

Marian Daun
Bastian Tenbergen
Dr. Thorsten Weyer

 4

Requirements Viewpoint

The requirements viewpoint defines concepts and techniques for systematically eliciting
and specifying the requirements for a system under development. The requirements
viewpoint differentiates between different artifact types that document different
information elicited during requirements engineering:

 Context, which documents the operational environment in which the system under
development is embedded

 Goals, which document stakeholder intentions with regard to the system under
development

 Scenarios, which document typical interactions between the system under
development and its context

 Solution-oriented requirements, which document the requirements for the system
under development in a precise and complete manner

51,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_4, © Springer-Verlag Berlin Heidelberg 2012

52 Part II – Requirements Viewpoint

4.1 Introduction to the Requirements Viewpoint
The requirements viewpoint comprises the part of the SPES modeling
framework that primarily deals with the accurate, complete, and
consistent specification of system requirements. These requirements
serve as input for functional analyses and architecture design (see
Chapters 5 to 7). The goal of the requirements viewpoint is to:

 Gain a comprehensive understanding of the system under
development

 Foster the best possible freedom in development by preventing
premature commitment to possible solutions

 Supply the necessary information such that decisions pertaining to
concrete implementation can be made during subsequent architecture
design

In the requirements viewpoint, a strict separation between stakeholder
intentions and solution-oriented requirements is maintained. In order to
support this separation, the requirements viewpoint contains three
solution concepts:

 Solution-neutral requirements describe the intentions of the
stakeholders and the added benefit that can be gained for the
stakeholders [Leveson 2000]. Concrete aspects of a possible solution
are ignored.

 Solution-oriented requirements describe necessary properties of
operations, system states, and the information structure, as well as
qualities that a solution must possess [Pohl 2010]. Solution-oriented
requirements are the connection between solution-neutral
requirements and concrete implementations.

 The intertwined development of requirements artifacts is based on a
goal-/scenario-oriented, step-by-step refinement of requirements
from solution-neutral to solution-oriented requirements. Due to the
step-by-step, artifact-based refinement, the intertwined development
allows for traceability between requirements artifacts, ensures
requirements consistency between the artifacts, and leads to
completeness with regard to the requirements artifacts and the
requirements specification.

The requirements viewpoint documents a complete system requirements
specification by means of partial diagrams. Therefore, each artifact
model contains a number of different requirements diagrams (see Section

Separation of
requirements and

solution

Solution-neutral and
solution-oriented

requirements; co-
design process

Artifact model, types
of requirements

models

4.2 Requirements Artifacts 53

4.2). Due to the number of different requirements artifacts and their
interrelations, the requirements viewpoint is very comprehensive as well
as complex. Therefore, different model types are used. By using different
model types within the requirements viewpoint, the corresponding view
is constructed by integrating each model type based on common facts.
Typical model types are goals and scenarios, as well as structural,
operational, and behavioral models (see [Pohl 2010] and Section 4.2.4).

The artifact model of the requirements viewpoint is explained below
(Section 4.2). In addition, the integration of the requirements viewpoint
with other viewpoints and abstraction layers of the SPES modeling
framework is illustrated in Section 4.3. Finally, we outline a
requirements engineering process across several abstraction layers: it can
be used to systematically develop requirements of the system under
development (SUD) and can be tailored for individual project needs
(Section 4.4).

4.2 Requirements Artifacts
In this section, we briefly outline the artifact model of the requirements
viewpoint. Each subsection outlines one artifact type and gives a short
example.

4.2.1 Context Model

The context of the system is that part of the operational infrastructure
that does not belong to the system (and therefore cannot be influenced
during development) but surrounds the system once it has been deployed
(and therefore strongly impacts the definition of requirements for the
SUD). If the context of the SUD is not properly understood, it is
impossible to properly define and interpret the requirements for the SUD
[McMenamin and Palmer 1984, Davis 1993, Jarke and Pohl 1994,
Hammond et al. 2001]. The requirements viewpoint therefore contains
context models for modeling that part of the environment that influences
the system. Context models can be used to document constraints from the
physical environment of the system that limit the scope, solution space,
or development process (e.g., the environment it will be deployed in,
company-specific regulations, or laws and legislation that must be
adhered to).

