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Abstract. Multiple interval graphs are variants of interval graphs where
instead of a single interval, each vertex is assigned a set of intervals on the
real line. We study the complexity of the MAXIMUM CLIQUE problem
in several classes of multiple interval graphs. The MAXIMUM CLIQUE
problem, or the problem of finding the size of the maximum clique, is
known to be NP-complete for t-interval graphs when t ≥ 3 and polynomial-
time solvable when t = 1. The problem is also known to be NP-complete
in t-track graphs when t ≥ 4 and polynomial-time solvable when t ≤ 2.
We show that MAXIMUM CLIQUE is already NP-complete for unit 2-
interval graphs and unit 3-track graphs. Further, we show that the prob-
lem is APX-complete for 2-interval graphs, 3-track graphs, unit 3-interval
graphs and unit 4-track graphs.We also introduce two new classes of graphs
called t-circular interval graphs and t-circular track graphs and study the
complexity of the MAXIMUM CLIQUE problem in them. On the pos-
itive side, we present a polynomial time t-approximation algorithm for
WEIGHTED MAXIMUM CLIQUE on t-interval graphs, improving ear-
lier work with approximation ratio 4t.

1 Introduction

Given a family of sets F , a graph G with vertex set V (G) and edge set E(G) is
said to be an “intersection graph of sets from F” if ∃f : V (G) → F such that
for distinct u, v ∈ V (G), uv ∈ E(G) ⇔ f(u) ∩ f(v) �= ∅. When F is the set of
all closed intervals on the real line, it defines the well-known class of interval
graphs. A t-interval is the union of t intervals on the real line. When F is the
set of all t-intervals, it defines the class of graphs called t-interval graphs. This
class was first defined and studied by Trotter and Harary [25]. Given t parallel
lines (or tracks), if each element of F is the union of t intervals on different lines,
one defines the class of t-track graphs. It is easy to see that this class forms a
subclass of t-interval graphs.

These classes of graphs received a lot of attention, for both their theoretical
simplicity and their use in various fields like Scheduling [4,13] or Computational
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Biology [3,9]. West and Shmoys [27] showed that recognizing t-interval graphs
for t ≥ 2 is NP-complete.

Given a circle, the intersection graphs of arcs of this circle forms the class of
circular arc graphs. We introduce similar generalizations of circular arc graphs. If
G has an intersection representation using t arcs on a circle per vertex, then G is
called a t-circular interval graph. If instead, G has an intersection representation
using t circles and exactly one arc on each circle corresponding to each vertex of
G, then G is called a t-circular track graph. Note that in this case, the class of
t-circular track graphs may not be a subclass of the class of t-circular interval
graphs. One can see after cutting the circles, that t-circular interval graphs and
t-circular track graphs are respectively contained in (t + 1)- and (2t)-interval
graphs.

For all these intersection families of graphs, one can define a subclass where all
the intervals or arcs have the same length. We respectively call those subclasses
unit t-interval, unit t-track, unit t-circular interval, and unit t-circular track
graphs.

MAXIMUM WEIGHTED CLIQUE is the problem of deciding, given a graph
G with weighted vertices and an integer k, whether G has a clique of weight k.
The case where all the weights are 1 is MAXIMUM CLIQUE. Zuckerman [28]
showed that unless P=NP, there is no polynomial time algorithm that approxi-
mates the maximum clique within a factor O(n1−ε), for any ε > 0. MAXIMUM
CLIQUE has been studied for many intersection graphs families. It has been
shown to be polynomial for interval filament graphs [12], a graph class including
circle graphs, chordal graphs and co-comparability graphs. It has been shown to
be NP-complete for B1-VPG graphs [21] (intersection of strings with one bend
and axis-parallel parts [2]), and for segment graphs [7] (answering a conjecture
of Kratochv́ıl and Nešetřil [20]).

MAXIMUM CLIQUE is polynomial for interval graphs (folklore) and for cir-
cular arc graphs [11,14]. However, Butman et al. [6] showed that MAXIMUM
CLIQUE is NP-complete for t-interval graphs when t ≥ 3. For t-track graphs,
MAXIMUM CLIQUE is polynomial-time solvable when t ≤ 2 and NP-complete

when t ≥ 4 [19]. Butman et al. also showed a polynomial-time t2−t+1
2 factor ap-

proximation algorithm for MAXIMUM CLIQUE in t-interval graphs. Koenig [19]
observed that a similar approximation algorithm with a slightly better approxi-

mation ratio t2−t
2 exists for MAXIMUM CLIQUE in t-track graphs. Butman et

al. asked the following questions:

– Is MAXIMUM CLIQUE NP-hard in 2-interval graphs?

