

Model-Based Engineering of Embedded Systems

Editors

 • Harald Hönninger • Reinhold AchatzKlaus Pohl
Manfred Broy

Model-Based Engineering
of Embedded Systems

The SPES 2020 Methodology

ISBN 978-3-642-34613-2
DOI 10.1007/978-3-642-34614-9
Springer Heidelberg New York Dordrecht London

ACM Computing Classification (1998): D.2, C.3, J.2, J.3, J.7

© Springer-Verlag Berlin Heidelberg 2012

Editors

ISBN 978-3-642-34614-9 (eBook)

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal
reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Klaus Pohl Harald Hönninger
Robert Bosch GmbH

University of Duisburg-Essen Schwieberdingen
Essen Germany
Germany

Manfred Broy
Fakultät für Informatik, Lehrstuhl für Software

& Systems Engineering
TU München
Garching
Germany

paluno – The Ruhr Institute for Software Technology

Library of Congress Control Number: 2012952094

Reinhold Achatz

Germany

ThyssenKrupp AG

Essen
Corporate TechnologyCenter , Innovation & Quality

http://www.springer.com

Preface
Embedded systems have long become an essential part of our everyday
life. They control essential features in our cars, such as airbags, braking
systems, or power locks, and are used to manage our steadily increasing
communication needs by means of Internet routers or cell phones.
Embedded systems are essential in application areas where human
control is impossible or infeasible, such as adjusting the control surfaces
of aircraft or controlling a chemical reaction inside a power plant. The
embedded systems industry has therefore become a multibillion euro
industry.

The development of modern embedded systems is becoming
increasingly difficult and challenging. Issues that greatly impact their
development include the increase in the overall system complexity, their
tighter and cross-functional integration, the increasing requirements
concerning safety and real-time behavior, the need to reduce
development and operation costs, as well as the need for shorter time-to-
market.

Many research contributions and development methods aim to
address these challenges, and theories for the seamless development of
embedded systems have been proposed. However, these solutions
address only a small subset of the above-mentioned problems, are only
applicable in very specific settings, and lack an appropriate cross-domain
validation in representative industrial settings.

The mission of the Software Platform Embedded Systems 2020
(SPES 2020) project was thus to focus on the professionalization of a
cross-domain, model-based development method for embedded systems.
SPES 2020 is an innovation alliance project sponsored by the German
Federal Ministry of Education and Research. In SPES 2020, 21 partners
from academia and industry have joined forces in order to develop a
modeling framework that is based on the latest state-of-the-art in
embedded systems engineering, addresses specific development
challenges, and is validated in different domains to ensure its
applicability in industrial embedded systems development.

Embedded systems
— opportunities and
challenges

Need for an integrated
development
approach

v

vi Preface

Aim of this book

The purpose of this book is to present an overview of the SPES modeling
framework and to demonstrate its applicability to embedded system
development in various representative industry domains. The book
provides a comprehensive explanation of the basic solution concepts of
the SPES modeling framework and illustrates the application of these
concepts in five application domains (automation, automotive, avionics,
energy, and healthcare). The book summarizes the lessons learned,
outlines evaluation results, and describes how the SPES 2020 modeling
framework can be tailored to meet domain-specific and project-specific
needs.

Target audience

This book is aimed at professionals and practitioners who deal with the
development of embedded systems on a daily basis. This includes
developers, requirements engineers, software or hardware architects,
business analysts, mechatronics experts, safety engineers, testers, and
certifiers. It serves as a compendium for researchers in the field of
software engineering and embedded systems, regardless of whether you
are working for a research division of a company or are employed with a
university or academic research institute. For teachers and consultants, it
provides a sound foundation in the basic relationships and solution
concepts for engineering embedded systems and illustrates how these
principles and concepts can be applied in practice.

Content of this book

This book is structured into four parts and 18 chapters:

 Part I – Starting Point: This part discusses the status quo of
embedded system development and model-based engineering and
summarizes the key requirements faced when developing embedded
systems in different application domains. Chapter 1 gives detailed
insight into the role of embedded systems and outlines the scope of
the SPES 2020 project. Chapter 2 discusses and summarizes the
requirements for the development of future embedded system
development in the automation, automotive, avionics, energy, and
healthcare application domains.

 Part II – The SPES modeling framework: This part describes the
backbone of SPES 2020 — the SPES modeling framework. Chapter
3 derives the core principles of the SPES 2020 modeling framework
and illustrates how these principles help in fulfilling the

Industry challenges,
principles, and

application

Researchers,
practitioners, and

consultants

Status quo and
industry requirements

The SPES modeling
framework and its

viewpoints

Preface vii

requirements outlined in Chapter 2. It outlines the overall SPES
modeling framework and describes the basic solution concepts of the
SPES 2020 abstraction layers and viewpoints. Subsequently,
Chapters 4 through 7 describe the requirements, functional, logical,
and technical viewpoints of the SPES modeling framework. Each
chapter defines the specific engineering artifacts subsumed by the
viewpoint, outlines the basic relationships of those artifacts with the
other viewpoints, and describes the engineering process across the
basic abstraction layers. Chapters 8 and 9 describe how the SPES
modeling framework addresses the crosscutting aspects “safety” and
“real-time.”

 Part III – Application and Evaluation of the SPES Modeling
Framework: This part describes the validation steps taken to ensure
that the requirements outlined in Chapter 2 are met by the solution
concepts proposed in Part II. Chapter 10 outlines the overall
evaluation strategy used to assess the applicability of the SPES
modeling framework. Chapters 11 through 15 describe the use of the
SPES modeling framework in the five application domains
automation, automotive, avionics, energy, and healthcare. Each of
these chapters briefly characterizes the specifics of the application
domain and shows how the SPES modeling framework can be
tailored with regard to these characteristics. In addition, each chapter
outlines the evaluation activities conducted in the application domain
by various partners and summarizes the key evaluation results.
Chapter 16 summarizes the overall evaluation results and discusses
them in the context of the requirements outlined in Chapter 2 and the
SPES principles described in Chapter 3.

 Part IV – Impact of the SPES Modeling Framework: This part
assesses the impact of the SPES modeling framework. Chapter 17
summarizes the key lessons learned in SPES 2020. Chapter 18
concludes this book by providing insights into open challenges for
the engineering of software-intensive embedded systems.

For further reading, a list of relevant, advanced literature providing
deeper insights is given at the end of each chapter.

Acknowledgements

There are many people who have contributed significantly to this book.
Firstly, we would like to thank the members of the Steering

Committee of the SPES 2020 project for their guidance and support

Evaluation strategy
and application details

Achieved results and
future work

viii Preface

throughout the entire project and for encouraging us to document the
project results in this book.

Secondly, we would like to thank Ottmar Bender, Dr. Wolfgang
Böhm, Dr. Martin Feilkas, Peter Heidl, Dr. Stefan Henkler, Dr. Ulrich
Löwen, Andreas Vogelsang, and Dr. Thorsten Weyer for their relentless
efforts in integrating the different project activities that took place
concurrently, for many fruitful discussions and suggestions, and for their
critical reviews of project milestones. Much of the content of this book is
a result of their devotion and attention to detail.

Thirdly, we would like to thank each and every author of the
individual chapters for their patience in the book writing process, their
willingness to revise their chapters time after time, and their cooperation
and help in making this book a consistent and integrated product.

Last but not least, we would like to express our deepest thanks to
Bastian Tenbergen and Dr. Thorsten Weyer for their tremendous effort
and support in the overall editing process.

The results presented in this book have been made possible through
the funding received from the Federal Ministry of Education and
Research (BMBF) of the Federal Republic of Germany under grant
number 01IS08045. In particular, we would like to thank Prof. Dr. Wolf-
Dieter Lukas, Dr. Erasmus Landvogt, and Ingo Ruhmann (all with the
BMBF). In addition, we would like to thank Dr. Michael Weber of the
German Aerospace Center (DLR) for supporting this project.

Furthermore, we would like to thank Tracey Duffy for her valuable
language editing assistance and Ralf Gerstner from Springer for his
continuous support in publishing this book.

Klaus Pohl

Harald Hönninger
Reinhold Achatz

Manfred Broy

Summer 2012

Table of Contents
Part I Starting Situation 1

Challenges in Engineering for Software-Intensive Embedded Systems 31
1.1 Core Value of Embedded Systems Development ... 4
1.2 The Future of Embedded Systems .. 5
1.3 Vision of SPES 2020 .. 8
1.4 Mission of SPES 2020 .. 9
1.5 Research Approach ... 11
1.6 Topics Not Addressed in SPES 2020 .. 14
1.7 References .. 14

Requirements from the Application Domains .. 152
2.1 Initial Situation in the Application Domains .. 16
2.2 Requirements for the SPES Engineering Approach .. 20
2.3 General Requirements from Industry .. 25
2.4 References .. 28

Part II The SPES Modeling Framework 29
Introduction to the SPES Modeling Framework .. 313
3.1 Motivation for the SPES Modeling Framework ... 32
3.2 Characteristics of Software-Intensive Embedded Systems ... 32
3.3 The Principles of the SPES Modeling Framework ... 34
3.4 Core Concepts of the SPES Modeling Framework ... 35
3.5 The SPES Modeling Framework .. 36
3.6 Underlying Modeling Theories ... 46
3.7 Overview of the Following Chapters .. 47
3.8 References .. 48

Requirements Viewpoint .. 514
4.1 Introduction to the Requirements Viewpoint .. 52
4.2 Requirements Artifacts ... 53
4.3 Integration in the SPES Modeling Framework ... 63
4.4 The Requirements Process Model across Abstraction Layers 66
4.5 References .. 67
4.6 Acknowledgements... 68

Functional Viewpoint ... 695
5.1 Introduction .. 70

ix

x Table of Contents

5.2 Concerns ... 71
5.3 Functional Black Box Model .. 72
5.4 Functional White Box Model.. 75
5.5 Analyses ... 77
5.6 Integration in the SPES Modeling Framework ... 78
5.7 The Functional Viewpoint Process ... 80
5.8 References .. 82

Logical Viewpoint ... 856
6.1 Introduction .. 86
6.2 Concerns ... 86
6.3 Logical Component Architecture .. 88
6.4 Analyses ... 89
6.5 Integration in the SPES Modeling Framework ... 90
6.6 The Logical Viewpoint Process .. 91
6.7 References .. 93

Technical Viewpoint .. 957
7.1 Introduction .. 96
7.2 Metamodel of the Technical Viewpoint .. 97
7.3 Mapping between Viewpoints and Abstraction Layers .. 103
7.4 How to Get from the Logical to the Technical Viewpoint .. 105
7.5 References .. 106

Modeling Quality Aspects: Safety ... 1078
8.1 Introduction .. 108
8.2 Concerns ... 108
8.3 Component-Integrated Component Fault Trees .. 109
8.4 Efficiently Deploying Safety-Relevant Applications to Integrated Architectures....... 112
8.5 Integration in the SPES Modeling Framework ... 117
8.6 References .. 118

Modeling Quality Aspects: Real-Time .. 1199
9.1 Introduction .. 120
9.2 Model-Based Real-Time Engineering .. 121
9.3 Modeling Platform-Independent Real-Time Requirements .. 122
9.4 Modeling Platform-Specific Real-Time Properties ... 124
9.5 Schedulability Analysis .. 127
9.6 References .. 128

Part III Application and Evaluation of the SPES Modeling
Framework 129
Overview of the SPES Evaluation Strategy ... 13110

Table of Contents xi

10.1 SPES 2020 Evaluation Strategy .. 132
10.2 Selecting Appropriate Case Studies .. 133
10.3 Structure of the Following Chapters ... 134
10.4 References .. 135

Application and Evaluation in the Automation Domain .. 13711
11.1 Overview: Application Domain Automation .. 138
11.2 Evaluation Strategy for the Domain.. 140
11.3 Overview of Activities and Results .. 140
11.4 Application and Evaluation of the SPES Modeling Framework 143
11.5 Summary... 153
11.6 References .. 154

Application and Evaluation in the Automotive Domain .. 15712
12.1 Overview: Application Domain Automotive .. 158
12.2 Evaluation Strategy and Correlations to the SPES Modeling Framework 158
12.3 Detailed Experience Reports .. 160
12.4 Summary... 173
12.5 References .. 174

Application and Evaluation in the Avionics Domain ... 17713
13.1 Overview: Application Domain Avionics ... 178
13.2 Evaluation Strategy and Application to the SPES Modeling Framework 178
13.3 Evaluation Results for each Viewpoint and Quality Aspect 181
13.4 Summary... 195
13.5 References .. 196

Application and Evaluation in the Energy Domain .. 19714
14.1 Overview: Application Domain Energy ... 198
14.2 Evaluation Strategy in the Energy Domain ... 200
14.3 Evaluation Activities and Results ... 201
14.4 Exemplary Evaluation Activities in Detail ... 204
14.5 Summary... 212
14.6 References .. 214
14.7 Acknowledgements... 214

Application and Evaluation in the Healthcare Domain .. 21515
15.1 Overview: Application Domain Healthcare .. 216
15.2 Evaluation Case Study: Extended Care System .. 218
15.3 Example Evaluation Activities in Detail ... 223
15.4 Summary... 229
15.5 References .. 230

Evaluation Summary .. 23116
16.1 Introduction .. 232

xii Table of Contents

16.2 Conclusions from the Evaluations .. 234
16.3 Relevance of Model-Driven Development ... 237
16.4 Summary ... 239
16.5 References .. 239
16.6 Acknowledgements ... 239

Part IV Impact of the SPES Modeling Framework 241
Lessons Learned .. 24317
17.1 The multitude of systems gives rise to a multitude of engineering challenges 244
17.2 Model-based software development is increasingly important 245
17.3 Integrated development is essential for the engineering of embedded systems 246
17.4 Interdisciplinary knowledge networks foster innovation .. 246
17.5 We have achieved a lot — but a lot more still remains to be achieved 247
17.6 Summary ... 248
17.7 References .. 249

Outlook .. 25118

Appendices 255
A – Glossary of the SPES Modeling Framework ... 257
B – Author Index .. 261
C – Project Structure ... 267
D – Members of the Innovation Alliance .. 271
E – List of Publications ... 289
F – Index ... 299

Part I

Starting Situation

Klaus Beetz
Dr. Wolfgang Böhm

 1

Challenges in Engineering
for Software-Intensive

Embedded Systems

As long as there were no machines, programming was no problem at all; when we had a
few weak computers, programming became a mild problem, and now that we have gigantic
computers, programming has become a gigantic problem.

Edsger W. Dijkstra, ACM Turing Award Lecture, 1972 [Dijkstra 1972]

3,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_1, © Springer-Verlag Berlin Heidelberg 2012

4 Part I – Challenges in Engineering for Software-Intensive Embedded Systems

1.1 Core Value of Embedded Systems
Development

It is hard to find another market in information technology that shows
similar steady growth to the market for embedded systems. As
microcontrollers, they have taken over a variety of functions in
multitudinous technical systems, for example, in manufacturing plants,
medical equipment, power supply systems, aircraft, and cars, but also in
home appliances such as washing machines and refrigerators.
Microcontrollers monitor and control the systems they are embedded in.
In doing so, they interact directly with their environment via
communication devices or indirectly via sensors that capture data such as
temperature or movement, as well as with actors that transform those
data into action. Embedded systems play a key role in many high-tech
sectors: they are essential in modern transportation systems — from cars,
to railway vehicles, to aircraft. They automate manufacturing plants for
all businesses, and are an integral part of powerful medical equipment.

Embedded systems are microcontrollers that are connected to
complete systems via sensors, actors, operator controls, and
communication devices. They interact in various ways with their
environment, offering a variety of functions through comprehensive
software. Ninety-eight percent of the microcontrollers produced
worldwide are employed in embedded systems. The programs that are
executed by these embedded systems, known as “embedded software,”
represent an essential part of these systems and define their functionality
decisively.

The “Nationale Roadmap Embedded Systems,” issued by the German
“Zentralverband Elektrotechnik- und Elektroindustrie e.V.” (ZVEI) in
2008, forecasts an average annual growth of 9-10% for the embedded
systems market in the coming years [ZVEI 2008]. The estimated volume
of the worldwide market for embedded systems amounts to around 60
billion euros. For the most important part of embedded systems, the
software, the study shows a significantly higher growth than for the
hardware part.

In businesses highly affected by mechanical and electrical
engineering, software has become the most important innovation driver:
a current mid-range car employs more than 70 embedded systems. The
functions of the anti-lock braking system or the controls of the engine’s
ignition point are determined by the software of the respective embedded
systems.

Embedded systems in
everyday life

Market for embedded
systems

Embedded systems
as innovation drivers

Key competence

1.2 The Future of Embedded Systems 5

The capability of developing high-quality, target-driven embedded
systems is a competency Germany needs in order to maintain and
develop a leading position in economically important industry sectors
such as vehicle manufacturing/automotive engineering, aviation, plant
engineering, and automation technology, as well as medical engineering.
Germany’s export strength is mainly on technologies in which embedded
systems represent a core value. The control of increasingly powerful and
extensively networked, and as a consequence more complex embedded
systems is a huge scientific and technical challenge. Mastering these
crosscutting competencies offers opportunities in many application areas.
Shortcomings, however, inevitably lead to risks and finally to loss of
markets. It is essential, therefore, that Germany positions itself
strategically in this field.

Germany is well known for the high quality of its products, mainly in
areas such as automotive engineering, aviation, automation technology,
and medical engineering, where embedded systems are deployed. To
maintain this image with respect to embedded software as well, we have
to make the same high demands on embedded systems as on other
technical systems with the seal of quality “Made in Germany.”

1.2 The Future of Embedded Systems
The future of embedded systems is determined by several trends that we
can already recognize today:

 Increasing computing power of the systems together with the ability
to store an almost unlimited amount of data at extremely low costs.
This development, which we already know from computer systems,
is now finding its way into embedded systems.

 Future embedded systems will be more and more networked.
Networking mainly via the Internet, arguably the most important
development since the invention of the letterpress, but also using a
wide variety of different networking technologies, will multiply the
intrinsic intelligence of embedded systems

 The increasing structural and functional integration with mechanical
and electrical system parts will finally produce “cybertronic
systems,” consisting of mechanical, hydraulic, or pneumatic parts, as
well as sensors, actors, and information processing units linked to
each other via flows of energy, material, or information. The line
between mechanical components and software system will become
more and more blurred. The software part of “embedded systems” is

Increasing computing
powers

Networked systems

Structural and
functional integration

6 Part I – Challenges in Engineering for Software-Intensive Embedded Systems

shifting from an enabling technology towards a core technology: it
forms the products to which it belongs. The software part transforms,
enriches, and becomes the dominant part of the new generation of
products [Beetz 2010].

Future embedded systems will be characterized by high complexity.
Compared to pure mechanical or electrical systems, future embedded
systems will have a much higher number of coupled elements
(networking). In addition, these elements will be implemented by
different technical disciplines involving different types of coupling
(mechanical, electrical, IT). More and more software will be crucial for
the functionality and the coupling of the individual mechanical and
electrical components. This coupling will finally lead to the tight
integration of today’s isolated engineering disciplines of mechanical
engineering, electrical engineering, and computer science.

The development leads from closed, well-arranged embedded
systems that can be found in coffee machines, ATMs, or heart
pacemakers, to systems that become more and more intelligent, to
systems that can build their own intentionality, enabling them to make
goal-oriented decisions on their own and to act accordingly. Ancestors of
those future embedded systems are already among us today as helpful
servants that can cut trees for us, prepare sandwiches, assemble cars, fly
airplanes, or explore distant planets.

As a consequence of the integration of embedded systems with
classical information and communication technology and the Internet,
systems will arise that span the globe, working together seamlessly and
forming separate “digital spheres” such as global intelligent shells
consisting of android buildings, factories, hospitals, transportation
systems, up to highly automated agriculture and an inexhaustible
knowledge base. The dream of the famous encylopedists of the age of
enlightenment Denis Diderot and Jean-Baptiste le Rond d’Alembert, to
make all the knowledge of the world accessible and useable to
everybody, seems to be coming true, because the Internet age has just
begun.

Our knowledge is being transferred to the Internet at full speed. Eric
Schmidt, former Google CEO and now chairman of the board, illustrated
the tremendous storage capacity of the Internet as follows: “In 2029 you
will be able to buy eleven Peta-Bytes (quite a big number) of digital
storage on a single hard drive for less than 100 Dollar. According to my
calculation this device will be able to store every single day, 24 hours in
DVD-Video quality for six hundred years” [Schirrmacher 2011].

No knowledge, no experience that cannot—and will not—be
recorded. However the true value of information is not based on the

High complexity

Integration with
classical information
and communication

technology

Digital spheres

1.2 The Future of Embedded Systems 7

information itself, but on the networking and the algorithmic evaluation
of the information stored. Therefore, the “digital spheres” not only
contain information and knowledge, but moreover awareness of how to
use the information and the knowledge, which in turn will change the
information and the knowledge permanently.

Thus, a separate digital parallel world is arising, to which the term
“artificial intelligence” is probably more applicable than to the traditional
field of science that is aimed at emulating the human brain. Humans will
be part of this intelligent parallel world and they will have to shape and
control it. We will not discuss the social and political consequences here,
but they will drastically change our lives, especially our professional life
and the way we live together.

Examples of these “digital spheres” are the global communication
network, the huge worldwide information marketplace of the financial
world, and the Global Positioning System (GPS) that has already become
an integral part of transportation systems. In the near future, the power
grid will also build such a “digital sphere.” This “smart grid” will be
based on the most advanced embedded systems available. By virtue of
distributed intelligence alone, the “smart grid” will be able to guarantee
predictable stability and functionality of the electrical energy network.
This development will not pass by many engineering disciplines, as
something like “Google Engineering” will arise, where architecture and
design decisions will be taken from the endless resources of the “digital
sphere.”

In the US, the term “cyber-physical system” is used for those
systems, forming the basis of the “digital spheres.” In a cyber-physical
system, electronic systems are interlaced intelligently with network
components and physical systems in a way that integrates the physical
systems to give them new capabilities. The acatech (German National
Academy of Science and Engineering) project “Agenda CPS” develops a
general view on the political, economic, technical, and research
challenges of cyber-physical systems. In this project, cyber-physical
systems are understood in a broader sense, including issues around
connecting embedded systems to global networks such as the Internet.

Embedded systems are the important building blocks of cyber-
physical systems and are used by the various digital spheres. Here they
implement in particular the interfaces of the “digital spheres” to the user
and to the technical and physical components, thereby forming the link
between the virtual “digital spheres,” the humans, and the real world.
Mastering the complexity this introduces constitutes a central challenge.
In his keynote speech at the ITEA (Information Technology for
European Advancement) symposium 2010, the Chairman of ITEA,

Cyber-physical
systems

8 Part I – Challenges in Engineering for Software-Intensive Embedded Systems

Rudolf Haggenmüller, coined the phrase “embedded hardware.” This
comprises hardware in the primary sense, i.e., not microcontrollers or
control units, but also in the sense of the scenarios described above.
Embedded hardware could be a car, a building, a milking machine, or
even a complete power plant — therefore, hardware that can be
understood as embedded in a complex network, in a digital sphere.

The foundation for mastering the challenges of the development of
embedded hardware is established by the SPES 2020 project [BMBF
2009].

1.3 Vision of SPES 2020
As outlined above, developing software for the increasingly more
powerful, more internetworked, and as a consequence more complex
embedded systems is a huge challenge. Therefore, 21 partners from
industry and science have formed the national innovation alliance
“Software Platform Embedded Systems 2020,” targeted at making the
production of embedded software across industry domains professional
by means of an integrated and powerful methodology [Beetz 2010, Broy
2010].

Mastering the related challenges represents an important advantage
for German products in European and international markets, and is
therefore essential for job creation and welfare. This highlights the
enormous benefit of such a concentration of research and development
work, especially because of the numerous application areas in key
German industries. It is the vision of SPES 2020 that in the near future, it
will be possible to develop embedded systems, containing a high amount
of embedded software, using a set of integrated modeling techniques
whose interdependencies and cooperation are completely understood.
SPES 2020 envisions that:

 The functional and nonfunctional requirements of such systems can
be completely modeled at system level using appropriate abstraction.

 Analysis, verification, and validation steps can be performed based
on those models.

 Decomposition for the interface behavior of the systems in the sense
of architecture and a more step-by-step realization of a technical
architecture can be derived from these functional models.

We will still split the systems into mechanical, electrical, and technical
parts. In doing so, we will use uniform modeling techniques for all three
disciplines, or at least clearly defined, standardized interfaces that cover

National innovation
alliance

The vision of SPES
2020

Uniform modeling
techniques

1.4 Mission of SPES 2020 9

all aspects of these three different system parts and describe their
interactions in a modular fashion and in the sense of a compositional
modeling technique.

The main goal is to formalize the models to the extent that a high
degree of automation is possible, including consistency checks and
generation of validation methods to make the systems quantifiable and
their properties explicitly represented and documented. These methods
can be either tests or logical analysis. The planned high degree of
automation will make it possible to generate software out of its abstract
and generally modeled properties for different and sufficiently specified
platforms. This of course requires the modeling and specification of the
platform properties in sufficient detail.

The longer-term vision is the availability of a comprehensive concept
for reuse for the respective application areas. Based on given, reusable
platforms and system building blocks, it should be possible to execute
major parts of the development work by utilizing predefined and domain-
specific specifications, building blocks, and reference architectures.

1.4 Mission of SPES 2020
The national innovation alliance “Software Platform Embedded Systems
2020” (SPES 2020) thematically follows the aim of professionalization
of a cross-domain development process, mainly the classical targets of
software engineering: productivity and quality.

The focus of the research and development work is in embedded
software, which is widely ramified into the areas of mechanics and
electronics in order to leverage the comprehensive optimization potential
arising from those disciplines. The goal of SPES 2020 was to create a
unique innovation alliance in Germany that works across application
domains to develop future networking, hardware, and software
architectures, as well as new methods for software and system
engineering.

A model-driven and tool-supported approach that is based on a strong
mathematical foundation allows for the efficient development of
embedded systems, starting with initial customer requirements, through
specification of architectures, through implementation, to system
verification and certification.

This objective required a lot of work to be done in applied research as
well as in fundamental research to complete relevant results. SPES 2020
was able to provide an integrated approach for model-based development
of discrete systems with a strong emphasis on interfaces, distribution,

High degree of
automation

Concept of reuse

Cross-domain
development

Integrated model-
driven and tool-
supported approach

10 Part I – Challenges in Engineering for Software-Intensive Embedded Systems

and interaction, as well on a consistently architecture-centric approach
that includes adequate system structuring and a model of the individual
architecture elements.

The basic terms, concepts, and theory have been available in results
of fundamental research that has been more or less complete in that area.
SPES managed to join the different modeling approaches supported by
the academic partners. However, the main focus of SPES has been the
transformation of those modeling approaches into usable terms and
characterization techniques needed for an engineering approach, and the
consolidation of methods for the creation of the various model views for
an integrated use for target-oriented system and software development.
The different, more pragmatic approaches of the application domains
have been recognized.

The domain-specific approaches have been simplified and
consolidated as far as possible, and a solid understanding has been
developed with regard to which application domains really require
specific modeling techniques and how advanced modeling approaches in
the different domains can be brought to the general modeling approach.

Therefore, the SPES central project has taken up the available
approaches from the application domains and merged them with results
from scientific research. The resulting modeling methods have been
reflected back to the application domains using case studies. Additional
requirements from the application domains have been collected and have
been considered in the definition of the modeling methodology.

A special challenge that was not the main focus of SPES was the
modeling of system properties that are not classical software properties
but properties of the environment (e.g., electronic or mechanical) in
which the systems are embedded. In the SPES 2020 context, we
restricted the work to the question of which properties of the
environment are necessary, what the interfaces to the domain models
look like, and how those models should be brought in to guarantee
consistency between the physical models and the models of the
embedded software.

A special focus in the project was on the integration of model-based
development in order to leverage the synergy that comes from integrating
the models across a larger number of development steps instead of
looking at the models of each step in isolation.

Architecture is the central artifact in model-based development. In
SPES, the term “architecture” is understood very broadly as any kind of
structuring system from a functional view, logical component view, or
technical view, with a focus on software and hardware architecture, as
well as on deployment and scheduling.

Joining the different
modeling approaches

Domain-specific
approaches

Properties of the
environment

Architecture as central
artifact

1.5 Research Approach 11

Last but not least, an important goal of SPES 2020 was to provide an
adequate concept for tool support based on the integrated approach for
model-based development that was developed. Prototypes of this concept
have been developed and tested.

With these achievements, the innovation alliance SPES 2020 has
significantly strengthened the strategic and completive position of
Germany as a leading country for the development of embedded systems.
But to maintain this position as a leading engineering country and create
new jobs and welfare for society, further effort is necessary from all
stakeholders, from academia, from industry and from public authorities.
Examples of future topics to be addressed by the innovation alliance are
the managing of variants and multidomain engineering.

1.5 Research Approach
As discussed above, a central idea of model-based development of
embedded systems is the integration of different approaches from the
application domains and consolidation of these approaches to form an
integrated model-based approach that has the potential to be a
comprehensive tool support that can be deployed in various application
areas.

By nature, this is a difficult and comprehensive task to which
scientific foundations, historically grown views, and different
requirements from the various application areas contribute. In addition,
the participating scientific groups follow their own approaches, starting
from different theories. Up until now, integration at theory level has not
been completed, and a series of foundation work has yet to be done.

Against this background it was important to gain a clear vision of
how the different views and approaches in SPES could be integrated.
This gave four main focus points for the development of an integrated
approach for model-based development.

1.5.1 Generic Overall Approach — Metamodel

The generic overall approach identifies the fundamental ideas and
concepts of how to proceed. These include the use of different views and
viewpoints in the sense of the specification of a series of abstraction
layers for modeling the architecture. These architectural layers are in
documented verbally and in approximate terms, represented graphically,
and finally mapped onto a metamodel. In the generic layer, the basic
philosophy is described without a detailed theoretical elaboration, and

Four main focus
points

Fundamental ideas
and concepts

12 Part I – Challenges in Engineering for Software-Intensive Embedded Systems

more pragmatically, without a concrete practical implementation with
respect to tool support or concrete modeling techniques. It is important
that not only the philosophy of the architectural approach and its
modeling framework are described, but also that the whole engineering
process is captured.

Three approaches to make the generic approach more concrete are
outlined below.

1.5.2 Fundamental Scientific Approach

A rigorous, theory-based scientific approach to substantiating the generic
approach is to work out a comprehensive theory of model-based
development, including all theoretical investigations and elaborations, so
that for all concepts and ideas described in the generic approach, there is
a comprehensive scientific elaboration and theoretical foundation. This
ensures that all concepts of the generic approach are completely
analyzed, elaborated, and justified from a theoretical perspective.

The theoretical framework will show that all the concepts are
consistent, complete, and fit together seamlessly. This lays the
foundation for a methodology that is theoretical in spirit but not
immediately deployable from a practical perspective, and that completely
answers all questions concerning modeling and specification, not
necessarily claiming that these concepts will immediately scale or can be
put into practice. Consequently, this theoretical approach offers strong
momentum for the concrete approach, as it forms the necessary
foundation for clear terminology and the proven concepts.

1.5.3 Pragmatic Implementation

The pragmatic implementation of the generic approach starts with
existing approaches (for example, UML) existing tools (such as
MATLAB or the tools from Esterel Technologies) and tries to integrate
the existing, often very fractal approaches in terms of the generic
approach step-by-step. In doing so, the different views defined in the
generic approach are described as completely as possible by means of
specification languages and tools available in practice. A tight integration
is sacrificed in favor of the use of existing tools and concepts. Where
necessary, certain breaches, inconsistencies, and, to some extent, missing
precision are accepted. The benefit of this approach is its possibility for a
fast transfer into practice, high acceptance by practitioners, and a good
adoption to the existing processes in practice. The drawback is limited
automation support and limited comprehensiveness.

Comprehensive
theory

Pragmatic
implementation

1.5 Research Approach 13

Of course, it is possible to utilize the scientific foundation, developed by
the more theoretical SPES approaches, insofar as these can already be
implemented by the existing tools. There are several advantages of this
approach:

Firstly, we see faster deployment of the theory, better acceptance by
practitioners, and a big impact on procedures available in practice.
Secondly, SPES can benefit by discovering holes in the metamodel or
different philosophies in various application areas that cannot be united
easily.

The drawback of the pragmatic approach is its limited support of
automation as well as a limited integration.

1.5.4 Concrete Implementation

The generic approach can be mapped to a concrete implementation
without adopting the partially integrated pragmatic approaches. Starting
with the generic approach, a clean theory is set up as part of the rigorous
foundation and clear concepts are developed. The goal is to develop an
approach that is theoretically clean on one hand, and closely aligned with
the needs of practice on the other. Gaps and incompleteness are
recognized and accepted and will be filled on an ongoing basis. This
drives a step-by-step understanding of the approach in practice. The goal
is to develop a clean practice that is always aware of its gaps and
incompleteness and that can be filled slowly. In contrast to the pragmatic
approach described above, a rigorous approach that only accepts and
deploys clean accented methods and techniques is followed. The
concrete implementation serves as an intermediate step towards a well-
founded scientific implementation that puts the model framework
forward step-by-step, taking the scientific foundations into account.

1.5.5 Synthesis

SPES 2020 contains elements of three fundamentally different modeling
approaches and relates them such that they do not compete and cripple
one other, but instead have been fused in order to complementing one
other. It should be noted that integration between the approaches is not
possible; integration within the different approaches would be better.
However, the approaches can benefit from each other by trying to
translate between the different layers to highlight and use the relationship
concepts.

Concrete
implementation

14 Part I – Challenges in Engineering for Software-Intensive Embedded Systems

1.6 Topics Not Addressed in SPES 2020
A series of questions regarding more advanced topics related to
embedded software systems have not been addressed in SPES, such as
autonomy, adaptivity, and self-organization. Furthermore, questions
related to future hardware architectures, such as multicore architectures,
have only been explored to an extent that was necessary to verify the
appropriateness of the SPES development paradigm for these new
hardware architectures. Innovative architectures for embedded systems
have also not been explored.

Within the research leading towards the SPES modeling framework,
product line engineering was not considered explicitly. This is because it
would appear that this additional dimension of variability can only be
investigated once the basics of model-driven development have been
comprehensively worked out.

However, the project has developed systematic methods for the
architectures in the development process, such as reference architectures
and architecture frameworks, as well as their role in the development
process. Advanced topics, such as product line architectures and
systematic reuse, are the focus of future work.

1.7 References
[Beetz 2010] K. Beetz: Was wird besser, wenn SPES erfolgreich ist? White Paper, 2010.

[BMBF 2009] Bundesministerium für Bildung und Forschung (BMBF), Referat
Öffentlichkeitsarbeit: SPES 2020 Software Plattform Embedded Systems 2020,
Infoblatt, 2009.

[Broy 2010] M. Broy: Mission und Vision von SPES 2020. White Paper. 2010.

[Dijkstra 1972] E. W. Dijkstra: The humble programmer. In: Communications of the ACM,
Vol. 15, No. 10, 1972, pp. 859-866.

[Schirrmacher 2011] F. Schirrmacher: Wir brauchen eine europäische Suchmaschine,
Frankfurter Allgemeine Zeitung, 19.07.2011, No. 165, p. 27.

[ZVEI 2008] Zentralverband Elektrotechnik- und Elektroindustrie e.V. (ZVEI): Nationale
Roadmap Embedded Systems, 2008.

Advanced topics

Ottmar Bender
Martin Hiller
Bastian Tenbergen
Dr. Thorsten Weyer

 2

Requirements from the
Application Domains

This section provides an overview of the current situation of embedded systems
development in the individual domains that participated in the SPES 2020 project. Then,
based on the current situation, the section develops concrete requirements for a
continuously model-based development process for embedded systems for each domain.
The section concludes with a report on an empirical analysis of these requirements.

15,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_2, © Springer-Verlag Berlin Heidelberg 2012

16 Part I – Requirements from the Application Domains

2.1 Initial Situation in the Application Domains
Embedded systems are different in every application domain. These
differences arise due to the contexts in which the embedded systems will
be deployed. For example, while an engine control unit is embedded in a
car, a pacemaker is embedded within a human being. However, not only
the context of the embedded systems, but also the constraints under
which development takes place are different in each domain, even for
each development project. For example, in the avionics and healthcare
domains, very strict safety standards and certifying authorities govern the
process as well as the product to be developed.

On the following pages we discuss initial situations within each
application domain. The intention is to shed some light on current
development situations in which embedded systems are being developed.
Based on these situations, concrete requirements for a continuous model-
based development process can be elicited, as discussed in Section 2.2.

2.1.1 Initial Situation in the Automation Domain

In the automation domain, embedded systems can be found at different
levels. There are devices for automation, including intelligent sensors
and actuators, that are typically presented and offered to the customer in
a product catalog. On the one hand, there are standard devices such as
programmable control devices or standardized power trains. On the other
hand, there are also numerous special purpose devices for specific
problems in automation: machines (e.g., robots) that are either provided
to the user in a product catalog or developed individually for customers,
or partial constructions (e.g., a product line) or entire constructions that
are developed individually for a specific user.

Hence, embedded systems in the automation domain are both:
systems that are primarily realized in development projects independent
of any customer contract and systems that are realized primarily in
projects based on a contract with the customer. In projects with
customers in particular, the usage view of how an entire embedded
system is developed by means of embedded software-intensive systems
and which concepts the automation devices provide to support the
integration into an entire system is of vital importance.

For a provider of automation devices, this results in the following
challenges with regard to business and technology:

 Managing the numerous variants that result from different
“performance parameters,” bus systems, requirements for safety,
reliability, etc.

Embedded systems
are different in each
application domain

Bespoke system
development

2.1 Initial Situation in the Application Domains 17

 Ensuring high quality and robustness
 Ensuring that the automation devices are capable of being integrated

with each other as well as with other devices

For a system integrator, this results in the following challenges with
regard to business and technology:

 The entire construction and essential parts of it are developed within
projects with customers, which, based on experience, entails a high
corporate risk.

 The development process comprises the integration of several
purchased components and services, which entails a high technical
risk.

 During development, different disciplines such as process
technology, mechanics, electrical engineering, and software must be
integrated with respect to the procedure and the work results. Since
the software is integrated in the last step, this integration has the task
of ensuring the correct interplay between the disciplines.

2.1.2 Initial Situation in the Automotive Domain

Embedded automotive systems built for today's mobility requirements
are growing in complexity. Therefore, new and refined development
methods are required. Across all domains, engineering for embedded
systems is characterized by a physical context with real-time
requirements and the need for interdisciplinary cooperation.
Additionally, the automotive domain has a high proportion of quality
requirements, cost pressure, and resource constraints. These result from
high volumes ranging in the millions, particularly demanding safety and
reliability requirements, and extensive variability stemming from a large
number of system approaches and functional configurations.

Within the SPES 2020 project, the partners in the automotive domain
planned to address the challenges described above with the objective of
developing new or refining existing methods that ensure that systems
with this level of complexity can be developed more efficiently.

2.1.3 Initial Situation in the Avionics Domain

Embedded avionics systems built for today's aircraft are growing in size
and complexity, therefore new and refined development methods are
required. To improve this situation, the SPES 2020 project was
established. SPES 2020 aimed at developing new or refining existing

Steadily growing
complexity

18 Part I – Requirements from the Application Domains

methods to ensure that systems growing in size and complexity can be
developed more efficiently.

Avionics systems have to be certified by the airworthiness authorities
before they can be installed and operated in an aircraft. In order to
achieve certification for an avionics system, the company developing and
manufacturing this system has to provide the airworthiness authorities
with the evidence that the system is safe.

A system is considered safe if two prerequisites are fulfilled by the
system builder: firstly, a safety analysis has been conducted that shows
that the probability of hazards caused by the system is sufficiently low;
secondly, the manufacturer can demonstrate that the system's hardware
and software parts have been developed according to pre-defined
processes and have been accepted by the airworthiness authorities. This
means that methods developed or refined in SPES 2020 had to support
and comply with the safety analysis and development processes in the
avionics domain. The methods developed in SPES are applied in the
typical development process steps: requirements analysis, design,
implementation, integration, verification, and validation.

Current methods and principles of incremental certification also have
to be refined to reduce certification effort for future systems. On the
other hand, efficient methods are necessary for recertification of systems
that have been certified once and have to be modified, e.g., due to
implementation of new features.

2.1.4 Initial Situation in the Energy Domain

It is widely understood that modern power generation will consist of a
mix of generation from conventional power plants, such as nuclear or
coal-fired power plants, and an increasing amount of generation from
renewable energies such as wind, biomass, and solar power. The latter
part of the generation mix is installed in a decentralized manner, i.e.,
apart from some larger power generators such as wind turbines, there are
plenty of small generators with approximately 5-100 kW. Examples are
photovoltaic units placed on the rooftops of residential homes or
combined heat power generators.

Besides the trend towards a large number of small energy resources,
we can observe that more and more often, the characteristics of devices
such as inverters towards the distribution grid can be controlled
electronically and are programmed into the devices themselves. This
raises the question of how to set up and evaluate a massively distributed
energy system taking advantage of the benefit of the “magic of large
numbers” in the case of small, controllable energy resources. Due to the

Strict certification
guidelines and safety

requirements

Networks of
heterogeneous

systems

2.1 Initial Situation in the Application Domains 19

small size of the distributed energy resources, the characteristics that
have to be considered for managing such distributed energy systems are:

 More than 100 resources have to be managed simultaneously.
 The energy resources are often operated by local operators with local

objectives (dual use).
 Engineering effort per resource is not affordable.
 Available communication infrastructure including power line

communication (PLC) should be reused.
 There is no guarantee that a resource is operating in a controlled

fashion.

Based on the characteristics, the following technical requirements have
to be fulfilled by an implementation managing the system:

 Full self-configuration of the distributed energy resources
 Tracking of availability and operation of energy resources
 Generic modeling of the different energy resources
 Compensation of stochastic loss of control of particular energy

resources
 Requirements of the particular states of the distribution grid

2.1.5 Initial Situation in the Healthcare Domain

Similarly to the avionics domain, embedded systems in the healthcare
domain are governed by strict safety guidelines and standards and are
required to pass certification before they can be legally operated. In
particular, rules imposed by regulatory authorities such as the FDA not
only have to be adhered to by the product, but in some cases by the
development process as well. As a consequence, safety and regulatory
concerns dominate the development process and must be considered
meticulously during system development.

Furthermore, some types of embedded systems in the healthcare
domain are particularly constrained, as they reside within a human body.
Pacemakers, for instance, are subject to special constraints regarding
their maintainability. Once the system is installed, changes, maintenance,
or alterations are undesirable, as they would require the patient to
undergo further, potentially dangerous surgery. Therefore, it must be
possible to maintain these systems easily and ideally externally (if at all).
In summary, systems that reside within the human body have properties
that must be accounted for during development to ensure safety,
maintainability, and testability.

Safety aspects within
medical systems
residing in the human
body

20 Part I – Requirements from the Application Domains

2.2 Requirements for the SPES Engineering
Approach

The SPES engineering approach is intended to address the challenges
that arise in the application domains. These challenges were outlined in
Section 2.1. The requirements for the SPES engineering approach are
presented below. These requirements are based on the initial situations
presented above.

2.2.1 Requirements from the Automation Domain

Automation must cover process technology, mechanics, and electrical
engineering in the individual projects to different degrees. Therefore, the
requirements for the software are very different (see, for example, the
diverse security standards). From the perspective of the automation
domain, the following requirements and challenges were therefore
addressed within the SPES project:

 Supporting the modeling of technical systems: Due to the increasing
complexity of systems in the automation domain, it is necessary to
create adequate models in order to be able to manage the
development of these systems. For this purpose, the following means
are commonly used: appropriate abstractions, different views on the
system, consideration of different aspects. In addition to the
individual models themselves, dependencies between the different
models have to be documented as well as the development process,
or more specifically, the underlying development methodology used
to create or refine the models during development. In order to be
able to exploit all the benefits of model creation, an appropriate
theoretical foundation of the modeling approach is necessary.

 Supporting system integration: Due to the necessity of integrating
the different systems and services when developing systems in the
automation domain, the specific aim is to use the models to support
this integration. This involves not only compatibility of the content
of the models, but also the procedure with regard to the engineering
workflow during development of the systems. Considering the
systems thereby merely from a software-technical view is not
sufficient, since the software is embedded in a physical system and
has to be considered as an integral part of it, because typically the
architecture of the software is determined by the architecture of the
physical system.

 Ensuring specific system properties right from the beginning: To
reduce the technical and business risks faced during development of

2.2 Requirements for the SPES Engineering Approach 21

systems in the automation domain, the models shall be used to
ensure essential system characteristics. Therefore, an appropriate
model of the physical system in which the software is embedded is
necessary (as well as the model of the software). In this way, the
system can, for example, be put into operation virtually. This also
requires an appropriate open infrastructure for executing the models.

 Providing tool chains for engineering of embedded systems in the
automation domain: Due to the complexity of systems in the
automation domain, their development must be supported by
adequate engineering tools. Since a number of different tools are
already used in practice, a main requirement was to extend these
existing tools appropriately, to use them, and to integrate them into a
continuous tool chain. The integration shall be driven by a consistent
modeling theory for technical systems to ensure sustainable tool
support.

2.2.2 Requirements from the Automotive Domain

The major requirements from the automotive domain for the SPES
engineering approach are the following:

 Supporting the systematic gathering and documentation of
requirements: The SPES modeling framework shall apply model-
based requirements engineering to the automotive domain systems to
enhance system understanding, provide guidance for system design,
and deliver proof of fulfillment of required properties.

 Supporting the transition between informal and formal
requirements: The SPES modeling framework should provide a
systematic method for transforming a set of mainly informal
requirements into an implementation that is based on the domain-
specific AUTOSAR standard.

 Supporting functional development: The SPES modeling framework
shall introduce model-based functional development throughout the
automotive development lifecycle and shall integrate the discrete and
continuous problem classes into a homogenous system design.

 Supporting model-based safety design: The approach should support
model-based safety design in automotive development to achieve
safety properties by design and reduce the safety validation effort.

 Supporting the analysis of functional correctness: The SPES
modeling framework shall identify design flaws regarding functional
correctness and timing in early development phases.

 Supporting the AUTOSAR standard: The SPES modeling framework
shall transform the SPES metamodel into corresponding AUTOSAR

22 Part I – Requirements from the Application Domains

models in order to apply the SPES analysis techniques in the
AUTOSAR context.

 Empirical validation: The SPES modeling framework shall validate
and explore the limits of the developed methods in the automotive
domain empirically to prove the effectiveness of the approaches.

2.2.3 Requirements from the Avionics Domain

The major requirements from the avionics domain for the SPES
engineering approach are the following:

 Supporting the systematic specification of requirements: To specify
consistent, understandable, and unambiguous system and software
requirements, the application domains in SPES 2020 proposed to
elaborate available formal or semiformal specification languages to
ensure their efficient usability. An important aspect of usability is
that requirements must be readable and comprehensible to engineers
and representatives of certification authorities. To improve the
understanding of the dependencies among the requirements, the need
for a suitable modeling technique was identified for SPES 2020. A
further objective in this area was to exploit the formalism in the
requirements in order to generate test cases or test case fragments
automatically and to utilize the formal character of the requirements
to perform consistency and completeness checks on the requirements
specification. The requirements engineering methods developed
must adhere to different levels of certification strictness imposed by
the different certification standards and authorities.

 Supporting the systematic analysis and documentation of system
architecture: In order to develop large scale systems, for example,
smart grids, rolling mills, and aircraft, a systematic refinement of
architectural modeling techniques that takes different aspects (e.g.,
safety) into account is required. In addition, the definition of
abstraction layers and the relation of artifacts between them is very
important for coping with the complexity imposed by the scale of the
systems considered. The optimization of possible design solutions
regarding safety and performance and the utilization of the
computing resources available has been stated as a further goal in
SPES 2020. It has been recognized that the availability of a modeling
language (e.g., SysML) is not sufficient to achieve the goals
described above. In addition, efficient modeling techniques and
methods are required.

 Supporting continuous modeling of safety and system certification:
Safety and system certification play an important role in the

2.2 Requirements for the SPES Engineering Approach 23

application domains of SPES 2020, especially in the automotive,
avionics, and healthcare domains. Today's safety analysis is
performed on separate design and safety models using different
tools. To avoid error-prone and inefficient redundancy of the design
and safety models, a requirement for the SPES 2020 program was to
define solutions allowing a safety analysis that integrates system
design and safety information in one model. A further requirement
for the avionics domain was to elaborate methods for automatically
generating safety cases based on the system design model.

 Supporting the verification of engineering artifacts: The verification
activities create a high workload in the application domains. The
requirement for the SPES 2020 program was to reduce this workload
by defining methods for generating test cases and procedures
automatically based on requirements and design information.

2.2.4 Requirements from the Energy Domain

The major requirements from the energy domainfor the SPES
engineering approach are the following:

 Supporting the consideration of large numbers of massively
distributed embedded components: Smart grids are potentially large
systems with huge numbers of massively distributed embedded
components (up to the order of millions distributed across hundreds
of square kilometers). The high number of components in real
systems can cause the overall system to show characteristics that do
not emerge in smaller systems with a comparatively low number of
components.

 Dealing with complexity in system structure and component
interaction: Certain events in a power grid, for example, a decrease
in generated power, can cause events within the communication
network, such as messages, to switch off consumers. Power
generation can be affected by weather conditions (solar power, wind
power). Consumer behavior influences energy demand. Energy
markets and international integration of power grids influence energy
transmission and financial transactions.

 Supporting the engineering constraint “one-shot scenario”: Because
of the sheer size of smart grids, many technical decisions that are
taken during the concept phase are virtually irreversible after the
smart grid has been realized and installed. Thus, careful planning
before starting the realization phase is very important. Mistakes can
lead to huge costs in later project phases. This is why it is important

24 Part I – Requirements from the Application Domains

to design and test smart grids by means of simulation before
installation to uncover and fix problems beforehand.

 Supporting dynamics in system structure and system behavior: Due
to the characteristics and the implementation of specific components
within a smart grid, system structure and system behavior can be
dynamic, for example, with respect to availability, stability, and
failure resilience. For example, components within a smart grid, such
as local generators and consumers, can join or leave the grid at any
time. Furthermore, due to the massive distribution of components, no
single entity has total control of all components in the smart grid.
Failure or faulty behavior of single components within the system is
thus inevitable. The overall system must be able to cope with these
challenges.

2.2.5 Requirements from the Healthcare Domain

The healthcare domain faces similar challenges to the avionics domain.
Most embedded devices in medical applications are safety-critical and
have to pass a long and intensive certification procedure. Again, similar
to avionics, in such systems a safe state cannot be reached by simply
switching off the equipment. Imagine, for example, a life-supporting
device where the health of the patient depends critically on the
correctness of the embedded software. Thus, all components must be
redundant and highly reliable. The software development process for
such a system has to follow strict rules and all artifacts must be validated.

For a model-based software development, this means:

 Safety aspect: Safety is of utmost importance. It must be possible to
explicitly state safety requirements in the models and to assess
whether they are realized in the final system. Other nonfunctional
properties such as usability, adaptability, and configurability can be
regarded as special instances of safety.

 Traceability: In order to allow for effective validation, all models
must be linked to each other such that requirements can be traced
from the initial specification, through the various modeling stages, to
the final executable code. Ideally, the models are instances of a
common metamodel and have clear, unambiguous semantics.

 Interoperability and adaptability: Devices and processes must be
interoperable and easily adaptable. This can be achieved through
standardized reference architectures. The modeling methodology
must provide a way of including such reference architectures (e.g., as
a model library) and instantiating the standardized component for a
specific project.

2.3 General Requirements from Industry 25

 Energy efficiency and maintainability: Since devices such as
pacemakers remain within a patient for a long time, energy
efficiency and low maintenance efforts are very important for certain
medical devices. The methodology must provide ways of combining
resource considerations with the certification needs as required by
regulatory descriptions.

 Testability: Testability is an important assessment criterion.
Therefore, the modeling framework should support automated test
case derivation from models as well as code generation. There must
be a clear distinction between implementation models and test
models.

Model-based design has a high potential to improve the software
development process of embedded medical devices. However, software
development is only one aspect in the design and production of such
systems. The SPES modeling framework shows how validation and
certification aspects can be incorporated into the process to allow for
better products and a significantly shorter time-to-market.

2.3 General Requirements from Industry
At the beginning of the SPES project, a study was conducted with
representatives from companies in all application domains of the SPES
project in order to gather their major requirements from industry
concerning the SPES engineering approach. The participants’ self-
reported areas of operation included research and development (40% of
the participants) as well as process and project consulting (another 40%).
Of the participants questioned, 60% reported their experience with
requirements engineering to span 5 to 10 years, 20% even reported more
than 15 years of experience, and 90% of the participants reported their
level of experience in requirements engineering as advanced or expert.

The study employed a combination of qualitative and quantitative
techniques in order to yield deep insight into the state of practice and the
needs concerning model-based engineering. Data was acquired by means
of a structured interview and a post-interview questionnaire.

The findings from the study are summarized below and related to the
focus of the SPES 2020 project. Detailed information about the
motivation for the study, the feedback gained from the participants, and
the detailed analysis and conclusions can be found in [Sikora et al. 2012].

26 Part I – Requirements from the Application Domains

2.3.1 Empirical Finding: Need for Model-Based
Engineering

Natural language is the most common documentation form for
engineering artifacts. However, there is strong evidence that practitioners
are dissatisfied with natural language, as dealing with large bodies of
natural language documents is perceived as tedious and error-prone. In
contrast, using models during the engineering of embedded systems is
perceived as beneficial as models help in the understanding of complex
engineering problems, serve as a natural means for structuring the
problem space, and make communication with other stakeholders easier.
As a result, in current practice, models are used to support engineering
and often supplement text-based documentation of engineering artifacts.
Our study showed, for example, that executable models (such as
MATLAB/Simulink models), semiformal models (such as SysML [OMG
2010a] and UML [OMG 2010b] models), as well as domain-specific
models from disciplines such as mechanical engineering, electrical
engineering, or control engineering are common artifacts throughout the
engineering process.

One of the most important purposes of these artifacts is early
validation and quality assurance. However, despite the advantages of
using models, many practitioners refrain from applying them. One key
reason is that there is confusion about when to apply models during
engineering and when to resort to traditional natural-language-based
documentation, particularly when legally binding documents are
involved, safety standards must be satisfied by means of models, or
models are used that are applied in different engineering activities (for
example, structural models that are used during requirements engineering
as well as architecture design).

In summary, an engineering approach is needed that fosters model
use during different engineering activities and supports the use of model
types that are already common in the engineering of embedded systems.

2.3.2 Empirical Finding: Need for Artifact-Orientation

As mentioned in Section 2.3.1, the state-of-practice study was able to
confirm that natural language is the dominant documentation form for
engineering artifacts. As a result, artifacts in the engineering of
embedded systems are typically natural language documents that also
serve as a contractual basis and are at best supplemented with models.
Furthermore, as these documents are usually holistic in nature,
information contained therein for specialized engineering activities such
as quality assurance, architecture design, or safety engineering is hard to

Natural language
requirements vs.

requirements models

Artifact-based quality
assurance

Artifact interoperability

2.3 General Requirements from Industry 27

discern. In particular, many engineering artifacts in current practice do
not meet the prerequisites for applying automated techniques.

Therefore, approaches are needed that allow for the co-development
of artifacts that can be used and re-used for a variety of engineering
activities.

2.3.3 Empirical Finding: Need for Continuous Method
Support

As mentioned in Section 2.3.1, there is uncertainty about when to use
models to aid the engineering of embedded systems, and this is one of
the key factors inhibiting more intensive model support. Another
inhibiting factor is missing method support for the application of models
during different engineering activities.

While some knowledge exists regarding different model types and
their suitability for different engineering activities, an approach for the
seamless integration of models during engineering and the transition
between engineering activities is largely missing. For example, missing
method support leads to an enormous effort for ensuring the consistency
between requirements engineering artifacts and safety engineering
artifacts. In particular, method support is missing for specifying artifacts
across a hierarchy of abstraction layers. In addition, results of the study
provide evidence for a close interrelation of requirements engineering
and architecture design, but also indicate some confusion regarding the
separation of the resulting artifacts from both engineering activities (see
Section 2.3.1). As a consequence, participants expressed a strong need
for systematic support for traceability between these two engineering
activities.

2.3.4 Empirical Finding: Need for Differentiation of
Abstraction Layers and Transition between Them

Since the complexity of modern embedded systems is continuously
increasing, new challenges for their engineering also arise. In order to
meet these challenges, the development process must be structured
strictly. The participants of the study stated that performing engineering
across a hierarchy of abstraction layers is one of the essential means to
achieving a structured development process. In particular, a systematic
approach that takes the refinement of engineering artifacts into
consideration is missing from current practice.

In addition, practitioners expressed the need for seamless transition
between abstraction layers. Although abstraction layers are seen as

Artifact integration
between engineering
activities

Seamless transition
and integration

28 Part I – Requirements from the Application Domains

beneficial, confusion exists concerning their application. In particular,
there is uncertainty about which engineering artifacts to define at what
level of abstraction, what level of detail should be included in an artifact,
how abstraction layers can be tailored to specific project needs, and how
consistency between artifacts of different abstraction layers can be
maintained.

As the results of the study illustrate, the application of abstraction
layers is not standardized in industry, is highly influenced by the
application domain (e.g., automation, avionics, or healthcare), and varies
depending on the engineering context (e.g., the specific system type,
properties of the supplier-integrator relationship). In some cases, the use
of abstraction layers is formally imposed by standards.

In summary, the study showed that the application of abstraction
layers in industry depends largely on the engineering context and in
particular on the responsible engineers’ intuition and experience.
Therefore, improved method guidance for specifying artifacts across
different abstraction layers of an embedded system were needed at the
beginning of the SPES project.

2.4 References
[OMG 2010a] Object Management Group: OMG Systems Modeling Language™ (OMG

SysML) Language Specification v1.2. OMG Document Number: formal/2010-06-02.

[OMG 2010b] Object Management Group: OMG Unified Modeling Language™ (OMG
UML), Infrastructure v2.3. OMG Document Number: formal/2010-05-03.

[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl. Industry needs and research
directions in requirements engineering for embedded systems. In: Requirements
Engineering Journal, Vol. 17, No.1, 2012, pp. 57-78.

Tailorable abstraction
layer hierarchy

Part II

The SPES Modeling
Framework

Prof. Dr. Manfred Broy
Prof. Dr. Werner Damm
Dr. Stefan Henkler
Prof. Dr. Klaus Pohl
Andreas Vogelsang
Dr. Thorsten Weyer

 3

Introduction to the SPES
Modeling Framework

Today’s and, even more so, the future development of embedded systems faces a variety of
challenges. Key success factors to meeting these challenges are suitable concepts for
abstraction and structure at different levels of granularity. The result of these concepts is a
seamless development approach that heavily facilitates reuse and automation. A basic
requirement for such a seamless approach is a clear notion of a system that is formalized
by a comprehensive modeling theory. According to this modeling theory, a modeling
framework has to provide appropriate models and description techniques for modeling the
different aspects and artifacts of system development. This section explains these
conclusions and introduces the idea of system and the modeling framework. It also
references the modeling theories used in SPES.

31,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_3, © Springer-Verlag Berlin Heidelberg 2012

32 Part II – Introduction to the SPES Modeling Framework

3.1 Motivation for the SPES Modeling
Framework

The aim of model-based development is to use models as main
development artifacts in all phases of the development process. It
promises to increase the productivity and the quality of the software
development process by raising the level of abstraction at which the
development is done, as well as the degree of automation, with the help
of models that are tailored and appropriate for specific development
tasks.

Even though adopted in practical development of embedded systems
today, model-based development approaches often fail due to the lack of
sufficiently powerful modeling theories and missing integration of
theories, methods, and tools. The models applied in the development
process are based on separate and unrelated modeling theories (if
foundations are given at all), which makes the transition from one model
to another unclear and error-prone.

3.2 Characteristics of Software-Intensive
Embedded Systems

An embedded system can be characterized as a technical system that
operates in a physical and technical environment and is built by means of
technical resources that collaborate in order to achieve an overall purpose
(see [Braun et al. 2010]). Embedded systems monitor and control their
environment using variables that refer to specific properties of the
environment (e.g., physical or technical properties; see [Parnas and
Madey 1995]). IEEE Standard 1362 states that a system can be
characterized as “software-intensive” if the software of the system is the
major technical challenge and perhaps the major factor that affects its
schedule, cost, and risk (see [IEEE 1362]). Typically, software-intensive
embedded systems consist of software and hardware.

Software-intensive embedded systems are widespread in our daily
life. They can be found in many application domains such as automation,
healthcare, consumer electronics, avionics, transportation, and
automotive.

Software-intensive embedded systems exhibit some characteristics
that have a far-reaching impact on the corresponding engineering and
modeling approach with which they are developed:

Current model-based
approaches

Embedded systems
and the SPES

modeling framework

Addressed
characteristics of

embedded systems

3.2 Characteristics of Software-Intensive Embedded Systems 33

 Multifunctional: Software-intensive systems provide a wide range of
functionalities, i.e., they offer a variety of functions that interact with
the environment and additionally with each other (see [Broy 2010]).

 Complex: A significant increase in the complexity of software-
intensive embedded systems can be observed over the last years.
This corresponds with the effect that perceivable functions are
increasingly being realized by integrating fine-grained software-
intensive embedded subsystems. Therefore, the complexity of such
systems increases in two ways: the complexity of a single subsystem
(intrasystem complexity) and the complexity of the relationship to
other subsystems (intersystem complexity).

 Reactive and interactive: Software-intensive embedded systems are
generally interactive or reactive systems. They are characterized by
the constant interaction and synchronization between the system and
its environment. While for interactive systems the interaction is
determined by the system, the interaction of reactive systems is
determined by the physical-technical environment.

 Distributed: In many cases, software-intensive embedded systems
are no longer realized within a single electronic control unit (ECU)
but distributed over a network of logical or physical components that
interact with each other heavily in order to realize the desired
functionality. These components execute their computations
simultaneously on multiple cores in the same chip, with different
threads on the same processor, or on physically distributed systems.

 Control of continuous physical and technical processes: Software-
intensive embedded systems are frequently used to control physical
processes and devices that exhibit a time-continuous behavior. The
controller within the software-intensive embedded system is
implemented in software and is consequently asynchronous and
time-discrete. An engineering methodology for developing
embedded systems must accommodate for that fact.

 Exhibiting real-time properties: Many software-intensive embedded
systems must meet real-time requirements during system operation,
for instance, to be able to guarantee the safety of the occupants
within a vehicle. In such cases, the system must fulfill certain
constraints that restrict the time behavior of the system’s response if
a specific crucial event in the environment of the system occurs.

 Safety-critical: Safety is a major quality of embedded systems that
must be considered in any activity during engineering. Safety can be
characterized as the extent to which the system under development
will not have effects on its environment that result in harm to people,

34 Part II – Introduction to the SPES Modeling Framework

significant monetary losses, or any other negative impacts to its
environment.

