ψi, βi] | i = 1, . . . , n} is associated to the distribution

πΔ
B (ω) = max

i=1,...,n
π[ψi,βi](ω)

with π[ψi,βi](ω) = βi if ω ∈ M(ψi) and π[ψi,βi](ω) = 0 otherwise. If ω ∈ M(ψi),
πΔ
B (ω) ≥ βi, and if ω ∈

⋃
i∈I M(ψi), π

Δ
B (ω) ≥ maxi∈I βi. So this base is a

description “from below” of πΔ
B . A dual possibilistic base BΔ can always be

transformed in a base in which the formulas ψj are conjunctions of literals (cubes)
without altering πΔ

B . So BN can be seen as a weighted combination of cubes, i.e,
as an extension of the disjunctive normal form.
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A possibilistic logic base BΔ expressed in terms of a guaranteed possibility
measure can always be rewritten equivalently in terms of a standard possibilistic
logic base BN based on necessity measures [2,1] and conversely with the equality
πN
B = πΔ

B . This transformation is similar to a description from below of πN
B . Let

us note that

– if ω ∈ M(ϕj), π
N
B (ω) ≥ mink 
=j(1− αk),

– and more generally si ω ∈
⋂

j∈J M(ϕj), π
N
B (ω) ≥ mink 
∈J(1 − αk),

so πN
B can be rewritten in a max-min form (equivalent to the previous one):

πN
B (ω) = max

J⊆{1,...,m}
min(min

k 
∈J
(1 − αk), IM(∧j∈Jϕj)(ω))

where IM(∧j∈Jϕj)(ω) = minj∈J IM(ϕj)(ω), and min∅X = 1. This transformation

corresponds to writing the min-max expression of πN
B as a max-min expression

by applying the distributivity of min to max. The base obtained is

BΔ = {[∧j∈Jϕj ,min
k 
∈J

(1 − αk)], J ⊆ {1, . . . ,m}}.

Note that this procedure generalizes the transformation of a conjunctive normal
form into a disjunctive normal form to the gradual case.

In the following, for convenience, we use a possibilistic logic encoding of the
type Δ(ψ) ≥ β.

2.2 Algebraic Framework

We consider a set of criteria C = {1, · · · , n}. Objects are evaluated using these
criteria. The evaluation scale, L, associated to each criterion is totally ordered.
It may be finite or be the interval [0, 1]. Then an object is represented by its
evaluation on the different criteria, i.e., by f = (f1, · · · , fn) ∈ Ln. Moreover
we consider L as a Heyting algebra i.e as a complete residuated lattice with a
greatest element denoted by 1 and a least element denoted by 0. More precisely,
< L,∧,∨,→, 0, 1 > is a complete lattice: < L,∧, 1 > is a commutative monoid
(i.e ∧ is associative, commutative and for all a ∈ L, a ∧ 1 = a). The operator
denoted by → will be the Gödel implication defined by a → b = 1 if a ≤ b and
b otherwise.

In the following, we consider positive criteria and negative criteria. In the
latter case, 0 will be a good evaluation, 1 will be a bad evaluation and the scale
will be said decreasing (the scale is increasing in the case of positive criteria). To
handle the directionality of the scale, we also need an operation that reverses the
scale. This operation (a decreasing involution) defined on L is denoted by 1−.
We can then define integrals and desintegrals. A particular integral is Sugeno
integral for which the possibilistic logic counterpart has been studied recently
[8].
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3 Qualitative Integrals and Desintegrals

Now we introduce two qualitative integrals and two qualitative desintegrals.
See [9] for a more comprehensive framework. This should not be confused with a
proposal made in [3] where the integrals considered are generalizations of Sugeno
integral on a De Morgan-like algebra, and where the idea of desintegrals does not
appear, neither the use of a residuated structure, nor the concern for a weighted
logic counterpart.

3.1 Qualitative Integrals and Increasing Scale

In this part the criteria are evaluated on an increasing scale and the global
evaluation is also on an increasing scale. An importance factor πi is assigned to
each criterion i. It is all the higher as the criterion i is important. We assume
that ∨i=1,...,nπi = 1. We view an object as described by a mapping f : C → L.

In a loose aggregation of type max-priority, ∨i=1,...,nfi∧πi, πi is the maximum
possible global score due to the only criterion i. Indeed, we obtain πi if fi = 1
and fj = 0 if j �= i. A criterion is all the more important as it can contribute
to a higher global evaluation. A demanding aggregation is of the min-priority
form ∧i=1,...,nfi ∨ (1 − πi), where we consider 1 − πi as the minimum possible
global evaluation solely due to criterion i (we obtain 1− πi if fi = 0 and fj = 1
if j �= i). A criterion is all the more important as it can lead to a lower global
evaluation. In this setting, the importance factors act as saturation levels.

We can generalize importance factors from individual criteria to sets thereof
by means of a capacity μ : 2C → L: μ(A) is the importance of set A. μ is an
increasing set function such that μ(∅) = 0 and μ(C) = 1.

An important class of aggregation functions, used in a qualitative framework
is the so-called Sugeno integral:∮

μ

(f) = ∨A⊆C μ(A) ∧ (∧i∈Afi). (1)

This integral generalizes the prioritized max and min respectively obtained if
μ is a possibility measure or a necessity measure in (1). We can check that∮
μ(IA) = μ(A) where IA is the characteristic function of A.
Another viewpoint is to consider that the importance factor πi acts as follows

on the evaluations of an object f : If fi ≥ πi then the evaluation becomes 1 and
it becomes 1 − πi otherwise. Therefore, in this case the evaluation scale of the
criterion i is reduced to {1 − πi, 1}. If fi is greater than πi, we consider that
the criterion i is satisfied. If πi is high and fi is less than πi, then the value of
fi is drastically reduced to 1 − πi. Conversely, if πi is small, and fi is less than
πi, then fi is upgraded to 1− πi. In this case, importance factors correspond to
tolerance levels.

In such a context, partial evaluations can be aggregated using the minimum:
∧i=1,...,n(1−fi) → (1−πi). More generally, if the groups of criteria are weighted,
we obtain the following integral with respect to a capacity μ:
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μ

(f) = ∧A⊆C (∧i∈A(1− fi)) → μ(A) (2)

We can check that
∮ ⇑
μ (IB) = ∧A⊆B μ(A) = μ(B).

3.2 Qualitative Desintegrals and Decreasing Scale

In this part, the evaluation scale for each criterion is decreasing, i.e., 0 is better
than 1, but the scale for the global evaluation is increasing. In this case the
aggregation functions must be decreasing and the capacities are replaced by
decreasing set functions ν such that ν(∅) = 1 and ν(C) = 0, called anti-measures.
ν(A) is the level of tolerance of A: the greater ν(A), the less important is A.

A first desintegral is obtained by a saturation effect on a reversed scale:∮ �

ν

(f) = ∨A⊆C ν(A) ∧ (∧i∈A(1− fi)) (3)

where ν is an anti-measure. We can check that
∮ �
ν (IA) = ν(A). We recognize the

definition of Sugeno integral
∮
ν(·)(1−f). Note that

∮ �
ν
(f) = 1 if there exists a non

important subset of criteria (because completely tolerant) and the evaluations
of f with respect to the other criteria are equal to 0.

Moreover, we can verify that
∮ �
ν (f) = ∧n

i=1(1−fi)∨ti if the anti-measure ν is a
guaranteed possibility, i.e., ν(A) = ∧i∈Ati =def ΔT (A) where ti is the tolerance
of criterion i (the greater is ti the more tolerant is the criterion i). Moreover,∮ �
ν (f) = ∨n

i=1(1− ti)∧ (1− fi) if ν(A) = ∨i∈A(1− ti) =def ∇t(A) = 1−ΔT (A).
This is the counterpart of the fact that the Sugeno integral gives the max or min
with priority when the measure is a possibility measure or a necessity measure.

The other viewpoint is to consider that if fi > ti then the local evaluation is
bad and fi becomes ti. Otherwise the local evaluation is good and fi becomes 1.
This corresponds to the use of the Gödel implication and the global evaluation
∧i=1,...,nfi → ti which is generalized by the following desintegral:∮ ⇓

ν

(f) = ∧A⊆C(∧i∈Afi) → ν(A) (4)

where ν is an anti-measure (with the convention ∧i∈∅fi = 0). We can check that∮ ⇓
ν (IA) = ν(A). Note that

∮ ⇓
ν (f) = 1 if for each subset of criteria, at least one

criterion has an evaluation lower than the tolerance of this subset.
In the following the values of the function f are in {0, 1} and the values of

the set functions are in [0, 1]. In this context, the criteria are binary and fi = 1
(resp. fi = 0) can be encoded as a proposition fi (resp. ¬fi) expressing that the
criterion i is satisfied (resp. not satisfied).

3.3 Relation between Integrals and Desintegrals

If the criteria are represented on a binary scale then there exist some links
between integrals and desintegrals.
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Proposition 1. If the values of the functions f are in {0, 1} then f is a char-
acteristic function IA and we can check that

– for any capacity μ,
∮
μ
(IA) =

∮ ⇑
μ
(IA) = μ(A);

– for any anti-measure ν,
∮ �
ν
(IA) =

∮ ⇓
ν
(IA) = ν(A).

These relations are not true in the general case because if f is such that fi < 1, ∀i,
then

∮ ⇑
μ
(f) = 0 since ∧i∈C(1−fi) → μ(C) = α → 0 = 0 with α > 0. But generally

we have
∮
μ
(f) �= 0. Similarly, if fi > 0, ∀i, ∧i∈Cfi → ν(C) = β → 0 = 0 with

β > 0. Hence
∮ ⇓
ν
(f) = 0, but generally

∮ �
ν
(f) �= 0.

Example 1. We consider two criteria denoted by a and b, the function f is
such that f(a) = 0.5 and f(b) = 0.6.

If μ is the capacity μ(a) = 0.4, μ(b) = 0.5 then
∮
μ
(f) = ∨(0.5, 0.6∧ 0.5) = 0.5

and
∮ ⇑
μ
(f) = ∧(0.5 → 0.5, 0.4 → 0.4, 0.4 → 0) = 0.

If ν is an anti-measure ν(a) = ν(b) = 1 then
∮ �
ν (f) = ∨(0.5, 0.4, 0.4) = 0.5

and
∮ ⇓
ν
(f) = ∧(0.5 → 1, 0.6 → 1, 0.5 → 0) = 0.

Proposition 2. If ν is an anti-measure, then there exists a capacity μ such that

for all f (Boolean or not) 1−
∮
μ(f) =

∮ �
ν (f) and conversely.

Proof. 1−
∮ �
ν (f) = 1−∨A⊆C ν(A)∧∧i∈A(1−fi) = ∧A⊆C (1−ν(A))∨∨i∈Afi =

∨A⊆C 1− ν(A) ∧ ∧i∈Afi =
∮
1−ν

(f) because of a Sugeno integral property [12].

So, Sugeno integral is the complement to 1 of its dual desintegral by replacing
μ by ν = 1 − μ. This result is general for any function f . In the Boolean case,
the two propositions are summarized in∮

μ

(IA) =

∮ ⇑

μ

(IA) = μ(A) = 1−
∮ �

1−μ

(IA) = 1−
∮ ⇓

1−μ

(IA).

The relation
∮ ⇑
μ (f) = 1−

∮ ⇓
1−μ(f) is not true in the general case:

Example 2. Let C = {a, b}, f(a) = 1, f(b) = 0.8, μ(a) = 0 μ(b) = 0.5.

1 −
∮ ⇓
1−μ

(f) = ∨A⊆C(1 − ((∧i∈Afi) → (1 − μ(A)))) = max(0, 0.5, 1) = 1,

and
∮ ⇑
μ
(f) = ∧A⊆C (∧i∈A(1 − fi)) → μ(A) = min(0 → 0.5, 0.2 → 0, 0 → 0) =

min(1, 0, 1) = 0.

4 Qualitative Integrals as Possibilistic Bases

This section recalls the method presented in [8] for interpreting a Sugeno integral
as a possibilistic base when f is a Boolean function. Next we will study the case
of a desintegral. More precisely, this section presents logical representations for
capacities and anti-measures.
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4.1 Logical Framework for Sugeno Integral in a Boolean Context

The Sugeno integral
∮
μ
is used to classify objects f according to their evaluation∮

μ
(f). A possibilistic logic framework can be constructed as follows.

Looking at each criterion i as a predicate Pi, Pi(fi) indicates that the evalua-
tion with respect to the criterion i is fi ∈ L. Hence the object f = (f1, ..., fn) is
represented by the logic Boolean formula P1(f1)∧ · · · ∧Pn(fn). Boolean criteria
are assumed so we can simplify Pi(1) into fi and Pi(0) into ¬fi according to
whether criterion i is satisfied or not. If f = IA, then P1(f1) ∧ · · · ∧ Pn(fn) =
∧i∈Afi

∧
∧i
∈A¬fi. So any object is encoded as an interpretation of the language

induced by the variables associated to the criteria.
In this context, a logical formula corresponds to a set of objects that must

satisfy (or not) some criteria. The global evaluation
∮
μ(IA) can be seen as a

degree of guaranteed possibility of ∧i∈Afi
∧
∧i
∈A¬fi (view from below) or as a

degree of standard possibility (view from above).

Example 3. We consider three criteria or properties a, b, c. Some objects are
evaluated with respect to these criteria. The evaluation scale for each criterion
is {0, 1}, an object f is represented by the characteristic function of the subset
of criteria (or properties) that it satisfies.

Capacities (and anti-measures) are valued in L = {1, 1 − β, β, 0} with 1 >
1− β > β > 0.

We consider the capacity μ defined by: μ(a) = μ(b) = β, μ(c) = 1 − β,
μ({a, b}) = β, μ({a, c}) = 1, μ({b, c}) = 1− β, μ({a, b, c}) = 1.

In this context if we consider f = I{a,b} then
∮
μ
(f) = μ({a, b}). As the ca-

pacity μ is increasing, if the properties a and b are satisfied by an object g then∮
μ(g) ≥ μ({a, b}). This inequality corresponds to a Δ possibilistic base on lan-

guage generated by {a, b, c}, as we shall see.

4.2 Construction of a Possibilistic Base Associated to a Capacity

This section presents the possibilistic base associated to a Sugeno integral in the
particular case of binary values i.e, a capacity. The general case was presented
in [8]. The following property characterizes the set of objects f solutions of the
inequality

∮
μ(f) ≥ γ, γ ∈ L when the criteria are not Boolean.

Proposition 3. {f |
∮
μ(f) ≥ γ} = {f |∃A s.t. μ(A) ≥ γ and ∀i ∈ A, fi ≥ γ}.

Proof.
∮
μ(f) = ∨A⊆Cμ(A)∧∧i∈Afi ≥ γ iff ∃A, μ(A)∧∧i∈Afi ≥ γ i.e., ∃A such

that μ(A) ≥ γ and ∀i ∈ A fi ≥ γ.
Particularly, the non-trivial case is γ > 0, so if the evaluation scale is Boolean

we must suppose fi = 1 in the previous proposition and therefore {f |
∮
μ
(f) ≥

γ} = {IB|∃A s.t.μ(A) ≥ γ and A ⊆ B}. The monotony of μ and the fact that
the set Fγ

μ = {A, μ(A) ≥ γ > 0} is closed under inclusion entails that Fγ
μ has

least elements Aγ
k , k = 1, . . . , pγ such that μ(A) ≥ γ ⇐⇒ ∃k,Aγ

k ⊆ A. In logical
terms, the constraint μ(A) ≥ γ can be represented with the base

BΔ
γ = {[∧i∈Aγ

k
fi, γ], k = 1, . . . , pγ}.
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Hence it is obvious that
∮
μ
(f) ≥ γ, with f = IA if and only if ∧i∈Afi

∧
∧i
∈A¬fi |=∨

k=1,...,pγ ∧i∈Aγ
k
fi which can be written with a Δ possibilistic base BΔ

γ # [f, γ].

So the capacity μ can be represented by aΔ possibilistic base:BΔ = ∪γ∈μ(2C)B
Δ
γ .

Example 4. We consider the capacity μ of the previous example. Let us lay
bare:

– objects f such that
∮
μ
(f) ≥ β: we find {A ⊆ C|μ(A) ≥ β} = 2C \ {∅}. So

f = IA with a ∈ A, or b ∈ A or c ∈ A. These three vectors correspond to the
formulas [a, β], [b, β] and [c, β] respectively.

– objects f such that
∮
μ(f) ≥ 1 − β. We find {A ⊆ C|μ(A) ≥ 1 − β} =

{{c}, {a, c}, {b, c}, {a, b, c}} = {A, c ∈ A}. So f = IA with c ∈ A. which
corresponds to the formula [c, 1− β].

– objects f such that
∮
μ
(f) ≥ 1.We find {A ⊆ P|μ(A) ≥ 1} = {{a, c}, {a, b, c}}.

So f = IA with {a, c} ⊆ A which corresponds to the formula [a ∧ c, 1].
– According to the definition all objects f are such that

∮
μ(f) ≥ 0. We have

{A ⊆ |μ(A) ≥ 0} = 2C = {A : ∅ ⊆ A}, which entails no Δ-formula because
[⊥, 0] is a tautology.

The associated possibilistic Δ base is KΔ
μ = {[a, β], [b, β], [c, 1− β], [a ∧ c, 1]}.

4.3 Qualitative Desintegrals as Possibilistic Bases

In this part we consider ν an anti-measure. Similarly as the positive case, each
object f = (f1, · · · , fn) represents a logical interpretation f ε1

1 ∧ · · · ∧ f εn
n where

f εi
i ∈ {fi,¬fi}; so

∮ ⇓
ν
(f) =

∮ �
ν
(f) = ν(A) with f = IA. But in this context it is

1−
∮ �
ν which is viewed as the possibilistic degree corresponding to the formula.

So the inequality 1 −
∮ �
ν ≤ γ, i.e

∮ �
ν ≥ 1 − γ, is linked with a N possibilistic

base; and the inequality
∮ �
ν

≤ 1− γ, is associated to a Δ possibilistic base. We

are going to use the relationship between the desintegral
∮ �
ν and Sugeno integral

to come back to the Δ possibilistic base of a Sugeno integral. In practice in

the Boolean case,
∮ �
ν
(f) ≤ 1 − γ means ν(A) ≤ 1 − γ i.e μ(A) = 1 − ν(A) ≥ γ.

Formally we come back to the previous case, but the meaning is totally different.
Indeed fi = 1 means that the object is bad for the criterion i (it is a defect) and
ν(A) shows how f = IA is good. So μ(A) = 1 − ν(A) measures how much the
object f is bad with respect to the evaluations of its defects. We evaluate the
unattractiveness of an object with respect to its defects, in the same way as we
evaluate its attractiveness with a Sugeno integral.

Example 5. Let us come back to the example 2 but with an anti-measure. For
example we consider ν = 1− μ where μ is the capacity of the example 2:

ν(a) = ν(b) = 1− β, ν(c) = β, ν({a, b}) = 1− β, ν({a, c}) = 0, ν({b, c}) = β,
ν({a, b, c}) = 0.

In such a context, if we consider f = I{a,b},
∮ �
ν (f) = ν({a, b}). As the desin-

tegral is decreasing, if the properties a and b are satisfied for an object g we have

1−
∮ �
ν (g) ≥ 1− ν({a, b}). This inequality corresponds to a Δ possibilistic base.
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We use the proposition 2 : 1−
∮ �
ν

=
∮
1−ν

. As ν is defined by 1−μ we recover∮
μ and the possibilistic base associated to the Sugeno integral of example 3.

Example 6. We consider the anti-measure ν defined by ν(a) = 1−β, ν(b) = 1,
ν(c) = 1−β, ν({a, b}) = 1−β, ν({a, c}) = 1−β, ν({b, c}) = β, ν({a, b, c}) = 0.

We have 1 −
∮ �
ν =

∮
μ′ with μ′(a) = β, μ′(b) = 0, μ′(c) = β, μ′({a, b}) = β,

μ′({a, c}) = β, μ′({b, c}) = 1− β, μ′({a, b, c}) = 1 and define the following sets:
{A|μ′(A) ≥ β} = {{a}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} which corresponds

to the Δ-formulas [a, β] and [c, β].
{A|μ′(A) ≥ 1 − β} = {{b, c}, {a, b, c}} which corresponds to the Δ-formula

[b ∧ c, 1− β].
{A|μ′(A) ≥ 1} = {{a, b, c}} which corresponds to the Δ-formulas [a∧ b∧ c, 1].

So the Δ possibilistic base associated to
∮ �
ν

is KΔ
ν = {[a, β], [c, β], [b ∧ c, 1 −

β], [a ∧ b ∧ c, 1]}.

a b c d
∮ �

ν
(IS)

∮
μ
(IS)

1 1 1 1 1 θ η

2 1 1 1 0 θ 0

3 1 1 0 1 θ η

4 1 1 0 0 θ 0

5 1 0 1 1 λ η

6 1 0 1 0 λ 0

7 1 0 0 1 1 η

8 1 0 0 0 1 0

9 0 1 1 1 λ ρ

10 0 1 1 0 λ 0

11 0 1 0 1 1 ρ

12 0 1 0 0 1 0

13 0 0 1 1 λ ρ

14 0 0 1 0 λ 0

15 0 0 0 1 1 ρ

16 0 0 0 0 1 0

Fig. 2. Values of the desintegral and the integral for the different subsets of possible
satisfied properties for an object

5 Towards the Description of Acceptable Objects

A previous work [13] has already proposed to use a pair of evaluations made of a
Sugeno integral and a Sugeno integral reversed by complementation to 1 (which
corresponds to a desintegral), in order to describe acceptable objects in terms of
properties they must have and of properties that they must avoid. In that work,
all properties were assumed to be partitioned between these two categories for
a given object. In the general case, as suggested by the example presented in
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the introduction, the fact that a property is desirable or undesirable depends
on the context of other satisfied properties. In this example the property a is
undesirable if b is satisfied but the property d, which is good by itself, is desirable
if the property a is satisfied. Let us now encode the example of the introduction
in terms of an integral and a desintegral.

First let us consider the positive aspects. An object is satisfactory to degree
ρ (at least) if the property d is satisfied, and to degree η > ρ (at least) if the
properties a and d are satisfied. So we consider the fuzzy measure1 μ such that
μ({d}) = ρ and μ({a, d}) = η. Moreover, ∀A �= C, A ⊇ {a, d}, μ(A) = η and
∀A ⊇ {d}, A �⊇ {a}, μ(a) = ρ and μ(B) = 0 otherwise. The value of the integral∮
μ(IS) is given in Figure 2 for the different possible subsets of properties satisfied

by an object. The larger
∮
μ(IS), the more satisfactory the object characterized

by S. Now let us consider the negative aspects. The object is only satisfactory
to a degree at most λ if the property c is satisfied, and satisfactory to a degree
at most θ < λ if the properties a and b are satisfied. This leads us to consider an
anti-measure 2 ν such that ν({c}) = λ and ν({a, b}) = θ. Moreover, ∀A �= ∅, A ⊆
{a, b}, ν(A) = θ, and ν(B) = 0 otherwise. The value of the desintegral

∮ �
ν
(IS) is

given in Figure 2 for the different possible subsets of properties satisfied by an

object. The less
∮ �
ν (IS), the less satisfactory the object characterized by S. An

acceptable object needs to be fully satisfactory w.r.t. its negative aspects, i.e.∮ �
ν (IS) = 1, which means that the object should have no potential defect, and to
be as satisfactory as possible w.r.t. its positive aspects, i.e. with

∮
μ
(IS) maximal.

In our example, we can verify in Figure 2 that the objects that satisfy a and d,
but not b or c are the most acceptable, and that the objects which satisfy b and
d and not a nor c or d and not a nor b nor c are slightly less acceptable. There

is no other acceptable objects. The values of 1 −
∮ �
ν
(IS) indicate how much an

object should be rejected. Note that some objects (in this example, there are 5
cases (lines 1, 3, 5, 9 and 13 of the table in Figure 2) are both in some respects
satisfactory and in other respects unsatisfactory. It comes close to the problem
of choosing objects described by binary properties from the pros and cons of
arguments [5].

6 Conclusion

We have given the definitions and some properties of qualitative integrals and
desintegrals which extend the classical Sugeno integral. We have also studied the
particular case of binary properties and we have proposed a logical possibilis-
tic view for these aggregation functions. The general case of gradual properties
remains to be studied. Generally speaking, we may think of a level-cut based
approach, and we may also take lessons of the logical approach to qualitative
decision under uncertainty [6] where two logical bases are used for preferences
and knowledge, making a classical parallel between multiple criteria decision and

1 We give the smallest one.
2 We give the greatest one.
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decision under uncertainty. A first attempt at providing a logical representation
in the general case has been presented in [8] for Sugeno integrals only, and an-
other type of representation of positive and negative synergy between properties,
which is not bipolar (for example you want an object which satisfies a or b, but
not a and b) has been also indicated in [8]. The relation between the two types
of representation is a topic for further research.
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Abstract. The aim of this paper is to introduce some classes of aggre-
gation functionals when the evaluation scale is a complete lattice.

We focus on the notion of quantile of a lattice-valued function which
have several properties of its real-valued counterpart and we study a class
of aggregation functionals that generalizes Sugeno integrals to the set-
ting of complete lattices. Then we introduce in the real-valued case some
classes of aggregation functionals that extend Choquet and Sugeno inte-
grals by considering a multiple quantile model generalizing the approach
proposed in [3].

Keywords: Completely distributive lattice, quantile, Sugeno integral,
Choquet integral.

1 Introduction

Aggregation operators are an important mathematical tool for the combination
of several inputs in a single outcome that is used in many applied fields and in
particular in the area of artificial intelligence for decision making(see [9] for a
general background). Real-valued non-additive measures and their associated in-
tegrals are widely used aggregation operators. There are many situations where
inputs to be aggregated are qualitative and numerical values are used by con-
venience. Moreover sometimes we need to evaluate objects with a scale that is
not totally ordered. As the aim of this paper is to generalize some well known
aggregation functionals in a purely ordinal context. In this case only maximum
and minimum are used for aggregation of different inputs. So we study aggre-
gation functionals based on a complete lattices and we consider in particular
the class of completely distributive lattices. The quantile is a generalization of
the concept of median and it play an important role in statistical and economic
literature. We study quantile in a ordinal framework and and we consider an
axiomatic representation of quantiles as in [6] and [5].

The structure of the paper is as follows. To make this work self-contained
in Section 2 we briefly mention some basic concepts on lattices theory and we
provide the necessary definitions. Section 3 is devoted to lattice-valued measures
and lattice-valued integrals. Finally in Section 4 we introduce some classes of
generalized integrals based on a multiple quantiles model.
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2 Notations and Definitions

To introduce our general framework we will need some algebraic preliminaries.
Much of this terminology is well known and for further background in lattice
theory we refer the reader to Davey and Priestley [7] or Grätzer [10].

A lattice is an algebraic structure 〈L;∧,∨〉 where L is a nonempty set, called
universe, and where ∧ and ∨ are two binary operations, called meet and join,
respectively, which satisfy the following axioms:

(i) (idempotency) for every a ∈ L, a ∨ a = a ∧ a = a;
(ii) (commutativity) for every a, b ∈ L, a ∨ b = b ∨ a and a ∧ b = b ∧ a;
(iii) (associativity) for every a, b, c ∈ L, a∨ (b∨ c) = (a∨ b)∨ c and a∧ (b∧ c) =

(a ∧ b) ∧ c;
(iv) (absorption): for every a, b ∈ L, a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a.

Every lattice L constitutes a partially ordered set endowed with the partial
order ≤ such that for every x, y ∈ L, write x � y if x ∧ y = x or, equivalently, if
x ∨ y = y. If for every a, b ∈ L, we have a � b or b � a, then L is said to be a
chain. A lattice L is said to be bounded if it has a least and a greatest element,
denoted by 0 and 1, respectively.

A lattice L is said to be distributive, if for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Clearly, every chain is distributive. A lattice L is said to be complete if for every
S ⊆ L, its supremum

∧
S :=

∧
x∈S x and infimum

∨
S :=

∨
x∈S x exist. Clearly,

every complete lattice is necessarily bounded.
A complete lattice L is said to be completely distributive is the following more

stringent distributive law holds∧
i∈I

(∨
j∈J

xij

)
=
∨

f∈JI

(∧
i∈I

xif(i)

)
,

for every doubly indexed subset {xij : i ∈ I, j ∈ J} of L. Note that every com-
plete chain (in particular, the extended real line and each product of complete
chains) is completely distributive. Moreover, complete distributivity reduces to
distributivity in the case of finite lattices. Throughout this paper, A denotes an
arbitrary nonempty set and L a lattice. The set LA of all functions from A to L
constitutes a lattice under the operations ∧ and ∨ defined pointwise, i.e.,

(f ∧g)(x) = f(x)∧g(x) and (f ∨g)(x) = f(x)∨g(x) for every f, g ∈ LA.

In particular, for any lattice L, the cartesian product Ln also constitutes a lattice
by defining the lattice operations componentwise. Observe that if L is bounded
(distributive), then LA is also bounded (resp. distributive). We denote by 0 and
1 the least and the greatest elements, respectively, of LA. Likewise, for each
c ∈ L, we denote by c the constant c map in LA. Moreover or each X ⊂ A,
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we denote by X the characteristic function of X in LA defined by X(x) = 1 if
x ∈ X and X(x) = 0 if x /∈ X .

The following notion extends that of homomorphism between lattices. A map
γ:L → L, where L is a complete lattice, is said to be continuous if it preserves
arbitrary meets and and arbitrary joins, i.e., for every S ⊆ L,

γ(
∧

S) =
∧

γ(S) and γ(
∨

S) =
∨

γ(S).

The term continuous is justified by the following fact (see [11]): if γ:L → L is
continuous, then it is continuous with respect to the Lawson topology on L.

3 Lattice-Valued Measures and Lattice-Valued Integrals

The following definitions are natural extensions of the well known concepts of
real -valued non-additive (or fuzzy) measures and their associated integrals.

We follow the approach proposed by Greco in [13] and more recently by Ban
and Fechete in [2] for lattice-valued measures and integrals and we refer to [16]
and [17] for the standard case. Let (A,A) be a measurable space and L a a
bounded lattice. A non-additive measure on A with values in L is a function
m:A → L such that m(∅) = 0, m(A) = 1 and m(X) ≤ m(Y ) whenever X ⊆ Y .
A function f :A → L is said to be measurable if the sets {x : f(x) � a} and
{x : f(x) � a} are elements of A for every a ∈ L. We will use {f � x} to indicate
the weak upper level set {t ∈ L : f(t) � x}.

We denote by M the set of all fuzzy measures on A with values in L and by
F the set of the measurable functions f :A → L. Following [15] and [17] we give
the following definition.

Definition 1. A mapping I:F ×M → L will be called a lattice-valued integral
if the following properties are satisfied:

(i) for every c ∈ L and m ∈ M , I(c,m) = c;

(ii) for each m1,m2,∈ M with m1 ≤ m2 and f1, f2,∈ F with f1 ≤ f2 we have
I(m1, f1) ≤ I(m2, f2) .

This general definition has to be completed by a variety of additional properties.
In some cases we consider a lattice-valued integral as a function defined in F .

In order to obtain the additivity of the integral it is useful the concept of
comonotonic functions. The concept of comonotonicity emerges quite naturally
in many different fields such as aggregation theory, decision theory, finance and
actuarial sciences (see [22] )and comonotonicity was already used under different
names by many authors. We refer to Denneberg [8] for the definition as well
as for different characterizations of comonotonicity. In [22] several multivariate
extensions of the classical definition have been studied. In this paper we propose
a generalization of the notion of comonotonicity to the case of lattice-valued
functions.
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If A is a non empty set and L is a lattice two function f, g:A → L are said to
be comonotone if for every x ∈ L

either {f � x} ⊇ {g � x} or {g � x} ⊇ {f � x}

We consider now some of the properties that a lattice-valued integral I:F → L
may or may not satisfy:

(i) (homogeneity) I(f ∧ c) = I(f) ∧ c for every c ∈ L and for every f ∈ F ;
(ii) (invariance): I(γ ◦ f) = (γ ◦ I)(f) for every continuous mapping γ:L → L

and for every f ∈ F ;
(iii) (comonotone maxitivity): I(f ∧ g) = I(f) ∧ I(g) if f, g are comonotone

elements of F .

It is easy to prove that an invariant integral is homogeneous.

4 Quantiles and Sugeno Integrals in Complete Lattices

Here we provide a definition and characterization of quantiles for lattice-valued
operators. In this section we assume that L is a completely distributive lattice
and that A = 2A.

Definition 2. If α is an element of L the lattice-valued quantile of level α is
the functional Qα:F ×M → L such that

Qα(f,m) =
∨

{x : m({f � x}) � α}.

It can be proved that this definition extends the well known definition of quantile
for real-valued functions(see [5]).

Say that a collection of sets U ⊆ 2A is an upper set if X ∈ U and X ⊂ Y
implies that Y ∈ U . Then we can prove the following result.

Proposition 1. A lattice-valued integral I:F → L is a lattice-valued quantile
with respect to a non-additive measure m:A → L if and only if there exists a
upper set U such that

I(f) =
∨
X∈U

∧
x∈X

f(x)

or if and only if there exists a upper set U such that

I(f) =
∧
X∈U

∨
x∈X

f(x)

Proof. If I is a lattice-valued quantile we can consider the upper set U = {X ∈
2A : m(X) ≥ α} and we can get

I(f) =
∨

X∈U

∧
x∈X

f(x).
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By Theorem 5 in [4] we have that∨
X∈U

∧
x∈X

f(x) =
∧
X∈V

∨
x∈X

f(x)

where V = {Y ⊆ A : X ∩ Y �= ∅ for every X ∈ U}. It is easy to prove that V is
an upper set being U an upper set.
Conversely given the upper set U if we define a non-additive measure m:A → L
such that m(X) = 1 if X ∈ U and m(X) = 0 if X /∈ U I(f) is a a lattice-valued
quantile with respect to the non-additive measure m.

We can immediately prove that a lattice-valued quantile Qα:F × M → L is
an integral. The following proposition characterizes quantiles as functionals
Qα:F → L in completely distributive lattices.

Proposition 2. A lattice-valued quantile is an invariant and comonotone max-
itive functional such that for every X ⊆ A either Qα(X) = 1 or Qα(X) = 0.
If I:F ×M → L is an integral such that either I(X) = 1 or I(X) = 0 then I is
a lattice-valued quantile if and only if I is invariant.

Proof. The result follows easily from Theorem 3 in [5], we have only to prove
that a lattice-valued quantiles is comonotone maxitive.

If f, g:A → L are two comonotone functions, then {(f ∨ g) � x} = {f �
x}) ∪ {g � x} is equal to {f � x} or to {g � x}. Then we can prove that
m({(f∨g) � x}) = m({(f � x})∨m({(g � x}). Hence it follows thatQα(f∨g) =∨
{x : m({(f ∨ g) � x}) � α} = Qα(f) ∨Qα(g).

We are interested in a class of integral functionals defined on a complete lattice.
Following the approach in [13] we consider the functionals Sl, Su defined by :

Sl(m, f) =
∨
x∈L

(x ∧m({f � x}) and

Su(m, f) =
∧
x∈L

(x ∨m({x : f(x)) � x}) .

If L is a completely distributive lattice S = Sl = Su and the functional S extends
Sugeno integral to an ordinal framework and so is called the lattice-valued Sugeno
integral of f with respect to m. The following proposition provides an axiomatic
representation of this functional.

Proposition 3. A lattice-valued integral I:F × M → L is a lattice-valued
Sugeno integral that is

I(m,F ) =
∨
x∈L

(x ∧m({f � x})

if and only if it is homogeneous and comonotone maxitive.
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Proof. It is straightforward to show that a lattice-valued Sugeno integral is
monotone and homogeneous. Using the properties of comonotone functions as in
the proof of Proposition 2 we can prove that the functional S(f) is comonotone
maxitive. Then we consider a comonotone maxitive and homogeneous integral
I = I(f). In [13] it is proved that this functional is a Sugeno integral if when
f, g:A → L are two functions such that f ≤ g and a ∈ L we have that

I (f ∨ (a ∧ g)) = I(f) ∨ (a ∧ I(g)) .

If a ≥ x then {f � x} ⊇ {g ∧ a � x} and if a � x we have that {g ∧ a � x} = ∅
and then the functions f, g∧a are comonotone. Hence we have I (f ∨ (a ∧ g)) =
I(f) ∨ I(a ∧ g) and then since I is homogeneous and I (a ∧ g)) = a ∧ I(g) an so
the claim is proved.

Here we characterize quantiles as a subclass of the Sugeno integrals.

Proposition 4. A lattice-valued Sugeno integral S:F → L is a lattice-valued
quantile if and only if there exists a {0, 1}-valued non-additive measure m ∈ M
such that I(f) = S(f,m).

Proof. If S is a lattice-valued quantile of level α with respect to the non additive
measure m ∈ M can consider the non-additive measure m∗ ∈ M such that
m∗(X) = 1 if m∗(X) ≥ α and m∗(X) = 0 otherwise. Conversely if S is lattice-
valued quantile of level α with respect to the {0, 1}-valued non-additive measure
m ∈ M, S is a a lattice-valued quantile of level α for every α �= 0.

We can also prove that the subclass of quantiles generates the class of Sugeno
integrals.

Proposition 5. If S:F × M → L is a lattice-valued Sugeno integral then for
every f ∈ F and for every m ∈ M we have

S(f,m) =
∨
α∈L

(Qα(f,m) ∧ α)

Proof. If f is an element of F and m is an element of M we have that the
set {Qα(f,m) : α ∈ L} ⊆ L and then S(f,m) =

∨
x∈L (x ∧m({f � x}) ≥∧

α∈L (Qα(f,m) ∧ α).
If x ∈ L is such that m({f � x}) = α then x ≥ Qα hence we can prove that

S(f,m) =
∨

x∈L (x ∧m({f � x}) ≤
∧

α∈L (Qα(f,m) ∧ α).

5 Real Valued Quantiles and Integrals: Some Extensions

Throughout this section (A,A) be a measurable space (if A is a finite set we
usually assume that A = 2A) and L is the real interval [0, 1]. It can be noticed
that several type of integrals and in particular the Choquet integral were intro-
duced considering real interval different from [0, 1], but they can be transformed
into the [0, 1] framework.
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If M is the class of [0, 1]-valued non-additive measures defined on A, F is the
class of [0, 1]-valued measurable functions defined on A and f ∈ F the Choquet
integral is a mapping C:F ×M → [0, 1] defined by

C(f,m) =

∫
f dm =

∫ 1

0

m({f � x}) dx.

It is well known (see [8] and [9] for example) that Choquet integral is a comono-
tone linear functional i.e. I(af + bg) = I(af) + I(bg) if f, g are comonotone
elements of F and 0 ≤ a, b ≤ 1 .

Moreover it can be proved that every integral functional I:F × M → [0, 1]
that is comonotone linear is a Choquet integral (see [8] or [9]).

The following proposition proves that, as in the case of Sugeno integrals, the
quantiles functionals are Choquet integrals and that the subclass of quantiles
generates the class of Choquet integrals.

Proposition 6. The Choquet integral I:F → [0, 1] is a quantile if and only
if there exists a {0, 1}-valued non-additive measure m ∈ M such that I(f) =
C(f,m).

If C:F ×M → L is a [0, 1]-valued Choquet integral then for every f ∈ F and
for every m ∈ M we have

C(f,m) =

∫ 1

0

Qα(f,m) dα.

Proof. If I is a lattice-valued quantile of level α with respect to the non additive
measure m ∈ M we consider the non-additive measure m∗ ∈ M such that
m∗(X) = 1 if m∗(X) ≥ α and m∗(X) = 0 otherwise.

Then it is easy to prove that if q = Qα(f,m)

C (f,m∗) =

∫
f dm∗ =

∫ q

0

m∗({f � x}) dx = q.

The equality C(f,m) =
∫ 1

0 Qα(f,m) dα follows directly from proposition 1.4 in
[8].

We have considered quantiles with respect to a (possibly non-additive) measure
and not necessarily with respect to an endogenous probability. as in the classical
case. Now we define quantiles with respect to a family of non-additive measures
considering different attitude for low or high input values as in the definition of
level-dependent integrals (see [18] and [12] ).

If (mt) is a family of elements of M and t ∈ [0, 1] we consider the generalized
quantile of level α, the generalized Sugeno integral and the generalized Choquet
integral of a function f ∈ F as follows:

GQα(f) =
∨

{x : mα({f � x}) � α};

GS(f) =
∨
α∈L

(Qα(f,mα) ∧ α) and
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GC(f) =

∫ 1

0

Qα(f,mα) dα.

The proposed generalized integrals satisfy some minimal properties.

Proposition 7. The generalized Sugeno integral and Choquet integral are mono-
tone functionals. The generalized Sugeno integral is comonotone maxitive while
the generalized Choquet integral is comonotone additive.

Proof. Let us check comonotone maxitivity (additivity) of generalized Sugeno
(Choquet) integral. If f, g ∈ F are comonotone functions then for every α ∈
then GQα(f ∨ g) = GQα(f) ∨ GQα(g) and GQα(f + g) = GQα(f) + GQα(g)
and then the two properties are easily proved.

The integrals with respect to non-additive measures proved useful in many areas
of decision theory. As it is well known in decision under uncertainty it leads to a
generalization of expected utility. In this framework the aggregation functionals
defined above introduces a a multiple quantiles model for a decision-making
process under ambiguity in which a decision-maker is supposed to consider a
rank among outcomes. Following the approach in [3] the generalized functionals
are able to represent asymmetric attitude on extreme events (unexpected gains
or unusual losses) and a rational prudence on ordinary events.

6 Application to Citation Analysis

Assessment of the quality of research has become increasingly necessary in recent
years and many different indicators have been studied. We consider the approach
in which the quality of a a research output is measured by citation analysis.
Among the numerous bibliometric indices that have been used to evaluate the
scientific production of a researcher or a scientific journal, a very popular index
is the h-index which take into account the quality of the output of a scientist
represented by the number of citations per paper and the impact represented
by the number of paper ([14]). This index is relatively recent but the scientific
community has shown a considerable interest for this indicator. The h-index of a
researcher is the maximum number h of papers of the considered scientist having
at least h citations each. The h-index is a particular case of Sugeno integral (see
[20]) and obviously it is an aggregation operator.

Many recent papers generalize this approach and use aggregation functions in
the analysis of citation data (see [21]). . Prospect Theory in an amWe introduce a
generalization of this index to quantify an individual’s scientific work, considering
in particular excellent papers.

Let � = [0,+∞) denote the interval of nonnegative real numbers. We consider
also a finite index set N = {1, . . . , n} and a non-additive measure m: 2N → �.
Let an author’s output be characterized by a set of N publications and, for each
publication, the number of citations of that paper. We take here the number of
citations as given and we consider the number of citations of a paper as a measure
of the paper’s quality. We represent a researcher by a function f :N → � where
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f(i) is the number of citations of the ith publication and we assume f(i) = 0 if
the considered author has less than i publications.

An impact index is an aggregation function I: �N → �.
If the measure m is the counting measure the impact index defined by

F (f) = S(m, f) =

∫ 1

0

Qα(f,m) dα

is the h-index. The h-index identifies the most cited papers and it is insensitive
to low cited papers. However this index don’t identify researcher that have a
moderate level of production but a very high impact. In some cases, to have
large h-index is to have many good papers while a scientist with few papers
with a high number of citations per paper in general has not a high h-index. For
a discussion of this and other weakness of the h-index we refer to [1]. Now where
are considered also a number of h-type indices proposed in the literature.

If (mt) is a family of non-additive measures on N and t ∈ � we may consider
the impact index defined by

GC(f) =

∫ +∞

0

Qα(f,mα) dα where

Qα(f) =
∨
α∈�

{x : mα({f � x}) � α}.

In this case we obtain a more flexible index which takes into account the degree of
importance of a given level of citations. The proposed indices can be considered
as generalized h-type indices. For a more detailed discussion on a number of
generalized h-type indices proposed in the literature see the paper [1].

7 Concluding Remarks

We introduced a unified qualitative framework for studying non-additive mea-
sures and integration theory based on the notion of quantile.

The focus has been on aggregation functionals defined on lattices. In particular
we have introduced integral-based aggregation functionals defined on completely
distributive lattices.

For real-valued functions we introduce some functionals that generalize Sugeno
and Choquet integrals and a further research direction is that of an axiomatic
characterization of the considered aggregation functionals.

It is important to note that the proposed definition of generalized Sugeno
integral can be easily extended to an ordinal framework. We have shown with an
example that the proposed generalized integrals can be applied in real problems.
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11. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.D., Scott, D.S.:

Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)
12. Giove, S., Greco, S., Matarazzo, B.: The Choquet Integral with respect to level

dependent capacity. Fuzzy Sets and Systems 175, 1–35 (2011)
13. Greco, G.H.: Fuzzy Integral and Fuzzy Measures with Their Values in Complete

Lattices. Journal of Mathematical Analysis and Applications 126, 594–603 (1987)
14. Hirsch, J.E.: An index to quantify an indivividual’s scientific research output. Pro-

ceedings of the National Academy of Sciences of USA 102, 16569–16572 (2005)
15. Klement, E.P., Mesiar, R., Pap, E.: A Universal Integral. In: Proceedings

EUSFLAT 2007, Ostrava, vol. I, pp. 253–256 (2007)
16. Mesiar, R.: Fuzzy measures and integrals. Fuzzy Sets and Systems 156, 365–370

(2005)
17. Mesiar, R.: Fuzzy integrals and linearity. International Journal of Approximate

Reasoning 4, 352–358 (2008)
18. Mesiar, R., Mesiarová Zemánková, A., Ahmad, K.: Level-dependent Sugeno Inte-

gral. IEE Transactions on Fuzzy Systems 171, 167–172 (2009)
19. Murofushi, T., Sugeno, M.: Some quantities represented by the Choquet integral.

Fuzzy Sets and Systems 5, 229–235 (1993)
20. Narukawa, Y., Torra, V.: The h-Index and the Number of Citations: Two Fuzzy

Integrals. IEE Transactions on Fuzzy Systems 16, 795–797 (2008)
21. Narukawa, Y., Torra, V.: Multidimensional generalized fuzzy integral. Fuzzy Sets

and Systems 160, 802–815 (2009)
22. Puccetti, G., Scarsini, M.: Multivariate comonotonicity. Journal of Multivariate

Analysis 101, 291–304 (2010)



V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 149–160, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Analysis of On-Line Social Networks Represented  
as Graphs – Extraction of an Approximation  

of Community Structure Using Sampling 

Néstor Martínez Arqué1 and David F. Nettleton1,2 

1 Dept. Information Technology and Communications,  
Universitat Pompeu Fabra, Barcelona, Spain 

{nestor.martinez,david.nettleton}@upf.edu 
2 IIIA-CSIC, Bellaterra, Spain 

Abstract. In this paper we benchmark two distinct algorithms for extracting 
community structure from social networks represented as graphs, considering 
how we can representatively sample an OSN graph while maintaining its com-
munity structure. We also evaluate the extraction algorithms’ optimum value 
(modularity) for the number of communities using five well-known benchmark-
ing datasets, two of which represent real online OSN data. Also we consider the 
assignment of the filtering and sampling criteria for each dataset. We find that 
the extraction algorithms work well for finding the major communities in the 
original and the sampled datasets. The quality of the results is measured using 
an NMI (Normalized Mutual Information) type metric to identify the grade of 
correspondence between the communities generated from the original data and 
those generated from the sampled data. We find that a representative sampling 
is possible which preserves the key community structures of an OSN graph, 
significantly reducing computational cost and also making the resulting graph 
structure easier to visualize. Finally, comparing the communities generated by 
each algorithm, we identify the grade of correspondence. 

Keywords: Data mining, social networks. 

1 Introduction 

Finding structure in ad-hoc networks without any a priori knowledge about the expected 
result is a complex task. With the advent of online social networks (OSNs), the study of 
how to extract a vision of the network in terms of 'communities' has become an active 
field. By 'communities' we understand the 'sociological' interpretation in which indi-
viduals (humans beings) interact socially in some way (by email, using some online 
application, collaborating in some endeavour such as the writing of scientific papers, or 
forming some other social group such as a club, association, and so on). We can also 
extent our definition of individuals to include the study of the behaviour and social in-
teractions of living beings in general (such as Dolphins, Simians and so on). 

The results of extracting a community structure are highly dependent on the statis-
tical and topological characteristics of the graph dataset, such as the average degree, 



150 N.M. Arqué and D.F. Nettleton 

clustering coefficient and level of fragmentation. It may also be dependent on the 
community extraction algorithm used, many of which are stochastic and non-
deterministic. Other problems include the large volume of data in many OSN logs, the 
presence of 'noise' or 'unreliable' and outdated links in the graph, and highly frag-
mented graphs. 

In the present study we apply two distinct community extraction algorithms [1,2] 
to five structurally distinct datasets, and compare the results. The extraction algo-
rithms represent an optimization process based on an entropy type metric (modular-
ity). For the three largest datasets we have also applied a filtering processing to reduce 
the number of nodes tested, while maintaining the key community structure informa-
tion.  This implies a very considerable saving in computational cost of processing by 
the community search algorithm. In this paper we describe how a filter based on  
degree and/or clustering coefficient enables us to extract the core parts of the commu-
nities in a complex graph. This filtering also significantly improves the results of 
visualization, using, for example, the Gephi software tool (http://gephi.org/), avoiding 
the typical “hairball” [3] appearance of many high data volume social networks.   

The structure of the paper is as follows: in Section 2 we present the state of the art 
and related work; in Section 3 we present our approach for filtering and sampling the 
data; in Section 4 we define the datasets used and the experimental setup; in Section 5 
we present the empirical tests and results for the community extraction, comparing the 
two algorithms and sampling Vs. using the complete dataset; finally in Section 6 we 
give the conclusions. 

2 State of the Art and Related Work 

The following briefly reviews the related work and key authors in the field of OSN 
graph processing, community detection and OSN graph sampling.  

The study of community structure in social networks has been of interest for many 
years as a multidisciplinary field [4, 5]. More recently, with the advent of online so-
cial networks (Facebook, Twitter, etc.) research in this area has been given a great 
impulse due to the availability of (some) of this online data for analysis, by authors 
such as [1, 6, 7, 8, 9], and which deal specifically with the mining of social networks 
as graphs [10, 11]. In this paper we benchmark two community structure extraction 
algorithms: Newman[1], which we have implemented in Python NetworkX and (ii) 
the Louvain method[2] using the default version available in the Gephi graph 
processing software. 

Newman's algorithm[1] focuses on how to extract a community structure from so-
cial network graph data. Two main approaches are defined: (i) the identification of 
groups around a prototypic nucleus defined in terms of the 'most central' edges, an 
adjacency matrix being used as the basis to calculate the weights; (ii) identification of 
groups by their boundaries, using the least central edges (frontiers). This metric is also 
referred to as "edge betweenness", and is based on Freeman's "betweenness centrality 
measure" [5]. The algorithm is as follows: (a) calculate the betweenness for all edges 
in the graph; (b) remove the edge with the highest betweenness; (c) recalculate bet-
weennesses for all edges affected by the removal; (d) repeat from step (b) until no 
edges remain. Newman's fast algorithm [12] is used for calculating betweenness. 
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Newman’s algorithm[1] extracts the communities by successively dividing the 
graph into components, using a metric to quantify the quality of the community parti-
tions ‘on the fly’. The value calculated by the quality metric for a given community is 
called the modularity. For a graph divided into k communities, a symmetrical matrix e 
of order k2 is defined whose elements  are the subset of edges from the total graph 
which connect the nodes of communities i and j. 

The modularity metric is defined as the fraction of edges in the graph which con-
nect vertices in the same community, minus the expected value of the same number of 
edges in the graph with the same community partitions but with random connections 
between their respective nodes. If the number of intra-community edges shows no 
improvement on the expected value, then the modularity would be Q=0. On the other 
hand, Q approaches a maximum value of 1 when the community structure is strong. 
According to [1], the usual empirical range for Q is between 0.3 and 0.7. 

The Louvain method[2] can be considered an optimization of Newman’s method, 
in terms of computational cost. Firstly, it looks for smaller communities by optimiz-
ing modularity locally. As a second step, it aggregates nodes of the same community 
and builds a new network whose nodes are the communities. These two steps are 
repeated iteratively until the modularity value is maximized. The optimization con-
sists of evaluating the modularity gain, which is done by performing a local calcula-
tion of the change in modularity for a given community, caused by moving each node 
from it to an adjacent community. With each iteration the number of nodes to test 
quickly reduces (due to the aggregation of the corresponding nodes), and the compu-
tational cost is reduced in the same order. 

With respect to the evaluation of community detection algorithms, Lancichinetti 
and Fortunato in [13] carried out an exhaustive benchmarking of 12 different me-
thods, including the Louvain method[2] and Newman’s method[1]. However, they 
used synthetic datasets for their tests and did not evaluate sampling of the networks. 
In the current work we have used real datasets and considered sampling. In [13], par-
tition comparison between methods used the fraction of correctly identified nodes 
measure (NMI- Normalized Mutual Information). Lancichinetti also benchmarked a 
second measure, called ‘LFR’, which also takes into account degree power law distri-
butions and community size. In our current work we have used Girvan and Newman’s 
benchmark [14], using only the top N communities for evaluation, chosen by studying 
the size distributions. 

Sampling is a key aspect of processing large graph datasets, when it becomes in-
creasingly difficult to process the graph as a whole due to memory and/or time con-
straints. Sampling is related to, but not the same as filtering. Filtering eliminates 
records from the complete dataset according to some criteria, for example, “remove 
all nodes with degree equal to one”. Sampling, on the other hand, tries to maintain the 
statistical distributions and properties of the original dataset. For example, if 10% of 
the nodes have degree = 1 in the complete graph, in the sample the same would be 
true. Chakrabarti, in [15], compares two sampling methods: (i) a full graph data col-
lection and (ii) the Snowball method. The latter is implemented by taking well con-
nected seed nodes and growing a graph around them. However the authors confirm 
the general consensus in the literature that although ‘snowballing’ is an adequate 
technique for graph sampling, it tends to miss out isolated individuals. In order  
to solve this problem, the authors propose a random or probabilistically weighted  
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selection of seeds. However, for community sampling, we propose that this bias is 
advantageous because we are interested in identifying key hubs and highly connected 
neighbors, as opposed to the more isolated regions and nodes of the graph. A key 
consideration in sampling is the choice of the initial starting nodes (or ‘seeds’) for 
extracting the sample. Another consideration is how to measure the ‘quality’ of the 
derived sample. These two aspects are studied in [16, 17]. 

3 Our Filtering/Sampling Approach 

In this section, with reference to Figures 1a and 1b, we will see how we apply a two 
step process, consisting of filtering followed by sampling, in order to obtain a subset 
of a complete graph consisting of three communities. We emphasize that we have 
defined a process which is customized for extracting community structure. Thus we 
make emphasis on identifying hub nodes, high density regions, and their neighbors, 
rather than on an equitative percentage of all types of nodes. Hub nodes are identified 
by their degree, and high density regions are identified by the clustering coefficient. 
Once we have selected the “seed nodes” based on their degree or clustering coeffi-
cient, then we apply a sampling at 1 hop to obtain all the neighbors of each “seed 
node”. Again, instead of applying a proportional number of nodes based on their dis-
tribution of the complete dataset, we let the search be biased to nodes with a high 
degree or a high clustering coefficient. In Fig. 1 we see a schematic representation of 
the filtering and sampling process. 

Now we will see how we would process a simple graph consisting of 3 communi-
ties. In Fig. 2 we see the assigning of seeds (encircled nodes) using the 92.5 percentile 
of the degree (a) and clustering coefficient (b) values, respectively, and then including 
all the seed’s neighbors (indicated by rectangles) at one hop. This means that the de-
gree of the seed nodes (Fig. 2a) will be in the top 7.5% of the degree distribution for 
the complete graph. Likewise, the clustering coefficient of the seed nodes (Fig. 2b) will 
be in the top 7.5 of the distribution of the clustering coefficient for the complete graph. 

We see that a very good coverage is obtained of the three communities in this 
graph, without having to expand the inclusion of nodes (in a “snowball” fashion) to 2 
or more hops. This is because the regions we are interested in, the community cores, 
will be generally made up of a lattice of high degree  and/or highly  interlinked 
nodes.  Therefore, selecting precisely these nodes as the seeds and including their 
neighbors will cover a high percentage of the core component of the major communi-
ties. In the empirical section we see how this result applies for much more complex 
and fragmented networks, and how we decide when to use the degree as the filter, or 
the clustering coefficient. 

 
 
 
 
 
 

Fig. 1. Schematic representation of the node filtering and selection process 
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Fig. 2. (a) Selection of seed nodes using 92,5 percentile of degree values; (b) Selection of seed 
nodes using 92,5 percentile of clustering coefficient values frequency 

4 Datasets Used and Experimental Setup 

In this section we briefly describe the procedure we have followed, the datasets  
used and their basic statistics. We also give the details of the sampling for the three 
large datasets, and their statistics after sampling. We use five different benchmark  
datasets: Karate [4], Dolphins [18], ArXiv GrQc-General Relativity and Quantum  
Cosmology [19], Enron [7] and Facebook [9]. In Table 1 we see a summary of the 
basic graph statistics for each test dataset. For community extraction we apply New-
man's algorithm[1] (which we implemented in Python NetworkX) and the Louvain 
method[2] (standard version available in Gephi) to the datasets. 

4.1 Values for Filtering and Sampling 

With reference to Table 2, we see the summary for the sampling methods, per dataset. 
The filter and the value were chosen by different trial and error tests in order to obtain 
the desired overall percentage, which is the sum of the seed nodes plus all the neigh-
bors of each of these. We used the recommendations of [20] as a guideline for the 
approximate optimum percentage of the complete dataset, which Ahn stated as being 
25% for the degree as filter, and 20% for the clustering coefficient as filter. However, 
we found that the real sample size depends on the dataset and the distributions of the 
degree and clustering coefficient values.  

Table 1. Summary of graph statistics for the five original datasets 

 Karate Dolphins GrQc Enron Facebook 

#Nodes 34 62 5242 10630 31720 
#Edges 78 159 14496 164837 80592 
Avg. degree 4.59 5.13 5.530 31.013 5.081 
Clust. coef. 0.57 0.26 0.529 0.383 0.079 
Avg. path length 2.408 3.356 6.049 3.160 6.432 
Diameter 5 8 17 20 9 
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Table 2. Summary of sampling criteria/methods for sampled datasets 

 Filter Value Resulting sample size Sample 
ArXiv-GrQc Degree ≥30 17.91% All neighbors 
Enron Clustering coef. =1 20.83% All neighbors 
Facebook Clustering coef. ≥0.5 10.75% All neighbors 

Table 3. Summary of graph statistics for the three largest sampled datasets 

 GrQc Enron Facebook 
#Nodes 939 2218 3410 
#Edges 5715 14912 6561 
Avg. degree 12.17 12.315 3.848 
Clust. coef. 0.698 0.761 0.632 
Avg. path length 4.51 3.143 8.388 
Diameter 10 7 27 

In Table 3 we summarize the basic graph statistics for each test dataset, after sam-
pling. As we mentioned in Sec. 3, we are interested in extracting the strong communi-
ty structure of the graph and therefore the fact that the before/after statistics are  
distinct is not an issue, which is caused mainly by the omission of isolated and  
low connectivity areas of the graph. One negative aspect would be the possible loss  
of some of the bridge nodes between communities, as commented in the previous  
section. 

5 Empirical Tests and Results 

In Section 5.1 we first document the results of applying Newman's method to the 
sampled datasets; then in Section 5.2 we compare the results with those of the litera-
ture; in Section 5.3 we apply the Louvain method and compare the communities ex-
tracted from the original datasets to those extracted from the sampled datasets, using 
an NMI type metric for node assignments to communities; finally, in Section 5.4 we 
compare the communities extracted by Newman's method and the Louvain method 
using the same NMI metric.  N.B. In the following text we will now refer throughout 
to Newman's method as NG and the Louvain method as LV. 

5.1 Evaluation of Newman's (NG) Method with the Sampled Datasets 

For the ArXiv-GrQc dataset[19] and with reference to Fig. 3 (GrQc) and Table 4, the 
optimum modularity was obtained at Q=0.777, produced at iteration 56 and which parti-
tioned the sampled version of the dataset in 57 communities. As can be seen in Fig. 3 
(GrQc), the modularity value rises rapidly to a global maximum, which it maintains dur-
ing approx. 100 iterations and then decays smoothly. With reference to Fig. 4a,  
the greatest community (lowest part of the Figure), is formed by 16.29% of the total 
nodes. The next two communities represent 10% of the total nodes.  
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For the Enron dataset, with reference to Fig. 3 (Enron) and Table 4, the optimum 
modularity was found at iteration 865, corresponding to Q=0.42, and dividing the 
dataset into 869 communities, of which the biggest represented 66.95% of the total 
nodes. We see from Fig. 2 that the modularity ascends rapidly during the first 70  
iterations, and then keeps increasing with a much shallower gradient until it reaches 
the optimum, after which it begins to decay significantly. The version we finally used 
for the sampled Enron dataset was that generated an early iteration (51), which parti-
tioned the dataset into 56 communities with a modularity close to the optimum  
obtained later at iteration 864. 

For the Facebook dataset, with reference to Fig. 3 (Facebook) and Table 4, the op-
timum modularity was found at iteration 40, with Q=0.87 (a relatively high value with 
respect to the other datasets), resulting in a total of 190 communities (Fig. 4b). This 
value was obtained as a consequence of the low clustering coefficient in the dataset. 
As can be seen in Fig. 3 (Facebook), the optimum value is found relatively early on in 
the process, followed by a linear decay from that point onwards.  

 
 

 

 

 

 

 

 

Fig. 3. Evolution of the modularity Q for the three largest sampled datasets 

Table 4. Summary of community structure processing statistics for five test datasets using the 
NG Method 

 It. Q C Original or 
Sampled 

Karate 4 0.494 5 O 
Dolphins 5 0.591 6 O 
GrQc 56 0.777 57 S 
Enron 865 0.421 869 S 
Enron Early* 51 0.325 56 S 
Facebook 40 0.870 190 S 

It.=number of iterations, Q=modularity, C=number of communities, *Early termination with a semi-
optimal Q. 
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                    (a)                                            (b) 

Fig. 4. NG Method: (a) Visualization of the principal communities extracted for the sampled 
arXiv-GrQc dataset; (b) Visualization for the Facebook dataset, with a partitioning correspond-
ing to 190 communities obtained at iteration 40 (both using ‘Force Atlas’ visualization metric) 

5.2 Discussion of Results with Reference to the Literature 

In the following we reference the literature in order to obtain some idea of what we 
could consider the correct number of communities in each of the three largest data-
sets. For the arXiv-GrQc dataset, Xie[21] reported 499 communities using a “Label 
Propagation Algorithm” and 605 communities using a “Clique Propagation Algo-
rithm”. In the case of the Enron dataset, Shetty[7] defined the dataset as consisting of 
151 Enron employees, and 5 key (hub) persons, however the graph is generated by 
emails sent between these persons, including “cc” and “re:” mailings to external 
emails, which greatly increases the number of entities in the dataset, and therefore 
nodes in the graph. Finally, for the Facebook dataset, there are no definitive values for 
the number of clusters in the literature, however Viswanath in [9] reported a high 
fragmentation into small communities, and Leskovec in [19] also reported a relatively 
high fragmentation of communities in other online social networks similar to Face-
book. However the fragmentation of this particular dataset is also probably influenced 
by the measure of interaction (writes to wall) used to define links between users. 

Table 5. Summary of community Q and C values for the three largest graphs using LV on the 
sampled and original versions of the datasets 

 Original Sampled 
 Q C Q C 
GrQc 0.856 390 0.789 11 
Enron 0.491 43 0.560 68 
Facebook 0.681 1105 0.519 33 

Q=modularity, C=number of communities. 
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5.3 Communities Extracted using the LV Method from Sampled Datasets Vs. 
Communities Extracted using the LV Method from Original Datasets  

In the following Section we have used the LV Method (rather than the NG Method) to 
compare the communities in the sampled and original datasets, given the very large 
computational cost of NG to process the larger (original) graphs, and because LV 
allows us to obtain an adequate benchmark for the datasets which is comparable to the 
results in the literature. 

Table 5 shows a summary of the Q (modularity) and C (number of communities) 
values generated for the original and the sampled datasets. For the original datasets 
we see a high fragmentation of small communities in the arXiv-GrQc and Facebook 
datasets, which in the sampled datasets is greatly reduced so as to include only the 
most significant communities. Curiously, for the Enron dataset more communities are 
found in the sampled dataset than in the original dataset (68 with respect to 43), how-
ever for the former (sampled dataset) the number of communities it finds (value of 68 
in Table 5) is similar to that of NG (value of 56 in Table 4). 

NMI (Normalized Mutual Information). With reference to Table 6, we now com-
pare the results of the community labeling by counting the number of nodes which are 
assigned in each community, and the number of nodes which are assigned to the same 
corresponding community, in the sampled and original datasets. This represents a NMI 
(Normalized Mutual Information) type metric [13] in which the nodes are labeled by 
the community of the original dataset, following the method we commented in Section 
2. Table 6 summarizes the “purity” of the correspondences, in which a “purity” of 
100% would mean that all the nodes which were assigned to communities C1...CN in the 
sampled dataset were also assigned to communities C1...CN in the original dataset.  

The matching is made more difficult given that the LV Method (and the NG Me-
thod) are stochastic and non-deterministic. This means that each execution may  
produce slightly different results (nodes are assigned to different communities), al-
though we assume the extraction of the most important communities will be similar. 
Also, the labels assigned to the communities (community 1, 2, etc.) may vary. Hence, 
in order to realize a comparison, we must first find the majority matching of each 
community label in the first execution with each community label in the second, in 
order to establish the correspondence. We chose the top N communities (in general 
N=10) by studying the size distribution.  

In column B of Table 6 we see the difference for the sampled dataset with itself 
(for two different executions of the algorithm), and in column C we see the difference 
for the  original dataset with itself. Hence, if we consider the correspondence of the  
 
Table 6. Comparison of correspondence (NMI) of community assignments between original 
datasets and sampled datasets (using the LV Method) 

NMI orig. Vs. 
sampled (A) 

NMI sampled 
Vs. sampled (B) 

NMI orig. Vs. 
orig. (C) 

Net loss    
(C - A) 

GrQc 0.66559 0.82544 0.77301 0.10742 

Enron 0.69069 0.86903 0.82012 0.12943 

Facebook 0.58996 0.73249 0.69215 0.10219 
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original dataset with itself as the baseline (column C), then the net precision loss (last 
column of Table 6) will be the difference between the baseline and the correspon-
dence between the communities of the original dataset with those of the sampled data-
set (column A). 

We observe from the final column of Table 6 that the precision loss is between 10% 
and 13%, depending on the dataset, and the average correspondence is between 58% 
and 70% (column A). The NMI of the sampled datasets (column B) represents a signif-
icant improvement with respect to the original datasets (column C). Finally, we in-
spected the correspondence between communities in the original dataset and those in 
the sampled dataset. We found that the most “pure” communities and the most “im-
pure” in general remained the same, that is, communities with a high relative corres-
pondence remained so and those with a low relative correspondence also remained so. 

5.4 Communities Extracted by LV Method vs. Communities Extracted by NG 
Method 

In Terms of ‘Q’ (Modularity Value) and ‘C’ (Number of Communities Created): 
We first compare the methods referring to Table 4 (NG, columns 3 and 4) and Table 5 
(LV, 2 rightmost columns). In the case of the sampled version of the GrQc dataset, 
the number of communities extracted by LV (11) was different from that of NG (57). 
In terms of Q (modularity), both methods gave the same value (0.77 Vs. 0.79). For the 
sampled version of the Enron dataset, for NG we took the early cutoff version. The 
number of communities found was similar (56 for NG Vs 68 for LV), however the Q 
value was significantly lower for NG (0.32 for NG Vs. 0.56 for LV). 

Finally, Facebook, gave the biggest difference in terms of C (190 communities for 
NG Vs. 33 for LV) and Q (0.87 for NG Vs. 0.52 for LV). We propose that a key fac-
tor in this result the lack of an identifiable cut-off point for NG, and the high fragmen-
tation of communities in the Facebook dataset. In general, we can conclude that NG 
and LV may give distinct results in terms of the number of communities and modular-
ity values.  

In Terms of NMI (Normalized Mutual Information): In Table 7 we compare the 
assignments of nodes between the top N communities {CLV} extracted by LV and 
those extracted by NG {CNN}, for the sampled data. We note that for column A we 
have used the N largest communities {CLV} created by LV, by number of nodes, then 
we find the percentage of corresponding nodes of the principal corresponding com-
munities {CNN} of NG. 

Table 7. Normalized Mutual Information (NMI) comparison of correspondence of node 
assignments to communities: LV Method Vs NG Method for sampled data 

NMI LV Vs. NG    
(A) 

NMI NG Vs. LV   
(B) 

NMI orig. Vs. 
orig. (C) 

Net loss      
C - Avg. (A, B) 

GrQc 0.69116 0.87243 0.77301 -0.00878 

Enron 0.31313 0.68796 0.82012 0.31958 

Enron early 0.83437 0.44320 0.82012 0.18133 

Facebook 0.62056 0.54551 0.69215 0.10911 
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Contrastingly, in column B we first identify the top N communities {CNN} created 
by NG by number of nodes, then we find the percentage of corresponding nodes of 
the principal communities of LV {CB}. In column C we define the same baseline used 
in Table 6, which is the NMI of the communities of the same dataset for two different 
executions of LV. Finally, in the final column we take the difference between the 
baseline and the average of columns A and B. From Table 7 we observe that the cor-
respondence, in terms of node assignments, between the two methods is dataset de-
pendent, with Enron (maximum number of iterations) having the least similarity 
(0.31) and GrQc having the greatest similarity (-0.01). We have also considered the 
‘early cutoff’ version of applying NG to the Enron data, given that it produced a much 
smaller number of communities. As can be seen, there is a significant improvement 
with respect to the version which was allowed to run much longer (0.18 Vs. 0.31). 

In conclusion with respect to the comparison of the methods, the empirical tests 
and results show there is a significant difference between the assignment of the nodes 
between methods.  

6 Conclusions 

We have benchmarked five statistically and topologically distinct datasets, applying 
two community structure elicitation algorithms and sampling on the three biggest 
datasets. The sampling is designed to maintain the overall community structure by 
choosing “hub” type nodes and high density regions, based on degree and clustering 
coefficient. The results indicate that it is possible to identify the principal communi-
ties for large complex datasets, using this type of sampling. The sampling method 
maintains the key facets of the community structure of a dataset, while reducing sig-
nificantly (80 to 90%) the dataset size. We have also established, due to the stochastic 
nature of the algorithms, that a significant difference is found in the assignment of 
nodes to communities between different executions and methods. However, by in-
spection of the communities, we observe that the overall structure is consistent. 
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Departament d’Enginyeria Informàtica i Matemàtiques,
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Abstract. The emergence of microblogging-based social networks shows
how important it is for common people to share information worldwide.
In this environment, Twitter has set it apart from the rest of competi-
tors. Users publish text messages containing opinions and information
about a wide range of topics, including personal ones. Previous works
have shown that these publications can be analyzed to extract useful
information for the society but also to characterize the users who gen-
erate them and, hence, to build personal profiles. This latter situation
poses a serious threat to users’ privacy. In this paper, we present a new
privacy-preserving scheme that distorts the real user profile in front of au-
tomatic profiling systems applied to Twitter. This is done while keeping
user publications intact in order to interfere the least with her followers.
The method has been tested using Twitter publications gathered from
renowned users, showing that it effectively obfuscates users’ profiles.

Keywords: Microblogging, Noise addition, Privacy, Profiling, Twitter.

1 Introduction

Twitter is a very popular online social network and microblogging system. Ba-
sically, this social tool allows registered users to share short text-based posts
(named tweets) up to 140 characters with anybody else on the Internet. Nowa-
days, the company behind this social network claims to have 100 million active
users who generate 230 million tweets on average per day [1]. This fact proves
two points: (i) how sharing information has become a real necessity for common
people; and (ii) the relevance of Twitter in the present day.

Nevertheless, tweets generally contain personal information [2] and this fact
motivates the existence of systems that analyze those publications and build
user profiles. This implies that profiling data such as user preferences can be
linked with her identity. This may invite malicious attacks from the cyberspace
(e.g.; personalized spamming, phishing, etc) and even from the real world (e.g.,
stalking) [4].