– Is it APX-hard in t-interval graphs for any constant t ≥ 2?

– Can an algorithm with a better approximation ratio than t2−t+1
2 be achieved

for t-interval graphs?

We answer all of these questions in the affirmative. As far as the third question is
concerned, Kammer, Tholey and Voepel [18] have already presented an improved
polynomial-time approximation algorithm that achieves an approximation ratio
of 4t for t-interval graphs. In this paper (Section 3), we present a linear time
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2t-approximation algorithm, and a polynomial time t-approximation algorithm
for MAXIMUM WEIGHTED CLIQUE in t-interval graphs (and thus in t-track
graphs), t-circular interval graphs, and t-circular track graphs. Then we show in
Section 4 that MAXIMUM CLIQUE is APX-complete for many of these families
(including 2-interval graphs). Finally in Section 5, we show that for some of the
remaining classes (including unit 2-interval graphs) MAXIMUM CLIQUE is NP-
complete.

2 Preliminaries

Consider a circle C of length l with a distinguished point O. The coordinate of a
point p ∈ C is the length of the arc going clockwise from O to p. Given two reals
p and q, [p, q] is the arc of C going clockwise from the point with coordinate p to
the one with coordinate q. In the following, coordinates are understood modulo l.

A representation of a t-interval graph G is a set of t functions, I1, . . . , It,
assigning each vertex in V (G) to an interval of the real line. For t-track graphs
we have t lines L1, . . . , Lt, and each Ii assigns intervals from Li. Similarly, for a
representation of t-circular interval graphs (resp. t-circular track graphs) we have
a circle C (resp. t circles C1, . . . , Ct) and t functions Ii, assigning each vertex in
V (G) to an arc of C (resp. of Ci).

3 Approximation Algorithms

The first approximation algorithms for the MAXIMUM CLIQUE in t-interval
graphs and t-track graphs [6,19] are based on the fact that any t-interval rep-
resentation (resp. t-track representation) of a clique admits a transversal (i.e. a
set of points touching at least one interval of each vertex) of size τ = t2 − t+ 1
(resp. τ = t2−t) [17]. Scanning the representation of a graph G from left to right
(in time O(tn)) one passes through the points of the transversal of a maximum
clique K of G. At some of those points there are at least |K|/τ intervals forming
a subclique of K. Thus, this gives an O(tn)-time τ -approximation. Butman et al.
improved this ratio by 2 by considering every pair of points in the representation.
The intervals at these points induce a co-bipartite graph, for which computing
the maximum clique is polynomial (as computing a maximum independent set of
a bipartite graph is polynomial). Then one can see that this gives a polynomial
time (τ/2)-approximation algorithm. This actually gives a polynomial exact al-
gorithm for the MAXIMUM CLIQUE in 2-track graphs [19], as τ = 2 in this
case. For the other cases, Kammer et al. [18] greatly improved the approximation
ratios from roughly t2/2 to 4t, using the new notion of k-perfect orientability.
Actually, earlier observations by Alon [1] and by Bar-Yehuda et al. [4] (about
approximating the chromatic number of t-interval graphs) imply that the trivial
algorithm (finding the point of the representation belonging to the maximum
number of intervals) is a 2t-approximation algorithm. Using transversal argu-
ments, we can easily improve this ratio for some subclasses. A representation is
balanced if for each vertex, all its intervals (or arcs) have the same length.
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Remark 1. In any balanced t-interval (resp. t-track, t-circular interval, or t-
circular track) representation of a clique, the 2t interval extremities of the vertex
with the smallest intervals form a transversal. Thus, in those classes of graphs
MAXIMUM CLIQUE admits a linear time 2t-approximation algorithm, and a
polynomial time t-approximation algorithm.

We shall now show how to achieve the same approximation ratio without re-
straining to balanced representations.