3.3 The Principles of the SPES Modeling
Framework

The overall requirements for the SPES engineering methodology as
described in Chapter 2 led to a set of fundamental principles for the
SPES modeling framework. These principles aimed at establishing
specific ways of thinking to be applied when performing the modeling
activities suggested by the engineering process for software-intensive
embedded systems in order to meet the requirements from the application
domains and the characteristics of such systems. These principles are:

 Distinguishing between problem and solution: This principle aims at
distinguishing between the analysis of the underlying problem that
has to be solved and the development of an appropriate solution in
the form of a software-intensive embedded system.

 Explicitly considering system decomposition: Decomposition plays
an important role as a lever to master complexity in nearly all
engineering activities. It encompasses, for example, the
decomposition of systems into subsystems, of functions into
subfunctions, or the decomposition of hardware topologies.
Following the decomposition of the system, its engineering process
can be divided into a number of individual fine-grained engineering
processes, complemented by certain activities to support the
integration of the various engineering artifacts.

 Seamless model-based engineering: This principle aims at
establishing a continuous model-based documentation or
specification of all the information that is created during the different
engineering activities. The notion “model-based” is used in two
related ways. Firstly, the conceptual structures of the artifacts are
defined by metamodels that specify the information structure of the
artifact as well as the structural dependencies between artifacts.
Secondly, the relevant information is documented or specified using
conceptual modeling languages. In addition, an engineering
approach can be characterized as “seamless” if relations between
different types of artifacts exist and have clearly defined (formal)
semantics. This makes it possible to use the models not only as
documentation but also to perform automatic analysis and to
transform one model into another.

3.4 Core Concepts of the SPES Modeling Framework 35

 Distinguishing between logical and technical solutions: This
principle aims at separating the logical solution, which focuses on
general solution concepts and corresponding conceptual properties of
the system under development, from technological constraints and
technological design decisions. By following this principle, the
engineers can clearly separate the logical solution, which is largely
independent of technological constraints and technology-related
design decisions, from the actual technical solution for the system
under development. Due to the fact that the logical solution is largely
independent of technological design decisions, the logical solution is
more stable than the technical solution and can be reused for
different technical realizations.

 Continuous engineering of crosscutting system properties: This
principle aims at establishing the ability to consider crosscutting
properties of the system under development. Typical crosscutting
properties are safety or real-time properties of the system: they must
be considered in any engineering activity and the corresponding
artifacts, such as requirements, design, and implementation artifacts.

3.4 Core Concepts of the SPES Modeling
Framework

To establish the fundamental principles mentioned above, the SPES
modeling framework uses the following core concepts.

3.4.1 Abstraction Layers

A system under development or a design element (e.g., a logical
component) can be modeled on different abstraction layers. Less abstract
models belonging to a lower abstraction layer may increase the level of
detail of the description of the design element at hand. For example, the
interface description may be refined as well as the behavior demanded.
Therefore, increasing the level of detail, and at the same time decreasing
the layer of abstraction, adds knowledge about the design element. Often,
a reduction in the level of abstraction is accompanied by a refined
granularity — that is, structurally significant design elements are
decomposed into multiple finer grained items in order to keep them at a
manageable size. Refining the granularity is, however, not a necessary
condition when introducing a lower layer of abstraction. For example, it
is possible to describe the same design item on two different layers of
abstraction with the same granularity, but specify a certain aspect more

Advantages of using
abstraction layers

36 Part II – Introduction to the SPES Modeling Framework

precisely. Despite an increasing level of detail, another motivation for
introducing a dedicated abstraction layer can be the handover of an initial
system specification to another organizational unit. In this way, the initial
specification remains unchanged and the design element is refined on a
new abstraction layer. Mappings between engineering artifacts allow
these refinements to be traced. While models on lower abstraction layers
provide more detail, the design elements still have to respect the aspects
specified for their higher level counterparts.

3.4.2 Views and Viewpoints

Multiple stakeholders with different concerns are involved in the
engineering process for a software-intensive embedded system. The aim
of the concept of viewpoints is to separate the various concerns of
different stakeholders during the engineering process. It serves as a
construct for managing the different artifacts during the engineering
process. IEEE Standard 1471 [IEEE 1471] characterizes viewpoints as a
specification of the conventions for constructing and using a view. In
other words, a viewpoint is a pattern or template that can be used to
develop individual views on a system (and its environment). Typically,
the specification of a viewpoint defines that viewpoint in terms of its
syntax, semantics, and pragmatics by providing, among other things, the
name of the viewpoint, the corresponding stakeholder concerns, the
viewpoint language (probably given by a metamodel), and techniques
that can be used during the construction and analysis of the
corresponding view (see [IEEE 1471]). Given a viewpoint specification,
a view can be characterized as a concrete model of the system that
represents the information that is relevant for the corresponding
viewpoint concerns by using the conceptual structure of the underlying
viewpoint language.

3.5 The SPES Modeling Framework
While software-intensive embedded systems are becoming more and
more complex, market pressure requires companies to develop high-
quality products in a short time. To deal with such complexity, software
and systems engineering approaches propagate a structured, well-defined
design process consisting of several steps based on abstraction and
refinement techniques (e.g., [Sage and Rouse 2009, Sommerville 2010]).

Abstraction allows the designer to concentrate on the essentials of a
problem. Refinement adds detail to abstract models while preserving

Views and viewpoints
according to
 [IEEE 1471]

Structuring the
problem space

3.5 The SPES Modeling Framework 37

properties established on the more abstract level. In other words, a more
concrete description of a design entity also has to fulfill all requirements
of the abstract design entity it has been derived from (see Section 3.4.1).

Following the principle of separation of concerns [Dijkstra 1976, Tarr
et al. 1999], the concept of viewpoints that provide artifacts and rules for
describing different views of the system under development should be
supported. A view is created by a set of models that describe the system
under development and/or its parts, and is related to a viewpoint (see
Section 3.4.2).

In a complex design process, it is important to have a clear idea of
decomposition in order to be able to ensure that the final implementation
meets the requirements. A decomposition relationship within the SPES
modeling framework introduces a level of interconnected subparts whose
collaboration shall provide any functionality the decomposed unit shall
provide. Engineering activities for the single parts should be largely
independent of each other: firstly, to simplify work by limiting the
required focus of attention, and secondly to enable development in a
distributed fashion. Another point to note is that parts can be exchanged
consistently provided that the part's original specification is also fulfilled
by the new part (see Section 3.3).

While many modeling approaches partially support such concepts,
they often do not cover the whole engineering space from initial
requirements down to a final implementation. This means, for example,
that these approaches cannot continuously consider crosscutting system
properties (see Section 3.3) as they do not support traceability in the
design process. Furthermore, none of these approaches consider a well-
defined combination of abstraction layers and viewpoints at all. It is the
aim of this work to provide a modeling framework that does not suffer
from these shortcomings.

In our approach, abstraction layers and viewpoints form a two-
dimensional engineering space (see Fig. 3-1). Based on well-understood
software engineering approaches, the SPES modeling framework focuses
on the following viewpoints to support views, starting with solution-
neutral requirements through to concrete technical solutions:
requirements (see Section 3.5.1), functional (see Section 3.5.2), logical
(see Section 3.5.3), and technical (see Section 3.5.4). Note that our
approach is not limited to these viewpoints in principle. For example, in
other application scenarios a geometrical viewpoint is required
[Baumgart et al. 2011]. The requirements, functional, and logical
viewpoints are especially pertinent in software engineering, also for
systems with no technical background. The need to also support a
technical viewpoint is driven by the fact that the SPES modeling

Structuring the
solution space

Using abstraction
layers and viewpoints
in the SPES modeling
framework

38 Part II – Introduction to the SPES Modeling Framework

framework considers software-intensive embedded systems in which the
software is affected by the physical environment of the system and has to
interact with (or react to) the surrounding technical system (see Section
3.2).

Requirements
Viewpoint

Functional
Viewpoint

Technical
Viewpoint

Logical
Viewpoint

Viewpoints

Ab
st

ra
ct

io
n

La
ye

rs

solution-oriented
system

requirements

R1

RN

Sensor

Aut oM ode

Operat ionOn

Crane1Ac tion

Crane2Ac tion

SupplyB and

Deli veryBand

Funkti onen des Transportati onControl ler

Sensor

Aut oM ode

Operat ionOn

Crane1Ac tion

Crane2Ac tion

SupplyB and

Deli veryBand

Sensor

AutoMode

B ewegungsauf trag
Crane1

Bewegungsauft rag
Crane2Operati onOn

Sensordaten v erarbeiten

Sensor

AutoMode

B ewegungsauf trag
Crane1

Bewegungsauft rag
Crane2Operati onOn

S upplyBand

Del iveryB and
Operati onOn

Förderbandbewegungen
berechnen

S upplyBand

Del iveryB and
Operati onOn

Crane1Act ionB ewegungsauftrag
Crane1

Wegpunkte für Crane1
berechnen

Crane1Act ionB ewegungsauftrag
Crane1

Crane2Act ionBewegungsauft rag
Crane2

Wegpunkte für Crane2
berechnen

Crane2Act ionBewegungsauft rag
Crane2

«b lock»
Us erInput

« blo ck»
OperationO n

«b lock»
Aut oM ode

«b lock»
Sensor

«b lock»
Cra ne 1Sensor

«bl ock»
Cra ne 2Sensor

«b lock»
SupplyBandSensor

«bl ock»
De liv e ryBandSe ns or

«b lo ck»
SensorSignal

«b lock»
Cra ne 1SensorSigna l

«b lock»
Cra ne 2SensorSigna l

« blo ck»
SupplyBandSensorSigna l

« blo ck»
Deliv e ryBa ndSe ns orSignal

« bl ock»
Sys temOuput

« blo ck»
Acti on

«b lo ck»
Cra ne 1Act ion

« blo ck»
Crane2Ac tion

« blo ck»
SupplyBandActi on

« bl ock»
De liv eryBandAct ion

« blo ck»
Acti onSi gna l

« bl ock»
Crane1 Ac tionSignal

« blo ck»
Crane 2Ac tionSignal

«bl ock»
SupplyBandAct ionSignal

«b lock»
Deli v eryBa ndActi onSigna l

+Raw Da ta t ran sl ate d b y IOAd ap ter + Tran sla te d Sig na l

+ de ter mi ns

Det erm in ati on

+de te rmi ne d

+Bu s- conf orm an t Da ta tran slate d by IO Adap ter +Raw Sig na l

+r ep resen ted In for ma tio n

Re pr esent ati on

+Displa yed da ta

Ini tial

Anlage eingeschaltet

Anlage ausgeschaltet

Final

AutoMode ManualMode

Ini tial

[UserInput = AutoMode]

[UserInput = !AutoMode]

[UserInput: einschalten][UserInput:
term inieren]

[UserInput:
einschalten]

solution-oriented
system

requirements

R1

RN

Se n so r

Au to Mo d e

Op era tion On

Cran e 1Ac tion

Cran e 2Ac tion

Sup p lyBa n d

Del i v ery Ban d

Funk tione n de s Tra ns portationControlle r

Se n so r

Au to Mo d e

Op era tion On

Cran e 1Ac tion

Cran e 2Ac tion

Sup p lyBa n d

Del i v ery Ban d

Se nso r

Au to M od e

Be we g un g sa uftra g
Cra n e1

Bewe g un g sa uftra g
Cra n e 2Op e ratio nO n

Sens orda te n v e ra rbeite n

Se nso r

Au to M od e

Be we g un g sa uftra g
Cra n e1

Bewe g un g sa uftra g
Cra n e 2Op e ratio nO n

Su pp lyBa n d

De li v ery Ban d
Op era tion On

Förde rba ndbe we gungen
be rec hnen

Su pp lyBa n d

De li v ery Ban d
Op era tion On

Cra n e1 Actio n
Be we gu n gs au ftrag
Cra ne 1

Wegpunk te für Cra ne1
be re c hne n

Cra n e1 Actio n
Be we gu n gs au ftrag
Cra ne 1

Cra ne 2 Actio n
Be weg u ng sa u ftra g
Cran e 2

We gpunk te für Crane 2
ber ec hne n

Cra ne 2 Actio n
Be weg u ng sa u ftra g
Cran e 2

«b lo ck»
Use rInp ut

«b l ock»
Ope ration On

« bl o ck»
Au toMo de

«bl o ck»
Se ns or

«b lo ck»
Cra ne 1S en so r

«b lo ck»
Cra ne 2S en so r

« bl oc k»
S up plyBa ndS e ns or

«b lo ck»
Del ive ryBan dS en so r

« bl oc k»
Se ns orS igna l

« bl ock»
Cran e1 S ens orS ign al

«b lo ck»
Crane 2S e ns orS ig na l

«bl o ck»
Su pp lyBand S en so rS ign al

« bl oc k»
De liv ery Ba nd Se ns orS ign al

« bl oc k»
Sy stemOu pu t

«b lo ck»
Action

«b l ock»
Cran e1 Ac tio n

« bl oc k»
Cra ne 2Action

« bl oc k»
Su pp lyBa nd Action

« bl o ck»
Del ive ryBan dAction

«b l ock»
Ac tio nS ign al

« bl oc k»
Cran e1 Ac tio nS ign al

« bl o ck»
Cran e2 Ac tio nS ign al

«b l ock»
Su pp ly Ba nd Actio nS ign al

«b l ock»
De l iv ery Ba nd Ac tio nS ign al

+Raw Da ta t ran sla ted b y IOA d ap te r +T ran sla ted S i gn al

+d etermi ns

De termi na ti o n

+d ete rmi n ed

+B us-co nfo rm ant Data t ran sla ted b y IOA d ap te r +Ra w S ig na l

+rep resen ted In fo rm at i on

Rep rese ntat i on

+ Di sp la yed da ta

Init ial

An lage einge scha ltet

Anla ge a usge scha ltet

Final

Auto Mod e Ma nualM ode

In itial

[UserIn put = Au toMo de]

[Use rInpu t = !Auto Mod e]

[UserIn put: einschalte n][UserI nput:
term inier en]

[UserInp ut:
e insch alten]

solution-oriented
system

requirements

R1

RN

S e n so r

A u to Mo d e

Op era t i on On

Cran e 1A c t i on

Cran e 2A c t i on

S up p l yB a n d

Del i v ery B an d

F u nk tio ne n de s T ra ns p o rtatio nCo n tro lle r

S e n so r

A u to Mo d e

Op era t i on On

Cran e 1A c t i on

Cran e 2A c t i on

S up p l yB a n d

Del i v ery B an d

S e nso r

A u to M od e

B e we g un g sa uf t ra g
Cra n e1

B ewe g un g sa uf t ra g
Cra n e 2Op e rat i o nO n

S en s o rda te n v e ra rb ei te n

S e nso r

A u to M od e

B e we g un g sa uf t ra g
Cra n e1

B ewe g un g sa uf t ra g
Cra n e 2Op e rat i o nO n

S u pp l yB a n d

De li v ery B an d
Op era t i on On

F ö rde rb a nd b e we g un g en
b e rec h n en

S u pp l yB a n d

De li v ery B an d
Op era t i on On

Cra n e1 A ct i o n
B e we gu n gs au f t rag
Cra ne 1

W eg p u nk te fü r Cra n e1
be re c hn e n

Cra n e1 A ct i o n
B e we gu n gs au f t rag
Cra ne 1

Cra ne 2 A ct i o n
B e weg u ng sa u f tra g
Cran e 2

We g pu n k te fü r Cran e 2
b er ec h ne n

Cra ne 2 A ct i o n
B e weg u ng sa u f tra g
Cran e 2

«b lo ck»
Use rInp ut

«b l ock»
Ope ration On

« bl o ck»
Au toMo de

«bl o ck»
Se ns or

«b lo ck»
Cra ne 1S en so r

«b lo ck»
Cra ne 2S en so r

« bl oc k»
S up plyBa ndS e ns or

«b lo ck»
Del ive ryBan dS en so r

« bl oc k»
Se ns orS igna l

« bl ock»
Cran e1 S ens orS ign al

«b lo ck»
Crane 2S e ns orS ig na l

«bl o ck»
Su pp lyBand S en so rS ign al

« bl oc k»
De liv ery Ba nd Se ns orS ign al

« bl oc k»
Sy stemOu pu t

«b lo ck»
Action

«b l ock»
Cran e1 Ac tio n

« bl oc k»
Cra ne 2Action

« bl oc k»
Su pp lyBa nd Action

« bl o ck»
Del ive ryBan dAction

«b l ock»
Ac tio nS ign al

« bl oc k»
Cran e1 Ac tio nS ign al

« bl o ck»
Cran e2 Ac tio nS ign al

«b l ock»
Su pp ly Ba nd Actio nS ign al

«b l ock»
De l iv ery Ba nd Ac tio nS ign al

+Raw Da ta t ran sla ted b y IOA d ap te r +T ran sla ted S i gn al

+d etermi ns

De termi na ti o n

+d ete rmi n ed

+B us-co nfo rm ant Data t ran sla ted b y IOA d ap te r +Ra w S ig na l

+rep resen ted In fo rm at i on

Rep rese ntat i on

+ Di sp la yed da ta

Init ial

An lage einge scha ltet

Anla ge a usge scha ltet

Final

Auto Mod e Ma nualM ode

In itial

[UserIn put = Au toMo de]

[Use rInpu t = !Auto Mod e]

[UserIn put: einschalte n][UserI nput:
term inier en]

[UserInp ut:
e insch alten]

solution-oriented
system

requirements

R1

RN

Se n sor

Au to Mo d e

Op era ti on On

Cran e 1 Action

Cran e 2 Action

Su pp lyBa n d

De li v ery Ban d

Funk tionen des Tr ans porta tionController

Se n sor

Au to Mo d e

Op era ti on On

Cran e 1 Action

Cran e 2 Action

Su pp lyBa n d

De li v ery Ban d

Sen so r

Auto Mo d e

Be we gu n gsa u ftra g
Cra ne 1

Be weg u n gsa u ftra g
Cra ne 2Op era ti on On

Se ns orda ten v e rar be iten

Sen so r

Auto Mo d e

Be we gu n gsa u ftra g
Cra ne 1

Be weg u n gsa u ftra g
Cra ne 2Op era ti on On

Su pp lyBa n d

De l iv e ry Ba nd
Op e rati o nO n

Förde rba ndbe we gunge n
be re chne n

Su pp lyBa n d

De l iv e ry Ba nd
Op e rati o nO n

Cra n e 1Ac tio n
Bewe g un g sa uftra g
Cran e 1

We gpunkte für Cra ne 1
ber ec hne n

Cra n e 1Ac tio n
Bewe g un g sa uftra g
Cran e 1

Cra n e2 Actio n
Be we gu n gs au ftra g
Cra ne 2

Wegpunk te für Cra ne 2
be re chnen

Cra n e2 Actio n
Be we gu n gs au ftra g
Cra ne 2

«b l ock»
Us erInp ut

« bl o ck»
Op era tion On

«b lo ck»
AutoM od e

« bl o ck»
S e ns or

«b lo ck»
Cra ne1 S en so r

«b lo ck»
Cra ne 2S en so r

«b l ock»
S up plyBan dS en so r

« bl o ck»
De liv ery Ba nd Se ns or

«bl o ck»
S en sorS ign al

«b lo ck»
Cra ne 1S en so rS ig na l

« bl ock»
Cran e2 S ens orS ign al

«b lo ck»
S up plyBan dS en so rSig na l

« bl oc k»
De l iv ery Ba nd Se ns orS ign al

«b l ock»
S ys te mOu put

«bl o ck»
Action

«b l ock»
Cran e1 Ac tio n

« bl oc k»
Cra ne 2Action

« bl ock»
Su pp ly Ba nd Ac tio n

« bl ock»
Del iv e ryBand Action

« bl oc k»
Action Sig nal

«b l ock»
Cra ne 1Action Sig nal

«b l ock»
Cra ne 2Action Sig na l

« bl ock»
S up plyBan dAction Sig nal

«b l ock»
De l iv e ryBa nd ActionS ign al

+ Raw Da ta t ra nsl a te d by IOA da pter + Tra nsl ated Si g na l

+d ete rm in s

Dete rm in at i on

+ de te rmi ne d

+B us-co nforma nt Da ta t ra nsl ate d by IOA da pter + Raw S i gn al

+ re prese nte d Informa ti on

Repre sen ta t io n

+Di spl ay ed d ata

Ini tial

Anla ge ei nges chal tet

Anlag e aus ges chalt et

Fina l

Au toMo de Man ualM ode

Initi al

[Use rInp ut = Auto Mod e]

[UserIn put = !AutoM ode]

[Use rInp ut: ei nsch alten][UserInp ut:
te rmin ieren]

[User Inpu t:
ein scha lten]

R1

RN

Sensor

Auto Mode

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

Funkt io nen d es Tr anspor t ati onCo ntr ol ler

Sensor

Auto Mode

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

Se nsor

Au toM ode

Bew egungsauf tr ag
Cr ane1

Bewegu ngsauft rag

Cra ne2Ope rat ion On

Se nsor daten ver ar bei ten

Se nsor

Au toM ode

Bew egungsauf tr ag
Cr ane1

Bewegu ngsauft rag

Cra ne2Ope rat ion On

Sup plyBan d

Del i ve ryBand
Ope rat ionO n

För der bandbe wegu ngen
bere chnen

Sup plyBan d

Del i ve ryBand
Ope rat ionO n

Cr ane1Act ionBew egungsauf tr ag
Cr ane1

We gpunkt e f ür Cr ane 1
ber ech nen

Cr ane1Act ionBew egungsauf tr ag
Cr ane1

C rane2A cti onBew egungsauf tr ag
Cr ane2

W egpunkt e für Cr ane2
b ere chnen

C rane2A cti onBew egungsauf tr ag
Cr ane2

«block»
User Input

«bl ock»
O per at ionOn

«block»
Aut oM ode

«block»
Sensor

«bl ock»
C rane1Sensor

«bl ock»
Crane2Sensor «block»

S uppl yBandSensor
«block»

Deli veryBandSensor

«block»
Sensor Signal

«block»
Cr ane1S ensor Si gnal

«bl ock»
Cr ane2SensorSi gnal «bl ock»

S uppl yBandSensorSi gnal
«bl ock»

Deli veryBandSensor Signal

«block»

Syst emO uput

«block»
Act ion

«block»

Crane1Act ion
«bl ock»

Cr ane2Acti on
«bl ock»

Suppl yBandAct ion
«block»

Del iver yBandActi on

«bl ock»
Act ionSi gnal

«bl ock»
Cr ane1Act ionSi gnal

«block»
Cr ane2Acti onSignal

«bl ock»
SupplyBandAct ionSignal

«bl ock»
Deli ver yBandAct ionSi gnal

+Raw Data tr ansl ated by IO Adapter +Trans lat ed Si gnal

+deter mi ns

Det erm inati on

+deter mi ned

+Bus-conf ormant Dat a t rans lated by I OAdapter +Raw S ignal

+represented Inf orm ation

Repr esent ati on

+D isplayed dat a

I ni t i al

An lag e ein ges ch al tet

Anla ge a us ge sc ha ltet

Fi n al

Au toMo de Man ua lMod e

I ni ti a l

[Use rIn pu t = A uto Mod e]

[Use rIn pu t = !A utoM od e]

[Use rIn pu t: ei nsc ha lte n][Use rIn put :
te rmi ni eren]

[UserInp ut :
e in sch al ten]

R1

RN

Sensor

Aut oMod e

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

Fu nkti onen des Tra nspor tat io nCont ro ll er

Sensor

Aut oMod e

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag
Cr ane2O per ati onOn

S ensor dat en v er arb eit en

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag
Cr ane2O per ati onOn

Suppl yBand

Del iver yBand
O per ati onO n

För der bandbew egunge n
ber echn en

Suppl yBand

Del iver yBand
O per ati onO n

Cra ne1Act ionB ewegun gsau ft rag
C rane 1

Wegpu nkte fü r Cr ane1
ber echnen

Cra ne1Act ionB ewegun gsau ft rag
C rane 1

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

We gpunkt e f ür C ran e2
ber echn en

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

«block»
User Input

«bl ock»
O per at ionOn

«block»
Aut oM ode

«block»
Sensor

«bl ock»
C rane1Sensor

«bl ock»
Crane2Sensor «block»

S uppl yBandSensor
«block»

Deli veryBandSensor

«block»
Sensor Signal

«block»
Cr ane1S ensor Si gnal

«bl ock»
Cr ane2SensorSi gnal «bl ock»

S uppl yBandSensorSi gnal
«bl ock»

Deli veryBandSensor Signal

«block»
Syst emO uput

«block»
Act ion

«block»
Crane1Act ion

«bl ock»
Cr ane2Acti on

«bl ock»
Suppl yBandAct ion

«block»
Del iver yBandActi on

«bl ock»
Act ionSi gnal

«bl ock»
Cr ane1Act ionSi gnal

«block»
Cr ane2Acti onSignal

«bl ock»
SupplyBandAct ionSignal

«bl ock»
Deli ver yBandAct ionSi gnal

+Raw Data tr ansl ated by IO Adapter +Translat ed Si gnal

+deter mi ns

Det erm inati on

+deter mi ned

+Bus-conf ormant Dat a t ranslated by I OAdapter +Raw S ignal

+represented Inf orm ation

Repr esent ati on

+D isplayed dat a

I ni t i al

Anla ge e in ge sc ha lte t

An lag e au sg esc ha l te t

Fi n al

Auto Mod e Ma nu alMod e

I n it i al

[UserInp ut = Au to Mo de]

[UserInp ut = !A u to Mod e]

[UserInp ut : e in scha l te n][UserInpu t :
t ermi n ie re n]

[Use rIn put :
ei nsc ha lt en]

R1

RN

Sensor

Aut oMod e

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

Fu nkti onen des Tra nspor tat io nCont ro ll er

Sensor

Aut oMod e

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag
Cr ane2O per ati onOn

S ensor dat en v er arb eit en

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag
Cr ane2O per ati onOn

Suppl yBand

Del iver yBand
O per ati onO n

För der bandbew egunge n
ber echn en

Suppl yBand

Del iver yBand
O per ati onO n

Cra ne1Act ionB ewegun gsau ft rag
C rane 1

Wegpu nkte fü r Cr ane1
ber echnen

Cra ne1Act ionB ewegun gsau ft rag
C rane 1

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

We gpunkt e f ür C ran e2
ber echn en

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

«block»
UserI nput

«block»
Oper ati onOn

«block»
AutoM ode

«block»
Sensor

«bl ock»
Crane1Sensor

«block»
Cr ane2S ensor «block»

SupplyBandSensor
«block»

Del iver yBandS ensor

«bl ock»
Sensor Signal

«block»
C rane1Sensor Signal

«block»
Cr ane2Sensor Si gnal «bl ock»

Suppl yB andS ensor Si gnal
«bl ock»

Deli veryBandSensor Signal

«bl ock»

System Ouput

«block»
Act ion

«bl ock»

Crane1Act ion
«block»

Cr ane2Acti on
«block»

Suppl yBandActi on
«bl ock»

Deli veryBandAct ion

«block»
Acti onSignal

«block»
Cr ane1Acti onSignal

«bl ock»
Crane2Act ionSi gnal

«bl ock»
SupplyBandActi onSignal

«block»
Deli veryBandAct ionSi gnal

+R aw Dat a t rans lat ed by I OAdapt er +Tr ansl ated Signal

+det erm ins

Deter mi nation

+det erm ined

+Bus- conf orm ant Data trans l at ed by IOAdapt er +R aw Si gnal

+r epresented I nfor mat ion

Representat ion

+Displayed data

I ni t i al

Anla ge e in ge sc ha lte t

An lag e au sg esc ha l te t

Fi n al

Auto Mod e Ma nu alMod e

I n it i al

[UserInp ut = Au to Mo de]

[UserInp ut = !A u to Mod e]

[UserInp ut : e in scha l te n][UserInpu t :
t ermi n ie re n]

[Use rIn put :
ei nsc ha lt en]

R1

RN

Sensor

Aut oMod e

Oper at ionO n

C rane1 Ac ti on

C rane2 Ac ti on

S upplyB and

D eli veryB and

Fu nkti onen des Tra nspor tat io nCont ro ll er

Sensor

Aut oMod e

Oper at ionO n

C rane1 Ac ti on

C rane2 Ac ti on

S upplyB and

D eli veryB and

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag

Cr ane2O per ati onOn

S ensor dat en v er arb eit en

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag

Cr ane2O per ati onOn

Suppl yBand

Del iver yBand
O per ati onO n

För der bandbew egunge n
ber echn en

Suppl yBand

Del iver yBand
O per ati onO n

Cra ne1Ac t ionB ewegun gsau ft rag
C rane 1

W egpu nkte fü r Cr ane1

ber echnen

Cra ne1Ac t ionB ewegun gsau ft rag
C rane 1

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

We gpunkt e f ür C ran e2
ber echn en

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

«block»
User Input

«bl ock»
O per at ionOn

«block»
Aut oM ode

«block»
Sensor

«bl ock»
C rane1Sensor

«bl ock»
Crane2Sensor «block»

S uppl yBandSensor
«block»

Deli veryBandSensor

«block»
Sensor Signal

«block»
Cr ane1S ensor Si gnal

«bl ock»
Cr ane2SensorSi gnal «bl ock»

S uppl yBandSensorSi gnal
«bl ock»

Deli veryBandSensor Signal

«block»

Syst emO uput

«block»
Act ion

«block»

Crane1Act ion
«bl ock»

Cr ane2Acti on
«bl ock»

Suppl yBandAct ion
«block»

Del iver yBandActi on

«bl ock»
Act ionSi gnal

«bl ock»
Cr ane1Act ionSi gnal

«block»
Cr ane2Acti onSignal

«bl ock»
SupplyBandAct ionSignal

«bl ock»
Deli ver yBandAct ionSi gnal

+Raw Data tr ansl ated by IO Adapter +Trans lat ed Si gnal

+deter mi ns

Det erm inati on

+deter mi ned

+Bus-conf ormant Dat a t rans lated by I OAdapter +Raw S ignal

+represented Inf orm ation

Repr esent ati on

+D isplayed dat a

I ni t i al

An lag e ein ges ch al tet

Anla ge a us ge sc ha ltet

Fi n al

Au toMo de Man ua lMod e

I ni ti a l

[Use rIn pu t = A uto Mod e]

[Use rIn pu t = !A utoM od e]

[Use rIn pu t: ei nsc ha lt e n][Use rIn put :
te rmi ni eren]

[UserInp ut :
e in sch al t en]

R1

RN

Sensor

Aut oMod e

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

Fu nkti onen des Tra nspor tat io nCont ro ll er

Sensor

Aut oMod e

Oper at ionO n

C rane1 Acti on

C rane2 Acti on

S upplyB and

D eli veryB and

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag
Cr ane2O per ati onOn

S ensor dat en v er arb eit en

S ensor

A utoM ode

Be wegungsauf tr ag
Cr ane1

Bew egungsauf tr ag
Cr ane2O per ati onOn

Suppl yBand

Del iver yBand
O per ati onO n

För der bandbew egunge n
ber echn en

Suppl yBand

Del iver yBand
O per ati onO n

Cra ne1Act ionB ewegun gsau ft rag
C rane 1

Wegpu nkte fü r Cr ane1
ber echnen

Cra ne1Act ionB ewegun gsau ft rag
C rane 1

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

We gpunkt e f ür C ran e2
ber echn en

Cr ane2A ct i onBewe gungsauft r ag
Cr ane2

«block»

UserI nput

«block»
Oper ati onOn

«block»
AutoM ode

«block»
Sensor

«bl ock»
Crane1Sensor «block»

Cr ane2S ensor
«block»

SupplyBandSensor
«block»

Del iver yBandS ensor

«bl ock»
Sensor Signal

«block»
C rane1Sensor Signal

«block»
Cr ane2Sensor Si gnal «bl ock»

Suppl yB andS ensor Si gnal
«bl ock»

Deli veryBandSensor Signal

«bl ock»
System Ouput

«block»
Act ion

«bl ock»
Crane1Act ion «block»

Cr ane2Acti on
«block»

Suppl yBandActi on
«bl ock»

Deli veryBandAct ion

«block»
Acti onSignal

«block»
Cr ane1Acti onSignal

«bl ock»
Crane2Act ionSi gnal

«bl ock»
SupplyBandActi onSignal

«block»
Deli veryBandAct ionSi gnal

+R aw Dat a t rans lat ed by I OAdapt er +Tr ansl ated Signal

+det erm ins

Deter mi nation

+det erm ined

+Bus- conf orm ant Data trans l at ed by IOAdapt er +R aw Si gnal

+r epresented I nfor mat ion

Representat ion

+Displayed data

I ni t i al

Anla ge e in ge sc ha lte t

An lag e au sg esc ha l te t

Fi n al

Auto Mod e Ma nu alMod e

I n it i al

[UserInp ut = Au to Mo de]

[UserInp ut = !A u to Mod e]

[UserInp ut : e in scha l te n][UserInpu t :
t ermi n ie re n]

[Use rIn put :
ei nsc ha lt en]

R1

RN

Sensor

Auto Mode

Oper at ionO n

C rane1 Ac ti on

C rane2 Ac ti on

S upplyB and

D eli veryB and

Funkt io nen d es Tr anspor t ati onCo ntr ol ler

Sensor

Auto Mode

Oper at ionO n

C rane1 Ac ti on

C rane2 Ac ti on

S upplyB and

D eli veryB and

Se nsor

Au toM ode

Bew egungsauf tr ag
Cr ane1

Bewegu ngsauft rag

Cra ne2Ope rat ion On

Se nsor daten ver ar bei ten

Se nsor

Au toM ode

Bew egungsauf tr ag
Cr ane1

Bewegu ngsauft rag

Cra ne2Ope rat ion On

Sup plyBan d

Del i ve ryBand
Ope rat ionO n

För der bandbe wegu ngen
bere chnen

Sup plyBan d

Del i ve ryBand
Ope rat ionO n

Cr ane1Ac t ionBew egungsauf tr ag
Cr ane1

We gpunkt e f ür Cr ane 1

ber ech nen

Cr ane1Ac t ionBew egungsauf tr ag
Cr ane1

C rane2A c ti onBew egungsauf tr ag
Cr ane2

W egpunkt e für Cr ane2
b ere chnen

C rane2A c ti onBew egungsauf tr ag
Cr ane2

«block»

User Input

«bl ock»
O per at ionOn

«block»
Aut oM ode

«block»
Sensor

«bl ock»
C rane1Sensor «bl ock»

Crane2Sensor
«block»

S uppl yBandSensor
«block»

Deli veryBandSensor

«block»
Sensor Signal

«block»
Cr ane1S ensor Si gnal

«bl ock»
Cr ane2SensorSi gnal «bl ock»

S uppl yBandSensorSi gnal
«bl ock»

Deli veryBandSensor Signal

«block»
Syst emO uput

«block»
Act ion

«block»
Crane1Act ion «bl ock»

Cr ane2Acti on
«bl ock»

Suppl yBandAct ion
«block»

Del iver yBandActi on

«bl ock»
Act ionSi gnal

«bl ock»
Cr ane1Act ionSi gnal

«block»
Cr ane2Acti onSignal

«bl ock»
SupplyBandAct ionSignal

«bl ock»
Deli ver yBandAct ionSi gnal

+Raw Data tr ansl ated by IO Adapter +Trans lat ed Si gnal

+deter mi ns

Det erm inati on

+deter mi ned

+Bus-conf ormant Dat a t rans lated by I OAdapter +Raw S ignal

+represented Inf orm ation

Repr esent ati on

+D isplayed dat a

I ni t i al

An lag e ein ges ch al tet

Anla ge a us ge sc ha ltet

Fi n al

Au toMo de Man ua lMod e

I ni ti a l

[Use rIn pu t = A uto Mod e]

[Use rIn pu t = !A utoM od e]

[Use rIn pu t: ei nsc ha lt e n][Use rIn put :
te rmi ni eren]

[UserInp ut :
e in sch al t en]

Fig. 3-1 SPES Modeling Framework

While the four viewpoints mentioned in the SPES modeling framework
are the same for the different domains, the abstraction layers differ
[Baumgart et al. 2010, Baumgart et al. 2011, Sikora et al. 2012]. For
example, in the avionics domain, the abstraction layers aircraft, system,
subsystem, sub-subsystem, component, and unit can be found, and in the
automotive domain, the layers supersystem, system, subsystem, and
hardware/software component. Hence, our approach abstracts from these
different layers by supporting user-defined layers.

The SPES modeling framework is designed to be independent of any
application domain (e.g., automation, automotive, avionics, energy, and
medical). It defines fundamental concepts and how these concepts are
related to one another. Domain-specific metamodels are interpreted in
these concepts, thereby making general analysis techniques available for
the specific application domain. In the following, we provide an
overview of the viewpoints in Sections 3.5.1 to 3.5.4. In Section 3.5.5,
we consider the relationship between the viewpoints that allows the
seamless integration of the viewpoints into a comprehensive modeling
approach.

3.5 The SPES Modeling Framework 39

3.5.1 Requirements Viewpoint

The goal of the requirements viewpoint is to support the requirements
engineering process in a development project in eliciting, documenting,
negotiating, validating, and managing requirements for the system under
development. These requirements are derived from the system’s context.
The context of the system comprises entities from within the
environment of the system, such as users, stakeholders, and external
systems, but also legal documents. It also comprises physical properties
of the environment that affect the system or are affected by the system in
some way. Since these context entities are hence related in specific ways
to the system under development, they must also be considered when
eliciting requirements. The requirements viewpoint provides a
requirements artifact model that allows for a systematic consideration of
the context, the entities therein, and the resulting requirements. The basic
aim of the artifact model of the requirements viewpoint is to capture the
requirements from the system’s context completely and correctly and to
provide a means for structuring these artifacts on different levels of
abstraction (cf. Section 3.4.1).

The artifact model comprises a number of artifact types that are
briefly explained in the following:

 The context model regards the system as a black box and documents
the context of the system under development. It provides the basis
for systematically eliciting the requirements that the system under
development must satisfy during operation in order to meet its
overall purpose. Context models are well suited for use as a
foundation when performing activities for validating the correctness
of requirements (see [Weyer 2011]).

 The goal model documents the stakeholders' goals with regard to the
system under development (see [Levenson 2000, Lamsweerde
2009]). Goals can be elicited by analyzing the system’s interaction
with entities in the context and they serve as a rationale for more
concrete requirements.

 The scenario model documents examples of concrete interactions
between the system under development and its context. Each
scenario describes an example in which at least one goal is satisfied.
Scenarios can also be used to elicit new system goals [Potts 1995,
Yu 1997].

 The solution-oriented requirements model documents the concrete
and complete technical requirements that the system under
development has to realize in order to satisfy its purpose during
operation. These requirements must be as precise as possible to serve

From system context
to solution-oriented
requirements

Requirements artifacts

40 Part II – Introduction to the SPES Modeling Framework

as a foundation for the realization of the system under development.
For solution-oriented requirements models, the SPES modeling
framework distinguishes between three complementary model types
(see [Davis 1993]): the structural requirements model documents
requirements that describe the structure of the information that is
exchanged between the system and its environment; the behavioral
requirements model describes the externally visible behavior of the
system by documenting the externally recognizable state space and
corresponding state transitions; the operational requirements model
documents required system functions by considering the functional
relation between incoming and outgoing flows of information as well
as the necessary control flow.

The requirements viewpoint is explained in detail in Chapter 4.

3.5.2 Functional Viewpoint

The purpose of a system is to offer a set of user functions [Broy et al.
2007]. Typical systems offer a number of different user functions and
each user function serves a specific purpose. A system function is
characterized by a particular observable system behavior in terms of
specific interactions between inputs to the system (e.g., via sensors or
user actions) and outputs of the system (specific effects on actuators,
general reactions). The observations are captured in terms of the primary
events of the user function (see [Broy 2010]).

An example of a user function in a car might be an adaptive cruise
control (ACC) or a cooling control for the engine. In both cases, the
behavior of the user functions can be defined via the inputs of the system
from the environment and the outputs of the system to the environment.
Thus, both user functions are user functions of the system Car. All user
functions of the system Car are structured in the functional black box
model within the functional viewpoint. In contrast to this notion, a
functionality that is needed to fulfill the user function is not considered
as a user function of the system Car. Let us assume that the ACC user
function is realized such that at one stage, the input of different speed
sensors has to be aggregated. We could consider SensorAggregation as a
user function of the system Car as well. However, this is not our
understanding of a user function in the SPES modeling framework.
Instead, SensorAggregation is considered part of a description of an
abstract realization of the system Car (cf. Section 3.5.3). These parts are
called functions (in contrast to user functions) and are specified in the
functional white box model of the functional viewpoint. As the name
suggests, in the white box model, user functions of the black box model

User functions vs.
realization functions

3.5 The SPES Modeling Framework 41

are described by an abstract description of their realization. This
differentiation will become clearer within the following sections about
the functional viewpoint and its relation to the logical viewpoint.

The functional viewpoint integrates the set of user functions into a
comprehensive model of the system functionality. This functional model
describes the system behavior as it is observed at the system boundary. In
contrast to the requirements viewpoint, where requirements are captured
with respect to a certain usage context and at a certain level of
granularity, the models of the functional viewpoint integrate these
requirements into a comprehensive system specification. This especially
includes behavior that arises from the complex interplay of different user
functions.

We define the notion “user function” as a concept that has a specific
purpose and corresponds to a determined behavior in the form of an
interaction across the system boundaries. In addition, user functions
typically have identifying names. The behavior of a user function can be
captured by a behavior specification.

If there are dependencies between user functions such that the output
of a user function depends implicitly on the behavior of another user
function, this is referred to as a functional dependency or feature
interaction and we model this using modes. This will be discussed in
Chapter 6.

According to this idea, we describe the functionality of a system
under development using functional hierarchies in which we combine
user functions into functional groups. The leaves of the resulting
hierarchical structure correspond to individual atomic user functions. A
functional hierarchy specifies the functionality of the system under
development at a specific level of abstraction. The granularity that is
chosen for a function hierarchy depends on the choice and the skill of the
developer. The more intelligently the functional hierarchy is chosen, the
more independently the user functions can be described, and the clearer
the functional dependencies between the user functions captured by the
modes.

3.5.3 Logical Viewpoint

In order to realize the desired functionality that is specified in the models
of the functional viewpoint, the developer has to think about a
decomposition of the system under development into an architecture of
logical components. The logical viewpoint describes this glass box
structural decomposition of the system, whereas the functional black box
model of the functional viewpoint in particular focuses purely on

User functions

Hierarchies of user
functions

42 Part II – Introduction to the SPES Modeling Framework

describing the black box behavior (see [Schätz 2005]). The result is a
description of the logical solution independent from any technological
constraints. This description can be reused for multiple platforms. The
reasons for decomposing the system under development into subsystems
are manifold. In addition to mastering the complexity, further aims of the
logical viewpoint are the division of labor and in particular, improving
the capability of reuse. Grouping functionality that contributes to the
realization of multiple user functions into one subsystem can save
development costs and increase quality (see [Lim 2002]).

A logical component architecture as described in the logical
viewpoint consists of a number of logical components that are connected
via logical channels. Logical components exchange data via their logical
channels, in the sense of a data flow architecture. Logical architectures
can be structured hierarchically such that coarse-grained logical
components are themselves again broken down into fine-grained logical
components. At the level at which subsystems should not be further
broken down, they can in turn be described by behavior description
techniques such as state machines with input and output. The
decomposition of a system into logical components is a starting point for
the next iteration of eliciting requirements and defining user functions for
each logical component.

The behavior of individual logical components can—similar to user
functions—be represented by behavior descriptions (e.g., state
machines). These behavior descriptions implement the individual logical
components and their logical behavior. If we manage to capture all of
these logical components in their logical behavior using state machines, a
purely logical system simulation can be performed.

An important question is how the relationship between the user
functions and the logical components of the logical component
architecture can be used methodically. Typically, only a portion of the
logical component architecture is needed to provide a specific user
function. We can thus define micro-architectures that show the portion of
the logical component architecture that is relevant for a user function.
This is interesting insofar as it may ultimately determine which of the
logical components are involved in the provision of a user function.
Particularly appealing is the representation of the modes from the
hierarchy to the level of logical structure and the function of their
technical components.

Logical component
architecture

Relationship between
user functions and

logical components

3.5 The SPES Modeling Framework 43

3.5.4 Technical Viewpoint

The technical viewpoint combines the software of the system under
development with its hardware. It thus contains a description of the
physical architecture. A deployment mapping specifies where software
tasks of the logical viewpoint are executed and where and how logical
subsystems are realized. The viewpoint considers aspects such as timing,
resource consumption, and redundancy insofar as these have not been
addressed before.

The main goals of the technical viewpoint are:

 Providing a description of the target hardware, with ECUs, memory,
communication infrastructure, and peripheral devices

 Fixing the deployment of software modules
 Realizing logical subsystems
 Studying the interaction of software and hardware
 Ensuring that the behavior conforms to the specifications of the

logical viewpoint, and that constraints concerning timing,
independency, etc. are observed

The technical architecture comprises components for information
processing (including communication) and their connection to the
environment via sensors and actuators. The nature of the controlled
system may have a considerable impact on the structure of the
architecture and the characteristics of the information-processing
components. These components will usually be described in the form of
models abstracting from the details of the actual components that are
used. The models also cover relevant services of operating systems,
middleware, and so on. There are elaborated domain-specific approaches
such as AUTOSAR (automotive) or IMA (avionics) that will often be
employed.

The realization of the logical viewpoint via the deployment mapping
results in a description of the system close to its final implementation.
Therefore, properties that have been specified abstractly in previous
engineering steps must be shown to have been realized in the technical
architecture. Most prominently, these concern resource consumption,
timeliness, and issues such as reliability and availability. For instance,
tasks may be regarded as independently executable in the models of the
logical viewpoint. However, if they are allocated on the same computing
resource, they now have to be scheduled in a way that is consistent with
all requirements. Communication, which was modeled as point-to-point
and without delay in the logical viewpoint, has to be shown as
appropriately realized by shared media such as busses.

Goals

44 Part II – Introduction to the SPES Modeling Framework

Thus, the technical viewpoint studies the properties of the final
implementation and has to establish that the physical realization meets all
logical requirements.

3.5.5 Relation between Viewpoints

The requirements viewpoint introduces context factors, such as external
stimuli or usage factors imposed by users or other systems, into the
development process and establishes them as part of the requirements of
the system under development. It therefore serves as a starting point for
other viewpoints in the SPES modeling approach, as it specifies
requirements that must be adhered to by other viewpoints. For example,
solution-oriented requirements models of the requirements viewpoint
must be fulfilled by user functions that are integrated in the functional
hierarchy developed in the functional viewpoint. Furthermore, the
external interfaces specified in the context models must correspond to
logical (external) interfaces in the functional viewpoint as well as in the
logical viewpoint. However, this is not a strict top-down process.
Subsequent development activities in other viewpoints may require
artifacts from the requirements viewpoint to be altered, modified,
removed, or extended. Furthermore, the system context may also directly
affect viewpoints other than the requirements viewpoint. For example, if
the system to be developed has to be integrated into an existing
environment consisting of legacy systems, these systems will inevitably
affect the technical viewpoint.

The logical viewpoint describes the internal logical structure of the
system by means of communicating logical components. Thus, the
viewpoint considers the system in a glass box view in contrast to the
functional viewpoint where the system is considered as a black box. The
relation between a user function (from the functional viewpoint) and a
logical component (from the logical viewpoint) is often mixed up. A user
function formalizes a part of the requirements that a system must fulfill
at its boundary, whereas a logical component captures a part of
functionality that lies within a system and that contributes (among other
things) to the realization of a user function. In general, there is an n:m
mapping between user functions and logical components. This means
that one user function can be realized by a number of logical
components, and one logical component can contribute to the realization
of a number of user functions.

Fig. 3-2 illustrates the relation between these two notions. As shown,
the system under development S is structured into a hierarchy of user
functions (functional black box model). For each user function, there is a

Relating the
requirements and

functional viewpoints

Relating the functional
and logical viewpoints

3.5 The SPES Modeling Framework 45

functional white box model. The figure only shows the functional white
box model for user function UF1. The functions of the white box model
are allocated to logical components in the logical viewpoint. The logical
component LC1 itself can in turn also be considered a system under
development in the next lower abstraction layer. We can again provide a
functional black box model (with function F1 as one of the user
functions), functional white box models, and a logical component
architecture for the SUD LC1.

Fig. 3-2 Relation between the functional and logical viewpoints across

abstraction layers

At the core of the relation between the logical and the technical
viewpoints is the deployment mapping. It specifies where and how
logical components are realized on the technical architecture: which
technical parts (ECUs, busses etc.) are involved in implementing such
logical components, which communication resources are used in their
interaction, and so on. Once the deployment is specified, a check is
required to determine whether properties established for the logical
viewpoint remain valid in the technical viewpoint. A typical issue that
arises is schedulability, for instance, when several software tasks have
been allocated to one ECU. The availability of features of the target has a
considerable impact on the form of the deployment mapping and the type
of analyses to be performed. Platforms such as AUTOSAR provide an
abstraction layer that alleviates several of these tasks. Another issue in
this design step concerns requirements inherited from previous steps that

Relating the logical
and technical
viewpoints

46 Part II – Introduction to the SPES Modeling Framework

now have to be implemented. For example, redundancy, reliability, and
independence usually have to be taken care of when moving to the
technical viewpoint.

3.6 Underlying Modeling Theories
The SPES modeling framework is founded on several formal modeling
theories and uses these theories’ basic concepts in a continuous modeling
approach. However, the SPES modeling framework was not based on
one single specific theory and may be formalized using any of the
underlying modeling theories. The aim of this was to allow practitioners
to tailor the SPES modeling approach for different development projects
and to allow for a maximum of flexibility in formalization. The
underlying modeling theories are briefly summarized below.

The SPES modeling framework supports the use of formalized
notions but does not force it. In the requirements viewpoint, for example,
to document scenarios, informal sequence charts can be used in addition
to formal message sequence charts [ITU 2004]. While informal sequence
charts are mainly used for describing and discussing the system’s
functions and behavior with stakeholders, formal message sequence
charts may be used to specify strict and formal solution-oriented
requirements consistent with different components.

Similarly, in order to integrate different architecture viewpoints
(functional, logical and technical), formal semantics can be used.
Therefore, at least two different formal modeling theories have been
developed that fit the SPES modeling approach. One modeling theory
describes modeling entities such as functions, subsystems, or technical
components using stream processing functions. In this theory, a stream
processing function describes the behavior of an entity at its interface in
terms of input and output data streams (see [Broy 2010]). Another
modeling theory describes modeling entities as heterogeneous rich
components [Damm et al. 2005], where the term “rich” alludes to the key
ingredient of heterogeneous rich components to provide (rigorous)
interface specifications for multiple aspects, encompassing both
functional and extrafunctional (e.g., safety and real-time) characteristics
of components. Specifically, the proposal is to use contract-based
specifications that allow, for each aspect, characterization of the allowed
design context of a component.

Besides the different formal modeling theories that can be chosen
electively, there is a common understanding that forms the foundation of
the complete SPES modeling framework with all of its views. The SPES

3.7 Overview of the Following Chapters 47

modeling framework distinguishes between the system under
development and the system’s context. Whereas modeling the context is
a key element of the requirements viewpoint, the different architectural
views focus on modeling the interfaces connecting the system with its
context. The system may be decomposed into subsystems or components
with their own contexts. The context of a subsystem, for example, will
contain the context of the overall system as well as the other subsystems
of the system.

3.7 Overview of the Following Chapters
All four viewpoints of the SPES modeling framework are explained in
more detail in the following chapters. Chapter 4 outlines the
requirements viewpoint and illustrates how requirements from the
context can be documented and refined by means of requirements
models. The functional viewpoint is explained in Chapter 5 and shows
how the requirements models from the requirements viewpoint can be
refined into a functional architecture of the system that fulfills the
solution-oriented requirements. Chapter 6 describes the logical viewpoint
that allows specification of a logical architecture that consists of internal
and external interfaces of the system in compliance with the system
requirements as well as the functional architecture. Finally, Chapter 7
illustrates the technical viewpoint. This viewpoint maps a logical
architecture onto concrete physical and technical components such that
the system requirements are fulfilled.

Safety and real-time are two very important concerns of embedded
system development. These concerns are crosscutting and have to be
considered in every viewpoint on every abstraction layer that is used
during development. Chapters 8 and 9 show how safety and real-time
respectively are accounted for during the development within all
viewpoints.

All four viewpoint chapters and both crosscutting concerns illustrate
their respective concepts by means of a common example system in the
form of a case study. The case study is a cylinder head production system
taken from the automation domain. The cylinder head production system
is an assembly line that produces cylinder heads for gasoline engines.
The system takes raw material that is fed into the production cell. It
consists of an input and an output conveyor belt, a milling station, a
grinding station, a measuring station, as well as an assembly station that
finally delivers the finished product. Production of cylinder heads must
obey strict real-time constraints, as material may only be processed under

48 Part II – Introduction to the SPES Modeling Framework

the right physical conditions. Furthermore, system safety is an important
concern that must be observed.

3.8 References
[Baumgart et al. 2010] A. Baumgart, P. Reinkemeier, A. Rettberg, I. Stierand, E. Thaden,

R. Weber: A model-based design methodology with contracts to enhance the
development process of safety-critical systems. In: Proceedings of the 8th IFIP WG
10.2 international conference on Software technologies for embedded and ubiquitous
systems, SEUS'10, 2010, pp. 59-70.

[Baumgart et al. 2011] A. Baumgart, E. Böde, M. Büker, W. Damm, G. Ehmen, T. Gezgin,
S. Henkler, H. Hungar, B. Josko, M. Oertel, T. Peikenkamp, P. Reinkemeier, I.
Stierand, R. Weber: Architecture modeling. In: OFFIS Technical Report, OFFIS
Oldenburg, March 2011.

[Braun et al. 2010] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller, B.
Penzenstadler, K. Pohl, T. Weyer: Guiding requirements engineering for software-
intensive embedded systems in the automotive industry. Computer Science - Research
and Development. DOI: 10.1007/s00450-010-0136-y, 2010.

[Broy 2010] M. Broy: Multifunctional Software Systems: Structured modelling and
specification of functional requirements. In: Science of Computer Programming, Vol.
75, No. 12, 2010, pp. 1193-1214.

[Broy et al. 2007] M. Broy, I. Krüger, M. Meisinger: A formal model of services. In: ACM
Transactions on Software Engineering and Methodology (TOSEM), Vol. 16, No. 1,
ACM, New York, 2007.

[Damm et al. 2005] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, E.
Böde: Boosting re-use of embedded automotive applications through rich components.
In: Foundations of Interface Technologies, FIT’05, 2005.

[Davis 1993] A. M. Davis: Software Requirements – Objects, Functions, States. 2nd Edition,
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[Dijkstra 1976] E. Dijkstra: A discipline of programming. Prentice-Hall Series in
Automatic Computation, 1976.

[IEEE 1362] Institute of Electric and Electronic Engineers: Guide for information
technology – system definition – concepts of operations (IEEE 1362-1998), IEEE
Press, 1998.

[IEEE 1471] Institute of Electric and Electronic Engineers: Architectural Description of
Software-Intensive Systems (IEEE 1471-2000), IEEE Press, 2000.

[ITU 2004] International Telecommunication Union: ITU-T Z.120: Message Sequence
Chart (MSC), 2004.

[Lamsweerde 2009] A. van Lamsweerde: Requirements Engineering – From System Goals
to UML Models to Software Specifications. Wiley, West Sussex, 2009.

[Levenson 2000] N. Levenson: Intent Specifications – An approach to building human-
centered specifications. IEEE Transactions on Software Engineering, Vol. 26, No. 1,
2000, pp. 15-35.

[Lim 2002] W. Lim: Effects of reuse on quality, productivity, and economics. IEEE
Software 11(5), 2002.

3.8 References 49

[Parnas and Madey 1995] D. L. Parnas, J. Madey: Functional documents for computer
systems. In: Science of Computer Programming, Vol. 25, No. 1, pp. 41-61.

[Pohl 2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, Berlin/Heidelberg, 2010.

[Potts 1995] C. Potts: Using schematic scenarios to understand user needs. In: Proceedings
of the ACM Symposium on Designing Interactive Systems – Processes, Practices,
Methods and Techniques (DIS’95). ACM, New York, 1995, pp. 247-266.

[Sage and Rouse 2009] A. P. Sage, W. B. Rouse: Handbook of Systems Engineering and
Management. John Wiley and Sons, 2nd Edition, 2009.

[Schätz 2005] B. Schätz. Building components from functions. In: Electronic Notes in
Theoretical Computer Science, Vol. 160. Proceedings of the International Workshop
on Formal Aspects of Component Software FACS 2005.

[Sikora et al. 2010] E. Sikora, M. Daun, K. Pohl: Supporting the consistent specification of
scenarios across multiple sbstraction levels. In: R. Wieringa, A. Persson (Hrsg.):
Proceesdings of the 16th Intl. Working Conf. on Requirements Engineering:
Foundation for Software Quality. LNCS 6182, Springer, Berlin/Heidelberg, 2010, pp.
45-59.

[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl. Industry needs and research
directions in requirements engineering for embedded systems. In: Requirements
Engineering Journal, Vol. 17, No.1, 2012, pp. 57-78.

[Sommerville 2010] I. Sommerville: Software Engineering. Pearson, 9th Edition, 2010.

[Tarr et al. 1999] P. Tarr, H. Ossher, W. Harrison, Jr. S. M. Sutton: N degrees of separation:
multi-dimensional separation of concerns. In: ICSE '99: Proceedings of the 21st
international conference on Software engineering, ACM, New York, 1999, pp. 107-
119.

[Weyer 2011] T. Weyer: Kohärenzprüfung von Anforderungsspezifikationen: Ein Ansatz
zur Prüfung der Kohärenz von Verhaltensspezifikationen gegen Eigenschaften des
operationellen Kontexts. Südwestdeutscher Verlag für Hochschulschriften, 2011.

[Yu 1997] E. Yu: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering (RE’97), IEEE Computer Society Press, Los Alamitos,
1997, pp. 226-235.

Marian Daun
Bastian Tenbergen
Dr. Thorsten Weyer

 4

Requirements Viewpoint

The requirements viewpoint defines concepts and techniques for systematically eliciting
and specifying the requirements for a system under development. The requirements
viewpoint differentiates between different artifact types that document different
information elicited during requirements engineering:

 Context, which documents the operational environment in which the system under
development is embedded

 Goals, which document stakeholder intentions with regard to the system under
development

 Scenarios, which document typical interactions between the system under
development and its context

 Solution-oriented requirements, which document the requirements for the system
under development in a precise and complete manner

51,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_4, © Springer-Verlag Berlin Heidelberg 2012

52 Part II – Requirements Viewpoint

4.1 Introduction to the Requirements Viewpoint
The requirements viewpoint comprises the part of the SPES modeling
framework that primarily deals with the accurate, complete, and
consistent specification of system requirements. These requirements
serve as input for functional analyses and architecture design (see
Chapters 5 to 7). The goal of the requirements viewpoint is to:

 Gain a comprehensive understanding of the system under
development

 Foster the best possible freedom in development by preventing
premature commitment to possible solutions

 Supply the necessary information such that decisions pertaining to
concrete implementation can be made during subsequent architecture
design

In the requirements viewpoint, a strict separation between stakeholder
intentions and solution-oriented requirements is maintained. In order to
support this separation, the requirements viewpoint contains three
solution concepts:

 Solution-neutral requirements describe the intentions of the
stakeholders and the added benefit that can be gained for the
stakeholders [Leveson 2000]. Concrete aspects of a possible solution
are ignored.

 Solution-oriented requirements describe necessary properties of
operations, system states, and the information structure, as well as
qualities that a solution must possess [Pohl 2010]. Solution-oriented
requirements are the connection between solution-neutral
requirements and concrete implementations.

 The intertwined development of requirements artifacts is based on a
goal-/scenario-oriented, step-by-step refinement of requirements
from solution-neutral to solution-oriented requirements. Due to the
step-by-step, artifact-based refinement, the intertwined development
allows for traceability between requirements artifacts, ensures
requirements consistency between the artifacts, and leads to
completeness with regard to the requirements artifacts and the
requirements specification.

The requirements viewpoint documents a complete system requirements
specification by means of partial diagrams. Therefore, each artifact
model contains a number of different requirements diagrams (see Section

Separation of
requirements and

solution

Solution-neutral and
solution-oriented

requirements; co-
design process

Artifact model, types
of requirements

models

4.2 Requirements Artifacts 53

4.2). Due to the number of different requirements artifacts and their
interrelations, the requirements viewpoint is very comprehensive as well
as complex. Therefore, different model types are used. By using different
model types within the requirements viewpoint, the corresponding view
is constructed by integrating each model type based on common facts.
Typical model types are goals and scenarios, as well as structural,
operational, and behavioral models (see [Pohl 2010] and Section 4.2.4).

The artifact model of the requirements viewpoint is explained below
(Section 4.2). In addition, the integration of the requirements viewpoint
with other viewpoints and abstraction layers of the SPES modeling
framework is illustrated in Section 4.3. Finally, we outline a
requirements engineering process across several abstraction layers: it can
be used to systematically develop requirements of the system under
development (SUD) and can be tailored for individual project needs
(Section 4.4).

4.2 Requirements Artifacts
In this section, we briefly outline the artifact model of the requirements
viewpoint. Each subsection outlines one artifact type and gives a short
example.

4.2.1 Context Model

The context of the system is that part of the operational infrastructure
that does not belong to the system (and therefore cannot be influenced
during development) but surrounds the system once it has been deployed
(and therefore strongly impacts the definition of requirements for the
SUD). If the context of the SUD is not properly understood, it is
impossible to properly define and interpret the requirements for the SUD
[McMenamin and Palmer 1984, Davis 1993, Jarke and Pohl 1994,
Hammond et al. 2001]. The requirements viewpoint therefore contains
context models for modeling that part of the environment that influences
the system. Context models can be used to document constraints from the
physical environment of the system that limit the scope, solution space,
or development process (e.g., the environment it will be deployed in,
company-specific regulations, or laws and legislation that must be
adhered to).

Context models focus on the system’s desired interaction with its
environment or, more precisely, its context entities [Weyer 2011].
Context entities are, for example, external actors, sensors, and other

Importance of the
system context

Context entities,
interfaces, and system
interaction

54 Part II – Requirements Viewpoint

systems in the environment that interact with the SUD. Each specified
context entity must be present in at least one scenario model (see Section
4.2.3) so that the SUD’s interaction with each entity can be assessed.
Context models allow system goals to be determined and give a first
impression about the SUD’s interaction with its context. In the SPES
modeling framework, context models also define the interfaces of the
functional black box model in the functional viewpoint (see Section 5).
Further information on context models can be found in [Weyer 2011]. In
the requirements viewpoint of the SPES modeling framework, a number
of different types of context models can be used. For example, structural
diagrams such as SysML block definition diagrams or internal block
diagrams [OMG 2010a] can be used to document static/structural context
information. On the other hand, dynamic aspects of the context can be
documented using Petri nets [Reisig 1991] or communicating finite state
machines [Lynch and Tuttle 1989, Alfaro and Henziger 2001].

Fig. 4-1 shows an example of the context model of a simplified
automation system as a SysML block definition diagram. The SUD (the
<<block>> stereotype in the middle) is treated as a black box, that is, no
internal properties are considered. There are a number of context entities
(<<actor>> stereotypes) that communicate with the SUD, either
receiving output from the SUD or producing input to the SUD.