Several profiling mechanisms that gather information from Twitter (and other
Internet services) can be found in the literature [5–10]. In general, all these tools
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generate user profiles that contain the interests of the users. In order to achieve
that, they generally use a knowledge base (e.g.,Wikipedia [11], news repositories,
the Web) to semantically interpret message contents and the number of term
occurrences/co-occurrences to calculate the weight of each topic of interest (e.g.,
sports, technology, health, etc), which is found in the tweets of a certain user.
As an example of this process, the authors in [8] present a knowledge-based
framework that builds user profiles from text messages shared in social platforms.
Researchers [9, 10] have also noted the difficulty of analyzing textual contents in
Twitter due to the use of short text-based messages. Tweets are, quite commonly,
ungrammatical and noisy (due to hashtags, re-tweets, URLs). Hence, due to the
difficulty of applying exhaustive syntactical analyses, Twitter profiling systems
[7–10] usually analyse the whole user tweets as a bag-of-words.

In order to prevent privacy problems that are inherent to the existence of
profilers and user profiles, it is convenient to design privacy preserving tools
that allow users to protect themselves from profilers. Nevertheless, it is worth
to mention that privacy-preserving methods based on restricting the visibility
of the user-generated content compromise as well the capability of users to gain
attention from others. Indeed, since this is one of the main motivations of using
Twitter, this straightforward approach may not be widely adopted. Therefore, a
successful privacy-preserving scheme should protect the privacy without limiting
the visibility of user-generated data.

1.1 Contribution and Plan of This Paper

In this paper we propose a new scheme designed to prevent automatic text-based
data extraction techniques from profiling users (i.e., to discover dominant profile
categories) of microblogging services. The basic idea is to introduce a set of fake
messages within the user account while maintaining users’ messages intact. We
have used Twitter to test our proposal but the results achieved can be applied
to any other social platform which works with text-based messages.

Section 2 discusses previous work aiming at providing privacy to microblog-
ging services and introduces the basis of our approach. Section 3 presents our
privacy-preserving method, detailing how it distorts the user profile (in order to
hide it) as new messages are published. Section 4 evaluates the proposal, apply-
ing it to several well-differentiated Twitter users. The final section presents the
conclusions and some lines of future research.

2 Previous Work

In the literature there is an important lack of mechanisms that try to preserve
the privacy of the users of Twitter and similar platforms.

In [12], the authors present a Firefox extension that allows users to specify
which data or activity need to be kept private. Sensitive data is substituted
with fake one, while the real data is stored in a third party server that can
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be only accessed by the allowed users. Note that this solution requires a cen-
tralized infrastructure which must be honest and always available. Clearly, this
requirement is a very strong shortcoming of this proposal.

This behaviour avoids profiling but it also jeopardizes the capability of the
users to gain attention from others. As explained previously getting attention
(which in turn provides publicity, vanity and ego gratification) is the main mo-
tivation for Twitter users (and other similar platforms) [3].

In order to avoid this major problem, we propose a method which aims to
distort user profiles while keeping their original messages intact. In order to
do so, we studied techniques proposed in the research field of unstructured text
anonymization which aim to hide original information while not completely re-
moving/transforming it. In [13], authors explain three different methods to deal
with the anonymization of textual documents: (i) Named entity generalization:
sensitive entities can be generalized (e.g., iPhone → cell phone) to achieve some
degree of privacy while preserving some of their semantic meaning in the doc-
ument [14]; (ii) Entity swapping: this method is based on swapping relatively
similar entities [15] between documents of the same set, or within the same
document depending on the concrete case; and (iii) Entity noise addition: this
method introduces new entities to user documents that can help to hide the
original information.

The main problem of the first method is that it may introduce significant loss
of information in user messages derived from the degree of generalization intro-
duced. The second technique is designed to work with documents of an adequate
length and which are properly structured. Clearly, tweets do not hold these re-
quirements. The last method is the more suitable for short-length documents
and, hence, it might be applied to Twitter and similar microblogging services.
The main shortcoming is that, if noise is added within user posts, it may generate
uncomfortable publications like the Entity swapping technique. Nevertheless, it
might be successful if it is implemented allowing readers to distinguish between
legitimate and distorted publications, which is precisely the goal of our method.

3 Our Proposal

The proposed method follows two main steps: user profiling and semantic noise
addition. In the first one, our method uses similar techniques as those proposed
by profiler systems to characterize the user profile according to her published
tweets. In the second one, it assesses which are the dominant and dominated
categories in her profile and which should be the contents of the fake tweets to
be added in the user account (i.e., distortion) to achieve a balanced profile.

It is important to note that fake tweets are constructed as a concatenation of
terms which lack the semantically-coherent discourse that a human reader would
expect. In this manner, human readers could easily discern between user tweets
and fake ones while general approaches for profiling users would be unable to do
it. Obviously, it is always possible to design an ad-hoc solution trained to discern
between user messages and fake ones. Nevertheless, developing an ad-hoc system
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is costly and, in turn, it might be defeated by modifying certain aspects of the
way in which fake messages are generated.

In the following two sections, our method is formalized and described in detail.

3.1 User Profiling

Let us consider a user u that starts posting a first tweet t1 in her Twitter account.
Let us also consider that the user profile P is defined (like in related works [5]
and [6]) as a set of well-defined categories C = {c1, . . . , ck} (e.g., science, health,
society, sports, etc), for which their relative weight (vi) should be computed
according to the amount of evidences found, for each category, in user tweets.
Hence, after the i-th tweet ti, the user profile (Pi) will be characterized according
to the set of weighted profile categories obtained from analyzing all tweets from
t1 to ti: Pi = {< c1, v1 >, . . . , < ck, vk >}.

At the beginning of its execution, our system has no idea about the initial
profile of the user P0. Therefore, the profile is initialized as P0 = {< c1, 0 >
, . . . , < ck, 0 >}. For each new user tweet ti published by u, the system pro-
gressively computes and updates Pi, mimicking the common way to build user
profiles of related works.

First, since tweets are slightly-grammatical short texts which are difficult to
analyze [8, 10] syntactically and semantically, we opted, as done in some related
works [8, 9], to implement a shallow linguistic parsing which, instead of trying to
analyze well-formed sentences, focuses on extracting pieces of text with semantic
content that can contribute to characterize the user profile: noun-phrases (NPs).

NPs are built around a noun whose semantics can be refined by adding new
nouns or adjectives (e.g., iPhone → new iPhone). Each NP either refers to a
generic concept (e.g., water sports) or it can be considered a proper noun that
is an instance of a concept (e.g., iPhone is an instance of a cell-phone).

Accordingly, the first step of the profiling process consist in extracting NPs
from user tweets. To achieve that, we rely on several commonly-used natural
language processing tools1: sentence detection, tokenization, part-of-speech tag-
ging and syntactic parsing (i.e., chunking). As a result of this analysis, preposi-
tional or nominal phrases are detected. From these, only NPs (which are those
with semantic content) are extracted [16]. It is worth to mention that this process
also removes superfluous elements like misspelled words, abbreviations, emoti-
cons, etc.

As output of a tweet t, the set M = {< NP1, w1 >, . . . , < NPp, wp >} is
obtained, in which NPi is each Noun Phrase extracted from t and wi is its
number of appearances.

The second step of the profiling process consists, as done in related works [8,
9], in semantically analyzing extracted NPs in order to classify them, if possible,
according to the defined categories C. By doing this, the number of NPs corre-
sponding to each category can be evaluated to characterize the user profile in a
later step.

1 OpenNLP Maxent Package: http://maxent.sourceforge.net/about.html
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To enable this classification from a semantic point of view (i.e., to asso-
ciate each NP to its conceptual abstraction), we rely on a predefined knowledge
base [17]. This knowledge base can be a taxonomy, folksonomy or a more formal
ontology [20] as long as it offers a structured conceptualization of one or several
knowledge domains expressed by, at least taxonomic relationships. In order to
improve the recall of the semantic analysis and due to the proliferation of proper
nouns in user tweets, a large base that potentially includes up-to-date Named
Entities (NEs) [18, 19] is desired.

In our work, we rely on the Open Directory Project (ODP) hierarchy of cat-
egories because it is the largest, most comprehensive human-edited directory
of the Web, constructed and maintained by a vast community of volunteer ed-
itors [21]. The purpose of ODP is to list and categorize web sites. Manually
created categories are taxonomically structured and populated with related web
resources. Nowadays, it classifies almost 5 million web sites in more than 1 mil-
lion categories (considering also up-to-date Named Entities).

In order to semantically classify NPs in M , the system queries each NPi to
ODP. If found, ODP returns the most likely hierarchy Hi of categories (Hi =
hi,1 → . . . → hi,l) to which NPi belongs. For example, if the system queries the
NP “iPhone”, ODP returns: iPhone → Smartphones → Handhelds → Systems
→ Computers.

If NPi is not found in ODP, the system tries with simpler forms of the
NP by removing adjectives/nouns starting from the one most on the left (e.g.,
“new iPhone” → “iPhone”) to improve the recall while maintaining the core
semantics. The fact that NPs incorporate qualifiers is quite common in texts,
but these are hardly covered in knowledge structures which try to model them
in a generic way.

The third and final step of the profiling process applied to the first tweet
t1 consists in updating the user profile P1 according to the categories to which
extracted NPs belong. Concretely, for each NPi, ODP has retrieved a hierarchy
Hi of categories, hence, the system checks if any of the profile categories (cj in
C) is included in Hi. In the affirmative case, the system states that NPi is a
taxonomical specialization of cj (i.e., NPi is-a cj) and it adds the contribution
of NPi to cj by adding the amount of occurrences of NPi (wi) to the category
weight (i.e., vj of cj). As more NPs found to be a taxonomical specialization of
cj are considered, the weight vj of cj is incremented accordingly, as follows:

vj = vj +
∑

∀NPi is−a cj

wi (1)

Once all NPs are considered, the user profile P1 corresponding to the first tweet
t1 is defined by a ranked list of categories, according to their weights: P1 = {<
c1, v1 >, . . . , < ck, vk >}, where vj states the sum of contributions according to
the number of term occurrences/co-occurrences related to each particular profile
category cj .
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3.2 Semantic Noise Addition

After the publication of t1 and the characterization of the user profile P1, the
objective of our system is to introduce additional terms in the user account
as a new fake tweet ft that will balance the user profile towards a uniformly
distributed one (according to the considered categories), while maintaining the
original tweets unaltered. In this manner, dominant profile categories will become
indistinguishable for a profiling system.

In the first step of the semantic noise addition process, the system uses
the user profile P1 constructed after the publication of t1 to analyze the set
of weighted categories and selects the one with the maximum weight (i.e., <
cMAX , vMAX >= argmax∀<ci,vi>∈P1(vi)). Then, for the rest of the categories
cj in P1, it computes the difference with respect to the maximum one (Δ(<
cj , vj >;P1)), as follows:

Δ(< cj , vj >;P1) = vMAX − vj (2)

This difference quantifies the number of term occurrences/co-occurrences that
are needed to balance each non-maximal category cj with respect to the domi-
nant one cMAX .

In the second step of the semantic noise addition process, for all non-
maximal categories, and starting from the cj for which its Δ is the largest (i.e.,
the one with the least dominance in the user profile), the system randomly re-
trievesΔ(< cj , vj >;P1) terms from the ODP hierarchy under the corresponding
category cj .

In the third and final step of this process, retrieved subcategories for all
non-maximal categories are then put together in the form of a new fake tweet
ft1 to be published after the user tweet t1. This represents the semantically
correlated noise added to balance the user profile.

Note that, due to limitations imposed by Twitter regarding message lengths
(a maximum of 140 characters), the number of terms to be added in order to
fake tweets ft should fulfill this restriction. Hence, even though a certain number
of terms should be added to obtain a -theoretic- perfectly balance user profile,
in practice, that number could be lower to fulfill Twitter restriction. The fact
that a lower amount of fake terms are allowed to be added will cause a slower
balancing of the user profile, as it will be shown in the evaluation section. As a
general rule, considering that the average length of terms in ODP is 8 characters,
up to 15 terms (counting separator whitespaces) could be fitted, in average, in
each ft.

Also note that, since fake tweets are raw lists of terms of different domains
put together without a narrative thread, human readers would easily distinguish
them from those created by the original user. On the contrary, an automatic
profiling based on term distribution is assumed to fail when characterizing the
user profile, due to the added semantic noise.

The whole compound process (profiling+noise addition) is iteratively ex-
ecuted as new tweets are posted by the user. Concretely, for the i-th legitimate
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tweet, ti, the profile characterization Pi will reflect the aggregation of all previ-
ous ones (i.e., both legitimate, from t1 to ti, and fake ones, from ft1 to fti− 1).
Note that each new tweet (both legitimate or fake) contributes to update cat-
egory weights, increasing previous values according to new extracted category
terms. As a result of Pi profiling, the system will create a new fake tweet fti
that balances the characterization of Pi. As new fake tweets are added, the user
profile will tend to balance, while the system adapts its behavior (i.e., semantic
noise addition) to the new user messages. Reaction time for profile balancing
will depend on the amount of noise required to be added (that would depend
on the homogeneity of user messages according to the computed profile) and
on the maximum number of terms allowed to be published (according to the
Twitter length limitation of messages). The fact that the system dynamically
re-computes the user profile after each new tweet, enables our proposal to adapt
to changes in user preferences or topics of interest, considering also the past
history.

4 Evaluation

In this section, we evaluate the performance of the proposed system in balancing
and, hence, hiding Twitter user profiles.

As evaluation data, we took eight well-differentiated Twitter users, whose
profiles should correspond to eight root categories in the ODP hierarchy, as
shown in Table 1. To select individual users, we used the WhoToFollow [22]
search engine provided by Twitter. It provides a list of the most relevant Twitter
users according to a specific topic. For each profile category (taken from ODP),
we took the most relevant Twitter user as indicated by WhoToFollow for the
corresponding topic. These are also shown in Table 1. For each user, we took the
100 most recently published tweets as evaluation data.

To numerically quantify the degree of balancing, θ, of a user profile P after
each published tweet (both legitimate or fake), the proposed system sums the
differences Δ in the number of occurrence vj for each category cj in P with
respect to the maximum one, cMAX (see Section 3.2). Then, the result is nor-
malized by the total number of occurrences needed to balance a profile with
respect to cMAX in the worst case (i.e., when the contribution of the other non-
maximal categories is zero). The normalizing factor corresponds to the product
of the number of non-maximal categories in P , this is |P | − 1, by the number of
occurrences of cMAX , that is vMAX .

θ(P ) =

∑
∀<cj,vj>∈P (Δ(< cj, vj >;P ))

vMAX × (|P | − 1)
(3)

The numerical interval of θ goes from 0 to 1, where 0 means a perfectly balanced
profile (i.e., zero difference between all non-maximal categories with respect to
the most dominant one) and 1 means maximal difference (i.e., the contribution
of all categories except the maximum one is zero).
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Table 1. ODP Categories, corresponding WhoToFollow topics, most relevant Twitter
users for each one and user description (last accessed: January 22th, 2012)

ODP category WhoToFollow topic Twitter user User description

Arts Arts and Design @johnmaeda President of the Rhode
Island School of Design

Business Business @businessinsider The latest business news
and analysis

Computers Technology @guardiantech News from the Guardian
tech team

Health Health @CDC eHealth Center for Disease Control,
USA

Science Science @ReutersScience Science by Reuters.com
Shopping Fashion @glamour fashion Glamour magazine’s fashion

team
Society News @nytimes The New York Times
Sports Sports @espn Sports news

Due to the lack of related works which propose method of profile distortion
methods for Twitter (and microblogging services in general), we compare our
method with the original data (i.e., no fake tweets are added) and with a naive
distortion method which adds a fixed amount of random noise (i.e., a number
of random terms taken from ODP) per each fake tweet. In this last case, the
semantics associated to user tweets are not considered in the construction of
fake tweets.

Finally, in order to quantify the influence of the amount of noise added per
fake tweet on our method, we have fixed several upper bounds. In the most
favorable setting (high semantic noise), we allowed up to 15 terms to be added
per fake tweet, which corresponds, in average, to the maximum amount allowed
by Twitter (see Section 3.2). In the intermediate situation (medium semantic
noise), we allowed up to 7 terms per fake tweet. The most constrained scenario
(low semantic noise) only allowed up to 3 terms per fake tweet. Note that, for
the random approach, the amount of added noise is constant and fixed to high
(i.e., 15 terms per fake tweet).

Figure 1 shows profile balancing results according to the number of user tweets
analyzed (up to 100) for the different methods and scenarios. Note that the
horizontal scale quantifies the number of analyzed user tweets including also, in
the case of the semantic and random noise addition methods, the corresponding
fake ones.

Several conclusions can be drawn from the analysis of the graphs. First, as
expected, the addition of semantic noise results in the best profile balancing
(i.e., it is closer to zero) because the distribution of category terms at the i-th
tweet tends to be uniformly distributed.

The amount of semantic noise added per tweet directly influences the results
(even though in some case more than in others). When the maximum amount
of noise (i.e. up to 15 terms per fake tweet) is allowed, user profiles are rapidly
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Fig. 1. Profile balancing results for the different methods and scenarios for the eight
Twitter users

balanced with θ values below 0.1. Only around 20 user tweets (and, hence, 20
additional fake ones) are needed to achieve that figure. On the contrary, when
restricting the amount of semantic noise to the minimum (i.e., up to 3 terms
per tweet), an ideal profile balancing (near to zero) can be hardly achieved.
Even though more than 100 tweets could be considered, it seems unlikely to
achieve a balance due to the curve shape tend to stabilize horizontally around
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θ values between 0.2 and 0.4. This indicates that, in this case, the amount of
allowed noise is not enough to achieve a good balance, especially considering
that there are eight profile categories that should be balanced. The case in
which a medium amount of semantic noise is allowed (i.e., up to 7 terms, which
is closer to the number of profile categories), presents a more variable behavior.
For some users (like @espn, covering topics of Arts, Sports, Society and Shopping,
@CDC eHealth covering topics of Health, Society and Business, or @ny times,
posting about Society, Business, Arts, Computers and Shopping), the system
was able to catch the lower figures obtained by the noisiest setting, despite
a smoother decreasing shape. These cases correspond to users who post more
heterogeneous tweets (covering several profile categories) and, hence, requiring
from less noise (terms from other categories) to achieve an equilibrium. For other
users (e.g., @glamour fashion, @johnmaeda) with profiles more focused towards
a dominant category (e.g., Arts, in these cases), profile balancing requires more
noise to achieve the balance.

In the graphs, it can also be observed how spikes present in the original
distribution (e.g., around the 30th tweet for @businessinsider, 50th for @espen or
65th for @guardiantech), which represent a notorious change in the accumulated
user profile, are also reflected in the balanced profiles even more clearly. However,
the fact that user profiles are re-computed after each new user tweet allows the
system to dynamically adapt its behavior (i.e., categories of added noise) to
eventual or long-term changes in user preferences or interests.

In any case, when comparing the semantic setting with the random scenario,
it can be observed that, even though the random approach always introduces
the maximum amount of noise (i.e., 15 terms per fake tweet), it poorly balances
the user profile. In fact, assuming that random noise is uniformly distributed
according to profile categories, it would hardly lower the provided figures if the
user maintains her preferences throughout time.

Finally, more spikes can be observed in the 1-20 tweets zone when analyzing
curves of semantic scenarios. This corresponds to the zone in which the user
profile is being characterized, and the dominant category/ies may change from
one tweet to the next. In consequence, noise categories may also vary from one
fake tweet to the next, producing more pronounced spikes in the profile bal-
ancing. As stated in related works [9, 10], individual tweets are too short and
ungrammatical to enable an accurate profile characterization. From the analysis
of the results, it can be concluded that, at least, 10 tweets (and preferably 20)
are required to obtain a stable profile (and hence, a more accurate and coherent
noise addition), even though the concrete number may vary from one user to
another, according to the topical coherency of her tweets and the homogeneity
of her profile.

5 Conclusion

In this paper, we have proposed a new system that prevents text-based profilers
from characterizing the dominant profile categories of the users of microblogging
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services like Twitter. Our scheme generates and publishes fake tweets together
with legitimate ones. These fake publications are constructed according to two
basic principles: (i) They contain specially tailored terms, introducing a seman-
tic distortion in the user profile in order to hide user characteristics (i.e., dom-
inant profile categories) in front of automatic profiling methods; and (ii) They
are formed by a concatenation of terms, which leads to a lack of semantically-
coherent discourse that allows human readers to easily discern between user
tweets and fake ones, while preventing automatic profilers who analyze tweets
according to term distribution to discover dominant topics/categories.

The evaluation results obtained show that: (i) the proposed system effectively
balances user profiles in front of profilers based on term distribution; (ii) it
achieves that balance with a quite limited number of publications (between 10
and 20 tweets are enough to obtain a stable profile); and (iii) it dynamically
adapts its behaviour to eventual or long-term changes in user preferences or
interests.

Regarding future work, it would be interesting to evaluate the use of the
presented approach by regular users in their daily duties in order to confirm the
qualities showed by the simulations and also to rate the usability of the system
and its level of intrusiveness in a real situation.
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Av. Päısos Catalans 26, E-43007 Tarragona, Spain
{david.sanchez,montserrat.batet,alexandre.viejo}@urv.cat

Abstract. Whenever a document containing sensitive information needs
to be made public, privacy-preserving measures should be implemented.
Document sanitization aims at detecting sensitive pieces of information
in text, which are removed or hidden prior publication. Even though
methods detecting sensitive structured information like e-mails, dates or
social security numbers, or domain specific data like disease names have
been developed, the sanitization of raw textual data has been scarcely
addressed. In this paper, we present a general-purpose method to au-
tomatically detect sensitive information from textual documents in a
domain-independent way. Relying on the Information Theory and a cor-
pus as large as the Web, it assess the degree of sensitiveness of terms
according to the amount of information they provide. Preliminary re-
sults show that our method significantly improves the detection recall in
comparison with approaches based on trained classifiers.

Keywords: Privacy, Document sanitization, Information Theory.

1 Introduction

In the context of the Information Society, many documents are needed to be
made public every day [1]. Since some of these documents may contain confi-
dential information about private entities, measures should be taken prior their
publication to avoid revealing sensitive data or disclosing individuals’ identities.

Document sanitization precisely pursuits the removal of sensitive information
from text (which can yield to revealing private information/identities of the
entities referred in the document) so that it may be distributed to a broader
audience.

In the past, sanitization has been usually tackled manually by governments
and companies. Standard guidelines [2] detailing the correct procedures to ensure
irreversible suppression or distortion of sensitive parts in physical and electronic
documents have been proposed. In the medical context, the Health Insurance
Portability and Accountability Act (HIPAA) [3] states safe harbor rules about the
kind of personally identifiable information which should be removed in medical
documents prior allowing their publication.
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However, manual sanitization is expensive, time-consuming [4], prone to dis-
closure risks [5] and does not scale as the volume of data increases [6]. Consid-
ering the amount of digital textual information made available daily (e.g., the
US Department of Energy’s OpenNet initiative [7] requires sanitizing millions
of documents yearly), one can realize of the need of automatic text sanitization
methods. This need is manifested in initiatives like the DARPA’s request for
new technologies to support the declassification of confidential documents [8] or
the creation of the Consortium for Healthcare Informatics Research (CHIR) [9],
which aims at building new methods and tools for de-identification of medical
data in order to utilize them for research and operational purposes.

To tackle this problem, semi-automatic applications assisting the sanitization
process have been developed, focusing on structured sensitive data like email ad-
dresses, dates, telephone numbers or credit card/social security numbers. Com-
mercial applications like Adobe Acrobat Professional [10] incorporate patterns
that are able to recognize this kind of data thanks to its regular structure. How-
ever, they leave the detection of sensitive textual data (like names, locations or
descriptive assertions) to a human expert. In fact, the sanitization of this kind of
free text data (which is the most usually available one) is specially challenging
due to its unbounded and unstructured nature [11].

In this paper, we tackle the problem of automatic detection of sensitive text
for sanitization purposes. Relying on the foundations of the Information Theory,
we mathematically formulate what we consider sensitive information and how
it can be applied to detect potentially sensitive textual entities. Our method has
been compared to other general-purpose approaches relying on trained classifiers,
showing that it is able to improve the recall detection while offering a more
general and less constrained solution.

The rest of the paper is organized as follows. Section 2 describes related works
focusing on detecting sentitive terms in textual documents. Section 3 presents our
method, discussing its theoretical premises and formalizing its design. Section
4 details preliminary experiments carried out with highly identifying biographi-
cal sketches, showing promising results regarding the detection recall. The final
section depicts the conclusions and presents some lines of future research.

2 Related Work

Among the unsupervised sanitization methods available, one of the first ap-
proaches that can be found is the Scrub system [12]. It finds and replaces pat-
terns of identifying information such as Social Security number, medical terms,
age, date, etc. Similar schemes that focus on removing sensitive terms from med-
ical records [13,14] use very specific patterns designed according to the HIPAA
“Safe Harbor” rules that mention 18 data elements that must be removed from
clinical data in order to anonymize it [3]. Examples of those sensitive elements
are: names, dates, medical record numbers, biometric identifiers, full face pho-
tographs, etc.
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The authors in [6] present a scheme that detects sensitive elements using a
database of entities (persons, products, diseases, etc.) instead of patterns. Each
entity in this database is associated with a set of terms related to the the entity;
this set is the context of the entity that should be hidden (e.g., the context of a
person entity could include her name, birth date, etc).

The method proposed in [11] focuses on domain-independent unstructured
documents. Authors propose the use of named entity recognition techniques to
identify the entities of the documents that require protection. It is worth to
mention that this proposal assumes that named entities (such as person and
organization names and locations) are always sensitive data and, hence, they
should be sanitized.

The authors in [5] present a semi-automatic tool build into Microsoft Word
that suggests to the user the entities that should be anonymized. Regarding
the entity detection process, this work focuses on documents directly linked
to certain companies (i.e., documents to be sanitized describe certain compa-
nies/organizations or their activities). The data to be detected is divided into
two categories: (i) Client Identifying Information: this information includes any
words and phrases that reveal what company the document pertains to; and
(ii) Personally Identifying Information: this includes any person names, loca-
tion names, phone numbers, etc. Similarly to [11], authors uses the Stanford
Named Entity Recognizer [15] to automatically recognize people, organizations
and locations. Additionally, specific patterns are used to detect social security
numbers or telephone numbers. Regarding the Client Identifying Information, a
Naive Bayes classifier is implemented to recognize it.

3 A General Purpose Method to Detect Sensitive Terms
in Textual Documents

Our method pursuits to automatically detect sensitive pieces of text in a general
and unconstrained way, so that it can be applied to heterogeneous documents
(both regarding its structure and knowledge domain), and to any kind of textual
term (instead of predefined types or lists). To do so, we first discuss the notion
of sensitive information and how it can be detected.

Sensitive information regards to pieces of text that can either reveal the iden-
tity of a private entity or refer to confidential information. To discover sensitive
information, problem-specific related works rely on predefined lists of sensitive
words [6] or use machine learning methods (like trained classifiers [5] or pattern-
matching techniques [14]) aimed at detecting specific types of information. The
former can provide accurate results, but lists have to be manually compiled
(which is costly and time-consuming) for specific problems (which lacks gener-
ality); the latter methods manually train/design classifiers/patterns to detect
domain specific sensitive data (like PHIs in the medical context [14,9] or orga-
nizational data [5]), which can be hardly generalized.

On the other hand, general purpose methods [11] usually associate the dis-
covery of sensitive data to the detection of generic Named Entities (NEs). Due
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to their specificity and the fact that they represent individuals rather than con-
cepts, NEs are likely to reveal private information. NEs can be accurately de-
tected in an automatic manner, either using patterns [16,17] or trained classifiers
[15]. However, they are hampered by several problems. First, some detected NEs
could refer to very general entities (e.g., continents), which are not needed to be
sanitized and whose removal would result in unnecessary information loss. On
the other hand, some words or combinations of words, which may be omitted
since they are not NEs, could refer to very concrete concepts (e.g., rare diseases,
concrete employments), which are likely reveal confidential or identifiable infor-
mation. Moreover, most generic NE recognition packages only detect a limited
amount of NE types, usually persons, locations and organizations [11,15]. Fi-
nally, they are language-dependent, since the NE recognition accuracy depends
on the availability of training data, which is expressed in a concrete language.
These problems negatively affect the detection recall, which is crucial to avoid
disclosure risk.

To overcome these problems, we base the text sanitization on a more general
notion of sensitive information. In our approach sensitive terms are those that,
due to their specificity, provide more information than common terms. Hence,
the key-point to detect them is to quantify how much information each textual
term provides, sanitizing those that provide too much information (according to
a sanitization criteria).

To quantify the amount of information provided by a textual term, we rely
on the information theory and the notion of Information Content (IC).

3.1 Information Content Estimation

The Information Content (IC) of a term measures the amount of information
provided by the given term when appearing in a context (e.g., a document).
Specific terms (e.g., pancreatic cancer) provide more IC than those more general
ones (e.g., disease). Formally, the IC of a term t is computed as the inverse of the
probability of encountering t in a corpus (p(t)). In this way, infrequent concepts
obtain a higher IC than more common ones.

IC(t) = − log2 p(t) (1)

Classical methods [18] used tagged textual data as corpora, so that term frequen-
cies can be computed unambiguously. The use of this kind of corpus provided
accurate results in the past, when applied to general terms [18] at the cost of
manually compiling and tagging it. However, the limited coverage and relative
small size of used corpora resulted in data sparseness problems (i.e., the fact
that not enough data is available to extract reliable conclusions from their anal-
ysis) when computing the IC of concrete terms (e.g., rare diseases), NEs (e.g.,
names) or recently minted/trending terms (e.g., netbook, tablet) [19,20]. Con-
sidering that document sanitization focuses precisely on concrete (i.e., highly
informative) terms, a wider corpus covering them would be desirable to obtain
robust IC values.
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When looking for a general-purpose corpus covering as much terms as possible,
the Web stands out. Its main advantages are its free and direct access and its
wide coverage of almost any possible up-to-date term. In fact, it has been argued
that the Web is so large and heterogeneous that represents the true current
distribution of terms at a social scale [21]. Since IC calculus relies on term
distribution to compute probabilities, the characteristics of the Web makes it
specially convenient [19].

The main problem of computing term appearances in the Web is that the
analysis of such an enormous repository is impracticable. However, the availabil-
ity of Web Information Retrieval tools (IRs) like Web Search Engines (WSEs)
can help in this purpose. WSEs directly provide web-scale page counts (stating
term appearances) for a given query. Many authors [22,19,23] have used these
page counts to compute term probabilities in the Web. Hence, by estimating
term probabilities at a social/Web scale one can compute, in an unsupervised
and domain-independent manner, their IC.

Taking into consideration the Web size, its high coverage for any kind of
terms (including concrete ones and NEs) and the possibility of obtaining web-
scale term distribution measures in an immediate way, in this work, we quantify
the IC of a potentially sensitive term t found in a document d to be sanitized,
as follows:

ICweb(t) = − log2 pweb(t) = − log2
page counts(t)

total webs
(2)

where page counts(t) is the number provided by a WSE when querying t and
total webs quantifies the total amount of web sites indexed by the search engine.
(e.g., around 3.5 billions in Bing1).

To avoid the need of on-line querying that, in addition to overhead the process,
may disclose sensitive words, one can use databases of some WSEs that can be
stored and queried off-line [24,25].

3.2 Extracting Terms from Textual Documents

In this section, we detail how sensitive terms t are extracted from a document d
to be sanitized. Given an input text like the one shown in Figure 1, sensitive data
is such corresponding to concrete concepts (e.g., pancreatic cancer) or individual
names (e.g., Peter Greenow) that reveal too much information. These are referred
in text by means of nouns or, more generally, noun phrases (NPs). Hence, the
detection of sensitive terms focuses on NPs found in the input document.

To detect NPs, we rely on several natural language processing tools [26], which
perform (i) sentence detection, (ii) tokenization (i.e., word detection, including
contraction separation), (iii) part-of-speech tagging (POS) of individual tokens
and (iv) syntactic parsing of POS tagged tokens, so that they are put together
according to their role, obtaining verbal (VPs), prepositional (PPs) or nominal
phrases (NPs). From these, NPs are considered (see an example of the output

1 http://www.worldwidewebsize.com/ [last accessed: May 8th, 2012]

http://www.worldwidewebsize.com/
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Peter Greenow, from Syracuse, United States, suffers from pancreatic cancer.
He was given treatment in the Community General Hospital for his condition
by an oncologist.

Fig. 1. Sample text of a document to sanitize

of this analysis in Figure 2). As discussed in the previous section, the amount
of information NPs provide (IC) will be quantified by querying them in a WSE
and using eq. 2.

[NP Peter Greenow] , from [NP Syracuse], [NP United States], suffers from
[NP pancreatic cancer]. [NP He] was given [NP treatment] in [NP the Com-
munity General Hospital] for [NP his condition] by [NP an oncologist].

Fig. 2. Noun Phrases (NP) detected in sample text

In order to focus the IC-based analysis on the information provided by the
conceptualization to which each NP refers, we also remove stop words. Stop
words configure a finite list of domain independent terms like determinants,
prepositions or adverbs which can be removed from NPs without altering their
conceptualizations (e.g., an oncologist → oncologist). The motivation of remov-
ing stop words is to avoid their influence in the computation of IC values by
means of web queries. For example, in a WSE like Bing2, the query “an oncol-
ogist” results in a page count (654.000) an order of magnitude lower than the
query “oncologist” (5.870.000), even though both refer to the same concept and,
hence, both should provide the same amount of information.

Note that, even though both natural language processing tools and stop words
are language-dependent, both are available for many languages, including En-
glish, Spanish, Portuguese, German or Danish [26].

3.3 Detecting Sensitive Terms

The final step consists on assessing which of the NPs provide too much informa-
tion according to their computed IC; these will be considered as sensitive.

As discussed at the beginning of the section, NE-based methods assume that
NEs always provide too much information. From an information theoretic per-
spective, this is a rough criteria that may result in unnecessarily sanitizing very
general terms (e.g., “United States” results in 1.300 million pages in Bing, ob-
taining a very low IC); at the same time, more informative terms are omitted
because they are not NEs (e.g., the concept “pancreatic cancer” results in around
6,5 million page counts in Bing, which provides a comparatively much higher IC).

2 http://www.bing.com/ [accessed: May 8th, 2012]

http://www.bing.com/
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Relying on the notion of IC, our proposal enables a more comprehensive and
adaptable sanitization, which considers as sensitive those NPs whose IC (com-
puted using eq. 2) is higher or equal than a given value β, which acts as the
detection threshold. This value, which is also expressed in terms of IC, repre-
sents the degree of informativeness above which terms are considered to reveal
too much information. β can be defined in an intuitive way by associating it to
the IC of the most general feature that should remain hidden in the sanitized
document.

Formally, any NPi in d (i.e., the document to be sanitized) whose IC is higher
or equal than β will be considered as sensitive:

Sensitive NPs = {NPi ∈ d|ICweb(NPi) >= β} (3)

For example, if we would like to sanitize the text shown in Figure 1 so that
a potential attacker cannot discover that Peter Greenow has cancer (and any
other more concrete information, like his name and detailed census data), we
can specify the detection threshold as β = ICweb(cancer). In this manner,
any reference to cancer or any other more concrete (i.e., more informative) term
like pancreatic cancer or Community General Hospital will be considered as
sensitive. Table 1 shows the detection results, presenting sensitive terms (ac-
cording to the specified threshold) in bold. One can realize that some concrete
concepts that are not NEs (i.e., oncologist, pancreatic cancer) have been ap-
propriately tagged as sensitive, whereas very general NEs (i.e., United States)
have not. Compared to NE-based methods [5,11], the former case minimizes the
disclosure risk, whereas the later case contributes to retain the sanitized docu-
ment’s utility.

Table 1. Detected Noun phrases (NP) with their corresponding page counts (from
Bing) and ICweb. Words in (brackets) are stop words that are not considered in the IC
calculus. Bold rows correspond to sensitive terms according to the detection threshold
(i.e., ICweb(cancer) = 2.7, given that page counts(cancer) = 536.000.000). The last
column states which ones are Named Entities (NE).

NP page counts ICweb NE?

Peter Greenow 21 27.3 Yes
Syracuse 68.000.000 5.7 Yes
United States 1.300.000.000 1.4 Yes
pancreatic cancer 6.550.000 9.1 No
(He) Not Considered N/C No
treatment 616.000.000 2.5 No
(the) Community General Hospital 146.000 14.5 Yes
(his) condition 702.000.000 2.3 No
(an) oncologist 7.200.000 8.9 No
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4 Experiments

In this section, some preliminary results are presented, showing the accuracy of
the detection when applying our method to highly sensitive textual documents.
Since most general-purpose related works [5,11] rely on the detection of NEs
to sanitize text, our method has been compared against the state-of the art
Stanford Named Entity Recognizer [15], which is able to detect and classify NEs
as persons, locations or organizations. Both approaches have been evaluated
against the criterion of two human experts stating which pieces of text could
reveal too information about the described entity.

To test our method in a realistic setting, we use real raw texts containing
highly sensitive information. In particular, we used biographical sketches de-
scribing actors/actresses taken from English Wikipedia articles. Wikipedia de-
scriptions of concrete entities usually contain an high amount of potentially
identifiable information, which makes the detection of sensitive information a
challenging task. Two types of actors have been selected: three American ac-
tors (Sylvester Stallone, Arnold Schwarzenegger and Audrey Hepburn), so that
most terms and NEs appearing in text would be expressed in English (easing
the detection for English-trained NE recognizers), and three Spanish (but well-
known) actors (Antonio Banderas, Javier Bardem and Jordi Mollà) for which,
even though their descriptions are written in English, could include NEs ex-
pressed with non-translatable Spanish words or localisms. In this manner, we
can also compare the degree of language-dependency of our method against NE
recognizers based on English-trained classifiers.

To evaluate the results obtained by both methods, we requested two human
experts to select and agree on which terms (i.e., words or NPs, including NEs)
reveal too much information, considering that it is desired to hide the fact that
the described entities are actors. Hereinafter, we will refer to the set of sensitive
terms selected by the human experts as Human Sensitive NPs. Coherently
with our method’s design, we set β = ICweb(actor), so that any term providing
more information than the term actor will be detected as sensitive. To compute
the IC of terms Bing Web Search Engine have been used, fixing the total amount
of indexed web sites in 3.5 billions 3. The detection performance is quantified by
means of precision, recall and F-measure.

Precision (eq. 4) is calculated as the ratio between the number of automati-
cally detected sensitive terms (Sensitive NPs) that have been also selected by
the human experts (Human Sensitive NPs), and the total amount of auto-
matically detected terms (i.e., |Sensitive NPs|). The higher the precision, the
lower the amount of incorrectly detected sensitive terms.

Precision =
|Sensitive NPs ∩Human Sensitive NPs|

|Sensitive NPs| · 100 (4)

Recall (eq. 5) is calculated as the ratio between the number of terms in
Sensitive NPs that also belong to Human Sensitive NPs, and the total

3 http://www.worldwidewebsize.com/ [last accessed: May 8th, 2012]

http://www.worldwidewebsize.com/
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amount of terms in Human Sensitive NPs. Recall indicates the number of de-
tected sensitive terms. The higher the recall, the less the disclosure risk, because
a lower amount of non-detected sensitive terms would remain in the text.

Recall =
|Sensitive NPs ∩Human Sensitive NPs|

|Human Sensitive NPs| · 100 (5)

Finally, the F-measure (eq. 6) quantifies the harmonic mean of recall and preci-
sion, summarizing the accuracy of the detection stage:

F-measure =
2 · Recall · Precision
Recall+ Precision

(6)

The obtained values for precision, recall and F-measure for our method (IC )
and for the method based on NE detection (NE ) are listed in Table 2.

Table 2. Precision, Recall and F-measure for evaluated entities and methods

Sylvester
Stallone

Arnold
Schwarz.

Audrey
Hepburn

Antonio
Banderas

Javier
Bardem

Jordi
Mollà

Precision
NE 100% 100% 87.10% 100% 100% 75%
IC 82.35% 72% 81.13% 94.44% 100% 83.33%

Recall
NE 46.67% 47.37% 58.69% 52.94% 33.33% 57.14%
IC 93.33% 94.74% 93.48% 100% 100% 95.24%

F-measure
NE 63.64% 64.28% 70.13% 69.23% 50% 64.86%
IC 87.5% 81.82% 86.87% 97.14% 100% 88.89%

Analyzing precision, we realize that, in most cases, the NE-detection method
provided better results than ours. Since precision mainly depends on the number
of false positives, this states that our method tends to select too much terms as
sensitive. A reason for this is the fact that our method detected, in some cases,
syntactically complex NPs as sensitive terms, even though they may refer to
general (non-revealing) concepts. Complex NPs are those composed by several
words and using complex syntactic constructions that, when queried in a Web
Search Engine, tend to provide a relatively low page count, giving the impression
of a high IC. The fact that the page count depends on the lexico-syntactical
construction of queried terms is caused by the strict terminological matching
implemented by Web search engines in which our method relies. On the other
hand, since the NE-based method obtained a perfect precision in most cases, this
suggest that most (but no all) NEs are sensitive. A worth-noting case is Jordi
Mollà, in which the NE-based method provided a lower precision than ours. In
this case, the NE-detection package tagged general entities like United States or
Spain (since they represent a location) which were not considered as sensitive
by human experts due to their generality. Our method, on the contrary, relying
on the low IC these term provide, behave inversely, achieving a higher precision
and retaining more information.
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Recall represents a more important dimension in the context of document
sanitization, since a low recall implies that a number of terms considered as
sensitive will appear in the sanitized document. In this case, recall figures for
NE-based methods are significantly lower than ours. In fact, when our method
was able to stay in the 95-100% range in most cases, the NE-based method
resulted in recall values around 50%. On the one hand, this shows that not
only NEs appearing in text are sensitive, but also NPs (e.g. film and fashion
icon of the twentieth century, referred to Audrey Hepburn) referring to concrete
concepts. On the other hand, NE-based methods are limited by the scope of the
trained classifiers. The fact that only certain NE types (locations, persons and
organizations, in this case) are detected, resulted in the omission of an amount
sensitive NEs like movie titles. Moreover, the worst results were obtained for
an Spanish actor (Javier Bardem) due to the presence of Spanish localisms
and Spanish movie titles, which are difficult to detect for an English-trained
classifier. It is worth mentioning that several of these omissions were highly
revealing, resulting in an instant disclosure (e.g. Rocky for Sylvester Stallone or
Governator for Arnold Schwarzenegger). This shows the limitations of classifiers
based on training data: they base the recognition on the fact that the entity or
a similar one has been previously tagged. When aiming at designing a general-
purpose method, training data may be not enough when dealing with specific
entities, or they may be outdated with regards to recently minted entities. This
is, however, the most common sanitization scenario. In comparison, our method
bases the detection on the fact that few evidences are found in the Web. This
is a more desirable behavior because sensitive data is detected when it is very
likely to act as an identifier. The reliance on the lack of evidences rather than
on the presence of them also avoids being affected by the data sparseness that
characterizes manual training/knowledge-based models [19]. Moreover, on the
contrary to tagged corpora, the Web offers up-to-date results and covers almost
any possible domain [19].

As a result of the significant differences between methods’ recalls (i.e., dis-
closure risk), when comparing them according to their global accuracy (i.e.,
F-measure), our method surpass NE-based ones in all cases.

5 Conclusions and Future Work

In this paper, an automatic method to detect sensitive information in text doc-
uments is presented. The method’s generality is given by the theoretical foun-
dations of the Information Theory and a corpus as general/global as the Web.
As a result, it can be applied to heterogeneous textual data (and not only NEs
[5,11]) in a domain-independent fashion.

As future work, we plan to tackle the limitations observed in the IC calculus
regarding the too strict query matching applied by Web search engines. In this
case, different lexico-syntactical forms of the same terms can be queried and
page count results can be aggregated to obtain a more general (and accurate)
estimation of their informativeness.
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Moreover, it is worth noting that even though most sanitization models pro-
pose removing those terms that are detected as potentially sensitive [6,14,13],
this is not the most desirable strategy. Since the purpose of document sani-
tization is to provide a privacy-preserved but still useful version of the input
document to the audience, a systematic removal of sensitive terms may hamper
the document’s utility. In fact, since semantics are the mean to interpret and
extract conclusions from the analysis of textual data, the retention of text se-
mantics is crucial to maintain the utility of documents [27,28]. To tackle this
problem, recent methods [5,11] propose replacing sensitive information by gen-
eralized versions (e.g., “iPhone” → “cell phone”) instead of removing it. In this
manner, the document still retains a degree of semantics (and hence, a level
of utility) while revealing less information. To enable term generalizations, a
knowledge base (KB) modeling the taxonomical structure of sanitized terms is
needed. We plan to use general-purpose KBs to provide more accurate sanitiza-
tions, exploiting them from an information theoretic perspective.
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Abstract. In many sensor systems used in urban environments, the
amount of data produced can be vast. To aid operators of such systems,
high-level information fusion can be used for automatically analyzing the
surveillance information. In this paper an anomaly detection approach for
finding areas with traffic patterns that deviate from what is considered
normal is evaluated. The use of such approaches could help operators
in identifying areas with an increased risk for ambushes or improvised
explosive devices (IEDs).

Keywords: Anomaly detection, decision support, traffic flow analysis.

1 Introduction

In both peace keeping and peace enforcing missions, task forces mainly oper-
ate in asymmetric conflict environments where the situation most often can be
described as being in a grey area between peace and war. Threats are usually
camouflaged and hiding within the population and the regular activities of ev-
eryday life and the warfare is often carried out using terrorism, sabotage, IEDs,
smuggling operations, etc. Task force security has become an increasingly im-
portant issue during missions in these environments, and new requirements are
put on the technological support that is needed. It is not sufficient to detect the
presence of an object in order to determine the threat that it might constitute.

A common tactic in asymmetric conflicts is the use of various forms of am-
bush attacks against the least defended elements followed by subsequent rapid
movement away from the area of the attack [1]. In this way, attackers are only
exposed for a very limited amount of time. Moreover, attackers carefully avoid
open confrontation with larger and more heavily equipped forces.

In order to successfully identify these types of threats, suspicious object behav-
iors need to be detected and connected to imminent attacks or the preparation
for them. This puts requirements on detailed information about detected objects
along with robust processing of data received over time.

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 185–196, 2012.
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Modern sensor systems are not designed to accomplish such surveillance tasks
and it is left to human operators to detect and analyze these types of situations.
Presented to an operator, all individual vehicle tracks in a city would however
become unmanageable since it is difficult to maintain focus on more than a few
tracks simultaneously. The operator, having limited cognitive ability [2], will also
have trouble finding small changes in a situation. This might pose a problem in
situations that extend over a long period of time with only small incremen-
tal changes. Additionally, there is a risk of operators experiencing information
overload, which in the end can lead to poor threat detection. Only in excep-
tional cases can sufficient situation awareness in the ground theatre be achieved
through conventional detect and track methods.

To address the situation awareness problem in urban environments, one has
to either drastically limit the area of surveillance, or one has to look for objects
that in some way deviate from a large background of similar objects (e.g. behav-
ior, position). Anomaly detection is an interesting approach which pursuits the
second alternative. The purpose of an anomaly detection function is to assist an
operator by analyzing situation data to filter out important parts and give early
warnings when suspicious behaviors are detected. When the function detects an
anomaly it must be able to characterize it in such a way that the operator can
easily understand the anomaly and make an informed assessment as to whether
to monitor the object, take preventive action or to classify it as irrelevant.

Much of the focus in previous anomaly detection approaches in the surveil-
lance domain has been on tracking and analyzing single objects to find objects
that behave anomalous [3,4,5,6]. While this is important, it requires high qual-
ity tracking of the surveyed objects, something that is not always available in
crowded urban environments.

This paper proposes a Gaussian anomaly detector which, in contrast to mod-
eling the behavior of single objects, focuses on modeling the collective behavior
of objects. This is carried out by constructing a model of normalcy based on the
average flow and speed of objects in relation to geographical areas. Measuring
the average flow and speed of objects does not require the use of advanced sensor
systems with high quality tracking, and it is thus easier to carry out in urban
areas. The proposed anomaly detector is evaluated using data from a simulation
platform that simulates traffic in an urban area.

2 Anomaly Detection

One of the first fields to use anomaly detection was IT security where anomaly
detection was used to build self-learning intrusion detection systems capable of
detecting previously unknown viruses, trojans and break-in attacks [7]. Today it
is also used in military and civilian surveillance systems. The concept of anomaly
detection is, however, somewhat vague and there is no clear definition of anomaly
detection is or even what constitutes an anomaly. Some argue that an anomaly
is something that is known beforehand (i.e. can be described by a domain ex-
pert) but which seldom occurs [1]. Others argue that an anomaly is something
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unknown that has not been seen before [6]. Anomalous objects are also referred
to variously as outliers, novelties or deviations [8]. In this paper, we adopt the
definition of anomaly detection and anomalies suggested by Tan et al.:

“Anomaly detection is the task of identifying observations whose char-
acteristics are significantly different from the rest of the data. Such ob-
servations are known as anomalies or outliers.” [9]

A large variety of anomaly detection techniques have been suggested. Many of
these have been specifically developed and tailored for specific problems and
application domains, while others are more generic. Furthermore, anomaly de-
tection has been the topic of a number of excellent surveys and review articles,
see e.g. [10,11,8,12,7]. These articles mainly address methods which model data
based on their statistical properties and use this information to investigate if the
new incoming data originates from the same distribution or not.

During the past decade many different approaches for anomaly detection have
been investigated in the surveillance domain. In [3] self-organizing maps are used
together with Gaussian mixture models for detecting anomalous vessel traffic.
This type of approach is also used in combination with interactive visualization
in [13]. In [6] the focus is also on detecting anomalous vessel activity, however,
they employ semantic networks composed of connected spiking neurons that are
laid out in a grid over an area of interest. This allows for some degree of temporal
information to be modeled. Other work focusing on detecting anomalous vessel
behavior include the use of Bayesian networks [14,15], kernel density estima-
tion and conformal prediction [5,16] and trajectory clustering [17]. Besides the
maritime domain, work has also been carried out on anomaly detection based
on e.g. video data. In [18], trajectory clustering is used for detecting anomalous
traffic behavior and in [4] abstract state space modeling combined with Gaussian
models is used for detecting anomalous behaviors in public areas.

Anomaly detection approaches in the surveillance domain have mostly focused
on tracking and analyzing single objects to find objects that behave anomalous.
While this is important, it requires high quality tracking of the surveyed objects,
something that is not always available in crowded urban environments.

2.1 Anomaly Detection in Urban Environments

Urban environments are characterized by numerous closely spaced targets mov-
ing in rather confined spaces. In such crowded scenarios, the origin of observa-
tions is often highly ambiguous, meaning that it is a complex task to associate
observations to new or existing tracks. In some situations, it is even impossible
to determine the origin of the observation, no matter how advanced the tracking
algorithm is. For this type of operational environment, additional functionality
must be incorporated into the technical systems in order to analyze situation
data and support the human operator.

It is thus interesting to look at techniques that do not rely on accurate tracks
and advanced information about individual objects, but which instead make use
of the collective behavior of objects as expressed by uncorrelated observations.
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3 Gaussian Anomaly Detector

This paper investigates the use of a simple Gaussian normalcy modeling scheme
modeling the collective behavior of objects in an urban setting using average
speed and flow of objects. An assumption is that the collective behavior in an
area where a threat is located is inclined to change. Moreover, road blocks and
similar changes to trafficabillity will also have an effect on movement patterns.
The idea is that threats possibly can be detected by finding changes in the
traffic around them. It might however not be sufficient to construct a model
over the complete area of interest, but rather to construct models for subspaces
laid out in e.g. a grid, similar to [6]. In urban settings there also exists contextual
information that can be exploited, e.g. maps of road networks.

The detection performance might however vary depending on the type of
measurements that are used and on the type and degree of subdivision that is
used. These are important factors to evaluate for deciding what kind of sensors
that are appropriate and if contextual data such as road networks can be used
for improving performance. Three important questions have thus been identified:
(1) should we divide the area of interest using a simple grid or using additional
contextual road segment information, (2) should we measure the average flow or
the average speed of objects, and (3) how does the degree of subdivision affect
the detection performance?

An anomaly detection system consisting of five components has been con-
structed for addressing these questions (figure 1 shows a schematic structure).

Grid-Based
Division

Road-Based
Division

Flow
Analyzer

Speed
Analyzer

Anomaly
Detector

Data Alarms

Fig. 1. Components in the anomaly detection system

The first two components handle the division of objects into subsets based
on a grid or a road network. The next two components analyze the flow and
speed of objects in each subset. The last component is the anomaly detector.
The components at each step can be connected to any of the components at the
next step, in order to easily evaluate various configurations of the system.

3.1 Geographical Division

The Grid-Based Division component creates a grid over the area of interest. The
grid is defined by the upper right and lower left coordinates and the number of
rows and columns. Each grid cell is represented by a geographical zone. When a
new object is received by the system it will be assigned to the geographical zone
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that contains the coordinates of the object. The use of a rectangular grid may
result in e.g. roads being split into multiple grid cells and cells with few data
points due to low coherence with actual geography.

The Road-Based Division component uses GIS data to create a number of
geographical zones based on the segments in the road network. The GIS data
defines a number of waypoints and information about how these are connected.
The component assumes a 10 meter wide road between every pair of connected
waypoints. When a new object is received by the system, it is assigned to one of
the zones containing the position of the object. Note that there might be over-
lapping zones where road segments meet. This should not significantly impact
the results of the experiments since the same zone is always chosen when there
are multiple overlapping zones.

3.2 Flow and Speed Analayzers

The Flow Analyzer component measures the flow in an area by counting the
average number of objects in the area over time. The analyzer handles multiple
areas at the same time and these can be supplied by any of the two subdivision
abilities. The flow analyzer could in a live system be implemented using some
form of tracking or tripwire sensor.

The Speed Analyzer component measures the average speed of objects present
in an area. Similarly to the flow analyzer, the areas can be supplied by either of
the division abilities. The average speed is measured over all the objects in the
area. In a live system, the speed could easily be measured using a doppler radar
and it would not require any tracking.

3.3 Anomaly Detector

The Anomaly Detector component is responsible for the actual detection of
anomalies. It can run in two modes: learning and detection. In learning mode,
the component receives flow or speed statistics based on grid or road division.
These statistics are saved and the mean and standard deviations are constantly
updated for each geographic zone (grid cell or road segment).

In detection mode, a previously learned normal model is loaded and used to
classify new data as normal or anomalous. This is carried out by inspecting if
the present mean value is within n standard deviations (σ) of the mean in the
previously learned model. If the new mean lay beyond this range, an alarm is sent
to the presentation system. In this context an alarm consists of time, reference to
geographical area and the actual deviation. In some cases, the standard deviation
for a geographic zone is very small and therefore a parameter called minimum
deviation (σmin) is also defined. This threshold value defines a minimum required
distance between the present mean and the model mean, for sending an alarm.

The last feature of the anomaly detector component is a sliding window that
allows the detector to set which of the new pieces of data the detector should
use when calculating the mean. The available options are: all data, last minute,
last five minutes and last fifteen minutes. Setting the sliding window value to a
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low value, e.g. last minute, will increase the reactivity of the detector but it will
also make it more sensitive to variations in the input data.

4 Experimental System

In order to investigate the questions put forth in section 3 an experimental system
has been constructed. This system has been built by integrating a number of
existing software components and by extending their functionality to support
evaluation of the proposed anomaly detection system described in section 3.
Figure 2 shows the architecture of the experimental system.

Scenario
Genera�on

(Stage)

Visualiza�on
(Google Earth)

Anomaly
Detec�on

(IBD)Tracks Tracks, Alarms
Zones

Fig. 2. High-level architecture of the experimental system

As can be seen, data sets are generated in real-time using Stage1. Individual
tracks of simulated objects are fed into the Anomaly Detection System (im-
plemented on the Intelligent Behavior Detector (IBD) platform [19]). The IBD
routes the tracks to Google Earth2 for visualization while at the same time us-
ing them internally for anomaly detection. The result of the anomaly detection
are alarms that also are sent to Google Earth together with information about
geographic zones that are used by the anomaly detector. To show information
in Google Earth overlaid on the map, we use kml files3. The information in the
kml file is regularly updated to reflect the current situation and it is generated
from the current tracks, alarms and zones defined in the IBD.

4.1 Experimental Setup

A number of different experiments have been carried out to evaluate the useful-
ness of data-driven anomaly detection for detecting threats such as roadblocks
and IEDs. Two simulated scenarios have been used for evaluation, where the first
consist of normal traffic from an area of interest. The output from this scenario
represents the training dataset that is used to train the anomaly detection algo-
rithms. The second scenario is similar to the first scenario, but with a number of
roadblocks/IEDs added to it. Due to the definition of roadblock, the generated
traffic will automatically avoid these areas and instead use alternative routes to
reach their corresponding destinations. The output from the second scenario has
been used for evaluating different settings of the anomaly detection algorithm.

1 More information about Stage can be found at http://www.presagis.com/

products services/products/modeling-simulation/simulation/stage/
2 Information about Google Earth can be found at http://www.google.com/earth/
3 Keyhole Markup Language, http://code.google.com/intl/sv-SE/apis/kml/

http://www.presagis.com/products_services/products/modeling-simulation/simulation/stage/
http://www.presagis.com/products_services/products/modeling-simulation/simulation/stage/
http://www.google.com/earth/
http://code.google.com/intl/sv-SE/apis/kml/
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4.2 Simulated Road-Block Scenario

To create the two versions of the previously described scenario, it has been
identified that Stage needs to be extended to fulfill the requirements in table 1.

Table 1. Requirements for creating simulated road-block scenarios

1. It should be possible to generate traffic that follows a road network.
2. It should be possible to dynamically spawn vehicles at multiple locations.
3. Vehicles should be able to take different routes though the road network to

simulate different driving behaviors.
4. It should be possible to set the spawn interval for each spawn location.
5. It should be possible to set the parameters of spawned vehicles such as speed,

type and initial heading.
6. It should be possible to turn the spawning on and off to simulate an uneven

flow of new vehicles.
7. It should be possible to alter the road network and add roadblocks where

traffic cannot pass.
8. It should be possible to extract the ground truth from the simulation as well

as objects detected by simulated sensors.

The requirements are fulfilled by creating three new entities in Stage: (1)
a spawner entity, (2) a spawn controller entity and (3) a vehicle entity. The
spawner entity is responsible for spawning new vehicles and it can be configured
to spawn vehicles at different intervals. The spawn controller entity is responsible
for turning the spawner entity on and off at certain intervals, to simulate an
uneven flow of traffic. The vehicle entity represents individual objects in the
simulation. Each spawned vehicle is given a mission that it starts to implement
as soon as it is spawned. The mission tells the entity how to behave. A number
of different missions are defined such as Go to beach, Exit the area east, Go to
shopping centre and Go to beach and then to a specific parking lot.

Figure 3 shows the area of interest and it also illustrates a single road block
that has been placed outside a shopping mall in the evaluation scenario.

4.3 Experimental Process

The process that has been used for evaluation includes 7 steps:

1. Start the simulation with the normal flow scenario. Wait for the system to
reach a stable state (usually five minutes).

2. Start the Anomaly Detector in learning mode and let it run for one hour.
3. Turn off the Anomaly Detector and save the normal model.
4. Turn off the simulation.
5. Start the simulation with the scenario including a number of flow interrupt-

ing elements. Wait for the simulation to reach a stable state.
6. Start the Anomaly Detector in detection mode. Wait five minutes to let the

statistics settle and start measuring which anomalies are found.
7. Stop the anomaly detector and the simulation. Evaluate the results.
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Fig. 3. The area-of-interest used in the simulation. The figure shows spawners and
spawn controllers as blue triangles and the location of the road-block as a red circle.

A stable state means that there is a constant flow of traffic on the roads.
When the simulation starts there is no traffic on the roads and vehicles begin
to spawn at the spawning locations. After a while, when enough vehicles have
been removed after reaching their destinations with new vehicles simultaneously
spawning, the simulation will behave in a stable manner, i.e. the roughly the
same number of vehicles are present in the simulation at any time.

5 Results

The first set of experiments is based on the ground truth from the simulation,
i.e. the correct position for all objects at all times. This is not possible in real-
world scenarios where real sensors must be used. Therefore, a simple sensor was
implemented in the Stage tool for the second set of experiments. The sensor
corresponds to the Saab SIRS 1600 short range radar sensor [20] that has a
detection range of 1600 meters and a field-of-view of about 15 degrees. The
SIRS 1600 can detect and track objects such as humans, cars, buses and trucks.

5.1 Results Using Ground-Truth Data

The default parameters in the experiments were n = 2 and σmin = 0. In some
experiments, the parameters have been altered in order to find any anomalies.

A total of eight experiments have been carried out in order to answer the
questions in section 3. Each experiment has been carried out using the process
described in section 4.3. Table 2 shows the results from the experiments.
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Table 2. Results from experiments with ground truth data

Experiment Division Analyzed parameter Result

1 Road Speed Works very well, no false alarms in normal data or
during evaluation. An example of the alarms can be
found in figure 4.

2 Road Flow Works very well, no false alarms in normal data or
during evaluation.

3 Grid (10x10) Speed Hard to find the anomalies with the default thresh-
olds. With σmin = 0.2 some anomalies are found
but the output are intermittent.

4 Grid (10x10) Flow No anomalies found. The road block is located on
the border between two grid cells.

5 Grid (5x5) Speed No anomalies found. With σ = 1 and σmin = 0.1
some anomalies are found as well as false alarms.

6 Grid (5x5) Flow No anomalies found. With σ = 1 and σmin = 0.1
some anomalies are found as well as false alarms.

7 Grid (25x25) Speed Anomalies are found. Some intermittent false
alarms.

8 Grid (25x25) Flow Anomalies are found. Some intermittent false
alarms.

Should we divide the area of interest using a simple grid or using additional
contextual road segment information?

Based on the results it is more efficient to use road segment information for
subdivision, compared to using a simple grid. The optimal size of grid cells is
however not obvious although the finest grid (25x25) yielded the best results
in the experiments. The results from using the grid approach also resulted in
unstable statistics in some cells. The normal variations were sometimes higher
than two standard deviations which resulted in false alarms when feeding normal
data into the anomaly detector. The road segment approach is therefore preferred
if such data is available; otherwise the grid based approach can be used.

Fig. 4. Alarms from experiment 1
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Should we measure the average flow or the average speed of objects?
In the experiments, the normal model based on both approaches performed

similar. An advantage of using flow is however that the flows can be measured
with simpler sensors.
How does the degree of subdivision affect the detection performance?

The experiments show that having too coarse a grid will decrease the ability
to detect anomalies. The finest grid resulted in the most detected anomalies and
the fewest false alarms.

5.2 Results Using Simple Sensors

Both the grid cell and the road based division of the geographic area were eval-
uated with the flow and speed analyzers. It was however decided that the grid
cell approach should only be evaluated using the grid parameters that gave the
best results, i.e. 25x25 grid cells. Each experiment has been carried out using
the process described in section 4.3. The results are presented in table 3.

Table 3. Results from experiments using simple sensors

Experiment Division Analyzed parameter Result

9 Road Speed Works very well, three anomalies detected in the
vicinity of the road block.

10 Road Flow Works very well, two anomalies detected in the
vicinity of the road block.

11 Grid (25x25) Speed Six anomalies are found. Four in the vicinity of the
road block and one in each of the east and south
entrances to the road network.

12 Grid (25x25) Flow Two anomalies are found. One near the road block
and one at the west entrance to the road network.

The conclusion of the experiments with simple sensors is that the anomaly
detection work almost as well as with ground truth data. This is however very
dependent on the placement of the sensors and the number of sensors used. In
the experiments, seven sensors were used to cover the most important roads in
the area of interest. With fewer sensors, the performance would not be as good.

6 Conclusions

The detection of threats in urban asymmetric conflict environments, e.g. am-
bushes and IEDs, has become an increasingly important objective for increased
task force security. Urban environments are characterized by numerous moving
objects in crowded areas, making it difficult to only rely on detect and track
methods. In this paper a Gaussian Anomaly Detector has been suggested for
generating early warnings that can be used to assist human operators in the
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detection of threats in such environments. The proposed anomaly detector fo-
cuses on modeling the collective behavior of objects of interest through the use
of average speed and flow in relation to small geographic areas.

The initial experiments that have been carried out using a simulated urban
threat scenario have investigated (1) different ways of dividing the area of in-
terest, i.e. square grid cells or based on road-segments, and (2) if the average
speed or flow was the best measure for modeling the normal behavior of a set of
vehicles. The evaluation shows that, using the proposed anomaly detector, there
is only small difference in performance between measuring speed and flow. It also
shows that the use of contextual map information to divide the area based on
road segments, yields more stable performance than using a grid cell approach.
A conclusion is that road network information should be used if it is available;
otherwise, acceptable performance can be achieved using grid cells.

An advantage of using an anomaly detector that operates on average speed or
flow information is that it puts lower requirements on sensor systems and their
tracking performance. It is not critical to have perfect tracking of all objects at
all times; instead, it is sufficient to be able to measure the number of objects or
the average speed of objects. This can be achieved using simple sensors.

Although it has been shown that the proposed anomaly detector can be used
for detecting anomalies in a simulated urban scenario, more research and de-
velopment is needed to achieve an operational system. The normalcy modeling
scheme should be extended to handle more contextual information and to better
capture variations in the data. Moreover, it is not enough to evaluate the fea-
sibility using only simulated data. Data from a real sensor network deployed in
an urban area should be collected and used for evaluation.
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Abstract. Recently, several anonymization algorithms have appeared
for privacy preservation on graphs. Some of them are based on random-
ization techniques and on k-anonymity concepts. We can use both of
them to obtain an anonymized graph with a given k-anonymity value.
In this paper we compare algorithms based on both techniques in order
to obtain an anonymized graph with a desired k-anonymity value. We
want to analyze the complexity of these methods to generate anonymized
graphs and the quality of the resulting graphs.

Keywords: Privacy, Anonimization, Social networks, Graphs, k-Anonymity.

1 Introduction

Currently, the data mining processes require large amounts of data, which often
contain personal and private information of users and individuals. Although
basic processes are performed on data anonymization, such as removing names
or other key identifiers, remaining information can still be sensitive, and useful
for an attacker to re-identify users and individuals. E.g., birthday and ZIP codes
might be enough to re-identify individuals [1]. To solve this problem, methods
that perform introduction of noise in the original data have been developed in
order to hinder the subsequent processes of re-identification.

In this paper we will discuss anonymization techniques applied to graph for-
matted data. One of the most well known data that can be represented as graphs
are social networks. Social networks are very interesting for their analysis by sci-
entists and companies, nevertheless any release to a third party for their analysis
requires the application of a protection procedure.

There are multiple methods for privacy preservation in graphs. One of
the most used are random-based methods, which modify graphs at random to
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hinder re-identification processes. Other methods are based on the concept of
k-anonymity [1]. These methods are more complex than random-based. In this
paper we ask ourselves if we can get the same results using a random algorithm
and a algorithm to select k-anonymous graphs.

This paper is organized as follows. In Section 2, we review different anonymiza-
tion methods for graphs’ privacy preservation. Section 3 presents our experimen-
tal framework, including anonymization algorithms, graph and re-identification
risk assessment and data sets used in our experiments. In Section 4, we show the
experiments and discuss the results. Finally, in Section 5, we discuss conclusions
and future work.

2 State of the Art

Anonymization methods depend on the type of data they are intended to work
with. In this paper, we will work with simple, undirected and unlabelled graphs.
Because these graphs have no attributes or labels in the edges, information is
only in the structure of the graph itself and, due to this, the adversary can use
information about the structure of the network to attack the privacy. However,
since all of the information is contained in it, we want to preserve the structure
of the graph.

2.1 Random-Based Methods

One widely adopted strategy of graph modification approaches are randomiza-
tion methods. Randomization methods are based on adding random noise in
original data. There are two basic approaches to work with graph data: (1)
Rand Add/Del : randomly add and delete the same number of edges from the
original graph (this strategy keeps the number of edges) and (2) Rand Switch:
exchange edges between pairs of nodes (this strategy keeps the number of edges
and the degree of all nodes).

Hay et al. [2] proposed a method to anonymize unlabelled graphs. This method
is called Random Perturbation and is based on two phases: first, m edges are
randomly removed from the graph and then false m edges are randomly added.
The set of vertices is not changed and the number of edges is preserved in the
anonymized graph.

Ying et al. [3] proposed a variation of Rand Add/Del method, called Rand
Add/Del-B. This method implements modifications (by adding and removing
edges) on the nodes at high risk of re-identification, not at random over the
entire set of nodes. The authors expect to introduce fewer perturbations (with
better utility preservation) to achieve the same privacy protection.

2.2 k-Anonymity-Based Methods

Another strategy widely adopted for privacy-preserving is based on the concept
of k-anonymity. This concept was introduced by Sweeney [1] for the privacy
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preservation on relational data. Formally, the k-anonymity model is defined as:
let RT (A1, . . . , An) be a table and QIRT be the quasi-identifier associated with
it. RT is said to satisfy k-anonymity if and only if each sequence of values in
RT [QIRT ] appears with at least k occurrences in RT [QIRT ]. The k-anonymity
model indicates that an attacker can not distinguish between different k records
although he manages to find a group of quasi-identifiers. Therefore, the attacker
can not re-identify an individual with a probability greater than 1

k .
Different concepts can be used to apply the k-anonymity model on graphs. A

widely option is to use the node degree as a quasi-identifier [4]. It is called k-
degree anonymity. We assume that the attacker knows the degree of some nodes.
If the attacker identifies a single node with the same degree in the anonymized
graph, then he has re-identified this node. K-anonymity methods are based on
modifying the graph structure (by adding and removing edges) to ensure that
all nodes satisfy the k-anonymity properties for the degrees of all the nodes. In
other words, the main objective is that all nodes have at least k− 1 other nodes
sharing the same degree.

2.3 Graph Assessment

Several measures and metrics have been used to quantify network structure in
graph formatted data. Usually, the authors compare the values obtained by the
original data and the anonymized data in order to quantify the noise introduced
by the anonymization process.

Hay et al. [2] proposed five structural properties from graph theory for quan-
tifying network structures. For each node, the authors evaluate closeness cen-
trality (average shortest path from the node to every other node), betweenness
centrality (proportion of all shortest paths through the node) and path length
distribution (computed from the shortest path between each pair of nodes). For
the graph as a whole, they evaluate the degree distribution and the diameter
(the maximum shortest path between any two nodes). The objective is to keep
these five steps closer to their original values, assuming that it involves little
distortion in the anonymized data.

Zou et al. [6] defined a simple method for evaluating information loss on
undirected and unlabelled graphs. The method is based on the difference between
the original and the anonymized graph edges. Formally, Cost(G, G̃) = (E∪ Ẽ)−
(E ∩ Ẽ) where G(V,E) is the original graph, V is the node set, E is the edge

set, and G̃(Ṽ , Ẽ) is the anonymized graph.

2.4 Risk Assessment

Re-identification risk in anonymized graph is important to evaluate the quality
of any anonymization process. Determining the knowledge of the adversary is
the main problem. From the knowledge of the adversary, different methods for
assessing the re-identification risk have been developed.

Zhou et al. [13] model the background knowledge of adversaries in various
ways: Identifying attributes of nodes, nodes degrees, link relationship, neigh-
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bourhoods, embedded sub-graphs and graph metrics. We focus on a knowledge
of the adversary based on degree nodes.

Hay et al. [2] [5] proposed a method, called Vertex Refinement Queries, to
model the knowledge of the adversary. This class of queries, with increasing
attack power, models the local neighbourhood structure of a node in the network.
The weakest knowledge query, H0(vj), simply returns the label of the node vj .
The queries are successively more descriptive: H1(vj) returns the degree of vj ,
H2(vj) returns the list of each neighbours’ degree, and so on. The queries can
be defined iteratively, where Hi(vj) returns the multi-set of values which are the
result of evaluating Hi−1 on the set of nodes adjacent to vj :

Hi(vj) = {Hi−1(v1),Hi−1(v2), . . . ,Hi−1(vm)} (1)

where v1, v2, . . . , vm are the nodes adjacent to vj .
A candidate set for a query Hi is a set of all nodes with the same value

of Hi. Therefore, the cardinality of a candidate set for Hi is the number of
indistinguishable nodes in G underHi. Note that if the cardinality of the smallest
candidate set under H1 is k, the probability of re-identification is 1

k . Hence, the
k-degree anonymity value for G is k.

3 Experimental Set Up

Our main objective is to compare random-based and k-anonymity-based algo-
rithms for privacy preservation on graphs. If we want to anonymize a graph
to a specific value of k-anonymity, then we should ask ourselves, what kind of
method is the best to achieve this purpose. I.e., we want to compare random-
based and k-anonymity-based methods to anonymize graphs to a specific value
of k-anonymity.

