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Abstract. The class of D-dotted interval (D-DI) graphs is the class
of intersection graphs of arithmetic progressions with jump (common
difference) at most D. We consider various classical graph-theoretic op-
timization problems in D-DI graphs of arbitrarily, but fixed, D.

WeshowthatMaximumIndependentSet,MinimumVertexCover,
and Minimum Dominating Set can be solved in polynomial time in this
graphclass, answeringanopenquestionposedbyJiang (Inf.ProcessingLet-
ters, 98(1):29–33, 2006). We also show thatMinimumVertexCover can
be approximated within a factor of (1+ ε) for any ε > 0 in linear time. This
algorithmgeneralizes toawide class ofdeletionproblems including the clas-
sicalMinimumFeedbackVertexSet andMinimumPlanarDeletion
problems.

Our algorithms are based on classical results in algorithmic graph
theory and new structural properties of D-DI graphs that may be of
independent interest.

1 Introduction

A dotted interval I(s, t, d) is an arithmetic progression {s, s+ d, s+ 2d, . . . , t},
where s, t and d are positive integers, and the jump d divides t− s. When d = 1,
the dotted interval I(s, t, d) is simply the interval [s, t] over the positive integer
line. This paper is mainly concerned with dotted interval graphs. A dotted inter-
val graph is an intersection graph of dotted intervals. Each vertex v is associated
a dotted interval Iv and we have an edge (u, v) if Iu ∩ Iv �= ∅. If the jumps of all
intervals are at most D, we call the graph D-dotted-interval or D-DI for short.
See Figure 1 for an example.

Dotted interval graphs were introduced by Aumann et al. [2] in the context of
high throughput genotyping. They used dotted intervals to model microsatellite
polymorphisms which are used in a genotyping technique called microsatellite
genotyping. The respective genotyping problem translates to Minimum Col-
oring in D-DI graphs of small D. Aumann et al. [2] showed that Minimum
Coloring in D-DI graphs is NP-hard even for D = 2. They also provided
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Fig. 1. Example of a 2-DI graph: On the right we have the 2-DI representation of the
graph on the left. Notice that graph is clearly not an interval graph since we have hole
of length 4.

a 3
2 -approximation algorithm for Minimum Coloring in 2-DI graphs, and a

(7D8 + Θ(1))-approximation algorithm for general fixed D ≥ 2. This algorithm
was later improved by Jiang [17], and subsequently also by Yanovsky [21]. The
current best approximation ratio for Minimum Coloring is 2D+4

3 [21].
Since a dotted interval with jump 1 is a regular interval, dotted interval graphs

form a natural generalizations of the well-studied class of interval graphs. Inter-
val graphs have been extensively researched in the graph-theoretic community,
in particular from the algorithmic viewpoint, because many real-life problems
translate to classical graph-theoretic problems in interval graphs, and because
its rich structure allows in many cases designing efficient algorithms for these
problems. Substantial research effort has been devoted into generalizing such
algorithms to larger classes of graphs. Examples include algorithms proposed
for circular arc graphs [13,15], disc graphs [11,16,19,20], rectangle graphs [1,5,9],
multiple-interval graphs [4,8], and multiple-subtree graphs [14].

In this paper we study the computational complexity of classical graph-
theoretic optimization problems in D-DI graphs. Note that as any graph G is a
D-DI graph for large enoughD [2], we are interested in studying D-DI graphs for
smallD; more precisely, we assumeD = O(1). Apart from theMinimum Color-
ing problem, Aumann et al. [2] also considered the Maximum Clique problem
in D-DI graphs, and showed that this problem is fixed parameter tractable with
respect to D. Jiang [17] studied the problem of Maximum Independent Set in
D-DI graphs. He presented a simple 3

2 -approximation algorithm for 2-DI graphs,

and a (5D6 + O(log d))-approximation algorithm or D-DI graphs. The question
of whether Maximum Independent Set in D-DI graphs, for constant D, is
NP-hard was left open by Jiang. He also pointed out that the complexity of
other classical graph theoretical problems, such as Minimum Vertex Cover
and Minimum Dominating Set, remain open in D-DI graphs.