Fig. 4-1 Example of a context diagram 1

1 All figures in the requirements viewpoint have been modeled using Enterprise Architect®

Example of a context
model

4.2 Requirements Artifacts 55

Hint 4-1 lists the rules that have been defined in the requirements view
for ensuring that the context of the SUD has been modeled completely
and correctly.

Hint 4-1: Rules for checking context models
 Have all actors in the system context that receive output from or

produce input to the SUD been considered?
 Have all inputs that the SUD receives from the environment or from

entities within the system context been considered?
 Have all outputs that the SUD delivers to the system context or to

context entities been considered?

4.2.2 Goal Model

Goal models document the intentions of stakeholders when they are
conceiving the system. They represent a first manifestation of the
stakeholders’ system vision. Goals give rationales and justifications for
the functionalities and features the system must possess. Goals ignore
concrete aspects of the solution and hence serve as an essential means for
negotiating requirements and their necessity with regard to the system
envisioned. The purpose of negotiating requirements on the basis of
goals is to establish a common understanding of the envisioned among
all stakeholders. In addition, goals can be used to document necessary
quality aspects such as the system’s safety features (see Chapter 8) or
real-time behavior (see Chapter 9) that in turn will be specified using
solution-oriented requirements (see Section 4.2.4).

In goal models, relationships can be identified between goals,
functions, and qualities. For example, goals might be in direct conflict
with one another (i.e., fulfilling one goal will make it impossible to fulfill
a conflicting goal), or the fulfillment of goals may contribute positively
or negatively to the fulfillment of another goal (i.e., make it easier or
harder to achieve the other goal). In addition, goals can be refined using
AND and OR refinements: AND refinements denote that a number of
refining goals have to be fulfilled in order to fulfill the refined goal; OR
refinements denote that at least one of the refining goals has to be
fulfilled in order to fulfill the refined goal. Furthermore, we can
distinguish between hard and soft goals. Hard goals are goals whose
fulfillment can be verified by means of simple yes/no checks (i.e., either
the goal has been fulfilled or not). In contrast, soft goals represent goals
that the system to be developed fulfills to a certain degree.

Rules for checking
context models

Capturing stakeholder
intentions

Goal types and goal
refinement

56 Part II – Requirements Viewpoint

Goals can be determined in part from the context model but also through
stakeholder collaboration. Typical stakeholders who may contribute
goals to a system are clients, contractors, product managers, business
managers, technical leaders, certifiers or certifying authorities, or the
legislative authority. Goals and goal modeling are explained in more
detail in [Yu 1997, Lamsweerde 2009, Pohl 2010]. In the requirements
view of the SPES methodology, KAOS goal diagrams, i* models, or
SysML requirements diagrams can be used to model this artifact type.

Fig. 4-2 Example of a goal diagram

Fig. 4-2 shows the goal diagram of an example system using the KAOS
notation [Lamsweerde 2009]. The goals are structured hierarchically
through AND and OR refinement. In this diagram, the top-most soft goal
is refined by means of two alternatives (OR refinement). One alternative
consists of two hard goals that both have to be fulfilled for the soft goal
to be fulfilled (AND refinement). However, there is a conflict between
these two goals, which may indicate that this alternative is not a suitable
refinement of the soft goal. The other alternative also consists of two
hard goals (one of which is also a refinement of the other alternative) that
both have to be fulfilled for this alternative to be a valid refinement of
the soft goal (AND refinement). The diagram shows a contribution link
between the two goals in this alternative, indicating that the fulfillment of
one goal positively contributes to the fulfillment of the other goal. Hence,
this alternative is preferable over the other alternative.

Hint 4-2 lists the rules that have been defined in the requirements
viewpoint for ensuring that all goals for the SUD have been modeled
completely and correctly.

Sources of
goals/stakeholder

intentions

Example of a goal
diagram

4.2 Requirements Artifacts 57

Hint 4-2: Rules for checking goal models
 Have all hard goals of stakeholders been captured?
 Have all soft goals of stakeholders been captured?
 Have all abstract (hard or soft) goals been refined using AND and OR

refinements?
 Have all positive and negative contributions from one goal to another

goal been uncovered and documented?

4.2.3 Scenario Models

Scenarios specify example interactions of the system with its context.
They allow requirements to be determined by modeling the system's
interaction with context entities that have been identified in the context
models (see Section 4.2.1). This enables the system's benefit and impact
on the system context to be assessed. The actors that are present in any
scenario model must be present in at least one context model that has
been specified earlier. Scenarios fulfill the goals that have been specified
in the goal models (see Section 4.2.2). In the requirements viewpoint,
any goal has to be fulfilled by at least one scenario and every scenario
must fulfill at least one goal. Scenario execution is typically constrained
by preconditions. After scenario execution, specific postconditions must
hold for the entire system. Furthermore, scenarios may specify some
internal states that can be used to draft an initial specification of the
behavioral requirements models of solution-oriented requirements (see
Section 4.2.4). In scenario models, similarly to the goal models, the
system is considered as a black box. Hence, there must not be any
indication within either model that depicts the internal structure of the
SUD. We can distinguish between different types of scenarios, for
example:

 Main scenarios: Main scenarios describe the standard way of
fulfilling one or more goals.

 Alternative scenarios: Alternative scenarios describe alternative
ways of fulfilling the same goals as in the corresponding main
scenario. Alternative scenarios may also be used for error handling
in cases in which the associated goals can still be fulfilled.

 Exception scenarios: Exception scenarios describe how the system
must react in the case of a critical error during scenario execution
that prevents fulfillment of the associated goal. Exception scenarios
place particular emphasis on error recovery rather than on goal
fulfillment.

Example interactions
with the system

Rules for checking
goal models

58 Part II – Requirements Viewpoint

Additional information on scenario modeling can be found in [Pohl
2010] and [Potts 1995]. In the requirements viewpoint of the SPES
modeling framework, SysML sequence diagrams [OMG 2010a] or ITU
message sequence charts [ITU 2004] can be used to model this artifact
type. During the requirements engineering process, it may be useful to
model multiple scenarios. Scenarios can be structured using use cases
([OMG 2010a, OMG 2010bCockburn 2001], and use cases can be
related to one another, for example, by means of include and extend
relationships) or hMSCs [ITU 2004]. However, when using structuring
scenarios in this way, the scenario specification must therefore document
a complete behavioral specification.

Fig. 4-3 shows a SysML sequence diagram with a scenario model.
The diagram depicts a scenario for executing a production process. This
scenario fulfills one goal from Fig. 4-2. Furthermore, the model in Fig.
4-3 specifies five states that the SUD adopts during this interaction (for
details, see Section 4.2.4).

Hint 4-3 lists the rules that have been defined in the requirements
viewpoint for ensuring that the scenario artifacts have been modeled
completely and correctly.

Hint 4-3: Rules for checking scenario models
 Has a precondition been specified for each scenario?
 Does every scenario describe the entire interaction necessary to fulfill

one or more goals?
 Does every scenario account for all actors that interact with the system?
 Have postconditions been specified for every scenario?

Structuring scenarios

Rules for checking
scenario models

4.2 Requirements Artifacts 59

Fig. 4-3 Example of a sequence diagram

4.2.4 Solution-Oriented Requirements Model

Solution-oriented requirements are solution-specific descriptions of
behavior, operations, and the information structure of the solution
concept developed (see [Pohl 2010] and [Davis 1993]). They thus
represent a first step towards the implementation. Solution-oriented
requirements consist of a structural requirements model, an operational
requirements model, and a behavioral requirements model. Solution-
oriented requirements can thus be derived from scenario descriptions as
scenarios may specify states that the SUD adopts after a certain
interaction sequence has been executed. Furthermore, the operational
requirements model and the structural requirements model of solution-
oriented requirements can be derived in part based on scenarios and the
context model, as both specify information that is exchanged between the
SUD and the context and show how information is transformed from
input to output.

All three types of solution-oriented requirements models are
developed complementarily as they present separate but interrelated
aspects of the same SUD. A more detailed explanation of solution-
oriented requirements is given in [Pohl 2010].

In the requirements viewpoint of the SPES modeling framework,
SysML block definition diagrams can be used as static/structural models,

Complementary
development of the
three perspectives

60 Part II – Requirements Viewpoint

SysML activity diagrams can be used to model operational requirements
models, and SysML state machine diagrams can be used to model
behavioral requirements models. In the following sections, an example is
given for each model type along with a brief explanation and the rules for
checking each model type.

Structural Requirements Model

Fig. 4-4 shows an information structure model for an example system as
a SysML block definition diagram. As shown, the static/structural
requirements model gives a closer account of the information that is
exchanged along the interfaces in the context model (see Section 4.2.1)
and in part by the scenario model (see Section 4.2.3). Static/structural
requirements models must therefore be defined consistently to both
artifacts and can be used to document relationships between the objects
pertaining to the information structure and other artifacts. For example, if
a context model specifies the object “work piece data” to be exchanged
between the SUD and its context, structural requirements models can be
used to refine what information item “work piece data” consists of, e.g.:
material type, length, width, height, and weight.

Fig. 4-4 Example of an information structure diagram

Hint 4-4 lists the rules that have been defined in the requirements
viewpoint for ensuring that the structural requirements models have been
modeled completely and correctly.

Purpose and example
of structural

requirements models

4.2 Requirements Artifacts 61

Hint 4-4: Rules for checking structural requirements models
 Have all inputs to the system from the context and its context entities

(as specified in the context and scenario models) been accounted for?
 Have all outputs from the system to the system context and context

entities (as specified in the context and scenario models) been
accounted for?

 Have all information structures that are specified in behavioral and
operational requirements models been documented?

 Have useful, non-trivial relationships (such as generalizations,
aggregations, compositions) been introduced between information
objects?

Operational Requirements Model

Fig. 4-5 shows a SysML activity diagram as an example of an
operational requirements model. This artifact type models operations that
are derived by assigning user functions to the goals specified in the goal
models (see Section 4.2.2) with reference to the interactions specified in
the scenario models (see Section 4.2.3). Operational requirements models
can therefore be seen as the solution-specific counterpart of the solution-
neutral scenario artifacts. Consequently, the operations specified in the
operational requirements models implement the functionalities that can
be experienced by context entities (i.e., actors or external systems)
through the interfaces that the system has with the context entities. As a
result, the interfaces specified herein must be consistent to the interfaces
specified in context models (see Section 4.2.1). This is similar to the
functional black box model in the functional viewpoint (see Section 5),
however, in contrast to the functional viewpoint, operational
requirements models are partial requirements models that document the
system’s interaction with the context in more detail than scenario models.
On the other hand, the functional viewpoint documents the entirety of the
system’s functions in order to foster analysis. As a consequence, artifacts
specified in the functional viewpoint are based on the solution-oriented
requirements models, particularly on the operational requirements
models.

Purpose and example
of operational
requirements models

Rules for checking
structural
requirements models

62 Part II – Requirements Viewpoint

Fig. 4-5 Example of an operational requirements diagram

Hint 4-5 lists the rules that have been defined in the requirements
viewpoint for ensuring that the operational requirements models have
been modeled completely and correctly.

Hint 4-5: Rules for checking operational requirements models
 Have all relevant system functionalities that have to be implemented by

the SUD to fulfill its goals been considered?
 Have inputs and outputs been defined for every operation in the

operational requirements models?
 Are the specified interfaces consistent to the interfaces in the context

models?

Behavioral Requirements Model

Behavioral requirements models can be used to specify preconditions
that must be in effect for system operations to be executed or
postconditions that have to be fulfilled after an operation has been
executed. Fig. 4-6 shows an example of a behavioral requirements model
as a SysML state machine diagram. In this diagram, the states were
partially derived from the scenario models (see Section 4.2.3).
Transitions were also derived from the scenario models and completed
during the specification of the requirements artifact at hand. Since the
white box model of the functional viewpoint (see Chapter 5) uses state
machines for specifying the internal behavior of functions, those
behavioral models are based on the behavioral requirements models of
the requirements viewpoint.

Rules for checking
operational

requirements models

Purpose and example
of behavioral

requirements models

4.3 Integration in the SPES Modeling Framework 63

Fig. 4-6 Example of a behavioral requirements diagram

Hint 4-6 lists the rules that have been defined in the requirements
viewpoint for ensuring that the behavioral requirements models have
been modeled completely and correctly.

Hint 4-6: Rules for checking behavioral requirements models
 Have all trigger events been considered in the behavioral requirements

models?
 Have all system states and transitions of the SUD been considered?
 Do the behavioral requirements models specify preconditions and

postconditions for scenarios?
 Do the behavioral requirements models specify activation conditions for

operations?

4.3 Integration in the SPES Modeling
Framework

This section gives an account of why some model types can be used in
multiple viewpoints and how these model types have to be interpreted in
the viewpoints (Section 4.3.1). Furthermore, this section explains how
the requirements viewpoint can be integrated into the SPES modeling
framework with regard to other viewpoints (Section 4.3.2) and different
abstraction layers (Section 4.3.3). Hint 4-7 gives a short summary of
correspondence rules that ensure consistency between the artifacts
developed in each step.

Rules for
checking be-
havioral require-
ments models

64 Part II – Requirements Viewpoint

Hint 4-7: Correspondence rules
Context models scenario models

 Each actor included in any scenario has to be included in the context
model

 Each actor included in the context model has to be included in at least
one scenario model

 Inputs and outputs between the SUD and any actor have to be consistent
in context and scenario models

Goal models scenario models
 Each scenario has to be related to at least one goal
 Each goal has to be fulfilled by at least one scenario

Goal models requirements models
 For each goal, system properties (functions, behavior, information

structures) have to be defined in the requirements models related to the
goal for fulfillment

 Each property documented in the requirements models must be related
to at least one goal

Scenario models requirements models
 Each scenario must be capable of being processed based on the

requirements models
 The inputs and outputs from the scenario models have to be consistent

with the requirements models
Between requirements models

 The entry condition for each function defined in the function model has
to be defined in the behavior model

 The information structure of the inputs and outputs of functions in each
function model have to be defined in the information structure model

 The state-based actions and the transition-based actions belonging to the
behavior model have to be described as functions in the function model

4.3.1 Use of Models across Viewpoints

The various model types used in the requirements viewpoint are also
used in the other viewpoints. However, depending on the viewpoint, the
model types have vastly different meanings and document entirely
different information. For example, if a statechart were used in both the
requirements viewpoint and the logical viewpoint, the statechart in the
requirements viewpoint would represent the captured requirements and
would summarize a possible solution with regard to the requirements. On
the other hand, in the logical viewpoint, the statechart would represent a
part of the logical architecture and it would detail how the system will be
implemented rather than how it could be implemented. Similarly,
functional models are used both in the functional viewpoint and in the
requirements viewpoint. While in the requirements viewpoint operational

Same model type,
different viewpoints

Correspondence rules
for the models in the

requirements
viewpoint

4.3 Integration in the SPES Modeling Framework 65

requirements models represent a type of partial functional model, the
functional viewpoint is more concerned with an integrated, functional
view on the entire SUD.

4.3.2 Integration across Viewpoints

The requirements viewpoint is the starting point for the development
process using the SPES modeling framework. Once requirements
engineering activities in the requirements viewpoint have reached a
satisfactory stability, the development process continues with the
activities in the functional viewpoint (see Chapter 5). The functional
viewpoint takes the scenario models and the solution-oriented artifacts
from behavioral and functional requirements models as input and derives
an approximate functional architecture that meets the requirements
outlined in the artifacts. Further input from the requirements viewpoint is
given to the logical and technical viewpoints (see Chapters 6 and 7
respectively). The logical viewpoint takes the system context and goal
artifacts from the requirements viewpoint and derives a logical
architecture that meets quality requirements defined in these
requirements viewpoint artifacts. These artifacts also provide quality
requirements for the technical viewpoint. In addition, the technical
viewpoint suggests a concrete hardware/software architecture based on
the requirements, functional, and logical viewpoints.

4.3.3 Integration across Abstraction Layers

One key feature of the SPES modeling framework is the hierarchy of
abstraction layers (see Section 3.4.1). Specifying requirements on
different abstraction layers is a proven approach to reducing the
complexity of development projects [Braun et al. 2010]. The
requirements viewpoint therefore allows specification of all requirements
artifacts. At each abstraction layer, the same set of artifacts is developed
(i.e., context models, goal models, scenario models, and solution-
oriented requirements models; see Section 4.2). The abstraction layers
differ from one another with regard to the level of detail contained within
their respective requirements artifacts, such that some abstraction layers
contain more coarsely specified requirements (in the following, called
higher abstraction layers) and some layers contain more detailed
requirements (lower abstraction layers).

The logical and/or technical viewpoints structurally decompose the
SUD into subsystems. The decomposed subsystems that are structurally
significant (e.g., important control units or safety-critical subsystems)

Requirements
viewpoint is the
starting point for
development

All requirements
artifacts on all
abstraction layers

SUD decomposition in
other viewpoints

66 Part II – Requirements Viewpoint

become the new focus of development and are hence treated as if they
were the SUD on the next lower abstraction layer. The requirements
process (see Section 4.4) starts anew for all of these subsystems.

4.4 The Requirements Process Model across
Abstraction Layers

The following briefly illustrates an idealized development process that
outlines the development of the different artifacts over time.

 1st Step: Analyze and document the system context: Firstly, the
system context in which the SUD will be used is analyzed and
documented. The context of any subsystem consists of relevant parts
of the context of the SUD as well as other subsystems of the SUD
that the subsystem under development interacts with.

 2nd Step: Analyze and document goals: After modeling the system
context, goals for the subsystem under development are elicited,
documented, and negotiated with the stakeholders identified during
context analysis. For the development of subsystems specifically, the
documented goals must be consistent with those documented for the
SUD. In detail, this means that the fulfillment of the goals of the
SUD is dependent on the fulfillment of all goals of all of its
subsystems.

 3rd Step: Define and model the scenarios of system usage: After the
context and goal models have been sufficiently documented,
scenarios are used to describe possible ways to fulfill the goals. The
scenarios and goals have to be related: each goal has to be fulfilled
by at least one scenario and each scenario must fulfill at least one
goal. The development of goals and scenarios is a highly iterative
and incremental process. Scenarios may lead to further goals not
discovered in the first step. New goals will lead to further scenarios.
This process continues until no new goals or scenarios are
discovered. Scenarios of any subsystems depict refinements of
scenarios of the SUD.

 4th Step: Specify solution-oriented requirements: Once the system
scenarios are sufficiently documented, and each goal is fulfilled by
one scenario, the solution-oriented requirements can be modeled.
The system still considered as a black box. Use operational,
structural, and behavioral requirements models to describe the SUD
from the perspective of the context entities. Modeling should focus

Step 1: Analyze and
document the system

context

Step 2: Analyze and
document goals

Step 3: Define and
model scenarios

Step 4: Specify
solution-oriented

requirements

4.5 References 67

on idealized system properties and essential interfaces of the system.
Hence, the developed models should be neutral to specific
implementation details, but should give closer accounts of how the
aspects modeled in context, goal, and scenario models are achieved.
The modeling of the SUD is a highly iterative and incremental
process. It may be possible that, for example, new scenarios (i.e.,
scenarios missing from the second step) are identified during this
step. These newly discovered scenarios may lead to new goals, and
so on. This step terminates when no more changes are necessary in
the artifacts. Quality requirements are documented relative to the
appropriate solution-oriented requirements by means of appropriate
annotations. In order to elicit these quality requirements, dedicated
analysis steps may be necessary (see Chapter 9).

4.5 References
[Alfaro and Henziger 2001] L. de Alfaro, T. A. Henzinger: Interface automata. In:

Proceedings of the 8th European Software Engineering Conference ESEC/FSE-9,
2001.

[Braun et al. 2010] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller, B.
Penzenstadler, K. Pohl, T. Weyer: Guiding requirements engineering for software-
intensive embedded systems in the automotive industry. Computer Science - Research
and Development. DOI: 10.1007/s00450-010-0136-y, 2010.

[Cockburn 2001] A. Cockburn: Writing Effective Use Cases. Addison-Wesley, 2001.

[Davis 1993] A. M. Davis: Software Requirements – Objects, Functions, States. 2nd Edition,
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[Hammond et al. 2001] J. Hammond, R. Rawlings, A. Hall: Will it work? In: Proceedings
of the 5th IEEE International Symposium on Requirements Engineering (RE’01), IEEE
Computer Society Press, Los Alamitos, 2001, pp. 102-109.

[ITU 2004] International Telecommunication Union: ITU-T Z.120: Message Sequence
Chart (MSC), 2004.

[Jarke and Pohl 1994] M. Jarke, K. Pohl: Requirements engineering in the year 2001 –
(Virtually) managing a changing reality. Software Engineering Journal, Vol. 9, No. 6,
1994, pp. 257-266.

[Lamsweerde 2009] A. van Lamsweerde: Requirements Engineering – From System Goals
to UML Models to Software Specifications. Wiley, West Sussex, 2009.

[Leveson 2000] N. Leveson: Intent specifications – An approach to building human-
centered specifications. IEEE Transactions on Software Engineering, Vol. 26, No. 1,
2000, pp. 15-35.

[Lynch and Tuttle 1989] N. A. Lynch, M. R. Tuttle: An introduction to input/output
automata. CWI Quarterly, Vol. 2, 1989, pp. 219-246.

[McMenamin and Palmer 1984] S. M. McMenamin, J. F. Palmer: Essential Systems
Analysis. Prentice Hall, London, 1984.

68 Part II – Requirements Viewpoint

[OMG 2010a] Object Management Group: OMG Systems Modeling Language™ (OMG
SysML) Language Specification v1.2. OMG Document Number: formal/2010-06-02.

[OMG 2010b] Object Management Group: OMG Unified Modeling Language™ (OMG
UML), Infrastructure v2.3. OMG Document Number: formal/2010-05-03.

[Pohl 2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, Germany, 2010.

[Potts 1995] C. Potts: Using schematic scenarios to understand user needs. In: Proceedings
of the ACM Symposium on Designing Interactive Systems – Processes, Practices,
Methods and Techniques (DIS’95). ACM, New York, 1995, pp. 247-266.

[Reisig 1991] W. Reisig: Petri nets and algebraic specifications. Theoretical Computer
Science, Vol. 80, No 1, 1991, pp. 1-34.

[Weyer 2011] T. Weyer: Kohärenzprüfung von Anforderungsspezifikationen: Ein Ansatz
zur Prüfung der Kohärenz von Verhaltensspezifikationen gegen Eigenschaften des
operationellen Kontexts. Südwestdeutscher Verlag für Hochschulschriften, 2011.

[Yu 1997] E. Yu: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering (RE’97), IEEE Computer Society Press, Los Alamitos,
1997, pp. 226-235.

4.6 Acknowledgements
The authors would like to thank their former colleagues Dr. Kim
Lauenroth (now with adesso AG) and Dr. Ernst Sikora (now with
Automotive Safety Technologies GmbH) for their support in early phases
of this research.

Andreas Vogelsang
Sebastian Eder
Dr. Martin Feilkas
Daniel Ratiu

 5

Functional Viewpoint

The major concern of the functional viewpoint is to provide a formal and model-based
behavior specification for the system under development. Therefore, the viewpoint
provides two model types that structure the behavioral requirements according to user
functions and provide an abstract realization of these. A user function captures a set of
solution-oriented requirements, as specified in the models of the requirements viewpoint,
and integrates them into a functional black box model — a behavioral description of the
entire system under development. By using formally founded models, the functional black
box model provides the basis for detecting undesired interactions between user functions
at an early stage of the development process. User functions are later refined by a
functional white box model that decomposes a user function into functions that represent
smaller units of functionality and provide an abstract realization of the user function. Due
to the high level of abstraction, this viewpoint is a step towards closing the gap between
semiformal requirements and a formal system design.

69,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_5, © Springer-Verlag Berlin Heidelberg 2012

70 Part II – Functional Viewpoint

5.1 Introduction
The starting point for the functional viewpoint is a set of requirements
for the behavior of the SUD provided by the models of the requirements
viewpoint, especially the context model, the scenario models, and the
behavioral requirements models (see Chapter 4). These models provide a
complete set of requirements in a semiformal, model-based
representation. The functional viewpoint provides two model types: the
functional black box model, which formalizes the requirement models as
user functions and integrates them into a comprehensive system
specification [Broy 2010], and the functional white box model, which
provides a decomposition of the user functions from the functional black
box model into smaller functional units in order to give an abstract
description of the realization of the user functions.

The models that are provided by the requirements viewpoint describe
requirements for the SUD from the view of a specific usage context. The
functional viewpoint translates these partial usage models into the notion
of user functions that define the intended system behavior, including all
interactions and dependencies between them. Thus, the result of the
functional viewpoint is a comprehensive system specification.

Within the functional black box model, the requirements models are
translated into user function hierarchies consisting of user functions and
dependencies between them (see Fig. 5-1 for an informal representation).
Each user function realizes a piece of black box functionality and is
defined by its syntactic interface and its behavioral specification. The
syntactic interface comprises the ports via which the user function is
connected to its context, and the behavioral specification defines the
messages exchanged on these ports.

User functions may have quite complex functional requirements that
may not even give any information about a possible solution for this
requirement. In order to reduce this complexity and also to facilitate
reuse of existing partial solutions, the user functions are refined in a
functional white box model. This model consists of a set of functions that
give an abstract solution of the functionality that is required by the user
function.

The functional
viewpoint has two

model types:
functional black box

model and functional
white box model

A user function
hierarchy consists of

user functions and
dependencies

between them.

5.2 Concerns 71

Fig. 5-1 Informal representation of a user function hierarchy: user

functions are composed into more complex user functions
taking account of their dependencies (dashed horizontal
arrows) and finally into the specification of the entire SUD.

5.2 Concerns
The central aims of the functional viewpoint are:

 Consolidating the functional requirements by formally specifying the
requirements of the system behavior from the black box perspective

 Mastering feature interaction: detection and resolution of
inconsistencies within the functional requirements

 Reducing complexity by structuring the functionality hierarchically
from the user's point of view

 Understanding the functional interrelationships by collecting and
analyzing the interactions between different (sub-) functionalities.

The functional viewpoint provides a hierarchically structured
specification of the SUD behavior as it is perceived by the user at the
system boundary (also known as usage behavior). In this context, a user
may be a person but also another system. The functional viewpoint
comprises the formal definition of the SUD interface with surrounding
systems and users. The behavior of the entire SUD is then specified from
the black box perspective by describing the exchange of messages
between the SUD and its context. Here, the abstract data flow is
specified, namely the intentional meaning of the exchanged data (as

Aims of the functional
viewpoint

72 Part II – Functional Viewpoint

opposed to the concrete message types). By formally describing the
requirements, we create the basis for measuring the completeness of and
detecting inconsistencies in the requirements, especially for interacting
requirements of different functions (cf. feature interaction [Zave 1993]).

The overall system functionality can be obtained from the
composition of user functions (with respect to the dependencies between
them). Here, the decomposition/structuring is not guided by architectural
or technical aspects but is executed merely along the functional aspects
required by the users.

Thus, an informal requirement can be realized by one or several user
functions and a user function can realize one or more informal
requirements. The structuring and refinement of the requirements models
in the functional viewpoint makes it possible to analyze existing
requirements and thus to detect and resolve inconsistencies (e.g., feature
interaction) and missing requirements.

5.3 Functional Black Box Model
The central construct of the functional black box model is a user function
that defines a part of the behavior of the SUD that can be observed at the
system boundary. Fig. 5-2 shows how user functions are related to the
black box interface of the SUD. Consequently, a user function does not
contain any information about how it is implemented in the SUD.

Fig. 5-2 The system interface is structured into three user functions that

all comprise a subset of input and output channels and their
related behavior.

Each user function has a syntactic interface that consists of a number of
typed ports that are either input ports or output ports. In general, input
and output ports define messages that an actor sends to the SUD or
receives from the SUD. We also assign an interface behavior to each user
function. A possible formalization of this notion can be found in [Broy
2010].

The functional
viewpoint is

independent from
realization

User functions

5.3 Functional Black Box Model 73

Example 5-1: Transportation user function
Fig. 5-3 and Fig. 5-4 illustrate a simple transportation belt user function. The
user function has two input channels transmitting two values that indicate
whether a work piece is present at the beginning or the end of the
transportation belt. The output channel controls the transportation belt motor.
The user function formalizes the requirement that the transportation belt shall
be switched on if a work piece is present at the beginning of the belt but no
other work piece is waiting at the end of the belt. The behavior specification
is given by a simple table specification that maps input values to output
values. The “?” character is an abbreviation for all possible values on this
channel.

Fig. 5-3 Syntactic interface of the Transportation user function

Fig. 5-4 Interface behavior of the Transportation user function described

by a simple I/O table that maps values of the input channels to
values of the output channel

Fig. 5-2 also reveals that user functions can have common input or output
channels. This indicates a certain kind of dependency between user
functions. This dependency expresses that a user function also needs
information about another function’s state or input values to determine
the correct output values. In order to model dependencies between user
functions, we use special ports that connect user functions via a Mode
Channel. These channels are called mode channels as they usually
transmit values that represent an abstract state of the SUD — a mode.

In principle, we could avoid the appearance of functional
dependencies completely by explicitly all inputs ever relevant for a user
function and its output behavior to syntactic interfaces. However, due to
the high number of dependencies in a system, this leads to a completely
confusing and unmanageable behavior. Therefore, it is better to capture
the dependencies using modes.

Mode channels

74 Part II – Functional Viewpoint

Example 5-2: Dependent crane user functions
An automation system has two cranes that transport work pieces through an
assembly line with six stations: Supply Belt, Milling, Grinding, Measuring,
Assembling, and Delivery Belt. Two user functions steer the cranes.
However, to avoid collisions, Crane 2 is not allowed to approach station
“Measuring” when Crane 1 is approaching that station. Thus, the user
function “MoveCrane2” depends on the state of the user function
“MoveCrane1.” We model this dependency by introducing a mode channel
“Crane1Position” and extend the behavior specification of the user function
“MoveCrane2” to prevent the user function approaching the “Measuring”
station if Crane 1 is approaching it. The resulting user functions and their
behavior specifications are given by Fig. 5-5 and Fig. 5-6.

Fig. 5-5 Syntactic interface and behavior specification of the user

function “MoveCrane1.” The current position of the crane is
propagated by the mode channel “Crane1Position.”

Fig. 5-6 Syntactic interface and behavior specification of the user

function “MoveCrane2.” Whether or not the crane can approach
the “Measuring” station depends on the “Crane1Position” mode.

We distinguish two kinds of user functions: atomic user functions and
composite user functions. Composite user functions are composed of at
least two subuser functions. User functions that are not decomposed are
called atomic user functions. Atomic user functions must provide a
behavior specification that defines their behavior observed at the system
boundary. In a nutshell, atomic and composite user functions allow the
developers to decompose the functional requirements, formalized as user
functions, into a hierarchy of user functions.

User function
hierarchy

5.4 Functional White Box Model 75

Example 5-3: User function hierarchy of the Automation system
We can integrate the given user functions from Example 5-1 and Example
5-2 into a comprehensive system that provides all the user functions. The two
user functions “MoveCrane1” and “MoveCrane2” are composed to a
composite user function “MoveCranes.” Fig. 5-7 visualizes this as a user
function hierarchy. The syntactic interface and the interface behavior of the
composite system are derived from the composition of the user functions.
Fig. 5-8 illustrates the resulting syntactic interface of the automation system.

Fig. 5-7 User function hierarchy of the composite Automation system.

The dashed arrow represents the mode channel between the
user functions “MoveCrane1” and “MoveCrane2.” The solid
arrows indicate a subfunction relationship.

Fig. 5-8 Syntactic interface of the composite Automation system,

derived by the composition of the interfaces of the subfunctions.
The mode channel between the user functions “MoveCrane1”
and “MoveCrane2” becomes invisible when composing the user
functions.

All of the presented are taken from a comprehensive case study that has
been modeled in SPES 2020 [Eder et al. 2011].

5.4 Functional White Box Model
The second model type within the functional viewpoint is the functional
white box model. The purpose of this model is to provide a
decomposition of the user functions from the functional black box model
into smaller functional units in order to give an abstract description of the
realization of the user functions. These smaller functional units are called
functions.

76 Part II – Functional Viewpoint

A function itself can be described by a syntactic interface with an
associated interface behavior. This is an example of how we take
advantage of a common underlying modeling theory in SPES that
provides modeling concepts that are reused in each of the viewpoint
models. The purpose of this decomposition is to master the complexity
that arises from the black box specification, or, more specifically, the
question of how the specified outputs will be computed from the given
inputs.

Example 5-4: Functional white box model for a user function
In order to realize the behavior of the user function “MoveCrane2” as
specified in Fig. 5-6, we have to decompose the user function into smaller
functional units called functions. Fig. 5-9 shows the functional white box
model for this decomposition. The user function is broken down into five
functions. In contrast to the black box specification of the user function, the
white box model already provides some information about the realization,
e.g., the sensor values are read in separately and the control logic is
encapsulated in a single function.

Fig. 5-9 Functional white box model for the user function “MoveCrane2”

The relation between the functional black box model and the functional
white box model is as follows: the functions of the functional white box
model together must show the same behavior as specified by the user
function of the functional black box model. Therefore, it is necessary to
provide a mapping between the inputs and outputs of the user function
and the inputs and outputs of the functional white box model. This
mapping can then be used to check whether the functional white box
model conforms to the functional black box model.

Function

5.5 Analyses 77

Example 5-5: Mapping between black box and white box models
The user function “MoveCrane2” from Fig. 5-6 has only one input for
indicating the position of work pieces and this is called “PosIndicator.” The
white box model as depicted in Fig. 5-9, however, has three inputs for
indicating the position of work pieces: MESensor, ASSensor, and DBSensor.
Therefore, in order to check whether the functional white box model specifies
the same behavior as the functional black box model, mapping that maps the
values of the inputs to each other is required. Fig. 5-10 gives this mapping in
a tabular representation.

Fig. 5-10 Tabular representation of the mapping between the inputs of

user function “MoveCrane2” and its corresponding white box
model

Another important aspect of this white box model is reuse. The
functionality that is captured by a function can be reused in several
functional white box models. In our example, the “Read AS Sensor”
function could be reused to decompose the user function “MoveCrane1.”
In such scenarios it is particularly important to check the conformity of
the composed white box model to the original specification of the user
function because reuse bears the risk of incorrectly reusing certain
functions.

5.5 Analyses
The functional viewpoint offers a model of the functionality of an SUD
at a very early stage of development. Several analyses and evaluations
can be performed on this model to verify and validate the functional
requirements of the SUD. Validation of requirements in this sense means
that the requirements are reasonable with respect to each other, i.e., no
contradictions between requirements, no unintended behavior due to
unintended interactions between requirements, or no missing
requirements. In contrast, verification ensures that the behavior as
described in the model of the logical viewpoint fulfills the behavior that
is specified in the model of the functional viewpoint.

In the following we outline some of the analyses that can be used for
validation or verification:

78 Part II – Functional Viewpoint

If the behavior is specified by executable models (e.g., state machines),
the models of the functional viewpoint provide a functional prototype of
the SUD. This prototype can be used to run through certain actions and
scenarios to validate the behavior of the SUD in cooperation with the
user. Thus, unintended behavior can be revealed and evaluated.

The functional black box model of the functional viewpoint also
allows the detection of inconsistencies. Inconsistencies are input patterns
that cause different functions to output conflicting values. This can be
checked prior to execution and thus reveal contradicting requirements
[Harhurin 2010].

At the beginning of development, requirements only define part of
the entire functionality. During development, more and more
requirements complete the system specification. The models of the
functional viewpoint facilitate this process by showing input patterns for
which no output is defined. These situations represent insufficient
specification that should be discussed and possibly refined.

The functional viewpoint models and formalizes the functional
requirements and thus serves as a specification. In this role, the model of
the functional viewpoint can be used as a testing oracle. Test cases can
be generated from it to verify that a model of the logical viewpoint
fulfills the specified behavior of the functional viewpoint.

The model of the logical viewpoint describes the inner structure of
the system that implements the user functions. Input and output ports of
user functions can be linked to logical components that implement these
user functions. This yields a tracing relation between user functions and
logical components, allowing design faults to be detected and functions
to be tested individually, and ensuring the implementation of all user
functions [Vogelsang et al. 2012].

5.6 Integration in the SPES Modeling
Framework

Within the SPES modeling framework, the functional viewpoint is
located between the requirements and the logical viewpoints. This
section gives an overview of the relation and the differences between the
functional viewpoint and its neighbors in the SPES modeling framework.

The goal of the requirements viewpoint is to capture the requirements
for the SUD and to document their relation to the context of the SUD.
The result is a set of models that represent a variety of requirements for
the SUD. These models are derived from abstract goals and information
about the system's context. A crucial task is now to integrate all of these

Simulative validation

Detection of
inconsistencies

Completeness
analyses

Test cases

Tracing between user
functions and logical

components

Relation to the
requirements

viewpoint

5.6 Integration in the SPES Modeling Framework 79

requirements models into a system specification that is consistent and
sound. This task is done in the functional viewpoint (at least for the
requirements that refer to system behavior). The requirements models of
the requirements viewpoint are captured and refined as user functions
that the SUD offers to its context. The complex interactions that arise
from the interplay of the requirements (feature interaction) are explicitly
modeled in the functional black box model of the functional viewpoint.
The result is an integration of the isolated requirements models from the
requirements viewpoint into a comprehensive system model that
describes the required system behavior at its boundary to its context and
serves as a specification. Technically, this relation is realized by reusing
and refining the models of the requirements viewpoint. The context
model that is defined in the requirements viewpoint defines the syntactic
interface of the SUD, i.e., the inputs from the environment as well the
outputs of the SUD to the environment. This interface is authoritative for
the definition of user functions. The syntactic interface of a user function
must always be a subset of the syntactic interface of the SUD as defined
in the context model. Moreover, a behavioral requirements model of the
requirements viewpoint can initially be reused as behavior of a user
function. When integrating all user functions, the behavioral models must
be enriched with additional behavior that arises from the concurrent
integration in the SUD. The scenario models of the requirements
viewpoint serve as test cases and validation conditions for the functional
black box model of the functional viewpoint.

The model of the logical viewpoint describes the internal logical
structure of the SUD by means of communicating logical components.
Thus, the viewpoint considers the SUD in a glass box view in contrast to
the functional viewpoint where the SUD is considered as a black box.
The relation between a user function (from the functional black box
model) and a logical component (from the logical viewpoint) is often
confused. A user function formalizes a part of the requirements that the
SUD has to fulfill at its boundary, whereas a logical component captures
a part of functionality that lies within the SUD and that contributes
(amongst other things) to the realization of a user function. In general,
there is an n:m mapping between user functions and logical components.
This means that one user function can be realized by a number of logical
components, and one logical component can contribute to the realization
of a number of user functions. As this gap is sometimes confusing and
hard to manage, the functional viewpoint provides the functional white
box model. In this model the user functions from the functional black
box model are decomposed into functions that give an abstract solution
for the realization of the user function. The functions are then mapped to

Relation to the
logical viewpoint

80 Part II – Functional Viewpoint

a logical component of the logical viewpoint. In this way, a logical
component contains a set of functions that contribute to the realization of
one or several user functions.

Depending on what is considered the system under development on a
certain abstraction layer, the functional black box model of the functional
viewpoint provides a functional black box specification of the respective
SUD. This model structures the interface specification of the system
according to user functions of the system. As a consequence, we get new
functional black box models for the functional viewpoint if we change
the abstraction layer. In the uppermost abstraction layer, for example, the
system is considered as a whole with one functional black box model that
specifies the black box behavior of the system at its boundary. If we step
into the next lower abstraction layer by decomposing the system into a
number of logical components, each logical component can again be
considered as a system (with a different context) and thus has an own
functional black box model in the functional viewpoint. These models
again specify the intended functional black box behavior for each logical
component. An important perception here is to recognize that the user
functions of the system in one abstraction layer do not have to be the
same as the user functions of a logical component in the next lower
abstraction layer. An example for this was already given in Section 3.5.2.
In fact, the user functions of a logical component are heavily influenced
by the functions of the functional white box model. When mapping the
functions of the functional white box model to logical components, we
determine user functions that the logical component must fulfill and that
are part of the functional black box model of the logical component.

5.7 The Functional Viewpoint Process
In the following, we will give an idealized process through the functional
viewpoint. Note that in reality, this process is highly iterative and also
interweaved with the processes of the other viewpoints. It is also
important to note that the requirements viewpoint process does not have
to be completed before the functional viewpoint process is started, nor
does the functional viewpoint process have to be completed before the
process of the logical or technical viewpoint is started. Furthermore, we
can divide the functional viewpoint process into building the functional
black box model and building the functional white box model. We will
start with the black box model that is subsequently refined in the white
box model.

Functional viewpoint
and the logical

Viewpoint across
abstraction layers

5.7 The Functional Viewpoint Process 81

In the first step, we use the solution-oriented requirement models from
the requirements viewpoint to extract user functions for the SUD.
Initially we can translate each behavioral model of the requirements
viewpoint into one user function. Later we might find it useful to merge a
set of behavioral models into just one user function. We make sure that
the inputs and the outputs of the user functions conform to the syntactic
interface as defined by the context model of the requirements viewpoint,
i.e., the inputs and outputs of a user function are a subset of the inputs
and outputs of the context model. Defining user functions is not a
canonical step. There are a variety of possibilities for structuring a
system according to user functions. However, a guiding principle is to
define the different functions as they are perceived by the user (similar to
the notion of a use case).

Once we have a set of user functions we try to structure them in a
user function hierarchy. We may also introduce new user functions that
group a set of user functions as their subfunctions. There are multiple
ways to arrange the user functions into a user function hierarchy. The
user function hierarchy should again reflect a structure of the user
functions as they are perceived by the user. Another goal of choosing
user functions and arranging them in a user function hierarchy is to gain
a manageable set of user functions that, on the one hand are not too
complex to give their behavior as a behavior specification, but on the
other hand do not have too many dependencies to other user functions.

The next step is to specify an interface for each atomic user function
in the user function hierarchy. This is done by providing both a syntactic
interface by means of input and output channels of the user function and
a behavior specification. Behavior specifications can be given by any
specification technique that an interface behavior abstraction can be
assigned to. Examples for such specifications are state machines [Broy
2010], I/O tables [Thyssen and Hummel 2011], or data flow diagrams
[Leuxner et al. 2010].

The next step is to model dependencies and resolve inconsistencies
between the user functions. Inconsistencies between user functions can
have many facets. For example, two user functions that share a common
output channel are in a conflicting situation as they both write values to
that output channel at the same time [Harhurin 2010]. Dependencies on
the other hand can be intended or unintended. Intended dependencies
represent desired interaction between user functions such as one user
function interrupts another or works differently depending on results of
another user function. Unintended dependencies arise from unconscious
interplay between user functions. Inconsistencies and dependencies are
modeled in the functional viewpoint by means of mode channels. Thus,

Step 2: Structure user
functions in a user
function hierarchy

Step 1: Extract user
functions

Step 3: Specify
interfaces for all
atomic user functions

Step 4: Model
dependencies using
mode channels

82 Part II – Functional Viewpoint

we extend the user functions’ interface with additional mode channels
that transmit information necessary for resolving inconsistencies and
modeling dependencies.

The last step of the functional black box model is to extend the
behavior specifications of the user functions with respect to the mode
channels introduced. This means that we have to integrate the
information that is provided by the mode channels into the behavior of
the user function. For two conflicting user functions, for example, a
mode channel between them resolves this conflict by transmitting the
information that one user function is currently not allowed to send a
value over the common output channel.

From here, we start building the functional white box model. We do
not have to wait for the black box model to be fully specified before
commencing with the white box model. We could also start building
parts of the white box model immediately after Step 1. We build a
functional white box model for each atomic user function, and this model
provides a high-level description of tasks that need to be performed in
order to realize the user function and the data flow between these tasks.
We capture such tasks as functions with a syntactic interface that defines
the data that is processed and produced by the function and we
additionally associate an interface behavior that specifies the behavior of
the function.

Finally, we need to ensure that the functional white box model
conforms to the functional black box model and that this method is a
valid realization for the user function. Therefore, we have to check that
the composition of the functions in the functional white box model yields
the same behavior that the user function from the functional black box
model demands. Several methods, all with advantages and disadvantages,
can be used for this purpose, for example, testing, model checking, or
formal verification.

5.8 References
[Broy 2010] M. Broy: Multifunctional software systems: Structured modelling and

dpecification of functional requirements. In: Science of Computer Programming, Vol.
75, No. 12, 2010, pp. 1193-1214.

[Eder et al. 2011] S. Eder, A. Vogelsang, M. Feilkas: Seamless modeling of an automation
example using the SPES methodology. In: Technical Report TUM-I1110. Technische
Universität München, May 2011.

[Harhurin 2010] A. Harhurin: From Interaction Patterns to Consistent Specifications of
Reactive Systems. PhD Thesis, Technische Universität München, 2010.

Step 5: Extend the
behavior

specifications

Step 6: Building the
functional white box

model

Step7: Check
conformance between

white box and black
box models

5.8 References 83

[Leuxner et al. 2010] C. Leuxner, W. Sitou, B. Spanfelner: A formal model for work flows.
In: SEFM 2010: Proceedings of the 8th International Conference on Software
Engineering and Formal Methods, 13-18 Sept. 2010, pp. 135-144.

[Thyssen and Hummel 2011] J. Thyssen, B. Hummel: Behavioral specification of reactive
systems using stream-based i/o tables. Software and Systems Modeling, DOI:
10.1007/s10270-011-0204-1.

[Vogelsang et al. 2012] A.Vogelsang, S.Teuchert, J.-F. Girard. Extend and characteristics
of dependencies between vehicle functions in automotive software systems.
Proceedings of the 2012 International Workshop on Models in Software Engineering,
2012

[Zave 1993] P. Zave: Feature interactions and formal specifications in telecommunications.
In: IEEE Computer, Vol. 26, No. 8, 1993, pp. 20-28.

Sebastian Eder
Jakob Mund
Andreas Vogelsang

 6

Logical Viewpoint

This section provides an outline of the logical viewpoint. This viewpoint describes the
internal logical structure and the behavior of the system under development (SUD). The
main task in the logical viewpoint is the distribution of functions to a hierarchy of logical
components. The main model type of the logical viewpoint is the logical component
architecture: it describes the logical components of the system and their relationship. The
structure of this logical component architecture is often influenced by nonfunctional
criteria, e.g., maintainability or reliability. In contrast to the technical viewpoint, the
logical viewpoint does not focus on the technical infrastructure provided, e.g., the
controllers or communication devices used.

85,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_6, © Springer-Verlag Berlin Heidelberg 2012

86 Part II – Logical Viewpoint

6.1 Introduction
The logical viewpoint describes the logical structure and the distribution
of responsibilities functionality of a system by means of a network of
interacting logical components that are responsible for a set of functions.
These logical components and their interactions are arranged in the
logical component architecture of the system. The design of the logical
component architecture is driven by various considerations, such as
achieving maximum reuse of already existent components or fulfilling
different nonfunctional properties of the SUD. The logical component
architecture bridges the gap between functional requirements and the
technical implementation. All examples in this chapter are taken from a
case study modeled in SPES 2020 [Eder et al. 2011].

6.2 Concerns
The main aims of the logical viewpoint are:

 Describing the internal logical structure of the SUD by partitioning
the system into communicating logical components

 Allocating desired functions to cohesive logical units
 Supporting the reuse of already existent logical components and

designing the logical components such that future reuse is facilitated
 Defining the total behavior of the system (as opposed to the partial

behavior specifications in the models of the functional viewpoint)
and enabling the complete simulation of the entire system

The logical components should be designed to capture the central domain
abstractions and to support reuse. As a consequence, the logical
component architecture should be as insensitive as possible to changes in
the desired user functionality or technical platform. It should be the
artifact in the development process with the highest stability and with the
highest potential for reuse.

The functional black box model and the logical component
architecture are two orthogonal structures of the system functionality. A
brief comparison of both models is illustrated in Tab. 6-1.

In contrast to the functional black box model, the logical component
architecture does not emphasize the formalization of the functionality
that can be observed at the system boundary, but rather the structuring
and partitioning of the SUD into communicating logical components.
The behavior of these logical components as a whole realizes the

Aims of the logical
viewpoint

Comparison of
functional and logical

viewpoints

6.2 Concerns 87

behavior determined by the functional viewpoint. The connection
between these two models is established by the functional white box
model of the functional viewpoint. A logical component represents a unit
that provides one or more functions of the functional white box model. In
other words: the functions of the functional white box model are
distributed to logical components.

In the logical viewpoint, structuring is performed according to diverse
criteria, such as the organizational structure within the company,
nonfunctional requirements, or even according to the user function
hierarchy of the functional black box model. However, it is important to
note that the logical viewpoint abstracts from hardware details.
Therefore, some (nonfunctional) requirements are better addressed in the
technical viewpoint. Hint 6-1 summarizes the partitioning in the logical
viewpoint.

Hint 6-1: Partitioning in the logical viewpoint
 A core activity in the logical viewpoint is the partitioning of functions

into communicating logical components
 Partitioning can be performed according to a user function hierarchy of

the functional viewpoint, the organizational structure, or nonfunctional
requirements

 Hardware details are part of the technical viewpoint rather than the
logical viewpoint

The logical viewpoint provides a complete description of the system
functionality, without, however, anticipating technical decisions with
regard to implementation (e.g., the platform on which the logical
components will be deployed).

Tab. 6-1 Brief comparison of the functional black box model and the
logical component architecture

Functional Black Box Model Logical Component Architecture

Problem domain Solution domain

Black-box view of the SUD White-box view of the SUD

Structured by user functions Structured by architectural entities

Used primarily to specify what the SUD
should do Used primarily to design the SUD

Functional specification may overlap and
must be checked for inconsistencies
(horizontal decomposition)

Network of communicating logical
components (vertical decomposition). Their
composition must be checked against the
desired system functionality.

Captures the functionality of the SUD Works as a first cut at design

(Possibly) partial behavioral specification Total behavioral specification

Partitioning in the
logical viewpoint

88 Part II – Logical Viewpoint

6.3 Logical Component Architecture
The logical component architecture is the main model of the logical
viewpoint and consists of logical components. These logical components
are decomposed into other logical components, which results in an
acyclic hierarchical structure of logical components, i.e., a tree. The
leaves of this tree are called atomic logical components and they are not
decomposed further.

Similarly to the models of the functional viewpoint, every logical
component carries a syntactic interface consisting of typed ports that are
either used for output or input. Input ports can be connected to output
ports by channels and thus, logical components are linked together via
channels.

Logical components define these channels to connect their logical
subcomponents. Every atomic logical component has to specify its (total)
behavior. The behavior of an atomic logical component is defined
directly (for example, using an automaton). The behavior of non-atomic
components is derived from the composition of their subcomponents.

Fig. 6-1 Example of a logical component architecture

Example 6-1: User input controller
Fig. 6-1 shows an example of a logical component architecture that is part of
the model of the logical viewpoint. The architecture models a user input
controller consisting of three logical components: OperationController,
ModeController, and SystemOutput. The output ports are illustrated as black
circles placed at the borders of the logical components. White circles depict
input ports. The ports not drawn at the border of any logical component
represent input or output ports to the next higher logical component in the
hierarchy. Output ports are connected to input ports via channels, as depicted
by the arrows. The labels next to the channels associate a name with the
corresponding channel. Note that each channel has a specific type, but this is
not shown in Fig. 6-1.

Logical components

Ports and channels

6.4 Analyses 89

Hint 6-2: Using the metamodel of the logical viewpoint
 Entities for the distribution of functions are logical components that are

the basic building blocks representing the behavior.
 Each logical component offers a syntactic interface that consists of

(typed) ports. Ports can furthermore be input or output ports for a given
logical component.

 Communication between logical components is achieved by connecting
output ports to input ports by means of channels for which the types of
the ports must coincide.

6.4 Analyses
The logical viewpoint provides a model of the system design
independent of any hardware decision. However, this model is expressive
enough to allow a variety of analyses to be performed on it. Ultimately,
the logical viewpoint aims at constructing models that are so close to the
final implementation that the code can be generated completely from the
models of the logical viewpoint. Further analyses that can be performed
on the models of the logical viewpoint are:

 Complete simulation: Since the model of the logical viewpoint
defines a total system behavior, it allows comprehensive simulation
of the SUD. While a simulation of the functionality is already
possible in the functional viewpoint, the logical viewpoint also
allows several nonfunctional properties to be checked (e.g.,
reliability and abstract timing constraints) by simulating the SUD.

 Verification of system properties: Properties that have been specified
previously (e.g., in the functional viewpoint) can be verified
automatically using model checking techniques.

 Test case generation: As the model defines the total behavior of the
SUD, this enables test cases to be generated, for example, by
following [Pretschner et al. 2004].

 Concurrency analyses: For a couple of years, there has been an
ongoing paradigm shift from single-core towards multicore
processors. Employing multicore architectures for embedded
systems brings several advantages but also poses new challenges for
software engineering. The logical viewpoint allows analysis of the
logical component architecture in order to determine an adequate
parallel hardware platform and an adequate deployment of logical
components to hardware components. Thereby, adequacy can refer
to several system requirements (e.g., response time, robustness, or
hardware costs).

Usage guidelines for
the logical viewpoint

90 Part II – Logical Viewpoint

6.5 Integration in the SPES Modeling
Framework

Within the SPES modeling framework, the logical viewpoint resides
between the functional and the technical viewpoints. This section gives
an overview of the relation and the differences between the logical
viewpoint and its adjacent viewpoints.

6.5.1 Functional Viewpoint

The functional white box model of the functional viewpoint describes an
abstract solution of the system. The goal is to realize the desired
functionality as specified in the functional black box model using a set of
abstract functions. The logical components of the logical component
architecture comprise a set of these abstract functions in order to
structure them. Therefore, the functions of the functional white box
model must be distributed to the logical components of the logical
viewpoint. In addition to this direct relation, it is also possible to relate
the logical components to the user functions of the functional black box
model by assessing the logical components that are involved in the
realization of a user function. This relation can be used for impact
analyses and other validation methods (cf. [Vogelsang et al. 2012]).
Further details on the correlation between a user function and a logical
component can also be found in Section 5.6.

6.5.2 Technical Viewpoint

The technical viewpoint describes the hardware topology of the system
using technical components such as control units and busses. Logical
components defined in the model of the logical viewpoint are deployed
on the technical components described by the model of the technical
viewpoint, and communication channels between logical components are
realized either internally on one controller or by busses or other technical
communication facilities. Logical components are typically deployed as
atomic units and are thus rarely split up into tasks that can then be seen
as atomic units that are deployed. However, the modeling theory does not
forbid this and this results in an n:m relation between logical components
and technical components.

Relation to the
functional viewpoint

Relation to the
technical viewpoint

6.6 The Logical Viewpoint Process 91

6.5.3 Abstraction Layers

The relation of the logical viewpoint model over the abstraction layers
can be described as follows: a change of the abstraction layer in the
logical viewpoint corresponds to a decomposition of a logical component
or the entire system into logical subcomponents. In this case, the logical
viewpoint model serves as a structural characteristic for the lower
abstraction layer, which means that, on the lower abstraction layer,
viewpoint models exist for each logical subcomponent. The input and
output data that is processed by the logical viewpoint model of a certain
abstraction layer must also appear in the logical viewpoint model of the
next lower abstraction layer; in fact they must be processed by the logical
subcomponents. In more complex development scenarios, for example,
when suppliers are involved, the change of an abstraction layer
determined by one decomposition step of the system might not be
handled that strictly. Instead, the transition to the next abstraction layer
can, for example, be interpreted as handing over a certain part of the
system to a supplier or another department within the company. In this
scenario, several decomposition steps will be performed in one
abstraction layer until the parts are handed over to a supplier or another
department whose models reside in the next lower abstraction layer.
However, the aforementioned relation between these abstraction layers
also holds in this scenario. The supplier must provide viewpoint models
for the specific part that is in his responsibility.

6.6 The Logical Viewpoint Process
To develop the logical viewpoint of a system, the system boundary from
the functional black box model is adopted and can be refined, if
necessary. The system is the root logical component of the
decomposition tree containing all logical components. The system
boundary is expressed by a syntactic interface.

The next step, which is one of the most crucial steps in developing
the model of the logical viewpoint, is the decomposition of the SUD into
logical components. The result of the decomposition is a tree of logical
components, with the complete SUD as its root. This decomposition is
oriented on nonfunctional requirements and quality aspects, and not
solely on the functional requirements of the SUD. Thus, a logical
component is not a user function, but a logical unit that is required to
implement the system’s functionality.

Logical viewpoint and
the abstraction layers

Step 1: Adopt system
boundary from the
functional black box
model

Step 2:
Decomposition into
logical
subcomponents

92 Part II – Logical Viewpoint

Fig. 6-2 The system is the root logical component of the logical

component hierarchy.

The different logical components of a system can be linked together via
communication channels. These channels should only link logical
components that really are intended to communicate. To enable logical
components to be connected, every logical component is enriched by
input and output ports that form the syntactic interface of the logical
components. The ports are then used to connect logical components via
channels.

Example 6-2: Decomposition of the SUD
Fig. 6-3 shows the decomposition of the SUD from Fig. 6-2. The system is
decomposed into three logical components: IOAdapter, Transportation-
Controller, and UserInteraction. The decomposition is guided by separation
of concerns, separating the IO, the transportation unit and the user interface.
The ports at the system boundary in Fig. 6-2 correspond to those ports in the
decomposed network in Fig. 6-3 that do not belong to any of the logical
components.

The logical components that are not decomposed any further (leaves in
the logical component tree) are then enriched with behavior. This can be
done using several techniques: table specifications [Thyssen and
Hummel 2011], state machines [Broy and Stølen 2001], data flow
diagrams [Leuxner et al. 2010], or mathematical functions, to name just a
few. Unlike the models of the functional viewpoint, logical components
define total behavior. This means that a logical component has to have
behavior specified for every input. The composition of the behavior of all
leaves results in the behavior of the complete system.

Therefore, the SUD can be simulated and the perceived behavior can
then be compared to the specification of the system and the models of the
functional viewpoint. If necessary, the logical component architecture
can be refined or altered by running through the steps above.

Step 3: Connect
components via

channels

Step 4: Specify
behavior for all leaf

components

6.7 References 93

Fig. 6-3 Decomposition of the SUD into a logical component architecture

6.7 References
[Broy and Stølen 2001] M. Broy, K. Stølen: Specification and development of interactive

systems: focus on streams, interfaces, and refinement. Springer, 2001.

[Eder et al. 2011] S. Eder, A. Vogelsang, M. Feilkas: Seamless modeling of an automation
example using the SPES methodology. In: Technical Report TUM-I1110. Technische
Universität München, May 2011.

[Leuxner et al. 2010] C. Leuxner, W. Sitou, B. Spanfelner: A formal model for work flows.
In: SEFM 2010: Proceedings of the 8th International Conference on Software
Engineering and Formal Methods, 2010.

[Pretschner et al. 2004] A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel: Model-based
testing for real. In: International Journal on Software Tools for Technology Transfer,
Vol. 5, No. 2, 2004.

[Vogelsang et al. 2012] A.Vogelsang, S.Teuchert, J.-F. Girard. Extend and characteristics
of dependencies between vehicle functions in automotive software systems.
Proceedings of the 2012 International Workshop on Models in Software Engineering,
2012

[Thyssen and Hummel 2011] J. Thyssen, B. Hummel: Behavioral specification of reactive
systems using stream-based i/o tables. Software and Systems Modeling, 2011.

Raphael Weber
Philipp Reinkemeier
Dr. Stefan Henkler
Dr. Ingo Stierand

 7

Technical Viewpoint

In the technical viewpoint, the system under development (SUD) is modeled in terms of
resources: some of the resources are software resources (such as a scheduling slot);
others are hardware resources (such as a computing resource) that are associated with a
hardware description (e.g., a processor). In this viewpoint, hardware and software are
explicitly separated. Thus, tasks have to be modeled along with their processing resources
(the resource on which they are executed). Tasks themselves are scheduled by a scheduling
resource that must be connected with the task it schedules.

95,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_7, © Springer-Verlag Berlin Heidelberg 2012

96 Part II – Technical Viewpoint

7.1 Introduction
The technical viewpoint is mostly concerned with the question of how to
get from the platform-independent models (logical components) of the
logical viewpoint to platform-specific models (technical components).

The strict separation of application development and deployment to a
distributed technical architecture enables reuse of standardized models
and thereby selection of commercial off-the-shelf platforms for hosting
the different application parts. This clean separation is an underlying
principle in many other approaches as well [Kleppe et al. 2003, Mellor et
al. 2004, Giese and Henkler 2006, AUTOSAR VFB 2010].

In the technical viewpoint, the properties of the selected technical
components and their resources provided are modeled. Furthermore,
modeling in this viewpoint is intended to address the following concerns:
Which logical components of the application are realized by which
resources? How do these components share (time and space) the
resources? This sharing of resources by applications is a key to reducing
the cost of the developed product.

However, the sharing of resources also introduces interference
between logical components that were independent in the logical
viewpoint and this interference must be analyzed and checked against
requirements of the SUD. Real-time analysis reveals whether real-time
requirements (e.g., end-to-end latency) imposed in the logical viewpoint
can be met by the selected technical architecture and the chosen
deployment. A common cause analysis, particularly a common mode
analysis, is performed to detect failures that affect independent paths in
the logical architecture.

More generally, the following concerns are addressed in the technical
viewpoint:

 Which (composition of) resources (e.g., computation,
communication, IO devices such as sensors and actuators, etc.) are
present in the system, how are they connected, and which properties
(e.g., HW properties such as memory size or clock frequency) do
they have?

 What resource-consuming and resource-offering entities are present
in the system (e.g., software tasks consume computation and
communication resources)?

 Which consuming resources are deployed on which offering
resources, which mapping is required (type, behavior), and which
design constraints are given?

From platform-
independent to

platform-specific

Interference between
applications: real-time

analysis, common
cause analysis

7.2 Metamodel of the Technical Viewpoint 97

 What is the specific platform-specific behavior and interface of a
logical component?

 What are the specific scheduling requirements (e.g., task 1 needs
input every 20ms, which platform configuration can fulfill all timing
constraints: interrupt, latency, end-to-end, responses, and so on)?

7.2 Metamodel of the Technical Viewpoint
In this section, we introduce the fundamental concepts of the technical
viewpoint metamodel. However, it is not within the scope of this
document to give a complete specification of the metamodel. A
comprehensive specification is given in [Weber et al. 2012, Baumgart et
al. 2011].

In the technical viewpoint, the electric/electronic architecture of the
system is specified, and this comprises mechanical and hydraulic
components controlled by a network of control units that the logical
components shall be allocated to.

The electronic control units may be software-programmable hardware
components or application-specific integrated circuits (ASICs).
Mechanical components are, for example, cams, shafts, switches, and
relays. Hydraulic components include, for example, valves and cylinders.

The concepts provided for describing a view corresponding to the
technical viewpoint are more specialized than those provided for
modeling a requirements viewpoint, a functional viewpoint, or a logical
viewpoint. This is because the intention is to apply dedicated analysis
techniques for checking satisfaction of contracts based on models of
technical artifacts [Damm et al. 2011].