Random-based methods modify the structure of the graph, so they can modify
the value of k-degree anonymity. But we can not specifically control the desired
value. Therefore, if we want to get an anonymized graph with a specific value
of k-anonymity, we must generate multiple anonymized graphs until we find one
with the desired k-anonymity value.

Fig. 1. Experimental framework
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To conduct this experiment, we choose three graph formatted datasets, two
anonymization algorithms and several quality measures. Figure 1 shows our ex-
perimental framework. First, we anonymize the graphs data sets (details are
shown in Section 3.1) using two anonymization algorithms (Section 3.2). Then,
we evaluate original and anonymized data using measures for quantifying net-
work structures (Section 3.3). And finally, we use risk assessment measures
(Section 3.4) to assess the improvement in privacy-preserving on anonymized
data.

3.1 Data Sets

Three different data sets are used in our experiments. Table 1 shows a summary
of the data sets’ main features. The data sets considered are the following ones:

– Zachary’s Karate Club [7] is a graph widely used in the literature. The graph
shows the relationships among 34 members of a karate club.

– American College Football [8] is a graph of American football games between
Division IA colleges during regular season Fall 2000.

– Jazz Musicians [9] is a graph of jazz musicians and their relationships.

Table 1. Data sets properties

Data set Nodes Edges Average degree Average distance Diameter

Zachary’s Karate Club 34 78 4.588 2.408 5

American College Football 115 613 10.661 2.508 4

Jazz Musicians 198 2,742 27.697 2.235 6

3.2 Anonymization Methods

We choose the following random-based and k-anonymity-based anonymization
algorithms for our experiments.

Random-Based Algorithm

Among all existing random-based anonymization algorithms, we use Random
Perturbation (RP) [2]. This algorithm removes and adds the same number of
edges from the original graph, by keeping the total number of edges in the graph.

As Figure 1 describes, we perform multiple anonymizations using RP algo-
rithm. The total number of anonymized graphs depends on each data set and
will be specified in each experiment. For each k-anonymity value we want to
achieve, we execute the RP algorithm iteratively, until we get a graph with the
k-anonymity value. The process starts with an anonymization percentage of 1%.
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If a graph with the desired k-anonymity value is generated, it is the solution
and anonymization process finishes. After 100 iterations, and if a graph with
the desired k-anonymity value is not found, the anonymization percentage is
increased at 1%. This process is repeated until the anonymization percentage
reaches a limit of 50%, when the process stops without a solution. Therefore,
5,000 randomly anonymized graphs are generated before RP finishes without
solution.

k-Anonymity-Based Algorithm

We use the Genetic Graph Anonymization (GGA) [10] for obtaining an
anonymized graph which preserves k-anonymity on the degree. The approach,
based on genetic algorithms, can be described in terms of the following two steps.

1. Given the degree sequence of the nodes of G(V,E), d = {d1, · · · , dn}, we
construct a new sequence d̃ that is k-degree anonymous and minimizes the
distance between the two sequences.

2. We construct a new graph G̃(Ṽ , Ẽ) with degree sequence d̃ in which Ṽ = V

and Ẽ ∩ E ≈ E.

Our proposal for the first step of the anonymization algorithm uses genetic al-
gorithms. These algorithms use the mutation process and the fitness function
defined as follows.

Mutation Process. Add one to an element of the degree sequence and subtract
one from another element. This transaction represents a change in one of the
nodes of an edge. For example, if we modify node v1 to v2 on the edge e0,1 =
(v0, v1) we get the edge e0,2 = (v0, v2). This node change is represented in the
degree sequence as subtracting one to the degree value of node v1 and adding
one to the degree value of node v2. Note that our genetic algorithm does not
use the recombination of pairs of parents, since this process systematically
breach the rule that preserves the number of edges in the graph, and therefore
generate no valid candidates.

Fitness Function. The fitness function, which evaluates candidates, is com-
puted from three parameters: (1) the current k-anonymity value, where the
objective is to achieve a k-anonymity value greater than or equal to the de-
sired value. (2) The distance between the anonymized and the original degree
sequence, computed by Equation 2, where the objective is to minimize this
value. And (3), the number of nodes that do not meet the desired value of
k-anonymity, which will decrease until it reaches 0, when we get the desired
k-anonymity value.

D(d, d̃) =

n∑
i=0

| d̃i − di | (2)

where n =| V |.
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In the second step we make the necessary changes in the original graph to
obtain the anonymized graph. The changes that have occurred in the degree
sequence indicate the nodes that should change its degree. I.e., indicate the
edges to be modified.

3.3 Graph Assessment

We use different measures for quantifying network structure. These measures
and metrics are used to compare both the original and the anonymized data in
order to quantify the level of perturbation introduced in the anonymized data
by the anonymization process. These measures and metrics evaluate some key
graph properties.

In the rest of this section we review the measures used. In the definitions we
use G(V,E) and G̃(V, Ẽ) to indicate the original and the anonymized graphs,
n =| V | to denote the number of nodes, and dij to denote the length of the
shortest geodesic path from node vi to vj .

The first one is average distance. It is defined as the average of the distances
between each pair of nodes in the graph. It measures the minimum average
number of edges between any pair of nodes. Formally, it is defined as:

AD(G) =

∑
i,j dij(
n
2

) (3)

The second is edge intersection. It is defined as the intersection of the edges
set. Formally:

EI(G, G̃) =
E ∩ Ẽ

| E ∪ Ẽ |
(4)

The third is betweenness centrality, which measures the fraction of the num-
ber of shortest paths that go through each vertex. This measure indicates the
centrality of a node based on the flow between other nodes in the graph. A node
with a high value indicates that this node is part of many shortest paths in the
graph, which will be a key node in the graph structure. This measure is normal-
ized to be in the range [0,1]. Formally, we define the betweenness centrality of a
node vi as:

BC(vi) =
1

n2

∑
st

gist
gst

(5)

where gist is the number of geodesic paths from s to t that pass through vi, and
gst is the total number of geodesic paths from s to t.

The fourth one is closeness centrality, which is defined as the inverse of
the average distance to all accessible nodes. It is normalized in the range [0, 1].
Closeness is an inverse measure of centrality in that a larger value indicates a
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less central node while a smaller value indicates a more central node. Formally,
we define the closeness centrality of a node vi as:

CC(vi) =
n∑
j dij

(6)

The betweenness and closeness centrality lead to different results for the same
graph as they focus on different aspects of centrality. As shown above, both
compute a value for each node. To compare the original and the protected graph,
it is convenient to aggregate these values in a single one. For each of the two
measures, we compute an average difference using the root mean square (other
average functions [11] could be used here as well) as follows:

Diff(G, Ĝ) =

√
1

n
((g1 − ĝ1)2 + . . .+ (gn − ĝn)2) (7)

where gi is either the betweenness centrality or the closeness centrality of node
vi.

The number of nodes, edges and average degree are not considered to assess
the anonymization process because the methods analysed in this work keep these
values constant.

3.4 Risk Assessment

As we have discussed above, it is necessary to define the adversary’s knowledge to
define a method for assessing the re-identification risk. In this paper we assume
a knowledge of the adversary based on the degree of the nodes and we use Vertex
Refinement Queries of level 1 (H1) as a re-identification risk measures.

The H1(vi) indicates the degree of node vi and the candidate set of H1,
candHi , is the set of all nodes grouped by their degree. That is, one subset
corresponds to all nodes of degree value equal to 1, another to all nodes of
degree value equal to 2, and so on. Therefore, the minimum cardinality of the
subsets corresponds to the value of k-degree anonymity. But candHi also shows
interesting information about how re-identification risk is distributed on all nodes
of the graph.

candH1 = {vj ∈ V | H1(vi) = H1(vj)} (8)

In our experiments we analyse how the candidate set evolves, so this allows us
to see how the graph evolves in terms of re-identification’s risk.

4 Experimental Results

In this section, we show the results of our experiments. We compare RP and
GGA algorithms to anonymize a graph with a specific k-anonymity value.
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4.1 Zachary’s Karate Club

The original graph has a k-anonymity value equal to 1. RP algorithm achieves
anonymized graphs with a k-anonymity values equal 2,3 and 4, while GGA
achieves graphs with a k-anonymity values equal to 2, 4 and 5. So, GGA algo-
rithm gets a higher k-anonymity value than RP algorithm. Table 2 shows that
RP algorithm is much faster than GGA algorithm.

Table 2. Zachary’s Karate Club generation time

Algorithm k=2 k=3 k=4 k=5

RP 00:01 sec 00:06 sec 00:53 sec -

GGA 00:33 sec - 01:38 sec 02:34 sec

Average distance is shown in Figure 2a. GGA algorithm achieves better results
than RP algorithm for all values of k. Note that the k = 1 values correspond
to the original graph. Figure 2b shows edge intersection between original and
anonymized graphs. Also, GGA algorithm achieves better results for all values
of k. In addition, RP algorithm obtains a very bad result for k=4, where edge
intersection measure falls to 20%.

The RMS error of the betweenness centrality, Figure 2c, and the RMS error of
the closeness centrality, Figure 2d, show similar results on both measures, where
GGA introduces less perturbation than RP.

Figures 2e and 2f show the details of the candH1 results for RP and GGA
algorithms. Nodes with a candidate set of size 1 have been uniquely re-identified
(6 nodes, 17.64%, on the original graph). Nodes with a candidate set of size
between 2 and 4 are in high risk of re-identification (5 nodes, 14.70%, on the
original graph). However, nodes with candidates set between 5 and 10 and greater
than 10 are well-protected (23 nodes, 67.64%, on the original graph).

If we compare the results of anonymized graphs with a value of k=2, we can
see that the GGA algorithm achieves a smaller set of nodes at high risk of re-
identification (41.17% RP and 35.29% GGA). If we compare the results with a
value of k=4, we can see that the GGA algorithm achieves a smaller set of nodes
at high risk of re-identification and a bigger set of well-protected nodes.

4.2 American College Football

The original graph has a k-anonymity value equal to 1. RP algorithm get values of
k-anonymity of 2, 3, 4, 5 and 6, and GGA algorithm get values of k-anonymity of
4 and 10. Table 3 shows generation time for both algorithms. Like in the previous
experiment, RP algorithm is faster than GGA algorithm, but GGA algorithm
achieves higher values of k-anonymity than RP algorithm.

In Figure 3a we can see that GGA algorithm gets much better results on
average distance than RP algorithm, especially for k-anonymity values greater
than 5. Figure 3b shows the same behaviour for edge intersection.
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(a) Average distance (b) Edge intersection

(c) RMS error of betweenness centrality (d) RMS error of closeness centrality

(e) candH1 evolution for RP algorithm (f) candH1 evolution for GGA algorithm

Fig. 2. Zachary’s Karate Club

Table 3. American College Football generation time

Algorithm k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

RP 00:01 sec 00:01 sec 00:04 sec 00:06 sec 01:21 sec - - - -

GGA - - 00:51 sec - - - - - 02:01 sec
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(a) Average distance (b) Edge intersection

(c) RMS error of betweenness centrality (d) RMS error of closeness centrality

(e) candH1 evolution for RP algorithm (f) candH1 evolution for GGA algorithm

Fig. 3. American College Football

The RMS error of the betweenness centrality, Figure 3c, and the RMS error
of the closeness centrality, Figure 3d, show that GGA algorithm introduces less
perturbation in both measures.

Figures 3e and 3f show the details of the candH1 results for RP and GGA.
GGA algorithm achieves excellent results at all the range of anonymization. RP
algorithm achieves good results too, but fall short of those achieved by GGA.
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4.3 Jazz Musicians

The original graph has a k-anonymity value equal to 1. Both algorithms only
achieve graphs with a k-anonymity value equal to 2. Table 4 shows generation
time for these processes.

Table 4. Jazz Musicians generation time

Algorithm k=2

RP 3:14:27 sec

GGA 5:26:51 sec

Using this data set, average distance decreases smoothly on GGA, like in
previous data sets. Edge intersection gets a value of 99.53% on GGA k = 2
anonymized graph, while RP gets a value of 33.04% for a graph with the same
k-anonymity value. This value indicates that RP affects the quality and the use-
fulness of the anonymized data. The RMS error of the betweenness centrality
and the RMS error of the closeness centrality show that GGA algorithm intro-
duces less perturbation in both measures. The details of the candH1 results for
RP and GGA algorithms sows that RP algorithm increases the well-protected
nodes until a value of 52%, while GGA algorithm maintains the data very similar
to the initial values.

5 Conclusions

In this paper we have reported an experimental study of two anonymization algo-
rithms. One of them is random-based, while the other is based on k-anonymity
model. We have applied these anonymization algorithms on three real world
social networks that have well-documented structures: Zachary’s Karate Club
network, American College Football teams’ network and Jazz Musicians’ net-
work.

After seeing the results of the experiments, we can clearly see that k-
anonymity-based algorithm gets the best results on all data sets. This algo-
rithm, called GeneticGraphAnonymization (GGA), achieves a greater degree
of anonymity and produces less perturbation on graphs. So, it produces a more
useful data and a more protected data. However, GGA algorithm is slower than
RP on all data sets.

Many interesting directions for future research have been uncovered by this
work. Other graph anonymization methods should be evaluated and compared
with our k-anonymity-based algorithm. Also, another interesting area is to eval-
uate different measures for the re-identification risk. There are several measures
and it is interesting to compare all of them. Finally, another graph types will be
considered, such as weighted [12] or directed graphs.
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Abstract. Record linkage is a well known technique used to link records
from one database to records from another database which make refer-
ence to the same individuals. Although it is usually used in database
integration, it is also used in the data privacy field for the disclosure risk
evaluation of protected datasets. In this paper we compare two differ-
ent supervised algorithms which rely on distance-based record linkage
techniques, specifically using the Choquet integral’s fuzzy integral to
compute the distance between records. The first approach uses a linear
optimization problem which determines the optimal fuzzy measure for
the linkage. While, the second approach is a kind of gradient algorithm
with constraints for the fuzzy measures’ identification. We show the ad-
vantages and drawbacks of both algorithms and also in which situations
they will work better.

Keywords: Fuzzy measure, Choquet integral, Record linkage, Heuris-
tic, Optimization.

1 Introduction

Record Linkage is the task of identifying records from different databases (or
data sources in general) that refers to the same entity. This technique was firstly
used for database integration in [14] and further developed in [24,16], and it is
nowadays a popular technique used by statistical agencies, research communities,
and corporations. The main applications of record linkage are database and
datasets integration [1,10,29,30], data cleaning and quality control [5,31]. An
example of the last application is the detection of duplicate records between
several datasets [15]. However, more recently, in the context of data privacy [21],
record linkage has emerged as an important technique to evaluate the disclosure
risk of protected data [26,32]. By identifying the links between the protected
dataset and the original one, we can evaluate the re-identification risk of the
protected data [12].

Among record linkage approaches we have focused on those based on a
distance function between records, that is, it links records by their closeness.
There are previous works [28,4,3] that have considered the use of different

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 210–221, 2012.
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parameterized distances together with a supervised learning approach. This
supervised approach relies on an optimization problem which finds the best com-
bination of distance’s parameters in order to maximize the number of correct
re-identifications. In this paper we compare two different supervised learning
approaches relying on distance-based record linkage for data privacy which are
based on the Choquet integral [9,27]. Both supervised approaches allow the use
of a fuzzy measure to weight the attributes in the datasets. However, one is
based on an adaptation of the gradient descent algorithm proposed by Grabisch
in [17] and the other is based on a linear optimization problem [2]. That means
that the first one will find the parameters of a local minimum in a reasonable
time, while the other approach will find the optimal parameters that give the
maximum number of re-identifications. The goal of this comparison is to analyse
if the Grabisch heuristic method can achieve similar results than the optimiza-
tion problem. These results are based on the number of correct linkages between
the records from two databases, the computational time needed and whether
weights are much fitted for the training set, producing overfitting.

The paper is organized as follows. Section 2 introduces the record linkage
techniques in the data privacy context. In Section 3 we define both supervised
approaches that are compared. Section 4 shows the results of the comparison
taking into account all the factors mentioned. Finally, Section 5 concludes the
paper and present the future work.

2 Record Linkage in Data Privacy

In data privacy, record linkage can be used to re-identify individuals from a
protected dataset. It serves as an evaluation of the protection method used by
modeling the possible attack to be performed on the protected dataset.

A dataset X can be viewed as a matrix with N rows (records) and V columns
(attributes), where each row refers to a single individual. The attributes in a
dataset can be classified, depending on their capability to identify unique indi-
viduals, as follows:

– Identifiers : attributes that can be used to identify the individual unambigu-
ously. A typical example of identifier is the passport number.

– Quasi-identifiers : attributes that are not able to identify a single individ-
ual when they are used alone. However, when combining several quasi-
identifier attributes, they can unequivocally identify an individual. Among
the quasi-identifier attributes, we distinguish between confidential (Xc) and
non-confidential (Xnc), depending on the kind of information that they pro-
vide. An example of non-confidential quasi-identifier attribute would be the
zip code, while a confidential quasi-identifier might be the salary.

Before releasing the data, a protection method ρ is applied, leading to a pro-
tected dataset X ′. This protection method will protect the non-confidential
quasi-identifiers X ′

nc = ρ(Xnc). However, to ensure the privacy, identifiers are
either remover or encrypted. The confidential quasi-identifiers are not modified
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because they are interesting for third parties. Therefore, the protected dataset,
X ′ = X ′

nc||Xc can be published and made available. This scenario, which was
first used in [12] to compare several protection methods, has also been adopted
in other works like [26].

In data privacy, record linkage can be used to re-identify individuals between
the protected dataset and a part or the whole original dataset as an evaluator of
disclosure risk. There are two main approaches of record linkage. The Proba-
bilistic record linkage (PRL) [20] and the Distance-based record linkage
(DBRL) [25], which links each record a to the closest record in b, by means of
a distance function. Both approaches have been used extensively in the area of
data privacy to evaluate the disclosure risk of protected data. Nevertheless, the
work in this paper is focused on distance-based record linkage, specifically using
the Choquet integral as a distance. This is further described in the next section.

2.1 Record Linkage Based on the Choquet Integral

The main point of distance-based record linkage is the definition of a distance.
In this paper we consider the parametrization of distance-based record linkage.
This distance parameterization allows us to weight data attributes in order to
express the importance of the variables in the linkage process.

It is well known that the multiplication of the Euclidean distance by a constant
will not change the results of any record linkage algorithm. Due to this, we
can express the Euclidean distance used for attribute-standardized data as a
weighted mean of the distances for the attributes.

We will use V X
1 , . . . , V X

n and V Y
1 , . . . , V Y

n to denote the set of variables of file
X and Y , respectively. Using this notation, we express the values of each variable
of a record a in X as a = (V X

1 (a), . . . , V X
n (a)) and of a record b in Y as b =

(V Y
1 (b), . . . , V Y

n (b)). V X
i corresponds to the mean of the values of variable V X

i .
In a formal way, we redefine the Euclidean distance as follows,

d
2
(a, b) =

n∑
i=1

1

n

(
V X
i (a) − V X

i

σ(V X
i )

−
V Y
i (b) − V Y

i

σ(V Y
i )

)2

In addition, we will refer to each squared term of this distance as,

d2
i (a, b) =

(
V X
i (a) − V X

i(a)

σ(V X
i )

−
V Y
i (b) − V Y

i(b)

σ(V Y
i )

)2

Using these expressions we can define the squared of the Euclidean distance as
follows.

Definition 1. Given two datasets X and Y the square of the Euclidean distance
for attribute-standardized data is defined by:

d2AM(a, b) = AM(d21(a, b), . . . , d
2
n(a, b)),

where AM is the arithmetic mean AM(c1, . . . , cn) =
∑

i ci/n.

In general, any aggregation operator C [27] might be used in the place of arith-
metic mean. So, we can consider the following generic distance.
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d2C(a, b) = C(d21(a, b), . . . , d
2
n(a, b))

From this definition, it is straightforward to consider weighted versions of the
Euclidean distance. In this case we have focused on fuzzy measures of the Cho-
quet integral, these permit us to represent, in the computation of the distance,
information like redundancy, complementariness, and interactions among the
variables, which are not used in other parametrized distances. Therefore, tools
that use fuzzy measures to represent background knowledge permit us to con-
sider variables that, for example, are not independent.

Definition 2. Let μ be an unconstrained fuzzy measure on the set of variables
V , i.e. μ(∅) = 0, μ(V ) = 1, and μ(A) ≤ μ(B) when A ⊆ B for A ⊆ V , and
B ⊆ V . Then, the Choquet integral distance is defined as:

d2CIμ(a, b) = CIμ(d1(a, b)
2, . . . , dn(a, b)

2) (1)

where CIμ(c1, . . . , cn) =
∑n

i=1(cs(i) − cs(i−1))μ(As(i)), given that cs(i) indicates
a permutation of the indexes so that 0 ≤ cs(1) ≤ . . . ≤ cs(i−1), cs(0) = 0, and
As(i) = {cs(i), . . . , cs(n)}.

The interest of this variation is that we do not need to assume that all the
attributes are equally important in the re-identification. This would be the case
if one of the attributes is a key-attribute, e.g. an attribute where V X

i = V Y
i . In

this case, the corresponding weight would be assigned to one, and all the others
to zero. Such an approach would lead to 100% of re-identifications. Moreover the
interaction of coalitions of variables is taken into account by the fuzzy measure.

3 Supervised Learning Approaches for Record Linkage

In this section we describe the two learning processes used on this work. Firstly,
we describe the optimization problem approach and then we introduce the heuris-
tic approach, which is based on a gradient descent algorithm. Both approaches
take as input a matrix formed by n+1 columns ( n attributes + target value) and
m rows (each row represent one example). The output of both algorithms are the
coefficients of the fuzzy measure that maximizes the number of re-identifications.

3.1 Linear Optimization Problem

We start discussing the notation we have used.
Let X represent the original file, and Y the protected file, both with variables

V1, . . . , Vn. Then, Vk(ai) represents the kth variable of the ith record. Using this
notation, for all ai ∈ X we have ai = (V1(ai), . . . , Vn(ai)) and for all bi ∈ Y we
have bi = (V1(bi), . . . , Vn(bi)). For the application of the record linkage algorithm
we will consider the sets of values d(Vk(ai), Vk(bj)) for all pairs of records ai ∈ X
and bj ∈ Y .

For the sake of simplicity in the formalization of the process, we presume that
each record ai of X is the protected version of bi of Y . That is, files are aligned.
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Then, two records are correctly linked using an aggregation operator C
when the aggregation of the values d(Vk(ai), Vk(bi)) for all k is smaller than
d(Vk(ai), Vk(bj)) for all i �= j. In optimal conditions this should be true for all
records ai.

We have formalized the learning process into an optimization problem with an
objective function and some constraints. As the correct linkage will not always
be satisfied because of the errors in the data cause by the protection method
a relaxation is needed. The relaxation is based on the concept of blocks. We
consider a block as the set of equations concerning record ai. Therefore, we
define a block as the set of all the distances between one record of the original
data and all the records of the protected data. Then, we assign to each block
a variable Ki. Therefore, we have as many Ki as the number of rows of our
original file. Besides, we need for the formalization a constant C that multiplies
Ki to overcome the inconsistencies and satisfies the constraint.

The rationale of this approach is as follows. The variable Ki indicates, for
each block, if all the corresponding constraints are accomplished (Ki = 0) or
not (Ki = 1). Then, we want to minimize the number of blocks non compliant
with the constraints. This way, we can find the best weights that minimize the
number of violations, or in other words, we can find the weights that maximize
the number of re-identifications between the original and protected data.

Using these variables Ki and the constant C, we have that all pairs i �= j
should satisfy

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−
−C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0

As Ki is only 0 or 1, we use the constant C as the factor needed to really
overcome the constraint. In fact, the constant C expresses the minimum distance
we require between the correct link and the other incorrect links. The larger it
is, the more correct links are distinguished from incorrect links.

Using these constraints and the Choquet integral aggregation operator
d2CIμ(a, b), explained in Definition 2, the minimization problem is defined in a
generic form as:

Minimize

N∑
i=1

Ki

Subject to :

N∑
i=1

N∑
j=1

CIμ(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−

− CIμ(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0

Ki ∈ {0, 1}
μ(∅) = 0

μ(V ) = 1

μ(A) ≤ μ(B) when A ≤ B

where N is the number of records, and n the number of variables. This problem is
considered a mixed integer linear problem, because it is dealing with integer and
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real-valued variables in the objective function and in the constraints, respectively.
See more details of the implementation and complexity in [2].

3.2 Gradient Descent Algorithm

Inspired in HLMS (Heuristic Least Mean Squares), a gradient descent algorithm,
introduced by Grabisch in [17], we introduce an new record linkage process
relying on it. HLMS takes as input a training dataset P like the following:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
1 . . . x1

i . . . x1
n T 1

.

.

.
. . .

.

.

.
xz
1 . . . xz

i . . . xz
n T z

.

.

.
. . .

.

.

.

xN
1 . . . xN

i . . . xN
n TN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where xji is the value of sample j for attribute i, and T j its target value.
The algorithm finds the fuzzy measure μ that minimized the difference
Cμ({xj1, x

j
2, ..., x

j
n})−T j ∀j . The error made in the approximation can be calcu-

lated as:

E(μ) =

N∑
j=1

(Cμ({xj
1, x

j
2, ..., x

j
n})− T j)2

The formula represents simply the squared difference between the target T j and
the Choquet integral of sample j using μ, summed over all training examples. The
direction of steepest descent along the error surface can be found by computing
the derivative of E with respect to each component of the vector μ.

�E(μ) ≡ [
δE

δμ(1)

,
δE

δμ(2)

, . . . ,
δE

δμ(n)

]

Since the gradient specifies the direction of steepest increase of E, the training
rule for gradient descent is:

μ(i) ← μ(i) − λ�E(μ(i))

Here λ is a positive constant called the learning rate, which determines the step
size in the gradient descent search. The negative sign is present because we want
to move the attributes of the aggregation operator in the direction that decreases
E. The record linkage problem cannot be addressed directly with HLMS since the
target value is unknown. To simplify notation let Vk(ai) = xik and Vk(bi) = x′ik.
As in the previous approach we have divided the problem in blocks, so a block
Dk is now defined as follows:

Dk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(xk
1 − x′1

1)
2 . . . (xk

i − x′1
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n − x′1
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2

.
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(xk
1 − x′z
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i − x′z
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(xk
1 − x′N

1 )2 . . . (xk
i − x′N

i )2 . . . (xk
n − x′N

n )2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The original dataset hasN different blocks, one for each row inX . The algorithm
must find the fuzzy measure μ that makes for block k that the value of

Cμ({(xk
1 − x′z

1)
2, . . . , (xk

i − x′z
i )

2, . . . , (xk
n − x′z

n)
2}) (2)

to be minimum when k == z.
The approach used for each block k is the following:

The fuzzy measure is initialized to the equilibrium state (μi =
|i|
n ). The Choquet

integral of each row in Dk is calculated. If the minimum of the Choquet integral
is for row k, then proceed with the next block. If the minimum of the Choquet
integral is not for row k, calculate the gradient direction that makes the value
of the Choquet minimum increases and the gradient of the Choquet integral for
row k decreases.

The algorithm for this approach is shown in Algorithm (1).

Algorithm 1. Description of the heuristic algorithm for record linkage
Let X be the original database and X′ the protected one with N samples and n attributes each.

——————– Initialization ———————
for i ∈ P(X) do

μi = |i|
|X|

end for
—————– For each Block ——————
for i ∈ [1..N ] do

———– For each row in Xi ∈ X ————–
dj ← (Xi − X′

j)
2 ∀j ∈ [1..N ]

s = {j|C(dj) ≤ C(di) ∀ j ∈ [1..N ]}
—————– Update step ——————
for all j ∈ s do

Update the fuzzy measure, so that the difference C(di) − C(dj) decreases
end for
———– Monotonicity check ————
Check monotonicity

end for
return μ

The algorithm does not guarantee the convergence to a global minimum.
Some other minor modifications were done to the algorithm with no significant
improvement.

4 Results

In this section we have compared both approaches; the heuristic algorithm for
record linkage (HRLA) and the Choquet integral optimization algorithm (d2CI)
over different protected files. This comparison is divided in two parts to tackle the
optimization problem. In the first part we have focused on the scores’ comparison,
in terms of the number of correct linkages and also the required times taken from
both approaches. In the second part we have focused on the overfitting problem,
testing both approaches with a small set for training and a big set for test.
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To do our experiments we have applied different protection methods to an
amount of records, randomly selected, from the original file. This file was selected
from the Census dataset[8] of the European CASC project [7], which contains
1080 records and 13 variables, and has been extensively used in other works,
such as [4,13,22].

To solve the Choquet optimization problem , we used the simplex optimizer al-
gorithm from the IBM ILOGCPLEX tool [19], (version 12.1). The problem is first
expressed into the MPS (Mathematical Programming System) format by means
of the R statistical software1 , and then, it was processed with the optimization
solver. The HRLA was completely programmed in the R statistical software.

4.1 Precision Comparison

The first part of the comparison is made with two different protected files us-
ing Microaggregation [11], a well-known microdata protection method, which
broadly speaking, provides privacy by means of clustering the data into small
clusters of size k, and then replacing the original data by the centroid of their
corresponding clusters. The parameter k determines the protection level: the
greater the k, the greater the protection and at the same time the greater the
information loss.

We have considered two protected files of 400 records, which were protected
with two different protection levels.

– M4− 28 : 4 variables, first 2 variables with k = 2, and last 2 with k = 8.
– M5− 38 : 5 variables, first 3 variables with k = 3, and last 2 with k = 8.

Note that, we have applied two different protection degrees to different attributes
of the same file. The values used range from 2 to 8. This is especially interesting
when variables have different sensitivity.

Table 1 shows the percentage of re-identifications and the consumed time
in the training step of both presented approaches (d2CI and HRLA). It is
clear that both supervised approaches have obtained better results than the
arithmetic mean (d2AM). However, if we make a comparison between them, we
can see that the HRLA has an error between 2% and 5% respect to the optimum
value, achieved by d2CI. Recall that the HRLA is initialized with an equilibrium
fuzzy measure. Therefore, in the first iteration the HRLA is at least as good
as the Euclidean distance (d2AM). It is worth mention that, since HRLA is an
algorithm that finds the local minimum of a function, the results shown in that
table correspond to the average of ten runs with the same configuration.

We have also compared training computational times of all the approaches.
Table 1 shows that in almost all the situations, the time required by theHRLA to
achieve similar results than d2CI is much lower than the optimization algorithm.
However, we have to remember that the time’s factor of the HRLA approach
could be different depending on the learning rate and the number of iterations
which are parameters of the algorithm set up in its initialization.

1 http://www.r-project.org/

http://www.r-project.org/
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Table 1. Percentage of re-identifications and computational time

Dataset d2AM d2CI HRLA

% Re-identifications
M4-28 68.50 93.75 91.75
M5-38 39.75 91.25 86.75

Computational Time
M4-28 - 30 minutes 20 minutes
M5-38 - 4 days 20 minutes

4.2 Overfitting

In the last part of this algorithm comparison, we have evaluated the scenario
where an attacker would have a small amount of samples of the original database
with its correct linkage between those samples and the samples in the public
protected database. Therefore, the attacker is able to find the set of weights
that achieve more number of linkages between the known samples (training set)
and then, with those obtained weights, he/she is able to try the re-identification
between the rest of records (test set) of two datasets in order to discover new
confidential information.

In this experiment we have anonymized the whole original file (Census) by
means of four different protection methods with several degrees of protection.
The selected protection methods are briefly explained below; RankSwapping
[23], where the values of a variable Vi are ranked in ascending order; then each
ranked value is swapped with another ranked value randomly chosen within a
restricted range. AdditiveNoise [6] which consists of adding Gaussian noise to
the original data to get the masked data. If the standard deviation of the original
variable is σ, noise is generated using a N(0, ρσ) distribution. Finally, we have
also considered the JPEG [18], The idea is to regard a numerical microdata file
as an image (with records being rows, variables being columns, and values being
pixels) and then use this lossy compression algorithm, and then the compressed
image is interpreted as a masked microdata file.

We suppose that the attacker has a prior knowledge, so, a linkage of 200
records between the original and the protected files (labeled training set) could be
made. Then, using a supervised approach the set of Choquet integral coefficients
are learned to re-identify the rest of records (880 records), i.e., the test set.

Table 2 shows the results of the training and the test steps. Note the lack of
training results in the Euclidean distance approach, since it does not require a
learning step. Besides, the hyphen indicates that the corresponding computation
was not finished, because it needed more than 300 hours. In the training process
evaluation we have considered the time need to learn the parameters and the
precentage of re-identifications. The minimum consumed times are in bold, most
achieved by the HRLA, so the optimization problem has needed more than 14
minutes. However, it has achieved the best performance in the training set (9%
of improvement at most). With respect to the test step the heuristic algorithm
for record linkage has achieved an improment of at most 6% compared with
the optimization problem, this is a clear indicator of overfitting. Nevertheless,
HRLA has achiveved similar re-identification results than d2AM . This is due
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Table 2. Percentage of re-identifications and time consumed

d2AM d2CI HRLA
Dataset Train Test Time Train Test Time Train Test
Rankswap-20 14.00 2.61 − − − 14min 14.50 2.73
Rankswap-15 24.50 9.89 − − − 14min 26.00 8.98
Rankswap-12 43.50 17.50 − − − 14min 44.50 17.73
Rankswap-5 94.00 78.86 4min 97.5 77.61 14min 94.50 79.20
Rankswap-4 95.50 85.23 9sec 100.00 80.91 14min 97.00 85.11
Mic3-9 83.00 60.23 18min 89.50 57.16 14min 83.00 60.11
Mic3-5 91.00 77.39 1.5min 96.50 74.66 14min 93.00 76.93
Mic3-8 82.50 65.00 5min 91.00 62.95 14min 83.00 65.11
Mic4-4 84.50 61.48 2min 88.00 58.52 14min 84.50 61.70
Mic4-8 70.00 37.27 13min 75.50 35.68 14min 70.00 37.16
Mic4-5 80.00 52.50 37min 85.00 50.45 14min 80.00 52.50
Micz-3 0.00 0.23 3sec 0.00 0.11 14min 0.00 0.23
MicMull-3 54.50 22.50 2.5days 64.50 21.70 14min 58.00 23.52
Noise-16 87.00 70.11 1days 92.50 67.50 14min 87.00 70.11
Noise-12 92.00 86.59 22min 97.00 80.57 14min 93.00 86.82
Noise-1 100.00 100.00 4sec 100.00 99.66 14min 100.00 100.00
Jpeg-80 84.50 76.93 2.5hours 94.50 73.30 15min 85.50 76.48
Jpeg-65 58.50 40.00 15days 67.00 36.59 15min 58.50 40.00

to the fact that HRLA is initialized with the equilibrated weights and they
were slightly changed by this algorithm. Although all the protection processes
are different, they mainly rely on the addition of noise to each variable, so a
distance function as the Euclidean distance can clearly re-identify some of the
records, obviously always depending on the amount of noise added, that is the
protection degreed applied for the method.

5 Conclusions

In this paper we have introduced an adaptation of the gradient descent algorithm
proposed by Grabisch in order to use it as a disclosure risk evaluation in the data
privacy context. The use of this heuristic algorithm was motivated on the high
computational times required to find the fuzzy measures by another previously
presented non-heuristic method which relies on a linear optimization problem.
We have evaluated and compared both of them in two different ways.

The first part of the evaluation is focused on a scenario where original and
protected files are available, and an evaluation of the protected dataset is per-
formed. This is the worst scenario, where all the information is known, so, a
good estimation of the disclosure risk is obtained. This comparison shows that
although the linear optimization process (d2CI) guarantees the convergence to
the optimal solution, it requires a lot of time, from seconds to hours or even
days depending on the level of protection applied, while the time required by
the HRLA remains low and stable. Regarding to the results in this comparison
we have achieved an error rate from 2% to 5% higher for HRLA.

The second part of this work cope with the overfitting problem. In this scenario
the results show that when the training dataset is small, the linear optimization
problem get better results for training data than HRLA, while for test data the
results are worst. This suggest that there is an overfitting of the data.
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To sum up, if we have an exhaustive disclosure risk evaluation and we have
enough computational resources and time it is recommended to use the optimiza-
tion approach so we will have the optimal weights to analyse the risk and we
can also analyse more efficiently if there is some attribute or a set of them that
disclose more information than the others. Otherwise, if the resources needed
are not available we can use the heuristic approach, that provide a good approx-
imation to the optimal solution.

In view of the results, some additional tasks remains as future work. Firstly, to
program the HRLA approach in C++ and be able to make a fairer comparison
between two compiled approaches. Lastly, to use the fuzzy measures returned by
HRLA as a first solution of the linear optimization process, to see if the amount
of time required to solve the hard datasets reduces.
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Abstract. Active learning has played an important role in many areas
because it can reduce human efforts by just selecting most informative
instances for training. Nevertheless, active learning is vulnerable in ad-
versarial environments, including intrusion detection or spam filtering.
The purpose of this paper was to reveal how active learning can be
attacked in such environments. In this paper, three contributions were
made: first, we analyzed the sampling vulnerability of active learning;
second, we presented a game framework of attack against active learn-
ing; third, two sampling attack methods were proposed, including the
adding attack and the deleting attack. Experimental results showed that
the two proposed sampling attacks degraded sampling efficiency of naive-
bayes active learner.

Keywords: Active Learning, Adversarial Environment.

1 Introduction

Recently, the security of machine learning has received widely attention because
a learning-based system may not work well in environments (including intrusion
detection, spam filtering and so on) with adversarial opponents which try to
disturb the learning process. In such situation, adversarial opponents can launch
attacks aiming at the learning process. For example, the attacker can pollute
the training set to mislead the trained classifier. In such situation, the learning
system will fail to classify instances correctly. For this sake, researchers began
to investigate how attackers can destroy the standard supervised learning[1].

As an important style of machine learning, active learning can reduce the
labeling efforts by just selecting the most informative instances for labeling to
relieve human experts from time consuming, boring labors. Nevertheless, to the
best of our knowledge, nobody has studied the security of active learning before.
This may be dangerous when people utilize active learning to solve problems.

The process of standard supervised learning includes the training phase and
the testing phase whose vulnerability were studied by many researchers[1,2]. But
different from standard supervised learning, there is a sampling phase before the
training and the testing phase in active learning. Thus, the vulnerability of the
sampling phase should also be considered.

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 222–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We analyzed the vulnerability of the sampling phase of active learning and
found attacks aiming at it.

Our aim is reminding researchers and developers to notice such vulnerability
when applying active learning in the adversarial environment.

The rest of the paper can be described as follows: the notations and concepts
were introduced in section 2; then, the related work was introduced in section
3; and we analyzed the sampling vulnerabilities of active learning in section
4; then we proposed two sampling attack methods against active learning in
section 5; and we showed the experimental results in section 6; finally, we drew
the conclusions in section 7.

2 Preliminaries

2.1 Basics of Supervised Learning

In the supervised learning problem, the learner tries to find the target function
by training on a dataset of several instances selected from the instance space.

The instance space X is a nonempty set containing several instances. Each
instance xi is a feature vector < xi1, xi2, · · · , xim >. Let Y = {y1, y2, · · · , yp} be
the set of all possible labels.

The target function f is a function f : X → Y that maps any x ∈ X to
a member of Y . The hypothesis space H is a function set in which we try
to find f or a function approximating f . The notion < x, f(x) > denotes a
labeled instance and < x, ? > denotes an unlabeled instance where ? ∈ Y but is
unknown. L denotes the whole set of labeled instances and U denotes the whole
set of unlabeled instances. A training set D(train) is a dataset used for training
and a testing set D(test) is a dataset used for testing.

A loss function Loss(s, t) is a function to calculate the difference between s
and t. Generally, Loss(s, t) = 0 if s = t and Loss(s, t) equals to a positive value
if s �= t.

A standard supervised machine learning process can be divided into 2 phases:
the training phase and the testing phase.

In the training phase, the system collects lots of labeled instances from L to
generate a training set D(train) and then trains a classifier,

h(x) = argmin
f∈H

∑
<x,y>∈D(train)

(Loss(y, f(x))) (1)

which means the learner tries to find a function which minimizes the misclassi-
fication cost given a loss function Loss on D(train).

In the testing phase, a testing set D(test) consisting of numerous new coming
unlabeled instances is submitted to the trained classifier h and then h returns
all h(x), x ∈ D(test) to the system.

The whole process of the supervised learning algorithm can be described in
algorithm 1.
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Algorithm 1. the process of supervised learning

Learning:
1.1 Obtain Labeled training set D(train) ⊆ L.
1.2 Learn hypothesis: h(x) = argminf∈H

∑
<x,y>∈D(train) (Loss(y, f(x))).

Evaluation:
2.1 Obtain dataset D(test) ⊆ U .
2.2 Compare predictions f(x) with y for each instance < x, y >∈ D(test).

2.2 Basis of Active Learning

To obtain a classifier with high accuracy, the supervised learner needs a large
number of labeled instances. But there are some real world applications in which
labeling instances may be time-consuming, tedious, error prone or costly (for
example, in text classification problem, labeling documents may be tiresome but
collecting a large number of unlabeled is very easy). Thus, those learners can
obtain a small number of labeled instances and a lot of unlabeled instances in
such tasks. To resolve such problems, the active learning method is proposed.

Active learning includes three phases: the sampling phase, the training phase
and the testing phase. In the sampling phase, the active learner chooses the most
informative instance from the unlabeled set U and asks human experts to label
them. After labeled, these labeled instances are inserted into the training set.

The whole process of active learning can be described in algorithm 2. Initially,
a small training set D(train) of labeled instances and an unlabeled set U are
available. Then, the active learner trains a base classifier on the training set
D(train). After that, the active learner chooses the most informative instance
x from U and then labels x by human experts before < x, t(x) > is added
into D(train) where t(x) is the label of x. Then the active learner retrains the
base classifier on updated D(train). The whole process runs repeatedly until the
accuracy of the base classifier or iteration times reaches the preset value.

Depending on the criterion used to choose the most informative instances, the
current research falls under several categories: uncertainty reduction, expected-
error minimization, version space reduction and misclassification priority.

– The uncertainty reduction[3] approach selects the instances on which the
current classifier has the least certainty to predict. Many sampling methods
apply this strategy[4,5].

– The expected-error minimization approach[6,7] samples the instances that
minimize the future expected error rate on the testing set. Such methods
expect to achieve the lowest error, but they are computationally expensive.

– The version space reduction method tends to sample the instance which can
divide the version space in halves. Query-by-Committee[8,9] is a represen-
tative method of this approach that constructs a committee consists of ran-
domly selected hypotheses from the version space and selects the instances
on which the disagreement within the committee is the greatest.

– The misclassification priority method prefers to sample instances which are
easily be misclassified by current base classifier[10].
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Algorithm 2. the process of active learning

Learning:
repeat

1.1 Obtain Labeled training set D(train) ⊆ L.
1.2 Learn hypothesis: h(x) = argminf∈H

∑
<x,y>∈D(train) (Loss(y, f(x))).

1.3 Query the expert to label a set of instances Q ⊂ U according to a sampling
criteria c, and add Q into D(train).

until stop condition is satisfied
Evaluation:
2.1 Obtain dataset D(test).
2.2 Compare predictions f(x) with y for each instance < x, y >∈ D(test).

3 Related Work

3.1 Machine Learning in Adversarial Environments

The adversarial environment denotes an environment where there exists mali-
cious opponents to destroy normal activity of application systems.

Traditional supervised learning methods can be utilized in a wide scope of ad-
versarial environments, including intrusion detection and spam filtering. In such
situation, a training set consisting of malicious instances and normal instances
can be collected to train a classifier for predicting future instances. Since machine
learning can discover hidden patterns in the training set, the trained classifier
can be adaptive to detect future unknown malicious instances better than the
signature-based detection system in which the signatures of the intrusions are
defined by human experts.

In this paper, we focus on the learning-based intrusion detection problem in
which machine learning methods have been introduced for several years. For
example, Wenke Lee et al. [11] utilized machine learning method to find features
relevant to intrusions and proposed an anomaly filter to block such intrusions.

The current intrusion detection techniques include misuse and anomaly de-
tection.

– Misuse detection. Attack behaviors are explicitly defined and all events
matching these specification are classified as intrusions.

– Anomaly detection. A model of the normal events is built and all events
deviating the normal model are predicted as intrusions.

There are only few researchers focusing on machine learning for misuse detec-
tion, such as the methods proposed by C. Kruegel et al. [12] and Dae-Ki Kang
et al. [13].

Currently, anomaly detection is the major application of machine learning tech-
niques in intrusion detection. Relatedwork includes K-NearestNeighborClassifier
[14], Application-Layer intrusion detection[15], instance-based approaches[16],
clustering methods[17], probabilistic learning methods[18] and so on.
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3.2 Attacks against Machine Learning

The adaptiveness which machine learning brings to such learning based detection
systems can also bring vulnerability which can be used by the attackers.

The process of supervised learning method can be divided into the training
phase and the testing phase. Each phase can be the target of the attackers.

According to the target phase of attacks, typical attacks against machine
learning can be summarized into two categories: training-targeted and testing-
targeted.

– Training-Targeted : The attackers pollute the training instances to mislead
the trained classifier. Such attacks include the red herring attack[2], the
correlated outlier attack[2], the allergy attack [19] and so on.

– Testing-Targeted : The attackers do not alter the training instances but probe
the trained classifier to find the its classification boundary. Thus, the at-
tackers could know the instances which can be misclassified by the classifier
and they can submit such instances to the learning based detection system.
Typical attacks include the polymorphic blending attack [20], the reverse
engineering attack [21], the mimicry attack against ”stide” [22] and so on.

Furthermore, Barreno proposed a game-based framework of supervised learning
[23], which can be described as algorithm 3:

Algorithm 3. the adversarial game of machine learning

Defender Choose a learning algorithm.
Attacker Choose the attack algorithms A(train) and A(test).
Learning:
1.1 Obtain the Labeled training set D(train) with contamination from A(train).
1.2 Learn hypothesis: f = argminf∈H

∑
<x,y>∈D(train) (Loss(y, f(x))).

Evaluation:
2.1 Obtain dataset D(test) with contamination from A(test).
2.2 Compare predictions f(x) with y for each instance < x, y >∈ D(test).

4 Security Analysis of Active Learning in Adversarial
Environment

4.1 Vulnerability of the Sampling Stage in Active Learning

The process of active learning comprises three parts: the sampling phase, the
training phase and the testing phase. There is no need to analyze the vulnera-
bility of the training phase and the testing phase because they are investigated
thoroughly in previous work which focus on the security of supervised learning[1].

In the sampling phase, the active learner selects the most informative in-
stances from U for labeling according to the sampling criterion. The attacker
can influence such phase to mislead the active learner.
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In normal situation, the active learner will select the most informative instance
for labeling. But the pool of unlabeled instances is not checked before it is
provided for selecting. Therefore, if the unlabeled instances are polluted, the
active learner may select some instances which are useless for training a classifier
with high accuracy. The attackers can launch attacks aiming at this vulnerability.

4.2 Attacker Capabilities and Knowledge

Capabilities of attackers are application-related. In the intrusion detection prob-
lem, the attacker can set a filter at any point in the the network, which means
the attacker can sniffer, inject, reject or generate network packets before they
are submitted to the learning based intrusion detection system. Then the system
will construct the labeled set L and the unlabeled set U based on these received
packets but the attacker can not influence the following process from that time.
Therefore, the capabilities of the attackers can be summarized as follows:

– the attacker knows the distribution of the instance set collected by the learn-
ing system but does not know the exact instance set.

– the attacker can add, delete or modify instances before they are collected by
the learning system but can not change their labels if the learning system
asks human experts to label them.

We can also assume the attackers know the feature space, the process of the
active learner and the base classifier.

5 Sampling Attacks

5.1 The Basic Setting of the Active Learner

In this paper, we focus on pool-based active learning and we set the base clas-
sifier as the naive bayes classifier. For simplicity, we assume all the features are
independent with other features.

The naive bayes classifier f can be defined as follows:

f(x) = argmaxyj∈Y P (yj |x1, x2, . . . , xm) (2)

= argmaxyj∈Y

P (x1, x2, . . . , xm|yj)P (yj)

P (x1, x2, . . . , xm)
(3)

= argmaxyj∈Y P (x1, x2, . . . , xm|yj)P (yj) (4)

= argmaxyj∈Y P (yj)
∏
i

P (xi|yj) (5)

P (xi|yj) and P (yj) can be calculated on the training set D(train).



228 W. Zhao et al.

And we assume the sampling criterion is uncertainty reduction. The uncer-
tainty of an instance x can be defined as the label distribution entropy of that
instance.

C(x) =
∑
y∈Y

(−P (y|x)logP (y|x)) (6)

Formula 6 shows the definition of uncertainty where x denotes an instance and
Y denotes the label set.

5.2 The Adversarial Game of Active Learning

Based on the game framework of supervised learning propose by Barreno [23],
we present a game framework of active learning which can be described as algo-
rithm 4.

Algorithm 4. the adversarial game of active learning

Defender Choose a learning algorithm.
Attacker Choose the attack algorithms A(sample), A(train) and A(test).
Learning:
repeat

1.1 Obtain the training set D(train) ⊆ L with contamination from A(train).
1.2 Learn the hypothesis: f = argminf∈H

∑
<x,y>∈D(train) (Loss(y, f(x))).

1.3 Query the expert to label a set of instances Q ⊂ U with contamination from
A(sample) according to the sampling criteria c, and add Q into L.

until stop condition is satisfied
Evaluation:
2.1 Obtain dataset D(test) with contamination from Atest.
2.2 Compare predictions f(x) with y for each instance < x, y >∈ Dtest.

In the game framework, except the attacks targeting at the training and
the testing phases, we show that the attacker can launch the attack algorithm
A(sample) to pollute the unlabeled instances.

5.3 The Attack Process

The attack process includes two steps:

1. Pre-cluster: Pre-cluster the unlabeled set U using the k-means algorithm[24]
to find the areas with high density in the instance space.

2. Pollution: Pollute the unlabeled set U by adding fake clusters or deleting
some true clusters.

The idea of such steps is based on the following consideration. According to
clustering assumption [25], which says If two points x1, x2 are close, then so
should be the corresponding outputs y1, y2. That means the classification bound-
aries go across areas with low density in the instance space. Such assumption
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makes sense in many real world applications. Thus, if we change the density of
some areas by adding or deleting instances, the classification boundaries of the
trained classifier would be changed. Therefore, we propose the pollution method
by changing the distribution of the unlabeled instances.

For the pollution step, we propose two polluting methods as follows:

– ADDING: The attacker adds some fake clusters to the unlabeled set U . Such
clusters would be the most uncertain clusters judging by the current base
classifier.

– DELETING: The attacker deletes some clusters from U before they are
submitted to the learning system.

For ADDING, we take the following steps described in algorithm 5.

Algorithm 5. ADDING
repeat

1 Generate an instance set S randomly.
1 Select instance xn ∈ S where

xn = argmax
x∈S

CD(train)(x) (7)

2Generate instance set Ω containing l instances whose features are light disturbing
of instance x.
3 Add Ω into U .

until stop criterion is satisfied

In algorithm 5, CD(train)(x) is the label distribution entropy of x predicted by
the naive bayes classifier trained on D(train). Then the instance xn will obtain
the largest uncertainty in S and the active learner tends to sample instances in
Ω.

For DELETING, we take the following steps described in algorithm 6.

Algorithm 6. DELETING
repeat

1 Calculate C(x) =
∑

y∈Y (−P (y|x)logP (y|x)) where x ∈ U .
2 Select instance x = argmaxx∈U

∑
y∈Y (−P (y|x)logP (y|x)).

3 Select Cluster Clu where x ∈ Clu.
4 Delete Clu from U

until stop criterion is satisfied

By both ADDING and DELETING, we can change the distribution of U to
influence the sampling process.
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6 Experimental Results

We conducted a series of experiments to test the sampling attacks proposed in
this paper. Each experiment can be described as follows:

– NBAL. We tested the active learner without malicious opponents. In this
test, the active learner utilize the naive-bayes classifier as the base learner.

– ADDING. We tested the active learner under the ADDING attack. The
base classifier is also the naive-bayes classifier, but a malicious opponent
exists and launches the ADDING attacks presented as algorithm 5.

– DELETING. We tested the active learner under the DELETING attack.
The base classifier is also the naive-bayes classifier, but a malicious opponent
exists and launches the DELETING attacks presented as algorithm 6.

We selected the dataset from the 1999 KDD intrusion detection contests as our
testing dataset. The dataset was provided by MIT Lincoln Lab. It was gathered
from a local-area network simulating a typical military network environment
with a wide variety of intrusions over a period of 9 weeks. The dataset can be
downloaded form the UCI KDD repository [26].

In the dataset, each instance x is a vector with 41 features and the label
set includes 23 different labels denoting 22 attack types and 1 normal event.
For simplification, we transformed the dataset into a 2-class dataset with two
labels: ”normal” and ”malicious”. The whole intrusion detection dataset is quite
large and we selected 5000 instances from the original dataset randomly as our
benchmark dataset.

When testing each method we listed above, the dataset was randomly divided
into three parts: the unlabeled set U , the labeled set L and the testing set T .
T contained 800 instances. When the experiment began, L contained only 1
instance selected randomly and U contained the rest instances. Then the tested
active learner selected 1 instance in U according to the uncertainty reduction
criterion and move it with its true label into L in each iteration. Thus the active
learner trained the base classifier on L and recorded the accuracy of the classifier
on T . In each experiment the active learner sampled 100 times. When we tested
ADDING and DELETING, we preclustered U into 22 clusters which correspond
to 22 intrusion types (using c-means clustering algorithm).

6.1 Results

We take three metrics to evaluate the performance for these active learners. The
three metrics are:

Top Accuracy the highest accuracy which the tested active learners finally
reached after 100 samples.

Stable Point the number of samplings when the accuracy of the base classifier
was stable which means the accuracy variance of neighboring samplings was
below 2%.



Sampling Attack against Active Learning in Adversarial Environment 231

Rising Efficiency how much accuracy increased when the active learners
reached the stable point compared with the accuracy of the initial sampling.

Table 1 showed these metrics of the three tested active learners after 100 samples,
where TA denotes Top Accuracy, SP denotes Stable Point and RE denotes Rising
Efficiency. In the Pollution column, ”m clusters, n instances” means ”adding
m clusters and each cluster included n fake instances” for ADDING while ”m
clusters” means ”deleting m clusters” for DELETING. Each recorded data is
the average of 10 runs.

Table 1. Metrics of the active learners

Active Learner Pollution TA SP RE

NBAL 97.67% 4 31.1%

2 clusters, 10 instances 81.23 % 5 26.77%
ADDING 10 clusters, 10 instances 69.57 % 7 20.19%

10 clusters, 100 instances 66.28 % 8 18.46%

2 clusters 82.74 % 5 25.28%
DELETING 5 clusters 75.22 % 6 22.92%

10 clusters 63.98 % 6 18.65%

From Table 1, we found that NBAL can reach the accuracy of 97.67% after 100
samplings while ADDING and DELETING can not reach it. For both ADDING
and DELETING, the accuracy dropped while the number of the added or deleted
clusters and instances increased. Moreover, the Stable Point of these tested active
learners did not vary so much. This indicated that these classifiers can stabilize
quickly even under heavy attacks with large numbers of clusters and instances
added or deleted.

We also recorded the accuracy of the base classifiers at each sampling in
these experiments. In figure 1, we showed the learning curves of three active
learners: NBAL, ADDING(10 clusters added, 100 instances in each cluster) and
DELETING(10 clusters deleted). the vertical axis showed the accuracy of the
classifiers and the horizontal axis showed the number of samplings. Each recorded
data is the average of 10 runs.

In Figure 1, we can see all the learning curves had a sharp rise at the very
beginning and then climbed slowly. The sharp rise corresponded to the first
several samplings, which let accuracy of these active learners obtained rapid
increase. The learning curve of NBAL reached 96.67%. That means when we
utilized NBAL to detect intrusions without any attacks aiming at the sampling
phase, there were only 3.33% of network events may be misclassified. But when
there are attackers trying to influence the sampling process, the learning curves
of the active learners have an obvious decline than the one without attacks. From
the learning curves of ADDING and DELETING, we found the accuracy of the
base classifiers decreased about 30% at the same sampling times compared to
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Fig. 1. Learning curves of NBAL

NBAL. This means the classifier failed to detect the intrusions. And the learning
curve of DELETING is even lower than the one of ADDING.

Thus the results of the conducted experiments showed that the proposed
sampling attacks including ADDING and DELETING could weaken the active
learners.

7 Conclusion

We made several contributions in this paper. First, the vulnerability of active
learning was analyzed. Second, a game framework of active learning was pro-
posed. Third, two sampling attacks against active learning were presented.

We would like to pursue the following directions: constructing the framework
to evaluate the instance complexities of attack and defence algorithms and de-
signing the detection techniques of the sampling attacks.
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Abstract. The paper proposes a scalable incremental clustering algo-
rithm to process heterogeneous data-streams, described by both categori-
cal and numeric features, and its application to the domain of credit-card
fraud analysis, to establish dynamic frauds profiles. The aim is to identify
subgroups of frauds exhibiting similar properties and to study their tem-
poral evolution and, in particular, the emergence of fraudster behaviours.
The application to real data corresponding to a one year fraud stream
highlights the relevance of the approach that leads to the identification of
significant profiles.

Keywords: Incremental Clustering, Data-Streams, Heterogeneous Data,
Bank Fraud, Credit Card Security.

1 Introduction

Credit and debit cards have become ubiquitous modes of payment, which have
brought with them the important issue, both for banks and card-holders, of
card fraud [1]. The ensuing economic losses have motivated a vast field of study
in the machine learning community [2–4], in particular concerned with elec-
tronic business, both for supervised –fraud detection– and unsupervised –fraud
characterisation– learning tasks.

This paper considers the latter, i.e. the identification of ever changing groups
of similar frauds. This problem is challenging in its twofold dynamic nature.
First, fraudsters are inventive and continuously adapt to circumvent anti-fraud
policies, elaborating new types of frauds. Second, the data are constantly incom-
ing, building a never-ending stream. Finally, the very nature of the heterogeneous
data, described by both numeric and categorical attributes, renders part of the
classic methods unusable.

In this paper, we propose a methodology to process incoming streams present-
ing these characteristics and study the derived profiles and the dynamics of their
contents. Contrary to most clustering tasks, the method proposed in this paper
is less interested in summarising the data into abstract and possibly non-existent
prototypes than it is in identifying precisely observable behaviours, those which
are most likely to belong to an actual type of fraudster. The proposed method
is tested on a real dataset representing one year of frauds

The paper is organised as follows: after outlining related work in Section 2, we
present in Section 3 the methodology we propose. Section 4 analyses the profiles
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obtained using this methodology on a real dataset corresponding to a one year
fraud-stream.

2 Related Work

Data representing credit-card frauds combine two characteristics that both re-
quire specific clustering algorithms, namely their data-stream and heterogeneous
nature. This section outlines algorithms that have been proposed to deal with
either data type.

2.1 Clustering Data-Streams

Data-Stream Characteristics: As opposed to classic data, data-streams are
characterised by their production mode: the dataset is incrementally built, which
means that not all data are available at once. They usually lead to very large
datasets having restrictive characteristics which require specific algorithms to
perform data-mining [5].

Indeed, data-streams first demand incremental algorithms that process data
progressively, incorporating them as they come in to update the learnt model.
Moreover, because of their production mode as well as memory constraints im-
posed by their quantity, data-streams usually require single-pass algorithms.

Another characteristic of data-streams is their dynamic feature: apart from
the data arriving progressively, their underlying distribution generally evolves
with time. This is in contradiction with the hypothesis of identically distributed
data most classic data-mining algorithms rely on.

General Principles: The main existing methods for clustering such data-
streams belong to the framework of incremental clustering. First introduced to
address the issue of very large datasets, these algorithms decompose the dataset
into samples of manageable size. They consist in iteratively processing each sam-
ple individually and merging the corresponding partial results into the final par-
tition. In the case of very large datasets, samples are automatically extracted,
e.g. randomly drawn so as to fit in memory. In the case of data-streams, where
samples are imposed by the time-line, and defined as the set of data becoming
available in a given time interval, samples can be seen as data buffers.

Incremental clustering algorithms can be divided according to the way the
partial results are merged, this fusion being either progressive or final. Progres-
sive fusion means including, in the clustering step of a given sample, the results
from the previous steps. Final fusion is performed at the end, when all samples
have been processed. As detailed below, the same distinction can be applied to
data-stream clustering algorithms.

Online Clustering: Online clustering algorithms are incremental approaches
with progressive fusion: the previously seen data are summarised by extracted
clusters, possibly weighted by their sizes, and this summary is processed together
with the next sample.
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This approach has been applied to most classic clustering algorithms, e.g. lead-
ing to incremental variants for k-means [6], fuzzy c-means [7], fuzzy c-medoids
[8] or dbscan [9]. Likewise stream [10], which is one of the first algorithms
dedicated to data-streams, achieves the same kind of result with memory size
limitations and theoretical guarantees on the result quality.

Two-Level Approaches: The online approaches are said not to be able to
fully adapt to the dynamics of the data, as they do not question previous clus-
ter merges [11]. Therefore, two-level approaches reject progressive fusion and
postpone the fusion step until the final partition is required by the user. More
precisely, they combine an online part, updating compact representations of the
data seen so far, with an offline part, which extracts a final partition from this
compact representation. The offline step does not take into account the temporal
component: no comparison can be made between two consecutive demands of
the user. The two steps are also respectively called micro and macro-clustering.

Some approaches in this framework apply the same clustering algorithm to
both steps, e.g. fuzzy c-means [12] or fuzzy c-medoids [8]. The centres or medoids
obtained from each data buffer are in turn clustered.

Other methods perform a preclustering step of a different nature than the
final one, e.g. incrementally updating quantities to compute cluster statistics
such as cluster average or standard deviation. This approach is exemplified by
birch [13], that incrementally builds a compact representation of the dataset,
based on structured summaries that optimise memory usage along user-specified
requirements. Clustream [11] generalises the representation, taking into ac-
count the temporal dimension in the precluster description. These algorithms
try to add a new data point to one of the preclusters. If this fails, then a new
cluster is created to represent the data point. To maintain the memory size, ei-
ther one of the previously identified clusters is deleted, e.g. based on a recentness
criterion, or two clusters are merged, e.g. the two most similar.

This principle has also been applied to density-based clustering [14]: it also
combines online micro-cluster maintenance with offline generation of the final
clusters with a variant of dbscan. Two types of clusters are distinguished: core
and outlier-clusters, which can become core-clusters if they reach a size threshold.
To prevent memory overload, the outlier-clusters are periodically pruned.

The proposed methodology described in the Section 3 is similar to this one,
with two main differences, as detailed below: first it relies on partitioning and
not density-based clustering. Second, it uses a different representation of the
so-called outlier clusters.

2.2 Clustering Heterogeneous Data

Heterogeneous data are defined as data described by both numeric and categor-
ical attributes. The presence of categorical attributes rule out the computation
of average values and, therefore, the usage of all mean-centred clustering tech-
niques, in particular the very commonly applied k-means and its variants.
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Two main approaches can be distinguished: first, so-called relational methods
which rely on the pairwise dissimilarity matrix (e.g. pairwise distances) and not
on vector descriptions of the data. This type of approach includes hierarchical
clustering methods, density-based methods [15] as well as relational variants of
classic algorithms [16, 17].

On the other hand, medoid-based methods [18, 19] constitute variants of the
mean-centered methods that do not define the cluster representative as the av-
erage of its members, but as its medoid, that is, the data point that minimises
the, possibly weighted, distance to cluster members.

2.3 Linearised Fuzzy c-Medoids

The linearised fuzzy c-medoids algorithm [19], written l-fcmed hereafter, is a
scalable medoid-based clustering algorithm: it can process data that are both in
vast amounts and heterogeneous. Moreover, being a fuzzy variant, it offers prop-
erties of robustness and independence from random initialisation. We present
it in greater detail here because the proposed method described in Section 3
depends on it.

The algorithm’s inputs are D = {xi | i = 1, . . . , n} the dataset to be clustered,
d the metric used to compare data, c the desired number of clusters, m the
fuzzifier which sets the desired fuzziness and p the size of the neighbourhood in
which medoid updates are looked for.

After initialisation of the cluster centres as c data in D the algorithm alter-
nately updates memberships and cluster centres using the following equations:

uir =

[
c∑

s=1

(
d(xi, vr)

d(xi, vs)

) 2
m−1

]−1

vr = argmin
k∈Np(vr)

n∑
i=1

um
rid(xk, xi) (1)

where uir denotes the membership degree of xi to cluster r, vr the cluster centres
and Np(vr) the neighbourhood of centre vr, which looks to update medoids in
their vicinity, alleviating computational costs. The latter is defined as the p data
maximising membership to cluster r. Both updates are iterated until medoid
positions stabilise.

3 Proposed Methodology

This section describes the methodology we propose to dynamically cluster a
heterogeneous stream, as sketched in Algorithm 1. It belongs to the family of
two-level approaches, performing a micro-clustering step based on a partitioning
approach.

The micro-clusters, i.e. the cluster information which is updated for each new
datum, are defined as cluster medoids. As in [11, 13, 14], we test whether a new
data point fits an existing cluster. If the test succeeds, no update is performed;
if it fails, instead of creating a new cluster immediately, we add the data point
to a buffer B. Cluster creation then only takes place when the buffer reaches a
size threshold and is the result of a partitioning algorithm applied to B.
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We propose, for this, a variant of the linearised fuzzy c-medoids [19], adding a
cluster selection step to increase cluster homogeneity. This step makes it possible
to identify atypical data grouped in a set of as yet unassigned data, denoted U :
similarly to [14], we distinguish outliers from core-clusters. The main difference
here is that the outliers are not clusters of their own but a single set.

The next subsections respectively describe in more detail the test for assigning
a point to an existing cluster, called cluster augmentation criterion, and the
cluster selection criterion, as well as the global architecture of the algorithm.

3.1 Cluster Augmentation Criterion

Cluster augmentation consists in testing whether an incoming point can be as-
signed to one of the already identified clusters, or whether it should be buffered
as a candidate clusterable. This procedure has two immediate advantages. The
first is to reduce, for a given volume of data, the number of times the buffer
is filled and, thus, the identification of new clusters, making the global process
run faster. The second advantage is that it avoids the discovery, at a later stage,
of clusters too similar to those already identified: it, indeed, ensures that the
next data considered for clustering are adequately separate from the previously
selected clusters. It, therefore, suppresses the need for a posterior fusion step,
where the results of the buffer clustering are merged to the previously obtained
clusters. This, again, alleviates the computation costs of the global method.

We propose to consider that a data point can be assigned to an existing cluster
only under the condition that it does not deteriorate its compactness: addition
is not aimed at generalising a cluster, rather at processing new data quickly.
Therefore, we impose that a point can be added to a cluster if and only if it falls
within the mean distance to the medoid at the time the cluster was selected.
This can be written formally as:

d(x, νC) ≤
1

|C|
∑
y∗∈C

d(y∗, νC) (2)

where y∗ denotes any element in the cluster at its creation. This augmentation
condition defines a local criterion that adapts to the compactness of each cluster.
In particular, for a cluster containing only exact replicas of a data point, the
augmentation criterion will exclusively allow the addition of more replicas. Once
again, this severe criterion is intended to help the identification of fraudster
behaviours, more than it is meant to offer a summarisation of the observed data.

3.2 Cluster Selection Criterion: The l-fcmed-select Algorithm

Medoid selection is a substep that actually modifies the l-fcmed algorithm, lead-
ing to the variant we propose, called l-fcmed-select. One of its motivations comes
from the issue of determining the appropriate number of clusters, c: as all par-
titioning clustering algorithms, l-fcmed always produces c clusters, whether c
is relevant for the considered data or not. In order to bypass this difficulty,
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Algorithm 1. DS-l-fcmed-select

For each new data point x
� Process x

if ∃C ∈ C such that x can be added to C according to Eq. 2 then
Update C: C ← C ∪ {x}

else
Update B ← B ∪ {x}

end if
� Process B

if |B| = τB then
Apply l-fcmed-select to B → (C′,U ′)
Update C ← C ∪ C′

Update U ← U ∪ U ′

end if
� Process U

if purging criterion on U is fulfilled then
Apply DS-l-fcmed-select recursively to U , treated as a data-stream

end if

we propose to ask for a ‘reasonable’ –probably overestimated– number of clus-
ters, and then to select only some of the produced clusters.

The proposed selection condition is, again, a compactness criterion: we keep
only the clusters of sufficient size that exhibit a very high homogeneity, evaluated
as the radius of the cluster. The selection criterion can, thus, be formalised as:

|C| > τC and max
x∈C

d(x, νC) ≤ ξ (3)

where τC is the minimal acceptable size and ξ a compactness threshold.
This algorithm does not return a data partition as some of the data, that

assigned to discarded clusters, remain unattributed. More formally, l-fcmed-select
outputs a set of clusters, C = {C1, ..., Cc′}, with c′ ≤ c, and a set of unassigned
data U . The latter represents atypical cases, or as yet unexplained data, that do
not deserve, for the time being, medoids of their own in the clustering solution.

3.3 Global Architecture and Parameters

The global architecture of the proposed methodology, called DS-l-fcmed-select, is
given in Algorithm 1. The set of clusters C, the buffer B and the set of unassigned
data U are initially assigned the empty set.

When a new data point then arrives, the algorithm tries to assign it to one of
the existing clusters. If this substep fails, the point is added to the buffer B.

Once the buffer reaches a user-defined size threshold, τB, meaning that too
many points differ from the previously identified clusters, then l-fcmed-select is
applied anew to the data in the buffer. Previously testing addability ensures that
all obtained clusters are distinct enough from the already identified clusters.
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The l-fcmed-select algorithm imposes handling the set U of unassigned data.
The corresponding data are ‘more atypical’ than the ones in B, insofar as they
have been submitted at least once to clustering, whereas buffered data have only
been tested against existing clusters. However, it may be the case that atypical
behaviours eventually become less isolated, warranting a cluster of their own.

Therefore, when some purging condition on U is reached, the data it contains
are considered once more for core-clustering. We apply DS-l-fcmed-select, pro-
cessing it as a fictitious data-stream. The purging condition could be linked to
the U ’s size, yet this induces the risk of running back to back purges, if U ’s size
does not fall far enough below the threshold. To avoid this, we harness U ’s purge
to the amount of processed data, with the idea that these regular purges still
attest to the aging of the data. A purge, thus, starts every time τU points of the
data-stream have been processed and stops as soon as U ’s size stops decreasing.

Overall, the proposed method relies on three sets of parameters, that is the
l-fcmed parameters: the number of clusters c, the fuzzifier m and the neighbour-
hood size for the medoid update p; the cluster selection criteria: the minimal
acceptable cluster size τC and diameter ξ; and the size thresholds: the size at
which B is subjected to l-fcmed-select, τB and the rate at which U is purged, τU .

4 Experimental Results

4.1 Data and Experimental Setup

We applied the proposed methodology to a real fraud-stream covering almost
one year (49 weeks) and containing close to a million fraudulent transactions.
Each is described by its amount in Euros, a positive real number, as well as
categorical attributes, namely the country where it took place and the merchant
category code, a general categorisation of transacted products.

The distance d between two transactions t1 and t2, represented as vectors
of their features, is defined as d(t1, t2) = 1/q

∑q
i=1 di(t1i, t2i), where di is the

distance for attribute Ai. Two cases are distinguished: di is either di = dcat, if
Ai is categorical, or di = dnum, if it is numeric. Each is defined as follows:

dcat(x, y) =

{
1 if x �= y
0 otherwise

dnum(x, y) =
|x− y|

max(x, y)

The distance for numeric attributes is thus defined as a relative gap: the as-
sumption being that a difference of 2e in amount, say, should not have the same
impact if the compared amounts are around 5e or if they are closer to 1 000e.

For the algorithm parameters, we use the following setup: l-fcmed is applied
with c = 400, m = 2 and p = &τB/c' = 12. Cluster selection is based on τC = 10
and ξ = 0.15. Note that, due to the distance choice, this low value imposes that
data assigned to a given cluster all have the same country and the same activity,
variability is only (moderately) tolerated for the amount. The size threshold for
the buffer is τB = 5 000 and the set of unassigned data U is purged every time
τU = 50 000 transactions have been processed. The experiments were run using
a parallel implementation of DS-l-fcmed-select on a multicore cluster.
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Fig. 1. Sizes of the clusters once all data has been processed, in descending order

4.2 Experimental Results

With these parameters, the proposed methodology finds a total of 6 476 clusters
covering a wide range of sizes and time-spans. In the following, we first analyse
the global results of the final step, then comment the dynamics of fraud profiles,
both globally and at a more detailed level.