Context models focus on the system’s desired interaction with its
environment or, more precisely, its context entities [Weyer 2011].
Context entities are, for example, external actors, sensors, and other

Importance of the
system context

Context entities,
interfaces, and system
interaction

54 Part II – Requirements Viewpoint

systems in the environment that interact with the SUD. Each specified
context entity must be present in at least one scenario model (see Section
4.2.3) so that the SUD’s interaction with each entity can be assessed.
Context models allow system goals to be determined and give a first
impression about the SUD’s interaction with its context. In the SPES
modeling framework, context models also define the interfaces of the
functional black box model in the functional viewpoint (see Section 5).
Further information on context models can be found in [Weyer 2011]. In
the requirements viewpoint of the SPES modeling framework, a number
of different types of context models can be used. For example, structural
diagrams such as SysML block definition diagrams or internal block
diagrams [OMG 2010a] can be used to document static/structural context
information. On the other hand, dynamic aspects of the context can be
documented using Petri nets [Reisig 1991] or communicating finite state
machines [Lynch and Tuttle 1989, Alfaro and Henziger 2001].

Fig. 4-1 shows an example of the context model of a simplified
automation system as a SysML block definition diagram. The SUD (the
<<block>> stereotype in the middle) is treated as a black box, that is, no
internal properties are considered. There are a number of context entities
(<<actor>> stereotypes) that communicate with the SUD, either
receiving output from the SUD or producing input to the SUD.

Fig. 4-1 Example of a context diagram 1

1 All figures in the requirements viewpoint have been modeled using Enterprise Architect®

Example of a context
model

4.2 Requirements Artifacts 55

Hint 4-1 lists the rules that have been defined in the requirements view
for ensuring that the context of the SUD has been modeled completely
and correctly.

Hint 4-1: Rules for checking context models
 Have all actors in the system context that receive output from or

produce input to the SUD been considered?
 Have all inputs that the SUD receives from the environment or from

entities within the system context been considered?
 Have all outputs that the SUD delivers to the system context or to

context entities been considered?

4.2.2 Goal Model

Goal models document the intentions of stakeholders when they are
conceiving the system. They represent a first manifestation of the
stakeholders’ system vision. Goals give rationales and justifications for
the functionalities and features the system must possess. Goals ignore
concrete aspects of the solution and hence serve as an essential means for
negotiating requirements and their necessity with regard to the system
envisioned. The purpose of negotiating requirements on the basis of
goals is to establish a common understanding of the envisioned among
all stakeholders. In addition, goals can be used to document necessary
quality aspects such as the system’s safety features (see Chapter 8) or
real-time behavior (see Chapter 9) that in turn will be specified using
solution-oriented requirements (see Section 4.2.4).

In goal models, relationships can be identified between goals,
functions, and qualities. For example, goals might be in direct conflict
with one another (i.e., fulfilling one goal will make it impossible to fulfill
a conflicting goal), or the fulfillment of goals may contribute positively
or negatively to the fulfillment of another goal (i.e., make it easier or
harder to achieve the other goal). In addition, goals can be refined using
AND and OR refinements: AND refinements denote that a number of
refining goals have to be fulfilled in order to fulfill the refined goal; OR
refinements denote that at least one of the refining goals has to be
fulfilled in order to fulfill the refined goal. Furthermore, we can
distinguish between hard and soft goals. Hard goals are goals whose
fulfillment can be verified by means of simple yes/no checks (i.e., either
the goal has been fulfilled or not). In contrast, soft goals represent goals
that the system to be developed fulfills to a certain degree.

Rules for checking
context models

Capturing stakeholder
intentions

Goal types and goal
refinement

56 Part II – Requirements Viewpoint

Goals can be determined in part from the context model but also through
stakeholder collaboration. Typical stakeholders who may contribute
goals to a system are clients, contractors, product managers, business
managers, technical leaders, certifiers or certifying authorities, or the
legislative authority. Goals and goal modeling are explained in more
detail in [Yu 1997, Lamsweerde 2009, Pohl 2010]. In the requirements
view of the SPES methodology, KAOS goal diagrams, i* models, or
SysML requirements diagrams can be used to model this artifact type.