In this paper we focus mainly on three classical graph-theoretic optimiza-
tion problems: Maximum Independent Set, Minimum Dominating Set,
and Minimum Vertex Cover. We present an O(DnD)-time algorithm for
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Maximum Independent Set and Minimum Vertex Cover in D-DI graphs
with n vertices, and give an O(D2nO(D2))-time algorithm for Minimum Dom-
inating Set. Thus, we show that both these problems are polynomial-time
solvable in D-DI graphs for fixed D. It is interesting to note that a similar
situation occurs in circular-arc graphs, which also generalize interval graphs,
where Maximum Independent Set and Minimum Dominating Set can be
solved in linear time [15] and Minimum Coloring is NP-hard [12]. (However,
Aumann et al. [2] show that there is a 2-DI graph that is not a circular arc
graph, and that for every D ≥ 1, there is a circular arc graph that is not a
D-DI graph.) We also present a linear-time (1 + ε)-approximation algorithm
for Minimum Vertex Cover in D-DI graphs. This algorithm can be general-
ized to a wide range of deletion problems which include among many the clas-
sical Minimum Feedback Vertex Set and Minimum Planar Deletion
problems. We assume that the D-DI representation of the input graph is given
to us.

2 Preliminaries

2.1 Definitions and Notation

For i, j ∈ Z such that i < j, we define [i, j] := {i, i+ 1, . . . , j − 1, j}.
Given a dotted interval I = {s, s+ d, s+ 2d, . . . , t}, we denote its starting

and finishing points by s(I) and t(I), respectively. The jump of I is denoted by
d(I), and the offset of I is defined as o(I) := s(I) mod d(I).

Given a set of dotted intervals I = {I1, . . . , In}, we assume that the intervals
are ordered by starting point, namely that s(Ii) ≤ s(Ii+1), for every i. Dotted
intervals with the same starting point are ordered arbitrarily. Given a dotted
interval Ii, we define I<i := {Ij : j < i}. Given a point p, and a set of dotted
intervals S ⊆ I, let Sp ⊆ S contain the dotted intervals that start at or before
p and end at or to the right of p, namely Sp := {I ∈ S : p ∈ [s(I), t(I)]}. (Note
that it is possible I ∈ Sp and p �∈ I.)

Let G = (V,E) be an undirected graph; for any subset A ⊆ V , we use G[A] =
(A, {(u, v) ∈ E : u ∈ A, v ∈ A}) to denote the graph induced by A. Let w : V →
R

+ be a vertex weight function; for any A ⊆ V , we use the shorthand notation
w(A) =

∑
u∈A w(u). A subset A ⊆ V is said to be independent if no two vertices

in A are connected by an edge in E; the Maximum Independent Set problem
is to find an independent set of maximum weight. A subset A ⊆ V is said
to be dominating if every vertex v ⊆ V has at least one neighbor in A; the
Minimum Dominating Set problem is to find a dominating set of minimum
weight. A subset A ⊆ V is said to be a vertex cover if every edge in E has at
least one endpoint in A; the Minimum Vertex Cover is to find a vertex cover
of minimum weight.

2.2 Simple Observations

Let I be a representation of a D-DI graph G, and denote �(D) = lcm {2, . . . , D},
the least common multiple of the numbers 2, . . . , D.
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Observation 1. Let I, J ∈ I be two dotted intervals, and let i ∈ I, J . If
t(I), t(J) ≥ i+ �(D), then i+ �(D) ∈ I, J .

Given a dotted interval I and an integer i, let

I(i) = {j : j ∈ I and j < i} ∪ {j − �(i) : j ∈ I and j ≥ i+ �(D)} .

Namely I(i) is obtained from I by removing the points in I ∩ [i, i+ �(D)−1] and
gluing the two parts of I back together by moving the points in I∩[i+�(D), t(I)]
to the left. Let I(i) = {I(i) : I ∈ I}.

Observation 2. Let i be an integer such that [i, i+2�(D)− 1] does not contain
any starting or finishing point of a dotted interval from I. Then I(i) is also a
representation of G.

Given an arbitrary D-DI representation, we could apply the above observation
repeatedly to obtain an equivalent representation where all intervals with length
more than 2�(D) contain at least one end-point of some dotted interval.

Observation 3. Any D-DI graph G has a representation I such that

max
I∈I

t(I)−min
I∈I

s(I) ≤ 4n �(D) . (1)

Hence wemay assume that the endpoints of dotted intervals in I are in {1, . . . , N},
where N ≤ 4n · �(D). By our assumption that D = O(1) this means that N =
O(n). We also note that given a representation I of a D-DI graph G, a represen-
tation of G satisfying (1) can be computed in polynomial time.