Final Global Analysis: In order to study the obtained clusters when the whole
data-stream has been processed, we focus on cluster sizes. Figure 1 shows the
final sizes of the clusters in decreasing order.

It can be observed that, despite a very severe compactness criterion, the
largest cluster groups 26 917 frauds, highlighting the redundancy of the data,
in which there exists a largely dominant type of fraud. More generally, the 25%
largest clusters cover 77.7% of all affected frauds. Conversely, the 25% smallest
clusters only cover 3.6% of the assigned frauds. This shows that the fraud be-
haviours include a large number of rather rare fraud procedures, either due to
atypical country, activity, amounts or a combination of the above.

Moreover, at the end of the process there remain 21.7% of the whole as unas-
signed frauds, i.e. too atypical to be clustered according to the criteria imposed
on the clustering result.

Global Dynamic Analysis: We first analyse the dynamics of fraud profiles
globally, examining the distribution of each profile time-span. These lengths
are defined as the number of weeks between dates for the first and last frauds
assigned to each cluster. We should point out that our analysis of the dynamics
is more concerned with the evolution of the contents, the frauds, then it is with
the displacement of the clusters, as is usually the case.

Figure 2 shows the repartition of these durations, both in terms of the number
of clusters, on the left, as well as the number of frauds they represent, on the
right. Two types of clusters co-exist: a first category, representing 46.9% of all
clusters, groups long-lasting profiles that nearly span over the whole year, with
periods longer than 40 weeks. This comes along with a dominance in terms of
data quantities, as they represent 81.6% of the assigned fraudulent transactions.
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Fig. 2. Time-span histograms: (left) number of clusters covering each number of weeks,
(right) cumulative size of clusters covering each number of weeks

A second type of profiles can be described as ‘flash profiles’: these correspond
to behaviours that are very precisely dated, disappearing within a single week or,
possibly, up to two or three weeks. This category represents 9.1% of the clusters,
and still appear to be significant in terms of number of frauds. More precisely,
the average size of the 275 clusters observed only during a single week is 57, with
sizes ranging from 10 to 3001.

Figure 3 provides another view on the dynamics of credit-card fraud profiles.
The full line on top shows the evolution of the number of active clusters each
week, where a cluster is called active at a given date if it is created or if at least
one transaction is assigned to it at that date. The number of active clusters
is globally increasing over the entire period, excepting the final period which is
shorter than the other weeks and not augmented by new data. The ratio between
new and existing clusters is clarified by the two additional dashed lines, where
the one nearer the bottom shows cluster creation per week and the one closer to
cluster activity traces the number of augmented clusters in the period. Cluster
creations tend to slow down significantly after each peak and the range between
consecutive maximum and minimum shrinks as time goes. This is explained by
the fact that most relevant profiles are found and that new ones do not appear
all the time. Cluster augmentation, for its part, explains most of the activity, as
the closeness between plots shows, since the more clusters there are, the more
likely a fraud will fit one. It should also be observed that the number of active
clusters is always much lower than the total number of clusters.

Detailed Dynamic Analysis. In order to offer a more detailed analysis, Fig-
ure 4 shows the size evolutions of the 40 largest clusters, where the ranking is
based on the clusters’ final sizes, as in Figure 1.

Four main types are observed, relative to growth speed: the curves can be lin-
ear, corresponding to a constant speed, concave, as in a deceleration behaviour,
convex, showing an acceleration, or, as already discussed, flash profiles. We dis-
cuss each in turn below.

The constant increase profiles, globally exemplified by ten of the eleven largest
clusters, represent fraud behaviours that are observed all year with very little
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Fig. 4. Evolution of the size of the 40 largest clusters, where the cluster id equals its
rank in terms of final size

variations in terms of relative distribution, i.e. with an approximate constant
number of additional representatives each week. These are the ‘fraud basics’ or
classic behaviours fraudsters know they can rely on. It should be pointed out
that the constant increase is correlated to the fact that these clusters are the
largest ones.

The second profile type, characterised by concave curves, presents a decelera-
tion or even an abrupt halt in exploitation. This type is illustrated by clusters 21,
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25 or 27. It corresponds to obsolete types of frauds on their way out. It would be
interesting to check with credit-card fraud experts whether these observations
can be related to the introduction of specific anti-fraud policies.

The third type is complementary: it groups convex curves, more precisely
a parabolic increase in size or even a sudden augmentation, like cluster 13. It
would likewise be relevant to discuss these results with experts to see if these
observations correlate with credit-card policy modifications.

Over the given temporal window, some clusters combine a sudden increase
and progressive deceleration, as clusters 35 and 38 do. These hybrid profiles
introduce some doubt as to whether clusters of the third type are going to slow
down at some point.

The last type is the already discussed very short-lived clusters , e.g. cluster 23.
It is interesting to note that some of these are indeed large enough to join the
40 largest clusters, in which most are represented over a much longer time-span.

5 Conclusion and Future Work

A methodology to process incoming streams of heterogeneous data and study
the derived profiles and their dynamics is proposed in this paper, together with
its application to a real data set of credit-card frauds. The analysis of the results
shows the relevance of the approach, which makes it possible to establish distinct
types of fraud profiles depending on their temporal evolution and to identify spe-
cific fraudster profiles. The proposed algorithm efficiently processes data streams
of heterogeneous nature, in a parallel implementation. It is based on incremental
micro-clustering performed by a variant of the l-fcmed algorithm, defined as its
combination with a cluster selection step guaranteeing highly compact clusters.
The processing decomposes the data into three subsets, namely clusters, data
to-be-clustered in a buffer and atypical data, remaining unassigned. The purge of
the unassigned data, and to a lesser extent the clustering of buffered data, make
it possible to manage some data beside the current flow of the data stream. This
is particularly helpful in the case of credit-card fraud profiling, where frauds can
be declared a long time after the transaction has been recorded.

Ongoing work aims at combining these micro-clustering results with a macro-
clustering step, e.g. through a hierarchical method, to get a more synthetic view
of the clusters, even if the detailed analysis also provides relevant and meaningful
information. Future work includes comparisons with existing algorithms, as well
as the discussion with experts in anti-fraud policies to obtain a semantic valida-
tion of the observed results. Another perspective is to take more information into
account in fraud comparisons, in particular related to transaction sequences.
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Abstract. We present a link between two types of logic systems for rea-
soning with graded if-then rules: the system of fuzzy logic programming
(FLP) in sense of Vojtáš and the system of fuzzy attribute logic (FAL)
in sense of Belohlavek and Vychodil. We show that each finite theory
consisting of formulas of FAL can be represented by a definite program
so that the semantic entailment in FAL can be characterized by correct
answers for the program. Conversely, we show that for each definite pro-
gram there is a collection of formulas of FAL so that the correct answers
can be represented by the entailment in FAL. Using the link, we can
transport results from FAL to FLP and vice versa which gives us, e.g.,
a syntactic characterization of correct answers based on Pavelka-style
Armstrong-like axiomatization of FAL.

Keywords: logic programming, attribute implications, functional de-
pendencies, ordinal scales, residuated lattices.

1 Introduction

This paper contributes to the field of reasoning with graded if-then rules and
presents an initial study of a link between two logic systems that have been pro-
posed and studied independently. Namely, we focus on fuzzy logic programming
in sense of [17] and fuzzy attribute logic presented in [3]. Both the systems play an
important role in artificial intelligence—they can be used for approximate knowl-
edge representation and inference, description of dependencies found in data,
representing approximate constraints in relational similarity-based databases,
etc. Although the systems are technically different and were developed to serve
different purposes, they share common features: (i) they are based on residuated
structures of truth degrees, (ii) use truth-functional interpretation of logical con-
nectives, (iii) both the systems can be used to describe if-then dependencies in
problem domains when one requires a formal treatment of inexact matches, (iv)
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models of theories form particular closure systems and semantic entailment (from
theories) can be expressed by means of least models.

In this paper, we show that the basic notions of correct answers and seman-
tic entailment that appear in the systems are mutually reducible and allow to
transport results from one theory to the other and vice versa. In the rest of
this section, we outline the form of the rules. Section 2 presents preliminar-
ies and recalls basic notions from FLP and FAL. Further sections are devoted
to the reductions in both the directions. We also present a new Pavelka-style
Armstrong-like axiomatization of FAL over infinite attribute sets and over arbi-
trary complete residuated lattices taken as the structure of truth degrees.

Fuzzy logic programming [5, 12, 17] is a generalization of the ordinary logic
programming [11] in which logic programs consist of facts and complex rules
containing a head (an atomic predicate formula) and a tail (a formula composed
from atomic predicate formulas using connectives and aggregations interpreted
by monotone truth functions) connected by a residuated implication. In addition,
each rule (and fact) in a program is assumed to be valid to a degree (i.e., programs
are theories in sense of Pavelka’s abstract fuzzy logic [8, 15]). As a consequence,
fuzzy logic programs are capable of expressing graded dependencies between
facts. As an example, we can consider the following rule:

suitable(X)
0.8

wa
(
near(X, stadium)cnear(X, center), quality(X), cost(X)

)
, (1)

which expresses how much suitable is a hotel (variableX) for a sport fan. This rule
describes the degree of hotel suitability (atomic formula suitable(X)) as weighted
average (aggregator wa) of degrees of being conveniently located, having high
quality (quality(X)) and having low prices (cost(X)). The convenience of hotel
location is specified here as a conjunction (c) of being near to the stadium
(near(X, stadium)) and being near to the city center (near(X, center)). The rule
is valid in a degree 0.8, that can be understood so that we put “almost full
emphasis on the rule”.

The basic result of FLP is the completeness which puts in correspondence
the declarative and procedural semantics of logic programs [17, Theorem 1 and
Theorem 3] represented by correct answers and computed answers.

Fuzzy attribute logic [3] was developed primarily for the purpose of describing
if-then dependencies that hold in object-attribute relational data where objects
are allowed to have attributes to degrees. The formulas of FAL, so-called fuzzy
attribute implications (FAIs) can be seen as implications A B between two
graded sets of attributes (features), saying that if an object has all the attributes
from A (the antecedent), then it has all the attributes from B (the consequent).
The fact that A and B are graded sets (fuzzy sets) allows us to express graded
dependencies between attributes. As an example{

0.7/lowAge, 0.9/lowMileage
} {

0.6/highFuelEconomy , 0.9/highPrice
}

(2)
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is an attribute implication saying that cars with low age (at least to degree 0.7)
and low mileage (at least to 0.9) have also high fuel economy (at least to 0.6)
and high price (at least to 0.9).

FAIs have an alternative interpretation as similarity-based functional depen-
dencies in relational databases [2]. For instance{

0.8/timeStamp, 1/creditCardNumber
} {

0.9/geographicalLocation
}

(3)

can be seen as a rule saying that if two records (e.g., two tuples in a relational
database table) have similar values of the attribute timeStamp at least to degree
0.8 and similar values of the attribute creditCardNumber to degree 1, then they
must have similar values of the attribute geographicalLocation at least to degree
0.9. Rules like (3), if interpreted in a database of credit card transaction records
(containing information about the transaction time, card number and location
of the ATM machine) equipped with graded similarity relations on domains, can
help detect a possible credit card misuse—a low degree of satisfaction of the rule
means that the same credit card has been used in very different places during a
short period of time.

The main results on FAL include syntactico-semantically complete axiomati-
zation with ordinary-style and graded-style (Pavelka style, see [15]) notions of
provability and results on descriptions of nonredundant bases of FAIs describ-
ing dependencies present in object-attribute data and ranked data tables over
domains with similarities [2–4].

2 Preliminaries

We first recall basic notions common to both the fuzzy attribute implications
and fuzzy logic programming. We then present a short survey of notions from
both the theories used in the subsequent reductions.

2.1 Adjoint Operations and Residuated Structures

We consider here a complete lattice L = 〈L,∧,∨, 0, 1〉 with L representing a
set of degrees (bounded by 0 and 1) and the corresponding lattice order ≤. As
usual, 0 and 1 are interpreted as degrees representing the (full) falsity and (full)
truth, each 0 < a < 1 is an intermediate degree of truth. In order to express
truth functions of general logical connectives, we assume that L is equipped by
a collection of pairs of the form 〈⊗,→〉 such that 〈L,⊗, 1〉 is a commutative
monoid, and ⊗ and → satisfy the adjointness property (w.r.t. L):

a⊗ b ≤ c iff a ≤ b → c (4)

for any a, b, c ∈ L. As usual, ⊗ (called a multiplication) and → (called a
residuum) serve as truth functions of binary logical connectives “fuzzy conjunc-
tion” and “fuzzy implication”. The mutual relationship of ⊗ and → posed by
(4) has been derived from a graded counterpart to the classic deduction rule
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modus ponens, see [1, 7, 8]. If ⊗ and → satisfy (4), then L = 〈L,∧,∨,⊗,→, 0, 1〉
is called a complete residuated lattice. Note that there are complete lattices that
cannot be equipped with adjoint operations. On the other hand, there are com-
plete lattices with multiple possible adjoint operations. Examples of complete
residuated lattices include residuated lattices on the real unit interval given by
left-continuous t-norms [6, 10], e.g. standard Gödel, Goguen, and �Lukasiewicz
algebras, see [1, 8] for details. A particular case of L is the two-element Boolean
algebra with L = {0, 1} and ∧ = ⊗ and→ being the truth functions of the classic
conjunction and implication which plays a central role in the classic propositional
and predicate logics [13].

We use of the following notions from fuzzy relational systems [1]: An L-set
(fuzzy set) A in universe U is a map A : U → L, A(u) being interpreted as “the
degree to which u belongs to A”. LU denotes the collection of all L-sets in U .
By {a/u} we denote an L-set A in U such that A(u) = a and A(v) = 0 for v �= u.
An L-set A ∈ LU is called crisp if A(u) ∈ {0, 1} for all u ∈ U . The operations
with L-sets are defined componentwise. For instance, union of L-sets A,B ∈ LU

is an L-set A∪B in U such that (A ∪B)(u) = A(u)∨B(u) for each u ∈ U , etc.
For a ∈ L and A ∈ LU , we define L-sets a ⊗ A (a-multiple of A) and a → A
(a-shift of A) by (a⊗ A)(u) = a⊗A(u), (a → A)(u) = a → A(u) for all u ∈ U .
For L-sets A,B ∈ LU , we define a subsethood degree of A in B:

S(A,B) =
∧

u∈U

(
A(u) → B(u)

)
, (5)

where → is a residuum. Described verbally, S(A,B) represents the degree to
which A is a subset of B. In addition, we write A ⊆ B iff S(A,B) = 1, i.e. if
A is fully included in B. Using adjointness, (5) yields that A ⊆ B iff, for each
u ∈ U , A(u) ≤ B(u).

2.2 Fuzzy Attribute Implications

We assume here that L is a complete residuated lattice with a fixed pair of adjoint
operations ⊗ and →. Let Y be a nonempty set of attributes. A fuzzy attribute
implication (or, a graded attribute implication, shortly a FAI) is an expression
A B, where A,B ∈ LY . It is easily seen that (2) represents a FAI with A ∈ LY

being an L-set in Y = {lowAge, lowMileage , highFuelEconomy , highPrice , . . .} so
that A(lowAge) = 0.7, A(lowMileage) = 0.9 and analogously for B. The intended
meaning of A B is: “if it is (very) true that an object has all attributes from
A, then it has also all attributes from B”. Formally, for an L-set M ∈ LY of
attributes, we define a degree ||A B||M ∈ L to which A B is true in M by

||A B||M = S(A,M)∗ → S(B,M), (6)

where S(· · ·) denote subsethood degrees (5), → is the residuum from L and ∗

is an additional unary operation on L satisfying the following conditions: (i)
1∗ = 1, (ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗, and (iv) a∗∗ = a∗ for all a, b ∈ L.
An operation ∗ satisfying (i)–(iv) shall be called a hedge (more precisely, an
idempotent truth-stressing hedge) and can be seen as a truth function of a logical
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connective “very true”, see [9]. We use ∗ as a parameter of the interpretation of
A B. Namely, if ∗ is set to identity, then ||A B||M = 1 means that S(A,M) ≤
S(B,M), i.e. B is contained in M at least to the degree to which A is contained
in M . On the other hand, if ∗ is defined as a globalization [16]:

a∗ =

{
1, if a = 1,
0, otherwise.

(7)

then ||A B||M = 1 means that if A is fully contained in M (i.e., A ⊆ M), then
B is fully contained in M (i.e., B ⊆ M). Thus, two different important ways to
interpret ||· · ·||M = 1 are obtained from the general definition (6) by different
choices of ∗.

We consider two types of entailment of FAIs: (i) semantic entailment based on
satisfaction of FAIs in systems of models, and (ii) syntactic entailment based on
the notion of provability. We recall here the semantic entailment (the syntactic
entailment will be discussed and extended in Section 4). Recall thatM is a model
of an L-set T of FAIs if T (A B) ≤ ||A B||M for all A,B ∈ LY . Denoting the
set of all models of T by Mod(T ), we define a degree ||A B||T to which A B
semantically follows from T as follows:

||A B||T =
∧

M∈Mod(T ) ||A B||M . (8)

Let us note that ||A B||T is a general degree from L, not necessarily 0 or 1.

Remark 1. In [3], we have shown a complete axiomatization of ||· · ·||T using the
notion of a degree of provability |· · ·|T in sense of Pavelka’s abstract logic [8, 15].
The result has been proved for arbitrary complete residuated lattice L and finite
Y using an Armstrong-like axiomatization consisting of four deduction rules, one
of them being an infinitary rule [18].

2.3 Fuzzy Logic Programming

We recall here the standard notions of (fuzzy) logic programming used in
[11, 14, 17] and depart from the standard notation only in cases when it sim-
plifies formulation of the subsequent results. According to [17], we consider a
complete lattice L with L being the real unit interval with its genuine order-
ing ≤ of real numbers. The approach in [17] uses multiple adjoint operations
on L. It is even more general in that it allows “conjunctors” (and analogously
“disjunctors”) with weaker properties than postulated here (commutativity and
associativity is not required in general). For simplicity, we do not discuss the
issue here (some comments are in Section 5).

We consider programs as particular formulas written in a language L which
is given by a finite nonempty set R of relation symbols (predicate symbols in
terms of LP) and a finite set F of function symbols (functors in terms of LP).
Each r ∈ R and f ∈ F is given its arity denoted by ar(r) and ar(f), respectively.
We assume that F contains at least one symbol for a constant (i.e., a function
symbol f with ar(f) = 0) and R is nonempty or that R contains at least one
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propositional symbol (i.e., a relation symbol p with ar(p) = 0). Moreover, we as-
sume a denumerable set of variables. The variables are denoted by X,Y,Xi, . . . As
usual, terms are defined recursively using variables (as the base cases) and func-
tion symbols. An atomic formula is any expression r(t1, . . . , tk) such that r ∈ R,
ar(r)= k, and t1, . . . , tk are terms. Moreover, formulas are defined recursively
using atomic formulas (as the base cases) and symbols for binary logical connec-
tives c1,c2, . . . (fuzzy conjunctions), d1,d2, . . . (fuzzy disjunctions), 1, 2, . . .
(fuzzy implications), and symbols for aggregations ag1, ag2, . . . We accept the
usual rules on the omission of parentheses and write ϕ ψ to denote ψ ϕ.
Since we do not consider quantifiers, all occurrences of variables in formulas are
free (in the usual sense, see [13]).

Each atomic formula is called a head. Each formula that is free of symbols
for fuzzy implications is called a tail. According to [17], a theory is a map which
assigns to each formula of the languageL a degree from [0, 1]. Moreover, a definite
program is a theory such that

(i) there are only finitely many formulas that are assigned a nonzero degree,

(ii) all the assigned degrees are rational numbers from the unit interval,

(iii) each formula which is assigned a nonzero degree is either a head (a fact) or
a formula of the form ψ ϕ (a rule), where ψ is a head, ϕ is a tail, and
is an arbitrary symbol for implication.

Obviously, definite programs as defined above correspond to finite collections of
formulas like (1) with rational degrees from (0, 1] on the top of , optionally
with a blank space after (if the formula stands for a fact).

The declarative meaning of programs is defined using substitutions and mod-
els which we introduce here using the following notions. A substitution θ is a set
of pairs denoted θ = {X1/t1, . . . ,Xn/tn} where each ti is a term and each Xi a
variable such that Xi �= ti and Xi �= Xj if i �= j. Term/formula ψ results by appli-
cation of θ from ϕ if ψ is obtained from ϕ by simultaneously replacing ti for every
free occurrence of Xi in ϕ. We then denote ψ as ϕθ and call it an instance of ϕ.
An instance ϕθ is called ground if ϕθ does not have any free occurrences of vari-
ables. For substitutions θ = {X1/s1, . . . ,Xm/sm} and η = {Y1/t1, . . . ,Yn/tn},
the composition θη is a substitution obtained from η ∪ {X1/s1η, . . . ,Xm/smη}
by removing all Xi/siη for which Xi = siη and by removing all Yj/tj for which
Yj ∈ {X1, . . . ,Xm}. The composition is a monoidal operation on the set of all
substitutions [14].

Let P be a definite program formalized in language L (we often think of L as
the least language in which all rules χ such that P (χ) > 0 are correctly written).
The set of all ground terms of L is called a Herbrand universe of P and denoted
by UP . The set of all ground atomic formulas of L is called a Herbrand base of P
and denoted by BP . Due to our assumptions on L, BP is nonempty. A structure
for P is any L-set in BP . If M is a structure for P , M(χ) is interpreted as a
degree to which the atomic ground formula χ is true under M . The notion of a
formula being true in M can be extended to all formulas as follows: We let M �

be an L-set of ground formulas defined by
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(i) M �(ϕ) = M(ϕ) if ϕ is a ground atomic formula,

(ii) M �(ψ ϕ) = M �(ϕ) → M �(ψ), where both ϕ and ψ are ground and →
is a truth function (a residuum) interpreting ; analogously for the other
binary connectives and the corresponding truth functions,

(iii) M �
(
ag(ϕ1, . . . , ϕn)

)
= ag

(
M �(ϕ1), . . . ,M

�(ϕn)
)
, where all ϕi are ground

and ag is an n-ary symbol for aggregation which is interpreted by a mono-
tone function ag : [0, 1]n → [0, 1] which preserves {0}n and {1}n.

Moreover, we define M �
∀ to extend the notion for all formulas as follows:

M �
∀(ϕ) =

∧
{M �(ϕθ) | θ is a substitution such that ϕθ is ground}. (9)

Structure M is called a model for theory T if T (χ) ≤ M �
∀(χ) for each formula χ

of the language L. The collection of all models of T will be denoted by Mod(T ).
An important notion of the declarative semantics of definite programs is that
of a correct answer: A pair 〈a, θ〉 consisting of a ∈ (0, 1] and a substitution θ
is a correct answer for a definite program P and an atomic formula ϕ (called a

query) if M �
∀(ϕθ) ≥ a for each M ∈ Mod(P ).

3 Representing FAIs by Propositional FLPs

Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice on the real unit
interval. We now show that for each finite set T of FAIs A B, where both
A and B are finite (i.e., there are finitely many attributes y ∈ Y such that
A(y) > 0 and B(y) > 0) and all degrees A(y) and B(y) are rational, we can find
a corresponding definite program in which the correct answers can be used to
describe degrees ||· · ·||T of semantic entailment of FAIs.

First, we consider a language L with only nullary relation symbols R =
{y1, y2, . . . , yk} (ar(yi) = 0) that correspond to attributes which appear in the
antecedents or consequents of FAIs from T to a nonzero degree. Due to our
assumptions, R is a finite set. Notice that the Herbrand base of any program
written in L is equal to R. Moreover, we consider the following logical connectives
and aggregations:

(i) (interpreted by the residuum →),

(ii) c (interpreted by the infimum ∧),
(iii) a unary aggregation ts (interpreted by hedge ∗, i.e. M �(ts(ϕ)) = M �(ϕ)∗),

(iv) for each rational a ∈ (0, 1] a unary aggregation sha called an a-shift aggre-
gation (interpreted by M �(sha(ϕ)) = a → M �(ϕ)).

We now make the following observation:

Theorem 1. For each set T of FAIs and A B there is a definite program P
such that ||A B||T ≥ a > 0 iff for each attribute y such that B(y) > 0, the pair
〈a⊗ B(y), ∅〉 is a correct answer for the program P and y.
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Proof (a sketch). For any A B ∈ T and y ∈ Y such that B(y) > 0 and all
attributes y ∈ Y satisfying A(y) > 0 being exactly z1, . . . , zn, consider a rule

y ts
(
shA(z1)(z1)c · · ·cshA(zn)(zn)

)
. (10)

Denote the rule (10) by y A. Note that in a special case if A = ∅, (10) becomes
the fact y. Moreover, consider an L-set of rules PT defined by

PT (y A) =
∨
{B(y) |B ∈ LY such that A B ∈ T }. (11)

Clearly, PT is a definite program in L. The proof then continues by observing
that ||A B||T ≥ a > 0 iff ||A a⊗B||T = 1 iff ||∅ a⊗B||T∪{∅ A} = 1 iff

a⊗B(y) ≤ ||∅ {1/y}||T∪{∅ A}

for all y ∈ Y such that B(y) > 0. The latter is true iff for each y ∈ Y such that
B(y) > 0, the pair 〈a⊗B(y), ∅〉 (∅ is the empty substitution) is a correct answer
for the program PT∪{∅ A} and query y. Details of the proof are postponed to
a full version of the paper. ()

Theorem 2. For each set T of FAIs and A B there is a definite program P
such that ||A B||T is the supremum of all degrees a ∈ L for which 〈a⊗B(y), ∅〉
is a correct answer for P and all y satisfying B(y) > 0.

Proof. Consequence of Theorem 1. ()

We have shown that for T and A, we can find a propositional fuzzy logic pro-
gram from which we can express degrees of semantic entailment of FAIs of the
form A B. Due to the limitations of FLP, the result is limited to finite theo-
ries consisting of finite FAIs, and structures of degrees defined on the real unit
interval.

Remark 2. Note that regarding [17, Theorem 3], our aggregations ts and sha

are not left-semicontinuous in general. That is, in general one cannot directly
apply [17, Theorem 3] and Theorem 2 to obtain a characterization of ||A B||T
using computed answers.

4 Completeness for FAIs over Infinite Attribute Sets

Before we show the reduction in the opposite direction, we provide a syntactic
characterization of ||· · ·||T for FAIs over infinite sets of attributes and over ar-
bitrary L. An analogous result has been shown in [3], where we have considered
finite Y . The limitation to finite Y in [3] was mainly for historical reasons because
originally FAIs were developed as rules extracted from object-attribute data ta-
bles, i.e., the sets of attributes were considered finite. Nevertheless, inspecting
the results from [3], one can show that the main results hold if Y is infinite. In
addition to that, we present here the completeness results for a simplified set of
inference rules.
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We consider the following inference rules:

(Ax):
A∪B A

, (Mul):
A B

c∗⊗A c∗⊗B, (Cutω):
A B, {B∪C Di | i ∈ I}

A∪C
⋃

i∈I Di
,

where A,B,C,Di ∈ LY (i ∈ I), and c ∈ L. The first two rules come from [3],
(Cutω) is an infinitary rule saying that “from A B and (in general infinitely
many) FAIs B∪C Di, infer A∪C

⋃
i∈I Di”. Proofs are defined as labeled

infinitely branching rooted (directed) trees with finite depth [18]. Denoting by
T = 〈l, Z〉 a tree with root label l (a formula) and subtrees from the set Z, we
introduce the following notion:

(i) for each A B ∈ T , tuple T = 〈A B, ∅〉 is a proof of A B from T ,

(ii) if Ti = 〈ϕi, . . . 〉 (i ∈ I) are proofs from T and if ϕ results from ϕi (i ∈ I) by
any of the deduction rules (Ax), (Mul), or (Cutω), thenT = 〈ϕ, {Ti | i ∈ I}〉
is a proof of ϕ from T .

Furthermore, A B is provable from T , written T # A B, if there is a proof
A B from T . The degree |A B|T to which A B is provable from T is de-
fined by |A B|T =

∨
{c ∈ L |T # A c⊗B}. We can now prove the following

characterization and its consequence:

Theorem 3 (ordinary-style completeness). For any T and A B,

T # A B iff ||A B||T = 1.

Proof (a sketch). Follows from [3] by checking that finite Y can be safely replaced
by infinite Y and considering that the ordinary cut and the infinitary rule (Addω)
from [3] are derivable from (Cutω) and vice versa. ()

Corollary 1 (graded-style completeness). For any T and A B,

|A B|T = ||A B||T .

Proof. Consequence of Theorem 3. ()

5 Representing FLPs by FAIs over Herbrand Bases

In this section, we consider L to be a complete residuated lattice on the real unit
interval equipped with ∗ defined by (7). For a definite program P , we consider
a theory consisting of FAIs where the set of attributes is represented by the
Herbrand base BP . In general, BP is infinite and therefore the FAIs are formulas
with infinite antecedents and consequents. Note that in the important case when
F consists solely of constants, BP is finite and thus we work with FAIs that can
be understood as formulas in the usual sense.

The following theorem exploits Theorem 3 and establishes the opposite re-
duction to that from Section 3.
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Theorem 4. For every definite program P there is a set T of FAIs such that
for each atomic formula ϕ and substitution θ there is a crisp Bϕ ∈ LBP so that
〈a, θ〉 is a correct answer for P and ϕ iff T # ∅ a⊗Bϕ.

Proof (a sketch). Considering P , for each A ∈ LBP such that A �= ∅, we put

A◦(χ) =
∨
{P (ψ ξ)⊗A�(ξθ) | ξθ is ground and ψθ equals χ}, (12)

for all χ ∈ BP . Note that the multiplication ⊗ which appears in (12) is the
multiplication which is adjoint to the residuum → interpreting (in general,
multiple different i can be used in P simultaneously). In addition, put

∅◦(χ) =
∨
{P (ψ) |ψθ equals χ}. (13)

for all χ ∈ BP . Clearly, A
◦ ∈ LBP for all A ∈ LBP and we may let T be the set

TP = {A A◦ |A ∈ LBP }. Moreover, for the atomic formula ϕ we define

Bϕ(ψ) =

{
1, if ψ is a ground instance of ϕθ,
0, otherwise.

(14)

Now, one can show that 〈a, θ〉 is a correct answer for P and the query ϕ iff
||∅ Bϕ||TP ≥ a which is shown by proving that Mod(P ) = Mod(TP ), i.e., we
get ||∅ a⊗Bϕ||TP = 1 (here ⊗ can be arbitrary multiplication since Bϕ is crisp).
The latter is true iff TP # ∅ a⊗Bϕ due to Theorem 3. ()

Let us conclude this section with a few clarifying remarks.

Remark 3. (a) The choice of the adjoint operations in L is not substantial. The
role of ⊗ and → in L from the point of view of FAIs and degrees ||· · ·||T is
suppressed by the fact that ∗ is globalization.

(b) In [17], the author uses various connectives together with the aggregations
but, in fact, the aggregations are more universal and the connectives (conjunc-
tions and disjunctions) used therein can be seen as binary aggregations. It is
not the case of the residua (which are antitone in the first argument) but their
role is different from the other connectives since the (symbols of) implications
cannot be used in tails of the rules.

(c) The paper [17] does not introduce semantic entailment from definite pro-
grams. Technically, the notion can be introduced and one can prove a syntactico-
semantical completeness with respect to the present inference system via the
reduction we have shown in this paper. Details are postponed to a full version
of the paper.

6 Illustrative Example

Let L be the standard �Lukasiewicz structure of truth degrees, i.e., a complete
residuated lattice on the unit interval with its genuine ordering ≤ and adjoint
operations ⊗, → defined by a⊗b=max(0, a+b−1) and a → b=min(1, 1−a+b).
Let ∗ be the identity.
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Furthermore, consider a set of attributes of cars Y ={lA, lM , hAT , hFE , hP}
which mean: “a car has low age”, “has low mileage”, “has automatic transmis-
sion”, “has high fuel economy” and “has high price” respectively. Let T being a
set containing the following FAIs over Y :{

0.7/lA, 0.9/lM , 0.4/hAT
} {

0.6/hFE , 0.9/hP
}
,{

0.8/lA
} {

0.7/lM
}
.

Using Theorem 1, we can find a FLP PT that corresponds to FAIs from T . The
program PT will contain the following rules:

hFE
0.6

ts
(
sh0.7(lA)c sh0.9(lM )c sh0.4(hAT )

)
,

hP
0.9

ts
(
sh0.7(lA)c sh0.9(lM )c sh0.4(hAT )

)
,

lM
0.7

ts
(
sh0.8(lA)

)
.

Obviously, the aggregator ts interpreted by identity can be omitted. Further-
more, all aggregations interpreting sha(y) as well as the function ∧ interpreting
conjunctor c are left-semicontinuous in this case. Thus, we can use [17, Theo-
rem 3] and Theorem 2 to characterize ||A B||T using computed answers for
program PT∪{∅ A} and queries y ∈ Y with B(y) > 0.

For example, a user asks a question “How much expensive are quite new cars
with automatic transmission?”, i.e., more precisely “To what degree a ∈ L, is
the FAI {0.6/lA, 1/hAT} {1/hP} true in T ?”. To get the answer, we first extend

PT to PT∪{∅ A} by adding facts lA
0.6

and hAT
1

to the program. Then, we
can easily compute an answer to query hP using the usual admissible rules of
FLPs [17] (all substitutions are ∅):

hP,

0.9⊗
(
sh0.7(lA)c sh0.9(lM )c sh0.4(hAT )

)
,

0.9⊗
(
sh0.7(lA)c sh0.9(0.7⊗ sh0.8(lA))c sh0.4(hAT )

)
,

0.9⊗
(
sh0.7(0.6)c sh0.9(0.7⊗ sh0.8(0.6))c sh0.4(1)

)
,

0.9⊗
(
0.7 → 0.6 ∧ 0.9 → (0.7⊗ (0.8 → 0.6)) ∧ 0.4 → 1

)
,

0.5.

Using [17, Theorem 3], Theorem 2 and the computed answer 〈0.5, ∅〉, we imme-
diately get ||{0.6/lA, 1/hAT} {1/hP}||T =0.5.

7 Conclusions

We have shown that fuzzy attribute implications (in sense of Belohlavek and
Vychodil) and fuzzy logic programs (in sense of Vojtáš) are mutually reducible
(with some limitations to structures of degrees) and correct answers for fuzzy
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logic programs and queries can be described via semantic entailment of fuzzy
attribute implications and vice versa. Furthermore, we have shown a complete
Pavelka-style axiomatization for fuzzy attribute logic (FAL) over arbitrary L and
infinite sets of attributes using a new deduction system containing an infinitary
cut. Together with the reduction we have shown in the paper, this gives us a new
syntactic characterization of correct answers in fuzzy logic programming (FLP).
The results have shown a new theoretical insight and a link of two branches of
rule-based reasoning methods. Future research will focus on various other issues
interrelating FLP and FAL.
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Abstract. The Rand index is a measure commonly used to compare
crisp partitions. Campello (2007) and Hüllermeier and Rifqi (2009) res-
pectively, proposed two extensions of this index capable to compare fuzzy
partitions. These approaches are useful when continuous values of attri-
butes are discretized using fuzzy sets. In previous works we experimented
with these extensions and compared their accuracy with the one of the
crisp Rand index. In this paper we propose the ε-procedure, an alter-
native way to deal with attributes taking continuous values. Accuracy
results on some known datasets of the Machine Learning repository us-
ing the ε-procedure as crisp discretization method jointly with the crisp
Rand index are comparable to the ones given using the crisp Rand in-
dex and its fuzzifications with standard crisp and fuzzy discretization
methods respectively.

Keywords: Machine learning, Classification, Discretization methods.

1 Introduction

Knowledge representation of domain objects often involves the use of continuous
values. One of the most widely used techniques to deal with continuous values
is the discretization, consisting on building intervals of values that should be
considered as equivalent. There are two kinds of discretization: crisp and fuzzy.
In crisp discretization the range of a continuous value is split into several inter-
vals. Elements of an interval are considered as equivalent and each interval is
handled as a discrete value. There are different methods of crisp discretization.
For instance, some of them take into account the length of the interval, or the
frequency of the values, while others are entropy-based (for more information
see [1]). In some domains, the crisp discretization shows some counter-intuitive
behavior around the thresholds of the intervals: values around the threshold of
two adjacent intervals are considered as different but may be they are not so.
For this reason, sometimes it is interesting to build a fuzzy discretization from
a crisp one, as it is done for instance in [2].

Given an attribute taking continuous values, let α1, . . . , αn be the thresholds
determining the discretization intervals for that attribute. Let α0 and αn+1 be

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 258–269, 2012.
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the minimum and maximum of the values that this attribute takes in its range.
To fuzzy discretize the attribute, assuming that the fuzzy sets are trapezoidal,
the membership vector is calculated in the following way:

F1(x) =

⎧⎨⎩
1, when α0 ≤ x ≤ α1 − δ1,
α1+δ1−x

2δ1
, when α1 − δ1 < x < α1 + δ1,

0, when α1 + δ1 ≤ x.

Fi(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, when x ≤ αi−1 − δi−1,
x−(αi−1−δi−1)

2δi−1
, when αi−1 − δi−1 < x < αi−1 + δi−1,

1, when αi−1 + δi−1 ≤ x ≤ αi − δi
αi+δi−x

2δi
, when αi − δi < x < αi + δi ,

0, when αi + δi ≤ x.

(1)

Fn+1(x) =

⎧⎨⎩
0, when x ≤ αn − δn,
x−(αn−δn)

2δn
, when αn − δn < x < αn + δn,

1, when αn + δn ≤ x ≤ αn+1.

In these formulas, the parameters δi represents the overlapping degree between
contiguous fuzzy sets and they are computed as follows: δi = p · |αi−αi−1|, being
the factor p a percentage that we can adjust.

Intuitively, since the representation using fuzzy sets is smooth around the
thresholds of discretization intervals, it seems more appropriate than the crisp
discretization in some domains. Nevertheless, the use of fuzzy sets implies that
for each attribute value it is necessary to deal with the membership of this value
to each fuzzy set representing the attribute. As we will see later, for the fuzzy
extensions of the Rand index, this situation produces an increment of the run
time with respect to the crisp version of the Rand index. For this reason, we
have searched for an alternative method of discretization such that:

a) it retains as much as possible the advantages of the discretization methods
using fuzzy sets,

b) it can be used with crisp measures such as the Rand index and, therefore,
c) it involves a reduction of the run time associated to the fuzzy measures.

As a concrete alternative, in the current paper we propose the ε-procedure, a
method of discretization that induces classical partitions from continuous values
of attributes. It consists on a refinement of the crisp discretization obtained
by any standard discretization method. From a set of discretization thresholds
α1, α2, . . . , αn, the ε-procedure introduces the intervals (αi− δi, αi+ δi] being δi
a parameter that depends on the length of the interval (αi−1, αi].

In [3] we experimented with the Rand Index and two fuzzy extensions of it:
one proposed by Campello [4] and the other proposed by Hüllermeier and Rifqi
[5]. These experiments have been performed in the framework of a lazy learning
method called LID. For this reason in the present paper we have carried out
similar experiments with the ε-procedure in order to compare its behavior with
the one obtained using standard discretization methods.
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Function LID (p, Di, SDi, C)
  if stopping-condition (SDi) then return class (SDi)
       else  fd := Select-attribute (p, SDi, C)
               Di+1 := Add-attribute (fd, Di)
               SDi+1 := Discriminatory-set (Di+1, SDi)
               LID (p, Di+1, SDi+1, C)
  end-if
end-function

Fig. 1. The LID algorithm. On the right there is the intuitive idea of LID.

The paper is organized as follows. Section 2 contains preliminary concepts.
In Sec. 3 the ε-procedure is presented. Section 4 contains the explanation of the
experiments and a discussion of the results. The last section contains conclusions
and future work.

2 Preliminary Concepts

In this section we explain the algorithm of the method LID used in the experi-
ments. LID uses a mesure Δ to compare partitions. In the experiments we have
used asΔ the Rand index and two of its fuzzifications, one proposed by Campello
in [4] an the other by Hüllermeier and Rifqi in [5]. In this section we also explain
these three measures in some detail.

2.1 Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant attributes of a problem (i.e.,
an object to be classified) and searches in a case base for cases sharing these
relevant attributes. The problem is classified when LID finds a set of relevant
attributes shared by a subset of cases all of them belonging to the same class.
We call similitude term the description formed by these relevant features and
discriminatory set the set of cases satisfying the similitude term.

Given a problem for solving p, LID (Fig. 1) initializes D0 as a description with
no attributes, the discriminatory set SD0 as the set of cases satisfying D0, i.e.,
all the available cases, and C as the set of solution classes into which the known
cases are classified. Let Di be the current similitude term and SDi be the set of
all the cases satisfying Di. When the stopping condition of LID is not satisfied,
the next step is to select an attribute for specializing Di. The specialization of
Di is achieved by adding attributes to it. Given the set F of attributes candidate
to specialize Di, the next step of the algorithm is the selection of an attribute
f ∈ F . Selecting the most discriminatory attribute in F is heuristically done
using a measure Δ to compare each partition Pf induced by an attribute f
with the correct partition Pc. The correct partition has as many sets as solution
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classes. Each attribute f ∈ F induces in the discriminatory set a partition Pf

with as many sets as the number of different values that f takes in the cases.
Given a measure Δ and two attributes f and g inducing respectively parti-

tions Pf and Pg, we say that f is more discriminatory than g iff Δ(Pf ,Pc) <
Δ(Pg,Pc). This means that the partition Pf is closer to the correct partition
than the partition Pg. LID selects the most discriminatory attribute to specialize
Di. Let fd be the most discriminatory attribute in F . The specialization of Di

defines a new similitude term Di+1 by adding to Di the attribute fd. The new
similitude term Di+1 = Di∪{fd} is satisfied by a subset of cases in SDi , namely
SDi+1 . Next, LID is recursively called with SDi+1 and Di+1. The recursive call of
LID has SDi+1 instead of SDi because the cases that are not satisfied by Di+1 will
not satisfy any further specialization. Notice that the specialization reduces the
discriminatory set at each step, i.e., we get a sequence SDn ⊂ SDn−1 ⊂ . . . ⊂ SD0 .

LID has two stopping situations: 1) all the cases in the discriminatory set
SDj belong to the same solution class Ci, or 2) there is no attribute allowing the
specialization of the similitude term. When the stopping condition 1) is satisfied,
p is classified as belonging to Ci. When the stopping condition 2) is satisfied,
SDj contains cases from several classes; in such situation the majority criteria
is applied, and p is classified in the class of the majority of cases in SDj . When
there is a tie between two classes, LID gives a multiple solution proposing both
classes as the classification for p.

In our experiments we have taken the Rand index as the measure Δ that
supports the selection of relevant attributes. This index is introduced in the
next section.

2.2 The Rand Index

The Rand index [6] was conceived to compare clusterings produced by several
automatic methods. The basic assumptions for using the Rand index are the
following: 1) the clusterings to be compared are crisp in the sense that the set
of clusters is a crisp partition of the domain; 2) the clusters are defined by both
the objects that they contain and the objects that they do not contain; and
3) all objects are equally important in determining the clustering. From these
assumptions it follows that a basic unit of comparison between two clusterings
is how pairs of objects are clustered. If a pair of objects are placed together in
a class in each one of the two clusterings, or if they are assigned to different
classes in both clusterings, this represents a similarity between the clusterings.
The opposite case is the one in which a pair of objects are in the same class in
one clustering and in different classes in the other one. From this point of view,
a measure of the similarity between two clusterings of the same data set can be
defined as the number of equal assignments of object pairs normalized by the
total number of object pairs.

Let X be a finite set X = {x1, . . . , xn}; P = {P1, . . . , Pk} be a partition of X
in k sets; and Q = {Q1, . . . , Qh} a partition of the same set X in h sets. Given
two objects x and x′ we say that both objects are paired in a partition when
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P

 

Q

P1                P2                     P3         P4

Q1            Q2        Q3         Q4          Q5 

a b

c d

e

f

d

a b

f

e

Fig. 2. Examples of paired and impaired objects: 1) a and b are paired in both parti-
tions; 2) e and f are paired in P and impaired in Q; 3) c and d are paired in Q and
impaired in P ; 4) d and f are impaired in both partitions.

both objects belong to the same class of the partition (see Fig. 2). Otherwise,
we say that both objects are impaired.

Now, let us consider the set C := {(xi, xj) ∈ X ×X : 1 ≤ i < j ≤ n} which
can be identified with the set of unordered pairs {x, y}, with x, y ∈ X . The Rand
index among the partitions P and Q is defined as follows:

R(P ,Q) =
a+ d

a+ b+ c+ d
(2)

where,

– a is the number of pairs (x, x′) ∈ C such that x and x′ are paired in both
partitions.

– b is the number of pairs of objects (x, x′) ∈ C such that x and x′ are paired
in P and impaired in Q.

– c is the number of pairs of objects (x, x′) ∈ C such that x and x′ are impaired
in P and paired in Q.

– d is the number of pairs of objects (x, x′) ∈ C such that x and x′ are impaired
in both partitions.

The Rand index is commonly used to compare clusterings formed by automatic
systems. It gives a measure of how similar are two clusterings. Inside LID, the
Rand index is used to compare the partitions induced by each one of the at-
tributes describing the objects with the correct partition. However, when con-
tinuous values are represented by means of fuzzy sets the partitions induced are
fuzzy and in this situation the Rand index is not appropriate to make compar-
isons involving fuzzy partitions. In the next sections we will explain two proposals
of fuzzification of the Rand index.

2.3 The Campello’s Fuzzy Rand Index

In [4] Campello extends the Rand index to make it feasible to compare fuzzy
partitions. Given a finite data set X = {x1, . . . , xn}, a fuzzy partition on X (in
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the sense of Ruspini [7]) is any finite collection P = {P1, . . . , Pk} of fuzzy subsets

on X such that
∑k

i=1 Pi(xj) = 1, for each j, 1 ≤ j ≤ n. To the end to define
a fuzzy extension, Campello first rewrites the original formulation of the Rand
index in an equivalent form by using basic concepts of set theory. Given the crisp
partitions P , with k sets, and Q, with h sets, Campello defines the following sets
of pairs:

V : pairs (x, x′) ∈ C paired in P , W : pairs (x, x′) ∈ C impaired in P ,
Y : pairs (x, x′) ∈ C paired in Q, Z: pairs (x, x′) ∈ C impaired in Q,

where C is the set of pairs of elements of X defined in Sec. 2.2.
According to the sets above, the coefficients a, b, c and d of the Rand index

in Eq. (2) can be rewritten in the following way: a = |V ∩ Y |, b = |V ∩ Z|,
c = |W ∩ Y |, and d = |W ∩ Z|.

When we consider fuzzy partitions, the sets above are fuzzy sets. Let Pi(x) ∈
[0, 1] denote the membership degree of the object x ∈ X to the set Pi. Then,
Campello defines the fuzzy binary relations V,W, Y and Z on the set C by using
the following expressions involving a t-norm ⊗ and a t-conorm ⊕:

V (x, x′) =
⊕k

i=1(Pi(x) ⊗ Pi(x
′)), W (x, x′) =

⊕
1≤i
=j≤k(Pi(x)⊗ Pj(x

′)),

Y (x, x′) =
⊕h

i=1(Qi(x) ⊗Qi(x
′)), Z(x, x′) =

⊕
1≤i
=j≤h(Qi(x)⊗Qj(x

′)).

Now, as it is usually done, Campello calculates the intersection of two fuzzy
relations by using the t-norm (applied to the membership degrees of each pair
to each relation). Then, using the sigma-count principle for defining the fuzzy
set cardinality, he obtains the coefficients a, b, c, and d in the following way:

a = |V
⋂
Y | =

∑
(x,x′)∈C(V (x, x′)⊗ Y (x, x′))

b = |V
⋂
Z| =

∑
(x,x′)∈C(V (x, x′)⊗ Z(x, x′))

c = |W
⋂
Y | =

∑
(x,x′)∈C(W (x, x′)⊗ Y (x, x′))

d = |W
⋂
Z| =

∑
(x,x′)∈C(W (x, x′)⊗ Z(x, x′))

Then, the fuzzy version of the Rand index is also defined by Eq. (2), giving a
measure of the similarity between two partitions. Since LID uses a normalized
distance measure, we have to take 1−R(P ,Q). Nevertheless, as Campello himself
warns in [4], his fuzzy formulation of the Rand index does not satisfies some basic
metric properties and it is properly defined only for the comparison of a fuzzy
partition with a non-fuzzy reference partition (see also [5] for a discussion on this
subject). However, notice that the correct partition in classification problems is
commonly crisp; thus the use of the distance associated to the Rand index of
Campello inside LID is justified. From now on, we denote as CI the distance
associated with the Campello Rand index.

2.4 The Hüllermeier-Rifqi’s Fuzzy Rand Index

Hüllermeier and Rifqi proposed in [5] a different fuzzy version for the Rand index
which allows the comparison of two fuzzy partitions and satisfies all the desirable
metric properties. In the next we recall the definition of this fuzzy version.
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Given a fuzzy partition P = {P1, P2, . . . , Pk}, each object x is characterized
by its membership vector P(x) = (P1(x), P2(x), ..., Pk(x)) ∈ [0, 1]k where Pi(x)
is the membership degree of x to the cluster Pi. Given two objects x and x′ and
two fuzzy partitions P and Q, the degree of concordance of both objects in these
partitions is defined by means the expression 1 − |EP(x, x

′) − EQ(x, x
′)| where

EP is the fuzzy equivalence relation defined by EP(x, x
′) := 1−‖P(x)−P(x′)‖

being ‖.‖ a distance on [0, 1]k. Thus, two objects are equivalent to a degree 1
when both have the same membership degrees in all the sets of the partition.
This fuzzy equivalence is used to define the notion of concordance as a fuzzy
binary relation, which generalizes the crisp binary relation (induced by a crisp
partition) defined on the set C of unordered pairs of objects of X using the
notions of paired and unpaired. Then, a distance measure on fuzzy partitions
using the degree of discordance is defined as |EP(x, x

′)−EQ(x, x
′)|. Thus, given

a data set X of n elements, and two fuzzy partitions P and Q on X , the distance
between both partitions is the normalized sum of degrees of discordance:

d(P ,Q) =

∑
(x,x′)∈C |EP(x, x

′)− EQ(x, x
′)|

n(n− 1)/2
. (3)

As it is shown in [5,11], the function (3) is a pseudometric, that is, it satisfies
reflexivity, simmetry and triangular inequality, but it is not a metric because
in general it does not satisfies the property of separation (d(P ,Q) = 0 implies
P = Q). A fuzzy partition in the sense of Ruspini P = {P1, . . . , Pk} is called
normal if it has a prototypical element, i.e., for every Pi ∈ P , there exists
an x ∈ X such that Pi(x) = 1. Hüllermeier and Rifqi show that for normal
partitions, taking the equivalence relation on X defined by

EP(x, x
′) = 1− 1

2

k∑
i=1

|Pi(x)− Pi(x
′)|, (4)

the distance defined by Eq. (3) is a metric. From now on, we will call HRI (for
Hüllermeier-Rifqui Index) this distance measure.

In addition to the extensions of the Rand Index presented by Campello and
Hülermeier and Rifqi, other extensions of the Rand index have been proposed in
the literature [8,9,10]. In the article [11] a comparative study of the indices pre-
sented in the mentioned papers in relation to the indexes proposed by Campello
and Hülermeier and Rifqi is performed.

3 The ε-Procedure

Our goal is to design a procedure allowing the discretization of continuous va-
lues. The idea is, on the one hand, to keep the advantages provided by the fuzzy
set representation and, on the other hand, to generate crisp partitions in order to
use standard crisp measures to compare them. There are related works as the one
from Ishibuchi and Yamamoto [12], that propose a method to construct fuzzy
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Fig. 3. The upper part shows the effect of a crisp discretization using three intervals.
The lower part shows the discretization proposed by the ε-procedure.

discretizations from crisp ones. The authors consider that sometimes experts
cannot give the discretization thresholds and they propose to dynamically obtain
them. In [2] Kuajima et al. analyze the effects of fuzzy discretization on rule-
based classifiers performance. The authors define the fuzzification grade as the
overlap between adjacent fuzzy sets and they conduct experiments taking several
of these grades.

The ε-procedure we introduce in the present paper discretizes continuous val-
ues by considering intermediate intervals that could be interpreted as the over-
lapping of two contiguous fuzzy sets. The partition generated in this way is crisp,
therefore the standard Rand index can be used. Let f be an attribute taking
continuous values, α1, α2, . . . , αn be the discretization values for f , and α0 and
αn+1 be the minimum and maximum respectively of the values of f . The ε-
procedure considers the following intervals: [α0, α1− δ1], (α1− δ1, α1+ δ1], (α1+
δ1, α2 − δ2], (α2 − δ2, α2+ δ2] . . . (αn + δn, αn+1], where δi = p · |αi −αi−1|, being
p an adjustable percentage. In order to avoid some undesired overlappings, the
parameter p must respect the following constraint:

p ≤ 1

2
· |αi+1 − αi|
|αi − αi−1|

. (5)

Notice that whereas with the usual discretization the values v = αi − ε and
v′ = αi + ε, being ε sufficiently small, belong to different intervals, using the
ε-procedure both v and v′ belong to the same partition when ε < δ. Figure 3
shows an example where a crisp discretization produces three intervals and for
the same range of values, the ε-procedure introduces the intervals I12 and I23
that contain values around the thresholds α1 and α2. These new intervals join
values that in the first discretization belong to different intervals.

4 Experiments

We have performed experiments with the goal of proving the feasibility of the
ε-procedure as an alternative to fuzzy discretization. In previous works [3] we
have shown that the fuzzifications of the Rand index have good predictivity but
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Table 1. The left column shows the discretization method used in each one of the four
situations. The central column shows the index used as Δ-measure. The right column
corresponds to the label assigned to each situation.

discretization method Δ-measure label

Crisp intervals given by an standard method Rand Index CRI
Fuzzy intervals built over the crisp ones CI FCI
Fuzzy intervals built over the crisp ones HRI FHRI
Crisp intervals built with the ε-procedure Rand Index εRI

they also have a high computational cost mainly due to the fact that they need
to operate with all the membership degrees of all pairs of objects. Instead, the
ε-procedure uses the crisp Rand index.

In the experiments we used four data sets, iris, heart-statlog, glass, and thy-
roids coming from the UCI Repository [13], where objects are described by
attributes having continuous values. The discretization thresholds have been ob-
tained with the MDL discretization method proposed by Fayyad and Irani’s [14]
and we have used the implementation of it given by Weka [15,16]. These thresh-
olds have been taken as basis to define the fuzzy sets used by CI and HRI, and
also for the ε-procedure to induce the new discretization intervals. The target
of the experiments is to compare the predictivity of LID in the following four
situations, which are summarized in Table 1:

1. The attributes with continuous values are discretized by using the thresholds
given by a standard discretization method. Then LID runs using the Rand
index (RI) as measure Δ to compare the partitions induced by the attibutes
with the correct partition. So, in this case we have a crisp discretization and
Δ = RI. We denote this procedure by CRI (the “C” stands by Crisp).

2. The attributes with continuous values are discretized by using the fuzzy sets
built from the thresholds given by a standard discretization method. Then
LID runs using CI as measure Δ with the Minimum and the Maximum as
t-norm and t-conorm, respectively. We denote this procedure with the label
FCI (the “F” stands by Fuzzy).

3. The attributes with continuous values are discretized by using the fuzzy sets
built as in the previous procedure. Then LID runs using the Hüllermeier-Rifqi
index (HRI) as measure Δ. So, in this case we have a fuzzy discretization
and Δ = HRI. We denote this procedure by FHRI.

4. The attributes with continuous values are discretized by using the thresholds
given by a standard discretization method and refined by the ε-procedure.
Then LID runs using the Rand index (RI) as measure Δ. So, in this case
we have the crisp discretization given by the ε-procedure, and Δ = CI. We
denote this procedure with the label εRI.

As we have mentioned before, in the formulas (1) each δi is computed by δi =
p · |αi−αi−1|, being the factor p a percentage that we can adjust and that must
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Table 2. Mean accuracy of LID corresponding to the procedures labeled by CRI, FCI,
FHRI, and εRI after seven trials of 10-fold cross-validation. The table shows the best
results; the corresponding p is indicated between parenthesis.

dataset CRI FCI FHR εRI

glass 35.460 25.696 (0.10) 38.644 (0.10) 49.373 (0.10)
heart-statlog 65.397 62.857 (0.05) 65.026 (0.05) 65.555 (0.10)
iris 88.780 91.917 (0.10) 94.482 (0.10) 96.286 (0.10)
thyroids 86.562 81.447 (0.05) 82.331 (0.10) 84.935 (0.15)

satisfy the constraint (5). We have experimented with p = 0.05, 0.10 and 0.15.
All these values of p satisfy (5) for all the considered data sets. In the fuzzy
version of LID, the correct partition is the same than in the crisp case since each
object belongs to a unique solution class. However, when the partitions induced
by each attribute are fuzzy, an object can belong (to a certain degree) to more
than one partition set. The algorithm of the fuzzy LID is the same explained in
Sec. 2.1 but using a particular representation for the fuzzy cases.

Table 2 shows the mean accuracy of LID corresponding to the procedures
labeled by CRI, FCI, FHRI, and εRI after seven trials of 10-fold cross-validation.
The accuracy depends on the value of p and this may be different for each
domain. In the table we show the best results and we indicate the corresponding
p between parenthesis. Thus, for instance, the best result on iris for FCI is taking
p = 0.10 whereas the best accuracy for FCI on heart-statlog is taking p = 0.05.
In our experiments we have seen that for each data set there is a value of p that
represents an inflection point on the accuracy. For instance, on the iris data set
using εRI, the accuracy taking p = 0.05 is 93.720 and taking p = 0.15 is 95.333.
The best value for p is different for each data set and also for each method. So,
in practice, we should try with several values of p in order to find the best one.

Experiments show that the ε-procedure gives good predictive results outper-
forming all the fuzzy versions (FCI and FHRI) in all domains. Moreover, εRI
also outperforms the procedure CRI except for the thyroids data set and for the
heart-statlog where the accuracy of both is not significantly different.

LID can produce two kinds of outputs: the classification in one (correct or
incorrect) class or a multiple classification. Multiple classification means that
LID has not been capable to classify the input object in only one class, i.e., most
of the time it could be considered as a no answer of the system. This explains
the low accuracy percentage given by all measures on the glass domain since
most of times LID produces multiple classifications.

The computational complexity of the crisp Rand index is O((k + h) · n2),
where k and h are the cardinalities of the partitions P and Q respectively; the
cost of CI is O((max(k, h))2 · n2); and the cost of the HRI is O(max(k, h) · n2).
Notice that, in the worst case, both the Rand index and HRI have the same cost
whereas the cost of CI is higher than them. In practice, the Rand index has lower
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Table 3. Mean runtime necessary (in seconds) to evaluate a complete trial of 10-fold
cross-validation on the datasets iris and thyroids

Dataset CRI FCI FHRI εRI

iris 2.624 226.773 77.463 14.358
thyroids 27.219 1092.055 383.037 165.348

cost than HRI mainly due to the lower complexity of the input data since fuzzy
representations have to take into account membership degrees. Table 3 shows the
mean runtime necessary to evaluate a complete trial of 10-fold cross-validation
on the data sets iris and thyroids. These times have been obtained using a Mac
with a processor Intel Core 2 Duo of 2.93 GHz.

5 Conclusions and Future Work

In this paper we have introduced a method, called ε-procedure, that constructs
classical partitions on the range of an attribute taking continuous values. These
partitions can be seen as refinements of the ones given by the expert or the ones
given by a standard method of discretization. Moreover, the method can be seen
as “similar” to the fuzzy methods of discretization since the ε-procedure takes
into account the neighborhood of the thresholds given by the crisp discretiza-
tion methods. The ε-procedure runs inside the LID method allowing it to deal
with cases having attributes that take continuous values. We have carried on
experiments with LID comparing its performance when dealing with both cases
whose continuous attributes have been discretized and cases whose continuous
attributes have been represented as fuzzy sets.

As future work we plan to conduct experiments to analyze in depth the effect
of the value of δ in the accuracy of the ε-procedure.We think that this effect could
also depend on the particular characteristics of the domain at hand. A different
research line is to experiment with different Δ measures after the discretization
produced by the ε-procedure. In particular we plan to experiment with the López
de Mántaras (LM) distance [17] and to compare the results with those produced
by a fuzzification of LM proposed in [18].
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11. Hüllermeier, E., Rifqi, M., Henzgen, S., Senge, R.: Comparing Fuzzy Partitions:
A Generalization of the Rand Index and Related Measures. IEEE Transactions on
Fuzzy Systems 20(3), 546–556 (2012)

12. Ishibuchi, H., Yamamoto, T.: Deriving fuzzy discretization from interval discretiza-
tion. In: Proceedings of FUZZ-IEEE 2003, vol. 1, pp. 749–754 (2003)

13. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
14. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-

tributes for classification learning. In: Proceedings of IJCAI 1993, pp. 1022–1029
(1993)

15. Witten, I., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S.: Weka:
Practical machine learning tools and techniques with java implementations (1999)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explorations 11(1), 10–18
(2009)
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Abstract. In this paper, we investigate linear programming problems
with graded ill-known sets (GIS-LP problems). Because a graded ill-
known set (GIS) is defined by a possibility distribution on the power
set, treatments of GISs are usually complex. To treat them in a simpler
way at the expense of precision, the representation by upper and lower
approximations have been investigated. Once these approximations are
applied, the original GIS is not usually restored. We propose a class of
GISs restorable from the approximations. Utilizing the previous results
in GISs, we formulate a GIS-LP problem based on the idea of symmetric
model in possibilistic programming. We show that the formulated GIS-
LP problem is solved by a bisection method together with the simplex
method. A simple numerical example is given.

Keywords: Graded ill-known set, linear programming, upper approxi-
mation, lower approximation.

1 Introduction

In the conventional mathematical programming problems, the coefficients of the
objective function and constraints are assumed to be real numbers. Moreover,
the constraints are assumed to be hard so that any small violation is not al-
lowed. However, in the real world problems, we may come across cases where
the knowledge about coefficients is not very clear to specify them as real numbers
and cases where constraints are flexible so that small violation is allowed. Fuzzy
programming approaches [1] have been proposed to treat ambiguous coefficients
as well as soft constraints as fuzzy sets.

Some researchers [2,3] further argue that the exact specifications of member-
ship functions of fuzzy sets in fuzzy programming problems are difficult. They
proposed to apply type-2 fuzzy sets [4] and intuitionistic fuzzy sets [5]. In those
higher-order fuzzy sets, membership grades can take interval or fuzzy values
in [0, 1]. However, the interpretations of interval and fuzzy membership grades
are not convincing very much or rather restrictive. In most of these papers,
higher-order fuzzy sets are applied only to express soft constraints. Apart from
fuzzy programming, the applications of type-2 fuzzy sets and intuitionistic fuzzy

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 270–281, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www-inulab.sys.es.osaka-u.ac.jp/


Linear Programming with Graded Ill-Known Sets 271

sets, have become popular. Considering this trend, we consider application of
higher-order fuzzy sets to fuzzy programming.

As a model of higher-order fuzzy set, Inuiguchi [6] has proposed to use the
graded ill-known set (GIS) [7,8]. The GIS model was originally proposed by
Dubois and Prade [7] to express a set whose members are not known exactly.
Then originally it was the model to express a set-valued variable. However,
Inuiguchi [6] has proposed to use the GIS model to express the variation range
of a single-valued variable. In that way, he used the graded ill-known set model
for a single-valued variable. He investigated the calculations of GISs.

The GIS has a good interpretation. It can be defined by aggregation of several
pieces of information. From these advantages, we apply GISs to mathematical
programming under uncertainty. More concretely, we study linear programming
with GISs (GIS-LP). Because a graded ill-known set (GIS) is defined by a possi-
bility distribution on the power set, treatments of GISs are usually complex. To
treat them in a simpler way at the expense of precision, the representation by
upper and lower approximations have been investigated. We propose a class of
GISs restorable from the approximations and apply them to linear programming
problems. The GIS-LP problems are formulated by using the idea of symmetric
models developed in fuzzy programming. It is shown that the formulated GIS-LP
problem is solved by a bisection method together with the simplex method. Sim-
ple numerical example is given to demonstrate the usage of GIS-LP approach.

In the next section, the results in graded ill-known sets are briefly reviewed.
In section 3, we propose a class of GIS which is recoverable and investigate
inclusion degrees between two GISs in the class. In section 4, using inclusion
degrees, we formulate a linear programming problem with GISs. In section 5, a
simple example is given.

2 Graded Ill-Known Sets

Let X be a universe. Let A be a crisp set which is ill-known, i.e., there exists at
least one element x ∈ X , for which it is not known whether x belongs to A or
not. To represent such an ill-known set, collecting possible realizations Ai ⊆ X
of A, we obtain the following family:

A = {A1, A2, . . . , An}. (1)

Given A, we obtain a set A− of elements which is a certain member of A and a
set A+ of elements which is a possible member of A can be defined as

A− =
⋂

A =
⋂

i=1,...,n

Ai, A+ =
⋃

A =
⋃

i=1,...,n

Ai. (2)

We call A− and A+ “the lower approximation” of A and “the upper approxi-
mation” of A, respectively.

In the real world, we may know certain members (lower approximation A−)
and certain non-members (complement of upper approximation A+) only. Given
A− and A+ (or equivalently, the complement of A+), we obtain a family Â of
possible realizations of A by Â = {Ai | A− ⊆ Ai ⊆ A+}. We note that A− and
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A+ are restored by applying (2) to the family Â. On the other hand, A cannot
be always restored from Â with A− and A+ defined by (2).

If all Ai’s of (1) are not equally possible, we may assign a possibility degree
πA(Ai) to each Ai so that maxi=1,...,n πA(Ai) = 1. A possibility distribution
πA : 2X → [0, 1] can be seen as a membership function of a fuzzy set A in 2X .
Thus, we may identify A with A. The ill-known set having such a possibility
distribution is called “a graded ill-known set (GIS)”.

In this case, the lower approximation A− and the upper approximation A+

are defined by fuzzy sets with the following membership functions:

μA−(x) = inf
x 
∈Ai

n(πA(Ai)), μA+(x) = sup
x∈Ai

ϕ(πA(Ai)), (3)

where n : [0, 1] → [0, 1] and ϕ[0, 1] → [0, 1] are strictly decreasing and strictly
increasing functions such that n(0) = ϕ(1) = 1 and n(1) = ϕ(0) = 0. Function
n can be seen as a negation but we do not assume n(n(a)) = a. We have

∀x ∈ X, μA−(x) > 0 implies μA+(x) = 1. (4)

The specification of possibility distribution πA may need a lot of information.
However, as is often the case in real world applications, we know only the lower
approximation A− and the upper approximation A+ as fuzzy sets satisfying (4).
There are many possibility distributions πA having given A− and A+ as their
lower and upper approximations. We adopt the following maximal possibility
distribution π∗

A(Ai) with respect to given A− and A+:

π∗
A(Ai) = min

(
inf
x 
∈Ai

n−1(μA−(x)), inf
x∈Ai

ϕ−1(μA+(x))

)
, (5)

where we define inf ∅ = 1 and n−1 and ϕ−1 are inverse functions of n and ϕ.
We call the imprecise specification of a GIS by upper and lower approximations
satisfying (5) “roughly specified GIS”.

Possibility degree Π(B|A) and necessity degree N(B|A) are defined by

Π(B|A) = sup
C⊆X

min(πA(C), πB(C)), N(B|A) = inf
C⊆X

I(πA(C), πB(C)), (6)

where I : [0, 1] × [0, 1] → [0, 1] is an implication function which satisfies (I1)
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0, (I2) I(a, b) ≤ I(c, d), for any
a, b, c, d such that 0 ≤ c ≤ a ≤ 1, 0 ≤ b ≤ d ≤ 1, and (I3) I is upper semi-
continuous.

For roughly specified GISs we have the following results (see Inuiguchi [8]):

Π(B|A) = min

(
inf
x∈X

max
(
n−1(μB−(x)), ϕ−1(μA+(x))

)
,

inf
x∈X

max
(
n−1(μA−(x)), ϕ−1(μB+(x))

))
, (7)

N(B|A) = min

(
inf
x∈X

I
(
ϕ−1(μA+(x)), ϕ−1(μB+(x))

)
,

inf
x∈X

I
(
n−1(μA−(x)), n−1(μB−(x))

))
. (8)
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Inuiguchi [6] has investigated the calculations of GISs in real line R called “GIS
of quantities”. The set of GISs of quantities is denoted by IQ. We define a set
IQci ⊆ IQ of GISs of quantities A satisfying the following properties:

∀α ∈ (0, 1], Â(α) =
⋂

{Q ⊆ R | πA(Q) ≥ α} is nonempty, closed and convex,

and there exist convex sets Qj, j = 1, 2, . . . , k such that

πA(Qj) ≥ α, j = 1, 2, . . . , k and Â(α) =
⋂

j=1,2,...,k

Qj. (9)

We consider the following calculations of GISs (see [6]).

Definition 1. Let Ai, i = 1, 2, . . . ,m be graded ill-known sets of real numbers.
Given a function f : Rm → R, the image f(A1, . . . ,Am) is defined by a graded
ill-known set of real numbers characterized by

πf(A1,...,Am)(Y )

=

⎧⎨⎩
sup

Q1,...,Qm⊆R
Y =f(Q1,...,Qm)

min (πA1 (Q1), · · · , πAm(Qm)) , if f−1(Y ) �= ∅,

0, if f−1(Y ) = ∅,
(10)

where we define f(Q1, . . . , Qm) = {f(x1, . . . , xm) | xi ∈ Qi, i = 1, . . . ,m}.

Definition 1 is obtained from application of the extension principle in fuzzy sets.
We have the following theorem about upper approximation (see [6]).

Theorem 1. The upper approximation f+(A1, . . . ,Am) of f(A1, . . . ,Am) can
be calculated by upper approximations of Ai, i = 1, 2, . . . ,m. More concretely,
we obtain

μf+(A1,...,Am)(y) = sup
y∈Y

ϕ(πf(A1,...,Am)(Y ))

= sup
x1,...,xm∈R

y=f(x1,...,xm)

t(μA+
1
(x1), . . . , μA+

m
(xm))) = μf(A+

1 ,...,A+
m)(y), (11)

where μf+(A1,...,Am) is the membership function of f+(A1, . . . ,Am) and μA+
i

is the membership function of the upper approximation A+
i of Ai. Similarly,

μf(A+
1 ,...,A+

m) is the membership function of the image f(A+
1 , . . . , A

+
m).

Moreover, we have the following theorem (see Inuiguchi [6]).

Theorem 2. Let f : Rm → R be continuous and monotone Let Ai ∈ IQci,
i = 1, 2, . . . ,m. If {πAi(A) | A ⊆ X} is finite for i = 1, 2, . . . ,m then we have

μf−(A1,...,Am)(y) = inf
y 
∈Y

n(πf(A1,...,Am)(Y ))

= sup
x1,...,xm∈R

y=f(x1,...,xm)

min(μA−
1
(x1), . . . , μA−

m
(xm)) = μf(A−

1 ,...,A−
m)(y). (12)



274 S. Kawamura and M. Inuiguchi

3 A Class of GISs and Inclusions

3.1 A Class of GISs

The treatments of GISs are complex because they are possibility distributions
on the power set. Therefore, rough treatments using lower and upper approxi-
mations are conceivable. However, once those approximations are applied, the
original GISs cannot be restored generally. A GIS which can be restored from the
application of approximations is called a “restorable GIS”. Then, in this subsec-
tion, we propose a class of restorable GISs which are obtained from evaluations
of multiple experts.

We assume that m experts evaluate the variation ranges of an uncertain pa-
rameter a by sets of surely possible values and sets of surely impossible values.
Let Yk and Nk denote the set of surely possible values and the set of surely
impossible values evaluated by the k-th expert, respectively. Taking the comple-
ment N̄k of set Nk, N̄k can be understood as the set of somehow possible values.
We assume that there is no conflict, i.e., ∀i, j ∈ {1, 2, . . . ,m}, Yi

⋂
Nj = ∅. Then

we define GIS A showing the variation range of a by the following possibility
distribution on the power set:

πA(A) = 1− sup
x

max

(
|{i | x �∈ A, x ∈ Yi, i = 1, 2, . . . ,m}|

m
,

|{i | x ∈ A, x ∈ Ni, i = 1, 2, . . . ,m}|
m

)
. (13)

To interpret (13), we consider a statement ST (A) =“A is the variation range of
a”. For x �∈ A, x ∈ Yk implies that the k-th expert rejects ST (A) because he/she
insists the variation range includes Yk. On the other hand, for x ∈ A, x ∈ Nk

implies that the k-th expert rejects ST (A) because he/she insists the variation
range never intersects Nk. Therefore, πA(A) of (13) shows the minimum ratio of
experts who do not reject ST (A) by considering all points in the universe.