Fig. 4-2 Example of a goal diagram

Fig. 4-2 shows the goal diagram of an example system using the KAOS
notation [Lamsweerde 2009]. The goals are structured hierarchically
through AND and OR refinement. In this diagram, the top-most soft goal
is refined by means of two alternatives (OR refinement). One alternative
consists of two hard goals that both have to be fulfilled for the soft goal
to be fulfilled (AND refinement). However, there is a conflict between
these two goals, which may indicate that this alternative is not a suitable
refinement of the soft goal. The other alternative also consists of two
hard goals (one of which is also a refinement of the other alternative) that
both have to be fulfilled for this alternative to be a valid refinement of
the soft goal (AND refinement). The diagram shows a contribution link
between the two goals in this alternative, indicating that the fulfillment of
one goal positively contributes to the fulfillment of the other goal. Hence,
this alternative is preferable over the other alternative.

Hint 4-2 lists the rules that have been defined in the requirements
viewpoint for ensuring that all goals for the SUD have been modeled
completely and correctly.

Sources of
goals/stakeholder

intentions

Example of a goal
diagram

4.2 Requirements Artifacts 57

Hint 4-2: Rules for checking goal models
 Have all hard goals of stakeholders been captured?
 Have all soft goals of stakeholders been captured?
 Have all abstract (hard or soft) goals been refined using AND and OR

refinements?
 Have all positive and negative contributions from one goal to another

goal been uncovered and documented?

4.2.3 Scenario Models

Scenarios specify example interactions of the system with its context.
They allow requirements to be determined by modeling the system's
interaction with context entities that have been identified in the context
models (see Section 4.2.1). This enables the system's benefit and impact
on the system context to be assessed. The actors that are present in any
scenario model must be present in at least one context model that has
been specified earlier. Scenarios fulfill the goals that have been specified
in the goal models (see Section 4.2.2). In the requirements viewpoint,
any goal has to be fulfilled by at least one scenario and every scenario
must fulfill at least one goal. Scenario execution is typically constrained
by preconditions. After scenario execution, specific postconditions must
hold for the entire system. Furthermore, scenarios may specify some
internal states that can be used to draft an initial specification of the
behavioral requirements models of solution-oriented requirements (see
Section 4.2.4). In scenario models, similarly to the goal models, the
system is considered as a black box. Hence, there must not be any
indication within either model that depicts the internal structure of the
SUD. We can distinguish between different types of scenarios, for
example:

 Main scenarios: Main scenarios describe the standard way of
fulfilling one or more goals.

 Alternative scenarios: Alternative scenarios describe alternative
ways of fulfilling the same goals as in the corresponding main
scenario. Alternative scenarios may also be used for error handling
in cases in which the associated goals can still be fulfilled.

 Exception scenarios: Exception scenarios describe how the system
must react in the case of a critical error during scenario execution
that prevents fulfillment of the associated goal. Exception scenarios
place particular emphasis on error recovery rather than on goal
fulfillment.

Example interactions
with the system

Rules for checking
goal models

58 Part II – Requirements Viewpoint

Additional information on scenario modeling can be found in [Pohl
2010] and [Potts 1995]. In the requirements viewpoint of the SPES
modeling framework, SysML sequence diagrams [OMG 2010a] or ITU
message sequence charts [ITU 2004] can be used to model this artifact
type. During the requirements engineering process, it may be useful to
model multiple scenarios. Scenarios can be structured using use cases
([OMG 2010a, OMG 2010bCockburn 2001], and use cases can be
related to one another, for example, by means of include and extend
relationships) or hMSCs [ITU 2004]. However, when using structuring
scenarios in this way, the scenario specification must therefore document
a complete behavioral specification.

Fig. 4-3 shows a SysML sequence diagram with a scenario model.
The diagram depicts a scenario for executing a production process. This
scenario fulfills one goal from Fig. 4-2. Furthermore, the model in Fig.
4-3 specifies five states that the SUD adopts during this interaction (for
details, see Section 4.2.4).

Hint 4-3 lists the rules that have been defined in the requirements
viewpoint for ensuring that the scenario artifacts have been modeled
completely and correctly.

Hint 4-3: Rules for checking scenario models
 Has a precondition been specified for each scenario?
 Does every scenario describe the entire interaction necessary to fulfill

one or more goals?
 Does every scenario account for all actors that interact with the system?
 Have postconditions been specified for every scenario?

