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Preface 
Embedded systems have long become an essential part of our everyday 
life. They control essential features in our cars, such as airbags, braking 
systems, or power locks, and are used to manage our steadily increasing 
communication needs by means of Internet routers or cell phones. 
Embedded systems are essential in application areas where human 
control is impossible or infeasible, such as adjusting the control surfaces 
of aircraft or controlling a chemical reaction inside a power plant. The 
embedded systems industry has therefore become a multibillion euro 
industry.  

The development of modern embedded systems is becoming 
increasingly difficult and challenging. Issues that greatly impact their 
development include the increase in the overall system complexity, their 
tighter and cross-functional integration, the increasing requirements 
concerning safety and real-time behavior, the need to reduce 
development and operation costs, as well as the need for shorter time-to-
market.  

Many research contributions and development methods aim to 
address these challenges, and theories for the seamless development of 
embedded systems have been proposed. However, these solutions 
address only a small subset of the above-mentioned problems, are only 
applicable in very specific settings, and lack an appropriate cross-domain 
validation in representative industrial settings. 

The mission of the Software Platform Embedded Systems 2020 
(SPES 2020) project was thus to focus on the professionalization of a 
cross-domain, model-based development method for embedded systems. 
SPES 2020 is an innovation alliance project sponsored by the German 
Federal Ministry of Education and Research. In SPES 2020, 21 partners 
from academia and industry have joined forces in order to develop a 
modeling framework that is based on the latest state-of-the-art in 
embedded systems engineering, addresses specific development 
challenges, and is validated in different domains to ensure its 
applicability in industrial embedded systems development. 

 

Embedded systems 
— opportunities and 
challenges 

Need for an integrated 
development 
approach 

v



vi Preface 

Aim of this book 

The purpose of this book is to present an overview of the SPES modeling 
framework and to demonstrate its applicability to embedded system 
development in various representative industry domains. The book 
provides a comprehensive explanation of the basic solution concepts of 
the SPES modeling framework and illustrates the application of these 
concepts in five application domains (automation, automotive, avionics, 
energy, and healthcare). The book summarizes the lessons learned, 
outlines evaluation results, and describes how the SPES 2020 modeling 
framework can be tailored to meet domain-specific and project-specific 
needs. 

Target audience 

This book is aimed at professionals and practitioners who deal with the 
development of embedded systems on a daily basis. This includes 
developers, requirements engineers, software or hardware architects, 
business analysts, mechatronics experts, safety engineers, testers, and 
certifiers. It serves as a compendium for researchers in the field of 
software engineering and embedded systems, regardless of whether you 
are working for a research division of a company or are employed with a 
university or academic research institute. For teachers and consultants, it 
provides a sound foundation in the basic relationships and solution 
concepts for engineering embedded systems and illustrates how these 
principles and concepts can be applied in practice. 

Content of this book 

This book is structured into four parts and 18 chapters:  

 Part I – Starting Point: This part discusses the status quo of 
embedded system development and model-based engineering and 
summarizes the key requirements faced when developing embedded 
systems in different application domains. Chapter 1 gives detailed 
insight into the role of embedded systems and outlines the scope of 
the SPES 2020 project. Chapter 2 discusses and summarizes the 
requirements for the development of future embedded system 
development in the automation, automotive, avionics, energy, and 
healthcare application domains. 

 Part II – The SPES modeling framework: This part describes the 
backbone of SPES 2020 — the SPES modeling framework. Chapter 
3 derives the core principles of the SPES 2020 modeling framework 
and illustrates how these principles help in fulfilling the 
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requirements outlined in Chapter 2. It outlines the overall SPES 
modeling framework and describes the basic solution concepts of the 
SPES 2020 abstraction layers and viewpoints. Subsequently, 
Chapters 4 through 7 describe the requirements, functional, logical, 
and technical viewpoints of the SPES modeling framework. Each 
chapter defines the specific engineering artifacts subsumed by the 
viewpoint, outlines the basic relationships of those artifacts with the 
other viewpoints, and describes the engineering process across the 
basic abstraction layers. Chapters 8 and 9 describe how the SPES 
modeling framework addresses the crosscutting aspects “safety” and 
“real-time.”  

 Part III – Application and Evaluation of the SPES Modeling 
Framework: This part describes the validation steps taken to ensure 
that the requirements outlined in Chapter 2 are met by the solution 
concepts proposed in Part II. Chapter 10 outlines the overall 
evaluation strategy used to assess the applicability of the SPES 
modeling framework. Chapters 11 through 15 describe the use of the 
SPES modeling framework in the five application domains 
automation, automotive, avionics, energy, and healthcare. Each of 
these chapters briefly characterizes the specifics of the application 
domain and shows how the SPES modeling framework can be 
tailored with regard to these characteristics. In addition, each chapter 
outlines the evaluation activities conducted in the application domain 
by various partners and summarizes the key evaluation results. 
Chapter 16 summarizes the overall evaluation results and discusses 
them in the context of the requirements outlined in Chapter 2 and the 
SPES principles described in Chapter 3. 

 Part IV – Impact of the SPES Modeling Framework: This part 
assesses the impact of the SPES modeling framework. Chapter 17 
summarizes the key lessons learned in SPES 2020. Chapter 18 
concludes this book by providing insights into open challenges for 
the engineering of software-intensive embedded systems. 

For further reading, a list of relevant, advanced literature providing 
deeper insights is given at the end of each chapter. 
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Challenges in Engineering 
for Software-Intensive 

Embedded Systems 

As long as there were no machines, programming was no problem at all; when we had a 
few weak computers, programming became a mild problem, and now that we have gigantic 
computers, programming has become a gigantic problem. 

Edsger W. Dijkstra, ACM Turing Award Lecture, 1972 [Dijkstra 1972] 
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4 Part I – Challenges in Engineering for Software-Intensive Embedded Systems 

1.1 Core Value of Embedded Systems 
Development 

It is hard to find another market in information technology that shows 
similar steady growth to the market for embedded systems. As 
microcontrollers, they have taken over a variety of functions in 
multitudinous technical systems, for example, in manufacturing plants, 
medical equipment, power supply systems, aircraft, and cars, but also in 
home appliances such as washing machines and refrigerators. 
Microcontrollers monitor and control the systems they are embedded in. 
In doing so, they interact directly with their environment via 
communication devices or indirectly via sensors that capture data such as 
temperature or movement, as well as with actors that transform those 
data into action. Embedded systems play a key role in many high-tech 
sectors: they are essential in modern transportation systems — from cars, 
to railway vehicles, to aircraft. They automate manufacturing plants for 
all businesses, and are an integral part of powerful medical equipment. 

Embedded systems are microcontrollers that are connected to 
complete systems via sensors, actors, operator controls, and 
communication devices. They interact in various ways with their 
environment, offering a variety of functions through comprehensive 
software. Ninety-eight percent of the microcontrollers produced 
worldwide are employed in embedded systems. The programs that are 
executed by these embedded systems, known as “embedded software,” 
represent an essential part of these systems and define their functionality 
decisively. 

The “Nationale Roadmap Embedded Systems,” issued by the German 
“Zentralverband Elektrotechnik- und Elektroindustrie e.V.” (ZVEI) in 
2008, forecasts an average annual growth of 9-10% for the embedded 
systems market in the coming years [ZVEI 2008]. The estimated volume 
of the worldwide market for embedded systems amounts to around 60 
billion euros. For the most important part of embedded systems, the 
software, the study shows a significantly higher growth than for the 
hardware part. 

In businesses highly affected by mechanical and electrical 
engineering, software has become the most important innovation driver: 
a current mid-range car employs more than 70 embedded systems. The 
functions of the anti-lock braking system or the controls of the engine’s 
ignition point are determined by the software of the respective embedded 
systems. 

Embedded systems in 
everyday life 

Market for embedded 
systems 

Embedded systems 
as innovation drivers 

Key competence 



1.2 The Future of Embedded Systems 5 

The capability of developing high-quality, target-driven embedded 
systems is a competency Germany needs in order to maintain and 
develop a leading position in economically important industry sectors  
such as vehicle manufacturing/automotive engineering, aviation, plant 
engineering, and automation technology, as well as medical engineering. 
Germany’s export strength is mainly on technologies in which embedded 
systems represent a core value. The control of increasingly powerful and 
extensively networked, and as a consequence more complex embedded 
systems is a huge scientific and technical challenge. Mastering these 
crosscutting competencies offers opportunities in many application areas. 
Shortcomings, however, inevitably lead to risks and finally to loss of 
markets. It is essential, therefore, that Germany positions itself 
strategically in this field. 

Germany is well known for the high quality of its products, mainly in 
areas such as automotive engineering, aviation, automation technology, 
and medical engineering, where embedded systems are deployed. To 
maintain this image with respect to embedded software as well, we have 
to make the same high demands on embedded systems as on other 
technical systems with the seal of quality “Made in Germany.” 

1.2 The Future of Embedded Systems 
The future of embedded systems is determined by several trends that we 
can already recognize today: 

 Increasing computing power of the systems together with the ability 
to store an almost unlimited amount of data at extremely low costs. 
This development, which we already know from computer systems, 
is now finding its way into embedded systems. 

 Future embedded systems will be more and more networked. 
Networking mainly via the Internet, arguably the most important 
development since the invention of the letterpress, but also using a 
wide variety of different networking technologies, will multiply the 
intrinsic intelligence of embedded systems  

 The increasing structural and functional integration with mechanical 
and electrical system parts will finally produce “cybertronic 
systems,” consisting of mechanical, hydraulic, or pneumatic parts, as 
well as sensors, actors, and information processing units linked to 
each other via flows of energy, material, or information. The line 
between mechanical components and software system will become 
more and more blurred. The software part of “embedded systems” is 

Increasing computing 
powers 

Networked systems 
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6 Part I – Challenges in Engineering for Software-Intensive Embedded Systems 

shifting from an enabling technology towards a core technology: it 
forms the products to which it belongs. The software part transforms, 
enriches, and becomes the dominant part of the new generation of 
products [Beetz 2010]. 

Future embedded systems will be characterized by high complexity. 
Compared to pure mechanical or electrical systems, future embedded 
systems will have a much higher number of coupled elements 
(networking). In addition, these elements will be implemented by 
different technical disciplines involving different types of coupling 
(mechanical, electrical, IT). More and more software will be crucial for 
the functionality and the coupling of the individual mechanical and 
electrical components. This coupling will finally lead to the tight 
integration of today’s isolated engineering disciplines of mechanical 
engineering, electrical engineering, and computer science. 

The development leads from closed, well-arranged embedded 
systems that can be found in coffee machines, ATMs, or heart 
pacemakers, to systems that become more and more intelligent, to 
systems that can build their own intentionality, enabling them to make 
goal-oriented decisions on their own and to act accordingly. Ancestors of 
those future embedded systems are already among us today as helpful 
servants that can cut trees for us, prepare sandwiches, assemble cars, fly 
airplanes, or explore distant planets. 

As a consequence of the integration of embedded systems with 
classical information and communication technology and the Internet, 
systems will arise that span the globe, working together seamlessly and 
forming separate “digital spheres” such as global intelligent shells 
consisting of android buildings, factories, hospitals, transportation 
systems, up to highly automated agriculture and an inexhaustible 
knowledge base. The dream of the famous encylopedists of the age of 
enlightenment Denis Diderot and Jean-Baptiste le Rond d’Alembert, to 
make all the knowledge of the world accessible and useable to 
everybody, seems to be coming true, because the Internet age has just 
begun. 

Our knowledge is being transferred to the Internet at full speed. Eric 
Schmidt, former Google CEO and now chairman of the board, illustrated 
the tremendous storage capacity of the Internet as follows: “In 2029 you 
will be able to buy eleven Peta-Bytes (quite a big number) of digital 
storage on a single hard drive for less than 100 Dollar. According to my 
calculation this device will be able to store every single day, 24 hours in 
DVD-Video quality for six hundred years” [Schirrmacher 2011]. 

No knowledge, no experience that cannot—and will not—be 
recorded. However the true value of information is not based on the 

High complexity 
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classical information 
and communication 
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Digital spheres 
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information itself, but on the networking and the algorithmic evaluation 
of the information stored. Therefore, the “digital spheres” not only 
contain information and knowledge, but moreover awareness of how to 
use the information and the knowledge, which in turn will change the 
information and the knowledge permanently. 

Thus, a separate digital parallel world is arising, to which the term 
“artificial intelligence” is probably more applicable than to the traditional 
field of science that is aimed at emulating the human brain. Humans will 
be part of this intelligent parallel world and they will have to shape and 
control it. We will not discuss the social and political consequences here, 
but they will drastically change our lives, especially our professional life 
and the way we live together. 

Examples of these “digital spheres” are the global communication 
network, the huge worldwide information marketplace of the financial 
world, and the Global Positioning System (GPS) that has already become 
an integral part of transportation systems. In the near future, the power 
grid will also build such a “digital sphere.” This “smart grid” will be 
based on the most advanced embedded systems available. By virtue of 
distributed intelligence alone, the “smart grid” will be able to guarantee 
predictable stability and functionality of the electrical energy network. 
This development will not pass by many engineering disciplines, as 
something like “Google Engineering” will arise, where architecture and 
design decisions will be taken from the endless resources of the “digital 
sphere.” 

In the US, the term “cyber-physical system” is used for those 
systems, forming the basis of the “digital spheres.” In a cyber-physical 
system, electronic systems are interlaced intelligently with network 
components and physical systems in a way that integrates the physical 
systems to give them new capabilities. The acatech (German National 
Academy of Science and Engineering) project “Agenda CPS” develops a 
general view on the political, economic, technical, and research 
challenges of cyber-physical systems. In this project, cyber-physical 
systems are understood in a broader sense, including issues around 
connecting embedded systems to global networks such as the Internet. 

Embedded systems are the important building blocks of cyber-
physical systems and are used by the various digital spheres. Here they 
implement in particular the interfaces of the “digital spheres” to the user 
and to the technical and physical components, thereby forming the link 
between the virtual “digital spheres,” the humans, and the real world. 
Mastering the complexity this introduces constitutes a central challenge. 
In his keynote speech at the ITEA (Information Technology for 
European Advancement) symposium 2010, the Chairman of ITEA, 
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Rudolf Haggenmüller, coined the phrase “embedded hardware.” This 
comprises hardware in the primary sense, i.e., not microcontrollers or 
control units, but also in the sense of the scenarios described above. 
Embedded hardware could be a car, a building, a milking machine, or 
even a complete power plant — therefore, hardware that can be 
understood as embedded in a complex network, in a digital sphere.  

The foundation for mastering the challenges of the development of 
embedded hardware is established by the SPES 2020 project [BMBF 
2009]. 

1.3 Vision of SPES 2020 
As outlined above, developing software for the increasingly more 
powerful, more internetworked, and as a consequence more complex 
embedded systems is a huge challenge. Therefore, 21 partners from 
industry and science have formed the national innovation alliance 
“Software Platform Embedded Systems 2020,” targeted at making the 
production of embedded software across industry domains professional 
by means of an integrated and powerful methodology [Beetz 2010, Broy 
2010]. 

Mastering the related challenges represents an important advantage 
for German products in European and international markets, and is 
therefore essential for job creation and welfare. This highlights the 
enormous benefit of such a concentration of research and development 
work, especially because of the numerous application areas in key 
German industries. It is the vision of SPES 2020 that in the near future, it 
will be possible to develop embedded systems, containing a high amount 
of embedded software, using a set of integrated modeling techniques 
whose interdependencies and cooperation are completely understood. 
SPES 2020 envisions that: 

 The functional and nonfunctional requirements of such systems can 
be completely modeled at system level using appropriate abstraction. 

 Analysis, verification, and validation steps can be performed based 
on those models. 

 Decomposition for the interface behavior of the systems in the sense 
of architecture and a more step-by-step realization of a technical 
architecture can be derived from these functional models. 

We will still split the systems into mechanical, electrical, and technical 
parts. In doing so, we will use uniform modeling techniques for all three 
disciplines, or at least clearly defined, standardized interfaces that cover 
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all aspects of these three different system parts and describe their 
interactions in a modular fashion and in the sense of a compositional 
modeling technique. 

The main goal is to formalize the models to the extent that a high 
degree of automation is possible, including consistency checks and 
generation of validation methods to make the systems quantifiable and 
their properties explicitly represented and documented.  These methods 
can be either tests or logical analysis. The planned high degree of 
automation will make it possible to generate software out of its abstract 
and generally modeled properties for different and sufficiently specified 
platforms. This of course requires the modeling and specification of the 
platform properties in sufficient detail. 

The longer-term vision is the availability of a comprehensive concept 
for reuse for the respective application areas. Based on given, reusable 
platforms and system building blocks, it should be possible to execute 
major parts of the development work by utilizing predefined and domain-
specific specifications, building blocks, and reference architectures.  

1.4 Mission of SPES 2020 
The national innovation alliance “Software Platform Embedded Systems 
2020” (SPES 2020) thematically follows the aim of professionalization 
of a cross-domain development process, mainly the classical targets of 
software engineering: productivity and quality. 

The focus of the research and development work is in embedded 
software, which is widely ramified into the areas of mechanics and 
electronics in order to leverage the comprehensive optimization potential 
arising from those disciplines. The goal of SPES 2020 was to create a 
unique innovation alliance in Germany that works across application 
domains to develop future networking, hardware, and software 
architectures, as well as new methods for software and system 
engineering. 

A model-driven and tool-supported approach that is based on a strong 
mathematical foundation allows for the efficient development of 
embedded systems, starting with initial customer requirements, through 
specification of architectures, through implementation, to system 
verification and certification. 

This objective required a lot of work to be done in applied research as 
well as in fundamental research to complete relevant results. SPES 2020 
was able to provide an integrated approach for model-based development 
of discrete systems with a strong emphasis on interfaces, distribution, 
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and interaction, as well on a consistently architecture-centric approach 
that includes adequate system structuring and a model of the individual 
architecture elements. 

The basic terms, concepts, and theory have been available in results 
of fundamental research that has been more or less complete in that area. 
SPES managed to join the different modeling approaches supported by 
the academic partners. However, the main focus of SPES has been the 
transformation of those modeling approaches into usable terms and 
characterization techniques needed for an engineering approach, and the 
consolidation of methods for the creation of the various model views for 
an integrated use for target-oriented system and software development. 
The different, more pragmatic approaches of the application domains 
have been recognized. 

The domain-specific approaches have been simplified and 
consolidated as far as possible, and a solid understanding has been 
developed with regard to which application domains really require 
specific modeling techniques and how advanced modeling approaches in 
the different domains can be brought to the general modeling approach. 

Therefore, the SPES central project has taken up the available 
approaches from the application domains and merged them with results 
from scientific research. The resulting modeling methods have been 
reflected back to the application domains using case studies. Additional 
requirements from the application domains have been collected and have 
been considered in the definition of the modeling methodology. 

A special challenge that was not the main focus of SPES was the 
modeling of system properties that are not classical software properties 
but properties of the environment (e.g., electronic or mechanical) in 
which the systems are embedded. In the SPES 2020 context, we 
restricted the work to the question of which properties of the 
environment are necessary, what the interfaces to the domain models 
look like, and how those models should be brought in to guarantee 
consistency between the physical models and the models of the 
embedded software. 

A special focus in the project was on the integration of model-based 
development in order to leverage the synergy that comes from integrating 
the models across a larger number of development steps instead of 
looking at the models of each step in isolation. 

Architecture is the central artifact in model-based development. In 
SPES, the term “architecture” is understood very broadly as any kind of 
structuring system from a functional view, logical component view, or 
technical view, with a focus on software and hardware architecture, as 
well as on deployment and scheduling. 

Joining the different 
modeling approaches 

Domain-specific 
approaches 

Properties of the 
environment 

Architecture as central 
artifact 



1.5 Research Approach 11 

Last but not least, an important goal of SPES 2020 was to provide an 
adequate concept for tool support based on the integrated approach for 
model-based development that was developed. Prototypes of this concept 
have been developed and tested. 

With these achievements, the innovation alliance SPES 2020 has 
significantly strengthened the strategic and completive position of 
Germany as a leading country for the development of embedded systems.  
But to maintain this position as a leading engineering country and create 
new jobs and welfare for society, further effort is necessary from all 
stakeholders, from academia, from industry and from public authorities. 
Examples of future topics to be addressed by the innovation alliance are 
the managing of variants and multidomain engineering. 

1.5 Research Approach 
As discussed above, a central idea of model-based development of 
embedded systems is the integration of different approaches from the 
application domains and consolidation of these approaches to form an 
integrated model-based approach that has the potential to be a 
comprehensive tool support that can be deployed in various application 
areas. 

By nature, this is a difficult and comprehensive task to which 
scientific foundations, historically grown views, and different 
requirements from the various application areas contribute. In addition, 
the participating scientific groups follow their own approaches, starting 
from different theories. Up until now, integration at theory level has not 
been completed, and a series of foundation work has yet to be done. 

Against this background it was important to gain a clear vision of 
how the different views and approaches in SPES could be integrated. 
This gave four main focus points for the development of an integrated 
approach for model-based development. 

1.5.1 Generic Overall Approach — Metamodel 

The generic overall approach identifies the fundamental ideas and 
concepts of how to proceed. These include the use of different views and 
viewpoints in the sense of the specification of a series of abstraction 
layers for modeling the architecture. These architectural layers are in 
documented verbally and in approximate terms, represented graphically, 
and finally mapped onto a metamodel. In the generic layer, the basic 
philosophy is described without a detailed theoretical elaboration, and 

Four main focus 
points 

Fundamental ideas 
and concepts 



12 Part I – Challenges in Engineering for Software-Intensive Embedded Systems 

more pragmatically, without a concrete practical implementation with 
respect to tool support or concrete modeling techniques. It is important 
that not only the philosophy of the architectural approach and its 
modeling framework are described, but also that the whole engineering 
process is captured. 

Three approaches to make the generic approach more concrete are 
outlined below. 

1.5.2 Fundamental Scientific Approach 

A rigorous, theory-based scientific approach to substantiating the generic 
approach is to work out a comprehensive theory of model-based 
development, including all theoretical investigations and elaborations, so 
that for all concepts and ideas described in the generic approach, there is 
a comprehensive scientific elaboration and theoretical foundation. This 
ensures that all concepts of the generic approach are completely 
analyzed, elaborated, and justified from a theoretical perspective.  

The theoretical framework will show that all the concepts are 
consistent, complete, and fit together seamlessly. This lays the 
foundation for a methodology that is theoretical in spirit but not 
immediately deployable from a practical perspective, and that completely 
answers all questions concerning modeling and specification, not 
necessarily claiming that these concepts will immediately scale or can be 
put into practice. Consequently, this theoretical approach offers strong 
momentum for the concrete approach, as it forms the necessary 
foundation for clear terminology and the proven concepts. 

1.5.3 Pragmatic Implementation 

The pragmatic implementation of the generic approach starts with 
existing approaches (for example, UML) existing tools (such as 
MATLAB or the tools from Esterel Technologies) and tries to integrate 
the existing, often very fractal approaches in terms of the generic 
approach step-by-step. In doing so, the different views defined in the 
generic approach are described as completely as possible by means of 
specification languages and tools available in practice. A tight integration 
is sacrificed in favor of the use of existing tools and concepts. Where 
necessary, certain breaches, inconsistencies, and, to some extent, missing 
precision are accepted. The benefit of this approach is its possibility for a 
fast transfer into practice, high acceptance by practitioners, and a good 
adoption to the existing processes in practice. The drawback is limited 
automation support and limited comprehensiveness. 
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Of course, it is possible to utilize the scientific foundation, developed by 
the more theoretical SPES approaches, insofar as these can already be 
implemented by the existing tools. There are several advantages of this 
approach: 

Firstly, we see faster deployment of the theory, better acceptance by 
practitioners, and a big impact on procedures available in practice. 
Secondly, SPES can benefit by discovering holes in the metamodel or 
different philosophies in various application areas that cannot be united 
easily. 

The drawback of the pragmatic approach is its limited support of 
automation as well as a limited integration. 

1.5.4 Concrete Implementation 

The generic approach can be mapped to a concrete implementation 
without adopting the partially integrated pragmatic approaches. Starting 
with the generic approach, a clean theory is set up as part of the rigorous 
foundation and clear concepts are developed. The goal is to develop an 
approach that is theoretically clean on one hand, and closely aligned with 
the needs of practice on the other. Gaps and incompleteness are 
recognized and accepted and will be filled on an ongoing basis. This 
drives a step-by-step understanding of the approach in practice. The goal 
is to develop a clean practice that is always aware of its gaps and 
incompleteness and that can be filled slowly. In contrast to the pragmatic 
approach described above, a rigorous approach that only accepts and 
deploys clean accented methods and techniques is followed. The 
concrete implementation serves as an intermediate step towards a well-
founded scientific implementation that puts the model framework 
forward step-by-step, taking the scientific foundations into account. 

1.5.5 Synthesis 

SPES 2020 contains elements of three fundamentally different modeling 
approaches and relates them such that they do not compete and cripple 
one other, but instead have been fused in order to complementing one 
other. It should be noted that integration between the approaches is not 
possible; integration within the different approaches would be better. 
However, the approaches can benefit from each other by trying to 
translate between the different layers to highlight and use the relationship 
concepts. 

Concrete 
implementation 
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1.6 Topics Not Addressed in SPES 2020 
A series of questions regarding more advanced topics related to 
embedded software systems have not been addressed in SPES, such as 
autonomy, adaptivity, and self-organization. Furthermore, questions 
related to future hardware architectures, such as multicore architectures, 
have only been explored to an extent that was necessary to verify the 
appropriateness of the SPES development paradigm for these new 
hardware architectures. Innovative architectures for embedded systems 
have also not been explored. 

Within the research leading towards the SPES modeling framework, 
product line engineering was not considered explicitly. This is because it 
would appear that this additional dimension of variability can only be 
investigated once the basics of model-driven development have been 
comprehensively worked out. 

However, the project has developed systematic methods for the 
architectures in the development process, such as reference architectures 
and architecture frameworks, as well as their role in the development 
process. Advanced topics, such as product line architectures and 
systematic reuse, are the focus of future work. 
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The section concludes with a report on an empirical analysis of these requirements. 
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2.1 Initial Situation in the Application Domains 
Embedded systems are different in every application domain. These 
differences arise due to the contexts in which the embedded systems will 
be deployed. For example, while an engine control unit is embedded in a 
car, a pacemaker is embedded within a human being. However, not only 
the context of the embedded systems, but also the constraints under 
which development takes place are different in each domain, even for 
each development project. For example, in the avionics and healthcare 
domains, very strict safety standards and certifying authorities govern the 
process as well as the product to be developed.  

On the following pages we discuss initial situations within each 
application domain. The intention is to shed some light on current 
development situations in which embedded systems are being developed. 
Based on these situations, concrete requirements for a continuous model-
based development process can be elicited, as discussed in Section 2.2. 

2.1.1 Initial Situation in the Automation Domain 

In the automation domain, embedded systems can be found at different 
levels. There are devices for automation, including intelligent sensors 
and actuators, that are typically presented and offered to the customer in 
a product catalog. On the one hand, there are standard devices such as 
programmable control devices or standardized power trains. On the other 
hand, there are also numerous special purpose devices for specific 
problems in automation: machines (e.g., robots) that are either provided 
to the user in a product catalog or developed individually for customers, 
or partial constructions (e.g., a product line) or entire constructions that 
are developed individually for a specific user. 

Hence, embedded systems in the automation domain are both: 
systems that are primarily realized in development projects independent 
of any customer contract and systems that are realized primarily in 
projects based on a contract with the customer. In projects with 
customers in particular, the usage view of how an entire embedded 
system is developed by means of embedded software-intensive systems 
and which concepts the automation devices provide to support the 
integration into an entire system is of vital importance. 

For a provider of automation devices, this results in the following 
challenges with regard to business and technology:  

 Managing the numerous variants that result from different 
“performance parameters,” bus systems, requirements for safety, 
reliability, etc. 
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 Ensuring high quality and robustness 
 Ensuring that the automation devices are capable of being integrated 

with each other as well as with other devices  

For a system integrator, this results in the following challenges with 
regard to business and technology: 

 The entire construction and essential parts of it are developed within 
projects with customers, which, based on experience, entails a high 
corporate risk.  

 The development process comprises the integration of several 
purchased components and services, which entails a high technical 
risk. 

 During development, different disciplines such as process 
technology, mechanics, electrical engineering, and software must be 
integrated with respect to the procedure and the work results. Since 
the software is integrated in the last step, this integration has the task 
of ensuring the correct interplay between the disciplines. 

2.1.2 Initial Situation in the Automotive Domain 

Embedded automotive systems built for today's mobility requirements 
are growing in complexity. Therefore, new and refined development 
methods are required. Across all domains, engineering for embedded 
systems is characterized by a physical context with real-time 
requirements and the need for interdisciplinary cooperation. 
Additionally, the automotive domain has a high proportion of quality 
requirements, cost pressure, and resource constraints. These result from 
high volumes ranging in the millions, particularly demanding safety and 
reliability requirements, and extensive variability stemming from a large 
number of system approaches and functional configurations. 

Within the SPES 2020 project, the partners in the automotive domain 
planned to address the challenges described above with the objective of 
developing new or refining existing methods that ensure that systems 
with this level of complexity can be developed more efficiently. 

2.1.3 Initial Situation in the Avionics Domain 

Embedded avionics systems built for today's aircraft are growing in size 
and complexity, therefore new and refined development methods are 
required. To improve this situation, the SPES 2020 project was 
established. SPES 2020 aimed at developing new or refining existing 
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methods to ensure that systems growing in size and complexity can be 
developed more efficiently.  

Avionics systems have to be certified by the airworthiness authorities 
before they can be installed and operated in an aircraft. In order to 
achieve certification for an avionics system, the company developing and 
manufacturing this system has to provide the airworthiness authorities 
with the evidence that the system is safe.  

A system is considered safe if two prerequisites are fulfilled by the 
system builder: firstly, a safety analysis has been conducted that shows 
that the probability of hazards caused by the system is sufficiently low; 
secondly, the manufacturer can demonstrate that the system's hardware 
and software parts have been developed according to pre-defined 
processes and have been accepted by the airworthiness authorities. This 
means that methods developed or refined in SPES 2020 had to support 
and comply with the safety analysis and development processes in the 
avionics domain. The methods developed in SPES are applied in the 
typical development process steps: requirements analysis, design, 
implementation, integration, verification, and validation. 

Current methods and principles of incremental certification also have 
to be refined to reduce certification effort for future systems. On the 
other hand, efficient methods are necessary for recertification of systems 
that have been certified once and have to be modified, e.g., due to 
implementation of new features. 

2.1.4 Initial Situation in the Energy Domain 

It is widely understood that modern power generation will consist of a 
mix of generation from conventional power plants, such as nuclear or 
coal-fired power plants, and an increasing amount of generation from 
renewable energies such as wind, biomass, and solar power. The latter 
part of the generation mix is installed in a decentralized manner, i.e., 
apart from some larger power generators such as wind turbines, there are 
plenty of small generators with approximately 5-100 kW. Examples are 
photovoltaic units placed on the rooftops of residential homes or 
combined heat power generators. 

Besides the trend towards a large number of small energy resources, 
we can observe that more and more often, the characteristics of devices 
such as inverters towards the distribution grid can be controlled 
electronically and are programmed into the devices themselves. This 
raises the question of how to set up and evaluate a massively distributed 
energy system taking advantage of the benefit of the “magic of large 
numbers” in the case of small, controllable energy resources. Due to the 
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small size of the distributed energy resources, the characteristics that 
have to be considered for managing such distributed energy systems are:  

 More than 100 resources have to be managed simultaneously. 
 The energy resources are often operated by local operators with local 

objectives (dual use). 
 Engineering effort per resource is not affordable. 
 Available communication infrastructure including power line 

communication (PLC) should be reused. 
 There is no guarantee that a resource is operating in a controlled 

fashion. 

Based on the characteristics, the following technical requirements have 
to be fulfilled by an implementation managing the system: 

 Full self-configuration of the distributed energy resources 
 Tracking of availability and operation of energy resources 
 Generic modeling of the different energy resources 
 Compensation of stochastic loss of control of particular energy 

resources 
 Requirements of the particular states of the distribution grid  

2.1.5 Initial Situation in the Healthcare Domain 

Similarly to the avionics domain, embedded systems in the healthcare 
domain are governed by strict safety guidelines and standards and are 
required to pass certification before they can be legally operated. In 
particular, rules imposed by regulatory authorities such as the FDA not 
only have to be adhered to by the product, but in some cases by the 
development process as well. As a consequence, safety and regulatory 
concerns dominate the development process and must be considered 
meticulously during system development.  

Furthermore, some types of embedded systems in the healthcare 
domain are particularly constrained, as they reside within a human body. 
Pacemakers, for instance, are subject to special constraints regarding 
their maintainability. Once the system is installed, changes, maintenance, 
or alterations are undesirable, as they would require the patient to 
undergo further, potentially dangerous surgery. Therefore, it must be 
possible to maintain these systems easily and ideally externally (if at all). 
In summary, systems that reside within the human body have properties 
that must be accounted for during development to ensure safety, 
maintainability, and testability. 
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2.2 Requirements for the SPES Engineering 
Approach 

The SPES engineering approach is intended to address the challenges 
that arise in the application domains. These challenges were outlined in 
Section 2.1. The requirements for the SPES engineering approach are 
presented below. These requirements are based on the initial situations 
presented above. 

2.2.1 Requirements from the Automation Domain 

Automation must cover process technology, mechanics, and electrical 
engineering in the individual projects to different degrees. Therefore, the 
requirements for the software are very different (see, for example, the 
diverse security standards). From the perspective of the automation 
domain, the following requirements and challenges were therefore 
addressed within the SPES project: 

 Supporting the modeling of technical systems: Due to the increasing 
complexity of systems in the automation domain, it is necessary to 
create adequate models in order to be able to manage the 
development of these systems. For this purpose, the following means 
are commonly used: appropriate abstractions, different views on the 
system, consideration of different aspects. In addition to the 
individual models themselves, dependencies between the different 
models have to be documented as well as the development process, 
or more specifically, the underlying development methodology used 
to create or refine the models during development. In order to be 
able to exploit all the benefits of model creation, an appropriate 
theoretical foundation of the modeling approach is necessary.  

 Supporting system integration: Due to the necessity of integrating 
the different systems and services when developing systems in the 
automation domain, the specific aim is to use the models to support 
this integration. This involves not only compatibility of the content 
of the models, but also the procedure with regard to the engineering 
workflow during development of the systems. Considering the 
systems thereby merely from a software-technical view is not 
sufficient, since the software is embedded in a physical system and 
has to be considered as an integral part of it, because typically the 
architecture of the software is determined by the architecture of the 
physical system.  

 Ensuring specific system properties right from the beginning: To 
reduce the technical and business risks faced during development of 
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systems in the automation domain, the models shall be used to 
ensure essential system characteristics. Therefore, an appropriate 
model of the physical system in which the software is embedded is 
necessary (as well as the model of the software). In this way, the 
system can, for example, be put into operation virtually. This also 
requires an appropriate open infrastructure for executing the models. 

 Providing tool chains for engineering of embedded systems in the 
automation domain: Due to the complexity of systems in the 
automation domain, their development must be supported by 
adequate engineering tools. Since a number of different tools are 
already used in practice, a main requirement was to extend these 
existing tools appropriately, to use them, and to integrate them into a 
continuous tool chain. The integration shall be driven by a consistent 
modeling theory for technical systems to ensure sustainable tool 
support. 

2.2.2 Requirements from the Automotive Domain 

The major requirements from the automotive domain for the SPES 
engineering approach are the following: 

 Supporting the systematic gathering and documentation of 
requirements: The SPES modeling framework shall apply model-
based requirements engineering to the automotive domain systems to 
enhance system understanding, provide guidance for system design, 
and deliver proof of fulfillment of required properties. 

 Supporting the transition between informal and formal 
requirements: The SPES modeling framework should provide a 
systematic method for transforming a set of mainly informal 
requirements into an implementation that is based on the domain-
specific AUTOSAR standard. 

 Supporting functional development: The SPES modeling framework 
shall introduce model-based functional development throughout the 
automotive development lifecycle and shall integrate the discrete and 
continuous problem classes into a homogenous system design.  

 Supporting model-based safety design: The approach should support 
model-based safety design in automotive development to achieve 
safety properties by design and reduce the safety validation effort. 

 Supporting the analysis of functional correctness: The SPES 
modeling framework shall identify design flaws regarding functional 
correctness and timing in early development phases. 

 Supporting the AUTOSAR standard: The SPES modeling framework 
shall transform the SPES metamodel into corresponding AUTOSAR 
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models in order to apply the SPES analysis techniques in the 
AUTOSAR context.  

 Empirical validation: The SPES modeling framework shall validate 
and explore the limits of the developed methods in the automotive 
domain empirically to prove the effectiveness of the approaches.  

2.2.3 Requirements from the Avionics Domain 

The major requirements from the avionics domain for the SPES 
engineering approach are the following: 

 Supporting the systematic specification of requirements: To specify 
consistent, understandable, and unambiguous system and software 
requirements, the application domains in SPES 2020 proposed to 
elaborate available formal or semiformal specification languages to 
ensure their efficient usability. An important aspect of usability is 
that requirements must be readable and comprehensible to engineers 
and representatives of certification authorities. To improve the 
understanding of the dependencies among the requirements, the need 
for a suitable modeling technique was identified for SPES 2020. A 
further objective in this area was to exploit the formalism in the 
requirements in order to generate test cases or test case fragments 
automatically and to utilize the formal character of the requirements 
to perform consistency and completeness checks on the requirements 
specification. The requirements engineering methods developed 
must adhere to different levels of certification strictness imposed by 
the different certification standards and authorities.  

 Supporting the systematic analysis and documentation of system 
architecture: In order to develop large scale systems, for example, 
smart grids, rolling mills, and aircraft, a systematic refinement of 
architectural modeling techniques that takes different aspects (e.g., 
safety) into account is required. In addition, the definition of 
abstraction layers and the relation of artifacts between them is very 
important for coping with the complexity imposed by the scale of the 
systems considered. The optimization of possible design solutions 
regarding safety and performance and the utilization of the 
computing resources available has been stated as a further goal in 
SPES 2020. It has been recognized that the availability of a modeling 
language (e.g., SysML) is not sufficient to achieve the goals 
described above. In addition, efficient modeling techniques and 
methods are required. 

 Supporting continuous modeling of safety and system certification: 
Safety and system certification play an important role in the 
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application domains of SPES 2020, especially in the automotive, 
avionics, and healthcare domains. Today's safety analysis is 
performed on separate design and safety models using different 
tools. To avoid error-prone and inefficient redundancy of the design 
and safety models, a requirement for the SPES 2020 program was to 
define solutions allowing a safety analysis that integrates system 
design and safety information in one model. A further requirement 
for the avionics domain was to elaborate methods for automatically 
generating safety cases based on the system design model. 

 Supporting the verification of engineering artifacts: The verification 
activities create a high workload in the application domains. The 
requirement for the SPES 2020 program was to reduce this workload 
by defining methods for generating test cases and procedures 
automatically based on requirements and design information. 

2.2.4 Requirements from the Energy Domain 

The major requirements from the energy domainfor the SPES 
engineering approach are the following: 

 Supporting the consideration of large numbers of massively 
distributed embedded components: Smart grids are potentially large 
systems with huge numbers of massively distributed embedded 
components (up to the order of millions distributed across hundreds 
of square kilometers). The high number of components in real 
systems can cause the overall system to show characteristics that do 
not emerge in smaller systems with a comparatively low number of 
components. 

 Dealing with complexity in system structure and component 
interaction: Certain events in a power grid, for example, a decrease 
in generated power, can cause events within the communication 
network, such as messages, to switch off consumers. Power 
generation can be affected by weather conditions (solar power, wind 
power). Consumer behavior influences energy demand. Energy 
markets and international integration of power grids influence energy 
transmission and financial transactions. 

 Supporting the engineering constraint “one-shot scenario”: Because 
of the sheer size of smart grids, many technical decisions that are 
taken during the concept phase are virtually irreversible after the 
smart grid has been realized and installed. Thus, careful planning 
before starting the realization phase is very important. Mistakes can 
lead to huge costs in later project phases. This is why it is important 
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to design and test smart grids by means of simulation before 
installation to uncover and fix problems beforehand. 

 Supporting dynamics in system structure and system behavior: Due 
to the characteristics and the implementation of specific components 
within a smart grid, system structure and system behavior can be 
dynamic, for example, with respect to availability, stability, and 
failure resilience. For example, components within a smart grid, such 
as local generators and consumers, can join or leave the grid at any 
time. Furthermore, due to the massive distribution of components, no 
single entity has total control of all components in the smart grid. 
Failure or faulty behavior of single components within the system is 
thus inevitable. The overall system must be able to cope with these 
challenges. 

2.2.5 Requirements from the Healthcare Domain 

The healthcare domain faces similar challenges to the avionics domain. 
Most embedded devices in medical applications are safety-critical and 
have to pass a long and intensive certification procedure. Again, similar 
to avionics, in such systems a safe state cannot be reached by simply 
switching off the equipment. Imagine, for example, a life-supporting 
device where the health of the patient depends critically on the 
correctness of the embedded software. Thus, all components must be 
redundant and highly reliable. The software development process for 
such a system has to follow strict rules and all artifacts must be validated. 

For a model-based software development, this means: 

 Safety aspect: Safety is of utmost importance. It must be possible to 
explicitly state safety requirements in the models and to assess 
whether they are realized in the final system. Other nonfunctional 
properties such as usability, adaptability, and configurability can be 
regarded as special instances of safety. 

 Traceability: In order to allow for effective validation, all models 
must be linked to each other such that requirements can be traced 
from the initial specification, through the various modeling stages, to 
the final executable code. Ideally, the models are instances of a 
common metamodel and have clear, unambiguous semantics. 

 Interoperability and adaptability: Devices and processes must be 
interoperable and easily adaptable. This can be achieved through 
standardized reference architectures. The modeling methodology 
must provide a way of including such reference architectures (e.g., as 
a model library) and instantiating the standardized component for a 
specific project. 
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 Energy efficiency and maintainability: Since devices such as 
pacemakers remain within a patient for a long time, energy 
efficiency and low maintenance efforts are very important for certain 
medical devices. The methodology must provide ways of combining 
resource considerations with the certification needs as required by 
regulatory descriptions. 

 Testability: Testability is an important assessment criterion. 
Therefore, the modeling framework should support automated test 
case derivation from models as well as code generation. There must 
be a clear distinction between implementation models and test 
models. 

Model-based design has a high potential to improve the software 
development process of embedded medical devices. However, software 
development is only one aspect in the design and production of such 
systems. The SPES modeling framework shows how validation and 
certification aspects can be incorporated into the process to allow for 
better products and a significantly shorter time-to-market. 

2.3 General Requirements from Industry 
At the beginning of the SPES project, a study was conducted with 
representatives from companies in all application domains of the SPES 
project in order to gather their major requirements from industry 
concerning the SPES engineering approach. The participants’ self-
reported areas of operation included research and development (40% of 
the participants) as well as process and project consulting (another 40%). 
Of the participants questioned, 60% reported their experience with 
requirements engineering to span 5 to 10 years, 20% even reported more 
than 15 years of experience, and 90% of the participants reported their 
level of experience in requirements engineering as advanced or expert. 

The study employed a combination of qualitative and quantitative 
techniques in order to yield deep insight into the state of practice and the 
needs concerning model-based engineering. Data was acquired by means 
of a structured interview and a post-interview questionnaire. 

The findings from the study are summarized below and related to the 
focus of the SPES 2020 project. Detailed information about the 
motivation for the study, the feedback gained from the participants, and 
the detailed analysis and conclusions can be found in [Sikora et al. 2012]. 
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2.3.1 Empirical Finding: Need for Model-Based 
Engineering 

Natural language is the most common documentation form for 
engineering artifacts. However, there is strong evidence that practitioners 
are dissatisfied with natural language, as dealing with large bodies of 
natural language documents is perceived as tedious and error-prone. In 
contrast, using models during the engineering of embedded systems is 
perceived as beneficial as models help in the understanding of complex 
engineering problems, serve as a natural means for structuring the 
problem space, and make communication with other stakeholders easier. 
As a result, in current practice, models are used to support engineering 
and often supplement text-based documentation of engineering artifacts. 
Our study showed, for example, that executable models (such as 
MATLAB/Simulink models), semiformal models (such as SysML [OMG 
2010a] and UML [OMG 2010b] models), as well as domain-specific 
models from disciplines such as mechanical engineering, electrical 
engineering, or control engineering are common artifacts throughout the 
engineering process.  

One of the most important purposes of these artifacts is early 
validation and quality assurance. However, despite the advantages of 
using models, many practitioners refrain from applying them. One key 
reason is that there is confusion about when to apply models during 
engineering and when to resort to traditional natural-language-based 
documentation, particularly when legally binding documents are 
involved, safety standards must be satisfied by means of models, or 
models are used that are applied in different engineering activities (for 
example, structural models that are used during requirements engineering 
as well as architecture design).  

In summary, an engineering approach is needed that fosters model 
use during different engineering activities and supports the use of model 
types that are already common in the engineering of embedded systems. 

2.3.2 Empirical Finding: Need for Artifact-Orientation 

As mentioned in Section 2.3.1, the state-of-practice study was able to 
confirm that natural language is the dominant documentation form for 
engineering artifacts. As a result, artifacts in the engineering of 
embedded systems are typically natural language documents that also 
serve as a contractual basis and are at best supplemented with models. 
Furthermore, as these documents are usually holistic in nature, 
information contained therein for specialized engineering activities such 
as quality assurance, architecture design, or safety engineering is hard to 
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discern. In particular, many engineering artifacts in current practice do 
not meet the prerequisites for applying automated techniques.  

Therefore, approaches are needed that allow for the co-development 
of artifacts that can be used and re-used for a variety of engineering 
activities. 

2.3.3 Empirical Finding: Need for Continuous Method 
Support 

As mentioned in Section 2.3.1, there is uncertainty about when to use 
models to aid the engineering of embedded systems, and this is one of 
the key factors inhibiting more intensive model support. Another 
inhibiting factor is missing method support for the application of models 
during different engineering activities.  

While some knowledge exists regarding different model types and 
their suitability for different engineering activities, an approach for the 
seamless integration of models during engineering and the transition 
between engineering activities is largely missing. For example, missing 
method support leads to an enormous effort for ensuring the consistency 
between requirements engineering artifacts and safety engineering 
artifacts. In particular, method support is missing for specifying artifacts 
across a hierarchy of abstraction layers. In addition, results of the study 
provide evidence for a close interrelation of requirements engineering 
and architecture design, but also indicate some confusion regarding the 
separation of the resulting artifacts from both engineering activities (see 
Section 2.3.1). As a consequence, participants expressed a strong need 
for systematic support for traceability between these two engineering 
activities. 

2.3.4 Empirical Finding: Need for Differentiation of 
Abstraction Layers and Transition between Them 

Since the complexity of modern embedded systems is continuously 
increasing, new challenges for their engineering also arise. In order to 
meet these challenges, the development process must be structured 
strictly. The participants of the study stated that performing engineering 
across a hierarchy of abstraction layers is one of the essential means to 
achieving a structured development process. In particular, a systematic 
approach that takes the refinement of engineering artifacts into 
consideration is missing from current practice.  

In addition, practitioners expressed the need for seamless transition 
between abstraction layers. Although abstraction layers are seen as 
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beneficial, confusion exists concerning their application. In particular, 
there is uncertainty about which engineering artifacts to define at what 
level of abstraction, what level of detail should be included in an artifact, 
how abstraction layers can be tailored to specific project needs, and how 
consistency between artifacts of different abstraction layers can be 
maintained.  

As the results of the study illustrate, the application of abstraction 
layers is not standardized in industry, is highly influenced by the 
application domain (e.g., automation, avionics, or healthcare), and varies 
depending on the engineering context (e.g., the specific system type, 
properties of the supplier-integrator relationship). In some cases, the use 
of abstraction layers is formally imposed by standards. 

In summary, the study showed that the application of abstraction 
layers in industry depends largely on the engineering context and in 
particular on the responsible engineers’ intuition and experience. 
Therefore, improved method guidance for specifying artifacts across 
different abstraction layers of an embedded system were needed at the 
beginning of the SPES project. 
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Introduction to the SPES 
Modeling Framework 

Today’s and, even more so, the future development of embedded systems faces a variety of 
challenges. Key success factors to meeting these challenges are suitable concepts for 
abstraction and structure at different levels of granularity. The result of these concepts is a 
seamless development approach that heavily facilitates reuse and automation. A basic 
requirement for such a seamless approach is a clear notion of a system that is formalized 
by a comprehensive modeling theory. According to this modeling theory, a modeling 
framework has to provide appropriate models and description techniques for modeling the 
different aspects and artifacts of system development. This section explains these 
conclusions and introduces the idea of system and the modeling framework.  It also 
references the modeling theories used in SPES. 