3 Maximum Independent Set

In this section we present a dynamic programming algorithm for Maximum
Independent Set on D-DI graphs that runs in O(DnD) time, for any D. The
algorithm can be thought of as a generalization of the well known algorithm for
maximum independent set on interval graphs.

The dynamic programming algorithm for Maximum Independent Set in
interval graphs is based on the following property. Given an interval Ii and an
independent set S ⊆ I<i, let I be the interval with the right-most end point in
S. If S ′ ⊆ I \I<i is a maximum weight subset such that {I}∪S ′ is independent,
then S ′ is a maximum weight subset such that S ∪ S ′ is independent. Namely,
S can be represented by a single interval for the purpose of finding the best
completion of S from I \ I<i. Furthermore, checking whether S ∪ {Ii} is an
independent set can done by checking if Ii intersects I. Our algorithm is based
on an extension of this property for D-DI graphs.

First, we show that finding a maximum weight completion of S from I \ I<i

amounts to finding a maximum weight completion of Ss(Ii) from I \ I<i.
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Lemma 4. Let Ii ∈ I be a dotted interval, and let S ⊆ I<i be an independent
set. Also, let S ′ ⊆ I \ I<i be an independent set. If S ′ is a maximum weight
subset such that Ss(Ii) ∪ S ′ is independent, then S ′ is a maximum weight subset
of I \ I<i such that S ∪ S ′ is independent.

Proof. Consider an interval J ∈ I \ I<i. Any dotted interval I ∈ S intersects J
then it must satisfy s(Ii) ∈ [s(I), t(I)], which means that I ∈ Is(Ii). It follows
that if Ss(Ii) ∪ {J} is independent, then S ∪ {J} is also independent. ��

Suppose we are considering the addition of Ii to an independent set S ⊆ I<i.
Clearly, dotted intervals in S that terminate before s(Ii) may be ignored. We
show that, from the view point of Ii, only up to d−1 dotted intervals are needed
to represent an independent set S ⊆ I<i.

Lemma 5. Let Ii ∈ I be a dotted interval, and let S ⊆ I<i be an independent
set. S ∪ {Ii} is independent if and only if (i) Ss(Ii) ∪ {Ii} is independent, and
(ii) |Ss(Ii)| < D.

Proof. Any dotted interval I ∈ S intersecting Ii must satisfy s(Ii) ∈ [s(I), t(I)].
In addition, observe that any dotted interval I ∈ Ss(Ii) must contain at least one
point in [s(Ii)−D + 1, s(Ii)). Hence, |Ss(Ii)| < D. ��

Our dynamic programming algorithm is based on Lemmas 4 and 5. The dynamic
programming table Π is constructed as follows. A state is a pair of a dotted
interval Ii and an independent set P ⊆ Is(Ii) of size at most D − 1. The entry
Π(Ii,P) stands for the maximum weight of an independent set S ′ ⊆ I\I<i such
that S ′ ∪P is independent. Observe that the optimum is given by Π(I1, ∅). The
size of the table is O(nD).

In the base case, we have

Π(In,P) =

{
0 P ∪ {In} is not independent

w(In) otherwise .

For i < n, if P ∪ {Ii} is not an independent set we have

Π(Ii,P) = Π(Ii+1,P ∩ Is(Ii+1)) .

On the other hand, if P ∪{Ii} is an independent set, then there are two options.
If there exists an index k > i for which the size of (P ∪ {Ii})∩Is(Ik) is less than
D, then we have

Π(Ii,P) = min
{
Π(Ii+1,P ∩ Is(Ii+1)) , w(Ii) +Π(Ik, (P ∪ {Ii}) ∩ Is(Ik))

}
,

where k > i is the smallest index for which the size of (P ∪ {Ii}) ∩ Is(Ik) is less
than D. If such an index does not exist, then

Π(Ii,P) = min
{
Π(Ii+1,P ∩ Is(Ii+1)) , w(Ii)

}
.

The correctness of the algorithm is implied by Lemmas 4 and 5. Hence it remains
to show that the running time of the algorithm is O(DnD). We do so by proving
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that the running time of computing an entry of Π is O(D). First, checking
whether P ∪ {Ii} is an independent set takes O(D) time. Filtering out dotted
intervals from P or P ∪ {Ii} that do not belong to Is(Ii+1) or to Is(Ik) also
requires O(D) time. Also, finding k, if necessary, can be done in O(D) time.