The lower and upper approximations A− and A+ of the GIS A defined by πA
of (13) are obtained by the following membership functions:

μA−(x) = n

(
1− |{i | x ∈ Yi, i = 1, 2, . . . ,m}|

m

)
, (14)

μA+(x) = ϕ

(
1− |{i | x ∈ Ni, i = 1, 2, . . . ,m}|

m

)
. (15)

When n(h) = 1− h and ϕ(h) = h, ∀h ∈ [0, 1], μA−(x) simply shows the ratio of
experts who insist x is surely possible while μA+(x) shows the ratio of experts
who do not think x is totally impossible. Applying (5) to (14) and (15), we
obtain πA as the maximal possibility distribution, i.e.,

π∗
A(A) = min

(
1− sup

x 
∈A

|{i | x ∈ Yi, i = 1, 2, . . . ,m}|
m

,

1− sup
x∈A

|{i | x ∈ Ni, i = 1, 2, . . . ,m}|
m

)
= πA(A). (16)
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(a) (b)

Fig. 1. Counter examples

In what follows, because of this good property and the good interpretation,
we consider the GISs defined in the same way as GIS A of (13) with m experts’
opinions. We call this class of GISs PwMs-GISs (point-wisely defined GIS with
multiple information sources). Note that PwMs-GIS A satisfies (i) A ∈ IQci and
(ii) {πA(A) | A ⊆ X} is finite. Namely, the assumptions on GISs in Theorem 2
are satisfied with PwMs-GISs.

Remark 1. Inuiguchi [8] proposed to use the same experts’ opinions to define
the possibility distribution of GIS A. However, his definition of the possibility
distribution is different from (13). He defined the possibility distribution by

π′
A(A) =

|{i | Yi ⊆ A, A ∩Ni = ∅, i = 1, 2, . . . ,m}|
m

. (17)

Here π′
A(A) shows the ratio of experts who agree that A is a possible variation

range. While the validity of set A is considered in comparisons with Yi and Ni in
the definition of π′

A(A) of (17), the validity of A is examined by considerations
of all points in the universe in the definition of πA(A) of (13). Namely, πA(A)
is the point-wise definition of the ratio of experts supporting A while π′

A(A) is
the set-based definition of the ratio of experts supporting A.

From the point of view that we are considering the variation range of single-
valued variable, and thus the realization of the variable is a point, πA can be
more suitable than π′

A. Moreover, taking the lower and upper approximations
of π′

A(A), we obtain fuzzy sets defined by (14) and (15). Namely, π′
A(A) and

πA(A) have same lower and upper approximations.

Remark 2. We note the following inequalities for any A ⊆ X :

|{i | Yi ⊆ A, i = 1, 2, . . . ,m}|
m

≤ 1− sup
x 
∈A

|{i | x ∈ Yi, i = 1, 2, . . . ,m}|
m

, (18)

|{i | A ∩Ni = ∅, i = 1, 2, . . . ,m}|
m

≤ 1− sup
x∈A

|{i | x ∈ Ni, i = 1, 2, . . . ,m}|
m

.

(19)

The strict inequalities hold when Yi and Ni, i = 1, 2, 3 (m = 3) are given as in
Figure 1. In Figure 1(a), the left-hand value of (18) becomes 1/3 while the right-
hand value of (18) becomes 2/3. Similarly, in Figure 1(b) of (19), the left-hand
value of (19) becomes 1/3 while the right-hand value becomes 2/3.

From (18) and (19), we observe π′
A(A) ≤ πA(A).
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3.2 Inclusion Degrees

We investigate the inclusion degree between PwMs-GISs A and B. To this end,
first, we investigate the inclusion degree between a PwMs-GIS and a usual set C.
The family of sets including C can be represented by an ill-known set C⊆ defined
by C⊆ = {D | C ⊆ D ⊆ X}. Similarly, the family of sets included in C can be
represented by an ill-known set C⊇ defined by C⊇ = {D | ∅ ⊆ D ⊆ C}. Then,
for PwMs-GIS A and B, we can define the following four degrees: (a) a necessity
degree that B includes C by NES(B ⊇ C) = N(C⊆|B), (b) a necessity degree
that A is included in C by NES(A ⊆ C) = N(C⊇|A), (c) a possibility degree
that B includes C by POS(B ⊇ C) = Π(C⊆|B) and (d) a possibility degree that
A is included in C by POS(A ⊆ C) = Π(C⊇|A).

By definitions, C⊆ is defined by the lower and upper approximations C and X
while C⊇ is defined by the lower and upper approximations ∅ and C. Because we
have I(a, 1) = 1 for any a ∈ [0, 1], n−1(1) = ϕ−1(0) = 0 and n−1(0) = ϕ−1(1) =
1 from definitions, we obtain NES(B ⊇ C) = infx∈C I(n−1(μB−(x)), 0), NES
(A ⊆ C) = infx 
∈C I(ϕ−1(μA+(x)), 0), POS(B ⊇ C) = infx∈C ϕ−1(μB+(x)) and
POS(A ⊆ C) = infx 
∈C n−1(μA−(x)) owing to (7) and (8).

Now let us extend those degrees to the inclusion degrees between PwMs-GISs
A and B. Using NES(B ⊇ C), NES(A ⊆ C), POS(B ⊇ C) and POS(A ⊆ C),
we define four graded ill-known sets: (a) a family of graded sets necessarily
included in PwMs-GIS B is defined by a GIS BN

⊇ with possibility distribution
πBN

⊇
(C) = NES(B ⊇ C), (b) a family of graded sets necessarily including PwMs-

GIS A is defined by a GIS AN
⊆ with possibility distribution πAN

⊆
(C) = NES(A ⊆

C), (c) a family of graded sets possibly included in PwMs-GIS B is defined by a
GIS BΠ

⊇ with possibility distribution πBΠ
⊇
(C) = POS(B ⊇ C) and (d) a family

of graded sets possibly including PwMs-GIS A is defined by a GIS AΠ
⊆ with

possibility distribution πAΠ
⊆
(C) = POS(A ⊆ C).

Then we obtain eight inclusion degrees: (a) a necessity degree that A is nec-
essarily included in B is defined by NES(A ⊆ B) = N(BN

⊇ |A), (b) a neces-
sity degree that A is possibly included in B is defined by NEPO(A ⊆ B) =
N(BΠ

⊇ |A), (c) a possibility degree that A is necessarily included in B is defined

by PONE(A ⊆ B) = Π(BN
⊇ |A), (d) a possibility degree that A is possibly in-

cluded in B is defined by POS(A ⊆ B) = Π(BΠ
⊇ |A), (e) a necessity degree that

B necessarily includes A is defined by NES(B ⊇ A) = N(AN
⊆ |B), (f) a necessity

degree that B possibly includes A is defined by NEPO(B ⊇ A) = N(AΠ
⊆ |B),

(g) a possibility degree that B necessarily includes A is defined by PONE(B ⊇
A) = Π(AN

⊆ |B), (h) a possibility degree that B possibly includes A is defined

by POS(B ⊇ A) = Π(AΠ
⊆ |B). We obtain the following theorem.

Theorem 3. When A and B are PwMs-GISs, we have

NES(A ⊆ B) = inf
x∈X

I
(
ϕ−1 (μA+(x)) , I

(
n−1 (μB−(x)) , 0

))
, (20)

NEPO(A ⊆ B) = inf
x∈X

I
(
ϕ−1 (μA+(x)) , ϕ−1(μB+(x))

)
, (21)
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PONE(A ⊆ B) = inf
x∈X

max
(
n−1(μA−(x)), I

(
n−1 (μB−(x)) , 0

))
, (22)

POS(A ⊆ B) = inf
x∈X

max
(
n−1(μA−(x)), ϕ−1 (μB+(x))

)
, (23)

NES(B ⊇ A) = inf
x∈X

I
(
n−1 (μB−(x)) , I

(
ϕ−1(μA+(x)), 0

))
, (24)

NEPO(B ⊇ A) = inf
x∈X

I
(
n−1 (μB−(x)) , n−1(μA−(x))

)
, (25)

PONE(B ⊇ A) = inf
x∈X

max
(
I
(
ϕ−1(μA+(x)), 0

)
, ϕ−1(μB+(x))

)
, (26)

POS(B ⊇ A) = inf
x∈X

max
(
n−1(μA−(x)), ϕ−1(μB+(x))

)
, (27)

where n and ϕ are functions used in (3).

Proof. We prove (20) and (26) because (21), (22) and (23) are proved similarly
to (20) and (24), (25) and (27) are proved similarly to (26).

NES(A ⊆ B) = inf
C⊆X

I
(
πA(C), πBN

⊇
(C)
)

= inf
C⊆X

I

(
πA(C), inf

x∈C
I
(
n−1 (μB−(x)) , 0

))
= inf

C⊆X
inf
x∈C

I
(
πA(C), I

(
n−1 (μB−(x)) , 0

))
= inf

x∈X
I

(
sup
C�x

πA(C), I
(
n−1 (μB−(x)) , 0

))
= inf

x∈X
I

(
ϕ−1

(
ϕ

(
sup
C�x

πA(C)

))
, I
(
n−1 (μB−(x)) , 0

))
= inf

x∈X
I
(
ϕ−1 (μA+(x)) , I

(
n−1 (μB−(x)) , 0

))
.

Now we prove (26). Using the restorability of πA, we obtain

PONE(B ⊇ A) = sup
C⊆X

min
(
πA(C), πBN

⊇
(C)
)

= sup
C⊆X

min

(
inf
x/∈C

n−1(μA−(x)), inf
x∈C

ϕ−1(μA+(x)), inf
x∈C

I
(
n−1 (μB−(x)) , 0

))
.

We have the following equivalences:

inf
x/∈C

n−1(μA−(x)) ≥ α ⇔ n−1(μA−(x)) < α implies x ∈ C,

inf
x∈C

ϕ−1(μA+(x)) ≥ α ⇔ x ∈ C implies ϕ−1(μA+(x)) ≥ α,

inf
x∈C

I
(
n−1 (μB−(x)) , 0

)
≥ α ⇔ x ∈ C implies I

(
n−1 (μB−(x)) , 0

)
≥ α.

From (4), we obtain μA−(x) > n(α) implies μA+(x) ≥ ϕ(α). Then we have

PONE(B ⊇ A) ≥ α

⇔ n−1(μA−(x)) < α implies ϕ−1(μA+(x)) ≥ α and I
(
n−1 (μB−(x)) , 0

)
≥ α

⇔ n−1(μA−(x)) < α implies I
(
n−1 (μB−(x)) , 0

)
≥ α.
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Hence, we obtain (26). ()

From Theorem 3, we always have POS(A ⊆ B) = POS(B ⊇ A). When I satisfies
I(a, I(b, 0)) = I(b, I(a, 0)) for any a, b ∈ [0, 1], NES(A ⊆ B) = NES(B ⊇ A)
holds. Morever, when I satisfies I(a, b) = max(I(a, 0), b) for any a, b ∈ [0, 1],
NEPO(A ⊆ B) = PONE(B ⊆ A) and NEPO(B ⊇ A) = PONE(A ⊆ B)
hold. Furthermore, I(a, b) = max(I(a, 0), b) implies I(a, I(b, 0)) = I(b, I(a, 0)).
Then when I satisfies I(a, b) = max(I(a, 0), b) for any a, b ∈ [0, 1], inclusion
degrees are reduced to four indices.

4 Linear Programming with Graded Ill-Known Sets

We consider the following linear programming problem with GISs (we call this
problem “GIS-LP problem”):

maximize c1x1 + c2x2,
subject to a11x1 + a12x2 �1 b1, a21x1 + a22x2 �2 b2, x1, x2 ≥ 0,

(28)

where ranges of aij , cj , i, j = 1, 2 are estimated by PwMs-GISs Aij and Cj .
Notation ‘�i bi’ means “roughly less than bi” and we assume ranges “roughly
less than bi”, i = 1, 2 are represented by PwMs-GISs Bi. Here we treat a problem
with two constraints but the approach described in this section can be extended
to problems with many constraints.

To treat the objective function, we assume goals represented by ‘�0 b0’ with
meaning “roughly greater than b0” which are expressed by PwMs-GIS B0. Then
GIS-LP problem (28) is transformed to the following problem:

c1x1 + c2x2 �0 b0, a11x1 + a12x2 �1 b1, a21x1 + a22x2 �2 b2, x1, x2 ≥ 0. (29)

This problem is a system of linear inequalities with PwMs-GISs. Similar to the
case with fuzzy numbers, we can discuss the satisfaction degree of all inequalities
to a solution x = (x1, x2). Then we formulate problem (29) as a maximization
problem of the satisfaction degree. The variation range of the left-hand side value
can be expressed by a PwMs-GIS while the satisfactory range is given also by a
PwMs-GIS. Then the satisfaction degree can be represented by some of inclusion
degrees (20) to (27) between two PwMs-GISs. For example, when the inclusion
degree (20) is used, Problem (29) is formulated as

maximize α,
subject to Nes(C1x1 + C2x2 ⊆ B0) ≥ α, Nes(A11x1 +A12x2 ⊆ B1) ≥ α,

Nes(A21x1 +A22x2 ⊆ B2) ≥ α, x1, x2 ≥ 0.
(30)

Let I satisfy I(a, b) = max(I(a, 0), b), for any a, b ∈ [0, 1]. Then, for PwMs-GISs
A and B, we have the following property:

Nes(A ⊆ B) ≥ α ⇔ μA+(x) > ϕ(I∗(α, 0)) implies μB−(x) ≥ n(I∗(α, 0)), (31)

where we define I∗(a, 0) = sup{s ∈ [0, 1]|I(s, 0) ≥ a}.
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When f : Rm → R is continuous and monotonous, f(A1, . . . ,Am) is a roughly
specified GIS for PwMs-GISs Ai, i = 1, 2, . . . ,m. By Theorems 1 and 2, in this
case, f(A1, . . . ,Am) is specified by its lower approximation f(A−

1 , . . . , A
−
m) and

upper approximation f(A+
1 , . . . , A

+
m). Moreover, we have (f(A±

1 , . . . , A
±
m))β =

f((A±
1 )β , . . . , (A

±
m)β) (double-sign corresponds), where (D)β = {r | μD(r) > β}

for a fuzzy set D. D
L
(β) and D

R
(β) denote inf(D)β and sup(D)β , respectively.

Similarly, we define [D]β = {r | μD(r) ≥ β} for a fuzzy set D. DL(β) and DR(β)
denote inf[D]β and sup[D]β , respectively.

Applying (31) to Problem (30), we obtain

maximize α,

sub. to C
+

1

L
(ϕ(I(α, 0)))x1 + C

+

2

L
(ϕ(I(α, 0)))x2 ≥ B−

0

L
(n(I∗(α, 0))),

A
+

11

R
(ϕ(I(α, 0)))x1 +A

+

12

R
(ϕ(I(α, 0)))x2 ≤ B−

1

R
(n(I∗(α, 0))),

A
+

21

R
(ϕ(I(α, 0)))x1 +A

+

22

R
(ϕ(I(α, 0)))x2 ≤ B−

2

R
(n(I∗(α, 0))),

x1, x2 ≥ 0, α ∈ [0, 1].

(32)

Problem (32) is solved by a bisection method together with the simplex method.

5 A Numerical Example

We consider the following simple problem.
Problem. In a factory, the factory manager intends to produce products A
and B. Products A and B are made of materials 1 and 2. To produce a unit of
product A, a11 units of material 1 and a12 units of material 2 are needed. To
produce a unit of product B, a21 units of material 1 and a22 units of material
2 are needed. The manager wants consumed amounts of materials 1 and 2 to
be less than b1 units and b2 units, respectively. The gross revenue of product A
per unit is c1 while the gross revenue of product B per unit is c2. The manager
has his preference on the total gross revenue, not to be less than b0. How much
amounts of products A and B should be produced ?

The parameters aij , cj , i = 1, 2, j = 1, 2 are not known exactly. However,
two experts has their estimations of variation ranges by sets Y k

aij
, Y k

cj of surely

possible values and sets Nk
aij

, Nk
cj of surely impossible values. They are shown

in Table 1. The manager’s preferences on the total gross revenue as well as
consumed amounts of materials are given by sets Y k

bj
of surely satisfactory values

and sets Nk
bj

of surely unsatisfactory values. They are given in Table 2.
From Tables 1 and 2, we observe that sets of surely possible values of product

A are larger than those of product B. In other words, product A has more
ambiguous factors than product B. Applying (13) with n(a) = 1− 1, ϕ(a) = 1,
I(a, b) = max(1−a, b), we obtain possibility distributions πAij , πCj and πBl

. The
lower and upper approximations of those possibility distributions are obtained
by (14) and (15). For example, membership functions of lower approximation
A−

11 and upper approximation A+
11 of A11 are obtained as follows:
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Table 1. Estimated ranges of coefficients

k Y k
a11

Nk
a11

Y k
a12

Nk
a12

1 [1.9, 2.1] (−∞, 1), (3, +∞) [2.4, 2.6] (−∞, 2.3), (2.7, +∞)
2 [1.95, 2.05] (−∞, 1.1), (2.9, +∞) [2.45, 2.55] (−∞, 2.35), (2.65, +∞)

k Y k
a21

Nk
a21

Y k
a22

Nk
a22

1 [3.8, 4.2] (−∞, 3), (5, +∞) [1.9, 2.1] (−∞, 1.8), (2.2, +∞)
2 [3.9, 4.1] (−∞, 3.2), (4.8, +∞) [1.95, 2.05] (−∞, 1.85), (2.15, +∞)

k Y k
c1 Nk

c1 Y k
c2 Nk

c2

1 [9.7, 10.3] (−∞, 9.5), (10.5, +∞) [6.8, 7.2] (−∞, 5.5), (8.5, +∞)
2 [9.8, 10.2] (−∞, 9.6), (10.4, +∞) [6.9, 7.1] (−∞, 5.7), (8.3, +∞)

Table 2. Satisfactory ranges of goal and constraints

k Y k
b1

Nk
b1

Y k
b2

Nk
b2

Y k
b0

Nk
b0

1 (−∞, 190] (205, +∞) (−∞, 290] (305, +∞) [510, +∞) (−∞, 495)
2 (−∞, 195] (210, +∞) (−∞, 295] (310, +∞) [505, +∞) (−∞, 490)

μA−
11
(r)

=

⎧⎪⎨⎪⎩
1, if r ∈ [1.95, 2.05],

0.5, if r ∈ [1.9, 1.95)∪ (2.05, 2.1],

0, if r ∈ (−∞, 1.9) ∪ (2.1,+∞),

μA+
11
(r)

=

⎧⎪⎨⎪⎩
1, if r ∈ [1.1, 2.9],

0.5, if r ∈ [1, 1.1) ∪ (2.9, 3],

0, if r ∈ (−∞, 1) ∪ (3,+∞).

(33)
Using inclusion degree NES(A ⊆ B) which corresponds to a robust treatment
of constraint, Problem (32) are reduced to the following problem:

(NES) maximize α, subject to⎧⎪⎪⎨⎪⎪⎩
9.6x1 + 5.7x2 ≥ 505, if 0 < α ≤ 0.5, 9.5x1 + 5.5x2 ≥ 510, if 0.5 < α ≤ 1,
2.9x1 + 2.65x2 ≤ 195, if 0 < α ≤ 0.5, 3.0x1 + 2.7x2 ≤ 190, if 0.5 < α ≤ 1,
4.8x1 + 2.15x2 ≤ 295, if 0 < α ≤ 0.5, 5.0x1 + 2.2x2 ≤ 290, if 0.5 < α ≤ 1,
x1 ≥ 0, x2 ≥ 0.

Let α = 1, we obtain an optimal solution x1 = 54.53, x2 = 29.03. There are
many feasible solutions with α = 1. Then the manager can enlarge his required
total gross revenue to some extent. The solution described above is obtained by
maximizing 9.5x1 + 5.5x2 (an estimated total gross revenue).

The differences of feasible regions with α = 1 by the selected inclusion indices
are depicted in Figure 2. As a reference, we show a feasible region (Center)
defined by center values of {r | μA−

ij
(r) = 1}, {r | μC−

j
(r) = 1} and b̄0 =

0.5 inf{r | μB−
0
(r) = 1} + 0.5 inf{r | μB+

0
(r) = 1}, b̄i = 0.5 sup{r | μB−

i
(r) =

1} + 0.5 sup{r | μB+
i
(r) = 1}, i = 1, 2. As shown in this figure, all feasible

regions are included in the region of (Center). From this fact, we confirm the
robust treatments by inclusion degress. We observe (NES) is strongest while
(POS) is weakest. (NEPO) and (PONE) are between them. In this example,
(NEPO) looks stronger than (PONE) but the inclusion relation does not hold.
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(NEPO) maximize α, subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

9.6x1 + 5.7x2 ≥ 490, if 0 < α ≤ 0.5,
9.5x1 + 5.5x2 ≥ 495, if 0.5 < α ≤ 1,
2.9x1 + 2.65x2 ≤ 210, if 0 < α ≤ 0.5,
3.0x1 + 2.7x2 ≤ 205, if 0.5 < α ≤ 1,
4.8x1 + 2.15x2 ≤ 310, if 0 < α ≤ 0.5,
5.0x1 + 2.2x2 ≤ 305, if 0.5 < α ≤ 1,
x1 ≥ 0, x2 ≥ 0.

(PONE) maximize α, subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

9.8x1 + 6.9x2 ≥ 505, if 0 < α ≤ 0.5,
9.7x1 + 6.8x2 ≥ 510, if 0.5 < α ≤ 1,
2.05x1 + 2.55x2 ≤ 195, if 0 < α ≤ 0.5,
2.1x1 + 2.6x2 ≤ 190, if 0.5 < α ≤ 1,
4.1x1 + 2.05x2 ≤ 295, if 0 < α ≤ 0.5,
4.2x1 + 2.1x2 ≤ 290, if 0.5 < α ≤ 1,
x1 ≥ 0, x2 ≥ 0.

(POS) maximize α, subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

9.8x1 + 6.9x2 ≥ 490, if 0 < α ≤ 0.5,
9.7x1 + 6.8x2 ≥ 495, if 0.5 < α ≤ 1,
2.05x1 + 2.55x2 ≤ 210, if 0 < α ≤ 0.5,
2.1x1 + 2.6x2 ≤ 205, if 0.5 < α ≤ 1,
4.1x1 + 2.05x2 ≤ 310, if 0 < α ≤ 0.5,
4.2x1 + 2.1x2 ≤ 305, if 0.5 < α ≤ 1,
x1 ≥ 0, x2 ≥ 0.

(Center) maximize α, subject to⎧⎪⎪⎨
⎪⎪⎩

10x1 + 7x2 ≥ 502.5,
2x1 + 2.5x2 ≤ 197.5,
4x1 + 2x2 ≤ 297.5,
x1 ≥ 0, x2 ≥ 0.

Fig. 2. Differences of constraints by the adopted inclusion degrees
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Abstract. This paper proposes a system that allows a group of human users to
share their cultural experiences online, like buying together a gift from a museum
or browsing simultaneously the collection of this museum. We show that such ap-
plication involves two multiple criteria decision problems for choosing between
different alternatives (e.g. possible gifts): one at the level of each user, and one
at the level of the group for making joint decisions. The former is made manu-
ally by the users via the WeShare interface. This interface displays an image with
tags reflecting some features (criteria) of the image. Each user expresses then his
opinion by rating the image and each tag. A user may change his choices in light
of a report provided by his WeShare agent on the opinion of the group. Joint de-
cisions are made in an automatic way. We provide a negotiation protocol which
shows how they are reached. Both types of decisions are based on the notion of
argument. Indeed, a tag which is liked by a user constitutes an argument pro the
corresponding image whereas a tag which is disliked gives birth to a cons argu-
ment. These arguments may have different strengths since a user may express to
what extent he likes/dislikes a given tag. Finally, the opinion analysis performed
by a WeShare agent consists of aggregating the arguments of the users.

1 Introduction

Visiting a museum with friends can be considered one of the preferred social shared
experiences of people visiting a city. In such a social experience, users can share opin-
ions with other users and together decide which cultural artefacts to see. Unfortunately,
museums have been placed under financial pressure by the European economic crisis.

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 282–293, 2012.
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Consequently, several museums in the UK reduced their opening hours [13] and, as
such, physically visiting museums or seeing all the artifacts in a museum is becom-
ing harder [15]. Internet may partly solve this problem since some digital versions of
several institutional collections are now available online.

A digital version of a museum is usually represented as a searchable database con-
taining many images of objects held by an institution. For example, the Horniman Mu-
seum allows users to express opinions about images by means of tags, and to see the
opinions generated by others, including a tag cloud view of the complete collection.
However, in such a case, the system does not provide a realtime social experience,
where the user is aware of the other people online and can interact with them, unlike
a visit with a group friends to the physical museum itself. On the other hand, the pre-
dominance of social network tools is changing the way in which users can interact
with information and with other people. This social network could be exploited to en-
rich, encourage and enliven engagement with online cultural artefacts and to benefit the
museum themselves, by getting new visitors more engaged with a museum so that a
physical visit becomes more likely.

These concerns suggest that building a system which enables an online, shared cul-
tural experience for users willing to visit cultural artefacts online is worthy to be in-
vestigated. The design and implementation of such a system demand several decisions.
For instance, deciding which kind of artefacts to a group of users want to buy or add
to a shared collection (which could be later used to produce a guide for when visiting
the museum physically), the partners with whom a user wants to share this experience,
or which artefact to display next. While some of them can be easily carried out by
the users, the choice of a specific artefact from a large collection, taking into account
the opinions of a group of users as a whole and not only the individuals can require a
more complex decision model. We are in initital stages of an european project and have
started user evaluations and a relationship with a local museum in London in order to
set out what kinds of user groups would take advantage of the system we are building.

In this paper, we propose the WeShare system, a first prototype that allows the con-
sumption of an online shared experience by providing the following functionalities. It
allows two or more users to connect to the digital collection of a museum, browse syn-
chronously images, and decide all together which image to add to their joint collection
or which one to buy. Such an application involves two multiple criteria decision prob-
lems: one at the level of each user for accepting/rejecting a displayed image, and one at
the level of the group for making a joint decision about the same image. The former is
made manually by the users via the WeShare interface. This interface displays an image
with tags sent by the server of the museum. A tag represents a feature (or a criterion)
of an image. Each user expresses then his opinion by rating the image itself and each
tag. In addition, he provides various weights expressing to what extent he likes/dislikes
the image and the tags. Joint decisions are made in an automatic way. We provide a
negotiation protocol which shows how they are reached. Both types of decisions are
based on the notion of argument which has a particular form in this system. Indeed, un-
like existing logical argumentation systems where an argument is a logical proof for a
given conclusion (e.g. [2,7,19]), an argument in favor of an image is a pair ((tag, value),
image). When a user likes the tag (i.e. the value is positive), then the argument is pro
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the image. However, when the tag is disliked, the pair is a cons argument. These argu-
ments with varying strengths are thus built by the users through the WeShare interface.
Again, unlike argumentation systems for defeasible reasoning where the construction
of arguments is monotonic, in our application this is not the case. Actually, a user may
revise his opinion about a given tag. Consequently, the initial argument is removed and
replaced by the new one. This revision is possible in light of a report provided by the
user’s WeShare agent on the opinion of the group. Indeed, an analysis of the opinion
of the group is performed. It consists of aggregating the arguments of the users. We
propose two aggregation operators: one that computes the average value for each tag
and the average value of the image. The second operator aggregates in the same way
the values of the tags, however applies a multiple criteria procedure for computing the
final recommendation of the image.

The paper is organized as follows: Section 2 provides the architecture of our system.
Section 3 describes the decision procedure of the server, namely how it selects the next
image to browse. Section 4 describes the activities of the human user as well as his
assistant agent. Section 5 provides a negotiation protocol that allows the group of users
to make a common decision about a given image. The last section concludes.

2 System Architecture

The architecture of our system is depicted in Figure 1. It contains two main components:
a Media Server agent and a WeShare agent per human user.

The Media Server agent has access to the database of the museum. It is equipped
with a decision model that computes the next image to propose to the users. That image
is sent to the WeShare agents which display the image to all the users at the same time.
In addition to the image, the Media Server agent provides several tags associated with

Fig. 1. The agents and the roles they play. Arrows indicate exchange of messages.
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an image. They represent some particular features of the image (like being fish in the
image shown in Figure 2).

WeShare agents consist of two different subcomponents: the User Assistant agent
and the Deliberating agent. The User Assistant agent forms a layer between the We-
Share interface (GUI) and the system. Through the interface (Figure 2), users express
whether they like or not the image. Similarly, they can evaluate positively or negatively
each tag. For instance, in the case of Figure 2, one may say that he likes the image, the
fact that it represents a fish, but does not like that it is a toy.

The Deliberating agent is responsible for collecting liked and disliked tags of users
in terms of preferences and rejections. It also maintains the preferences and rejections
of other agents. It has a decision model for opinion analysis. Moreover, it is equipped
with a negotiation protocol which allows the users to decide whether to accept or not a
given displayed image.

The communication between the agents in the system is regulated by a lightweight
version of a peer-to-peer Electronic Institution (Local EI). Generally speaking, Elec-
tronic Institutions allow to model and control agents’ interactions. Since they are out of
scope of this paper, we omit their description and we refer to [5,10].

The decision models of the Media Server and WeShare agents will be described in
the following sections.

3 Media Server Agent

The Media Server agent is responsible for answering the queries made by human users.
This agent is equipped with an image archive which consists of 2500 image files with
varying numbers of natural language tags. Throughout the paper, I = {im1, . . . , imn}
(with n = 2500) is the set of available images where each imi ∈ I is the identifier
of an image. Each image is described with a finite set of tags or features, for instance
the color. The set T = {t1, . . . , tk} contains all the available tags. Finally, we assume
the availability of a function F : I → 2T that returns the tags associated with a given
image. Note that the same tag may be associated with more than one image.

The Media Server agent is also equipped with a decision model which defines a
preference relation * on a set I ′ ⊆ I. The best element with respect to this relation is
sent to the WeShare agents for browsing. In case of ties, one of them is chosen randomly.
An important question now is how is the relation* defined? The model has three inputs:

1. A set I ′ ⊆ I of images.
2. A set of preferences P ⊆ T of tags that an image should have.
3. A set of rejections R ⊆ T of tags that an image should not have.

The two sets P and R represent respectively the preferences and the rejections of the
group of users. They are provided by the Deliberating agent of a user, the one who
is the administrator of a browsing session (as we will see in Section 5). The decision
model prefers the image that suits better these preferences and avoids the rejections.
This principle is suitable when all the tags are equally important. It is worth pointing
out that several principles can be found in [4,9,11] in case of weighted tags.
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Fig. 2. WeShare interface

Definition 1 (Decision model). Let 〈P ,R, I ′〉 be the input sets. For imi, imj ∈ I ′,
imi * imj iff |F(imi) ∩ P| ≥ |F(imj) ∩ P| and |F(imi) ∩R| ≤ |F(imj) ∩R|.

It is easy to check that the relation * is a partial preorder. Its maximal elements are gath-
ered in the set max� defined as follows:max� = {imi ∈ I ′ s.t. �imj ∈ I ′ with imj *
imi}. Note also that in case the two sets P and R are empty, all the images are equally
preferred. Finally, the Media Server sends to the WeShare agents one of the best images
wrt. the relation *. In case the set max� is empty, an image is chosen randomly.

Definition 2 (Best image). Best(〈P ,R, I ′〉) =
{
imi ∈ max� if max� �= ∅
imi ∈ I ′ else

To simplify notation we will use Best(I ′) in the rest of the paper.

4 Human User and WeShare Agent

Human users interact with the system via the WeShare interface depicted in Figure 2.
Each user is responsible for expressing an opinion about each image sent by the Media
Server agent. Indeed, he provides an overall rating to the image as well as a (positive
or negative) value to each tag associated with the image. Throughout the paper, we as-
sume the availability of a bipolar scale S = [−1, 1] which is used for evaluating the tags
and the image. Assigning a positive value to an image means that the image is recom-
mended. For a given image im ∈ I, each user ui provides the following information:
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User/Tags t1 . . . tj . . . tm im
ui vi,1 . . . vi,j . . . vi,m ri

where F(im) = {t1, . . . , tm}, vi,j ∈ S is the value assigned by user i to tag j, and
ri ∈ S is the overall rating of the image im.

A user can revise his opinion in light of a report sent by his WeShare agent about the
opinion of the remaining users. Note that the WeShare agent only gives advices to the
user and the final decisions are made by the user himself. Finally, a user may engage
in a negotiation dialogue with other users in order to persuade them to accept/reject a
given image. This part will be described in Section 5.

4.1 Arguments

The notion of argument is at the heart of several models developed for reasoning about
defeasible information (e.g. [12,17]), decision making (e.g. [4,8]), practical reasoning
(e.g. [6]), and modeling different types of dialogues (e.g. [3,18]). An argument is a
reason for believing a statement, choosing an option, or doing an action. In most existing
works on argumentation, an argument is either considered as an abstract entity whose
origin and structure are not defined, or it is a logical proof for a statement where the
proof is built from a knowledge base. In our application, arguments are reasons for
accepting or rejecting a given image. They are built by the human user when rating the
different tags associated with an image. Indeed, a tag which is evaluated positively gives
birth to an argument pro the image whereas a tag which is rated negatively induces a
con argument against the image. The tuple 〈I, T ,S〉 will be called a theory.

Definition 3 (Argument). Let 〈I, T ,S〉 be a theory and im ∈ I.

– An argument pro im is a pair ((t, v), im) where t ∈ T and v ∈ S and v > 0.
– An argument con im is a pair ((t, v), im) where t ∈ T and v ∈ S and v < 0.

The pair (t, v) is the support of the argument and im is its conclusion. The functions
Tag, Val and Conc return respectively the tag t of an argument ((t, v), im), its value
v, and the conclusion im.

It is well-known that the construction of arguments in systems for defeasible reasoning
is monotonic (see [2] for a formal result). Indeed, an argument cannot be removed when
the knowledge base from which the arguments are built is extended by new information.
This is not the case in our application. When a user revises his opinion about a given
tag, the initial argument is removed and replaced by a new one. For instance, if a user
assigns value 0.5 to a tag t which is associated with an image im, then he decreases
the value to 0.3, the argument ((t, 0.5), im) is no longer considered as an argument
and is completely removed from the set of arguments of the user and is replaced by the
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argument ((t, 0.3), im). To say it differently, the set of arguments of a user contains
only one argument per tag for a given image.

4.2 Opinion analysis

Opinion analysis is gaining increasing interest in linguistics (see e.g. [1,14]) and more
recently in AI (e.g. [16,20]). This is due to the importance of having efficient tools that
provide a synthetic view on a given subject. For instance, politicians may find it useful to
analyze the popularity of new proposals or the overall public reaction to certain events.
Companies are definitely interested in consumer attitudes towards a product and the
reasons and motivations of these attitudes. In our application, it may be important for
each user to know the opinion of the group about a certain image. This may lead the
user to revise his own opinion.

The problem of opinion analysis consists of aggregating the opinions of several
agents/users about a particular subject, called target. An opinion is a global rating that
is assigned to the target, and the evaluation of some features associated with the target.
Thus, this amounts to aggregating arguments which have the structure given in Defini-
tion 3. Let us illustrate this issue on the following example.

Example 1. Let us consider the following opinion expressed on a digital camera.

“It is a great digital camera for this century. The rotatable lens is great. It has
fast response from the shutter. The LCD has increased from 1.5 to 1.8, which
gives bigger view. But, it would be better if the model is designed for smaller
size. I recommend this camera.”

The target here is the digital camera, the overall rating is “recommended”. The fea-
tures are: the size, rotatable lens, response from the shutter, size of LCD. For instance,
response from the shutter is evaluated positively whereas the size is evaluated nega-
tively.

In our application, the target is an image sent by the Media Server agent and the features
are the associated tags. In what follows, we propose two models that are used by the
WeShare agents of the users (in particular by the Deliberating agent component) in or-
der to analyze the opinion of a group of users. Both models take as input the evaluations
of the users and provide an aggregated value for the image and an aggregated value for
each tag. The first model computes simply the average of existing values. The second
model is based on a multiple criteria procedure in which one has to choose between two
alternatives: recommending/accepting an image and rejecting it. The model prefers the
alternative that satisfies more criteria (tags in our case), i.e. the one with more arguments
pros. Note that in the application, all the tags are assumed to be equally important.

Definition 4 (Opinion aggregation). Let Ag = {u1, . . . un} be a set of users, im ∈ I
where F(im) = {t1, . . . , tm}. The next table summarizes the opinions of the n users.
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Users/Tags t1 . . . tj . . . tm im
u1 v1,1 . . . v1,j . . . v1,m r1
...

...
...

...
...

...
...

ui vi,1 . . . vi,j . . . vi,m ri
...

...
...

...
...

...
...

un vn,1 . . . vn,j . . . vn,m rn

The result of the aggregation is:

Group v1 . . . vj . . . vm r

where for all vi, vi =
∑

j=1,n

vj,i/n, and

Average operator: r =
∑

j=1,n

rj/n

MCD operator: r =

{
1 if |{tj | vj > 0}| > |{tk |vk < 0}|
0 otherwise

Note that the first aggregation operator assigns a value from the set S to an image while
the second one allows only binary values: 1 (for acceptance) and 0 (for rejection).

It is worth mentioning that even if both models aggregate in the same way the values
of the tags, they do not necessarily rate in the same way the image. The following
example shows a case where one operator accepts an image while the second rejects it.

Example 2. Let us consider the following opinions expressed by four users about an
image im where this image is described by four tags.

Users/Tags t1 t2 t3 t4 im
u1 0.9 0.7 -0.2 -0.3 0.5
u2 0.5 0.6 -0.5 0.2 -0.2
u3 -0.5 -0.3 -0.2 0.9 -0.6
u4 0.1 0.2 0.3 -0.6 0

The aggregated values of the tags are respectively: 0.25, 0.3, -0.15, and 0.05. The av-
erage operator assigns value -0.075 to the image whereas the MCD operator accepts
the image (the overall rating is 1). This discrepancy is due to the fact that the decision
model of each user is unknown. Indeed, it is not clear how a user aggregates the values
he assigns to tags in order to get an overall rating of an image. For instance, user u2

likes most of the tags, however he rejects the image. This means that either he has in
mind other tags which are not considered in the table, or gives a higher importance to
tag t3. The second reason of discrepancy is that the second model does not take into
account the overall recommendations of the users.

Finally, it is worth noticing that opinion analysis amounts to aggregating arguments
pros/cons a given target into a new argument. In the previous example, the four ar-
guments ((t1, 0.9), im), ((t1, 0.5), im), ((t1,−0.5), im) and ((t1, 0.1), im) are aggre-
gated into a new argument ((t1, 0.25), im). This argument is pro the image im while it
is based on argument ((t1,−0.5), im) con the same image.
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5 Group Decision Making

In the previous sections, we have mainly presented the architecture of the system and
described the reasoning part of the users and of the agents in the system. In what fol-
lows, we focus on the reasoning of the group. We provide a negotiation protocol that
allows agents to make joint decisions. The idea is the following: a session starts when a
user invites other users for sharing an experience online. When the invited users accept,
a request is sent to the Media Server agent that will compute the best image and send
it to the WeShare agents. These agents display the image to all the users. Each user
expresses his opinion about the image and the tags via the WeShare interface. WeShare
agents provide to their respective users a report on the aggregated opinion of the other
agents. Users may consider this information for revising their own opinions. In case all
agents agree on the overall rating of the image, then the image is bought (or stored)
and the session is over. In case of disagreement, pairs of users may engage in private
dialogues where they exchange arguments (as in Definition 3) about the image. The
exchanged arguments may be either the ones that are built by the user when introducing
his opinion or new ones. Actually, a user may add new tags for an image. When the
disagreement persists, the preferences (about tags) are aggregated and the result is sent
to the Media Server in order to select a new image that suits better those preferences.

In what follows, Ag = {u1, . . . , un} is a set of users, and Argst(ui) is the set of
arguments of user ui at step t. At the beginning of a session, the sets of arguments of
all users are assumed to be empty (i.e., Args0(ui) = ∅). Moreover, the set of images
contains all the available images in the database of the museum, that is I0 = I. We
assume also that a user ui is interested in having a joint experience with other users.
The protocol uses a communication language based on four locutions:

– Invite: it is used by a user to invite a set of users either for sharing an experience
or for engaging in a dialogue.

– Send is used by agents for sending information to other agents.
– Accept is used mainly by users for accepting requests made to them by other users.
– Reject is used by users for rejecting requests made to them by other users.

Interaction Protocol:

1. Invite(ui, G) (user ui sends an invitation to users in G where G ⊆ Ag). User ui

is the Administrator of the session.
2. Each user uj ∈ G sends either Accept(uj) or Reject(uj). Let G′ ⊆ G be the set

of agents who answered positively to the invitation.
3. If G′ = ∅, then either go to Step 4 (in case the user ui decides to have the experience

alone), or the session is over.
4. Send(WeSharei, {Media Server}, 〈P = ∅,R = ∅, It〉) (the WeShare agent of user

ui sends a request to the Media Server agent). Send(Media Server, {WeShare
i=1,...,n

},

Best(It)) (the Media Server agent computes Best(It) and sends it to all the We-
Share agents).

5. Each WeShare agent displays the image Best(It) and its tags (i.e., ti ∈
F(Best(It))).
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6. Each user uj ∈ G′ ∪ {ui}:
(a) bids the tags and gives an overall rating Resj(Best(I

t)) to the image. Let
Argstj = Argst−1

j ∪ {((ti, vi), Best(It)) | ti ∈ F(Best(It))} be the set of
arguments of user uj at step t.

(b) The Deliberating agent of uj computes the opinion of the group (G′ ∪ {ui}) \
{uj} using the average or MCD operator. Let 〈(t1, v1), . . . , (tk, vk), (r, v)〉 be
the result of the aggregation.

(c) The user uj may change his bids in light of 〈(t1, v1), . . . , (tk, vk), (r, v)〉. Thus,
the set Argstj is revised accordingly. All the arguments that are modified will
be replaced by the new ones. Let T ′ ⊆ F(Best(It)) be the set of tags whose
values are modified. Thus, Argstj = (Argstj \{((t, v), Best(It)) ∈ Argstj | t ∈
T ′}) ∪ {((t, v′), Best(It)) | t ∈ T ′}.

(d) When the user uj is sure about his bids, he clicks on a ‘Send’ button (on the
WeShare interface).

7. If for all uj ∈ G′ ∪ {ui}, Resj(Best(It)) > 0, then the session is over.
8. If for all uj ∈ G′ ∪ {ui}, Resj(Best(It)) < 0, then go to Step 12.
9. For all uj , uk ∈ G′∪{ui} such that Resj(Best(It)) > 0 and Resk(Best(It)) < 0,

then:
(a) Invite(uj, {uk}) (user uj invites user uk for a private dialogue).
(b) User uk utters either Accept(uk) or Reject(uk).
(c) If Accept(uk), then Send(uj , {uk}, a) where a is an argument, Conc(a) =

Best(It) and either a ∈ Argstj or Tag(a) /∈ T (i.e., the user introduces a new
argument using a new tag).

(d) User uk may revise his opinion about Tag(a). Thus, Argstk = (Argstk \
{((Tag(a), v), Best(It))}) ∪ {((Tag(a), v′), Best(It)) | v′ �= v}.

(e) Go to Step 10(c) with the roles of the agents reversed (the exchange stops either
when the users have no more arguments to send or one of the users decides to
exit the dialogue).

10. If ∃uj , uk ∈ G′ ∪ {ui} such that Resj(Best(It)) > 0 and Resk(Best(I
t)) < 0,

then Go to Step 12, otherwise Go to Step 8. (In this case, even after a phase of
bilateral persuasion, two users still disagree on the final rating of the current image).

11. Go to Step 4 with:
– P = {t ∈ F(Best(It)) | ∀uj ∈ G′ ∪ {ui}, ∃a ∈ Argstj such that Tag(a) =
t, Val(a) > 0, and Conc(a) = Best(It)},

– R = {t ∈ F(Best(It)) | ∀uj ∈ G′ ∪ {ui}, ∃a ∈ Argstj such that Tag(a) =
t, Val(a) < 0, and Conc(a) = Best(It)},

– It+1 = It \ {Best(It)}.
These sets are computed by the Deliberating agent of the Administrator of the ses-
sion.

It is worth mentioning that when a user does not express opinion about a given tag, then
he is assumed to be indifferent wrt. that tag. Consequently, the value 0 is assigned to
the tag.

Note also that the step 10(a) is not mandatory. Indeed, the invitation to dialogue is
initiated by users who really want to persuade their friends.
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The previous protocol generates dialogues that terminate either when all the images
in the database of the museum are displayed, or when users exit, or when they agree on
an image; This means also that the outcome of a dialogue may be either an image on
which all users agree or a failure.

6 Conclusions

This paper proposed a system that allows a group of users to have a shared online cul-
tural experience. In our system several users are provided synchronously with images
from the digital collection of a museum. Users can then express their own opinions
about each image, and finally make joint decisions about whether or not to accept the
image (so as, for example, to buy a hardcopy of that image for another friend). The
system has two main components: a Media Server agent which connects to the museum
and provides images, and WeShare agents through which users interact with the system
and with each other. Finally, although not explicitly covered in the paper, a lightweight
version of a peer-to-peer Electronic Institution is responsible for the multiple interac-
tions between the two other components.

From a reasoning point of view, the application involves two multiple criteria de-
cision problems: one at the level of each user and one at the level of the group. Both
decision problems are about accepting or not an image sent by the museum shop server.
Users individually make their decisions in a non-automatic way through the WeShare
interface. However, they are assisted by a software agent which provides an aggregated
view of the opinion of the group. This may later be taken into account by the user in or-
der to revise his choices. Two aggregation operators are defined: the first one computes
the average of the preferences of the different users whereas the second one applies
a multiple criteria aggregation. The decision of the group is made after a negotiation
phase where each user tries to persuade other users to change their preferences.

We are currently at the beginning of a European Project and plan to improve the
system in a number different ways. The first line of our research with respect to the work
described in this paper concerns the aggregation operator that may be used in opinion
analysis. We are investigating the possibility of using more sophisticated operators such
applying a multiple criteria aggregation of the data provided by each user and then to
aggregate the result. Another idea consists of considering weighted tags and providing
users with the ability to weight their preferences using HCI devices such as the speed
or length of time they press a tag during an online session. More future work consists
of us extending the negotiation architecture in order to allow the exchanging arguments
built from pre-existing domain ontologies.

Acknowledgment. This work was supported by the European framework ERA-Net
CHIST-ERA, under contract CHRI-001-03, ACE project “Autonomic Software Engi-
neering for online cultural experiences”.
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Abstract. We promote a useful representation of fuzzy sets by ordinary
sets, called the Cartesian representation. In particular, we show how the
main structures related to a general type of concept lattices may be
reduced using this representation to their ordinary counterparts. As a
consequence of this representation, we obtain a simple proof of the basic
theorem for this type of concept lattices.

1 Motivation and Problem Description

Many models involving ordinary sets and relations, including those used in data
analysis, decision making, information retrieval, or automated reasoning, have
been subject to extensions in which the ordinary sets and relations are replaced
by fuzzy sets and fuzzy relations. While the natural impetus for such extensions
comes from the need to extend the applicability of the models from binary data
to data involving grades (ordinal data), the technical side of the extensions is
far from being obvious. In the search for simple yet powerful principles to aid
such extensions, various methods have been proposed. Perhaps the best-known
concept in this regard is the concept of representation of fuzzy sets by cuts. In
this paper, we focus on models based on closure-like structures derived from a
binary relation. Such structures include Galois connections, closure and interior
operators and systems, concept lattices, as well as various forms of data depen-
dencies, and have been utilized in several areas, most notably for the purpose of
data analysis.

The aim of this paper is twofold. First, we provide a simple proof of the so-
called basic theorem of a general type of concept lattices that were proposed
in the literature and generalize several existing approaches to concept lattices.
Second, we promote a useful representation of fuzzy sets we call the Cartesian
representation. This representation is the core of the simple proof and, in fact, it
enables to reduce several problems regarding structures with degrees such as data
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with fuzzy attributes to ordinary structures. Hence, we argue that analogously
to the well-known representation by cuts, the Cartesian representation is a useful
tool in fuzzy set theory and its applications.

The paper is organized as follows. In Section 2, we provide preliminaries on
sup-preserving aggregation structures and the general type of concept lattices
used in the rest of our paper. In Section 3, we present the basic theorem, in-
troduce the Cartesian representation of fuzzy sets, present the results on rep-
resenting the general concept lattices by their ordinary counterparts and, as
a consequence of this representation, a simple proof of the basic theorem. In
Section 4, we provide concluding remarks.

2 Preliminaries

We assume that the reader is familiar with basic notions from fuzzy logic (see e.g.
[6, 18, 19]) and concept lattices and other closure structures (see e.g. [13, 14]).

2.1 Supremum-Preserving Aggregation Structures

The notion of a sup-preserving aggregation structure has been introduced in [8]
and studied further in [9], see also [2, 10, 23–25] for related work, to which we
refer for more details.

Let Li = 〈Li,≤i〉 be complete lattices, for i = 1, 2, 3. The operations in Li

are denoted as usual, adding subscript i. That is, the infima, suprema, the least,
and the greatest element in L2 are denoted by

∧
2,
∨
2, 02, and 12, respectively;

the same for L1 and L3. Consider now an operation � : L1 × L2 → L3 that
commutes with suprema in both arguments. That is, for any a, aj ∈ L1 (j ∈ J),
b, bj′ ∈ L2 (j′ ∈ J ′),

(
∨
1j∈Jaj) � b =

∨
3j∈J (aj � b) and a � (

∨
2j′∈J′bj′ ) =

∨
3j′∈J′(a � bj′). (1)

A quadruple 〈L1,L2,L3,�〉 satisfying (1) is called a (supremum preserving)
aggregation structure. Note that in our approach, 〈L1,L2,L3,�〉 plays the role
of a structure of truth degrees in fuzzy logic. In fact, it generalizes the notion of a
complete residuated lattice [28]. Due to commuting with suprema, the following
operations of residuation may be introduced: ◦� : L1 × L3 → L2 and �◦ :
L3 × L2 → L1 (adjoints to �) are defined by

a1 ◦� a3 =
∨
2{a2 | a1 � a2 ≤3 a3}, (2)

a3 �◦ a2 =
∨
1{a1 | a1 � a2 ≤3 a3}. (3)

We put indices in a1 and the like for mnemonic reasons. Thus, a1 indicates that
a1 is taken from L1 and the like.

Example 1. Let 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice with a par-
tial order ≤. The following two particular cases, in which Li = L and ≤i is either
≤ or the dual of ≤ (i.e. ≤i=≤ or ≤i=≤−1) are important for our purpose.
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(a) Let L1 = 〈L,≤〉, L2 = 〈L,≤〉, and L3 = 〈L,≤〉, let � be ⊗. Then, as is well
known [17, 28], � commutes with suprema in both arguments. Namely, due
to commutativity of ⊗, commuting amounts to a⊗

∨
j∈J bj =

∨
j∈J (a⊗ bj).

Furthermore,

a1 ◦� a3 =
∨
{a2 | a1 ⊗ a2 ≤ a3} = a1 → a3

and, similarly, a3 �◦ a2 = a2 → a3.
(b) Let L1 = 〈L,≤〉, L2 = 〈L,≤−1〉, and L3 = 〈L,≤−1〉, let � be →. Then, �

commutes with suprema in both arguments. Namely, the conditions (1) for
commuting with suprema in this case become

(
∨

j∈J aj) → b =
∧

j∈J (aj → b) and a → (
∧

j∈J bj) =
∧

j∈J (a → bj)

which are well-known properties of residuated lattices. In this case, we have

a1 ◦� a3 =
∧

{a2 | a1 → a2 ≥ a3} = a1 ⊗ a3

and
a3 �◦ a2 =

∨
{a1 | a1 → a2 ≥ a3} = a3 → a2.

Example 2. This example is the structure behind crisply generated concept lat-
tices and the one-sided concept lattices, see [10] for more information. Let
L1 = {0, 1}, L2 = [0, 1], L3 = [0, 1], let ≤1, ≤2, ≤3 be the usual total or-
ders on L1, L2, and L3, respectively. Let � be defined by a1 � a2 = min(a1, a2).
Then L1, L2, L3, and � satisfy (1). In this case,

0 ◦� a = 1, 1 ◦� a = a,

and

a3 �◦ a2 =

{
0 for a2 > a3,
1 for a2 ≤ a3.

The following are some of the properties of aggregation structures which are
generalizations of well-known properties of residuated lattices [9].

a1 � a2 ≤3 a3 iff a2 ≤2 a1 ◦� a3 iff a1 ≤1 a3 �◦ a2, (4)

a1 � (a1 ◦� a3) ≤3 a3, (5)

(a3 �◦ a2) � a2 ≤3 a3, (6)

a ◦�(
∧
3j∈Jcj) =

∧
2j∈J (a ◦� cj), (7)

(
∨
1j∈Jaj) ◦� c =

∧
2j∈J (aj ◦� c), (8)

c�◦(
∨
2j∈Jbj) =

∧
1j∈J (c�◦ bj), (9)

(
∧
3j∈Jcj)�◦ b =

∧
1j∈J (cj �◦ b). (10)

Note that various monotony conditions follow from (7)–(10). For example, (7)
and (8) imply that ◦� is isotone in the second and antitone in the first argument,
respectively.
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2.2 Concept Lattices over Sup-preserving Aggregation Structures

The following notions have been introduced in [8]. Note that essentially the same
notions were studied in [23] and in [10]. In [23], the notion of a generalized con-
cept lattice has been introduced. In [10], it has been shown that the notion of a
generalized concept lattice may be introduced within a framework that practi-
cally coincides with the notion of a supremum-preserving aggregation structure.
Importantly, generalized concept lattices generalize some previously introduced
types of concept lattices and we come back to this issue in the next section.

Let 〈L1,L2,L3,�〉 be a sup-preserving aggregation structure. Let 〈X,Y, I〉 be
an L3-context. That is, X and Y are non-empty sets of objects and attributes,
respectively, and I : X × Y → L3 is a binary L3-relation between X and Y .
For x ∈ X and y ∈ Y , the degree I(x, y) is interpreted as the degree to which
the object x has the attribute y. Consider the operators ↑ : L1

X → L2
Y and

↓ : L2
Y → L1

X , called the concept-forming operators, defined by

A↑(y) =
∧
2x∈X(A(x) ◦� I(x, y)), (11)

B↓(x) =
∧
1y∈Y (I(x, y)�◦B(y)), (12)

for any A ∈ L1
X and B ∈ L2

Y . A formal concept of I is then a pair 〈A,B〉
consisting of an L1-set A in X and an L2-set B in Y for which A↑ = B and
B↓ = A. Furthermore, B(X,Y, I) denotes the set of all formal concepts of I, i.e.

B(X,Y, I) = {〈A,B〉 ∈ L1
X × L2

Y |A↑ = B, B↓ = A}.

3 Structure of B(X,Y, I): Simple Proof of Basic Theorem
via Cartesian Representation

3.1 The Basic Theorem for B(X, Y, I), and the Relationships to
Other Types of Concept Lattices

In this section, we provide the basic theorem for concept lattices over aggrega-
tion structures and describe the relationship of these concept lattices to various
particular types of concept lattices proposed in the literature. Some of these or
close relationships have partially been described in the literature [10, 23, 24] and
we provide the relationships and explicit formulas for completeness and reader’s
convenience.

As usual, let us introduce a partial order ≤ on B(X,Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 if and only if A1 ⊆1 A2(or, equivalently, B2 ⊆2 B1),(13)

for every 〈A1, B1〉, 〈A2, B2〉 ∈ B(X,Y, I). Here, ⊆i denotes the (bivalent) in-
clusion relation defined for C,D ∈ Li

U by C ⊆i D iff C(u) ≤i D(u) for each
u ∈ U .

The following theorem is the basic theorem for concept lattices over aggrega-
tion structures. Note that its form is essentially as the one for L-concept lattices
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from [4]. Note also that for so-called generalized concept lattices [23], which are
very close to the concept lattices over aggregation structures, the basic theorem
is present in [22]. The theorem in [22] contains additional conditions for reasons
that we omit here.

Note that a subset K ⊆ V of a complete lattice V is infimally (supremally)
dense in V if every element of V is the infimum (supremum) of certain subset
of K.

Theorem 1. Let 〈L1,L2,L3,�〉 be a supremum-preserving aggregation struc-
ture. Let 〈X,Y, I〉 be an L3-context 〈X,Y, I〉.

(1) B(X,Y, I) equipped with ≤ is a complete lattice with infima and suprema
described as:∧
j∈J

〈Aj , Bj〉 =
〈⋂

j∈J

Aj , (
⋃
j∈J

Bj)
↑↓

〉
,
∨
j∈J

〈Aj , Bj〉 =
〈
(
⋃
j∈J

Aj)
↓↑,
⋂
j∈J

Bj

〉
(14)

(2) Moreover, a complete lattice V = 〈V,≤〉 is isomorphic to B(X,Y, I) iff
there are mappings γ : X ×L1 → V and μ : Y ×L2 → V such that γ(X ×L1) is
supremally dense in V, μ(Y ×L2) is infimally dense in V, and a� b ≤3 I(x, y)
is equivalent to γ(x, a) ≤ μ(y, b) for all x ∈ X, y ∈ Y, a ∈ L1, b ∈ L2.

Let us now consider several particular cases.

Case 1. Let 〈L1,L2,L3,�〉 be defined by Li = {0, 1}, ≤i be the usual orders
on {0, 1}, let a � b = min(a, b) (note that this is a particular structure from
Example 1 (a)). It is easily seen that upon identifying ordinary sets with their
membership functions, ↑ and ↓ become

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (15)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (16)

These are the ordinary operators used in formal concept analysis (FCA) [14],
and hence B(X,Y, I) is the set of ordinary formal concepts of the ordinary formal
context 〈X,Y, I〉. Clearly, (13) becomes

〈A1, B1〉 ≤ 〈A2, B2〉 if and only if A1 ⊆ A2 (or, equivalently, B2 ⊆ B1),

which is the partial order of formal concepts as used in FCA. Note also that
the following theorem, due to Wille, is the so-called basic theorem of ordinary
concept lattices [14]. (We include a complete statement because we show in
Section 3.3 that Theorem 1 may be proved using this theorem.)

Theorem 2. Let 〈X,Y, I〉 be an (ordinary) context 〈X,Y, I〉.
(1) B(X,Y, I) equipped with ≤ is a complete lattice with infima and suprema

described as:∧
j∈J

〈Aj , Bj〉 =
〈⋂

j∈J

Aj , (
⋃
j∈J

Bj)
↑↓

〉
,
∨
j∈J

〈Aj , Bj〉 =
〈
(
⋃
j∈J

Aj)
↓↑,
⋂
j∈J

Bj

〉
(17)
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(2) Moreover, a complete lattice V = 〈V,≤〉 is isomorphic to B(X,Y, I) iff
there are mappings γ : X → V and μ : Y → V such that γ(X) is supremally
dense in V, μ(Y ) is infimally dense in V, and 〈x, y〉 ∈ I is equivalent to γ(x) ≤
μ(y) for all x ∈ X, y ∈ Y .

Note that Theorem 2 is in fact a consequence of the present instance of Theorem
1 (i.e. the instance given by the aggregation structure of Case 1). Indeed, this
is clear for condition (1). Condition (2) of the present instance of Theorem 2
says “there are mappings γ : X × {0, 1} → V and μ : Y × {0, 1} → V such that
γ(X×{0, 1}) is supremally dense in V, μ(Y ×{0, 1}) is infimally dense in V, and
a�b ≤ I(x, y) is equivalent to γ(x, a) ≤ μ(y, b) for all x ∈ X, y ∈ Y, a, b ∈ {0, 1}”.
Let us see that this condition, denote it by (2){0,1}, implies (2) of Theorem 2:
Since 0 ⊗ b = 0 ≤ I(x, y) for any x, y, the last condition of (2){0,1} implies
that for each x ∈ X , y ∈ Y , and b ∈ {0, 1}, we have γ(x, 0) ≤ μ(y, b), i.e.
γ(x, 0) ≤

∧
y∈Y,b∈{0,1} μ(y, b). Now, since μ(Y × {0, 1}) is infimally dense in

V,
∧

y∈Y,b∈{0,1} μ(y, b) equals the least element 0V. Hence, γ(x, 0) = 0V for

each x ∈ X . Similarly, using the supremal density of γ(X, {0, 1}), one may
check that μ(y, 0) = 1V for each y ∈ Y . Since K is supremally dense in V iff
K − {0V} is supremally dense in V, and the same for infimal density of K and
K−{1V}, it clearly follows that γ(X×{1}) is supremally dense in V, μ(Y ×{1})
is infimally dense in V, and 1 = min(1, 1) ≤ I(x, y) (i.e. 〈x, y〉 ∈ I) is equivalent
to γ(x, 1) ≤ μ(y, 1) for all x ∈ X, y ∈ Y . Now, putting γ′(x) = γ(x, 1) and
μ′(y) = μ(y, 1), γ′ and μ′ satisfy condition (2) of Theorem 2. Conversely, from
mappings γ′ and μ′ satisfying (2) of Theorem 2 one obtains mappings γ and μ
satisfying (2){0,1} by putting γ(x, 0) = 0V, γ(x, 1) = γ′(x), μ(y, 0) = 1V, and
μ(y, 1) = μ′(y).

Case 2. Let 〈L1,L2,L3,�〉 be defined by Li = {0, 1}, ≤1=≤ and ≤2=≤3=≤−1

where ≤ is the usual order on {0, 1}. Let furthermore � be the truth function of
classical implication (again, this is a particular structure from Example 1 (b)).
Upon identifying ordinary sets with their membership functions, ↑ and ↓ of (11)
and (12) become the following operators:

A∩ = {y ∈ Y | for some x ∈ A : 〈x, y〉 ∈ I}, (18)

B∪ = {x ∈ X | for each y ∈ Y : if 〈x, y〉 ∈ I then y ∈ B}. (19)

These operators were studied in [15] where the basic relationships to the ordinary
concept-forming operators (described in Case 1) were established. Note that the
relationships are due to the fact that in classical sets one can use the law of
double negation due to which these operators and the ordinary operators are
mutually definable. Clearly, (13) becomes

〈A1, B1〉 ≤ 〈A2, B2〉 if and only if A1 ⊆ A2 (or, equivalently, B1 ⊆ B2).

As we show next, Theorem 1 for the present case is equivalent to the following
theorem (proved in [15]).
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Theorem 3. Let 〈X,Y, I〉 be an (ordinary) context 〈X,Y, I〉.
(1) B(X,Y, I) equipped with ≤ is a complete lattice with infima and suprema

described as:∧
j∈J

〈Aj , Bj〉 =
〈⋂

j∈J

Aj , (
⋂
j∈J

Bj)
∪∩

〉
,
∨
j∈J

〈Aj , Bj〉 =
〈
(
⋃
j∈J

Aj)
∩∪,
⋃
j∈J

Bj

〉
(20)

(2) Moreover, a complete lattice V = 〈V,≤〉 is isomorphic to B(X,Y, I) iff
there are mappings γ : X → V and μ : Y → V such that γ(X) is supremally
dense in V, μ(Y ) is infimally dense in V, and 〈x, y〉 ∈ I is equivalent to γ(x) �≤
μ(y) for all x ∈ X, y ∈ Y .

As with Theorem 2, we now show that Theorem 3 is in fact a consequence of the
present instance of Theorem 1. This is clear for condition (1). Condition (2) of
the present instance of Theorem 1 says “there are mappings γ : X ×{0, 1} → V
and μ : Y × {0, 1} → V such that γ(X × {0, 1}) is supremally dense in V,
μ(Y × {0, 1}) is infimally dense in V, and a → b ≥ I(x, y) is equivalent to
γ(x, a) ≤ μ(y, b) for all x ∈ X, y ∈ Y, a, b ∈ {0, 1}”. This condition, denote it by
(2){0,1}, implies (2) of Theorem 3: Since 0 → b = 1 ≥ I(x, y) for any x, y, the
last condition of (2){0,1} implies that for each x ∈ X , y ∈ Y , and b ∈ {0, 1},
we have γ(x, 0) ≤ μ(y, b), i.e. γ(x, 0) ≤

∧
y∈Y,b∈{0,1} μ(y, b). The infimal density

of μ(Y × {0, 1}) in V yields
∧

y∈Y,b∈{0,1} μ(y, b) = 0V. Hence, γ(x, 0) = 0V for
each x ∈ X . Similarly one may check that for each y ∈ Y . As in Case 1, it then
follows that γ(X × {1}) is supremally dense in V, μ(Y × {0}) is infimally dense
in V, and 0 = 13 = 11 � 12 = 1 → 0 ≥ I(x, y) (i.e. 〈x, y〉 �∈ I) is equivalent
to γ(x, 1) = γ(x, 11) ≤ μ(y, 12) = μ(y, 0). That is, 〈x, y〉 ∈ I is equivalent
to γ(x, 1) �≤ μ(y, 0) for all x ∈ X, y ∈ Y . Now, putting γ′(x) = γ(x, 1) and
μ′(y) = μ(y, 0), γ′ and μ′ satisfy condition (2) of Theorem 3. Conversely, from
mappings γ′ and μ′ satisfying (2) of Theorem 3 one obtains mappings γ and μ
satisfying (2){0,1} by putting γ(x, 0) = 0V, γ(x, 1) = γ′(x), μ(y, 0) = μ′(y), and
μ(y, 1) = 1V.

Case 3. Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice with a
partial order≤ and let 〈L1,L2,L3,�〉 be as in Example 1 (a). Then the operators
↑, ↓ become

A↑(y) =
∧

x∈X A(x) → I(x, y), B↓(x) =
∧

y∈Y B(y) → I(x, y). (21)

These operators were introduced independently in [3] and [27]. The subconcept-
superconcept ordering is defined the same way as in Case 1 only this time we
consider the (bivalent) inclusion relation on fuzzy sets instead the ordinary in-
clusion relation on ordinary sets. Note that the basic theorem proved in [6, 7]
and [27] is just a particular instance of Theorem 1.

Case 4. Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice with a
partial order ≤ and let 〈L1,L2,L3,�〉 be as in Example 1 (b). The concept-
forming operators then become precisely the operators

A∩(y) =
∨

x∈X A(x) ⊗ I(x, y), B∪(x) =
∧

y∈Y I(x, y) → B(y) (22)
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studied in [16]. The concept ordering is defined similarly as in Case 2, the only
difference is that we consider the ordinary subsethood relation between fuzzy
sets. Again, the basic theorem proved in [16] is just a particular case of The-
orem 1. Note also that the relational products related to these operators were
extensively studied [1, 20, 21].

3.2 Cartesian Representation of Fuzzy Sets

The Cartesian representation of fuzzy sets is investigated in [6]. It has been
utilized for the first time in the context of formal concept analysis of data with
attributes in [5, 27], see also [11]. The basic ideas are as follows. For a complete
lattice L = 〈L,≤〉 and a fuzzy set A in X with truth degrees in L, we put

&A' = {〈x, a〉 ∈ X × L | a ≤ A(x)}

For an ordinary set A′ ⊆ X × L define an L-set +A′, in X by

+A′,(x) =
∨
{a | 〈x, a〉 ∈ A′}.

That is, &A' is the “area below the membership function”, see Fig. 1, while +A′,
may be thought of an “envelope” of A′. We say that A′ ⊆ X × L is L-set-
representative if

– if 〈x, a〉 ∈ A′ and b ≤ a then 〈x, b〉 ∈ A′.
– {a | 〈x, a〉 ∈ A′} has a greatest element.

The following lemma is easy to verify.

Lemma 1. (a) &A' is L-set-representative for any A ∈ LX .
(b) A′ = &+A′,' for each L-set-representative A′ ⊆ X × L.
(c) A = +&A', for each A ∈ LX.

1

0

1

0

1

0

Fig. 1. A 〈[0, 1],≤〉-set A (top), a corresponding �A� for 〈[0, 1],≤〉 (bottom left) and
�A� for 〈[0, 1],≤−1〉 (bottom right)
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3.3 Representation Theorems and Simple Proof of Basic Theorem

In this section we present a useful representation of formal contexts and concept
lattices over aggregation structures and an application of these these represen-
tations, namely, a simple proof of Theorem 1. We need the following lemma [8,
Claim].

Lemma 2. For every L3-context 〈X,Y, I〉 the following conditions hold.
(a) If 〈A,B〉 ∈ B(X,Y, I) then A(x)�B(y) ≤3 I(x, y) for every x ∈ X, y ∈ Y .

Moreover, there is no 〈A′, B′〉 with A′ ⊇1 A, B′ ⊇2 B other than 〈A,B〉 such
that A′(x) � B′(y) ≤3 I(x, y) for every x ∈ X, y ∈ Y .

(b) If A(x) � B(y) ≤3 I(x, y) for every x ∈ X, y ∈ Y then there exists
〈A′, B′〉 ∈ B(X,Y, I) such that A ⊆1 A

′ and B ⊆2 B
′.

For a sup-preserving aggregation structure 〈L1,L2,L3,�〉 and an L3-context
〈X,Y, I〉, consider the ordinary context 〈X ×L1, Y ×L2, I

×〉, where I× ⊆ (X ×
L1)× (Y × L2) is defined by

〈〈x, a〉, 〈y, b〉〉 ∈ I× iff a � b ≤3 I(x, y).

Furthermore, denote by 〈⇑, ⇓〉 the ordinary concept-forming operators induced
by 〈X × L1, Y × L2, I

×〉 (as in (15) and (16)).

Lemma 3. For every 〈A′, B′〉 ∈ B(X ×L1, Y ×L2, I
×), A′ and B′ are L1- and

L2-set representative, respectively.

Proof. Since A′ = B′⇓, we have 〈x, a〉 ∈ A′ iff for each 〈y, b〉 ∈ B′: 〈〈x, a〉, 〈y, b〉〉 ∈
I×, i.e. iff for each 〈y, b〉 ∈ B′: a � b ≤3 I(x, y), i.e. iff for each 〈y, b〉 ∈ B′: a ≤1

I(x, y)�◦ b. It is now clear that, first, if 〈x, a〉 ∈ A′ and c ≤1 a, then 〈x, c〉 ∈ A′

and, second, the largest a for which 〈x, a〉 ∈ A′ is a =
∧
1〈y,b〉∈B′(I(x, y)�◦ b).

Therefore, A′ is L1-set representative. The proof for B′ is analogous. ()

The following theorem provides a reduction result which, as we show below,
enables us to obtain a simple proof of Theorem 1.

Theorem 4. The concept lattice B(X,Y, I) over 〈L1,L2,L3,�〉 is isomorphic
to the ordinary concept lattice B(X × L1, Y × L2, I

×).

Proof. We prove the theorem by showing that the mappings ϕ : B(X,Y, I) →
B(X × L1, Y × L2, I

×), ψ : B(X × L1, Y × L2, I
×) → B(X,Y, I) defined by

ϕ(〈A,B〉) = 〈&A', &B'〉, (23)

ψ(〈A′, B′〉) = 〈+A′,, +B′,〉 (24)

for 〈A,B〉 ∈ B(X,Y, I), 〈A′, B′〉 ∈ B(X × L1, Y × L2, I
×) are well-defined, mu-

tually inverse, order-preserving bijections.
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Lemma 2 implies that ϕ(〈A,B〉) ∈ B(X × L1, Y × L2, I
×) and ψ(〈A′, B′〉) ∈

B(X,Y, I). Indeed, for 〈A,B〉 ∈ B(X,Y, I) we have

〈y, b〉 ∈ &A'⇑ iff

for each 〈x, a〉 ∈ &A' we have 〈〈x, a〉, 〈y, b〉〉 ∈ I× iff

for each x ∈ X and a ≤1 A(x) we have a � b ≤3 I(x, y) iff

for all x ∈ X we have A(x) � b ≤3 I(x, y) iff

b ≤2 B(y), proving &A'⇑ = &B'.

The proof of &B'⇓ = &A' is analogous. This proves that ϕ is well defined. For
〈A′, B′〉 ∈ B(X × L1, Y × L2, I

×) we have

+A′,↑(y) =
∧

2x∈X
(+A′,(x) ◦� I(x, y))

=
∨

2
{b | b ≤2 (+A′,(x) ◦� I(x, y)) for each x ∈ X}

=
∨

2
{b | +A′,(x) � b ≤3 I(x, y) for each x ∈ X}

=
∨

2
{b | a � b ≤3 I(x, y) for each 〈x, a〉 ∈ A′}

=
∨

2
{b | 〈〈x, a〉, 〈y, b〉〉 ∈ I× for each 〈x, a〉 ∈ A′}

=
∨

2
{b | 〈y, b〉 ∈ A′⇑} =

∨
2
{b | 〈y, b〉 ∈ B′} = +B′,(y).