Structuring scenarios

Rules for checking
scenario models

4.2 Requirements Artifacts 59

Fig. 4-3 Example of a sequence diagram

4.2.4 Solution-Oriented Requirements Model

Solution-oriented requirements are solution-specific descriptions of
behavior, operations, and the information structure of the solution
concept developed (see [Pohl 2010] and [Davis 1993]). They thus
represent a first step towards the implementation. Solution-oriented
requirements consist of a structural requirements model, an operational
requirements model, and a behavioral requirements model. Solution-
oriented requirements can thus be derived from scenario descriptions as
scenarios may specify states that the SUD adopts after a certain
interaction sequence has been executed. Furthermore, the operational
requirements model and the structural requirements model of solution-
oriented requirements can be derived in part based on scenarios and the
context model, as both specify information that is exchanged between the
SUD and the context and show how information is transformed from
input to output.

All three types of solution-oriented requirements models are
developed complementarily as they present separate but interrelated
aspects of the same SUD. A more detailed explanation of solution-
oriented requirements is given in [Pohl 2010].

In the requirements viewpoint of the SPES modeling framework,
SysML block definition diagrams can be used as static/structural models,

Complementary
development of the
three perspectives

60 Part II – Requirements Viewpoint

SysML activity diagrams can be used to model operational requirements
models, and SysML state machine diagrams can be used to model
behavioral requirements models. In the following sections, an example is
given for each model type along with a brief explanation and the rules for
checking each model type.

Structural Requirements Model

Fig. 4-4 shows an information structure model for an example system as
a SysML block definition diagram. As shown, the static/structural
requirements model gives a closer account of the information that is
exchanged along the interfaces in the context model (see Section 4.2.1)
and in part by the scenario model (see Section 4.2.3). Static/structural
requirements models must therefore be defined consistently to both
artifacts and can be used to document relationships between the objects
pertaining to the information structure and other artifacts. For example, if
a context model specifies the object “work piece data” to be exchanged
between the SUD and its context, structural requirements models can be
used to refine what information item “work piece data” consists of, e.g.:
material type, length, width, height, and weight.

Fig. 4-4 Example of an information structure diagram

Hint 4-4 lists the rules that have been defined in the requirements
viewpoint for ensuring that the structural requirements models have been
modeled completely and correctly.

Purpose and example
of structural

requirements models

4.2 Requirements Artifacts 61

Hint 4-4: Rules for checking structural requirements models
 Have all inputs to the system from the context and its context entities

(as specified in the context and scenario models) been accounted for?
 Have all outputs from the system to the system context and context

entities (as specified in the context and scenario models) been
accounted for?

 Have all information structures that are specified in behavioral and
operational requirements models been documented?

 Have useful, non-trivial relationships (such as generalizations,
aggregations, compositions) been introduced between information
objects?

Operational Requirements Model

Fig. 4-5 shows a SysML activity diagram as an example of an
operational requirements model. This artifact type models operations that
are derived by assigning user functions to the goals specified in the goal
models (see Section 4.2.2) with reference to the interactions specified in
the scenario models (see Section 4.2.3). Operational requirements models
can therefore be seen as the solution-specific counterpart of the solution-
neutral scenario artifacts. Consequently, the operations specified in the
operational requirements models implement the functionalities that can
be experienced by context entities (i.e., actors or external systems)
through the interfaces that the system has with the context entities. As a
result, the interfaces specified herein must be consistent to the interfaces
specified in context models (see Section 4.2.1). This is similar to the
functional black box model in the functional viewpoint (see Section 5),
however, in contrast to the functional viewpoint, operational
requirements models are partial requirements models that document the
system’s interaction with the context in more detail than scenario models.
On the other hand, the functional viewpoint documents the entirety of the
system’s functions in order to foster analysis. As a consequence, artifacts
specified in the functional viewpoint are based on the solution-oriented
requirements models, particularly on the operational requirements
models.

Purpose and example
of operational
requirements models

Rules for checking
structural
requirements models

62 Part II – Requirements Viewpoint

Fig. 4-5 Example of an operational requirements diagram

Hint 4-5 lists the rules that have been defined in the requirements
viewpoint for ensuring that the operational requirements models have
been modeled completely and correctly.

Hint 4-5: Rules for checking operational requirements models
 Have all relevant system functionalities that have to be implemented by

the SUD to fulfill its goals been considered?
 Have inputs and outputs been defined for every operation in the

operational requirements models?
 Are the specified interfaces consistent to the interfaces in the context

models?