The metamodel provides concepts for specifying the technical
viewpoint of a system by means of technical components. While we do
not provide specialized concepts in the metamodel for mechanical or
hydraulic components, their aspects however can still be specified by
means of contracts [Baumgart et al. 2011]. This allows their dynamics to
be characterized, and also allows the assessment of whether requirements
of functions are fulfilled by the mechanical or hydraulic components and
the electronic components controlling them.

In SPES 2020, the focus is on software-intensive systems. Therefore,
the metamodel incorporates specialized concepts for describing the
resources of a network of electronic control units that enables execution
platforms hosting the components of the logical viewpoint to be
modeled. Here, resource limitations come into play, e.g., the sharing of
computing resources by multiple logical components. The behavior of

Model elements used
in the technical
viewpoint

98 Part II – Technical Viewpoint

the allocated logical components will therefore depend on the properties
of the resource as well as the other logical components allocated to the
very same resource.

7.2.1 Resources

The concepts of the metamodel for specifying the technical viewpoint of
a system are inspired by the UML Profile for MARTE (Modeling and
Analysis of Real-Time embedded systems) [Object Management Group
2009].

The concept of a resource constitutes an abstraction of the resources a
platform provides. Additionally, resources represent the allocated
behavior from logical components. Examples of a resource include:

 Computational resources, i.e., the computational power of a
processor

 Bandwidth of a communication resource
 Storage capacity of a storage resource

As some of these resources might be shared by multiple consumers,
resource-sharing can be explicated by means of schedulers. A scheduler
distributes fractions of a resource according to a given scheduling
strategy. The concept of a scheduler allows both static and dynamic
scheduler types to be modeled.

Hint 7-1: Check rules for the resource model
 What kind of resources can a system platform provide? Why would it

make sense to connect two computational resources by means of a
communication resource?

7.2.2 Schedulers

A scheduler distributes fractions of a resource according to a given
strategy. The clients of a scheduler are modeled by the concept of
scheduler slots. The resource, whose capacity is shared and assigned by a
scheduler, is typically expressed using a processing resource. A
scheduling policy allows specification of the strategy of the scheduler,
e.g., fixed-priority. The scheduler slots, which receive a fraction of the
resource, are typically aggregated to the scheduler parameter
specification that determines parameters used by a scheduler to run its
strategy. Such parameters are, for example, the definition of a priority or
the maximum size of a time slice.

Resources:
consuming and

offering

How exactly
resources are shared:

schedulers

7.2 Metamodel of the Technical Viewpoint 99

The concept that actually uses the fraction of the processing resource is a
concurrency resource or specializations thereof. If a schedule was
determined a priori, it can be directly specified as the schedule by means
of an expression. This overrides whatever was specified in the scheduling
policy.

The relation of the concepts scheduler, scheduler slot, and
concurrency resource is modeled by special scheduler ports. These ports
must be typed by a port specification that conforms to the scheduler port
specification concept. This specification comprises five flows that are
referenced in the following roles:

 Activate event: An incoming event flow that denotes the request for
the activation of a concurrency resource.

 Start event: An outgoing event flow that denotes the granting of a
scheduler on a previously received activate event.

 Finish event: An incoming event flow that denotes the release of the
capacity of the processing resource by the concurrency resource. It is
triggered when the concurrency resource has finished its
computation or communication.

 Suspend event: An outgoing event flow that shall be triggered by a
scheduler or forwarded by a scheduler slot when access to the
processing capacities of a scheduled resource has been granted
before, but shall now be revoked in favor of another scheduler slot.

 Resume event: An outgoing event flow that shall be triggered by a
scheduler or forwarded by a scheduler slot when access to the
processing capacities of a scheduled resource has been granted and
suspended before, and now access to the processing resource is
granted again.

The scheduling of a processing resource may look as depicted in Fig.
7-1. The ports with dotted edges are scheduler ports. The figure also
shows how to use the scheduler and the scheduler slot concepts when
modeling the hierarchical scheduling of a processing resource. A
scheduler slot can also serve a second scheduler that then only distributes
the capacity of the processing resource that it receives through its
underlying slot in the main scheduler to its clients. An example of a
scheduler can also be seen in Fig. 7-3.

The protocol between
the sharing controller
and resource
consumers

100 Part II – Technical Viewpoint

Fig. 7-1 Example of using the scheduler concept

Hint 7-2: Check rules for the scheduler model
 Do the scheduling parameters of each scheduler slot match the type of

policy of the scheduler that it is connected to? For example: Does a
scheduler using a fixed-priority strategy require the definition of a
priority per slot?

7.2.3 Computing Resources

The concept of a computing resource represents a processing device
capable of storing and executing tasks. It is an abstraction of elements of
an execution platform hosting multiple tasks that require computing
capacity in order to perform their computations. Being derived from a
processing resource, a computing resource may be subject to scheduling
of its computing capacity.

The task concept models a computation task. Since it is derived from
the concurrency resource concept, it can be connected to a scheduler slot.
Thus, it uses the computing capacity the scheduler slot receives from a
scheduler. A task can aggregate multiple specifications of its execution
time that have been measured or analyzed previously. Provided that a
task would have exclusive access to a computing resource, the execution
time is the time from start to finish of the task. As the execution time
may vary depending on the type of computing device, multiple execution
times can be specified, each with a unique identifier. An example
specification of an execution time would be: {ARM7; 500 s; 1ms},
where 500 s is the best base execution time and 1ms is the worst case
execution time. An example of a computing and a communication
resource is depicted at the bottom of Fig. 7-3.

Processing power
offering computation

resources

7.2 Metamodel of the Technical Viewpoint 101

7.2.4 Communication Resources

The concept of a communication resource represents an abstraction of a
communication device of an execution platform capable of transferring
information from one location to another. The attributes of a
communication resource are used to describe its most relevant properties
needed for timing analysis of a technical architecture. Being derived
from the concept of a processing resource, a communication resource
may be subject to scheduling of its communication capacity.

The concept of a frame denotes a data item that is transmitted by a
communication resource. As the concept is derived from the concurrency
resource concept, it can be connected to a scheduler slot. Thus it may use
the communication capacity the scheduler slot receives from its
scheduler. An example of a communication resource is given in Fig. 7-3.

7.2.5 Data Encapsulation

We consider the technical architecture as a network of computing
resources that are interconnected by means of communication resources.
However, the frames that are transmitted by these communication
resources are not the data items that would be sent directly by an
application task. In most execution platforms, an application
programming interface (API) that hides the complexity of different bus
technologies and communication protocols is provided. Data sent by
application tasks is then processed by a communication stack that is
typically organized in layers as in the Open Systems Interconnection
model (OSI).

Aside from the intention to abstract from the details of a layer of
communication protocols from the logical viewpoint, in the technical
viewpoint, the real-time aspects or safety aspects of the logical viewpoint
have to be specified as well. This allows a conclusion to be drawn about
whether requirements regarding the communication of components of the
logical viewpoint can be fulfilled when they are allocated to a technical
architecture. Fig. 7-2 shows an example of the concepts that allow the
data encapsulations performed by a communication stack to be captured.
For the sake of brevity, the scheduler slots and a scheduler are not shown
in this figure.

Data transporters
offering
communication
resources

Layers of signals,
messages, and
frames

102 Part II – Technical Viewpoint

Fig. 7-2 Example for specifying the data encapsulation

The signal concept represents data sent by application tasks to which
components from the logical viewpoint have been allocated. The
declared signal references ports in the technical architecture model to
indicate ports at which the signal is sent or received. The concepts
message and frame also allow referencing of multiple ports. Data
encapsulation by a communication stack as illustrated in the bottom half
of Fig. 7-2 is expressed by the concept of mapping between messages
and signals and frames and messages. The mapping describes the
composition of messages by frames and of signals by messages. The
condition that requires a task that is responsible for the encapsulation of
signals in messages to actually trigger the message can be defined by the
attributes of signal-to-message mapping. For example, some signals
mapped to a message may cause it to be triggered, while others just
update the value inside the message.

7.2.6 Tasks

A task is a specialization of the concurrency resource concept denoting a
computation task. The computing capacity needed by the task is provided
either directly by a computing resource (see Section 7.2.3) or by a
scheduler slot (see Section 7.2.2).

Hint 7-3: Check rules for the task model
 Is every task connected to a scheduler slot by means of scheduler ports

with reversed directions (task requires a scheduler port specification —
the slot provides it)?

 Does each task have at least one execution time specification?
 Does each task have an execution time specification for the type of

processor that matches the type of the computing resource on which it is
executed?

The primitive
computational unit:

a task

7.3 Mapping between Viewpoints and Abstraction Layers 103

7.3 Mapping between Viewpoints and
Abstraction Layers

The SPES modeling framework introduces mapping links that allow
component realizations between abstraction layers and component
allocations between viewpoints to be traced.

Fig. 7-3 Example of a mapping between logical and technical viewpoints

A mapping specifies correlations of observable behavior of components
(e.g., logical and technical) by formal specification of how the dynamics
of ports (interaction points) of one component are projected onto
corresponding behavior of ports of another component. A component can
also be represented by another (modeling) element that specifies the
behavior of interactions. In order to formally check the validity of a
mapping, a mapping block is defined. This mapping block specifies how

Relation between
logical and technical
viewpoints

104 Part II – Technical Viewpoint

the behaviors of the mapped parts relate to each other (i.e., how the
behavior of component C1 is represented as the behavior of component
C2, for each mapping component C1 and C2). For more details on how
mappings are represented in the SPES modeling framework, we refer to
[Weber et al. 2012].

Fig. 7-3 shows an example of a mapping between the logical (top)
and technical viewpoints (bottom). Here, the mapping links are
visualized by the dotted arrows between components of the logical and
the technical viewpoints. For the sake of simplicity, the mapping block is
not shown.

Since the mapping relates component parts, the context of both these
parts has to be described. Therefore, the concept of instance references,
which has been inspired by the AUTOSAR and EAST-ADL
metamodels, is used.

Fig. 7-4 Example mapping between the logical and technical viewpoints

Fig. 7-4 shows an example of a mapping between the logical and
technical viewpoints (an allocation). The ports of the Capture component
are mapped to the ports of the Capture task in the technical viewpoint.
The mapping block is represented as a gray box between both
viewpoints. As the links to the mapping block indicate, this is a simple
direct mapping. This enables us to check completeness and
receptiveness.

Completeness is defined as follows: Given a set of contracts C linked
to components in the logical viewpoint, assuming flows/services of the
ports of those components are allocated to flows/services of resources,
the mapping must involve all flows/services mentioned in any of the
contracts in C.

7.4 How to Get from the Logical to the Technical Viewpoint 105

Receptiveness is defined as follows: An allocation of a model of the
logical viewpoint to a model of the technical viewpoint shall not restrict
the behavior of the model of the technical viewpoint. Generally,
mappings can be more complex, as shown, for example, in [Gezgin et al.
2010].

7.4 How to Get from the Logical to the
Technical Viewpoint

In this section we will describe the steps necessary to start the model of a
technical viewpoint from a finished logical viewpoint model. Once both
models are finalized they have to be mapped to each other.

 We start by defining the hardware architecture as it may already
exist or as we plan to construct it. The hardware architecture thereby
does not need every detail present in the real world (it is a model
after all). For the model, we use resources to represent hardware
units.

 Next, we differentiate between computing resources (such as
processors) and communication resources (such as buses). Our
model elements in this model layer are used to separate actual
computation units and data transfer units since they usually use
different sharing approaches.

 In this step we model tasks, scheduler slots, and scheduler(s) in each
computing resource and connect tasks among each other or to
external elements. Communication resources are enriched by frame
triggers (similar to tasks), and again scheduler slots and a scheduler.

 Now we connect all scheduler slots to their schedulers for each
communication and computation resource. Consequently, we have to
define the scheduling policy or the schedule in each scheduler.
Additionally, depending on the actual scheduling policy, further
information such as priorities has to be defined in each scheduler
slot. Now each frame trigger and tasks are deployed to their
respective scheduler slots by connecting their scheduler ports.

 The final step includes defining how signals, messages, and frames
are composed and whether a signal or a message triggers a frame or
not. In computing resources, we need to specify the execution times
for each task and which task of a task port is mapped to which signal
in a communication resource.

Once these five steps have been completed, the mapping from the logical
to the technical viewpoint has to be defined. In addition, refinements of

Step-by-step method
to model in the
technical viewpoint

106 Part II – Technical Viewpoint

the contracts of upper abstraction layers or the logical viewpoint in the
current level may be annotated to tasks or resources. Here, timing
requirements concerning end-to-end latencies, deadlines, or specific
activation behaviors are most appropriate since potential timing analysis
properties were only introduced in the technical viewpoint.

7.5 References
[AUTOSAR VFB 2010] AUTOSAR GbR. Specification of the virtual functional bus,

Version 2.1.0, October 2010.

[Baumgart et al. 2011] A. Baumgart, E. Böde, M. Büker, W. Damm, G. Ehmen, T. Gezgin,
S. Henkler, H. Hungar, B. Josko, M. Oertel, T. Peikenkamp, P. Reinkemeier, I.
Stierand, R. Weber: Architecture modeling. In: OFFIS Technical Report, OFFIS
Oldenburg, March 2011.

[Damm et al. 2011] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, I. Stierand: Using
contract-based component specifications for virtual integration testing and architecture
design. In: Design, Automation & Test in Europe Conference & Exhibition (DATE)
2011, 14-18 March 2011, pp. 1-6.

[Gezgin et al. 2010] T. Gezgin, R. Weber, M. Girod: A refinement checking technique for
contract-based architecture designs. In Proceedings of the 4th International Workshop
on Model-Based Architecting and Construction of Embedded Systems (ACES-MB
2011) at the 14th IEEE/ACM International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2011), 2011.

[Giese and Henkler 2006] H. Giese, S. Henkler: A survey of approaches for the visual
model-driven development of next generation software-intensive systems. In: Journal
of Visual Languages and Computing, Vol. 17, No. 6, pp. 528-550.

[Kleppe et al. 2003] A. Kleppe, J. Warmer, W. Bast: MDA Explained. The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, Boston, 2003.

[Mellor et al. 2004] S. J. Mellor, S. Kendall, A. Uhl, D. Weise: MDA Distilled. Principles
of Model-Driven Architecture. Addison-Wesley Professional, Redwood City, 2004.

[Object Management Group 2009] Object Management Group. A UML Profile for
MARTE: Modeling and Analysis of Real-Time Embedded Systems, Version 1.0,
November 2009.

[Weber et al. 2012] R. Weber, E. Thaden, P. Reinkemeier, A. Baumgart. Specification of an
architecture meta-model. In: OFFIS Technical Report, OFFIS Oldenburg, January
2012.

Kai Höfig
Dr. Mario Trapp
Bastian Zimmer
Prof. Dr. Peter Liggesmeyer

 8

Modeling Quality Aspects:
Safety

Safety is a central quality property of embedded systems. While progress in development
methodologies, techniques, and tools enable the developer to manage the rapidly growing
system complexity, this has long not been true for safety engineering methodologies. A
promising approach to advancing the state of the art in safety engineering for software-
intensive embedded systems lies in the application of model-driven development concepts
to traditional safety engineering approaches. This chapter gives an overview of how safety
analysis models can be integrated seamlessly into design artifacts and how model-driven
development concepts can enable the modular safety assurance of platforms

107,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_8, © Springer-Verlag Berlin Heidelberg 2012

108 Part II – Modeling Quality Aspects: Safety

8.1 Introduction
Safety is typically defined as freedom from unacceptable risk (of harm).
To ensure a certain level of quality, in most industrial domains the
development of safety-critical systems is governed by standards. As
mirrored in those standards, the development of a safety-critical system
affects almost all process steps in a development lifecycle, ranging, for
example, from requirements engineering through functional aspects to
the technical design. For this reason, safety is not represented in a single
viewpoint but as a quality aspect in the SPES modeling framework that
has a crosscutting influence and is integrated into several viewpoints.

8.2 Concerns
The growing complexity of safety-critical embedded systems is leading
to increased complexity in safety analysis models. It is therefore not
appropriate to develop functionality and consider safety in separate tasks.
Safety aspects have to be integrated as tightly as possible into the
development process and its models. Since model-based development of
embedded systems deals with the increased complexity of such systems,
their safety analysis has to follow this approach as well. Therefore, the
goals of the quality aspect safety are:

 Provide modular, hierarchical, and model-based safety analysis
models to “keep pace” with a state-of-the-art model-based
development

 Ensure consistency and traceability among safety analyses in
multiple views and on different layers of abstraction

 Ensure consistency between model-based safety analyses and other
model-based development artifacts

The solution provided by this quality aspect is divided into two parts.
The first part is component-integrated component fault trees (in short,
C²FTs), as introduced in Section 8.3. Component fault trees (CFTs)
provide the benefits of a modular and hierarchical safety analysis,
whereas the component integration extension allows for a tight coupling
between a component fault tree and a logical component. Based on
C²FTs, this quality aspect contains two additional methods, one for
managing consistency and protecting intellectual property over several
layers of abstraction, as presented in Section 8.3.1, and one for

Tight integration
between safety

analysis models and
system development

models

8.3 Component-Integrated Component Fault Trees 109

calculating probabilistic worst case execution times (pWCET), as
presented in Section 8.3.2.

The second part of the quality aspect supports the system developer
with the safety-related deployment of logical components onto technical
components and is presented in Section 8.4. Deploying a logical software
component onto a computer platform requires a check of whether the
computer platform provides the safety requirements demanded by the
software component.

8.3 Component-Integrated Component Fault
Trees

The benefits of a hierarchical decomposition of complex systems and the
applied principle of separation of concerns using (logical as well as
technical) components can be perfectly transferred to the safety analysis
model using the approach of component-based abstraction in fault tree
analysis presented here. This decreases the complexity of safety analysis
models, increases the connection between safety and development, and
thereby reduces development costs.

The hierarchical decomposition of the system under development
(SUD) into components and subcomponents, as well as the
communication among them, follows a metamodel as specified by the
logical viewpoint (see Chapter 6) but can also be applied to other model-
based development languages. The central model element is the
component that is embedded into a hierarchy of subcomponents and
supercomponents communicating with each other using ports and
connections.

The integrated metamodel for component fault trees follows this
generic component model and allows the relation of a separate
component fault tree for each component of the system’s hierarchical
decomposition. Fig. 8-1 shows the metamodel for component fault trees
to be integrated with the component model: here, a component fault tree
element, labeled CFT, is related to the component element of the
metamodel. Faults propagate from one component to another via their
interconnections (modeled using ports and connections). This is also
reflected within the component fault tree metamodel: input and output
failure modes are related to port elements of the component model
[Domis and Trapp 2009].

Based on these models, automations support the developer in
handling the various component fault tree model elements such as gates,
input and output failure modes, and edges between them to model the

Each component has
an associated safety
view and the
propagation of failures
follows port
interconnections

The method supports
the developer with
automated modeling
features

110 Part II – Modeling Quality Aspects: Safety

failure behavior of the system under development using Boolean logic.
The approach was evaluated in the course of the SPES 2020

evaluation studies (see Chapter 16). Evaluation results show a good
acceptance in this industrial area, since component fault trees are a
model-based extension of widely accepted fault trees. Furthermore,
measurements taken show that the complexity of modeling component
fault trees compared to modeling classic fault trees is decreased, and the
readability of component fault tree model elements is increased
compared to classic fault trees. The evaluation was done by experiment
in industry with more than ten people, from both the system development
and safety analysis fields, and also in academia with the same amount of
people and a similar background.

Fig. 8-1 Metamodel for component fault trees

8.3 Component-Integrated Component Fault Trees 111

8.3.1 Protecting IP and Managing Consistency across
Abstraction Layers

Since the development process of modern embedded systems is often
spread over many different stakeholders, e.g., different companies, this
aspect is a special issue in safety analysis. During the hierarchical
decomposition, components have a specification given by one
stakeholder and are subsequently implemented by a different stakeholder
using logical and technical subcomponents that realize the functionality
as specified for the supercomponent. To analyze the failure logic of such
a component, the failure logic of the supercomponent is also realized by
the component fault trees of its subcomponents. To protect the
intellectual property of the implementing stakeholder from the specifying
stakeholder, the white box safety view of the subcomponents’ fault trees
can be transformed into a protective black box safety view using Boolean
reduction [Domis et al. 2010]. In this way, the stakeholder of the
supercomponent can still achieve the failure propagation of the specified
component, but the intellectual property contained in the implementation
is protected. Furthermore, the methodology allows checks regarding
whether realization and specification are consistent with each other in
order to ensure the consistency of the modular and hierarchical safety
analysis across multiple abstraction layers.

8.3.2 Failure-Dependent Timing Analysis

This section presents a methodology that takes advantage of the tight
integration of safety analysis models and system development models to
combine elements of both worlds for a new execution time analysis
approach.

Embedded real-time systems are growing in complexity and resource
demand that today goes far beyond systems with simplistic closed-loop
functionality. Current approaches of worst case execution time (WCET)
analysis are used to verify deadlines of such systems, but these
approaches calculate or measure the WCET as a single value that is used
as an upper limit for a system's execution time. Overestimations are
taken into account to make this upper limit a safe limit, but modern
processor architectures expand these overestimations into unrealistic
dimensions.

Here, therefore, probabilities of safety analysis models are combined
with elements of system development models to calculate a probabilistic
worst case execution time (pWCET). Safety analysis models are used in
this approach as a source for probabilities [Adler et al. 2010]. Since
safety analysis models typically reflect the occurrence of failures and

The integration of
component fault trees
makes safety
information accessible
to other safety-related
analyses such as
worst case execution
time analysis

112 Part II – Modeling Quality Aspects: Safety

their propagation through the system under development, our approach
aims at mechanisms in systems that are executed in addition to a failure.
Such mechanisms usually belong to the area of fault tolerance and detect
or process an error [Höfig et al. 2010, Höfig 2011b]. In this way, very
unlikely time-intensive execution scenarios can be identified. This type
of system becomes certifiable for a lower execution time if a deadline
has to be guaranteed for a certain probability.

Example 8-1: Table lookup
An example of such a system is depicted in Fig. 8-2. This example is a
reduced version of an example from the automotive domain as presented in
[Höfig 2011a]. The right-hand side of Fig. 8-2 depicts the architecture of the
system using logical components, and the left-hand side shows a part of the
component fault tree model. The system measures sensor data with Sensor A.
If this data is within a given range (plausibility test), the measured data is
taken as the output of the system. If the test judges the data to be erroneous,
data from a different sensor is taken to estimate the data for sensor A using a
table lookup. Therefore, the execution of the table lookup function depends
on whether Sensor A produced erroneous data or whether there is a failure in
the Test component. Knowing the probability of occurrence for the failure of
Sensor A and for the Test component, we can derive the probability for the
execution of the time-consuming table lookup function and can calculate a
probabilistic worst case execution time.

The approach has been evaluated using the tool for failure-dependent
timing analysis presented in [Höfig and Domis 2011].

8.4 Efficiently Deploying Safety-Relevant
Applications to Integrated Architectures

A method for finding a good deployment (a mapping between the logical
and technical viewpoints) has to consider multiple aspects that influence
costs and feasibility. One of these aspects is safety, and it is addressed by
the approach described in this section. The SPES quality aspect safety
contains a two-stepped approach for supporting a safety-related
deployment. The goal of the first step is to find a promising deployment
candidate using system-level information. The second step investigates
the feasibility of the candidate by separately investigating the more
detailed safety dependencies between each application and its host
platform.

8.4 Efficiently Deploying Safety-Relevant Applications to Integrated Architectures 113

Fig. 8-2 Sensor example system in SysML with component fault trees

A deployment starts with a list of applications (high-level logical
components), modeled as a network of communicating logical
components (as specified in the logical viewpoint introduced in Chapter
6) that have to be deployed onto a set of computer platforms (as specified
in the technical viewpoint introduced in Chapter 7), possibly containing
several partitions. Fig. 8-3 shows a deployment calculated by a tool
developed in the SPES project.

The algorithm for identifying promising candidates uses two metrics
to calculate a quantified evaluation of the suitability of a deployment
with regard to safety requirements [Zimmer et al. 2012].

114 Part II – Modeling Quality Aspects: Safety

Fig. 8-3 A network of software components deployed to a computer

topology. The deployment of a component to a partition is
indicated using the same shade of gray

The first metric is called the cohesion metric and evaluates the
homogeneity of application criticality levels in a partition. As already
mentioned, a platform may comprise multiple partitions. Since freedom
from interference is not guaranteed within one partition, every
application in a partition has to be developed according to the maximum
level of criticality of all applications in a partition.

Example 8-2: Cohesion metric
If, in the example shown in Fig. 8-3, the component voter and the component
channel 1.1 had both been deployed to partition 2.1, channel 1.1 would have
to be developed according to ASIL C. The cohesion metric reflects the costs
entailed by these criticality increases.

2 channel voter

channel 1.1
ASIL_B

medium

channel 1.2
ASIL_B

medium

voter
ASIL_C
small

channel 2.1
ASIL_B

medium

channel 2.2
ASIL_B

medium

signal 1.1 A
ASIL_B

signal 1.1 B
ASIL_B

signal 1.2 A
ASIL_B

signal 2.2 B
ASIL_B

signal 2.1 A
ASIL_B

signal 2.2 A
ASIL_B

my ECU Topology

uncritical 1
QM

small

uncritical 2
QM

small

uncritical 3
QM

smalluncritical 1 B
QM uncritical 2 B

QM

uncritical 1 A
QM

ECU1

Partition 1

ECU2

Partition 2.2Partition 2.1

The cohesion metric
evaluates criticality
homogeneity within

partitions

8.4 Efficiently Deploying Safety-Relevant Applications to Integrated Architectures 115

The second metric is called the coupling metric and evaluates the volume
of safety-relevant communication. If safety-relevant applications residing
in different partitions exchange signals, undetected failures in this
communication can cause a hazardous outcome. In order to prevent these
inadvertent situations, safety mechanisms have to be developed and
installed to detect or prevent failures. The coupling metric takes the costs
caused by the volume of safety-critical communication, especially in-
between platforms, into account.

After these metrics have been used to derive a deployment, the
second step of the approach comes into play. The goal of this step is to
assist the integrator in checking whether each application software
component can run safely on its host platform, and if so, to assist in
generating appropriate evidence. The method used in this second step is
called VerSaI (Vertical Safety Interfaces) [Zimmer et al. 2011].

Before the safety compatibility between application and platform can
be checked, demands and guarantees have to be specified. Demands are
typically used to express all the properties an application needs the
platform to have in order to be executed safely, whereas the guarantees
represent the safety-related properties the platform possesses. A
compatibility check is successful if a sound argument for the fulfillment
of the demands with the available guarantees can be established. To
enable tool-supported integration, the VerSaI approach offers a
semiformal language to model these demands and guarantees.

The language consists of a number of elements each representing a
certain type of demand or guarantee exchanged by an application and a
platform. This implicates the noteworthy fact that there is a finite number
of language elements and, therefore, also a finite number of
dependencies expressible with the language. First evaluations have
shown that this is suitable because the typical service relationships
between an application and a platform are finite and regular too, which is
also the reason why it was possible to standardize platform interfaces in
the first place.

If the compatibility of an interface specified with the VerSaI language
is checked, the demands and guarantees that have a potential relationship
have to be identified first. This is done using the integration of the
VerSaI language into the SPES modeling framework. A demand about
the detection of a signal corruption is, for example, related to the model
element representing the signal. On the other hand, a guarantee about
detecting signal corruptions is related to the representation of the
respective communication channel. If the detailed deployment of the
signal to the com-channel is modeled, VerSaI uses this information in a

The coupling metric
evaluates volume and
criticality of safety-
relevant
communication

Demands and
guarantees specify a
contract-like interface

The language
comprises a finite
number of elements

The VerSaI language
is integrated into
model-based design
artifacts

116 Part II – Modeling Quality Aspects: Safety

transitive manner to relate the corresponding demands and guarantees.
This principle is depicted in Fig. 8-4.

“All 3-bit failures of messages
received via CAN_ComChannel

will be detected”

“A corruption of the signal
escActive shall be detected

by the platform”

Fig. 8-4 Relating demands and guarantees using deployment

information

The final step of the method is checking whether each demand can be
met with the guarantees identified as relevant in the previous step. In
contrast to conventional interfaces, it is usually not possible to simply
match the demands and guarantees respectively. In fact, an additional
fragment must be generated in the safety case providing the arguments
and evidences that the demands of the platform are met by the guarantees
given by the platform. To this end, this step is supported by a strategy
repository. The repository contains expert strategies that are selected and
presented to the integrator, and that describe what guarantees are needed
to fulfill the current type of demand and how to generate a piece of
evidence containing a sound argument. It is important to note that,
despite the formal basis of the language, each language element has a
representation in natural language. This allows the human brain to read
and evaluate the specification of demands and guarantees and the final
argument generated after integration. This argument can be distributed
for reviews and assessments.

The two-step approach presented allows the user to calculate a
deployment automatically and assists the user in checking and arguing
the safety of the chosen deployment.

The integration of
applications and

platforms is supported
by a strategy

repository

8.5 Integration in the SPES Modeling Framework 117

8.5 Integration in the SPES Modeling
Framework

In the SPES modeling framework, safety is represented as a quality
aspect that has a crosscutting influence on and is integrated into several
viewpoints. This section gives an overview of the integration of the
safety quality aspect.

8.5.1 Viewpoints

Considering the integration of component-integrated fault trees into the
viewpoints of the SPES modeling framework, we have to differentiate
between the capability of modularizing and hierarchizing the fault trees
that comes with component fault trees, and the capability of integrating
the fault trees into a component-based model. Component fault trees, on
the one hand, can easily be applied to functions, logical components, and
technical components, and thus, to the respective viewpoints as well.
However, the component integration part works best with the logical
viewpoint since the logical viewpoint metamodel represents
communication between components explicitly using input and output
ports, and this is best suited for component-integrated fault trees.

Since the deployment models the mapping of logical components to
technical components, the methods for efficient deployment of safety-
related applications belong to the logical viewpoint as well as to the
technical viewpoint.

8.5.2 Abstraction Layers

The relation between different abstraction layers of a component fault
tree is comparable to the relation between different abstraction layers of a
logical component as described in Chapter 6. A top-level component
fault tree describes the failure behavior of the top-level component and
can be decomposed into several lower-level component fault trees
describing the failure behavior of the top-level component as an
aggregation of several component fault trees.

Relation of the safety
quality aspect to the
functional, logical, and
technical viewpoints

Relations between the
different abstraction
layers of a C²FT

118 Part II – Modeling Quality Aspects: Safety

8.6 References
[Adler et al. 2010] R. Adler, D. Domis, K. Höfig, S. Kemmann, T. Kuhn, J.-P. Schwinn, M.

Trapp: Integration of component fault trees into the UML. In: Proceedings of 3rd
International Workshop on Non-functional Properties in Domain Specific Languages
(NFPinDSML2010). DOI: 10.1007/978-3-642-21210-9_30.

[Domis and Trapp 2009] D. Domis, M. Trapp: Component-based abstraction in fault tree
analysis. In: Proc. of the International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2009). DOI: 10.1007/978-3-642-04468-7_24.

[Domis et al. 2010] D. Domis, K. Höfig, M. Trapp: Consistency check algorithm for
component-based refinements of fault trees. In: Proceedings of International
Symposium on Software Reliability Engineering , 2010.

[Höfig 2011a] K. Höfig: FDTA – A toolchain for failure-dependent timing analysis. In:
Proc.11th International Workshop on Worst-Case Execution Time (WCET) Analysis,
2011.

[Höfig 2011b] K. Höfig: Timing overhead analysis for fault tolerance mechanisms. In:
Proc. Zweiter Workshop zur Zukunft der Entwicklung softwareintensiver eigebetteter
Systeme (ENVISION2020), LNI Vol. P-184, GI, 2011.

[Höfig and Domis 2011] K. Höfig and D. Domis: Failure-dependent timing analysis. In:
Proc. 2nd International ACM Sigsoft Symposium on Architecting Critical Systems,
2011.

[Höfig et al. 2010] K. Höfig, D. Domis, M. Trapp, H. Stallbaum: Pattern-based safety
engineering. Semantic enrichment of system architecture models for semi-automated
safety analysis. In: Proceedings of European Safety and Reliability Conference, 2010.

[Zimmer et al. 2011] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, M. Trapp: Vertical
safety interfaces - improving the efficiency of modular certification. In: Proceedings of
the 30th International Conference of Computer Safety, Reliability, and Security, 2011.

[Zimmer et al. 2012] B. Zimmer, M. Trapp, P. Liggesmeyer, J. Höfflinger and S.Bürklen:
Safety-focused deployment optimization in open integrated architectures. In:
Proceedings of the 31st International Conference of Computer Safety, Reliability and
Security, 2012.

Robert Hilbrich
J. Reinier van Kampenhout
Marian Daun
Dr. Thorsten Weyer
Dominik Sojer

 9

Modeling Quality Aspects:
Real-Time

Timing is an integral part of systems interacting with their context. The correctness of
real-time systems depends on logical correctness and proper timing. A model-based
engineering approach for real-time systems builds on modeling platform-specific and
platform-independent resource requirements as well as resource capabilities. These
artifacts can be expressed with extensions to the requirements viewpoint and the technical
viewpoint of the SPES modeling framework. Schedulability analysis of the system model
can be used to generate a deployment of software tasks to hardware components.

119,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_9, © Springer-Verlag Berlin Heidelberg 2012

120 Part II – Modeling Quality Aspects: Real-Time

9.1 Introduction
The meaning of real-time computing is overloaded and ambiguous. Often
it is associated with a quick and immediate system response to an
external event or it is used to describe the performance of multimedia
systems that achieve more than 25 frames per second. In embedded
systems, real-time computing refers to demanding a reaction to an event
in accordance with the progression of time in the system context. The
correctness of the system no longer depends solely on the logical
correctness of the computation, but also on the point in time at which
these results are produced [Buttazzo 2004].

Depending on the consequences if these timing requirements are not
met, two classes of real-time systems can be distinguished: hard real-time
systems and soft real-time systems. In the case of a hard real-time
system, the violation of timing requirements may lead to catastrophic
consequences (e.g., harming human life). Soft real-time systems, on the
other hand, are less stringent about timeliness. Missing a deadline may
affect the performance, but it does not cause serious damage or
compromise the system behavior.

While the main objective in high-performance computing is to
minimize the average response time for all running tasks, real-time
computing is about satisfying timing requirements for all tasks.
Especially in hard real-time computing, the system has to exhibit the
same timing properties for all tasks under all circumstances. Therefore,
these systems have to be fully deterministic and predictable. In order to
build a hard real-time system, the progression of real time in the system
context—not just logical time—has to be considered during the
engineering of the entire system design.

The next section gives a brief overview of model-based real-time
engineering and introduces the notions of platform-independent and
platform-specific timing requirements. Sections 9.3 and 9.4 then
illustrate platform-independent and platform-specific timing
requirements respectively in more detail. Section 9.5 illustrates
schedulability analyses.

Timing as a matter of
correctness, not only

performance

Real-time systems
have to be

deterministic and
predictable

9.2 Model-Based Real-Time Engineering 121

9.2 Model-Based Real-Time Engineering
The engineering principle of strictly separating application development
and its deployment on a distributed, technical platform (see Chapter 3)
requires a real-time engineering approach that distinguishes between:

 High-level, platform-independent timing requirements
 Platform-specific timing requirements of software tasks
 Platform-specific timing capabilities of hardware resources

An overview of this approach is depicted in Fig. 9-1.

Fig. 9-1: Real-time engineering has to consider platform-independent
properties and platform-specific properties

When all requirements and resource capabilities are precisely captured
during the engineering process, the major challenge of real-time
engineering lies in the search for a spatial and temporal deployment from
software tasks to hardware resources, so that all real-time requirements
are satisfied. This deployment has to ensure that no resource is
overbooked at any point in time, so that nondeterministic waiting times
due to a congested resource do not result in missed deadlines. Therefore,
the quality aspect real-time was not considered in isolation in the SPES
modeling framework. It is a crosscutting concern and affects the
requirements viewpoint (see Chapter 4) and the technical viewpoint (see
Chapter 7).

Real-time engineering
incorporates timing
requirements and
resource capabilities

The quality aspect
real-time is a
crosscutting concern
in the SPES
metamodel

122 Part II – Modeling Quality Aspects: Real-Time

9.3 Modeling Platform-Independent Real-Time
Requirements

Essentially, real-time requirements establish a direct relationship from
functional requirements to the progression of wall-clock time. They can
be defined explicitly at the beginning of the engineering process as high-
level requirements, or they are derived implicitly as platform-specific
requirements as a result of a step-by-step refinement process during the
system design. This section focuses on the modeling of high-level real-
time requirements.

As discussed in Chapter 4, there are different requirements artifact
types that describe various aspects of the entire system. These artifacts
are generally not built at the same time in the engineering process, but
rather in sequential steps. In most cases, real-time properties will not be
taken into account in all artifact types. For instance, the structural
requirements model will most likely be free from time constraints. On
the other hand, goal models, scenario models, and the operational
requirements, as well as behavioral requirements models, will have to
address time constraints.

9.3.1 Real-Time and Goals

Considering real-time constraints within requirements engineering has an
essential impact on the elicitation of goals and the documentation in goal
models. For this purpose, no specific additional modeling element is
needed, but every timing constraint has to be documented within the goal
model. By documenting these real-time properties, it is reasonable to
descend to a more concrete and precise level. There must be a description
of exactly which part or process of the system is covered by this time
constraint and the maximum processing time allowed must be noted. As
it may be difficult to start at such a detailed abstraction layer, abstract
goals (called soft goals) may be defined first and decomposed into fine-
grained hard goals during the different development steps, considering
even scenarios and the functional and behavioral requirements
perspectives.

Hint 9-1: Rules for checking goal models
 Have all real-time relevant requirements been considered?
 Have all real-time requirements been decomposed into fine-grained

hard goals allowing for measurement?

Real-time
requirements relate

wall-clock time
progression to

requirements models

Soft goals may be
decomposed into fine-

grained hard goals
during the

development

9.3 Modeling Platform-Independent Real-Time Requirements 123

9.3.2 Real-Time and Scenarios

Scenarios detail the goals developed earlier. Inversely, each real-time
goal should be detailed in at least one scenario. A scenario may be
affected by different real-time goals. Hence, it is insufficient to simply
relate complete goals and complete scenarios by means of traceability
links. The different parts of the scenario have to be related to the
different goals. While one major use case of using real-time scenarios is
to check real-time requirements for consistency, every part of the single
scenario has to be related to a concrete measurable goal. If not,
assumptions of real-time behavior have to be made and documented in
the scenario (e.g., messages, processing parts). After this has been done,
the acceptable runtime for each scenario can be calculated. The ordering
structures (e.g., in use cases or in high-level message sequence charts,
hMSCs) also have to be related to goals. Therefore, these goals will in
general be on higher abstraction layers than the goals that are related to
the single scenarios. For a preliminary timing analysis, both runtimes
will be compared, with a determination of whether the expected runtime
of the scenario is smaller than the accumulated runtime consisting of the
expected runtimes of all single parts of the scenario.

Hint 9-2: Rules for checking scenario models
 Have all real-time goals been detailed by at least one scenario?
 Have all relevant parts of the scenario been connected to the relevant

real-time goals?
 Have all necessary assumptions been made explicit?
 Has the real-time information in the scenarios been checked against the

real-time information in the ordering structure (such as use cases or
hMSCs)?

9.3.3 Real-Time and Operational Requirements Models

Operational requirements models are also affected by real-time
constraints. In most cases, it will be sufficient to relate each functionality
or process to a real-time goal or a selection thereof. In the latter case, the
expected runtime will have to be summed up from all real-time goals of
the selection.

Hint 9-3: Rules for checking operational requirements models
 Have all functions been related to the relevant real-time goals?
 Have all real-time goals been considered by at least one function or the

overall composition of the system?

Scenarios help to
detail goals

124 Part II – Modeling Quality Aspects: Real-Time

9.3.4 Real-Time and Behavioral Requirements Models

Real-time properties have a significant impact on the behavioral
requirements models. There are a multitude of specification techniques
for modeling real-time behavior, for example, Timed Automata [Alur
1999], PTIDES [Zhao et al. 2007], TReqS [Buckl et al. 2010], and
Giotto [Henzinger et al. 2003]. They can be chosen as an artifact type for
this perspective. The behavioral specification describes the system
behavior on a lower abstraction layer. Hence, real-time constraints must
be annotated at each state and at each transition; they should be traced
back to the goals. Depending on the development project, developing a
real-time behavioral specification can allow for additional decomposition
of the real-time goals into more finely-grained concrete goals.

The expected system runtime may be checked against the goals
formulated and also against the scenarios. Differences between the
artifact types will lead to errors during the design, thus any differences
occurring represent a proper indicator of necessary requirements
reengineering activities concerning all requirements engineering artifacts
involved.

Hint 9-4: Rules for checking behavioral requirements models
 Have all real-time goals been considered?
 Have all assumptions made within the scenario development been taken

into account?
 Have all scenarios been taken into account? Is it possible to run through

each scenario by “executing” the requirements specification? Have
constraints also been taken into account within these checks?

9.4 Modeling Platform-Specific Real-Time
Properties

In addition to the platform-independent real-time requirements within the
requirements viewpoint, the platform-specific properties must also be
addressed. The following section describes real-time additions to the
foundations contained in the technical viewpoint introduced in Chapter 7.

9.4.1 Real-Time Requirements for Software Tasks

Each software task has unique real-time requirements that affect its
deployment on the hardware platform. Up to this point, the SPES
modeling framework introduced tasks that consist of architecture-specific
execution times in order to capture real-time requirements. Especially for

Real-time behavior
can be modeled with
several specification

techniques

Annotating execution
times is not sufficient

for complex and
distributed real-time

systems

9.4 Modeling Platform-Specific Real-Time Properties 125

complex and distributed software-intensive embedded systems, this is not
sufficient and requires an enhancement of the SPES modeling
framework. The extension is depicted in Fig. 9-2.

Fig. 9-2 Modeling software real-time requirements in the SPES

modeling framework (elements in light gray represent new or
extended components)

In addition to the specification of a worst case execution time, the
tolerated jitter and a period for synchronous tasks should be modeled.
Furthermore, a priority can be assigned to a task as well. Priorities can be
used to express different criticality levels of software tasks. These are
particularly useful when dynamic scheduling techniques based on fixed
priorities are used.

These attributes focus on real-time requirements for the task in
isolation. However, there are also requirements affecting more than just
one single task. For instance, when data has to be processed in a pipeline
with several stages, a task responsible for a certain stage may have to be
executed exactly after completion of the execution of the task for the
previous stage. This relationship between tasks can be modeled using the
ExecuteAfterRelation element.

On a hardware platform offering multiple processing units, e.g.,
multicore processors, a parallel execution of tasks sharing a common
data set is often desirable to optimize cache utilization and increase the
system performance. Similar to the ExecuteAfterRelation element, the
ExecuteParallelRelation element allows the specification that a pair of
tasks must start their execution at the same time.

Forcing a set of tasks to execute at the same time is a very stringent
requirement. It restricts the search for feasible schedules and may not be

“Pipeline behavior”
can be specified with
additional modeling
elements

Tasks can be grouped
to allow co-scheduling

126 Part II – Modeling Quality Aspects: Real-Time

necessary in all use cases. Instead, it is often sufficient to indicate for the
scheduler that certain tasks belong to a group. If enough resources are
available, the scheduler may then choose to execute these tasks at the
same time, thus optimizing the system performance. This approach is
commonly known as “co-scheduling” [Ousterhout 1982] or “gang
scheduling” [Jette 1997]. In the extension to the SPES modeling
framework in Fig. 9-2, tasks can be grouped using the TaskGroup
element.

9.4.2 Hardware Real-Time Capabilities

In the technical viewpoint (see Chapter 7) of the SPES modeling
framework, hardware is modeled as offering resources on which
consuming resources such as software tasks can be deployed. The
hardware of a system may comprise computation, communication,
storage, and I/O resources. A single resource may be shared between
multiple consumers. Since computing and communication resources
represent the most important hardware components in real-time
computing, we mainly focus on them in the following.

The basic concept of a ComputingResource in the technical viewpoint
comprises processing devices that can store and execute tasks. It is a
specialized ProcessingResource. Modern processors in embedded real-
time systems may contain multiple pipelined computational cores
comprising ALUs and FPUs. To be able to accurately describe the real-
time capabilities, the HWProcessor and CommunicationResource
elements must be extended as shown in Fig. 9-3.

Fig. 9-3 The extended HWProcessor and CommunicationResource

metamodel classes

Computing resources
and communication

resources affect a
deterministic

execution

9.5 Schedulability Analysis 127

The HWProcessor class is extended with two important properties: the
on-chip memory hierarchy and the configuration of the memory busses.
To describe the first property, the attributes numMemories, memoryType,
memoryLatency, and memorySize are added to the HWProcessor class.
This is the minimum information that is required to model on-chip
memory access times, assuming a Uniform Memory Architecture
(UMA). The type of memory can, for instance, be cache or scratchpad;
the latency must be given in cycles. The second property documents the
access times of off-chip memory and consists of the numBusses and
busType attributes. Bandwidth and latency are inherent to a certain bus
type.

The CommunicationResource class is extended in a similar way. In
this case, the attributes bandwidth, latency, jitter, and
MediumAccessControl are added. These properties constitute the Quality
of Service (QoS) that a communication resource offers. This is an
important measure for quantifying its real-time capability.

9.5 Schedulability Analysis
With all real-time requirements and capabilities being precisely captured,
schedulability analysis enables an efficient model-based engineering
approach. This is especially the case for the construction of static
operating system schedules — the core of a time-triggered real-time
system [Kopetz 1991]. The use of static schedules on a fixed cyclic basis
is a highly recommended design pattern for achieving and guaranteeing a
fixed allocation of hardware resources at runtime.

The automated generation of static schedules based on a timing
model is a first step towards a model-based engineering of hard real-time
systems. In [Hilbrich 2011], such a generator for the avionics domain is
described. Within seconds, a static schedule for a fixed time period is
created and can be exported to configure a real-time operating system.
Whenever a schedule is successfully constructed (see Fig. 9-4), it is
guaranteed to satisfy all timing requirements in the model.

Static schedules for
operating systems can
be generated
automatically

128 Part II – Modeling Quality Aspects: Real-Time

Fig. 9-4 Graphical output of a generated static schedule

9.6 References
[Alur 1999] R. Alur: Timed automata. In: Theoretical Computer Science, Vol. 126, No. 2,

1999, pp. 183-235.

[Buckl et al. 2010] C. Buckl, I. Gaponova, M. Geisinger, A. Knoll, E. A. Lee: Model-based
specification of timing requirements. In: Proceedings of the tenth ACM International
conference on Embedded software. ACM, New York, 2010, pp. 239-248.

[Buttazzo 2004] G. C. Buttazzo: Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications. 2nd Edition, Springer, Santa Clara, CA,
USA, 2004, pp. 4-9.

[Henzinger et al. 2003] T. A. Henzinger, B. Horowitz, C. M. Kirsch: Giotto: A time-
triggered language for embedded programming. In: Proceedings of the IEEE, Vol. 91,
No. 1, 2003. pp. 84-99.

[Hilbrich 2011] R. Hilbrich, H.-J. Goltz: Model-based generation of static schedules for
safety critical multi-core systems in the avionics domain. In: Proceeding of the 4th
international workshop on Multicore software engineering, Waikiki, Honolulu, HI,
USA, 2011, pp. 9-16.

[Jette 1997] Jette, M. A: Performance characteristics of gang scheduling in
multiprogrammed environments. In: Proceedings of the 1997 ACM/IEEE conference
on Supercomputing (CDROM), ACM, 1997, pp. 1-12.

[Kopetz 1991] H. Kopetz: Event-triggered versus time-triggered real-time systems. In:
Operating Systems of the 90s and Beyond, Lecture Notes in Computer Science Vol.
563, 1991, pp. 86-101.

[Ousterhout 1982] Ousterhout, J. K.: Scheduling techniques for concurrent systems. In:
Proceedings of 3rd International Conf. on Distributed Computing systems, 1982, pp. 22
– 30.

[Zhao et al. 2007] Y. Zhao, E. A. Lee, J. Liu: A programming model for time-synchronized
distributed real-time systems. In: Proceedings of the 13th IEEE Real-Time and
Embedded Technology and Applications Symposium, Bellevue, WA, USA 2007. pp.
259-268.

Part III

Application and
Evaluation of the SPES

Modeling Framework

Dr. Andreas Jedlitschka
Dr. Ulrich Löwen

 10

Overview of the SPES
Evaluation Strategy

The purpose of this chapter is to introduce the application of the methodologies in the
following application domains: automation, automotive, avionic, energy, and healthcare.
It describes the evaluation strategy for the systematic evaluation of the SPES modeling
framework and presents the process for selecting appropriate case studies, as well as the
example phase model that allows a comparison of the case studies. It also explains the
common underlying structure of the chapters in Part III of this book.

131,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_10, © Springer-Verlag Berlin Heidelberg 2012

132 Part III – Overview of the SPES Evaluation Strategy

10.1 SPES 2020 Evaluation Strategy
To assess the impact of a technology on certain objectives, such as the
technology’s inherent benefit or efficiency, systematic evaluations based
on scientifically sound criteria have to be planned and conducted. An
empirical approach provides the foundation for the ideal research process
that allows a meaningful assessment of the results of the evaluation with
respect to the objectives of the investigation. Empirical data illustrate the
potential and progress associated with the use of the technology. The
vision is to demonstrate the benefits of a technology to industry and
research through empirically obtained quantitative statistical values and
qualitative information.

The SPES modeling framework was piloted and evaluated in the
application domains following a common evaluation strategy. The
strategy comprises a set of objectives from research partners and
application partners, as well as general methodological guidelines to
support planning, conducting, and analyzing empirical studies. The
systematic evaluation approach of the SPES modeling framework has its
origins in [Chen and Rossi 1983] and uses empirical methods to obtain
data to explain or explore phenomena and to derive suggestions for
future developments.

The main device used for evaluation in the application domains was
representative case studies. The case studies provided a common
platform for evaluating the SPES modeling framework by focusing on
different aspects of embedded system development. According to [Yin
2003], case studies are “… an empirical inquiry that investigates a
contemporary phenomenon within its real-life context, especially when
the boundaries between phenomenon and context are not clearly evident”
(p. 13). Often, case studies have small sample sizes and do not allow for
controlling confounding variables. Case studies as applied in the
application domains are categorized as feasibility studies. The focus of
most of the case studies was on evaluating whether the SPES modeling
framework can be applied in the domain, whether the viewpoints are
seamlessly integrated, whether the implemented tools supported the
approach, and on identifying improvement potential. In several studies,
the concept of semistructured feedback sessions was used to obtain
feedback from the users. The results of a case study are specifically valid
in the environment they were obtained from. Case studies must therefore
be selected with special regard to the evaluation focus. Section 10.2

Motivation:
systematically obtain

information on the
benefits of the SPES
modeling framework

Evaluation strategy in
SPES 2020

Main evaluation
device: case studies

10.2 Selecting Appropriate Case Studies 133

summarizes the selection process for the case studies in Chapters 11
through 15.

Experiments were used as supportive means for the evaluation and
were intended to measure and analyze the effect of systematic variations
in the independent variable on the dependent variable. Often, an
experiment included an experimental group (in which “treatment” was
applied) and a control group (control/no treatment applied) to show the
effect of the “treatment” between the groups, i.e., the effects of applying
the SPES modeling framework (“treatment” in the sense of above) in a
development setting was compared to the method currently used (no
treatment) with regard to a certain quality focus. The aim of experiments
is to provide statistically representative results that are valid for the
population from which the sample is drawn. For further details on several
experimental designs, we refer to [Shadish et al. 2002].

10.2 Selecting Appropriate Case Studies
Embedded systems in the various application domains have different
focus areas and are subject to different development approaches.
Therefore, it was necessary to select a number of representative case
studies within each application domain that would accurately reflect the
special features of the domain, as well as present a good example of the
challenges that the individual application domains face during
development. This was necessary to ensure meaningful results from the
evaluation of the SPES modeling framework.

Due to the heterogeneous nature of embedded systems (cf. Chapter 1)
and their development (cf. Chapter 2), an application domain-
independent phase model of the development of embedded systems was
established. This phase model consists of the following development
phases:

 Product definition
 System definition (Requirements)
 System definition (Architecture)
 Device definition (Requirements)
 Device definition (Architecture)
 Software and Hardware development as well as other development

disciplines
 Integration

These development phases are common in most application domains. On
this basis, a fundamental understanding across application areas for a

Supporting means for
evaluation:
experiments

Agreeing on a
development phase
model

134 Part III – Overview of the SPES Evaluation Strategy

universal, model-based development process of embedded systems was
created, allowing for common conclusions about the SPES modeling
framework from the evaluation activities in the individual application
domains (see Chapters 11 through 15).

In addition, challenges and/or evaluation goals of individual
application domains were identified and case studies were defined in
each application domain. Particular attention was paid to ensuring that
the case studies adequately addressed the engineering challenges of the
application domains (cf. Chapter 2). Fig. 10-1 shows the relation of the
case studies identified and the respective development phases they
pertain to.

Fig. 10-1 Classification of the SPES 2020 case studies in the

development phases of embedded systems

10.3 Structure of the Following Chapters
Chapters 11 through 15 focus on the use of the SPES modeling
framework in the five application domains. To give the reader a better
understanding and a simple cross-comparison between the domains, a
uniform structuring concept consisting of five sections each was selected.

 The first section gives an overview of the application domain. In
addition to providing a description, it also discusses the economic
relevance, such as the proportion of the application domain in
relation to the gross social product or details on added value. From a
technical standpoint, the first section explains where embedded
systems will be used today and in the future and the level of
relevance they have. In addition to characteristics such as quantities
and costs, it also explains life cycle requirements and general
product and/or system properties. If any specific quality

Product
Definition

System
Definition
(Requirements)

System
Design
(Architecture)

…
Device
Definition
(Requirements)

Device
Design
(Architecture)

Software-Dev.
Hardware-Dev.
Other Disciplines

Integration
…

Automation

Automotive

Avionics

Energy

Health Care Extended Care System

Hot Rolling Steel Mill
Pumping Station

High-lift Test Bench
Cylinder Production

Engine Control System
Body Control Module

Avionics Case Study

"Energiemeister"
Virtual Power Plant

Prosumer/ICT Gateways

Matching phase
model, evaluation

goals, and case
studies

Section 1: Application
domain overview

10.4 References 135

considerations of the system under development (SUD) must be
accounted for, e.g., safety properties, real-time response, reliability,
or performance, the first section elaborates on these considerations.
To conclude, the section discusses the particular problems of the
application domain with regard to embedded systems.

 Section two of each chapter discusses the strategy used to evaluate
the SPES modeling framework within the application domain. It
unveils the central questions that had to be answered in the
evaluation and explains how the problems described in the first
section can be solved. This section also examines the procedure used
for the evaluation and how the academic and industrial partners
cooperated.

 The third section gives an overview of all evaluation activities,
outlining the achieved results and integrating them into the SPES
modeling framework.

 A selective, but more in-depth discussion of a specific evaluation
takes place in the fourth section. This section discusses the content-
related objective and explains the specific activities and methods
used in detail.

 Section five summarizes the results and answers the question as to
what was achieved or not achieved within the scope of the
evaluation. It presents suggestions for additional scientific work on
the topic, along with the knowledge gained.

10.4 References
[Chen and Rossi 1983] H. T. Chen, P. H. Rossi: Evaluating with sense: The theory-driven

approach. Evaluation Review, Vol. 7, No. 3, 1983, pp. 283-302.

[Shadish et al. 2002] W. R. Shadish, T. D. Cook, D. T. Campbell: Experimental and quasi-
experimental design for generalized causal inference. Houghton-Mifflin, Boston, 2002.

[Yin 2003] R. K. Yin: Case study research. Design and methods. 3rd Edition, Sage, London,
2003.

Section 2: Application
domain-specific
evaluation strategy

Section 3: Evaluation
activity summary

Section 4: In-depth
discussion of selected
activities and results

Section 5: Summary
and conclusion

Dr. Thomas Wagner
Dr. Jan Christoph Wehrstedt
Dr. Ulrich Löwen
Tobias Jäger
Prof. Dr.-Ing. Alexander Fay
Peter Schuller

 11

Application and Evaluation
in the Automation Domain

The main focus of our work in the automation domain was on the scientific basis and
technical implementation of the interaction and the integration in classically
heterogeneous systems and development landscapes. This comprised the integration of
automation devices and system components, activities, and models of various engineering
disciplines, as well as simulation and validation within the scope of a model-based,
quality-assured engineering process. The SPES modeling framework formed the
foundation for all developments and was extensively evaluated based on multiple real-
world case studies in industry. Results show a significant contribution toward the
consolidation of domain-specific modeling and systems.

137,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_11, © Springer-Verlag Berlin Heidelberg 2012

138 Part III – Application and Evaluation in the Automation Domain

11.1 Overview: Application Domain Automation
Whether in the manufacturing or processing industry, in mechanical
engineering, in transportation, or in logistics — automation engineering
plays a key role in controlling and structuring complex systems.
Automation engineering describes the design and realization of
automated systems for technical processes such as steel production,
manufacturing, or refining. It includes process measuring, open and
closed loop control, monitoring, alarming, locking, and optimization.

Embedded systems are an essential asset for automating and
controlling these processes within industrial solutions and plants. They
comprise electrical or electronic devices for measuring and influencing
process parameters, hardware components, a communication system, and
software for the different automation functions. Embedded systems are
used in many different forms reflecting the specific characteristics of
processes or industries. With regard to applications of embedded systems
in automation, it is important to differentiate between individual devices
or single systems, which are developed as mass products, and systems of
systems in the form of machines and industrial plants, which are
individually implemented in implementation projects for specific
customer requirements (Example 11-1). Hence, the same (from an
internal point of view) devices or systems deployed in two different
systems of systems will appear totally different (from an external point of
view) due to the configuration, customization, and integration in
applications of different domains with different requirements and
constraints.

Example 11-1: Application areas of embedded systems in automation
 Automation devices: Generally, standardized, configurable, or freely-

programmable hardware components
 Machines and apparatuses: Functional, independent units such as

robots, machine tools, or process cells, partly prefabricated and partly
fitted

 Industrial systems: Individual configuration of machines, apparatuses,
and automation devices for implementing a spatially dispersed process,
e.g., power plant, mill, pumping station, factory

Programmable logic controllers (PLC) or comparable specialized
microcontrollers are deployed as hardware. These are electronic control
systems used to automate a variety of technical processes featuring
multiple input and output arrangements, real-time signal processing,

Purpose and
importance of

automation
engineering

Embedded systems: a
core asset in

automation

11.1 Overview: Application Domain Automation 139

deterministic logic execution, modular hardware configurability,
minimized space, and extended temperature ranges. PLCs are
programmed via an interconnected computer using domain-specific
standardized programming languages.

Automation engineering is the key for being able to manufacture top-
quality and affordable products in high-wage countries. However,
embedded systems in automation engineering solutions require the
adaption and integration of intricately connected mechanical, electrical,
and IT units from functional, logical, technical, and spatial aspects (see
Example 11-2). Conversely, there are stringent requirements for the
ability of the individual automation devices and systems to be combined
and integrated.

Example 11-2: Characteristics of embedded systems in automation
 Specific combination of software and system components from various

manufacturers that are partially proprietary and partially comprised of
old and new components

 Collaboration and integration of the models of many disciplines
 Integration and maintenance of existing software and system

components with new systems and technology changes in the life cycle

The control of this integration complexity requires effective
collaboration across the domain. In this case, the software takes an
increasingly important role because it forms the last link during the
implementation or initial operation of the entire system and thus, must
ensure the proper interaction of all disciplines. Moreover, the automation
system can only be fully tested in conjunction with the technical process,
i.e., following its implementation on-site. An early integration, therefore,
can only occur on the model level. However, currently, the individual
models of the disciplines are still being developed largely in isolation.
These models must be interlinked, whereby it is necessary to ensure
consistency throughout the individual disciplines, the entire life cycle of
the automation solution, as well as throughout the various levels of
automation.

Model-based development is not only expected to improve efficiency
in the interdisciplinary development process of automation engineering
through networking and parallelization; in addition, appropriately
connected models can be used tactically to make requirements and
design decisions transparent across all disciplines at an early stage. They
can also be used to secure performance parameters of the automation
solution early in the proceedings and thus, to minimize development
risks and costs [Wagner and Löwen 2010].

Integration of
embedded systems is
the key challenge in
automation

Integration must be
driven by models

140 Part III – Application and Evaluation in the Automation Domain

11.2 Evaluation Strategy for the Domain
From the perspective of automation engineering, a promising approach
was to start comparing the terms and concepts already proven in the
domain with the SPES modeling framework in order to lay a scientific
foundation. Therefore, the characteristics and cross-references of
discipline-specific models were analyzed at the beginning of the project
through the analysis of case studies and actual automation projects of
industry partners. The requirements of the domain for an integrated,
model-based development process were also determined. In this context,
particular focus was placed on the alignment of the various terminologies
and model concepts from software and automation engineering, and thus
the foundation for the transferability of requirements and solutions was
created.

The concepts of the SPES modeling framework were compared to
existing industrial approaches and optimized parallel to the development
process. For the evaluation, automation system models were assigned to
viewpoints of the SPES modeling framework and integrated in
automation engineering development processes. The concepts and
methods of the SPES modeling framework were represented through
prototypical modeling of selected case studies and tools with the
participation of domain experts and the academic partners.

11.3 Overview of Activities and Results
In this section, a general overview of the evaluation context and the
conducted evaluation activities is given.

Tab. 11-1 Industries of the automation domain and SPES case studies

Area Explanation SPES Case Studies

Process plants

Automation of physical or chemical
transformations of substances,
materials, or energy by a sequence of
continuous flow processes

Pumping station plant for water
distribution (Siemens AG)

Hot rolling steel mill (Siemens AG)

Manufacturing
plants

Automation of procedures acting upon
the forming, working, and joining of
materials or items by a disconnected
transition of discrete process operations

Test bench for wings (E4You)

Train control system (Siemens AG)

Cylinder production (Siemens AG)

Ongoing coordination
of modeling

Development-
accompanying

evaluation of the
metamodel in the

domain

11.3 Overview of Activities and Results 141

11.3.1 Overall Context of the Activities

The activities focused on the development and transfer of best practice
methods between the modeling of automation systems and the SPES
modeling framework. Multiple complementary case studies from various
application areas of the domain (Tab. 11-1) were used to evaluate the
SPES modeling framework. In addition, domain-specific characteristics
and enhancements of the metamodels were developed and implemented.

11.3.2 Model-Driven Development of Automation
Devices

The focus was on the development of best practices and guidelines for
the systematic introduction of model-based processes [Fieber et al.
2009]. Moreover, methods for assuring the quality of models in the
industrial environment were developed, and the software development
for automation devices was observed in particular in these methods
[Arendt et al. 2011]. The SPES modeling framework was tested for its
applicability on the basis of the case study Train control system. In order
to deliver proof of the usability of the results, a prototype for the
automated quality assurance of models was implemented for the case
study and has already been successfully applied in further projects of
Siemens AG [Arendt and Taentzer 2012].