Theorem 1. There is a linear time 2t-approximation algorithm as well as a poly-
nomial time t-approximation algorithm for MAXIMUM WEIGHTED CLIQUE
on t-interval graphs, t-track graphs, t-circular interval graphs, and t-circular track
graphs.

Proof. The problem is polynomial when t = 1, we thus assume that t ≥ 2.
Let us prove the theorem for t-interval graphs, the proofs for the other classes
are exactly the same. Let G be a weighted t-interval graph with weight function
w(u) on its vertices, and let K be a maximum weighted clique of G. Let I1, . . . , It
form a t-interval representation of G such that for any vertex u ∈ V (G), Ii(u) =
[ui, u

′
i]. For any edge uv there exists a i and a j ∈ [t] such that the point ui

belongs to Ij(v), or such that vj ∈ Ii(u). One can thus orient and color the
edges of G in such a way that uv goes from u to v in color i if ui ∈ Ij(v) for
some j. In K there is a vertex u with more weight on its out-neighbors in K than
on its in-neighbors in K. Indeed, this comes from the fact that in the oriented
graphs obtained from K by replacing each vertex u by w(u) vertices ui and by
putting an arc uivj if and only if there is an arc uv in K, there is a vertex ui

with d+(ui) ≥ d−(ui), which is equivalent to w(N+
K(u)) ≥ w(N−

K (u)). Thus there
exists two distinct values i and j such that u has at least weight (w(K)−w(u))/2t
on its out-neighbors in color i, and at least weight (w(K) − w(u))/t on its
out-neighbors in color i or j. The vertex u and its out-neighbors in a given
color clearly induce a clique of G (they intersect at ui). Thus scanning the
representation from left to right looking for the point with the more weights
gives a clique of weight at least w(u) + (w(K) − w(u))/2t > w(K)/2t, which is
a 2t-approximation.

Then the graph induced by u and its out-neighbors in color i or j being
co-bipartite one can compute its maximum weighted clique in polynomial time
(as computing a maximum weighted independent set of a bipartite graph is
polynomial). This clique has weight at least w(u) + (w(K)−w(u))/t > w(K)/t
(the weight of the subclique of K induced by u and its neighbors in color i or j).
Thus, for each vertex u of the graph and any pair ui and uj of interval left end,
if we compute the maximum weighted clique of the corresponding co-bipartite
graph, we obtain a t-approximation.

4 APX-Hardness in Multiple Interval Graphs

The complement of a graph G is denoted by G. Given a graph G on n vertices
with V (G) = {x1, . . . , xn} and E(G) = {e1, . . . , em}, and a positive integer w,
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we define Subdw(G) to be the graph obtained by subdividing each edge of G
w times. If ek ∈ E(G) and ek = xixj where i < j, we define l(k) = i and
r(k) = j (as if xi and xj were respectively the left and the right end of ek). In
the following we subdivide edges 2 or 4 times. In Subd2(G) (resp. Subd4(G)),
the vertices subdividing ek are ak and bk (resp. ak, bk, ck, and dk) and they are
such that (xl(k), ak, bk, xr(k)) (resp. (xl(k), ak, bk, ck, dk, xr(k))) is the subpath of
Subd2(G) (resp. Subd4(G)) corresponding to ek. To prove APX-hardness results
we need the following structural theorem, which is of independent interest.

Theorem 2. Given any graph G,

– Subd4(G) is a 2-interval graph,
– Subd2(G) is a unit 3-interval graph,
– Subd2(G) is a 3-track graph,
– Subd2(G) is a unit 4-track graph,
– Subd2(G) is a unit 2-circular interval graph (and thus a 2-circular interval

graph),
– Subd2(G) is a 2-circular track graph, and
– Subd2(G) is a unit 4-circular track graph.

Furthermore, such representations can be constructed in linear time.

Since MAXIMUM INDEPENDENT SET is APX-hard even when restricted
to degree bounded graphs [22,5], Chleb́ık and Chleb́ıková [8] observed that
MAXIMUM INDEPENDENT SET is APX-hard even when restricted to 2k-
subdivisions of 3-regular graphs for any fixed integer k ≥ 0. Taking the com-
plement graphs, we thus have that MAXIMUM CLIQUE is APX-hard even
when restricted to the set C2k = {Subd2k(G) | any graph G}, for any fixed inte-
ger k ≥ 0. Thus, since MAXIMUM CLIQUE is approximable for all the graph
classes considered in Theorem 2, we clearly have the next result.