The computation of Π(I1, ∅) can be modified to compute a corresponding
independent set using standard techniques. The complement of an independent
set is a vertex cover, so the complement of the set returned by our algorithm is
minimum weight vertex cover. Hence, we get the following theorem.

Theorem 1. There is an O(DnD)-time algorithm for Maximum Indepen-
dent Set and Minimum Vertex Cover in D-DI graphs with n vertices.

Notice that our algorithm runs in O(n) time when D = 1, so Theorem 1 can
be viewed as a strict generalization of the classical linear time algorithm for
Maximum Independent Set in interval graphs.

4 Dominating Set

Using a similar approach to the one used for Maximum Independent Set in
D-DI graphs, we can solve the Minimum Dominating Set problem in D-DI
graphs in O(D2nO(D2)) time, for any D.

Our algorithm for Minimum Dominating Set is based on the following idea.
Let S be a dominating set of I and consider the set S<i = S ∩ I<i. Clearly, S<i

covers some dotted intervals from I<i, but it may be the case that there are
dotted intervals in I<i that do not intersect S<i. Such dotted intervals must end
at or after s(Ii). Furthermore, S<i may cover dotted intervals in I \ I<i.

Given a dotted interval Ii and a subset S ⊆ I<i, we say that S ′ ⊆ I \ I<i is
a completion of S if S ∪ S ′ is a dominating set of I. Notice that it may be the
case that such a completion for S does not exist. Also, given a set T , we say
that I ∈ T is a left representative of T with jump d(I) and offset o(I) if

t(I) = min {t(I ′) : I ′ ∈ T and d(I ′) = d(I) and j(I ′) = j(I)} .

Similarly, I is a right representative of T with jump d(I) and offset o(I) if

t(I) = max {t(I ′) : I ′ ∈ T and d(I ′) = d(I) and j(I ′) = j(I)} .

The set of left and right representatives of T is denoted by T L and T R, and
contain one representative from each jump-offset pair realized by intervals in T .

Lemma 6. Let Ii ∈ I be a dotted interval, let S ⊆ I<i, and let T ⊆ I<i be
the subset of dotted intervals that are not covered by S. If S ′ ⊆ I \ I<i is a
minimum weight subset such that SR

s(Ii)
∪S ′ dominates T L∪ (I \I<i), then S ′ is

a minimum weight completion of S. Furthermore, |SR
s(Ii)

|+ |T L| ≤ 1
2D(D + 1).

Proof. First notice that if S covers a dotted interval I ∈ I \ I<i, then SR must
also cover I. Also, if S ′ covers T L, then it must cover T .
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Finally, observe that T ⊆ Is(Ii) since otherwise S cannot be completed. It
follows that it cannot be that I ∈ SR

s(Ii)
and J ∈ T L represent the same jump

and offset, since in this case I covers J . Hence, SR
s(Ii)

∪ T L contain at most one

representative for each pair of jump and offset, and there are 1
2D(D + 1) such

pairs. ��

The dynamic programming table Π is constructed as follows. A state is a triple
of a dotted interval Ii, and sets P and Q such that

– P ,Q ⊆ Is(Ii).
– P ∩ Q = ∅.
– P ∪Q contain at most one dotted interval for every pair of jump and offset.

The entry Π(Ii,P ,Q) stands for the minimum weight subset S′ such that P∪S ′

dominates (I \ I<i) ∪Q. Observe that the optimum is given by Π(I1, ∅, ∅). The
size of the table is nO(D2).

In the base case, we have

Π(In,P ,Q) =

⎧
⎪⎨

⎪⎩

0 Q = ∅ and P covers In,

w(In) Q �= ∅ and In covers Q,

∞ otherwise.

For i < n, if Q �⊆ Is(Ii), then

Π(Ii,P ,Q) = ∞ .

otherwise,

Π(Ii,P ,Q) = min
{
Π(Ii+1,Ps(Ii+1),Q) , Π(Ii+1, (P ∪ {Ii})s(Ii+1),Q′)

}
,

where Q′ ⊆ Q is the subset of dotted intervals that are not covered by Ii.
The correctness of our algorithm is implied by Lemma 6. Computing the value

Π(Ii,P ,Q) can be done in O(D2). Hence, the running time of the algorithm

is O(D2nO(D2)). The computation of Π(I1, ∅) can be modified to compute a
corresponding independent set using standard techniques.