31,.  K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
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3.1 Motivation for the SPES Modeling 
Framework 

The aim of model-based development is to use models as main 
development artifacts in all phases of the development process. It 
promises to increase the productivity and the quality of the software 
development process by raising the level of abstraction at which the 
development is done, as well as the degree of automation, with the help 
of models that are tailored and appropriate for specific development 
tasks.  

Even though adopted in practical development of embedded systems 
today, model-based development approaches often fail due to the lack of 
sufficiently powerful modeling theories and missing integration of 
theories, methods, and tools. The models applied in the development 
process are based on separate and unrelated modeling theories (if 
foundations are given at all), which makes the transition from one model 
to another unclear and error-prone. 

3.2 Characteristics of Software-Intensive 
Embedded Systems 

An embedded system can be characterized as a technical system that 
operates in a physical and technical environment and is built by means of 
technical resources that collaborate in order to achieve an overall purpose 
(see [Braun et al. 2010]). Embedded systems monitor and control their 
environment using variables that refer to specific properties of the 
environment (e.g., physical or technical properties; see [Parnas and 
Madey 1995]). IEEE Standard 1362 states that a system can be 
characterized as “software-intensive” if the software of the system is the 
major technical challenge and perhaps the major factor that affects its 
schedule, cost, and risk (see [IEEE 1362]). Typically, software-intensive 
embedded systems consist of software and hardware. 

Software-intensive embedded systems are widespread in our daily 
life. They can be found in many application domains such as automation, 
healthcare, consumer electronics, avionics, transportation, and 
automotive. 

Software-intensive embedded systems exhibit some characteristics 
that have a far-reaching impact on the corresponding engineering and 
modeling approach with which they are developed: 
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 Multifunctional: Software-intensive systems provide a wide range of 
functionalities, i.e., they offer a variety of functions that interact with 
the environment and additionally with each other (see [Broy 2010]).  

 Complex: A significant increase in the complexity of software-
intensive embedded systems can be observed over the last years. 
This corresponds with the effect that perceivable functions are 
increasingly being realized by integrating fine-grained software-
intensive embedded subsystems. Therefore, the complexity of such 
systems increases in two ways: the complexity of a single subsystem 
(intrasystem complexity) and the complexity of the relationship to 
other subsystems (intersystem complexity). 

 Reactive and interactive: Software-intensive embedded systems are 
generally interactive or reactive systems. They are characterized by 
the constant interaction and synchronization between the system and 
its environment. While for interactive systems the interaction is 
determined by the system, the interaction of reactive systems is 
determined by the physical-technical environment. 

 Distributed: In many cases, software-intensive embedded systems 
are no longer realized within a single electronic control unit (ECU) 
but distributed over a network of logical or physical components that 
interact with each other heavily in order to realize the desired 
functionality. These components execute their computations 
simultaneously on multiple cores in the same chip, with different 
threads on the same processor, or on physically distributed systems. 

 Control of continuous physical and technical processes: Software-
intensive embedded systems are frequently used to control physical 
processes and devices that exhibit a time-continuous behavior. The 
controller within the software-intensive embedded system is 
implemented in software and is consequently asynchronous and 
time-discrete. An engineering methodology for developing 
embedded systems must accommodate for that fact. 

 Exhibiting real-time properties: Many software-intensive embedded 
systems must meet real-time requirements during system operation, 
for instance, to be able to guarantee the safety of the occupants 
within a vehicle. In such cases, the system must fulfill certain 
constraints that restrict the time behavior of the system’s response if 
a specific crucial event in the environment of the system occurs. 

 Safety-critical: Safety is a major quality of embedded systems that 
must be considered in any activity during engineering. Safety can be 
characterized as the extent to which the system under development 
will not have effects on its environment that result in harm to people, 
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significant monetary losses, or any other negative impacts to its 
environment. 

3.3 The Principles of the SPES Modeling 
Framework 

The overall requirements for the SPES engineering methodology as 
described in Chapter 2 led to a set of fundamental principles for the 
SPES modeling framework. These principles aimed at establishing 
specific ways of thinking to be applied when performing the modeling 
activities suggested by the engineering process for software-intensive 
embedded systems in order to meet the requirements from the application 
domains and the characteristics of such systems. These principles are: 

 Distinguishing between problem and solution: This principle aims at 
distinguishing between the analysis of the underlying problem that 
has to be solved and the development of an appropriate solution in 
the form of a software-intensive embedded system. 

 Explicitly considering system decomposition: Decomposition plays 
an important role as a lever to master complexity in nearly all 
engineering activities. It encompasses, for example, the 
decomposition of systems into subsystems, of functions into 
subfunctions, or the decomposition of hardware topologies. 
Following the decomposition of the system, its engineering process 
can be divided into a number of individual fine-grained engineering 
processes, complemented by certain activities to support the 
integration of the various engineering artifacts.  

 Seamless model-based engineering: This principle aims at 
establishing a continuous model-based documentation or 
specification of all the information that is created during the different 
engineering activities. The notion “model-based” is used in two 
related ways. Firstly, the conceptual structures of the artifacts are 
defined by metamodels that specify the information structure of the 
artifact as well as the structural dependencies between artifacts. 
Secondly, the relevant information is documented or specified using 
conceptual modeling languages. In addition, an engineering 
approach can be characterized as “seamless” if relations between 
different types of artifacts exist and have clearly defined (formal) 
semantics. This makes it possible to use the models not only as 
documentation but also to perform automatic analysis and to 
transform one model into another. 
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 Distinguishing between logical and technical solutions: This 
principle aims at separating the logical solution, which focuses on 
general solution concepts and corresponding conceptual properties of 
the system under development, from technological constraints and 
technological design decisions. By following this principle, the 
engineers can clearly separate the logical solution, which is largely 
independent of technological constraints and technology-related 
design decisions, from the actual technical solution for the system 
under development. Due to the fact that the logical solution is largely 
independent of technological design decisions, the logical solution is 
more stable than the technical solution and can be reused for 
different technical realizations. 

 Continuous engineering of crosscutting system properties: This 
principle aims at establishing the ability to consider crosscutting 
properties of the system under development. Typical crosscutting 
properties are safety or real-time properties of the system: they must 
be considered in any engineering activity and the corresponding 
artifacts, such as requirements, design, and implementation artifacts. 

3.4 Core Concepts of the SPES Modeling 
Framework 

To establish the fundamental principles mentioned above, the SPES 
modeling framework uses the following core concepts. 

3.4.1 Abstraction Layers 

A system under development or a design element (e.g., a logical 
component) can be modeled on different abstraction layers. Less abstract 
models belonging to a lower abstraction layer may increase the level of 
detail of the description of the design element at hand. For example, the 
interface description may be refined as well as the behavior demanded. 
Therefore, increasing the level of detail, and at the same time decreasing 
the layer of abstraction, adds knowledge about the design element. Often, 
a reduction in the level of abstraction is accompanied by a refined 
granularity — that is, structurally significant design elements are 
decomposed into multiple finer grained items in order to keep them at a 
manageable size. Refining the granularity is, however, not a necessary 
condition when introducing a lower layer of abstraction. For example, it 
is possible to describe the same design item on two different layers of 
abstraction with the same granularity, but specify a certain aspect more 
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precisely. Despite an increasing level of detail, another motivation for 
introducing a dedicated abstraction layer can be the handover of an initial 
system specification to another organizational unit. In this way, the initial 
specification remains unchanged and the design element is refined on a 
new abstraction layer. Mappings between engineering artifacts allow 
these refinements to be traced. While models on lower abstraction layers 
provide more detail, the design elements still have to respect the aspects 
specified for their higher level counterparts. 

3.4.2 Views and Viewpoints 

Multiple stakeholders with different concerns are involved in the 
engineering process for a software-intensive embedded system. The aim 
of the concept of viewpoints is to separate the various concerns of 
different stakeholders during the engineering process. It serves as a 
construct for managing the different artifacts during the engineering 
process. IEEE Standard 1471 [IEEE 1471] characterizes viewpoints as a 
specification of the conventions for constructing and using a view. In 
other words, a viewpoint is a pattern or template that can be used to 
develop individual views on a system (and its environment). Typically, 
the specification of a viewpoint defines that viewpoint in terms of its 
syntax, semantics, and pragmatics by providing, among other things, the 
name of the viewpoint, the corresponding stakeholder concerns, the 
viewpoint language (probably given by a metamodel), and techniques 
that can be used during the construction and analysis of the 
corresponding view (see [IEEE 1471]). Given a viewpoint specification, 
a view can be characterized as a concrete model of the system that 
represents the information that is relevant for the corresponding 
viewpoint concerns by using the conceptual structure of the underlying 
viewpoint language. 

3.5 The SPES Modeling Framework 
While software-intensive embedded systems are becoming more and 
more complex, market pressure requires companies to develop high-
quality products in a short time. To deal with such complexity, software 
and systems engineering approaches propagate a structured, well-defined 
design process consisting of several steps based on abstraction and 
refinement techniques (e.g., [Sage and Rouse 2009, Sommerville 2010]). 

Abstraction allows the designer to concentrate on the essentials of a 
problem. Refinement adds detail to abstract models while preserving 
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properties established on the more abstract level. In other words, a more 
concrete description of a design entity also has to fulfill all requirements 
of the abstract design entity it has been derived from (see Section 3.4.1). 

Following the principle of separation of concerns [Dijkstra 1976, Tarr 
et al. 1999], the concept of viewpoints that provide artifacts and rules for 
describing different views of the system under development should be 
supported. A view is created by a set of models that describe the system 
under development and/or its parts, and is related to a viewpoint (see 
Section 3.4.2).  

In a complex design process, it is important to have a clear idea of 
decomposition in order to be able to ensure that the final implementation 
meets the requirements. A decomposition relationship within the SPES 
modeling framework introduces a level of interconnected subparts whose 
collaboration shall provide any functionality the decomposed unit shall 
provide. Engineering activities for the single parts should be largely 
independent of each other: firstly, to simplify work by limiting the 
required focus of attention, and secondly to enable development in a 
distributed fashion. Another point to note is that parts can be exchanged 
consistently provided that the part's original specification is also fulfilled 
by the new part (see Section 3.3). 

While many modeling approaches partially support such concepts, 
they often do not cover the whole engineering space from initial 
requirements down to a final implementation. This means, for example, 
that these approaches cannot continuously consider crosscutting system 
properties (see Section 3.3) as they do not support traceability in the 
design process. Furthermore, none of these approaches consider a well-
defined combination of abstraction layers and viewpoints at all. It is the 
aim of this work to provide a modeling framework that does not suffer 
from these shortcomings.  

In our approach, abstraction layers and viewpoints form a two-
dimensional engineering space (see Fig. 3-1). Based on well-understood 
software engineering approaches, the SPES modeling framework focuses 
on the following viewpoints to support views, starting with solution-
neutral requirements through to concrete technical solutions: 
requirements (see Section 3.5.1), functional (see Section 3.5.2), logical 
(see Section 3.5.3), and technical (see Section 3.5.4). Note that our 
approach is not limited to these viewpoints in principle. For example, in 
other application scenarios a geometrical viewpoint is required 
[Baumgart et al. 2011]. The requirements, functional, and logical 
viewpoints are especially pertinent in software engineering, also for 
systems with no technical background. The need to also support a 
technical viewpoint is driven by the fact that the SPES modeling 
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framework considers software-intensive embedded systems in which the 
software is affected by the physical environment of the system and has to 
interact with (or react to) the surrounding technical system (see Section 
3.2). 
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Fig. 3-1 SPES Modeling Framework 

While the four viewpoints mentioned in the SPES modeling framework 
are the same for the different domains, the abstraction layers differ 
[Baumgart et al. 2010, Baumgart et al. 2011, Sikora et al. 2012]. For 
example, in the avionics domain, the abstraction layers aircraft, system, 
subsystem, sub-subsystem, component, and unit can be found, and in the 
automotive domain, the layers supersystem, system, subsystem, and 
hardware/software component. Hence, our approach abstracts from these 
different layers by supporting user-defined layers. 

The SPES modeling framework is designed to be independent of any 
application domain (e.g., automation, automotive, avionics, energy, and 
medical). It defines fundamental concepts and how these concepts are 
related to one another. Domain-specific metamodels are interpreted in 
these concepts, thereby making general analysis techniques available for 
the specific application domain. In the following, we provide an 
overview of the viewpoints in Sections 3.5.1 to 3.5.4. In Section 3.5.5, 
we consider the relationship between the viewpoints that allows the 
seamless integration of the viewpoints into a comprehensive modeling 
approach. 
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3.5.1 Requirements Viewpoint 

The goal of the requirements viewpoint is to support the requirements 
engineering process in a development project in eliciting, documenting, 
negotiating, validating, and managing requirements for the system under 
development. These requirements are derived from the system’s context. 
The context of the system comprises entities from within the 
environment of the system, such as users, stakeholders, and external 
systems, but also legal documents. It also comprises physical properties 
of the environment that affect the system or are affected by the system in 
some way. Since these context entities are hence related in specific ways 
to the system under development, they must also be considered when 
eliciting requirements. The requirements viewpoint provides a 
requirements artifact model that allows for a systematic consideration of 
the context, the entities therein, and the resulting requirements. The basic 
aim of the artifact model of the requirements viewpoint is to capture the 
requirements from the system’s context completely and correctly and to 
provide a means for structuring these artifacts on different levels of 
abstraction (cf. Section 3.4.1).  

The artifact model comprises a number of artifact types that are 
briefly explained in the following: 

 The context model regards the system as a black box and documents 
the context of the system under development. It provides the basis 
for systematically eliciting the requirements that the system under 
development must satisfy during operation in order to meet its 
overall purpose. Context models are well suited for use as a 
foundation when performing activities for validating the correctness 
of requirements (see [Weyer 2011]). 

 The goal model documents the stakeholders' goals with regard to the 
system under development (see [Levenson 2000, Lamsweerde 
2009]). Goals can be elicited by analyzing the system’s interaction 
with entities in the context and they serve as a rationale for more 
concrete requirements. 

 The scenario model documents examples of concrete interactions 
between the system under development and its context. Each 
scenario describes an example in which at least one goal is satisfied. 
Scenarios can also be used to elicit new system goals [Potts 1995, 
Yu 1997]. 

 The solution-oriented requirements model documents the concrete 
and complete technical requirements that the system under 
development has to realize in order to satisfy its purpose during 
operation. These requirements must be as precise as possible to serve 
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as a foundation for the realization of the system under development. 
For solution-oriented requirements models, the SPES modeling 
framework distinguishes between three complementary model types 
(see [Davis 1993]): the structural requirements model documents 
requirements that describe the structure of the information that is 
exchanged between the system and its environment; the behavioral 
requirements model describes the externally visible behavior of the 
system by documenting the externally recognizable state space and 
corresponding state transitions; the operational requirements model 
documents required system functions by considering the functional 
relation between incoming and outgoing flows of information as well 
as the necessary control flow. 

The requirements viewpoint is explained in detail in Chapter 4. 

3.5.2 Functional Viewpoint 

The purpose of a system is to offer a set of user functions [Broy et al. 
2007]. Typical systems offer a number of different user functions and 
each user function serves a specific purpose. A system function is 
characterized by a particular observable system behavior in terms of 
specific interactions between inputs to the system (e.g., via sensors or 
user actions) and outputs of the system (specific effects on actuators, 
general reactions). The observations are captured in terms of the primary 
events of the user function (see [Broy 2010]). 

An example of a user function in a car might be an adaptive cruise 
control (ACC) or a cooling control for the engine. In both cases, the 
behavior of the user functions can be defined via the inputs of the system 
from the environment and the outputs of the system to the environment. 
Thus, both user functions are user functions of the system Car. All user 
functions of the system Car are structured in the functional black box 
model within the functional viewpoint. In contrast to this notion, a 
functionality that is needed to fulfill the user function is not considered 
as a user function of the system Car. Let us assume that the ACC user 
function is realized such that at one stage, the input of different speed 
sensors has to be aggregated. We could consider SensorAggregation as a 
user function of the system Car as well. However, this is not our 
understanding of a user function in the SPES modeling framework. 
Instead, SensorAggregation is considered part of a description of an 
abstract realization of the system Car (cf. Section 3.5.3). These parts are 
called functions (in contrast to user functions) and are specified in the 
functional white box model of the functional viewpoint. As the name 
suggests, in the white box model, user functions of the black box model 
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are described by an abstract description of their realization. This 
differentiation will become clearer within the following sections about 
the functional viewpoint and its relation to the logical viewpoint. 

The functional viewpoint integrates the set of user functions into a 
comprehensive model of the system functionality. This functional model 
describes the system behavior as it is observed at the system boundary. In 
contrast to the requirements viewpoint, where requirements are captured 
with respect to a certain usage context and at a certain level of 
granularity, the models of the functional viewpoint integrate these 
requirements into a comprehensive system specification. This especially 
includes behavior that arises from the complex interplay of different user 
functions. 

We define the notion “user function” as a concept that has a specific 
purpose and corresponds to a determined behavior in the form of an 
interaction across the system boundaries. In addition, user functions 
typically have identifying names. The behavior of a user function can be 
captured by a behavior specification.  

If there are dependencies between user functions such that the output 
of a user function depends implicitly on the behavior of another user 
function, this is referred to as a functional dependency or feature 
interaction and we model this using modes. This will be discussed in 
Chapter 6. 

According to this idea, we describe the functionality of a system 
under development using functional hierarchies in which we combine 
user functions into functional groups. The leaves of the resulting 
hierarchical structure correspond to individual atomic user functions. A 
functional hierarchy specifies the functionality of the system under 
development at a specific level of abstraction. The granularity that is 
chosen for a function hierarchy depends on the choice and the skill of the 
developer. The more intelligently the functional hierarchy is chosen, the 
more independently the user functions can be described, and the clearer 
the functional dependencies between the user functions captured by the 
modes. 

3.5.3 Logical Viewpoint 

In order to realize the desired functionality that is specified in the models 
of the functional viewpoint, the developer has to think about a 
decomposition of the system under development into an architecture of 
logical components. The logical viewpoint describes this glass box 
structural decomposition of the system, whereas the functional black box 
model of the functional viewpoint in particular focuses purely on 
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describing the black box behavior (see [Schätz 2005]). The result is a 
description of the logical solution independent from any technological 
constraints. This description can be reused for multiple platforms. The 
reasons for decomposing the system under development into subsystems 
are manifold. In addition to mastering the complexity, further aims of the 
logical viewpoint are the division of labor and in particular, improving 
the capability of reuse. Grouping functionality that contributes to the 
realization of multiple user functions into one subsystem can save 
development costs and increase quality (see [Lim 2002]). 

A logical component architecture as described in the logical 
viewpoint consists of a number of logical components that are connected 
via logical channels. Logical components exchange data via their logical 
channels, in the sense of a data flow architecture. Logical architectures 
can be structured hierarchically such that coarse-grained logical 
components are themselves again broken down into fine-grained logical 
components. At the level at which subsystems should not be further 
broken down, they can in turn be described by behavior description 
techniques such as state machines with input and output. The 
decomposition of a system into logical components is a starting point for 
the next iteration of eliciting requirements and defining user functions for 
each logical component. 

The behavior of individual logical components can—similar to user 
functions—be represented by behavior descriptions (e.g., state 
machines). These behavior descriptions implement the individual logical 
components and their logical behavior. If we manage to capture all of 
these logical components in their logical behavior using state machines, a 
purely logical system simulation can be performed. 

An important question is how the relationship between the user 
functions and the logical components of the logical component 
architecture can be used methodically. Typically, only a portion of the 
logical component architecture is needed to provide a specific user 
function. We can thus define micro-architectures that show the portion of 
the logical component architecture that is relevant for a user function. 
This is interesting insofar as it may ultimately determine which of the 
logical components are involved in the provision of a user function. 
Particularly appealing is the representation of the modes from the 
hierarchy to the level of logical structure and the function of their 
technical components. 
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3.5.4 Technical Viewpoint 

The technical viewpoint combines the software of the system under 
development with its hardware. It thus contains a description of the 
physical architecture. A deployment mapping specifies where software 
tasks of the logical viewpoint are executed and where and how logical 
subsystems are realized. The viewpoint considers aspects such as timing, 
resource consumption, and redundancy insofar as these have not been 
addressed before. 

The main goals of the technical viewpoint are: 

 Providing a description of the target hardware, with ECUs, memory, 
communication infrastructure, and peripheral devices 

 Fixing the deployment of software modules  
 Realizing logical subsystems 
 Studying the interaction of software and hardware 
 Ensuring that the behavior conforms to the specifications of the 

logical viewpoint, and that constraints concerning timing, 
independency, etc. are observed 

The technical architecture comprises components for information 
processing (including communication) and their connection to the 
environment via sensors and actuators. The nature of the controlled 
system may have a considerable impact on the structure of the 
architecture and the characteristics of the information-processing 
components. These components will usually be described in the form of 
models abstracting from the details of the actual components that are 
used. The models also cover relevant services of operating systems, 
middleware, and so on. There are elaborated domain-specific approaches 
such as AUTOSAR (automotive) or IMA (avionics) that will often be 
employed. 

The realization of the logical viewpoint via the deployment mapping 
results in a description of the system close to its final implementation. 
Therefore, properties that have been specified abstractly in previous 
engineering steps must be shown to have been realized in the technical 
architecture. Most prominently, these concern resource consumption, 
timeliness, and issues such as reliability and availability. For instance, 
tasks may be regarded as independently executable in the models of the 
logical viewpoint. However, if they are allocated on the same computing 
resource, they now have to be scheduled in a way that is consistent with 
all requirements. Communication, which was modeled as point-to-point 
and without delay in the logical viewpoint, has to be shown as 
appropriately realized by shared media such as busses. 

Goals 
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Thus, the technical viewpoint studies the properties of the final 
implementation and has to establish that the physical realization meets all 
logical requirements. 

3.5.5 Relation between Viewpoints 

The requirements viewpoint introduces context factors, such as external 
stimuli or usage factors imposed by users or other systems, into the 
development process and establishes them as part of the requirements of 
the system under development. It therefore serves as a starting point for 
other viewpoints in the SPES modeling approach, as it specifies 
requirements that must be adhered to by other viewpoints. For example, 
solution-oriented requirements models of the requirements viewpoint 
must be fulfilled by user functions that are integrated in the functional 
hierarchy developed in the functional viewpoint. Furthermore, the 
external interfaces specified in the context models must correspond to 
logical (external) interfaces in the functional viewpoint as well as in the 
logical viewpoint. However, this is not a strict top-down process. 
Subsequent development activities in other viewpoints may require 
artifacts from the requirements viewpoint to be altered, modified, 
removed, or extended. Furthermore, the system context may also directly 
affect viewpoints other than the requirements viewpoint. For example, if 
the system to be developed has to be integrated into an existing 
environment consisting of legacy systems, these systems will inevitably 
affect the technical viewpoint.  

The logical viewpoint describes the internal logical structure of the 
system by means of communicating logical components. Thus, the 
viewpoint considers the system in a glass box view in contrast to the 
functional viewpoint where the system is considered as a black box. The 
relation between a user function (from the functional viewpoint) and a 
logical component (from the logical viewpoint) is often mixed up. A user 
function formalizes a part of the requirements that a system must fulfill 
at its boundary, whereas a logical component captures a part of 
functionality that lies within a system and that contributes (among other 
things) to the realization of a user function. In general, there is an n:m 
mapping between user functions and logical components. This means 
that one user function can be realized by a number of logical 
components, and one logical component can contribute to the realization 
of a number of user functions.  

Fig. 3-2 illustrates the relation between these two notions. As shown, 
the system under development S is structured into a hierarchy of user 
functions (functional black box model). For each user function, there is a 
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functional white box model. The figure only shows the functional white 
box model for user function UF1. The functions of the white box model 
are allocated to logical components in the logical viewpoint. The logical 
component LC1 itself can in turn also be considered a system under 
development in the next lower abstraction layer. We can again provide a 
functional black box model (with function F1 as one of the user 
functions), functional white box models, and a logical component 
architecture for the SUD LC1. 

 
Fig. 3-2 Relation between the functional and logical viewpoints across 

abstraction layers 

At the core of the relation between the logical and the technical 
viewpoints is the deployment mapping. It specifies where and how 
logical components are realized on the technical architecture: which 
technical parts (ECUs, busses etc.) are involved in implementing such 
logical components, which communication resources are used in their 
interaction, and so on. Once the deployment is specified, a check is 
required to determine whether properties established for the logical 
viewpoint remain valid in the technical viewpoint. A typical issue that 
arises is schedulability, for instance, when several software tasks have 
been allocated to one ECU. The availability of features of the target has a 
considerable impact on the form of the deployment mapping and the type 
of analyses to be performed. Platforms such as AUTOSAR provide an 
abstraction layer that alleviates several of these tasks. Another issue in 
this design step concerns requirements inherited from previous steps that 
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now have to be implemented. For example, redundancy, reliability, and 
independence usually have to be taken care of when moving to the 
technical viewpoint. 

3.6 Underlying Modeling Theories 
The SPES modeling framework is founded on several formal modeling 
theories and uses these theories’ basic concepts in a continuous modeling 
approach. However, the SPES modeling framework was not based on 
one single specific theory and may be formalized using any of the 
underlying modeling theories. The aim of this was to allow practitioners 
to tailor the SPES modeling approach for different development projects 
and to allow for a maximum of flexibility in formalization. The 
underlying modeling theories are briefly summarized below. 

The SPES modeling framework supports the use of formalized 
notions but does not force it. In the requirements viewpoint, for example, 
to document scenarios, informal sequence charts can be used in addition 
to formal message sequence charts [ITU 2004]. While informal sequence 
charts are mainly used for describing and discussing the system’s 
functions and behavior with stakeholders, formal message sequence 
charts may be used to specify strict and formal solution-oriented 
requirements consistent with different components. 

Similarly, in order to integrate different architecture viewpoints 
(functional, logical and technical), formal semantics can be used. 
Therefore, at least two different formal modeling theories have been 
developed that fit the SPES modeling approach. One modeling theory 
describes modeling entities such as functions, subsystems, or technical 
components using stream processing functions. In this theory, a stream 
processing function describes the behavior of an entity at its interface in 
terms of input and output data streams (see [Broy 2010]). Another 
modeling theory describes modeling entities as heterogeneous rich 
components [Damm et al. 2005], where the term “rich” alludes to the key 
ingredient of heterogeneous rich components to provide (rigorous) 
interface specifications for multiple aspects, encompassing both 
functional and extrafunctional (e.g., safety and real-time) characteristics 
of components. Specifically, the proposal is to use contract-based 
specifications that allow, for each aspect, characterization of the allowed 
design context of a component. 

Besides the different formal modeling theories that can be chosen 
electively, there is a common understanding that forms the foundation of 
the complete SPES modeling framework with all of its views. The SPES 



3.7 Overview of the Following Chapters 47 

modeling framework distinguishes between the system under 
development and the system’s context. Whereas modeling the context is 
a key element of the requirements viewpoint, the different architectural 
views focus on modeling the interfaces connecting the system with its 
context. The system may be decomposed into subsystems or components 
with their own contexts. The context of a subsystem, for example, will 
contain the context of the overall system as well as the other subsystems 
of the system. 

3.7 Overview of the Following Chapters 
All four viewpoints of the SPES modeling framework are explained in 
more detail in the following chapters. Chapter 4 outlines the 
requirements viewpoint and illustrates how requirements from the 
context can be documented and refined by means of requirements 
models. The functional viewpoint is explained in Chapter 5 and shows 
how the requirements models from the requirements viewpoint can be 
refined into a functional architecture of the system that fulfills the 
solution-oriented requirements. Chapter 6 describes the logical viewpoint 
that allows specification of a logical architecture that consists of internal 
and external interfaces of the system in compliance with the system 
requirements as well as the functional architecture. Finally, Chapter 7 
illustrates the technical viewpoint. This viewpoint maps a logical 
architecture onto concrete physical and technical components such that 
the system requirements are fulfilled.  

Safety and real-time are two very important concerns of embedded 
system development. These concerns are crosscutting and have to be 
considered in every viewpoint on every abstraction layer that is used 
during development. Chapters 8 and 9 show how safety and real-time 
respectively are accounted for during the development within all 
viewpoints. 

All four viewpoint chapters and both crosscutting concerns illustrate 
their respective concepts by means of a common example system in the 
form of a case study. The case study is a cylinder head production system 
taken from the automation domain. The cylinder head production system 
is an assembly line that produces cylinder heads for gasoline engines. 
The system takes raw material that is fed into the production cell. It 
consists of an input and an output conveyor belt, a milling station, a 
grinding station, a measuring station, as well as an assembly station that 
finally delivers the finished product. Production of cylinder heads must 
obey strict real-time constraints, as material may only be processed under 
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the right physical conditions. Furthermore, system safety is an important 
concern that must be observed. 
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Requirements Viewpoint 

The requirements viewpoint defines concepts and techniques for systematically eliciting 
and specifying the requirements for a system under development. The requirements 
viewpoint differentiates between different artifact types that document different 
information elicited during requirements engineering: 

 Context, which documents the operational environment in which the system under 
development is embedded 

 Goals, which document stakeholder intentions with regard to the system under 
development 

 Scenarios, which document typical interactions between the system under 
development and its context 

 Solution-oriented requirements, which document the requirements for the system 
under development in a precise and complete manner 

 

51,.  K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_4, © Springer-Verlag Berlin Heidelberg 2012



52 Part II – Requirements Viewpoint 

4.1 Introduction to the Requirements Viewpoint 
The requirements viewpoint comprises the part of the SPES modeling 
framework that primarily deals with the accurate, complete, and 
consistent specification of system requirements. These requirements 
serve as input for functional analyses and architecture design (see 
Chapters 5 to 7). The goal of the requirements viewpoint is to: 

 Gain a comprehensive understanding of the system under 
development 

 Foster the best possible freedom in development by preventing 
premature commitment to possible solutions  

 Supply the necessary information such that decisions pertaining to 
concrete implementation can be made during subsequent architecture 
design 

In the requirements viewpoint, a strict separation between stakeholder 
intentions and solution-oriented requirements is maintained. In order to 
support this separation, the requirements viewpoint contains three 
solution concepts: 

 Solution-neutral requirements describe the intentions of the 
stakeholders and the added benefit that can be gained for the 
stakeholders [Leveson 2000]. Concrete aspects of a possible solution 
are ignored. 

 Solution-oriented requirements describe necessary properties of 
operations, system states, and the information structure, as well as 
qualities that a solution must possess [Pohl 2010]. Solution-oriented 
requirements are the connection between solution-neutral 
requirements and concrete implementations. 

 The intertwined development of requirements artifacts is based on a 
goal-/scenario-oriented, step-by-step refinement of requirements 
from solution-neutral to solution-oriented requirements. Due to the 
step-by-step, artifact-based refinement, the intertwined development 
allows for traceability between requirements artifacts, ensures 
requirements consistency between the artifacts, and leads to 
completeness with regard to the requirements artifacts and the 
requirements specification. 

The requirements viewpoint documents a complete system requirements 
specification by means of partial diagrams. Therefore, each artifact 
model contains a number of different requirements diagrams (see Section 
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4.2). Due to the number of different requirements artifacts and their 
interrelations, the requirements viewpoint is very comprehensive as well 
as complex. Therefore, different model types are used. By using different 
model types within the requirements viewpoint, the corresponding view 
is constructed by integrating each model type based on common facts. 
Typical model types are goals and scenarios, as well as structural, 
operational, and behavioral models (see [Pohl 2010] and Section 4.2.4). 

The artifact model of the requirements viewpoint is explained below 
(Section 4.2). In addition, the integration of the requirements viewpoint 
with other viewpoints and abstraction layers of the SPES modeling 
framework is illustrated in Section 4.3. Finally, we outline a 
requirements engineering process across several abstraction layers: it can 
be used to systematically develop requirements of the system under 
development (SUD) and can be tailored for individual project needs 
(Section 4.4). 

4.2 Requirements Artifacts 
In this section, we briefly outline the artifact model of the requirements 
viewpoint. Each subsection outlines one artifact type and gives a short 
example. 

4.2.1 Context Model 

The context of the system is that part of the operational infrastructure 
that does not belong to the system (and therefore cannot be influenced 
during development) but surrounds the system once it has been deployed 
(and therefore strongly impacts the definition of requirements for the 
SUD). If the context of the SUD is not properly understood, it is 
impossible to properly define and interpret the requirements for the SUD 
[McMenamin and Palmer 1984, Davis 1993, Jarke and Pohl 1994, 
Hammond et al. 2001]. The requirements viewpoint therefore contains 
context models for modeling that part of the environment that influences 
the system. Context models can be used to document constraints from the 
physical environment of the system that limit the scope, solution space, 
or development process (e.g., the environment it will be deployed in, 
company-specific regulations, or laws and legislation that must be 
adhered to).  

Context models focus on the system’s desired interaction with its 
environment or, more precisely, its context entities [Weyer 2011]. 
Context entities are, for example, external actors, sensors, and other 
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systems in the environment that interact with the SUD. Each specified 
context entity must be present in at least one scenario model (see Section 
4.2.3) so that the SUD’s interaction with each entity can be assessed. 
Context models allow system goals to be determined and give a first 
impression about the SUD’s interaction with its context. In the SPES 
modeling framework, context models also define the interfaces of the 
functional black box model in the functional viewpoint (see Section 5). 
Further information on context models can be found in [Weyer 2011]. In 
the requirements viewpoint of the SPES modeling framework, a number 
of different types of context models can be used. For example, structural 
diagrams such as SysML block definition diagrams or internal block 
diagrams [OMG 2010a] can be used to document static/structural context 
information. On the other hand, dynamic aspects of the context can be 
documented using Petri nets [Reisig 1991] or communicating finite state 
machines [Lynch and Tuttle 1989, Alfaro and Henziger 2001].  

Fig. 4-1 shows an example of the context model of a simplified 
automation system as a SysML block definition diagram. The SUD (the 
<<block>> stereotype in the middle) is treated as a black box, that is, no 
internal properties are considered. There are a number of context entities 
(<<actor>> stereotypes) that communicate with the SUD, either 
receiving output from the SUD or producing input to the SUD. 
 

 
 

Fig. 4-1 Example of a context diagram 1 

                                                           

 
1 All figures in the requirements viewpoint have been modeled using Enterprise Architect®  
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Hint 4-1 lists the rules that have been defined in the requirements view 
for ensuring that the context of the SUD has been modeled completely 
and correctly. 

Hint 4-1: Rules for checking context models 
 Have all actors in the system context that receive output from or 

produce input to the SUD been considered? 
 Have all inputs that the SUD receives from the environment or from 

entities within the system context been considered? 
 Have all outputs that the SUD delivers to the system context or to 

context entities been considered? 

4.2.2 Goal Model 

Goal models document the intentions of stakeholders when they are 
conceiving the system. They represent a first manifestation of the 
stakeholders’ system vision. Goals give rationales and justifications for 
the functionalities and features the system must possess. Goals ignore 
concrete aspects of the solution and hence serve as an essential means for 
negotiating requirements and their necessity with regard to the system 
envisioned. The purpose of negotiating requirements on the basis of 
goals is to establish a common understanding of the envisioned among 
all stakeholders. In addition, goals can be used to document necessary 
quality aspects such as the system’s safety features (see Chapter 8) or 
real-time behavior (see Chapter 9) that in turn will be specified using 
solution-oriented requirements (see Section 4.2.4). 

In goal models, relationships can be identified between goals, 
functions, and qualities. For example, goals might be in direct conflict 
with one another (i.e., fulfilling one goal will make it impossible to fulfill 
a conflicting goal), or the fulfillment of goals may contribute positively 
or negatively to the fulfillment of another goal (i.e., make it easier or 
harder to achieve the other goal). In addition, goals can be refined using 
AND and OR refinements: AND refinements denote that a number of 
refining goals have to be fulfilled in order to fulfill the refined goal; OR 
refinements denote that at least one of the refining goals has to be 
fulfilled in order to fulfill the refined goal. Furthermore, we can 
distinguish between hard and soft goals. Hard goals are goals whose 
fulfillment can be verified by means of simple yes/no checks (i.e., either 
the goal has been fulfilled or not). In contrast, soft goals represent goals 
that the system to be developed fulfills to a certain degree.  

Rules for checking 
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refinement 
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Goals can be determined in part from the context model but also through 
stakeholder collaboration. Typical stakeholders who may contribute 
goals to a system are clients, contractors, product managers, business 
managers, technical leaders, certifiers or certifying authorities, or the 
legislative authority. Goals and goal modeling are explained in more 
detail in [Yu 1997, Lamsweerde 2009, Pohl 2010]. In the requirements 
view of the SPES methodology, KAOS goal diagrams, i* models, or 
SysML requirements diagrams can be used to model this artifact type. 

 

 
 

Fig. 4-2 Example of a goal diagram 

Fig. 4-2 shows the goal diagram of an example system using the KAOS 
notation [Lamsweerde 2009]. The goals are structured hierarchically 
through AND and OR refinement. In this diagram, the top-most soft goal 
is refined by means of two alternatives (OR refinement). One alternative 
consists of two hard goals that both have to be fulfilled for the soft goal 
to be fulfilled (AND refinement). However, there is a conflict between 
these two goals, which may indicate that this alternative is not a suitable 
refinement of the soft goal. The other alternative also consists of two 
hard goals (one of which is also a refinement of the other alternative) that 
both have to be fulfilled for this alternative to be a valid refinement of 
the soft goal (AND refinement). The diagram shows a contribution link 
between the two goals in this alternative, indicating that the fulfillment of 
one goal positively contributes to the fulfillment of the other goal. Hence, 
this alternative is preferable over the other alternative. 

Hint 4-2 lists the rules that have been defined in the requirements 
viewpoint for ensuring that all goals for the SUD have been modeled 
completely and correctly. 

 
 
 

Sources of 
goals/stakeholder 

intentions 

Example of a goal 
diagram 



4.2 Requirements Artifacts 57 

Hint 4-2: Rules for checking goal models 
 Have all hard goals of stakeholders been captured? 
 Have all soft goals of stakeholders been captured? 
 Have all abstract (hard or soft) goals been refined using AND and OR 

refinements? 
 Have all positive and negative contributions from one goal to another 

goal been uncovered and documented? 

4.2.3 Scenario Models 

Scenarios specify example interactions of the system with its context. 
They allow requirements to be determined by modeling the system's 
interaction with context entities that have been identified in the context 
models (see Section 4.2.1). This enables the system's benefit and impact 
on the system context to be assessed. The actors that are present in any 
scenario model must be present in at least one context model that has 
been specified earlier. Scenarios fulfill the goals that have been specified 
in the goal models (see Section 4.2.2). In the requirements viewpoint, 
any goal has to be fulfilled by at least one scenario and every scenario 
must fulfill at least one goal. Scenario execution is typically constrained 
by preconditions. After scenario execution, specific postconditions must 
hold for the entire system. Furthermore, scenarios may specify some 
internal states that can be used to draft an initial specification of the 
behavioral requirements models of solution-oriented requirements (see 
Section 4.2.4). In scenario models, similarly to the goal models, the 
system is considered as a black box. Hence, there must not be any 
indication within either model that depicts the internal structure of the 
SUD. We can distinguish between different types of scenarios, for 
example: 

 Main scenarios: Main scenarios describe the standard way of 
fulfilling one or more goals. 

 Alternative scenarios: Alternative scenarios describe alternative 
ways of fulfilling the same goals as in the corresponding main 
scenario. Alternative scenarios may also be used for error handling 
in cases in which the associated goals can still be fulfilled. 

 Exception scenarios: Exception scenarios describe how the system 
must react in the case of a critical error during scenario execution 
that prevents fulfillment of the associated goal. Exception scenarios 
place particular emphasis on error recovery rather than on goal 
fulfillment. 

Example interactions 
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Additional information on scenario modeling can be found in [Pohl 
2010] and [Potts 1995]. In the requirements viewpoint of the SPES 
modeling framework, SysML sequence diagrams [OMG 2010a] or ITU 
message sequence charts [ITU 2004] can be used to model this artifact 
type. During the requirements engineering process, it may be useful to 
model multiple scenarios. Scenarios can be structured using use cases 
([OMG 2010a, OMG 2010bCockburn 2001 ], and use cases can be 
related to one another, for example, by means of include and extend 
relationships) or hMSCs [ITU 2004]. However, when using structuring 
scenarios in this way, the scenario specification must therefore document 
a complete behavioral specification.  

Fig. 4-3 shows a SysML sequence diagram with a scenario model. 
The diagram depicts a scenario for executing a production process. This 
scenario fulfills one goal from Fig. 4-2. Furthermore, the model in Fig. 
4-3 specifies five states that the SUD adopts during this interaction (for 
details, see Section 4.2.4). 

Hint 4-3 lists the rules that have been defined in the requirements 
viewpoint for ensuring that the scenario artifacts have been modeled 
completely and correctly. 

Hint 4-3: Rules for checking scenario models 
 Has a precondition been specified for each scenario? 
 Does every scenario describe the entire interaction necessary to fulfill 

one or more goals? 
 Does every scenario account for all actors that interact with the system? 
 Have postconditions been specified for every scenario? 

 

Structuring scenarios 
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Fig. 4-3 Example of a sequence diagram 

4.2.4 Solution-Oriented Requirements Model 

Solution-oriented requirements are solution-specific descriptions of 
behavior, operations, and the information structure of the solution 
concept developed (see [Pohl 2010] and [Davis 1993]). They thus 
represent a first step towards the implementation. Solution-oriented 
requirements consist of a structural requirements model, an operational 
requirements model, and a behavioral requirements model. Solution-
oriented requirements can thus be derived from scenario descriptions as 
scenarios may specify states that the SUD adopts after a certain 
interaction sequence has been executed. Furthermore, the operational 
requirements model and the structural requirements model of solution-
oriented requirements can be derived in part based on scenarios and the 
context model, as both specify information that is exchanged between the 
SUD and the context and show how information is transformed from 
input to output.  

All three types of solution-oriented requirements models are 
developed complementarily as they present separate but interrelated 
aspects of the same SUD. A more detailed explanation of solution-
oriented requirements is given in [Pohl 2010].  

In the requirements viewpoint of the SPES modeling framework, 
SysML block definition diagrams can be used as static/structural models, 

Complementary 
development of the 
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SysML activity diagrams can be used to model operational requirements 
models, and SysML state machine diagrams can be used to model 
behavioral requirements models. In the following sections, an example is 
given for each model type along with a brief explanation and the rules for 
checking each model type. 

Structural Requirements Model 

Fig. 4-4 shows an information structure model for an example system as 
a SysML block definition diagram. As shown, the static/structural 
requirements model gives a closer account of the information that is 
exchanged along the interfaces in the context model (see Section 4.2.1) 
and in part by the scenario model (see Section 4.2.3). Static/structural 
requirements models must therefore be defined consistently to both 
artifacts and can be used to document relationships between the objects 
pertaining to the information structure and other artifacts. For example, if 
a context model specifies the object “work piece data” to be exchanged 
between the SUD and its context, structural requirements models can be 
used to refine what information item “work piece data” consists of, e.g.: 
material type, length, width, height, and weight. 

 
 

Fig. 4-4 Example of an information structure diagram 

Hint 4-4 lists the rules that have been defined in the requirements 
viewpoint for ensuring that the structural requirements models have been 
modeled completely and correctly. 
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Hint 4-4: Rules for checking structural requirements models 
 Have all inputs to the system from the context and its context entities 

(as specified in the context and scenario models) been accounted for? 
 Have all outputs from the system to the system context and context 

entities (as specified in the context and scenario models) been 
accounted for? 

 Have all information structures that are specified in behavioral and 
operational requirements models been documented? 

 Have useful, non-trivial relationships (such as generalizations, 
aggregations, compositions) been introduced between information 
objects? 

Operational Requirements Model 

Fig. 4-5 shows a SysML activity diagram as an example of an 
operational requirements model. This artifact type models operations that 
are derived by assigning user functions to the goals specified in the goal 
models (see Section 4.2.2) with reference to the interactions specified in 
the scenario models (see Section 4.2.3). Operational requirements models 
can therefore be seen as the solution-specific counterpart of the solution-
neutral scenario artifacts. Consequently, the operations specified in the 
operational requirements models implement the functionalities that can 
be experienced by context entities (i.e., actors or external systems) 
through the interfaces that the system has with the context entities. As a 
result, the interfaces specified herein must be consistent to the interfaces 
specified in context models (see Section 4.2.1). This is similar to the 
functional black box model in the functional viewpoint (see Section 5), 
however, in contrast to the functional viewpoint, operational 
requirements models are partial requirements models that document the 
system’s interaction with the context in more detail than scenario models. 
On the other hand, the functional viewpoint documents the entirety of the 
system’s functions in order to foster analysis. As a consequence, artifacts 
specified in the functional viewpoint are based on the solution-oriented 
requirements models, particularly on the operational requirements 
models. 
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Fig. 4-5 Example of an operational requirements diagram 

Hint 4-5 lists the rules that have been defined in the requirements 
viewpoint for ensuring that the operational requirements models have 
been modeled completely and correctly. 

Hint 4-5: Rules for checking operational requirements models 
 Have all relevant system functionalities that have to be implemented by 

the SUD to fulfill its goals been considered? 
 Have inputs and outputs been defined for every operation in the 

operational requirements models? 
 Are the specified interfaces consistent to the interfaces in the context 

models? 

Behavioral Requirements Model 

Behavioral requirements models can be used to specify preconditions 
that must be in effect for system operations to be executed or 
postconditions that have to be fulfilled after an operation has been 
executed. Fig. 4-6 shows an example of a behavioral requirements model 
as a SysML state machine diagram. In this diagram, the states were 
partially derived from the scenario models (see Section 4.2.3). 
Transitions were also derived from the scenario models and completed 
during the specification of the requirements artifact at hand. Since the 
white box model of the functional viewpoint (see Chapter 5) uses state 
machines for specifying the internal behavior of functions, those 
behavioral models are based on the behavioral requirements models of 
the requirements viewpoint. 
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Fig. 4-6 Example of a behavioral requirements diagram 

Hint 4-6 lists the rules that have been defined in the requirements 
viewpoint for ensuring that the behavioral requirements models have 
been modeled completely and correctly. 

Hint 4-6: Rules for checking behavioral requirements models 
 Have all trigger events been considered in the behavioral requirements 

models? 
 Have all system states and transitions of the SUD been considered? 
 Do the behavioral requirements models specify preconditions and 

postconditions for scenarios?  
 Do the behavioral requirements models specify activation conditions for 

operations? 

4.3 Integration in the SPES Modeling 
Framework 

This section gives an account of why some model types can be used in 
multiple viewpoints and how these model types have to be interpreted in 
the viewpoints (Section 4.3.1). Furthermore, this section explains how 
the requirements viewpoint can be integrated into the SPES modeling 
framework with regard to other viewpoints (Section 4.3.2) and different 
abstraction layers (Section 4.3.3). Hint 4-7 gives a short summary of 
correspondence rules that ensure consistency between the artifacts 
developed in each step. 

Rules for  
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Hint 4-7: Correspondence rules 
Context models  scenario models 

 Each actor included in any scenario has to be included in the context 
model 

 Each actor included in the context model has to be included in at least 
one scenario model 

 Inputs and outputs between the SUD and any actor have to be consistent 
in context and scenario models 

Goal models  scenario models 
 Each scenario has to be related to at least one goal 
 Each goal has to be fulfilled by at least one scenario 

Goal models  requirements models 
 For each goal, system properties (functions, behavior, information 

structures) have to be defined in the requirements models related to the 
goal for fulfillment 

 Each property documented in the requirements models must be related 
to at least one goal 

Scenario models  requirements models 
 Each scenario must be capable of being processed based on the 

requirements models 
 The inputs and outputs from the scenario models have to be consistent 

with the requirements models 
Between requirements models 

 The entry condition for each function defined in the function model has 
to be defined in the behavior model 

 The information structure of the inputs and outputs of functions in each 
function model have to be defined in the information structure model 

 The state-based actions and the transition-based actions belonging to the 
behavior model have to be described as functions in the function model 

4.3.1  Use of Models across Viewpoints 

The various model types used in the requirements viewpoint are also 
used in the other viewpoints. However, depending on the viewpoint, the 
model types have vastly different meanings and document entirely 
different information. For example, if a statechart were used in both the 
requirements viewpoint and the logical viewpoint, the statechart in the 
requirements viewpoint would represent the captured requirements and 
would summarize a possible solution with regard to the requirements. On 
the other hand, in the logical viewpoint, the statechart would represent a 
part of the logical architecture and it would detail how the system will be 
implemented rather than how it could be implemented. Similarly, 
functional models are used both in the functional viewpoint and in the 
requirements viewpoint. While in the requirements viewpoint operational 
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requirements models represent a type of partial functional model, the 
functional viewpoint is more concerned with an integrated, functional 
view on the entire SUD. 