Theorem 3. MAXIMUM CLIQUE is APX-complete for:

– 2-interval graph,
– unit 3-interval graph,
– 3-track graph,
– unit 4-track graph,
– unit 2-circular interval graph (and thus for 2-circular interval graphs),
– 2-circular track graph, and
– unit 4-circular track graph.

Note that recently, Jiang [15] gave an alternative proof of the fact that MAX-
IMUM CLIQUE is APX-complete for 3-track graphs by refining the technique
used in [6].

Remark 2. To prove that MAXIMUM CLIQUE is NP-hard on B1-VPG graphs,
Middendorf and Pfeiffer [21] proved that for any graph G, Subd2(G) ∈ B1-VPG.
One can thus see that MAXIMUM CLIQUE is actually APX-hard for this class
of graphs.
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We only prove the first item of Theorem 2 in this extended abstract.

Proof. Recall that each edge ek = xixj of G where i < j, corresponds to the
path (xi, ak, bk, ck, dk, xj) in Subd4(G). We define the representation {I1, I2} of

Subd4(G) as follows (see also Figure 1). For 1 ≤ i ≤ n and 1 ≤ k ≤ m:

I1(ak) = [0,m(l(k)− 1) + k − 1]
I1(xi) = [mi,mn+mi]
I2(ak) = [mn+ml(k) + 1, 4mn+m−ml(k)− k + 1]
I1(bk) = [m(l(k)− 1) + k,mn+m− k]
I1(ck) = [mn+m− k + 1, 3mn+m−mr(k)− k + 1]
I1(dk) = [3mn+m−mr(k) − k + 2, 4mn+mr(k)]
I2(bk) = [4mn+m−ml(k)− k + 2, 5mn+ k]
I2(xi) = [4mn+mi+ 1, 5mn+mi+ 1]
I2(dk) = [5mn+mr(k) + k + 1, 6mn+m+ 1]
I2(ck) = [5mn+ k + 1, 5mn+mr(k) + k]

ak
(l(k), k)

bk

(l(k), k)

k

xi
i

ak
l(k)

ck
k

(r(k), k)

(l(k), k)

dk
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dkxi

(r(k), k) r(k)

(l(k), k)

k k

(r(k), k)

(r(k), k)

i i

i

Fig. 1. The 2-interval representation of Subd4(G)

Figure 1 (and the other figures of this kind) should be understood in the
following way. The leftmost block labeled ak corresponds to the intervals I1(ak),
and its shape, together with the label (l(k), k) on the arrow mean that,

– the left end of the intervals I1(ak) are the same (coordinate 0), and that
– the right end of the intervals I1(ak) are ordered (from left to right) accord-

ingly to l(k), and in case of equality, accordingly to k.

Here we can see that this block is close to the blocks I1(bk), and I1(xi).
The left end of the interval I1(bk) is also ordered (from left to right) accord-

ingly to (l(k), k). Such situation means that I1(ak) intersects every I1(bk′) such
that (l(k), k) > (l(k′), k′), i.e. such that l(k) > l(k′) or such that l(k) = l(k′)
and k > k′. Note that since, between I2(ak) and I2(bk) we have the opposite
situation, for any vertex ak, ak is adjacent to every bk′ , except bk.

The left end of the interval I1(xi) is ordered (from left to right) accordingly
to i. Such situation means that I1(ak) intersects every I1(xi) such that l(k) > i.
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Note that since, between I1(xi) and I2(ak) we have the opposite situation, for
any vertex ak, ak is adjacent to every xi, except xl(k).

We claim that I1 and I2 together form a valid 2-interval representation for
Subd4(G). We omit the proof in this extended abstract but one can check it with
Figure 1.

5 NP-Hardness in Unit 2-Interval and Unit 3-Track
Graphs

Valiant [26] has shown that every planar graph of degree at most 4 can be drawn
on a grid of linear size such that the vertices are mapped to points of the grid
and the edges to piecewise linear curves made up of horizontal and vertical line
segments whose endpoints are also points of the grid. It is immediately clear
that every planar graph G has a subdivision G′ that is an induced subgraph
of a grid graph such that each edge of G corresponds to a path of length at
most O(|V (G)|2) (see Figure 2). Note that here, some paths have even length
and some have odd length. An even subdivision (resp. odd subdivision) of G is
a graph obtained from G by subdividing each edge e of G an even (resp. odd)
number of times, and at most |V (G)|O(1) times.