Theorem 2. There is an O(D2nO(D2))-time algorithm for Minimum Domi-
nating Set on D-DI graphs with n vertices.

5 Deletion Problems

This section presents an EPTAS for a wide class of deletion problems in D-
DI graphs. Three classical examples of such problems are Minimum Vertex
Cover, Minimum Feedback Vertex Set, and Minimum Planar Dele-
tion. For ease of presentation, we first describe our algorithm for Minimum
Vertex Cover, and then later explain how it generalizes to other deletion
problems. We begin by recalling the definition of a path decomposition [18]:



Optimization Problems in Dotted Interval Graphs 53

Definition 1. A path decomposition of a given graph G is a path P whose
vertices V (P) ⊆ 2V (G) are subsets of vertices in G, called bags, satisfying the
following two properties:

–
⋃

P∈V (P)G[P ] = G, and

– for every v ∈ V , the set of bags {P ∈ V (P) : v ∈ P} induces a subpath in P.

The width of the path decomposition P is maxP∈P |P | − 1. The pathwidth of G
is the minimum width of any path decomposition of G.

It is well known that an interval graph with maximum clique size k has pathwidth
k − 1. The next lemma shows that this result generalizes quite nicely to D-DI
graphs.

Definition 2. A clique K in a D-DI graph with dotted interval representation
I is a point clique if there exists a point p ∈ N which is included in every Iv ∈ I
with v ∈ K.

Lemma 7. A D-DI graph with maximum point clique size k has pathwidth at
most Dk − 1.

Proof. Let G be a D-DI graph, and let I denote a set of dotted intervals corre-
sponding to G. Let Ki denote the set of all vertices whose corresponding dotted
interval include the integer i ∈ N. Define a path decomposition P := P1, . . . , PN

for G by Pi :=
⋃i+D−1

j=i Kj for all i ∈ {1, . . . , N}, where N is the maximum
integer included in any dotted interval of I. Since G has no clique of size k + 1,
we have |Ki| ≤ k for all i ∈ N. Thus, |Pi| ≤ Dk for all i ∈ {1, . . . , N}. We finish
the proof by showing that P is indeed a path decomposition of G.

First observe that any vertex of G is included in some Ki ⊆ Pi. Second, since
for any edge {u, v} ∈ E(G) we have i ∈ Iu ∩ Iv for some i ∈ {1, . . . , N}, every
edge is also completely contained in some Ki, which in turn is contained in Pi;
thus,

⋃
iG[Pi] = G. Finally, observe that for any vertex v, if v ∈ Pi ∩ Pi+2 for

any i ∈ {1, . . . , N − 2}, then it must be the case that v ∈ Pi+1; otherwise, the
jump of Iv must be at least D+1. Thus, the second condition in Definition 1 is
also satisfied, and P is a path decomposition of width at most Dk − 1. ��

Aumann et al. [2] show that for any D ∈ N there exists a finite bipartite graph
G which is not a D-DI graph. An interesting corollary of Lemma 7 is that such a
statement is true even for trees, a much more restricted class of bipartite graphs.

Corollary 1. For any D ∈ N there is a finite tree T which is not a D-DI graph.

Proof. Let D be given. Robertson and Seymour [18] argued that for any integer
w ∈ N there is a finite tree with pathwidth greater than w. By Lemma 7,
choosing such a tree for w := 2D gives a tree T which is not a D-DI graph, since
the maximum clique size of T is 2. ��

Another interesting corollary of Lemma 7 more relevant to our purposes is that
Minimum Vertex Cover can be solved optimally in D-DI graphs of maximum
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(point) clique size k in time 2O(Dk) ·n. This follows from the well known 2O(w) ·n
algorithm for Minimum Vertex Cover in graph of pathwidth at most w (see
e.g. [6]). Recall that by Observation 3, we can assume that N = O(n) so the
path decomposition obtain in the proof of Lemma 7 can be computed in linear
time.

Corollary 2. There is a linear-time algorithm for solving Minimum Vertex
Cover restricted to D-DI graphs given with representations that have maximum
point clique size k.

Theorem 3. For any fixed d ∈ N and ε > 0, there exists a linear time (1 + ε)-
approximation algorithm for unweighted Minimum Vertex Cover in D-DI
graphs.