The proof of +B′,↓(x) = +A′,(x) is analogous. This proves that ψ is well defined.
Lemma 3 and Lemma 1 now imply that ϕ and ψ are mutually inverse bi-

jections. In addition, it is immediate to observe that both ϕ and ψ are order
preserving. ()

Now, Theorem 4 can be utilized to prove Theorem 1 by reduction from Theorem
2—the basic theorem of ordinary concept lattices [14].

Proof of Theorem 1 Condition (1) follows directly from the fact that the pair
of mappings 〈↑, ↓〉 forms a Galois connection between the complete lattices
〈L1

X ,⊆1〉 and 〈L2
Y ,⊆2〉 by the well-known description of infima and suprema

in the lattice of fixpoints of Galois connections [12, 13, 26].
(2) “⇒”: Assume that V is isomorphic to B(X,Y, I). By Theorem 4 V is iso-

morphic to B(X×L1, Y ×L2, I
×) which is an ordinary concept lattice. Applying

to this ordinary concept lattice the basic theorem of ordinary concept lattice,
i.e. Theorem 2, we get mappings γ and μ such that γ(X × L1) and μ(Y × L2)
are supremally and infimally dense in V, respectively, and γ(x, a) ≤ μ(y, b) iff
〈〈x, a〉, 〈y, b〉〉 ∈ I×. Taking into account that by definition of I×, 〈〈x, a〉, 〈y, b〉〉 ∈
I× is equivalent to a � b ≤3 I(x, y), we see that γ and μ are the required map-
pings.

“⇐”: Assume that γ and μ have the required properties. Theorem 2 (2) yields
that V is isomorphic to B(X × L1, Y × L2, I

×). Hence, V is isomorphic to
B(X,Y, I) due to Theorem 4. ()
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4 Conclusions

We provided a simple proof of the basic theorem for a general type of concept
lattices. We utilized a useful, not well-known representation of fuzzy sets using
ordinary sets, called the Cartesian representation. As a side-effect, we explained
in detail the relationship of the general type of concept lattices to the main
existing types of concept lattices. An interesting topic for future research is to
explore further applications of the Cartesian representation in systems based on
fuzzy sets and relations, in particular in the context of mathematical fuzzy logic
(i.e. fuzzy logic in the narrow sense).
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23. Krajči, S.: A generalized concept lattice. Logic J. of IGPL 13, 543–550 (2005)
24. Medina, J., Ojeda-Aciego, M., Ruiz-Claviño, J.: Formal concept analysis via multi-

adjoint concept lattices. Fuzzy Sets and Systems 160, 130–144 (2009)
25. Morsi, N.N., Lotfallah, W., El-Zekey, M.S.: The logic of tied implications, part

1: Properties, applications and representation; part 2: Syntax. Fuzzy Sets and
Systems 157, 647–669, 2030–2057 (2006)

26. Ore, O.: Galois connexions. Trans. Amer. Math. Soc. 55, 493–513 (1944)
27. Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)
28. Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Amer. Math. Soc. 45,

335–354 (1939)
29. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)



On Some Properties of the Negative Transitivity

Obtained from Transitivity

Susana Dı́az1, Susana Montes1, and Bernard De Baets2

1 Dept. of Statistics and O.R., University of Oviedo
Calvo Sotelo s/n, 33007 Oviedo, Spain

http://unimode.uniovi.es/

{diazsusana,montes}@uniovi.es
2 Dept. of Appl. Math., Biometrics and Process Control, Ghent University

Coupure Links 653, B-9000 Gent, Belgium
bernard.debaets@ugent.be

Abstract. For crisp relations the transitivity of a relation and the nega-
tive transitivity of its dual are equivalent conditions. Particularly, a crisp
complete large preference relation is transitive if and only if its associated
strict preference relation is negatively transitive. In this contribution we
focus on one of those implications for fuzzy relations. Recall that in the
context of fuzzy relations there are multiple ways of obtaining the strict
preference relation from the large preference relation, and also multiple
ways for defining transitivity. We analyze the type of negative transi-
tivity we can assure for the strict preference relation, departing from a
large preference relation that satisfies almost any kind of transitivity.
We recall the general expression we obtained and study some interest-
ing properties. Finally, we pay special attention to the particular case
of the minimum t-norm both in the role of generator and in the role of
conjunctor defining the transitivity of the original reflexive relation.

Keywords: fuzzy relation, transitivity, negative transitivity, conjunc-
tor, disjunctor.

1 Introduction

Coherence is a permanent goal in decision making. Many different properties
have been introduced with the aim of formalizing this condition. In this con-
tribution we study in depth the connection between two of the most important
ones.

In the context of preference modeling the comparison of alternatives is usually
carried out pairwisely. The decision maker is asked to compare every two alter-
natives. In the crisp context, this is, when no degrees of preference of indifference
are allowed, the results of the comparison by pairs can be summarized by a crisp
reflexive relation, denoted R, called large or weak preference relation. It connects
an alternative a to another b if the first one is considered by the decision maker
at least as good as the second one. In parallel with the large preference relation,
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the answers of the decision maker can be formalized by a preference structure.
It is a triplet of binary relations. The first one of those relations is usually called
strict preference relation and connects two alternatives when the first one is con-
sidered strictly better than the second one; the second relation is the indifference
relation, that connects two alternatives when they are equally good for the deci-
sion maker; and the third relation is the incomparability relation, that connects
two alternatives when the decision maker cannot order them. When the decision
maker is able to order all the pairs of alternatives, the incomparability relation
does not connect any pair and we talk about completeness.

Obviously, since the large preference relation and the preference structure
associated to a decision maker summarize the same information, they are related.
In fact, they are equivalent: if we know the large preference relation associated to
the answers of a decision maker, we can build the three relations of the preference
structure and the other way around.

Going back to coherence, when binary relations are involved, transitivity is
probably the most important and most employed property for implementing
coherence. It is well known that under completeness, the transitivity of a large
preference relation is characterized by the negative transitivity of the correspond-
ing strict preference relation. In fact, the equivalence holds in a wider context:
it is known that for any relation, it is transitive if and only if its dual relation
is negatively transitive. Under completeness, the large preference and the strict
preference relations associated to the answers of a decision maker become dual
relations and the result applies.

This contribution is devoted to study one of those implications when degrees
of preferences are allowed. The main drawback of crisp relations is that they
lack of flexibility. They do not express accurately real life situations. Preferences
expressed by humans usually involve imprecise answers. Expressions as “slightly
preferred”, “more or less the same” are frequent in natural speaking. Fuzzy rela-
tions were introduced to tackle these situations. They allow the decision maker
to express an intermediate degree of connection. Since fuzzy relations are a gen-
eralization of crisp relations, a first effort was developed to extend notions as
large preference relation and preference structure to the new context. Many dif-
ferent proposals appeared for the definition of fuzzy preference structure. See [3]
for a historical account of its development. We will deal with additive fuzzy pref-
erence structures. This definition seems to be the best for generalizing the spirit
of (crisp) preference structures.

As in the crisp case, in the fuzzy sets context transitivity plays an important
role when modeling rationality. Traditionally, transitivity of a fuzzy relation is
defined with respect to a triangular norm and negative transitivity with respect
to a triangular conorm. In this setting, it is also known (see e.g. [13]) that a
valued binary relation is T -transitive if and only if its dual relation is nega-
tively S-transitive, where S is the dual triangular conorm of T . So, also in this
context, if the strict preference relation is obtained from the weak preference rela-
tion as its dual, the connection is guaranteed. However, for fuzzy relations, there
are multiple ways to obtain the preference structure from the large preference
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relation. Also, there are different ways to define completeness of a fuzzy relation.
We are interested in the connection between the transitivity of the large pref-
erence relation and the negative transitivity of any associated strict preference
relation. The study is carried out under weak completeness. Also, following the
general study we have carried out in previous works [6–8, 10], we have not re-
stricted to t-norms to define transitivity, but we have considered a wider family
of operators: conjunctors. In this general setting, we study the strongest type of
negative transitivity we can assure for the strict preference relation.

The paper is divided in six sections. In Section 2 we recall the definition of
large preference relation and preference structure when only crisp relations are
considered and later we recall the same notions in the general framework of
fuzzy relations. In Section 3 we include the definition of conjunctor, the opera-
tor that generalizes t-norms. We also introduce other operators involved in our
study. Section 4 contains the general result connecting transitivity and negative
transitivity and some properties. In Section 5 we focus on the main t-norm, the
minimum and try to simplify the general expression for this operator. Section 6
contains some conclusions and open problems.

2 Preference Structures

As commented in the introduction, preference structures summarize the answers
of a decision maker when he/she is confronted with a set of alternatives and must
compare them two by two.

We will denote the set of alternatives A and A2 will be the set of ordered
pairs of alternatives in A. Given two alternatives, the decision maker can act in
one of the following three ways: (i) he/she clearly prefers one to the other; (ii)
the two alternatives are indifferent to him/her; (iii) he/she is unable to compare
the two alternatives. According to these cases, we can define three (binary)
relations on A: the strict preference relation P , the indifference relation I and
the incomparability relation J . Thus, for any (a, b) ∈ A2, we classify:

(a, b) ∈ P ⇔ he/she prefers a to b;

(a, b) ∈ I ⇔ a and b are indifferent to him/her;

(a, b) ∈ J ⇔ he/she is unable to compare a and b.

Observe that we are identifying relations with subsets of A2. The notation
(a, b) ∈ Q stands for a connected to b by Q, this is, aQb. This can also be
expressed by means of its characteristic mapping, Q(a, b) = 1. We recall that
for a relation Q on A, its converse is defined as Qt = {(b, a) | (a, b) ∈ Q}, its
complement as Qc = {(a, b) | (a, b) /∈ Q} and its dual as Qd = (Qt)

c
. One easily

verifies that P , I, J and P t establish a particular partition of A2 [15], this is,
they cover all the possible answers of the decision maker and for any ordered
pair of alternatives (a, b) only one of those answers can be given. The underlying
idea of a preference structure is to write mathematically the preferences of a
decision maker. The formal definition is the following one.



On Some Properties of the Negative Transitivity Obtained from Transitivity 309

Definition 1. A preference structure on A is a triplet (P, I, J) of relations on
A that satisfies:

(i) P is irreflexive, I is reflexive and J is irreflexive;
(ii) P is asymmetric, I and J are symmetric;
(iii) P ∩ I = ∅, P ∩ J = ∅ and I ∩ J = ∅;
(iv) P ∪ P t ∪ I ∪ J = A2.

A preference structure (P, I, J) on A is characterized by the reflexive relation
R = P ∪ I, called large preference relation, in the following way:

(P, I, J) = (R ∩Rd, R ∩Rt, Rc ∩Rd) .

Conversely, for any reflexive relation R on A, the triplet (P, I, J) constructed in
this way from R is a preference structure on A such that R = P ∪ I. As R is the
union of the strict preference relation and the indifference relation, (a, b) ∈ R
means that a is at least as good as b.

A relation Q on A is called complete if (a, b) ∈ Q ∨ (b, a) ∈ Q, for all (a, b) ∈
A2. In the crisp sets context, the completeness of the large preference relation
is characterized by the absence of incomparability in the associated preference
structure. The large preference relation is complete if and only if its associated
incomparability relation J is empty.

A relation Q on A is called transitive if ((a, b) ∈ Q ∧ (b, c) ∈ Q) ⇒ (a, c) ∈ Q,
for any (a, b, c) ∈ A3. A relation Q on A is called negatively transitive if (a, c) ∈
Q ⇒ ((a, b) ∈ Q ∨ (b, c) ∈ Q), for any (a, b, c) ∈ A3. This property can be also
expressed as ((a, b) �∈ Q ∧ (b, c) �∈ Q) ⇒ (a, c) �∈ Q).

The transitivity of the large preference relation R can be characterized as
follows [1].

Theorem 1. For any reflexive complete relation R with associated preference
structure (P, I, J) it holds that

R is transitive ⇔ P is negatively transitive.

Finally, we recall an important characterization of preference structures. Let us
identify relations with their characteristic mappings, then Definition 1 can be
written in the following minimal way [5]: I is reflexive and symmetric, and for
any (a, b) ∈ A2 it holds that

P (a, b) + P t(a, b) + I(a, b) + J(a, b) = 1 .

Classical, also called crisp, preference structures can therefore also be considered
as Boolean preference structures, employing 1 and 0 for describing presence or
absence of strict preference, indifference and incomparability.

2.1 Additive Fuzzy Preference Structures

A serious drawback of classical preference structures is their inability to express
intensities. In contrast, in fuzzy preference modelling, relations are a matter of
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degree. Fuzzy relations can take any value in the unit interval [0, 1] and those
values are used for capturing the intermediate intensities of the relations.

The intersection of fuzzy relations is defined pointwisely based on some trian-
gular norm (t-norm for short), i.e. an increasing, commutative and associative
binary operation on [0, 1] with neutral element 1. The three most important t-
norms are the minimum operator TM(x, y) = min(x, y), the algebraic product
TP(x, y) = x · y and the �Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0). Ac-
cording to the usual ordering of functions, the above t-norms can be ordered as
follows: TL ≤ TP ≤ TM. In fact, the minimum operator is greater than any other
t-norm, it is the greatest t-norm.

Similarly, the union of fuzzy relations is based on a t-conorm, i.e. an increas-
ing, commutative and associative binary operation on [0, 1] with neutral element
0. T-norms and t-conorms come in dual pairs: to any t-norm T there corresponds
a t-conorm S through the relationship S(x, y) = 1−T (1−x, 1−y). For the above
three t-norms, we thus obtain the maximum operator SM(x, y) = max(x, y), the
probabilistic sum SP(x, y) = x+ y−xy and the �Lukasiewicz t-conorm (bounded
sum) SL(x, y) = min(x+ y, 1). For more background on t-norms and t-conorms
and the notations used in this paper, we refer to [14].

T-conorms are used to define completeness. A fuzzy relation Q on A is S-
complete if S(Q(a, b), Q(b, a)) = 1 for all (a, b) ∈ A2 (see for example [2]). The
two most important types of completeness are defined by the �Lukasiewicz and
maximum t-conorm:

– A fuzzy relation Q on A is called weakly complete if it is SL-complete:
Q(a, b) +Q(b, a) = 1 for all (a, b) ∈ A2.

– A fuzzy relation Q on A is called strongly complete if it is SM-complete:
max(Q(a, b), Q(b, a)) = 1.

In this work, we will focus on weak completeness as it shows an important
property we recall in Proposition 1.

The definition of a fuzzy preference structure has been a topic of debate during
several years (see e.g. [13, 16, 17]). Accepting the assignment principle — for
any pair of alternatives (a, b) the decision maker is allowed to assign at least one
of the degrees P (a, b), P (b, a), I(a, b) and J(a, b) freely in the unit interval —
has finally led to a fuzzy version of Definition 1 with intersection based on the
�Lukasiewicz t-norm and union based on the �Lukasiewicz t-conorm.

Another topic of controversy has been how to construct such a fuzzy preference
structure from a reflexive fuzzy relation. The most recent and most successful
approach is that of De Baets and Fodor based on (indifference) generators [4].

Definition 2. A generator i is a commutative binary operation on the unit in-
terval [0, 1] that is bounded by the �Lukasiewicz t-norm TL and the minimum
operator TM, i.e. TL ≤ i ≤ TM.

Note that despite they have neutral element 1 and are bounded between two
t-norms, generators are not necessarily t-norms. For any reflexive fuzzy relation
R on A it holds that the triplet (P, I, J) of fuzzy relations on A defined by:

P (a, b) = R(a, b)− i(R(a, b), R(b, a)) ,
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I(a, b) = i(R(a, b), R(b, a)) ,

J(a, b) = i(R(a, b), R(b, a))− (R(a, b) +R(b, a)− 1) .

is an additive fuzzy preference structure on A such that R = P ∪SL I, i.e.
R(a, b) = P (a, b) + I(a, b).

Recall that a binary operation f : [0, 1]2 → [0, 1] is 1-Lipschitz continuous if

|f(x1, y1)− f(x2, y2)| ≤ |x1 − x2|+ |y1 − y2| ,

for any (x1, x2, y1, y2) ∈ [0, 1]4. We proved in [8] that the 1-Lipschitz property
plays an important role in the study of the propagation of the transitivity from
a weak preference relation to its associated strict preference and indifference
relation. In this contribution, it plays again an important role. Let us recall
that the two most employed generators, the �Lukasiewicz and the minimum t-
norms, are 1-Lipschitz. The �Lukasiewicz operator plays a very special role as the
following result shows.

Proposition 1. Consider an additive fuzzy preference structure (P, I, J) ob-
tained from a reflexive fuzzy relation R by means of a generator i. Then

R is weakly complete and i = TL ⇔ J = ∅.

Observe also that for this particular generator, the additive fuzzy preference
structure obtained from a reflexive relation R is

(P, I) = (Rd, R+Rt − 1) (1)

The usual way of defining transitivity for fuzzy relations is by means of a t-norm
T . A fuzzy relation Q is said T -transitive if

Q(a, c) ≥ T (Q(a, b), Q(b, c)), ∀a, b, c ∈ A.

Similarly, the usual definition of negative transitivity depends on a t-conorm S.
A fuzzy relation Q is said negatively S-transitive if

Q(a, c) ≤ S(Q(a, b), Q(b, c)), ∀a, b, c ∈ A.

The equivalence between the transitivity of a fuzzy relation and the negative
transitivity of its dual relation is a well known result (see for example [13]),

Q is T -transitive ⇔ Qd is negatively S-transitive, (2)

where S is the dual t-conorm of T .
If we consider in particular a weakly complete large preference relation and

the �Lukasiewicz t-norm as generator, the associated strict preference relation is
the dual of R (see Eq. 1). Then, in this particular case the previous equivalence
holds. Our aim is to generalize the implication from left to right and see what
happens when other generators are involved.
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3 Conjunctors and Other Operators

In this section we deal with some operators involved in the study of the connec-
tion between transitivity and negative transitivity. The first important operators
are conjunctors and disjunctors that allow to generalize the classical definitions
of transitivity and negative transitivity in the fuzzy sets context.

3.1 Generalizing T -transitivity

The usual way of defining the transitivity of a fuzzy relation is by means of a
t-norm T . However, the restriction to t-norms is questionable. On the one hand,
even when the large preference relation R is T -transitive with respect to a t-
norm T , the transitivity of the generated P and I cannot always be expressed
with respect to a t-norm [7, 9, 10]. On the other hand, the results presented
in the following sections also hold when R is transitive with respect to a more
general operation. From the point of view of fuzzy preference modelling, it is not
that surprising that the class of t-norms is too restrictive, as a similar conclusion
was drawn when identifying suitable generators, as was briefly explained in the
previous section. There, continuity, in casu the 1-Lipschitz property, was more
important than associativity. As discussed in [9, 10], suitable operations for
defining the transitivity of fuzzy relations are conjunctors.

Definition 3. A conjunctor f is an increasing binary operation on [0, 1] that
coincides on {0, 1}2 with the Boolean conjunction.

The smallest conjunctor cS and greatest conjunctor cG are given by

cS(x, y) =

{
0 , if min(x, y) < 1,
1 , otherwise,

and

cG(x, y) =

{
0 , if min(x, y) = 0,
1 , otherwise.

Given a conjunctor f , we say that a fuzzy relation Q on A is f -transitive if
f(Q(a, b), Q(b, c)) ≤ Q(a, c) for any (a, b, c) ∈ A3. Clearly, for two conjunctors
f and g such that f ≤ g, it holds that g-transitivity implies f -transitivity.
Restricting our attention to reflexive fuzzy relations only, such as large preference
relations, not all conjunctors are suitable for defining transitivity. Indeed, for a
reflexive fuzzy relation R, we should consider conjunctors upper bounded by TM

only (see [8]).
In the same way as we have generalized classical t-norms, we can generalize

t-conorms.

Definition 4. A disjunctor is an increasing binary operation on [0, 1] that co-
incides on {0, 1}2 with the Boolean disjunction.

As t-norms and t-conorms, disjunctors and conjunctors are dual operators. For
any conjunctor f , the operator g(x, y) = 1− f(1− x, 1− y) is a disjunctor and
the converse also holds.
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3.2 Fuzzy Implications and Related Operations

Given a t-norm T , the associated fuzzy implication (also called R-implication or
T -residuum) is a binary operation on [0, 1] defined by (see e.g. [13, 14]):

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} .

When T is left-continuous it holds that T (x, z) ≤ y ⇔ z ≤ IT (x, y), and IT is
called the residual implicator of T . The definition can be easily generalized to
conjunctors.

Definition 5. With a given commutative conjunctor f we associate a binary
operation If on the unit interval defined by

If (x, y) = sup{z ∈ [0, 1] | f(x, z) ≤ y} .

The above definition could also be extended to non-commutative conjunctors,
but in that case we should distinguish between left and right operators. In this
work we will only consider the case of commutative operators (commutative
conjunctors or generators). Clearly, If is decreasing in its first argument and
increasing in its second argument.

Definition 6. An implicator f is a binary operation on [0, 1] that is decreasing
in its first argument, increasing in its second argument and that coincides on
{0, 1}2 with the Boolean implication.

Proposition 2. Consider a commutative conjunctor f , then If is an implicator
if and only if f(1, y) > 0, for any y > 0.

The condition in the preceding proposition is obviously fulfilled when f has 1 as
neutral element.

In this paper, we associate another binary operators with any generator. This
operator will play a key role in the characterization of the negative transitivity
of the strict preference relation.

Definition 7. With a given commutative conjunctor f we associate a binary
operation Kf on the unit interval defined by

Kf (x, y) = sup{z ∈ [1− x, 1] | z − f(x, z) = y} .

Despite the previous definition is given for any commutative conjunctor, we will
only use it for a particular type of generators. Observe that the set {z ∈ [1−y, 1] |
z − f(x, z) = y} is not guaranteed to be non-empty in general. However, under
suitable conditions, the set is not empty.

Lemma 1. Let i be a 1-Lipschitz increasing generator and let (x, y) satisfy y ≥
1 − x − i(x, 1 − x), then {z ∈ [1 − x, 1]|z − f(x, z) = y} is a non-empty set
that admits maximum. Moreover, Ki(x, y) is increasing on its first argument
and decreasing on its second argument.

This lemma is employed to assure that the operator obtained in the following
section is well defined.
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4 General Implication

In this section we will recall the general result obtained concerning the negative
transitivity that can be assured for the strict preference relation P associated to
a weak preference relation R by a generic generator i.

Theorem 2. [11] Consider a 1-Lipschitz increasing generator i and a commu-
tative conjunctor h upper bounded by the minimum. For any reflexive fuzzy re-
lation R with corresponding strict preference relation P generated by means of
i, it holds that

R is h-transitive ⇒ P is negatively jih-transitive

where

jih(x, y) = sup
u ≤ 1 − x

u + i(u, 1 − u) ≥ 1 − x
v ≤ 1 − y

v + i(v, 1 − v) ≥ 1 − y

f(x, y, u, v)− i(f(x, y, u, v), h(u, v))

for
f(x, y, u, v) = min(Ih(u,Ki(v, y)), Ih(v,Ki(u, x))).

Moreover, this is the strongest result possible.

At the sight of Equivalence (2), the first idea is that if R is f -transitive for
some conjunctor f , the obtained strict preference relation P will be negatively
g-transitive for some disjunctor g. However, this is not always the case. The
operator obtained jih is not always a disjunctor. It is easy to check that three of
the boundary conditions are satisfied for any h and i.

Lemma 2. For any conjunctor h and for any generator i the operator jih satis-
fies that

jih(1, 0) = jih(0, 1) = jih(1, 1) = 1

But the fourth boundary condition jih(0, 0) = 0 is not always guaranteed as we
show in the following example.

Example 1. Let us consider the weakly complete large preference relation R
defined on a set of three alternatives {a, b, c} as:

R a b c
a 1 0.5 1
b 0.5 1 0.5
c 0 0.5 1

This relation is TM-transitive, but the associated strict preference relation P
obtained as R− TM(R,Rt), this is, by means of the generator i = TM,

P a b c
a 0 0 1
b 0 0 0
c 0 0 0
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is not negatively g-transitive for any disjunctor g since

P (a, c) = 1 �≤ 0 = g(0, 0) = g(P (a, b), P (b, c)).

Therefore, when the generator is the minimum t-norm, the operator jTM

h may

not satisfy the boundary condition jTM

h (0, 0) = 0. However this problem does
not appear if the generator is strictly smaller than the minimum t-norm in
{(x, 1− x)|x ∈ (0, 1)}.
Lemma 3. For any commutative conjunctor h upper bounded by the minimum
and any generator i such that i(x, 1 − x) < TM(x, 1 − x) for x ∈ (0, 1), it holds
that jih satisfies the boundary conditions:

jih(0, 0) = 0 jih(1, 0) = 1 = jih(0, 1) = jih(1, 1).

In particular, we can recall that for i = TL, the operator jih becomes the dual
disjunctor of the conjunctor h:

Corollary 1. [11] Let us consider a commutative conjunctor h and the generator
i = TL. For any reflexive fuzzy relation R with corresponding strict preference
relation P generated by means of i = TL, it holds that

R is h-transitive ⇒ P is negatively hd-transitive

where
hd(x, y) = 1− h(1 − x, 1− y).

We are presently studying some other general properties of the operator jih.
The results obtained and the proof of Theorem 2 will be submitted to a special
number of the journal Fuzzy Sets and Systems.

5 The Minimum t-norm

This section is devoted to the study of the role of the minimum t-norm. We will
consider both situations: when it is used as generator and when it is employed
to define the transitivity of the large preference relation R.

We first focus on the minimum t-norm as generator. Let us recall that this
means that the strict preference relation is obtained from the weak preference
relation as P = max(R − Rt, 0). We have already shown an example where the
negative transitivity guaranteed for this type of P may be defined by an operator
that is not a disjunctor. The general expression when we fix the minimum as
generator is the following one.

Proposition 3. Let h be a commutative conjunctor upper bounded by the min-
imum t-norm. Let R be a large preference relation and P = max(R −Rt, 0) the
strict preference relation obtained from R by means of the generator i = TM.
Then,

R is h-transitive ⇒ P is negatively jTM

h -transitive

where

jTM

h (x, y) = 1− h

(
1− x

2
,
1− y

2

)
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We can observe again that jTM

TL
is not a disjunctor, since jTM

TL
(0, 0) = 1. In

general, the operator jTM

h is not a disjunctor for any h ≤ TM, since in this case

jTM

h (0, 0) = 1− h

(
1− 0

2
,
1− 0

2

)
≥ 1− TM

(
1

2
,
1

2

)
=

1

2
> 0.

The minimum is the most common operator employed to define the transitivity
of a fuzzy relation. If we depart from the transitivity defined by the minimum and
we consider any generator i, the general expression does not look much simpler.
Since the operator ITM(x, y) takes the value 1 if x ≤ y and it is y otherwise, the
operator f(x, y, u, v) admits different expressions for different values of u and v
once fixed x, y, so it is not easy at all to provide an explicit expression of jiTM

for
a generic i much simpler than the one presented in Theorem 2. Our next step
will be to simplify the general expression for some important specific generators
as the Frank operators.

6 Conclusion

In the classical case, the transitivity of a complete large preference relation is
equivalent to the negative transitivity of the associated strict preference relation.
For a particular case of fuzzy relations, this is, when the strict preference rela-
tion is obtained from the large preference relation by means of the �Lukasiewicz
t-norm, it is known that the equivalence still holds under weak completeness.
In this contribution we focus on the implication from transitivity to negative
transitivity. We have provided a general expression that defines the negative
transitivity assured for the strict preference relation, when the original large
preference relation is weakly complete and satisfies a generic type of transitivity.
The study is valid for any strict preference relation obtained by a 1-Lipschitz
generator from the large preference relation. We have shown with a counterexam-
ple that the obtained operator is not necessarily a disjunctor, as it was expected
to be. We have also discussed the aspect of the general expression when the
minimum t-norm is involved either as generator or as a conjunctor. We have
discussed that it is not trivial at all to provide a simpler formula for the general
expression when the large preference relation is min-transitive. However, in fu-
ture works we would like to study more properties of the general expression and
get a simpler aspect of the operator for the most common generators and types
of transitivity.
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Abstract. Multi-attribute auctions allow agents to sell and purchase
goods and services taking into account more attributes besides the price
(e.g. service time, tolerances, qualities, etc.). The coexistence of different
attributes in the auction mechanism increases the difficulty of determin-
ing the winner and its payment. multi-criteria functions can be used to
deal with the problem of determining the auction winner. However, in
order to make the payment possible, multi criteria functions must fulfill
certain conditions. In this paper we discuss which properties must satisfy
a multi-criteria function so it can be used to determine the winner of a
multi-attribute auction and we experimentally show how the valuation
function choice conditions the behavior of the auction mechanism.

Keywords: Multi-attribute auctions, Resource allocation.

1 Introduction

Resource allocation in dynamic production environments is becoming a more
complex task as the number of actors and types of resources involved in the pro-
cess increases. In certain domains the production cannot be known in advance,
moreover the status of the production resources (e.g. technicians, transports,
services, etc.) is unknown as they can be managed by different departments in-
side the organization or even by outsourcing companies which are in charge of
dealing with certain parts of the productin process. Thus, the resource alloca-
tion process needs to be adapted to be performed under demand and taking
into account the possible confrontation between managers, which try to obtain
the lowest resource price at the higher quality, and the internal or external re-
sources which try to maximize their occupation and benefits while keeping their
information in private.

Auction mechanisms, offer the possibility to allocate the resources in a market,
competitive framework, while optimizing the outcome from all of the participants
(production process owners and resource providers, both, either internal or ex-
ternal to the organization) [1]. Thus, given a production task, resource providers
bid for it, and the winner bid is the one that best fits the required resource spec-
ifications. However, the proposed bid may not correspond to the real ones of the
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bidder, forcing the poduction process owners to use mechanism which encourage
the resource providers to bid honestly, revealing their true values.

There are several auction models, most of them focus on the resource price
as the attribute which determines the winning bid. However, when allocating
resources to production process, the cost of the resources is not the only relevant
aspect to be taken into account. Attributes such as service time, distance among
providers, ecological footprint, etc. can play an important part in the process
of the determining which suppliers best suits the production needs. Therefore,
it is important to find a compromise between all the elements that condition
the resource in order to obtain a satisfying allocation. Multi-attribute auctions
offer the chance to consider different aspects besides the price, becoming an ideal
option for the problem we are dealing with.

In the multi-attribute auction mechanism we discuss in this paper, a multi-
criteria function evaluates the different attributes provided by the resources and
determines the winner of the auction. The multi-criteria function used to deter-
mine the winner of the auction, known as evaluation function, becomes a critical
point in the mechanism as not only conditions the winner of the auction but also
the payment it will receive, the strategies the bidders will follow and the kind of
attributes that will became more relevant during the allocation process.

The contribution of this paper is the analysis and the definition of the char-
acteristics that a multi-criteria function must fulfill in order to be used in a
multi-attribute auction mechanism,

This paper is structured as follows: first we introduce some basics regarding
auctions and multi-attribute auctions in order to facilitate the understanding of
the paper; in Section 3 we comment some previous work related to our research;
afterwards, in Section 4, we present a multi-attribute mechanism for business
process resource allocation, we define the characteristics a multi-criteria func-
tion must satisfy in order to be used as evaluation function and we present some
examples. In section 5 we describe an experiment performed to illustrate differ-
ences between the evaluation functions. We end the paper in Section 6 with our
conclusions and the future work.

2 Background

This section provides the basic concepts related to this paper: First we introduce
some basics about auctions and, second, the particularities about the multiat-
tribute ones.

2.1 Auctions

An auction is a method for buying and selling goods using a bid system in which
the winner bids obtain the auctioned goods [2]. Some of the basic concepts related
to auctions are the following:

– The utility is the measurement of the satisfaction received by the participants
of an auction, either the bidders or the auctioneers [3]. It can be defined as
U(Bi) given a bid Bi.
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– The value of an item is the score or the price which the participants of an
auction assign to a certain item. Can be defined using an evaluation function
V (Bi) given a bid Bi.

– Given a set of bids, the winner determination problem (WDP) is the problem
to compute the winner bid that maximizes the utility of the auctioneer [4].

– The payment mechanism is the process of deciding which is the price p and
payout for the auctioneers and the bidders.

– When the bid price is p, the utility or revenue of the auctioneer becomes
U(Bi) = V (Bi)− p.

– The utility or profit of the winner bidder is U(Bi) = p− V (Bi).
1

– Each bidder follows a bidder’s policy in order to maximize their profit.

A desirable property that an auction mechanism should provide is to ensure that
bidders provide truthful bids (incentive compatible mechanism). That means,
that bidders obtain a better profit by revealing their real attributes than by
cheating. The most popular mechanism that guarantees true bidding is the
Vickrey-Clarke-Groves (VCG) one [6]: bidders bid in private, in a sealed bid,
so only the auctioneer knows what are the other bids; when only one item is
auctioned, the winner pays the price offered by the second-best bid. For exam-
ple, given three bids, b1, b2, b3 with prices b1 = 1, b2 = 2, b3 = 3 the winner is b3
(highest price offered) and pays 2 (second best offer).

Another common assumption in auctions is the absence of externalities, which
means agents do not take care of which are the other agents winning the auc-
tion [7]. Regarding the winner determination problem, it consists on, given a set
of bids bi to bn, selecting the bid bi with the best valuation function. In the sim-
plest auction mechanism, bids consist on the price and the valuation functions
are the value of the price V (Bi) = bi. This kind of auction protocol is also known
as the contract net [8]. When the bid contains other information than prices, the
auctions are known to be multidimensional [9], and the winner determination
problem becomes much more complex.

2.2 Multiattribute Auctions

When the bid contains other information than prices, the auctions are known to
be multidimensional [9]. There are two main kind of multidimensional auctions:
multiattribute and combinatorial. In the former case, the dimensions correspond
to the qualifications of the items to be sold. In the latter case, there are several
items for selling and the dimensions corresponds to the bundles of goods each
bidder is interested in.

We are interested in multiattribute auctions, in which each bid is characterized
by a set of attributes in addition to price: B = (b, AT ) where AT = (at1, ..., atn).
The winner determination problem (WDP) consist on finding the optimal bid
regarding price but also the other attributes. As an optimization problem, results

1 V (Bi) is private to each participant [5]. Thus, the auctioneer and bidders have a
different one.
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depend on the goal of the auctioneer or its objective optimization function, also
known as scoring rule [5] or evaluation function V (Bi) [10]. To simplify the
notation, we can use V (bi, ATi) to denote that function. Thus, the WDP consists
in maximizing V .

argmaxi(V (bi, ATi)) (1)

In consequence, the auctioneer needs to make the scoring rule public so the
bidders can maximize their chances to win. This will also ensure transparency
during the winner determination process. Note that in single-attribute auctions,
the rule is implicit: the cheaper, the best. However, multiattribute auctions re-
quire a more complex solution such as a multicriteria function.

Multiattribute auctions make the payment method difficult. That is, in a
second-price auction, the winner gets the good and pays the price of the second
best. However, when several attributes are involved, there is a discussion about
how the attributes, different from price, should be provided. [5] demonstrates
that an incentive compatible schema follows a second-score mechanism, in which
the winner is allowed to provide the other attributes according to the second-best
bid, but not exactly the same. This means that the attributes do not need to
be the same as in the second highest bid but the valuation must be, at least, as
good as in the second best bid. A solution is to provide a set of attributes in such
a way that its valuation is not lower than the second best bid: e.g. keeping the
bid attributes but modifying the economical value in order to equal the second
best bid.

3 Related Work

The key work in multi-attribute auctions is [5], where the author describe dif-
ferent scenarios regarding the payment rule and demonstrate that the attributes
should match the second best bid, but not exactly, to be incentive compatible. In
a posterior work, [10] proposes an adaptation of the Vickrey-Clarke-Groves [6]
(VCG) for multi-attribute auctions under an iterative schema. That means that
bidders are allowed to modify their bids in response to the bids from other
agents. In the approach this paper deals with, iteration is not allowed due to
the dynamics of the problem domain. [11] presents an mechanism for auctions
with temporal constraints based on VCG with a new payment method. Time
constraints are used to filter the participating bids, but time is not considered
when evaluating the bids, leaving aside whether time improves a bid or not.
Multi-attribute auctions have been also used in the electronic advertisement
markets [12,13], e.g. [14] proposes the adaptation of the GSP auctions in order
to include an extra quality attribute, however this attribute is provided by the
auctioneer itself, not by the bidder. This approach could be similar to trust-
based approaches as [15]. Almost all these approaches compare bids with more
than one attribute but none of them defines the characteristics their evaluation
function must fulfill.
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4 Multicriteria Methods on Multi-attribute Auctions

As many attributes are involved in determining which bid is the one which best
fits to the auctioneer requirements, multicriteria functions can be considered
appropriate evaluation functions. However, they must fulfill a set of conditions
within the domain of the attributes in order to be used as evaluation function
an unambiguous auction mechanis. The evaluation function contributes in two
parts of the mechanism: the winner determination problem and the payment
mechanism.

On the one hand, the auctioneer uses an evalutiona function V (Bi) =
V ((bi, ATi)) which evaluates the bid price bi and the bundle of attributes ATi

of each bid Bi. Then, the auctioneer ranks them from the highest to the low-
est value, being j the bid ranking index (Bj = (bj , ATj)). Thus, the bid with
the highest value is the winner of the auction.As ATi can contain more than
one attribute, V (bi, ATi) should be a multi-criteria function which express the
auctioneer preferences.

On the other hand, a second price auction means that the winner bid receives
just the necessary amount to beat the second highest bid (Equation 2).

V (p,AT1)) = V (b2, AT2)) (2)

p = V ′(V (b2, AT2), AT1) (3)

Where p is the payment of the single winner in our mechanism, AT1 the at-
tributes of the winner bid, b2, AT2 the components of the second best bid and
V ′(x,ATi) = bi the anti-function of V (bi, ATi) = x.

However, this strategy does not prevent the bidders to lie regarding their
attributes since including a false attribute could increase the chances to win the
auction while not being penalized in the payment. For example, a bidder could
submit a bid saying that it will finish its task in 10 minutes when actually it will
finish the task in 15 minutes. This lie would have increased the chances of the
bidder to win the auction despite breaking the contract agreement. Therefore,
when a bidder breaks an agreement and does not commit with the bid attributes,
the payment the bidder receives corresponds to the amount it should have bid
to win the auction with final delivered set of attributes AT v

V (p,AT v
1 ) = V (b1, AT1) (4)

p = V ′(V (b1, AT1), AT
v
1 ) (5)

Summarizing, Equation 6 shows the payment mechanism when bidders respect
the contract agreement and when they break it.

p =

{
V ′(V (b2, AT2), AT1) if AT1 = AT v

1

V ′(V (b1, AT1), AT
v
1 ) if AT1 �= AT v

1

(6)
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4.1 Multicriteria Function as Evaluation Function: Requirements

In order to use a multicriteria function as evaluation function, it must fulfill a set
of conditions within the range of the attributes. First, the functions used for the
evaluation must return a real number so the different bids can be analytically
compared and ranked from the best to the worst; then, the functions must be
monotonic, giving a better score for a better bid; finally, so the payment can be
calculated, the evaluation function must be bijective for the price attribute.

Real-Valued Function
Given a set of bids, the evaluation function must return a real number evaluation
for each bid so the bids can be ranked and compared. As the auction payment
involves the score obtained by the second best bidder and does not directly
correspond to the price b1 bid by the winner, multi-criteria methods which result
in ranked lists without a score for each item cannot be used since the payment
cannot be calculated.

Monotonicity
The evaluation function must be monotonic. If one of the attributes of a bid is
improved, the result of the evaluation function will change consequently, granting
that a better bid will not obtain a worse evaluation. This property also implies
that, for every possible value inside the domain attribute, the evaluation function
will return a value. It is important to notice that the monotonicity requirement is
applied only to the range of values that an attribute can take, allowing functions
which are only monotonic in the attribute range to be used as evaluation func-
tions. E.g. in a situation where all the attributes take values inside the positive
numbers domain, the euclidean norm could be used as evaluation function.

Bijection
In order to allow the mechanism to calculate the payment, the evaluation func-
tion must have a bijective behavior regarding the price attribute. This means
that, given the bid attributes values and the result of the evaluation function,
the cost attribute of the bid can take only one possible value. If this condition
is not fulfilled, then, the auctioneer would be unable to calculate the payment
which the winner should receive as Equation 6 would have more than one solu-
tion. In other words, given the function V (b, AT ) = x the antifunction will be
V ′(x,AT ) = b where b can take just one value.

4.2 Multicriteria Function as Evaluation Function: Examples

There is a wide range of functions which, given a well defined domain, can act as
evaluation functions. n this section we present some examples assuming that all
the attribute values belong to the domain of real numbers and are normalized.
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Product and Weighed Sum
The product(Equation 7) and the weighed sum (Equation 9) can be used as
evaluation functions. Due to the simplicity of these functions, the payment func-
tions which are derived from them are also very simple and practical to use
(Equations 8 and 10).

V (bi, ATi) = bi ∗
j=n∏
j=1

atji (7)

p =

⎧⎪⎨⎪⎩
b2∗

∏j=n
j=1 atj2∏j=n

j=1 at1j
if AT1 = AT v

1

b1∗
∏j=n

j=1 atj1∏j=n
j=1 atvj1

) if AT1 �= AT v
1

(8)

V (bi, ATi) = μ0bi +
n∑

j=1

μjat
j
i (9)

p =

⎧⎨⎩
μ0b2+

∑n
j=1 μj(at

j
2−atj1)

μ0
if AT1 = AT v

1

μ0b1+
∑n

j=1 μj(at
j
1−atvj1 )

μ0
if AT1 �= AT v

1

(10)

where μj ∈ [0, 1] is the weight of each summation term and μ0 +
∑n

j=1 μ
j = 1.

Mathematical Norms
Another example of possible evaluation function are certain mathematical norms.
E.g, assuming that the attribute domain belongs to the positive numbers plus 0,
the euclidean norm (Equation 11) can be used. In contrast to the weighted sum,
this evaluation function would favour bids with more balanced attributes (see
Section 5.3. The correspondent payment function is given in Equation 12. How-
ever, it is important to remark that not all the norms can be used as evaluation
function. E.g, Chebyshev norm cannot be used as evaluation function since it is
not a bijective function and the payment could not be calculated.

V (bi, ATi) = 2

√√√√bi
2 +

n∑
j=1

atji
2

(11)

p =

⎧⎨⎩
2

√
b2

2 +
∑n

j=1 (at
j
2

2 − atj1
2
) if AT1 = AT v

1

2

√
b1

2 +
∑n

j=1 (at
j
1

2 − atvj1
2
) if AT1 �= AT v

1

(12)

Weighted Sum of Functions
All the functions commented above treat the different attributes in the same way,
however, in some domains, the attributes require an individual treatment and
modeling. For these cases, a multicriteria function which fits the evaluation func-
tion requirements is the weighted sum of functions (WSF). Equation 13 shows,



Multi Criteria Operators for Multi-attribute Auctions 325

each attribute is individually evaluated using a function fj(x) and the different
results are then aggregated using a weighted function. This multicriteria method
presents the advantage of being highly adaptable to the domain, however, in or-
der to be used as evaluation function all the involved functionsfj(x) must fulfill
the requirements presented in section 4.1. Moreover, the payment function will
depend on the the attribute functions fj(x) and their antifunctions.

V (bi, ATi) = μ0f0(bi) +

n∑
j=1

μjfj(at
j
i ) (13)

p =

⎧⎨⎩
f ′
0(μ0f0(b2)+

∑n
j=1 (μjfj(at

j
2)−μjfj(at

j
i )))

μ0
if AT1 = AT v

1

f ′
0(μ0f0(bi)+

∑n
j=1 (μjfj(at

vj
i )−μjfj(at

j
i )))

μ0
if AT1 �= AT v

1

(14)

where fj(x) are the functions which evaluate the attributes, μj are the weights
of each attribute function and f ′

0(x) is the antifunction of f0(x).

5 Experimentation

In this section we pretend to illustrate the behavior of the auction mechanism
when different evaluation functions are used and how, if assuming that the differ-
ent auctions are independent, the best strategy for the bidders is to bid truthfully
despite using different evaluation functions during the auction process. In order
to do so, we present a simple experiment: we estudied the execution of different
business process composed by different tasksusing a multi-agent system simula-
tion framework [16].

In this simulation different business process are executed concurrently and all
of them share a finite set of resources which are suplied by different resource
providers. Both the business process and the resources are repreented by agents:
Bussiness process agents (BP) and resource providers agents (RP). When a BP
requires a resource, the BP summons a second price reverse auction [17] and the
interested RP bid for providing the required resource.

5.1 Experimental Set Up

To test the performance of our auction mechanism we defined three business pro-
cess to be simulated. Each of these business process is composed by six different
tasks which have a duration compressed between 10 an 15 time units. Each task
of a business process needs one or none resource of a randomly assigned category
(between A and D). In consequence, each business process has a full duration
(from the first to the last task) between 60 and 90 time units and requires be-
tween 1 and 4 different resources. There is a random probability of ρ = 0.07 in
each unit time that a business process is enacted.

There are three BP agents, one per kind of business process. We consider
two attributes, time to deliver the task t (minutes) plus an error margin e (%)so
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Table 1. Example of resources skills randomly generated per each agent: (Resource
type, deliver time, tolerance to errors)

Resources RP0 RP1 RP2 RP3 RP4 RP5 RP6 RP7

Skills A,15,2 B,15,1 C,10,8 D,14,2 A,12,6 B,13,4 C,12,5 D,13,4
C,14,3 D,14,2 A,14,2 B,10,1 C,13,4 D,15,4 A,13,5 B,13,5
B,10,9 A,10,9 D,15,1 A,14,2 D,12,5 C,12,5 D,12,6 A,12,6

(AT = {t, e}, 15 > t > 10, 10 > e > 0), plus price. There are 8 RP bidders. Each
resource provider agent has the skills of performing three different tasks, with
different qualifications (see Table 1). Two of the resource provider agents cheat
and follow the strategy of not revealing their trutful values (RP3 and RP7),
while the others bid truthfully and adapt their bids as auctions progresses [18].
This situation will be useful to point the incentive compatibility of the system
Moreover, providers from RP0 to RP3 have unbalanced attributes (a good time,
a good error margin or a good price) while resources RP4 to RP7 have balanced
attributes (an average price, error margin and service time). These differences
will be useful to analyze the different behavior of the mechanism when different
evaluation functions are used.

5.2 Scenarios

The presented situation will be simulated in three different scenarios. In each one,
a different evaluation function is used in the auction: The weighted sum (μ0 =
0.5, μ1 = 0.3, μ2 = 0.2), the product and the euclidean norm. Each scenario is
repeated 100 times so significant data can be extracted from the simulations.

5.3 Results

Figure 1 shows the experiments of the different simulations. In it we can see how
the different evaluation functions have conditioned the behavior of the auctions.

Fig. 1. 1) Business process mean service time with different evaluation functions (WS:
Weighted Sum, Prod: Product, E.n: Euclidean norm) 2) Business process mean error
tolerance 3) Busines process mean cost 4) Resource providers benefits when using
different evaluation functions
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E.g, we can see how when the weighted sum have been used the mean cost
for each business process is lower than with the other functions, however if we
compare the service time and the error margin we can see how their results are
worse than with the Euclidean norm and with the product. This can be explained
for the weights used in the evaluation function which gives more importance to
the price than to the other attributes.

If we analyze the results of the product and the Euclidean norm we can observe
how both evaluation functions have provoqued a higher business process mean
price but with a lower service time and error margin as none of the evaluation
functions give priority to one or to other attributes. If we observe the providers
benefits, we can see how using the product all the providers (except the cheaters)
have a similar amount of benefits, however, when the Euclidean norm have been
used, the providers which offered balanced resources (RP4 to RP7) obtain a
higher revenue as the Euclidean norm gives lower values when the components
of a vector are equilibrated.

Finally, we can see how the incentive compatibility of the mechanism has been
preserved despite the evaluation function used as in all the scenarios the cheater
agents (RP3 and RP7) obtain lower benefits than the honest ones.

6 Conclusions

This paper deals with the problem of resource allocating using multi-attribute
auctions in a decentralized environment where business process instances are
executed concurrently and without a previously known production scheduling.
In particular, it focus on the problem of determining which requirements multi-
criteria functions must fulfill in order to be used as evaluation functions.

The evaluation function of a multi-attribute auction is strongly dependent
of the auction domain, as attributes may drastically vary from one auction to
another. However, all of them must satisfy certain conditions in order to grant a
proper behavior of the mechanism. In this paper we have shown that, when using
a multicriteria function as evaluation function, it must be a monotonic function
within the range of the attributes and it must be a bijective function regarding
the price attribute. As an illustrative example, these function requirements have
been applied to a second price reverse multi-attribute auction mechanism, how-
ever this properties are extensible to other mechanisms which require the use of
a numeric evaluation function (e.g. the mechanism presented in [10]).

As a future work we plan to extend the auction mechanism presented in
Section 4.1 with fairness properties in order to deal with sequential auctions and
to include. Another path of research, is the study of the relation between the
decision of the evaluation function and the incentive compatibility of the auction
mechanism.
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get, J., Phelps, S., Rodr̈ıguez-aguilar, J., Sousa, P.: Issues in multiagent resource
allocation. Informatica 30 (2006)

2. Krishna, V.: Auction Theory. Academic Press (March 2002)
3. Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior.

Princeton University Press (1944)
4. Lehman, D., Muller, R., Sandholm, T.: The Winner Determination Problem, ch. 12.

MIT Press (2006)
5. Che, Y.K.: Design competition through multidimensional auctions. The RAND

Journal of Economics 24(4), 668–680 (1993)
6. MacKie-Mason, J.K., Varian, H.R.: Generalized vickrey auctions (1994)
7. Conitzer, V.: Algorithms and theory of computation handbook, p. 16. Chapman

& Hall/CRC (2010)
8. Smith, R.: The contract net protocol: High-level communication and control in a

distributed problem solver. IEEE Transactions on Computers C-29(12), 1104–1113
(1980)

9. Parsons, S., Rodriguez-Aguilar, J.A., Klein, M.: Auctions and bidding: A guide for
computer scientists. ACM Comput. Surv. 43(2), 10:1–10:59 (2011)

10. Parkes, D.C., Kalagnanam, J.: Iterative multiattribute vickrey auctions. Manage-
ment Science 51, 435–451 (2005)

11. Zhao, D., Zhang, D., Perrussel, L.: Mechanism design for double auctions with
temporal constraints. In: IJCAI, pp. 472–477 (2011)

12. Athey, S., Ellison, G.: Position auctions with consumer search. Forthcoming Quar-
terly Journal of. Economics 126(3), 1213–1270 (2011)

13. Krishna, V.: Auction Theory. Academic Press/Elsevier (2009)
14. Varian, H.R.: Position auctions. International Journal of Industrial Organiza-

tion 25(6), 1163–1178 (2007)
15. Ramchurn, S.D., Mezzetti, C., Giovannucci, A., Rodriguez-Aguilar, J.A., Dash,

R.K., Jennings, N.R.: Trust-based mechanisms for robust and efficient task alloca-
tion in the presence of execution uncertainty. J. Artif. Int. Res. 35, 119–159 (2009)

16. Pla, A., Lopez, B., Melendez, J., Gay, P.: Petri net based agents for coordinating
resources in a workflow management system. In: ICAART, Rome, Italy, pp. 514–523
(February 2011)
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Abstract. There are many stand-alone algorithms to mine different
types of patterns in traditional databases. However, to effectively and
efficiently mine databases with more complex and large data tables is
still a growing challenge in data mining. The nature of data streams
makes streaming techniques a promising way to handle large amounts
of data, since their main ideas are to avoid multiple scans and optimize
memory usage. In this paper we propose in detail an algorithm for find-
ing frequent patterns in large databases following a star schema, based
on streaming techniques. It is able to mine traditional star schemas, as
well as stars with degenerate dimensions. It is able to aggregate the rows
in the fact table that relate to the same business fact, and therefore find
patterns at the right business level. Experimental results show that the
algorithm is accurate and performs better than the traditional approach.

Keywords: Pattern Mining, Multi-Relational Data Mining, Data
Streams, Star Schema, Degenerate Dimensions.

1 Introduction

A growing challenge in data mining is the ability to deal with complex, large and
dynamic data. In many real world applications, complex data is organized in mul-
tiple, related and large database tables. There are many stand-alone algorithms
for finding frequent patterns, but they are only able to deal with traditional
databases, composed of a singular table. To join all tables into one is usually a
very time consuming process, possibly impracticable, that can easily lead to the
loss of information. Multi-relational data mining (MRDM) is a fairly recent area
that aims for learning from multiple tables, in their original structure.

The nature of data streams makes streaming techniques a promising way to
handle large amounts of data, since their main ideas are to avoid multiple scans
of the entire datasets, optimize memory usage and use a small constant time per
record. Existing techniques keep only the needed information in some summary
data structure and maintain it updated. Most of the existing algorithms for
mining data streams are designed for a single data table ([4,8]).

A commonly used structure for databases is a star schema, which is composed
of a central fact table linking a set of dimension tables. In a star schema, data
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is modeled as a set of facts, each describing an occurrence, characterized by a
particular combination of dimensions. In turn, each dimension aggregates a set
of attributes for a same domain property [7]. In traditional transactional star
schemas, each row in the fact table corresponds to a business transaction (or
business fact). However, it is very common to have a control number in the fact
table, such as an order or transaction number. They are usually stored in the
fact table as a degenerate dimension, i.e. they act like dimension keys, but do not
have a physical dimension table associated. Nevertheless, they can be a separate
dimension (normally with only one attribute). These control numbers provide
a way to group the rows in the fact table that were generated as a part of the
same order or transaction. Instead of simply considering each row as one different
fact, a more interesting challenge is to aggregate the rows of each business fact,
in order to analyze the star at the right business level. For example, in a sales
domain, if we group the rows belonging to each sale, we can find patterns of
items bought together. Otherwise, we can only find frequent singular products.

In this paper we propose in detail an algorithm for finding frequent patterns
in large databases following a star schema, based on streaming techniques, that
is able to find patterns at the right business level.

2 Problem Statement

Frequent pattern mining aims for enumerating all frequent patterns that concep-
tually represent relations among items. Depending on the complexity of these
relations, different types of patterns arise, being transactional patterns the most
common. A transactional pattern is a set of items that occur together frequently.

Let S be a tuple (D1, D2,... Dn, FT ) representing a data warehouse modeled
as a star schema, with Di corresponding to each dimension table and FT to the
fact table. Also, let I = {i1, i2, . . . , im} be a set of distinct literals, called items.
In the context of a database, an item corresponds to a proposition of the form
(attribute, value), and a subset of items is denoted as an itemset. T = (tid,X)
is a tuple where tid is a tuple-id (corresponding to a primary key) and X is
an itemset in I. Each dimension table in S, is a set of these tuples. If there is
a degenerate dimension (DD), it consists in just a key in the fact table that
identifies the rows corresponding to the same business fact. It can be seen as
an aggregating dimension or key. Rows on the fact table are sets of n tids:
tuples of the form (tidDD, tidD1 , tidD2 ,... tidDn). In traditional transactional
star schemas, a business fact corresponds to one row in the fact table. With
degenerate dimensions, a business fact is a set of rows in the fact table that
share the same degenerate key.

The support of a foreign key tidDi is the number of business facts where they
occur. The support of an Itemset X of the dimension Di consists on the number
of business facts that contain the tidDis that have X in Di. The problem of
multi-relational frequent pattern mining over star schemas is to mine all itemsets
whose support is greater or equal than σ×BF where σ ∈]0, 1] is the user defined
minimum support threshold, and BF is the number of business facts.
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Let us now consider that the tables are data streams, where new business
facts arrive sequentially in the form of continuous streams. Let the fact stream
FS = B1 ∪B2 ∪ ...Bk be a sequence of batches, where Bk is the current batch,
B1 the oldest one, and each batch is a set of business facts. Additionally, let N
be the current length of the stream, i.e. the number of business facts seen so far.
As it is unrealistic to hold all streaming data in the limited main memory, data
streaming algorithms have to sacrifice the correctness of their results by allowing
some counting errors. These errors are bounded by a user definedmaximum error
threshold, ε ∈ [0, 1], such that ε - σ. Thus, the support calculated for each item
is an approximate value, which at most has an error of εN . The problem of
multi-relational frequent pattern mining over star streams consists in finding all
itemsets whose estimated support is greater or equal to (σ − ε)×N .

3 Mining Star Streams

Star FP-Stream is a MRDM algorithm that is able to find approximate frequent
relational patterns in large databases following a star schema. It is able to deal
with degenerate dimensions, and to aggregate the rows of the fact table into
business facts, making possible the mining of the star at the right business level.
It is also able to mine multiple relational data streams, assuming that patterns
are measured from the start of the stream up to the current moment (landmark
model). The algorithm is a complement of Star FP-Stream [11] that combines
the strategies of two algorithms: Star FP-Growth [10] (MRDM algorithm over
star schemas) and FP-Streaming [4] (data streaming algorithm), both based on
the traditional algorithm FP-Growth [5]. It does not materialize the join of the
tables, making use of the star properties, and it processes one batch of data at a
time, maintaining and updating frequent itemsets (patterns) in a pattern-tree. A
pattern-tree is a compact data structure based on the FP-tree [5] that maintains
crucial, quantitative information only about patterns, instead of any itemset.

3.1 How Star FP-Stream Deals with Star Schemas?

As referred in [7], dimensions are, by definition, smaller than the fact table.
Therefore, we assume that all dimension tables are kept in memory, and only
the fact table (the fact stream) is arriving in batches. However, dimensions can be
data streams as well: if new transactions arrive for some dimension (transactions
can only be added, not deleted nor changed), just add them to the respective
dimension table in memory, before their tids first appearance in the fact stream,
since these transactions are only read if their tids are seen in the current batch.

To mine a star stream, the algorithm uses Star FP-Growth [10] techniques.
The idea is to build, in each batch, the DimFP-Trees for each dimension as
new business facts arrive, with the respective occurring transactions (local min-
ing step). When a batch is completed, the DimFP-Trees are combined to form
a Super FP-Tree (global mining step), which will contain the itemsets of all
dimension that co-occur in the current batch.
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When counting the support and combining the trees, we have to guarantee
that each tid and also each itemset do not count more than once per business fact.
For example, if the fact table has ({t1, client1, product1}, {t1, client1, product2}),
it means that client 1 bought product 1 and product 2 in the same transaction,
and therefore client 1 should only count as appearing once in this business fact.

3.2 How Star FP-Stream Deals with Fact Streams?

To deal with fact streams, the algorithm follows the strategies of FP-Streaming
[4], where arriving transactions are stored in a new FP-tree structure, and at
each batch boundary, the frequent patterns are extracted from the tree by means
of FP-Growth, and stored in a pattern-tree structure, which is then pruned to
remove infrequent patterns. Each node in this tree represents a pattern (from
the root to the node), stored along with its current estimated frequency and
its maximum error. However, while FP-Streaming is an algorithm for mining
time sensitive data streams (keeping frequencies for several time intervals), Star
FP-Stream aims to find patterns over the entire data stream (landmark model).

In Star FP-Stream the fact stream is conceptually divided into k batches
of +1/ε, business facts each, so that the batch id (1..k) exactly refers to the
threshold εN (the maximum error allowed is k, one per batch). Note that the
number of facts of each batch is fixed, but the number of rows is not, because n
business facts may need more than n rows in the fact table.

All items that appear in more than one business fact in a batch are frequent
with respect to that batch, and potentially frequent with respect to the entire
stream. As for items that appear just in one business fact in a batch and are
not in the pattern-tree, they are infrequent and can be discarded, because even
if they reappear later and become frequent, the loss of support will not affect
significantly the calculated support (the error is less than k). Considering that

an itemset I first occurs in batch Bj , let us denote f its real frequency and f̂ its
estimated frequency after the current batch Bi (with j ≤ i ≤ k), and Δ = j − 1
its maximum error (i.e. the number of times it could have appeared before j).

Frequent itemsets since the first batch have Δ = 0 and f = f̂ . Otherwise they
can have been discarded in the first Δ batches. Therefore, f ≤ f̂ +Δ. And since
Δ ≤ i − 1 ≤ εN , we can state that f ≤ f̂ +Δ ≤ f + εN . If we want itemsets
whose f ≥ σN , getting all itemsets whose f̂ + Δ ≥ σN guarantees that all
patterns are returned. Similarly, for all patterns, f + εN ≥ σN ⇔ f ≥ (σ− ε)N .

The update of the pattern-tree structure is done only when enough incoming
business facts have arrived to form a new batch Bi. We have three pruning
strategies, like FP-Streaming [4]. For the current batch Bi and item I:

Type I Pruning: If I only occurs in one business fact in Bi and it is not in the
pattern-tree, we do not insert it in the pattern-tree and we can stop mining
the supersets of I, because it is infrequent. (anti-monotone property)

Type II Pruning: While mining I, if its f̂ + Δ ≤ i, it will be deleted later
because it is infrequent, therefore we can stop mining the supersets of I.

Tail Pruning: After mining Bi and updating the pattern-tree, we can prune
all items in the tree whose f̂ +Δ ≤ i.
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3.3 Algorithm Star FP-Stream

The detailed algorithm is presented in Algorithms 1 and 2.

Algorithm 1. Star FP-Stream Pseudocode

Input: Star Stream S, error rate ε
Output: Approximate frequent items with threshold σ, whenever the user asks

i = 1, |B| = 1/ε, flist and ptree are empty
B1 ← the first |B| facts
L ← StarFP-Growth(B1 , support = ε|B|+ 1)
flist ← frequent items in B1, sorted by minimum support
for all patterns P ∈ L do

insert P in the ptree with max error i− 1
N = |B|, discard B1 and L
// prepare next batch
i = i+ 1, initialize n DimFP-trees to empty
for all arriving business fact (set of at least one (tidD1 , ..., tidDn)) do

N = N + 1
for all Dimension Dj do

for all Different foreign key of the business fact, tidDj do
T ← transaction of Dj with tidDj

insert T in the DimFP-treej

flist ← append new items introduced by all T s
if all facts of Bi arrived then

super-tree ← combineDimFP-trees(DimFP-trees, Bi)
FP-Growth-for-streams(super-tree, ∅, ptree, i)
discard the super-tree
tail-pruning(ptree.Root, i)
// prepare next batch
i = i+ 1, initialize n DimFP-trees to empty

combineDimFP-trees(DimFP-trees dim-trees, Batch of facts Bi)
fptree ← new FP-tree
for all business fact f ∈ Bi do

for all Dimension Dj do
for all Different foreign key of the business fact, tidDj do

T ← append branch of DimTreej with tidDj

sort T accordingly to flist and remove duplicates
insert T in fptree

return fptree

tail-pruning(Pattern-tree node R, Batch id i)
for all children C of R do

if C.support+ C.error ≤ i then
remove C from the tree

else
tail-pruning(C, i)
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The first batch is processed separately with Star FP-Growth [10]. In this
batch, itemsets that occur only once can be discarded, because they never oc-
curred before. All resulting patterns are stored in the pattern tree, and frequent
items are also stored to fix the items’ order through all batches.

Next, for each arriving business fact, the respective occurring transactions
are inserted in the corresponding compact DimFP-tree (Local Mining). At each
batch boundary, i.e. when |B| business facts have arrived, the DimFP-trees are
combined into the Super FP-tree (Global Mining), containing all possible rela-
tional patterns in that batch (with items ordered accordingly to flist).

Algorithm 2. FP-Growth-for-streams Pseudocode

Input: FP-tree fptree, Itemset α, Pattern-tree ptree, Current batch id i
if fptree = ∅ then

return
else if fptree contains a single path P then

for all β ∈ P(P ) do
processPattern(ptree, α ∪ β: min[support(nodes∈ β)], i)

else
for all a ∈ Header(fptree) do

β ← α ∪ a : a.support
if processPattern(ptree, β, i) = false then

proceed to the next a
else

treeβ ← conditional fptree on a
FP-Growth-for-streams(treeβ , β, ptree, i)

processPattern(Pattern-tree ptree, Itemset I , Batch id i)
if I ∈ ptree then

P ← last node of I in ptree
P.support ← increment by I.support
if P.support+ P.error ≤ i then

return false// Type II Pruning
else if I.support > ε|B| then

insert I in ptree with support = I.support and maximum error = i− 1
else

return false// Type I pruning
return true

The Super FP-Tree is then mined using the modified FP-Growth algorithm,
presented in Algorithm 2, which differs from the original in how they deal with
each found itemset I (see function processPattern): If it is in the pattern-tree,
update its frequency, by adding the number of occurrences in Bi, and test Type
II Pruning. If I is not in the pattern-tree, test Type I Pruning.

After mining the batch, we can discard the Super FP-tree and prune the
pattern tree by Tail Pruning. The pattern tree is now updated, and contains all
approximate frequent itemsets until that batch.
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If there are no more batches, or every time a user asks for the current patterns,
scan the pattern-tree and return all itemsets with f̂ +Δ ≥ σN .

4 Performance Evaluation

The main goal of these experiments is to analyze our algorithm in the presence of
a degenerate dimension. We evaluate the accuracy, time and memory usage, and
show that: (1) Star FP-Stream has a good accuracy and does not miss any real
pattern; and (2) mining directly the star is better than joining before mining.

We assume that we are facing a landmark model, where all patterns are equally
relevant, regardless of when they appear in the data. Therefore, we test Star FP-
Stream over an adaptation of FP-Streaming for landmark models, which we will
call Simple FP-Stream, that stores only one counter in each node of the pattern
tree (instead of one per time window). Since Simple FP-Stream does not deal
with stars directly, it denormalizes each business fact when it arrives (i.e. it goes
to every dimension and join all the transactions corresponding to the tids of the
business fact in question, with no duplicates), before mining it.

Experiments were conducted varying both minimum support and maximum
error thresholds: σ ∈ {50%, 40%, 30%, 20%} and ε ∈ {10%, 5%, 4%, 3%, 2%}.1
Note that the course of the mining process of streaming algorithms does not
depend on the minimum support defined, only on the maximum error allowed.
The support only influences the pattern extraction from the pattern-tree, which
is ready for the extraction of patterns that surpass any asked support (σ . ε).

We tested the algorithms with a sample of the AdventureWorks 2008 Data
Warehouse2, from a ficticious multinational manufacturing company. In this
work we will analyze a sample of the star Internet sales, which contains infor-
mation about individual customer Internet sales orders, from July 2001 to July
2004. Dimension tables were kept in memory and the fact table is read as new
facts are needed. We consider four dimension tables: Product, Date, Customer
and SalesTerritory, so that we are able to relate who bought what, when and
where. The fact table has the keys of those dimensions (other attributes were
removed), and each dimension has only one primary key and other attributes
(no foreign keys). Numerical attributes were excluded (except year and semester
in dimension Date) as well as translations and other personal textual attributes,
like addresses, names and descriptions. We also used the degenerate dimension
corresponding to the sales order number, that indicates which products were
bought together (by the same customer, in the same date and place).

The computer used to run the experiments was an Intel Xeon E5310 1.60GHz
(Quad Core), with 2GB of RAM. The operating system used was GNU/Linux
amd64 and the algorithms were implemented using the Java Programming lan-
guage (Java Virtual Machine version 1.6.0 24).

1 A common way to define the error is ε = 0.1σ [8]. Additionally, we use a larger error
to see how worse the results are.

2 AdventureWorks Sample Data Warehouse:
http://sqlserversamples.codeplex.com/

http://sqlserversamples.codeplex.com/
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4.1 Experimental Results

Accuracy. The accuracy of the results is influenced by both error and support
thresholds. Note that the resulting patterns of Star FP-Stream and Simple FP-
Stream are the same (the algorithms only differ in how they manipulate the
data). The exact patterns were given by FP-Growth (with all rows of the fact
table as input) and were compared with the approximate ones.

Fig. 1 shows the number of patterns returned, and Fig. 2 presents the preci-
sion as the support varies. Precision measures the rate of real patterns over the
patterns returned by the streaming algorithm.

Fig. 1. Number of patterns returned Fig. 2. Precision variation per support

As the minimum support decreases, the number of patterns increases, since we
require fewer occurrences of an item for it to be frequent. And as the maximum
error increases, the number of patterns returned also tends to increase, but
the precision decreases, because although we can discard more items, we have
to return more possible patterns to make sure we do not miss any real one.
Nevertheless, the overall results show that precision was always above 60%.

The recall is proved theoretically to be 100% (there are no false positives, i.e.
there are no real patterns that the algorithm considers infrequent).

Pattern Tree. The pattern tree is the key element of these algorithms, since
it is the summary structure that holds all the possible patterns. The maximum
error and the characteristics of data influence its size, which in turn influence
the time and memory needed. The minimum support only counts to extract
the patterns of the pattern tree, and it does not influence its size. Since both
algorithms use the same rules to construct the pattern tree, it will be equivalent
on both cases.

Fig. 3 reveals, for each error, the average size of the pattern tree after pro-
cessing a batch. There we confirm that, as the error decreases, the size of the
pattern tree increases. This is explained by the fact that for higher errors, the
number of business facts in each batch is smaller and the algorithms can discard
much more possible patterns than for lower errors. Although being a summary
structure, it still is a very large structure, with thousands of nodes.
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Fig. 3. Average pattern tree size

Time and Memory. Processing time was analyzed in terms of the time needed
to process one batch (update time). It consists on the elapsed time from the
reading of a transaction to the update of the pattern tree, and it depends both
on the size of the batches, of the pattern-tree and of the characteristics of data.
To analyze the maximum memory per batch, we measured the memory used by
the algorithms for each batch, right before discarding the Super FP-Tree and
doing the pruning step.

Fig. 4. Average update time Fig. 5. Average maximum memory

Fig. 4 shows the average update time and Fig. 5 the average maximum mem-
ory per batch, of both algorithms for all errors. For consistency, we do not take
into account the time or memory needed to process the first batch, since it is
processed separately. We can state in the first figure that Simple FP-Stream
demands, on average, much more time than Star FP-Stream. This demonstrates
that, for star streams, denormalize before mining takes more time than mining
directly the star schema, corroborating our goal and one of the goals of MRDM.
In terms of memory, in the second figure we can note that the algorithms perform
very similar and need the same amount of memory.

Both the update time and memory needed are required to be constant and
not depend on the number of transactions. This can be verified in Fig. 6 and
Fig. 7, that show in detail the time and memory needed per batch, respectively.
We can verify that both tend to be constant and do not increase as more batches
are processed. Star FP-Stream always outperformed the other in terms of time,
and matched in terms of memory.
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Fig. 6. Update time per batch, for 3% of error

Fig. 7. Maximum memory per batch for 3% of error

In the beginning, both algorithms need less time and memory because, until
the business transaction number 5400, customers only bought one product, and
therefore there are fewer business facts to process. The ups and downs in time
and memory correspond respectively to the entrance of more patterns in the
pattern tree, and the process of smaller trees after pruning.

What If We Do Not Aggregate the Business Facts? To better understand
the difference, while there are around 60 thousands rows in the fact table, there
are less than a half business facts, around 27 thousand. For example, for 30% of
support, mining each row as a singular fact asks for patterns that appear in more
than 18 thousand rows. By aggregating per degenerate key, e.g. we can find the
products and sets of products that are bought together in more than 8100 real
sales. This leads to the increase of the number of patterns returned (Fig. 8), since
items appearing more than 8100 times but less than 18 thousand, are infrequent
in the first case, but frequent when aggregating. The Super FP-Tree, as well as
the pattern-tree are also substantially different (Fig. 9): when aggregating, their
size increases a lot, and they have less paths, but longer ones, because of the
co-occurrences of items of the same table in the same transaction.

With a similar idea, 3% of error divides the fact table into batches of 34
business facts, which results in around 1760 batches of rows, or around 800
batches of business facts. While the first processes each batch faster because it
has less rows, the second takes more time to process one batch of business facts.
Similarly, the second needs much more memory, since it has to store bigger
trees. However, the second is able to return more useful patterns in a business
perspective, since they are mined at the right aggregation level.
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Fig. 8. Average update time (3% error) Fig. 9. Average maximum memory

5 Related Work

There are many stand-alone algorithms to mine different types of patterns in tra-
ditional databases, with FP-growth [5] one of the most efficient. This algorithm
follows a pattern-growth philosophy and represents the data into a compact tree
structure, called FP-tree, to facilitate counting the support of each set of items
and to avoid expensive, repeated database scans. It then uses a depth-first search
approach to traverse the tree and find the patterns.