Fig. 2. Embedding a planar graph in a grid

Note that for any integer k, we can embed G in a fine enough grid so that
every horizontal and vertical segment in the original drawing of G becomes a
path that contains at least k vertices in G′. In Figure 2, we have chosen k = 5.

Let R(w, h) be the rectangular grid of height h and width w. A path in R(w, h)
that contains only vertices from one row of the grid is called a horizontal grid-
path and one that contains vertices from only one column is called a vertical
grid-path. We denote by R′(w, h) the graph obtained by subdividing each edge
of R(w, h) once and by adding paths of length 3 between the newly introduced
vertices as shown in Figure 3.

Lemma 1. Any planar graph G, on n vertices and of maximum degree 4, has
an even subdivision that is an induced subgraph of R′(w, h) for some values of
w and h that are linear in n.
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Fig. 3. The graph R′(11, 7). The vertices of the grid are not shown.

Proof. Let H be the subdivision of G that is an induced subgraph of the grid
R(w, h). Let Pe denote the path in H corresponding to an edge e in G. We
assume that Pe is the union of horizontal and vertical grid-paths of length at
least 5. We now transform the grid R(w, h) into R′(w, h) by subdividing each
edge once and by adding paths of length 3 between the newly introduced vertices
as explained before. Clearly, a 1-subdivision of H , which we shall denote by H ′,
is an induced subgraph of R′(w, h). It is also clear that H ′ is an odd subdivision
of G. Let P ′

e denote the path in H ′ corresponding to an edge e of G. Note that
P ′
e consists of 1-subdivisions of vertical and horizontal grid-paths.
For every edge e of G, we do the following procedure on P ′

e in H ′ to obtain a
new graph H ′′: we replace one of the subdivided horizontal or vertical grid-paths
that make up P ′

e to obtain P ′′
e which has an even number of vertices as shown

in Figure 4. The new graph H ′′ so obtained is an even subdivision of G and is
also an induced subgraph of R′(w, h).

Lemma 2. For any w and h the graph R′(w, h) is both a unit 2-interval graph
as well as a unit 3-track graph. Thus since those classes are closed under taking
induced subgraphs, they also contain the induced subgraphs of R′(w, h).

We omit the proof in this extended abstract.

Theorem 4. MAXIMUM CLIQUE is NP-complete for unit 2-interval and unit
3-track graphs.

Proof. It is known that the MAXIMUM INDEPENDENT SET problem is NP-
complete even when restricted to planar graphs of degree at most 3 [10]. It is folk-
lore that the instance (G, k) of MAXIMUM INDEPENDENT SET is equivalent
to an instance (H, k+k′), where H is an even subdivision of G with |V (G)|+2k′

vertices. Thus according to Lemma 1, MAXIMUM INDEPENDENT SET is NP-
complete on the class of induced subgraphs of R′(w, h). MAXIMUM CLIQUE
is thus NP-complete on the class of induced subgraphs of R′(w, h). Finally by
Lemma 2 this class of graphs is contained in unit 2-interval and unit 3-track
graphs. MAXIMUM CLIQUE is thus NP-complete on these classes.
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Fig. 4. Modifying the paths in H ′ to obtain H ′′: A part of the graph in Figure 2 is
shown. The grid vertices are not drawn.

6 Concluding Remarks

The difference between the 4t-approximation of Kammer et al. [18] and our t-
approximation lies in two places. In their paper they proved that t-interval graphs
are 2t-perfectly orientable, but following the lines of Theorem 1 one can see that
those graphs are t-perfectly orientable. This improves their approximation for
MAXIMUM WEIGHTED INDEPENDENT SET, MINIMUM VERTEX COL-
ORING, and MINIMUM CLIQUE PARTITION in t-interval graphs. For MAXI-
MUM WEIGHTED INDEPENDENT SET and MINIMUM VERTEX COLOR-
ING this reaches the best known ratio of t [4] in a simpler way, and for the other
problems it improves the best known approximation ratios [18]. Then Kammer
et al. proved that MAXIMUM WEIGHTED CLIQUE can be 2k-approximated
in k-perfectly orientable graphs. Again, following the lines of Theorem 1 one can
see that MAXIMUM WEIGHTED CLIQUE can be k-approximated for those
graphs. This improves (by 2) their approximation for MAXIMUM WEIGHTED
CLIQUE in t-fat objects intersection graphs.