4.3.2 Integration across Viewpoints 

The requirements viewpoint is the starting point for the development 
process using the SPES modeling framework. Once requirements 
engineering activities in the requirements viewpoint have reached a 
satisfactory stability, the development process continues with the 
activities in the functional viewpoint (see Chapter 5). The functional 
viewpoint takes the scenario models and the solution-oriented artifacts 
from behavioral and functional requirements models as input and derives 
an approximate functional architecture that meets the requirements 
outlined in the artifacts. Further input from the requirements viewpoint is 
given to the logical and technical viewpoints (see Chapters 6 and 7 
respectively). The logical viewpoint takes the system context and goal 
artifacts from the requirements viewpoint and derives a logical 
architecture that meets quality requirements defined in these 
requirements viewpoint artifacts. These artifacts also provide quality 
requirements for the technical viewpoint. In addition, the technical 
viewpoint suggests a concrete hardware/software architecture based on 
the requirements, functional, and logical viewpoints. 

4.3.3 Integration across Abstraction Layers 

One key feature of the SPES modeling framework is the hierarchy of 
abstraction layers (see Section 3.4.1). Specifying requirements on 
different abstraction layers is a proven approach to reducing the 
complexity of development projects [Braun et al. 2010]. The 
requirements viewpoint therefore allows specification of all requirements 
artifacts. At each abstraction layer, the same set of artifacts is developed 
(i.e., context models, goal models, scenario models, and solution-
oriented requirements models; see Section 4.2). The abstraction layers 
differ from one another with regard to the level of detail contained within 
their respective requirements artifacts, such that some abstraction layers 
contain more coarsely specified requirements (in the following, called 
higher abstraction layers) and some layers contain more detailed 
requirements (lower abstraction layers). 

The logical and/or technical viewpoints structurally decompose the 
SUD into subsystems. The decomposed subsystems that are structurally 
significant (e.g., important control units or safety-critical subsystems) 
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become the new focus of development and are hence treated as if they 
were the SUD on the next lower abstraction layer. The requirements 
process (see Section 4.4) starts anew for all of these subsystems. 

4.4 The Requirements Process Model across 
Abstraction Layers 

The following briefly illustrates an idealized development process that 
outlines the development of the different artifacts over time.  

 1st Step: Analyze and document the system context: Firstly, the 
system context in which the SUD will be used is analyzed and 
documented. The context of any subsystem consists of relevant parts 
of the context of the SUD as well as other subsystems of the SUD 
that the subsystem under development interacts with. 

 2nd Step: Analyze and document goals: After modeling the system 
context, goals for the subsystem under development are elicited, 
documented, and negotiated with the stakeholders identified during 
context analysis. For the development of subsystems specifically, the 
documented goals must be consistent with those documented for the 
SUD. In detail, this means that the fulfillment of the goals of the 
SUD is dependent on the fulfillment of all goals of all of its 
subsystems. 

 3rd Step: Define and model the scenarios of system usage: After the 
context and goal models have been sufficiently documented, 
scenarios are used to describe possible ways to fulfill the goals. The 
scenarios and goals have to be related: each goal has to be fulfilled 
by at least one scenario and each scenario must fulfill at least one 
goal. The development of goals and scenarios is a highly iterative 
and incremental process. Scenarios may lead to further goals not 
discovered in the first step. New goals will lead to further scenarios. 
This process continues until no new goals or scenarios are 
discovered. Scenarios of any subsystems depict refinements of 
scenarios of the SUD. 

 4th Step: Specify solution-oriented requirements: Once the system 
scenarios are sufficiently documented, and each goal is fulfilled by 
one scenario, the solution-oriented requirements can be modeled. 
The system still considered as a black box. Use operational, 
structural, and behavioral requirements models to describe the SUD 
from the perspective of the context entities. Modeling should focus 
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on idealized system properties and essential interfaces of the system. 
Hence, the developed models should be neutral to specific 
implementation details, but should give closer accounts of how the 
aspects modeled in context, goal, and scenario models are achieved. 
The modeling of the SUD is a highly iterative and incremental 
process. It may be possible that, for example, new scenarios (i.e., 
scenarios missing from the second step) are identified during this 
step. These newly discovered scenarios may lead to new goals, and 
so on. This step terminates when no more changes are necessary in 
the artifacts. Quality requirements are documented relative to the 
appropriate solution-oriented requirements by means of appropriate 
annotations. In order to elicit these quality requirements, dedicated 
analysis steps may be necessary (see Chapter 9). 

4.5 References 
[Alfaro and Henziger 2001] L. de Alfaro, T. A. Henzinger: Interface automata. In: 

Proceedings of the 8th European Software Engineering Conference ESEC/FSE-9, 
2001. 

[Braun et al. 2010] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller, B. 
Penzenstadler, K. Pohl, T. Weyer: Guiding requirements engineering for software-
intensive embedded systems in the automotive industry. Computer Science - Research 
and Development. DOI: 10.1007/s00450-010-0136-y, 2010. 

[Cockburn 2001] A. Cockburn: Writing Effective Use Cases. Addison-Wesley, 2001. 

[Davis 1993] A. M. Davis: Software Requirements – Objects, Functions, States. 2nd Edition, 
Prentice Hall, Englewood Cliffs, New Jersey, 1993. 

[Hammond et al. 2001] J. Hammond, R. Rawlings, A. Hall: Will it work? In: Proceedings 
of the 5th IEEE International Symposium on Requirements Engineering (RE’01), IEEE 
Computer Society Press, Los Alamitos, 2001, pp. 102-109. 

[ITU 2004] International Telecommunication Union: ITU-T Z.120: Message Sequence 
Chart (MSC), 2004. 

[Jarke and Pohl 1994] M. Jarke, K. Pohl: Requirements engineering in the year 2001 – 
(Virtually) managing a changing reality. Software Engineering Journal, Vol. 9, No. 6, 
1994, pp. 257-266. 

[Lamsweerde 2009] A. van Lamsweerde: Requirements Engineering – From System Goals 
to UML Models to Software Specifications. Wiley, West Sussex, 2009. 

[Leveson 2000] N. Leveson: Intent specifications – An approach to building human-
centered specifications. IEEE Transactions on Software Engineering, Vol. 26, No. 1, 
2000, pp. 15-35. 

[Lynch and Tuttle 1989] N. A. Lynch, M. R. Tuttle: An introduction to input/output 
automata. CWI Quarterly, Vol. 2, 1989, pp. 219-246. 

[McMenamin and Palmer 1984] S. M. McMenamin, J. F. Palmer: Essential Systems 
Analysis. Prentice Hall, London, 1984. 



68 Part II – Requirements Viewpoint 

[OMG 2010a] Object Management Group: OMG Systems Modeling Language™ (OMG 
SysML) Language Specification v1.2. OMG Document Number: formal/2010-06-02. 

[OMG 2010b] Object Management Group: OMG Unified Modeling Language™ (OMG 
UML), Infrastructure v2.3. OMG Document Number: formal/2010-05-03. 

[Pohl 2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques. 
Springer, Germany, 2010. 

[Potts 1995] C. Potts: Using schematic scenarios to understand user needs. In: Proceedings 
of the ACM Symposium on Designing Interactive Systems – Processes, Practices, 
Methods and Techniques (DIS’95). ACM, New York, 1995, pp. 247-266. 

[Reisig 1991] W. Reisig: Petri nets and algebraic specifications. Theoretical Computer 
Science, Vol. 80, No 1, 1991, pp. 1-34. 

[Weyer 2011] T. Weyer: Kohärenzprüfung von Anforderungsspezifikationen: Ein Ansatz 
zur Prüfung der Kohärenz von Verhaltensspezifikationen gegen Eigenschaften des 
operationellen Kontexts. Südwestdeutscher Verlag für Hochschulschriften, 2011.  

[Yu 1997] E. Yu: Towards modelling and reasoning support for early-phase requirements 
engineering. In: Proceedings of the 3rd IEEE International Symposium on 
Requirements Engineering (RE’97), IEEE Computer Society Press, Los Alamitos, 
1997, pp. 226-235. 

4.6 Acknowledgements 
The authors would like to thank their former colleagues Dr. Kim 
Lauenroth (now with adesso AG) and Dr. Ernst Sikora (now with 
Automotive Safety Technologies GmbH) for their support in early phases 
of this research.  

 



 

Andreas Vogelsang 
Sebastian Eder 
Dr. Martin Feilkas 
Daniel Ratiu 

  5
 

Functional Viewpoint 

The major concern of the functional viewpoint is to provide a formal and model-based 
behavior specification for the system under development. Therefore, the viewpoint 
provides two model types that structure the behavioral requirements according to user 
functions and provide an abstract realization of these. A user function captures a set of 
solution-oriented requirements, as specified in the models of the requirements viewpoint, 
and integrates them into a functional black box model — a behavioral description of the 
entire system under development. By using formally founded models, the functional black 
box model provides the basis for detecting undesired interactions between user functions 
at an early stage of the development process. User functions are later refined by a 
functional white box model that decomposes a user function into functions that represent 
smaller units of functionality and provide an abstract realization of the user function. Due 
to the high level of abstraction, this viewpoint is a step towards closing the gap between 
semiformal requirements and a formal system design. 
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5.1 Introduction 
The starting point for the functional viewpoint is a set of requirements 
for the behavior of the SUD provided by the models of the requirements 
viewpoint, especially the context model, the scenario models, and the 
behavioral requirements models (see Chapter 4). These models provide a 
complete set of requirements in a semiformal, model-based 
representation. The functional viewpoint provides two model types: the 
functional black box model, which formalizes the requirement models as 
user functions and integrates them into a comprehensive system 
specification [Broy 2010], and the functional white box model, which 
provides a decomposition of the user functions from the functional black 
box model into smaller functional units in order to give an abstract 
description of the realization of the user functions. 

The models that are provided by the requirements viewpoint describe 
requirements for the SUD from the view of a specific usage context. The 
functional viewpoint translates these partial usage models into the notion 
of user functions that define the intended system behavior, including all 
interactions and dependencies between them. Thus, the result of the 
functional viewpoint is a comprehensive system specification. 

Within the functional black box model, the requirements models are 
translated into user function hierarchies consisting of user functions and 
dependencies between them (see Fig. 5-1 for an informal representation). 
Each user function realizes a piece of black box functionality and is 
defined by its syntactic interface and its behavioral specification. The 
syntactic interface comprises the ports via which the user function is 
connected to its context, and the behavioral specification defines the 
messages exchanged on these ports. 

User functions may have quite complex functional requirements that 
may not even give any information about a possible solution for this 
requirement. In order to reduce this complexity and also to facilitate 
reuse of existing partial solutions, the user functions are refined in a 
functional white box model. This model consists of a set of functions that 
give an abstract solution of the functionality that is required by the user 
function. 

The functional 
viewpoint has two 

model types: 
functional black box 

model and functional 
white box model 

A user function 
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user functions and 
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Fig. 5-1 Informal representation of a user function hierarchy: user 

functions are composed into more complex user functions 
taking account of their dependencies (dashed horizontal 
arrows) and finally into the specification of the entire SUD. 

5.2 Concerns 
The central aims of the functional viewpoint are: 

 Consolidating the functional requirements by formally specifying the 
requirements of the system behavior from the black box perspective 

 Mastering feature interaction: detection and resolution of 
inconsistencies within the functional requirements 

 Reducing complexity by structuring the functionality hierarchically 
from the user's point of view 

 Understanding the functional interrelationships by collecting and 
analyzing the interactions between different (sub-) functionalities. 

The functional viewpoint provides a hierarchically structured 
specification of the SUD behavior as it is perceived by the user at the 
system boundary (also known as usage behavior). In this context, a user 
may be a person but also another system. The functional viewpoint 
comprises the formal definition of the SUD interface with surrounding 
systems and users. The behavior of the entire SUD is then specified from 
the black box perspective by describing the exchange of messages 
between the SUD and its context. Here, the abstract data flow is 
specified, namely the intentional meaning of the exchanged data (as 

Aims of the functional 
viewpoint 
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opposed to the concrete message types). By formally describing the 
requirements, we create the basis for measuring the completeness of and 
detecting inconsistencies in the requirements, especially for interacting 
requirements of different functions (cf. feature interaction [Zave 1993]). 

The overall system functionality can be obtained from the 
composition of user functions (with respect to the dependencies between 
them). Here, the decomposition/structuring is not guided by architectural 
or technical aspects but is executed merely along the functional aspects 
required by the users. 

Thus, an informal requirement can be realized by one or several user 
functions and a user function can realize one or more informal 
requirements. The structuring and refinement of the requirements models 
in the functional viewpoint makes it possible to analyze existing 
requirements and thus to detect and resolve inconsistencies (e.g., feature 
interaction) and missing requirements. 

5.3 Functional Black Box Model 
The central construct of the functional black box model is a user function 
that defines a part of the behavior of the SUD that can be observed at the 
system boundary. Fig. 5-2 shows how user functions are related to the 
black box interface of the SUD. Consequently, a user function does not 
contain any information about how it is implemented in the SUD.  

 
Fig. 5-2 The system interface is structured into three user functions that 

all comprise a subset of input and output channels and their 
related behavior.  

Each user function has a syntactic interface that consists of a number of 
typed ports that are either input ports or output ports. In general, input 
and output ports define messages that an actor sends to the SUD or 
receives from the SUD. We also assign an interface behavior to each user 
function. A possible formalization of this notion can be found in [Broy 
2010]. 

The functional 
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independent from 
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User functions 
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Example 5-1: Transportation user function 
Fig. 5-3 and Fig. 5-4 illustrate a simple transportation belt user function. The 
user function has two input channels transmitting two values that indicate 
whether a work piece is present at the beginning or the end of the 
transportation belt. The output channel controls the transportation belt motor. 
The user function formalizes the requirement that the transportation belt shall 
be switched on if a work piece is present at the beginning of the belt but no 
other work piece is waiting at the end of the belt. The behavior specification 
is given by a simple table specification that maps input values to output 
values. The “?” character is an abbreviation for all possible values on this 
channel. 

 
Fig. 5-3 Syntactic interface of the Transportation user function 

 
Fig. 5-4 Interface behavior of the Transportation user function described 

by a simple I/O table that maps values of the input channels to 
values of the output channel 

Fig. 5-2 also reveals that user functions can have common input or output 
channels. This indicates a certain kind of dependency between user 
functions. This dependency expresses that a user function also needs 
information about another function’s state or input values to determine 
the correct output values. In order to model dependencies between user 
functions, we use special ports that connect user functions via a Mode 
Channel. These channels are called mode channels as they usually 
transmit values that represent an abstract state of the SUD — a mode. 

In principle, we could avoid the appearance of functional 
dependencies completely by explicitly all inputs ever relevant for a user 
function and its output behavior to syntactic interfaces. However, due to 
the high number of dependencies in a system, this leads to a completely 
confusing and unmanageable behavior. Therefore, it is better to capture 
the dependencies using modes. 

Mode channels 
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Example 5-2: Dependent crane user functions 
An automation system has two cranes that transport work pieces through an 
assembly line with six stations: Supply Belt, Milling, Grinding, Measuring, 
Assembling, and Delivery Belt. Two user functions steer the cranes. 
However, to avoid collisions, Crane 2 is not allowed to approach station 
“Measuring” when Crane 1 is approaching that station. Thus, the user 
function “MoveCrane2” depends on the state of the user function 
“MoveCrane1.” We model this dependency by introducing a mode channel 
“Crane1Position” and extend the behavior specification of the user function 
“MoveCrane2” to prevent the user function approaching the “Measuring” 
station if Crane 1 is approaching it. The resulting user functions and their 
behavior specifications are given by Fig. 5-5 and Fig. 5-6. 

        
Fig. 5-5 Syntactic interface and behavior specification of the user 

function “MoveCrane1.” The current position of the crane is 
propagated by the mode channel “Crane1Position.”  

 
Fig. 5-6 Syntactic interface and behavior specification of the user 

function “MoveCrane2.” Whether or not the crane can approach 
the “Measuring” station depends on the “Crane1Position” mode. 

We distinguish two kinds of user functions: atomic user functions and 
composite user functions. Composite user functions are composed of at 
least two subuser functions. User functions that are not decomposed are 
called atomic user functions. Atomic user functions must provide a 
behavior specification that defines their behavior observed at the system 
boundary. In a nutshell, atomic and composite user functions allow the 
developers to decompose the functional requirements, formalized as user 
functions, into a hierarchy of user functions. 

User function 
hierarchy 
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Example 5-3: User function hierarchy of the Automation system 
We can integrate the given user functions from Example 5-1 and Example 
5-2 into a comprehensive system that provides all the user functions. The two 
user functions “MoveCrane1” and “MoveCrane2” are composed to a 
composite user function “MoveCranes.” Fig. 5-7 visualizes this as a user 
function hierarchy. The syntactic interface and the interface behavior of the 
composite system are derived from the composition of the user functions. 
Fig. 5-8 illustrates the resulting syntactic interface of the automation system. 

 
Fig. 5-7 User function hierarchy of the composite Automation system. 

The dashed arrow represents the mode channel between the 
user functions “MoveCrane1” and “MoveCrane2.” The solid 
arrows indicate a subfunction relationship. 

 
Fig. 5-8 Syntactic interface of the composite Automation system, 

derived by the composition of the interfaces of the subfunctions. 
The mode channel between the user functions “MoveCrane1” 
and “MoveCrane2” becomes invisible when composing the user 
functions. 

All of the presented are taken from a comprehensive case study that has 
been modeled in SPES 2020 [Eder et al. 2011]. 

5.4 Functional White Box Model 
The second model type within the functional viewpoint is the functional 
white box model. The purpose of this model is to provide a 
decomposition of the user functions from the functional black box model 
into smaller functional units in order to give an abstract description of the 
realization of the user functions. These smaller functional units are called 
functions.  
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A function itself can be described by a syntactic interface with an 
associated interface behavior. This is an example of how we take 
advantage of a common underlying modeling theory in SPES that 
provides modeling concepts that are reused in each of the viewpoint 
models. The purpose of this decomposition is to master the complexity 
that arises from the black box specification, or, more specifically, the 
question of how the specified outputs will be computed from the given 
inputs.  

Example 5-4: Functional white box model for a user function 
In order to realize the behavior of the user function “MoveCrane2” as 
specified in Fig. 5-6, we have to decompose the user function into smaller 
functional units called functions. Fig. 5-9 shows the functional white box 
model for this decomposition. The user function is broken down into five 
functions. In contrast to the black box specification of the user function, the 
white box model already provides some information about the realization, 
e.g., the sensor values are read in separately and the control logic is 
encapsulated in a single function. 

 
Fig. 5-9 Functional white box model for the user function “MoveCrane2” 

The relation between the functional black box model and the functional 
white box model is as follows: the functions of the functional white box 
model together must show the same behavior as specified by the user 
function of the functional black box model. Therefore, it is necessary to 
provide a mapping between the inputs and outputs of the user function 
and the inputs and outputs of the functional white box model. This 
mapping can then be used to check whether the functional white box 
model conforms to the functional black box model.  

Function 
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Example 5-5: Mapping between black box and white box models  
The user function “MoveCrane2” from Fig. 5-6 has only one input for 
indicating the position of work pieces and this is called “PosIndicator.” The 
white box model as depicted in Fig. 5-9, however, has three inputs for 
indicating the position of work pieces: MESensor, ASSensor, and DBSensor. 
Therefore, in order to check whether the functional white box model specifies 
the same behavior as the functional black box model, mapping that maps the 
values of the inputs to each other is required. Fig. 5-10 gives this mapping in 
a tabular representation. 

 
Fig. 5-10 Tabular representation of the mapping between the inputs of 

user function “MoveCrane2” and its corresponding white box 
model 

Another important aspect of this white box model is reuse. The 
functionality that is captured by a function can be reused in several 
functional white box models. In our example, the “Read AS Sensor” 
function could be reused to decompose the user function “MoveCrane1.” 
In such scenarios it is particularly important to check the conformity of 
the composed white box model to the original specification of the user 
function because reuse bears the risk of incorrectly reusing certain 
functions. 

5.5 Analyses 
The functional viewpoint offers a model of the functionality of an SUD 
at a very early stage of development. Several analyses and evaluations 
can be performed on this model to verify and validate the functional 
requirements of the SUD. Validation of requirements in this sense means 
that the requirements are reasonable with respect to each other, i.e., no 
contradictions between requirements, no unintended behavior due to 
unintended interactions between requirements, or no missing 
requirements. In contrast, verification ensures that the behavior as 
described in the model of the logical viewpoint fulfills the behavior that 
is specified in the model of the functional viewpoint. 

In the following we outline some of the analyses that can be used for 
validation or verification:  
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If the behavior is specified by executable models (e.g., state machines), 
the models of the functional viewpoint provide a functional prototype of 
the SUD. This prototype can be used to run through certain actions and 
scenarios to validate the behavior of the SUD in cooperation with the 
user. Thus, unintended behavior can be revealed and evaluated. 

The functional black box model of the functional viewpoint also 
allows the detection of inconsistencies. Inconsistencies are input patterns 
that cause different functions to output conflicting values. This can be 
checked prior to execution and thus reveal contradicting requirements 
[Harhurin 2010]. 

At the beginning of development, requirements only define part of 
the entire functionality. During development, more and more 
requirements complete the system specification. The models of the 
functional viewpoint facilitate this process by showing input patterns for 
which no output is defined. These situations represent insufficient 
specification that should be discussed and possibly refined. 

The functional viewpoint models and formalizes the functional 
requirements and thus serves as a specification. In this role, the model of 
the functional viewpoint can be used as a testing oracle. Test cases can 
be generated from it to verify that a model of the logical viewpoint 
fulfills the specified behavior of the functional viewpoint. 

The model of the logical viewpoint describes the inner structure of 
the system that implements the user functions. Input and output ports of 
user functions can be linked to logical components that implement these 
user functions. This yields a tracing relation between user functions and 
logical components, allowing design faults to be detected and functions 
to be tested individually, and ensuring the implementation of all user 
functions [Vogelsang et al. 2012]. 

5.6 Integration in the SPES Modeling 
Framework 

Within the SPES modeling framework, the functional viewpoint is 
located between the requirements and the logical viewpoints. This 
section gives an overview of the relation and the differences between the 
functional viewpoint and its neighbors in the SPES modeling framework. 

The goal of the requirements viewpoint is to capture the requirements 
for the SUD and to document their relation to the context of the SUD. 
The result is a set of models that represent a variety of requirements for 
the SUD. These models are derived from abstract goals and information 
about the system's context. A crucial task is now to integrate all of these 
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requirements models into a system specification that is consistent and 
sound. This task is done in the functional viewpoint (at least for the 
requirements that refer to system behavior). The requirements models of 
the requirements viewpoint are captured and refined as user functions 
that the SUD offers to its context. The complex interactions that arise 
from the interplay of the requirements (feature interaction) are explicitly 
modeled in the functional black box model of the functional viewpoint. 
The result is an integration of the isolated requirements models from the 
requirements viewpoint into a comprehensive system model that 
describes the required system behavior at its boundary to its context and 
serves as a specification. Technically, this relation is realized by reusing 
and refining the models of the requirements viewpoint. The context 
model that is defined in the requirements viewpoint defines the syntactic 
interface of the SUD, i.e., the inputs from the environment as well the 
outputs of the SUD to the environment. This interface is authoritative for 
the definition of user functions. The syntactic interface of a user function 
must always be a subset of the syntactic interface of the SUD as defined 
in the context model. Moreover, a behavioral requirements model of the 
requirements viewpoint can initially be reused as behavior of a user 
function. When integrating all user functions, the behavioral models must 
be enriched with additional behavior that arises from the concurrent 
integration in the SUD. The scenario models of the requirements 
viewpoint serve as test cases and validation conditions for the functional 
black box model of the functional viewpoint. 

The model of the logical viewpoint describes the internal logical 
structure of the SUD by means of communicating logical components. 
Thus, the viewpoint considers the SUD in a glass box view in contrast to 
the functional viewpoint where the SUD is considered as a black box. 
The relation between a user function (from the functional black box 
model) and a logical component (from the logical viewpoint) is often 
confused. A user function formalizes a part of the requirements that the 
SUD has to fulfill at its boundary, whereas a logical component captures 
a part of functionality that lies within the SUD and that contributes 
(amongst other things) to the realization of a user function. In general, 
there is an n:m mapping between user functions and logical components. 
This means that one user function can be realized by a number of logical 
components, and one logical component can contribute to the realization 
of a number of user functions. As this gap is sometimes confusing and 
hard to manage, the functional viewpoint provides the functional white 
box model. In this model the user functions from the functional black 
box model are decomposed into functions that give an abstract solution 
for the realization of the user function. The functions are then mapped to 

Relation to the  
logical viewpoint 



80 Part II – Functional Viewpoint 

a logical component of the logical viewpoint. In this way, a logical 
component contains a set of functions that contribute to the realization of 
one or several user functions. 

Depending on what is considered the system under development on a 
certain abstraction layer, the functional black box model of the functional 
viewpoint provides a functional black box specification of the respective 
SUD. This model structures the interface specification of the system 
according to user functions of the system. As a consequence, we get new 
functional black box models for the functional viewpoint if we change 
the abstraction layer. In the uppermost abstraction layer, for example, the 
system is considered as a whole with one functional black box model that 
specifies the black box behavior of the system at its boundary. If we step 
into the next lower abstraction layer by decomposing the system into a 
number of logical components, each logical component can again be 
considered as a system (with a different context) and thus has an own 
functional black box model in the functional viewpoint. These models 
again specify the intended functional black box behavior for each logical 
component. An important perception here is to recognize that the user 
functions of the system in one abstraction layer do not have to be the 
same as the user functions of a logical component in the next lower 
abstraction layer. An example for this was already given in Section 3.5.2. 
In fact, the user functions of a logical component are heavily influenced 
by the functions of the functional white box model. When mapping the 
functions of the functional white box model to logical components, we 
determine user functions that the logical component must fulfill and that 
are part of the functional black box model of the logical component.  

5.7 The Functional Viewpoint Process 
In the following, we will give an idealized process through the functional 
viewpoint. Note that in reality, this process is highly iterative and also 
interweaved with the processes of the other viewpoints. It is also 
important to note that the requirements viewpoint process does not have 
to be completed before the functional viewpoint process is started, nor 
does the functional viewpoint process have to be completed before the 
process of the logical or technical viewpoint is started. Furthermore, we 
can divide the functional viewpoint process into building the functional 
black box model and building the functional white box model. We will 
start with the black box model that is subsequently refined in the white 
box model. 

Functional viewpoint 
and the logical 

Viewpoint across 
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In the first step, we use the solution-oriented requirement models from 
the requirements viewpoint to extract user functions for the SUD. 
Initially we can translate each behavioral model of the requirements 
viewpoint into one user function. Later we might find it useful to merge a 
set of behavioral models into just one user function. We make sure that 
the inputs and the outputs of the user functions conform to the syntactic 
interface as defined by the context model of the requirements viewpoint, 
i.e., the inputs and outputs of a user function are a subset of the inputs 
and outputs of the context model. Defining user functions is not a 
canonical step. There are a variety of possibilities for structuring a 
system according to user functions. However, a guiding principle is to 
define the different functions as they are perceived by the user (similar to 
the notion of a use case). 

Once we have a set of user functions we try to structure them in a 
user function hierarchy. We may also introduce new user functions that 
group a set of user functions as their subfunctions. There are multiple 
ways to arrange the user functions into a user function hierarchy. The 
user function hierarchy should again reflect a structure of the user 
functions as they are perceived by the user. Another goal of choosing 
user functions and arranging them in a user function hierarchy is to gain 
a manageable set of user functions that, on the one hand are not too 
complex to give their behavior as a behavior specification, but on the 
other hand do not have too many dependencies to other user functions.  

The next step is to specify an interface for each atomic user function 
in the user function hierarchy. This is done by providing both a syntactic 
interface by means of input and output channels of the user function and 
a behavior specification. Behavior specifications can be given by any 
specification technique that an interface behavior abstraction can be 
assigned to. Examples for such specifications are state machines [Broy 
2010], I/O tables [Thyssen and Hummel 2011], or data flow diagrams 
[Leuxner et al. 2010]. 

The next step is to model dependencies and resolve inconsistencies 
between the user functions. Inconsistencies between user functions can 
have many facets. For example, two user functions that share a common 
output channel are in a conflicting situation as they both write values to 
that output channel at the same time [Harhurin 2010]. Dependencies on 
the other hand can be intended or unintended. Intended dependencies 
represent desired interaction between user functions such as one user 
function interrupts another or works differently depending on results of 
another user function. Unintended dependencies arise from unconscious 
interplay between user functions. Inconsistencies and dependencies are 
modeled in the functional viewpoint by means of mode channels. Thus, 
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we extend the user functions’ interface with additional mode channels 
that transmit information necessary for resolving inconsistencies and 
modeling dependencies.  

The last step of the functional black box model is to extend the 
behavior specifications of the user functions with respect to the mode 
channels introduced. This means that we have to integrate the 
information that is provided by the mode channels into the behavior of 
the user function. For two conflicting user functions, for example, a 
mode channel between them resolves this conflict by transmitting the 
information that one user function is currently not allowed to send a 
value over the common output channel. 

From here, we start building the functional white box model. We do 
not have to wait for the black box model to be fully specified before 
commencing with the white box model. We could also start building 
parts of the white box model immediately after Step 1. We build a 
functional white box model for each atomic user function, and this model 
provides a high-level description of tasks that need to be performed in 
order to realize the user function and the data flow between these tasks. 
We capture such tasks as functions with a syntactic interface that defines 
the data that is processed and produced by the function and we 
additionally associate an interface behavior that specifies the behavior of 
the function.  

Finally, we need to ensure that the functional white box model 
conforms to the functional black box model and that this method is a 
valid realization for the user function. Therefore, we have to check that 
the composition of the functions in the functional white box model yields 
the same behavior that the user function from the functional black box 
model demands. Several methods, all with advantages and disadvantages, 
can be used for this purpose, for example, testing, model checking, or 
formal verification. 
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Logical Viewpoint 

This section provides an outline of the logical viewpoint. This viewpoint describes the 
internal logical structure and the behavior of the system under development (SUD). The 
main task in the logical viewpoint is the distribution of functions to a hierarchy of logical 
components. The main model type of the logical viewpoint is the logical component 
architecture: it describes the logical components of the system and their relationship. The 
structure of this logical component architecture is often influenced by nonfunctional 
criteria, e.g., maintainability or reliability. In contrast to the technical viewpoint, the 
logical viewpoint does not focus on the technical infrastructure provided, e.g., the 
controllers or communication devices used. 
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6.1 Introduction 
The logical viewpoint describes the logical structure and the distribution 
of responsibilities functionality of a system by means of a network of 
interacting logical components that are responsible for a set of functions. 
These logical components and their interactions are arranged in the 
logical component architecture of the system. The design of the logical 
component architecture is driven by various considerations, such as 
achieving maximum reuse of already existent components or fulfilling 
different nonfunctional properties of the SUD. The logical component 
architecture bridges the gap between functional requirements and the 
technical implementation. All examples in this chapter are taken from a 
case study modeled in SPES 2020 [Eder et al. 2011]. 

6.2 Concerns 
The main aims of the logical viewpoint are: 

 Describing the internal logical structure of the SUD by partitioning 
the system into communicating logical components 

 Allocating desired functions to cohesive logical units 
 Supporting the reuse of already existent logical components and 

designing the logical components such that future reuse is facilitated 
 Defining the total behavior of the system (as opposed to the partial 

behavior specifications in the models of the functional viewpoint) 
and enabling the complete simulation of the entire system 

The logical components should be designed to capture the central domain 
abstractions and to support reuse. As a consequence, the logical 
component architecture should be as insensitive as possible to changes in 
the desired user functionality or technical platform. It should be the 
artifact in the development process with the highest stability and with the 
highest potential for reuse. 

The functional black box model and the logical component 
architecture are two orthogonal structures of the system functionality. A 
brief comparison of both models is illustrated in Tab. 6-1.  

In contrast to the functional black box model, the logical component 
architecture does not emphasize the formalization of the functionality 
that can be observed at the system boundary, but rather the structuring 
and partitioning of the SUD into communicating logical components. 
The behavior of these logical components as a whole realizes the 
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behavior determined by the functional viewpoint. The connection 
between these two models is established by the functional white box 
model of the functional viewpoint. A logical component represents a unit 
that provides one or more functions of the functional white box model. In 
other words: the functions of the functional white box model are 
distributed to logical components.  

In the logical viewpoint, structuring is performed according to diverse 
criteria, such as the organizational structure within the company, 
nonfunctional requirements, or even according to the user function 
hierarchy of the functional black box model. However, it is important to 
note that the logical viewpoint abstracts from hardware details. 
Therefore, some (nonfunctional) requirements are better addressed in the 
technical viewpoint. Hint 6-1 summarizes the partitioning in the logical 
viewpoint. 

Hint 6-1: Partitioning in the logical viewpoint  
 A core activity in the logical viewpoint is the partitioning of functions 

into communicating logical components 
 Partitioning can be performed according to a user function hierarchy of 

the functional viewpoint, the organizational structure, or nonfunctional 
requirements 

 Hardware details are part of the technical viewpoint rather than the 
logical viewpoint 

The logical viewpoint provides a complete description of the system 
functionality, without, however, anticipating technical decisions with 
regard to implementation (e.g., the platform on which the logical 
components will be deployed). 

Tab. 6-1 Brief comparison of the functional black box model and the 
logical component architecture 

Functional Black Box Model Logical Component Architecture 

Problem domain Solution domain 

Black-box view of the SUD White-box view of the SUD 

Structured by user functions Structured by architectural entities 

Used primarily to specify what the SUD 
should do Used primarily to design the SUD 

Functional specification may overlap and 
must be checked for inconsistencies 
(horizontal decomposition) 

Network of communicating logical 
components (vertical decomposition). Their 
composition must be checked against the 
desired system functionality. 

Captures the functionality of the SUD Works as a first cut at design 

(Possibly) partial behavioral specification Total behavioral specification 

Partitioning in the 
logical viewpoint 



88 Part II – Logical Viewpoint 

6.3 Logical Component Architecture 
The logical component architecture is the main model of the logical 
viewpoint and consists of logical components. These logical components 
are decomposed into other logical components, which results in an 
acyclic hierarchical structure of logical components, i.e., a tree. The 
leaves of this tree are called atomic logical components and they are not 
decomposed further. 

Similarly to the models of the functional viewpoint, every logical 
component carries a syntactic interface consisting of typed ports that are 
either used for output or input. Input ports can be connected to output 
ports by channels and thus, logical components are linked together via 
channels.  

Logical components define these channels to connect their logical 
subcomponents. Every atomic logical component has to specify its (total) 
behavior. The behavior of an atomic logical component is defined 
directly (for example, using an automaton). The behavior of non-atomic 
components is derived from the composition of their subcomponents. 

  
Fig. 6-1  Example of a logical component architecture 

Example 6-1: User input controller 
Fig. 6-1 shows an example of a logical component architecture that is part of 
the model of the logical viewpoint. The architecture models a user input 
controller consisting of three logical components: OperationController, 
ModeController, and SystemOutput. The output ports are illustrated as black 
circles placed at the borders of the logical components. White circles depict 
input ports. The ports not drawn at the border of any logical component 
represent input or output ports to the next higher logical component in the 
hierarchy. Output ports are connected to input ports via channels, as depicted 
by the arrows. The labels next to the channels associate a name with the 
corresponding channel. Note that each channel has a specific type, but this is 
not shown in Fig. 6-1. 

Logical components 

Ports and channels 
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Hint 6-2: Using the metamodel of the logical viewpoint  
 Entities for the distribution of functions are logical components that are 

the basic building blocks representing the behavior.  
 Each logical component offers a syntactic interface that consists of 

(typed) ports. Ports can furthermore be input or output ports for a given 
logical component. 

 Communication between logical components is achieved by connecting 
output ports to input ports by means of channels for which the types of 
the ports must coincide. 

6.4 Analyses 
The logical viewpoint provides a model of the system design 
independent of any hardware decision. However, this model is expressive 
enough to allow a variety of analyses to be performed on it. Ultimately, 
the logical viewpoint aims at constructing models that are so close to the 
final implementation that the code can be generated completely from the 
models of the logical viewpoint. Further analyses that can be performed 
on the models of the logical viewpoint are: 

 Complete simulation: Since the model of the logical viewpoint 
defines a total system behavior, it allows comprehensive simulation 
of the SUD. While a simulation of the functionality is already 
possible in the functional viewpoint, the logical viewpoint also 
allows several nonfunctional properties to be checked (e.g., 
reliability and abstract timing constraints) by simulating the SUD. 

 Verification of system properties: Properties that have been specified 
previously (e.g., in the functional viewpoint) can be verified 
automatically using model checking techniques. 

 Test case generation: As the model defines the total behavior of the 
SUD, this enables test cases to be generated, for example, by 
following [Pretschner et al. 2004]. 

 Concurrency analyses: For a couple of years, there has been an 
ongoing paradigm shift from single-core towards multicore 
processors. Employing multicore architectures for embedded 
systems brings several advantages but also poses new challenges for 
software engineering. The logical viewpoint allows analysis of the 
logical component architecture in order to determine an adequate 
parallel hardware platform and an adequate deployment of logical 
components to hardware components. Thereby, adequacy can refer 
to several system requirements (e.g., response time, robustness, or 
hardware costs). 

Usage guidelines for 
the logical viewpoint 
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6.5 Integration in the SPES Modeling 
Framework 

Within the SPES modeling framework, the logical viewpoint resides 
between the functional and the technical viewpoints. This section gives 
an overview of the relation and the differences between the logical 
viewpoint and its adjacent viewpoints. 

6.5.1 Functional Viewpoint 

The functional white box model of the functional viewpoint describes an 
abstract solution of the system. The goal is to realize the desired 
functionality as specified in the functional black box model using a set of 
abstract functions. The logical components of the logical component 
architecture comprise a set of these abstract functions in order to 
structure them. Therefore, the functions of the functional white box 
model must be distributed to the logical components of the logical 
viewpoint. In addition to this direct relation, it is also possible to relate 
the logical components to the user functions of the functional black box 
model by assessing the logical components that are involved in the 
realization of a user function. This relation can be used for impact 
analyses and other validation methods (cf. [Vogelsang et al. 2012]). 
Further details on the correlation between a user function and a logical 
component can also be found in Section 5.6. 

6.5.2 Technical Viewpoint 

The technical viewpoint describes the hardware topology of the system 
using technical components such as control units and busses. Logical 
components defined in the model of the logical viewpoint are deployed 
on the technical components described by the model of the technical 
viewpoint, and communication channels between logical components are 
realized either internally on one controller or by busses or other technical 
communication facilities. Logical components are typically deployed as 
atomic units and are thus rarely split up into tasks that can then be seen 
as atomic units that are deployed. However, the modeling theory does not 
forbid this and this results in an n:m relation between logical components 
and technical components. 

 

Relation to the 
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6.5.3 Abstraction Layers 

The relation of the logical viewpoint model over the abstraction layers 
can be described as follows: a change of the abstraction layer in the 
logical viewpoint corresponds to a decomposition of a logical component 
or the entire system into logical subcomponents. In this case, the logical 
viewpoint model serves as a structural characteristic for the lower 
abstraction layer, which means that, on the lower abstraction layer, 
viewpoint models exist for each logical subcomponent. The input and 
output data that is processed by the logical viewpoint model of a certain 
abstraction layer must also appear in the logical viewpoint model of the 
next lower abstraction layer; in fact they must be processed by the logical 
subcomponents. In more complex development scenarios, for example, 
when suppliers are involved, the change of an abstraction layer 
determined by one decomposition step of the system might not be 
handled that strictly. Instead, the transition to the next abstraction layer 
can, for example, be interpreted as handing over a certain part of the 
system to a supplier or another department within the company. In this 
scenario, several decomposition steps will be performed in one 
abstraction layer until the parts are handed over to a supplier or another 
department whose models reside in the next lower abstraction layer. 
However, the aforementioned relation between these abstraction layers 
also holds in this scenario. The supplier must provide viewpoint models 
for the specific part that is in his responsibility. 

6.6 The Logical Viewpoint Process 
To develop the logical viewpoint of a system, the system boundary from 
the functional black box model is adopted and can be refined, if 
necessary. The system is the root logical component of the 
decomposition tree containing all logical components. The system 
boundary is expressed by a syntactic interface. 

The next step, which is one of the most crucial steps in developing 
the model of the logical viewpoint, is the decomposition of the SUD into 
logical components. The result of the decomposition is a tree of logical 
components, with the complete SUD as its root. This decomposition is 
oriented on nonfunctional requirements and quality aspects, and not 
solely on the functional requirements of the SUD. Thus, a logical 
component is not a user function, but a logical unit that is required to 
implement the system’s functionality. 
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Fig. 6-2  The system is the root logical component of the logical 

component hierarchy. 

The different logical components of a system can be linked together via 
communication channels. These channels should only link logical 
components that really are intended to communicate. To enable logical 
components to be connected, every logical component is enriched by 
input and output ports that form the syntactic interface of the logical 
components. The ports are then used to connect logical components via 
channels. 

Example 6-2: Decomposition of the SUD 
Fig. 6-3 shows the decomposition of the SUD from Fig. 6-2. The system is 
decomposed into three logical components: IOAdapter, Transportation-
Controller, and UserInteraction. The decomposition is guided by separation 
of concerns, separating the IO, the transportation unit and the user interface. 
The ports at the system boundary in Fig. 6-2 correspond to those ports in the 
decomposed network in Fig. 6-3 that do not belong to any of the logical 
components.  

The logical components that are not decomposed any further (leaves in 
the logical component tree) are then enriched with behavior. This can be 
done using several techniques: table specifications [Thyssen and 
Hummel 2011], state machines [Broy and Stølen 2001], data flow 
diagrams [Leuxner et al. 2010], or mathematical functions, to name just a 
few. Unlike the models of the functional viewpoint, logical components 
define total behavior. This means that a logical component has to have 
behavior specified for every input. The composition of the behavior of all 
leaves results in the behavior of the complete system.  

Therefore, the SUD can be simulated and the perceived behavior can 
then be compared to the specification of the system and the models of the 
functional viewpoint. If necessary, the logical component architecture 
can be refined or altered by running through the steps above. 
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Fig. 6-3 Decomposition of the SUD into a logical component architecture 
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Technical Viewpoint 

In the technical viewpoint, the system under development (SUD) is modeled in terms of 
resources: some of the resources are software resources (such as a scheduling slot); 
others are hardware resources (such as a computing resource) that are associated with a 
hardware description (e.g., a processor). In this viewpoint, hardware and software are 
explicitly separated. Thus, tasks have to be modeled along with their processing resources 
(the resource on which they are executed). Tasks themselves are scheduled by a scheduling 
resource that must be connected with the task it schedules. 
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7.1 Introduction 
The technical viewpoint is mostly concerned with the question of how to 
get from the platform-independent models (logical components) of the 
logical viewpoint to platform-specific models (technical components). 

The strict separation of application development and deployment to a 
distributed technical architecture enables reuse of standardized models 
and thereby selection of commercial off-the-shelf platforms for hosting 
the different application parts. This clean separation is an underlying 
principle in many other approaches as well [Kleppe et al. 2003, Mellor et 
al. 2004, Giese and Henkler 2006, AUTOSAR VFB 2010]. 

In the technical viewpoint, the properties of the selected technical 
components and their resources provided are modeled. Furthermore, 
modeling in this viewpoint is intended to address the following concerns: 
Which logical components of the application are realized by which 
resources? How do these components share (time and space) the 
resources? This sharing of resources by applications is a key to reducing 
the cost of the developed product. 

However, the sharing of resources also introduces interference 
between logical components that were independent in the logical 
viewpoint and this interference must be analyzed and checked against 
requirements of the SUD. Real-time analysis reveals whether real-time 
requirements (e.g., end-to-end latency) imposed in the logical viewpoint 
can be met by the selected technical architecture and the chosen 
deployment. A common cause analysis, particularly a common mode 
analysis, is performed to detect failures that affect independent paths in 
the logical architecture. 

More generally, the following concerns are addressed in the technical 
viewpoint: 

 Which (composition of) resources (e.g., computation, 
communication, IO devices such as sensors and actuators, etc.) are 
present in the system, how are they connected, and which properties 
(e.g., HW properties such as memory size or clock frequency) do 
they have? 

 What resource-consuming and resource-offering entities are present 
in the system (e.g., software tasks consume computation and 
communication resources)? 

 Which consuming resources are deployed on which offering 
resources, which mapping is required (type, behavior), and which 
design constraints are given? 

From platform-
independent to 

platform-specific 
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 What is the specific platform-specific behavior and interface of a 
logical component? 

 What are the specific scheduling requirements (e.g., task 1 needs 
input every 20ms, which platform configuration can fulfill all timing 
constraints: interrupt, latency, end-to-end, responses, and so on)? 

7.2 Metamodel of the Technical Viewpoint 
In this section, we introduce the fundamental concepts of the technical 
viewpoint metamodel. However, it is not within the scope of this 
document to give a complete specification of the metamodel. A 
comprehensive specification is given in [Weber et al. 2012, Baumgart et 
al. 2011]. 

In the technical viewpoint, the electric/electronic architecture of the 
system is specified, and this comprises mechanical and hydraulic 
components controlled by a network of control units that the logical 
components shall be allocated to. 

The electronic control units may be software-programmable hardware 
components or application-specific integrated circuits (ASICs). 
Mechanical components are, for example, cams, shafts, switches, and 
relays. Hydraulic components include, for example, valves and cylinders. 

The concepts provided for describing a view corresponding to the 
technical viewpoint are more specialized than those provided for 
modeling a requirements viewpoint, a functional viewpoint, or a logical 
viewpoint. This is because the intention is to apply dedicated analysis 
techniques for checking satisfaction of contracts based on models of 
technical artifacts [Damm et al. 2011]. 

The metamodel provides concepts for specifying the technical 
viewpoint of a system by means of technical components. While we do 
not provide specialized concepts in the metamodel for mechanical or 
hydraulic components, their aspects however can still be specified by 
means of contracts [Baumgart et al. 2011]. This allows their dynamics to 
be characterized, and also allows the assessment of whether requirements 
of functions are fulfilled by the mechanical or hydraulic components and 
the electronic components controlling them. 

In SPES 2020, the focus is on software-intensive systems. Therefore, 
the metamodel incorporates specialized concepts for describing the 
resources of a network of electronic control units that enables execution 
platforms hosting the components of the logical viewpoint to be 
modeled. Here, resource limitations come into play, e.g., the sharing of 
computing resources by multiple logical components. The behavior of 

Model elements used 
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the allocated logical components will therefore depend on the properties 
of the resource as well as the other logical components allocated to the 
very same resource. 

7.2.1 Resources 

The concepts of the metamodel for specifying the technical viewpoint of 
a system are inspired by the UML Profile for MARTE (Modeling and 
Analysis of Real-Time embedded systems) [Object Management Group 
2009]. 

The concept of a resource constitutes an abstraction of the resources a 
platform provides. Additionally, resources represent the allocated 
behavior from logical components. Examples of a resource include: 

 Computational resources, i.e., the computational power of a 
processor 

 Bandwidth of a communication resource 
 Storage capacity of a storage resource 

As some of these resources might be shared by multiple consumers, 
resource-sharing can be explicated by means of schedulers. A scheduler 
distributes fractions of a resource according to a given scheduling 
strategy. The concept of a scheduler allows both static and dynamic 
scheduler types to be modeled. 

Hint 7-1: Check rules for the resource model 
 What kind of resources can a system platform provide? Why would it 

make sense to connect two computational resources by means of a 
communication resource? 

7.2.2 Schedulers 

A scheduler distributes fractions of a resource according to a given 
strategy. The clients of a scheduler are modeled by the concept of 
scheduler slots. The resource, whose capacity is shared and assigned by a 
scheduler, is typically expressed using a processing resource. A 
scheduling policy allows specification of the strategy of the scheduler, 
e.g., fixed-priority. The scheduler slots, which receive a fraction of the 
resource, are typically aggregated to the scheduler parameter 
specification that determines parameters used by a scheduler to run its 
strategy. Such parameters are, for example, the definition of a priority or 
the maximum size of a time slice. 

Resources: 
consuming and 

offering 
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The concept that actually uses the fraction of the processing resource is a 
concurrency resource or specializations thereof. If a schedule was 
determined a priori, it can be directly specified as the schedule by means 
of an expression. This overrides whatever was specified in the scheduling 
policy. 