Some of the traditional algorithms have been extended to the multi-relational
case. In this work we will focus on frequent pattern mining over star schemas.

The first multi-relational methods have been developed by the Inductive Logic
Programming (ILP) community about ten years ago (WARMR [2]), but they are
usually not scalable with respect to the number of relations and attributes in the
database and they need all data in the form of prolog tables. An apriori-based
algorithm was introduced in [1], wich first generates frequent tuples in each single
table, and then looks for frequent tuples whose items belong to different tables
via a multi-dimensional count array; [9] proposed an algorithm that mines first
each table separately, and then two tables at a time; [12] presented MultiClose,
that first converts all dimension tables to a vertical data format, and then mines
each of them locally, with a closed algorithm. The patterns are stored in two-level
hash trees, which are then traversed in pairs to find multi-table patterns; StarFP-
Growth, proposed in [10], is a pattern-growth method based on FP-Growth [5].
Its main idea is to construct an FP-Tree for each dimension (DimFP-Tree),
accordingly to the global support of its items, and then, build a Super FP-Tree,
combining the FP-Trees of each dimension, accordingly to the facts. In the end
it runs FP-Growth on this tree to find multi-relational patterns.

To the best of our knowledge, there are only two works on multi-relational
frequent pattern mining over data streams, SWARM [3] and RFPS [6], both based
on the multi-relational ILP algorithmWARMR [2]. These approaches are apriori-
based and are able to find relational patterns over a sliding time window.
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6 Conclusions

In this paper, we propose a new algorithm for mining very large data warehouses,
modeled in a star schema, at the right aggregating level. Particularly, it is able
to deal with degenerate dimensions by aggregating the rows in the fact table
corresponding to the same business fact, and still mining directly the star.

Experiments on Adventure Works showed that Star FP-Stream is accurate,
achieving a good precision and 100% of recall. The pattern-tree tends to be
very large, but its size tends to be stable, and it is able to return the patterns
for every minimum support σ . ε, anytime. The time and memory needed by
the algorithm tend to be constant and do not depend on the total number of
transactions processed so far, but only on the size of the batches and on the size
of the current pattern tree, which in turn depends on the characteristics of the
data. Star FP-Stream greatly outperforms Simple FP-Stream in terms of time.
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Abstract. This paper proposes to use quantitative methods to identify a prefe-
rence model reflecting the overall satisfaction of the user according to the nu-
merous parameters of a complex fusion system. The studied fusion system is 
devoted to 3D image interpretation and it works in interaction with experts who 
have knowledge and experience of the concerned applications. Such a system 
involves many sub-parts and each of them has many parameters that must be 
adjusted to obtain interesting detections. The link between the parameters and 
the overall satisfaction expressed by the experts is a priori unknown and it is a 
key issue to better interact with the system. After the presentation of the  
preference model relevance with the problematic, three model identifications 
(multivariate, UTA+ and MACBETH) are attempted in this paper to find an in-
teresting set of parameters according to the available overall satisfaction. Ob-
tained results show the complexity of this kind of identification, mainly because 
of the non monotonicity of the parameter utilities. 

Keywords: Fusion system, 3D image, Overall satisfaction, MCDA, Multiple 
variable regression, UTA+, MACBETH. 

1 Parameter Adjustment of a Complex Fusion System 

Fusion systems for 3D image interpretation are a complete processing chains that start 
from the local information measurement and attempts to deliver useful synthetic in-
formation for the end-users. Generally, the end-users are experts in scientific domains 
not directly in connection with those involved in the fusion system. In order to give us 
more confidence in the obtained results, they are implicated in the process by giving 
some samples of what they are looking for in the images. Such a system thus becomes 
a so-called supervised system. Supervised fusion systems for 3D image interpretation 
are complex systems and they need a strong collaboration with the experts. The sys-
tem complexity is due to (1) the important number of operations (stages) needed to 
compute the results, (2) the non-linearity of many of them, (3) the non-analytic ex-
pression of the global transfer function, and (4) the important computation time. 

Image interpretation consists of identifying typical regions within the 3D images to 
better understand a complex phenomenon. The concerned fusion system was designed 
and applied on two main applications: (1) an analysis of 3D tomographic images for 



342 L. Valet and V. Clivillé 

part quality control in collaboration with Schneider Electric [4], (2) an analysis of 3D 
seismic images for oil prospection in collaboration with the Federal University of Rio 
de Janeiro [5]. The use of the system on these two real applications has highlighted 
the difficulty of adjusting the numerous parameters of the fusion system. There is a 
need to help the designers but also the end-users of the system to find interesting sets 
of parameters with a fewer number of experimentations. 

The proposed fusion system is composed of four main levels presented in figure 1. 
Firstly, the extraction level computes some attributes thanks to image processing 
techniques. Each attribute has the same size as the input image and it contains a nu-
merical quantity for each voxel within the image. According to the chosen measure-
ment, these attributes can inform on the local texture that exists in the image, on the 
local organisation of the grey level intensities or on the form of local objects (like 
porosities for example). The main parameters are concentrated on this level. Sec-
ondly, the attributes are represented in a common space to be comparable. Similarity 
cards are computed thanks to possibility theory. Thirdly, a Choquet integral is evalu-
ated for each region of interest to give a global similarity for each voxel of the image 
to the regions. The fuzzy measures used to compute the Choquet integral are learnt 
thanks to the samples (called regions of reference) that are given by the experts. The 
last level is in charge of taking the final decision for each voxel on which region it 
belongs according to its global similarity degrees.  

 

Fig. 1. Synoptic of the fusion system 

There is a need for the end-users of such systems (but also for the designers) to 
have information on how the parameters must be adjusted in order to obtain a useful 
interpretation. The parameters are mainly concentrated on the extraction level and 
their number depends on the chosen attributes. The next section will present in detail 
a real case where three attributes (for a total of 18 parameters) are used to interpret a 
synthetic 3D image. The result of the fusion is called a “detection” which refers to a 
particular configuration of the parameters. Previous works have tried to better under-
stand the system behaviour: a local evaluation based on the separability index [1] has 
been proposed to quantify each subpart of the fusion system. At the same time, a 
global detection rate T is computed on the result by comparing the regions of refer-
ence given by the experts to the obtained detection. With these quantities, an optimi-
sation approach based on genetic algorithms has been applied to find some optimal 
parameter settings. The obtained results presented in [5] and [6] have shown that the 
detection rate T can effectively be increased. Nevertheless, T is only a partial  
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evaluation of the result and it does not reflect the overall satisfaction of the experts. 
The optimisation process is highly sensitive to the objective function and it can let 
some part of the image (out of the references) remain undetected to focus only on the 
regions used for the global rate computation. Moreover, the computation time needed 
for by such an optimisation is also very important. 

This communication analyses the MCDA methods opportunity to support this pa-
rameter setting problem. The parameter adjustment problem can be seen as a decision 
problem. The parameter vector composes a set of alternatives and the decision maker 
has to select an alternative that leads to an interesting preference on the obtained re-
sult (i.e. an output detection that is globally good and not only the detection rate T). 
The objective is also to avoid the computation of many fusions because of the entire 
time consuming process MCDA has shown its interest in many decision problem 
areas by the building of a preference model which reflects the decision maker (DM) 
preferences [7]. The objective, in this paper, is to test different preference models to 
link the decision data (alternatives, attributes) with the preference information in or-
der to identify an interesting set of parameters. 

2 System Description and Expert Available Knowledge 

2.1 Fusion System for Image Interpretation 

The fusion system is applied in this paper to a synthetic image (presented on figure 2) 
where three regions of interest are investigated. To detect the sought-after regions, 
three attributes are extracted from the original image: (1)  measures the local or-

ganisation in the third direction obtained with the PCA (Principal Component Analy-
sis) of the gradient vectors computed on each voxel, (2)  measures the local  

organisation using the second direction and (3)  is a texture measurement based on 

the co-occurrence matrix. More information on these well-known image processing 
techniques can be found in [4]. The computation of the attribute requires the fol-

lowing parameters:  

• the Derich filter coefficient for noise reduction [0…1]. 

•  the size of the cubic windows used for the gra-

dient evaluation. 

•  the three dimensions of the windows used 

for the PCA. 

• . 

The parameters for attribute  are the same as those for . It leads to 6 other at-

tributes noted  . Only the computation of 

the attribute is different. 

The parameters for attribute  are: 

1A

2A

3A

1A

1  / :x alpha

2  /   :x gradient window size

3 4 5, ,   /   :x x x PCA window sizes

6  /  x dynamic adjustment
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•  / the windows sizes for the texture analysis 

•  / the a priori texture direction. 

 

Fig. 2. The 3D synthetic images 

So a given detection is characterised by a vector of 18 parameters  noted 

 coming from the extraction stage. The parameters of the other levels have less impact 
on the output and they are set to default values. It also prevents the parameters from be-
ing in series in the processing chain and to interact with each other during the processing. 
The objective is thus to adjust the vector to obtain an interesting detection of the three 
sought-after regions. The number of possible combinations is very high (18 parameters, 
about 5 to 10 values) and the duration of a full treatment by the fusion system is about 30 
minutes. Thus it can be very interesting to identify an approximate model which links the 
parameter vector and the overall satisfaction. 

The output of the system, noted , is evaluated by a detection rate . Figure 3 

presents 14 detections  obtained for different vectors  

(table 2 in the appendix) chosen by the expert as potential interesting detections. The 
global rate  is given in the same figure. Note that only 2D views corresponding to 
the 100th section of the 3D image are presented for a better visualisation comfort.  

These images clearly show that the does not take into account the global appear-
ance (fragmentation, false area recognition …) of the detection, whereas the expert will 
do it. So the expert wishes to complete this information by an overall satisfaction score 

noted  on a scale [0…20] which evaluates the areas detection quality. is also 
given in figure 3. 

Knowing that the goal of the expert is to determine a parameter vector correspond-
ing to a satisfactory overall satisfaction , the problem is the identification of such a 
vector. Thus the idea is to learn the complex relationship between and from a 
reference set of . Then an approximate model of the expert preferences could be 
deduced from this learning to identify satisfactory detection vectors, , and 

perhaps a totally satisfactory . In this sense MCDA methods are going to be 

applied for this approximate model identification. 
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Fig. 3. Detection and satisfaction for 14 vectors 

P1, U=7 T=54% P2, U=7 T=54% P3, U=13,5 T=62% 

P4, U=15 T=65% P5, U=17 T=69% P6, U=15 T=57% 

P7, U=1 T=8% P8, U=1 T=34% P9, U=13 T=57% 

P10, U=16 T=69% P11, U=14 T=67% P12, U=15 T=49% 

P13, U=13 T=51% P14, U=13 T=44% 
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2.2 Interest of MCDA Methods 

The considered problem can be seen as the characterisation of expert satisfaction. It 
can be dealt using the definition of an overall utility resulting from the aggregation of 
a set of marginal utilities. In this context using MCDA methods seems to be conven-
ient. As recalled in figure 4, adapted for the considered decision problem, MCDA 
methods allow the DM to express his preferences between alternatives under the form 
of cardinal or ordinal information knowing a given decision problem. Therefore it is 
necessary to identify the alternatives, then to describe them according to a set of at-
tributes and finally to identify a preference model able to give this ordinal or cardinal 
information. The model identification requires specific knowledge which can take 
different forms according to the retained method (Fig. 4). The parameter vector is 

noted, and corresponds to a detection noted . The overall satisfaction 

of the detection is noted .  

 

Fig. 4. Synoptic of a preference model for decision support 

Concerning the knowledge requirements, the expert user of the 3D fusion system is 
able to quantify the overall satisfaction  resulting from a given parameter vector 

 on a scale defined on [0…20] with a precision of about . This in-

formation will be used to identify the general relationship between U and 
. Moreover he has to express his preferences in order to identify the 

weights of each parameter and marginal utilities defined according to these  
parameters. 

Thus, knowing the availability of numerous couples  the idea 

of MCDA approach is to define marginal utilities, noted  associated to 

the parameter vector, then to identify an aggregation function which links the vector 

to the overall satisfaction Uj. However the conditions of non-

redundancy, exhaustivity and coherence between criteria have to be ensured [3].  
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3 Model Identification Attempt 

Three model identification attempts are tested in this communication. The first one is 
the multi variable analysis which needs strict hypotheses concerning the variables 
[12]. The two other ones are MCDA approaches [3], respectively the UTA+ method 
and the MACBETH method, which allow the expert to identify a synthesising utility 
U depending on cardinal information about description of alternatives [2]. 

3.1 Multi Variable Analysis 

Firstly a simple relation is tested thanks to the Multivariate Statistics and more pre-
cisely the multiple variable linear regression. The reference set of detections and as-
sociated vectors is given in table 2 and 3. It consists of the 14 previous detections 
completed by 38 other detections. The main assumptions of the multiple regression 
are verified (mainly the matrix calculus ones) according to the available data. The 

model can be identified as follows: . The obtained coefficients 

are given in table 1. 

Table 1. Multi variable coefficient values 

 

The obtained model is not completely satisfactory because the differences (resi-
dues) between the multiple linear model and the expert values are too high to be ex-

ploited. Indeed, the determinant coefficient  which signifies a weak ex-

plicative model. 
One possible reason for the weak model adaptation could be the non-linearity of 

the relation between the parameter value and the satisfaction value. The researched 
model could also be non-additive. After a residue examination these explanations can 
be envisaged and, in a first time, the non linearity should be taken into account. How-
ever, it is decided to use the obtained linear model in order to identify the potentially 
best parameter vector. Knowing the parameters definition on a discrete set of values, 
it is easy to choose the lowest value when the related coefficient is negative and the 
highest value when it is positive. It corresponds to the vector 

 which leads to a predictive value 

22. After the extraction treatment according to these values, the expert global 
satisfaction is  which seems to be an interesting value for the expert even if 
the difference with the predictive value is important. Note that the expert only gives 
satisfaction between [0…20]. Figure 5 presents the obtained detection that has effec-
tively a better quality than the previous one (less non detected points, less fragmenta-
tion). 
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Fig. 5. Detection obtained by the multivariate model,  

3.2 UTA Method 

UTA is an indirect method to determine the additive value function linking for a consid-
ered vector of variables, the overall utility and the marginal ones. “The UTA method 
proposed by Jacquet-Lagreze and Siskos [8] aims at inferring one or more additive value 
functions from a given ranking on the reference set AR. The method uses special linear 
programming techniques to assess these functions so that the ranking(s) obtained 
through these functions on AR is (are) as consistent as possible with the given one” [9]. 

In the UTA method the decision problem is the identification of a vector which gives a 
satisfactory detection corresponding to an overall utility as near as possible to 1 (the ini-
tial values defined on [0…20] are linearly converted into the interval [0,1]). According to 
the expert, the method must give at least ordinal information on the new considered al-
ternative regarding the previous ones. Among the numerous methods, the disaggregation 
method has a high interest because knowledge about a reference actions set is available. 
In this sense it is proposed to use the UTA+ method which allows to define marginal 
utilities. These utilities are then summed into an overall one. So the relationship between 
marginal and overall utilities can be written as follows: 

, where  and  where can be viewed as the 

relative importance of /  

The first step is the definition of the set of criteria. In this problem as said in §2.1, 

the criteria are the 18 parameters specified in §2.2. Then the reference 

set of detections is specified through about 20 detections (P1 to P20 in table 2 and 3). 
Finally the ranking of the reference actions is defined: the expert gives a total pre-
order of the set of detections. Unfortunately, no solution can be identified by the 
UTA+ software edited by the LAMSADE laboratory1. With the first set of reference 
detections being arbitrary, UTA+ method is not able to find a solution, i.e. the mar-
ginal utility functions cannot be identified from the given data. It can be due to the 
non monotonic form of the marginal utilities function or the non-additivity of these 

                                                           
1 http://www.lamsade.dauphine.fr/spip.php?rubrique69 
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marginal utilities to give the overall one. Nevertheless a second set with 31 additional 
detections, (P1 to P51 in table 2 and 3), achieved by changing only one parameter 
value from the detection P18 has been also tested. Results are the same and no func-
tion can be found which leaves the previous hypothesis open. Indeed, according to the 
expert, many marginal utilities do not respect the monotony condition that makes the 
use of UTA method impossible. For instance the window sizes have a utility that de-
pends on the research object. It leads to non decreasing or non increasing function. So 
UTA+ is not relevant to deal with this problem. Indeed taking non-monotonic utility 
functions into account is rarely considered in MCDA domain [10]. 

3.3 MACBETH Method 

The MACBETH (Measuring Attractiveness by a Categorical Based Evaluation TecH-
nique), is another MCDA method which authorises the non-monotony of the marginal 
utility [11]. It is a MAUT method which is based on the comparisons between differ-
ent actions (which identify the context) made by the decision-makers. MACBETH 
describes these actions with, on the one hand, elementary performance expressions, 
and on the other hand, aggregated ones. In the MACBETH view, the definition of the 
aggregated performance is based on the weighted mean and is made progressively and 
interactively. The principle is to translate the qualitative information generally avail-
able, thanks to the human expertise of the DMs, into quantitative information [13].  

However MACBETH is not a disaggregation method. It needs another type of 
knowledge which separates the identification of, on the one hand, the marginal utili-
ties, and on the second hand, the weights of the Weighted Arithmetic Mean (WAM) 
operator. This identification must also be made thanks to the expert knowledge. Thus, 
it is possible to compute the marginal utilities of a given detection knowing the value 
of the parameters and then the overall utility.  

In this case, the expert knowledge is already available thanks to the previous 

couples . But MACBETH authorises the expert to separately 

compare the values corresponding to a given criterion. For instance the identification 
of a linear piecewise of the marginal utility  can be made thanks to the compar-

ison between the P15 and P16 vectors of table 3 in the appendix as shown in figure 6.  

, and 

, then 

 

This kind of comparison should be made at least one time for each marginal utility. 
To identify a more complex model it is necessary to have more comparisons. In our 
case four piecewises can be identified for each marginal utility. Moreover, it the prob-
lem of the identification of the neutral and good levels remains. Ideally it is only nec-

essary to identify the vectors  and  which allow the 

DM to respectively write the following relations: 
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 supposing that  

 supposing that  

The identification of these vectors is not obvious because in the previous data, the 
best and worst detections correspond to: , and 

. Such values can be retained knowing that it could be possible 
to have a value exceeding 1 or smaller than 0. Moreover, the overall utility must 
be computed again to take into account the new limits of the interval. To avoid these 
difficulties, the traditional way of MACBETH is used with the independent definition 
for each attribute of the neutral and good values. Concerning the neutral value, the 
expert hesitates and perhaps this value should be determined through a few iterations 
according to the MACBETH2 interactive way. Finally for each attribute a marginal 
utility can be computed as shown in figure 6. For instance the marginal utility corres-
ponding to the value  is  when the marginal utility corresponding 

to the value  is . 

 

Fig. 5. Marginal utilities function for two parameters 

The weight determination uses the same procedure based on the comparisons be-
tween fictive detections where all the utilities take the neutral level except one which 
takes the good level. This task is very awkward and in firstly, it is decided to balance 
the weights. The overall utility can be now computed (table 4 in the appendix). This 
way seems unsatisfactory because the overall utilities do not correspond to the 
weighted mean computed by MACBETH.  

                                                           
2 Computation is supported by M-MACBETH software available at  
http://www.m-macbeth.com/en/m-home.html  

1)(1 =⇔= good
i

good xuU 1)( ≤j
ixu

0)(0 =⇔= neutral
i

neutral xuU 0)( ≥j
ixu

1/ 20 0.05worstU = =
17 / 20 0.85bestU = =

jU

3 3%x = 3 0.29u =

3 21x = 3 0.71u =

  

Utility u6 Utility u3 

Parameter  x3

value

Parameter  x6

value



 Application of Quantitative MCDA Methods for Parameter Setting Support 351 

The computation of the overall utilities can now be done and obviously the computa-
tion of the best one which corresponds to the highest value according to all the criteria. It 
corresponds to the following vector  

which gives, after the fusion, an overall satisfaction  that is obviously not the best. 
Figure 7 presents the obtained detection. Even if regions R2 and R3 are well detected, 
region R1 remains completely undetected. 

 

Fig. 6. Detection obtained by the MACBETH model, U=8 

So, for the MACBETH preference model, the best predictive detection is not right. 
In this case the asking procedure for both the marginal utilities and the weights identi-
fication must be examined. Indeed it is really difficult for the expert to express prefer-
ences between pairwise parameter vectors. Comparisons can be really meaningful 
between two detections [11]. 

4 Conclusions and Perspectives 

The parameter adjustment of the extraction stage of a complex fusion system is a difficult 
task which needs time and expertise. The computation of a global rate is a possible solu-
tion but it does not ensure that the highest rate corresponds to the best detection for the 
experts. In this paper, the parameter adjustment of a fusion system devoted to 3D image 
interpretation, has been expressed in the form of a decision making problem. Indeed it 
was shown that the identification problem of a satisfactory detection can be viewed as a 
characterisation problem. In this sense, three different methods have been applied to 
identify an approximate model allowing the expert to deduce the overall satisfaction from 
a parameter vector. Then, the obtained model is used to determine some interesting pa-
rameter vectors leading to high estimated overall satisfactions. The tested methods were 
the multivariate analysis (a statistics approach), and two MCDA methods, UTA+ and 
MACBETH. Globally the results obtained for the multivariate analysis are interesting 
because a better detection than the previous best one has been identified. Concerning 
MACBETH, results are not satisfactory enough and the identification of the preference 
model remains a difficult task for the expert. Indeed, building independent marginal utili-
ties and determining their weights is not a common way for him. Concerning UTA, the 
monotonic condition is too restrictive in our case but the use of a relevant variant could 
overcome this limitation.  
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This work leads to other perspectives: (1) a deeper exploitation of the multivariate 
analysis could be attempted. For instance a finer residues analysis can show the pos-
sible non linearity; (2) a reasoning on an alternative way for the expert questioning 
the avoidance of the fictive detections use; (3) the introduction of an non-additive 
aggregation operator as the Choquet integral could give a more relevant preference 
model [14]; (4) and more globally, taking into account the expert imperfect knowl-
edge with a relevant method like GRIP, or the robust ordinal regression, could also be 
interesting for this kind of application [15]. 
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Appendix 

Table 2. Arbitrary parameter vector (…xi…) and overall utility function U 

 

Table 3. Parameter vector with minimal changes and overall utility function U 

 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 U 

P1 0,5 5 5 5 5 100 0,6 3 6 9 9 70 15 15 15 1 1 4 7 

P2 0,5 5 5 5 5 100 0,6 3 9 9 9 70 15 15 15 1 1 4 7 

P3 0,5 5 5 5 5 100 0,5 5 9 9 9 50 15 15 15 1 1 4 13,5

P4 0,2 7 9 9 9 50 0,5 5 9 9 9 50 15 15 15 1 1 4 15 

P5 0,2 7 9 9 9 50 0,5 5 9 9 9 50 9 9 9 1 1 1 17 

P6 0,8 3 3 3 3 80 0,5 5 9 9 9 50 21 21 21 2 2 2 15 

P7 0,1 3 3 3 3 100 0,5 5 9 9 9 50 21 21 21 2 2 2 1 

P8 0,3 9 15 15 15 60 0,3 9 21 21 21 50 27 27 27 2 2 6 1 

P9 0,3 9 15 15 15 60 0,6 3 9 9 9 70 9 9 9 1 1 1 13 

P10 0,3 9 15 15 15 60 0,5 5 9 9 9 50 9 9 9 1 1 1 16 

P11 0,3 9 15 15 15 60 0,3 9 21 21 21 50 9 9 9 1 1 1 14 

P12 0,3 9 15 15 15 60 0,3 9 21 21 21 50 27 27 27 2 2 6 15 

P13 0,2 7 9 9 9 50 0,6 3 9 9 9 70 21 21 21 2 2 2 13 

P14 0,2 7 9 9 9 50 0,6 3 9 9 9 70 27 27 27 2 2 6 13 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 U 

P15 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 11 

P16 0,1 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 15 

P17 0,8 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 9 

P18 0,3 3 9 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 9 

P19 0,3 21 9 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 8 

P20 0,3 9 3 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 6 

P21 0,3 9 21 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 9 

P22 0,3 9 9 3 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 8 

P23 0,3 9 9 21 9 50 0,3 9 9 9 9 50 9 9 9 2 2 2 10 

P24 0,3 9 9 9 3 50 0,3 9 9 9 9 50 9 9 9 2 2 2 8 

P25 0,3 9 9 9 21 50 0,3 9 9 9 9 50 9 9 9 2 2 2 11 

P26 0,3 9 9 9 9 20 0,3 9 9 9 9 50 9 9 9 2 2 2 10 

P27 0,3 9 9 9 9 100 0,3 9 9 9 9 50 9 9 9 2 2 2 10 

P28 0,3 9 9 9 9 50 0,1 9 9 9 9 50 9 9 9 2 2 2 11 

P29 0,3 9 9 9 9 50 0,8 9 9 9 9 50 9 9 9 2 2 2 11 

P30 0,3 9 9 9 9 50 0,3 3 9 9 9 50 9 9 9 2 2 2 10 
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Table 3. (continued) 

 

Table 4. Vector of marginal utilities and overall utility function U given by MACBETH 

 

P31 0,3 9 9 9 9 50 0,3 21 9 9 9 50 9 9 9 2 2 2 10 

P32 0,3 9 9 9 9 50 0,3 9 3 9 9 50 9 9 9 2 2 2 12 

P33 0,3 9 9 9 9 50 0,3 9 21 9 9 50 9 9 9 2 2 2 13 

P34 0,3 9 9 9 9 50 0,3 9 9 3 9 50 9 9 9 2 2 2 11 

P35 0,3 9 9 9 9 50 0,3 9 9 21 9 50 9 9 9 2 2 2 14 

P36 0,3 9 9 9 9 50 0,3 9 9 9 3 50 9 9 9 2 2 2 12 

P37 0,3 9 9 9 9 50 0,3 9 9 9 21 50 9 9 9 2 2 2 14 

P38 0,3 9 9 9 9 50 0,3 9 9 9 9 20 9 9 9 2 2 2 15 

P39 0,3 9 9 9 9 50 0,3 9 9 9 9 100 9 9 9 2 2 2 12 

P40 0,3 9 9 9 9 50 0,3 9 9 9 9 50 3 9 9 2 2 2 10 

P41 0,3 9 9 9 9 50 0,3 9 9 9 9 50 27 9 9 2 2 2 13 

P42 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 3 9 2 2 2 11 

P43 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 27 9 2 2 2 11 

P44 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 3 2 2 2 11 

P45 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 27 2 2 2 9 

P46 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 1 2 2 8 

P47 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 6 2 2 10 

P48 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 1 1 2 9 

P49 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 1 6 2 11 

P50 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 1 2 1 9 

P51 0,3 9 9 9 9 50 0,3 9 9 9 9 50 9 9 9 2 2 6 10 
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Abstract. The aim of this paper is to study the concept of inductive
clustering and two approximations in nearest neighbor clustering induced
thereby. The concept of inductive clustering means that natural classi-
fication rules are derived as the results of clustering, a typical exam-
ple of which is the Voronoi regions in K-means clustering. When the
rule of nearest prototype allocation in K-means is replaced by nearest
neighbor classification, we have inductive clustering related to the single
linkage in agglomerative hierarchical clustering. The latter method nat-
urally derives two approximations that can be compared to lower and
upper approximations for rough sets. We thus have a method of induc-
tive clustering with twofold approximations related to nearest neighbor
classification. Illustrative examples show implications and significances
of this concept.

Keywords: hierarchical clustering, nearest neighbor classification, K-
means, inductive clustering, upper and lower approximations.

1 Introduction

Many studies have been done on semi-supervised learning and as a result we
have two concepts of the inductive learning and the transductive learning [2,15].
Given a set of objects xk with the respective class labels yk, k = 1, . . . , N , and
another set of unlabeled objects x′�, � = 1 . . . , L, the transductive learning derives
a rule to provide labels over x′�, � = 1 . . . , L using the knowledge of {(xk, yk), k =
1, . . . , N}. In contrast, the inductive learning requires classification rules over the
entire space of objects beyond unlabeled data [15].

When we consider various methods of clustering, it is interesting to ask
whether or not a parallel concept to the inductive learning and the transductive
learning is worth to be studied. We answer positively to this question and in-
troduce the concept of inductive clustering and consider what we have from this

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 355–366, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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concept. We already proposed two concepts of inductive clustering and trans-
ductive clustering [11], where emphasis is on transductive clustering. In contrast,
we study a new method of inductive clustering in this paper, or more precisely,
inductive features that exist in well-known methods ofK-means and of the single
linkage in agglomerative hierarchical clustering.

For the latter method we have two classification rules that can be compared
to upper and lower approximations for rough set [12,13], and hence we call
the derived rules as upper and lower classification rules derived from inductive
single linkage alias nearest neighbor clustering. Or shortly, we can call it twofold
classification rules derived from nearest neighbor clustering.

We have two motivations for this proposal. First is theoretical: we can derive
theoretical properties for inductive methods of clustering, while it is more dif-
ficult to study a theory of non-inductive clustering. Second is more practical:
functions derived from inductive clustering can be used for applications, e.g.,
Ichihashi [10] proposes a function for classification derived from fuzzy c-means.

The rest of this paper is organized as follows. After preliminary consideration
in Section 2, We discuss K-means and fuzzy c-means as methods of inductive
clustering in Section 3. Section 4 is devoted to the discussion of inductive feature
of the nearest neighbor clustering and how the two approximations are derived.
Section 5 then shows illustrative examples that show implications of the inductive
properties of the above methods. Finally, Section 6 concludes the paper.

Throughout the paper, the proofs of the propositions are easy and omitted.

2 Preliminary Consideration

Let X = {x1, . . . , xN} be the set of objects for clustering, and each object x ∈ X
be a point of p-dimensional Euclidean space (X ⊂ Rp). The squared Euclidean
distance denoted by

‖x− y‖2 =

p∑
j=1

(xj − yj)2 (1)

for x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ Rp is used for the standard dissimilarity
measure. Sometimes clusters are denoted by Gi, i = 1, . . . ,K. Generally they
are a crisp partition of X , but we moreover consider fuzzy clusters. Distance be-
tween clusters are denoted by D(Gi, Gj), which will be used for an agglomerative
algorithm described below.

Membership matrix U = (uki) is used in which uki is the membership of xk
to cluster i (or Gi); uki may either be crisp or fuzzy. Moreover cluster centers
denoted by vi (i = 1, . . . ,K) are used for K-means and fuzzy c-means [1,10].

A number of standard clustering techniques are shown below.

2.1 Agglomerative Hierarchical Clustering

The agglomerative hierarchical clustering [4,9] starts from each object and merge
a pair of clusters at a time, and finally it ends with the one cluster of the whole
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sets. We, however, extract clusters formed at a specific level of dissimilarity. We
hence specify the input and output to the next AHC algorithm:

AHC: Agglomerative Hierarchical Clustering
Input: Set X and a positive threshold parameter β;
Output: Clusters G = {G1, . . . , GK} formed at the level β.

1. Let each object be the initial clusters: Gi = {xi}, and the number of clusters
K = N .

2. Find the pair of clusters with minimum distance:

(Gp, Gq) = argmin
i,j

D(Gi, Gj) (2)

If min
i,j

D(Gi, Gj) > β then output clusters {G1, . . . , GK} and stop;

else merge Gr = Gp ∪Gq.
Reduce the number of clusters: K = K − 1.

3. If K = 1, output {X} and stop, else update distance D(Gr, Gj), for all other
clusters Gj . Go to step 2).

Five linkage methods for the definition of the distance between clusters are
known: they are the single linkage, complete linkage, average linkage, centroid
method, and the Ward method [4]. We mainly consider the single linkage method
in this paper.

Single Linkage. The initial dissimilarity measure is assumed to be given in
some way for the single linkage. Generally, there is no limitation to the definition
of the dissimilarity D(x, y) but we assume the dissimilarity to be the Euclidean
distance herein.

The distance between two clusters in the single linkage is then defined by the
following:

D(Gi, Gj) = min
x∈Gi,y∈Gj

D(x, y). (3)

The formula for updating in step 3) of the above algorithm then is as follows:

D(Gr, Gj) = min{D(Gp, Gj), D(Gq , Gj)}. (4)

For convenience, output of AHC with the single linkage is sometimes written
as

G(β) = {G1(β), . . . , GK(β)},
or simply, G1, . . . , GK when β can be omitted. Moreover we write the same
output as AHC SL(X, β), i.e.,

G(β) = AHC SL(X, β),

showing the input X and β explicitly.

Note 1. In comparison with the single linkage, we show the definition of the
complete linkage:

D(Gi, Gj) = max
x∈Gi,y∈Gj

D(x, y). (5)

although this method is not discussed in detail.
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2.2 Voronoi Region

The Voronoi regions are important in discussing inductive properties herein.
We define a different definition of the Voronoi regions from those in literature,
e.g., [5].

Given a set of points Y = {y1, . . . , yl}, the collection of Voronoi regions with
centers y1, . . . , yl denoted by

V = {V (y1), . . . , V (yl)},

where the members are fuzzy sets, are defined as follows:
For an arbitrarily given x ∈ Rp, if there exists only one i such that

i = arg min
1≤j≤l

‖x− yj‖2, (6)

then μV (yi)(x) = 1.
Otherwise, if there are more than one symbols i1, . . . , ih such that

ik = arg min
1≤j≤l

‖x− yj‖2, k = 1, . . . , h (7)

then we put

μV (yi1)
(x) =

1

h
. (8)

We denote the crisp subset of V (yi) by

V̂ (yi) = {y ∈ Rp : μV (yi)(x) = 1}.

and moreover let the closure of V̂ (yi) be V̄ (yi).
If (6) holds, then x ∈ V̂ (yj). Otherwise if (7) holds, then x is on the boundary

of V̂ (yi1), . . . , V̂ (yih), or x ∈ V̄ (yi1)∩· · ·∩V̄ (yih), and To summarize, the interior

V̂ (yi) of the Voronoi region is crisp, but the boundary of it is fuzzified here.
Voronoi regions with fuzzified boundaries are more appropriate than ordi-

nary Voronoi regions for discussing inductive clustering of K-means and fuzzy
c-means, as well as the single linkage.

2.3 K-means or Crisp c-means

Let the number of clusters be c that is fixed in the K-means. The method of
K-means alias crisp c-means is the following iterative procedure:

– (I) Assume that the initial c clusters are randomly generated. Let the cen-
troid of cluster i be vi (i = 1, . . . , c).

– (II) For k = 1, . . . , N , allocate xk to the cluster of the nearest center using the
allocation rule (6), (7), and (8) by putting x = xk and y1 = v1, . . . , yc = vc
(l = c).
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– (III) Update the centroid vi for cluster i (i = 1, . . . , c). If clusters are con-
vergent, stop. Else go to step (II).

Note 2. The allocation rule (II) is different from the ordinary K-means on the
boundary, but they are the same inside the Voronoi regions. Since a point on
the boundary is exceptional, they are essentially the same algorithm and most
points are crisply allocated.

2.4 Fuzzy c-means

There have been many studies on c-means and its variations, One of the best
known variations is the fuzzy c-means [1,10].

In the method of fuzzy c-means by Dunn and Bezdek [1], an alternate op-
timization algorithm is proposed. Given a random partition or initial cluster
centers, the iterative updating formula of the membership matrix and cluster
centers is as follows:

uki =

1

D(xk,vi)
1

m−1∑K
j=1

1

D(xk,vj)
1

m−1

, (9)

vi =

∑N
k=1(uki)

mxk∑N
k=1(uki)m

, (10)

where D(xk, vi) is given by the squared Euclidean distance (1). The calculation
of (9) and (10) is repeated until convergence.

2.5 Mixture of Gaussian Distributions

The mixture of Gaussian distributions has commonly been used for classification
and clustering. The Expectation and Maximization (EM) algorithm [8] is used
for clustering. The EM algorithm is omitted here, but it is an iterative calcula-
tion of the prior distribution P (Ci) of class i (i = 1, . . . ,K) and parameters for
multi-normal distributions. As a result, the posterior probability P (Ci|xk) for
allocating xk to class i is calculated. It has moreover been shown that the solu-
tions by the EM algorithm is closely related to the solution of fuzzy clustering
based on an entropy criterion [10].

3 Inductive Properties of Non-hierarchical Clustering

Before introducing the concept of inductive clustering, we note again that cluster-
ing in general implies that we should have a classification rule F : X → {1, . . . , c}:
the classification function is defined on the set of objects and the value is onto
the set of labels {1, . . . , c}.

Inductive clustering means that a classification rule on the entire space of ob-
jects are directly derived from the result of clustering. More specifically, suppose
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that a method of clustering has a rule for classification for X . If we can use the
same rule for classifying an arbitrary point x ∈ Rp, we call that the method
is inductive clustering. In other words, a classification rule F is defined on Rp;
F : Rp → {1, . . . , c}, where {1, . . . , c} is the set of labels. The inductive cluster-
ing moreover should imply that the extension of the classification rule should
bring additional and useful information.

In contrast, non-inductive clustering can classify only the given objects X ,
and it is not obvious how to extend the classification rule to the entire space
Rp. Thus the classification rule is defined on X alone (F : X → {1, . . . ,K})
and the extension to Rp is not derived. This implies that even if we extend
the classification rule to the entire space in some way, we do not have useful
information.

The method of K-means is thus an inductive clustering, since the allocation
rule (II) defined on X onto {1, . . . , c} is directly extended to the whole space by
using (6), (7), and (8). Actually, the only difference is the substitution x = xk.
In other words, the allocation rule is derived by replacing object xk by variable
x.

Such replacement of object xk by variable x is applied to the mixture of
distributions and fuzzy c-means. The former application is simple, since the
clustering rule uses P (Ci|xk) which is a specialization of P (Ci|x); the latter is a
probabilistic allocation rule for the whole space.

For fuzzy c-means, we have the rules for generic x ∈ Rp:

Ui(x) =

1

D(x,vi)
1

m−1∑K
j=1

1

D(x,vj)
1

m−1

.

Note that function Ui : R
p → {1, . . . , c} is derived from uki by replacing xk by x.

The above equation has a singular point at x = vi and hence the precise formula
should be

Ui(x) =
1

1 +
∑

j 
=i

(
D(x,vi)
D(x,vj)

) 1
m−1

. (11)

The inductive property in these methods is thus observed by having the clas-
sification rules on the whole space. These classification rules show theoretical
properties of the above methods more clearly than the original rules defined on
X . Discussions are found in [10]. For example, we have the followings.

Proposition 1. The allocation rule (II) of the K-means divides the space Rp

into the Voronoi regions [5] with centers vi, which have piecewise linear bound-
aries.

This proposition implies that clusters with nonlinear boundaries are not sepa-
rated by the K-means. Although this property is well-known, a simple variation
leads to a new observation on constrained clustering.
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3.1 Constrained Clustering

A standard method of constrained clustering is the COP K-means [14], which is
a variation of K-means. The method of COP K-means is based on the K-means
procedure with the constraints of must-link set ML = {(xk, xl)} and cannot-link
set CL = {(xh, xi)}. It returns success if all constraints are satisfied, whereas it
returns failure if some constraint is broken. Note that the COP K-means uses
the same allocation rule as the K-means except the constrained pairs of objects.
Hence we have the next proposition.

Proposition 2. The classification rule of the COP K-means divides the space
Rp into the Voronoi regions with centers vi except on the objects with constraints.

Thus the COP K-means cannot generate a nonlinear cluster boundary even
when it has many constraints, although the constraints affect the positions of
centers v1, . . . , vc. Even when the set of points has natural clusters with linear
boundaries, the COP K-means may produce unsatisfactory results, e.g., see first
example in Section 5.1.

4 Inductive Features in Nearest Neighbor Clustering

Let us consider the agglomerative hierarchical clustering. We concentrate the
single linkage alias nearest neighbor clustering.

Nearest neighbor allocation means that, given an arbitrary x ∈ Rp and clusters
G1, . . . , GK derived from X , the following rule is used:

1. The rule (6), (7), and (8) is used with Y = X .
2. Let the set of nearest neighbors be Z = {xi1 , . . . , xih},

μGj (x) =
|Z ∩Gj |

|Z| , (12)

where |Z| is the number of elements in Z.

Actually, this allocation rule is essentially the same as the allocation rule of the
Voronoi regions except that we allocate a point to a cluster or clusters instead
of a Voronoi region.

The above definition is not directly concerned with the single linkage, but the
single linkage obviously uses the nearest neighbor distance (3). The allocation
rule F : Rp → {1, . . . , c} is therefore derived by the last procedure of nearest
neighbor allocation 1) and 2). In other words, we have the next proposition.

Proposition 3. Assume that V (x1), . . . , V (xN ) are the Voronoi regions with
Y = X. Let G1, . . . , GK be clusters from AHC using the single linkage. Then
the set of points in Rp allocated to Gj by the nearest neighbor rule is:

W (Gj) =
⊕

xk∈Gj

V (xk), (13)

where ⊕ means the bounded sum.
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We note that the collection W (G1), . . . ,W (GK) forms a partition of the whole
space in the sense that

K⊕
i=1

W (Gi) = Rp,

Ŵ (Gi) ∩ Ŵ (Gj) = ∅ (i �= j), (14)

where Ŵ (Gi) is the set of x such that μW (Gi)(x) = 1.

Note 3. The bounded sum is: a⊕ b = min{1, a+ b}.

4.1 Twofold Classification Rules

We introduce another classification rule in addition to W (Gj) that may be com-
pared to lower approximation in rough sets [12,13].

Let us consider a closed sphere with center xk and radius β:

B(xk;β) = {x ∈ Rp : ‖x− xk‖ ≤ β}.

and let

WL(Gj) = Ŵ (Gj) ∩
{ ⋃

xk∈X

B(xk;β)

}
. (15)

Let us remind that Ŵ (Gj) is the region to which a point is allocated to cluster
Gi, but the level for the allocation is not specified. On the other hand, WL(Gj)
is the region to which a point is allocated to Gj and the level of allocation
is below β. Precisely, we have the next proposition to observe the difference
between Ŵ (Gj) and WL(Gj).

Proposition 4. Assume that β is fixed, If x ∈ WL(G1), then

AHC SL(X ∪ {x}, β) = {G1 ∪ {x}, G2, . . . , GK}

while if x ∈ Ŵ (G1)−WL(G1), then

AHC SL(X ∪ {x}, β) = AHC SL(X, β) ∪ {{x}}
= {G1, G2, . . . , GK , {x}}.

We thus have a region of a lower classification WL(G1), . . . ,WL(GK) and an
upper classification region Ŵ (G1), . . . , Ŵ (GK).

This proposition moreover states that the addition of a point x after clus-
ters have been derived is essentially the same as clustering of X with x added
beforehand.

Precisely, we denote the nearest allocation of an additional point x after de-
riving clusters by

AHC SL(X, β) ← x, (16)

where the allocation rule is given by Proposition 4.
We then have

(AHC SL(X, β) ← x) = AHC SL(X ∪ {x}, β). (17)
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Note 4. The proof of the property (17) is not difficult, but it is based on an
equivalence theorem [9] between the single linkage and the connected components
of a fuzzy graph and hence requires several more definitions. Hence it is omitted,
but readers can see that this property is valid by checking simple examples.

4.2 Relation to DBSCAN

DBSCAN [3] is a well-known algorithm for density seeking clustering. It is closely
related to the nearest neighbor clustering. Actually, we can use the above prop-
erty (17) and the idea of ‘core points’ to have an algorithm that is similar to
DBSCAN. The algorithm consists of the next three steps.

1. Extract ‘core points’ from the given set of data. The core points may be
defined as those having a sufficient number of points in its neighborhood of
a fixed radius, as in DBSCAN.

2. Carry out the single linkage to the set of core points. As is well-known, fast
algorithms of the minimum spanning tree that is equivalent to the single
linkage [9] can be used for the clustering.

3. Non-core points are allocated after clusters of core points are obtained as
above.

Note 5. The original DBSCAN algorithm form clusters of core and non-core
points simultaneously, but the above procedure allocates non-core points after
clusters have been formed. Thus the property (17) is used.

5 Illustrative Examples

We show two illustrative examples; the first shows a negative result related to
COP K-means, and the second illustrates how the twofold approximation in
nearest neighbor clustering works.

5.1 A Typical Example in Semi-supervised Classification

Figure 1 shows a set of points in two-dimensions which consists of two ‘crescentic’
shapes. Similar examples of point configurations are often found in literature on
semi-supervised learning [2]. Note that the two crescents are linearly separable
at a horizontal line of level 0.4, which is not drawn in this figure.

Let us suppose that all points are with the constraints ML and CL. Then it is
obvious that we have perfect clusters separating the two crescents. Nevertheless,
this prefect separation is unsatisfactory from the viewpoint of inductive clustering.

Figure 2 shows the two clusters separating crescents without an error. As
a result we have two centroids on this figure, and the line separating the two
Voronoi regions. This line and the Voronoi regions show a part of points are
in misclassified regions, even if they appear to be correctly classified by the
constraints. In other words, correctly classified points in the misclassified regions
are nonsense. The regions cannot satisfactorily be separated by the K-means
rule. This example thus shows a problem in a well-known method in constrained
clustering.
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Fig. 1. Two linearly separable crescents
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Fig. 2. Two linearly separable crescents cannot be separated by Voronoi regions

5.2 Twofold Classification in the Single Linkage

The second example concerns the nearest neighbor clustering. The eleven points
in Fig. 3 were merged one by one using the Euclidean distance, and three clus-
ters were generated by applying β = 2.4. Then the boundaries of the regions
W (Gi) (i = 1, 2, 3) are shown by the thin dotted line. The ‘lower approximation’
WL(Gi) (i = 1, 2, 3) are shown by the red curves.

The dendrogram corresponding to this example is shown in Fig. 4, where the
value of β is shown by the red line. It is clear that an additional point is given in
WL(Gi), it will be given as an additional branch below the value of β, whereas if
another point in W (Gi)−WL(Gi) is given, it will be added to the dendrogram
above β.
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Fig. 3. Voronoi diagram and the lower approximations
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Fig. 4. Dendrogram of points in Fig. 3

6 Conclusions

The idea of inductive clustering in both K-means and the single linkage in
agglomerative clustering has been proposed. The discussion here is essentially
methodological; the purpose is to clarify implications of clusters derived from
these methods. Theoretical properties of fuzzy c-means have been omitted, as
they are described in [10] in detail.

The examples given here are for illustrating purpose, but they are useful for
considering properties of clustering in real and huge examples.

To use classification rules derived from inductive clustering is easy: just replace
object symbol xk in fuzzy c-means by variable x. Then one obtains a set of
classification rules. In contrast, the classification in the single linkage does not
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have a closed functional form. We can use AHC SL(X ∪ {x}, β), the output
from AHC algorithm.

As to the twofold clustering, the idea is related to the idea of rough K-
means [6,7] but the method is totally different. The present method is superior
to the rough K-means in the sense that theoretical properties are made clear.

Future studies include application to large-scale real data. Fast algorithms
suggested in relation to DBSCAN should further be studied.
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Abstract. Hierarchical attributes appear in taxonomic or ontology-
based data (e.g. NACE economic activities, ICD-classified diseases, an-
imal/plant species, etc.). Such taxonomic data are often exploited as if
they were flat nominal data without hierarchy, which implies losing sub-
stantial information and analytical power. We introduce marginality, a
numerical mapping for taxonomic data that allows using on those data
many of the algorithms and analytical techniques designed for numeri-
cal data. We show how to compute descriptive statistics like the mean,
the variance and the covariance on marginality-mapped data. Also, we
define a mathematical distance between records including hierarchical
attributes that is based on marginality-based variances. Such a distance
paves the way to re-using on taxonomic data clustering and anonymiza-
tion techniques designed for numerical data.

Keywords: Hierarchical attributes, Classification, Taxonomic data,
Ontologies, Descriptive statistics, Numerical mapping, Anonymization.

1 Introduction

Taxonomic attributes are common in economic, medical or biological data sets
and, more generally, in ontology-based data sets. For example, data about com-
panies often include an attribute “Economic activity” which takes values in a
standard classification, like NACE [12] or ISIC [9]; data about employees include
their position within the company’s hierarchy; data about patients include an
attribute “Diagnosis” which takes values in some classification of diseases, like
ICD9 [8]; data about plants or animals include the name of the plant or animal
in the Linnaean taxonomy [11,14], etc.

Statistical analyses tend to treat taxonomic data as if they came from flat
nominal attributes without hierarchy, thereby disregarding their hierarchical se-
mantics and losing useful information. Such a wasteful approach can be explained

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 367–381, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



368 J. Domingo-Ferrer

by the lack of analytical techniques and algorithms specifically designed for tax-
onomic data. Indeed, numerical data are the type of data for which a greatest
choice of techniques exists; categorical ordinal data are often mapped to integers
and treated like numerical data; nominal data, whether drawn from a flat or
hierarchical taxonomy, are most of the time treated as flat.

The situation described in the previous paragraph repeats itself for statistical
disclosure control (SDC, [6,7,17,5,10]), a.k.a. data anonymization and sometimes
as privacy-preserving data mining. SDC aims at making possible the publica-
tion of statistical data in such a way that the individual responses of specific
users cannot be inferred from the published data and background knowledge
available to intruders. If the data set being published consists of records corre-
sponding to individuals, usual SDC methods operate by masking original data
(via perturbation or detail reduction), by generating synthetic (simulated) data
preserving some statistical features of the original data or by producing hybrid
data obtained as a combination of original and synthetic data. The choice of
SDC methods is greatest for numerical data.

The attributes in a data set can be classified depending on their range and
the operations that can be performed on them:

1. Numerical. An attribute is considered numerical if arithmetical operations
can be performed on it. Examples are income and age.

2. Categorical. An attribute is considered categorical when it takes values over
a finite set and standard arithmetical operations on it do not make sense.
Two main types of categorical attributes can be distinguished:
(a) Ordinal. An ordinal attribute takes values in an ordered range of cate-

gories. Thus, the ≤, max and min operators can still be used on this kind
of data. The instruction level and the political preferences (left-right) are
examples of ordinal attributes.

(b) Nominal. A nominal attribute takes values in an unordered range of cat-
egories. The only possible operator is comparison for equality. Nominal
attributes can further be divided into two types:
i. Hierarchical. A hierarchical nominal attribute takes values from a

hierarchical classification. For example, plants are classified using
Linnaeus’s taxonomy, the type of a disease is also selected from a
hierarchical taxonomy, and the type of an attribute can be selected
from the hierarchical classification we propose in this section.

ii. Non-hierarchical. A non-hierarchical nominal attribute takes values
from a flat taxonomy. Examples of such attributes could be the pre-
ferred soccer team, the address of an individual, the civil status (mar-
ried, single, divorced, widow/er), the eye color, etc.

This paper focuses on finding a numerical mapping for taxonomic data. Such a
mapping can be used to obtain richer descriptive statistics, inspired on those for
numerical data. It also makes it possible to use on taxonomic data techniques
designed for numerical data (e.g. clustering, SDC).

Assuming a hierarchy is less restrictive than it would appear, because very
often a non-hierarchical attribute can be turned into a hierarchical one if its flat
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hierarchy can be developed into a multilevel hierarchy. For instance, the preferred
soccer and the address of an individual have been mentioned as non-hierarchical
attributes; however, a hierarchy of soccer teams by continent and country could
be conceived, and addresses can be hierarchically clustered by neighborhood,
city, state, country, etc. Furthermore, well-known approaches to anonymization,
like k-anonymity [15], assume that any attribute can be generalized, i.e. that
an attribute hierarchy can be defined and values at lower levels of the hierarchy
can be replaced by values at higher levels.

1.1 Contribution and Plan of This Paper

We propose to associate a number to each categorical value of a hierarchical
nominal attribute, namely a form of centrality of that category within the at-
tribute’s taxonomy. We show how this allows computation of centroids, variances
and covariances of hierarchical nominal data.

Section 2 gives background on the variance of hierarchical nominal attributes.
Section 3 defines a tree centrality measure called marginality and presents the
numerical mapping. Section 4 exploits the numerical mapping to compute means,
variances and covariances of hierarchical nominal data. Section 5 contains a
discussion and conclusions.

2 Background

We next recall the variance measure for hierarchical nominal attributes intro-
duced in [4]. To the best of our knowledge, this is the first measure which captures
the variability of a sample of values of a hierarchical nominal attribute by taking
into account the semantics of the hierarchy. The intuitive idea is that a set of
nominal values belonging to categories which are all children of the same par-
ent category in the hierarchy has smaller variance that a set with children from
different parent categories.

Algorithm 1 (Nominal variance in [4])

1. Let the hierarchy of categories of a nominal attribute X be such that b is
the maximum number of children that a parent category can have in the
hierarchy.

2. Given a sample TX of nominal categories drawn from X, place them in the
tree representing the hierarchy of X. Prune the subtrees whose nodes have
no associated sample values. If there are repeated sample values, there will
be several nominal values associated to one or more nodes (categories) in the
pruned tree.

3. Label as follows the edges remaining in the tree from the root node to each
of its children:
– If b is odd, consider the following succession of labels l0 = (b − 1)/2,

l1 = (b−1)/2−1, l2 = (b−1)/2+1, l3 = (b−1)/2−2, l4 = (b−1)/2+2,
· · · , lb−2 = 0, lb−1 = b− 1.
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– If b is even, consider the following succession of labels l0 = (b − 2)/2,
l1 = (b−2)/2+1, l2 = (b−2)/2−1, l3 = (b−2)/2+2, l4 = (b−2)/2−2,
· · · , lb−2 = 0, lb−1 = b− 1.

– Label the edge leading to the child with most categories associated to its
descendant subtree as l0, the edge leading to the child with the second
highest number of categories associated to its descendant subtree as l1,
the one leading to the child with the third highest number of categories
associated to its descendant subtree as l2 and, in general, the edge leading
to the child with the i-th highest number of categories associated to its
descendant subtree as li−1. Since there are at most b children, the set of
labels {l0, · · · , lb−1} should suffice. Thus an edge label can be viewed as
a b-ary digit (to the base b).

4. Recursively repeat Step 3 taking instead of the root node each of the root’s
child nodes.

5. Assign to values associated to each node in the hierarchy a node label con-
sisting of a b-ary number constructed from the edge labels, more specifically
as the concatenation of the b-ary digits labeling the edges along the path
from the root to the node: the label of the edge starting from the root is the
most significant one and the edge label closest to the specific node is the least
significant one.

6. Let L be the maximal length of the leaf b-ary labels. Append as many l0 digits
as needed in the least significant positions to the shorter labels so that all of
them eventually consist of L digits.

7. Let TX(0) be the set of b-ary digits in the least significant positions of the
node labels (the “units” positions); let TX(1) be the set of b-ary digits in the
second least significant positions of the node labels (the “tens” positions),
and so on, until TX(L − 1) which is the set of digits in the most significant
positions of the node labels.

8. Compute the variance of the sample as

V arH(TX) = V ar(TX(0)) + b2 · V ar(TX(1)) + · · ·

+b2(L−1) · V ar(TX(L − 1)) (1)

where V ar(·) is the usual numerical variance.

In Section 4.2 below we will show that an equivalent measure can be obtained
in a simpler and more manageable way.

3 A Numerical Mapping for Nominal Hierarchical Data

Consider a nominal attribute X taking values from a hierarchical classification.
Let TX be a sample of values of X . Each value x ∈ TX can be associated two
numerical values:

– The sample frequency of x;
– Some centrality measure of x within the hierarchy of X .
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While the frequency depends on the particular sample, centrality measures de-
pend both on the attribute hierarchy and the sample. Known tree centralities
attempt to determine the “middle” of a tree [13]. We are rather interested in
finding how far from the middle is each node of the tree, that is, how marginal it
is. We next propose an algorithm to compute a new measure of the marginality
of the values in the sample TX .

Algorithm 2 (Marginality of hierarchical values)

1. Given a sample TX of hierarchical nominal values drawn from X, place them
in the tree representing the hierarchy of X. There is a one-to-one mapping
between the set of tree nodes and the set of categories where X takes values.
Prune the subtrees whose nodes have no associated sample values. If there
are repeated sample values, there will be several nominal values associated to
one or more nodes (categories) in the pruned tree.

2. Let L be the depth of the pruned tree. Associate weight 2L−1 to edges linking
the root of the hierarchy to its immediate descendants (depth 1), weight 2L−2

to edges linking the depth 1 descendants to their own descendants (depth 2),
and so on, up to weight 20 = 1 to the edges linking descendants at depth
L − 1 with those at depth L. In general, weight 2L−i is assigned to edges
linking nodes at depth i− 1 with those at depth i, for i = 1 to L.

3. For each nominal value xj in the sample, its marginality m(xj) is defined
and computed as

m(xj) =
∑

xl∈TX−{xj}
d(xj , xl) (2)

where d(xj , xl) is the sum of the edge weights along the path from the tree
node corresponding to xj and the tree node corresponding to xl.

Note 1 (On distances and marginality). The above construction of marginality
can be generalized by allowing other distance functions to be used in Expression
(2), not necessarily based on edge weights. For example, in [3] it is suggested to
use the semantic distance proposed in [16], in which the distance between two
categories in a taxonomy is a function of the number of non-common ancestors
divided by the total number of ancestors of the category pair.

Clearly, the greater m(xj), the more marginal (i.e. the less central) is xj . We
give next a toy running example to illustrate the computation of marginality.

Example 1. Assume a hierarchical attribute “Diagnosis”, for which a sample
is available whose nominal values can be hierarchically classified as shown in
Figure 1. The hierarchy is a pruned one, so that only leaves with some value
in the sample are depicted. The sample has one element for each diagnostic
category, except for “Epilepsy” and “Nose cold”, for each of which there are two
elements. Figure 1 also shows the weights assigned by Algorithm 2 to each edge
in the hierarchy tree.
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Fig. 1. Example pruned hierarchy of a sample of a “Diagnosis” attribute

Label the elements in the sample as follows: x1 (lung cancer), x2 (endogenous
depression), x3 (exogenous depression), x4 (anxiety), x5 (first epilepsy element),
x6 (second epilepsy element), x7 (first nose cold element), x8 (second nose cold
element) and x9 (chest cold). The distance matrix between elements is given
below, where component (j, l) represents the sum d(xj , xl) of edge weights along
the path between xj and xl (only the upper diagonal matrix is represented):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 13 13 12 12 12 12 12 12
0 2 5 5 5 13 13 13

0 5 5 5 13 13 13
0 4 4 12 12 12

0 0 12 12 12
0 12 12 12

0 0 4
0 4

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The marginality m(xj) of element xj can be obtained by adding all distances

in the j-th row of the above matrix. Marginalities for all elements are shown in
Table 1. It turns out that x1 (lung cancer) is the most marginal element, which
is consistent with the layout of the hierarchy in Figure 1. On the other hand,
x5 and x6 are the least marginal elements, due to both the central position of
epilepsy in the hierarchy and the fact that there are two epilepsy elements. In
fact, the higher frequency of epilepsy is what makes the marginality of x5 and x6
lower than the marginality of x4 (anxiety); otherwise, epilepsy and anxiety have
equally central positions in the hierarchy. This illustrates that marginality is a
function of both the hierarchy of categories and their frequency in the sample.

Some properties are next stated which illustrate the rationale of the distance
and the weights used to compute marginalities.
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Table 1. Marginalities of elements in the “Diagnosis” sample of Figure 1

xj m(xj)

x1 0 + 13 + 13 + 12 + 12 + 12 + 12 + 12 + 12 = 98
x2 13 + 0 + 2 + 5 + 5 + 5 + 13 + 13 + 13 = 69
x3 13 + 2 + 0 + 5 + 5 + 5 + 13 + 13 + 13 = 69
x4 12 + 5 + 5 + 0 + 4 + 4 + 12 + 12 + 12 = 66
x5 12 + 5 + 5 + 4 + 0 + 0 + 12 + 12 + 12 = 62
x6 12 + 5 + 5 + 4 + 0 + 0 + 12 + 12 + 12 = 62
x7 12 + 13 + 13 + 12 + 12 + 12 + 0 + 0 + 4 = 78
x8 12 + 13 + 13 + 12 + 12 + 12 + 0 + 0 + 4 = 78
x9 12 + 13 + 13 + 12 + 12 + 12 + 4 + 4 + 0 = 82

Lemma 1. d(·, ·) is a distance in the mathematical sense.

Being the length of a path, it is immediate to check that d(·, ·) satisfies reflexiv-
ity, symmetry and subadditivity. The rationale of the above exponential weight
scheme is to give more weight to differences at higher levels of the hierarchy;
specifically, the following property is satisfied.

Lemma 2. The distance between any non-root node nj and its immediate an-
cestor is greater than the distance between nj and any of its descendants.

Proof: Let L be the depth of the overall tree and Lj be the depth of nj . The
distance between nj and its immediate ancestor is 2L−Lj . The distance between
nj and its most distant descendant is

1 + 2 + · · ·+ 2L−Lj−1 = 2L−Lj − 1

�
Lemma 3. The distance between any two different nodes at the same depth is
greater than the longest distance within the subtree rooted at each node.

Proof: Let L be the depth of the overall tree and Lj be the depth of the two
nodes. The distance between two different nodes is shortest when they have the
same parent and it is

2 · 2L−Lj = 2L−Lj+1.

The longest distance within any of the two subtrees rooted at the two nodes at
depth Lj is the length of the path between two leaves at depth L, which is

2 · (1 + 2 + · · ·+ 2L−Lj−1) = 2(2L−Lj − 1) = 2L−Lj+1 − 2

�

4 Statistical Analysis of Numerically Mapped Nominal
Data

In the previous section we have shown how a nominal value xj can be associ-
ated a marginality measure m(xj). In this section, we show how this numerical
magnitude can be used in statistical analysis.
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4.1 Mean

The mean of a sample of nominal values cannot be computed in the standard
sense. However, it can be reasonably approximated by the least marginal value,
that is, by the sample centroid.

Definition 1 (Marginality-based approximated mean). Given a sample
TX of a hierarchical nominal attribute X, the marginality-based approximated
mean is defined as

MeanM (TX) = arg min
xj∈TX

m(xj)

if one wants the mean to be a nominal value, or

Num meanM (TX) = min
xj∈TX

m(xj)

if one wants a numerical mean value.

Example 2. It can be seen from Table 1 that, for the sample of Example 1, the
marginality-based mean is “Epilepsy” (which is the least marginal value) and
the numerical marginality-based mean is 62.

4.2 Variance

In Section 2 above, we recalled a measure of variance of a hierarchical nominal
attribute proposed in [4] which takes the semantics of the hierarchy into ac-
count. Interestingly, it turns out that the average marginality of a sample is an
equivalent way to capture the same notion of variance.

Definition 2 (Marginality-based variance). Given a sample TX of n values
drawn from a hierarchical nominal attribute X, the marginality-based sample
variance is defined as

V arM (TX) =

∑
xj∈TX

m(xj)

n

Example 3. It can be seen from Table 1 that, for the sample of Example 1, the
marginality-based variance is

98 + 69 + 69 + 66 + 62 + 62 + 78 + 78 + 82

9
= 73.78

The following lemma is proven in the Appendix.

Lemma 4. The V arM (·) measure and the V arH(·) specified by Algorithm 1 in
Section 2 are equivalent.



A Numerical Mapping for Enhanced Exploitation of Taxonomic Attributes 375

4.3 Covariance Matrix

It is not difficult to generalize the sample variance introduced in Definition 2 to
define the sample covariance of two nominal attributes.

Definition 3 (Marginality-based covariance). Given a bivariate sample
T(X,Y ) consisting of n ordered pairs of values {(x1, y1), · · · , (xn, yn)} drawn from
the ordered pair of nominal attributes (X,Y ), the marginality-based sample co-
variance is defined as

CovarM (T(X,Y )) =

∑n
j=1

√
m(xj)m(yj)

n

The above definition yields a non-negative covariance whose value is higher when
the marginalities of the values taken by X and Y are positively correlated: as
the values taken by X become more marginal, so become the values taken by Y .

Given a multivariate data set T containing a sample of d nominal attributes
X1, · · · , Xd, using Definitions 2 and 3 yields a covariance matrix S = {sjl}, for
1 ≤ j ≤ d and 1 ≤ l ≤ d, where sjj = V arM (Tj), sjl = CovarM (Tjl) for j �= l,
Tj is the column of values taken by Xj in T and Tjl = (Tj, Tl).

4.4 Variance-Based Distance

Based on variances (whether plain numerical or marginality-based), we can define
the following distance for records with numerical, hierarchical or flat nominal
attributes.

Definition 4 (S-distance). The S-distance between two records x1 and x2 in
a data set with d attributes is

δ(x1,x2) =

√
(S2)112
(S2)1

+ · · ·+ (S2)d12
(S2)d

(3)

where (S2)l12 is the variance of the l-th attribute over the group formed by x1

and x2, and (S2)l is the variance of the l-th attribute over the entire data set.

We prove in the Appendix the following two theorems stating that the distance
above satisfies the properties of a mathematical distance.

Theorem 1. The S-distance on multivariate records consisting of hierarchical
attributes based on the hierarchical variance computed as per Definition 2 is a
distance in the mathematical sense.

Theorem 2. The S-distance on multivariate records consisting of ordinal or
numerical attributes based on the usual numerical variance is a distance in the
mathematical sense.

By combining the proofs of Theorems 1 and 2, the next corollary follows.
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Corollary 1. The S-distance on multivariate records consisting of attributes of
any type, where the hierarchical variance is used for hierarchical and flat nominal
attributes and the usual numerical variance is used for ordinal and numerical
attributes, is a distance in the mathematical sense.

The above distance can be used for a variety of purposes, including cluster-
ing. Specifically, it allows microaggregating hierarchical data [1,2] in view of
anonymization.

5 Discussion and Conclusions

We have presented a centrality-based mapping of hierarchical nominal data to
numbers. We have shown how such a numerical mapping allows computing
means, variances and covariances of nominal attributes, and distances between
records containing any kind of attributes.

Such enhanced flexibility of manipulation can be used to adapt methods in-
tended for numerical data to the treament of hierarchical attributes. If reverse
mapping to nominal categories is required at the end of the treatment, two
situations arise:

– Each numerical output of the method exactly equals one of the input marginal-
ities. E.g. this happens for SDC methods that involve swapping input values
that are within a certain distance of each other. In this case, each numerical
output m is mapped back to the nominal category having marginality m.

– Numerical outputs do not correspond to marginalities. E.g. such is the case if
numerical outputs are the result of applying a regression model on the input
marginalities. In this case, a reasonable option is to map each numerical
output m back to the category having marginality closest to m.

Reverse mapping may be problematic if there are categories which are semanti-
cally very different and have similar marginalities or the same marginality. For
example, if the nose colds are suppressed from the sample depicted in Figure 1,
then chest cold and lung cancer would have exactly the same marginality. A way
to prevent semantic confusion in reverse mapping is to use blocking, that is, to
split the hierarchy tree into several subtrees based on semantic criteria and treat
each subtree separately: e.g divide the sample of Example 1 into a subsample
of cancers, a subsample of nervous diseases and a subsample of colds, and treat
subsamples separately to avoid big confusions during reverse mapping (we are
assuming that confusing two categories within the same subtree is tolerable).

Future research will involve developing real-life applications of marginality,
for example data anonymization of hierarchical attributes using SDC methods
intended for numerical data (like multiple imputation or microaggregation).

Appendix

Proof (Lemma 4): We will show that, given two samples TX = {x1, · · · , xn}
and T ′

X = {x′1, · · · , x′n} of a nominal attribute X , both with the same cardinality
n, it holds that V arM (TX) < V arM (T ′

X) if and only if V arH(TX) < V arH(T ′
X).
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Assume that V arM (TX) < V arM (T ′
X). Since both samples have the same

cardinality, this is equivalent to

n∑
j=1

m(xj) <

n∑
j=1

m(x′j)

By developing the marginalities, we obtain

n∑
j=1

∑
xl∈TX−{xj}

d(xj , xl) <

n∑
j=1

∑
x′
l∈T ′

X−{x′
j}
d(x′j , x

′
l)

Since distances are sums of powers of 2, from 1 to 2L−1, we can write the above
inequality as

d0 + 2d1 + · · ·+ 2L−1dL−1 < d′0 + 2d′1 + · · ·+ 2L−1d′L−1 (4)

By viewing dL−1 · · · d1d0 and d′L−1 · · · d′1d′0 as binary numbers, it is easy to see
that Inequality (4) implies that some i must exist such that di < d′i and dî ≤ d′

î

for i < î ≤ L − 1. This implies that there are less high-level edge differences
associated to the values of TX than to the values of T ′

X . Hence, in terms of
V arH(·), we have that V ar(TX(i)) < V ar(T ′

X(i)) and V ar(TX (̂i)) ≤ V ar(T ′
X (̂i)

for i < î ≤ L− 1. This yields V arH(TX) < V arH(T ′
X).

If we now assume V arH(TX) < V arH(T ′
X), we can prove V arM (TX) <

V arM (T ′
X) by reversing the above argument. �.

Lemma 5. Given non-negative A,A′, A′′, B,B′, B′′ such that
√
A ≤

√
A′+

√
A′′

and
√
B ≤

√
B′ +

√
B′′ it holds that

√
A+B ≤

√
A′ +B′ +

√
A′′ +B′′ (5)

Proof (Lemma 5): Squaring the two inequalities in the lemma assumption,
we obtain

A ≤ (
√
A′ +

√
A′′)2

B ≤ (
√
B′ +

√
B′′)2

Adding both expressions above, we get the square of the left-hand side of Ex-
pression (5)

A+B ≤ (
√
A′ +

√
A′′)2 + (

√
B′ +

√
B′′)2

= A′ +A′′ +B′ +B′′ + 2(
√
A′A′′ +

√
B′B′′) (6)

Squaring the right-hand side of Expression (5), we get

(
√
A′ +B′ +

√
A′′ +B′′)2

= A′ +B′ +A′′ +B′′ + 2
√
(A′ +B′)(A′′ +B′′) (7)
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Since Expressions (6) and (7) both contain the terms A′+B′+A′′+B′′, we can
neglect them. Proving Inequality (5) is equivalent to proving

√
A′A′′ +

√
B′B′′ ≤

√
(A′ +B′)(A′′ +B′′)

Suppose the opposite, that is,
√
A′A′′ +

√
B′B′′ >

√
(A′ +B′)(A′′ +B′′) (8)

Square both sides:
A′A′′ +B′B′′ + 2

√
A′A′′B′B′′ >

(A′ +B′)(A′′ +B′′) = A′A′′ +B′B′′ +A′B′′ +B′A′′

Subtract A′A′′ +B′B′′ from both sides to obtain

2
√
A′A′′B′B′′ > A′B′′ +B′A′′

which can be rewritten as

(
√
A′B′′ −

√
B′A′′)2 < 0

Since a real square cannot be negative, the assumption in Expression (8) is false
and the lemma follows. �

Proof (Theorem 1): We must prove that the S-distance is non-negative, re-
flexive, symmetrical and subadditive (i.e. it satisfies the triangle inequality).

Non-negativity. The S-distance is defined as a non-negative square root, hence
it cannot be negative.

Reflexivity. If x1 = x2, then δ(x1,x2) = 0. Conversely, if δ(x2,x2) = 0, the
variances are all zero, hence x1 = x2.