Behavioral Requirements Model

Behavioral requirements models can be used to specify preconditions
that must be in effect for system operations to be executed or
postconditions that have to be fulfilled after an operation has been
executed. Fig. 4-6 shows an example of a behavioral requirements model
as a SysML state machine diagram. In this diagram, the states were
partially derived from the scenario models (see Section 4.2.3).
Transitions were also derived from the scenario models and completed
during the specification of the requirements artifact at hand. Since the
white box model of the functional viewpoint (see Chapter 5) uses state
machines for specifying the internal behavior of functions, those
behavioral models are based on the behavioral requirements models of
the requirements viewpoint.

Rules for checking
operational

requirements models

Purpose and example
of behavioral

requirements models

4.3 Integration in the SPES Modeling Framework 63

Fig. 4-6 Example of a behavioral requirements diagram

Hint 4-6 lists the rules that have been defined in the requirements
viewpoint for ensuring that the behavioral requirements models have
been modeled completely and correctly.

Hint 4-6: Rules for checking behavioral requirements models
 Have all trigger events been considered in the behavioral requirements

models?
 Have all system states and transitions of the SUD been considered?
 Do the behavioral requirements models specify preconditions and

postconditions for scenarios?
 Do the behavioral requirements models specify activation conditions for

operations?

4.3 Integration in the SPES Modeling
Framework

This section gives an account of why some model types can be used in
multiple viewpoints and how these model types have to be interpreted in
the viewpoints (Section 4.3.1). Furthermore, this section explains how
the requirements viewpoint can be integrated into the SPES modeling
framework with regard to other viewpoints (Section 4.3.2) and different
abstraction layers (Section 4.3.3). Hint 4-7 gives a short summary of
correspondence rules that ensure consistency between the artifacts
developed in each step.

Rules for
checking be-
havioral require-
ments models

64 Part II – Requirements Viewpoint

Hint 4-7: Correspondence rules
Context models scenario models

 Each actor included in any scenario has to be included in the context
model

 Each actor included in the context model has to be included in at least
one scenario model

 Inputs and outputs between the SUD and any actor have to be consistent
in context and scenario models

Goal models scenario models
 Each scenario has to be related to at least one goal
 Each goal has to be fulfilled by at least one scenario

Goal models requirements models
 For each goal, system properties (functions, behavior, information

structures) have to be defined in the requirements models related to the
goal for fulfillment

 Each property documented in the requirements models must be related
to at least one goal

Scenario models requirements models
 Each scenario must be capable of being processed based on the

requirements models
 The inputs and outputs from the scenario models have to be consistent

with the requirements models
Between requirements models

 The entry condition for each function defined in the function model has
to be defined in the behavior model

 The information structure of the inputs and outputs of functions in each
function model have to be defined in the information structure model

 The state-based actions and the transition-based actions belonging to the
behavior model have to be described as functions in the function model

4.3.1 Use of Models across Viewpoints

The various model types used in the requirements viewpoint are also
used in the other viewpoints. However, depending on the viewpoint, the
model types have vastly different meanings and document entirely
different information. For example, if a statechart were used in both the
requirements viewpoint and the logical viewpoint, the statechart in the
requirements viewpoint would represent the captured requirements and
would summarize a possible solution with regard to the requirements. On
the other hand, in the logical viewpoint, the statechart would represent a
part of the logical architecture and it would detail how the system will be
implemented rather than how it could be implemented. Similarly,
functional models are used both in the functional viewpoint and in the
requirements viewpoint. While in the requirements viewpoint operational

Same model type,
different viewpoints

Correspondence rules
for the models in the

requirements
viewpoint

4.3 Integration in the SPES Modeling Framework 65

requirements models represent a type of partial functional model, the
functional viewpoint is more concerned with an integrated, functional
view on the entire SUD.