The relation of the concepts scheduler, scheduler slot, and 
concurrency resource is modeled by special scheduler ports. These ports 
must be typed by a port specification that conforms to the scheduler port 
specification concept. This specification comprises five flows that are 
referenced in the following roles: 

 Activate event: An incoming event flow that denotes the request for 
the activation of a concurrency resource. 

 Start event: An outgoing event flow that denotes the granting of a 
scheduler on a previously received activate event. 

 Finish event: An incoming event flow that denotes the release of the 
capacity of the processing resource by the concurrency resource. It is 
triggered when the concurrency resource has finished its 
computation or communication. 

 Suspend event: An outgoing event flow that shall be triggered by a 
scheduler or forwarded by a scheduler slot when access to the 
processing capacities of a scheduled resource has been granted 
before, but shall now be revoked in favor of another scheduler slot. 

 Resume event: An outgoing event flow that shall be triggered by a 
scheduler or forwarded by a scheduler slot when access to the 
processing capacities of a scheduled resource has been granted and 
suspended before, and now access to the processing resource is 
granted again. 

The scheduling of a processing resource may look as depicted in Fig. 
7-1. The ports with dotted edges are scheduler ports. The figure also 
shows how to use the scheduler and the scheduler slot concepts when 
modeling the hierarchical scheduling of a processing resource. A 
scheduler slot can also serve a second scheduler that then only distributes 
the capacity of the processing resource that it receives through its 
underlying slot in the main scheduler to its clients. An example of a 
scheduler can also be seen in Fig. 7-3. 
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the sharing controller 
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Fig. 7-1  Example of using the scheduler concept 

Hint 7-2: Check rules for the scheduler model 
 Do the scheduling parameters of each scheduler slot match the type of 

policy of the scheduler that it is connected to? For example: Does a 
scheduler using a fixed-priority strategy require the definition of a 
priority per slot? 

7.2.3 Computing Resources 

The concept of a computing resource represents a processing device 
capable of storing and executing tasks. It is an abstraction of elements of 
an execution platform hosting multiple tasks that require computing 
capacity in order to perform their computations. Being derived from a 
processing resource, a computing resource may be subject to scheduling 
of its computing capacity. 

The task concept models a computation task. Since it is derived from 
the concurrency resource concept, it can be connected to a scheduler slot. 
Thus, it uses the computing capacity the scheduler slot receives from a 
scheduler. A task can aggregate multiple specifications of its execution 
time that have been measured or analyzed previously. Provided that a 
task would have exclusive access to a computing resource, the execution 
time is the time from start to finish of the task. As the execution time 
may vary depending on the type of computing device, multiple execution 
times can be specified, each with a unique identifier. An example 
specification of an execution time would be: {ARM7; 500 s; 1ms}, 
where 500 s is the best base execution time and 1ms is the worst case 
execution time. An example of a computing and a communication 
resource is depicted at the bottom of Fig. 7-3.  
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7.2.4 Communication Resources 

The concept of a communication resource represents an abstraction of a 
communication device of an execution platform capable of transferring 
information from one location to another. The attributes of a 
communication resource are used to describe its most relevant properties 
needed for timing analysis of a technical architecture. Being derived 
from the concept of a processing resource, a communication resource 
may be subject to scheduling of its communication capacity. 

The concept of a frame denotes a data item that is transmitted by a 
communication resource. As the concept is derived from the concurrency 
resource concept, it can be connected to a scheduler slot. Thus it may use 
the communication capacity the scheduler slot receives from its 
scheduler. An example of a communication resource is given in Fig. 7-3. 

7.2.5 Data Encapsulation 

We consider the technical architecture as a network of computing 
resources that are interconnected by means of communication resources. 
However, the frames that are transmitted by these communication 
resources are not the data items that would be sent directly by an 
application task. In most execution platforms, an application 
programming interface (API) that hides the complexity of different bus 
technologies and communication protocols is provided. Data sent by 
application tasks is then processed by a communication stack that is 
typically organized in layers as in the Open Systems Interconnection 
model (OSI). 

Aside from the intention to abstract from the details of a layer of 
communication protocols from the logical viewpoint, in the technical 
viewpoint, the real-time aspects or safety aspects of the logical viewpoint 
have to be specified as well. This allows a conclusion to be drawn about 
whether requirements regarding the communication of components of the 
logical viewpoint can be fulfilled when they are allocated to a technical 
architecture. Fig. 7-2 shows an example of the concepts that allow the 
data encapsulations performed by a communication stack to be captured. 
For the sake of brevity, the scheduler slots and a scheduler are not shown 
in this figure. 
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Fig. 7-2  Example for specifying the data encapsulation 

The signal concept represents data sent by application tasks to which 
components from the logical viewpoint have been allocated. The 
declared signal references ports in the technical architecture model to 
indicate ports at which the signal is sent or received. The concepts 
message and frame also allow referencing of multiple ports. Data 
encapsulation by a communication stack as illustrated in the bottom half 
of Fig. 7-2 is expressed by the concept of mapping between messages 
and signals and frames and messages. The mapping describes the 
composition of messages by frames and of signals by messages. The 
condition that requires a task that is responsible for the encapsulation of 
signals in messages to actually trigger the message can be defined by the 
attributes of signal-to-message mapping. For example, some signals 
mapped to a message may cause it to be triggered, while others just 
update the value inside the message. 

7.2.6 Tasks 

A task is a specialization of the concurrency resource concept denoting a 
computation task. The computing capacity needed by the task is provided 
either directly by a computing resource (see Section 7.2.3) or by a 
scheduler slot (see Section 7.2.2). 

Hint 7-3: Check rules for the task model 
 Is every task connected to a scheduler slot by means of scheduler ports 

with reversed directions (task requires a scheduler port specification — 
the slot provides it)?  

 Does each task have at least one execution time specification? 
 Does each task have an execution time specification for the type of 

processor that matches the type of the computing resource on which it is 
executed? 
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7.3 Mapping between Viewpoints and 
Abstraction Layers 

The SPES modeling framework introduces mapping links that allow 
component realizations between abstraction layers and component 
allocations between viewpoints to be traced.  

 
Fig. 7-3  Example of a mapping between logical and technical viewpoints 

A mapping specifies correlations of observable behavior of components 
(e.g., logical and technical) by formal specification of how the dynamics 
of ports (interaction points) of one component are projected onto 
corresponding behavior of ports of another component. A component can 
also be represented by another (modeling) element that specifies the 
behavior of interactions. In order to formally check the validity of a 
mapping, a mapping block is defined. This mapping block specifies how 

Relation between 
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viewpoints 
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the behaviors of the mapped parts relate to each other (i.e., how the 
behavior of component C1 is represented as the behavior of component 
C2, for each mapping component C1 and C2). For more details on how 
mappings are represented in the SPES modeling framework, we refer to 
[Weber et al. 2012].  

Fig. 7-3 shows an example of a mapping between the logical (top) 
and technical viewpoints (bottom). Here, the mapping links are 
visualized by the dotted arrows between components of the logical and 
the technical viewpoints. For the sake of simplicity, the mapping block is 
not shown. 

Since the mapping relates component parts, the context of both these 
parts has to be described. Therefore, the concept of instance references, 
which has been inspired by the AUTOSAR and EAST-ADL 
metamodels, is used. 
 

 
 

Fig. 7-4  Example mapping between the logical and technical viewpoints 

Fig. 7-4 shows an example of a mapping between the logical and 
technical viewpoints (an allocation). The ports of the Capture component 
are mapped to the ports of the Capture task in the technical viewpoint. 
The mapping block is represented as a gray box between both 
viewpoints. As the links to the mapping block indicate, this is a simple 
direct mapping. This enables us to check completeness and 
receptiveness. 

Completeness is defined as follows: Given a set of contracts C linked 
to components in the logical viewpoint, assuming flows/services of the 
ports of those components are allocated to flows/services of resources, 
the mapping must involve all flows/services mentioned in any of the 
contracts in C. 
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Receptiveness is defined as follows: An allocation of a model of the 
logical viewpoint to a model of the technical viewpoint shall not restrict 
the behavior of the model of the technical viewpoint. Generally, 
mappings can be more complex, as shown, for example, in [Gezgin et al. 
2010]. 

7.4 How to Get from the Logical to the 
Technical Viewpoint 

In this section we will describe the steps necessary to start the model of a 
technical viewpoint from a finished logical viewpoint model. Once both 
models are finalized they have to be mapped to each other. 

 We start by defining the hardware architecture as it may already 
exist or as we plan to construct it. The hardware architecture thereby 
does not need every detail present in the real world (it is a model 
after all). For the model, we use resources to represent hardware 
units. 

 Next, we differentiate between computing resources (such as 
processors) and communication resources (such as buses). Our 
model elements in this model layer are used to separate actual 
computation units and data transfer units since they usually use 
different sharing approaches. 

 In this step we model tasks, scheduler slots, and scheduler(s) in each 
computing resource and connect tasks among each other or to 
external elements. Communication resources are enriched by frame 
triggers (similar to tasks), and again scheduler slots and a scheduler. 

 Now we connect all scheduler slots to their schedulers for each 
communication and computation resource. Consequently, we have to 
define the scheduling policy or the schedule in each scheduler. 
Additionally, depending on the actual scheduling policy, further 
information such as priorities has to be defined in each scheduler 
slot. Now each frame trigger and tasks are deployed to their 
respective scheduler slots by connecting their scheduler ports. 

 The final step includes defining how signals, messages, and frames 
are composed and whether a signal or a message triggers a frame or 
not. In computing resources, we need to specify the execution times 
for each task and which task of a task port is mapped to which signal 
in a communication resource. 

Once these five steps have been completed, the mapping from the logical 
to the technical viewpoint has to be defined. In addition, refinements of 
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the contracts of upper abstraction layers or the logical viewpoint in the 
current level may be annotated to tasks or resources. Here, timing 
requirements concerning end-to-end latencies, deadlines, or specific 
activation behaviors are most appropriate since potential timing analysis 
properties were only introduced in the technical viewpoint. 
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Modeling Quality Aspects: 
Safety 

Safety is a central quality property of embedded systems. While progress in development 
methodologies, techniques, and tools enable the developer to manage the rapidly growing 
system complexity, this has long not been true for safety engineering methodologies. A 
promising approach to advancing the state of the art in safety engineering for software-
intensive embedded systems lies in the application of model-driven development concepts 
to traditional safety engineering approaches. This chapter gives an overview of how safety 
analysis models can be integrated seamlessly into design artifacts and how model-driven 
development concepts can enable the modular safety assurance of platforms 
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8.1 Introduction 
Safety is typically defined as freedom from unacceptable risk (of harm). 
To ensure a certain level of quality, in most industrial domains the 
development of safety-critical systems is governed by standards. As 
mirrored in those standards, the development of a safety-critical system 
affects almost all process steps in a development lifecycle, ranging, for 
example, from requirements engineering through functional aspects to 
the technical design. For this reason, safety is not represented in a single 
viewpoint but as a quality aspect in the SPES modeling framework that 
has a crosscutting influence and is integrated into several viewpoints. 

8.2 Concerns 
The growing complexity of safety-critical embedded systems is leading 
to increased complexity in safety analysis models. It is therefore not 
appropriate to develop functionality and consider safety in separate tasks. 
Safety aspects have to be integrated as tightly as possible into the 
development process and its models. Since model-based development of 
embedded systems deals with the increased complexity of such systems, 
their safety analysis has to follow this approach as well. Therefore, the 
goals of the quality aspect safety are: 

 Provide modular, hierarchical, and model-based safety analysis 
models to “keep pace” with a state-of-the-art model-based 
development 

 Ensure consistency and traceability among safety analyses in 
multiple views and on different layers of abstraction 

 Ensure consistency between model-based safety analyses and other 
model-based development artifacts 

The solution provided by this quality aspect is divided into two parts. 
The first part is component-integrated component fault trees (in short, 
C²FTs), as introduced in Section 8.3. Component fault trees (CFTs) 
provide the benefits of a modular and hierarchical safety analysis, 
whereas the component integration extension allows for a tight coupling 
between a component fault tree and a logical component. Based on 
C²FTs, this quality aspect contains two additional methods, one for 
managing consistency and protecting intellectual property over several 
layers of abstraction, as presented in Section 8.3.1, and one for 

Tight integration 
between safety 

analysis models and 
system development 

models 
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calculating probabilistic worst case execution times (pWCET), as 
presented in Section 8.3.2. 

The second part of the quality aspect supports the system developer 
with the safety-related deployment of logical components onto technical 
components and is presented in Section 8.4. Deploying a logical software 
component onto a computer platform requires a check of whether the 
computer platform provides the safety requirements demanded by the 
software component. 

8.3 Component-Integrated Component Fault 
Trees 

The benefits of a hierarchical decomposition of complex systems and the 
applied principle of separation of concerns using (logical as well as 
technical) components can be perfectly transferred to the safety analysis 
model using the approach of component-based abstraction in fault tree 
analysis presented here. This decreases the complexity of safety analysis 
models, increases the connection between safety and development, and 
thereby reduces development costs. 

The hierarchical decomposition of the system under development 
(SUD) into components and subcomponents, as well as the 
communication among them, follows a metamodel as specified by the 
logical viewpoint (see Chapter 6) but can also be applied to other model-
based development languages. The central model element is the 
component that is embedded into a hierarchy of subcomponents and 
supercomponents communicating with each other using ports and 
connections. 

The integrated metamodel for component fault trees follows this 
generic component model and allows the relation of a separate 
component fault tree for each component of the system’s hierarchical 
decomposition. Fig. 8-1 shows the metamodel for component fault trees 
to be integrated with the component model: here, a component fault tree 
element, labeled CFT, is related to the component element of the 
metamodel. Faults propagate from one component to another via their 
interconnections (modeled using ports and connections). This is also 
reflected within the component fault tree metamodel: input and output 
failure modes are related to port elements of the component model 
[Domis and Trapp 2009]. 

Based on these models, automations support the developer in 
handling the various component fault tree model elements such as gates, 
input and output failure modes, and edges between them to model the 
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an associated safety 
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interconnections 
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failure behavior of the system under development using Boolean logic. 
The approach was evaluated in the course of the SPES 2020 

evaluation studies (see Chapter 16). Evaluation results show a good 
acceptance in this industrial area, since component fault trees are a 
model-based extension of widely accepted fault trees. Furthermore, 
measurements taken show that the complexity of modeling component 
fault trees compared to modeling classic fault trees is decreased, and the 
readability of component fault tree model elements is increased 
compared to classic fault trees. The evaluation was done by experiment 
in industry with more than ten people, from both the system development 
and safety analysis fields, and also in academia with the same amount of 
people and a similar background. 
 

 
 

Fig. 8-1 Metamodel for component fault trees 
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8.3.1 Protecting IP and Managing Consistency across 
Abstraction Layers 

Since the development process of modern embedded systems is often 
spread over many different stakeholders, e.g., different companies, this 
aspect is a special issue in safety analysis. During the hierarchical 
decomposition, components have a specification given by one 
stakeholder and are subsequently implemented by a different stakeholder 
using logical and technical subcomponents that realize the functionality 
as specified for the supercomponent. To analyze the failure logic of such 
a component, the failure logic of the supercomponent is also realized by 
the component fault trees of its subcomponents. To protect the 
intellectual property of the implementing stakeholder from the specifying 
stakeholder, the white box safety view of the subcomponents’ fault trees 
can be transformed into a protective black box safety view using Boolean 
reduction [Domis et al. 2010]. In this way, the stakeholder of the 
supercomponent can still achieve the failure propagation of the specified 
component, but the intellectual property contained in the implementation 
is protected. Furthermore, the methodology allows checks regarding 
whether realization and specification are consistent with each other in 
order to ensure the consistency of the modular and hierarchical safety 
analysis across multiple abstraction layers. 

8.3.2 Failure-Dependent Timing Analysis 

This section presents a methodology that takes advantage of the tight 
integration of safety analysis models and system development models to 
combine elements of both worlds for a new execution time analysis 
approach. 

Embedded real-time systems are growing in complexity and resource 
demand that today goes far beyond systems with simplistic closed-loop 
functionality. Current approaches of worst case execution time (WCET) 
analysis are used to verify deadlines of such systems, but these 
approaches calculate or measure the WCET as a single value that is used 
as an upper limit for a system's execution time. Overestimations are 
taken into account to make this upper limit a safe limit, but modern 
processor architectures expand these overestimations into unrealistic 
dimensions.  

Here, therefore, probabilities of safety analysis models are combined 
with elements of system development models to calculate a probabilistic 
worst case execution time (pWCET). Safety analysis models are used in 
this approach as a source for probabilities [Adler et al. 2010]. Since 
safety analysis models typically reflect the occurrence of failures and 
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their propagation through the system under development, our approach 
aims at mechanisms in systems that are executed in addition to a failure. 
Such mechanisms usually belong to the area of fault tolerance and detect 
or process an error [Höfig et al. 2010, Höfig 2011b]. In this way, very 
unlikely time-intensive execution scenarios can be identified. This type 
of system becomes certifiable for a lower execution time if a deadline 
has to be guaranteed for a certain probability. 

Example 8-1: Table lookup 
An example of such a system is depicted in Fig. 8-2. This example is a 
reduced version of an example from the automotive domain as presented in 
[Höfig 2011a]. The right-hand side of Fig. 8-2 depicts the architecture of the 
system using logical components, and the left-hand side shows a part of the 
component fault tree model. The system measures sensor data with Sensor A. 
If this data is within a given range (plausibility test), the measured data is 
taken as the output of the system. If the test judges the data to be erroneous, 
data from a different sensor is taken to estimate the data for sensor A using a 
table lookup. Therefore, the execution of the table lookup function depends 
on whether Sensor A produced erroneous data or whether there is a failure in 
the Test component. Knowing the probability of occurrence for the failure of 
Sensor A and for the Test component, we can derive the probability for the 
execution of the time-consuming table lookup function and can calculate a 
probabilistic worst case execution time. 

The approach has been evaluated using the tool for failure-dependent 
timing analysis presented in [Höfig and Domis 2011]. 

8.4 Efficiently Deploying Safety-Relevant 
Applications to Integrated Architectures 

A method for finding a good deployment (a mapping between the logical 
and technical viewpoints) has to consider multiple aspects that influence 
costs and feasibility. One of these aspects is safety, and it is addressed by 
the approach described in this section. The SPES quality aspect safety 
contains a two-stepped approach for supporting a safety-related 
deployment. The goal of the first step is to find a promising deployment 
candidate using system-level information. The second step investigates 
the feasibility of the candidate by separately investigating the more 
detailed safety dependencies between each application and its host 
platform. 
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Fig. 8-2 Sensor example system in SysML with component fault trees 

A deployment starts with a list of applications (high-level logical 
components), modeled as a network of communicating logical 
components (as specified in the logical viewpoint introduced in Chapter 
6) that have to be deployed onto a set of computer platforms (as specified 
in the technical viewpoint introduced in Chapter 7), possibly containing 
several partitions. Fig. 8-3 shows a deployment calculated by a tool 
developed in the SPES project.  

The algorithm for identifying promising candidates uses two metrics 
to calculate a quantified evaluation of the suitability of a deployment 
with regard to safety requirements [Zimmer et al. 2012]. 
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Fig. 8-3 A network of software components deployed to a computer 

topology. The deployment of a component to a partition is 
indicated using the same shade of gray 

The first metric is called the cohesion metric and evaluates the 
homogeneity of application criticality levels in a partition. As already 
mentioned, a platform may comprise multiple partitions. Since freedom 
from interference is not guaranteed within one partition, every 
application in a partition has to be developed according to the maximum 
level of criticality of all applications in a partition. 

Example 8-2: Cohesion metric 
If, in the example shown in Fig. 8-3, the component voter and the component 
channel 1.1 had both been deployed to partition 2.1, channel 1.1 would have 
to be developed according to ASIL C. The cohesion metric reflects the costs 
entailed by these criticality increases.  
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The second metric is called the coupling metric and evaluates the volume 
of safety-relevant communication. If safety-relevant applications residing 
in different partitions exchange signals, undetected failures in this 
communication can cause a hazardous outcome. In order to prevent these 
inadvertent situations, safety mechanisms have to be developed and 
installed to detect or prevent failures. The coupling metric takes the costs 
caused by the volume of safety-critical communication, especially in-
between platforms, into account. 

After these metrics have been used to derive a deployment, the 
second step of the approach comes into play. The goal of this step is to 
assist the integrator in checking whether each application software 
component can run safely on its host platform, and if so, to assist in 
generating appropriate evidence. The method used in this second step is 
called VerSaI (Vertical Safety Interfaces) [Zimmer et al. 2011]. 

Before the safety compatibility between application and platform can 
be checked, demands and guarantees have to be specified. Demands are 
typically used to express all the properties an application needs the 
platform to have in order to be executed safely, whereas the guarantees 
represent the safety-related properties the platform possesses. A 
compatibility check is successful if a sound argument for the fulfillment 
of the demands with the available guarantees can be established. To 
enable tool-supported integration, the VerSaI approach offers a 
semiformal language to model these demands and guarantees. 

The language consists of a number of elements each representing a 
certain type of demand or guarantee exchanged by an application and a 
platform. This implicates the noteworthy fact that there is a finite number 
of language elements and, therefore, also a finite number of 
dependencies expressible with the language. First evaluations have 
shown that this is suitable because the typical service relationships 
between an application and a platform are finite and regular too, which is 
also the reason why it was possible to standardize platform interfaces in 
the first place. 

If the compatibility of an interface specified with the VerSaI language 
is checked, the demands and guarantees that have a potential relationship 
have to be identified first. This is done using the integration of the 
VerSaI language into the SPES modeling framework. A demand about 
the detection of a signal corruption is, for example, related to the model 
element representing the signal. On the other hand, a guarantee about 
detecting signal corruptions is related to the representation of the 
respective communication channel. If the detailed deployment of the 
signal to the com-channel is modeled, VerSaI uses this information in a 
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transitive manner to relate the corresponding demands and guarantees. 
This principle is depicted in Fig. 8-4. 

“All 3-bit failures of messages 
received via CAN_ComChannel

will be detected”

“A corruption of the signal 
escActive shall be detected 

by the platform”

 
Fig. 8-4 Relating demands and guarantees using deployment 

information 

The final step of the method is checking whether each demand can be 
met with the guarantees identified as relevant in the previous step. In 
contrast to conventional interfaces, it is usually not possible to simply 
match the demands and guarantees respectively. In fact, an additional 
fragment must be generated in the safety case providing the arguments 
and evidences that the demands of the platform are met by the guarantees 
given by the platform. To this end, this step is supported by a strategy 
repository. The repository contains expert strategies that are selected and 
presented to the integrator, and that describe what guarantees are needed 
to fulfill the current type of demand and how to generate a piece of 
evidence containing a sound argument. It is important to note that, 
despite the formal basis of the language, each language element has a 
representation in natural language. This allows the human brain to read 
and evaluate the specification of demands and guarantees and the final 
argument generated after integration. This argument can be distributed 
for reviews and assessments. 

The two-step approach presented allows the user to calculate a 
deployment automatically and assists the user in checking and arguing 
the safety of the chosen deployment. 

The integration of 
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8.5 Integration in the SPES Modeling 
Framework 

In the SPES modeling framework, safety is represented as a quality 
aspect that has a crosscutting influence on and is integrated into several 
viewpoints. This section gives an overview of the integration of the 
safety quality aspect. 

8.5.1 Viewpoints 

Considering the integration of component-integrated fault trees into the 
viewpoints of the SPES modeling framework, we have to differentiate 
between the capability of modularizing and hierarchizing the fault trees 
that comes with component fault trees, and the capability of integrating 
the fault trees into a component-based model. Component fault trees, on 
the one hand, can easily be applied to functions, logical components, and 
technical components, and thus, to the respective viewpoints as well. 
However, the component integration part works best with the logical 
viewpoint since the logical viewpoint metamodel represents 
communication between components explicitly using input and output 
ports, and this is best suited for component-integrated fault trees. 

Since the deployment models the mapping of logical components to 
technical components, the methods for efficient deployment of safety-
related applications belong to the logical viewpoint as well as to the 
technical viewpoint. 

8.5.2 Abstraction Layers 

The relation between different abstraction layers of a component fault 
tree is comparable to the relation between different abstraction layers of a 
logical component as described in Chapter 6. A top-level component 
fault tree describes the failure behavior of the top-level component and 
can be decomposed into several lower-level component fault trees 
describing the failure behavior of the top-level component as an 
aggregation of several component fault trees. 
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Modeling Quality Aspects: 
Real-Time 

Timing is an integral part of systems interacting with their context. The correctness of 
real-time systems depends on logical correctness and proper timing. A model-based 
engineering approach for real-time systems builds on modeling platform-specific and 
platform-independent resource requirements as well as resource capabilities. These 
artifacts can be expressed with extensions to the requirements viewpoint and the technical 
viewpoint of the SPES modeling framework. Schedulability analysis of the system model 
can be used to generate a deployment of software tasks to hardware components. 
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9.1 Introduction 
The meaning of real-time computing is overloaded and ambiguous. Often 
it is associated with a quick and immediate system response to an 
external event or it is used to describe the performance of multimedia 
systems that achieve more than 25 frames per second. In embedded 
systems, real-time computing refers to demanding a reaction to an event 
in accordance with the progression of time in the system context. The 
correctness of the system no longer depends solely on the logical 
correctness of the computation, but also on the point in time at which 
these results are produced [Buttazzo 2004].  

Depending on the consequences if these timing requirements are not 
met, two classes of real-time systems can be distinguished: hard real-time 
systems and soft real-time systems. In the case of a hard real-time 
system, the violation of timing requirements may lead to catastrophic 
consequences (e.g., harming human life). Soft real-time systems, on the 
other hand, are less stringent about timeliness. Missing a deadline may 
affect the performance, but it does not cause serious damage or 
compromise the system behavior. 

While the main objective in high-performance computing is to 
minimize the average response time for all running tasks, real-time 
computing is about satisfying timing requirements for all tasks. 
Especially in hard real-time computing, the system has to exhibit the 
same timing properties for all tasks under all circumstances. Therefore, 
these systems have to be fully deterministic and predictable. In order to 
build a hard real-time system, the progression of real time in the system 
context—not just logical time—has to be considered during the 
engineering of the entire system design.  

The next section gives a brief overview of model-based real-time 
engineering and introduces the notions of platform-independent and 
platform-specific timing requirements. Sections 9.3 and 9.4 then 
illustrate platform-independent and platform-specific timing 
requirements respectively in more detail. Section 9.5 illustrates 
schedulability analyses. 

Timing as a matter of 
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9.2 Model-Based Real-Time Engineering  
The engineering principle of strictly separating application development 
and its deployment on a distributed, technical platform (see Chapter 3) 
requires a real-time engineering approach that distinguishes between:  

 High-level, platform-independent timing requirements 
 Platform-specific timing requirements of software tasks 
 Platform-specific timing capabilities of hardware resources 

An overview of this approach is depicted in Fig. 9-1. 

 

Fig. 9-1: Real-time engineering has to consider platform-independent 
properties and platform-specific properties 

When all requirements and resource capabilities are precisely captured 
during the engineering process, the major challenge of real-time 
engineering lies in the search for a spatial and temporal deployment from 
software tasks to hardware resources, so that all real-time requirements 
are satisfied. This deployment has to ensure that no resource is 
overbooked at any point in time, so that nondeterministic waiting times 
due to a congested resource do not result in missed deadlines. Therefore, 
the quality aspect real-time was not considered in isolation in the SPES 
modeling framework. It is a crosscutting concern and affects the 
requirements viewpoint (see Chapter 4) and the technical viewpoint (see 
Chapter 7). 
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9.3 Modeling Platform-Independent Real-Time 
Requirements 

Essentially, real-time requirements establish a direct relationship from 
functional requirements to the progression of wall-clock time. They can 
be defined explicitly at the beginning of the engineering process as high-
level requirements, or they are derived implicitly as platform-specific 
requirements as a result of a step-by-step refinement process during the 
system design. This section focuses on the modeling of high-level real-
time requirements. 

As discussed in Chapter 4, there are different requirements artifact 
types that describe various aspects of the entire system. These artifacts 
are generally not built at the same time in the engineering process, but 
rather in sequential steps. In most cases, real-time properties will not be 
taken into account in all artifact types. For instance, the structural 
requirements model will most likely be free from time constraints. On 
the other hand, goal models, scenario models, and the operational 
requirements, as well as behavioral requirements models, will have to 
address time constraints. 

9.3.1 Real-Time and Goals 

Considering real-time constraints within requirements engineering has an 
essential impact on the elicitation of goals and the documentation in goal 
models. For this purpose, no specific additional modeling element is 
needed, but every timing constraint has to be documented within the goal 
model. By documenting these real-time properties, it is reasonable to 
descend to a more concrete and precise level. There must be a description 
of exactly which part or process of the system is covered by this time 
constraint and the maximum processing time allowed must be noted. As 
it may be difficult to start at such a detailed abstraction layer, abstract 
goals (called soft goals) may be defined first and decomposed into fine-
grained hard goals during the different development steps, considering 
even scenarios and the functional and behavioral requirements 
perspectives. 

Hint 9-1: Rules for checking goal models 
 Have all real-time relevant requirements been considered? 
 Have all real-time requirements been decomposed into fine-grained 

hard goals allowing for measurement? 
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9.3.2 Real-Time and Scenarios 

Scenarios detail the goals developed earlier. Inversely, each real-time 
goal should be detailed in at least one scenario. A scenario may be 
affected by different real-time goals. Hence, it is insufficient to simply 
relate complete goals and complete scenarios by means of traceability 
links. The different parts of the scenario have to be related to the 
different goals. While one major use case of using real-time scenarios is 
to check real-time requirements for consistency, every part of the single 
scenario has to be related to a concrete measurable goal. If not, 
assumptions of real-time behavior have to be made and documented in 
the scenario (e.g., messages, processing parts). After this has been done, 
the acceptable runtime for each scenario can be calculated. The ordering 
structures (e.g., in use cases or in high-level message sequence charts, 
hMSCs) also have to be related to goals. Therefore, these goals will in 
general be on higher abstraction layers than the goals that are related to 
the single scenarios. For a preliminary timing analysis, both runtimes 
will be compared, with a determination of whether the expected runtime 
of the scenario is smaller than the accumulated runtime consisting of the 
expected runtimes of all single parts of the scenario.  

Hint 9-2: Rules for checking scenario models 
 Have all real-time goals been detailed by at least one scenario? 
 Have all relevant parts of the scenario been connected to the relevant 

real-time goals? 
 Have all necessary assumptions been made explicit?  
 Has the real-time information in the scenarios been checked against the 

real-time information in the ordering structure (such as use cases or 
hMSCs)? 

9.3.3 Real-Time and Operational Requirements Models 

Operational requirements models are also affected by real-time 
constraints. In most cases, it will be sufficient to relate each functionality 
or process to a real-time goal or a selection thereof. In the latter case, the 
expected runtime will have to be summed up from all real-time goals of 
the selection. 

Hint 9-3: Rules for checking operational requirements models 
 Have all functions been related to the relevant real-time goals? 
 Have all real-time goals been considered by at least one function or the 

overall composition of the system? 

Scenarios help to 
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9.3.4 Real-Time and Behavioral Requirements Models 

Real-time properties have a significant impact on the behavioral 
requirements models. There are a multitude of specification techniques 
for modeling real-time behavior, for example, Timed Automata [Alur 
1999], PTIDES [Zhao et al. 2007], TReqS [Buckl et al. 2010],  and 
Giotto [Henzinger et al. 2003]. They can be chosen as an artifact type for 
this perspective. The behavioral specification describes the system 
behavior on a lower abstraction layer. Hence, real-time constraints must 
be annotated at each state and at each transition; they should be traced 
back to the goals. Depending on the development project, developing a 
real-time behavioral specification can allow for additional decomposition 
of the real-time goals into more finely-grained concrete goals.  

The expected system runtime may be checked against the goals 
formulated and also against the scenarios. Differences between the 
artifact types will lead to errors during the design, thus any differences 
occurring represent a proper indicator of necessary requirements 
reengineering activities concerning all requirements engineering artifacts 
involved. 

Hint 9-4: Rules for checking behavioral requirements models 
 Have all real-time goals been considered? 
 Have all assumptions made within the scenario development been taken 

into account? 
 Have all scenarios been taken into account? Is it possible to run through 

each scenario by “executing” the requirements specification? Have 
constraints also been taken into account within these checks? 

9.4 Modeling Platform-Specific Real-Time 
Properties 

In addition to the platform-independent real-time requirements within the 
requirements viewpoint, the platform-specific properties must also be 
addressed. The following section describes real-time additions to the 
foundations contained in the technical viewpoint introduced in Chapter 7.  

9.4.1 Real-Time Requirements for Software Tasks 

Each software task has unique real-time requirements that affect its 
deployment on the hardware platform. Up to this point, the SPES 
modeling framework introduced tasks that consist of architecture-specific 
execution times in order to capture real-time requirements. Especially for 
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complex and distributed software-intensive embedded systems, this is not 
sufficient and requires an enhancement of the SPES modeling 
framework. The extension is depicted in Fig. 9-2.  
 

 
Fig. 9-2  Modeling software real-time requirements in the SPES 

modeling framework (elements in light gray represent new or 
extended components) 

In addition to the specification of a worst case execution time, the 
tolerated jitter and a period for synchronous tasks should be modeled. 
Furthermore, a priority can be assigned to a task as well. Priorities can be 
used to express different criticality levels of software tasks. These are 
particularly useful when dynamic scheduling techniques based on fixed 
priorities are used.  

These attributes focus on real-time requirements for the task in 
isolation. However, there are also requirements affecting more than just 
one single task. For instance, when data has to be processed in a pipeline 
with several stages, a task responsible for a certain stage may have to be 
executed exactly after completion of the execution of the task for the 
previous stage. This relationship between tasks can be modeled using the 
ExecuteAfterRelation element. 

On a hardware platform offering multiple processing units, e.g., 
multicore processors, a parallel execution of tasks sharing a common 
data set is often desirable to optimize cache utilization and increase the 
system performance. Similar to the ExecuteAfterRelation element, the 
ExecuteParallelRelation element allows the specification that a pair of 
tasks must start their execution at the same time.  

Forcing a set of tasks to execute at the same time is a very stringent 
requirement. It restricts the search for feasible schedules and may not be 
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necessary in all use cases. Instead, it is often sufficient to indicate for the 
scheduler that certain tasks belong to a group. If enough resources are 
available, the scheduler may then choose to execute these tasks at the 
same time, thus optimizing the system performance. This approach is 
commonly known as “co-scheduling” [Ousterhout 1982] or “gang 
scheduling” [Jette 1997]. In the extension to the SPES modeling 
framework in Fig. 9-2, tasks can be grouped using the TaskGroup 
element.  

9.4.2 Hardware Real-Time Capabilities 

In the technical viewpoint (see Chapter 7) of the SPES modeling 
framework, hardware is modeled as offering resources on which 
consuming resources such as software tasks can be deployed. The 
hardware of a system may comprise computation, communication, 
storage, and I/O resources. A single resource may be shared between 
multiple consumers. Since computing and communication resources 
represent the most important hardware components in real-time 
computing, we mainly focus on them in the following. 

The basic concept of a ComputingResource in the technical viewpoint 
comprises processing devices that can store and execute tasks. It is a 
specialized ProcessingResource. Modern processors in embedded real-
time systems may contain multiple pipelined computational cores 
comprising ALUs and FPUs. To be able to accurately describe the real-
time capabilities, the HWProcessor and CommunicationResource 
elements must be extended as shown in Fig. 9-3. 

 
Fig. 9-3 The extended HWProcessor and CommunicationResource 

metamodel classes 

Computing resources 
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The HWProcessor class is extended with two important properties: the 
on-chip memory hierarchy and the configuration of the memory busses. 
To describe the first property, the attributes numMemories, memoryType, 
memoryLatency, and memorySize are added to the HWProcessor class. 
This is the minimum information that is required to model on-chip 
memory access times, assuming a Uniform Memory Architecture 
(UMA). The type of memory can, for instance, be cache or scratchpad; 
the latency must be given in cycles. The second property documents the 
access times of off-chip memory and consists of the numBusses and 
busType attributes. Bandwidth and latency are inherent to a certain bus 
type.  

The CommunicationResource class is extended in a similar way. In 
this case, the attributes bandwidth, latency, jitter, and 
MediumAccessControl are added. These properties constitute the Quality 
of Service (QoS) that a communication resource offers. This is an 
important measure for quantifying its real-time capability. 

9.5 Schedulability Analysis 
With all real-time requirements and capabilities being precisely captured, 
schedulability analysis enables an efficient model-based engineering 
approach. This is especially the case for the construction of static 
operating system schedules — the core of a time-triggered real-time 
system [Kopetz 1991]. The use of static schedules on a fixed cyclic basis 
is a highly recommended design pattern for achieving and guaranteeing a 
fixed allocation of hardware resources at runtime. 

The automated generation of static schedules based on a timing 
model is a first step towards a model-based engineering of hard real-time 
systems. In [Hilbrich 2011], such a generator for the avionics domain is 
described. Within seconds, a static schedule for a fixed time period is 
created and can be exported to configure a real-time operating system. 
Whenever a schedule is successfully constructed (see Fig. 9-4), it is 
guaranteed to satisfy all timing requirements in the model. 

Static schedules for 
operating systems can 
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Fig. 9-4 Graphical output of a generated static schedule 
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Overview of the SPES 
Evaluation Strategy 

The purpose of this chapter is to introduce the application of the methodologies in the 
following application domains: automation, automotive, avionic, energy, and healthcare. 
It describes the evaluation strategy for the systematic evaluation of the SPES modeling 
framework and presents the process for selecting appropriate case studies, as well as the 
example phase model that allows a comparison of the case studies. It also explains the 
common underlying structure of the chapters in Part III of this book. 
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10.1 SPES 2020 Evaluation Strategy 
To assess the impact of a technology on certain objectives, such as the 
technology’s inherent benefit or efficiency, systematic evaluations based 
on scientifically sound criteria have to be planned and conducted. An 
empirical approach provides the foundation for the ideal research process 
that allows a meaningful assessment of the results of the evaluation with 
respect to the objectives of the investigation. Empirical data illustrate the 
potential and progress associated with the use of the technology. The 
vision is to demonstrate the benefits of a technology to industry and 
research through empirically obtained quantitative statistical values and 
qualitative information.  

The SPES modeling framework was piloted and evaluated in the 
application domains following a common evaluation strategy. The 
strategy comprises a set of objectives from research partners and 
application partners, as well as general methodological guidelines to 
support planning, conducting, and analyzing empirical studies. The 
systematic evaluation approach of the SPES modeling framework has its 
origins in [Chen and Rossi 1983] and uses empirical methods to obtain 
data to explain or explore phenomena and to derive suggestions for 
future developments.  

The main device used for evaluation in the application domains was 
representative case studies. The case studies provided a common 
platform for evaluating the SPES modeling framework by focusing on 
different aspects of embedded system development. According to [Yin 
2003], case studies are “… an empirical inquiry that investigates a 
contemporary phenomenon within its real-life context, especially when 
the boundaries between phenomenon and context are not clearly evident” 
(p. 13). Often, case studies have small sample sizes and do not allow for 
controlling confounding variables. Case studies as applied in the 
application domains are categorized as feasibility studies. The focus of 
most of the case studies was on evaluating whether the SPES modeling 
framework can be applied in the domain, whether the viewpoints are 
seamlessly integrated, whether the implemented tools supported the 
approach, and on identifying improvement potential. In several studies, 
the concept of semistructured feedback sessions was used to obtain 
feedback from the users. The results of a case study are specifically valid 
in the environment they were obtained from. Case studies must therefore 
be selected with special regard to the evaluation focus. Section 10.2 
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summarizes the selection process for the case studies in Chapters 11 
through 15.  

Experiments were used as supportive means for the evaluation and 
were intended to measure and analyze the effect of systematic variations 
in the independent variable on the dependent variable. Often, an 
experiment included an experimental group (in which “treatment” was 
applied) and a control group (control/no treatment applied) to show the 
effect of the “treatment” between the groups, i.e., the effects of applying 
the SPES modeling framework (“treatment” in the sense of above) in a 
development setting was compared to the method currently used (no 
treatment) with regard to a certain quality focus. The aim of experiments 
is to provide statistically representative results that are valid for the 
population from which the sample is drawn. For further details on several 
experimental designs, we refer to [Shadish et al. 2002].  

10.2 Selecting Appropriate Case Studies 
Embedded systems in the various application domains have different 
focus areas and are subject to different development approaches. 
Therefore, it was necessary to select a number of representative case 
studies within each application domain that would accurately reflect the 
special features of the domain, as well as present a good example of the 
challenges that the individual application domains face during 
development. This was necessary to ensure meaningful results from the 
evaluation of the SPES modeling framework. 

Due to the heterogeneous nature of embedded systems (cf. Chapter 1) 
and their development (cf. Chapter 2), an application domain-
independent phase model of the development of embedded systems was 
established. This phase model consists of the following development 
phases: 

 Product definition 
 System definition (Requirements) 
 System definition (Architecture) 
 Device definition (Requirements) 
 Device definition (Architecture) 
 Software and Hardware development as well as other development 

disciplines 
 Integration 

These development phases are common in most application domains. On 
this basis, a fundamental understanding across application areas for a 
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Agreeing on a 
development phase 
model 
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universal, model-based development process of embedded systems was 
created, allowing for common conclusions about the SPES modeling 
framework from the evaluation activities in the individual application 
domains (see Chapters 11 through 15). 

In addition, challenges and/or evaluation goals of individual 
application domains were identified and case studies were defined in 
each application domain. Particular attention was paid to ensuring that 
the case studies adequately addressed the engineering challenges of the 
application domains (cf. Chapter 2). Fig. 10-1 shows the relation of the 
case studies identified and the respective development phases they 
pertain to. 

 
Fig. 10-1 Classification of the SPES 2020 case studies in the 

development phases of embedded systems 

10.3 Structure of the Following Chapters  
Chapters 11 through 15 focus on the use of the SPES modeling 
framework in the five application domains. To give the reader a better 
understanding and a simple cross-comparison between the domains, a 
uniform structuring concept consisting of five sections each was selected.  

 The first section gives an overview of the application domain. In 
addition to providing a description, it also discusses the economic 
relevance, such as the proportion of the application domain in 
relation to the gross social product or details on added value. From a 
technical standpoint, the first section explains where embedded 
systems will be used today and in the future and the level of 
relevance they have. In addition to characteristics such as quantities 
and costs, it also explains life cycle requirements and general 
product and/or system properties. If any specific quality 
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considerations of the system under development (SUD) must be 
accounted for, e.g., safety properties, real-time response, reliability, 
or performance, the first section elaborates on these considerations. 
To conclude, the section discusses the particular problems of the 
application domain with regard to embedded systems. 

 Section two of each chapter discusses the strategy used to evaluate 
the SPES modeling framework within the application domain. It 
unveils the central questions that had to be answered in the 
evaluation and explains how the problems described in the first 
section can be solved. This section also examines the procedure used 
for the evaluation and how the academic and industrial partners 
cooperated.  

 The third section gives an overview of all evaluation activities, 
outlining the achieved results and integrating them into the SPES 
modeling framework. 

 A selective, but more in-depth discussion of a specific evaluation 
takes place in the fourth section. This section discusses the content-
related objective and explains the specific activities and methods 
used in detail.  

 Section five summarizes the results and answers the question as to 
what was achieved or not achieved within the scope of the 
evaluation. It presents suggestions for additional scientific work on 
the topic, along with the knowledge gained. 
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Application and Evaluation 
in the Automation Domain 

The main focus of our work in the automation domain was on the scientific basis and 
technical implementation of the interaction and the integration in classically 
heterogeneous systems and development landscapes. This comprised the integration of 
automation devices and system components, activities, and models of various engineering 
disciplines, as well as simulation and validation within the scope of a model-based, 
quality-assured engineering process. The SPES modeling framework formed the 
foundation for all developments and was extensively evaluated based on multiple real-
world case studies in industry. Results show a significant contribution toward the 
consolidation of domain-specific modeling and systems. 
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11.1 Overview: Application Domain Automation 
Whether in the manufacturing or processing industry, in mechanical 
engineering, in transportation, or in logistics — automation engineering 
plays a key role in controlling and structuring complex systems. 
Automation engineering describes the design and realization of 
automated systems for technical processes such as steel production, 
manufacturing, or refining. It includes process measuring, open and 
closed loop control, monitoring, alarming, locking, and optimization. 

Embedded systems are an essential asset for automating and 
controlling these processes within industrial solutions and plants. They 
comprise electrical or electronic devices for measuring and influencing 
process parameters, hardware components, a communication system, and 
software for the different automation functions. Embedded systems are 
used in many different forms reflecting the specific characteristics of 
processes or industries. With regard to applications of embedded systems 
in automation, it is important to differentiate between individual devices 
or single systems, which are developed as mass products, and systems of 
systems in the form of machines and industrial plants, which are 
individually implemented in implementation projects for specific 
customer requirements (Example 11-1). Hence, the same (from an 
internal point of view) devices or systems deployed in two different 
systems of systems will appear totally different (from an external point of 
view) due to the configuration, customization, and integration in 
applications of different domains with different requirements and 
constraints. 

Example 11-1: Application areas of embedded systems in automation 
 Automation devices: Generally, standardized, configurable, or freely-

programmable hardware components 
 Machines and apparatuses: Functional, independent units such as 

robots, machine tools, or process cells, partly prefabricated and partly 
fitted 

 Industrial systems: Individual configuration of machines, apparatuses, 
and automation devices for implementing a spatially dispersed process, 
e.g., power plant, mill, pumping station, factory  

Programmable logic controllers (PLC) or comparable specialized 
microcontrollers are deployed as hardware. These are electronic control 
systems used to automate a variety of technical processes featuring 
multiple input and output arrangements, real-time signal processing, 
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deterministic logic execution, modular hardware configurability, 
minimized space, and extended temperature ranges. PLCs are 
programmed via an interconnected computer using domain-specific 
standardized programming languages. 

Automation engineering is the key for being able to manufacture top-
quality and affordable products in high-wage countries. However, 
embedded systems in automation engineering solutions require the 
adaption and integration of intricately connected mechanical, electrical, 
and IT units from functional, logical, technical, and spatial aspects (see 
Example 11-2). Conversely, there are stringent requirements for the 
ability of the individual automation devices and systems to be combined 
and integrated. 

Example 11-2: Characteristics of embedded systems in automation 
 Specific combination of software and system components from various 

manufacturers that are partially proprietary and partially comprised of 
old and new components 

 Collaboration and integration of the models of many disciplines  
 Integration and maintenance of existing software and system 

components with new systems and technology changes in the life cycle  

The control of this integration complexity requires effective 
collaboration across the domain. In this case, the software takes an 
increasingly important role because it forms the last link during the 
implementation or initial operation of the entire system and thus, must 
ensure the proper interaction of all disciplines. Moreover, the automation 
system can only be fully tested in conjunction with the technical process, 
i.e., following its implementation on-site. An early integration, therefore, 
can only occur on the model level. However, currently, the individual 
models of the disciplines are still being developed largely in isolation. 
These models must be interlinked, whereby it is necessary to ensure 
consistency throughout the individual disciplines, the entire life cycle of 
the automation solution, as well as throughout the various levels of 
automation.  

Model-based development is not only expected to improve efficiency 
in the interdisciplinary development process of automation engineering 
through networking and parallelization; in addition, appropriately 
connected models can be used tactically to make requirements and 
design decisions transparent across all disciplines at an early stage. They 
can also be used to secure performance parameters of the automation 
solution early in the proceedings and thus, to minimize development 
risks and costs [Wagner and Löwen 2010].  
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11.2 Evaluation Strategy for the Domain 
From the perspective of automation engineering, a promising approach 
was to start comparing the terms and concepts already proven in the 
domain with the SPES modeling framework in order to lay a scientific 
foundation. Therefore, the characteristics and cross-references of 
discipline-specific models were analyzed at the beginning of the project 
through the analysis of case studies and actual automation projects of 
industry partners. The requirements of the domain for an integrated, 
model-based development process were also determined. In this context, 
particular focus was placed on the alignment of the various terminologies 
and model concepts from software and automation engineering, and thus 
the foundation for the transferability of requirements and solutions was 
created. 

The concepts of the SPES modeling framework were compared to 
existing industrial approaches and optimized parallel to the development 
process. For the evaluation, automation system models were assigned to 
viewpoints of the SPES modeling framework and integrated in 
automation engineering development processes. The concepts and 
methods of the SPES modeling framework were represented through 
prototypical modeling of selected case studies and tools with the 
participation of domain experts and the academic partners. 

11.3 Overview of Activities and Results 
In this section, a general overview of the evaluation context and the 
conducted evaluation activities is given. 