Symmetry. It follows from the definition of the S-distance.
Subadditivity. Given three records x1, x2 and x3, we must check whether

δ(x1,x3)
?
≤ δ(x1,x2) + δ(x2,x3)

By expanding the above expression using Expression (3), we obtain√
(S2)113
(S2)1

+ · · ·+ (S2)d13
(S2)d

?
≤

√
(S2)112
(S2)1

+ · · ·+ (S2)d12
(S2)d

+

√
(S2)123
(S2)1

+ · · ·+ (S2)d23
(S2)d

(9)

Let us start with the case d = 1, that is, with a single attribute, i.e. xi = xi for
i = 1, 2, 3. To check Inequality (9) with d = 1, we can ignore the variance in the
denominators (it is the same on both sides) and we just need to check√

S2
13

?
≤
√
S2
12 +

√
S2
23 (10)
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We have

S2
13 = V ar({x1, x3}) =

m(x1) +m(x3)

2

=
d(x1, x3)

2
+

d(x3, x1)

2
= d(x1, x3) (11)

Similarly S2
12 = d(x1, x2) and S2

23 = d(x2, x3). Therefore, Expression (10) is
equivalent to subaddivitity for d(·, ·) and the latter holds by Lemma 1. Let us
now make the induction hypothesis for d− 1 and prove subadditivity for any d.
Call now

A :=
(S2)113
(S2)1

+ · · ·+ (S2)d−1
13

(S2)d−1

A′ :=
(S2)112
(S2)1

+ · · ·+ (S2)d−1
12

(S2)d−1

A′′ :=
(S2)123
(S2)1

+ · · ·+ (S2)d−1
23

(S2)d−1

B :=
(S2)d13
(S2)d

; B′ :=
(S2)d12
(S2)d

; B′′ :=
(S2)d23
(S2)d

Subadditivity for d amounts to checking whether

√
A+B

?
≤

√
A′ +B′ +

√
A′′ +B′′ (12)

which holds by Lemma 5 because, by the induction hypothesis for d−1, we have√
A ≤

√
A′ +

√
A′′ and, by the proof for d = 1, we have

√
B ≤

√
B′ +

√
B′′. �

Proof (Theorem 2): Non-negativity, reflexivity and symmetry are proven in
a way analogous as in Theorem 1. As to subaddivity, we just need to prove the
case d = 1, that is, the inequality analogous to Expression (10) for numerical
variances. The proof for general d is the same as in Theorem 1. For d = 1, we
have

S2
13 =

(x1 − x3)
2

2
; S2

12 =
(x1 − x2)

2

2
; S2

23 =
(x2 − x3)

2

2

Therefore, Expression (10) obviously holds with equality in the case of numerical
variances because√

S2
13 =

x1 − x3√
2

=
(x1 − x2) + (x2 − x3)√

2
=
√
S2
12 +

√
S2
23

�
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Abstract. This paper investigates a new model for generating belief functions
from qualitative preferences. Our approach consists in constructing appropriate
quantitative information from incomplete preferences relations. It is able to com-
bine preferences despite the presence of incompleteness and incomparability in
their preference orderings. The originality of our model is to provide additional
interpretation values to the existing methods based on strict preferences and in-
differences only.

1 Introduction

When solving problems dealing with belief function theory, expert is usually required
to provide precise numerical values, for determining the portion of belief committed
exactly to an event in a particular domain. However, when handling with such situa-
tion, the main difficulty is how to quantify these numeric values, therefore linguistic
assessments could be used instead. So, the expert is then asked to express his opinions
qualitatively, based on knowledge and experience that he provides in response to a given
question rather than direct quantitative information.

However, in some cases, the decision maker may be unable to express his opinions
due to his lack of knowledge. He is then forced to provide incomplete or even erroneous
information. Obviously, rejecting this difficulty in eliciting the expert preference is not
a good practice.

Besides, in preference modeling, expert may express preferences among a pair of
alternatives in distinct ways: either an expert has a strict preference of one alternative
compared to the other, or is indifferent between both alternatives. However, these two
interpretations are possible because we made the assumption of complete and sure in-
formation. They do not cover all possible situations that a decision maker can be faced
with. Consider now the situations in which the expert has symmetrically lack of infor-
mation and also excess of information in the sense that he has contradictory inputs. He
may then introduce two new situations: incompleteness and incomparability. The intu-
ition is that the expert cannot compare apple and cheese because they are too different.
For instance, he may consider that alternatives may be incomparable because the expert
does not wish very dissimilar alternatives to be compared. Incompleteness, on the other
hand, represents simply an absence of knowledge about the preference of certain pairs

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 382–393, 2012.
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of alternatives. It arises when we have not fully elicited an expert’s preferences or when
expert do not has the full information.

To deal with such situations, a more realistic solution should be proposed, that is able
to efficiently imitate the expert reasoning using belief function theory. In this paper,
our main aim is then to elaborate on how may be incomparability and incompleteness
represented in the belief function framework as understood in the Transferable Belief
Model (TBM) [11]. Some researchers have already dealt with this problem and generate
associated quantitative belief functions like [1] [4] [7] [12]. However, these approaches
are only based on strict preference and indifference relations.

In this work, we focused on Ben Yaghlane et al. [1] [2] approach in order to con-
struct quantitative belief functions from qualitative preferences by transforming these
opinions into basic belief assessment. This approach is chosen since it does not require
that the expert supplies the preference relations between all pairs of propositions. In
fact, it allows the generation of belief functions using incomplete qualitative preference
relations. Besides, it has been noted that this method handles the issue of inconsistency
in the pair-wise comparisons. In this research, we propose a general model for con-
structing belief functions, which takes into account all information contained within the
expert. With this approach focused on incompleteness and incomparability, the origi-
nality of our model is to allow the expert to easily express his preferences and to provide
a convenience framework for constructing quantitative belief functions from qualitative
assessments. Thus, we present a model that is able to combine the expert assessments
despite the presence of incompleteness and incomparability in their preference order-
ings.

In order to do this, the paper is set out as follows: Section 2 provides a brief de-
scription of basics of belief function theory. In section 3, we describe the preference
modeling approach. Then, Section 4 reviews some existing approaches. Next in Section
5, our suggested solution will be approached. Section 6 presents an example to illustrate
our method. Finally, Section 7 ends this work.

2 Belief Function Theory

In this section, we briefly review the main concepts underlying the belief function the-
ory as interpreted by the Transferable Belief Model (TBM). Details can be found in [9]
[11].

2.1 Basic Concepts

The TBM is a model to represent quantified belief functions [11]. Let Θ be the frame
of discernment representing a finite set of elementary hypotheses related to a problem
domain. We denote by 2Θ the set of all the subsets of Θ [9].

The impact of a piece of evidence on the different subsets of the frame of discern-
ment Θ is represented by the so-called basic belief assignment (bba), called initially by
Shafer, basic probability assignment [9].∑

A⊆Θ

m(A) = 1 (1)
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The value m(A), named a basic belief mass (bbm), represents the portion of belief
committed exactly to the event A. The events having positive bbm’s are called focal
elements. Let F(m) ⊆ 2Θ be the set of focal elements of the bba m.

Associated with m is the belief function is defined for A ⊆ Θ and A �= ∅ as:

bel(A) =
∑

∅
=B⊆A

m(B) and bel(∅) = 0 (2)

The degree of belief bel(A) given to a subset A of the frame Θ is defined as the sum
of all the basic belief masses given to subsets that support A without supporting its
negation.

The plausibility function pl expresses the maximum amount of specific support that
could be given to a proposition A in Θ. It measures the degree of belief committed
to the propositions compatible with A. pl(A) is then obtained by summing the bbm’s
given to the subsets B such that B ∩A �= ∅ [9]:

pl(A) =
∑

B∩A 
=∅
m(B), ∀A ⊆ Θ (3)

2.2 Decision Making

The TBM considers that holding beliefs and making decision are distinct processes.
Hence, it proposes a two level model:

– The credal level where beliefs are entertained and represented by belief functions.
– The pignistic level where beliefs are used to make decisions and represented by

probability functions called the pignistic probabilities, denoted BetP [10]:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

(1 −m(∅)) , ∀A ∈ Θ (4)

2.3 Uncertainty Measures

In this section, we introduce some uncertainty measures defined in the belief function
theory, which quantify the information content or the degree of uncertainty of a piece
of information [5] [6].

Nonspecificity Measures. The nonspecificity measure is introduced by Dubois and
Prade in order to measure the nonspecificity of a normal bba by a function N defined
as [5] [6]:

N(m) =
∑

A∈F(m)

m(A) log2 |A| (5)

The bba m is all the most imprecise (least informative) that N(m) is large. The min-
imum (N(m) = 0) is obtained when m is a Bayesian bba (focal elements are sin-
gletons) and the maximum (N(m) = log2 |A|) is reached when m is a vacuous bba
(m(Θ) = 1).
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Conflict Measures. Conflict measures are a generalization of the Shannon’s entropy
and they were expressed as follows [5] [6]:

conflict(m) = −
∑

A∈F(m)

m(A) log2 f(A) (6)

where f is, respectively, pl, bel or BetP and the conflict measures are called, respec-
tively, Dissonance (E), Confusion (C) and Discord (D).

Composite Measures. Different measures have been defined by Pal, Bezdek and
Hemasinha [5] [6] such as:

H(m) =
∑

A∈F(m)

m(A) log2(
|A|

m(A)
) (7)

EP (m) = −
∑
ω∈Ω

BetP (ω) log2BetP (ω) (8)

The interesting feature of H(m) is that it has a unique maximum.

3 Preference Relations

The preference structure is a basic step of preference modeling. Given two alternatives,
decision maker defines three binary relations: preference (P :0), indifference (I :∼)
and incomparability (J :?) [8].

A preference structure is a basic concept of preference modeling. In a classical pref-
erence structure, a decision maker makes three decisions for any pair (a, b) from the set
A of all alternatives. His decision defines a triplet P, I, J of crisp binary relations on A:

1. a is prefered to b ((a, b) ∈ P ) iff (a 0 b) ∧ ¬(b 0 a)
2. a is indifferent to b ((a, b) ∈ I) iff (a 0 b) ∧ (b 0 a)
3. a is incomparable to b ((a, b) ∈ J) iff ¬(a 0 b) ∧ ¬(b 0 a)

However, P , I and J must satisfy some rather basic additional conditions. For instance,
any couple of alternatives belongs to exactly one of the relations P , P t (the transpose
of P ), I or J . More formally, a preference structure is defined as follows.

1. I is reflexive and J is irreflexive;
2. P is asymmetrical;
3. I and J are symmetrical;
4. P ∩ I = ∅, P ∩ J = ∅ and J ∩ I = ∅
5. P ∪ P t ∪ I ∪ J = A2

Property (1) means that the user is always indifferent between a and a, and that a can
always be compared to itself; (2) is the property that a user cannot prefer a to b and b
to a at the same time; (3) means that when a user is indifferent between a and b, he is
equally so to b and a , and that when a and b are incomparable, so are b and a. Property
(4) states that a pair (a, b) cannot belong to two of the relations P , I and J at the same
time. Finally, (5) is the property that a pair (a, b) always belongs to one of the relations
P , P t, I or J , and to no other. Note that the asymmetry of P implies the irreflexivity
of P .
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4 Qualitative Belief Functions Methods

The problem of eliciting qualitatively expert opinions and generating basic belief as-
signments have been addressed by many researchers [1] [4] [7] [12]. In this section, we
provide an overview of some existing approaches.

4.1 Wong and Lingras’ Method

Wong and Lingras [12] proposed a method for generating quantitative belief functions
from qualitative preference assessments. So, given a pair of propositions, experts may
express which of the propositions is more likely to be true. Thus, they defined two
binary relations preference 0 and indifference ∼ defined on 2Θ such as:

a 0 b is equivalent to bel(a) > bel(b) (9)

a ∼ b is equivalent to bel(a) = bel(b) (10)

where a, b ∈ 2Θ.
This approach is based on two steps. The first one consists in considering that all

the propositions that appear in the preference relations are potential focal elements.
However, some propositions are eliminated according to the following condition: if
a ∼ b for some a ⊂ b, then a is not a focal element.

After that, the basic belief assignment is generated using the two presented Equations
9 and 10. This formulation has multiple belief functions that are consistent with the
input qualitative information, and so their procedure only generates one of them.

It should be noted that Wong and Lingras’ approach do not address the issue of
inconsistency in the pair-wise comparisons. For example, the expert could specify the
apparently inconsistent preference relationships: bel(a) > bel(b), bel(a) > bel(c), and
bel(c) > bel(a).

4.2 Bryson et al.’ Method

Qualitative discrimination process (QDP), a model for generating belief functions from
qualitative preferences, was presented by Bryson, et al. [4].

This method is based on the following steps. First, using this QDA approach, each
proposition is assigned into a Broad category bucket, then to a corresponding Interme-
diate bucket, and finally to a corresponding Narrow category bucket. The qualitative
scoring is done using a table where each Broad category is a linguistic quantifier in
the sense of Parsons [7]. He considers that linguistic quantifiers could provide a useful
approach to representing beliefs vaguely, and that mass and hence bba should be repre-
sented using numeric intervals. Then, in step 2, the previous table is used to identify and
remove non focal propositions. For each superset proposition, determine if the expert is
indifferent in his strength of belief, in the truthfulness of the given proposition and any
of its subset propositions in the same or lower Narrow category bucket.

Step 3 is called “imprecise pair-wise comparisons” because the expert is required
to provide numeric intervals to express his beliefs on the relative truthfulness of the
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propositions. In step 4, the consistency of the belief information provided by the expert
is checked. Then, the belief function is generated in step 5 by providing a bba inter-
val for each focal element. Finally, in step 6, the expert examines the generated belief
functions and stops the QDP if it is acceptable, otherwise the process is repeated.

4.3 Ben Yaghlane et al.’s Method

Ben Yaghlane et al. proposed a method for generating optimized belief functions from
qualitative preferences [1].

So giving two alternatives, an expert can usually express which of the propositions
is more likely to be true, thus they used two binary preference relations: the preference
and the indifference relations. The objective of this method is then to convert these
preferences into constraints of an optimization problem whose resolution, according to
some uncertainty measures (UM) (nonspecificity measures, conflict measures, compos-
ite measures), allows the generation of the least informative or the most uncertain belief
functions defined as follows:

a 0 b ⇒ bel(a)− bel(b) ≥ ε (11)

a ∼ b ⇒ |bel(a)− bel(b)| ≤ ε (12)

where ε is considered to be the smallest gap that the expert may discern between the
degrees of belief in two propositionsA and B. Note that ε is a constant specified by the
expert before beginning the optimization process.

Ben Yaghlane et al. proposed a method that requires that propositions be represented
in terms of focal elements, and they assume that Θ (where Θ is the frame of discern-
ment) should always be considered as a potential focal element. Then, a mono-objective
technique was used to solve such constrained optimization problem:

MaxmUM(m)
s.t.

bel(a)− bel(b) ≥ ε
bel(a)− bel(b) ≤ ε
bel(a)− bel(b) ≥ −ε∑

a∈F(m)

m(a) = 1,m(a) ≥ 0, ∀a ⊆ Θ;m(∅) = 0

(13)

where the first, second and third constraints are derived from Eqs 11 and 12, represent-
ing the quantitative constraints corresponding to the qualitative preference relations.

Furthermore, the proposed method addresses the problem of inconsistency. In fact,
if the preference relations are consistent, then the optimization problem is feasible.
Otherwise no solutions will be found. Thus, the expert may be guided to reformulate
his preferences.

An extension of the proposed solution is also presented. In fact, the authors suggested
to use the goal programming, a multiobjective method, in order to take into account
simultaneously several objectives in the formulation of the problem. So, the idea behind
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the use of this method is to be able to integrate additional information about the belief
functions to be generated.

It should be noted that this method does not address the issue of incomparability
in the pair-wise comparisons. In fact, this proposed method treats incomparability as
incompleteness. However, we believe that this interpretation is not appropriate. If an
expert is unable to compare two alternatives then this situation should be reflected in the
preference relation not as an incomplete situation, but with an entry for that particular
pair of alternatives. So, in the following section, we present our method that deal with
this problem.

5 Modelling Belief Functions Using Qualitative Preferences

As presented above, representing efficiently the expert preferences is a crucial task in
elaborating the necessary data for a considered problem. Therefore, we propose a real-
istic solution that is able to efficiently imitate the expert reasoning. In fact, our main aim
is then to elaborate on how may be incomparability and incompleteness represented in
qualitative belief functions. The solution we suggest is then a qualitative model for con-
structing belief functions from elicited expert opinions when dealing with qualitative
preference relations. In this section, we start by identifying sufficient conditions of in-
troducing these imperfect preferences. Then, we consider the computational procedure.

5.1 Incompleteness in the Belief Function Theory

Incomparability and incompleteness represent very different concepts. In this subsec-
tion, we try also to differentiate incomplete preferences from incomparable ones. This
situation is illustrated by complete ignorance, missing information, lack of knowledge
or an ongoing preference elicitation process. Incompleteness represents then simply an
absence of knowledge about the relationship between these pairs of alternatives.

Given such considerations, it may perhaps be useful at times to take incomplete order
as the primitive of analysis. Besides, expert is freely allowed to assign this belief to any
pairs of alternatives. In other words, a partial order allows some relations between pairs
of alternatives to be unknown.

Example. Given three alternatives Θ = {a, b, c}, an incomplete order can be for exam-
ple: (a 0 c, b?c) or (c 0 a, a ∼ b), where some relations between pairs of alternatives
are unknown.

5.2 Incomparability in the Belief Function Theory

A missing value in a linguistic preference relation is not always equivalent to a lack of
preference of one alternative over another. A missing value can also be the result of the
incapacity of an expert to compare one alternative over another because they are too
different. In such cases, the expert may not put his opinion forward about certain as-
pects of the problem, he would not be able to efficiently express his preference between
two or more of the available alternative. As a result, he may find some of them to be
incomparable and thus has an incomplete preference ordering, i.e., he neither prefers
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one alternative over the other nor finds them equally as good. Therefore, it would be of
great importance to provide the expert with tools that allow them to efficiently model
his preferences.

In order to model this situation, we first consider how to represent the incompara-
bility relation. In fact, our problem here is that incomparability is expressed entirely in
terms of negations:

a?b iff ¬(a 0 b) ∧ ¬(b 0 a) (14)

By definition, a couple of alternatives (a, b) belongs to the incomparability relation J if
and only if the expert is unable to compare a and b. Furthermore, it is hard to see what
kind of behavior could correspond to Equation 14. If neither a nor b is chosen, then the
expert may not be able to tell which alternative is better, since not aPb, not bPa and
not aIb. In other terms, we apply incomparability when the preference profiles of two
alternatives are severely conflicting.

The question now is how to formalize this situation in the belief function framework.
In order to build this new preference relation, we may accept that there exist positive
reasons which support the relation ¬(a 0 b) and also there exist sufficient negative in-
formation to establish the relation (a 0 b). These two assumptions can properly model
the contradictory information. Besides, we can surely establish that “a is preferred to
b” as there are not sufficient reasons supporting the opposite and there are sufficient
information against it, while we can also surely establish that “b is preferred to a” for
the same reasons. Therefore, a and b are in conflicting position. On the other hand, and
based on the belief function framework and as defined by Boujelben et al. [3], the in-
comparability situation appears between two alternatives when their evaluations given
by basic belief assessments differ significantly.

In the following, our objective is to represent the case of incomparability with the
belief function theory. Consider two alternatives a and b, as proved in Wong et al. [12]
the belief function exists since the preference relation 0 satisfies the following axioms:

1. Asymmetry: a 0 b ⇒ ¬(b 0 a)
2. Negative Transitivity: ¬(a 0 b) and ¬(b 0 c) ⇒ ¬(a 0 c)
3. Dominance: For all a, b ∈ 2Θ, a ⊇ b ⇒ a 0 b or a ∼ b
4. Partial monotonicity: For all a, b, c ∈ 2Θ, if a ⊃ b and a∩c = ∅ ⇒ (a∪c) 0 (b∪c)

So, Wong et al. have justified the existing of the following relation:

a 0 b ⇔ bel(a) > bel(b) (15)

In other words, Wong et al. have proved that it may exist functions other than the belief
functions, which are also compatible with a preference relation such that for every a, b ∈
2Θ.

a 0 b ⇔ f(a) > f(b) (16)

if and only if the relation 0 satisfies the previous axioms.
Similarly to this idea, we can prove that the plausibility function also exists since

the preference relation 0 satisfies the previous axioms. Besides, we can conclude that
it exists a plausibility function pl: 2Θ → [0, 1] such as:

a 0 b ⇔ pl(a) > pl(b) (17)
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To summarize, we can get the following relation:

a 0 b ⇔ bel(a) > bel(b) and pl(a) > pl(b) (18)

As we have defined previously, the incomparability situation appears between two alter-
natives when their preference profiles are severely conflicting. That is when their eval-
uations given by basic belief assessments differ significantly. We can then intuitively
conclude from Equation 18 that, if a is incomparable with b, then:

a?b ⇔ bel(a) ≥ bel(b) and pl(a) ≤ pl(b) (19)

The first part of Equation 19 supports the assumption “a is preferred to b” however the
second one supporting the opposite affirmation. Also, the second part of the Equation
supports the assumption “b is preferred to a” and the first part affirms the opposite
assumption.

Consequently, our purpose is then to prove the existing of the previous Equation 19
in order to correctly represent the bba relative to the incomparability relation.

Proof. According to the definition of the plausibility function, we have:

pl(a) = bel(Θ)− bel(ā).

We start from the second part of the Equation 19, our assumption is: pl(a) ≤ pl(b)
⇔ bel(Θ)− bel(ā) ≤ bel(Θ)− bel(b̄)
⇔ - bel(ā) ≤ −bel(b̄)
⇔ bel(ā) ≥ bel(b̄)
Using the Equation 9, we can therefore conclude that: ā 0 b̄, which means that ¬(a 0
b). This contradicts with the assumption “if pl(a) ≤ pl(b) then a 0 b”. Hence, if we
have pl(a) ≤ pl(b), then b 0 a. However, from the first part of the assumption, we
have: a 0 b.

As a conclusion, such representation of incomparability (Equation 18), enables us to
correctly express the conflicting information produced by the alternative a and the al-
ternative b. In fact, the first part of the Equation 19 “bel(a) ≥ bel(b)” implies that a is
preferred to b. Then, the plausibility function is used since it expresses the maximum
amount of specific support that could be given to a proposition a. However, when we
define the second part of the Equation 19, we propose to assume that pl(a) ≤ pl(b)
which means that b is preferred to a. This contradicts the first assumption, and can
properly express the conflicting information’s produced by a and b.

5.3 Computational Procedure

Now and after modeling the incompleteness and the incomparability preferences, we
propose to extend Ben Yaghlane et al. method [1]. We transform these preferences
relations into constraints as presented in section 4.1. We get:
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MaxmUM(m)
s.t.

bel(a)− bel(b) ≥ ε
bel(a)− bel(b) ≤ ε
bel(a)− bel(b) ≥ −ε

bel(a) ≥ bel(b)
pl(a) ≤ pl(b)∑

a∈F(m)

m(a) = 1;m(a) ≥ 0; ∀a ⊆ Θ;m(∅) = 0

(20)

where the first, second and third constraints of the model are derived from the pref-
erence and indifference relations. The fourth and fifth constraints correspond to the
incomparability relation. ε is a constant specified by the expert before beginning the
optimization process.

A crucial step is needed before beginning the task of generating belief functions, is
the identification of the candidate focal elements. Thus, as applied in the existing ap-
proaches, we may initially assume that prepositions which may appear in the preference
relationships are considered as focal elements. Then, other focal elements could be ap-
pear or also eliminated. The next phase of our procedure consists of establishing the
local preference relations between each pair of two alternatives. Finally, these obtained
relations are transformed into constraints to obtain the quantitative belief function.

6 Example

Let us consider a problem of eliciting the weight of the candidate criteria. The problem
involves six criteria: Ω = {a, b, c, d, e, f}. The focal elements are: F1 = {a}, F2 =
{a, b, c}, F3 = {b, e}, F4 = {e, f} and F5 = {a, e, d}.

Next, the expert opinions should be elicitated. For this purpose, an interview with
the expert is realized in order to model his preferences. Consequently, he has validated
the following relations:

F2 0 F1 , F1?F3 , F4 0 F1
F5 0 F1 , F3 ∼ F2 , F5 0 F4,

After eliciting the expert preferences, the following step is to identify the candidate
focal elements. So, we get:

F(m) = {F1, F2, F3, F4, F5, Θ}

Next, these obtained relations are transformed into optimization problem according to
our proposed method. We assume that ε = 0.01 and the uncertainty measures is H
since it has a unique maximum as defined in Equation 7.

Table 1 gives the results of all ordered couples on the basis of their preference rela-
tion. Besides, we are interested in obtaining their corresponding quantitative bba.

In fact, there are different ways to obtain a result by aggregating the obtaining binary
relation. But, the existing approaches present the inconvenience of eliminating useful
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Table 1. The obtained bba using our proposed model

Criteria {a} {a, b, c} {b, e} {e, f} {a, e, d} {b, c, d, e, f} {a, c, d, f} Θ

bba 0.069 0.079 0.069 0.079 0.119 0.198 0.194 0.193

bel 0.069 0.148 0.069 0.079 0.119 0.346 0.263 1

pl 0.535 0.069 0.46 0.047 0.312 0.391 0.391 1

information as the incompleteness and incomparability. However, by applying our pre-
sented solution, it is easy to see that our method aggregates all the elicited data. Here,
in the present example, all the incomparabilities are detected. We obtain for example
F1?F3.

Once the preferences relations are defined, the corresponding bba (Table 1) should
be constructed. We suggest to transform our problem into a constrained optimization
model in order to choose the optimal solution and to get the previous result.

Now we propose to apply Ben Yaghlane et al. method. By using this model, we as-
sume that the incomparability and the incompleteness are modeled in the same way. In
other words, the relation F1?F3 will be eliminated and we get the following
Table 2.

Table 2. The obtained bba using Ben Yaghlane et al. method

Criteria {a} {a, b, c} {b, e} {e, f} {a, e, d} Θ

bba 0.063 0.159 0.149 0.126 0.189 0.315

bel 0.063 0.222 0.149 0.126 0.252 1

In absence of incomparabilities, we note the couple of alternatives {b, c, d, e, f} and
{a, c, d, f} do not appears because the incomparability relation has been assigned to
other relation: the incompleteness. Observing the two obtaining results, it is possible to
see that in spite of the use of two different models, we get almost the same partial order.

7 Conclusion

In this study, the incomplete linguistic preference relations are used to derive quanti-
tative belief function. By presenting our method, a new model for constructing belief
functions from elicited expert opinions has been defined, that takes into account the in-
complete and even the incomparable alternatives. The originality of our model is then
to provide additional interpretation values to the existing methods based on strict pref-
erences and indifferences only.

Under this perspective the paper introduces a new method based on Ben Yaghlane et
al. approach [1]. Our work makes it possible to separate incomparability from incom-
pleteness. Then, we suggest to extend Ben Yaghlane et al. method to take into account
these distinct levels of preferences. Finally, our method transforms the preference rela-
tions provided by the expert into constraints of an optimization problem.
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An interesting future work is to make our method able to explore uncertainty pref-
erences. For instance, an expert may not be able to say if a couple of alternatives (a, b)
belongs to the preference or indifference relation. Besides, we propose to apply our
proposed method in multi-criteria decision making field, which can be interesting in
eliciting expert judgments.
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Abstract. Non metric model is a kind of clustering method in which
belongingness or the membership grade of each object to each cluster
is calculated directly from dissimilarities between objects and cluster
centers are not used.

By the way, the concept of rough set is recently focused. Conven-
tional clustering algorithms classify a set of objects into some clusters
with clear boundaries, that is, one object must belong to one cluster.
However, many objects belong to more than one cluster in real world,
since the boundaries of clusters overlap with each other. Fuzzy set repre-
sentation of clusters makes it possible for each object to belong to more
than one cluster. On the other hand, the fuzzy degree sometimes may
be too descriptive for interpreting clustering results. Rough set represen-
tation could handle such cases. Clustering based on rough set represen-
tation could provide a solution that is less restrictive than conventional
clustering and less descriptive than fuzzy clustering.

This paper shows two type ofRough set basedNonMetricmodel (RNM).
One algorithm is Rough set based Hard Non Metric model (RHNM) and
the other is Rough set based FuzzyNonMetricmodel (RFNM). In the both
algorithms, clusters are represented by rough sets and each cluster consists
of lower and upper approximation. Second, the proposed methods are ker-
nelized by introducing kernel functions which are a powerful tool to analize
clusters with nonlinear boundaries.

1 Introduction

Computer system data has become large-scale and complicated in recent years
due to progress in hardware technology, and the importance of data analysis
techniques has been increasing accordingly. Clustering, which means a data clas-
sification method without any external criterion, has attracted many researchers
as a significant data analysis technique.

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 394–407, 2012.
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Bezdek et al. proposed Fuzzy c-Means (FCM) [1, 2], which can be regarded as
the fuzzification of Hard c-Means (HCM). In FCM, cluster centers are introduced
to obtain belongingness or the membership grade of each object to each cluster.
Roubens proposed a clustering algorithm without cluster centers [3] in which
membership grades are calculated with only dissimilarities between objects. The
algorithm is then called a Fuzzy Non Metric model (FNM) which means fuzzified
Hard Non Metric model (HNM). The FNM has a property enabling membership
grades to be calculated directly from dissimilarities, and thereby object space
need not necessarily be Euclidean space. After that, Bezdek et al. discussed
relations between FCM and FNM [4, 5]. One of us proposed Entropy based FNM
(EFNM) by the different fuzzification of HNM from Roubens, and discussed some
applications [6]. In these algorithms, fuzzy set concept plays very important role.

On the other hand, it is pointed out that the fuzzy set representation some-
times may be too descriptive for interpreting clustering results [7]. In such cases,
rough set representation becomes a useful and powerful tool [8, 9]. The basic
concept of the rough representation is based on two definitions of lower and
upper approximations of a set. The lower approximation means that “an object
surely belongs to the set” and the upper one means that “an object possibly
belongs to the set”. Clustering based on rough set representation could provide
a solution that is less restrictive than conventional clustering and less descriptive
than fuzzy clustering [10, 7], and therefore the rough set based clustering has
attracted increasing interest of researchers [11–16, 7].

In this paper, we will mainly develop theoretical discussion for a new non
metric model based on rough set representation. We will first construct two type
of Rough set based Non Metric model (RNM). One algorithm is Rough set based
Hard Non Metric model (RHNM) and the other is Rough set based Fuzzy Non
Metric model (RFNM). In RNM, clusters are represented by rough sets and each
cluster consists of lower and upper approximation.

RFNM is constructed by fuzzifying RHNM with the entropy regularized term.
The purpose of fuzzification of RHNM is to overcome a problem of RHNM that
if an object does not belong to any lower approximation it belongs to only two
upper approximation, not three or more. To fuzzify RHNM, we introduce an
entropy regularized term which was considered by Miyamoto et al. as another
way to fuzzify HCM [17, 18] from by Bezdek. Bezdek introduced a fuzzifica-
tion parameter on membership grades in the objective function of HCM, while
Miyamoto et al. introduced an entropy regularization term into the function,
instead of the fuzzification parameter. In comparison with FCM, EFCM has,
among other properties, one in which the classification function converges to 0
or 1 as the dissimilarity between a cluster center and an object goes to infinity.

RHNM is more simple than RFNM so that it is expected that the calculation
cost of RHNM is less than RFNM. On the other hand, RFNM is more flexible
than RFNM in the meaning that each object can belong to two or more upper
approximation.

Second, we will kernelize the proposed methods by introducing kernel func-
tions. Vapnik proposed the Support Vector Machine (SVM) [19, 20]. The SVM
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is one of supervised methods, and it can recognize nonlinear boundaries between
clusters. Kernel functions play a very important role with the SVM. Objects
are mapped from the object space to high dimensional feature space and the
inner product of data in high dimensional feature space can be easily calcu-
lated by kernel functions. Some clustering algorithms have been proposed with
kernel functions [21–23] to classify a given dataset into clusters with nonlinear
boundaries and the usefulness is verified.

2 Preliminaries

2.1 Rough Sets

Let U be the universe and R ⊆ U ×U be an equivalence relation on U . R is also
called indiscernibility relation. The pair X = (U,R) is called an approximation
space. If x, y ∈ U and (x, y) ∈ R, we say that x and y are indistinguishable in
X .

Equivalence classes of the relation R is called elementary sets in X . A family
of all elementary sets is denoted by U/R. The empty set is also elementary in
every X .

Since it is impossible to distinguish the elements in the same equivalence class,
we may not be able to get a precise representation for an arbitrary subset A ⊂ U .
Instead, any A can be represented by its lower and upper bounds. The upper
bound A is the least composed set in X containing A, called the best upper
approximation or, in short, the upper approximation. The lower bound A is the
greatest composed set in X containing A, called the best lower approximation or,
briefly, the lower approximation. The set Bnd(A) = A−A is called the boundary
of A in X .

The pair (A,A) is the representation of an ordinary set A in the approximation
space X , or simply the rough set of A. The elements in the lower approximation
of A definitely belong to A, while elements in the upper bound of A may or may
not belong to A.

From the above description of rough sets, we can define the following condi-
tions for clustering:

(C1) An object x can be part of at most one lower approximation.
(C2) If x ∈ A, x ∈ A.
(C3) An object x is not part of any lower approximation if and only if x belongs

to two or more boundaries.

2.2 Notations and HNM

For any objects xk = (xk1, . . . , xkp)
T ∈ 3p (k = 1, . . . , n), νki and uki (i =

1, . . . , c) mean belongingness of an object xk to a lower approximation of Ai and
a boundary of the i-th cluster Ai, respectively. Partition matrices of νki and uki

are denoted by N = (νki)k=1...n,i=1,...,c and U = (uki)k=1...n,i=1,...,c, respectively.
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The original HNM algorithm minimizes the following objective function:

J(N,U) =

c∑
i=1

n∑
k=1

n∑
t=1

νkiνtirkt. (1)

3 RHNM

3.1 Objective Function and Optimal Solutions

To construct a new relational clustering algorithm based on rough set represen-
tation, we define the following objective function based on (1):

J(N,U) = w

c∑
i=1

n∑
k=1

n∑
t=1

νkiνtirkt + w

c∑
i=1

n∑
k=1

n∑
t=1

ukiutirkt, (2)

here w+w = 1. rkt means a dissimilarity between xk and xt. One of the examples
is Euclidean norm:

rkt = ‖xk − xt‖2.

We consider the following conditions for νki and uki:

νki ∈ {0, 1}, uki ∈ {0, 1}.

From (C1), (C2), and (C3) in Subsection 2.1, we can derive the following con-
straints:

c∑
i=1

νki ∈ {0, 1},
c∑

i=1

uki �= 1,

c∑
i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0.

From the above constraints, we can derive the following relation for any k.

c∑
i=1

νki = 0 ⇐⇒
c∑

i=1

uki ≥ 2

It is obvious that these relations are equivalent to (C1), (C2), and (C3) in Sub-
section 2.1.

Optimal solutions to νki and uki can be obtained by comparing the following
two cases for each xk:

Case 1: xk belongs to the lower approximation Apk
.

Case 2: xk belongs to the boundaries of two clusters Aq1k
and Aq2k

.

We describe the detail of each case as follows:
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Case 1: Let assume that xk belongs to the lower approximation Apk
. pk is

derived as follows:
The objective function J can be rewritten as follows:

J(N,U) = w

c∑
i=1

J i + w

c∑
i=1

n∑
l=1

n∑
t=1

uliutirlt,

here

J i =

⎛⎝2νki

n∑
t=1

νtirkt +
n∑

l=1,l 
=k

n∑
t=1,t
=k

νliνtirlt

⎞⎠ .

Note that rkk = 0 and rkt = rtk. Therefore,

pk = argmin
i

n∑
t=1

νtirkt. (3)

It means the following relations:

νki =

{
1, (i = pk)

0, (otherwise)

uki = 0. (∀i)

In this case, the value of the objective function can be calculated as follows:

J(N,U) = w

⎛⎝2

n∑
t=1

νtpk
rkt +

c∑
i=1

n∑
l=1,l 
=k

n∑
t=1,t
=k

νliνtirlt

⎞⎠
+ w

c∑
i=1

n∑
l=1

n∑
t=1

uliutirlt

= 2Jν
k + Jc,

here

Jν
k =

n∑
t=1

(
wνtpk

+

c∑
i=1

wukiuti

)
rkt = w

n∑
t=1

νtpk
rkt, (4)

Jc = w

c∑
i=1

n∑
l=1,l 
=k

n∑
t=1,t
=k

νliνtirlt + w

c∑
i=1

n∑
l=1,l 
=k

n∑
t=1,t
=k

uliutirlt.

Case 2: Let assume that xk belongs to the boundaries of two clusters Aq1k
and

Aq2k
. q1k and q2k are derived as follows:

The objective function J can be rewritten as follows:

J(N,U) = w
c∑

i=1

J i + w
c∑

i=1

n∑
l=1

n∑
t=1

νkiνtirlt,
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here

J i =

⎛⎝2uki

n∑
t=1

utirkt +
n∑

l=1,l 
=k

n∑
t=1,t
=k

uliutirlt

⎞⎠ .

Therefore,

q1k = argmin
i

n∑
t=1

utirkt, (5)

q2k = arg min
i,i
=q1k

n∑
t=1

utirkt. (6)

It means the following relations:

νki = 0, (∀i)

uki =

{
1, (i = q1k ∨ i = q2k)

0. (otherwise)

In this case, the value of the objective function can be calculated as follows:

J(N,U) = w
c∑

i=1

n∑
l=1

n∑
t=1

νliνtirlt

+ w

⎛⎝2

n∑
t=1

(utq1k
+ utq2k

)rkt +

c∑
i=1

n∑
l=1,l 
=k

n∑
t=1,t
=k

uliutirlt

⎞⎠
= 2Ju

k + Jc,

here

Ju
k =

n∑
t=1

(
c∑

i=1

wνkiνti + w(utq1k
+ utq2k

)

)
rkt

= w
n∑

t=1

(utq1
k
+ utq2

k
)rkt. (7)

In comparison with Jν
k and Ju

k , we determine νki and uki as follows:

νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

{
1,
(
Jν
k ≥ Ju

k ∧ ( i = q1k ∨ i = q2k)
)

0. (otherwise)
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3.2 RHNM Algorithm

From the above discussion, we show the RHNM algorithm as Algorithm 1. The
proposed algorithm is constructed based on iterative optimization.

Algorithm 1. RHNM

RHNM1 The iteration number L = 0. Give rkt and set initial values of ν
(0)
ki and u

(0)
ki .

RHNM2 Update ν
(L+1)
ki and u

(L+1)
ki as follows:

ν
(L+1)
ki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

u
(L+1)
ki =

{
1,

(
Jν
k ≥ Ju

k ∧ ( i = q1k ∨ i = q2k)
)

0. (otherwise)

pk, q
1
k, q

2
k, J

ν
k , and Ju

k are calculated by (3), (5), (6), (4), and (7), respectively,

with ν
(L)
ti and u

(L)
ti .

RHNM3 If the stop criterion satisfies, finish. Otherwise L := L + 1 and back to
RHNM2.

4 RFNM

4.1 Objective Function and Optimal Solutions

In the above section, we proposed RHNM algorithm. In the algorithm, an object
xk belongs to just two boundaries if xk does not belong to any lower approxima-
tion, since uki ∈ {0, 1} and the objective function (2) is linear for uki. Therefore,
in this section we propose RFNM algorithm to make xk belong to two or more
boundaries if xk does not belong to any lower approximation.

We consider the following objective function of RFNM:

J(N,U) = w
c∑

i=1

n∑
k=1

n∑
t=1

νkiνtirkt + w
c∑

i=1

n∑
k=1

n∑
t=1

ukiutirkt

+ λ−1
c∑

i=1

n∑
k=1

uki log uki, (8)

here w + w = 1. rkt means a dissimilarity between xk and xt. The last entropy
term means fuzzification of uki and makes the objective function nonlinear for
uki. Hence, the value of the optimal solution on uki which minimizes the objective
function (8) is in [0, 1).

We assume the following conditions for νki and uki:

νki ∈ {0, 1}, uki ∈ [0, 1).
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From (C1), (C2), and (C3) in Subsection 2.1, we can derive the following con-
straints:

c∑
i=1

νki ∈ {0, 1},
c∑

i=1

uki ∈ {0, 1},

c∑
i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0.

From the above constraints, we can derive the following relation for any k:

c∑
i=1

νki = 0 ⇐⇒
c∑

i=1

uki = 1 (9)

It is obvious that these relations are equivalent to (C1), (C2), and (C3) in Sub-
section 2.1.

Same as RHNM, optimal solutions to νki and uki can be obtained by com-
paring the following two cases for each xk.

Case 1: Let assume that xk belongs to the lower approximation Apk
. pk is

derived as follows:
The objective function J can be rewritten as follows:

J(N,U) = w

c∑
i=1

J i + w

c∑
i=1

n∑
l=1

n∑
t=1

uliutirlt + λ−1
c∑

i=1

n∑
k=1

uki log uki,

here

J i =

⎛⎝2νki

n∑
t=1

νtirkt +
n∑

l=1,l 
=k

n∑
t=1,t
=k

νliνtirlt

⎞⎠ .

Note that rkk = 0 and rkt = rtk. Therefore,

pk = argmin
i

n∑
t=1

νtirkt. (10)

It means the following relations:

νki =

{
1, (i = pk)

0, (otherwise)

uki = 0. (∀i)
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In this case, the value of the objective function can be calculated as follows:

J(N,U) = w

⎛⎝2

n∑
t=1

νtpk
rkt +

c∑
i=1

n∑
l=1,l 
=k

n∑
t=1,t
=k

νliνtirlt

⎞⎠
+ w

c∑
i=1

n∑
l=1

n∑
t=1

uliutirlt + λ−1
c∑

i=1

n∑
l=1

uli log uli

= 2Jν
k + Jc,

here

Jν
k =

n∑
t=1

(
wνtpk

+
c∑

i=1

wukiuti

)
rkt + λ−1

c∑
i=1

uki log uki

= w

n∑
t=1

νtpk
rkt, (11)

Jc = w
c∑

i=1

n∑
l=1,l 
=k

n∑
t=1,t
=k

νliνtirlt + w
c∑

i=1

n∑
l=1,l 
=k

n∑
t=1,t
=k

uliutirlt

+ λ−1
c∑

i=1

n∑
l=1,l 
=k

uli log uli.

Case 2: Let assume that xk belongs to the boundaries of two or more one
clusters. The objective function J is convex for uki, hence we can derive an
optimal solution to uki using a Lagrange multiplier.

In this case, the constraint 9, then we can introduce the following Lagrange
function:

L(N,U) = J(N,U) +

n∑
k=1

ηk

c∑
i=1

(uki − 1).

We partially differentiate L by uki and get the following equation:

∂L

∂uki
=2w

⎛⎝ n∑
t=1,t
=k

utirkt + ukirkk

⎞⎠+ λ−1(1 + log uki) + ηk

=2w
n∑

t=1,t
=k

utirkt + λ−1(1 + log uki) + ηk.

From ∂L
∂uki

= 0, we obtain the following relation:

uki = exp (−λ(ηk +Dki)− 1) , (12)
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where

Dki = 2w

n∑
t=1,t
=k

utirkt = 2w

n∑
t=1

utirkt. (13)

From the constraint (9) and the above equation (12), we get the following equa-
tion:

c∑
i=1

uki =

c∑
i=1

exp (−λ(ηk +Dki)− 1) = 1,

exp (−ληk − 1) = 1/

c∑
j=1

exp (−λDkj) .

We then obtain the following optimal solution:

uki =
exp (−λDki)∑c
j=1 exp (−λDkj)

.

It means the following relations:

νki = 0, (∀i)

uki =
exp (−λDki)∑c
j=1 exp (−λDkj)

(∀i).

In this case, the value of the objective function can be calculated as follows:

J(N,U) = w

c∑
i=1

n∑
l=1

n∑
t=1

νliνtirlt

+ w

c∑
i=1

⎛⎝2uki

n∑
t=1

utirkt +

n∑
l=1,l 
=k

n∑
t=1,t
=k

uliutirlt

⎞⎠
+ λ−1

⎛⎝ c∑
i=1

uki log uki +

c∑
i=1

n∑
l=1,l 
=k

uli log uli

⎞⎠
= 2Ju

k + Jc,

here

Ju
k =

n∑
t=1

(
c∑

i=1

wνkiνti +
c∑

i=1

wukiuti

)
rkt +

1

2
λ−1

c∑
i=1

uki log uki

=

c∑
i=1

uki

(
n∑

t=1

wutirkt + (2λ)−1 log uki

)
. (14)
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In comparison with Jν
k and Ju

k , we determine νki and uki as follows:

νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

{
exp(−λDki)∑c

j=1 exp(−λDkj)
, (Jν

k ≥ Ju
k )

0. (otherwise)

4.2 RFNM Algorithm

From the above discussion, we show the RFNM algorithm as Algorithm 2. The
proposed algorithm is also constructed based on iterative optimization.

Algorithm 2. RFNM

RFNM1 The iteration number L = 0. Give rkt and set initial values of ν
(0)
ki and u

(0)
ki .

RFNM2 Update ν
(L+1)
ki and u

(L+1)
ki as follows:

ν
(L+1)
ki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

u
(L+1)
ki =

⎧⎨
⎩

exp(−λDki)∑c
j=1

exp(−λDkj)
, (Jν

k ≥ Ju
k )

0. (otherwise)

pk, Dki, J
ν
k , and Ju

k are calculated by (10), (13), (11), and (14), respectively, with

ν
(L)
ti and u

(L)
ti .

RFNM3 If the stop criterion satisfies, finish. Otherwise L := L + 1 and back to
RFNM2.

5 Kernelized RNM

In this section, we try to kernelize RNM. As mentioned above, kernel functions
are a powerful tool to classify a dataset into some clusters with nonlinear bound-
aries.

5.1 Kernel Functions

To kernelize the ENM, we first define some symbols to introduce kernel functions.
Mapping from the pattern space 3p to high dimensional feature space 3s is
expressed as φ : 3p → 3s (p - s). Each datum in feature space is denoted by

φ(xk) = xφk = (xφk1, . . . , x
φ
ks)

T ∈ 3s, and dataset Xφ =
{
xφ1 , . . . , x

φ
n

}
is given.

The kernel function K : 3p ×3p → 3 satisfies the following relation:

K(x, y) = 〈φ(x), φ(y)〉.
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From Mercer’s theorem [24], K is a continuous symmetric nonnegative definite
kernel if and only if mapping φ exists and satisfies the above relation. Note that
φ is not explicit. With K, we can easily calculate the inner product of data in
high dimensional feature space.

5.2 KRNM Algorithm

Given the above preparation, we consider a Kernelized Rough Non Metric model
(KRNM) using the following relation:

rφkt =‖xφk − xφt ‖2

=〈xφk , x
φ
k〉 − 2〈xφk , x

φ
t 〉+ 〈xφt , x

φ
t 〉

=K(xk, xk)− 2K(xk, xt) +K(xt, xt).

Kernelized RHNM (KRHNM) and Kernelized RFNM (KRFNM) algorithms is

the same as Algorithms 1 and 2 by substituting rφkt for (3), (4), (5), (6), (7),
(10), (11), (13), and (14) instead of rkt. For example,

uki =
exp
(
−λDφ

ki

)
∑c

j=1 exp
(
−λDφ

kj

) ,
where

Dφ
ki = 2

n∑
t=1,t
=k

utir
φ
kt = 2

n∑
t=1

utir
φ
kt.

We show KRNM algorithm as Algorithm 3.

Algorithm 3. KRNM (KRHNM and KRFNM)

KRNM1 The iteration number L = 0. Give rkt and set initial values of ν
(0)
ki and u

(0)
ki .

KRNM2 Update ν
(L+1)
ki and u

(L+1)
ki by (3), (4), (5), (6), and (7) in case of KRHNM,

or by (10), (11), (13), and (14) in case of KRFNM, with ν
(L)
ti and u

(L)
ti by substi-

tuting rφkt instead of rkt.
KRNM3 If the stop criterion satisfies, finish. Otherwise L := L + 1 and back to

RFNM2.

6 Conclusion

In this paper, we first constructed two type of RNM, that is, RHNM and RFNM.
In the both algorithms, clusters are represented by rough sets and each cluster
consists of lower and upper approximation. It is considered that RHNM is more
simple than RFNM so that it is expected that the calculation cost of RHNM
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is less than RFNM, while RFNM is more flexible than RFNM in the meaning
that each object allow to belong to two or more upper approximation. Second,
we kernelized the proposed methods by introducing kernel functions.

We have mainly developed a theoretical discussion in this paper. So it cannot
be said that the verification of the proposed algorithm through numerical exam-
ples is enough. We thus must do that through numerical examples in a future
paper.
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Abstract. We present a new axiomatization of logic for dependencies
in data with grades, including ordinal data and data in an extension of
Codd’s model that takes into account similarity relations on domains.
The axiomatization makes possible an efficient method for automated
reasoning for such dependencies that is presented in the paper. The pre-
sented method of automatic reasoning is based on a new simplification
equivalence which allows to simplify sets of dependencies while retaining
their semantic closures. We include two algorithms for computing clo-
sures and checking semantic entailment from sets of dependencies and
present experimental comparison showing that the algorithms based on
the new axiomatization outperform the algorithms proposed in the past.

1 Introduction

We present a complete axiomatization of a logic for dependencies in data with
grades and an efficient automated reasoning method based on this axiomatiza-
tion. The dependencies are expressed by formulas of the form

A ⇒ B, (1)

where A and B are graded sets of attributes, such as{
0.2/y1, y2

}
⇒
{
0.8/y3

}
. (2)

Such formulas have two different kinds of semantics (two interpretations) whose
entailment relations coincide. First, the semantics given by object-attribute data
with grades [5] in which (2) means: every object that has attribute y1 to degree
at least 0.2 and attribute y2 to degree 1 (i.e. fully possesses y2), has also attribute
y3 to degree at least 0.8. Second, the semantics given by ranked tables over do-
mains with similarities (an extension of Codd’s model of relational data) in which
(2) means: every two tuples that are similar on attribute y1 to degree at least 0.2

V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 408–419, 2012.
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and are equal on attribute y2 are similar on attribute y3 to degree at least 0.8. We
assume that the set of degrees forms a partially ordered set and is equipped with
particular aggregation operations, notably many valued conjunction and impli-
cation. If 0 and 1 are the only degrees, the first interpretation coincides with the
well-known attribute dependencies in binary data, called attribute implications
(meaning that presence of certain attributes implies presence of other attributes),
and the second one with functional dependencies in the ordinary Codd’s model.

The rules used in this paper serve several purposes. From the point of view of
knowledge acquisition, the rules represent important if-then patterns that can be
derived from data and are capable of representing various if-then dependencies
that are present in the data. For instance, [5] shows that each object-attribute
data table representing ordinal (graded) dependencies between objects and their
attributes (features) can be characterized by a base of rules like (1). Similar
situation applies to data tables with similarities over domains and ordinal ranks
as in [8,9]. A base is an irreducible set of rules valid in the data such that all other
dependencies that are valid in the data can be derived from the base. Thus, bases
of rules like (1) are concise representations of knowledge inferred from data. In
order to gain more knowledge from a base, one has to come up with an efficient
inference system and this paper contributes to this area—it shows an algorithm
for determining whether a formula follows (and to what degree of satisfaction)
from a collection of formulas. In a broader context, the paper shows for the first
time an efficient automated prover for reasoning about dependencies in data
involving grades.

2 Preliminaries

We assume that the set of degrees, such as 0.2 or 0.8 in (2), is partially ordered
and equipped with particular aggregation operations. Such structures are known
from fuzzy logic [13,14,15,17], aggregation theory [16], and have been utilized in
various models for combination of ordinal information [11]. In particular, we
denote the set of degrees by L and assume that it forms an algebraic struc-
ture L = 〈L,∧,∨,⊗,→,�,∗ , 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice,
〈L,⊗, 1〉 is a commutative monoid, and

– ⊗ and → satisfy the following adjointness property:
for all a, b, c ∈ L, a⊗ b ≤ c if and only if a ≤ b → c;

– � and ∨ satisfy the following adjointness property:
for all a, b, c ∈ L, a� b ≤ c if and only if a ≤ b ∨ c;

– ∗ is a unary operation (so-called hedge) satisfying: for all a, b ∈ L,
1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ → b∗, and a∗∗ = a∗.

We recall that the above conditions mean that 〈L,∧,∨,⊗,→, 0, 1〉 forms a com-
plete residuated lattice [14,17] and 〈L,∧,∨,�, 1〉 is a Brouwerian algebra (or
equivalently, its dual 〈L,∨,∧,�, 0〉 is a Heyting algebra, which implies that the
lattice is distributive). ⊗ and → are interpreted as a many-valued conjunction
and implication; � as a many-valued non-implication (used for set difference);
and ∗ as an intensifying hedge such as “very true”, see [18].
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The most commonly used set L is the real unit interval L = [0, 1] (or its finite
subchains), in which case ∧ and ∨ are the minimum and the maximum, ⊗ and
→ a left-continuous t-norm and its residuum, respectively, and � is given by

x� y =

{
x if x > y,
0 otherwise.

(3)

Two important, boundary cases of hedges are identity and so-called globalization
(i.e. 1∗ = 1 and x∗ = 0 for all 1 �= x ∈ L). We use the usual notions of L-sets,
graded subsethood, and define if-then formulas like (2) and their interpretation
in a general way (cf. early approaches like [23]), see [5] for details.

3 FASL Logic

In this section, we introduce the alternative axiomatization and prove its com-
pleteness. The axiomatization forms a theoretical base for the automated prover
introduced in Section 4. The proposed axiomatization has the following benefit
over the Armstrong-like [2] axiomatizations from [4,5]: the rules can always be
applied to all formulas, meaning there is no restriction on the form of the for-
mulas that appear in the input part of the inference rules. This property makes
the rules suitable for sequential execution by an automated prover.

3.1 New Axiomatic System

In [4], the authors presented an axiomatic system for reasoning with formulas
(1) that is syntactico-semantically complete w.r.t. the two kinds of semantics
described in the previous section. The system consists of three deduction rules,

[Ax] # AB ⇒ A (Axiom)

[Cut] A ⇒ B, BC ⇒ D # AC ⇒ D (Cut)

[Mul] A ⇒ B # c∗⊗A ⇒ c∗⊗B (Multiplication)

where A,B,C,D ∈ LY and c ∈ L. In [Ax] and [Cut], we use the convention of
writing BC instead of B ∪C, etc., and in [Mul], we use a⊗B to denote so-called
a-multiple of B ∈ LY which is an L-set such that (a⊗B)(y) = a⊗ B(y) for all
y ∈ Y (i.e., the degrees to which y ∈ Y belongs to B is multiplied by a constant
degree a ∈ L).

As usual, if R is an axiomatic system (like that containing the rules [Ax],
[Cut], and [Mul]), a formula A ⇒ B is said to be provable from a theory T by
using R, denoted by

T #R A ⇒ B

if there is a sequence ϕ1, . . . , ϕn such that ϕn is A ⇒ B, and for each ϕi we either
have ϕi ∈ T or ϕi is inferred (in one step) from some of the preceding formulas
using some inference rule in R. The results in [4] have shown among other things
that R consisting of [Ax], [Cut], and [Mul] is complete in the following sense:

Theorem 1 Let L and Y be finite. Then for every set T of formulas,
T #R A ⇒ B if and only if T |= A ⇒ B. ()
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The rule [Cut] is powerful but it is not directly suitable for automated deduc-
tion. We now present a new syntactico-semantically complete axiomatic system
which overcomes this drawback by replacing [Cut] by a new rule, called rule of
simplification (denoted [Sim]). The new system consists of the following rules:

[Ax] # AB ⇒ A

[Sim] A ⇒ B, C ⇒ D # A(C −B) ⇒ D

[Mul] A ⇒ B # c∗⊗A ⇒ c∗⊗B
where A,B,C,D ∈ LY and c ∈ L. The new system is called FASL (Fuzzy
Attribute Simplification Logic). The main motivation for introducing a new ax-
iomatic system is to obtain a system that may be used for an efficient system
of automated reasoning with formulas (1). Unlike [Cut], the new simplification
rule [Sim] can be applied to any pair of formulas which makes it more suitable
for automated provers.

3.2 Completeness

In this section, we prove completeness of the new axiomatic system. We start by
recalling the following concepts.

When reasoning with degrees, theories are naturally conceived as L-sets of
formulas [12,17,22], leaving theories as ordinary sets of formulas as particular
cases. In our case, given a theory T , the degree T (A ⇒ B) can been seen as the
degree to which we assume the validity of A ⇒ B. For the following concepts and
results, see e.g. [4,5,6]. Let T be a theory. The set of all models of T is defined
by

Mod(T ) = {D | T (A ⇒ B) ≤ ||A ⇒ B||D for all A,B ∈ LY },
i.e. Mod(T ) is the set of all ranked tables in which every A ⇒ B is true at
least to the degree prescribed by T . The degree ||A ⇒ B||T to which A ⇒ B
semantically follows from a theory T is defined by

||A ⇒ B||T =
∧

D∈Mod(T ) ||A ⇒ B||D,

i.e. it may be seen as the degree to which A ⇒ B is true in every model of T . If
||A ⇒ B||T = 1, we write

T |= A ⇒ B.

In the particular case when T is crisp (T (C ⇒ D) may only be 0 or 1), we get
that T |= A ⇒ B iff ||A ⇒ B||D = 1 for all D ∈ Mod(T ). Also note that if T is
crisp, it may be regarded as a set of formulas, i.e. we write C ⇒ D ∈ T instead
of T (C ⇒ D) = 1. The following lemma [5] shows a technical trick due to which
one may restrict to crisp theories only.

Lemma 1. For any A,B ∈ LY , c ∈ L, and a ranked table D,

c ≤ ||A ⇒ B||D if and only if ||A ⇒ c⊗ B||D = 1.

As a consequence, for any theory T ,

Mod(T ) = Mod(c(T )) and ||A ⇒ B||T = ||A ⇒ B||c(T ),
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where c(T ) is the crisp theory defined by

c(T ) = {A ⇒ T (A ⇒ B)⊗B |A,B ∈ LY and T (A ⇒ B)⊗B �= ∅}. (4)

Lemma 1 shows that the crisp theory c(T ) has the same models and conse-
quences as T . Therefore, in what follows, we only consider crisp theories and, for
simplicity, only entailment to degree 1. The following theorem shows that our
new axiomatic system, consisting of [Ax], [Sim], and [Mul] is sound and complete.

Theorem 2 (Completeness) Let S be the axiomatic system given by [Ax],
[Sim], and [Mul]. Let L and Y be finite, let T be a set of formulas. Then T #S
A ⇒ B if and only if T |= A ⇒ B. ()

Remark 1. In addition to Theorem 2, which asserts an “ordinary-style complete-
ness” (formula is provable if and only if it is entailed), a stronger theorem may be
proved, asserting a “graded-style completeness”: Using an appropriately defined
concept of degree of provability in our system, one may show that a degree to
which A ⇒ B is provable from T equals the degree to which A ⇒ B is entailed
from T . We omit the stronger theorem in this paper.

Recall that a deduction rule is called derivable in a given axiomatic system if
the output formula of the rule is provable from the input formulas of the rule.
The following assertion shows important derivable rules:

Lemma 2. The following deduction rules are derivable in FASL: Let A,B,C,D
∈ LY and c ∈ L. Then,

[Dec] {A ⇒ BC} # A ⇒ B; (Decomposition) 1

[Com] {A ⇒ B,C ⇒ D} # AC ⇒ BD. (Composition)

Using [Dec] and [Com], we can obtain observations how certain formulas can be
equivalently replaced by other formulas while retaining the semantic entailment.
We call theories T1 and T2 equivalent, denoted by T1 ≡ T2, if the set of deriv-
able formulas from both theories coincide. Using Lemma 2, we get the following
observation.

Theorem 3 Let A,B,C,D ∈ LY . The following equivalences can be obtained
from [Ax] + [Sim].

(DeEq) Decomposition Equivalence: {A ⇒ B} ≡ {A ⇒ B −A};
(UnEq) Union Equivalence: {A ⇒ B,A ⇒ C} ≡ {A ⇒ BC};
(SiEq) Simplification Equivalence: If A ⊆ C then

{A ⇒ B,C ⇒ D} ≡ {A ⇒ B,A(C − B) ⇒ D −B}.

The previous equivalences, read from left to right, enable us to remove redundant
information in the formulas. Namely, the sets on the right-hand sides can be seen
as equivalent simplifications of the sets on the left-hand sides (simplified either
in terms of the number of formulas as in case of (UnEq) or in terms of the
number of elements in formulas as in case of the other equivalences).

1 In the literature, [Dec] is also called the rule of projectivity.
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Remark 2. If L is the two-element Boolean algebra, then (SiEq) becomes the
ordinary simplification equivalence that has been utilized in an efficient prover
for ordinary functional dependencies which is studied in [1,10,20,21].

4 Automated Reasoning Method

In this section, we utilize the inference rules and equivalences obtained in Sec-
tion 3 in an automated prover. The role of the prover is twofold. First, given
a theory T and a formula A ⇒ B of the above-mentioned forms, the prover is
able to check whether A ⇒ B is provable from T . Due to the completeness of
our inference system, it means the prover tests whether ||A ⇒ B||D = 1 for any
model D ∈ Mod(T ). Needless to say, checking ||A ⇒ B||D = 1 for any model
D ∈ Mod(T ) directly (i.e., following the definition) is not possible since there
are infinitely many pairwise different models of T . As we shall see later in the
section, the prover is capable of checking more than the (semantic) entailment
to degree 1. Indeed, it can be used to check (by means of finding a proof) that
||A ⇒ B||D ≥ a for a given degree a ∈ L and any model D ∈ Mod(T ), check-
ing thus a lower bound for ||A ⇒ B||T . Moreover, the prover can be used to
compute a syntactic closure of a given A ∈ LY with respect to a theory T .
Using this notion and taking advantage of the previous results, we show that
the prover described in this section fully characterizes degrees of semantic en-
tailment ||A ⇒ B||T using inclusion degrees [5] and computed closures of A.
Therefore, the automated prover presented in this section is an important (and
simple) algorithm for determining degrees of semantic entailment which are (by
definition) degrees of satisfaction in an infinite class of models.

4.1 Generalized Simplification Equivalence

We start by showing that for any crisp theory T , the fact T # A ⇒ B can
equivalently be expressed by provability using formulas with empty antecedents
derived from A ⇒ B, i.e., formulas of the form ∅ ⇒ C where C ∈ LY .

Theorem 4 If T is a crisp theory, then for any A ⇒ B, we have T # A ⇒ B
iff T ∪ {∅ ⇒ A} # ∅ ⇒ B. ()

Notice that Theorem 4 can be seen as an analogy of the classic deduction the-
orem known from propositional logic. Indeed, the classic deduction theorem of
propositional logic says that T # ϕ ⇒ ψ if and only if T ∪ {ϕ} # ψ. Using the
fact that any propositional formula χ is equivalent to 1 ⇒ χ where 1 denotes a
tautology (e.g., 1 stands for ϑ ⇒ ϑ), the classic deduction theorem can be equiv-
alently restated as T # ϕ ⇒ ψ if and only if T ∪{1 ⇒ ϕ} # 1 ⇒ ψ which is close
to the form in Theorem 4. Note that from the point of view of interpreting ∅ ⇒ A
in ordinal data, ∅ ⇒ A can be seen as a formula saying “attributes from A are
(unconditionally) present”. Using Theorem 1 and (4), we can extend Theorem 4
from crisp theories to arbitrary theories (L-sets of formulas) as follows:
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Corollary 1. For any A ⇒ B, the following are equivalent:

(i) a ≤ ||A ⇒ B||T ,
(ii) c(T ) # A ⇒ a⊗B,

(iii) c(T ) ∪ {∅ ⇒ A} # ∅ ⇒ a⊗B,

where c(T ) is the crisp theory given by (4). ()
Using Theorem 3, we can prove the following assertion which is fundamental for
the simplification procedure described below.

Theorem 5 The following equivalence can be obtained from FASL rules:

(gSiEq) Generalized Simplification Equivalence:

{∅ ⇒ A,U ⇒ V } ≡ {∅ ⇒ A′, U −A′ ⇒ V −A′},
where A,U, V ∈ LY and A′ = A ∪ (S(U,A)∗⊗V ).

Proof (sketch). The assertion is proved using the fact that for all A,U, V ∈ LY ,
we get {∅ ⇒ A,U ⇒ V } # ∅ ⇒ A(S(U,A)∗⊗V ), where A(S(U,A)∗⊗V ) denotes
A ∪ (S(U,A)∗⊗V ). The fact can be obtained as a corollary of the preceding
observations. As a particular case of the observation, we get {U ⇒ V } # ∅ ⇒
S(U, ∅)∗⊗V . ()
In particular, the algorithms employ the following corollary which follows imme-
diately from the generalized simplification equivalence from Theorem 5.

Corollary 2. The following equivalences hold.

(gSiUnEq) If U −A′ = ∅ then {∅ ⇒ A,U ⇒ V } ≡ {∅ ⇒ A′V };
(gSiAxEq) if V −A′ = ∅ then {∅ ⇒ A,U ⇒ V } ≡ {∅ ⇒ A′},
where A,U, V ∈ LY and A′ = A ∪ (S(U,A)∗⊗V ). ()

4.2 The Algorithm

The automated prover is based on the algorithm shown in Figure 1. In the body
of the while-loop, the algorithm maintains a formula of the form ∅ ⇒ Ai. This
formula shall be called a guide.

The algorithm applies the simplification rules from Theorem 5 and Corollary 2
using which the crisp theory Ti+1 is reduced. Either the number of formulas in
Ti+1 is reduced using (gSiUnEq) and (gSiAxEq) or the number of formulas in
Ti+1 remains the same but Ti+1 is modified by replacing U ⇒ V by U − A′ ⇒
V −A′ using (gSiEq) which means a reduction of antecedents and consequents
in U ⇒ V . This can be seen as removing a particular type of redundancy from
Ti+1. Also note that the sequence A1, A2, . . . of L-sets which appear in the guide
during the computation is nondecreasing, i.e., A1 ⊆ A2 ⊆ · · · At the end of
the computation, the algorithm returns the last Ai considered. We will show
that the returned result plays an important role in determining degrees to which
particular formulas follow from T .

We now focus on the basic properties of the algorithm. In order to prove its
soundness, we introduce the following notion.
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Input: T (theory), A (L-set of attributes)
Output: A+ (closure of A with respect to c(T ))

begin
1 Let A0 := ∅, T0 := ∅, and i := 0;
2 Let A1 := A;
3 Apply (DeEq) to every formula in c(T ) obtaining T1;
4 while (Ai �= Ai+1 or Ti �= Ti+1) do

i := i+ 1; Ai+1 := Ai; Ti+1 := Ti;
Modify Ti+1 and Ai+1 applying

(gSiEq), (gSiUnEq), and (gSiAxEq) to

∅ ⇒ Ai and each U ⇒ V ∈ Ti;

end
5 Return Ai;

end

Fig. 1. The core algorithm of the automated prover

Definition 1. Let A ∈ LY and T be a crisp theory. The closure of A (with
respect to T ), denoted by A+, is the greatest L-set in Y such that T # A ⇒ A+.

Note that A+ from Definition 1 is in fact a syntactic closure of A with respect
to T since it is defined by means of syntactic entailment #. The existence and
uniqueness of A+ has been shown in [5]. Moreover, from Theorem 1 and obser-
vations from [5], it follows that A+ coincides with the semantic closure of A with
respect to T . The following assertion shows that A+ is the value returned by the
algorithm in Figure 1.

Theorem 6 For any theory T and A ∈ LY , the algorithm from Figure 1 finishes
after finitely many steps. Moreover, the returned value is equal to A+ computed
with respect to c(T ) given by (4).

Proof (sketch). Tarski’s fixed-point theorem ensures that the algorithm finishes
because the sequence of the sets Ai is growing in LY . So, since both Y and
L are finite, the algorithm achieves a fixed point in a finite number of steps.
Moreover, when the algorithm finishes, we can show (details are postponed to a
full version of this paper) that for all a ∈ L and U ⇒ V ∈ c(T ) if a∗⊗U ⊆ Ai

then a∗⊗V ⊆ Ai. The latter condition implies that Ai is equal to A+. ()
An important application of the algorithm from Figure 1 is a characterization of
semantic entailment provided by the next corollary. This is due to the previous
observations from [7] and the fact that syntactic closures coincide with semantic
closures. Hence, we get the following characterization:

Corollary 3. For any theory T and A,B ∈ LY ,

||A ⇒ B||T = S(B,A+), (5)

where A+ is returned by the algorithm from Figure 1. ()
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Thus, according to Corollary 3, in order to determine ||A ⇒ B||T , it suffices to
run the algorithm from Figure 1 and compute the inclusion degree S(B,A+) ∈ L
of B in the closure A+ of A. Therefore, as we have outlined in the beginning
of this section, the automated prover is capable of deciding ||A ⇒ B||T = a by
means of finitely many syntactic manipulations with the crisp counterpart c(T )
of T .

The presented algorithm can also be used to check a lower bound for ||A ⇒
B||T as it is shown by the following corollary:

Corollary 4. For any theory T , degree a ∈ L, and A,B ∈ LY , the following
are equivalent:

(i) The algorithm in Figure 1 returns A+ such that a⊗B ⊆ A+,

(ii) c(T ) # A ⇒ a⊗B,

(iii) a ≤ ||A ⇒ B||T . ()

Remark 3. Note that Corollary 3 and 4 represent two applications of the core
algorithm from Figure 1. They demonstrate a versatility of the pseudocode from
Figure 1 which represents several algorithms resulting by a slight modification of
the pseudocode (appending additional test conditions). In addition to computing
the syntactic closure which, for the particular case L = {0, 1}, is a classic topic in
database algorithms, it is capable of determining degrees of semantic entailment
as in Corollary 3 and lower bounds of entailment degrees as in Corollary 4. In
the latter case, the pseudocode can be made more efficient by modifying the
halting condition (details are postponed to a full version of the paper).

5 Complexity And Performance

This section presents complexity analysis and empirical comparison of the pre-
sented algorithm with algorithm GradedClosure which represents a graded
generalization of the algorithm Closure known from database systems [19].

5.1 Complexity Analysis

Regarding the complexity of the algorithm, the number of times in which The-
orem 5 and Corollary 2 are applied is lower than α ·n where α is the cardinality
of L∗ = {c ∈ L | c∗ = c} (a constant) and n equals Sz(T ), the size of the input
T , which is defined as follows:

– For any A ∈ LY , put Sz(A) = {y ∈ Y | A(y) > 0}, i.e., Sz(A) is the number
of elements from Y which belong to A to nonzero degrees;

– for A ⇒ B, put Sz(A ⇒ B) = Sz(A) + Sz(B);
– for a theory T , put

Sz(T ) =

{∑
A⇒B∈T Sz(A ⇒ B), if T is crisp,

Sz(c(T )), otherwise.
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Fig. 2. Graded Closure vs. FASL Algorithm from Fig. 1

5.2 Experimental Evaluation

In this section, we show results of experimental evaluation of the algorithm. Note
that in case of the classic algorithms for computing closures, the asymptotic
worst-case complexity analysis is usually accompanied by experimental analysis
to further illustrate their performance. For instance, while the famous LinClo-
sure introduced in [3] has a linear-time complexity compared toClosure whose
complexity is quadratic, in most cases LinClosure is slower due to the overhead
caused by a construction of temporary data structures. Therefore, we present an
experimental comparison showing how the present algorithm performs compared
to a graded counterpart of Closure from [5].

In the experiment, we use the following structures of truth degrees. We take
for L the following subset of the real unit interval

L = {0, 0.1, 0.2, . . . , 0.9, 1}

with the natural ordering. Moreover, ⊗ and → are the restrictions of the
�Lukasiewicz operations to L. Thus,

a⊗ b = max(a+ b− 1, 0),

a → b = min(1− a+ b, 1),

for all a, b ∈ L. Furthermore, we consider ∗ (hedge) given by

a∗ =

⎧⎨⎩
1, if a = 1,
0.5, if 0.5 ≤ a < 1,
0, otherwise.

for all a ∈ L. Altogether, L = 〈L,∧,∨,⊗,→,�,∗ , 0, 1〉 with � given by (3) and
∧ and ∨ being minimum and maximum, respectively, is a residuated structure
of degrees with the desired properties, see Section 2.
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The algorithm has been implemented in Java and tested together with
Graded Closure from [5] with randomly generated sets of formulas. The sets
have been generated with up to 1 200 pairwise different attributes and consist of
up to 1 200 formulas. Sets of similar sizes can be obtained as bases of mid-scale
ordinal data.

The results are shown in Figure 2. The x-axis represents sizes of sets T of
formulas measured by Sz as in the previous subsection (the units are in thou-
sands). The y-axis contains executions times in milliseconds. The graph shows
that on average, FASL (the algorithm from this paper whose results are denoted
by “•”) outperforms Graded Closure (denoted by “◦”).

6 Conclusions

We have presented a sound and complete axiomatization of logic for dependencies
in data with grades. The dependencies we use are formalized using residuated
structures of grades and are in the form of implications between graded sets.
The dependencies have two basic interpretations as (i) functional dependencies
in ranked data tables over domains with similarities, and (ii) dependencies be-
tween attributes in ordinal data. Contrary to the mainstream approaches to
axiomatizations of such rules which are based on the rule of cut (and related
rules, e.g., the transitivity rule), a major role in the presented axiomatization
is played by the simplification rule which is more suitable for designing an au-
tomated prover. Based on the axiomatization, we have presented an algorithm
which can be used as an automated prover checking whether a dependency fol-
lows from a collection of dependencies (at least) to a prescribed degree. Moreover,
the algorithm can be used for computing closures which can be used to deter-
mine degrees of entailment from a collection of dependencies. We have shown
that the algorithm is sound and complete and provide empirical evidence that
in most cases it outperforms algorithms proposed in the past.
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López-Gijón, Javier 90

Mart́ınez Arqué, Néstor 149
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