11.3.3 Model-Driven Integration and Simulation of
Embedded Systems in Industrial Systems

Here, the focus was on the application of the SPES modeling framework
for the interdisciplinary modeling (engineering, electrical engineering,
software) of industry systems with regard to the integration and
dependencies between the different disciplines involved in automation
engineering [Jäger et al. 2011], and with regard to the use of models for
the improvement of the interdisciplinary collaboration (cf. [Wagner et al.
2011, Fay et al. 2011]). An additional emphasis was on the validation of
the embedded systems in systems through the use of functional, logical,
and technical models of the systems for simulations [Wehrstedt et al.
2011].

The application of the SPES modeling framework to the description
methods of automation engineering and its applicability were evaluated
on the basis of three case studies: Hot rolling steel mill, Pumping station,
and Cylinder production. Aside from expert analysis, the prototypical re-
modeling of actual systems was applied in the studies for evaluation
[Lüder et al. 2010, Wagner et al. 2011]. The activities were accompanied

Best practice
modeling concepts for
all industries of the
automation domain

142 Part III – Application and Evaluation in the Automation Domain

by practical demonstrations. The results of the evaluation are described
in further detail in Section 11.4.

11.3.4 Data Models for Automation Runtime Platforms

At the center of our work were the design and the implementation of a
runtime platform to which various automation devices and development
tools could be connected. Therefore, PLCs (e.g., radCASE), process
visualizations (e.g., embedded graphic XiBase9), and test environments
(e.g., YAVE) were integrated using the Embedded4You middleware
GAMMA on the basis of a central modeling approach.

This data model represents the SPES modeling framework
completely and abstracts the system components of embedded platforms,
such as hardware, I/O structures, operating systems, and communication.
It describes the transition from platform-independent (PIM) to platform-
specific data models (PSM). A PIM describes the model of the logical
viewpoint in the SPES modeling framework, whereas a PSM is a model
of the technical viewpoint of the SPES modeling framework. These
models are connected via a mapping relationship. The models of the
various abstraction layers and viewpoints require execution semantics to
be able to validate properties of the system in early stages of
development. Therefore, the modeling approach also contains platform-
specific artifacts for the execution, such as process and I/O variables,
temporal processes, or memory dependencies. Together with the test
environment, the data-centric model enables simulation models to be
tested with MATLAB/Simulink and software or hardware in the loop.

The results are applied in diverse embedded platforms and test
systems. Special platforms were implemented to prove the modeling on
typical hardware environments of automation. The evaluation occurred in
the High-lift test bench case study (modeling of the high-lift test of
wings). In that context, a flexible microTCA hardware platform was
built. The functional scope of the case study is scalable to modeling in
automation.

The proof of concept was shown by implementing and testing the
runtime platform for the case study High-lift test bench. The technical
implementation of the model only occurred in the form of an example
within the scope of the project due to high costs. As far as the
development environment is concerned, the most significant concepts
were developed and implemented using prototypes. The activities were
accompanied by scientific work for modeling temporal aspects and the
introduction of the results into the standard [VDI/VDE 2657].

11.4 Application and Evaluation of the SPES Modeling Framework 143

11.4 Application and Evaluation of the SPES
Modeling Framework

The models and results presented in the following consolidate the work
from numerous case studies that were jointly developed by Siemens AG,
the Helmut Schmidt University/University of the Federal Armed Forces
Hamburg, OFFIS e.V., the University of Duisburg-Essen, and the
Technische Universität München. For the purposes of clarity and
confidentiality of real project information, they will be explained based
on the simplified demonstration model of a production technology
system.

11.4.1 Domain-Specific Challenges

Software within automation systems is becoming more complex and
crucial to such systems [Achatz and Löwen 2005], resulting in some
important domain-specific challenges — this was the focus of the
evaluation.

A variety of engineering disciplines are involved in the realization of
an automation system: electronics, mechanics, process technology,
embedded hardware and software. The disciplines all require their own
models and methods that are specialized for their particular design
purpose. However, design decisions and results of different disciplines
depend on each other. A modeling approach has to offer system models
that span disciplines, as well as views onto these models that support
discipline-specific methods and models and ensure the consistency and
traceability of the data of the different views.

Complexity also arises from the great number of functions, signals,
and devices in automation systems. Models, and especially tools, have to
stay in control and must support the engineers to stay on top of things.

Due to their complexity, in practice, automation projects are process-
driven and consist of different phases in which the projected system is
designed, refined, and made more specific step-by-step. Important phases
are concept engineering (for bid preparation), basic engineering, detailed
engineering, and installation and commissioning. In each phase, different
objectives and requirements have to be supported by models (see Tab.
12-2). For example, a project must be able to estimate the major cost
items as early as possible for the purposes of bidding (e.g., equipment,
engineering and construction). A modeling approach must allow this
information to be revealed without excessive effort.

Collaboration of
scientific and
industrial partners

Integration of multiple
engineering
disciplines

Scalability for large
number of entities

Process integration of
modeling approach

144 Part III – Application and Evaluation in the Automation Domain

Tab. 11-2 Typical phases of an automation engineering project

Phase Concept
Engineering

Basic
Engineering

Detailed
Engineering

Installation &
Commissioning

Aim Plant is feasible Plant to be contracted Plant can be built Production can start

Typical
Tasks

1. Clarify tech-
nical scope

2. Analyze
requirements
& risks

3. Design solu-
tion concept

4. Assess effort
& quantities

1. Design technical
process, plant
architecture, and
construction

2. Initial technical
specifications &
calculations

3. Simulation and
validation

1. Design all
systems

2. Fully specify
equipment

3. Purchase,
manufacture,
and implement
systems and
software

1. Assemble
mechanical,
electronic, and
automation parts

2. Deploy software
3. Check, inspect,

and test every
operational
component

11.4.2 Introduction to the Case Studies

The demonstrator represents a processing cell in a production system for
manufacturing cylinder heads and offers the possibility of mapping and
simulating planning processes and models of actual industrial systems.
The reduced complexity of the demonstrator allows representative results
to be achieved in a short time, and these results are then transferable to
the actual planning process for industrial systems.

Fig. 11-1 Demonstration model and example of a production system

The demonstrator consists of four stations for work piece processing: two
conveyor belts and two gantry cranes for transporting work pieces.
Automation enables multiple work pieces in the cell to be processed
concurrently. To achieve this, optical sensors for determining the work
piece position are installed, as well as push buttons for determining the
crane position. For the automation, a PLC S7-400 is used, and is
connected via PROFIBUS to a total of 52 sensors (position measuring,
work piece identification) and actuators (drives).

Case study: Cylinder
machining unit

11.4 Application and Evaluation of the SPES Modeling Framework 145

The system was engineered using plant engineering tools COMOS,
Mechatronics Concept Designer, and the automation system SIMATIC
PCS7. In addition to the configuration of the hardware and
communication, this engineering also included the creation of a control
program and the configuration of the operator control panel.

11.4.3 Mapping of the SPES Modeling Framework to the
Concept and Description Methods for
Automation

To make the SPES modeling framework compatible for modeling
automation engineering, the common entity classes, views, relationships,
and concepts of the domain-specific models have to be assigned to those
of the SPES modeling framework. To enable this assignment
independent of the various discipline-specific and industry-specific
modeling languages, a generic metamodel of automation engineering was
developed (see Fig. 11-2) [Strube et al. 2010]. It describes all elements to
be modeled and their relationships relevant from an automation
engineering perspective for the functionality and integration of a system.
The 4-tier model can be used to interlink the SPES modeling framework
to the domain-specific modeling languages. In this context, tiers 3 and 4
represent the automation system. The modeling of the system
environment on tiers 1 and 2 is of particular importance, not only for
compiling the requirements from the engineering process and resources
to the automation, but also for validating all requirements. This requires
an overall analysis of the system considering the interaction of processes,
resources, hardware, and software.

Fig. 11-2 4-tier metamodel for automated plants [Strube et al. 2010]

4-tier metamodel
classifies all entities in
automation modeling

146 Part III – Application and Evaluation in the Automation Domain

Tab. 11-3 shows the assignment of the entity classes of automation
models to the viewpoints of the SPES modeling framework as well as the
associated domain-specific modeling languages. There is no one to one
assignment of the domain-specific modeling languages to the viewpoints
of the SPES modeling framework. Many automation engineering models
contain functional as well as logical and technical aspects, e.g., the
system layout or the process and instrumentation diagram. The
requirements viewpoint is not listed because it is still minimally
established in the domain and the SPES concepts can be used without
further adaptation.

Tab. 11-3 Mapping of SPES viewpoints to automation entity classes

Viewpoint Automation Entity Class Domain-Specific Models

Functional
Viewpoint

Tier 1:
Technical
process

Sequence of process operations
with which raw materials are
transformed into final products

Basic/process flow diagram
Bill of operations (BOO)
Functional architecture

Logical
Viewpoint

Tier 2:
Plant
layout

All types of technical resources
(machines, apparatuses) for
executing the technical process

Plant breakdown structure
Plant layout (CAD model)
Material flow diagram
Process & instrumentation diagr.

Tier 3:
Automation

software

Necessary automation
functionality for controlling the
process of tier 1 with the
resources of tier 2

Process control hierarchy
Measuring/set point list
State chart/Petri net/SysML
Function charts/blocks

Technical
Viewpoint

Tier 4:
Automation
hardware

All devices for controlling and
monitoring of the technical
process by executing automation
software

Parts list: drives, instruments
Hardware/network configuration
Input/output signal list
Wiring & mounting diagrams

Only a limited number of technological processes are available for
particular process operations, which in turn affect the type and features
of technical resources and automation functionality. From the bill of
operations of the cylinder processing cell presented in Fig. 11-3, it is
obvious that the individual process steps can only be executed by certain
types of machines. Further technical requirements arise through the given
process templates and the parameters of process operations (e.g.,
temperature, forces, velocity, geometry). For example, in the case of
simultaneous movement of the gantry cranes in the cylinder machining
unit, collisions must be avoided. These types of system requirements are
modeled according to the SPES modeling framework as contracts (Fig.
11-3), and can therefore be taken into consideration in the development
process so that future integration or functional problems can be
minimized.

The logical viewpoint serves as a platform-independent description of
the logical system architecture. In automation engineering, this can be

Metalevel domain
compatibility: SPES
viewpoints cover all

entity classes of
automation models

Models in automation
have a strong physical

connection

11.4 Application and Evaluation of the SPES Modeling Framework 147

mapped to the design of the system layout and the necessary automation
functionality according to the process flow (see Tab. 11-3).

Fig. 11-3 Functional view: Bill of operations of the cylinder machining unit

Evaluation showed that, in contrast to the SPES modeling framework
approach of a platform-independent logical system model, the layout of
automation systems (tier 2) must consider the technological platform to
some extent. For example, the type of technical resources needed
according to the selected technological process for a process operation
must be determined, which in turn also significantly affects the type and
features of the automation functionality (tier 3). For example, based on
the decision that gantry cranes have to be used to transport work pieces
in the system layout of the processing cell instead of robot arms (Fig.
11-4), the number and type of sensors and actuators, and thus, the
process signals as well as the type of automation software (e.g., the
logical process control instead of numerical movement control) are
determined. The automation functionality cannot be modeled
independently of the platform because it is dependent on the features of
the hardware (temporal relationship, bus systems) and the sensor/actuator
interfaces. For the logical viewpoint, therefore, few independent models
currently exist in automation engineering; rather the elements of the
logical view are primarily described in technology-oriented models.

Due to the fact that the technological process forms the common
basis for all disciplines involved in the planning process and their
models, the dependencies between the process, the technical resources,
and the automation system must also emerge from the functional and
logical system model. On one hand, this approach increases the degree of
the overall description of the system and in the process, also helps to
avoid misunderstandings and integration issues between the disciplines.
The challenge from the perspective of automation engineering was in
finding suitable modeling strategies so that, on one hand traceability
beyond viewpoints exists, and on the other, a viewpoint is closed. For

Logical viewpoint
models shaped by
technical platform

148 Part III – Application and Evaluation in the Automation Domain

this reason, the 4-tier metamodel also contains a classification of
technically relevant relationships between the entities (Hint 11-1).
Furthermore, a method for analyzing and modeling technical
dependencies when engineering a system was developed [Jäger et al.
2011, Strube et al. 2011].

Fig. 11-4 Logical view: plant breakdown structure modeled in COMOS

(left) and 3D layout in Mechatronics Concept Designer (right)

Hint 11-1: Classification of model relations of automation entities
 Process flow represents the transport of items, substances, or energy

between process operations and/or storage
 Structural and spatial associations represent the spatial or constructive

assembly of entities in the plant (e.g., shaft, screw) or mechanical
connections for transporting material or substance (e.g., pipeline, cable)

 Communication relations between units represent the exchange of
signals/information (test value, set point, function call, etc.), e.g., wire
connection between sensors and actuators of a technical resource and an
automation device.

 Relationships of effect represent functional dependencies between
technical resources as well as between automation functionality with the
controlled resource and the process operation executed

Structural and communication relations are modeled using the SPES
modeling framework concepts logical component, port, connection,
mapping, and realization. To model simple flow and relationships of
effect, the concepts allocation, mapping, and contracts are applied. Fig.
11-5 shows this in the example of the logical model of the automation
functionalities of the cylinder processing station. The automation
functionalities on the next abstraction layer are hardened through the
domain-specific modeling languages continuous or sequential function
charts, and thus the transition for the implementation of the logical

Functional and logical
design is dependent

on the technical
aspects

11.4 Application and Evaluation of the SPES Modeling Framework 149

components is created with logical PLC programming languages
(function blocks), as shown in Fig. 11-6.

Fig. 11-5 Logical view of a high abstraction layer: functions, interaction,
and contracts

Fig. 11-6 Logical view of a lower abstraction layer: crane control:

continuous function chart

Within the technical viewpoint, the logical components of the logical
model are allocated to equipment and the software is distributed to the
automation devices. The main entities are technical components such as
electronic control units, for example, PLC, control cabinet, operator
station, and systems, as well as actuators and sensors (Fig. 11-7). This
network represents the hardware platform to which the logical

Modeling of relations
of automation entities

150 Part III – Application and Evaluation in the Automation Domain

components must be allocated (Fig. 11-8). Automation hardware is
typically selected from catalogs and the software is implemented with
appropriate tools specific to the hardware. The specific machines and
apparatuses are selected for the technical resources. They include
additional technical components for discipline-specific subsystems such
as power supply, hydraulics, etc.

Fig. 11-7 Technical view: hardware layout

Fig. 11-8 Technical view: network layout in SIMATIC NetPro

Through the formalization of the process conditions and relationships of
effect, both can be analyzed automatically. In this way, it is possible to
determine, for example, whether logical components that depend on each
other are also compatible with each other. In order to enable a complete
review of the functionality and of the embedded system during technical
process control prior to the actual systems deployment, solution concepts
have been developed. For example, executable simulation models for

11.4 Application and Evaluation of the SPES Modeling Framework 151

process and automation can be generated from the interdisciplinary
complete model [Wehrstedt et al. 2011]. These are used to validate the
functional and logical models of the system with the use of simulation
tools — both in an early phase as well as during the virtual initial
operation. For example, it is necessary for the cylinder machining unit to
test whether the control operates without hindrance or collision.

11.4.4 Evaluation of the Abstract Modeling Concepts

In addition to the application of case studies, the modeling concepts of
the SPES modeling framework were compared to those of common
design methods, modeling languages, and tools of automation. The
comparison was based on a criteria catalog with defined and weighted
instances (including examples) of conceptual abstractions. The validity
and completeness of the criteria catalog for analysis and comparison of
modeling and tooling concepts has been proven in more than 25
evaluations for several Siemens business units in recent years.

An overview of the results is presented in Tab. 11-4. In summary, a
complete consideration and specification of the concepts views,
hierarchy, and abstraction can be found in the SPES modeling
framework. It also became evident that the modeling concepts
modularization, viewpoints, aspects, and dependency/mapping were not
yet completely specified in both SPES and automation engineering. The
concepts reuse and mechatronics are only applied in the automation
domain and are not currently considered in the SPES modeling
framework.

11.4.5 Methodological Approach for the Engineering of
Systems on the Basis of the SPES Modeling
Framework

The SPES modeling framework is an architecture model and does not
provide a process model. Due to the fact that automation projects are
strongly driven by processes, a suitable approach for the engineering of
automation systems based on the SPES modeling framework was
derived. In the SPES modeling framework, the engineering phases
concept, basis, and detailed engineering are supported by the viewpoints.
The installation and commissioning phase of standard process models is
currently not provided. The models to be created in this phase, however,
do not require currently unknown modeling concepts and it was therefore
possible to depict them in the SPES modeling framework (Fig. 11-9 left).

152 Part III – Application and Evaluation in the Automation Domain

Tab. 11-4 Evaluation of abstract modeling concepts

Concept
Emphasis

Explanations SPES AUT

Hierarchy Very
High

Very
High

Hierarchization through composition and decomposition is used
in both domains. There is a common understanding in the areas
of consideration and specification.

Abstrac-
tion High High

Is substantial in the SPES modeling framework, although the
type of abstraction is not specified further. For example, the role
concept significant for the automation can be depicted with a
functional viewpoint and implementation relationship, though an
explicit type of artifact is missing: role or abstract component.

Modulari-
zation Med. High

Modularization has to be applied in the SPES modeling
framework when hierarchizing. However, the consideration and
specification of a hierarchy-wide modularization, such as is
implemented in the automation domain with the aid of the group
concept (logical areas), is lacking. This would correlate to a
viewpoints and cross-aspect viewing aggregation.

Discipline-
specific
views

 Med. Med.

The viewing concept is implemented in the SPES modeling
framework entirely. The discipline-specific design, however, is
not sufficiently supported. Aspects allow the internal
classification of information within a component, though not an
explicit component-wide classification or summary of individual
aspects, interfaces, and connections.

Depen-
dency Low Low

The mapping concept with the characteristics implementation,
allocation, and link to external data is currently not fully specified.
For example, extensions for the representation of complex
dependencies with class, features, and functionality are required.

Reuse None High
The SPES modeling framework does not currently provide a
reuse concept. Libraries, instance, and inheritance are required
to support the reuse of engineering artifacts.

Mecha-
tronics None Med.

Artifacts are classified in the SPES modeling framework.
However, in automation, an artifact frequently comprises
information from multiple viewpoints that must be considered
cohesively because a significant added value of the modeling
arises.

In automation engineering, firstly the system requirements are analyzed
(decomposition). As explained by means of the case study, requirements
are not only based on functions of the functional viewpoint, but also on
elements of additional viewpoints. That means that a sequential
arrangement of the design within a viewpoint or a level is not sufficient.
The use of a parallel process instead allows temporal overlapping of the
design activities of the different disciplines involved. In addition, it must
be possible to integrate solution elements while increasing the level of
abstraction (bottom-up). This results in the process flow as shown in Fig.
11-9 (right).

11.5 Summary 153

Fig. 11-9 Mapping of the SPES modeling framework to the engineering

process

11.5 Summary
The goals of the automation domain were to optimize, interlink, and
increasingly automate the engineering of automation systems using
suitable models based on the SPES modeling framework. This requires
integration of the discipline-specific models within the scope of
structured, collaborative, and scalable engineering processes, also
considering the physical and technical constraints of the automated
system.

The concepts of the SPES modeling framework were mapped to the
specific modeling languages of the automation domain. In this process,
through intensive coordination with representatives from the automation
domains and academic partners within SPES, it was found that the terms
of automation engineering and those of the SPES methodology
correspond well. Based on results from applying the SPES modeling
framework in the context of several domain-specific case studies, we
conclude that the automation engineering 4-tier metamodel of
automation can be represented within the viewpoints and abstraction
layers of the SPES modeling framework. Based on results from case
studies, we were able to demonstrate that the SPES modeling framework
can be applied in the automation domain.

Results also showed that the SPES modeling framework strengthens
abstraction, hierarchy, and separation of concerns in interdisciplinary
modeling and thus promotes interdisciplinary collaboration, which can be
underlined from experiences from recent projects. Moreover, the
emphasis on the functional and logical views supports automation
engineering for shifting efforts from implementation into the early
project phases, helping to reduce project risks as well as costs for the
correction of errors and design decisions [Wagner et al. 2011]. However,
there is currently no guideline for the application of the SPES modeling
framework in the automation engineering process. Therefore, the SPES
modeling framework has to be adapted further with regard to its

154 Part III – Application and Evaluation in the Automation Domain

applicability in the automation domain. Specifically, this could be
achieved through the integration of upcoming domain-specific challenges
such as mechatronic design and design-by-reuse and by support through
domain-specific application guidelines.

11.6 References
[Achatz and Löwen 2005] R. Achatz, U. Löwen: Industrieautomation. In: P. Liggesmeyer,

D. Rombach (Eds): Software Engineering eingebetteter Systeme: Grundlagen,
Methodik, Anwendungen. Munich: Elsevier, Spektrum Akademischer Verlag, 2005,
pp. 497–525.

[Arendt and Taentzer 2012] T. Arendt, G. Taentzer: Model-driven engineering of
composite model refactorings. In: Proceedings of the 34th International Conference on
Software Engineering, 2012.

[Arendt et al. 2011] T. Arendt, S. Kranz, F. Mantz, N. Regnat, G. Taentzer: Towards
syntactical model quality assurance in industrial software development: Process
definition and tool support. In: R. Reussner, M. Grund, A. Oberweis, W. Tichy (Eds.):
Software Engineering 2011: Fachtagung des GI-Fachbereichs Softwaretechnik,
February 25-25, 2011 in Karlsruhe. Köllen Druck+Verlag, Bonn, 2011.

[Fay et al. 2011] A. Fay, T. Jäger, T. Wagner: Systematische Erfassung und Bewertung von
gewerkeübergreifenden Schnittstellen in Engineering-Workflows. In: Proceedings des
8. Symposiums Informationstechnologien für Entwicklung und Produktion in der
Verfahrenstechnik, Frankfurt am Main, Germany, 2011.

[Fieber et al. 2009] F. Fieber, N. Regnat, B. Rumpe: Assessing usability of model driven
development in industrial projects. In: T. Bailey, R. Vogel, J. Mansell (Eds.): 4th
European Workshop on “From code centric to model centric software engineering:
Practices, Implications and ROI” (C2M). University of Twente, Enschede, 2009.

[Jäger et al. 2011] T. Jäger, A. Fay, T. Wagner, U. Löwen: Mining technical dependencies
throughout engineering process knowledge. In: Proceedings of the 16th IEEE
International Conference on Emerging Technologies and Factory Automation,
ETFA'2011, September 5-9, 2011, pp. 1-7.

[Lüder et al. 2010] A. Lüder, L. Hundt, M. Foehr, T. Wagner, J. Zaddach: Manufacturing
system engineering with mechatronical units. In: Proceedings of the 15th IEEE
International Conference on Emerging Technologies and Factory Automation,
ETFA'2010 September 13-16, 2010, pp. 1-8.

[Strube et al. 2010] M. Strube, A. Fay, S. Truchat, H. Figalist: Funktionale
Anlagenbeschreibung als Basis der Modernisierungsplanung. In: VDI-Bericht Nr. 2092
Tagungsband VDI-Kongress AUTOMATION 2010, Baden-Baden, Germany, 2010.

[Strube et al. 2011] M. Strube, A. Fay, S. Truchat, H. Figalist: Durchgängige
Modellunterstützung bei der Modernisierung komplexer Automatisierungssysteme. In:
VDI-Bericht 2143 Tagungsband Automation 2011, Baden-Baden, Germany, 2011.

[VDI/VDE 2657] Verein Deutscher Ingenieure: VDI/VDE Guideline 2657 - Middleware in
industrial automation (draft for guideline), ICS 35.240.50, 2010.

[Wagner and Löwen 2010] T. Wagner, U. Löwen. Modellierung: Grundlage für integriertes
Engineering. In: VDI-Berichte Nr. 2092 Tagungsband VDI-Kongress AUTOMATION
2010, Baden-Baden, Germany, 2010.

11.6 References 155

[Wagner et al. 2011] T. Wagner, T. Jäger, A. Fay, H. Figalist: Systematische
Risikominimierung im Engineering mit Abhängigkeitsanalyse und
Schlüsseldokumenten – Vorgehen und Ergebnisse einer Fallstudie zur Erfassung der
gewerkeübergreifenden Informationsschnittmenge im Engineering automatisierter
Anlagen. In: VDI-Bericht 2143 Tagungsband Automation 2011, Baden-Baden,
Germany, 2011.

[Wehrstedt et al. 2011]J.C. Wehrstedt, R. Rosen, A. Pirsing, C. Dietz: Simulation Based
Engineering – Frühzeitige Validierung von Anlagenkonzepten. In: J. Gausemeier, F.
Rammig, W. Schäfer, A. Trächtler (ed.): 8. Paderborner Workshop Entwurf
technischer Systeme. HNI-Verlagsschriftenreihe Band 294, Paderborn, Germany,
2011.

Markus Fockel
Peter Heidl
Jens Höfflinger
Harald Hönninger
Jörg Holtmann
Dr. Wilfried Horn
Dr. Jan Meyer
Dr. Matthias Meyer
Jörg Schäuffele

 12

Application and Evaluation
in the Automotive Domain

This chapter summarizes the application and evaluation of the SPES engineering
methodology in the automotive domain. After introducing the particular domain
characteristics, we state some research questions that we have investigated. Some of the
activities that address these research questions are presented in detail. We conclude that
the SPES engineering methodology is a good basis for the development of automotive
systems, but could be further refined to fit the particular needs of the domain.

157,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_12, © Springer-Verlag Berlin Heidelberg 2012

158 Part III – Application and Evaluation in the Automotive Domain

12.1 Overview: Application Domain Automotive
With total revenue of €315 billion, and thus representing approximately
20% of German industrial production, the automotive industry is
Germany’s most important economic sector, offering employment to
714,000 people. Investing €20 billion in research and development, the
automotive industry is the most innovative sector and thus contributes
significantly to securing Germany as a location for business (source:
VDA annual report 2011).

The necessary innovations are made possible by the enabling
technology of embedded software systems. With regard to the total
development effort, embedded systems make up between 30 and 40
percent of the value chain with an upward trend.

Across all domains, engineering of embedded systems is
characterized by a physical context with real-time requirements and the
necessity for interdisciplinary cooperation. Additionally, the automotive
domain has a high share of quality requirements, cost pressure, and
resource constraints. This is due to high product volumes ranging in the
millions, particularly demanding safety and reliability requirements, and
extensive variability stemming from a large number of system
approaches and functional configurations.

An integrated modeling approach is a key factor to mastering diverse
requirements and being able to handle variants in highly complex
surroundings. Both of these capabilities are vital in order to meet the
challenges of the industry, which is why we worked on developing them
in the SPES 2020 project.

12.2 Evaluation Strategy and Correlations to the
SPES Modeling Framework

In the automotive application domain, the companies Hella KGaA Hueck
& Co., Robert Bosch GmbH, and Vector Informatik GmbH, as well as
the academic partners Fraunhofer IPT and University of Paderborn
(UPB), worked on a variety of domain-specific research questions
(RQs). To address the wide range of these questions, various research
activities were conducted considering different types of case studies.
RQs 1-4 focused on an evaluation of some of the approaches introduced
in Part II of this book. RQs 5-8 evaluated and refined the SPES modeling
framework (cf. Chapter 3) where necessary in order to exploit domain-
specific information and to support domain-specific languages and

12.2 Evaluation Strategy and Correlations to the SPES Modeling Framework 159

standards. RQ9 considered variant handling including tool support
covering all viewpoints. The research activities conducted can be related
to the viewpoints of the SPES modeling framework as shown in Tab.
12-1.

Tab. 12-1 Overview of research questions in the automotive domain

 RQ explained in Section 13.3 RQ not explained in detail

 Bosch Hella / IPT / UPB Vector
Requirements

Viewpoint

Functional
Viewpoint

Logical
Viewpoint

Technical
Viewpoint

In the following, we will outline each RQ.

 RQ1: How can we apply model-based requirements engineering to
the automotive domain? Employing the model types of the
requirements viewpoint (see Chapter 4), we conducted case studies
on an example engine control system and air system. Valuable input
for the method developers was gathered from domain experts (see
Section 12.3.1).

 RQ2: How can we address model-based function development
throughout the automotive development life cycle? We analyzed the
tool AUTOFOCUS3 by means of a case study conducted on an
example engine control system.

 RQ3: How can we address safety design in model-based automotive
development? The work on this RQ led to the development of the
Vertical-Safety-Interface approach [Zimmer et al. 2011]. Industrial
feedback was gathered via a case study conducted on a reallocation
scenario.

 RQ4: How can we empirically validate the methods developed in the
automotive domain? The resulting effect on complexity and
efficiency was validated empirically in cooperation with Fraunhofer
IESE.

 RQ5: How can we get from mainly informal requirements to an
implementation based on the domain-specific AUTOSAR standard

R
Q

x

R
Q

x
R

Q
5

R
Q

8

R
Q

1

R
Q

4

R
Q

9

R
Q

2

R
Q

6

R
Q

3

R
Q

7

R
Q

x

R
Q

x

160 Part III – Application and Evaluation in the Automotive Domain

[AutomotiveSIG 2010] in a more systematic way? A big challenge
here was the assurance of consistency and traceability between
artifacts of different development phases and viewpoints. A seamless
model-based development methodology compliant to Automotive
SPICE [AutomotiveSIG 2010] was developed. It addresses this
research question using semi-automatic transitions between
development phases and viewpoints [Holtmann et al. 2011b].

 RQ6: How can we identify design flaws regarding functional
correctness and timing in early development phases? To address this
question, different kinds of simulation techniques were integrated
into the development methodology (cf. RQ5).

 RQ7: How can we apply the analysis techniques based on the SPES
modeling framework (see Chapter 2) to AUTOSAR architectures? In
order to answer this question, a concept for transforming AUTOSAR
models into models corresponding to the SPES modeling framework
was developed.

 RQ8: Is the conceived automotive development methodology (cf.
RQ5) applicable and what are its limits? The methodology was
evaluated by a proof of concept and developers were asked for
feedback as to its feasibility.

 RQ9: How can we develop embedded systems for vehicles in a
product line approach? Work on this RQ extended the concepts and
features of the PREEvision tool to manage product lines and to
derive consistent product variants of automotive embedded systems.

Some of these RQs are explained in more detail in the following section.

12.3 Detailed Experience Reports
In total, the RQs we addressed in our activities in the automotive domain
cover all constructive development phases for automotive systems. In
this section, we present a selection of our activities in more detail.
Following the development process, we start with requirements
engineering by presenting an evaluation of the requirements view (see
Chapter 4) of an engine control system (see Section 12.3.1). We then
continue (in Section 12.3.2) with a seamless development methodology
from the requirements to an implementation based on AUTOSAR, which
was evaluated on a body control module. This ECU offers a wide range
of functions related to the car body (e.g., indicator control and interior
light control) and communicates with several other ECUs. Finally, we
present an approach for handling variants, which is necessary in all steps
of the development process (Section 12.3.3).

12.3 Detailed Experience Reports 161

12.3.1 Requirements Engineering Using the Model of
the Requirements Viewpoint

In order to address RQ1 regarding the use of model-based requirements
engineering in the automotive domain, we analyzed methods by applying
them to the development of software for engine control systems. We
analyzed this situation using an air system (system controlling the
airflow to the engine) as an example.

Measuring the performance of model-based development methods,
including model-based requirements engineering, relies heavily on how
adequately models can describe the relevant characteristics of a system
regarding both functionality and quality. Customer requests, testability of
design and implementation artifacts, and shaping the development
process are some of the key reasons for requirements engineering. The
evaluation of the model of the requirements viewpoint was motivated by
the following questions:

 Does the approach cover relevant functional problem classes?
 Does the approach support the step from the problem domain to the

solution domain?
 Does the approach scale to large systems?
 Can the approach address the variability inherent to the domain

adequately?
 Does the approach allow statements regarding the completeness or

unambiguousness of requirements modeled?

Generally speaking, requirements in the automotive domain are
documented in specification documents containing an informal textual
description (cf. [Sikora et al. 2012]). This description is then
supplemented by formal behavioral models such as MATLAB or ASCET
for individual aspects. As described in Part II of this book, the
requirements viewpoint (see Chapter 4) provides modeling concepts and
language elements for:

 Static descriptions of requirements using context diagrams
 Dynamic descriptions of requirements using scenarios
 Traversal to the solution domain using function models

162 Part III – Application and Evaluation in the Automotive Domain

Fig. 12-1 Comparing the plant structure (left) and the requirements
viewpoint (right)

The requirements viewpoint was evaluated in the context of the case
study Engine control system. The aim of the evaluation was to identify
which relevant domain characteristics are adequately supported and
whether or not the efficiency and quality of development can be
improved. For this purpose, context elements were compared to their
modeling counterparts in the model of the requirements viewpoint and
were evaluated with regard to the desired goals.

As a typical subsystem in an engine control system, the air system is
characterized first and foremost by the system that is to be controlled.
The context of the air system can be described from both a static
perspective as well as a dynamic behavioral perspective using the plant,
the user, the environment, and the control system. The individual context
elements are characterized as follows:

 The context element plant represents the physics of the air system as
a behavioral model in the form of differential equations. In order to
specify requirements for the control of the plant, the target parameter
we are striving to control (in this case the amount of air provided to
the engine for combustion) must be put in relation over time along
with other conditions (in this case, for example, outside air pressure).
Additionally, the behavioral model that is synthesized from the
physical equations of the system’s components must be available. On
closer inspection, the air system’s component topology varies greatly
between different operation phases, and thus the behavioral model
varies as well. As a result, the operating air system presents itself as
a multitude of variants that must respectively fulfill differing
requirements in minute detail. The change between topologies occurs
either due to external events or constellations within the system in

Does the approach
cover relevant

problem classes?

12.3 Detailed Experience Reports 163

order to achieve required target values. In order to be able to control
the target values, we need to know which information (sensor
values) we have at our disposal and which physical parameters
(actuators) we can influence. In our example, these are the throttle
and the exhaust gas recirculation valve.

 The usage describes the intent with which the air system shall be
operated and specifies the desired air amount that the air system
control shall achieve. For example, the air system is operated using a
specific pre-defined mix of fresh air and recirculated exhaust gas
when regenerating the exhaust filter. Target value generation is
continuous but may involve jumps when the operating situation
changes spontaneously.

 The environment specifies information such as temperature, outside
air pressure, battery voltage, and other environmental information
relevant to the operation of the air system. These values are typically
continuous.

 The control system involves describing information such as starting,
operation, shutdown, or test modes as discrete events.

As described above, all value- and event-discrete elements can be
adequately and completely described using a context diagram. Time- and
value-continuous elements can be approximated by listing the main
aspects of the continuous contextual element.

Interactions between system and system context can be described
very well using scenario diagrams. The question of which intents are
used to operate the system is addressed particularly well. As far as
continuous interactions between system and plant are concerned, this
behavior must first be transferred to a discrete form. This only works
well if the plant’s behavior can be assumed to be continuous. While
applicable for a wide range of operating situations of the air system, it
cannot be assumed for all physical plants.

In summary, the question of an adequate problem description using
the contextual view with the modeling concepts of the requirements
viewpoint is depicted in Tab. 12-2. Value- and event-discrete behavior is
addressed fully, whilst value- and time-continuous behavior can only be
approximated through the use of simplifying discretization and thus
remains incomplete.

Using value- and time-discrete semantics, behavior can be easily
documented in an understandable form. For embedded systems, it is of
utmost importance that they remain operational in all situations and thus
expectations regarding completeness are extremely high. A scenario-
based approach, however, is seldom complete or free from ambiguities.
The value- and event-discrete semantics can only approximate value- and

Evaluation of the
static perspective

Evaluation of the
dynamic perspective

Addressing the
problem classes in the
context model

Does the approach
support the traversal
from the problem
domain to the solution
domain?

164 Part III – Application and Evaluation in the Automotive Domain

time-continuous behavior and thus remain imprecise and, for our
purposes, incomplete. The traversal to the solution domain relies on an
approach based on value- and event-discrete sequences, ultimately
leading to a state machine. If, however, as in our case, value- and time-
continuous behavior is dominant, the solution must be based on a
cybernetic control system approach utilizing signal-theoretic thinking.

Tab. 12-2 Coverage of problem classes using the requirements viewpoint
model

Contextual Element Problem Class Requirements
Viewpoint Model Type Covered?

Plant Value- and time-
continuous

Context diagram Partly

Environment Value-discrete and -
continuous

Context diagram
Scenario diagram

Widely

Usage Value-discrete Event-
discrete

Context diagram
Scenario diagram

Fully

System Control Event-discrete Scenario diagram Fully

In order to be applicable to the domain of physically dominated systems,
the requirements viewpoint model must be developed further in this
direction. Under this premise, software can be developed based on
system requirements resulting from systems co-design of all system
disciplines concerned.

Fig. 12-2 Effect on effort (top) and system comprehension (bottom)

12.3 Detailed Experience Reports 165

The following conclusions were reached by means of a case study [Gross
et al. 2009] that was performed to assess the effect of the approach on
efficiency and quality in the automotive domain (see Fig. 12-2). Firstly,
the approach is neutral with regards to effort and quality (see Fig. 12-2,
top). Secondly, the distribution of effort is shifted towards earlier
development phases. Thirdly, communications between stakeholders and
system understanding among developers were improved (see Fig. 12-2,
right).

12.3.2 A Seamless Development Methodology for
Automotive Systems

As seen in the evaluation of RQ1, the SPES engineering methodology
has to be tailored for specific domains. In order to address RQ5, the
SPES modeling framework was refined for the application within the
automotive domain. We evaluated the concepts by means of the case
study Body control module.

Requirements and functional viewpoints

As already stated in the last section, today, requirements are mostly
specified in unrestricted natural language [Sikora et al. 2012]. The
informal character of natural language, as well as its inherent ambiguity,
can lead to inconsistent, ambiguous, and incomplete requirements. To
resolve this problem, we use requirement patterns that are textual
templates for different types of requirements [Kapeller and Krause 2006,
Holtmann 2010]. Requirement types supported that reside in the
requirements viewpoint (see Chapter 4) are, among other things,
solution-oriented (see Section 4.2.4), timing, and safety requirements.
However, functional requirement patterns describe the functional
decomposition of the system under development (SUD) and reflect a
functional hierarchy as explained in Chapter 5. Example 12-1 shows a
functional requirement pattern in the upper part. The parts in square
brackets are optional, and parts in angle brackets are variable and
replaced by functionalities of the SUD. The lower part of Example 12-1
represents an instance of this requirement pattern and describes an
excerpt of the functional decomposition of the SUD into its
functionalities.

Restricted natural
language for
requirements
specification

166 Part III – Application and Evaluation in the Automotive Domain

Example 12-1: Requirement pattern and instance
The functionality of the system “<system>” consists of the following
function[s]: <function list>.

The functionality of the system “Control Indicators” consists of the following
functions: Indicate, Switch Hazard Lights.

Requirements formulated by means of requirement patterns are derived
from the informal requirements systematically using a process refining
the one used within the requirements viewpoint (see Section 4.4). Since
we restricted the expressiveness of natural language and hence
disambiguated it, the resulting requirements are understandable to all
stakeholders and can be automatically processed at the same time. Thus,
they can be validated automatically to ensure consistency or
completeness, for example (see Fig. 12-3, left) [Holtmann et al. 2011a].
Furthermore, to ease the transition to model-based development, they are
automatically transformed into a system analysis model using a Triple
Graph Grammar (TGG) [Schürr 1995]. TGGs specify rules for
bidirectional model-to-model transformations (M2M) that can be
executed automatically and also preserve traceability and consistency.
Requirements are formulated according to the requirement patterns and
thus, the analysis model is kept traceable and consistent. By enabling the
automatisms mentioned above, this procedure goes beyond the manual
modeling of the SUD functions according to informal requirements as
explained in Chapter 5.

Logical viewpoint

In the logical viewpoint, the logical component architecture is designed,
as explained in Chapter 6, on the basis of the system analysis model
resulting from the functional viewpoint. The elements of the analysis
model are allocated to elements of the logical component architecture to
document which logical components realize which functions and to
maintain traceability [Meyer et al. 2011], see Fig. 12-3. For example, the
functions Indicate and Switch hazard lights are allocated to two logical
components, Indicator and BrakeLampActuator, respectively. The
semantic correctness of the allocations can be ensured with the mapping
relations based on contract-based design introduced in Part II.

To support a seamless development process, the logical component
architecture can be automatically transformed into AUTOSAR
application components. To do this, elements to be transformed into
AUTOSAR application software (ASW) are marked manually using a

Processing of textual
requirements for

automated validation
and transition to

model-based design

Transition to
AUTOSAR application

software

12.3 Detailed Experience Reports 167

profile. The resulting refined logical component architecture is then
automatically transformed using model-to-model transformations with
TGGs (see Fig. 12-4) [Giese et al. 2010]. The usage of TGGs again
allows for preservation of traceability and consistency between the
models.

Fig. 12-3 From the functional to the logical viewpoint

After the transformed AUTOSAR ASW has been manually enriched
with behavior, this behavior can be simulated using the COTS tool
SystemDesk2 to validate its functionality before the software is deployed
on hardware, see Fig. 12-4, upper right. Therefore, the compiled code of
the overall SUD is executed, and thus its responses with regard to
predefined stimuli are generated. The dynamic system behavior of the

2 http://www.dspace.com/systemdesk/

Functional simulation
of AUTOSAR
application software

http://www.dspace.com/systemdesk/

168 Part III – Application and Evaluation in the Automotive Domain

interconnected software components can thus be tested at an early design
stage, which addresses RQ6.

Technical viewpoint

We further enrich the system design model with information from the
technical viewpoint (see Chapter 7), as seen in Fig. 12-4, lower left. For
example, a task calling operations of the logical component Indicator, its
activation policy, and its allocation to an executing CPU are specified.

Fig. 12-4 From the logical to the technical viewpoint

On the one hand, we use this refined system design model to integrate a
resource and real-time simulation of the SUD (see Fig. 12-4, lower right)
to support architectural decisions and to validate the architecture

Resource and real-
time simulation

12.3 Detailed Experience Reports 169

concerning timing requirements. This was realized by implementing a
generator for simulation models for the COTS tool chronSIM3 [Nickel et
al. 2010], which allows computation of the CPU loads and simulation of
the timing behavior of the SUD. Furthermore, timing requirements can
be formalized by means of requirement patterns (see above) and used
within the simulation to directly indicate requirement violations within
the simulation [Meyer et al. 2011]. The simulation of the scheduling for a
specific execution platform enables identification of design flaws in early
development phases before first prototypes are available, addressing
RQ6.

On the other hand, we use the refined system design model to further
simplify the transition to AUTOSAR. In addition to the ASW, an
AUTOSAR model consists of basic software (BSW) and an
automatically generated middleware. Typically, for most parts the BSW
is configured and then its source code is generated automatically.
However, since there are thousands of different possible configurations
depending on the architecture, support must be provided for this
configuration task. In order to (semi-)automate the configuration, we
developed an algorithm (see Fig. 12-4) for synthesizing parts of the
AUTOSAR configuration [Meyer and Schäfer 2009]. For example, we
preconfigure the operating system and the communication stack [Meyer
and Holtmann 2011]. Thus, the main architecture decisions that were
already specified within the refined system design model are transferred
to the AUTOSAR basic software configurations.

Evaluation

In order to answer RQ8, the development methodology presented for
automotive systems was evaluated with an excerpt of the case study Body
control module by a proof of concept and structured expert interviews.
For the evaluation, three experts from Hella and another industrial
partner from the automotive sector were interviewed after using this new
approach within a prototype. Of course, the number of persons
interviewed is too small to gain a universally valid result, but we tried to
minimize this effect by choosing experts for every development phase.

3 http://www.inchron.com/chronsim.html

Partial synthesis of
AUTOSAR
basic software
configurations

http://www.inchron.com/chronsim.html

170 Part III – Application and Evaluation in the Automotive Domain

Furthermore, some concepts have already been applied in real
development projects.

The proof of concept demonstrated that the systematic and partially
automated transitions between the different development phases and
viewpoints, together with automated checks, ensure traceability and
consistency throughout the methodology, especially if parts of an artifact
in a development phase are added or removed. For example, newly added
requirements result in new functions within the analysis model. In this
case, the fact that there is no logical component that takes care of this
function is revealed automatically. Furthermore, the expert interviews
demonstrated that manual and thus extensive developer tasks are reduced
by the transitions, and that the integration of simulation techniques in
early development phases reduces extensive iteration loops.

12.3.3 Variant Handling

Embedded electronic systems are designed to fulfill not only the
requirements of a single vehicle, but also the requirements of an entire
family of vehicles. Therefore, as described in RQ9, the development
methodology must address variant management in order to be applicable
for the automotive domain. The information model for designing
automotive embedded systems in the PREEvision tool is aligned to the
SPES modeling framework and supports the systems engineering
principles of abstraction, modularization, and reuse.

Information model for designing automotive embedded
systems

Every SPES viewpoint can be assigned to one or several PREEvision
modeling layers. In PREEvision, product lines of electronic vehicle
systems are modeled from requirements to the hardware geometry using
seven main layers.

SPES viewpoints and PREEvision modeling layers

On the top level, the design starts with the definition of requirements and
customer features. These layers correspond to the SPES requirements
viewpoint. Vehicle features can be defined in PREEvision using
requirements. Customer features describe a set of features of the vehicle
from the vehicle user’s perspective. The customer features are organized
in a tree representing a superset of features to be fulfilled by a vehicle
product line. This is often referred to as a “150% model.”

Consistency and
traceability is

maintained throughout
the development

process

12.3 Detailed Experience Reports 171

Example 12-2: Engine variants
All engine variants are considered in the product line, but only one engine
variant will be delivered and finally built in a vehicle. All transmission
variants are considered, but only one transmission will be selected later on.
All optional features are considered, but only a subset will be chosen later on.

In practice, a two-step-approach for variant management is often applied
— from a vehicle product line (“150% model”) to a vehicle family (often
also called “120% model”) to a concrete vehicle (“100% model”). Due to
the high number of options, it is not possible to manage each and every
variant explicitly. Therefore, typically 150% models and 120% models
are designed.

PREEvision supports the definition of variant conditions between
features. Such variant conditions can be, for example, “exclusive-or”
relations or “needs” relations between features, but also “or” and
“optional” relations.

The result is a customer feature model (cf. Fig. 12-5) similar to the
FODA approach [Kang et al. 1990]. In production projects, the customer
feature tree is typically organized according to the vehicle
manufacturer’s organizational units following the classical division
powertrain, chassis, body, comfort, and multimedia.

Fig. 12-5 Customer feature model in PREEvision

The next design level is the functional viewpoint, referred to as the
logical architecture in PREEvision. Hierarchies are used to structure the
complete layer according to the organizational responsibilities at the

172 Part III – Application and Evaluation in the Automotive Domain

vehicle manufacturer. However, logical signal connections crossing the
organizational responsibilities can also be modeled by system diagrams
— or activity chains can be used to express a logical control sequence
from the sensors to the actuators realizing a given customer feature. This
means that customer features are represented by an orthogonal subset of
the organizational structure of the logical architecture.

The “realization” or “implementation” relations between customer
features and logical architecture are specified using mappings. Mappings
are information objects that decouple all the modeling layers. This
enables the design engineer to handle even variants of mappings.

Example 12-3: Mapping variants between logical architecture and
the hardware architecture
In practice, the logical architecture and the hardware architecture are often
mapped to each other in a variant-specific manner. In this case, only the
mappings are variant-specific — the logical and the hardware architecture are
neutral.

All subsequent modeling layers in PREEvision are used to specify the
logical and the technical viewpoints in the SPES modeling framework.
Here, PREEvision differentiates between system software architecture to
model the logical viewpoint and the software implementation and
hardware architecture to model the technical viewpoint.

The system software architecture supports the AUTOSAR platform
[AUTOSAR 2011], including the implementation of software
components. The hardware architecture is modeled in several
abstractions representing the hardware network topology, the hardware
components, the schematics, and wiring harness. Geometry data are
stored in the technical viewpoint.

The communication layer supports the definition of conventional and
bus signals, protocol data units, frames, and communication schedules.

Variant management

A product variant is defined in PREEvision as a consistent subset of a
product line over all layers. Challenges from a tool perspective are the
consistency and completeness of the defined subsets: they have to be
guaranteed inside every layer, but also across the layers.

Questions such as “Are all input signals needed provided in a given
variant?” or “Are all software components that are part of a given variant
mapped to hardware components?” have to be answered with “yes.” This
can be checked by user-defined consistency checks and propagation rules

12.4 Summary 173

that can be designed on a customer-specific basis — and that guarantee
consistent and complete variant models.

The approach also has to be usable by an organization following a
defined process with distributed responsibilities and defined roles.
Examples for roles are persons responsible for software, persons
responsible for hardware, and system architects. Database functions are
available in PREEvision to prevent concurrent access to an artifact, but
also conveniently support concurrent work on different artifacts, history,
and archive functions.

Variant design is supported by engineering features such as the signal
router taking into account only a selected variant and not always the
complete product line. Highlighting of variants is supported in all
diagrams, and metrics are available to calculate characteristics of a
product variant such as bus loads, weight, or costs.

We succeeded in developing concepts for the integration of Simulink
as an implementation tool for software components. Furthermore,
usability, convenience, and adaptation functions were designed for the
usage of PREEvision in production projects. Extended feature modeling
capabilities were developed and the support of distributed responsibilities
and database functions was optimized. Further research topics included
consistency analysis not only inside a given layer, but also across layers.

12.4 Summary
Several challenges arise due to characteristics inherent to the automotive
domain. Although all aspects of development are addressed by processes
employed, significant gaps are often present between process steps. This
also applies to the artifacts these steps respectively produce or use,
further affecting traceability between them. Requirements are usually
documented in informal natural language, introducing the possibility of
ambiguity, inconsistency, and incompleteness, and must be considered
by formal models used in later design phases. Embedded systems must
cope with continuous plant behavior that is both difficult to specify as
well as validate, and even more difficult to control, using systems
tailored toward discrete behavior. Furthermore, embedded systems in the
automotive domain are becoming more complex and it is therefore
difficult to validate in early design phases whether the specified
architecture is correct. Additionally, systems in the automotive domain
are usually designed for entire product lines, making variant management
important for handling the resulting complexity of development.

174 Part III – Application and Evaluation in the Automotive Domain

Many of these aspects have now been addressed and at least partly
solved by means of the methodologies developed to answer the research
questions presented in Section 12.2. As a whole, the SPES methodology
is a very good basis, but also leaves room for further development for
refining and adapting the approaches for specific application domains.

12.5 References
[AutomotiveSIG 2010] Automotive Special Interest Group (SIG): Automotive SPICE.

Process Reference Model. Accessed on: April 3, 2012.
http://www.automotivespice.com/automotiveSIG_PRM_v45.pdf.

[AUTOSAR 2011] AUTOSAR GbR: Specification of ECU Configuration.
http://www.autosar.org/download/AUTOSAR_ECU_Configuration.pdf. Accessed on
April 3, 2012.

[Giese et al. 2010] H. Giese, S. Hildebrandt, S. Neumann: Model synchronization at work:
Keeping SysML and AUTOSAR models consistent. In: G. Engels, C. Lewerentz, W.
Schäfer, A. Schürr, B. Westfechtel (Eds.): Graph Transformations and Model-Driven
Engineering. Springer, Berlin/Heidelberg, 2010; pp. 555–579.

[Gross et al. 2009] A. Gross, J. Dörr, I. Menzel, M. Müller: Use Cases vs. Funktionale
Spezifikation: Ein experimenteller Vergleich zweier Techniken zur
Anforderungsspezifikation, GI-Fachgruppen-Treffen Requirements Engineering, 2009.

[Holtmann 2010] J. Holtmann: Mit Satzmustern von textuellen Anforderungen zu
Modellen. In: OBJEKTspektrum, Vol. RE/2010, 2010, http://www.sigs-
datacom.de/fileadmin/user_upload/zeitschriften/os/2010/RE/holtmann_OS_RE_2010.p
df. Accessed on: March 31, 2012.

[Holtmann et al. 2011a] J. Holtmann, J. Meyer, M. von Detten: Automatic validation and
correction of formalized, textual requirements. In: Proceedings of the IEEE Fourth
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW) 2011. IEEE Computer Society, Los Alamitos, 2011, pp. 486–495.

[Holtmann et al. 2011b] J. Holtmann, J. Meyer, M. Meyer: A seamless model-based
development process for automotive systems. In: R. Reussner, A. Pretschner, S.
Jähnichen (Eds.): Software Engineering 2011 – Workshopband (inkl.
Doktorandensymposium). Bonner Köllen Verlag, Bonn, 2011, pp. 79–88.

[Kang et al. 1990] DTIC: Feature-Oriented Domain Analysis (FODA) Feasibility Study.
http://www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA235785. Accessed on
April 3, 2012.

[Kapeller and Krause 2006] R. Kapeller, S. Krause: So natürlich wie Sprechen – Embedded
Systeme modellieren. In: Design & Elektronik, 2006/08; pp. 64–67.

[Meyer and Holtmann 2011] J. Meyer, J. Holtmann: Eine durchgängige
Entwicklungsmethode von der Systemarchitektur bis zur Softwarearchitektur mit
AUTOSAR. In: H. Giese, M. Huhn, J. Philipps, B. Schätz (Eds.): Tagungsband des
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme VII.
fortiss, Munich, 2011, pp. 21–30.

[Meyer and Schäfer 2009] J. Meyer, W. Schäfer: Automatische Analyse und Generierung
von AUTOSAR-Konfigurationsdaten. In: H. Giese, M. Huhn, U. Nickel, Bernhard

http://www.automotivespice.com/automotiveSIG_PRM_v45.pdf
http://www.autosar.org/download/AUTOSAR_ECU_Configuration.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2010/RE/holtmann_OS_RE_2010.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2010/RE/holtmann_OS_RE_2010.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA235785
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA235785
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2010/RE/holtmann_OS_RE_2010.pdf

12.5 References 175

Schätz (Eds.): Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme V. Carl-Friedrich-Gauß-Fakultät für Mathematik
und Informatik, Technische Universität Braunschweig, 2009, pp. 82–91.

[Meyer et al. 2011] J. Meyer, J. Holtmann, M. Meyer: Formalisierung von Anforderungen
und Betriebssystemeigenschaften zur frühzeitigen Simulation von eingebetteten,
automobilen Systemen. In: J. Gausemeier, F. Rammig, W. Schäfer, A. Trächtler (Eds.):
8. Paderborner Workshop Entwurf mechatronischer Systeme. Heinz Nixdorf Institut,
Paderborn, 2011, pp. 203–215.

[Nickel et al. 2010] U. Nickel, J. Meyer; T. Kramer: Wie hoch ist die Performance?. In:
Automobil-Elektronik, Vol. 2010, No. 3, 2010, pp. 36–38.

[Schürr 1995] A. Schürr: Specification of graph translators with triple graph grammars. In:
E. W. Mayr (Eds.): Graph-Theoretic Concepts in Computer Science. Lecture Notes in
Computer Science, Vol. 903, Springer, Berlin/Heidelberg, 1995, pp. 151–163.

[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl. Industry needs and research
directions in requirements engineering for embedded systems. In: Requirements
Engineering Journal, Vol. 17, No.1, 2012, pp. 57-78.

[Zimmer et al. 2011] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, M. Trapp: Vertical
safety interfaces - improving the efficiency of modular certification. In: Proceedings of
the 30th International Conference of Computer Safety, Reliability, and Security, 2011.

Ottmar Bender
Martin Hiller
Dr. Maurice Girod
Carsten Strobel
Martin Waßmuth
Laurent Dieudonné

 13

Application and Evaluation
in the Avionics Domain

The SPES 2020 partners Airbus, Cassidian, EADS Innovation Works, and Liebherr from
the avionics domain formed the avionics group in the SPES 2020 research program. This
group worked together on the SPES 2020 challenges, i.e., modeling of heterogeneous
embedded systems, requirements, platform architectures, safety, certification, and
multicore architectures. Through SPES 2020, a significant improvement in development
methods for requirements engineering, model-based systems engineering, model-based
software engineering, and verification has been achieved in the avionics domain.

177,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_13, © Springer-Verlag Berlin Heidelberg 2012

178 Part III – Application and Evaluation in the Avionics Domain

13.1 Overview: Application Domain Avionics
Avionics systems have to be certified by the airworthiness authorities
before they can be installed and operated in an aircraft. In order to
achieve certification for an avionics system, the company developing and
manufacturing this system has to provide the airworthiness authorities
with the evidence that the system is safe.

Before an embedded system can be operated in an aircraft, the
developer has to provide evidence to the airworthiness authorities that
the probability of hazards is below predefined risk levels. In addition, the
system itself, its documentation, as well as the development process must
follow the standards defined in the planning phase strictly.

Consequently, the methods developed in SPES 2020 must support
and comply with the safety analysis and development processes in the
avionics domain and allow the engineering of safe systems, including
hardware and software. In this chapter, we explain how the SPES
modeling framework was applied to the development processes in the
avionics domain and evaluated with regard to the fulfillment of the
domain-specific requirements outlined in Section 2.2.3.

13.2 Evaluation Strategy and Application to the
SPES Modeling Framework

This section describes the strategy that was pursued in order to evaluate
the SPES modeling framework. Based on the initial situation in the
avionics domain (cf. Section 2.1.3), and the peculiarities of this
application domain (see Section 13.1) and its specific requirements, a
case study was defined and used to assess to what extent the
requirements for the SPES modeling framework (cf. Section 2.2.3) have
been met. This case study is illustrated in Section 13.2.1. An overview of
its application is given in Section 13.2.2, while Section 13.3 discusses the
results from the evaluation.

13.2.1 Avionics Case Study

The avionics group defined an avionics case study to express selected
pressing problems such as the formalization and structuring of
requirements, bridging the gap between system and safety engineering,
automated test case and procedure generation, and the seamless system
and software development flow from requirements to design. The

Problems considered
in the avionics

application domain

13.2 Evaluation Strategy and Application to the SPES Modeling Framework 179

avionics case study describes an example of the aircraft functions
situation awareness, flight control, and air conditioning. The case study
focuses on these functions to represent and show the problems listed
above.

The situation awareness function presents the traffic situation around
the aircraft to the flight crew. The situation is shown as pictures on
display units. These pictures consist of information about other aircraft,
flight corridors and areas, and flight-relevant geological formations. In
SPES, this function was used to represent the problems of the seamless
system and software development flow and bridging the gap between
system and safety engineering.

The flight control is a fly-by-wire system that sends all flight control
commands from the flight controls to the actuators (see Fig. 13-1) via a
communication network. In SPES, this function was used to represent the
problem of automated test case and procedure generation.

Fig. 13-1 Flight control

The air conditioning system enables the passengers to stay in the aircraft
interior during the flight with no major restrictions or effects on health.
In particular, it allows them to breathe without equipment and to feel
comfortable in indoor clothing. In SPES, this function was used to
represent the problem of the formalization and structuring of
requirements.

13.2.2 Application of the SPES Modeling Framework

The following paragraphs show how the SPES modeling framework is
applied to selected parts of the avionics case study.

Typically, an aircraft is structured into the following types of system
elements: aircraft, system, equipment, hardware, and software. The term
system element is used to address any structural element of an aircraft,
e.g., equipment, hardware, or software. This type of structure is the

Structuring an aircraft

180 Part III – Application and Evaluation in the Avionics Domain

motivation for instantiating the generic abstraction layers of the SPES
modeling framework (see Section 3.5) to the layers shown in Fig. 13-2.
The generic SPES viewpoints (i.e., requirements viewpoint, functional
viewpoint, logical viewpoint, and technical viewpoint) of the SPES
modeling framework are used for system and software modeling in the
avionics domain.

Fig. 13-2 Abstraction layers and viewpoints in the avionics case study

This concept of layers and viewpoints has to be mapped to the structure
of the repository for the system and software modeling. The avionics
group defined a repository structure to model the case study using
SysML with profiles, e.g., component fault trees (CFT). The rules and
principles derived from these concepts have been documented in the
avionics modeling guide.

The avionics model repository complies with the abstraction layers
and viewpoints philosophy as defined in SPES 2020. The layout of the
avionics model is shown in Fig. 13-3. In this repository structure, the

Requirements Viewpoint Functional Viewpoint Technical ViewpointLogical Viewpoint

Viewpoints

Ab
st

ra
ct

io
n

La
ye

rs

AL1
Aircraft Level

(SPES 2020)

AL2
System Level

Airspace Situation System
Air Conditioning

Flight Control
MA

AL3
Equipment Level

Airspace Situation Awareness
Computer

Control Unit

AL4
Component Level

(Application Software)

Requirements
Capture

Design

Specification
Model Design Model

Hi
gh

er
 L

ev
el

 R
eq

ui
re

m
en

ts
 E

ng
in

ee
rin

g
(S

ys
te

m
 R

eq
ui

re
m

en
ts

 &
 A

rc
hi

te
ct

ur
e)

Sy
st

em
 M

od
el

lin
g

SAE ARP4754

Cl
ea

r

Ca
te

go
riz

at
io

n!

Transition Criteria

Compliance Check acc. DO-178B

13.3 Evaluation Results for each Viewpoint and Quality Aspect 181

layers are realized as SysML packages and the viewpoints are realized as
packages within these layer packages.

Fig. 13-3 Repository structure

13.3 Evaluation Results for each Viewpoint and
Quality Aspect

This paragraph describes the viewpoints applied to the avionics domain
with their purpose, modeling activities, and the resulting model elements.
It is important to state that the activities described in the viewpoints may
be performed iteratively or even in a partially ordered sequence. This
means that the concept of viewpoints and abstraction layers does not
prescribe a certain sequence of activities, e.g., left to right or top-down.
Quality aspects can be added to a viewpoint to model cross-sectional
subjects, e.g., safety. Where applicable, the quality aspects safety and
real-time have been considered as part of the viewpoints.

13.3.1 Requirements Viewpoint in the Avionics Domain

The purpose of the requirements viewpoint is to show the goals,
requirements, actors, use cases, interfaces, and scenarios and their
interrelation. The avionics group specified the following activities to
describe the system element defined by the scope of this viewpoint and
the related abstraction layer:

Activities in the
requirements
viewpoint

182 Part III – Application and Evaluation in the Avionics Domain

 Elicit aircraft, system, equipment, hardware, and software
requirements from stakeholder goals.

 Trace the specified requirements to requirements from the
abstraction layer above. This connects the adjacent abstraction
layers.

 Identify the actors and develop the use cases from the defined
requirements.

 Trace the use cases to the requirements. This traces the use cases
indirectly to the requirements of the abstraction layer above.

 Identify the interfaces from the relation between the actors and use
cases.

 Develop scenarios from use cases. These scenarios are the basis for
validating and verifying the requirements, and provide the basis for
the functional architecture of the functional viewpoint.

Case study: Requirements

The avionics case study gives an example of the requirements viewpoint
for the aircraft abstraction layer. The top level use case diagram for the
situation awareness function is shown in Fig. 13-4. It describes the
identified actors crew, other aircraft, and airspace information system.
The interfaces of the aircraft function are derived from the
communication links between these actors and the use case Display
airspace situation. The use case originates from the requirements it
traces to.