Tab. 11-1  Industries of the automation domain and SPES case studies 

Area Explanation SPES Case Studies 

Process plants 

Automation of physical or chemical 
transformations of substances, 
materials, or energy by a sequence of 
continuous flow processes 

Pumping station plant for water 
distribution (Siemens AG) 

Hot rolling steel mill (Siemens AG) 

Manufacturing 
plants  

Automation of procedures acting upon 
the forming, working, and joining of 
materials or items by a disconnected 
transition of discrete process operations

Test bench for wings (E4You) 

Train control system (Siemens AG) 

Cylinder production (Siemens AG) 

Ongoing coordination 
of modeling 

Development-
accompanying 

evaluation of the 
metamodel in the 

domain 
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11.3.1 Overall Context of the Activities 

The activities focused on the development and transfer of best practice 
methods between the modeling of automation systems and the SPES 
modeling framework. Multiple complementary case studies from various 
application areas of the domain (Tab. 11-1) were used to evaluate the 
SPES modeling framework. In addition, domain-specific characteristics 
and enhancements of the metamodels were developed and implemented. 

11.3.2 Model-Driven Development of Automation 
Devices  

The focus was on the development of best practices and guidelines for 
the systematic introduction of model-based processes [Fieber et al. 
2009]. Moreover, methods for assuring the quality of models in the 
industrial environment were developed, and the software development 
for automation devices was observed in particular in these methods 
[Arendt et al. 2011]. The SPES modeling framework was tested for its 
applicability on the basis of the case study Train control system. In order 
to deliver proof of the usability of the results, a prototype for the 
automated quality assurance of models was implemented for the case 
study and has already been successfully applied in further projects of 
Siemens AG [Arendt and Taentzer 2012]. 

11.3.3 Model-Driven Integration and Simulation of 
Embedded Systems in Industrial Systems 

Here, the focus was on the application of the SPES modeling framework 
for the interdisciplinary modeling (engineering, electrical engineering, 
software) of industry systems with regard to the integration and 
dependencies between the different disciplines involved in automation 
engineering [Jäger et al. 2011], and with regard to the use of models for 
the improvement of the interdisciplinary collaboration (cf. [Wagner et al. 
2011, Fay et al. 2011]). An additional emphasis was on the validation of 
the embedded systems in systems through the use of functional, logical, 
and technical models of the systems for simulations [Wehrstedt et al. 
2011]. 

The application of the SPES modeling framework to the description 
methods of automation engineering and its applicability were evaluated 
on the basis of three case studies: Hot rolling steel mill, Pumping station, 
and Cylinder production. Aside from expert analysis, the prototypical re-
modeling of actual systems was applied in the studies for evaluation 
[Lüder et al. 2010, Wagner et al. 2011]. The activities were accompanied 
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by practical demonstrations. The results of the evaluation are described 
in further detail in Section 11.4. 

11.3.4 Data Models for Automation Runtime Platforms  

At the center of our work were the design and the implementation of a 
runtime platform to which various automation devices and development 
tools could be connected. Therefore, PLCs (e.g., radCASE), process 
visualizations (e.g., embedded graphic XiBase9), and test environments 
(e.g., YAVE) were integrated using the Embedded4You middleware 
GAMMA on the basis of a central modeling approach. 

This data model represents the SPES modeling framework 
completely and abstracts the system components of embedded platforms, 
such as hardware, I/O structures, operating systems, and communication. 
It describes the transition from platform-independent (PIM) to platform-
specific data models (PSM). A PIM describes the model of the logical 
viewpoint in the SPES modeling framework, whereas a PSM is a model 
of the technical viewpoint of the SPES modeling framework. These 
models are connected via a mapping relationship. The models of the 
various abstraction layers and viewpoints require execution semantics to 
be able to validate properties of the system in early stages of 
development. Therefore, the modeling approach also contains platform-
specific artifacts for the execution, such as process and I/O variables, 
temporal processes, or memory dependencies. Together with the test 
environment, the data-centric model enables simulation models to be 
tested with MATLAB/Simulink and software or hardware in the loop. 

The results are applied in diverse embedded platforms and test 
systems. Special platforms were implemented to prove the modeling on 
typical hardware environments of automation. The evaluation occurred in 
the High-lift test bench case study (modeling of the high-lift test of 
wings). In that context, a flexible microTCA hardware platform was 
built. The functional scope of the case study is scalable to modeling in 
automation. 

The proof of concept was shown by implementing and testing the 
runtime platform for the case study High-lift test bench. The technical 
implementation of the model only occurred in the form of an example 
within the scope of the project due to high costs. As far as the 
development environment is concerned, the most significant concepts 
were developed and implemented using prototypes. The activities were 
accompanied by scientific work for modeling temporal aspects and the 
introduction of the results into the standard [VDI/VDE 2657]. 
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11.4 Application and Evaluation of the SPES 
Modeling Framework 

The models and results presented in the following consolidate the work 
from numerous case studies that were jointly developed by Siemens AG, 
the Helmut Schmidt University/University of the Federal Armed Forces 
Hamburg, OFFIS e.V., the University of Duisburg-Essen, and the 
Technische Universität München. For the purposes of clarity and 
confidentiality of real project information, they will be explained based 
on the simplified demonstration model of a production technology 
system. 

11.4.1 Domain-Specific Challenges 

Software within automation systems is becoming more complex and 
crucial to such systems [Achatz and Löwen 2005], resulting in some 
important domain-specific challenges — this was the focus of the 
evaluation. 

A variety of engineering disciplines are involved in the realization of 
an automation system: electronics, mechanics, process technology, 
embedded hardware and software. The disciplines all require their own 
models and methods that are specialized for their particular design 
purpose. However, design decisions and results of different disciplines 
depend on each other. A modeling approach has to offer system models 
that span disciplines, as well as views onto these models that support 
discipline-specific methods and models and ensure the consistency and 
traceability of the data of the different views. 

Complexity also arises from the great number of functions, signals, 
and devices in automation systems. Models, and especially tools, have to 
stay in control and must support the engineers to stay on top of things.  

Due to their complexity, in practice, automation projects are process-
driven and consist of different phases in which the projected system is 
designed, refined, and made more specific step-by-step. Important phases 
are concept engineering (for bid preparation), basic engineering, detailed 
engineering, and installation and commissioning. In each phase, different 
objectives and requirements have to be supported by models (see Tab. 
12-2). For example, a project must be able to estimate the major cost 
items as early as possible for the purposes of bidding (e.g., equipment, 
engineering and construction). A modeling approach must allow this 
information to be revealed without excessive effort. 

 
 

Collaboration of 
scientific and 
industrial partners 

Integration of multiple 
engineering 
disciplines 

Scalability for large 
number of entities 

Process integration of 
modeling approach 
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Tab. 11-2  Typical phases of an automation engineering project 

Phase Concept 
Engineering 

Basic  
Engineering 

Detailed 
Engineering 

Installation & 
Commissioning 

Aim Plant is feasible Plant to be contracted Plant can be built Production can start 

Typical 
Tasks 

1. Clarify tech-
nical scope 

2. Analyze 
requirements 
& risks  

3. Design solu-
tion concept 

4. Assess effort 
& quantities 

1. Design technical 
process, plant 
architecture, and 
construction 

2. Initial technical 
specifications & 
calculations 

3. Simulation and 
validation 

1. Design all 
systems 

2. Fully specify 
equipment  

3. Purchase, 
manufacture, 
and implement 
systems and 
software 

1. Assemble 
mechanical, 
electronic, and 
automation parts 

2. Deploy software  
3. Check, inspect, 

and test every 
operational 
component 

11.4.2 Introduction to the Case Studies 

The demonstrator represents a processing cell in a production system for 
manufacturing cylinder heads and offers the possibility of mapping and 
simulating planning processes and models of actual industrial systems. 
The reduced complexity of the demonstrator allows representative results 
to be achieved in a short time, and these results are then transferable to 
the actual planning process for industrial systems.  

 
Fig. 11-1 Demonstration model and example of a production system 

The demonstrator consists of four stations for work piece processing: two 
conveyor belts and two gantry cranes for transporting work pieces. 
Automation enables multiple work pieces in the cell to be processed 
concurrently. To achieve this, optical sensors for determining the work 
piece position are installed, as well as push buttons for determining the 
crane position. For the automation, a PLC S7-400 is used, and is 
connected via PROFIBUS to a total of 52 sensors (position measuring, 
work piece identification) and actuators (drives).  

Case study: Cylinder 
machining unit 
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The system was engineered using plant engineering tools COMOS, 
Mechatronics Concept Designer, and the automation system SIMATIC 
PCS7. In addition to the configuration of the hardware and 
communication, this engineering also included the creation of a control 
program and the configuration of the operator control panel. 

11.4.3 Mapping of the SPES Modeling Framework to the 
Concept and Description Methods for 
Automation 

To make the SPES modeling framework compatible for modeling 
automation engineering, the common entity classes, views, relationships, 
and concepts of the domain-specific models have to be assigned to those 
of the SPES modeling framework. To enable this assignment 
independent of the various discipline-specific and industry-specific 
modeling languages, a generic metamodel of automation engineering was 
developed (see Fig. 11-2) [Strube et al. 2010]. It describes all elements to 
be modeled and their relationships relevant from an automation 
engineering perspective for the functionality and integration of a system. 
The 4-tier model can be used to interlink the SPES modeling framework 
to the domain-specific modeling languages. In this context, tiers 3 and 4 
represent the automation system. The modeling of the system 
environment on tiers 1 and 2 is of particular importance, not only for 
compiling the requirements from the engineering process and resources 
to the automation, but also for validating all requirements. This requires 
an overall analysis of the system considering the interaction of processes, 
resources, hardware, and software. 

 
Fig. 11-2 4-tier metamodel for automated plants [Strube et al. 2010] 

4-tier metamodel 
classifies all entities in 
automation modeling 
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Tab. 11-3 shows the assignment of the entity classes of automation 
models to the viewpoints of the SPES modeling framework as well as the 
associated domain-specific modeling languages. There is no one to one 
assignment of the domain-specific modeling languages to the viewpoints 
of the SPES modeling framework. Many automation engineering models 
contain functional as well as logical and technical aspects, e.g., the 
system layout or the process and instrumentation diagram. The 
requirements viewpoint is not listed because it is still minimally 
established in the domain and the SPES concepts can be used without 
further adaptation. 

Tab. 11-3  Mapping of SPES viewpoints to automation entity classes 

Viewpoint Automation Entity Class Domain-Specific Models 

Functional 
Viewpoint 

Tier 1: 
Technical 
process 

Sequence of process operations 
with which raw materials are 
transformed into final products  

Basic/process flow diagram 
Bill of operations (BOO) 
Functional architecture 

Logical 
Viewpoint 

Tier 2: 
Plant 
layout 

All types of technical resources 
(machines, apparatuses) for 
executing the technical process  

Plant breakdown structure 
Plant layout (CAD model) 
Material flow diagram 
Process & instrumentation diagr. 

Tier 3: 
Automation 

software 

Necessary automation 
functionality for controlling the 
process of tier 1 with the 
resources of tier 2 

Process control hierarchy 
Measuring/set point list 
State chart/Petri net/SysML 
Function charts/blocks 

Technical 
Viewpoint 

Tier 4: 
Automation 
hardware 

All devices for controlling and 
monitoring of the technical 
process by executing automation 
software 

Parts list: drives, instruments 
Hardware/network configuration 
Input/output signal list 
Wiring & mounting diagrams 

Only a limited number of technological processes are available for 
particular process operations, which in turn affect the type and features 
of technical resources and automation functionality. From the bill of 
operations of the cylinder processing cell presented in Fig. 11-3, it is 
obvious that the individual process steps can only be executed by certain 
types of machines. Further technical requirements arise through the given 
process templates and the parameters of process operations (e.g., 
temperature, forces, velocity, geometry). For example, in the case of 
simultaneous movement of the gantry cranes in the cylinder machining 
unit, collisions must be avoided. These types of system requirements are 
modeled according to the SPES modeling framework as contracts (Fig. 
11-3), and can therefore be taken into consideration in the development 
process so that future integration or functional problems can be 
minimized.  

The logical viewpoint serves as a platform-independent description of 
the logical system architecture. In automation engineering, this can be 

Metalevel domain 
compatibility: SPES 
viewpoints cover all 

entity classes of 
automation models  

  

Models in automation 
have a strong physical 

connection 
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mapped to the design of the system layout and the necessary automation 
functionality according to the process flow (see Tab. 11-3).  

 
Fig. 11-3  Functional view: Bill of operations of the cylinder machining unit  

Evaluation showed that, in contrast to the SPES modeling framework 
approach of a platform-independent logical system model, the layout of 
automation systems (tier 2) must consider the technological platform to 
some extent. For example, the type of technical resources needed 
according to the selected technological process for a process operation 
must be determined, which in turn also significantly affects the type and 
features of the automation functionality (tier 3). For example, based on 
the decision that gantry cranes have to be used to transport work pieces 
in the system layout of the processing cell instead of robot arms (Fig. 
11-4), the number and type of sensors and actuators, and thus, the 
process signals as well as the type of automation software (e.g., the 
logical process control instead of numerical movement control) are 
determined. The automation functionality cannot be modeled 
independently of the platform because it is dependent on the features of 
the hardware (temporal relationship, bus systems) and the sensor/actuator 
interfaces. For the logical viewpoint, therefore, few independent models 
currently exist in automation engineering; rather the elements of the 
logical view are primarily described in technology-oriented models. 

Due to the fact that the technological process forms the common 
basis for all disciplines involved in the planning process and their 
models, the dependencies between the process, the technical resources, 
and the automation system must also emerge from the functional and 
logical system model. On one hand, this approach increases the degree of 
the overall description of the system and in the process, also helps to 
avoid misunderstandings and integration issues between the disciplines. 
The challenge from the perspective of automation engineering was in 
finding suitable modeling strategies so that, on one hand traceability 
beyond viewpoints exists, and on the other, a viewpoint is closed. For 

Logical viewpoint 
models shaped by 
technical platform 
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this reason, the 4-tier metamodel also contains a classification of 
technically relevant relationships between the entities (Hint 11-1). 
Furthermore, a method for analyzing and modeling technical 
dependencies when engineering a system was developed [Jäger et al. 
2011, Strube et al. 2011]. 

 

  
Fig. 11-4 Logical view: plant breakdown structure modeled in COMOS 

(left) and 3D layout in Mechatronics Concept Designer (right) 

Hint 11-1: Classification of model relations of automation entities 
 Process flow represents the transport of items, substances, or energy 

between process operations and/or storage 
 Structural and spatial associations represent the spatial or constructive 

assembly of entities in the plant (e.g., shaft, screw) or mechanical 
connections for transporting material or substance (e.g., pipeline, cable) 

 Communication relations between units represent the exchange of 
signals/information (test value, set point, function call, etc.), e.g., wire 
connection between sensors and actuators of a technical resource and an 
automation device. 

 Relationships of effect represent functional dependencies between 
technical resources as well as between automation functionality with the 
controlled resource and the process operation executed 

Structural and communication relations are modeled using the SPES 
modeling framework concepts logical component, port, connection, 
mapping, and realization. To model simple flow and relationships of 
effect, the concepts allocation, mapping, and contracts are applied. Fig. 
11-5 shows this in the example of the logical model of the automation 
functionalities of the cylinder processing station. The automation 
functionalities on the next abstraction layer are hardened through the 
domain-specific modeling languages continuous or sequential function 
charts, and thus the transition for the implementation of the logical 

Functional and logical 
design is dependent 

on the technical 
aspects  
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components is created with logical PLC programming languages 
(function blocks), as shown in Fig. 11-6.  
 

 
 

Fig. 11-5 Logical view of a high abstraction layer: functions, interaction, 
and contracts 

 
Fig. 11-6  Logical view of a lower abstraction layer: crane control: 

continuous function chart 

Within the technical viewpoint, the logical components of the logical 
model are allocated to equipment and the software is distributed to the 
automation devices. The main entities are technical components such as 
electronic control units, for example, PLC, control cabinet, operator 
station, and systems, as well as actuators and sensors (Fig. 11-7). This 
network represents the hardware platform to which the logical 

Modeling of relations 
of automation entities 
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components must be allocated (Fig. 11-8). Automation hardware is 
typically selected from catalogs and the software is implemented with 
appropriate tools specific to the hardware. The specific machines and 
apparatuses are selected for the technical resources. They include 
additional technical components for discipline-specific subsystems such 
as power supply, hydraulics, etc. 
 

 
 

Fig. 11-7  Technical view: hardware layout 

 
Fig. 11-8 Technical view: network layout in SIMATIC NetPro 

Through the formalization of the process conditions and relationships of 
effect, both can be analyzed automatically. In this way, it is possible to 
determine, for example, whether logical components that depend on each 
other are also compatible with each other. In order to enable a complete 
review of the functionality and of the embedded system during technical 
process control prior to the actual systems deployment, solution concepts 
have been developed. For example, executable simulation models for 
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process and automation can be generated from the interdisciplinary 
complete model [Wehrstedt et al. 2011]. These are used to validate the 
functional and logical models of the system with the use of simulation 
tools — both in an early phase as well as during the virtual initial 
operation. For example, it is necessary for the cylinder machining unit to 
test whether the control operates without hindrance or collision. 

11.4.4 Evaluation of the Abstract Modeling Concepts 

In addition to the application of case studies, the modeling concepts of 
the SPES modeling framework were compared to those of common 
design methods, modeling languages, and tools of automation. The 
comparison was based on a criteria catalog with defined and weighted 
instances (including examples) of conceptual abstractions. The validity 
and completeness of the criteria catalog for analysis and comparison of 
modeling and tooling concepts has been proven in more than 25 
evaluations for several Siemens business units in recent years.  

An overview of the results is presented in Tab. 11-4. In summary, a 
complete consideration and specification of the concepts views, 
hierarchy, and abstraction can be found in the SPES modeling 
framework. It also became evident that the modeling concepts 
modularization, viewpoints, aspects, and dependency/mapping were not 
yet completely specified in both SPES and automation engineering. The 
concepts reuse and mechatronics are only applied in the automation 
domain and are not currently considered in the SPES modeling 
framework. 

11.4.5 Methodological Approach for the Engineering of 
Systems on the Basis of the SPES Modeling 
Framework 

The SPES modeling framework is an architecture model and does not 
provide a process model. Due to the fact that automation projects are 
strongly driven by processes, a suitable approach for the engineering of 
automation systems based on the SPES modeling framework was 
derived. In the SPES modeling framework, the engineering phases 
concept, basis, and detailed engineering are supported by the viewpoints. 
The installation and commissioning phase of standard process models is 
currently not provided. The models to be created in this phase, however, 
do not require currently unknown modeling concepts and it was therefore 
possible to depict them in the SPES modeling framework (Fig. 11-9 left). 
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Tab. 11-4  Evaluation of abstract modeling concepts 

Concept 
Emphasis 

Explanations SPES AUT 

Hierarchy Very 
High 

Very 
High 

Hierarchization through composition and decomposition is used 
in both domains. There is a common understanding in the areas 
of consideration and specification.   

Abstrac-
tion High High 

Is substantial in the SPES modeling framework, although the 
type of abstraction is not specified further. For example, the role 
concept significant for the automation can be depicted with a 
functional viewpoint and implementation relationship, though an 
explicit type of artifact is missing: role or abstract component.  

Modulari-
zation  Med. High 

Modularization has to be applied in the SPES modeling 
framework when hierarchizing. However, the consideration and 
specification of a hierarchy-wide modularization, such as is 
implemented in the automation domain with the aid of the group 
concept (logical areas), is lacking. This would correlate to a 
viewpoints and cross-aspect viewing aggregation.  

Discipline-
specific 
views 

 Med.  Med. 

The viewing concept is implemented in the SPES modeling 
framework entirely. The discipline-specific design, however, is 
not sufficiently supported. Aspects allow the internal 
classification of information within a component, though not an 
explicit component-wide classification or summary of individual 
aspects, interfaces, and connections.  

Depen-
dency Low Low 

The mapping concept with the characteristics implementation, 
allocation, and link to external data is currently not fully specified. 
For example, extensions for the representation of complex 
dependencies with class, features, and functionality are required.  

Reuse None High 
The SPES modeling framework does not currently provide a 
reuse concept. Libraries, instance, and inheritance are required 
to support the reuse of engineering artifacts. 

Mecha-
tronics None  Med. 

Artifacts are classified in the SPES modeling framework. 
However, in automation, an artifact frequently comprises 
information from multiple viewpoints that must be considered 
cohesively because a significant added value of the modeling 
arises.  

In automation engineering, firstly the system requirements are analyzed 
(decomposition). As explained by means of the case study, requirements 
are not only based on functions of the functional viewpoint, but also on 
elements of additional viewpoints. That means that a sequential 
arrangement of the design within a viewpoint or a level is not sufficient. 
The use of a parallel process instead allows temporal overlapping of the 
design activities of the different disciplines involved. In addition, it must 
be possible to integrate solution elements while increasing the level of 
abstraction (bottom-up). This results in the process flow as shown in Fig. 
11-9 (right). 
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Fig. 11-9 Mapping of the SPES modeling framework to the engineering 

process  

11.5 Summary 
The goals of the automation domain were to optimize, interlink, and 
increasingly automate the engineering of automation systems using 
suitable models based on the SPES modeling framework. This requires 
integration of the discipline-specific models within the scope of 
structured, collaborative, and scalable engineering processes, also 
considering the physical and technical constraints of the automated 
system. 

The concepts of the SPES modeling framework were mapped to the 
specific modeling languages of the automation domain. In this process, 
through intensive coordination with representatives from the automation 
domains and academic partners within SPES, it was found that the terms 
of automation engineering and those of the SPES methodology 
correspond well. Based on results from applying the SPES modeling 
framework in the context of several domain-specific case studies, we 
conclude that the automation engineering 4-tier metamodel of 
automation can be represented within the viewpoints and abstraction 
layers of the SPES modeling framework. Based on results from case 
studies, we were able to demonstrate that the SPES modeling framework 
can be applied in the automation domain. 

Results also showed that the SPES modeling framework strengthens 
abstraction, hierarchy, and separation of concerns in interdisciplinary 
modeling and thus promotes interdisciplinary collaboration, which can be 
underlined from experiences from recent projects. Moreover, the 
emphasis on the functional and logical views supports automation 
engineering for shifting efforts from implementation into the early 
project phases, helping to reduce project risks as well as costs for the 
correction of errors and design decisions [Wagner et al. 2011]. However, 
there is currently no guideline for the application of the SPES modeling 
framework in the automation engineering process. Therefore, the SPES 
modeling framework has to be adapted further with regard to its 
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applicability in the automation domain. Specifically, this could be 
achieved through the integration of upcoming domain-specific challenges 
such as mechatronic design and design-by-reuse and by support through 
domain-specific application guidelines. 
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 12
 

Application and Evaluation 
in the Automotive Domain 

This chapter summarizes the application and evaluation of the SPES engineering 
methodology in the automotive domain. After introducing the particular domain 
characteristics, we state some research questions that we have investigated. Some of the 
activities that address these research questions are presented in detail. We conclude that 
the SPES engineering methodology is a good basis for the development of automotive 
systems, but could be further refined to fit the particular needs of the domain. 
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12.1 Overview: Application Domain Automotive 
With total revenue of €315 billion, and thus representing approximately 
20% of German industrial production, the automotive industry is 
Germany’s most important economic sector, offering employment to 
714,000 people. Investing €20 billion in research and development, the 
automotive industry is the most innovative sector and thus contributes 
significantly to securing Germany as a location for business (source: 
VDA annual report 2011). 

The necessary innovations are made possible by the enabling 
technology of embedded software systems. With regard to the total 
development effort, embedded systems make up between 30 and 40 
percent of the value chain with an upward trend. 

Across all domains, engineering of embedded systems is 
characterized by a physical context with real-time requirements and the 
necessity for interdisciplinary cooperation. Additionally, the automotive 
domain has a high share of quality requirements, cost pressure, and 
resource constraints. This is due to high product volumes ranging in the 
millions, particularly demanding safety and reliability requirements, and 
extensive variability stemming from a large number of system 
approaches and functional configurations. 

An integrated modeling approach is a key factor to mastering diverse 
requirements and being able to handle variants in highly complex 
surroundings. Both of these capabilities are vital in order to meet the 
challenges of the industry, which is why we worked on developing them 
in the SPES 2020 project. 

12.2 Evaluation Strategy and Correlations to the 
SPES Modeling Framework 

In the automotive application domain, the companies Hella KGaA Hueck 
& Co., Robert Bosch GmbH, and Vector Informatik GmbH, as well as 
the academic partners Fraunhofer IPT and University of Paderborn 
(UPB), worked on a variety of domain-specific research questions 
(RQs). To address the wide range of these questions, various research 
activities were conducted considering different types of case studies. 
RQs 1-4 focused on an evaluation of some of the approaches introduced 
in Part II of this book. RQs 5-8 evaluated and refined the SPES modeling 
framework (cf. Chapter 3) where necessary in order to exploit domain-
specific information and to support domain-specific languages and 
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standards. RQ9 considered variant handling including tool support 
covering all viewpoints. The research activities conducted can be related 
to the viewpoints of the SPES modeling framework as shown in Tab. 
12-1.  

Tab. 12-1 Overview of research questions in the automotive domain 

 
       RQ explained in Section 13.3     RQ not explained in detail 
 

 Bosch Hella / IPT / UPB Vector 
Requirements 

Viewpoint 
   

Functional 
Viewpoint 

   

Logical 
Viewpoint 

   

Technical 
Viewpoint 

   

In the following, we will outline each RQ. 

 RQ1: How can we apply model-based requirements engineering to 
the automotive domain? Employing the model types of the 
requirements viewpoint (see Chapter 4), we conducted case studies 
on an example engine control system and air system. Valuable input 
for the method developers was gathered from domain experts (see 
Section 12.3.1). 

 RQ2: How can we address model-based function development 
throughout the automotive development life cycle? We analyzed the 
tool AUTOFOCUS3 by means of a case study conducted on an 
example engine control system. 

 RQ3: How can we address safety design in model-based automotive 
development? The work on this RQ led to the development of the 
Vertical-Safety-Interface approach [Zimmer et al. 2011]. Industrial 
feedback was gathered via a case study conducted on a reallocation 
scenario. 

 RQ4: How can we empirically validate the methods developed in the 
automotive domain? The resulting effect on complexity and 
efficiency was validated empirically in cooperation with Fraunhofer 
IESE. 

 RQ5: How can we get from mainly informal requirements to an 
implementation based on the domain-specific AUTOSAR standard 

R
Q

x 
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Q
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[AutomotiveSIG 2010] in a more systematic way? A big challenge 
here was the assurance of consistency and traceability between 
artifacts of different development phases and viewpoints. A seamless 
model-based development methodology compliant to Automotive 
SPICE [AutomotiveSIG 2010] was developed. It addresses this 
research question using semi-automatic transitions between 
development phases and viewpoints [Holtmann et al. 2011b]. 

 RQ6: How can we identify design flaws regarding functional 
correctness and timing in early development phases? To address this 
question, different kinds of simulation techniques were integrated 
into the development methodology (cf. RQ5). 

 RQ7: How can we apply the analysis techniques based on the SPES 
modeling framework (see Chapter 2) to AUTOSAR architectures? In 
order to answer this question, a concept for transforming AUTOSAR 
models into models corresponding to the SPES modeling framework 
was developed. 

 RQ8: Is the conceived automotive development methodology (cf. 
RQ5) applicable and what are its limits? The methodology was 
evaluated by a proof of concept and developers were asked for 
feedback as to its feasibility. 

 RQ9: How can we develop embedded systems for vehicles in a 
product line approach? Work on this RQ extended the concepts and 
features of the PREEvision tool to manage product lines and to 
derive consistent product variants of automotive embedded systems.  

Some of these RQs are explained in more detail in the following section. 

12.3 Detailed Experience Reports 
In total, the RQs we addressed in our activities in the automotive domain 
cover all constructive development phases for automotive systems. In 
this section, we present a selection of our activities in more detail. 
Following the development process, we start with requirements 
engineering by presenting an evaluation of the requirements view (see 
Chapter 4) of an engine control system (see Section 12.3.1). We then 
continue (in Section 12.3.2) with a seamless development methodology 
from the requirements to an implementation based on AUTOSAR, which 
was evaluated on a body control module. This ECU offers a wide range 
of functions related to the car body (e.g., indicator control and interior 
light control) and communicates with several other ECUs. Finally, we 
present an approach for handling variants, which is necessary in all steps 
of the development process (Section 12.3.3). 
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12.3.1 Requirements Engineering Using the Model of 
the Requirements Viewpoint 

In order to address RQ1 regarding the use of model-based requirements 
engineering in the automotive domain, we analyzed methods by applying 
them to the development of software for engine control systems. We 
analyzed this situation using an air system (system controlling the 
airflow to the engine) as an example. 

Measuring the performance of model-based development methods, 
including model-based requirements engineering, relies heavily on how 
adequately models can describe the relevant characteristics of a system 
regarding both functionality and quality. Customer requests, testability of 
design and implementation artifacts, and shaping the development 
process are some of the key reasons for requirements engineering. The 
evaluation of the model of the requirements viewpoint was motivated by 
the following questions: 

 Does the approach cover relevant functional problem classes? 
 Does the approach support the step from the problem domain to the 

solution domain? 
 Does the approach scale to large systems? 
 Can the approach address the variability inherent to the domain 

adequately? 
 Does the approach allow statements regarding the completeness or 

unambiguousness of requirements modeled? 

Generally speaking, requirements in the automotive domain are 
documented in specification documents containing an informal textual 
description (cf. [Sikora et al. 2012]). This description is then 
supplemented by formal behavioral models such as MATLAB or ASCET 
for individual aspects. As described in Part II of this book, the 
requirements viewpoint (see Chapter 4) provides modeling concepts and 
language elements for: 

 Static descriptions of requirements using context diagrams 
 Dynamic descriptions of requirements using scenarios 
 Traversal to the solution domain using function models 
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Fig. 12-1 Comparing the plant structure (left) and the requirements 
viewpoint (right) 

The requirements viewpoint was evaluated in the context of the case 
study Engine control system. The aim of the evaluation was to identify 
which relevant domain characteristics are adequately supported and 
whether or not the efficiency and quality of development can be 
improved. For this purpose, context elements were compared to their 
modeling counterparts in the model of the requirements viewpoint and 
were evaluated with regard to the desired goals. 

As a typical subsystem in an engine control system, the air system is 
characterized first and foremost by the system that is to be controlled. 
The context of the air system can be described from both a static 
perspective as well as a dynamic behavioral perspective using the plant, 
the user, the environment, and the control system. The individual context 
elements are characterized as follows: 

 The context element plant represents the physics of the air system as 
a behavioral model in the form of differential equations. In order to 
specify requirements for the control of the plant, the target parameter 
we are striving to control (in this case the amount of air provided to 
the engine for combustion) must be put in relation over time along 
with other conditions (in this case, for example, outside air pressure). 
Additionally, the behavioral model that is synthesized from the 
physical equations of the system’s components must be available. On 
closer inspection, the air system’s component topology varies greatly 
between different operation phases, and thus the behavioral model 
varies as well. As a result, the operating air system presents itself as 
a multitude of variants that must respectively fulfill differing 
requirements in minute detail. The change between topologies occurs 
either due to external events or constellations within the system in 

Does the approach 
cover relevant 

problem classes? 
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order to achieve required target values. In order to be able to control 
the target values, we need to know which information (sensor 
values) we have at our disposal and which physical parameters 
(actuators) we can influence. In our example, these are the throttle 
and the exhaust gas recirculation valve. 

 The usage describes the intent with which the air system shall be 
operated and specifies the desired air amount that the air system 
control shall achieve. For example, the air system is operated using a 
specific pre-defined mix of fresh air and recirculated exhaust gas 
when regenerating the exhaust filter. Target value generation is 
continuous but may involve jumps when the operating situation 
changes spontaneously. 

 The environment specifies information such as temperature, outside 
air pressure, battery voltage, and other environmental information 
relevant to the operation of the air system. These values are typically 
continuous. 

 The control system involves describing information such as starting, 
operation, shutdown, or test modes as discrete events. 

As described above, all value- and event-discrete elements can be 
adequately and completely described using a context diagram. Time- and 
value-continuous elements can be approximated by listing the main 
aspects of the continuous contextual element. 

Interactions between system and system context can be described 
very well using scenario diagrams. The question of which intents are 
used to operate the system is addressed particularly well. As far as 
continuous interactions between system and plant are concerned, this 
behavior must first be transferred to a discrete form. This only works 
well if the plant’s behavior can be assumed to be continuous. While 
applicable for a wide range of operating situations of the air system, it 
cannot be assumed for all physical plants. 

In summary, the question of an adequate problem description using 
the contextual view with the modeling concepts of the requirements 
viewpoint is depicted in Tab. 12-2. Value- and event-discrete behavior is 
addressed fully, whilst value- and time-continuous behavior can only be 
approximated through the use of simplifying discretization and thus 
remains incomplete. 

Using value- and time-discrete semantics, behavior can be easily 
documented in an understandable form. For embedded systems, it is of 
utmost importance that they remain operational in all situations and thus 
expectations regarding completeness are extremely high. A scenario-
based approach, however, is seldom complete or free from ambiguities. 
The value- and event-discrete semantics can only approximate value- and 

Evaluation of the 
static perspective 

Evaluation of the 
dynamic perspective 

Addressing the 
problem classes in the 
context model 

Does the approach 
support the traversal 
from the problem 
domain to the solution 
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time-continuous behavior and thus remain imprecise and, for our 
purposes, incomplete. The traversal to the solution domain relies on an 
approach based on value- and event-discrete sequences, ultimately 
leading to a state machine. If, however, as in our case, value- and time-
continuous behavior is dominant, the solution must be based on a 
cybernetic control system approach utilizing signal-theoretic thinking. 

Tab. 12-2 Coverage of problem classes using the requirements viewpoint 
model 

Contextual Element Problem Class Requirements 
Viewpoint Model Type Covered? 

Plant Value- and time-
continuous 

Context diagram Partly 

Environment Value-discrete and -
continuous 

Context diagram 
Scenario diagram 

Widely 

Usage Value-discrete Event-
discrete 

Context diagram 
Scenario diagram 

Fully 

System Control Event-discrete Scenario diagram Fully 

In order to be applicable to the domain of physically dominated systems, 
the requirements viewpoint model must be developed further in this 
direction. Under this premise, software can be developed based on 
system requirements resulting from systems co-design of all system 
disciplines concerned. 

 

 
Fig. 12-2 Effect on effort (top) and system comprehension (bottom) 
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The following conclusions were reached by means of a case study [Gross 
et al. 2009] that was performed to assess the effect of the approach on 
efficiency and quality in the automotive domain (see Fig. 12-2). Firstly, 
the approach is neutral with regards to effort and quality (see Fig. 12-2, 
top). Secondly, the distribution of effort is shifted towards earlier 
development phases. Thirdly, communications between stakeholders and 
system understanding among developers were improved (see Fig. 12-2, 
right). 

12.3.2 A Seamless Development Methodology for 
Automotive Systems  

As seen in the evaluation of RQ1, the SPES engineering methodology 
has to be tailored for specific domains. In order to address RQ5, the 
SPES modeling framework was refined for the application within the 
automotive domain. We evaluated the concepts by means of the case 
study Body control module. 

Requirements and functional viewpoints 

As already stated in the last section, today, requirements are mostly 
specified in unrestricted natural language [Sikora et al. 2012]. The 
informal character of natural language, as well as its inherent ambiguity, 
can lead to inconsistent, ambiguous, and incomplete requirements. To 
resolve this problem, we use requirement patterns that are textual 
templates for different types of requirements [Kapeller and Krause 2006, 
Holtmann 2010]. Requirement types supported that reside in the 
requirements viewpoint (see Chapter 4) are, among other things, 
solution-oriented (see Section 4.2.4), timing, and safety requirements. 
However, functional requirement patterns describe the functional 
decomposition of the system under development (SUD) and reflect a 
functional hierarchy as explained in Chapter 5. Example 12-1 shows a 
functional requirement pattern in the upper part. The parts in square 
brackets are optional, and parts in angle brackets are variable and 
replaced by functionalities of the SUD. The lower part of Example 12-1 
represents an instance of this requirement pattern and describes an 
excerpt of the functional decomposition of the SUD into its 
functionalities.  

 

Restricted natural 
language for 
requirements 
specification 
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Example 12-1: Requirement pattern and instance 
The functionality of the system “<system>” consists of the following 
function[s]: <function list>.  

The functionality of the system “Control Indicators” consists of the following 
functions: Indicate, Switch Hazard Lights. 

Requirements formulated by means of requirement patterns are derived 
from the informal requirements systematically using a process refining 
the one used within the requirements viewpoint (see Section 4.4). Since 
we restricted the expressiveness of natural language and hence 
disambiguated it, the resulting requirements are understandable to all 
stakeholders and can be automatically processed at the same time. Thus, 
they can be validated automatically to ensure consistency or 
completeness, for example (see Fig. 12-3, left) [Holtmann et al. 2011a]. 
Furthermore, to ease the transition to model-based development, they are 
automatically transformed into a system analysis model using a Triple 
Graph Grammar (TGG) [Schürr 1995]. TGGs specify rules for 
bidirectional model-to-model transformations (M2M) that can be 
executed automatically and also preserve traceability and consistency. 
Requirements are formulated according to the requirement patterns and 
thus, the analysis model is kept traceable and consistent. By enabling the 
automatisms mentioned above, this procedure goes beyond the manual 
modeling of the SUD functions according to informal requirements as 
explained in Chapter 5. 

Logical viewpoint 

In the logical viewpoint, the logical component architecture is designed, 
as explained in Chapter 6, on the basis of the system analysis model 
resulting from the functional viewpoint. The elements of the analysis 
model are allocated to elements of the logical component architecture to 
document which logical components realize which functions and to 
maintain traceability [Meyer et al. 2011], see Fig. 12-3. For example, the 
functions Indicate and Switch hazard lights are allocated to two logical 
components, Indicator and BrakeLampActuator, respectively. The 
semantic correctness of the allocations can be ensured with the mapping 
relations based on contract-based design introduced in Part II. 

To support a seamless development process, the logical component 
architecture can be automatically transformed into AUTOSAR 
application components. To do this, elements to be transformed into 
AUTOSAR application software (ASW) are marked manually using a 

Processing of textual 
requirements for 

automated validation 
and transition to 

model-based design 

Transition to 
AUTOSAR application 

software 
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profile. The resulting refined logical component architecture is then 
automatically transformed using model-to-model transformations with 
TGGs (see Fig. 12-4) [Giese et al. 2010]. The usage of TGGs again 
allows for preservation of traceability and consistency between the 
models. 

 
Fig. 12-3 From the functional to the logical viewpoint 

After the transformed AUTOSAR ASW has been manually enriched 
with behavior, this behavior can be simulated using the COTS tool 
SystemDesk2 to validate its functionality before the software is deployed 
on hardware, see Fig. 12-4, upper right. Therefore, the compiled code of 
the overall SUD is executed, and thus its responses with regard to 
predefined stimuli are generated. The dynamic system behavior of the 

                                                           

 
2 http://www.dspace.com/systemdesk/ 

Functional simulation 
of AUTOSAR 
application software 

http://www.dspace.com/systemdesk/
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interconnected software components can thus be tested at an early design 
stage, which addresses RQ6. 

Technical viewpoint 

We further enrich the system design model with information from the 
technical viewpoint (see Chapter 7), as seen in Fig. 12-4, lower left. For 
example, a task calling operations of the logical component Indicator, its 
activation policy, and its allocation to an executing CPU are specified.  
 

 
 

Fig. 12-4 From the logical to the technical viewpoint 

On the one hand, we use this refined system design model to integrate a 
resource and real-time simulation of the SUD (see Fig. 12-4, lower right) 
to support architectural decisions and to validate the architecture 

Resource and real-
time simulation 
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concerning timing requirements. This was realized by implementing a 
generator for simulation models for the COTS tool chronSIM3 [Nickel et 
al. 2010], which allows computation of the CPU loads and simulation of 
the timing behavior of the SUD. Furthermore, timing requirements can 
be formalized by means of requirement patterns (see above) and used 
within the simulation to directly indicate requirement violations within 
the simulation [Meyer et al. 2011]. The simulation of the scheduling for a 
specific execution platform enables identification of design flaws in early 
development phases before first prototypes are available, addressing 
RQ6. 

On the other hand, we use the refined system design model to further 
simplify the transition to AUTOSAR. In addition to the ASW, an 
AUTOSAR model consists of basic software (BSW) and an 
automatically generated middleware. Typically, for most parts the BSW 
is configured and then its source code is generated automatically. 
However, since there are thousands of different possible configurations 
depending on the architecture, support must be provided for this 
configuration task. In order to (semi-)automate the configuration, we 
developed an algorithm (see Fig. 12-4) for synthesizing parts of the 
AUTOSAR configuration [Meyer and Schäfer 2009]. For example, we 
preconfigure the operating system and the communication stack [Meyer 
and Holtmann 2011]. Thus, the main architecture decisions that were 
already specified within the refined system design model are transferred 
to the AUTOSAR basic software configurations. 

Evaluation 

In order to answer RQ8, the development methodology presented for 
automotive systems was evaluated with an excerpt of the case study Body 
control module by a proof of concept and structured expert interviews. 
For the evaluation, three experts from Hella and another industrial 
partner from the automotive sector were interviewed after using this new 
approach within a prototype. Of course, the number of persons 
interviewed is too small to gain a universally valid result, but we tried to 
minimize this effect by choosing experts for every development phase. 

                                                           

 
3 http://www.inchron.com/chronsim.html 
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Furthermore, some concepts have already been applied in real 
development projects. 

The proof of concept demonstrated that the systematic and partially 
automated transitions between the different development phases and 
viewpoints, together with automated checks, ensure traceability and 
consistency throughout the methodology, especially if parts of an artifact 
in a development phase are added or removed. For example, newly added 
requirements result in new functions within the analysis model. In this 
case, the fact that there is no logical component that takes care of this 
function is revealed automatically. Furthermore, the expert interviews 
demonstrated that manual and thus extensive developer tasks are reduced 
by the transitions, and that the integration of simulation techniques in 
early development phases reduces extensive iteration loops. 

12.3.3 Variant Handling 

Embedded electronic systems are designed to fulfill not only the 
requirements of a single vehicle, but also the requirements of an entire 
family of vehicles. Therefore, as described in RQ9, the development 
methodology must address variant management in order to be applicable 
for the automotive domain. The information model for designing 
automotive embedded systems in the PREEvision tool is aligned to the 
SPES modeling framework and supports the systems engineering 
principles of abstraction, modularization, and reuse.  

Information model for designing automotive embedded 
systems 

Every SPES viewpoint can be assigned to one or several PREEvision 
modeling layers. In PREEvision, product lines of electronic vehicle 
systems are modeled from requirements to the hardware geometry using 
seven main layers.  

SPES viewpoints and PREEvision modeling layers 

On the top level, the design starts with the definition of requirements and 
customer features. These layers correspond to the SPES requirements 
viewpoint. Vehicle features can be defined in PREEvision using 
requirements. Customer features describe a set of features of the vehicle 
from the vehicle user’s perspective. The customer features are organized 
in a tree representing a superset of features to be fulfilled by a vehicle 
product line. This is often referred to as a “150% model.” 

Consistency and 
traceability is 

maintained throughout 
the development 

process 
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Example 12-2: Engine variants 
All engine variants are considered in the product line, but only one engine 
variant will be delivered and finally built in a vehicle. All transmission 
variants are considered, but only one transmission will be selected later on. 
All optional features are considered, but only a subset will be chosen later on. 

In practice, a two-step-approach for variant management is often applied 
— from a vehicle product line (“150% model”) to a vehicle family (often 
also called “120% model”) to a concrete vehicle (“100% model”). Due to 
the high number of options, it is not possible to manage each and every 
variant explicitly. Therefore, typically 150% models and 120% models 
are designed. 

PREEvision supports the definition of variant conditions between 
features. Such variant conditions can be, for example, “exclusive-or” 
relations or “needs” relations between features, but also “or” and 
“optional” relations. 

The result is a customer feature model (cf. Fig. 12-5) similar to the 
FODA approach [Kang et al. 1990]. In production projects, the customer 
feature tree is typically organized according to the vehicle 
manufacturer’s organizational units following the classical division 
powertrain, chassis, body, comfort, and multimedia. 

 
Fig. 12-5 Customer feature model in PREEvision 

The next design level is the functional viewpoint, referred to as the 
logical architecture in PREEvision. Hierarchies are used to structure the 
complete layer according to the organizational responsibilities at the 
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vehicle manufacturer. However, logical signal connections crossing the 
organizational responsibilities can also be modeled by system diagrams 
— or activity chains can be used to express a logical control sequence 
from the sensors to the actuators realizing a given customer feature. This 
means that customer features are represented by an orthogonal subset of 
the organizational structure of the logical architecture. 

The “realization” or “implementation” relations between customer 
features and logical architecture are specified using mappings. Mappings 
are information objects that decouple all the modeling layers. This 
enables the design engineer to handle even variants of mappings.  

Example 12-3: Mapping variants between logical architecture and 
the hardware architecture 
In practice, the logical architecture and the hardware architecture are often 
mapped to each other in a variant-specific manner. In this case, only the 
mappings are variant-specific — the logical and the hardware architecture are 
neutral. 

All subsequent modeling layers in PREEvision are used to specify the 
logical and the technical viewpoints in the SPES modeling framework. 
Here, PREEvision differentiates between system software architecture to 
model the logical viewpoint and the software implementation and 
hardware architecture to model the technical viewpoint. 

The system software architecture supports the AUTOSAR platform 
[AUTOSAR 2011], including the implementation of software 
components. The hardware architecture is modeled in several 
abstractions representing the hardware network topology, the hardware 
components, the schematics, and wiring harness. Geometry data are 
stored in the technical viewpoint. 

The communication layer supports the definition of conventional and 
bus signals, protocol data units, frames, and communication schedules. 

Variant management 

A product variant is defined in PREEvision as a consistent subset of a 
product line over all layers. Challenges from a tool perspective are the 
consistency and completeness of the defined subsets: they have to be 
guaranteed inside every layer, but also across the layers. 

Questions such as “Are all input signals needed provided in a given 
variant?” or “Are all software components that are part of a given variant 
mapped to hardware components?” have to be answered with “yes.” This 
can be checked by user-defined consistency checks and propagation rules 
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that can be designed on a customer-specific basis — and that guarantee 
consistent and complete variant models. 

The approach also has to be usable by an organization following a 
defined process with distributed responsibilities and defined roles. 
Examples for roles are persons responsible for software, persons 
responsible for hardware, and system architects. Database functions are 
available in PREEvision to prevent concurrent access to an artifact, but 
also conveniently support concurrent work on different artifacts, history, 
and archive functions. 

Variant design is supported by engineering features such as the signal 
router taking into account only a selected variant and not always the 
complete product line. Highlighting of variants is supported in all 
diagrams, and metrics are available to calculate characteristics of a 
product variant such as bus loads, weight, or costs. 

We succeeded in developing concepts for the integration of Simulink 
as an implementation tool for software components. Furthermore, 
usability, convenience, and adaptation functions were designed for the 
usage of PREEvision in production projects. Extended feature modeling 
capabilities were developed and the support of distributed responsibilities 
and database functions was optimized. Further research topics included 
consistency analysis not only inside a given layer, but also across layers. 

12.4 Summary 
Several challenges arise due to characteristics inherent to the automotive 
domain. Although all aspects of development are addressed by processes 
employed, significant gaps are often present between process steps. This 
also applies to the artifacts these steps respectively produce or use, 
further affecting traceability between them. Requirements are usually 
documented in informal natural language, introducing the possibility of 
ambiguity, inconsistency, and incompleteness, and must be considered 
by formal models used in later design phases. Embedded systems must 
cope with continuous plant behavior that is both difficult to specify as 
well as validate, and even more difficult to control, using systems 
tailored toward discrete behavior. Furthermore, embedded systems in the 
automotive domain are becoming more complex and it is therefore 
difficult to validate in early design phases whether the specified 
architecture is correct. Additionally, systems in the automotive domain 
are usually designed for entire product lines, making variant management 
important for handling the resulting complexity of development. 
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Many of these aspects have now been addressed and at least partly 
solved by means of the methodologies developed to answer the research 
questions presented in Section 12.2. As a whole, the SPES methodology 
is a very good basis, but also leaves room for further development for 
refining and adapting the approaches for specific application domains. 
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Application and Evaluation 
in the Avionics Domain 

The SPES 2020 partners Airbus, Cassidian, EADS Innovation Works, and Liebherr from 
the avionics domain formed the avionics group in the SPES 2020 research program. This 
group worked together on the SPES 2020 challenges, i.e., modeling of heterogeneous 
embedded systems, requirements, platform architectures, safety, certification, and 
multicore architectures. Through SPES 2020, a significant improvement in development 
methods for requirements engineering, model-based systems engineering, model-based 
software engineering, and verification has been achieved in the avionics domain.  
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13.1 Overview: Application Domain Avionics 
Avionics systems have to be certified by the airworthiness authorities 
before they can be installed and operated in an aircraft. In order to 
achieve certification for an avionics system, the company developing and 
manufacturing this system has to provide the airworthiness authorities 
with the evidence that the system is safe. 