4.3.2 Integration across Viewpoints

The requirements viewpoint is the starting point for the development
process using the SPES modeling framework. Once requirements
engineering activities in the requirements viewpoint have reached a
satisfactory stability, the development process continues with the
activities in the functional viewpoint (see Chapter 5). The functional
viewpoint takes the scenario models and the solution-oriented artifacts
from behavioral and functional requirements models as input and derives
an approximate functional architecture that meets the requirements
outlined in the artifacts. Further input from the requirements viewpoint is
given to the logical and technical viewpoints (see Chapters 6 and 7
respectively). The logical viewpoint takes the system context and goal
artifacts from the requirements viewpoint and derives a logical
architecture that meets quality requirements defined in these
requirements viewpoint artifacts. These artifacts also provide quality
requirements for the technical viewpoint. In addition, the technical
viewpoint suggests a concrete hardware/software architecture based on
the requirements, functional, and logical viewpoints.

4.3.3 Integration across Abstraction Layers

One key feature of the SPES modeling framework is the hierarchy of
abstraction layers (see Section 3.4.1). Specifying requirements on
different abstraction layers is a proven approach to reducing the
complexity of development projects [Braun et al. 2010]. The
requirements viewpoint therefore allows specification of all requirements
artifacts. At each abstraction layer, the same set of artifacts is developed
(i.e., context models, goal models, scenario models, and solution-
oriented requirements models; see Section 4.2). The abstraction layers
differ from one another with regard to the level of detail contained within
their respective requirements artifacts, such that some abstraction layers
contain more coarsely specified requirements (in the following, called
higher abstraction layers) and some layers contain more detailed
requirements (lower abstraction layers).

The logical and/or technical viewpoints structurally decompose the
SUD into subsystems. The decomposed subsystems that are structurally
significant (e.g., important control units or safety-critical subsystems)

Requirements
viewpoint is the
starting point for
development

All requirements
artifacts on all
abstraction layers

SUD decomposition in
other viewpoints

66 Part II – Requirements Viewpoint

become the new focus of development and are hence treated as if they
were the SUD on the next lower abstraction layer. The requirements
process (see Section 4.4) starts anew for all of these subsystems.

4.4 The Requirements Process Model across
Abstraction Layers

The following briefly illustrates an idealized development process that
outlines the development of the different artifacts over time.

 1st Step: Analyze and document the system context: Firstly, the
system context in which the SUD will be used is analyzed and
documented. The context of any subsystem consists of relevant parts
of the context of the SUD as well as other subsystems of the SUD
that the subsystem under development interacts with.

 2nd Step: Analyze and document goals: After modeling the system
context, goals for the subsystem under development are elicited,
documented, and negotiated with the stakeholders identified during
context analysis. For the development of subsystems specifically, the
documented goals must be consistent with those documented for the
SUD. In detail, this means that the fulfillment of the goals of the
SUD is dependent on the fulfillment of all goals of all of its
subsystems.

 3rd Step: Define and model the scenarios of system usage: After the
context and goal models have been sufficiently documented,
scenarios are used to describe possible ways to fulfill the goals. The
scenarios and goals have to be related: each goal has to be fulfilled
by at least one scenario and each scenario must fulfill at least one
goal. The development of goals and scenarios is a highly iterative
and incremental process. Scenarios may lead to further goals not
discovered in the first step. New goals will lead to further scenarios.
This process continues until no new goals or scenarios are
discovered. Scenarios of any subsystems depict refinements of
scenarios of the SUD.

 4th Step: Specify solution-oriented requirements: Once the system
scenarios are sufficiently documented, and each goal is fulfilled by
one scenario, the solution-oriented requirements can be modeled.
The system still considered as a black box. Use operational,
structural, and behavioral requirements models to describe the SUD
from the perspective of the context entities. Modeling should focus

Step 1: Analyze and
document the system

context

Step 2: Analyze and
document goals

Step 3: Define and
model scenarios

Step 4: Specify
solution-oriented

requirements

4.5 References 67

on idealized system properties and essential interfaces of the system.
Hence, the developed models should be neutral to specific
implementation details, but should give closer accounts of how the
aspects modeled in context, goal, and scenario models are achieved.
The modeling of the SUD is a highly iterative and incremental
process. It may be possible that, for example, new scenarios (i.e.,
scenarios missing from the second step) are identified during this
step. These newly discovered scenarios may lead to new goals, and
so on. This step terminates when no more changes are necessary in
the artifacts. Quality requirements are documented relative to the
appropriate solution-oriented requirements by means of appropriate
annotations. In order to elicit these quality requirements, dedicated
analysis steps may be necessary (see Chapter 9).