Fig. 13-4 Top-level use case diagram in the requirements viewpoint

One of the aircraft functions addressed by the avionics case study is the
air conditioning. In this case study, the text-based specification was
transferred into a model-based specification using the SPES modeling

13.3 Evaluation Results for each Viewpoint and Quality Aspect 183

framework (multiple abstraction layers and viewpoints) and a specific
modeling tool.

The SPES modeling framework is implemented as a plug-in to a
modeling tool. This SPES 2020 plug-in offers certain predefined model
elements, based on the “rich component” concept, that are the foundation
for automated model analysis. In the modeling tool, there is a graphical
model view as well as a model tree reflecting the model’s element
structure. The predefined model elements offer a predefined model tree
structure whose elements, e.g., ports, are instantiated by the concrete
case. The following paragraphs show a modeling example.

Fig. 13-5 Requirements viewpoint in the aircraft layer

The top abstraction layer is the aircraft layer. Its requirements viewpoint
maintains the passengers’ overall use case, i.e., use the aircraft for flying
from origin to destination. For the aircraft, this means the passengers
board the aircraft, stay in the interior during flight, and leave the
aircraft. These activities are linked to the use case by port relations. The
graphical model view is shown in Fig. 13-5.

The requirements viewpoint of the next lower abstraction layer, i.e.,
the system layer, focuses on the actual air conditioning system. This
system enables the passengers to stay in the aircraft interior during the
flight. In particular, it allows them to breathe without equipment (oxygen
is provided) and to feel comfortable in indoor clothing (heating is
provided), as graphically modeled in Fig. 13-6.

Implementation of the
SPES modeling
framework

184 Part III – Application and Evaluation in the Avionics Domain

Fig. 13-6 Requirements viewpoint in system layer

Fig. 13-7 Port mapping in system layer and mapping

The link between the requirements viewpoint of the aircraft layer and the
requirements viewpoint of the system layer is modeled by a mapping
diagram, based on port mappings as shown in Fig. 13-7.

As a conclusion, we can confirm that it is possible to transfer a text-
based specification into a model-based representation using the SPES
modeling framework.

13.3.2 Functional Viewpoint in the Avionics Domain

The purpose of the functional viewpoint is to show the functions,
subfunctions, and functional interfaces of the system element in question.
The avionics group specified the following activities to describe the
system element for this viewpoint:

Activities in the
functional viewpoint

13.3 Evaluation Results for each Viewpoint and Quality Aspect 185

 Derive aircraft, system, equipment, hardware, and software functions
from scenarios. The scenarios are described in the requirements
viewpoint. Remember that scenarios are linked to requirements and
therefore the functions are indirectly linked to the requirements as
well. In the avionics domain, it is mandatory to have full traceability
between all of the requirements of the different layers. It is good
practice to have traceability between the model elements of the
viewpoints within a layer.

 Define the functional architecture by decomposing these functions
into subfunctions and specifying their interfaces. This decomposition
ends when each subfunction can be clearly mapped to a logical
system element (see logical viewpoint, Section 13.3.3). This
decomposition of functions into subfunctions typically creates new
interfaces between them. The subfunctions identified on the lowest
level constitute the functions of the next lower layer.

 Perform a functional hazard analysis (FHA) to identify and assess
the risks of the system element.

Case study: Functional decomposition

Fig. 13-8 shows how the aircraft function situation awareness is linked
to the use case Display airspace situation (see Fig. 13-4). This is an
example of how the requirements viewpoint is linked to the functional
viewpoint.

Fig. 13-9 shows the functional architecture of the situation awareness
function within the functional viewpoint. This example shows the
decomposition of the situation awareness function into its subfunctions
and the newly defined interfaces Track and AirspaceSymbol between
these subfunctions. The external functional interfaces are modeled as
activity parameter nodes and the internal functional interfaces are
modeled as action pins. The external interface has been defined in the
requirements viewpoint in the use case modeling.

Fig. 13-8 Transition from the requirements to the functional viewpoint

186 Part III – Application and Evaluation in the Avionics Domain

Fig. 13-9 Functional viewpoint

Case study: Safety cases

This section shows an example of the safety aspect as part of the
functional viewpoint. It shows the elaboration of safety cases within the
SPES modeling framework. Due to the rising complexity of modern
airborne systems, traditional manual safety assessment and certification
workflows are becoming an increasing burden in aircraft development.
According to a survey among aviation experts, safety and certification
efforts together amount to more than 50 percent of the overall
development effort. Safety analyses, proofs, and argumentations for
certification purposes are mainly performed manually without coherent
tool support. As a consequence, the production of comprehensive and
reliable documentation of an aircraft’s airworthiness in the form of safety
cases is a lengthy and expensive manual process.

Concept for integrated safety cases

We introduce a safety case approach that takes the suggested safety
assessment process introduced in [Waßmuth and Stilkerich 2011] into
account. The SPES 2020 Safety Case concept favors the graphical
argumentation of the system’s safety based on the design model and the
corresponding component fault trees introduced in [Domis and Trapp
2009]. In SPES 2020, the avionics group developed a concept for
seamless and iterative safety assessment to support the certification
process by deriving safety cases, see Fig. 13-10.

AirspaceInformation

Detection

«Aircraft Function»
AirspaceSituationAwareness

AirspaceInformation

Detection «System Function»
f1 :DetectOtherAircraft

Track

«System Function»
f2 :ComputeAirspaceSituationPicture

DisplaySetting
AirspaceSymbol

«System Function»
f3 :DisplayAirspaceSituationPicture

AirspaceSituationPicture

Traditional manual
approaches are not

applicable

Model-based analysis

13.3 Evaluation Results for each Viewpoint and Quality Aspect 187

Fig. 13-10 Safety assessment concept — repository for integrated and

seamless systems engineering, safety assessment, and
certification

The centralized repository integrates all relevant design and safety
information to perform the required safety analyses automatically. The
information comprises requirements, architectural elements, and
behavioral descriptions, as well as artifact dependencies, failure
conditions, and failure rates. This enables the engineer to access data
required for a particular safety assessment directly by importing the data
representation of the supplier’s subrepository or, alternatively, by using
the initial manufacturer’s specification. Consequently, the repository
supports the development life cycle by guiding the safety assessment
process and by simultaneously ensuring that relevant design information
is provided by the suppliers at each design interaction.

This approach guarantees that each supplier receives all data required
for subsystem development and assessment tasks. The iterative re-
integration of lower level design and analysis information into the
repository is provided by contracts that have been defined according to
the dependencies of design artifacts [Engel et al. 2008]. We realize a
seamless and structured safety assessment by systematically executing
the safety analyses suggested by ARP-4754.

13.3.3 Logical Viewpoint in the Avionics Domain

The purpose of the logical viewpoint is to show the logical architecture
of the system under development (SUD). The logical architecture
describes the logical components, their subcomponents, and their
connecting interfaces.

Avionics products typically have a very long life time of 30 years and
more, therefore it is very important to define architectures that support

Activities in the logical
viewpoint

188 Part III – Application and Evaluation in the Avionics Domain

the implementation of new functions and the incorporation of new
technologies in order to overcome obsolescence problems. The logical
architecture provides the right level of abstraction for this purpose. The
logical architecture is the first step towards a technical solution without
constraining a concrete realization of system elements too early. The
avionics group specified the following activities to describe the logical
architecture of the system element of this viewpoint:

 Derive logical components from the functions of the functional
architecture by grouping coherent functions and allocating these
groups to logical components. This results in the logical architecture
with its structure.

 Define the states and modes for logical components.
 Functions are linked to requirements and therefore the logical

elements are linked to the requirements as well.
 Define the logical interfaces that connect the logical components.

The interfaces between function groups are the candidates of the
interfaces between the logical components.

Case study: Logical viewpoint

Fig. 13-11 shows the logical architecture of the situation awareness
system as part of the logical viewpoint that has been developed from the
functional architecture. Functions and interfaces have been mapped to
logical components. The definition of logical components is the first step
towards the technical realization. In addition, it is used to perform
architectural analysis e.g., an integrated fault tree analysis on the system
model. This analysis is described in Section 13.3.4.

Fig. 13-11 Logical viewpoint

13.3 Evaluation Results for each Viewpoint and Quality Aspect 189

13.3.4 Technical Viewpoint in the Avionics Domain

The purpose of the technical viewpoint is to show the technical
architecture of the SUD. The technical architecture describes the
technical components and their connecting interfaces with enough detail
for their realization. The avionics group specified the following activities
to describe the technical architecture of the system element of this
viewpoint:

 Define the realization of the logical components and their interfaces.
 Perform trade-off analysis to define the best realization of the

technical components described by this viewpoint.
 Logical components are linked to requirements and therefore the

technical components are linked to the requirements as well.
 Perform a fault tree analysis (FTA) and failure mode and effect

analysis (FMEA) to verify that safety objectives have been met by
the technical architecture.

Case study: Technical viewpoint

Fig. 13-12 shows how the technical components are linked to the logical
components and how the logical components are linked to functions.

Fig. 13-13 shows the technical architecture of the technical
component (equipment) Airspace Situation Computer (ASC) as part of
the technical viewpoint that has been developed from the logical
architecture after the trade-off analysis. Logical components and
interfaces have been mapped to technical components. The definition of
technical components is the next step towards the technical realization.

Activities in the
technical viewpoint

Fig. 13-12 Transition from the logical to the technical viewpoint

The technical components are modeled as parts and their interfaces as
flow ports.

Case study: Safety

For safety-critical systems in the avionics domain, a safety analysis is
required to demonstrate that the specified safety requirements have been
met. Today, the design and safety artifacts are produced by separate
teams working on different repositories for the design and safety models.
This has the significant disadvantage of creating redundant artifacts with
all related drawbacks. Considerable effort is needed to keep these
artifacts consistent. Therefore, it was one of the goals of the avionics
group to provide a solution to the fault tree analysis (FTA) topic. For the
FTA modeling, an integrated repository was defined containing the
design and fault tree information. An important step towards the solution
is the definition of a common language for the system designer and the
safety analysts. A SysML (OMG Systems Modeling Language) profile
has been defined that extends the standard SysML version 1.2 [OMG
2010] notation and semantic with the necessary language elements to
express fault tree information. The common notation and integrated

Safety is of paramount
importance

190 Part III – Application and Evaluation in the Avionics Domain

13.3 Evaluation Results for each Viewpoint and Quality Aspect 191

repository allow engineers of both disciplines to work concurrently on
the same system model. Today, the SysML modeling tools do not
support the computation of probabilities needed for quantitative FTA. To
bridge this gap, the fault tree model can be exported to fault tree analysis
tools that compute the probability of the faults. This concludes that
systems and safety engineers can work together on an integrated design
and safety model that removes the disadvantages described above.

Fig. 13-13 Technical viewpoint

Fig. 13-14 shows the fault tree information of the system element
Airspace Situation Computer (ASC). It shows the fault tree logic that
defines how the faults are propagated from the input ports through the
system element ASC to its output ports. The syntax and semantics of the
SysML profile shown in Fig. 13-14 are described in Section 8.1. A
thorough evaluation study has been conducted to analyze the
improvements gained using component fault trees (CFTs) over fault
trees. The results show that CFTs have a significant advantage over fault
trees, especially for engineers who are not familiar with fault trees.

Extending SysML to
express fault trees

192 Part III – Application and Evaluation in the Avionics Domain

Fig. 13-14 Component fault tree

13.3 Evaluation Results for each Viewpoint and Quality Aspect 193

Case study: Verification

The verification activities are among the most important in the avionics
industry and create the highest workload in avionics software projects. In
other domains, different methods have been developed to reduce the cost
of the verification activities, e.g., reuse of the design models to generate
test cases and procedures automatically. Motivated by the need to avoid
the risk of failures and specified in the strict development process in
particular concerning the independence principle required by the avionics
standards such as RTCA DO-178B, such widely used approaches are not
allowed in the avionics domain.

The objective of the investigations made regarding this topic is to
determine which activities for the different tasks of the verification
process could be automated in the light of the avionics standards and
processes. The verification process does more than just execute tests.
Other tasks are the development of test cases and procedures, the
execution of reviews (for design, source code, test cases, and
procedures), or a code analysis. Criteria have been developed for
selecting appropriate methods, such as a standardized requirements
interface or a dedicated test model, based on their suitability for an
automated verification process.

Proceedings for automation in the verification process
activities

Methods have been defined in order to achieve automation of the
verification process activities according to the avionics standards, such as
for test case selection for high-level and low-level requirements, test
procedure development, test management, test execution via an
automatic test sequencer, generation of test reports, etc. with careful
attention given to the concern of tool qualifications. In SPES 2020, the
work focused mainly on:

 Automation of the test procedure activities, including generation and
verification, are responsible for the highest workload within the
avionics verification process.

 Test management automation, which has to facilitate an efficient
supervision of the whole verification process and therefore enable
the identification and the improvement of inefficient activities.

Test procedure generation

Due to the required independence, a dedicated model must be used as
basis for the test procedure generation. To use the existing test cases for

Reducing verification
costs: automation by
considering avionics
standards

Software tools for test
generation

194 Part III – Application and Evaluation in the Avionics Domain

this purpose, they have to be enhanced with keywords that specify signal
properties. A software tool has been created to generate test procedures
using the test cases description files. It is built upon a dictionary of
available signals and their attributes (e.g., unit of measurement, signal
direction, range). While parsing each enhanced test case during the test
procedure generation, the software tool performs an early and implicit
validation of the test case (including checks such as signal existence in
the dictionary, specified range, adequate direction, etc.). Additionally,
the software tool generates the test precondition and postcondition
commands to configure the test environment. With the usage of the
software tool, it is possible to generate complete or, for complex test
cases, almost complete test procedures. The software architecture of the
test procedure generation tool is based on the principle of loose coupling,
transforming the test model into an intermediate language before
generating a test procedure in the target test sequencer syntax out of the
intermediate language. Therefore, it is possible to support additional test
models/sequencers with significantly less effort than in conventional
procedures.

Fig. 13-15 Test procedure generation: methods and proceedings analyzed

Test management

One essential precondition for every successful method usage in the
verification process is the use of suitable mechanisms to manage all
required activities as specified in the applicable standards. Thus, the

13.4 Summary 195

determination of mechanisms to set the dependency and sequence of
tests, as well as the possibility to automate parts of the management of
the verification process, such as the generation of metrics to determine
the test fulfillment, were both important parts of the evaluation.

Conclusion and outlook

The avionics standards impose several restrictions regarding the
automation of verification activities. The methods investigated and
automation achieved take into account all tasks of the verification
process and the supporting activities. The activities examined cover the
avionics software verification process including test management,
preparation/execution of dynamic (e.g., cause and effect) and static (e.g.,
review) tests, and possibilities for generating test reports automatically.
The analysis also addresses the need to perform RTCA DO-
178B/EUROCAE ED-12B-compliant qualification of tools that have the
potential to reduce the effort needed for the activities or processes
required by this standard. The automatic generation of test cases with the
current poor standardization of requirements description used in the
avionics domain appears to be not feasible at present. It is almost
impossible to extract reliable information from natural or weakly
formalized languages. For this point, the standardized modeling
languages popular in other industry domains, such as SysML, would be
useful, in particular when developing an extended syntax including all
the necessary attributes in the requirements.

13.4 Summary
The results of the avionics group regarding the research activities in the
SPES 2020 program can be summarized as follows.

The methods developed using abstraction layers and viewpoints
helped to close existing gaps in the systems and software modeling
practice in the avionics domain, e.g., a clear understanding of how to
refine and to decompose complex systems and describe the relationship
between the design artifacts created. The avionics case study was used to
evaluate this concept. Results of this evaluation have been used to refine
the model-based systems and software engineering guidelines in the
avionics domain. The knowledge gained about the SPES 2020 modeling
method has been used by the avionics group to refine its in-house
systems and software modeling guidelines.

The SPES 2020 requirements modeling technique has been used for a
much better understanding of the system context and the goals of the

Closing the gap
between systems and
software modeling

196 Part III – Application and Evaluation in the Avionics Domain

requirements defined in the case study. The modeling of the context and
the goals provide a good basis for structuring the requirements. It was
also recognized that the modeling tools available do not yet fully support
the applied method.

The integrated design and safety modeling showed that systems and
software engineers can work seamlessly on the same model. The empiric
evaluation performed showed that engineers not trained in fault tree
analysis have less trouble understanding the CFT notation than the fault
tree notation used in separated safety models. Thus, the CFT and the
integrated model allow a better cooperation between design and safety
teams.

Furthermore, the concept for the integration of safety cases as
argumentation support for the certification authority showed a possible
future workflow towards automated certification of safety-critical
systems in the aviation industry. The industrialization of this novel
approach will be investigated in future research projects.

The results achieved for the verification part of the avionics case
study showed that parts of the verification cases can be generated out of
formalized requirements.

It has been proven that the definition of the avionics case study was
essential for the success of the results achieved. It provided a clear basis
for the communication of the problems to be solved in the avionics
domain. Therefore, developing such a case study is recommended as a
best practice for future research programs. However, it shall be noted that
the effort to create such a case study should not be underestimated.

In conclusion, we can say that the cooperation of the academics and
avionics group in the SPES 2020 program was very beneficial to both
sides. It enabled both parties to make important steps towards the
solution to the problems expressed in the avionics case study.

13.5 References
[Domis and Trapp 2009] D. Domis, M. Trapp: Component-based abstraction in fault tree

analysis. In: Proceedings of the International Conference on Computer Safety,
Reliability and Security (SAFECOMP 2009). DOI: 10.1007/978-3-642-04468-7_24.

[Engel et al. 2008] A. Engel, M. Winokur, G. Döhmen, M. Einzmann: Assumptions /
promises - Shifting the paradigm in systems-engineering. In: Proceedings of INCOSE
2008, 2008.

[OMG 2010] Object Management Group: OMG Systems Modeling Language™ (OMG
SysML) Language Specification v1.2. OMG Document Number: formal/2010-06-02.

[Waßmuth and Stilkerich 2011] Waßmuth, M., Stilkerich, S. C., Lübbers, E.: Distributed
safety assessment for airborne systems. In: International Workshop on Security and
Dependability for Resource Constrained Embedded Systems, Italy, 2011.

Important steps
towards the solution of

the problems
expressed

Dr. Friedrich-W. Fasse
Christian Glomb
Johannes Grünbauer
André Heuer
Martin Klaus
Dr. Richard Kuntschke
Prof. Dr. Michael Laskowski
Dr. Thorsten Weyer

 14

Application and Evaluation
in the Energy Domain

The activities in the energy domain focus on the model-based development of embedded
systems for smart grids. In this context, the domain investigates typical use cases, analyzes
the requirements placed on embedded systems within the energy domain, identifies and
evaluates possible modeling approaches, extends and evaluates the SPES requirements
viewpoint within the energy domain, and actively applies and evaluates the SPES modeling
framework to model, develop, implement, and evaluate a smart grid simulator.

197,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_14, © Springer-Verlag Berlin Heidelberg 2012

198 Part III – Application and Evaluation in the Energy Domain

14.1 Overview: Application Domain Energy
Energy providers in Germany, including grid operators, play an essential
role in securing the value chain of almost all business sectors as well as
supplying private households with energy. Electricity utility companies,
for example, represent a significant factor in the German economy with
their 132,000 employees, generating a capacity of approximately 561
billion kWh, and their overall investment of more than €10 billion. Given
the fact that 68% of the electricity generated is used for production
processes in industry and by the commercial, trade, and services sector,
the significance of electricity utilities for the German economy is
abundantly clear. The primary importance of the energy domain is
further underlined by the fact that German electricity grid operators are
responsible for a transmission network that is 1.8 million kilometers
long, yet has an average annual outage period of only 18 minutes —
making it the most reliable electricity grid throughout Europe (99.9965%
reliability [BDEW 2010]).

Embedded systems already represent an integral part of the technical
systems used in the energy market and perform clearly defined roles such
as managing and controlling power plants. However, current trends in the
energy sector indicate that the demands placed on embedded systems in
terms of their performance capability within the energy domain will
significantly increase in the future. Millions of embedded systems are
expected to be deployed, e.g., in ICT gateways (one per household) at
reasonable costs (comparable to that of a DSL router) with an expected
lifetime of up to 25 years.

For a number of years now, there has been a massive trend towards
smart grids. The term smart grid has arisen from the modernization of
existing grids to enable them to cope with rising demands for a secure
and efficient electricity supply both now and in the future. This trend is
driven by a range of political, economic, and environmental goals that
will also have a direct impact on the information and communication
technology used to manage the future electricity grid. For instance, the
expansion of renewable energies such as wind power, photovoltaic, and
biogas has been increasingly pursued over the past few years to meet
climate change goals and to conserve resources while providing a
sustainable energy supply. This has led to an increased number of
smaller, decentralized generation units in addition to Germany’s existing
large-scale power stations. Moreover, the need to use energy more

Importance of the
energy domain

Importance of
embedded systems in

the energy domain

Smart grids

14.1 Overview: Application Domain Energy 199

efficiently has led to increased transparency around energy consumption
and to a smarter use of electrical devices.

These trends have given rise to new demands concerning the
functionality and use of embedded systems that, in the smart grids of the
future, will be used not only for control but also for information and
communication purposes. For instance, embedded systems will soon
have to be capable of offsetting the increase in dynamic interrelations
caused by increasing volumes of power being fed onto the grid from
renewable energy sources, automatically switching residential electrical
consumers on and off grid, communicating a host of different meter
readings, and supporting new business models through intelligent
networking of smart meters and smart home technologies.

Only the introduction of more advanced embedded systems will meet
the technical demands for ever-more sophisticated control, information,
and communication tasks within the smart grid, as well as the ability to
generate appropriate added value in the form of new business models.
Embedded systems will significantly contribute to the task of reaching
those ambitious political, economic, and environmental goals.

Future smart grids will have a degree of complexity that bears little
resemblance to any other known system. As a result, the development of
embedded systems for smart grids in the energy domain poses specific
challenges that cannot be found in other domains.

The smart grid stands out for the extreme complexity of its structure
and interconnectivity, combined with the highly dynamic structure and
behavior of its systems. Furthermore, an extremely large number of
embedded systems with massively distributed components will have to
be used within the smart grid. In addition, embedded systems within the
smart grid will not only have to be integrated in the technical
environment but also in the business processes of the energy companies.
Eventually, due to the sheer size and complexity of smart grids, a host of
technical decisions and solutions devised during the development process
will be virtually irreversible after implementation (“one-shot scenarios”).

Currently, little experience is available in developing systems
comparable with the complexity of such future smart grids. As a
consequence, the energy domain focuses on devising efficient
development methods for massively distributed systems with embedded
components in smart grids. In particular, this comprises gaining an
understanding of the specific requirements of the energy domain,
grasping the extent of the inherent problems, and then designing,
adapting, and fine-tuning some targeted methods for developing and
mastering embedded systems in the context of smart grids.

Embedded systems in
smart grids

Challenges within the
energy domain

200 Part III – Application and Evaluation in the Energy Domain

14.2 Evaluation Strategy in the Energy Domain

14.2.1 Modeling Languages, Theories, and Tools

Early tasks in the SPES project in the energy domain comprised the
evaluation of several modeling languages, theories, and tools with
respect to their applicability within the energy domain. The evaluation
focused primarily on the extent to which these modeling concepts help to
solve the challenges mentioned in Section 14.1. The evaluation
comprised theoretical analyses as well as some limited practical
applications of modeling concepts to the use cases considered within the
energy domain. The modeling concepts evaluated include the different
viewpoints of the SPES modeling framework, especially the
requirements viewpoint (see Chapters 4 through 7).

14.2.2 Requirements Engineering

The objective of the requirements engineering evaluation activities was
the practical application of the requirements viewpoint and the
corresponding requirements process model (see Section 4.4). The aim
was to obtain empirical evidence of the benefit of the requirements
engineering approach in the energy domain, in particular concerning
issues such as the reduction of complexity and the integration of a
business process view.

The method was used in four workshops with experts from the energy
domain. The evaluation was carried out in close cooperation with
academic partners and developers of the SPES requirements viewpoint
(see Chapter 4) by means of ex post facto design questionnaires.

14.2.3 Integrated Smart Grid Development

In close cooperation with academic partners, experts from the energy
domain assessed the practicability of the integrated development of
embedded systems in smart grids by implementing a demonstrator. The
focus was mainly on the feasibility of modeling domain-specific aspects,
including dynamic system structure and behavior, a large number of
components, as well as code generation and subsequent deployment to
embedded hardware components using the AutoFOCUS 3 tool.
Furthermore, the viewpoints of the SPES methodology (see Chapters 4
through 7) were taken into account. Based on the results, the energy
domain suggested improvements to the tool as well as to the underlying

Modeling concepts:
applicability and

benefit

Requirements process
model :applicability

and benefit

AutoFOCUS 3:
capability and

limitations

14.3 Evaluation Activities and Results 201

methodology. As described in Section 14.2.3, a smart grid simulator was
also developed and evaluated.

14.3 Evaluation Activities and Results
This section illustrates how the SPES modeling framework has been
tailored for the specific needs of the energy domain and how the SPES
modeling framework has been evaluated.

14.3.1 Incorporating Activities within the SPES
Modeling Framework

The work of the energy domain was based on the SPES modeling
framework (see Chapter 3). Concepts defined within the SPES modeling
framework for addressing the degree of complexity were taken into
account in the sense that they were partly adopted or suitably adapted to
the special requirements of the energy domain. This includes the use of
generalized artifacts, the definition of logical (abstraction) levels, and the
component-based design of embedded systems.

In the Energiemeister case study, for example, analysis was
conducted (from an operational point of view) of how components within
the smart grid can be integrated into the system landscape of an energy
utility. In this case, the requirements engineering activity for the system
under development was jointly carried out through to the semiformal
model stage (use cases, tables). Furthermore, the logical viewpoint (see
Chapter 6) described in the SPES modeling framework was taken into
account during modeling using the AutoFOCUS 3 tool (structural
diagrams of the system). In addition, AutoFOCUS 3 was used to compile a
model-based description of the technical architecture.

The requirements process model evaluated by the energy domain is
also closely related to the SPES modeling framework. This approach
defines a process whereby requirements engineering artifacts and the
architecture of a system can be co-designed. The requirements process
model uses artifacts from the requirements viewpoint (goals, scenarios,
and solution-oriented requirements) and various abstraction layers
derived from the SPES modeling framework. Furthermore, the
framework specifies a structured way of incorporating the abstraction
layers into the requirements engineering activity.

The SPES metamodel
in the energy domain

202 Part III – Application and Evaluation in the Energy Domain

14.3.2 Joint Partner Activities

In the first half of the project, work within the energy domain established
the basic foundations by identifying specific case studies from the energy
domain, examining requirements, and evaluating modeling theories in
preparation for developing a suitable model.

In the second half of the project, work focused primarily on putting
the fundamentals established in the first half of the project into practice
for evaluation purposes.

For instance, some of the work in the second half of the project
involved empirical testing of the approaches conducted in SPES 2020 for
developing and mastering embedded systems. Other work involved
creating a simulated environment for the purpose of analyzing the
features and behavior of embedded systems within a smart grid. The
main focus of this work was on planning, developing, implementing, and
evaluating a smart grid simulator using the SPES modeling framework as
described in Part II.

Case studies

In SPES 2020, a case study named Smart Grid was developed. The goal
of this study was the aggregation and integration of case studies
developed by the individual partners within SPES. The individual case
studies take views on the subject Smart Grid from different perspectives
(prosumer/ICT gateways, virtual power plant, Energiemeister) that are
closely tied together. Thus, the case studies focused on a scenario that
combines all case studies and mainly considers the activities of
monitoring and controlling distributed energy generators and energy
consumers within a smart grid.

Requirements for system modeling

As discussed in Section 14.1, challenges within the energy domain
comprise, amongst other things, massively distributed components, the
dynamic integration of new components into the smart grid preserving
stability, and the reliability of energy supplies. This raises characteristic
requirements for system modeling such as support of dynamic system
structures with a huge number of components, support of stochastic
processes (behavior of components and of communication systems),
scalability of modeling, consideration of a business model, support of an
event concept, and modeling of components including component
properties and relationships.

Overview of project
activities

Case studies

Requirements
analysis

14.3 Evaluation Activities and Results 203

Identification and evaluation of modeling languages, theories,
and tools concerning the SPES modeling framework

During modeling of the use cases in the energy domain, various
modeling languages, theories, and tools were used. These include the
Unified Modeling Language (UML) [OMG 2010] and the UML
modeling tool Enterprise Architect, the functional and logical viewpoints
(see Chapters 5 and 6) together with the AutoFOCUS 3 tool, and the
requirements viewpoint together with the corresponding requirements
process model (see Section 4.4). The latter two are part of the SPES
methodology as introduced in Part II.

As far as UML is concerned, its generic approach provides for broad
applicability. At the same time, however, specific needs of specialized
application domains are neglected. In the energy domain, the missing
concepts for modeling requirements and dynamics in system structure
and system behavior proved problematic. As far as Enterprise Architect
is concerned, it proved perfectly usable within the boundaries of UML
and even offers an approach for adding requirements in the models.

The functional and logical viewpoints of the SPES methodology
proved usable in the energy domain. Similar to UML, however, the
approach lacks possibilities for modeling dynamics in system structure
and system behavior. Further, it assumes a global clock, which is an
unrealistic assumption in a system with massively distributed
components such as a smart grid. There are, however, possibilities to
extend the SPES methodology with support for the aspects mentioned,
and the energy domain has thus drawn attention to these issues within the
SPES project. AutoFOCUS 3 was used for modeling and automatic code
generation in the energy domain during smart grid simulator
development. Here, the issue of state proliferation when using complex
models was observed.

The SPES requirements viewpoint and the corresponding
requirements process model have also been used actively in the energy
domain and have proven useful. Also, the methodology has been
extended by integrating an additional business process layer as suggested
by the energy domain.

Practical evaluation of the SPES methodology

To evaluate the benefit of the requirements viewpoint in the energy
domain, the approach was applied practically to the initial requirements
analysis of two specific development projects in the domain. The positive
results indicate a great benefit of the corresponding requirements
engineering methodology during the initial requirements analysis for the

Evaluation of
modeling concepts

UML and Enterprise
Architect

Functional/logical
viewpoints and
AutoFOCUS 3

Requirements process
model

Evaluation of the
requirements process
model

204 Part III – Application and Evaluation in the Energy Domain

development of embedded systems in the energy domain. For a detailed
description of the evaluation and its results, please refer to Section
14.4.1.

Further work within the energy domain investigated the integrated
development process and subsequent evaluation of a smart grid simulator
using the SPES modeling framework. In addition, the evaluation focused
on the applicability of the resulting simulator as a design tool within the
smart grid development process. Section 14.4.2 describes the details of
smart grid system modeling and development in practice.

14.4 Exemplary Evaluation Activities in Detail
As an in-depth example of evaluation within the energy domain, the
following sections present the activities concerning requirements
engineering and smart grid simulator development. These activities cover
the entire smart grid development process. To enable the holistic
evaluation of the entire development process within the limited time
frame of the SPES 2020 project, the requirements engineering activities
and the smart grid simulator activities were split and elaborated on in
parallel during the project.

14.4.1 Requirements Engineering in the Energy Domain

Part of the requirements engineering work in the energy domain involved
empirical evaluation of the requirements viewpoint developed in the
SPES 2020 project for the purpose of developing and engineering
embedded systems.

Subject and objective of the evaluation

The subject of the evaluation was the practical application of the
requirements engineering methodology to the initial requirements
analysis of two specific development projects in the energy domain:

 Wind heating — negative operating reserve
 Data management in smart grids

The method was used in four workshops with a total of 18 experts (e.g.,
chemists, electrical and mechanical engineers, economists) from various
divisions (e.g., sales, grids portfolio management, product management).

It is worth mentioning that the requirements viewpoint, among other
things, also incorporates a business process layer (see Fig. 14-1). In this
way, the requirements engineering methodology meets one key

Development and
evaluation of a smart

grid simulator

In-depth examples of
evaluation activities in

the energy domain

Evaluation of the
requirements process

model

Evaluation subject

14.4 Exemplary Evaluation Activities in Detail 205

requirement of the SPES 2020 project — to explicitly take into account
defined/existing business processes when developing any embedded
systems.

The aim of evaluating the requirements viewpoint within the energy
domain was to transfer empirical evidence about the benefit of the
requirements engineering methodology to development projects of
embedded systems in the energy domain. This evaluation goal was
measured, or rather assessed, in more detail against the following factors:

1. Additional insights gained from users of the methodology
2. High-value findings for future work
3. Positive assessment of the requirements engineering methodology
4. Improved self-assessment with respect to the development project

Fig. 14-1 Application of the requirements viewpoint for development

projects within the energy domain

An ex post facto design with pre- and post-measurement via
questionnaires - plus additional deferred post-measurement via
questionnaire two weeks after the workshops was used to measure the
factors 1, 3, and 4 above (cf. Fig. 14-2). The design was developed in
collaboration with experts from the Fraunhofer Institute for Experimental
Software Engineering in Kaiserslautern. Factor 2 was evaluated by an
objective expert who did not take part in the above-mentioned
workshops.

Goals Scenarios
Solution
Concepts

Solution-oriented
Requirements

In
cr

ea
se

 in
 S

ol
ul

tio
n

De
ta

ils

Business Process

System

Subsystem

Components

Deployment objects

Wind Heating –
Negative Operating

Reserve

Data Management
in Smart Grinds

Evaluation objective

206 Part III – Application and Evaluation in the Energy Domain

Fig. 14-2 Ex post facto design to evaluate the use of the requirements

viewpoint within the energy domain

Evaluation procedure

Evaluation of the requirements engineering methodology was undertaken
by asking specific questions related to embedded systems about the
above-mentioned energy domain development projects. The questions
were addressed during workshops with experts from the energy domain,
where the requirements viewpoint was applied and its impact was
assessed. The evaluation procedure consisted of the following seven
steps:

 Selection of the evaluation project and participants
 Initial evaluation prior to the workshop for the purpose of self-

assessment by the participants in relation to the development projects
 Use of the requirements viewpoint in the workshop
 Second evaluation immediately after the workshop (insights gained,

assessment of the method)
 Scrutiny of the results by an objective expert (person with the

expertise of a specialist who did not take part in the workshop)
 Third evaluation after the workshop
 Documentation of the findings

Evaluation results

The evaluation of the requirements viewpoint in the context of the above-
mentioned development projects delivered some initial findings about the
applicability and benefit of the requirements viewpoint for developing
embedded systems in the energy domain. The following findings
represent a summary of the evaluation completed as a result of the
workshops. Since one development project is still highly confidential, the
findings are depicted in abstract terms only.

Evaluation procedure

Evaluation steps

Benefit of the
requirements

viewpoint in the
energy domain

14.4 Exemplary Evaluation Activities in Detail 207

With regard to the substantive aspects, the requirements viewpoint has
made a significant contribution towards structuring the problems and
reducing complexity:

 Abstraction stages/levels are evident (business process, system,
subsystem, and components)

 Goals at various abstraction stages/levels are defined
 Scenarios are modeled
 Solution-oriented requirements are identified
 Initial approaches for a problem-solving concept are developed

The close relationship of the applied methodology to the SPES modeling
framework is therefore clear: the specific requirements viewpoint that
was used within the two development projects defines an appropriate
adaption of the SPES modeling framework to the energy domain, for
example, by using specific abstraction layers and solution-oriented
requirements artifacts of the requirements viewpoint.

By abstracting and/or refining the points of view and describing
elements in varying degrees of detail, a successful focus on key aspects
was achieved with a view to possible architecture models. Consequently,
we can confirm that there is a great benefit to be gained, in terms of
reducing complexity, from applying the requirements viewpoint to
designing embedded systems for the energy domain. This is also
confirmed by the evaluation of the requirements methodology, which
points to an overwhelmingly positive outcome.

The participants showed a high degree of consensus on the insights
gained, the benefit of the method, and the relevance of the subject matter.
Those involved in the workshops gained new knowledge by applying the
method, and also evaluated the requirements engineering methodology as
positive. Above all, the participants viewed the structured process used to
analyze problems as positive. They also found the use of goals,
scenarios, and abstraction layers to be helpful. Furthermore, they
commented that their own grasp of the subject matter improved as a
result. In particular, the requirements viewpoint and the corresponding
methodology helped participants to gain a better in-depth understanding
of the subject matter.

These statements are supported by the assessment of the objective
expert, who perceived the application of the requirements process model
positively.

The participants involved identified a potential for improving the
requirements viewpoint with respect to autonomous application of the
corresponding methodology. According to the participants, the use of a
trained moderator is essential. Furthermore, the participants considered it

Requirements process
model contributions

Relationship to the
SPES modeling
framework

Requirements
viewpoint benefits

Assessment of
workshop participants

Assessment of the
objective expert

Potential for
improvement

208 Part III – Application and Evaluation in the Energy Domain

difficult to transfer the (independently) applied method to other practical
examples. Also, it was noted that the requirements engineering
methodology supports a deeper analysis of problems but not an analysis
“on the fly.”

Overall, the requirements viewpoint and the corresponding
methodology prove to be a beneficial approach for developing embedded
systems in the energy domain. With regard to future applications of the
approach, the identified potential for improvement should be taken into
account.

14.4.2 Smart Grid System Modeling and Development

Development of an integrated smart grid simulator

Smart grids are high-grade dynamic systems with a large number of
widely distributed components. Due to their size and complexity, a
formal verification of system properties is not feasible in practice. Thus,
system simulation has gained importance as a major part of the integrated
model-based development process. In the energy domain, a smart grid
simulator addresses the following challenges that can also be found in
comparable systems: (a) uneven balance of energy generation and
consumption, (b) lack of stability of the overall system, (c) vulnerability
of the system due to dynamic changes of the behavior of consumers and
producers, (d) vulnerability of the system due to faults or failures of
communication and/or components, (e) system stability with a huge
number of components, and (f) limitation of system optimization
resources.

To keep pace with these challenges and to avoid problems while
developing the overall system, the proof of correctness of the concept
must happen in an early stage of the development process.

The behavior of the real system can be deduced based on the actual
values for the actuating variables of the simulation and the corresponding
simulation results. The relevant actuating variables reflect the properties
of the main constituents of a smart grid: the electric supply network, the
communication network, and such (local and decentralized) smart grid
components that are connected via the networks (see Fig. 14-3).

Conclusion

Smart grid simulator
development:

motivation and
challenges

Actuating variables

14.4 Exemplary Evaluation Activities in Detail 209

Fig. 14-3 Overview of simulation components

The simulation environment for investigating the behavior and
interaction of smart grid components consists of two layers: on the
simulator layer the VPP topology, i.e., the number of components and
the system structure can be configured. The second layer contains the
VPP coordinator and the decentralized energy resources attached. These
components can be parameterized using, e.g., consumption and weather
profiles. Components can be added and removed dynamically. Also,
communication failures can be simulated. The following summarizes the
dependencies between the simulations and the simulated components:

 VPP coordinator. This is the centralized controlling, monitoring, and
optimization system for the decentralized plants forming a virtual
power plant. Further components offer the registration and
administration of decentralized plants.

 Simulation of the communication network. The communication
network has to be simulated with regards to (a) bandwidth, (b)
varying number of participants, (c) latency, and (d) reliability.

 Decentralized energy resources are, depending on the configuration,
(a) producers, (b) consumers, and (c) prosumers that entail both
characteristics (a) and (b). Entities that reflect those characteristics,
such as wind engines, solar modules, biogas plants, co-generators, or
eCars, can be integrated.

 Simulation of the electric supply network. The actuating variables of
the electric supply network are (a) cable cross-section, (b) voltage

External
ICT

Systems

ICT
Components

Virtual
Power Plant
Coordinator

Smart Grid
Registry

Simulation of Smart
Grid Components

Communication
Network

Communication
Network Simulation

Decentralized Energy Resources

Wind Power
Plant

Solar Power
Plant

Co-
Generation

E-Car

Smart Grid
Registry

Simulation of Smart Grid
Components

Power Grid
Simulation

Power Grid

Models of Smart Grid Components, Weather Models, Power Grid Models, Communication Models

210 Part III – Application and Evaluation in the Energy Domain

level, (c) concurrency factor, (d) safety concept, and (e) concepts for
redundancy (alternative cableways).

 Simulation of smart grid components. The actuating variables of the
various smart grid components comprise, depending on the nature of
the component, (a) the number of parallel communication
connections of a single component, (b) the size of the internal data
storage, (c) the physical component model, and (d) the predictability
and fluctuations of generated or consumed power levels.

Power grid simulation

The Siemens Power System Simulation (PSSTM) software suite was
chosen for the integrated smart grid simulator. PSSTM is a set of software
tools used by many European power companies, as well as universities,
for the design and simulation of electric power systems. NETOMAC is
the mathematical solver within PSSTM.

NETOMAC sets up the system admittance matrix Y describing the
elements of the modeled power grid with a set of differential equations.
The differential equation system is solved for each calculation time step
of a configurable duration using the difference conductance approach
[Kulicke 1981]. Thereby, a continuous numerical integration is
performed using the trapeze method.

Simulation time can be synchronized to a real-time clock, e.g., the PC
clock, allowing hardware-in-the-loop tests as well as connections to
control networks or components, e.g., ICT gateways, and to real clients
such as a virtual power plant control center used to control components
of the simulated power network as in our scenario.

Communication network simulation

The communication network simulator NS-3 [NSF 2011] is a discrete-
event network simulator for Internet systems, targeted primarily for
research and educational use.

NS-3 offers the possibility to run in emulation mode, i.e., to simulate
a communication network in real-time, capturing and outputting live IP
traffic from and to the interface cards and conveying it through the
network modeled. In real-time mode, NS-3 can be used for hardware-in-
the-loop tests along with NETOMAC.

PSSTM NETOMAC
power system

simulator

NS-3 network
simulator

14.4 Exemplary Evaluation Activities in Detail 211

Co-simulation

Co-simulation aims at studying the interdependencies of smart grid
components. Thus, an environment for combined or co-simulation
comprising the components as described above was set up.

Pure power grid simulators are mainly built to analyze the electrical
characteristics and behavior of a power grid. They are restricted with
respect to capabilities for adding controllers to the power network, e.g.,
to model generators or protection devices. Also, communication between
distributed controllers is not in the focus of such tools. However, in most
cases, the user may add external control logic that can access power grid
parameters (voltages, currents, etc.) during simulation to the power grid
simulator. In the same way, model parameters such as machine
parameters or breaker settings can be influenced by external logic.
Instead of arbitrarily embedding control logic into the power grid model,
our approach identifies a defined set of standard interaction points to get
measurement values or to set machine parameters.

To set up a co-simulation, monitoring and control applications can
interact with the power network using a Java interface. The
communication between these applications and the energy network
simulator corresponds basically to real power system communication
using [IEC 61850] compliant devices.

The properties of the communication network used to carry the
commands and measurements gain importance as the number of com-
municating devices increases. When a shared infrastructure such as the
Internet or power line communication is used, it is especially important
to understand the influence of communication network properties on the
behavior of the power grid.

Besides emulation, non-real-time operation, i.e., simulation is also
possible. Synchronization in simulation mode is based on the idea of
letting simulators run independently for a defined simulation step, which
may last for a longer or shorter time than the real time, and re-
synchronize them after the simulation step has been performed.

Smart grid simulator evaluation

The primary evaluation goal concerning the smart grid simulator consists
of proving its applicability as a smart grid development and design tool
fitting well into the smart grid development process. To prove
applicability, the evaluation investigates whether and to what extent the
simulator fulfills the requirements listed below.

The smart grid simulator shall allow for examining system and grid
stability. Example scenarios shall be investigated for the possibility of a

Combined
communication
network and power
grid simulation

Simulation &
synchronization

Evaluation goal

Simulator
requirements

212 Part III – Application and Evaluation in the Energy Domain

stable continuous operation. Relevant aspects include dimensioning of
smart grids, analysis of the behavior of systems with a large number of
components (more than 10,000), and optimized power allocation. The
simulator shall be able to simulate dynamic processes in system
behavior. Dynamic processes comprise faults such as failures of
components or communication lines, as well as controlled processes such
as fluctuations in power generation and attaching or detaching producers
or consumers.

The evaluation employs a reference scenario modeling a low voltage
grid area based on real-world power grid data provided by RWE and
assumes a 100% PV penetration. The corresponding communication net-
work is assumed to have the same structure as the power grid and the
properties of either a DSL access network (ideal case) or a power line
communication (worst case).

Simulation results indicate that production and generation schedules
computed by the VPP coordinator based exclusively on economic
constraints lead to a temporary overload in the power grid resulting in
voltage boundary violations.

Thus, either a reconfiguration of the grid area is necessary, i.e., an
installation of additional or thicker cables, or an appropriate control of
both producers and generators has to be introduced. In the latter case, the
simulator helps in selecting and tuning possible countermeasures. These
include: injection of reactive power from the PV units, switching on
additional effective loads, and changing the tap at the local transformer
station.

The introduction of control mechanisms based on measurement
values from client-side meters requires an available communication
network. Simulation results show that control has to deal with incomplete
information in the worst case due to packet loss and a delay in the range
of minutes, whereas in the ideal case, prioritization of control traffic over
user-initiated traffic such as web-browsing offers the possibility of fast
control since all measurement values arrive within a few milliseconds.

In summary, the smart grid simulator proved to be a valuable
dimensioning and early evaluation tool for smart grid development.

14.5 Summary
Work in the energy domain within SPES 2020 focused mainly on four
aspects as described above: the identification and specification of
suitable case studies to analyze the domain and its requirements with
respect to the development of embedded systems, the analysis and

Reference scenario

Simulation results

Summary

14.5 Summary 213

evaluation of the SPES modeling framework and corresponding
modeling approaches from the perspective of the energy domain, the
extension and subsequent evaluation of the requirements viewpoint, and
the integrated model-based development of a smart grid simulator.

The identification and specification of suitable case studies is
especially valuable in the energy domain since the smart grid setting that
is in the focus of the domain is very innovative and there is virtually no
prior experience with existing systems. Thus, thinking about the
possibilities and requirements of embedded software in the context of
smart grids provides necessary and valuable insights. The integrated case
study concentrates on the issues of monitoring and control in a smart
grid. From this perspective, it provides insight into all relevant parts of a
smart grid, from virtual power plants to power management to ICT
gateways.

The analysis and evaluation of the SPES modeling framework and
corresponding modeling approaches, including the modeling of system
requirements and concepts, provides an overview of available techniques
and tools for software and systems modeling together with an evaluation
of their suitability within the energy domain. We can conclude that while
most approaches are usable in some way in the energy domain, not every
peculiarity of the energy domain is addressed. Hence, further tailoring is
necessary. For example, this includes the ability to investigate emergent
issues that arise from dynamics in system structure and system behavior.
These issues need to be considered in further work within the energy
domain.

Subsequently, the requirements viewpoint has been extended
according to the needs and constraints identified in the energy domain by
adding a business process layer. Further, the adapted SPES modeling
framework has been intensively evaluated in a series of workshops
conducted in cooperation with industrial partners. The results of the
evaluation show that the SPES modeling framework is well-suited to
support the requirements engineering process for the development of
embedded systems in the energy domain.

Finally, the complexity of smart grid installations makes the formal
analysis of such systems virtually impossible. Therefore, the importance
of simulation as a means for designing and evaluating smart grid
installations in early stages of the development process increases. In the
energy domain, an integrated smart grid simulator has been developed.
The SPES modeling framework was successfully applied in this case
study and resulted in requirements, functional and logical architecture,
and a deployable technical architecture that, in later stages, was
successfully used to simulate smart grid installations. Using the SPES

Case studies

Requirements process
model

Smart grid simulator

214 Part III – Application and Evaluation in the Energy Domain

modeling framework, it was possible to develop an integrated simulator
that can serve as an additional development tool in the development
process of smart grids.

14.6 References
[BDEW 2010] BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. (Hrsg.):

Energiemarkt Deutschland. Zahlen und Fakten zur Gas-, Strom- und
Fernwärmeversorgung, 2010.

[IEC 61850] IEC International Standard 61850-7-420: Communication Networks and
Systems for Power Utility Automation – Part 7-420. International Electrotechnical
Commission, 2009.

[Kulicke 1981] B. Kulicke: Simulationsprogramm NETOMAC: Differenzleitverfahren bei
kontinuierlichen und diskontinuierlichen Systemen. Siemens Research Reports, Vol. 10
No. 5, Springer, 1981, pp. 299-302.

[NSF 2011] National Science Foundation: Network Simulator NS-3:
http://www.nsnam.org/. NSF Planète Group at INRIA, 2011.

[OMG 2010] Object Management Group: OMG Unified Modeling Language™ (OMG
UML), Infrastructure v2.3. OMG Document Number: formal/2010-05-03.

14.7 Acknowledgements
The authors wish to thank the following people for their support and their
contributions to the work presented in this chapter: Johannes Bergmann
and Dr. Jörg Heuer (both of Siemens AG), Dr. Martin Fritzsche and
Sascha Schwind (both of TU München), Dieter Heisterberg (RWE
Consulting GmbH), Dr. Kim Lauenroth and Dr. Ernst Sikora (both
formerly of University of Duisburg-Essen), and Dr. Edmund Simmet and
Dr. Alexander Vilbig (both of SWM Services GmbH).

http://www.nsnam.org/

Hendrik Heinze
Dr. Khalid Kallow
Harmut Lackner
Dr. Sadegh Sadeghipour
Prof. Dr. Holger Schlingloff
Salko Tahirbegovic
Dr. Hans-Werner Wiesbrock

 15

Application and Evaluation
in the Healthcare Domain

This chapter deals with the application of the SPES modeling framework to a medical case
study: an extended care system (ECS). This system allows patients with serious heart
conditions to stay in their home environment while remaining under constant medical
surveillance and assistance. The ECS is typical for future telemedical applications, where
body sensors and implanted devices work together with an ambient IT infrastructure to
guarantee optimal patient-centered care. Design challenges in this case study are the
safety and reliability requirements, interface definitions and architecture of the combined
system, as well as meeting regulatory demands for life-supporting subsystems while adding
further, not necessarily safety-critical components to the system.

215,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_15, © Springer-Verlag Berlin Heidelberg 2012

216 Part III – Application and Evaluation in the Healthcare Domain

15.1 Overview: Application Domain Healthcare
In the healthcare domain, software as an integral part of medical
equipment and processes is becoming increasingly important. Software-
based systems control and influence more and more medical activities,
from first aid to rehabilitation. Similar to the other domains in this book,
embedded software plays a central role in the innovation and progress of
medical technology. Typical devices are large hospital and laboratory
apparatuses, surgery appliances for diagnosis and treatment, and patient
equipment usually for the mass market. In all these products, more and
more of the innovative functions are realized by software.

The following are some current trends that are determining and are
determined by the development of embedded systems in the field (see,
e.g., [Glesner et al. 2007] and [Zauner and Schrempf 2009]):

 Interoperability and interconnectedness: As embedded medical
systems obtain more and more communication interfaces, new
integrated services are becoming possible. Examples are diagnostic
implants that transmit vital data directly to the electronic health
record, or the integrated operating theater where the surgeon has
central control of various devices and displays.

 Telemedicine and telematics: Embedded devices allow not only
remote monitoring of the patient’s health, but also the provision of
real-time interactions between patient and physician. Robot-assisted
intervention devices, such as remotely operable catheters, assist in
complex, minimally invasive surgery.

 From diagnosis to therapy: Due to increased sensing and processing
power, devices that were formerly only able to observe the patient or
provide basic services are now capable of accomplishing complex
treatment. One example is a pacemaker with sensors monitoring the
heart activity that can now help to cure various cardiopathies.

 Ambient assisted living: Systems designed for the support of elderly
or handicapped people in their home can reduce healthcare costs and
increase the quality of life. Examples range from simple automated
pill dispensers to intelligent wheelchairs and intelligent prostheses
that restore physical abilities, such as cochlear implants.

Similar to the aerospace domain, most medical devices are safety-critical
in the sense that incorrect software could harm the patient. The more
critical the application, the more important the role of the embedded
control system within the application and the software used to control it.

Current trends in
medical systems

15.1 Overview: Application Domain Healthcare 217

In contrast to applications in other industrial domains, such as railway or
automotive, the full functionality has to be maintained even in the case of
a single fault. It is not an option to shut down the device or go into a
“fail-safe state.” As a consequence, all functions must be implemented
redundant and diverse under the condition of real-time parallel signal
processing. Redundancy can protect against random (stochastic) faults
during the operation, whereas diversity is used to protect against
systematic faults in the design. Fault tolerance is often achieved by
parallelism in the hardware. As the system must be shown to be resistant
even against common mode errors, the redundant parts must be designed
to be largely independent.

Due to the increased complexity of the design, conventional
development methods are no longer appropriate for producing code that
can satisfy these requirements. As shown in Chapter 9 on modeling
quality aspects, model-based design can be used to support the
development of such highly critical systems. In the medical domain,
development tools also have to respect the above-mentioned special
requirements regarding functional safety.

In parallel to the increase in the complexity of systems, the amount of
verification and validation in the development has risen dramatically
over the last few years. This is mainly due to the following reasons:

 The increase in embedded systems technology allows the measuring,
influencing, and controlling of more and more physiological
parameters of the human body. Therefore, the systems are used in
more and more critical applications. This increase in capabilities
leads to an increase in complexity in the validation and certification
process.

 The evolution and international harmonization of standards regulates
the development processes at a much more finely-grained level than
in former times. Therefore, the normative and legal requirements of
the development process must be followed and documented to a
much higher extent.

 The increased criticality leads to more and more supervision by
authorities. In Europe, for example, Class I medical products can be
developed and marketed by the manufacturer in their own
responsibility, whereas Class III and IV products are completely
supervised by an authority. The manufacturer must provide all
necessary evidence and show that he conforms to all essential
requirements of the respective European directives.

 As a social component, the user expectations of electronic equipment
are constantly rising, both with respect to their functionality and their
reliability. The extremely short product life cycle in consumer

Dramatically
increased verification
and validation efforts

218 Part III – Application and Evaluation in the Healthcare Domain

electronics imposes a high innovation pressure also on medical
electronic devices, which demands highly efficient confirmation
processes.

Corresponding to the increase in verification and validation efforts, the
amount of documentation and evidence of compliance that is necessary
for approval has risen dramatically in recent years. For example, the
main standard of safety in medical products, DIN EN 60601-1 (VDE
0750-1)_1996, had less than 180 pages of requirements in 1996, whereas
the most recent version (DIN EN 60601-1 (VDE 0750-1)_2007 with
collateral standards) has more than 1800 pages of requirements. US
regulations are described in [FDA 2002], for the respective European
documents see [IEC 2006] and [ISO 14971].

One of the main benefits of model-based design is that it can help to
reduce the manual verification and validation efforts, since it provides a
well-founded methodology with a high potential for tool support (cf.
[Hungar and Reyzl 2008]). Furthermore, models can be used in the
documentation of critical systems and provide a solid basis for
assessment by authorities. In the following, we will demonstrate
challenges and solutions using a typical example from the healthcare
domain.

15.2 Evaluation Case Study: Extended Care
System

In this section, we describe a prototypic Extended Care System (ECS)
that was developed to evaluate the modeling theory of this book. Our
prototype of an ECS is typical for a number of similar systems. In
particular, our case study exhibits aspects of all above-mentioned current
trends in the field (interconnectedness, telematics, therapy, and ambient
assisted living). Furthermore, it includes a medical product of the highest
safety class. Our system provides an extended range of intensive care for
patients with a serious heart condition, such that they can stay in their
home environment but remain under intensive care.

15.2.1 Medical Emergency Support Systems

Firstly, we characterize overall requirements and scenarios for medical
emergency support systems. In general, this type of system involves
three different actors: the patient, the emergency service provider, and
the emergency help.

15.2 Evaluation Case Study: Extended Care System 219

The main purpose of any emergency system is to provide quick help in
the case of an emergency. In our case, an emergency can be a fall to the
ground, cardiac arrest, apnea, or general immobility. The patient
demands a reliable system that, on the one hand detects every
emergency; on the other hand, the system must transmit only actual
emergencies to the emergency service provider, since unnecessary
emergency calls lead to additional efforts and deferral in the handling of
actual emergencies.

The task of the emergency service provider is to handle incoming
alerts. In order to do so, the data transmitted from the patient side must
be comprehensive and understandable so that the provider can evaluate
and prioritize the emergency correctly. Furthermore, timely delivery of
the data is important to enable prompt reaction. For some systems, the
emergency service provider must also be able to constantly monitor all of
the patient’s relevant vitality data. In medical systems, all personal data
of the patient must be treated as confidential and protected against
corruption and modification.

In case of an alarm, the emergency service provider may notify and
consult emergency help, i.e., a designated doctor or ambulance. The
physician has access to the patient’s medical record and prescribes
further medication or treatment. Additionally, the medical emergency
support system may also give advice to the patient for activities to
improve his health.

Basic scenario: quick help in the case of an emergency

Our case study is constrained to the scenario collapse of the patient. A
possible trigger for this scenario is the patient stumbling while walking
and subsequently falling down. The patient cannot stand up or crawl on
his own and thus remains immobilized. The system detects the collapse
when it recognizes a powerful acceleration of the body and limps, a
change in the altitude of the upper body (as measured by a barometric
sensor), as well as a higher heart rate due to the shock. The sensors
attached to the patient’s body recognize these changes and exchange
their measurement results. Finally, the sensors conclude that the patient
has fallen and subsequently alert the emergency service provider.

The service provider receives the emergency alarm and further
information about the situation. This information comprises live data
from the sensors as well as data from the last minutes before the collapse.
The service provider then notifies the emergency help personnel, who
take further action.

Main purpose of the
ECS: quick help in
case of an emergency

220 Part III – Application and Evaluation in the Healthcare Domain

Negative scenarios

A negative scenario describes what the system must not do. We
identified two negative scenarios: the first scenario is that the patient falls
and is subsequently immobilized but the system does not detect the
collapse (no alert). The second scenario is that the patient lets himself
sink into his bed, but the system incorrectly detects an emergency and
alerts the emergency service provider (false alert).

15.2.2 System Structure of the Case Study

The ECS comprises and integrates three components: a ventricular assist
device (VAD), a body area network (BAN), and a telematic system
(TMS).

In our case study, the ECS is an extension to an existing heart support
system. Thus, we extended an existing VAD by a BAN and TMS. The
integrated components form our extended care system for medical
emergency support, depicted in Fig. 15-1.

Fig. 15-1 Extended care system

Ventricular assist device (VAD)

The VAD supports the patient’s heart by augmenting some or all of the
heart’s pumping capacity. It consists of a blood pump with a
microcontroller and a control laptop. The laptop provides a control panel
for configuring and monitoring parameters of the microcontroller and

System structure of
the ECS: VAD, BAN,

and TMS

15.2 Evaluation Case Study: Extended Care System 221

displaying patient data and error messages. The control laptop interfaces
with the pump’s microcontroller by means of a special protocol designed
to fulfill the compulsory safety requirements. Cyber-physical modeling
of a similar system can be found in [Jiang et al. 2011].

In an ECS environment, the VAD has to be protected against
(accidental or malevolent) misuse. Thus, before attaching additional
components to the VAD, the following compatibility issues have to be
considered:

 The transfer of data from and to the VAD has to take place via a
secure channel.

 The other components may not at any time change, control, or
interrupt the functionality of the VAD.

 The patient should retain sovereignty over his data; that is, except for
emergency situations, a transfer of data may only take place with the
patient’s approval.

Only if these conditions are met can the BAN and TMS components of
the ECS be used as additional components to the VAD. More remarks on
high-confidence medical device software can be found in [Lee et al.
2006].

Body area network (BAN)

The BAN consists of various sensor nodes attached to the patient’s body
and spread around the residence. The sensor nodes form a subnet within
the ECS, hence the term body area network. A gateway connects the
BAN to the TMS and subsequently to the emergency service provider.
The BAN has a decentralized structure; there is no central node
collecting the data from all sensors as this would form a single point of
failure. The nodes may communicate with each other if an exchange of
data is necessary to pronounce a more reliable verdict.

The wireless communication among the sensor nodes and the gate-
way has advantages as well as disadvantages: sent packets may get lost
or may be read by anyone within reach. They also have to deal with the
fact that other nodes may join or leave the network at any time,
expectedly or unexpectedly (e.g., due to power failure). Hence, an
authentication algorithm protects the nodes against misuse and a special
protocol ensures that if a node is within reach, it will receive its messages
eventually.

The BAN component of the ECS is not a medical device in the legal
sense, as it is not used for diagnostic purposes in a therapy or medical
treatment. Although it tries to identify critical situations and summon

222 Part III – Application and Evaluation in the Healthcare Domain

professional assistance, it does not actively harm the patient if it fails to
do so.

Telematic system (TMS)

For remote monitoring of the VAD and the BAN, the ECS comprises a
telematic system. The TMS consists of three components: a telematic
module, a server, and the client software. The telematic module transfers
the data from the patient side to the emergency service provider. The
server hosts the business logic, data backup, and user management. The
doctor’s client software is for visualization of the patient’s data.

The TMS has three main features: online monitoring, alert handling,
and data logging. Online monitoring enables the doctor to receive real-
time data from the patient side. The live data can be visualized either via
a web browser or a Smartphone. Alert handling deals with incoming
emergency alerts triggered by the BAN. An emergency dispatcher
accepts the alert and decides, on the basis of the data sent, whether
further measures have to be taken or the alert is a false positive. Data
logging provides the option of transmitting a patient’s data to a global
data storage. The logged data can be retrieved and evaluated with special
software for retrospective diagnosis by a physician.

When integrating the VAD in the ECS, the exception to the third
requirement of the VAD, “sovereignty in the transmission of patient
data” has to be considered. A patient who falls and possibly loses
consciousness cannot and should not intervene in the process of the
emergency call. For this reason, the TMS provides a service with which
it can independently and autonomously build up a connection to the
emergency service provider. The security of this feature must be
maintained in the design of the ECS.

15.2.3 Challenges of the Case Study

The case study offers many challenges for modeling, validation, and
certification. Since this book describes a specific modeling theory, we
subsequently focus on the following aspects:

 Requirements specification
 Design and evaluation of system architectures
 Interface definitions in complex medical systems

Further challenges that are of interest but that are not dealt with in this
chapter comprise early validation of the system’s requirements, model-
based security analysis, testability of requirements, and functional safety
for distributed processing in life-sustaining systems.

15.3 Example Evaluation Activities in Detail 223

The VAD is a life-sustaining system and thus is classified as a highly
safety-critical product (medical device Class III according to the council
directive 93/42/EEC and software category C according to IEC 62304).
Therefore, intense validation and verification is needed before regulatory
authorities permit release to the market. The BAN and the telematic
system are of less concern. One of the challenges of the case study is
how to maintain the Class III certificate of the VAD while adding
further, not necessarily Class III, components to the environment. It is
essential to avoid having to certify the other parts of the ECS as Class III
medical devices as well to save efforts for validation and verification.
For a successful integration of the BAN and the TMS into the VAD,
there must be a guarantee that the combination of the three has no impact
on the functionality of the VAD. Therefore, the interfaces between all
components have to be designed with great care.

15.3 Example Evaluation Activities in Detail
After describing basic functionality, system structure, and challenges for
the ECS in the previous section, we now describe the application of our
modeling theory to this case study. To do this, we largely rely on
established UML2 or SysML diagrams; see [Raistrick et al. 2004]. In
order to manage the complexity of the entire system, different concepts
and techniques should be used at various levels of abstraction, as
described in Chapters 4 through 7. We describe our modeling using some
sample artifacts generated within the development of the ECS.