Before an embedded system can be operated in an aircraft, the 
developer has to provide evidence to the airworthiness authorities that 
the probability of hazards is below predefined risk levels. In addition, the 
system itself, its documentation, as well as the development process must 
follow the standards defined in the planning phase strictly.  

Consequently, the methods developed in SPES 2020 must support 
and comply with the safety analysis and development processes in the 
avionics domain and allow the engineering of safe systems, including 
hardware and software. In this chapter, we explain how the SPES 
modeling framework was applied to the development processes in the 
avionics domain and evaluated with regard to the fulfillment of the 
domain-specific requirements outlined in Section 2.2.3.  

13.2 Evaluation Strategy and Application to the 
SPES Modeling Framework 

This section describes the strategy that was pursued in order to evaluate 
the SPES modeling framework. Based on the initial situation in the 
avionics domain (cf. Section 2.1.3), and the peculiarities of this 
application domain (see Section 13.1) and its specific requirements, a 
case study was defined and used to assess to what extent the 
requirements for the SPES modeling framework (cf. Section 2.2.3) have 
been met. This case study is illustrated in Section 13.2.1. An overview of 
its application is given in Section 13.2.2, while Section 13.3 discusses the 
results from the evaluation. 

13.2.1 Avionics Case Study 

The avionics group defined an avionics case study to express selected 
pressing problems such as the formalization and structuring of 
requirements, bridging the gap between system and safety engineering, 
automated test case and procedure generation, and the seamless system 
and software development flow from requirements to design. The 

Problems considered 
in the avionics 

application domain  



13.2 Evaluation Strategy and Application to the SPES Modeling Framework 179 

avionics case study describes an example of the aircraft functions 
situation awareness, flight control, and air conditioning. The case study 
focuses on these functions to represent and show the problems listed 
above.  

The situation awareness function presents the traffic situation around 
the aircraft to the flight crew. The situation is shown as pictures on 
display units. These pictures consist of information about other aircraft, 
flight corridors and areas, and flight-relevant geological formations. In 
SPES, this function was used to represent the problems of the seamless 
system and software development flow and bridging the gap between 
system and safety engineering. 

The flight control is a fly-by-wire system that sends all flight control 
commands from the flight controls to the actuators (see Fig. 13-1) via a 
communication network. In SPES, this function was used to represent the 
problem of automated test case and procedure generation. 

 
Fig. 13-1 Flight control 

The air conditioning system enables the passengers to stay in the aircraft 
interior during the flight with no major restrictions or effects on health. 
In particular, it allows them to breathe without equipment and to feel 
comfortable in indoor clothing. In SPES, this function was used to 
represent the problem of the formalization and structuring of 
requirements. 

13.2.2 Application of the SPES Modeling Framework 

The following paragraphs show how the SPES modeling framework is 
applied to selected parts of the avionics case study. 

Typically, an aircraft is structured into the following types of system 
elements: aircraft, system, equipment, hardware, and software. The term 
system element is used to address any structural element of an aircraft, 
e.g., equipment, hardware, or software. This type of structure is the 

Structuring an aircraft 
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motivation for instantiating the generic abstraction layers of the SPES 
modeling framework (see Section 3.5) to the layers shown in Fig. 13-2. 
The generic SPES viewpoints (i.e., requirements viewpoint, functional 
viewpoint, logical viewpoint, and technical viewpoint) of the SPES 
modeling framework are used for system and software modeling in the 
avionics domain. 
 

 
 

Fig. 13-2 Abstraction layers and viewpoints in the avionics case study 

This concept of layers and viewpoints has to be mapped to the structure 
of the repository for the system and software modeling. The avionics 
group defined a repository structure to model the case study using 
SysML with profiles, e.g., component fault trees (CFT). The rules and 
principles derived from these concepts have been documented in the 
avionics modeling guide. 

The avionics model repository complies with the abstraction layers 
and viewpoints philosophy as defined in SPES 2020. The layout of the 
avionics model is shown in Fig. 13-3. In this repository structure, the 
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layers are realized as SysML packages and the viewpoints are realized as 
packages within these layer packages. 

 
Fig. 13-3 Repository structure 

13.3 Evaluation Results for each Viewpoint and 
Quality Aspect 

This paragraph describes the viewpoints applied to the avionics domain 
with their purpose, modeling activities, and the resulting model elements. 
It is important to state that the activities described in the viewpoints may 
be performed iteratively or even in a partially ordered sequence. This 
means that the concept of viewpoints and abstraction layers does not 
prescribe a certain sequence of activities, e.g., left to right or top-down. 
Quality aspects can be added to a viewpoint to model cross-sectional 
subjects, e.g., safety. Where applicable, the quality aspects safety and 
real-time have been considered as part of the viewpoints. 

13.3.1 Requirements Viewpoint in the Avionics Domain 

The purpose of the requirements viewpoint is to show the goals, 
requirements, actors, use cases, interfaces, and scenarios and their 
interrelation. The avionics group specified the following activities to 
describe the system element defined by the scope of this viewpoint and 
the related abstraction layer:  

Activities in the 
requirements 
viewpoint 
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 Elicit aircraft, system, equipment, hardware, and software 
requirements from stakeholder goals. 

 Trace the specified requirements to requirements from the 
abstraction layer above. This connects the adjacent abstraction 
layers. 

 Identify the actors and develop the use cases from the defined 
requirements.  

 Trace the use cases to the requirements. This traces the use cases 
indirectly to the requirements of the abstraction layer above. 

 Identify the interfaces from the relation between the actors and use 
cases. 

 Develop scenarios from use cases. These scenarios are the basis for 
validating and verifying the requirements, and provide the basis for 
the functional architecture of the functional viewpoint. 

Case study: Requirements  

The avionics case study gives an example of the requirements viewpoint 
for the aircraft abstraction layer. The top level use case diagram for the 
situation awareness function is shown in Fig. 13-4. It describes the 
identified actors crew, other aircraft, and airspace information system. 
The interfaces of the aircraft function are derived from the 
communication links between these actors and the use case Display 
airspace situation.  The use case originates from the requirements it 
traces to.  

 
Fig. 13-4 Top-level use case diagram in the requirements viewpoint 

One of the aircraft functions addressed by the avionics case study is the 
air conditioning. In this case study, the text-based specification was 
transferred into a model-based specification using the SPES modeling 



13.3 Evaluation Results for each Viewpoint and Quality Aspect 183 

framework (multiple abstraction layers and viewpoints) and a specific 
modeling tool.  

The SPES modeling framework is implemented as a plug-in to a 
modeling tool. This SPES 2020 plug-in offers certain predefined model 
elements, based on the “rich component” concept, that are the foundation 
for automated model analysis. In the modeling tool, there is a graphical 
model view as well as a model tree reflecting the model’s element 
structure. The predefined model elements offer a predefined model tree 
structure whose elements, e.g., ports, are instantiated by the concrete 
case. The following paragraphs show a modeling example. 

 
Fig. 13-5 Requirements viewpoint in the aircraft layer 

The top abstraction layer is the aircraft layer. Its requirements viewpoint 
maintains the passengers’ overall use case, i.e., use the aircraft for flying 
from origin to destination. For the aircraft, this means the passengers 
board the aircraft, stay in the interior during flight, and leave the 
aircraft. These activities are linked to the use case by port relations. The 
graphical model view is shown in Fig. 13-5. 

The requirements viewpoint of the next lower abstraction layer, i.e., 
the system layer, focuses on the actual air conditioning system. This 
system enables the passengers to stay in the aircraft interior during the 
flight. In particular, it allows them to breathe without equipment (oxygen 
is provided) and to feel comfortable in indoor clothing (heating is 
provided), as graphically modeled in Fig. 13-6. 

Implementation of the 
SPES modeling 
framework 
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Fig. 13-6 Requirements viewpoint in system layer  

 
 

Fig. 13-7 Port mapping in system layer and mapping 

The link between the requirements viewpoint of the aircraft layer and the 
requirements viewpoint of the system layer is modeled by a mapping 
diagram, based on port mappings as shown in Fig. 13-7. 

As a conclusion, we can confirm that it is possible to transfer a text-
based specification into a model-based representation using the SPES 
modeling framework.  

13.3.2 Functional Viewpoint in the Avionics Domain 

The purpose of the functional viewpoint is to show the functions, 
subfunctions, and functional interfaces of the system element in question. 
The avionics group specified the following activities to describe the 
system element for this viewpoint: 

Activities in the 
functional viewpoint 
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 Derive aircraft, system, equipment, hardware, and software functions 
from scenarios. The scenarios are described in the requirements 
viewpoint. Remember that scenarios are linked to requirements and 
therefore the functions are indirectly linked to the requirements as 
well. In the avionics domain, it is mandatory to have full traceability 
between all of the requirements of the different layers. It is good 
practice to have traceability between the model elements of the 
viewpoints within a layer. 

 Define the functional architecture by decomposing these functions 
into subfunctions and specifying their interfaces. This decomposition 
ends when each subfunction can be clearly mapped to a logical 
system element (see logical viewpoint, Section 13.3.3). This 
decomposition of functions into subfunctions typically creates new 
interfaces between them. The subfunctions identified on the lowest 
level constitute the functions of the next lower layer. 

 Perform a functional hazard analysis (FHA) to identify and assess 
the risks of the system element. 

Case study: Functional decomposition 

Fig. 13-8 shows how the aircraft function situation awareness is linked 
to the use case Display airspace situation (see Fig. 13-4). This is an 
example of how the requirements viewpoint is linked to the functional 
viewpoint.  

Fig. 13-9 shows the functional architecture of the situation awareness 
function within the functional viewpoint. This example shows the 
decomposition of the situation awareness function into its subfunctions 
and the newly defined interfaces Track and AirspaceSymbol between 
these subfunctions. The external functional interfaces are modeled as 
activity parameter nodes and the internal functional interfaces are 
modeled as action pins. The external interface has been defined in the 
requirements viewpoint in the use case modeling. 

 
 

Fig. 13-8 Transition from the requirements to the functional viewpoint 
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Fig. 13-9 Functional viewpoint 

Case study: Safety cases  

This section shows an example of the safety aspect as part of the 
functional viewpoint. It shows the elaboration of safety cases within the 
SPES modeling framework. Due to the rising complexity of modern 
airborne systems, traditional manual safety assessment and certification 
workflows are becoming an increasing burden in aircraft development. 
According to a survey among aviation experts, safety and certification 
efforts together amount to more than 50 percent of the overall 
development effort. Safety analyses, proofs, and argumentations for 
certification purposes are mainly performed manually without coherent 
tool support. As a consequence, the production of comprehensive and 
reliable documentation of an aircraft’s airworthiness in the form of safety 
cases is a lengthy and expensive manual process. 

Concept for integrated safety cases 

We introduce a safety case approach that takes the suggested safety 
assessment process introduced in [Waßmuth and Stilkerich 2011] into 
account. The SPES 2020 Safety Case concept favors the graphical 
argumentation of the system’s safety based on the design model and the 
corresponding component fault trees introduced in [Domis and Trapp 
2009]. In SPES 2020, the avionics group developed a concept for 
seamless and iterative safety assessment to support the certification 
process by deriving safety cases, see Fig. 13-10. 
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Fig. 13-10 Safety assessment concept — repository for integrated and 

seamless systems engineering, safety assessment, and 
certification 

The centralized repository integrates all relevant design and safety 
information to perform the required safety analyses automatically. The 
information comprises requirements, architectural elements, and 
behavioral descriptions, as well as artifact dependencies, failure 
conditions, and failure rates. This enables the engineer to access data 
required for a particular safety assessment directly by importing the data 
representation of the supplier’s subrepository or, alternatively, by using 
the initial manufacturer’s specification. Consequently, the repository 
supports the development life cycle by guiding the safety assessment 
process and by simultaneously ensuring that relevant design information 
is provided by the suppliers at each design interaction.  

This approach guarantees that each supplier receives all data required 
for subsystem development and assessment tasks. The iterative re-
integration of lower level design and analysis information into the 
repository is provided by contracts that have been defined according to 
the dependencies of design artifacts [Engel et al. 2008]. We realize a 
seamless and structured safety assessment by systematically executing 
the safety analyses suggested by ARP-4754.  

13.3.3 Logical Viewpoint in the Avionics Domain 

The purpose of the logical viewpoint is to show the logical architecture 
of the system under development (SUD). The logical architecture 
describes the logical components, their subcomponents, and their 
connecting interfaces.  

Avionics products typically have a very long life time of 30 years and 
more, therefore it is very important to define architectures that support 

Activities in the logical 
viewpoint 
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the implementation of new functions and the incorporation of new 
technologies in order to overcome obsolescence problems. The logical 
architecture provides the right level of abstraction for this purpose. The 
logical architecture is the first step towards a technical solution without 
constraining a concrete realization of system elements too early. The 
avionics group specified the following activities to describe the logical 
architecture of the system element of this viewpoint:  

 Derive logical components from the functions of the functional 
architecture by grouping coherent functions and allocating these 
groups to logical components. This results in the logical architecture 
with its structure. 

 Define the states and modes for logical components. 
 Functions are linked to requirements and therefore the logical 

elements are linked to the requirements as well. 
 Define the logical interfaces that connect the logical components. 

The interfaces between function groups are the candidates of the 
interfaces between the logical components. 

Case study: Logical viewpoint 

Fig. 13-11 shows the logical architecture of the situation awareness 
system as part of the logical viewpoint that has been developed from the 
functional architecture. Functions and interfaces have been mapped to 
logical components. The definition of logical components is the first step 
towards the technical realization. In addition, it is used to perform 
architectural analysis e.g., an integrated fault tree analysis on the system 
model. This analysis is described in Section 13.3.4. 

 
Fig. 13-11 Logical viewpoint 
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13.3.4 Technical Viewpoint in the Avionics Domain 

The purpose of the technical viewpoint is to show the technical 
architecture of the SUD. The technical architecture describes the 
technical components and their connecting interfaces with enough detail 
for their realization. The avionics group specified the following activities 
to describe the technical architecture of the system element of this 
viewpoint: 

 Define the realization of the logical components and their interfaces. 
 Perform trade-off analysis to define the best realization of the 

technical components described by this viewpoint. 
 Logical components are linked to requirements and therefore the 

technical components are linked to the requirements as well. 
 Perform a fault tree analysis (FTA) and failure mode and effect 

analysis (FMEA) to verify that safety objectives have been met by 
the technical architecture. 

Case study: Technical viewpoint 

Fig. 13-12 shows how the technical components are linked to the logical 
components and how the logical components are linked to functions. 

Fig. 13-13 shows the technical architecture of the technical 
component (equipment) Airspace Situation Computer (ASC) as part of 
the technical viewpoint that has been developed from the logical 
architecture after the trade-off analysis. Logical components and 
interfaces have been mapped to technical components. The definition of 
technical components is the next step towards the technical realization. 

 
 

Activities in the 
technical viewpoint 



 
 

Fig. 13-12 Transition from the logical to the technical viewpoint 

The technical components are modeled as parts and their interfaces as 
flow ports. 

Case study: Safety  

For safety-critical systems in the avionics domain, a safety analysis is 
required to demonstrate that the specified safety requirements have been 
met. Today, the design and safety artifacts are produced by separate 
teams working on different repositories for the design and safety models. 
This has the significant disadvantage of creating redundant artifacts with 
all related drawbacks. Considerable effort is needed to keep these 
artifacts consistent. Therefore, it was one of the goals of the avionics 
group to provide a solution to the fault tree analysis (FTA) topic. For the 
FTA modeling, an integrated repository was defined containing the 
design and fault tree information. An important step towards the solution 
is the definition of a common language for the system designer and the 
safety analysts. A SysML (OMG Systems Modeling Language) profile 
has been defined that extends the standard SysML version 1.2 [OMG 
2010] notation and semantic with the necessary language elements to 
express fault tree information. The common notation and integrated 

Safety is of paramount 
importance 
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repository allow engineers of both disciplines to work concurrently on 
the same system model. Today, the SysML modeling tools do not 
support the computation of probabilities needed for quantitative FTA. To 
bridge this gap, the fault tree model can be exported to fault tree analysis 
tools that compute the probability of the faults. This concludes that 
systems and safety engineers can work together on an integrated design 
and safety model that removes the disadvantages described above. 

 
Fig. 13-13 Technical viewpoint 

Fig. 13-14 shows the fault tree information of the system element 
Airspace Situation Computer (ASC). It shows the fault tree logic that 
defines how the faults are propagated from the input ports through the 
system element ASC to its output ports. The syntax and semantics of the 
SysML profile shown in Fig. 13-14 are described in Section 8.1. A 
thorough evaluation study has been conducted to analyze the 
improvements gained using component fault trees (CFTs) over fault 
trees. The results show that CFTs have a significant advantage over fault 
trees, especially for engineers who are not familiar with fault trees. 

 
 
 
 

Extending SysML to 
express fault trees 
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Fig. 13-14 Component fault tree 
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Case study: Verification 

The verification activities are among the most important in the avionics 
industry and create the highest workload in avionics software projects. In 
other domains, different methods have been developed to reduce the cost 
of the verification activities, e.g., reuse of the design models to generate 
test cases and procedures automatically. Motivated by the need to avoid 
the risk of failures and specified in the strict development process in 
particular concerning the independence principle required by the avionics 
standards such as RTCA DO-178B, such widely used approaches are not 
allowed in the avionics domain. 

The objective of the investigations made regarding this topic is to 
determine which activities for the different tasks of the verification 
process could be automated in the light of the avionics standards and 
processes. The verification process does more than just execute tests. 
Other tasks are the development of test cases and procedures, the 
execution of reviews (for design, source code, test cases, and 
procedures), or a code analysis. Criteria have been developed for 
selecting appropriate methods, such as a standardized requirements 
interface or a dedicated test model, based on their suitability for an 
automated verification process. 

Proceedings for automation in the verification process 
activities 

Methods have been defined in order to achieve automation of the 
verification process activities according to the avionics standards, such as 
for test case selection for high-level and low-level requirements, test 
procedure development, test management, test execution via an 
automatic test sequencer, generation of test reports, etc. with careful 
attention given to the concern of tool qualifications. In SPES 2020, the 
work focused mainly on:  

 Automation of the test procedure activities, including generation and 
verification, are responsible for the highest workload within the 
avionics verification process.  

 Test management automation, which has to facilitate an efficient 
supervision of the whole verification process and therefore enable 
the identification and the improvement of inefficient activities. 

Test procedure generation 

Due to the required independence, a dedicated model must be used as 
basis for the test procedure generation. To use the existing test cases for 

Reducing verification 
costs: automation by 
considering avionics 
standards 

Software tools for test 
generation 
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this purpose, they have to be enhanced with keywords that specify signal 
properties. A software tool has been created to generate test procedures 
using the test cases description files. It is built upon a dictionary of 
available signals and their attributes (e.g., unit of measurement, signal 
direction, range). While parsing each enhanced test case during the test 
procedure generation, the software tool performs an early and implicit 
validation of the test case (including checks such as signal existence in 
the dictionary, specified range, adequate direction, etc.). Additionally, 
the software tool generates the test precondition and postcondition 
commands to configure the test environment. With the usage of the 
software tool, it is possible to generate complete or, for complex test 
cases, almost complete test procedures. The software architecture of the 
test procedure generation tool is based on the principle of loose coupling, 
transforming the test model into an intermediate language before 
generating a test procedure in the target test sequencer syntax out of the 
intermediate language. Therefore, it is possible to support additional test 
models/sequencers with significantly less effort than in conventional 
procedures. 

 
 

Fig. 13-15 Test procedure generation: methods and proceedings analyzed 

Test management 

One essential precondition for every successful method usage in the 
verification process is the use of suitable mechanisms to manage all 
required activities as specified in the applicable standards. Thus, the 
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determination of mechanisms to set the dependency and sequence of 
tests, as well as the possibility to automate parts of the management of 
the verification process, such as the generation of metrics to determine 
the test fulfillment, were both important parts of the evaluation.  

Conclusion and outlook 

The avionics standards impose several restrictions regarding the 
automation of verification activities. The methods investigated and 
automation achieved take into account all tasks of the verification 
process and the supporting activities. The activities examined cover the 
avionics software verification process including test management, 
preparation/execution of dynamic (e.g., cause and effect) and static (e.g., 
review) tests, and possibilities for generating test reports automatically. 
The analysis also addresses the need to perform RTCA DO-
178B/EUROCAE ED-12B-compliant qualification of tools that have the 
potential to reduce the effort needed for the activities or processes 
required by this standard. The automatic generation of test cases with the 
current poor standardization of requirements description used in the 
avionics domain appears to be not feasible at present. It is almost 
impossible to extract reliable information from natural or weakly 
formalized languages. For this point, the standardized modeling 
languages popular in other industry domains, such as SysML, would be 
useful, in particular when developing an extended syntax including all 
the necessary attributes in the requirements. 

13.4 Summary 
The results of the avionics group regarding the research activities in the 
SPES 2020 program can be summarized as follows.  

The methods developed using abstraction layers and viewpoints 
helped to close existing gaps in the systems and software modeling 
practice in the avionics domain, e.g., a clear understanding of how to 
refine and to decompose complex systems and describe the relationship 
between the design artifacts created. The avionics case study was used to 
evaluate this concept. Results of this evaluation have been used to refine 
the model-based systems and software engineering guidelines in the 
avionics domain. The knowledge gained about the SPES 2020 modeling 
method has been used by the avionics group to refine its in-house 
systems and software modeling guidelines. 

The SPES 2020 requirements modeling technique has been used for a 
much better understanding of the system context and the goals of the 

Closing the gap 
between systems and 
software modeling 
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requirements defined in the case study. The modeling of the context and 
the goals provide a good basis for structuring the requirements. It was 
also recognized that the modeling tools available do not yet fully support 
the applied method. 

The integrated design and safety modeling showed that systems and 
software engineers can work seamlessly on the same model. The empiric 
evaluation performed showed that engineers not trained in fault tree 
analysis have less trouble understanding the CFT notation than the fault 
tree notation used in separated safety models. Thus, the CFT and the 
integrated model allow a better cooperation between design and safety 
teams. 

Furthermore, the concept for the integration of safety cases as 
argumentation support for the certification authority showed a possible 
future workflow towards automated certification of safety-critical 
systems in the aviation industry. The industrialization of this novel 
approach will be investigated in future research projects. 

The results achieved for the verification part of the avionics case 
study showed that parts of the verification cases can be generated out of 
formalized requirements. 

It has been proven that the definition of the avionics case study was 
essential for the success of the results achieved. It provided a clear basis 
for the communication of the problems to be solved in the avionics 
domain. Therefore, developing such a case study is recommended as a 
best practice for future research programs. However, it shall be noted that 
the effort to create such a case study should not be underestimated. 

In conclusion, we can say that the cooperation of the academics and 
avionics group in the SPES 2020 program was very beneficial to both 
sides. It enabled both parties to make important steps towards the 
solution to the problems expressed in the avionics case study. 
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Application and Evaluation 
in the Energy Domain 

The activities in the energy domain focus on the model-based development of embedded 
systems for smart grids. In this context, the domain investigates typical use cases, analyzes 
the requirements placed on embedded systems within the energy domain, identifies and 
evaluates possible modeling approaches, extends and evaluates the SPES requirements 
viewpoint within the energy domain, and actively applies and evaluates the SPES modeling 
framework to model, develop, implement, and evaluate a smart grid simulator. 
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14.1 Overview: Application Domain Energy 
Energy providers in Germany, including grid operators, play an essential 
role in securing the value chain of almost all business sectors as well as 
supplying private households with energy. Electricity utility companies, 
for example, represent a significant factor in the German economy with 
their 132,000 employees, generating a capacity of approximately 561 
billion kWh, and their overall investment of more than €10 billion. Given 
the fact that 68% of the electricity generated is used for production 
processes in industry and by the commercial, trade, and services sector, 
the significance of electricity utilities for the German economy is 
abundantly clear. The primary importance of the energy domain is 
further underlined by the fact that German electricity grid operators are 
responsible for a transmission network that is 1.8 million kilometers 
long, yet has an average annual outage period of only 18 minutes — 
making it the most reliable electricity grid throughout Europe (99.9965% 
reliability [BDEW 2010]). 

Embedded systems already represent an integral part of the technical 
systems used in the energy market and perform clearly defined roles such 
as managing and controlling power plants. However, current trends in the 
energy sector indicate that the demands placed on embedded systems in 
terms of their performance capability within the energy domain will 
significantly increase in the future. Millions of embedded systems are 
expected to be deployed, e.g., in ICT gateways (one per household) at 
reasonable costs (comparable to that of a DSL router) with an expected 
lifetime of up to 25 years. 

For a number of years now, there has been a massive trend towards 
smart grids. The term smart grid has arisen from the modernization of 
existing grids to enable them to cope with rising demands for a secure 
and efficient electricity supply both now and in the future. This trend is 
driven by a range of political, economic, and environmental goals that 
will also have a direct impact on the information and communication 
technology used to manage the future electricity grid. For instance, the 
expansion of renewable energies such as wind power, photovoltaic, and 
biogas has been increasingly pursued over the past few years to meet 
climate change goals and to conserve resources while providing a 
sustainable energy supply. This has led to an increased number of 
smaller, decentralized generation units in addition to Germany’s existing 
large-scale power stations. Moreover, the need to use energy more 
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efficiently has led to increased transparency around energy consumption 
and to a smarter use of electrical devices. 

These trends have given rise to new demands concerning the 
functionality and use of embedded systems that, in the smart grids of the 
future, will be used not only for control but also for information and 
communication purposes. For instance, embedded systems will soon 
have to be capable of offsetting the increase in dynamic interrelations 
caused by increasing volumes of power being fed onto the grid from 
renewable energy sources, automatically switching residential electrical 
consumers on and off grid, communicating a host of different meter 
readings, and supporting new business models through intelligent 
networking of smart meters and smart home technologies. 

Only the introduction of more advanced embedded systems will meet 
the technical demands for ever-more sophisticated control, information, 
and communication tasks within the smart grid, as well as the ability to 
generate appropriate added value in the form of new business models. 
Embedded systems will significantly contribute to the task of reaching 
those ambitious political, economic, and environmental goals. 

Future smart grids will have a degree of complexity that bears little 
resemblance to any other known system. As a result, the development of 
embedded systems for smart grids in the energy domain poses specific 
challenges that cannot be found in other domains. 

The smart grid stands out for the extreme complexity of its structure 
and interconnectivity, combined with the highly dynamic structure and 
behavior of its systems. Furthermore, an extremely large number of 
embedded systems with massively distributed components will have to 
be used within the smart grid. In addition, embedded systems within the 
smart grid will not only have to be integrated in the technical 
environment but also in the business processes of the energy companies. 
Eventually, due to the sheer size and complexity of smart grids, a host of 
technical decisions and solutions devised during the development process 
will be virtually irreversible after implementation (“one-shot scenarios”). 

Currently, little experience is available in developing systems 
comparable with the complexity of such future smart grids. As a 
consequence, the energy domain focuses on devising efficient 
development methods for massively distributed systems with embedded 
components in smart grids. In particular, this comprises gaining an 
understanding of the specific requirements of the energy domain, 
grasping the extent of the inherent problems, and then designing, 
adapting, and fine-tuning some targeted methods for developing and 
mastering embedded systems in the context of smart grids. 
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14.2 Evaluation Strategy in the Energy Domain 

14.2.1 Modeling Languages, Theories, and Tools 

Early tasks in the SPES project in the energy domain comprised the 
evaluation of several modeling languages, theories, and tools with 
respect to their applicability within the energy domain. The evaluation 
focused primarily on the extent to which these modeling concepts help to 
solve the challenges mentioned in Section 14.1. The evaluation 
comprised theoretical analyses as well as some limited practical 
applications of modeling concepts to the use cases considered within the 
energy domain. The modeling concepts evaluated include the different 
viewpoints of the SPES modeling framework, especially the 
requirements viewpoint (see Chapters 4 through 7). 

14.2.2 Requirements Engineering 

The objective of the requirements engineering evaluation activities was 
the practical application of the requirements viewpoint and the 
corresponding requirements process model (see Section 4.4). The aim 
was to obtain empirical evidence of the benefit of the requirements 
engineering approach in the energy domain, in particular concerning 
issues such as the reduction of complexity and the integration of a 
business process view. 

The method was used in four workshops with experts from the energy 
domain. The evaluation was carried out in close cooperation with 
academic partners and developers of the SPES requirements viewpoint 
(see Chapter 4) by means of ex post facto design questionnaires. 

14.2.3 Integrated Smart Grid Development 

In close cooperation with academic partners, experts from the energy 
domain assessed the practicability of the integrated development of 
embedded systems in smart grids by implementing a demonstrator. The 
focus was mainly on the feasibility of modeling domain-specific aspects, 
including dynamic system structure and behavior, a large number of 
components, as well as code generation and subsequent deployment to 
embedded hardware components using the AutoFOCUS 3 tool. 
Furthermore, the viewpoints of the SPES methodology (see Chapters 4 
through 7) were taken into account. Based on the results, the energy 
domain suggested improvements to the tool as well as to the underlying 
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methodology. As described in Section 14.2.3, a smart grid simulator was 
also developed and evaluated. 

14.3 Evaluation Activities and Results 
This section illustrates how the SPES modeling framework has been 
tailored for the specific needs of the energy domain and how the SPES 
modeling framework has been evaluated. 

14.3.1 Incorporating Activities within the SPES 
Modeling Framework 

The work of the energy domain was based on the SPES modeling 
framework (see Chapter 3). Concepts defined within the SPES modeling 
framework for addressing the degree of complexity were taken into 
account in the sense that they were partly adopted or suitably adapted to 
the special requirements of the energy domain. This includes the use of 
generalized artifacts, the definition of logical (abstraction) levels, and the 
component-based design of embedded systems. 

In the Energiemeister case study, for example, analysis was 
conducted (from an operational point of view) of how components within 
the smart grid can be integrated into the system landscape of an energy 
utility. In this case, the requirements engineering activity for the system 
under development was jointly carried out through to the semiformal 
model stage (use cases, tables). Furthermore, the logical viewpoint (see 
Chapter 6) described in the SPES modeling framework was taken into 
account during modeling using the AutoFOCUS 3 tool (structural 
diagrams of the system). In addition, AutoFOCUS 3 was used to compile a 
model-based description of the technical architecture. 

The requirements process model evaluated by the energy domain is 
also closely related to the SPES modeling framework. This approach 
defines a process whereby requirements engineering artifacts and the 
architecture of a system can be co-designed. The requirements process 
model uses artifacts from the requirements viewpoint (goals, scenarios, 
and solution-oriented requirements) and various abstraction layers 
derived from the SPES modeling framework. Furthermore, the 
framework specifies a structured way of incorporating the abstraction 
layers into the requirements engineering activity. 

The SPES metamodel 
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14.3.2 Joint Partner Activities 

In the first half of the project, work within the energy domain established 
the basic foundations by identifying specific case studies from the energy 
domain, examining requirements, and evaluating modeling theories in 
preparation for developing a suitable model. 

In the second half of the project, work focused primarily on putting 
the fundamentals established in the first half of the project into practice 
for evaluation purposes. 

For instance, some of the work in the second half of the project 
involved empirical testing of the approaches conducted in SPES 2020 for 
developing and mastering embedded systems. Other work involved 
creating a simulated environment for the purpose of analyzing the 
features and behavior of embedded systems within a smart grid. The 
main focus of this work was on planning, developing, implementing, and 
evaluating a smart grid simulator using the SPES modeling framework as 
described in Part II. 

Case studies  

In SPES 2020, a case study named Smart Grid was developed. The goal 
of this study was the aggregation and integration of case studies 
developed by the individual partners within SPES. The individual case 
studies take views on the subject Smart Grid from different perspectives 
(prosumer/ICT gateways, virtual power plant, Energiemeister) that are 
closely tied together. Thus, the case studies focused on a scenario that 
combines all case studies and mainly considers the activities of 
monitoring and controlling distributed energy generators and energy 
consumers within a smart grid. 

Requirements for system modeling  

As discussed in Section 14.1, challenges within the energy domain 
comprise, amongst other things, massively distributed components, the 
dynamic integration of new components into the smart grid preserving 
stability, and the reliability of energy supplies. This raises characteristic 
requirements for system modeling such as support of dynamic system 
structures with a huge number of components, support of stochastic 
processes (behavior of components and of communication systems), 
scalability of modeling, consideration of a business model, support of an 
event concept, and modeling of components including component 
properties and relationships. 
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Identification and evaluation of modeling languages, theories, 
and tools concerning the SPES modeling framework 

During modeling of the use cases in the energy domain, various 
modeling languages, theories, and tools were used. These include the 
Unified Modeling Language (UML) [OMG 2010] and the UML 
modeling tool Enterprise Architect, the functional and logical viewpoints 
(see Chapters 5 and 6) together with the AutoFOCUS 3 tool, and the 
requirements viewpoint together with the corresponding requirements 
process model (see Section 4.4). The latter two are part of the SPES 
methodology as introduced in Part II. 

As far as UML is concerned, its generic approach provides for broad 
applicability. At the same time, however, specific needs of specialized 
application domains are neglected. In the energy domain, the missing 
concepts for modeling requirements and dynamics in system structure 
and system behavior proved problematic. As far as Enterprise Architect 
is concerned, it proved perfectly usable within the boundaries of UML 
and even offers an approach for adding requirements in the models. 

The functional and logical viewpoints of the SPES methodology 
proved usable in the energy domain. Similar to UML, however, the 
approach lacks possibilities for modeling dynamics in system structure 
and system behavior. Further, it assumes a global clock, which is an 
unrealistic assumption in a system with massively distributed 
components such as a smart grid. There are, however, possibilities to 
extend the SPES methodology with support for the aspects mentioned, 
and the energy domain has thus drawn attention to these issues within the 
SPES project. AutoFOCUS 3 was used for modeling and automatic code 
generation in the energy domain during smart grid simulator 
development. Here, the issue of state proliferation when using complex 
models was observed. 

The SPES requirements viewpoint and the corresponding 
requirements process model have also been used actively in the energy 
domain and have proven useful. Also, the methodology has been 
extended by integrating an additional business process layer as suggested 
by the energy domain. 

Practical evaluation of the SPES methodology 

To evaluate the benefit of the requirements viewpoint in the energy 
domain, the approach was applied practically to the initial requirements 
analysis of two specific development projects in the domain. The positive 
results indicate a great benefit of the corresponding requirements 
engineering methodology during the initial requirements analysis for the 
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development of embedded systems in the energy domain. For a detailed 
description of the evaluation and its results, please refer to Section 
14.4.1. 

Further work within the energy domain investigated the integrated 
development process and subsequent evaluation of a smart grid simulator 
using the SPES modeling framework. In addition, the evaluation focused 
on the applicability of the resulting simulator as a design tool within the 
smart grid development process. Section 14.4.2 describes the details of 
smart grid system modeling and development in practice. 

14.4 Exemplary Evaluation Activities in Detail 
As an in-depth example of evaluation within the energy domain, the 
following sections present the activities concerning requirements 
engineering and smart grid simulator development. These activities cover 
the entire smart grid development process. To enable the holistic 
evaluation of the entire development process within the limited time 
frame of the SPES 2020 project, the requirements engineering activities 
and the smart grid simulator activities were split and elaborated on in 
parallel during the project. 

14.4.1 Requirements Engineering in the Energy Domain 

Part of the requirements engineering work in the energy domain involved 
empirical evaluation of the requirements viewpoint developed in the 
SPES 2020 project for the purpose of developing and engineering 
embedded systems. 

Subject and objective of the evaluation 

The subject of the evaluation was the practical application of the 
requirements engineering methodology to the initial requirements 
analysis of two specific development projects in the energy domain: 

 Wind heating — negative operating reserve 
 Data management in smart grids 

The method was used in four workshops with a total of 18 experts (e.g., 
chemists, electrical and mechanical engineers, economists) from various 
divisions (e.g., sales, grids portfolio management, product management). 

It is worth mentioning that the requirements viewpoint, among other 
things, also incorporates a business process layer (see Fig. 14-1). In this 
way, the requirements engineering methodology meets one key 
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requirement of the SPES 2020 project — to explicitly take into account 
defined/existing business processes when developing any embedded 
systems. 

The aim of evaluating the requirements viewpoint within the energy 
domain was to transfer empirical evidence about the benefit of the 
requirements engineering methodology to development projects of 
embedded systems in the energy domain. This evaluation goal was 
measured, or rather assessed, in more detail against the following factors: 

1. Additional insights gained from users of the methodology 
2. High-value findings for future work 
3. Positive assessment of the requirements engineering methodology 
4. Improved self-assessment with respect to the development project 

 
Fig. 14-1 Application of the requirements viewpoint for development 

projects within the energy domain 

An ex post facto design with pre- and post-measurement via 
questionnaires -  plus additional deferred post-measurement via 
questionnaire  two weeks after the workshops was used to measure the 
factors 1, 3, and 4 above (cf. Fig. 14-2). The design was developed in 
collaboration with experts from the Fraunhofer Institute for Experimental 
Software Engineering in Kaiserslautern. Factor 2 was evaluated by an 
objective expert who did not take part in the above-mentioned 
workshops. 
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Fig. 14-2 Ex post facto design to evaluate the use of the requirements 

viewpoint within the energy domain 

Evaluation procedure 

Evaluation of the requirements engineering methodology was undertaken 
by asking specific questions related to embedded systems about the 
above-mentioned energy domain development projects. The questions 
were addressed during workshops with experts from the energy domain, 
where the requirements viewpoint was applied and its impact was 
assessed. The evaluation procedure consisted of the following seven 
steps: 

 Selection of the evaluation project and participants 
 Initial evaluation prior to the workshop for the purpose of self-

assessment by the participants in relation to the development projects 
 Use of the requirements viewpoint in the workshop 
 Second evaluation immediately after the workshop (insights gained, 

assessment of the method) 
 Scrutiny of the results by an objective expert (person with the 

expertise of a specialist who did not take part in the workshop) 
 Third evaluation after the workshop 
 Documentation of the findings 

Evaluation results 

The evaluation of the requirements viewpoint in the context of the above-
mentioned development projects delivered some initial findings about the 
applicability and benefit of the requirements viewpoint for developing 
embedded systems in the energy domain. The following findings 
represent a summary of the evaluation completed as a result of the 
workshops. Since one development project is still highly confidential, the 
findings are depicted in abstract terms only. 
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With regard to the substantive aspects, the requirements viewpoint has 
made a significant contribution towards structuring the problems and 
reducing complexity: 

 Abstraction stages/levels are evident (business process, system, 
subsystem, and components) 

 Goals at various abstraction stages/levels are defined 
 Scenarios are modeled 
 Solution-oriented requirements are identified 
 Initial approaches for a problem-solving concept are developed 

The close relationship of the applied methodology to the SPES modeling 
framework is therefore clear: the specific requirements viewpoint that 
was used within the two development projects defines an appropriate 
adaption of the SPES modeling framework to the energy domain, for 
example, by using specific abstraction layers and solution-oriented 
requirements artifacts of the requirements viewpoint. 

By abstracting and/or refining the points of view and describing 
elements in varying degrees of detail, a successful focus on key aspects 
was achieved with a view to possible architecture models. Consequently, 
we can confirm that there is a great benefit to be gained, in terms of 
reducing complexity, from applying the requirements viewpoint to 
designing embedded systems for the energy domain. This is also 
confirmed by the evaluation of the requirements methodology, which 
points to an overwhelmingly positive outcome. 

The participants showed a high degree of consensus on the insights 
gained, the benefit of the method, and the relevance of the subject matter. 
Those involved in the workshops gained new knowledge by applying the 
method, and also evaluated the requirements engineering methodology as 
positive. Above all, the participants viewed the structured process used to 
analyze problems as positive. They also found the use of goals, 
scenarios, and abstraction layers to be helpful. Furthermore, they 
commented that their own grasp of the subject matter improved as a 
result. In particular, the requirements viewpoint and the corresponding 
methodology helped participants to gain a better in-depth understanding 
of the subject matter.  

These statements are supported by the assessment of the objective 
expert, who perceived the application of the requirements process model 
positively. 

The participants involved identified a potential for improving the 
requirements viewpoint with respect to autonomous application of the 
corresponding methodology. According to the participants, the use of a 
trained moderator is essential. Furthermore, the participants considered it 
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difficult to transfer the (independently) applied method to other practical 
examples. Also, it was noted that the requirements engineering 
methodology supports a deeper analysis of problems but not an analysis 
“on the fly.” 

Overall, the requirements viewpoint and the corresponding 
methodology prove to be a beneficial approach for developing embedded 
systems in the energy domain. With regard to future applications of the 
approach, the identified potential for improvement should be taken into 
account.  

14.4.2 Smart Grid System Modeling and Development 

Development of an integrated smart grid simulator 

Smart grids are high-grade dynamic systems with a large number of 
widely distributed components. Due to their size and complexity, a 
formal verification of system properties is not feasible in practice. Thus, 
system simulation has gained importance as a major part of the integrated 
model-based development process. In the energy domain, a smart grid 
simulator addresses the following challenges that can also be found in 
comparable systems: (a) uneven balance of energy generation and 
consumption, (b) lack of stability of the overall system, (c) vulnerability 
of the system due to dynamic changes of the behavior of consumers and 
producers, (d) vulnerability of the system due to faults or failures of 
communication and/or components, (e) system stability with a huge 
number of components, and (f) limitation of system optimization 
resources. 

To keep pace with these challenges and to avoid problems while 
developing the overall system, the proof of correctness of the concept 
must happen in an early stage of the development process. 

The behavior of the real system can be deduced based on the actual 
values for the actuating variables of the simulation and the corresponding 
simulation results. The relevant actuating variables reflect the properties 
of the main constituents of a smart grid: the electric supply network, the 
communication network, and such (local and decentralized) smart grid 
components that are connected via the networks (see Fig. 14-3).  

Conclusion 
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Fig. 14-3 Overview of simulation components 

The simulation environment for investigating the behavior and 
interaction of smart grid components consists of two layers: on the 
simulator layer the VPP topology, i.e., the number of components and 
the system structure can be configured. The second layer contains the 
VPP coordinator and the decentralized energy resources attached. These 
components can be parameterized using, e.g., consumption and weather 
profiles. Components can be added and removed dynamically. Also, 
communication failures can be simulated. The following summarizes the 
dependencies between the simulations and the simulated components: 

 VPP coordinator. This is the centralized controlling, monitoring, and 
optimization system for the decentralized plants forming a virtual 
power plant. Further components offer the registration and 
administration of decentralized plants. 

 Simulation of the communication network. The communication 
network has to be simulated with regards to (a) bandwidth, (b) 
varying number of participants, (c) latency, and (d) reliability. 

 Decentralized energy resources are, depending on the configuration, 
(a) producers, (b) consumers, and (c) prosumers that entail both 
characteristics (a) and (b). Entities that reflect those characteristics, 
such as wind engines, solar modules, biogas plants, co-generators, or 
eCars, can be integrated. 

 Simulation of the electric supply network. The actuating variables of 
the electric supply network are (a) cable cross-section, (b) voltage 
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level, (c) concurrency factor, (d) safety concept, and (e) concepts for 
redundancy (alternative cableways). 

 Simulation of smart grid components. The actuating variables of the 
various smart grid components comprise, depending on the nature of 
the component, (a) the number of parallel communication 
connections of a single component, (b) the size of the internal data 
storage, (c) the physical component model, and (d) the predictability 
and fluctuations of generated or consumed power levels. 

Power grid simulation 

The Siemens Power System Simulation (PSSTM) software suite was 
chosen for the integrated smart grid simulator. PSSTM is a set of software 
tools used by many European power companies, as well as universities, 
for the design and simulation of electric power systems. NETOMAC is 
the mathematical solver within PSSTM. 

NETOMAC sets up the system admittance matrix Y describing the 
elements of the modeled power grid with a set of differential equations. 
The differential equation system is solved for each calculation time step 
of a configurable duration using the difference conductance approach 
[Kulicke 1981]. Thereby, a continuous numerical integration is 
performed using the trapeze method. 

Simulation time can be synchronized to a real-time clock, e.g., the PC 
clock, allowing hardware-in-the-loop tests as well as connections to 
control networks or components, e.g., ICT gateways, and to real clients 
such as a virtual power plant control center used to control components 
of the simulated power network as in our scenario. 

Communication network simulation 

The communication network simulator NS-3 [NSF 2011] is a discrete-
event network simulator for Internet systems, targeted primarily for 
research and educational use. 

NS-3 offers the possibility to run in emulation mode, i.e., to simulate 
a communication network in real-time, capturing and outputting live IP 
traffic from and to the interface cards and conveying it through the 
network modeled. In real-time mode, NS-3 can be used for hardware-in-
the-loop tests along with NETOMAC. 
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Co-simulation 

Co-simulation aims at studying the interdependencies of smart grid 
components. Thus, an environment for combined or co-simulation 
comprising the components as described above was set up. 

Pure power grid simulators are mainly built to analyze the electrical 
characteristics and behavior of a power grid. They are restricted with 
respect to capabilities for adding controllers to the power network, e.g., 
to model generators or protection devices. Also, communication between 
distributed controllers is not in the focus of such tools. However, in most 
cases, the user may add external control logic that can access power grid 
parameters (voltages, currents, etc.) during simulation to the power grid 
simulator. In the same way, model parameters such as machine 
parameters or breaker settings can be influenced by external logic. 
Instead of arbitrarily embedding control logic into the power grid model, 
our approach identifies a defined set of standard interaction points to get 
measurement values or to set machine parameters. 

To set up a co-simulation, monitoring and control applications can 
interact with the power network using a Java interface. The 
communication between these applications and the energy network 
simulator corresponds basically to real power system communication 
using [IEC 61850] compliant devices. 

The properties of the communication network used to carry the 
commands and measurements gain importance as the number of com-
municating devices increases. When a shared infrastructure such as the 
Internet or power line communication is used, it is especially important 
to understand the influence of communication network properties on the 
behavior of the power grid. 

Besides emulation, non-real-time operation, i.e., simulation is also 
possible. Synchronization in simulation mode is based on the idea of 
letting simulators run independently for a defined simulation step, which 
may last for a longer or shorter time than the real time, and re-
synchronize them after the simulation step has been performed. 

Smart grid simulator evaluation 

The primary evaluation goal concerning the smart grid simulator consists 
of proving its applicability as a smart grid development and design tool 
fitting well into the smart grid development process. To prove 
applicability, the evaluation investigates whether and to what extent the 
simulator fulfills the requirements listed below. 

The smart grid simulator shall allow for examining system and grid 
stability. Example scenarios shall be investigated for the possibility of a 
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stable continuous operation. Relevant aspects include dimensioning of 
smart grids, analysis of the behavior of systems with a large number of 
components (more than 10,000), and optimized power allocation. The 
simulator shall be able to simulate dynamic processes in system 
behavior. Dynamic processes comprise faults such as failures of 
components or communication lines, as well as controlled processes such 
as fluctuations in power generation and attaching or detaching producers 
or consumers. 

The evaluation employs a reference scenario modeling a low voltage 
grid area based on real-world power grid data provided by RWE and 
assumes a 100% PV penetration. The corresponding communication net-
work is assumed to have the same structure as the power grid and the 
properties of either a DSL access network (ideal case) or a power line 
communication (worst case). 

Simulation results indicate that production and generation schedules 
computed by the VPP coordinator based exclusively on economic 
constraints lead to a temporary overload in the power grid resulting in 
voltage boundary violations. 

Thus, either a reconfiguration of the grid area is necessary, i.e., an 
installation of additional or thicker cables, or an appropriate control of 
both producers and generators has to be introduced. In the latter case, the 
simulator helps in selecting and tuning possible countermeasures. These 
include: injection of reactive power from the PV units, switching on 
additional effective loads, and changing the tap at the local transformer 
station. 

The introduction of control mechanisms based on measurement 
values from client-side meters requires an available communication 
network. Simulation results show that control has to deal with incomplete 
information in the worst case due to packet loss and a delay in the range 
of minutes, whereas in the ideal case, prioritization of control traffic over 
user-initiated traffic such as web-browsing offers the possibility of fast 
control since all measurement values arrive within a few milliseconds. 

In summary, the smart grid simulator proved to be a valuable 
dimensioning and early evaluation tool for smart grid development. 

14.5 Summary 
Work in the energy domain within SPES 2020 focused mainly on four 
aspects as described above: the identification and specification of 
suitable case studies to analyze the domain and its requirements with 
respect to the development of embedded systems, the analysis and 
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evaluation of the SPES modeling framework and corresponding 
modeling approaches from the perspective of the energy domain, the 
extension and subsequent evaluation of the requirements viewpoint, and 
the integrated model-based development of a smart grid simulator. 