Proof. Let G be a given D-DI graph with representation I, and let k := 1/ε.
We first greedily compute a maximal set K := {K1, . . . ,Kt} of pairwise disjoint
point cliques of size k + 1 in G. (Note that there can be several point cliques of
size k + 1 at the same point.) Such a set can be computed in linear time. Let
S1 :=

⋃
K, and let G1 := G[S1] and G2 := G[V \ S1]. Then G2 has maximum

point clique size k, and so by Corollary 2 we can compute an optimal vertex cover
S2 for G in linear time. Our algorithm outputs the set of vertices S := S1 ∪ S2.
Clearly, S is a vertex cover of G. We next argue that S is has size at most
(1 + ε)|opt|, where opt is a minimum vertex cover of G.

Let opt1 and opt2 respectively denote minimum vertex covers of the graphs
G1 and G2. Then |opt2| = |S2| and |opt1| + |opt2| ≤ |opt|. Observe that for
any clique K ∈ K, we must have |opt1 ∩K| ≥ k, otherwise opt1 would not be
a vertex cover of G1. Since each such K has size k + 1, we have

|S1| ≤ (1 + 1/k)|opt1| = (1 + ε)|opt1|.

Thus,
|S| = |S1|+ |S2| ≤ (1 + ε)|opt1|+ |opt2| ≤ (1 + ε)|opt|.

��

We next consider other deletion problems. For a graph class (property) G, the
Minimum G-Deletion problem takes as input a graph G, and the goal is to
compute a minimum size subset of vertices S in G such that G − S ∈ G. We
will be interested in this problem for graph classes G that have finite forbidden
subgraph, topological minor, or minor characterizations. We call such a graph
class finitely defined. For example, if G is the class of forests (and Minimum G-
Deletion is Minimum Feedback Vertex Set) then G has a finite forbidden
minor characterization which consists of the single graph K3; when G is the set
of all planar graphs then it has forbidden minor characterization consisting of
K3,3 and K5.

Let G be a finitely defined graph class. First, notice that for any positive
integer w, the Minimum G-Deletion problem can be solved in linear time when
restricted to graphs of treewidth w; this is due to an extension of Courcelle’s
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Theorem [10] due to Borie et al. [7]. Second, notice that the clique-deletion
technique that is applied in the proof of Theorem 3 can be extended to Minimum
G-Deletion. Specifically, this is done by setting k := (h− 1)/ε, where h is the
minimum number of vertices in any graph of the forbidden characterization of G.
Clearly any solution S for Minimum G-Deletion must include at least k−h+1
vertices of any clique of size k in the input graph G, since otherwise G− S will
contain a graph from the forbidden characterization of G. Using this observation,
the argument used in Theorem 3 follows exactly as is.

Theorem 4. For any fixed d ∈ N and ε > 0, and any finitely defined graph
class G, there exists a linear time (1+ε)-approximation algorithm for unweighted
Minimum G-Deletion in D-DI graphs.

6 Concluding Remarks

This paper presents algorithms for a number of classical optimization problems in
D-DI graphs. We show an O(DnD)-time algorithm forMaximum Independent

Set and Minimum Vertex Cover in D-DI graphs, and give an O(D2nO(D2))-
time algorithm for Minimum Dominating Set. We also present a linear-time
(1 + ε)-approximation algorithm for unweighted Minimum Vertex Cover in
D-DI graphs, that generalizes to a wide range of deletion problems. We note
that for Minimum Vertex Cover and many other problems for this class,
our algorithm also works for the general weighted case using the local ratio
technique [3] for the clique-deletion process in the proof of Theorem 3. However
since the Borie et al. [7] extension of Courcelle’s Theorem does not work for
weighted graphs, Theorem 4 in its generality only applies to uniform weights.

Two main open problems stem from our work. The first is to settle the fix pa-
rameter tractability of these problems of the problems considered in this paper,
when parameterized by D. In particular, is Minimum Vertex Cover param-
eterized by D in FPT, or is it W[1]-hard? The second question arises from the
fact that our algorithms crucially exploit the D-DI representation of the input
graph. Thus, the natural question to ask is whether one can in polynomial-time
compute a D-DI representation for a given graph G and a fixed D, or to deter-
mine that none exists. This can be done efficiently when D = 1 since it reduces
to finding an interval representation of a given interval graph. We conjecture
that finding a D-DI representation is NP-hard for D ≥ 2.
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