15.3.1 Requirements Elicitation

The first task in the system development is to identify the boundaries of
the system to be developed.

With regard to the ECS, a question relating to the system boundaries
was whether calling the emergency help and the subsequent questions of
the high availability of and safe communication to the emergency help
should be included in the system or be considered as a part of the
environment. In the following, we only describe the second alternative.

In accordance with the requirements viewpoint (see Section 4.2.1),
we used SysML block diagrams to model the system boundaries (see Fig.
15-2). As described in Section 15.2.1, we distinguish between emergency
service provider and emergency help as different actors in the
environment. Hence, the emergency call system has to transmit not only
alarm messages, but also information on the current patient condition.

Safety-critical
(Class III)
 medical products

Modeling the
requirements
viewpoint with block
diagrams,
requirements
diagrams, and use
case diagrams

224 Part III – Application and Evaluation in the Healthcare Domain

Fig. 15-2 Context diagram for the extended care system

According to the requirements process model described in Chapter 4.4,
the next step is to define the goals the system has to fulfill. Recognizing
the collapse of the patient and sending an alert to the emergency service
provider is a main goal of the system. As described above, the
emergency service provider and emergency help have limited resources
and should be called only if they are really needed. Hence, there are two
conflicting goals: calling the emergency service provider immediately in
an emergency, and avoiding false alerts. We modeled the goals using
SysML requirements diagrams, as suggested in Section 4.2.2 (see Fig.
15-3).

Fig. 15-3 Concurrent goals for the extended care system modeled by

SysML requirements diagrams

At this point we need a better understanding of the interaction of the
system with its environment: How should the ECS behave in a critical
situation? What are possible critical use cases? These aspects can be

15.3 Example Evaluation Activities in Detail 225

analyzed properly with the help of SysML sequence diagrams and
structured by use case diagrams, as suggested in Section 4.2.3. Some use
cases are depicted in Fig. 15-4.

Fig. 15-4 Use cases of the extended care system

The extended care system should permanently monitor the patient data
and notify the emergency service provider if a critical situation occurs.
The scenario collapse of the patient is demonstrated by the sequence
diagram in Fig. 15-5 (the time axis of this diagram points down
vertically).

In order to resolve the concurrent goals mentioned above, we decided
that a call-back to the patient by the emergency service provider must be
performed. If the patient responds to the call-back, the help request
generated by the alert can be cancelled by the emergency service
provider.

15.3.2 Structural Investigation of the Requirements

The requirements process model, as described in Section 4.4, prescribes
that after developing solution-neutral artifacts such as the ones shown in
Section 15.3.1, solution-oriented artifacts have to be developed in order
to represent the solution concept. After developing the logical structure
and behavior of the system, we have to transfer it to a physical
realization.

Sequence diagrams
for modeling
scenarios

226 Part III – Application and Evaluation in the Healthcare Domain

Fig. 15-5 Collapse scenario modeled by a sequence diagram

As identified in the context diagram in Fig. 15-2, the extended care
system must provide all information necessary for immediate help. A
system identifier, a unique name for identifying the calling system, and
probably other personal data of the patient enable the emergency service
provider to look up the patient’s anamnesis data in the patient database.
Additionally, data on the patient’s current state gathered by the extended
care system can be important for the emergency help, thus these data
should be transmitted as well. To represent these data, we model them
with SysML class diagrams, as suggested in Section 4.2.4. The model is
shown in Fig. 15-6.

15.3.3 Functional Decomposition

Once the requirements have been set, the functional structure of the
system as a black box, i.e., from an external point of view, has to be
modeled according to Chapter 6.

We used UML deployment diagrams to model the functional
architecture of the (BAN part of the) ECS (see Fig. 15-7). These
diagrams offer hierarchical structuring and can capture the functional
decomposition, similar to the graphical notation suggested in Chapter 6.
For this case study, the main function of the ECS is to alert the
emergency service provider in case of an emergency. An additional
function is to send available diagnostic information. In order to detect a
collapse, the system must monitor various physical sensors. In order to

Modeling patient data
by means of class

diagrams

Deployment diagrams
for modeling the

functional viewpoint

15.3 Example Evaluation Activities in Detail 227

send diagnostic data, it must access the data logging storage etc. In this
way we described the functional behavior of the ECS in guiding the
deployment of the system onto its components.

Fig. 15-6 Information to be sent to the emergency service provider

modeled by a class diagram

Fig. 15-7 Functional decomposition of the extended care system using

deployment diagrams

15.3.4 Towards System Design

The previous subsections assumed a black box view of the system to be
developed. That is, we looked from outside onto the system. This
provides a good understanding of its behavior as expected by the user. In
the next step, the implementation is conceived by designing the
architecture, based on the logical and technical viewpoints (Chapters 6

228 Part III – Application and Evaluation in the Healthcare Domain

and 7). Starting from the functional decomposition of the system, a
proper internal structure, as well as a structure for hardware and software
resources, is defined using appropriate modeling techniques.

By considering the BAN from a technical viewpoint, we decided to
incorporate mobile and stationary nodes in order to meet the goals “easy
usage” and “monitoring of various sensor data.” Moreover, the TMS,
responsible for the communication with the emergency service provider,
is included in the technical structure. It is connected to the sensor nodes
via a gateway. In this context, the VAD can be thought of as just another
sensor providing information about the cardiac activity of the patient. We
modeled the architecture using SysML package diagrams, as shown in
Fig. 15-8. The various functions as identified in the functional
decomposition model of Fig. 15-7 were then mapped to the nodes that
should realize them.

Fig. 15-8 Architecture of the extended care system using package

diagrams

For the VAD, most implementation parts already existed. In order to
incorporate it into the case study and to enable certification of the
complete product, we also designed models for the VAD. Such models
are helpful for demonstrating the functional integrity of the system. The
general problem is how to integrate legacy code in a model-based
development environment. As a solution, we used a reengineering

Package diagrams
model the technical

viewpoint

Integrating legacy
code via capsules

15.4 Summary 229

approach. We developed a capsuling concept, where the interfaces
between a capsule and its environment were derived from an integrated
analysis of code and model. Then, actors were extracted from the tasks in
the code. An extended static analysis allowed us to trace the control
variables of the actors to derive activity diagrams and state charts. With
these generated models, we were able to guarantee that BAN and TMS
had no negative effects on the workings of the life-support system.

15.4 Summary
In modeling the various parts of the case studies, we used several
modeling notations as defined by the SPES modeling framework. The
flexibility of the formalisms supplied was helpful in engineering the
models. One challenge turned out to be the still nonexistent tool
integration, at syntactic as well as at semantic level. Models that are
developed with one tool (e.g., an architecture modeler) cannot
necessarily be re-used with other development tools (e.g., test
generators), see [Tahirbegovic and Lackner 2011].

Our ECS case study comprised several components, with the patient
equipment built on top of an existing VAD system. For such highly
safety-critical systems, accreditation by notified bodies is of utmost
importance. As mentioned above, the noninterference of the environment
with the workings of the VAD must be shown. Here, models and
diagrams can be extremely helpful, see also Chapter 9 on modeling
safety aspects. Our experiments also showed the importance of modeling
a system’s context, as well as unwanted and disallowed use cases. With a
large number of models, however, it becomes increasingly difficult to
maintain the consistency of the various models and artifacts. In
particular, showing that the actual implementation conforms to the
different models can only be done partially. Automated procedures such
as model checking are helpful only to a certain extent, since many
modeling concepts are beyond the scope of a model checker. SysML
offers certain constructs that can be used to mitigate this problem.
Checking interdependencies between the models still remains
challenging.

The increased usage of software in safety-critical medical systems
allows a high flexibility for improving and extending a given
functionality. In order to be able to use this flexibility and at the same
time meet the high safety standards, concepts for modular validation and
re-certification are needed. Ideally, validation and verification should
start in early development phases, allowing reuse of models, component

Accreditation based
on modeling artifacts

230 Part III – Application and Evaluation in the Healthcare Domain

descriptions, and code fragments together with their respective validation
documents in an incremental development process.

15.5 References
[FDA 2002] Food and Drug Administration: General Principles of Software Validation.

San Francisco: U.S. Department of Health and Human Services, 2002.

[Glesner et al. 2007] S. Glesner, S. Jähnichen, B. Paech, B. Rumpe, T. Wetter, A. Winter:
Strategische Bedeutung des Software Engineering für die Medizin. In: W.-G. Bleek, J.
Raasch, H. Züllighofen (Hrsg): Software Engineering 2007, Fachtagung des GI-
Fachbereichs Softwaretechnik. Springer LNI P-105, Hamburg, 2007, pp. 25-28.

[Hungar and Reyzl 2008] H. Hungar, E. Reyzl: Software-Entwicklung und Zertifizierung
im Umfeld sicherheitskritischer und hochverfügbarer Systeme: Bedeutung
modellbasierter und formaler Ansätze für effiziente Entwicklung und Zertifizierung.
In: Proceedings of Software Engineering 2008, pp. 291-294.

[IEC 2006] International Electrotechnical Commission: IEC 62304:2006(E): Medical
device software – software life cycle processes. First edition, May 2006.

[ISO 14971] ISO International Organization for Standardization: 14971: Medical devices –
Application of risk management to medical devices, 2000.

[Jiang et al. 2011] Z. Jiang, M. Pajic, R. Mangharam: Cyber–physical modeling of
implantable cardiac medical devices. In: Proceedings of the IEEE, Vol. 100, No. 1,
2011, pp. 122-137.

[Lee et al. 2006] I. Lee, G. J. Pappas, R. Cleaveland, J. Hatcliff, B. H. Krogh, P. Lee, H.
Rubin, L. Sha: High-confidence medical device software and systems. In: IEEE
Computer, Vol. 39, No. 4, 2006, pp. 33-38.

[Raistrick et al. 2004] C. Raistrick, P. Francis, J. Wright, C. Carter, I. Wilkie: Model driven
architecture with executable UML. Cambridge University Press, Cambridge, 2004.

[Tahirbegovic and Lackner 2011] S. Tahirbegovic, H. Lackner: Systematischer Test für
vernetzte Medizingeräte: Nicht kapitulieren, sondern automatisieren.
http://epaper.konradin-relations.de/medizin+technik/iframe/2011005/. Accessed on:
April 3, 2012.

[Zauner and Schrempf 2009] M. Zauner, A. Schrempf: Informatik in der Medizintechnik:
Grundlagen, Sichere Software, Computergestützte Systeme. Springer, Vienna, 2009.

http://epaper.konradin-relations.de/medizin+technik/iframe/2011005/

Dr. Andreas Jedlitschka
Jessica Jung
Dr. Constanza Lampasona

 16

Evaluation Summary

A survey conducted by the developers of the SPES modeling framework at the beginning of
the project revealed four high-level industry challenges that were to be addressed. Several
evaluation studies were conducted in the application domains, aiming at investigating the
contributions of the SPES modeling framework towards solving these industry challenges.
The results of these studies are summarized for each challenge. The main results indicate
that the SPES modeling framework is applicable in the chosen application domains.
However, additional efforts for adapting the SPES modeling framework were reported to
be necessary. In summary, the SPES modeling framework is well-aligned with regard to
the industry challenges. Future evaluations would be necessary to investigate cost benefits
and the efficiency of the approach. In addition, evaluation results show that the SPES
modeling framework has the potential to provide a stable foundation for future evolutions
of model-based approaches for the development of embedded systems. The current need
and future relevance of model-based development approaches for embedded systems is
supported by results from a survey.

231,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_16, © Springer-Verlag Berlin Heidelberg 2012

232 Part III – Evaluation Summary

16.1 Introduction
Decision makers in embedded system development require evidence
about technologies to enable them to make an informed decision when
new development technologies are to be introduced. However, this
evidence must be obtained systematically, i.e., the studies have to be
planned according to goals, conducted, analyzed, and reported so that the
results are conclusive and the studies can be replicated. In Chapter 10,
we presented an overview of the evaluation strategy that was to be used
to evaluate the SPES modeling framework.

Industry challenges for the engineering of software-intensive
embedded systems were identified by means of a set of interviews
conducted with project partners, as well as a comprehensive state-of-
practice study (see Chapter 2, [Sikora et al. 2012]).

We summarized the given industry challenges, identifying four high-
level challenges:

 Model technical systems and their interaction
 Provide traceable and seamless support for all life cycle phases
 Address and verify system properties early
 Address safety, standard compliance, and certifiability

Based on these challenges, principles for the SPES modeling framework
were derived (see Chapter 3):

 Distinction between problem and solution
 Distinction between logical and technical solution
 Explicit consideration of system decomposition
 Seamless model-based engineering
 Continuous engineering of crosscutting system properties

The SPES principles have to be addressed by the SPES modeling
framework. For the SPES modeling framework, the following properties
were defined:

 Scalability
 Productivity
 Division of labor
 Ease of use

Motivation: empirical
studies as decision

support

Matching the SPES
principles to the SPES

modeling framework

16.1 Introduction 233

For the SPES models the following properties were defined, describing
the extent to which they support system development:

 Handling of complexity
 Maintainability
 Reusability
 Consistency between different models (in all directions of the SPES

modeling framework)
 Reduction in fault tendency

The high-level evaluation goals addressed in the evaluations in the
application domains were quality, efficiency, and usability.

Fig. 16-1 Matching SPES principles to the properties of SPES modeling
framework and to the evaluation goals

Fig. 16-1 presents the relationships between the summarized industry
challenges, SPES principles, properties of the SPES modeling framework
and inherent models, and evaluation goals. The evaluation in the
application domains assessed the SPES modeling framework with regard
to specific attributes listed as evaluation goals. For example, with regard
to the evaluation goal quality, attributes such as a model’s completeness,
its consistency, and traceability of artifacts were studied. Also, the
question of the extent to which the SPES modeling framework had an

Model technical systems
and their interaction

Provide traceable and
seamless support for all

life cycle phases

Address and verify
system properties early

Address safety, standard
compliance, and

certifiability

Distinction between
problem and solution

Distinction between
logical and technical

solution

Explicit consideration of
system decomposition

Continuous engineering
of crosscutting system

properties

Seamless model-based
engineering

Scalability

Complexity

Maintainability

Reusability

Division of labor

Productiviy

Consistency

Fault proneness

Ease of use

Quality

• Completeness
• Consistency
• Traceability
• Maintainability
• Comprehensiveness
• Formality
• Complexity

Handling
• Safety
• …

Efficiency

• for development
• for maintenence
• …

Usability

• Applicability
• Understandability
• Learnability
• …

Industry Challenge SPES principle
Property of SPES models

Property of SPES approach
Evaluation goal

234 Part III – Evaluation Summary

impact on the development or maintenance efficiency was investigated.
In terms of the evaluation goal usability, the SPES modeling framework
was evaluated concerning aspects such as applicability,
understandability, and learnability. A selection of evaluation studies were
reported in previous chapters.

In the remainder of this chapter, we summarize the results from the
studies that were conducted to evaluate the SPES principles and their
implementation in the SPES modeling framework. Further, we discuss
results from a survey that support current and future relevance of model-
driven development (MDD).

16.2 Conclusions from the Evaluations
To assess the extent to which the SPES modeling framework and models
fulfill industrial challenges, the evaluation studies in the application
domains addressed both the level of abstraction and the viewpoints. Fig.
16-2 shows that the evaluation studies cover the whole SPES modeling
framework.

A vertical bar indicates that for an empirical evaluation of an
approach, the approach was applied across several abstraction layers
within a specific viewpoint, for example, the requirements viewpoint. A
horizontal bar indicates that the focus of the study was across viewpoints.
For the details of the evaluations we refer to Chapters 11 through 15.

The general purpose of the evaluation studies was to investigate
whether and under what conditions the SPES modeling framework can
be applied in the context of the specific application domain (cf. domain-
specific challenges). Domain-specific requirements have influenced both
the adoption of the SPES modeling framework as well as the design of
the evaluation studies. These domain-specific requirements come from:

 Disciplines with heterogeneous engineering approaches, such as
mechanics, electrics, and software, that need to interact in the
automation (cf. Chapter 11) and automotive domains (cf. Chapter
12)

 Disciplines with the need for certifiable systems in the avionics (cf.
Chapter 13) and healthcare domains (cf. Chapter 15)

 Disciplines with the need for flexible handling of massively
distributed systems in the energy domain (cf. Chapter 14).

Overview and
conclusions of

evaluation studies in
SPES

16.2 Conclusions from the Evaluations 235

Fig. 16-2 Placing the evaluation studies within the SPES modeling

framework

Most studies addressed the question of whether the SPES modeling
framework can be applied (applicability) in the context of the specific
domain. All domains report that the SPES modeling framework and
inherent models are applicable. Nevertheless, a need for adaptation and a
detailed guideline was reported. Some possible adaptations have been
exemplified, e.g., in Section 14.4.1. Learnability of the technologies and
understandability of the resulting documents was also perceived as
positive by participants. However, in a few cases, explicit improvement
suggestions, in particular regarding the transfer into daily practice, were
given (e.g., see Section 12.3).

In the following, we summarize the results of the evaluation studies
from the perspective of the high-level industry challenges.

Model technical systems and their interaction: Each of the five
application domains applied the SPES modeling framework to several
(domain-specific and typical) case studies. The case studies successfully
demonstrated that the SPES modeling framework addresses this
challenge. For example, in the automation domain, several types of
systems were successfully integrated by mapping SPES principles to
domain-specific modeling languages. In the avionics domain, we
successfully showed that systems engineering and safety engineering can
be integrated more smoothly by employing the SPES modeling
framework. As can be concluded from Fig. 16-2, much emphasis was
given to the requirements viewpoint. This is quite obvious, because this
viewpoint addresses also understanding of the system to be developed
and a common language for stakeholders involved. Results from the case

Requirements
Viewpoint

Functional
Viewpoint

Technical
Viewpoint

Logical
Viewpoint

Viewpoints

A
bs

tra
ct

io
n

La
ye

rs

Healthcare

A
ut

om
ot

iv
e

E
ne

rg
y

Av
io

ni
cs

Avionics

Automotive
Automotive

Avionics

Energy

Automotive

Automation

Automation

Avionics

Summary of results of
the evaluation studies

236 Part III – Evaluation Summary

studies demonstrate that the SPES modeling framework supports system
understanding.

Provide traceable and seamless support for all life cycle phases:
The challenge of horizontal integration (i.e., seamless methodological
and tool support) of the SPES modeling framework (i.e., across several
viewpoints) was addressed in all domains. As shown in Fig. 16-2, all
domains provide case study results demonstrating how they employed
the SPES modeling framework. Although the general results provide
supporting evidence, the level of integration is different. Whereas for the
automotive domain, seamless integration was successfully demonstrated
for approach and development tools, the healthcare domain recognizes a
deficiency with regard to supporting tools (see Chapters 12 and 15,
respectively). Results reported from the case study in the avionics
domain provide the insight that the integrated design and safety modeling
allows systems and software engineers to work seamlessly on the same
model (see Chapter 13). In addition, the results show that parts of the
verification cases can be generated from formalized requirements.

Address and verify system properties early: Several studies
investigated aspects of quality (cf. Fig. 16-1). With regard to the question
of whether a certain level of product quality is achieved using the SPES
modeling framework, we can summarize that the methods specifically
addressing a certain quality aspect such as completeness, consistency,
safety, or traceability fulfilled users’ expectations. In particular,
approaches addressing requirements’ vertical traceability were
successfully investigated, e.g., in the automotive, avionics, and energy
domains (see Chapters 12 through 14 respectively). Results from a case
study on an extended requirements process model in the automotive
domain show a shift of effort towards earlier phases. Similarly, system
simulation as a means for early verification was successfully integrated
and employed in cases studies, in particular in the automotive and energy
domain.

Address safety, standard compliance, and certifiability: Within
the automotive, avionics, and healthcare domains in particular (cf.
Chapters 12 through 14), the topics of safety, standard compliance, and
certifiability are highly relevant. Therefore, these topics were also
addressed in the case studies, e.g., a case study in the automotive domain
demonstrated that the logical architecture can be automatically
transformed into AUTOSAR application components and can be
transferred to AUTOSAR basic software configurations.

In the avionics domain, it was found that the concept for the
integration of safety cases as argumentation support for the certification

16.3 Relevance of Model-Driven Development 237

authority showed a potential towards automated certification of safety-
critical systems.

The integrated design and safety modeling showed that systems and
software engineers can work seamlessly on the same model.

Transferability of the results across domains: As can be seen from
previous chapters, different aspects of the SPES modeling framework
were evaluated in different domains. For example, the automotive
domain – among other things – focused on functional correctness and
completeness in early phases as well as traceability (see Chapter 12),
while the avionics domain focused on safety and verification (see
Chapter 13). The results indicate that the transfer across all domains is
possible in principle, but required adaptations according to the
characteristics and challenges of the specific domains, e.g., in the
automation domain to cope with different modeling languages of
engineering disciplines involved, in the automotive domain to manage
variants, and in the avionics domain to address safety and certification.

Open topics and future work: To provide decision-makers with
even better guidance regarding the benefits or shortcomings of the SPES
modeling framework, additional information, in particular, business-
relevant aspects such as the costs and efficiency of methods, should be
gathered by systematic empirical evaluation. However, this would
require access to historical project data, serving as a baseline, and a set of
real projects in which the SPES modeling framework is applied. The
results of these projects would then be compared against the baseline.
The data is hard to obtain due to confidentiality constraints. Furthermore,
access to real projects often proved to be difficult due to the scheduling
and alignment restrictions of those projects.

16.3 Relevance of Model-Driven Development
To investigate the relevance of model-driven development (MDD), a
survey was conducted [Lampasona 2012]. The questionnaire consisted of
87 items and was divided into six parts, including demographics,
importance of MDD today, importance of MDD in the future, and
expectations of MDD. The survey was designed taking into account two
specific groups: participants from industry (both development staff as
well as executive positions were included) and from academia, and 127
people were invited to participate. Of those, 64 answered the
questionnaire.

The results show that MDD is more important in contemporary
software engineering research than for current business objectives. For

Survey results: major
benefits of MDD for
both industry and
academia

238 Part III – Evaluation Summary

managerial staff, on average, MDD is equally important in both research
and business. However, a vast majority agreed that the future of software
engineering lies in MDD. In this case, half of the business executives
strongly agreed, others agreeing mostly or answering neutrally on this
issue.

Furthermore, we asked participants to judge the extent to which they
expect different properties from MDD. As can be seen from Fig. 16-3,
improving quality and reuse, complexity management, and reduced
development costs are the issues that both researchers as well as
practitioners expect the most benefit from by using MDD.

Finally, we asked an open question about the expectations of
participants with regard to MDD. Out of 185 responses, the most
frequently mentioned points were: improved validation and verification
(19 responses), shorter development times (19), increased automation
(15), better quality (16), and reduced costs (11).

In summary, we can say that model-based development is not only
economically relevant, but is also expected to introduce major benefits
for both industry and academia. In the SPES 2020 project, we have laid
the foundation for successful model-based engineering of embedded
systems, but there is still much to be done.

Fig. 16-3 Expectations from MDD of practitioners and academics

16.6 Acknowledgements 239

16.4 Summary
The predominantly positive results from the individual evaluations
indicate that the SPES modeling framework and its inherent models
address the industry challenges. Furthermore, the case studies in the
application domains showed that the SPES modeling framework and
models are adaptable to and applicable within the application domains.
The SPES modeling framework, with its abstraction layers and
viewpoints, helped to close existing gaps in systems and software
modeling practice by providing, e.g., a better understanding of how to
refine and to decompose complex systems and how to describe the
relationship between artifacts created. These results are underlined by
results from a survey that show that MDD is becoming more and more
relevant. However, questions regarding the approach’s cost-efficiency
and impact on the development schedule have to be answered by future
empirical studies.

16.5 References
[Lampasona 2012] C. Lampasona: Umfrage SPES 2020: Relevanz, Zukunft und

Stellenwert modellbasierter Softwareentwicklung. Project Deliverable of SPES 2020.
Available at spes2020.informatik.tu-muenchen.de/results/ZP-AP6.D6.2.B1 MDD
Umfrage_final.pdf

[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl. Industry needs and research
directions in requirements engineering for embedded systems. In: Requirements
Engineering Journal, Vol. 17, No.1, 2012, pp. 57-78.

16.6 Acknowledgements
We specifically acknowledge the contributions of Marcus Ciolkowski,
who led the evaluation work in SPES 2020 until the end of May 2011.
Special thanks go also to Sabine Nunnenmacher for her contributions in
planning and conducting empirical studies and surveys in the first two
years of SPES 2020. Last but not least, we also want to thank Sarah
Tichy for her support in the statistical analyses of data obtained from the
studies conducted, and Bastian Tenbergen for valuable comments and
never-ending patience.

Positive results from
individual evaluations:
SPES approach and
adaptable and
applicable models

Part IV

Impact of the SPES
Modeling Framework

Peter Heidl
Jens Höfflinger
Harald Hönninger
Bastian Tenbergen

 17

Lessons Learned

The purpose of this chapter is to offer a view on the lessons learned from developing and
applying the SPES modeling framework. The lessons learned show that the SPES modeling
framework is well-aligned with regard to the industry challenges. In addition, results show
that the SPES modeling framework has the potential to provide a stable foundation for the
further evolution of model-based approaches for embedded system development.

243,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_17, © Springer-Verlag Berlin Heidelberg 2012

244 Part IV – Lessons Learned

As proposed in Chapter 2, the engineering of modern embedded systems
is becoming increasingly challenging due to a steady increase in demand
for more innovations in shorter time to market as well as overall cost
pressure. Current development approaches for the engineering of
software-intensive embedded systems are ill-equipped to meet these high
demands. Consequently, novel development paradigms are necessary that
meet individual demands of the embedded systems world. Therefore, we
developed and evaluated the SPES modeling framework as a potential
solution to the challenges arising in embedded system development. The
project was a success, as challenges such as complexity management,
which was previously thought of as an insurmountable obstacle, is now
one of the core SPES principles and has become an indispensable tool for
profitable engineering of embedded systems.

The SPES modeling framework is a milestone for the model-based
development of embedded software in the industry. The most striking
factors that contributed to the success of the SPES modeling framework
can be summarized as the following lessons learned:

 The multitude of systems gives rise to a multitude of engineering
challenges.

 Model-based software development is increasingly important.
 Integrated development is essential for the engineering of embedded

systems.
 Interdisciplinary knowledge networks foster innovation.
 We have achieved a lot — but a lot more still remains to be

achieved.

In the following sections, we will give a short discussion of each lesson
learned.

17.1 The multitude of systems gives rise to a
multitude of engineering challenges

The term embedded system appears to describe a relatively clear-cut type
of system. However, on closer inspection, it becomes obvious that
embedded systems are more likely to be a class of systems that comprise
technical as well as nontechnical aspects, such as business model,
product properties, problem classes they address, context conditions they
may encounter, etc. In other words, the term embedded system may
describe a system that has multiple systems embedded within itself, such
as a cockpit in the avionics domain or a rolling mill in the automation
domain. On the other hand, the term embedded system may also refer to a

Lessons learned in
developing the SPES
modeling framework

Not all embedded
systems are created

equal

17.2 Model-based software development is increasingly important 245

system that is embedded within an environment of other systems, such as
an engine control unit in the automotive domain.

In addition, dominant product properties may vary in aspects such as
criticality, safety, variability, real-time constraints, etc. The problem
classes embedded systems are meant to address may include continuous
closed-loop control tasks, data-centric computing problems, or user-
centered interactions.

These aspects lead to different processes in the engineering of such
systems and result in vastly different architectures and solution
approaches. However, there are also some commonalities that may be
regarded as conceptual building blocks for specialized development
concepts. Some of these building blocks have been translated into SPES
principles and were addressed in Part II and Part III of this book.

17.2 Model-based software development is
increasingly important

Embedded systems development is a lucrative business with total
revenues ranging to billions of euros. The number of embedded systems
in the world is steadily increasing as these systems have become an
integral part of our daily lives. For example, vehicle systems that were
previously entirely mechanical, such as the braking system, are more and
more often being implemented by electronic means using embedded
systems [Volpato 2004]. Furthermore, due to the increasing
interoperability of functions and features, system complexity is steadily
increasing.

In order to remain profitable, development of such systems must be
cost-efficient, deal with increasing system complexity and increasing
quality demands, and do so in short time to market. However, when
faced with the challenges of modern embedded system development,
traditional development methods are lacking with regard to these aspects.
In particular, meeting high quality demands is impaired by the increased
product complexity.

Therefore, novel development paradigms must be established in the
industry. One such paradigm is model-based software development: it
promises increased productivity and therefore faster time to market,
increased quality due to constructive consistency, and improved
manageability of system complexity through abstraction. It is therefore
reasonable to conclude that model-based software development is a core
technology for the development of embedded systems.

Increasing volume of
embedded systems
drives need for cost-
efficiency

246 Part IV – Lessons Learned

As part of the SPES 2020 project, a survey was conducted (see Section
16.3) to characterize the significance of model-driven development
(MDD). The results indicate that model-based development is not only
economically relevant, but is also expected to introduce major benefits
for both industry and academia. In the SPES 2020 project, we have laid
the foundation for successful model-based engineering of embedded
systems; however, there is still much to be done.

17.3 Integrated development is essential for the
engineering of embedded systems

Model-based development promises many benefits for the engineering of
embedded systems. However, continuous development by means of
integration of various engineering activities still remains essential. This
means that artifacts must be continuously elicited, documented, modified
and refined, starting during requirements engineering, via the modeling
of system functions to their final deployment on the embedded system,
across many layers of abstraction from system to subsystem to
component. In addition, these development artifacts must be shared with
other facets of development, such as safety and security engineering,
mechanical engineering, etc.

The SPES modeling framework provides a basis for such
development continuity, as described in Chapter 3. Initial evaluations
show promising results (see Chapters 11 through 16), but also show that
tailoring of the SPES modeling framework is necessary in almost every
development context. Therefore, more evaluations and additional case
studies must be conducted in order to give a better picture of when
tailoring is necessary and how the engineering process can be guided
such that the utmost benefit of model-based engineering can be gained.

17.4 Interdisciplinary knowledge networks
foster innovation

As shown in Section 17.1, a multitude of different types of embedded
systems causes new and intriguing challenges for development and
fascinating avenues for research. These challenges and research avenues
cannot be tackled in solitude. Instead, interdisciplinary networks of
partners that ordinarily compete on the international market within and
across application domains allow sharing of different perspectives and
insights into the state of practice in engineering of embedded systems.
Working in close cooperation with research institutes across Germany

Model-driven
development in

industry and
academia

Development
continuity is

necessary

Different domains
produce different

types of systems and
requirements

17.5 We have achieved a lot — but a lot more still remains to be achieved 247

and the world fosters innovation in research, quick knowledge transfer
from research to industry, and enables evaluation of research results in
industrial settings.

17.5 We have achieved a lot — but a lot more
still remains to be achieved

In spite of the significant innovations of the SPES 2020 project, there are
a number of areas that remain to be addressed. Some of these can be
summarized as follows:

 Engineering process prerequisites: We have seen that tailoring of
the SPES modeling framework is necessary in most development
contexts. As tailoring was mostly driven by the individual properties
of the respective application domain, the SPES modeling framework
has been tailored in quite different ways (cf. the tailoring in the
automotive domain vs. the tailoring in the energy domain).
Therefore, a systematic investigation of different development
contexts and engineering processes must be conducted to gain
insight into what prerequisites must exist in a development scenario
in order for the SPES modeling framework to be applicable.

 Variability, deployment, reuse, and other qualities: While functional
aspects and real-time and safety concerns have been considered in
the SPES modeling framework, many more system qualities remain.
For example, variability has not been investigated during the
development of the SPES modeling framework, yet plays a major
role in the engineering of embedded systems (as can be seen, in part,
in Chapter 12.3.3). Therefore, additional research should focus on
extending the SPES modeling framework so that these quality
aspects are considered as well.

 Engineering artifact quality: While the SPES modeling framework
allows for the development of engineering artifacts that can be used
in coordination with different development activities (such as
behavior models in the requirements viewpoint and the functional
viewpoint), some issues remain with regard to quality assurance.
How can engineering artifacts be validated as early in the
development process as possible? In particular, validation must also
be done with regard to quality aspects, such as real-time, safety,
variability, or deployment.

 Modular safety assurance: As explained throughout this book, many
application domains are governed by strict safety and security
guidelines and standards. Although the SPES modeling framework

Future work

248 Part IV – Lessons Learned

aims at bridging the gap between safety and security engineering and
other engineering activities, one open question is how to
constructively ensure, during engineering, that important standards
and guidelines are fulfilled. Also, since many development projects
extend existing systems by introducing some new feature or altering
the existing system, further research must be dedicated to reducing
the re-certification overhead, e.g., by certifying parts of the system
and only having to re-certify those parts that have been modified.

17.6 Summary
The innovation alliance SPES 2020 has laid a solid foundation for the
engineering of software-intensive embedded systems. An SPES
modeling framework has been developed that is based on five principles
that meet the requirements of the application domains as established in
Chapter 2. The SPES modeling framework has been evaluated in the
different application domains. Results show that while the SPES
modeling framework meets the basic needs of industrial development,
tailoring is necessary in most development contexts. Also, there are a
number of research areas that have not been addressed by the SPES 2020
project, yet are important for the engineering of embedded systems: How
can qualities such as variability, modular safety assurance, or optimal
deployment be considered during system development? How can
engineering artifacts be validated as early as possible in the development
process? What prerequisites must a development process fulfill in order
to be able to apply the SPES modeling framework with minimal
tailoring? These are all questions that future work must address.

During the SPES 2020 project, we learned that these research
questions must be answered in a collaborative way by making use of
multiple perspectives from both academia and industry representatives
from various domains. Only thus can research take account of the wide
variety of different types of embedded systems, their roles,
responsibilities, and the application contexts for which they are designed.
Future work must also be spent on continuing the development of
continuous, model-based engineering approaches, as these are promising
approaches to surmounting the obstacles posed by steadily increasing
cost pressure, increasing complexity, and the demand for high product
quality in the engineering of embedded systems.

17.7 References 249

17.7 References
[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl. Industry needs and research

directions in requirements engineering for embedded systems. In: Requirements
Engineering Journal, Vol. 17, No.1, 2012, pp. 57-78.

[Volpato 2004] G. Volpato: The OEM-FTS relationship in automotive industry. In:
International Journal of Automotive Technology and Management, Vol. 4 No. 2-
3/2004, 2004, pp- 166-197.

Prof. Dr. Manfred Broy

 18

Outlook

This chapter summarizes the project and briefly outlines the project contributions. In
addition, it provides insights into open challenges in the engineering of software-intensive
embedded systems that have been triggered by the efforts undertaken in the SPES 2020
project. The chapter outlines the impact of these challenges on future research.

251,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9_18, © Springer-Verlag Berlin Heidelberg 2012

252 Part IV – Outlook

A major goal of the Federal Ministry of Education and Research (BMBF)
is to support specific research endeavors in which academia and industry
join forces to address challenges in the field and to provide a solid
foundation for the engineering of software-intensive embedded systems
in the future. The BMBF thereby ensures that Germany remains a
significant location for high-tech industries. The SPES 2020 project has
substantially contributed to achieving this goal.

SPES 2020 has established a fundamental modeling approach and has
investigated in a number of issues comprising key concepts for advanced
modeling of embedded systems. SPES 2020 has created a seamless
development framework for the model-based engineering of embedded
systems — this framework integrates and consolidates different existing
approaches. The SPES 2020 modeling framework is defined based on
three core concepts:

 Viewpoints: The SPES 2020 modeling framework distinguishes
between four viewpoints: the requirements viewpoint defines the
concepts and techniques for the systematic elicitation and
specification of requirements; the functional viewpoint defines the
concepts and techniques required to specify and model the system
functions and their relationships; the logical viewpoint defines
concepts and techniques required to decompose the system function
into a system architecture of logical components; the technical
viewpoint defines the concepts and techniques required to detail the
logical architecture into a physical architecture that, amongst other
things, specifies the hardware components of the system and the
deployment of the software on those components.

 Abstraction layers: The SPES 2020 modeling framework explicitly
defines abstraction layers to facilitate the definition of the embedded
system at different levels of granularity. The concrete abstraction
layers chosen for a particular system depend, amongst other things,
on the application domain.

 Seamless modeling of crosscutting properties: In addition to the
viewpoints and abstraction layers, the SPES 2020 modeling
framework defines concepts and techniques for the seamless
modeling of crosscutting system properties such as safety or real-
time behavior.

To validate the framework, SPES 2020 has conducted extensive
evaluation activities by means of case studies and experiments in five
application domains. The evaluation clearly indicates that the SPES
modeling framework is applicable in a wide variety of application
domains and development settings, substantially supports the interplay of

18 Outlook 253

different engineering disciplines such as software development and
mechatronics, and is well suited for the systematic engineering of
complex safety-critical embedded systems.

In fact, by developing the SPES 2020 modeling framework and
evaluating it in five diverse application domains (automation,
automotive, avionics, energy, and healthcare), the SPES 2020 project has
delivered an elaborated methodology that supports the systematic,
integrated, and seamless engineering and operation of software-intensive
embedded systems. Thus, SPES 2020 has established a firm basis for the
model-based development of embedded systems.

Nevertheless, there are still open challenges in the area of engineering
and operating embedded systems that go far beyond the work and scope
of SPES 2020. These challenges pertain to the current state of practice
and are triggered by a number of key requirements in the field. Examples
are:

 Long-term system evolution: SPES 2020 was very much focused on
model-based forward engineering of embedded systems. A key
challenge of embedded systems today is that they are in operation
and under further development for a long period of time, frequently
spanning decades. Managing the evolution of such systems is thus an
essential issue, as changes in the context of the system during its
operation must be anticipated and considered systematically during
the system lifetime. The SPES modeling framework already ensures
a systematic consideration of the system’s context and thus also
supports system evolution. However, in order to support the
evolution of embedded systems adequately, the SPES 2020 modeling
framework has to be extended by concepts for defining context
adaptability and context sensitivity. Another open issue is the
adequate support for the step-by-step migration from today’s legacy
processes for the development of embedded systems to a systematic,
model-based long-term software and system evolution process.

 Variability management: In many cases, individual systems or
networks of systems are developed that comprise a large set of
similar functionality and that share similar architectures and
implementations. Providing a clear separation between common and
system-specific parts in the engineering of embedded systems will
leverage a large potential for saving development costs and time, as
well as increasing quality. It is quite obvious that modeling
techniques used in product line engineering are very well suited to
supporting the engineering of product and system families. However,
the increasing complexity of embedded systems and networks of
systems poses additional challenges for managing the variability of

254 Part IV – Outlook

such systems. Open issues include the integration of variation points
into a comprehensive system modeling framework and the resource-
efficient management of different variants of embedded systems,
components, and networks of systems.

 Cyber-physical systems: Today and more so in the future, embedded
systems will form networks of interacting elements that feature a
tight combination and coordination of the system’s computational
and physical parts, i.e., a tight relation between the digital and
physical worlds. One open question is how to capture the nature and
the interaction between the physical systems’ context and the digital
nature of embedded software systems in the development process.
Another big challenge is the question of how to put embedded
systems into a manageable relationship to global networks such as
the Internet. In the past, embedded systems were typically closed
systems with a static architecture, statically fixed sets of functions,
and clearly defined static interfaces to their context. When embedded
systems are connected to the Internet, those characteristics change.
This creates various research challenges such as the challenge of
dynamic system models, hybrid system models, dynamic interface
models, and dynamic models of the architecture that address these
different characteristics of systems and system parts, together with
certain quality requirements such as safety and security. While SPES
2020 laid a foundation for addressing these challenges, further
research is required to extend the SPES modeling framework with
concepts and techniques that provide solutions for these challenges.

Overall, many scientific and practical engineering challenges remain to
be solved. Hence, significant research effort is still required. Moreover,
dedicated effort is required to ensure that the techniques and methods
developed can be easily deployed to and adopted by industries. In order
to support industrial uptake, process descriptions and guidance for
system engineers that can be easily adapted to the specific requirements
of the individual development processes have to be developed.

In addition, future research for embedded systems has to be strongly
related to the sociological and to the economic contexts of embedded
systems, as most technical devices will be mutually connected, enhanced
by embedded software, and connected to the cloud. Issues of man-
machine interaction and advanced assistance will become dominant.
Systems will be ubiquitous, pervasive, and globally connected. Only if
the engineers are able to construct such systems with a proven
correctness, high reliability, and usability such systems will positively
enhance our reality, and make our life easier, richer, safer, and more
secure.

Appendices

A – Glossary of the
SPES Modeling

Framework

257,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9, © Springer-Verlag Berlin Heidelberg 2012

258 Glossary (A - R)

A
Abstraction layer

An abstraction layer defines a specific level
of abstraction and granularity at which the
System under Development (SUD()) is
examined. The level of granularity of the
respective abstraction layer is in turn
determined by a structural characteristic
that stems from the layer above. Initially,
we consider the system as a whole.

D
Decomposition

Decomposition denotes the partitioning of
an analysis element or design element
(e.g., of a goal, a function(), or a
logical/technical component()) into parts.

Diagram
A diagram is a graphical representation of a
model or of a part of a model as part of a
specific modeling language.

F
Function

A function is a projection of the behavior of
the entire system (when seen as a black
box) resulting in a relation between inputs
and outputs with regard to a specific usage
purpose.

Functional viewpoint
The functional viewpoint() is a structured
description of the functions() that are to be
realized along with their interfaces,
interactions, and dependencies. The
functional viewpoint imposes a structure
onto the functional requirements of the
SUD(). This viewpoint provides different
model types that can be used for organizing
hierarchies of system functions and the
behavior of the system functions at the
interfaces as well as their state space.

L
Logical component

A logical component is the result of a
logical decomposition of a system into the
internal logical structure of the SUD. It
encapsulates a specific behavior that
contributes to the realization of one or more
functions() of the SUD(). A logical

component has a well-defined interface. A
logical component may be decomposed
into further logical components.

Logical viewpoint
The logical viewpoint is a structured
description of how to organize the
realization of the functions() by means of
logical components() that are connected
with one another. This viewpoint provides
different model types that can be used for
documenting the logical component
architecture of a system, the behavior of
the logical components at the interfaces,
and their state space.

M
Mapping (between views()/between
abstraction layers())

A mapping between views is a relationship
between two models representing the
views. A mapping can exist between
models of different viewpoints() or
between models of the same view, but on
adjacent abstraction layers().

Model
A model is an abstract representation of an
existing reality or a reality to be created.
Every model is created for a specific
purpose of use.

R
Refinement

Refinement refers to the process of
detailing an analysis or design element
while preserving its semantics.

Requirement
A requirement is:

1. A need perceived by a stakeholder
2. A capability or property that a system

shall have
3. A documented representation of a need,

capability, or property
[IREB 2011]

Requirements viewpoint
The requirements viewpoint is a structured
description of how to document/specify the
requirements of a system. This viewpoint
provides different model types that can be
used for documenting the system
context(), system goals, system scenarios,
and solution-oriented requirements.

Glossary (S - V) 259

S
(Operational) System context

The context of the SUD() is the part of its
environment that has an operational
relationship to it during the execution of the
system.

System under development (SUD)
The system under development is the
subject that is being developed. Within the
scope of the SPES engineering approach,
the SUD refers to a software system.

T
Technical component

A technical component is a means for
describing the technical structure of the
SUD. It characterizes a technical resource
that is available in the system and
implements one or more logical
components() fully or in part.

Technical viewpoint
The technical viewpoint is a structured
description of how to organize the
realization of logical components() by
means of technical components(). The
technical components may be related to
each other. This viewpoint comprises
different model types that can be used for
documenting the hardware, tasks, and
schedulers as well as the communication.

V
Validation

Validation refers to the activity of checking
whether the requirements capture the
stakeholder’s needs and fulfill defined
quality criteria. The goal is to assess
whether a system that satisfies its defined
requirements would fulfill its intended
purpose. Hence, validation aims at
answering the question: “Am I building the
correct system?” [Boehm 1984]

Verification
Verification refers to the activity of checking
whether a development artifact (e.g., the
finalized SUD) satisfies the specified
requirements. Hence, verification aims at
answering the question: “Am I building the
system correctly?” [Boehm 1984]

View
A view is a representation of a whole SUD
from the perspective of a related set of
concerns (based on [IEEE1471]).

Viewpoint
A viewpoint is a specification of the
conventions for constructing and using a
view(). Viewpoints comprise patterns or
templates from which to develop individual
views() by establishing the purpose and
audience for a view() and the techniques
for its creation and analysis (based on
[IEEE1471]).

References
[IREB 2011] M. Glinz: A Glossary of Requirements Engineering Terminology. Standard Glossary of the

Certified Professional for Requirements Engineering (CPRE) Studies and Exam, Version 1.1, May 2011.

[Boehm 1984] B. Boehm: Software Engineering Economics. Prentice Hall, New Jersey, 1984.

[IEEE1471] The Institute of Electrical and Electronics Engineers, Inc.: IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems. IEEE Std. 1471-2000. New York, 2000.

B – Author Index

261,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9, © Springer-Verlag Berlin Heidelberg 2012

262 Authors

A

Achatz, Dr. Reinhold
ThyssenKrupp AG
Corporate Center Technology,
Innovation & Quality
ThyssenKrupp Allee 1
45145 Essen, Germany

formerly:

Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany iii

B

Beetz, Klaus
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany 3

Bender, Ottmar
CASSIDIAN
Woerthstrasse 85
89077 Ulm, Germany 15, 177

Böhm, Dr. Wolfgang
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany 3

Broy, Prof. Dr. Dr. h.c. Manfred
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany iii, 31, 251

D

Damm, Prof. Dr. Werner
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany 31

Daun, Marian
paluno – The Ruhr Institute for Software
Technology
University of Duisburg-Essen
Gerlingstr. 16
45127 Essen, Germany 51, 119

Dieudonné, Laurent
Liebherr-Aerospace Lindenberg GmbH
Pfänderstraße 50-52

88161 Lindenberg, Germany 177

E

Eder, Sebastian
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany 69, 85

F

Fasse, Dr. Friedrich-W.
RWE Consulting GmbH
Lysegang 11
45139 Essen, Germany 197

Fay, Prof. Dr. Alexander
Automation Technology Institute
Helmut Schmidt University Hamburg
Holstenhofweg 85
22043 Hamburg, Germany 137

Feilkas, Dr. Martin
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany 69, 85

Fockel, Markus
Fraunhofer Institute for Production
Technology (IPT)
Zukunftsmeile 1

33102 Paderborn, Germany 157

Authors 263

G

Girod, Dr. Maurice
Airbus Operations GmbH
Im Kreetslag 10
21129 Hamburg, Germany 177

Glomb, Christian
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany 197

Grünbauer, Johannes
SWM Services GmbH
Emmy-Noether-Straße 2
80287 Munich, Germany 197

H

Heidl, Peter
Robert Bosch GmbH
Corporate Research
P.O. Box 30 02 40
70442 Stuttgart, Germany 157, 243

Heinze, Hendrik
Berlin Heart GmbH
Wiesenweg 10
12247 Berlin, Germany 215

Henkler, Dr. Stefan
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany 31, 95

Heuer, André
paluno – The Ruhr Institute for Software
Technology
University of Duisburg-Essen
Gerlingstr. 16
45127 Essen, Germany 197

Hilbrich, Robert
Fraunhofer Institute for Computer
Architecture and Software Technology
(FIRST)
Kekuléstr. 7
12489 Berlin, Germany 119

Hiller, Martin
CASSIDIAN
Woerthstrasse 85
89077 Ulm, Germany 15, 177

Höfflinger, Jens
Robert Bosch GmbH
Corporate Research
P.O. Box 30 02 40
70442 Stuttgart, Germany 157, 243

Höfig, Kai
Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Straße
67663 Kaiserslautern, Germany 107

Holtmann, Jörg
Department of Computer Science
University of Paderborn
Zukunftsmeile 1
33102 Paderborn, Germany 157

Hönninger, Harald
Robert Bosch GmbH
Corporate Research
P.O. Box 30 02 40
70442 Stuttgart, Germany iii, 157, 243

Horn, Dr. Wilfried
Hella KGaA
Beckumer Str. 130
59552 Lippstadt, Germany 157

J

Jäger, Tobias
Automation Technology Institute
Helmut Schmidt University Hamburg
Holstenhofweg 85
22043 Hamburg, Germany 137

264 Authors

Jedlitschka, Dr. Andreas
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany 131, 231

Jung, Jessica
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany 231

K

Kallow, Dr. Khalid
TeCNet Systeme & Service GmbH
Rudower Chaussee 29
12489 Berlin, Germany 215

van Kampenhout, J. Reinier
Fraunhofer Institute for Computer
Architecture and Software Technology
(FIRST)
Kekuléstr. 7
12489 Berlin, Germany 119

Klaus, Martin
SWM Services GmbH
Emmy-Noether Straße 2
80287 Munich, Germany 197

Kuntschke, Dr. Richard
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6
83719 Munich, Germany 197

L

Lackner, Harmut
Fraunhofer Institute for Computer
Architecture and Software Technology
(FIRST)
Kekuléstr. 7
12489 Berlin, Germany 215

Lampasona, Dr. Constanza
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany 231

Laskowski, Prof. Dr. Michael
RWE Deutschland AG
Kruppstraße 5
45128 Essen, Germany 197

Liggesmeyer, Prof. Dr. Peter
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

and

Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Straße
67663 Kaiserslautern, Germany 107

Löwen, Dr. Ulrich
Siemens AG
Corporate Technology
San-Carlos-Str. 7
91058 Erlangen, Germany 131, 137

M

Meyer, Dr. Jan
Hella KGaA
Beckumer Str. 130
59552 Lippstadt, Germany 157

Meyer, Dr. Matthias
Fraunhofer Institute for Production
Technology (IPT)
Zukunftsmeile 1
33102 Paderborn, Germany 157

Mund, Jakob
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany 85

Authors 265

P

Pohl, Prof. Dr. Klaus
paluno – The Ruhr Institute for Software
Technology
University of Duisburg-Essen
Gerlingstr. 16
45127 Essen, Germany iii , 31

R

Ratiu, Dr. Daniel
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany 69

Reinkemeier, Philipp
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany 95

S

Sadeghipour, Dr. Sadegh
ITPower Solutions GmbH
Kolonnenstraße 26
10829 Berlin, Germany 215

Schäuffele, Jörg
Vector Informatik GmbH
Ingersheimer Straße 24

70499 Stuttgart, Germany 157

Schlingloff, Prof. Dr. Holger
Fraunhofer Institute for Computer
Architecture and Software Technology
(FIRST)
Kekuléstr. 7
12489 Berlin, Germany 215

Schuller, Peter
MicroSys Electronics GmbH
Muehlweg 1
82054 Sauerlach, Germany 137

Sojer, Dominik
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany 119

Stierand, Dr. Ingo
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany 95

Strobel, Carsten
EADS Innovation Works
Willy-Messerschmitt-Straße 1
85521 Ottobrunn, Germany 177

T

Tahirbegovic, Salko
T+I Technologie- und InnovationsConsult
GmbH
Schlaatzweg 1
14773 Potsdam, Germany 215

Tenbergen, Bastian
paluno – The Ruhr Institute for
Software Technology
University of Duisburg-Essen
Gerlingstr. 16
45127 Essen, Germany

15, 51, 243

Trapp, Dr. Mario
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany 107

V

Vogelsang, Andreas
Department of Informatics
Technische Universität München (TUM)
Boltzmannstr. 3
85748 Garching, Germany 31, 69, 85

W

Wagner, Dr. Thomas
Siemens AG
San-Carlos-Str. 7
91058 Erlangen, Germany 137

Waßmuth, Martin
EADS Innovation Works
Willy-Messerschmitt-Straße 1
85521 Ottobrunn, Germany 177

Weber, Raphael
Oldenburg Institute for Information
Technology (OFFIS)
Escherweg 2
26121 Oldenburg, Germany 95

Wehrstedt, Dr. Jan Christoph
Siemens AG
Otto-Hahn-Ring 6
81739 Munich, Germany 137

Weyer, Dr. Thorsten
paluno – The Ruhr Institute for
Software Technology
University of Duisburg-Essen
Gerlingstr. 16
45127 Essen, Germany 15, 31,51,119, 197

Wiesbrock, Dr. Hans-Werner
IT Power Consultants
Gustav-Meyer-Allee 25
13355 Berlin, Germany 215

Z

Zimmer, Bastian
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany 107

26 Authors 6

C – Project Structure

267,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9, © Springer-Verlag Berlin Heidelberg 2012

C – Project Structure 269

Co-operation
The innovation alliance focused on a strong interaction between science and practice in
order to make good progress in the engineering challenges, to verify the approaches, and to
transfer the results to engineering methods that are viable in practice. This target was
supported by the following:

 Significant application projects from five application areas showing high dynamics
and with high economic relevance

 Installation of a central project that interacted with the application projects and
provided the necessary methods and tools

 Installation validation work packages in which the results were evaluated using
scientific taxonomy

The structure between the different locations in Germany allowed for the inclusion of key
resources into the innovation alliance. The close co-operation between the industrial
partners and the universities/Fraunhofer institutes has ensured that the results could be
evaluated with respect to practical and market-feasible solutions.

Project structure
As stated above, SPES 2020 was structured as a central project and five application
projects. The application projects correspond to the SPES 2020 domains automation,
automotive, avionics, energy, and healthcare.

The central project itself was divided into work packages one to six. Packages two to
five deal with the following topics:

 Model-based requirements engineering
 Model-based architecture design
 Proof of safety, certification, and quality assurance of nonfunctional requirements
 Modeling of parallel real-time processes and verification of the real-time behavior

The foundation was laid in work package one, which developed a methodology for a
comprehensive and integrated model-based development. In work package six, the focus
was on the empirical evaluation of the methods.

270 C – Project Structure

Fig. C SPES 2020 project structure

The interplay between the work packages of the central project and the application projects
was assured by a strong orientation on case studies from the application domains.

D – Members of the
Innovation Alliance

271,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9, © Springer-Verlag Berlin Heidelberg 2012

272 Members of the Innovation Alliance

Airbus Deutschland GmbH
Airbus Deutschland GmbH is one of the world’s largest manufacturers for civil aircraft
seating more than 100 passengers and Europe’s largest industrial undertaking. With some
$11 billion in annual revenues, it has won approximately 50% of all orders for jet-powered
transport airplanes in recent years. Airbus Deutschland GmbH, the civil aircraft business
affiliate of Airbus S.A.S. – Toulouse, is one of the major aerospace companies in Europe.
The company is engaged in the development and manufacture of advanced high-
performance commercial transport aircraft and is recognized for its technological expertise
in nearly all fields of aeronautical engineering. The workforce of Airbus Deutschland
currently amounts to approx. 18,500 employees. Research and technology development
capabilities of Airbus Deutschland GmbH cover all aspects of aircraft design and
optimization, airframe and systems development, and engine integration. For systems
integration, IMA (Integrated Modular Avionics), Airbus D has experience in integration of
cabin systems through the A380 and will apply and improve this technology in future.

For the SPES 2020 project, Airbus provided a showcase development scenario
(architectural framework) from the aircraft systems area as a deployment example for the
SPES 2020 development platform. Modeling languages for system requirements were
analyzed and checked for integrity characteristics. The requirements for a development
platform were formulated from an avionics point of view and the resulting process
analyzed. The avionics example scenario was implemented on the development platform
and evaluated with respect to processes and tools available at Airbus. Results were
validated and potential for improvement delivered by the platform analyzed for future
industrial deployment.

Berlin Heart GmbH
Berlin Heart GmbH is the only company worldwide developing, manufacturing, and
selling internal and external heart support systems for patients of all ages and all body
heights.

These systems support patients with major cardiac insufficiency. As life-sustaining
systems, these are medical products in the highest risk level (level III). All components for
control and monitoring based on embedded control systems are implemented as safety-
critical components. Therefore, especially high standards with regard to requirements
management, development, implementation, testing, production, and certification apply.

The Berlin Heart products INCOR® und EXCOR® are market leaders in their
respective segments in Germany and in Europe. Employing over 180 people, and doubling
revenue to €22 million within three years in 2007, the company has an outstanding
performance.

Members of the Innovation Alliance 273

Cassidian (EADS-Deutschland GmbH Defence Electronics)
Cassidian (http://www.cassidian.com) is a global leader in aerospace, defense, and related
services. In 2007, EADS generated revenues of €39.1 billion and employed a workforce of
approximately 116,000. The group includes the aircraft manufacturer Airbus, the world's
largest helicopter supplier Eurocopter, and EADS Astrium, the European leader in space
programs from Ariane to Galileo. Its Defence & Security Division is a provider of
comprehensive systems solutions and makes EADS the major partner in the Eurofighter
consortium, as well as a stakeholder in the missile systems provider MBDA. EADS also
develops the A400M through its Military Transport Aircraft Division.

The Cassidian group encompasses inter alia the business unit Defence Electronics
(EADS-DE). The high technological competence and experience is founded on a long
tradition of famous pioneering companies, mainly in Germany and France. As the sensors,
avionics, and electronic warfare house of EADS, Defence Electronics unites advanced
sensor and electronic technologies for all types of platforms—manned and unmanned
aircraft, helicopters, satellites, vehicles, ships—and provides them with components and
subsystems based on the latest radar, electronic, and software technologies. Recent
activities covered special equipment on board the A380, demanding electronic systems
with different safety levels. Current developments include several computer and
communication systems on board new aircraft subject to highest civil certification levels
following RTCA/DO 178B level A to C and the corresponding DO 254.

Furthermore, Defence Electronics develops and manufactures mission avionics and
self-protection systems, which are mostly established in international co-operations and
multinational projects.

Cassidian brings the competency of developing complex, performance- and safety-
critical embedded systems to the project. This competency results from the product
portfolio that covers embedded systems aircraft, shipping, and ground systems. In SPES
2020, Cassidian concentrated on safety, certification, and quality, as well as real-time and
multicore architectures, bringing in its expertise from actual and completed projects.
Leading the avionics application project, Cassidian cooperated closely with its partners
Airbus, EADS-IW, and Liebherr Aerospace, supporting the academic partners in the
avionics subproject.

In addition, researchers from Cassidian were members of the project architecture team.

EADS-Deutschland GmbH Innovation Works (EADS-IW)
EADS Innovation Works (IW) is the corporate research facility of EADS with operations
in France, Germany, Spain, UK, Singapore, and Russia. Its overall workforce comprises
more than 700 researchers. EADS-IW covers all the skills and technology fields that are of
critical importance to EADS. It is an operational and strategic entity for EADS business
units for value-creating products and services through innovative technologies. It feeds the
innovation pipeline from the emergence of new technologies to their maturity and transfer

http://www.cassidian.com

274 Members of the Innovation Alliance

into products. EADS-IW, in its endeavor to maximize the innovation potential of EADS,
actively operates a worldwide network with world-class universities, schools, and research
institutes. In its legal structure, EADS-IW is part of the national entities of EADS.

The German part of EADS Innovation Works in Ottobrunn (near Munich) and
Hamburg employs a permanent staff of 220 people, 70% of which are senior scientists.
Legally, it is an organizational unit within EADS-Deutschland GmbH, the German
subsidiary of EADS N.V.

In SPES 2020, EADS-IW focused on transforming the scientific research results into
practical innovations. Working closely together with its partners (e.g., Cassidian and
Airbus), EADS-IW defined case studies in SPES 2020 and identified problem areas that
partners in the central project worked on . EADS-IW was also engaged in the central
project, preparing concrete deliverables, together with its partners, covering topics such as
modeling framework, requirements modeling and validation, design verification and
formal analysis, as well as technology platform.

EADS-IW had the role of coordinating the industry partners in ZP-AP 3, offering a
strong background in systems and software engineering, engineering frameworks, and
from other sponsored projects such as VIVACE (Aeronautic) and SPEEDS (Information
Technology).

Embedded4You e.V.
Embedded4You offers integrated solutions for embedded systems in industry automation
that set the standards for the future by leveraging the individual competencies of its
members. The member companies Afra, aicas, Coming, Elma Trenew, Euro Systems, FH
München, Fortiss, FTI Group, ISyst, Kölsch & Altmann, Microsys, N.A.T., IMACS,
Protos Software GmbH, RST Industrie Automation, sepp.med, Tieto embedded Systems,
and XiSys bundle their individual technologies, products, services, and competencies into
a comprehensive total package for automation challenges. Through dedicated project
leadership, customers get their complete solution from one source.

Embedded4You system solutions, starting with design, via product and go to market,
through to life cycle management, enhance the competitiveness of customers with their
openness and flexibility. The following members were active in the SPES project:

Elma Electronic GmbH is a global manufacturer of electronic packaging products for
the embedded systems market — from components, storage boards, back-planes, and
chassis platforms to fully integrated subsystems. The company has a broad base of proven
standard products that can be tailored to individual applications, from initial concept to
volume production. Elma’s reliable solutions, flexibility, and design expertise make Elma
a reliable partner for leading electronics companies in the world.

The FTI Group success story began with FTI (Flight Test Instrumentation) — the
development of test systems. The company is now one of the largest engineering services
providers and system developers in the aerospace region Berlin-Brandenburg, specializing

Members of the Innovation Alliance 275

in system solutions for aviation. Development, design, and consulting in the high-tech
industry and energy sector complete the portfolio.

IMACS GmbH develops and produces instrumentation, control, and automation
systems for various industries. Whether single components or complete embedded
systems, the solutions are always individual and flexible. In addition, IMACS offers
radCASE, a model-based software development system that allows for the comprehensive
development of technical software, including code generation.

MicroSys Electronics GmbH, located in Sauerlach close to Munich, designs and
develops embedded system solutions, for example, VMEbus, CompactPCI, and other
common bus infrastructures. From the very beginning in 1975, customized solutions
offering longevity have been a strong part of MicroSys business as well. Successfully
deployed products span from computer-on-modules up to fully integrated systems. The
miriac™ Modules utilize 32-bit processors such as Freescale Power Architecture, QorIQ-
CPUs, Intel MultiCore CPUs, DaVinci ™ Video Processors, FPGAs, and DSP-Designs.
With their low power consumption and the compact dimensions of a credit card, the
miriac™ CPU modules fit into any application in automotive, industrial automation,
medical, railways and transportation, construction, and defense market segments.

Operating systems such as VxWorks, Microware OS-9, Micrium μC/OS, QNX, and
Linux or WinCE are supported. Furthermore, MicroSys acts as a sales and support partner
in Europe for RadiSys Microware ® OS-9 Real Time Operating System.

Operating system integration and adaptations of communication infrastructures such as
CAN, EtherCAT, ProfiNET for industrial, defense, avionics, and medical solutions are an
integral part of the business as well.

N.A.T. (Gesellschaft für Netzwerk und Automatisierungs-technologie mbH) is the
expert in manufacturing high-performance connectivity products for data and
telecommunication solutions. The product portfolio is dedicated to the embedded market,
covering requirements from local area networks (LAN) up to wide area networks (WAN).
The products include standard interface modules for local and wide area networks based on
common hardware standards such as AMC, MicroTCA, VME, compact PCI, PMC, PCI,
and others. N.A.T. embedded platforms are complemented by own, sophisticated protocol
stack solutions such as ISDN, SS7, ATM, or TCP/IP adapted to common real-time
operating systems to build an optimal solution.