The identification and specification of suitable case studies is 
especially valuable in the energy domain since the smart grid setting that 
is in the focus of the domain is very innovative and there is virtually no 
prior experience with existing systems. Thus, thinking about the 
possibilities and requirements of embedded software in the context of 
smart grids provides necessary and valuable insights. The integrated case 
study concentrates on the issues of monitoring and control in a smart 
grid. From this perspective, it provides insight into all relevant parts of a 
smart grid, from virtual power plants to power management to ICT 
gateways. 

The analysis and evaluation of the SPES modeling framework and 
corresponding modeling approaches, including the modeling of system 
requirements and concepts, provides an overview of available techniques 
and tools for software and systems modeling together with an evaluation 
of their suitability within the energy domain. We can conclude that while 
most approaches are usable in some way in the energy domain, not every 
peculiarity of the energy domain is addressed. Hence, further tailoring is 
necessary. For example, this includes the ability to investigate emergent 
issues that arise from dynamics in system structure and system behavior. 
These issues need to be considered in further work within the energy 
domain. 

Subsequently, the requirements viewpoint has been extended 
according to the needs and constraints identified in the energy domain by 
adding a business process layer. Further, the adapted SPES modeling 
framework has been intensively evaluated in a series of workshops 
conducted in cooperation with industrial partners. The results of the 
evaluation show that the SPES modeling framework is well-suited to 
support the requirements engineering process for the development of 
embedded systems in the energy domain. 

Finally, the complexity of smart grid installations makes the formal 
analysis of such systems virtually impossible. Therefore, the importance 
of simulation as a means for designing and evaluating smart grid 
installations in early stages of the development process increases. In the 
energy domain, an integrated smart grid simulator has been developed. 
The SPES modeling framework was successfully applied in this case 
study and resulted in requirements, functional and logical architecture, 
and a deployable technical architecture that, in later stages, was 
successfully used to simulate smart grid installations. Using the SPES 
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modeling framework, it was possible to develop an integrated simulator 
that can serve as an additional development tool in the development 
process of smart grids. 
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Application and Evaluation 
in the Healthcare Domain 

This chapter deals with the application of the SPES modeling framework to a medical case 
study: an extended care system (ECS). This system allows patients with serious heart 
conditions to stay in their home environment while remaining under constant medical 
surveillance and assistance. The ECS is typical for future telemedical applications, where 
body sensors and implanted devices work together with an ambient IT infrastructure to 
guarantee optimal patient-centered care. Design challenges in this case study are the 
safety and reliability requirements, interface definitions and architecture of the combined 
system, as well as meeting regulatory demands for life-supporting subsystems while adding 
further, not necessarily safety-critical components to the system. 
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15.1 Overview: Application Domain Healthcare 
In the healthcare domain, software as an integral part of medical 
equipment and processes is becoming increasingly important. Software-
based systems control and influence more and more medical activities, 
from first aid to rehabilitation. Similar to the other domains in this book, 
embedded software plays a central role in the innovation and progress of 
medical technology. Typical devices are large hospital and laboratory 
apparatuses, surgery appliances for diagnosis and treatment, and patient 
equipment usually for the mass market. In all these products, more and 
more of the innovative functions are realized by software. 

The following are some current trends that are determining and are 
determined by the development of embedded systems in the field (see, 
e.g., [Glesner et al. 2007] and [Zauner and Schrempf 2009]): 

 Interoperability and interconnectedness: As embedded medical 
systems obtain more and more communication interfaces, new 
integrated services are becoming possible. Examples are diagnostic 
implants that transmit vital data directly to the electronic health 
record, or the integrated operating theater where the surgeon has 
central control of various devices and displays.  

 Telemedicine and telematics: Embedded devices allow not only 
remote monitoring of the patient’s health, but also the provision of 
real-time interactions between patient and physician. Robot-assisted 
intervention devices, such as remotely operable catheters, assist in 
complex, minimally invasive surgery. 

 From diagnosis to therapy: Due to increased sensing and processing 
power, devices that were formerly only able to observe the patient or 
provide basic services are now capable of accomplishing complex 
treatment. One example is a pacemaker with sensors monitoring the 
heart activity that can now help to cure various cardiopathies. 

 Ambient assisted living: Systems designed for the support of elderly 
or handicapped people in their home can reduce healthcare costs and 
increase the quality of life. Examples range from simple automated 
pill dispensers to intelligent wheelchairs and intelligent prostheses 
that restore physical abilities, such as cochlear implants. 

Similar to the aerospace domain, most medical devices are safety-critical 
in the sense that incorrect software could harm the patient. The more 
critical the application, the more important the role of the embedded 
control system within the application and the software used to control it. 

Current trends in 
medical systems 
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In contrast to applications in other industrial domains, such as railway or 
automotive, the full functionality has to be maintained even in the case of 
a single fault. It is not an option to shut down the device or go into a 
“fail-safe state.” As a consequence, all functions must be implemented 
redundant and diverse under the condition of real-time parallel signal 
processing. Redundancy can protect against random (stochastic) faults 
during the operation, whereas diversity is used to protect against 
systematic faults in the design. Fault tolerance is often achieved by 
parallelism in the hardware. As the system must be shown to be resistant 
even against common mode errors, the redundant parts must be designed 
to be largely independent.  

Due to the increased complexity of the design, conventional 
development methods are no longer appropriate for producing code that 
can satisfy these requirements. As shown in Chapter 9 on modeling 
quality aspects, model-based design can be used to support the 
development of such highly critical systems. In the medical domain, 
development tools also have to respect the above-mentioned special 
requirements regarding functional safety. 

In parallel to the increase in the complexity of systems, the amount of 
verification and validation in the development has risen dramatically 
over the last few years. This is mainly due to the following reasons: 

 The increase in embedded systems technology allows the measuring, 
influencing, and controlling of more and more physiological 
parameters of the human body. Therefore, the systems are used in 
more and more critical applications. This increase in capabilities 
leads to an increase in complexity in the validation and certification 
process. 

 The evolution and international harmonization of standards regulates 
the development processes at a much more finely-grained level than 
in former times. Therefore, the normative and legal requirements of 
the development process must be followed and documented to a 
much higher extent.  

 The increased criticality leads to more and more supervision by 
authorities. In Europe, for example, Class I medical products can be 
developed and marketed by the manufacturer in their own 
responsibility, whereas Class III and IV products are completely 
supervised by an authority. The manufacturer must provide all 
necessary evidence and show that he conforms to all essential 
requirements of the respective European directives. 

 As a social component, the user expectations of electronic equipment 
are constantly rising, both with respect to their functionality and their 
reliability. The extremely short product life cycle in consumer 

Dramatically 
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electronics imposes a high innovation pressure also on medical 
electronic devices, which demands highly efficient confirmation 
processes. 

Corresponding to the increase in verification and validation efforts, the 
amount of documentation and evidence of compliance that is necessary 
for approval has risen dramatically in recent years. For example, the 
main standard of safety in medical products, DIN EN 60601-1 (VDE 
0750-1)_1996, had less than 180 pages of requirements in 1996, whereas 
the most recent version (DIN EN 60601-1 (VDE 0750-1)_2007 with 
collateral standards) has more than 1800 pages of requirements. US 
regulations are described in [FDA 2002], for the respective European 
documents see [IEC 2006] and [ISO 14971]. 

One of the main benefits of model-based design is that it can help to 
reduce the manual verification and validation efforts, since it provides a 
well-founded methodology with a high potential for tool support (cf. 
[Hungar and Reyzl 2008]). Furthermore, models can be used in the 
documentation of critical systems and provide a solid basis for 
assessment by authorities. In the following, we will demonstrate 
challenges and solutions using a typical example from the healthcare 
domain. 

15.2 Evaluation Case Study: Extended Care 
System 

In this section, we describe a prototypic Extended Care System (ECS) 
that was developed to evaluate the modeling theory of this book. Our 
prototype of an ECS is typical for a number of similar systems. In 
particular, our case study exhibits aspects of all above-mentioned current 
trends in the field (interconnectedness, telematics, therapy, and ambient 
assisted living). Furthermore, it includes a medical product of the highest 
safety class. Our system provides an extended range of intensive care for 
patients with a serious heart condition, such that they can stay in their 
home environment but remain under intensive care. 

15.2.1 Medical Emergency Support Systems 

Firstly, we characterize overall requirements and scenarios for medical 
emergency support systems. In general, this type of system involves 
three different actors: the patient, the emergency service provider, and 
the emergency help. 
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The main purpose of any emergency system is to provide quick help in 
the case of an emergency. In our case, an emergency can be a fall to the 
ground, cardiac arrest, apnea, or general immobility. The patient 
demands a reliable system that, on the one hand detects every 
emergency; on the other hand, the system must transmit only actual 
emergencies to the emergency service provider, since unnecessary 
emergency calls lead to additional efforts and deferral in the handling of 
actual emergencies. 

The task of the emergency service provider is to handle incoming 
alerts. In order to do so, the data transmitted from the patient side must 
be comprehensive and understandable so that the provider can evaluate 
and prioritize the emergency correctly. Furthermore, timely delivery of 
the data is important to enable prompt reaction. For some systems, the 
emergency service provider must also be able to constantly monitor all of 
the patient’s relevant vitality data. In medical systems, all personal data 
of the patient must be treated as confidential and protected against 
corruption and modification. 

In case of an alarm, the emergency service provider may notify and 
consult emergency help, i.e., a designated doctor or ambulance. The 
physician has access to the patient’s medical record and prescribes 
further medication or treatment. Additionally, the medical emergency 
support system may also give advice to the patient for activities to 
improve his health.  

Basic scenario: quick help in the case of an emergency 

Our case study is constrained to the scenario collapse of the patient. A 
possible trigger for this scenario is the patient stumbling while walking 
and subsequently falling down. The patient cannot stand up or crawl on 
his own and thus remains immobilized. The system detects the collapse 
when it recognizes a powerful acceleration of the body and limps, a 
change in the altitude of the upper body (as measured by a barometric 
sensor), as well as a higher heart rate due to the shock. The sensors 
attached to the patient’s body recognize these changes and exchange 
their measurement results. Finally, the sensors conclude that the patient 
has fallen and subsequently alert the emergency service provider. 

The service provider receives the emergency alarm and further 
information about the situation. This information comprises live data 
from the sensors as well as data from the last minutes before the collapse. 
The service provider then notifies the emergency help personnel, who 
take further action. 

Main purpose of the 
ECS: quick help in 
case of an emergency 
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Negative scenarios 

A negative scenario describes what the system must not do. We 
identified two negative scenarios: the first scenario is that the patient falls 
and is subsequently immobilized but the system does not detect the 
collapse (no alert). The second scenario is that the patient lets himself 
sink into his bed, but the system incorrectly detects an emergency and 
alerts the emergency service provider (false alert). 

15.2.2 System Structure of the Case Study 

The ECS comprises and integrates three components: a ventricular assist 
device (VAD), a body area network (BAN), and a telematic system 
(TMS). 

In our case study, the ECS is an extension to an existing heart support 
system. Thus, we extended an existing VAD by a BAN and TMS. The 
integrated components form our extended care system for medical 
emergency support, depicted in Fig. 15-1. 

 
 

Fig. 15-1 Extended care system 

Ventricular assist device (VAD) 

The VAD supports the patient’s heart by augmenting some or all of the 
heart’s pumping capacity. It consists of a blood pump with a 
microcontroller and a control laptop. The laptop provides a control panel 
for configuring and monitoring parameters of the microcontroller and 

System structure of 
the ECS: VAD, BAN, 

and TMS 
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displaying patient data and error messages. The control laptop interfaces 
with the pump’s microcontroller by means of a special protocol designed 
to fulfill the compulsory safety requirements. Cyber-physical modeling 
of a similar system can be found in [Jiang et al. 2011]. 

In an ECS environment, the VAD has to be protected against 
(accidental or malevolent) misuse. Thus, before attaching additional 
components to the VAD, the following compatibility issues have to be 
considered: 

 The transfer of data from and to the VAD has to take place via a 
secure channel. 

 The other components may not at any time change, control, or 
interrupt the functionality of the VAD. 

 The patient should retain sovereignty over his data; that is, except for 
emergency situations, a transfer of data may only take place with the 
patient’s approval. 

Only if these conditions are met can the BAN and TMS components of 
the ECS be used as additional components to the VAD. More remarks on 
high-confidence medical device software can be found in [Lee et al. 
2006]. 

Body area network (BAN) 

The BAN consists of various sensor nodes attached to the patient’s body 
and spread around the residence. The sensor nodes form a subnet within 
the ECS, hence the term body area network. A gateway connects the 
BAN to the TMS and subsequently to the emergency service provider. 
The BAN has a decentralized structure; there is no central node 
collecting the data from all sensors as this would form a single point of 
failure. The nodes may communicate with each other if an exchange of 
data is necessary to pronounce a more reliable verdict. 

The wireless communication among the sensor nodes and the gate-
way has advantages as well as disadvantages: sent packets may get lost 
or may be read by anyone within reach. They also have to deal with the 
fact that other nodes may join or leave the network at any time, 
expectedly or unexpectedly (e.g., due to power failure). Hence, an 
authentication algorithm protects the nodes against misuse and a special 
protocol ensures that if a node is within reach, it will receive its messages 
eventually. 

The BAN component of the ECS is not a medical device in the legal 
sense, as it is not used for diagnostic purposes in a therapy or medical 
treatment. Although it tries to identify critical situations and summon 
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professional assistance, it does not actively harm the patient if it fails to 
do so. 

Telematic system (TMS) 

For remote monitoring of the VAD and the BAN, the ECS comprises a 
telematic system. The TMS consists of three components: a telematic 
module, a server, and the client software. The telematic module transfers 
the data from the patient side to the emergency service provider. The 
server hosts the business logic, data backup, and user management. The 
doctor’s client software is for visualization of the patient’s data. 

The TMS has three main features: online monitoring, alert handling, 
and data logging. Online monitoring enables the doctor to receive real-
time data from the patient side. The live data can be visualized either via 
a web browser or a Smartphone. Alert handling deals with incoming 
emergency alerts triggered by the BAN. An emergency dispatcher 
accepts the alert and decides, on the basis of the data sent, whether 
further measures have to be taken or the alert is a false positive. Data 
logging provides the option of transmitting a patient’s data to a global 
data storage. The logged data can be retrieved and evaluated with special 
software for retrospective diagnosis by a physician. 

When integrating the VAD in the ECS, the exception to the third 
requirement of the VAD, “sovereignty in the transmission of patient 
data” has to be considered. A patient who falls and possibly loses 
consciousness cannot and should not intervene in the process of the 
emergency call. For this reason, the TMS provides a service with which 
it can independently and autonomously build up a connection to the 
emergency service provider. The security of this feature must be 
maintained in the design of the ECS. 

15.2.3 Challenges of the Case Study 

The case study offers many challenges for modeling, validation, and 
certification. Since this book describes a specific modeling theory, we 
subsequently focus on the following aspects: 

 Requirements specification 
 Design and evaluation of system architectures 
 Interface definitions in complex medical systems 

Further challenges that are of interest but that are not dealt with in this 
chapter comprise early validation of the system’s requirements, model-
based security analysis, testability of requirements, and functional safety 
for distributed processing in life-sustaining systems. 
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The VAD is a life-sustaining system and thus is classified as a highly 
safety-critical product (medical device Class III according to the council 
directive 93/42/EEC and software category C according to IEC 62304). 
Therefore, intense validation and verification is needed before regulatory 
authorities permit release to the market. The BAN and the telematic 
system are of less concern. One of the challenges of the case study is 
how to maintain the Class III certificate of the VAD while adding 
further, not necessarily Class III, components to the environment. It is 
essential to avoid having to certify the other parts of the ECS as Class III 
medical devices as well to save efforts for validation and verification. 
For a successful integration of the BAN and the TMS into the VAD, 
there must be a guarantee that the combination of the three has no impact 
on the functionality of the VAD. Therefore, the interfaces between all 
components have to be designed with great care. 

15.3 Example Evaluation Activities in Detail 
After describing basic functionality, system structure, and challenges for 
the ECS in the previous section, we now describe the application of our 
modeling theory to this case study. To do this, we largely rely on 
established UML2 or SysML diagrams; see [Raistrick et al. 2004]. In 
order to manage the complexity of the entire system, different concepts 
and techniques should be used at various levels of abstraction, as 
described in Chapters 4 through 7. We describe our modeling using some 
sample artifacts generated within the development of the ECS. 

15.3.1 Requirements Elicitation 

The first task in the system development is to identify the boundaries of 
the system to be developed. 

With regard to the ECS, a question relating to the system boundaries 
was whether calling the emergency help and the subsequent questions of 
the high availability of and safe communication to the emergency help 
should be included in the system or be considered as a part of the 
environment. In the following, we only describe the second alternative. 

In accordance with the requirements viewpoint (see Section 4.2.1), 
we used SysML block diagrams to model the system boundaries (see Fig. 
15-2). As described in Section 15.2.1, we distinguish between emergency 
service provider and emergency help as different actors in the 
environment. Hence, the emergency call system has to transmit not only 
alarm messages, but also information on the current patient condition. 

Safety-critical  
(Class III) 
 medical products 

Modeling the 
requirements 
viewpoint with block 
diagrams, 
requirements 
diagrams, and use 
case diagrams 



224 Part III – Application and Evaluation in the Healthcare Domain 

 
Fig. 15-2 Context diagram for the extended care system 

According to the requirements process model described in Chapter 4.4, 
the next step is to define the goals the system has to fulfill. Recognizing 
the collapse of the patient and sending an alert to the emergency service 
provider is a main goal of the system. As described above, the 
emergency service provider and emergency help have limited resources 
and should be called only if they are really needed. Hence, there are two 
conflicting goals: calling the emergency service provider immediately in 
an emergency, and avoiding false alerts. We modeled the goals using 
SysML requirements diagrams, as suggested in Section 4.2.2 (see Fig. 
15-3). 

 
Fig. 15-3 Concurrent goals for the extended care system modeled by 

SysML requirements diagrams 

At this point we need a better understanding of the interaction of the 
system with its environment: How should the ECS behave in a critical 
situation? What are possible critical use cases? These aspects can be 
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analyzed properly with the help of SysML sequence diagrams and 
structured by use case diagrams, as suggested in Section 4.2.3. Some use 
cases are depicted in Fig. 15-4. 

 
Fig. 15-4 Use cases of the extended care system 

The extended care system should permanently monitor the patient data 
and notify the emergency service provider if a critical situation occurs. 
The scenario collapse of the patient is demonstrated by the sequence 
diagram in Fig. 15-5 (the time axis of this diagram points down 
vertically). 

In order to resolve the concurrent goals mentioned above, we decided 
that a call-back to the patient by the emergency service provider must be 
performed. If the patient responds to the call-back, the help request 
generated by the alert can be cancelled by the emergency service 
provider. 

15.3.2 Structural Investigation of the Requirements 

The requirements process model, as described in Section 4.4, prescribes 
that after developing solution-neutral artifacts such as the ones shown in 
Section 15.3.1, solution-oriented artifacts have to be developed in order 
to represent the solution concept. After developing the logical structure 
and behavior of the system, we have to transfer it to a physical 
realization. 

 

Sequence diagrams 
for modeling 
scenarios 
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Fig. 15-5 Collapse scenario modeled by a sequence diagram 

As identified in the context diagram in Fig. 15-2, the extended care 
system must provide all information necessary for immediate help. A 
system identifier, a unique name for identifying the calling system, and 
probably other personal data of the patient enable the emergency service 
provider to look up the patient’s anamnesis data in the patient database. 
Additionally, data on the patient’s current state gathered by the extended 
care system can be important for the emergency help, thus these data 
should be transmitted as well. To represent these data, we model them 
with SysML class diagrams, as suggested in Section 4.2.4. The model is 
shown in Fig. 15-6. 

15.3.3 Functional Decomposition 

Once the requirements have been set, the functional structure of the 
system as a black box, i.e., from an external point of view, has to be 
modeled according to Chapter 6.  

We used UML deployment diagrams to model the functional 
architecture of the (BAN part of the) ECS (see Fig. 15-7). These 
diagrams offer hierarchical structuring and can capture the functional 
decomposition, similar to the graphical notation suggested in Chapter 6. 
For this case study, the main function of the ECS is to alert the 
emergency service provider in case of an emergency. An additional 
function is to send available diagnostic information. In order to detect a 
collapse, the system must monitor various physical sensors. In order to 
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Deployment diagrams 
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send diagnostic data, it must access the data logging storage etc. In this 
way we described the functional behavior of the ECS in guiding the 
deployment of the system onto its components. 

 
Fig. 15-6 Information to be sent to the emergency service provider 

modeled by a class diagram 

 
Fig. 15-7 Functional decomposition of the extended care system using 

deployment diagrams 

15.3.4 Towards System Design 

The previous subsections assumed a black box view of the system to be 
developed. That is, we looked from outside onto the system.  This 
provides a good understanding of its behavior as expected by the user. In 
the next step, the implementation is conceived by designing the 
architecture, based on the logical and technical viewpoints (Chapters 6 
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and 7). Starting from the functional decomposition of the system, a 
proper internal structure, as well as a structure for hardware and software 
resources, is defined using appropriate modeling techniques.  

By considering the BAN from a technical viewpoint, we decided to 
incorporate mobile and stationary nodes in order to meet the goals “easy 
usage” and “monitoring of various sensor data.” Moreover, the TMS, 
responsible for the communication with the emergency service provider, 
is included in the technical structure. It is connected to the sensor nodes 
via a gateway. In this context, the VAD can be thought of as just another 
sensor providing information about the cardiac activity of the patient. We 
modeled the architecture using SysML package diagrams, as shown in 
Fig. 15-8. The various functions as identified in the functional 
decomposition model of Fig. 15-7 were then mapped to the nodes that 
should realize them. 

 
Fig. 15-8 Architecture of the extended care system using package 

diagrams 

For the VAD, most implementation parts already existed. In order to 
incorporate it into the case study and to enable certification of the 
complete product, we also designed models for the VAD. Such models 
are helpful for demonstrating the functional integrity of the system. The 
general problem is how to integrate legacy code in a model-based 
development environment. As a solution, we used a reengineering 
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approach. We developed a capsuling concept, where the interfaces 
between a capsule and its environment were derived from an integrated 
analysis of code and model. Then, actors were extracted from the tasks in 
the code. An extended static analysis allowed us to trace the control 
variables of the actors to derive activity diagrams and state charts. With 
these generated models, we were able to guarantee that BAN and TMS 
had no negative effects on the workings of the life-support system. 

15.4 Summary 
In modeling the various parts of the case studies, we used several 
modeling notations as defined by the SPES modeling framework. The 
flexibility of the formalisms supplied was helpful in engineering the 
models. One challenge turned out to be the still nonexistent tool 
integration, at syntactic as well as at semantic level. Models that are 
developed with one tool (e.g., an architecture modeler) cannot 
necessarily be re-used with other development tools (e.g., test 
generators), see [Tahirbegovic and Lackner 2011]. 

Our ECS case study comprised several components, with the patient 
equipment built on top of an existing VAD system. For such highly 
safety-critical systems, accreditation by notified bodies is of utmost 
importance. As mentioned above, the noninterference of the environment 
with the workings of the VAD must be shown. Here, models and 
diagrams can be extremely helpful, see also Chapter 9 on modeling 
safety aspects. Our experiments also showed the importance of modeling 
a system’s context, as well as unwanted and disallowed use cases. With a 
large number of models, however, it becomes increasingly difficult to 
maintain the consistency of the various models and artifacts. In 
particular, showing that the actual implementation conforms to the 
different models can only be done partially. Automated procedures such 
as model checking are helpful only to a certain extent, since many 
modeling concepts are beyond the scope of a model checker. SysML 
offers certain constructs that can be used to mitigate this problem. 
Checking interdependencies between the models still remains 
challenging. 

The increased usage of software in safety-critical medical systems 
allows a high flexibility for improving and extending a given 
functionality. In order to be able to use this flexibility and at the same 
time meet the high safety standards, concepts for modular validation and 
re-certification are needed. Ideally, validation and verification should 
start in early development phases, allowing reuse of models, component 

Accreditation based 
on modeling artifacts 



230 Part III – Application and Evaluation in the Healthcare Domain 

descriptions, and code fragments together with their respective validation 
documents in an incremental development process. 
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Evaluation Summary 

A survey conducted by the developers of the SPES modeling framework at the beginning of 
the project revealed four high-level industry challenges that were to be addressed. Several 
evaluation studies were conducted in the application domains, aiming at investigating the 
contributions of the SPES modeling framework towards solving these industry challenges. 
The results of these studies are summarized for each challenge. The main results indicate 
that the SPES modeling framework is applicable in the chosen application domains. 
However, additional efforts for adapting the SPES modeling framework were reported to 
be necessary. In summary, the SPES modeling framework is well-aligned with regard to 
the industry challenges. Future evaluations would be necessary to investigate cost benefits 
and the efficiency of the approach. In addition, evaluation results show that the SPES 
modeling framework has the potential to provide a stable foundation for future evolutions 
of model-based approaches for the development of embedded systems. The current need 
and future relevance of model-based development approaches for embedded systems is 
supported by results from a survey. 
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16.1 Introduction 
Decision makers in embedded system development require evidence 
about technologies to enable them to make an informed decision when 
new development technologies are to be introduced. However, this 
evidence must be obtained systematically, i.e., the studies have to be 
planned according to goals, conducted, analyzed, and reported so that the 
results are conclusive and the studies can be replicated. In Chapter 10, 
we presented an overview of the evaluation strategy that was to be used 
to evaluate the SPES modeling framework.  

Industry challenges for the engineering of software-intensive 
embedded systems were identified by means of a set of interviews 
conducted with project partners, as well as a comprehensive state-of-
practice study (see Chapter 2, [Sikora et al. 2012]).  

We summarized the given industry challenges, identifying four high- 
level challenges: 

 Model technical systems and their interaction  
 Provide traceable and seamless support for all life cycle phases  
 Address and verify system properties early  
 Address safety, standard compliance, and certifiability 

Based on these challenges, principles for the SPES modeling framework 
were derived (see Chapter 3): 

 Distinction between problem and solution 
 Distinction between logical and technical solution 
 Explicit consideration of system decomposition 
 Seamless model-based engineering 
 Continuous engineering of crosscutting system properties 

The SPES principles have to be addressed by the SPES modeling 
framework. For the SPES modeling framework, the following properties 
were defined: 

 Scalability 
 Productivity 
 Division of labor 
 Ease of use 
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For the SPES models the following properties were defined, describing 
the extent to which they support system development:  

 Handling of complexity 
 Maintainability 
 Reusability 
 Consistency between different models (in all directions of the SPES 

modeling framework) 
 Reduction in fault tendency 

The high-level evaluation goals addressed in the evaluations in the 
application domains were quality, efficiency, and usability. 

 

 
 

Fig. 16-1 Matching SPES principles to the properties of SPES modeling 
framework and to the evaluation goals 

Fig. 16-1 presents the relationships between the summarized industry 
challenges, SPES principles, properties of the SPES modeling framework 
and inherent models, and evaluation goals. The evaluation in the 
application domains assessed the SPES modeling framework with regard 
to specific attributes listed as evaluation goals. For example, with regard 
to the evaluation goal quality, attributes such as a model’s completeness, 
its consistency, and traceability of artifacts were studied. Also, the 
question of the extent to which the SPES modeling framework had an 
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impact on the development or maintenance efficiency was investigated. 
In terms of the evaluation goal usability, the SPES modeling framework 
was evaluated concerning aspects such as applicability, 
understandability, and learnability. A selection of evaluation studies were 
reported in previous chapters.  

In the remainder of this chapter, we summarize the results from the 
studies that were conducted to evaluate the SPES principles and their 
implementation in the SPES modeling framework. Further, we discuss 
results from a survey that support current and future relevance of model-
driven development (MDD).  

16.2 Conclusions from the Evaluations 
To assess the extent to which the SPES modeling framework and models 
fulfill industrial challenges, the evaluation studies in the application 
domains addressed both the level of abstraction and the viewpoints. Fig. 
16-2 shows that the evaluation studies cover the whole SPES modeling 
framework.  

A vertical bar indicates that for an empirical evaluation of an 
approach, the approach was applied across several abstraction layers 
within a specific viewpoint, for example, the requirements viewpoint. A 
horizontal bar indicates that the focus of the study was across viewpoints. 
For the details of the evaluations we refer to Chapters 11 through 15. 

The general purpose of the evaluation studies was to investigate 
whether and under what conditions the SPES modeling framework can 
be applied in the context of the specific application domain (cf. domain-
specific challenges). Domain-specific requirements have influenced both 
the adoption of the SPES modeling framework as well as the design of 
the evaluation studies. These domain-specific requirements come from:  

 Disciplines with heterogeneous engineering approaches, such as 
mechanics, electrics, and software, that need to interact in the 
automation (cf. Chapter 11) and automotive domains (cf. Chapter 
12)  

 Disciplines with the need for certifiable systems in the avionics (cf. 
Chapter 13) and healthcare domains (cf. Chapter 15)  

 Disciplines with the need for flexible handling of massively 
distributed systems in the energy domain (cf. Chapter 14). 

Overview and 
conclusions of 

evaluation studies in 
SPES 
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Fig. 16-2 Placing the evaluation studies within the SPES modeling 

framework 

Most studies addressed the question of whether the SPES modeling 
framework can be applied (applicability) in the context of the specific 
domain. All domains report that the SPES modeling framework and 
inherent models are applicable. Nevertheless, a need for adaptation and a 
detailed guideline was reported. Some possible adaptations have been 
exemplified, e.g., in Section 14.4.1. Learnability of the technologies and 
understandability of the resulting documents was also perceived as 
positive by participants. However, in a few cases, explicit improvement 
suggestions, in particular regarding the transfer into daily practice, were 
given (e.g., see Section 12.3). 

In the following, we summarize the results of the evaluation studies 
from the perspective of the high-level industry challenges. 

Model technical systems and their interaction: Each of the five 
application domains applied the SPES modeling framework to several 
(domain-specific and typical) case studies. The case studies successfully 
demonstrated that the SPES modeling framework addresses this 
challenge. For example, in the automation domain, several types of 
systems were successfully integrated by mapping SPES principles to 
domain-specific modeling languages. In the avionics domain, we 
successfully showed that systems engineering and safety engineering can 
be integrated more smoothly by employing the SPES modeling 
framework. As can be concluded from Fig. 16-2, much emphasis was 
given to the requirements viewpoint. This is quite obvious, because this 
viewpoint addresses also understanding of the system to be developed 
and a common language for stakeholders involved. Results from the case 
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studies demonstrate that the SPES modeling framework supports system 
understanding. 

Provide traceable and seamless support for all life cycle phases: 
The challenge of horizontal integration (i.e., seamless methodological 
and tool support) of the SPES modeling framework (i.e., across several 
viewpoints) was addressed in all domains. As shown in Fig. 16-2, all 
domains provide case study results demonstrating how they employed 
the SPES modeling framework. Although the general results provide 
supporting evidence, the level of integration is different. Whereas for the 
automotive domain, seamless integration was successfully demonstrated 
for approach and development tools, the healthcare domain recognizes a 
deficiency with regard to supporting tools (see Chapters 12 and 15, 
respectively). Results reported from the case study in the avionics 
domain provide the insight that the integrated design and safety modeling 
allows systems and software engineers to work seamlessly on the same 
model (see Chapter 13). In addition, the results show that parts of the 
verification cases can be generated from formalized requirements. 

Address and verify system properties early: Several studies 
investigated aspects of quality (cf. Fig. 16-1). With regard to the question 
of whether a certain level of product quality is achieved using the SPES 
modeling framework, we can summarize that the methods specifically 
addressing a certain quality aspect such as completeness, consistency, 
safety, or traceability fulfilled users’ expectations. In particular, 
approaches addressing requirements’ vertical traceability were 
successfully investigated, e.g., in the automotive, avionics, and energy 
domains (see Chapters 12 through 14 respectively). Results from a case 
study on an extended requirements process model in the automotive 
domain show a shift of effort towards earlier phases. Similarly, system 
simulation as a means for early verification was successfully integrated 
and employed in cases studies, in particular in the automotive and energy 
domain.  

Address safety, standard compliance, and certifiability: Within 
the automotive, avionics, and healthcare domains in particular (cf. 
Chapters 12 through 14), the topics of safety, standard compliance, and 
certifiability are highly relevant. Therefore, these topics were also 
addressed in the case studies, e.g., a case study in the automotive domain 
demonstrated that the logical architecture can be automatically 
transformed into AUTOSAR application components and can be 
transferred to AUTOSAR basic software configurations. 

In the avionics domain, it was found that the concept for the 
integration of safety cases as argumentation support for the certification 
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authority showed a potential towards automated certification of safety-
critical systems. 

The integrated design and safety modeling showed that systems and 
software engineers can work seamlessly on the same model. 

Transferability of the results across domains: As can be seen from 
previous chapters, different aspects of the SPES modeling framework 
were evaluated in different domains. For example, the automotive 
domain – among other things – focused on functional correctness and 
completeness in early phases as well as traceability (see Chapter 12), 
while the avionics domain focused on safety and verification (see 
Chapter 13). The results indicate that the transfer across all domains is 
possible in principle, but required adaptations according to the 
characteristics and challenges of the specific domains, e.g., in the 
automation domain to cope with different modeling languages of 
engineering disciplines involved, in the automotive domain to manage 
variants, and in the avionics domain to address safety and certification. 

Open topics and future work: To provide decision-makers with 
even better guidance regarding the benefits or shortcomings of the SPES 
modeling framework, additional information, in particular, business-
relevant aspects such as the costs and efficiency of methods, should be 
gathered by systematic empirical evaluation. However, this would 
require access to historical project data, serving as a baseline, and a set of 
real projects in which the SPES modeling framework is applied. The 
results of these projects would then be compared against the baseline. 
The data is hard to obtain due to confidentiality constraints. Furthermore, 
access to real projects often proved to be difficult due to the scheduling 
and alignment restrictions of those projects. 

16.3 Relevance of Model-Driven Development 
To investigate the relevance of model-driven development (MDD), a 
survey was conducted [Lampasona 2012]. The questionnaire consisted of 
87 items and was divided into six parts, including demographics, 
importance of MDD today, importance of MDD in the future, and 
expectations of MDD. The survey was designed taking into account two 
specific groups: participants from industry (both development staff as 
well as executive positions were included) and from academia, and 127 
people were invited to participate. Of those, 64 answered the 
questionnaire. 

The results show that MDD is more important in contemporary 
software engineering research than for current business objectives. For 
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managerial staff, on average, MDD is equally important in both research 
and business. However, a vast majority agreed that the future of software 
engineering lies in MDD. In this case, half of the business executives 
strongly agreed, others agreeing mostly or answering neutrally on this 
issue. 

Furthermore, we asked participants to judge the extent to which they 
expect different properties from MDD. As can be seen from Fig. 16-3, 
improving quality and reuse, complexity management, and reduced 
development costs are the issues that both researchers as well as 
practitioners expect the most benefit from by using MDD. 

Finally, we asked an open question about the expectations of 
participants with regard to MDD. Out of 185 responses, the most 
frequently mentioned points were: improved validation and verification 
(19 responses), shorter development times (19), increased automation 
(15), better quality (16), and reduced costs (11). 

In summary, we can say that model-based development is not only 
economically relevant, but is also expected to introduce major benefits 
for both industry and academia. In the SPES 2020 project, we have laid 
the foundation for successful model-based engineering of embedded 
systems, but there is still much to be done. 

 
Fig. 16-3 Expectations from MDD of practitioners and academics 
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16.4 Summary 
The predominantly positive results from the individual evaluations 
indicate that the SPES modeling framework and its inherent models 
address the industry challenges. Furthermore, the case studies in the 
application domains showed that the SPES modeling framework and 
models are adaptable to and applicable within the application domains. 
The SPES modeling framework, with its abstraction layers and 
viewpoints, helped to close existing gaps in systems and software 
modeling practice by providing, e.g., a better understanding of how to 
refine and to decompose complex systems and how to describe the 
relationship between artifacts created. These results are underlined by 
results from a survey that show that MDD is becoming more and more 
relevant. However, questions regarding the approach’s cost-efficiency 
and impact on the development schedule have to be answered by future 
empirical studies. 

16.5 References 
[Lampasona 2012] C. Lampasona: Umfrage SPES 2020: Relevanz, Zukunft und 

Stellenwert modellbasierter Softwareentwicklung. Project Deliverable of SPES 2020. 
Available at spes2020.informatik.tu-muenchen.de/results/ZP-AP6.D6.2.B1 MDD 
Umfrage_final.pdf  

[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl. Industry needs and research 
directions in requirements engineering for embedded systems. In: Requirements 
Engineering Journal, Vol. 17, No.1, 2012, pp. 57-78. 

16.6 Acknowledgements 
We specifically acknowledge the contributions of Marcus Ciolkowski, 
who led the evaluation work in SPES 2020 until the end of May 2011. 
Special thanks go also to Sabine Nunnenmacher for her contributions in 
planning and conducting empirical studies and surveys in the first two 
years of SPES 2020. Last but not least, we also want to thank Sarah 
Tichy for her support in the statistical analyses of data obtained from the 
studies conducted, and Bastian Tenbergen for valuable comments and 
never-ending patience. 

 

Positive results from 
individual evaluations: 
SPES approach and 
adaptable and 
applicable models 



 

Part IV 
 
 

Impact of the SPES 
Modeling Framework 



 

Peter Heidl 
Jens Höfflinger 
Harald Hönninger 
Bastian Tenbergen 

 17
 

Lessons Learned 

The purpose of this chapter is to offer a view on the lessons learned from developing and 
applying the SPES modeling framework. The lessons learned show that the SPES modeling 
framework is well-aligned with regard to the industry challenges. In addition, results show 
that the SPES modeling framework has the potential to provide a stable foundation for the 
further evolution of model-based approaches for embedded system development. 
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As proposed in Chapter 2, the engineering of modern embedded systems 
is becoming increasingly challenging due to a steady increase in demand 
for more innovations in shorter time to market as well as overall cost 
pressure. Current development approaches for the engineering of 
software-intensive embedded systems are ill-equipped to meet these high 
demands. Consequently, novel development paradigms are necessary that 
meet individual demands of the embedded systems world. Therefore, we 
developed and evaluated the SPES modeling framework as a potential 
solution to the challenges arising in embedded system development. The 
project was a success, as challenges such as complexity management, 
which was previously thought of as an insurmountable obstacle, is now 
one of the core SPES principles and has become an indispensable tool for 
profitable engineering of embedded systems. 

The SPES modeling framework is a milestone for the model-based 
development of embedded software in the industry. The most striking 
factors that contributed to the success of the SPES modeling framework 
can be summarized as the following lessons learned: 

 The multitude of systems gives rise to a multitude of engineering 
challenges. 

 Model-based software development is increasingly important. 
 Integrated development is essential for the engineering of embedded 

systems.  
 Interdisciplinary knowledge networks foster innovation. 
 We have achieved a lot — but a lot more still remains to be 

achieved. 

In the following sections, we will give a short discussion of each lesson 
learned. 

17.1 The multitude of systems gives rise to a 
multitude of engineering challenges 

The term embedded system appears to describe a relatively clear-cut type 
of system. However, on closer inspection, it becomes obvious that 
embedded systems are more likely to be a class of systems that comprise 
technical as well as nontechnical aspects, such as business model, 
product properties, problem classes they address, context conditions they 
may encounter, etc. In other words, the term embedded system may 
describe a system that has multiple systems embedded within itself, such 
as a cockpit in the avionics domain or a rolling mill in the automation 
domain. On the other hand, the term embedded system may also refer to a 
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system that is embedded within an environment of other systems, such as 
an engine control unit in the automotive domain.  

In addition, dominant product properties may vary in aspects such as 
criticality, safety, variability, real-time constraints, etc. The problem 
classes embedded systems are meant to address may include continuous 
closed-loop control tasks, data-centric computing problems, or user-
centered interactions.  

These aspects lead to different processes in the engineering of such 
systems and result in vastly different architectures and solution 
approaches. However, there are also some commonalities that may be 
regarded as conceptual building blocks for specialized development 
concepts. Some of these building blocks have been translated into SPES 
principles and were addressed in Part II and Part III of this book. 

17.2 Model-based software development is 
increasingly important 

Embedded systems development is a lucrative business with total 
revenues ranging to billions of euros. The number of embedded systems 
in the world is steadily increasing as these systems have become an 
integral part of our daily lives. For example, vehicle systems that were 
previously entirely mechanical, such as the braking system, are more and 
more often being implemented by electronic means using embedded 
systems [Volpato 2004]. Furthermore, due to the increasing 
interoperability of functions and features, system complexity is steadily 
increasing. 

In order to remain profitable, development of such systems must be 
cost-efficient, deal with increasing system complexity and increasing 
quality demands, and do so in short time to market. However, when 
faced with the challenges of modern embedded system development, 
traditional development methods are lacking with regard to these aspects. 
In particular, meeting high quality demands is impaired by the increased 
product complexity. 

Therefore, novel development paradigms must be established in the 
industry. One such paradigm is model-based software development: it 
promises increased productivity and therefore faster time to market, 
increased quality due to constructive consistency, and improved 
manageability of system complexity through abstraction. It is therefore 
reasonable to conclude that model-based software development is a core 
technology for the development of embedded systems.  

Increasing volume of 
embedded systems 
drives need for cost-
efficiency 
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As part of the SPES 2020 project, a survey was conducted (see Section 
16.3) to characterize the significance of model-driven development 
(MDD). The results indicate that model-based development is not only 
economically relevant, but is also expected to introduce major benefits 
for both industry and academia. In the SPES 2020 project, we have laid 
the foundation for successful model-based engineering of embedded 
systems; however, there is still much to be done. 

17.3 Integrated development is essential for the 
engineering of embedded systems 

Model-based development promises many benefits for the engineering of 
embedded systems. However, continuous development by means of 
integration of various engineering activities still remains essential. This 
means that artifacts must be continuously elicited, documented, modified 
and refined, starting during requirements engineering, via the modeling 
of system functions to their final deployment on the embedded system, 
across many layers of abstraction from system to subsystem to 
component. In addition, these development artifacts must be shared with 
other facets of development, such as safety and security engineering, 
mechanical engineering, etc.  

The SPES modeling framework provides a basis for such 
development continuity, as described in Chapter 3. Initial evaluations 
show promising results (see Chapters 11 through 16), but also show that 
tailoring of the SPES modeling framework is necessary in almost every 
development context. Therefore, more evaluations and additional case 
studies must be conducted in order to give a better picture of when 
tailoring is necessary and how the engineering process can be guided 
such that the utmost benefit of model-based engineering can be gained. 

17.4 Interdisciplinary knowledge networks 
foster innovation 

As shown in Section 17.1, a multitude of different types of embedded 
systems causes new and intriguing challenges for development and 
fascinating avenues for research. These challenges and research avenues 
cannot be tackled in solitude. Instead, interdisciplinary networks of 
partners that ordinarily compete on the international market within and 
across application domains allow sharing of different perspectives and 
insights into the state of practice in engineering of embedded systems. 
Working in close cooperation with research institutes across Germany 
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and the world fosters innovation in research, quick knowledge transfer 
from research to industry, and enables evaluation of research results in 
industrial settings.  

17.5 We have achieved a lot — but a lot more 
still remains to be achieved 

In spite of the significant innovations of the SPES 2020 project, there are 
a number of areas that remain to be addressed. Some of these can be 
summarized as follows: 

 Engineering process prerequisites: We have seen that tailoring of 
the SPES modeling framework is necessary in most development 
contexts. As tailoring was mostly driven by the individual properties 
of the respective application domain, the SPES modeling framework 
has been tailored in quite different ways (cf. the tailoring in the 
automotive domain vs. the tailoring in the energy domain). 
Therefore, a systematic investigation of different development 
contexts and engineering processes must be conducted to gain 
insight into what prerequisites must exist in a development scenario 
in order for the SPES modeling framework to be applicable. 

 Variability, deployment, reuse, and other qualities: While functional 
aspects and real-time and safety concerns have been considered in 
the SPES modeling framework, many more system qualities remain. 
For example, variability has not been investigated during the 
development of the SPES modeling framework, yet plays a major 
role in the engineering of embedded systems (as can be seen, in part, 
in Chapter 12.3.3). Therefore, additional research should focus on 
extending the SPES modeling framework so that these quality 
aspects are considered as well. 

 Engineering artifact quality: While the SPES modeling framework 
allows for the development of engineering artifacts that can be used 
in coordination with different development activities (such as 
behavior models in the requirements viewpoint and the functional 
viewpoint), some issues remain with regard to quality assurance. 
How can engineering artifacts be validated as early in the 
development process as possible? In particular, validation must also 
be done with regard to quality aspects, such as real-time, safety, 
variability, or deployment. 

 Modular safety assurance: As explained throughout this book, many 
application domains are governed by strict safety and security 
guidelines and standards. Although the SPES modeling framework 

Future work 
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aims at bridging the gap between safety and security engineering and 
other engineering activities, one open question is how to 
constructively ensure, during engineering, that important standards 
and guidelines are fulfilled. Also, since many development projects 
extend existing systems by introducing some new feature or altering 
the existing system, further research must be dedicated to reducing 
the re-certification overhead, e.g., by certifying parts of the system 
and only having to re-certify those parts that have been modified. 

17.6 Summary 
The innovation alliance SPES 2020 has laid a solid foundation for the 
engineering of software-intensive embedded systems. An SPES 
modeling framework has been developed that is based on five principles 
that meet the requirements of the application domains as established in 
Chapter 2. The SPES modeling framework has been evaluated in the 
different application domains. Results show that while the SPES 
modeling framework meets the basic needs of industrial development, 
tailoring is necessary in most development contexts. Also, there are a 
number of research areas that have not been addressed by the SPES 2020 
project, yet are important for the engineering of embedded systems: How 
can qualities such as variability, modular safety assurance, or optimal 
deployment be considered during system development? How can 
engineering artifacts be validated as early as possible in the development 
process? What prerequisites must a development process fulfill in order 
to be able to apply the SPES modeling framework with minimal 
tailoring? These are all questions that future work must address. 

During the SPES 2020 project, we learned that these research 
questions must be answered in a collaborative way by making use of 
multiple perspectives from both academia and industry representatives 
from various domains. Only thus can research take account of the wide 
variety of different types of embedded systems, their roles, 
responsibilities, and the application contexts for which they are designed. 
Future work must also be spent on continuing the development of 
continuous, model-based engineering approaches, as these are promising 
approaches to surmounting the obstacles posed by steadily increasing 
cost pressure, increasing complexity, and the demand for high product 
quality in the engineering of embedded systems.  
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Outlook 

This chapter summarizes the project and briefly outlines the project contributions. In 
addition, it provides insights into open challenges in the engineering of software-intensive 
embedded systems that have been triggered by the efforts undertaken in the SPES 2020 
project. The chapter outlines the impact of these challenges on future research.  
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A major goal of the Federal Ministry of Education and Research (BMBF) 
is to support specific research endeavors in which academia and industry 
join forces to address challenges in the field and to provide a solid 
foundation for the engineering of software-intensive embedded systems 
in the future. The BMBF thereby ensures that Germany remains a 
significant location for high-tech industries. The SPES 2020 project has 
substantially contributed to achieving this goal. 

SPES 2020 has established a fundamental modeling approach and has 
investigated in a number of issues comprising key concepts for advanced 
modeling of embedded systems. SPES 2020 has created a seamless 
development framework for the model-based engineering of embedded 
systems — this framework integrates and consolidates different existing 
approaches. The SPES 2020 modeling framework is defined based on 
three core concepts: 

 Viewpoints: The SPES 2020 modeling framework distinguishes 
between four viewpoints: the requirements viewpoint defines the 
concepts and techniques for the systematic elicitation and 
specification of requirements; the functional viewpoint defines the 
concepts and techniques required to specify and model the system 
functions and their relationships; the logical viewpoint defines 
concepts and techniques required to decompose the system function 
into a system architecture of logical components; the technical 
viewpoint defines the concepts and techniques required to detail the 
logical architecture into a physical architecture that, amongst other 
things, specifies the hardware components of the system and the 
deployment of the software on those components. 

 Abstraction layers: The SPES 2020 modeling framework explicitly 
defines abstraction layers to facilitate the definition of the embedded 
system at different levels of granularity. The concrete abstraction 
layers chosen for a particular system depend, amongst other things, 
on the application domain. 

 Seamless modeling of crosscutting properties: In addition to the 
viewpoints and abstraction layers, the SPES 2020 modeling 
framework defines concepts and techniques for the seamless 
modeling of crosscutting system properties such as safety or real-
time behavior. 