4.5 References
[Alfaro and Henziger 2001] L. de Alfaro, T. A. Henzinger: Interface automata. In:

Proceedings of the 8th European Software Engineering Conference ESEC/FSE-9,
2001.

[Braun et al. 2010] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller, B.
Penzenstadler, K. Pohl, T. Weyer: Guiding requirements engineering for software-
intensive embedded systems in the automotive industry. Computer Science - Research
and Development. DOI: 10.1007/s00450-010-0136-y, 2010.

[Cockburn 2001] A. Cockburn: Writing Effective Use Cases. Addison-Wesley, 2001.

[Davis 1993] A. M. Davis: Software Requirements – Objects, Functions, States. 2nd Edition,
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[Hammond et al. 2001] J. Hammond, R. Rawlings, A. Hall: Will it work? In: Proceedings
of the 5th IEEE International Symposium on Requirements Engineering (RE’01), IEEE
Computer Society Press, Los Alamitos, 2001, pp. 102-109.

[ITU 2004] International Telecommunication Union: ITU-T Z.120: Message Sequence
Chart (MSC), 2004.

[Jarke and Pohl 1994] M. Jarke, K. Pohl: Requirements engineering in the year 2001 –
(Virtually) managing a changing reality. Software Engineering Journal, Vol. 9, No. 6,
1994, pp. 257-266.

[Lamsweerde 2009] A. van Lamsweerde: Requirements Engineering – From System Goals
to UML Models to Software Specifications. Wiley, West Sussex, 2009.

[Leveson 2000] N. Leveson: Intent specifications – An approach to building human-
centered specifications. IEEE Transactions on Software Engineering, Vol. 26, No. 1,
2000, pp. 15-35.

[Lynch and Tuttle 1989] N. A. Lynch, M. R. Tuttle: An introduction to input/output
automata. CWI Quarterly, Vol. 2, 1989, pp. 219-246.

[McMenamin and Palmer 1984] S. M. McMenamin, J. F. Palmer: Essential Systems
Analysis. Prentice Hall, London, 1984.

68 Part II – Requirements Viewpoint

[OMG 2010a] Object Management Group: OMG Systems Modeling Language™ (OMG
SysML) Language Specification v1.2. OMG Document Number: formal/2010-06-02.

[OMG 2010b] Object Management Group: OMG Unified Modeling Language™ (OMG
UML), Infrastructure v2.3. OMG Document Number: formal/2010-05-03.

[Pohl 2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, Germany, 2010.

[Potts 1995] C. Potts: Using schematic scenarios to understand user needs. In: Proceedings
of the ACM Symposium on Designing Interactive Systems – Processes, Practices,
Methods and Techniques (DIS’95). ACM, New York, 1995, pp. 247-266.

[Reisig 1991] W. Reisig: Petri nets and algebraic specifications. Theoretical Computer
Science, Vol. 80, No 1, 1991, pp. 1-34.

[Weyer 2011] T. Weyer: Kohärenzprüfung von Anforderungsspezifikationen: Ein Ansatz
zur Prüfung der Kohärenz von Verhaltensspezifikationen gegen Eigenschaften des
operationellen Kontexts. Südwestdeutscher Verlag für Hochschulschriften, 2011.

[Yu 1997] E. Yu: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering (RE’97), IEEE Computer Society Press, Los Alamitos,
1997, pp. 226-235.

4.6 Acknowledgements
The authors would like to thank their former colleagues Dr. Kim
Lauenroth (now with adesso AG) and Dr. Ernst Sikora (now with
Automotive Safety Technologies GmbH) for their support in early phases
of this research.

	4 Requirements Viewpoint
	4.1 Introduction to the Requirements Viewpoint
	4.2 Requirements Artifacts
	4.2.1 Context Model
	4.2.2 Goal Model
	4.2.3 Scenario Models
	4.2.4 Solution-Oriented Requirements Model
	Structural Requirements Model
	Operational Requirements Model
	Behavioral Requirements Model

	4.3 Integration in the SPES Modeling Framework
	4.3.1 Use of Models across Viewpoints
	4.3.2 Integration across Viewpoints
	4.3.3 Integration across Abstraction Layers

	4.4 The Requirements Process Model across Abstraction Layers
	4.5 References
	4.6 Acknowledgements