RST Automation GmbH builds embedded systems and applications with a focus in
industry automation for reliable real-time requirements. The products and solutions are
open for easy integration of existing and new technologies. Based on the model-oriented
approach of the middleware “Gamma,” which can be seen as a type of “software plug,” it
is possible to describe and integrate virtually any hardware and software configuration.
The middleware is used to integrate hardware and software into one common platform.
Within Embedded4You, the middleware is the main strategy for integrating custom-
specific efforts into one homogenous platform.

XiSys Software GmbH manufactures the tool XiBase9, a well-structured and portable
graphic platform that has been specifically developed for the embedded and real-time

276 Members of the Innovation Alliance

environment. Highlights of the software are its efficient resource usage, multilanguage
support (Unicode, language switch at runtime), and the extensive protocol and debug
mechanisms. The software is operating system-independent (Windows 2000, XP, Vista,
Linux, OS-9, x86, PowerPC, SH, ARM, XSCALE, 68k) and can be connected to the
Gamma middleware without programming.

Taking its role as a supplier of specialized solutions, Embedded4You’s goals in SPES
were professionalization of the interdomain production process by focusing on basic,
interapplication approaches to leverage the potential of embedded systems and to master
their complexity. The work focused on the development of an open platform that integrates
and standardizes various key competencies in hardware and software products.

Hella KGaA Hueck & Co.
The automotive supplier Hella KGaA Hueck & Co., Lippstadt, develops and manufactures
lighting technology and electronic components and systems for the automotive industry. In
addition, joint venture companies produce complete car modules such as air conditioning
systems and on-board electrical systems. Hella owns one of the worldwide largest sales
organizations for car parts and accessories, with own sales businesses and partner
organizations in more than 100 countries. The Hella group has revenues of €3.7 billion.

Hella is among the top 50 international automotive suppliers and among the top 100
largest companies in Germany. Worldwide, more than 25,000 people work in 70
production sites, production subsidiaries, and joint ventures in 18 countries. More than
3000 engineers and technicians work in research and development.

Hella’s customers include all leading vehicle and system manufacturers, as well as car
parts businesses. In the electronics business area, but also in the growing electronic share
of lighting technology products, Hella has built up a broad competency spectrum and deep
experience in the development of complex mechatronic systems for the automotive
industry. From the latest methods in model-based software development—in SPiCE-
compliant development processes using AUTOSAR standard components—numerous
crosscutting development approaches for embedded systems in the automotive industry
have been defined together with customers and cooperation partners. Hella’s main support
for the project was in defining, detailing, implementing, evaluating, and optimizing
concepts in the automotive work package, and via the definition of area-specific
requirements, the company also supported the work of the central project.

IT Power Consultants
IT Power Consultants, based in Berlin, was founded in 2000 and recently changed its name
to ITPower Solutions GmbH. Longtime experience of the founders in the area of
embedded systems established the company’s focus on development processes for
embedded software.

Members of the Innovation Alliance 277

Motivated by experiences from customer projects, the company constantly invests in
the improvement of the development and testing processes, especially in the area of quality
assurance of embedded systems.

In SPES 2020, IT Power Consultants contributed in the areas of requirements
engineering and verification of real-time behavior in the medical systems work package,
most notably covering the following topics:

 Transition from architectural model to functional model of an embedded system
 Proof of equivalence of software artifacts by back-to-back testing
 Identification of test cases on the basis of nonfunctional requirements
 Hardware-in-the-loop environments for testing real-time properties of embedded

systems

Liebherr-Aerospace Lindenberg GmbH
The company founded in 1949 by Hans Liebherr is today a group of companies with more
than 32,000 employees in more than 120 enterprises worldwide. Turnover in 2010 was
€7.5 billion. All over the world, the name Liebherr stands for a technically demanding and
customer-oriented product and service offering.

Liebherr-Aerospace, a worldwide respected supplier of the aviation industry, develops
and produces complete hydraulic, mechanical, and electronic systems for cruise control, air
conditioning, and landing gear for large and regional aircraft, helicopters, and military
aircraft for the global market. Liebherr-Aerospace customers include Airbus, Bombardier,
Embraer, Sukhoi, Eurocopter, and others.

In past and current research projects, Liebherr-Aerospace Lindenberg GmbH has
contributed to all product areas that laid the foundation for new equipment systems. In
addition to the national Luftfahrtforschungs-Programm (LuFo I to IV), on a European
level, the 5th, 6th, and 7th framework programs should be mentioned. The generic results
from these projects have been transferred to national value creation potentials.

Liebherr-Aerospace brought competencies in the areas of flight control systems and
landing gear from pilot interface to hydraulic or electronic actuators into the SPES project.
Special focus was on quality of requirements of complex systems — these are key for
competitiveness. Therefore, Liebherr-Aerospace contributed to the realization of the SPES
2020 follow-through modeling methodology, especially for the avionics domain, and to the
investigation for validation of requirements in early development phases. As a major
engagement, Liebherr-Aerospace has proposed an original and efficient approach to
optimizing the deployment of functions on computer networks. Liebherr-Aerospace has
investigated the improvement of the automation of the verification activities in accordance
with the restrictive avionics development standards. In addition, the company produced
proposals for the efficient use of multicore platforms for real-time and safety-critical
applications.

http://www.springer.com

278 Members of the Innovation Alliance

Robert Bosch GmbH
Bosch is one of the largest industrial enterprises in Germany, creating revenues of €46.3
billion (2007). In the business areas automotive engineering (61% revenue), industrial
engineering (13% revenue), and consumer goods and building services engineering (26%
revenues), Bosch employs approximately 271,000 employees.

The corporate law structure of Robert Bosch GmbH ensures the corporate
independence of the Bosch Group and enables the company’s long-term planning. The
nonprofit Robert Bosch Foundation GmbH holds 92% of the capital shares.

Bosch sees professional education as part of its social responsibility. Year after year,
more than 6000 young people (of those, approximately 4400 in Germany) receive an offer
for a high-quality training program. The Bosch Group invests approximately 7.7% of its
revenue in research and development, with 29,000 employees. In 2007, 3280 patents were
filed worldwide.

At Bosch, protection of the environment is in line with corporate policy. Protection of
the environment was formulated as a company target as early as 1973, and has the same
significant value as product quality and profit. It is Bosch’s vision to improve quality of
life with innovative and useful solutions. “Reliability, credibility and legality are the main
factors of the economic success of the Bosch-Group,” said Hermann Scholl, Chairman of
the Board.

The central Corporate Research (CR) team works across business areas and therefore
provides a competency network that warrants the development of innovative system
concepts as well as the introduction of new technologies.

Focusing necessarily on the competencies, CR/AE2 is a group responsible for the
development of software-intensive embedded systems. It develops, integrates, and pilots
lead applications and successfully transfers technologies, methods, processes, and tools
necessary for the development of software-intensive systems within Bosch, thus
warranting Bosch’s leading position in the market. The CR/AE2 group brought system
design know-how in using cutting edge methodologies for modeling and evaluation, which
has been developed in numerous projects, into the SPES project. Therefore, the main focus
areas were on “seamless model-based development of heterogeneous embedded systems
including process- and tool-integration” (ZP AP1), “structured requirements engineering”
(ZP AP 2), “safety and certification” (ZP AP 4), and “empirical evaluation” (ZP AP 6).
Here, Bosch provided know-how and the results have already been applied to concrete
applications.

In addition, researchers from Bosch were members of the project architecture team.

RWE Energy AG
RWE Energy, based in Dortmund, bundles the integrated sales of electrical power, gas, and
water, as well as the network business for 12 regions in Germany and Continental Europe.

Members of the Innovation Alliance 279

RWE Energy employs 28,323 people in Germany, Austria, Hungary, Slovakia, Poland,
and the Netherlands.

As a leading player, RWE Energy aligns itself with the requirements of 23.1 million
customers. In Germany and wide parts of Central Europe, prosumers of RWE Energy get
their energy and water solutions from one shop, making RWE Energy a number one
address for all questions concerning energy and water supply, with €28.2 billion annual
revenues.

Annual sales of 168.3 billion kilowatt hours of electrical energy makes RWE Energy
the number two in Germany and number three in Europe. In water supply, RWE Energy is
the number one in Germany, selling 107 million cbm per year. Gas sales are 258 billion
kilowatt hours annually.

With two focal points, sales and network, RWE Energy brought deep insight from
energy supply areas, as well as practical and theoretical knowledge of planning and
running energy networks, into the SPES project. In addition, RWE Energy was able to
leverage know-how from research projects and internal projects already completed and
covering smart grids and virtual networks.

Siemens AG
Siemens is a global powerhouse in electronics and electrical engineering, operating in the
fields of industry, energy, and healthcare, as well as providing infrastructure solutions,
primarily for cities and metropolitan areas. For over 160 years, Siemens has stood for
technological excellence, innovation, quality, reliability, and internationality. The company
is the world's largest provider of environmental technologies. Around 40 percent of its total
revenue stems from green products and solutions. In fiscal year 2011, revenue from
continuing operations totaled €73.5 billion, and net income from continuing operations
€7.0 billion. At the end of September 2011, Siemens had around 360,000 employees
worldwide on the basis of continuing operations. The company employs some 27,800
researchers and developers worldwide who work on innovations that secure existing
business and open up new markets. In fiscal year 2011, Siemens invested €3,925 million in
research and development. In the same period, the employees submitted around 8,600
invention reports — around 40 per workday. The role of Siemens AG in the project was
manifold:

 Firstly, Siemens adopted the role of a developer and manufacturer of automation
equipment including corresponding software. Siemens provides a wide spectrum of
automation components, as well as control and management systems for the various
industry segments (process industries, discrete industries, service industries), holding a
worldwide number 1 position in many segments.

 Secondly, Siemens was active in the role of a system integrator, equipment
manufacturer, and turnkey contractor respectively. Siemens is an engineering company
offering customer-specific facilities, plants, and automation solutions for selected

280 Members of the Innovation Alliance

industry segments (e.g., automotive, building automation, electric power generation,
transmission, distribution, metals and mining, chemical, transportation and logistics).

 The third role of Siemens AG was that of a healthcare solution provider with key
competencies and innovation strength in diagnostic and therapeutic technologies, as
well as an integrated supplier of data processing solutions for the whole clinical chain.

Together with a broad know-how in product life cycle management (PLM) software,
Siemens covers all necessary competencies for industrial product and solution
development using embedded systems — from product development to production design
and engineering to generation of automation software.

In addition, researchers from Siemens were members of the project architecture team.

SWM Services GmbH
SWM Services GmbH is a 100% subsidiary of Stadtwerke München GmbH (SWM),
acting as internal service provider for services in the areas energy data, trade fair services,
network and facility services, as well as information and process technology.

Stadtwerke München, Munich’s municipal utilities company, is one of the largest
energy and infrastructure companies in Germany. Over one million private households,
SMEs, and business clients benefit from the services provided by SWM on a daily basis.
For decades, SWM has provided energy (electricity, natural gas, district heating) for the
Bavarian capital in a safe and environmentally benign way. Among other things, the SWM
development push for renewable energy and the push for eco-friendly district heating are
an example to other districts. Furthermore, SWM supplies the megacity with fresh drinking
water from the Bavarian Voralpenland—one of the best in Europe—and with 18 indoor
and outdoor swimming pools, SWM operates one of the most modern bathing
environments in Germany. The MVG transport subsidiary is responsible for the subway,
bus, and tram systems, and is therefore a significant pillar in Munich’s public transport
network. SWM employs around 7500 staff and in the 2010 fiscal year, turnover reached
around €3.8 billion.

As a public utility company, SWM Services GmbH has broad experience in all supply
areas, especially in the energy area. In addition, SWM has in-depth knowledge in model-
based system and software development, and brings first project experience in the area of
embedded systems for smart metering and virtual power plants into the SPES project.

Being involved in the energy application area, SWM leveraged this experience and
actively supported the definition and validation of the application-specific requirements.
Another focus area was the implementation and evaluation of an integrated simulation
environment for smart grid development. The work of the central project was supported by
the execution of practicability tasks.

Members of the Innovation Alliance 281

TeCNeT GmbH
TeCNeT, organization for TeleCooperate NeTwork Systems & Service mbH, was founded
in 1994 as a service provider and developer of innovative products. Its main competencies
are in the areas of information and telecommunication technology, as well as in medical
systems and control engineering.

TeCNeT offers a full range of services from technical consulting, to support for
development and manufacturing, to full-service offerings from the idea to ready-to-use
implementation of the solution. Its main strengths are flexibility, speed, and cost-
efficiency, which can be measured by the satisfaction of TeCNeT’s customers.

Customers include: CeWe Color AG & Co. OHG, the Fraunhofer Institut für
Fabrikautomatisierung und Fabrikbetrieb, Gesellschaft für angewandte Informatik (GfaI),
Berlin Heart GmbH, as well as other smaller regional businesses.

TeCNeT’s contribution to SPES 2020 comprised of leveraging the existing know-how
for the development of embedded systems for supervision of patients and the medical
devices necessary for maintaining their health.

TÜV SÜD AG
TÜV SÜD group is a future-oriented and successful service business. 13000 employees
support more than 5 million customers (individuals, companies, and institutions)
worldwide.

The subsidiary TÜV SÜD Automotive GmbH is a modern service company providing
a complete portfolio, for example, in the area of safety electronics for automotive and
electronic industry sectors. With its competence center Electronic Safety, TÜV SÜD
Automotive GmbH is active as an intersectoral support and test center for safety
electronics with a main focus on functional safety and software.

In this role, TÜV SÜD Automotive GmbH consults, tests, and certifies manufacturers
of safety-related embedded systems. Experience from test and certification of safety-
related embedded systems (using model based technologies) was brought in into the SPES
project. TÜV SÜD Automotive GmbH has made sure that the technologies developed will
be testable and certifiable in accordance with international (safety) standards.

Vector Informatik GmbH
Vector supports manufacturers and suppliers of the automotive industry and of associated
businesses with a professional and open platform composed of tools, software components,
and support services for the development of embedded systems. The know-how is offered
in terms of products, as well as a holistic support-offering including systems and software
engineering. Workshops and seminars complete Vector’s portfolio.

http://www.springer.com

282 Members of the Innovation Alliance

Vector Informatik GmbH is part of the Vector group that includes other companies in
Germany (Vector Consulting Services GmbH, aquintos GmbH), France (Vector France
S.A.S), Sweden (VecScan AB), United Kingdom (Vector GB Limited), China (Vector
Automotive Technology Co., Ltd.), USA (Vector CANtech, Inc.), Japan (Vector Japan
Co., Ltd.), South Korea (Vector Korea IT Inc.), and India (Vector Informatik India Pvt.
Ltd.). The Vector group employs more than 1000 people and achieved revenues of €195
million in 2011. All sites of the Vector group have been certified according to ISO
9001:2000.

In SPES 2020, Vector worked in the automotive work package and contributed
practical expertise in developing embedded systems.

In the product line “Process Tools,” Vector is developing the PREEvision tool.
PREEvision supports the model-based development of electric/electronic systems from the
early architecture design to production maturity of embedded systems.

In the automotive industry, embedded systems are mainly being developed in terms of
a platform or product line concept. Vector therefore contributed to the work package
“Variability management for model-based development” and provided experience from the
practical deployment of PREEvision in the automotive industry

Fraunhofer FIRST
The Fraunhofer Institute for Computer Architecture and Software Technology (FIRST)
was founded in 1983 as an institute of the Society for Mathematics and Data Processing
(GMD), and has been part of the Fraunhofer-Gesellschaft since July 2001. Today, some
140 employees work in the three departments Modeling, Systems Architecture, and
Quality Assurance.

Researchers at Fraunhofer FIRST combine long-standing know-how of hardware
architectures and software methods with extensive skills in quality assurance in order to
advance safety, efficiency, and usability of embedded systems. Main goals are the
development of premium, easy-to-use, and intelligent technologies that adapt to the user’s
needs and support them optimally. To achieve these goals, Fraunhofer FIRST develops
innovative methods and technologies and advises companies during the entire development
chain: from modeling to architecture and quality control to the completed product.

The research group is concerned with real-time-capable, reliable, and secure integration
of multicore processors into embedded systems. It aims at reducing the complexity of
developing efficient embedded multicore systems, while at the same time exploiting
performance potentials and maintaining the reliability of the overall system. Multicore
systems should remain real-time-capable and energy-efficient even under optimal
workloads.

The research group Embedded Systems advises clients on the selection of methods and
tools, architectural designs, prototypical implementation of components and subsystems,
and on the evaluation, test, and certification of the embedded multicore systems.

Members of the Innovation Alliance 283

In the SPES context, the following key competencies of FIRST researchers were most
relevant:

 Model-based test generation and execution
 Verification and static analysis of industrial customer software
 Fault tolerance concepts and reliability quantification
 Architecture of embedded control elements, FPGA, System-On-Chip
 Comprehensive tool know-how for the development of embedded systems.

With these competencies, FIRST led the work package ZP-AP5 “Real-Time and Safety”
within the central project and made major contributions in AWP-MT.

Fraunhofer IESE
Fraunhofer Institute for Experimental Software Engineering (IESE) in Kaiserslautern is
one of the worldwide leading research institutes in the area of software and systems
development. A major portion of the products offered by its collaboration partners is
defined by software. These products range from automotive and transportation systems,
through automation and plant engineering, information systems, healthcare, and medical
systems, to software systems for the public sector. The solutions allow flexible scaling.
This makes the institute a competent technology partner for organizations of any size —
from small companies to major corporations.

Under the leadership of Prof. Dieter Rombach and Prof. Peter Liggesmeyer, Fraunhofer
IESE has spent the last fifteen years making major contributions to strengthening the
emerging IT hub of Kaiserslautern. In the Fraunhofer Information and Communication
Technology Group, it cooperates with other Fraunhofer institutes in developing trend-
setting key technologies for the future.

Fraunhofer IESE is one of 60 institutes of the Fraunhofer-Gesellschaft. Together they
have a major impact on shaping applied research in Europe and contribute to Germany’s
competitiveness in international markets.

The work at Fraunhofer IESE focuses mainly on methods for the development of
software-intensive embedded systems as well as the empirical evaluation of such methods.

Fraunhofer IESE has been engaged in the engineering-like development of embedded
software and systems for more than a decade, and has proven itself as one of the leading
research institutes worldwide. One of its internationally respected unique selling
propositions is the empirical evaluation of research results in the area of software and
systems engineering. This competency was brought to the project by Fraunhofer IESE
taking the scientific lead of the work package ZP-AP6 “Empirical Methods Evaluation”
within the central project.

A second focus of the institute was on the model-based development of safe and highly
reliable embedded systems. Given this expertise, Fraunhofer IESE led the workpackage
ZP-AP4 “Proof of Safety, Certification, and Quality Assurance of Nonfunctional

284 Members of the Innovation Alliance

Requirements.” In this role, the institute developed methods, techniques, and tools for
proof of safety, certification, and quality assurance in SPES.

In addition, researchers from IESE were members of the project architecture team that
made major contributions towards an integrated model-based methodology.

OFFIS e.V.
The “Oldenburger Forschungs- und Entwicklungsinstitut für Informatik-Werkzeuge und –
Systeme,“ OFFIS for short, was founded in 1991 and has a close cooperation agreement
with the University of Oldenburg. OFFIS sees itself as an application-oriented research and
development institute, and as “Center of Excellence” for selected topics in computer
science and its application domains. OFFIS focuses its research and development work on
IT systems in the application areas transportation, healthcare, and energy. Revenue is
approximately €12 million.

In SPES 2020, the R&D division Transportation was involved. Its research focuses on
methods, tools, and technologies for the development of reliable, cooperative, and
supporting systems in the application area transportation. The division comprises several
working departments, and offers a wide spectrum of competencies in the areas systems and
software engineering, electrical engineering, and planning theory. Main research topics
include methods, processes, and tools for the establishment of safety in transportation
systems, as well as methods for analysis and design of E/E architectures. A special focus is
on real-time aspects and component-based design.

OFFIS has participated in numerous national and European research projects, including
OPRAIL, Verisoft, SafeAIR, SPEEDS, COMBEST, ArtistDesign, ESACS, ISAAC, and
MISSA, and continues to do so today. Because of its competencies in the area of real-time,
OFFIS is also a partner in AUTOSAR and, via SafeTRANS, a member of EICOSE, the
ARTEMIS Innovation Cluster on transportation.

In SPES, OFFIS led the work package ZP-AP3 “Model-Based Architecture
Development” within the central project and participated in the work packages ZP-AP1,
ZP-AP4, and ZP-AP5 with a focus on the range of topics around “model-based
architecture design.” This included the development of an integrated, cross-domain
approach that can be adapted to the specific requirements of the respective application
domains. In addition, researchers from OFFIS were members of the project architecture
team that made major contributions towards an integrated model-based methodology.

As a partner in the ARTEMIS project CESAR, OFFIS arranged for synergies related to
the CESAR Reference Technology Platform.

Members of the Innovation Alliance 285

University of Kaiserslautern

Software Engineering Research Group: Dependability

The research conducted by the research group Software Engineering: Dependability at the
faculty of Computer Science at the Technical University Kaiserslautern focuses on
methods for developing embedded software that meets high quality standards. Current
goals concern object-oriented methods, especially with respect to applications in safety-
critical, highly available real-time systems. In particular, the research considers the
ongoing growth of software and its distributed architecture. Many projects are conducted
in collaboration with industrial partners.

In the SPES 2020 context, the research group Software Engineering: Dependability
worked on the question of how software engineering and safety engineering can be
interweaved more closely, e.g., by automatically deriving safety models from the software
design and—vice versa—the integration of measures into the software development
process to increase safety.

Software Engineering Research Group: Processes and Measurements

The research group Software Engineering: Processes and Measurement at the faculty of
Computer Science at the Technical University Kaiserslautern has its expertise in modeling
and quantitative prediction of integrated development processes, as well as in empirical
analysis of software development methods and tools.

Today, software development projects are characterized by overshooting time and
budget limits significantly. The main reason for this is insufficient knowledge of the
potentials and limits of particular development methods and tools in a concrete project
environment. On the other hand, process modeling methods that would allow coordination
of the activities of the individual members of the development team, as well as a progress
control with regard to content, are missing.

The work of the research team in SPES focused on developing methods to model
complex development processes and to instrument them for prediction and progress
control, as well as on the empirical analysis of individual methods and tools.

Technische Universität München (TUM)
TUM is one of the leading universities in Germany. TUM’s top performances in research
and education, interdisciplinary studies, and talent promotion stand out. Strong alliances
with businesses and scientific institutions across the world play a part in this. TUM was
one of the first "Universities of Excellence" of the nationwide Excellence Initiative and
impressed this cooperative in 2006 with its concept of "TUM. The Entrepreneurial
University.”

http://www.springer.com

286 Members of the Innovation Alliance

The Department of Informatics attaches high importance to a close link between
scientific research and study. The systems and tools developed there are constantly being
tested by students and research staff in a practical deployment. In SPES, the chairs
Software & Systems Engineering (Prof. Broy) and Embedded Systems & Robotics (Prof.
Knoll) were engaged.

Software & Systems Engineering chair

The research and teaching efforts of Prof. Broy’s chair Software & Systems Engineering
are centered around core topics of software and systems development. This includes
foundations, methods, processes, models, description techniques, and tools.

The research focuses on development of critical embedded systems, mobility and
context-awareness, and development methods for complex industrial-scale software
systems. The methods are supported by a number of research tools. Theorem-proving
techniques explore the foundational aspects of software engineering. The methods
developed in the group have been validated in various industry cooperations in the
telecommunications, avionics, automotive, banking, and business information systems
domains.

The chair is involved in an extensive number of basic and applied research projects.
Additionally, it offers targeted enterprises specific consulting services, and develops tool
prototypes and demonstrators. The Software & System Engineering chair took the overall
project lead for the entire SPES project. With regard to content, the research focus was on
developing an integrated modeling theory in the context of the SPES central project.
Several tools for the development of embedded systems have been provided. Therefore,
besides the research of the theoretical modeling theories, these practical competencies
were also brought into the project. In addition, researchers from TUM were members of
the project architecture team that made major contributions towards an integrated model-
based methodology.

Embedded Systems and Robotics chair

The primary mission of the Embedded Systems and Robotics chair is research and
education of machines for perception, cognition, action, and control. The chair is organized
into four research areas:

Human Robot Interaction and Service Robotics, including work on the integration of
speech, language, vision, and action; programming service robots; development of new
application scenarios for sensor-based service robots; robot systems for education;

Medical Robotics, covering all aspects of manipulator and instrument control for
complex surgical procedures, e.g., visualization of all types of patient data, haptic feedback
for delicate handling, skill transfer, shared control, multimanipulator cooperation;

Members of the Innovation Alliance 287

Cognitive Robotics, encompassing a comprehensive area of topics ranging from sensor
models by the way of individual sensor processing entities (e.g., for high-speed face
tracking) to high-level cognitive skills for navigation, adaptation, learning;

Cyber-Physical/Embedded Systems are investigated with special emphasis on fault
tolerance and high availability; special topics are the design of very small redundant
systems and the associated software development models and tool chains.

In SPES, the contribution was to provide leading edge technology for developing
solutions in the automation area. The focus was on the development of domain-specific
tools for the generation of nonfunctional properties (QoS, safety, communication in
distributed systems, time-behavior). The analysis of domain concepts, development of
middleware architectures, and comprehensive code generation were given prominence.

University of Duisburg-Essen – The Ruhr Institute for
Software Technology (paluno)
Created in 2003 by the merger of the University of Duisburg and the University of Essen,
the University of Duisburg-Essen is the youngest university in North Rhine-Westphalia
and one of the ten largest universities in Germany. In many disciplines, the University of
Duisburg-Essen ranks amongst the top ten German research universities. Over the past
three years, research income has increased by approximately 100 percent.

In 2010, the research institute “paluno – The Ruhr Institute for Software Technology”
at the University of Duisburg-Essen was founded. Paluno’s six professors and their
research teams bring in experience from application domains as diverse as insurance,
automotive, healthcare, energy, and logistics. Their competencies cover most phases and
layers of software engineering. With partners throughout Europe, paluno researches and
applies methods and tools for design, implementation, and operation of future software-
intensive systems. Paluno’s research and transfer paradigm encourages mutual benefit
from basic research, applied research, and bilateral industry cooperation.

In SPES 2020, the research team of Prof. Pohl, together with Bosch, led the work
package ZP-AP2 on model-based requirements engineering. Paluno coordinated all
activities in the area of requirements engineering within the central project and within the
application projects. In addition, paluno co-led the research activities in the application
domain “energy.” paluno’s main contribution is the development of a methodology for
model-based requirements engineering of embedded systems.

In addition, researchers from paluno were members of the project architecture team that
made major contributions towards an integrated model-based methodology.

University of Paderborn – Software Engineering Group
The Software Engineering Group of the University of Paderborn is headed by Prof. Dr.
Wilhelm Schäfer. The main research topics are model-driven, component-based

288 Members of the Innovation Alliance

development and analysis of software, including techniques based on UML (Unified
Modeling Language). Embedded or mechatronic systems with real-time and safety-critical
constraints, as well as business information systems, are considered as target domains.
Further research areas include approaches for reengineering and the object-oriented
specification of software process models.

The Software Engineering Group participates in several national and international
research projects, often in close cooperation with partners from industry. The group is a
founding member of the Software Quality Lab (s-lab), undertaking industry-driven
research with a strong focus on software quality, and has a long tradition in cooperating
with research groups from mechanical and electrical engineering of the Heinz Nixdorf
Institute. In particular, the cooperation with the Product Engineering and Control
Engineering Groups recently led to the formation of the Fraunhofer Project Group on
Mechatronic Systems Design, which is located in Paderborn and belongs to the
Fraunhofer-Institute for Production Technology IPT. Prof. Schäfer is a member of the
board of directors of the project group and scientific director of its Software Engineering
Department.

In SPES, the Software Engineering Group, together with s-lab and Fraunhofer IPT,
participated in the automotive application project. In addition, Prof. Schäfer was deputy
coordinator of this application project. In cooperation with the automotive supplier Hella
KGaA Hueck & Co., the project developed a seamless model-based design methodology
that complies with the maturity model Automotive SPICE. The methodology partially
automates the transitions between the different design phases and viewpoints (from
requirements to AUTOSAR) in a systematic way, with a strong focus on consistency and
traceability. A further focus was on the integration of tools that allow the simulation of
functional and real-time behavior in early development phases. In order to incorporate the
results into the central project, the Software Engineering Group further contributed to the
first three work packages of the central project.

E – List of Publications

289,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9, © Springer-Verlag Berlin Heidelberg 2012

http://www.springer.com

290 List of Publications

A
[Althaus et al. 2011] E. Althaus, R. Naujoks, E. Thaden: A column generation approach to scheduling of periodic

tasks, experimental algorithms. In: Proceedings of the 10th International Symposium, 2011.

[Arbeiter et al. 2010] C. Arbeiter, C. Gips, J. Wojtacki: Automatisierung des funktionalen Tests auf der Basis
textuell-formalisierter Testspezifikationen, 3. Autotest, 2010.

[Arendt et al. 2011] Th. Arendt, S. Kranz, F. Mantz, N. Regnat, G. Taentzer: Towards syntactical model quality
assurance in industrial software development: Process definition and tool support. In: Proceedings of
Software Engineering 2011, 2011.

B
[Baumgart et al. 2011] A. Baumgart, E. Böde, M. Büker, W. Damm, G. Ehmen, Tayfun Gezgin, Stefan Henkler,

Hardi Hungar, Bernhard Josko, Markus Oertel, Thomas Peikenkamp, Philipp Reinkemeier, Ingo Stierand,
Raphael Weber: Architecture modeling. Technical Report. OFFIS, 2011.

[Botaschanjan and Hummel 2010] J. Botaschanjan, B. Hummel: Material flow abstraction of manufacturing
systems. In: Proceedings of the International Conference on Theoretical Aspects of Computing, 2010.

[Botaschanjan and Harhurin 2009] J. Botaschanjan, A. Harhurin: Property-driven scenario integration. In: 7th
IEEE International Conference on Software Engineering and Formal Methods, 2009.

[Broy et al. 2010] M. Broy, M. Feilkas, M. Herrmannsdoerfer, St. Merenda, D. Ratiu: Seamless model-based
development: From isolated tools to integrated model engineering environments. In: Proceedings of the IEEE
- Special Issue on Aerospace & Automotive, 2010.

[Buckl et al. 2010] Ch. Buckl, I. Gaponova, M. Geisinger, A. Knoll, E. Lee: Model-based specification of timing
requirements. In: Proceedings of the 10th ACM international conference on Embedded software, 2010.

[Buckl et al. 2010] Ch. Buckl, D. Sojer, A. Knoll: FTOS: Model-driven development of fault-tolerant automation
systems. In: Proceedings of the 15th IEEE International Conference on Emerging Techonologies and Factory
Automation, 2010.

[Büker et al. 2011] M. Büker, W. Damm, G. Ehmen, A. Metzner, I. Stierand, E. Thaden: Automating the design
flow for distributed embedded automotive applications: Keeping your time promises, and optimizing costs,
too. In: Proceedings of the International Symposium on Industrial Embedded Systems, 2011.

[Büker et al. 2009] M. Büker, A. Metzner, I. Stierand: Testing real-time task networks with functional extensions
using model-checking. In: Proceedings of the 14th International Conference on Emerging Technologies and
Factory Automation, 2009.

C
[Campetelli et al. 2011] A. Campetelli, F. Hölzl, Ph. Neubeck: User-friendly model checking integration in

model-based development. In: Proceedings of the 24th International Conference on Computer Applications
in Industry and Engineering, 2011.

[Campetelli et al. 2010] A. Campetelli, M. V. Cengarle, I. Gaponova, A. Harhurin, D. Ratiu, J. Thyssen:
Specification Techniques. Technical Report TUM-I1013, Technische Universität München. 2010.

[Ciolkowski 2009] M. Ciolkowski: What do we know about perspective-based reading? An approach for
quantitative aggregation in software engineering. In: Proceedings of the 3rd International Symposium on
Empirical Software Engineering and Measurement, 2009.

[Clark et al. 2011] B. Clark, I. Stierand, E. Thaden: Cost-minimal pre-allocation of software tasks under real-time
constraints. In: Proceedings of the 2011 Research in Applied Computation Symposium, 2011.

List of Publications 291

D
[Damm et al. 2011] W. Damm, H. Hungar, B. Josko, Th. Peikenkamp, I. Stierand: Using contract-based

component specifications for virtual integration testing and architecture design. In: Proceedings of the
Design, Automation & Test in Europe Conference & Exhibition, 2011.

[Domis and Trapp 2010] D. Domis, K. Höfig, M. Trapp: Consistency check algorithm for component-based
refinements of fault trees. In: Proceedings of the International Symposium on Software Reliability
Engineering, 2010.

[Domis and Trapp 2009] D. Domis, M. Trapp: Component-based abstraction in fault tree analysis. In:
Proceedings of the International Conference on Computer Safety, Reliability and Security, 2009.

F
[Feilkas et al. 2009] M. Feilkas, A. Harhurin, J. Hartmann, D. Ratiu, W. Schwitzer: Motivation and introduction

of a system of abstraction layers for embedded systems. Technical Report, TUM-I0925. Technische
Universität München. 2009.

[Fieber et al. 2009] F. Fieber, N. Regnat, B. Rumpe: Assessing usability of model driven development in
industrial projects. In: Proceedings of the 4th Workshop "From code centric to model centric software
engineering: Practices, Implications and ROI", 2009.

[Foehr et al. 2011] M. Foehr, A. Lüder, T. Jäger, A. Fay, T. Wagner: Development of a method to analyze the
impact of manufacturing systems engineering on product quality. In: Proceedings of the 16th IEEE
International Conference on Emerging Technologies and Factory Automation, 2011.

G
[Gellermann et al. 2012] A. Gellermann, T. Jäger, A. Fay, Th. Wagner, A. Müller-Martin: Analyse und

Optimierung von Engineering-Schnittstellen. In: Proceedings of Automation, 2012.

[Gezgin et al. 2011] T. Gezgin, R. Weber, M. Girod: A refinement checking technique for contract-based
architecture designs. In: Proceedings of the 4th International Workshop on Model Based Architecting and
Construction of Embedded Systems, 2011.

[Groß et al. 2010] A. Groß, J. Dörr, I. Menzel, M. Müller: Experimenteller Vergleich zweier Techniken zur
Anforderungsspezifikation: Use Cases vs. Funktionale Spezifikation. In: Softwaretechnik-Trends, 2010.

[Groß et al. 2010] A. Groß, J. Dörr, I. Menzel, M. Müller: Experiment package: An experimental comparision
regarding the completeness of functional requirements specifications. Technical Report No. 040.10/E.,
Fraunhofer IESE, 2010.

[Groß et al. 2009] A. Groß, J. Dörr, I. Menzel, M. Müller: Use Cases vs. Funktionale Spezifikation: Ein
experimenteller Vergleich zweier Techniken zur Anforderungs-spezifikation, GI-Fachgruppen-Treffen
Requirements Engineering, 2009.

[Guzmán et al. 2009] L. Guzmán, J. Münch, D. Rombach: Qualitative synthesis of evidence in software
engineering – A systematic review. Technical Report, Fraunhofer IESE, 2009.

H
[Harhurin et al. 2009] A. Harhurin, J. Hartmann, D. Ratiu: Motivation and formal foundations of a comprehensive

modeling theory for embedded systems. Technical Report, TUM-I0924. Technische Universität München,
2009.

[Heuer et al. 2010] A. Heuer, C.J. Budnik, S. Konrad, K. Lauenroth, K., Pohl: Formal definition of syntax and
semantics for documenting variability in activity diagrams. In: Proceedings of the 14th International Software
Product Line Conference, 2010.

292 List of Publications

[Herrmannsdoerfer et al. 2011] M. Herrmannsdoerfer, D. Ratiu, M. Koegel: Metamodel usage analysis for
identifying metamodel improvements. In: Software Language Engineering, 2011.

[Herrmannsdoerfer et al. 2011] M. Herrmannsdoerfer, S. Vermolen, G. Wachsmuth: An extensive catalog of
operators for the coupled evolution of metamodels and models. In: Software Language Engineering, 2011.

[Herrmannsdoerfer 2011] M. Herrmannsdoerfer. COPE - A workbench for the coupled evolution of metamodels
and models. In: Software Language Engineering, 2011.

[Herrmannsdoerfer et al. 2010] M. Herrmannsdoerfer, D. Ratiu, G. Wachsmuth: Language evolution in practice:
The history of GMF. In: Proceedings of the 2nd International Conference on Software Language
Engineering, 2010.

[Herrmannsdoerfer et al. 2010] M. Herrmannsdoerfer, Th. Kofler, S. Merenda, D. Ratiu, J. Thyssen: Model-based
development tools for embedded systems in the industry – Results from an empirical investigation. In:
Proceedings of ENVISION 2020, 2010.

[Herrmannsdoerfer and Ratiu 2010] M. Herrmannsdoerfer, D. Ratiu: Limitations of automating model migration
in response to metamodel adaptation. In: Proceedings of the Joint ModSE-MCCM Workshop on Models and
Evolution, 2010.

[Herrmannsdoerfer and Koegel 2010] M. Herrmannsdoerfer, M. Koegel: Towards a generic operation recorder
for model evolution. In: Proceedings of the 1st International Workshop on Model Comparison in Practice,
2010.

[Herrmannsdoerfer and Merenda 2009] M. Herrmannsdoerfer, S. Merenda: Result of the tool questionnaire.
Technical Report TUM-I0929. Technische Universität München, 2009.

[Hilbrich 2011] R. Hilbrich 2011. Planung sicherheitskritischer Systeme – Tool schreibt Ablaufpläne für Multi-
Core-Systeme. Innovisions, 2011.

[Hilbrich et al. 2011] R. Hilbrich, J. R. van Kampenhout, H.-J. Goltz. Modellbasierte Generierung von statischen
Schedules für sicherheitskritische, eingebettete Systeme mit Multicore Prozessoren und harten
Echtzeitanforderungen. In: Proceedings oft he Workshop Echtzeit, 2011.

[Hilbrich and van Kampenhout 2011] R. Hilbrich und J. R. van Kampenhout. Partitioning and task transfer on
NoC-based many-core processors in the avionics domain. In: Softwaretechnik Trends, 2011.

[Hilbrich and Goltz 2011] R. Hilbrich, H.-J. Goltz: Model-based generation of static schedules for safety critical
multi-core systems in the avionics domain, In: Proceedings of the 4th international Workshop on Multicore
Software Engineering, 2011.

[Hilbrich and Svacina 2010] R. Hilbrich, J. Svacina: Verifizierung statischer Schedules für die Zertifizierung. In:
Proceedings of the Embedded Software Engineering Kongress, 2010.

[Hilbrich and van Kampenhout 2010] R. Hilbrich, J. R. van Kampenhout: Dynamic reconfiguration in NoC-based
MPSoCs in the avionics domain. In: Proceedings of the 3rd international Workshop on Multicore Software
Engineering, 2010.

[Höfig 2011] K. Höfig: T.iming overhead analysis for fault tolerance mechanisms. In: Workshopband Software
Engineering, Lecture Notes in Informatics, 2011.

[Höfig and Domis 2011] K. Höfig, D. Domis: Failure-dependent execution time analysis. In: Proceedings of
ISARCS, 2011.

[Höfig 2011] K. Höfig: FDTA - A tool chain for failure dependent timing analysis. In: Proceedings of WCET
2011.

[Holtmann et al. 2011] J. Holtmann, J. Meyer, M. Meyer: A seamless model-based development process for
automotive systems. In: Workshopband Software Engineering, Lecture Notes in Informatics, 2011.

List of Publications 293

[Holtmann et al. 2011] J. Holtmann, J. Meyer, M. von Detten: Automatic validation and correction of formalized,

textual requirements. In: Proceedings of the Fourth IEEE International Conference on Software Testing,
Verification and Validation Workshops, 2011.

[Holtmann 2010] J. Holtmann: Mit Satzmustern von textuellen Anforderungen zu Modellen. In:
OBJEKTspektrum Online Themenspecial Requirements Engineering, 2010.

[Holtmann et al. 2010] J. Holtmann, J. Meyer, W. Schäfer, U. Nickel: Eine erweiterte Systemmodellierung zur
Entwicklung von softwareintensiven Anwendungen in der Automobilindustrie. In: Workshopband Software
Engineering, Lecture Notes in Informatics, 2010.

[Hungar 2011] H. Hungar: Compositionality with strong assumptions. In: Proceedings of the Nordic Workshop
on Programming Theory, 2011.

J
[Jäger et al. 2012] T. Jäger, A. Fay, Th. Wagner, U. Löwen: Comparison of engineering results within domain

specific languages regarding information contents and intersections. In: Proceedings of 9th International
Multi-Conference on Systems, Signals and Devices, 2012.

[Jäger et al. 2011] T. Jäger, A. Fay, Th. Wagner: Systematische Erfassung und Bewertung von
gewerkeübergreifenden Schnittstellen in Engineering-Workflows. In: Proceedings oft he 8th Symposium
Informationstechnologien für Entwicklung und Produktion in der Verfahrenstechnik, 2011.

[Jäger et al. 2011] T. Jäger, A. Fay, H. Figalist, Th. Wagner: Systematische Risikominimierung im Engineering
mit Abhängigkeitsanalyse und Schlüsseldokumenten Vorgehen und Ergebnisse einer Fallstudie zur Erfassung
der gewerkeübergreifenden Informationsschnittmenge im Engineering automatisierter Anlagen. In:
Proceedings of Automation, 2011.

[Jäger et al. 2011] T. Jäger, A. Fay, T. Wagner, U. Löwen: Mining technical dependencies throughout
engineering process knowledge. In: Proceedings of the 16th IEEE International Conference on Emerging
Technologies and Factory Automation, 2011.

K
[Kagel and Lim 2009] S. Kagel, M. Lim: Herausforderungen der Variantenentwicklung im

Anforderungsmanagement meistern. GI-Fachgruppentreffen Requirements Engineering, 2009.

[Koegel et al. 2010] M. Koegel, M. Herrmannsdoerfer, Y. Liz, J. Helming, J. David: Comparing state- and
operation-based change tracking on models. In: Proceedings of Enterprise Distributed Object Computing
Conference, 2010.

[Koegel et al. 2010] M. Koegel, H. Naughton, J. Helming, M. Herrmannsdoerfer: Collaborative model merging.
In: Proceedings of the ACM international conference companion on Object oriented programming systems
languages and applications companion, 2010.

[Koegel et al. 2010] M. Koegel, M. Herrmannsdoerfer, O. von Wesendonk, J. Helming: Operation-based conflict
detection. In: Proceedings of the 1st International Workshop on Model Comparison in Practice, 2010.

[Kofler and Ratiu 2010] Th. Kofler, D. Ratiu. Towards a reusable unified basis for representing business domain
knowledge and development artifacts in systems engineering. In: Proceedings of the Workshop on Domain
Engineering, Advances in Conceptual Modeling – Applications and Challenges, 2010.

L
[Lackner and Tahirbegovic 2011] H. Lackner, S. Tahirbegovic: Nicht kapitulieren, sondern automatisieren. In:

Medizin & Technik 5, 2011, pp. 24-25.

294 List of Publications

[Lackner et al. 2009] H. Lackner, J. Svacina, H. Schlingloff: Test case generation from workflow-based
requirement specifications. In: Proceedings of the 2009 Workshop on Concurrency, Specification and
Programming, 2009.

[Lauenroth and Pohl 2009] K. Lauenroth, K. Pohl: Model checking of domain Artifacts in product line
engineering. In: Proceedings of the 24th IEEE/ACM International Conference on Automated Software
Engineering, 2009.

[Lim 2011] M. Lim: Qualitätssicherung medizinischer Software - Durchgängig automatisiert testen. In:
Medizin+Elektronik 2, 2011, pp. 39-41.

[Lim and Loose 2010] M. Lim, M. Loose: Mit Varianten-Management erfolgreich zum Ziel. In: Elektronik
Automotive 1, 2010, pp. 33-35.

[Löwen and Wagner 2011] U. Löwen, Th. Wagner: Analyse von Engineering-Workflows als Basis für den
optimalen Einsatz von Engineering-Werkzeugen. In: Proceedings of the 8th Symposium
Informationstechnologien für Entwicklung und Produktion in der Verfahrenstechnik, 2011.

[Löwen and Wagner 2009] U. Löwen, Th. Wagner: Modellierung komplexer technischer Systeme -
Anforderungen und Erfahrungen aus dem Anlagenbau. In: Proceedings of Mechatronik, 2009.

[Löwen et al. 2009] U. Löwen, K. Dencovski, Th. Wagner: Integration of information and tools: Where are the
gaps? In: Proceedings of the 15th Daratech Plant Conference, 2009.

[Lüder et al. 2010] A. Lüder, L. Hundt, M. Foehr, Th. Wagner, J.-J. Zaddach: Manufacturing system engineering
with mechatronical units. In: Proceedings of the IEEE International Conference on Emerging Technologies
and Factory Automation, 2010.

M
[Mattheis et al. 2012] S. Mattheis, T. Schuele, A. Raabe, Th. Henties, U. Gleim: Work stealing strategies for

parallel stream processing in soft real-time systems. In: Proceedings of the International Conference on
Architecture of Computing Systems, 2012.

[Menzel et al. 2010] I. Menzel, M. Müller, A. Groß, J. Dörr: An experimental comparison regarding the
completeness of functional requirements specifications. In: Proceedings of the 18th IEEE international
Requirements Engineering Conference, 2010.

[Meyer and Holtmann 2011] J. Meyer, J. Holtmann: Eine durchgängige Entwicklungsmethode von der
Systemarchitektur bis zur Softwarearchitektur mit AUTOSAR. In: Proceedings of the Workshop on
Modellbasierte Entwicklung eingebetteter Systeme VII, 2011.

[Meyer et al. 2011] J. Meyer, J. Holtmann, M. Meyer: Formalisierung von Anforderungen und
Betriebssystemeigenschaften zur frühzeitigen Simulation von eingebetteten, automobilen Systemen. In:
Proceedings of the 8th Paderborner Workshop Entwuf mechatronischer Systeme, 2011

N
[Nickel et al. 2010] U. Nickel, J. Meyer, T. Kramer: Wie hoch ist die Performance? In: Automobil-Elektronik 3,

2010, pp. 36-38.

P
[Pohl and Sikora 2009] K. Pohl, E. Sikora: COSMOD-RE - Verzahnung des Architekturentwurfs mit dem

Requirements Engineering. In: OBJEKTspektrum, Online Themenspecial Architekturen, 2009.

[Post et al. 2011] A. Post, I. Menzel, I., A. Podelski: Applying restricted English grammar on automotive
requirements - does it work? A case study. In: Proceedings of the 17th International Working Conference on
Requirements Engineering - Foundation for Software Quality, 2011.

List of Publications 295

R
[Ratiu et al. 2009] D. Ratiu, J. Thyssen, W. Schwitzer: A system of abstraction layers for the seamless

development of embedded software systems. Technical Report, TUM-I0928. Technische Universität
München, 2009.

[Reinkemeier et al. 2011] Ph. Reinkemeier, I. Stierand, Ph. Rehkop, S. Henkler: A pattern-based requirement
specification language - mapping automotive specific timing requirements. In: Proceedings of ENVISION
2020, 2011.

[Rose et al. 2010] L. M. Rose, M. Herrmannsdoerfer, J. R. Williams, D. S. Kolovos, K. Garces, R. F. Paige, F. A.
C. Polack: A comparison of model migration tools. In: Model Driven Engineering Languages and Systems,
2010.

[Rüth 2009] C. Rüth.: Intelligente Maschinen ohne Denkfehler. Faszination Forschung 1, 2009, pp. 50-57.

S
[Sadeghipour and Wiesbrock 2011] S. Sadeghipour, H.-W. Wiesbrock: Systematische Datenüberdeckung im

Modellzentrierten Test. Proceedings of the 4th Symposium Testen im System- und Software-Life-Cycle,
2011.

[Sadeghipour and Wiesbrock 2011] S. Sadeghipour, H.-W. Wiesbrock: Auswertung automatisch generierter
Testfälle durch regelbasierte Testüberwachung. In: Proceedings of the Embedded Software Engineering
Kongress, 2011.

[Sadeghipour 2010] S. Sadeghipour: Testautomatisierung: Ein akademisches Thema? In: Proceedings on the
Advances in Testing: Academia meets Industry, 2010.

[Schneider and Trapp 2010] D. Schneider, M. Trapp: Conditional safety certificates in open systems. In:
Proceedings of the 1st Workshop on Critical Automotive Applications: Robustness & Safety, 2010

[Schlingloff 2011] H. Schlingloff: Entwicklerhilfe für Eingebettete Systeme. Interview, 2011.

[Schüle 2011] T. Schüle: Efficient parallel execution of streaming applications on multi-core processors. In:
Proceedings of the International Conference on Parallel, Distributed and Network-Based Computing, 2011.

[Schüle 2009] T. Schüle: A coordination language for programming embedded multi-core systems. In:
Proceedings of the International Conference on Parallel and Distributed Computing, Applications and
Technologies, 2009.

[Siemens CT 2011] Siemens CT: Simulation Based Engineering - frühzeitige Validierung von Anlagenkonzepten.
In: Proceedings of the 8th Paderborner Workshop Entwurf mechatronischer Systeme, 2011.

[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl. Industry needs and research directions in requirements
engineering for embedded systems. In: Requirements Engineering Journal 17(1), 2012, pp. 57-78.

[Sikora et al. 2011] E. Sikora, B. Tenbergen, K. Pohl: Requirements engineering - An investigation of industry
needs. In: Proceedings of the 17th International Working Conference on Requirements Engineering -
Foundation for Software Quality, 2011.

[Sikora et al. 2010] E. Sikora, M. Daun, K. Pohl: Supporting the consistent specification of scenarios across
multiple abstraction levels. In: Proceedings of the 16th Intermatonal Working Conference on Requirements
Engineering - Foundation for Software Quality, 2010.

[Sikora and Pohl 2010] E. Sikora, K. Pohl: Evaluation eines modellbasierten Requirements-Engineering-Ansatzes
für den Einsatz in der Motorsteuerungs-Domäne. In: Proceedings of ENVISION 2020, 2010.

[Sikora et al. 2010] E. Sikora, B. Tenbergen, K. Pohl: Modellbasiertes Requirements Engineering - Eine
Situationsanalyse zum Stand der Praxis. In: Softwaretechnik-Trends 30(1), 2010.

296 List of Publications

[Sojer et al. 2012] D. Sojer, Ch. Buckl, A. Knoll: Deriving fault-detection mechanisms from safety requirements.
In: Computer Science - Research and Development, 2012.

[Sojer 2011] D. Sojer: Synthesis of fault detection mechanisms. In Proceedings of the 35th IEEE International
Computer Software and Applications Conference, 2011.

[Sojer et al. 2011] D. Sojer, Ch. Buckl, A. Knoll: Synthesis of diagnostic techniques based on an IEC 61508-
aware metamodel. In: Proceedings of the 6th Symposium on Industrial Embedded Systems, 2011.

[Sojer et al. 2010] D. Sojer, Ch. Buckl, A. Knoll: Vom Modell zum Code für IEC 61508, ISO 26262 und Co. In:
Proceedings of the 3rd Embedded Software Engineering Congress, 2010.

[Sojer et al. 2010] D. Sojer, Ch. Buckl, A. Knoll: Propagation, transformation and refinement of safety
requirements. In: Proceedings of the 3rd Workshop on Non-functional System Properties in Domain Specific
Modeling Languages, 2010.

[Sojer et al. 2010] D. Sojer, Ch. Buckl, A. Knoll. Formal modeling of safety requirements in the model-driven
development of safety critical embedded systems. In: Proceedings of the Eighth European Dependable
Computing Conference, 2010.

[Sojer et al. 2010] D. Sojer, Ch. Buckl, A. Knoll. Stand und Anforderungen an eine Werkzeugunterstuetzung zur
Entwicklung von Automatisierungssoftware. Technical Report TUM-I1003, Technische Universität
München, 2010.

[Stallbaum and Rzepka 2010] H. Stallbaum, M. Rzepka: Toward DO-178B-compliant Test Models. In:
Proceedings of the 7th Workshop on Model-Driven Engineering, Verification and Validation, 2010.

[Stallbaum et al. 2010] H. Stallbaum, A. Metzger, K. Pohl: Der Einsatz quantitativer Sicherheitsanalysen für den
risikobasierten Test eingebetteter Systeme. In: Proceedings of Software Engineering, 2010.

[Strube et al. 2011] M. Strube, A. Fay, S. Truchat, H. Figalist: Funktionale Anlagenbeschreibung als Basis der
Modernisierungsplanung. In: Proceedings of Automation, 2011.

[Strube et al. 2011] M. Strube, T. Jäger, A. Fay: Integriertes Engineering durch Zusammenführen von Prozess-
und Anlagenbeschreibung – Ein Konzept zur ganzheitlichen Beschreibung von Produktionsanlagen. In:
Proceedings of the 14th Conference IFF-Wissenschaftstage, 2011.

[Strube et al. 2011] M. Strube, S. Runde, A. Fay, H. Figalist: Risk Minimization in Modernization Projects of
Plant Automation – a Knowledge-Based Approach by means of Semantic Web Technologies. In:
Proceedings of the 16th IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA'2011, September 5-9, 2011 in Toulouse, France, ISBN: 978-1-4577-0016-3, 2011.

[Strube et al. 2011] M. Strube, A. Fay, S. Truchat, H. Figalist: Modellgestützte Modernisierungsplanung. In:
Automatisierungstechnische Praxis 8, 2011, pp. 889-895.

[Strube and Fay 2010] M. Strube, A. Fay: Brückenschlag zwischen Prozess- und Anlagenbeschreibung. In:
Automatisierungstechnische Praxis 9, 2010, pp. 26-27.

[Strube et al. 2010] M. Strube, A. Fay, S. Truchat, H. Figalist: Funktionale Anlagenbeschreibung als Basis der
Modernisierungsplanung. In: Proceedings of Automation, 2010.

T
[Tahirbegovic 2010] S. Tahirbegovic: Herzschlag übers iPhone. In: Medizin und Technik: 4, 2010.

[Tetzner and Gewald 2009] T. Tetzner, N. Gewald: Mechatronisches Konzept im Engineering von
Industrieanlagen – Anforderungen aus Anwendersicht. In: Proceedings of the 6th Berlin-Aachener
Symposium, 2009.

List of Publications 297

[Thaden et al. 2010] E. Thaden, H. Lipskoch, A. Metzner, I. Stierand: Exploiting gaps in fixed-priority

preemptive schedules for task insertion. In: Proceedings of the 16th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, 2010.

[Thyssen et al. 2010] J. Thyssen, D. Ratiu, W. Schwitzer, A. Harhurin, M. Feilkas, E. Thaden: A system for
seamless abstraction layers for model-based fevelopment of embedded software. In: Proceedings of
ENVISION 2020, 2010.

W
[Wagner and Löwen 2010] Th. Wagner, U. Löwen: Modellierung: Grundlage für integriertes Engineering. In:

Proceedings of Automation, 2010.

[Wehrstedt et al. 2011] J. Ch. Wehrstedt, R. Rosen, A. Pirsing, C. Dietz: Simulation Based Engineering-
Frühzeitige Validierung von Anlagekonzepten. In Proceedings of the 8th Paderborner Workshop Entwurf
mechatronischer Systeme, 2011.

[Weißleder and Lackner 2010] St. Weißleder, H. Lackner: System models vs. test models - Distinguishing the
undistinguishable? In: Proceedings of the MoTes2010 Workshop, 2010.

[Weyer 2011] Th. Weyer: Kohärenzprüfung von Anforderungsspezifikationen - Ein Ansatz zur Prüfung der
Kohärenz von Verhaltensspezifikationen gegen Eigenschaften des operationellen Kontexts,
Südwestdeutscher Verlag für Hochschulschriften, 2011.

[Wiesbrock 2011] H.-W. Wiesbrock: Stochastische Robustheitstests von automobilen Steuergeräten und ihre
automatische Auswertung. In: Proceedings of Embedded goes Medical - Advances in Testing: Academia
meets Industry, 2011.

[Wiesbrock 2010] H.-W. Wiesbrock: Ansätze zum Nachweis der Gleichwertigkeit von Software-Komponenten.
In: Proceedings of Envision 2020, 2010.

[Wiesbrock 2010] H.-W. Wiesbrock: Rezertifizierung von Software-Komponenten - Ansätze zum Nachweise
ihrer Gleichwertigkeit In: Proceedings of Embedded goes Medical - Advances in Testing: Academia meets
Industry, 2010.

[Wiesbrock 2009] H.-W. Wiesbrock: Das Entwicklungsdreieck Anforderungen – Design – Test: Ein Praxisbericht
über die Kopplung der einzelnen Artefakte. In: Proceedings of Software-Quality-Days, 2009.

Z
[Zimmer et al. 2011] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, M. Trapp: Vertical safety interfaces -

Improving the efficiency of modular certification. In: Proceedings of the 30th International Conference of
Computer Safety, Reliability, and Security, 2011.

http://www.springer.com

F – Index

A
Abstraction layers .. 35

in the functional viewpoint 78
in the logical viewpoint 91
in the requirements viewpoint 65
in the technical viewpoint 103
Safety across 111, 117

Application domain
Automation 16, 20, 138
Automotive 17, 21, 158
Avionics 17, 22, 178
Energy 18, 23, 198
Healthcare 19, 24, 216

Automation domain
Case studies .. 144
Challenges of the 16, 143
Evaluation in the 140
Overview .. 138
Requirements of the 20

Automotive domain
Case studies 159, 165
Challenges of the 17, 158
Evaluation in the 158
Overview .. 158
Requirements of the 21

Avionics domain
Case study ... 178
Challenges of the 17, 178
Evaluation in the 178
Overview .. 178
Requirements of the 22

B
Behavioral requirements model 62

C
C2FT ... 109
Case studies

in SPES 2020 .. 134
in the automation domain 144

in the automotive domain 159, 165
in the avionics domain........................... 178
in the energy domain............................. 202
in the healthcare domain 218

Challenges
of the automation domain................ 16, 143
of the automotive domain 17, 158
of the avionics domain 17, 178
of the energy domain 18, 198
of the healthcare domain................. 19, 216

Context .. 53
Crosscutting concerns See Quality aspect

E
Embedded software 4
Embedded system

and physical processes 33
Challenges in the engineering of 244
Characteristics of 32
Complexity of .. 33
Distribution of .. 33
Market for 4, 158, 245
Multifunctionality of.................................. 33
Reactivity and interactivity of................... 33
Real-time behavior of 120
Real-time behaviour of 33
Safety-criticality of 33, 108

Energy domain
Case studies ... 202
Challenges of the 18, 198
Evaluation in the.................................... 200
Overview ... 198
Requirements of the 23

Evaluation
in the automation domain 140
in the automotive domain 158
in the avionics domain........................... 178
in the energy domain............................. 200
in the healthcare domain 218
of the SPES modeling framework . 132, 232

299,. K Pohl et al. (eds.), Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology
DOI 10.1007/978-3-642-34614-9, © Springer-Verlag Berlin Heidelberg 2012

300 Index (F - S)

F
Functional black box model 72
Functional viewpoint 70

Abstraction layers in the 78
Functional black box model 72
Functional white box model 75
in the SPES modeling framework 40, 78
Process model ... 80
Relation to logical viewpoint 44
Relation to requirements viewpoint 44

G
Goals .. 55

H
Healthcare domain

Case study .. 218
Challenges of the 19, 216
Evaluation in the 218
Overview ... 216
Requirements of the 24

I
Intertwined development 52

L
Lessons learned ... 244
Logical component architecture 86, 88
Logical viewpoint .. 86

Abstraction layers in the 91
in the SPES modeling framework 41, 90
Logical component architecture 88
Process model ... 91
Relation to functional viewpoint 44
Relation to technical viewpoint 45

M
Metamodel ... 11
Model-based engineering 34
Modeling theories... 46

O
Operational requirements model 61

P
Principles

of the SPES modeling framework 34, 233
Process model

in the functional viewpoint 80
in the logical viewpoint 91
in the requirements viewpoint 66
in the technical viewpoint 105
Independent of application domain 133

Q
Quality aspect

Real-time .. 120
Safety ... 108

R
Real-time behavior 124
Real-time computing 120
Real-time operation 123
Real-time requirement 122

Platform-independent 122
Platform-specific 124

Requirement
Artifacts .. 53
Real-time .. 122
Solution-neutral requirement 52
Solution-oriented requirement 52

Requirements viewpoint 52
Abstraction layers in the 65
Behavioral requirements model 62
Context model .. 53
Goal model ... 55
in the SPES modeling framework 39, 63
Operational requirements model 61
Process model ... 66
Relation to functional viewpoint 44
Relation to other viewpoints 65
Scenario model .. 57
Solution-oriented requirements model 59
Structural requirements model 60

S
Safety ... 108

across abstraction layers 117
in the SPES modeling framework 117
in the viewpoints 117

Scenarios ... 57

Index (T - V) 301

Seamless model-based engineering 34
SPES 2020

Application domains 16
Metamodel ... 11
Mission of .. 9
Vision of ... 8

SPES model types
Behavioral requirements model 62
C2FT .. 109
Context model ... 53
Functional black box model 72
Functional white box model 75
Goal model .. 55
Logical component architecture 88
Operational requirements model 61
Real-time and behavioral requirements . 124
Real-time and goals 122
Real-time and operational requirements 123
Real-time and scenarios 123
Scenario model .. 57
Solution-oriented requirements model 59
Structural requirements model 60
Technical architecture 97

SPES modeling framework 36
Abstraction layers 35
Core concepts ... 35
Evaluation goals 233
Evaluation of the 132, 232
Functional viewpoint in the 78
Lessons learned 244
Logical viewpoint in the 90
Principles of the 34, 233
Relations between viewpoints 44
Requirements for the 20, 25
Requirements viewpoint in the 63
Safety in the ... 117
Tailoring for the automation domain 151
Tailoring for the automotive domain 165
Tailoring for the avionics domain 179

Tailoring for the energy domain 204
Theoretical foundation............................. 46
Viewpoints ... 36

Structural requirements model 60
System decomposition 34

T
Tailoring of the SPES modeling framework

for the automation domain 151
for the automotive domain..................... 165
for the avionics domain 179
for the energy domain 204
for the healthcare domain 218

Technical architecture 97
Technical viewpoint 96

Abstraction layers in the 103
Communication resources 101
Computing resources 100
Data encapsulation 101
in the SPES modeling framework 43
Process model 105
Relation to logical viewpoint 45
Relation to other viewpoints 103
Resources ... 98
Schedulers .. 98
Tasks ... 102
Technical architecture 97

V
Viewpoints ... 36

Functional viewpoint.......................... 40, 70
Logical viewpoint 41, 86
Relation between 44, 65, 78, 90, 103
Requirements viewpoint 39, 52
Safety in .. 117
Technical viewpoint 43, 96

	Model-Based Engineering of Embedded Systems
	Preface
	Table of Contents
	Part I Starting Situation
	Part II The SPES Modeling Framework
	Part III Application and Evaluation of the SPES Modeling Framework
	Part IV Impact of the SPES Modeling Framework
	Appendices