To validate the framework, SPES 2020 has conducted extensive 
evaluation activities by means of case studies and experiments in five 
application domains. The evaluation clearly indicates that the SPES 
modeling framework is applicable in a wide variety of application 
domains and development settings, substantially supports the interplay of 



18 Outlook 253 

different engineering disciplines such as software development and 
mechatronics, and is well suited for the systematic engineering of 
complex safety-critical embedded systems.  

In fact, by developing the SPES 2020 modeling framework and 
evaluating it in five diverse application domains (automation, 
automotive, avionics, energy, and healthcare), the SPES 2020 project has 
delivered an elaborated methodology that supports the systematic, 
integrated, and seamless engineering and operation of software-intensive 
embedded systems. Thus, SPES 2020 has established a firm basis for the 
model-based development of embedded systems. 

Nevertheless, there are still open challenges in the area of engineering 
and operating embedded systems that go far beyond the work and scope 
of SPES 2020. These challenges pertain to the current state of practice 
and are triggered by a number of key requirements in the field. Examples 
are: 

 Long-term system evolution: SPES 2020 was very much focused on 
model-based forward engineering of embedded systems. A key 
challenge of embedded systems today is that they are in operation 
and under further development for a long period of time, frequently 
spanning decades. Managing the evolution of such systems is thus an 
essential issue, as changes in the context of the system during its 
operation must be anticipated and considered systematically during 
the system lifetime. The SPES modeling framework already ensures 
a systematic consideration of the system’s context and thus also 
supports system evolution. However, in order to support the 
evolution of embedded systems adequately, the SPES 2020 modeling 
framework has to be extended by concepts for defining context 
adaptability and context sensitivity. Another open issue is the 
adequate support for the step-by-step migration from today’s legacy 
processes for the development of embedded systems to a systematic, 
model-based long-term software and system evolution process. 

 Variability management: In many cases, individual systems or 
networks of systems are developed that comprise a large set of 
similar functionality and that share similar architectures and 
implementations. Providing a clear separation between common and 
system-specific parts in the engineering of embedded systems will 
leverage a large potential for saving development costs and time, as 
well as increasing quality. It is quite obvious that modeling 
techniques used in product line engineering are very well suited to 
supporting the engineering of product and system families. However, 
the increasing complexity of embedded systems and networks of 
systems poses additional challenges for managing the variability of 
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such systems. Open issues include the integration of variation points 
into a comprehensive system modeling framework and the resource-
efficient management of different variants of embedded systems, 
components, and networks of systems. 

 Cyber-physical systems: Today and more so in the future, embedded 
systems will form networks of interacting elements that feature a 
tight combination and coordination of the system’s computational 
and physical parts, i.e., a tight relation between the digital and 
physical worlds. One open question is how to capture the nature and 
the interaction between the physical systems’ context and the digital 
nature of embedded software systems in the development process. 
Another big challenge is the question of how to put embedded 
systems into a manageable relationship to global networks such as 
the Internet. In the past, embedded systems were typically closed 
systems with a static architecture, statically fixed sets of functions, 
and clearly defined static interfaces to their context. When embedded 
systems are connected to the Internet, those characteristics change. 
This creates various research challenges such as the challenge of 
dynamic system models, hybrid system models, dynamic interface 
models, and dynamic models of the architecture that address these 
different characteristics of systems and system parts, together with 
certain quality requirements such as safety and security. While SPES 
2020 laid a foundation for addressing these challenges, further 
research is required to extend the SPES modeling framework with 
concepts and techniques that provide solutions for these challenges. 

Overall, many scientific and practical engineering challenges remain to 
be solved. Hence, significant research effort is still required. Moreover, 
dedicated effort is required to ensure that the techniques and methods 
developed can be easily deployed to and adopted by industries. In order 
to support industrial uptake, process descriptions and guidance for 
system engineers that can be easily adapted to the specific requirements 
of the individual development processes have to be developed.  

In addition, future research for embedded systems has to be strongly 
related to the sociological and to the economic contexts of embedded 
systems, as most technical devices will be mutually connected, enhanced 
by embedded software, and connected to the cloud. Issues of man-
machine interaction and advanced assistance will become dominant. 
Systems will be ubiquitous, pervasive, and globally connected. Only if 
the engineers are able to construct such systems with a proven 
correctness, high reliability, and usability such systems will positively 
enhance our reality, and make our life easier, richer, safer, and more 
secure. 
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A 
Abstraction layer 

An abstraction layer defines a specific level 
of abstraction and granularity at which the 
System under Development (SUD( )) is 
examined. The level of granularity of the 
respective abstraction layer is in turn 
determined by a structural characteristic 
that stems from the layer above. Initially, 
we consider the system as a whole. 

D 
Decomposition 

Decomposition denotes the partitioning of 
an analysis element or design element 
(e.g., of a goal, a function( ), or a 
logical/technical component( )) into parts.  

Diagram 
A diagram is a graphical representation of a 
model or of a part of a model as part of a 
specific modeling language.  

F 
Function 

A function is a projection of the behavior of 
the entire system (when seen as a black 
box) resulting in a relation between inputs 
and outputs with regard to a specific usage 
purpose. 

Functional viewpoint  
The functional viewpoint( ) is a structured 
description of the functions( ) that are to be 
realized along with their interfaces, 
interactions, and dependencies. The 
functional viewpoint imposes a structure 
onto the functional requirements of the 
SUD( ). This viewpoint provides different 
model types that can be used for organizing 
hierarchies of system functions and the 
behavior of the system functions at the 
interfaces as well as their state space. 

L 
Logical component 

A logical component is the result of a 
logical decomposition of a system into the 
internal logical structure of the SUD. It 
encapsulates a specific behavior that 
contributes to the realization of one or more 
functions( ) of the SUD( ). A logical 

component has a well-defined interface. A 
logical component may be decomposed 
into further logical components. 

Logical viewpoint 
The logical viewpoint is a structured 
description of how to organize the 
realization of the functions( ) by means of 
logical components( ) that are connected 
with one another. This viewpoint provides 
different model types that can be used for 
documenting the logical component 
architecture of a system, the behavior of 
the logical components at the interfaces, 
and their state space. 

M 
Mapping (between views( )/between 
abstraction layers( ))  

A mapping between views is a relationship 
between two models representing the 
views. A mapping can exist between 
models of different viewpoints( ) or 
between models of the same view, but on 
adjacent abstraction layers( ).  

Model 
A model is an abstract representation of an 
existing reality or a reality to be created. 
Every model is created for a specific 
purpose of use. 

R 
Refinement 

Refinement refers to the process of 
detailing an analysis or design element 
while preserving its semantics. 

Requirement 
A requirement is: 

1. A need perceived by a stakeholder 
2. A capability or property that a system 

shall have 
3. A documented representation of a need, 

capability, or property 
[IREB 2011] 

Requirements viewpoint 
The requirements viewpoint is a structured 
description of how to document/specify the 
requirements of a system. This viewpoint 
provides different model types that can be 
used for documenting the system 
context( ), system goals, system scenarios, 
and solution-oriented requirements. 
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S 
(Operational) System context 

The context of the SUD( ) is the part of its 
environment that has an operational 
relationship to it during the execution of the 
system. 

System under development (SUD) 
The system under development is the 
subject that is being developed. Within the 
scope of the SPES engineering approach, 
the SUD refers to a software system. 

T 
Technical component  

A technical component is a means for 
describing the technical structure of the 
SUD. It characterizes a technical resource 
that is available in the system and 
implements one or more logical 
components( ) fully or in part.  

Technical viewpoint 
The technical viewpoint is a structured 
description of how to organize the 
realization of logical components( ) by 
means of technical components( ). The 
technical components may be related to 
each other. This viewpoint comprises 
different model types that can be used for 
documenting the hardware, tasks, and 
schedulers as well as the communication. 

V 
Validation 

Validation refers to the activity of checking 
whether the requirements capture the 
stakeholder’s needs and fulfill defined 
quality criteria. The goal is to assess 
whether a system that satisfies its defined 
requirements would fulfill its intended 
purpose. Hence, validation aims at 
answering the question: “Am I building the 
correct system?” [Boehm 1984] 

Verification 
Verification refers to the activity of checking 
whether a development artifact (e.g., the 
finalized SUD) satisfies the specified 
requirements. Hence, verification aims at 
answering the question: “Am I building the 
system correctly?” [Boehm 1984] 

View  
A view is a representation of a whole SUD 
from the perspective of a related set of 
concerns (based on [IEEE1471]). 

Viewpoint 
A viewpoint is a specification of the 
conventions for constructing and using a 
view( ). Viewpoints comprise patterns or 
templates from which to develop individual 
views( ) by establishing the purpose and 
audience for a view( ) and the techniques 
for its creation and analysis (based on 
[IEEE1471]). 
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Co-operation 
The innovation alliance focused on a strong interaction between science and practice in 
order to make good progress in the engineering challenges, to verify the approaches, and to 
transfer the results to engineering methods that are viable in practice. This target was 
supported by the following: 

 Significant application projects from five application areas showing high dynamics 
and with high economic relevance 

 Installation of a central project that interacted with the application projects and 
provided the necessary methods and tools 

 Installation validation work packages in which the results were evaluated using 
scientific taxonomy 

The structure between the different locations in Germany allowed for the inclusion of key 
resources into the innovation alliance. The close co-operation between the industrial 
partners and the universities/Fraunhofer institutes has ensured that the results could be 
evaluated with respect to practical and market-feasible solutions. 

Project structure 
As stated above, SPES 2020 was structured as a central project and five application 
projects. The application projects correspond to the SPES 2020 domains automation, 
automotive, avionics, energy, and healthcare.  

The central project itself was divided into work packages one to six. Packages two to 
five deal with the following topics: 

 Model-based requirements engineering 
 Model-based architecture design 
 Proof of safety, certification, and quality assurance of nonfunctional requirements 
 Modeling of parallel real-time processes and verification of the real-time behavior 

The foundation was laid in work package one, which developed a methodology for a 
comprehensive and integrated model-based development. In work package six, the focus 
was on the empirical evaluation of the methods. 
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Fig. C SPES 2020 project structure 

The interplay between the work packages of the central project and the application projects 
was assured by a strong orientation on case studies from the application domains. 
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272 Members of the Innovation Alliance 

Airbus Deutschland GmbH 
Airbus Deutschland GmbH is one of the world’s largest manufacturers for civil aircraft 
seating more than 100 passengers and Europe’s largest industrial undertaking. With some 
$11 billion in annual revenues, it has won approximately 50% of all orders for jet-powered 
transport airplanes in recent years. Airbus Deutschland GmbH, the civil aircraft business 
affiliate of Airbus S.A.S. – Toulouse, is one of the major aerospace companies in Europe. 
The company is engaged in the development and manufacture of advanced high-
performance commercial transport aircraft and is recognized for its technological expertise 
in nearly all fields of aeronautical engineering. The workforce of Airbus Deutschland 
currently amounts to approx. 18,500 employees. Research and technology development 
capabilities of Airbus Deutschland GmbH cover all aspects of aircraft design and 
optimization, airframe and systems development, and engine integration. For systems 
integration, IMA (Integrated Modular Avionics), Airbus D has experience in integration of 
cabin systems through the A380 and will apply and improve this technology in future. 

For the SPES 2020 project, Airbus provided a showcase development scenario 
(architectural framework) from the aircraft systems area as a deployment example for the 
SPES 2020 development platform. Modeling languages for system requirements were 
analyzed and checked for integrity characteristics. The requirements for a development 
platform were formulated from an avionics point of view and the resulting process  
analyzed. The avionics example scenario was implemented on the development platform 
and evaluated with respect to processes and tools available at Airbus. Results were 
validated and potential for improvement delivered by the platform analyzed for future 
industrial deployment. 

Berlin Heart GmbH 
Berlin Heart GmbH is the only company worldwide developing, manufacturing, and 
selling internal and external heart support systems for patients of all ages and all body 
heights. 

These systems support patients with major cardiac insufficiency. As life-sustaining 
systems, these are medical products in the highest risk level (level III). All components for 
control and monitoring based on embedded control systems are implemented as safety-
critical components. Therefore, especially high standards with regard to requirements 
management, development, implementation, testing, production, and certification apply. 

The Berlin Heart products INCOR® und EXCOR® are market leaders in their 
respective segments in Germany and in Europe. Employing over 180 people, and doubling 
revenue to €22 million within three years in 2007, the company has an outstanding 
performance. 
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Cassidian (EADS-Deutschland GmbH Defence Electronics) 
Cassidian (http://www.cassidian.com) is a global leader in aerospace, defense, and related 
services. In 2007, EADS generated revenues of €39.1 billion and employed a workforce of 
approximately 116,000. The group includes the aircraft manufacturer Airbus, the world's 
largest helicopter supplier Eurocopter, and EADS Astrium, the European leader in space 
programs from Ariane to Galileo. Its Defence & Security Division is a provider of 
comprehensive systems solutions and makes EADS the major partner in the Eurofighter 
consortium, as well as a stakeholder in the missile systems provider MBDA. EADS also 
develops the A400M through its Military Transport Aircraft Division. 

The Cassidian group encompasses inter alia the business unit Defence Electronics 
(EADS-DE). The high technological competence and experience is founded on a long 
tradition of famous pioneering companies, mainly in Germany and France. As the sensors, 
avionics, and electronic warfare house of EADS, Defence Electronics unites advanced 
sensor and electronic technologies for all types of platforms—manned and unmanned 
aircraft, helicopters, satellites, vehicles, ships—and provides them with components and 
subsystems based on the latest radar, electronic, and software technologies. Recent 
activities covered special equipment on board the A380, demanding electronic systems 
with different safety levels. Current developments include several computer and 
communication systems on board new aircraft subject to highest civil certification levels 
following RTCA/DO 178B level A to C and the corresponding DO 254. 

Furthermore, Defence Electronics develops and manufactures mission avionics and 
self-protection systems, which are mostly established in international co-operations and 
multinational projects. 

Cassidian brings the competency of developing complex, performance- and safety-
critical embedded systems to the project. This competency results from the product 
portfolio that covers embedded systems aircraft, shipping, and ground systems. In SPES 
2020, Cassidian concentrated on safety, certification, and quality, as well as real-time and 
multicore architectures, bringing in its expertise from actual and completed projects. 
Leading the avionics application project, Cassidian cooperated closely with its partners 
Airbus, EADS-IW, and Liebherr Aerospace, supporting the academic partners in the 
avionics subproject.  

In addition, researchers from Cassidian were members of the project architecture team. 

EADS-Deutschland GmbH Innovation Works (EADS-IW) 
EADS Innovation Works (IW) is the corporate research facility of EADS with operations 
in France, Germany, Spain, UK, Singapore, and Russia. Its overall workforce comprises 
more than 700 researchers. EADS-IW covers all the skills and technology fields that are of 
critical importance to EADS. It is an operational and strategic entity for EADS business 
units for value-creating products and services through innovative technologies. It feeds the 
innovation pipeline from the emergence of new technologies to their maturity and transfer 

http://www.cassidian.com
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into products. EADS-IW, in its endeavor to maximize the innovation potential of EADS, 
actively operates a worldwide network with world-class universities, schools, and research 
institutes. In its legal structure, EADS-IW is part of the national entities of EADS. 

The German part of EADS Innovation Works in Ottobrunn (near Munich) and 
Hamburg employs a permanent staff of 220 people, 70% of which are senior scientists. 
Legally, it is an organizational unit within EADS-Deutschland GmbH, the German 
subsidiary of EADS N.V. 

In SPES 2020, EADS-IW focused on transforming the scientific research results into 
practical innovations. Working closely together with its partners (e.g., Cassidian and 
Airbus), EADS-IW defined case studies in SPES 2020 and identified problem areas that 
partners in the central project worked on . EADS-IW was also engaged in the central 
project, preparing concrete deliverables, together with its partners, covering topics such as 
modeling framework, requirements modeling and validation, design verification and 
formal analysis, as well as technology platform. 

EADS-IW had the role of coordinating the industry partners in ZP-AP 3, offering a 
strong background in systems and software engineering, engineering frameworks, and 
from other sponsored projects such as VIVACE (Aeronautic) and SPEEDS (Information 
Technology). 

Embedded4You e.V. 
Embedded4You offers integrated solutions for embedded systems in industry automation 
that set the standards for the future by leveraging the individual competencies of its 
members. The member companies Afra, aicas, Coming, Elma Trenew, Euro Systems, FH 
München, Fortiss, FTI Group, ISyst, Kölsch & Altmann, Microsys, N.A.T., IMACS, 
Protos Software GmbH, RST Industrie Automation, sepp.med, Tieto embedded Systems, 
and XiSys bundle their individual technologies, products, services, and competencies into 
a comprehensive total package for automation challenges. Through dedicated project 
leadership, customers get their complete solution from one source.  

Embedded4You system solutions, starting with design, via product and go to market, 
through to life cycle management, enhance the competitiveness of customers with their 
openness and flexibility. The following members were active in the SPES project: 

Elma Electronic GmbH is a global manufacturer of electronic packaging products for 
the embedded systems market — from components, storage boards, back-planes, and 
chassis platforms to fully integrated subsystems. The company has a broad base of proven 
standard products that can be tailored to individual applications, from initial concept to 
volume production. Elma’s reliable solutions, flexibility, and design expertise make Elma 
a reliable partner for leading electronics companies in the world. 

The FTI Group success story began with FTI (Flight Test Instrumentation) — the 
development of test systems. The company is now one of the largest engineering services 
providers and system developers in the aerospace region Berlin-Brandenburg, specializing 
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in system solutions for aviation. Development, design, and consulting in the high-tech 
industry and energy sector complete the portfolio. 

IMACS GmbH develops and produces instrumentation, control, and automation 
systems for various industries. Whether single components or complete embedded 
systems, the solutions are always individual and flexible. In addition, IMACS offers 
radCASE, a model-based software development system that allows for the comprehensive 
development of technical software, including code generation. 

MicroSys Electronics GmbH, located in Sauerlach close to Munich, designs and 
develops embedded system solutions, for example, VMEbus, CompactPCI, and other 
common bus infrastructures. From the very beginning in 1975, customized solutions 
offering longevity have been a strong part of MicroSys business as well. Successfully 
deployed products span from computer-on-modules up to fully integrated systems. The 
miriac™ Modules utilize 32-bit processors such as Freescale Power Architecture, QorIQ-
CPUs, Intel MultiCore CPUs, DaVinci ™ Video Processors, FPGAs, and DSP-Designs. 
With their low power consumption and the compact dimensions of a credit card, the 
miriac™ CPU modules fit into any application in automotive, industrial automation, 
medical, railways and transportation, construction, and defense market segments. 

Operating systems such as VxWorks, Microware OS-9, Micrium μC/OS, QNX, and 
Linux or WinCE are supported. Furthermore, MicroSys acts as a sales and support partner 
in Europe for RadiSys Microware ® OS-9 Real Time Operating System. 

Operating system integration and adaptations of communication infrastructures such as 
CAN, EtherCAT, ProfiNET for industrial, defense, avionics, and medical solutions are an 
integral part of the business as well. 

N.A.T. (Gesellschaft für Netzwerk und Automatisierungs-technologie mbH) is the 
expert in manufacturing high-performance connectivity products for data and 
telecommunication solutions. The product portfolio is dedicated to the embedded market, 
covering requirements from local area networks (LAN) up to wide area networks (WAN). 
The products include standard interface modules for local and wide area networks based on 
common hardware standards such as AMC, MicroTCA, VME, compact PCI, PMC, PCI, 
and others. N.A.T. embedded platforms are complemented by own, sophisticated protocol 
stack solutions such as ISDN, SS7, ATM, or TCP/IP adapted to common real-time 
operating systems to build an optimal solution. 

RST Automation GmbH builds embedded systems and applications with a focus in 
industry automation for reliable real-time requirements. The products and solutions are 
open for easy integration of existing and new technologies. Based on the model-oriented 
approach of the middleware “Gamma,” which can be seen as a type of “software plug,” it 
is possible to describe and integrate virtually any hardware and software configuration. 
The middleware is used to integrate hardware and software into one common platform. 
Within Embedded4You, the middleware is the main strategy for integrating custom-
specific efforts into one homogenous platform.  

XiSys Software GmbH manufactures the tool XiBase9, a well-structured and portable 
graphic platform that has been specifically developed for the embedded and real-time 



276 Members of the Innovation Alliance 

environment. Highlights of the software are its efficient resource usage, multilanguage 
support (Unicode, language switch at runtime), and the extensive protocol and debug 
mechanisms. The software is operating system-independent (Windows 2000, XP, Vista, 
Linux, OS-9, x86, PowerPC, SH, ARM, XSCALE, 68k) and can be connected to the 
Gamma middleware without programming.  

Taking its role as a supplier of specialized solutions, Embedded4You’s goals in SPES 
were professionalization of the interdomain production process by focusing on basic, 
interapplication approaches to leverage the potential of embedded systems and to master 
their complexity. The work focused on the development of an open platform that integrates 
and standardizes various key competencies in hardware and software products. 

Hella KGaA Hueck & Co. 
The automotive supplier Hella KGaA Hueck & Co., Lippstadt, develops and manufactures 
lighting technology and electronic components and systems for the automotive industry. In 
addition, joint venture companies produce complete car modules such as air conditioning 
systems and on-board electrical systems. Hella owns one of the worldwide largest sales 
organizations for car parts and accessories, with own sales businesses and partner 
organizations in more than 100 countries. The Hella group has revenues of €3.7 billion.  

Hella is among the top 50 international automotive suppliers and among the top 100 
largest companies in Germany. Worldwide, more than 25,000 people work in 70 
production sites, production subsidiaries, and joint ventures in 18 countries. More than 
3000 engineers and technicians work in research and development. 

Hella’s customers include all leading vehicle and system manufacturers, as well as car 
parts businesses. In the electronics business area, but also in the growing electronic share 
of lighting technology products, Hella has built up a broad competency spectrum and deep 
experience in the development of complex mechatronic systems for the automotive 
industry. From the latest methods in model-based software development—in SPiCE-
compliant development processes using AUTOSAR standard components—numerous 
crosscutting development approaches for embedded systems in the automotive industry 
have been defined together with customers and cooperation partners. Hella’s main support 
for the project was in defining, detailing, implementing, evaluating, and optimizing 
concepts in the automotive work package, and via the definition of area-specific 
requirements, the company also supported the work of the central project. 

IT Power Consultants 
IT Power Consultants, based in Berlin, was founded in 2000 and recently changed its name 
to ITPower Solutions GmbH. Longtime experience of the founders in the area of 
embedded systems established the company’s focus on development processes for 
embedded software. 
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Motivated by experiences from customer projects, the company constantly invests in 
the improvement of the development and testing processes, especially in the area of quality 
assurance of embedded systems. 

In SPES 2020, IT Power Consultants contributed in the areas of requirements 
engineering and verification of real-time behavior in the medical systems work package, 
most notably covering the following topics: 

 Transition from architectural model to functional model of an embedded system 
 Proof of equivalence of software artifacts by back-to-back testing 
 Identification of test cases on the basis of nonfunctional requirements 
 Hardware-in-the-loop environments for testing real-time properties of embedded 

systems 

Liebherr-Aerospace Lindenberg GmbH 
The company founded in 1949 by Hans Liebherr is today a group of companies with more 
than 32,000 employees in more than 120 enterprises worldwide.  Turnover in 2010 was 
€7.5 billion. All over the world, the name Liebherr stands for a technically demanding and 
customer-oriented product and service offering. 

Liebherr-Aerospace, a worldwide respected supplier of the aviation industry, develops 
and produces complete hydraulic, mechanical, and electronic systems for cruise control, air 
conditioning, and landing gear for large and regional aircraft, helicopters, and military 
aircraft for the global market. Liebherr-Aerospace customers include Airbus, Bombardier, 
Embraer, Sukhoi, Eurocopter, and others. 

In past and current research projects, Liebherr-Aerospace Lindenberg GmbH has 
contributed to all product areas that laid the foundation for new equipment systems. In 
addition to the national Luftfahrtforschungs-Programm (LuFo I to IV), on a European 
level, the 5th, 6th, and 7th framework programs should be mentioned. The generic results 
from these projects have been transferred to national value creation potentials. 

Liebherr-Aerospace brought competencies in the areas of flight control systems and 
landing gear from pilot interface to hydraulic or electronic actuators into the SPES project. 
Special focus was on quality of requirements of complex systems — these are key for 
competitiveness. Therefore, Liebherr-Aerospace contributed to the realization of the SPES 
2020 follow-through modeling methodology, especially for the avionics domain, and to the 
investigation for validation of requirements in early development phases. As a major 
engagement, Liebherr-Aerospace has proposed an original and efficient approach to 
optimizing the deployment of functions on computer networks. Liebherr-Aerospace has 
investigated the improvement of the automation of the verification activities in accordance 
with the restrictive avionics development standards. In addition, the company produced 
proposals for the efficient use of multicore platforms for real-time and safety-critical 
applications. 

http://www.springer.com
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Robert Bosch GmbH 
Bosch is one of the largest industrial enterprises in Germany, creating revenues of €46.3 
billion (2007). In the business areas automotive engineering (61% revenue), industrial 
engineering (13% revenue), and consumer goods and building services engineering (26% 
revenues), Bosch employs approximately 271,000 employees.  

The corporate law structure of Robert Bosch GmbH ensures the corporate 
independence of the Bosch Group and enables the company’s long-term planning. The 
nonprofit Robert Bosch Foundation GmbH holds 92% of the capital shares.  

Bosch sees professional education as part of its social responsibility. Year after year, 
more than 6000 young people (of those, approximately 4400 in Germany) receive an offer 
for a high-quality training program. The Bosch Group invests approximately 7.7% of its 
revenue in research and development, with 29,000 employees. In 2007, 3280 patents were 
filed worldwide. 

At Bosch, protection of the environment is in line with corporate policy. Protection of 
the environment was formulated as a company target as early as 1973, and has the same 
significant value as product quality and profit. It is Bosch’s vision to improve quality of 
life with innovative and useful solutions. “Reliability, credibility and legality are the main 
factors of the economic success of the Bosch-Group,” said Hermann Scholl, Chairman of 
the Board. 

The central Corporate Research (CR) team works across business areas and therefore 
provides a competency network that warrants the development of innovative system 
concepts as well as the introduction of new technologies.  

Focusing necessarily on the competencies, CR/AE2 is a group responsible for the 
development of software-intensive embedded systems. It develops, integrates, and pilots 
lead applications and successfully transfers technologies, methods, processes, and tools 
necessary for the development of software-intensive systems within Bosch, thus 
warranting Bosch’s leading position in the market. The CR/AE2 group brought system 
design know-how in using cutting edge methodologies for modeling and evaluation, which 
has been developed in numerous projects, into the SPES project. Therefore, the main focus 
areas were on “seamless model-based development of heterogeneous embedded systems 
including process- and tool-integration” (ZP AP1), “structured requirements engineering” 
(ZP AP 2), “safety and certification” (ZP AP 4), and “empirical evaluation” (ZP AP 6). 
Here, Bosch provided know-how and the results have already been applied to concrete 
applications. 

In addition, researchers from Bosch were members of the project architecture team. 

RWE Energy AG 
RWE Energy, based in Dortmund, bundles the integrated sales of electrical power, gas, and 
water, as well as the network business for 12 regions in Germany and Continental Europe. 
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RWE Energy employs 28,323 people in Germany, Austria, Hungary, Slovakia, Poland, 
and the Netherlands. 

As a leading player, RWE Energy aligns itself with the requirements of 23.1 million 
customers. In Germany and wide parts of Central Europe, prosumers of RWE Energy get 
their energy and water solutions from one shop, making RWE Energy a number one 
address for all questions concerning energy and water supply, with €28.2 billion annual 
revenues.  

Annual sales of 168.3 billion kilowatt hours of electrical energy makes RWE Energy 
the number two in Germany and number three in Europe. In water supply, RWE Energy is 
the number one in Germany, selling 107 million cbm per year. Gas sales are 258 billion 
kilowatt hours annually. 

With two focal points, sales and network, RWE Energy brought deep insight from 
energy supply areas, as well as practical and theoretical knowledge of planning and 
running energy networks, into the SPES project. In addition, RWE Energy was able to 
leverage know-how from research projects and internal projects already completed and 
covering smart grids and virtual networks. 

Siemens AG 
Siemens is a global powerhouse in electronics and electrical engineering, operating in the 
fields of industry, energy, and healthcare, as well as providing infrastructure solutions, 
primarily for cities and metropolitan areas. For over 160 years, Siemens has stood for 
technological excellence, innovation, quality, reliability, and internationality. The company 
is the world's largest provider of environmental technologies. Around 40 percent of its total 
revenue stems from green products and solutions. In fiscal year 2011, revenue from 
continuing operations totaled €73.5 billion, and net income from continuing operations 
€7.0 billion. At the end of September 2011, Siemens had around 360,000 employees 
worldwide on the basis of continuing operations. The company employs some 27,800 
researchers and developers worldwide who work on innovations that secure existing 
business and open up new markets. In fiscal year 2011, Siemens invested €3,925 million in 
research and development. In the same period, the employees submitted around 8,600 
invention reports — around 40 per workday. The role of Siemens AG in the project was 
manifold: 

 Firstly, Siemens adopted the role of a developer and manufacturer of automation 
equipment including corresponding software. Siemens provides a wide spectrum of 
automation components, as well as control and management systems for the various 
industry segments (process industries, discrete industries, service industries), holding a 
worldwide number 1 position in many segments. 

 Secondly, Siemens was active in the role of a system integrator, equipment 
manufacturer, and turnkey contractor respectively. Siemens is an engineering company 
offering customer-specific facilities, plants, and automation solutions for selected 
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industry segments (e.g., automotive, building automation, electric power generation, 
transmission, distribution, metals and mining, chemical, transportation and logistics). 

 The third role of Siemens AG was that of a healthcare solution provider with key 
competencies and innovation strength in diagnostic and therapeutic technologies, as 
well as an integrated supplier of data processing solutions for the whole clinical chain. 

Together with a broad know-how in product life cycle management (PLM) software, 
Siemens covers all necessary competencies for industrial product and solution 
development using embedded systems — from product development to production design 
and engineering to generation of automation software.  

In addition, researchers from Siemens were members of the project architecture team. 

SWM Services GmbH 
SWM Services GmbH is a 100% subsidiary of Stadtwerke München GmbH (SWM), 
acting as internal service provider for services in the areas energy data, trade fair services, 
network and facility services, as well as information and process technology. 

Stadtwerke München, Munich’s municipal utilities company, is one of the largest 
energy and infrastructure companies in Germany. Over one million private households, 
SMEs, and business clients benefit from the services provided by SWM on a daily basis. 
For decades, SWM has provided energy (electricity, natural gas, district heating) for the 
Bavarian capital in a safe and environmentally benign way. Among other things, the SWM 
development push for renewable energy and the push for eco-friendly district heating are 
an example to other districts. Furthermore, SWM supplies the megacity with fresh drinking 
water from the Bavarian Voralpenland—one of the best in Europe—and with 18 indoor 
and outdoor swimming pools, SWM operates one of the most modern bathing 
environments in Germany. The MVG transport subsidiary is responsible for the subway, 
bus, and tram systems, and is therefore a significant pillar in Munich’s public transport 
network. SWM employs around 7500 staff and in the 2010 fiscal year, turnover reached 
around €3.8 billion. 

As a public utility company, SWM Services GmbH has broad experience in all supply 
areas, especially in the energy area. In addition, SWM has in-depth knowledge in model-
based system and software development, and brings first project experience in the area of 
embedded systems for smart metering and virtual power plants into the SPES project. 

Being involved in the energy application area, SWM leveraged this experience and 
actively supported the definition and validation of the application-specific requirements. 
Another focus area was the implementation and evaluation of an integrated simulation 
environment for smart grid development. The work of the central project was supported by 
the execution of practicability tasks.  
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TeCNeT GmbH 
TeCNeT, organization for TeleCooperate NeTwork Systems & Service mbH, was founded 
in 1994 as a service provider and developer of innovative products. Its main competencies 
are in the areas of information and telecommunication technology, as well as in medical 
systems and control engineering. 

TeCNeT offers a full range of services from technical consulting, to support for 
development and manufacturing, to full-service offerings from the idea to ready-to-use 
implementation of the solution. Its main strengths are flexibility, speed, and cost-
efficiency, which can be measured by the satisfaction of TeCNeT’s customers.  

Customers include: CeWe Color AG & Co. OHG, the Fraunhofer Institut für 
Fabrikautomatisierung und Fabrikbetrieb, Gesellschaft für angewandte Informatik (GfaI), 
Berlin Heart GmbH, as well as other smaller regional businesses.  

TeCNeT’s contribution to SPES 2020 comprised of leveraging the existing know-how 
for the development of embedded systems for supervision of patients and the medical 
devices necessary for maintaining their health. 

TÜV SÜD AG 
TÜV SÜD group is a future-oriented and successful service business. 13000 employees 
support more than 5 million customers (individuals, companies, and institutions) 
worldwide. 

The subsidiary TÜV SÜD Automotive GmbH is a modern service company providing 
a complete portfolio, for example, in the area of safety electronics for automotive and 
electronic industry sectors. With its competence center Electronic Safety, TÜV SÜD 
Automotive GmbH is active as an intersectoral support and test center for safety 
electronics with a main focus on functional safety and software.  

In this role, TÜV SÜD Automotive GmbH consults, tests, and certifies manufacturers 
of safety-related embedded systems. Experience from test and certification of safety-
related embedded systems (using model based technologies) was brought in into the SPES 
project. TÜV SÜD Automotive GmbH has made sure that the technologies developed will 
be testable and certifiable in accordance with international (safety) standards. 

Vector Informatik GmbH 
Vector supports manufacturers and suppliers of the automotive industry and of associated 
businesses with a professional and open platform composed of tools, software components, 
and support services for the development of embedded systems. The know-how is offered 
in terms of products, as well as a holistic support-offering including systems and software 
engineering. Workshops and seminars complete Vector’s portfolio. 

http://www.springer.com
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Vector Informatik GmbH is part of the Vector group that includes other companies in 
Germany (Vector Consulting Services GmbH, aquintos GmbH), France (Vector France 
S.A.S), Sweden (VecScan AB), United Kingdom (Vector GB Limited), China (Vector 
Automotive Technology Co., Ltd.), USA (Vector CANtech, Inc.), Japan (Vector Japan 
Co., Ltd.), South Korea (Vector Korea IT Inc.), and India (Vector Informatik India Pvt. 
Ltd.). The Vector group employs more than 1000 people and achieved revenues of €195 
million in 2011. All sites of the Vector group have been certified according to ISO 
9001:2000.  

In SPES 2020, Vector worked in the automotive work package and contributed 
practical expertise in developing embedded systems. 

In the product line “Process Tools,” Vector is developing the PREEvision tool. 
PREEvision supports the model-based development of electric/electronic systems from the 
early architecture design to production maturity of embedded systems.  

In the automotive industry, embedded systems are mainly being developed in terms of 
a platform or product line concept. Vector therefore contributed to the work package 
“Variability management for model-based development” and provided experience from the 
practical deployment of PREEvision in the automotive industry 

Fraunhofer FIRST 
The Fraunhofer Institute for Computer Architecture and Software Technology (FIRST) 
was founded in 1983 as an institute of the Society for Mathematics and Data Processing 
(GMD), and has been part of the Fraunhofer-Gesellschaft since July 2001. Today, some 
140 employees work in the three departments Modeling, Systems Architecture, and 
Quality Assurance.  

Researchers at Fraunhofer FIRST combine long-standing know-how of hardware 
architectures and software methods with extensive skills in quality assurance in order to 
advance safety, efficiency, and usability of embedded systems. Main goals are the 
development of premium, easy-to-use, and intelligent technologies that adapt to the user’s 
needs and support them optimally. To achieve these goals, Fraunhofer FIRST develops 
innovative methods and technologies and advises companies during the entire development 
chain: from modeling to architecture and quality control to the completed product. 

The research group is concerned with real-time-capable, reliable, and secure integration 
of multicore processors into embedded systems. It aims at reducing the complexity of 
developing efficient embedded multicore systems, while at the same time exploiting 
performance potentials and maintaining the reliability of the overall system. Multicore 
systems should remain real-time-capable and energy-efficient even under optimal 
workloads.  

The research group Embedded Systems advises clients on the selection of methods and 
tools, architectural designs, prototypical implementation of components and subsystems, 
and on the evaluation, test, and certification of the embedded multicore systems.  
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In the SPES context, the following key competencies of FIRST researchers were most 
relevant: 

 Model-based test generation and execution 
 Verification and static analysis of industrial customer software 
 Fault tolerance concepts and reliability quantification 
 Architecture of embedded control elements, FPGA, System-On-Chip 
 Comprehensive tool know-how for the development of embedded systems. 

With these competencies, FIRST led the work package ZP-AP5 “Real-Time and Safety” 
within the central project and made major contributions in AWP-MT. 

Fraunhofer IESE 
Fraunhofer Institute for Experimental Software Engineering (IESE) in Kaiserslautern is 
one of the worldwide leading research institutes in the area of software and systems 
development. A major portion of the products offered by its collaboration partners is 
defined by software. These products range from automotive and transportation systems, 
through automation and plant engineering, information systems, healthcare, and medical 
systems, to software systems for the public sector. The solutions allow flexible scaling. 
This makes the institute a competent technology partner for organizations of any size — 
from small companies to major corporations. 

Under the leadership of Prof. Dieter Rombach and Prof. Peter Liggesmeyer, Fraunhofer 
IESE has spent the last fifteen years making major contributions to strengthening the 
emerging IT hub of Kaiserslautern. In the Fraunhofer Information and Communication 
Technology Group, it cooperates with other Fraunhofer institutes in developing trend-
setting key technologies for the future. 

Fraunhofer IESE is one of 60 institutes of the Fraunhofer-Gesellschaft. Together they 
have a major impact on shaping applied research in Europe and contribute to Germany’s 
competitiveness in international markets. 

The work at Fraunhofer IESE focuses mainly on methods for the development of 
software-intensive embedded systems as well as the empirical evaluation of such methods. 

Fraunhofer IESE has been engaged in the engineering-like development of embedded 
software and systems for more than a decade, and has proven itself as one of the leading 
research institutes worldwide. One of its internationally respected unique selling 
propositions is the empirical evaluation of research results in the area of software and 
systems engineering. This competency was brought to the project by Fraunhofer IESE 
taking the scientific lead of the work package ZP-AP6 “Empirical Methods Evaluation” 
within the central project. 

A second focus of the institute was on the model-based development of safe and highly 
reliable embedded systems. Given this expertise, Fraunhofer IESE led the workpackage 
ZP-AP4 “Proof of Safety, Certification, and Quality Assurance of Nonfunctional 
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Requirements.” In this role, the institute developed methods, techniques, and tools for 
proof of safety, certification, and quality assurance in SPES. 

In addition, researchers from IESE were members of the project architecture team that 
made major contributions towards an integrated model-based methodology.  

OFFIS e.V. 
The “Oldenburger Forschungs- und Entwicklungsinstitut für Informatik-Werkzeuge und –
Systeme,“ OFFIS for short, was founded in 1991 and has a close cooperation agreement 
with the University of Oldenburg. OFFIS sees itself as an application-oriented research and 
development institute, and as “Center of Excellence” for selected topics in computer 
science and its application domains. OFFIS focuses its research and development work on 
IT systems in the application areas transportation, healthcare, and energy. Revenue is 
approximately €12 million. 

In SPES 2020, the R&D division Transportation was involved. Its research focuses on 
methods, tools, and technologies for the development of reliable, cooperative, and 
supporting systems in the application area transportation. The division comprises several 
working departments, and offers a wide spectrum of competencies in the areas systems and 
software engineering, electrical engineering, and planning theory. Main research topics 
include methods, processes, and tools for the establishment of safety in transportation 
systems, as well as methods for analysis and design of E/E architectures. A special focus is 
on real-time aspects and component-based design. 

OFFIS has participated in numerous national and European research projects, including 
OPRAIL, Verisoft, SafeAIR, SPEEDS, COMBEST, ArtistDesign, ESACS, ISAAC, and 
MISSA, and continues to do so today. Because of its competencies in the area of real-time, 
OFFIS is also a partner in AUTOSAR and, via SafeTRANS, a member of EICOSE, the 
ARTEMIS Innovation Cluster on transportation. 

In SPES, OFFIS led the work package ZP-AP3 “Model-Based Architecture 
Development” within the central project and participated in the work packages ZP-AP1, 
ZP-AP4, and ZP-AP5 with a focus on the range of topics around “model-based 
architecture design.” This included the development of an integrated, cross-domain 
approach that can be adapted to the specific requirements of the respective application 
domains. In addition, researchers from OFFIS were members of the project architecture 
team that made major contributions towards an integrated model-based methodology. 

As a partner in the ARTEMIS project CESAR, OFFIS arranged for synergies related to 
the CESAR Reference Technology Platform.  
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University of Kaiserslautern 

Software Engineering Research Group: Dependability 

The research conducted by the research group Software Engineering: Dependability at the 
faculty of Computer Science at the Technical University Kaiserslautern focuses on 
methods for developing embedded software that meets high quality standards. Current 
goals concern object-oriented methods, especially with respect to applications in safety-
critical, highly available real-time systems. In particular, the research considers the 
ongoing growth of software and its distributed architecture. Many projects are conducted 
in collaboration with industrial partners. 

In the SPES 2020 context, the research group Software Engineering: Dependability 
worked on the question of how software engineering and safety engineering can be 
interweaved more closely, e.g., by automatically deriving safety models from the software 
design and—vice versa—the integration of measures into the software development 
process to increase safety. 

Software Engineering Research Group: Processes and Measurements 

The research group Software Engineering: Processes and Measurement at the faculty of 
Computer Science at the Technical University Kaiserslautern has its expertise in modeling 
and quantitative prediction of integrated development processes, as well as in empirical 
analysis of software development methods and tools. 

Today, software development projects are characterized by overshooting time and 
budget limits significantly. The main reason for this is insufficient knowledge of the 
potentials and limits of particular development methods and tools in a concrete project 
environment. On the other hand, process modeling methods that would allow coordination 
of the activities of the individual members of the development team, as well as a progress 
control with regard to content, are missing. 

The work of the research team in SPES focused on developing methods to model 
complex development processes and to instrument them for prediction and progress 
control, as well as on the empirical analysis of individual methods and tools. 

Technische Universität München (TUM) 
TUM is one of the leading universities in Germany. TUM’s top performances in research 
and education, interdisciplinary studies, and talent promotion stand out. Strong alliances 
with businesses and scientific institutions across the world play a part in this. TUM was 
one of the first "Universities of Excellence" of the nationwide Excellence Initiative and 
impressed this cooperative in 2006 with its concept of "TUM. The Entrepreneurial 
University.” 

http://www.springer.com
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The Department of Informatics attaches high importance to a close link between 
scientific research and study. The systems and tools developed there are constantly being 
tested by students and research staff in a practical deployment. In SPES, the chairs 
Software & Systems Engineering (Prof. Broy) and Embedded Systems & Robotics (Prof. 
Knoll) were engaged. 

Software & Systems Engineering chair 

The research and teaching efforts of Prof. Broy’s chair Software & Systems Engineering 
are centered around core topics of software and systems development. This includes 
foundations, methods, processes, models, description techniques, and tools.  

The research focuses on development of critical embedded systems, mobility and 
context-awareness, and development methods for complex industrial-scale software 
systems. The methods are supported by a number of research tools. Theorem-proving 
techniques explore the foundational aspects of software engineering. The methods 
developed in the group have been validated in various industry cooperations in the 
telecommunications, avionics, automotive, banking, and business information systems 
domains.  

The chair is involved in an extensive number of basic and applied research projects. 
Additionally, it offers targeted enterprises specific consulting services, and develops tool 
prototypes and demonstrators. The Software & System Engineering chair took the overall 
project lead for the entire SPES project. With regard to content, the research focus was on 
developing an integrated modeling theory in the context of the SPES central project. 
Several tools for the development of embedded systems have been provided. Therefore, 
besides the research of the theoretical modeling theories, these practical competencies 
were also brought into the project. In addition, researchers from TUM were members of 
the project architecture team that made major contributions towards an integrated model-
based methodology. 

Embedded Systems and Robotics chair 

The primary mission of the Embedded Systems and Robotics chair is research and 
education of machines for perception, cognition, action, and control. The chair is organized 
into four research areas:  

Human Robot Interaction and Service Robotics, including work on the integration of 
speech, language, vision, and action; programming service robots; development of new 
application scenarios for sensor-based service robots; robot systems for education;  

Medical Robotics, covering all aspects of manipulator and instrument control for 
complex surgical procedures, e.g., visualization of all types of patient data, haptic feedback 
for delicate handling, skill transfer, shared control, multimanipulator cooperation;  



Members of the Innovation Alliance 287 

Cognitive Robotics, encompassing a comprehensive area of topics ranging from sensor 
models by the way of individual sensor processing entities (e.g., for high-speed face 
tracking) to high-level cognitive skills for navigation, adaptation, learning;  

Cyber-Physical/Embedded Systems are investigated with special emphasis on fault 
tolerance and high availability; special topics are the design of very small redundant 
systems and the associated software development models and tool chains.  

In SPES, the contribution was to provide leading edge technology for developing 
solutions in the automation area. The focus was on the development of domain-specific 
tools for the generation of nonfunctional properties (QoS, safety, communication in 
distributed systems, time-behavior). The analysis of domain concepts, development of 
middleware architectures, and comprehensive code generation were given prominence. 

University of Duisburg-Essen – The Ruhr Institute for 
Software Technology (paluno) 
Created in 2003 by the merger of the University of Duisburg and the University of Essen, 
the University of Duisburg-Essen is the youngest university in North Rhine-Westphalia 
and one of the ten largest universities in Germany. In many disciplines, the University of 
Duisburg-Essen ranks amongst the top ten German research universities. Over the past 
three years, research income has increased by approximately 100 percent. 

In 2010, the research institute “paluno – The Ruhr Institute for Software Technology” 
at the University of Duisburg-Essen was founded. Paluno’s six professors and their 
research teams bring in experience from application domains as diverse as insurance, 
automotive, healthcare, energy, and logistics. Their competencies cover most phases and 
layers of software engineering. With partners throughout Europe, paluno researches and 
applies methods and tools for design, implementation, and operation of future software-
intensive systems. Paluno’s research and transfer paradigm encourages mutual benefit 
from basic research, applied research, and bilateral industry cooperation.  

In SPES 2020, the research team of Prof. Pohl, together with Bosch, led the work 
package ZP-AP2 on model-based requirements engineering. Paluno coordinated all 
activities in the area of requirements engineering within the central project and within the 
application projects. In addition, paluno co-led the research activities in the application 
domain “energy.” paluno’s main contribution is the development of a methodology for 
model-based requirements engineering of embedded systems.  

In addition, researchers from paluno were members of the project architecture team that 
made major contributions towards an integrated model-based methodology. 

University of Paderborn – Software Engineering Group 
The Software Engineering Group of the University of Paderborn is headed by Prof. Dr. 
Wilhelm Schäfer. The main research topics are model-driven, component-based 



288 Members of the Innovation Alliance 

development and analysis of software, including techniques based on UML (Unified 
Modeling Language). Embedded or mechatronic systems with real-time and safety-critical 
constraints, as well as business information systems, are considered as target domains. 
Further research areas include approaches for reengineering and the object-oriented 
specification of software process models.  

The Software Engineering Group participates in several national and international 
research projects, often in close cooperation with partners from industry. The group is a 
founding member of the Software Quality Lab (s-lab), undertaking industry-driven 
research with a strong focus on software quality, and has a long tradition in cooperating 
with research groups from mechanical and electrical engineering of the Heinz Nixdorf 
Institute. In particular, the cooperation with the Product Engineering and Control 
Engineering Groups recently led to the formation of the Fraunhofer Project Group on 
Mechatronic Systems Design, which is located in Paderborn and belongs to the 
Fraunhofer-Institute for Production Technology IPT. Prof. Schäfer is a member of the 
board of directors of the project group and scientific director of its Software Engineering 
Department. 

In SPES, the Software Engineering Group, together with s-lab and Fraunhofer IPT, 
participated in the automotive application project. In addition, Prof. Schäfer was deputy 
coordinator of this application project. In cooperation with the automotive supplier Hella 
KGaA Hueck & Co., the project developed a seamless model-based design methodology 
that complies with the maturity model Automotive SPICE. The methodology partially 
automates the transitions between the different design phases and viewpoints (from 
requirements to AUTOSAR) in a systematic way, with a strong focus on consistency and 
traceability. A further focus was on the integration of tools that allow the simulation of 
functional and real-time behavior in early development phases. In order to incorporate the 
results into the central project, the Software Engineering Group further contributed to the 
first three work packages of the central project. 
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