In our approximation algorithm (as in the previous algorithms) we assume
that we are given an interval representation. We wonder what we can do if we
are not given such representation.

Open Question. Can MAXIMUM (WEIGHTED) CLIQUE be polynomially
c(t)-approximated in t-interval graphs, for some function c, if we are not given
an interval representation?

This would be the case if there is an algorithm that computes, given a t-interval
graph G, a c(t)-interval representation of G. Actually even when we are given a
representation, the approximation ratio might be far from the optimal.

Open Question. Does there exists an approximation algorithm for MAXI-
MUM (WEIGHTED) CLIQUE in t-interval graphs with a better approximation
ratio?
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Let us call f(t) the better ratio a polynomial algorithm can achieve on t-interval
graphs (actually f(t) should be an infimum). For any graph G on n vertices, it
is easy to construct a n-interval representation of G. Thus since for any ε > 0,
one cannot O(n1−ε)-approximate the MAXIMUM CLIQUE unless P = NP [28],
we certainly have f(t) = Ω(t1−ε).

The current status of the complexity of the MAXIMUM CLIQUE problem
for the various classes of multiple interval graphs that were studied are shown
in the table below (where “Unres.” stands for “Unrestricted”).

t
t-track t-interval t-circular track t-circular interval

Unit Unres. Unit Unres. Unit Unres. Unit Unres.

1 P P P P P P P P
2 P P NP-c APX-c ? APX-c APX-c APX-c
3 NP-c APX-c APX-c APX-c NP-c APX-c APX-c APX-c

≥ 4 APX-c APX-c APX-c APX-c APX-c APX-c APX-c APX-c

The entries marked “NP-c” and “?” in this table clearly imply the following
questions.

Open Question. Is MAXIMUM CLIQUE for unit 2-interval graphs, unit 3-
track graphs or unit 3-circular track graphs APX-hard, or does it admit a PTAS?

Open Question. Is MAXIMUM CLIQUE for unit 2-circular track graphs
Polynomial or NP-complete?

Koenig [19] explains that 2-track graphs have a polynomial-time algorithm for
MAXIMUM CLIQUE because for any 2-track representation of a clique, there is
a transversal of size 2 (i.e. two points such that for every vertex, at least one of
its intervals contains one of these points). We note that this is not true for unit
2-circular track graphs as the complete graph on 5 vertices has a unit 2-circular
track representation in which each circular track induces a cycle on 5 vertices.
This representation clearly does not have a transversal of size 2.

Recently, Jiang and Zhang studied the class of complements of t-interval
graphs [16]. In particular they proved that MINIMUM (INDEPENDENT) DOM-
INATING SET parameterized by the solution size is in W[1] for co-2-interval
graphs, and they proved that MINIMUM DOMINATING SET is W[1]-hard for
co-3-track graphs.

Following the same line of proof as for Theorem 3 we can prove the following
APX-hardness results, for this kind of graph classes.

Theorem 5

(i) MINIMUM VERTEX COVER is APX-complete in co-2-interval graphs, and
the complement classes of all the classes of Theorem 2.

(ii) For any graph G, Subd3(G) is a co-2-interval, a co-unit-3-interval, a co-
3-track, a co-unit-4-track, and a co-2-circular track graph, and MINIMUM
(INDEPENDENT) DOMINATING SET is APX-hard for these classes of
graphs.
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4. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.S., Shachnai, H., Shapira, I.: Schedul-
ing split intervals. SIAM J. Comput. 36, 1–15 (2006)

5. Berman, P., Fujito, T.: On Approximation Properties of the Independent Set Prob-
lem for Degree 3 Graphs. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.)
WADS 1995. LNCS, vol. 955, pp. 449–460. Springer, Heidelberg (1995)

6. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in
multiple-interval graphs. In: Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2007, pp. 268–277 (2007)

7. Cabello, S., Cardinal, J., Langerman, S.: The Clique Problem in Ray Intersection
Graph. arXiv (November 2011), http://arxiv.org/pdf/1111.5986.pdf
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