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Abstract. We study the complexity of the Graph Isomorphism problem
on graph classes that are characterized by a finite number of forbidden
induced subgraphs, focusing mostly on the case of two forbidden sub-
graphs. We show hardness results and develop techniques for the struc-
tural analysis of such graph classes, which applied to the case of two
forbidden subgraphs give the following results: A dichotomy into isomor-
phism complete and polynomial-time solvable graph classes for all but
finitely many cases, whenever neither of the forbidden graphs is a clique,
a pan, or a complement of these graphs. Further reducing the remaining
open cases we show that (with respect to graph isomorphism) forbidding
a pan is equivalent to forbidding a clique of size three.

1 Introduction

Given two graphsG1 andG2, the Graph Isomorphism problem (GI) asks whether
there exists a bijection from the vertices of G1 to the vertices of G2 that preserves
adjacency. This paper studies the complexity of GI on graph classes that are
characterized by a finite number of forbidden induced subgraphs, focusing mostly
on the case of two forbidden subgraphs. For a set of graphs {H1, . . . , Hk} we
let (H1, . . . , Hk)-free denote the class of graphs G that do not contain any Hi as
an induced subgraph.

As a first example, consider the class of graphs containing neither a clique Ks

on s vertices, nor an independent set It on t vertices. Ramsey’s Theorem [19]
states that the number of vertices in such graphs is bounded by a function f(s, t).
Thus the classes (Ks, It)-free are finite and Graph Isomorphism is trivial on them.
All other combinations of two forbidden subgraphs give graph classes of infinite
size, since they contain infinitely many cliques or independent sets.

As a second example, consider the graphs containing no clique Ks on s ver-
tices and no star K1,t (i.e., an independent set of size t with added universal
vertex adjacent to every other vertex). On the one hand this class contains all

� In this version some proofs are omitted. For these the reader is referred to [12].
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graphs of maximum degree less than min{s−1, t}, on the other hand, all graphs
in (Ks,K1,t)-free have bounded degree: Indeed, if the degree of a vertex is suffi-
ciently large, its neighborhood must contain a clique of size s or an independent
set of size t by Ramsey’s Theorem [19], leading to one of the two forbidden
subgraphs. Thus, using Luks’ algorithm [16] that solves Graph Isomorphism on
graphs of bounded degree in polynomial time, isomorphism of (Ks,K1,t)-free
graphs can also be decided in polynomial time.

To systematically study Graph Isomorphism on graph classes characterized
by forbidden subgraphs, we ask: Given a set of graphs {H1, . . . , Hk}, what is the
complexity of Graph Isomorphism on the class of (H1, . . . , Hk)-free graphs?

Related Work. The Graph Isomorphism problem is contained in the complex-
ity class NP, since the adjacency preserving bijection (the isomorphism) can
be checked in polynomial time. No polynomial-time algorithm is known and it
is known that Graph Isomorphism is not NP-complete unless the polynomial
hierarchy collapses [5]. More strongly, Graph Isomorphism is in the low hier-
archy [21]. This has led to the definition of the complexity class of problems
polynomially equivalent to Graph Isomorphism, the so-called GI-complete prob-
lems. There is a vast literature on the Graph Isomorphism Problem; for a general
overview see [22] or [10], for results on its parameterized complexity see [13].

A question analogous to ours, asking about Graph Isomorphism on any class
of (H1, . . . , Hk)-minor-free graphs, is answered completely by the fact that Graph
Isomorphism is polynomially solvable on any non-trivial minor closed class [18].
Recently, the corresponding statement for topological minor free classes was also
shown [8]. For the less restrictive family of hereditary classes, only closed un-
der vertex deletion (i.e., classes H-free for a possibly infinite set of graphs H),
both GI-complete and tractable cases are known: Graph Isomorphism is GI-
complete on split graphs, comparability graphs, and strongly chordal graphs [23].
Graph Isomorphism is known to be polynomially solvable for circle graphs and
circular-arc graphs [9], interval graphs [2,15], distance hereditary graphs [17],
and graphs of bounded degree [16]. For various subclasses of these polynomi-
ally solvable cases results with finer complexity analysis are available, but of
course the polynomial-time solvability for these subclasses follows already from
polynomial-time solvability of the mentioned larger classes. Further results, in
particular on GI-completeness, can be found in [4].

Concerning our question, for one forbidden subgraph, the answer, given by
Colbourn and Colbourn, can be found in a paper by Booth and Colbourn [4]:
If the forbidden induced subgraph H1 is an induced subgraph of the path P4

on four vertices, denoted by H1 ≤ P4, then Graph Isomorphism is polynomial
on H1-free graphs, otherwise it is GI-complete.

Apart from the isomorphism problem, other studies aiming at dichotomy re-
sults for algorithmic problems on graph classes characterized by two forbidden
subgraphs consider the chromatic number [11] and dominating sets [14].

Main Result. Let a graph be basic if it is an independent set, a clique, a P3∪̇K1,
or the complement of a P3 ∪̇K1 (also called pan). If neither H1 nor H2 is basic,
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It P4 ∪̇K1 K1,3 ∪̇ I2 fork

Fig. 1. The independent sets, the paths of length 3 with independent vertex, the claw
with two independent vertices, and the fork, obtained by subdividing an edge in a claw

then we obtain a classification of (H1, H2)-free classes into polynomial and GI-
complete cases, for all but a small finite number of classes. Theorem 1 justifies
the terminology basic by showing that in our context forbidding a basic graph
is equivalent to forbidding a complete graph. However, the case of forbidding a
clique (alongside a second graph) appears to be structurally different and for a
complete classification further new techniques are required.

Technical Contribution. Our main technical contribution lies in establishing
tractability of Graph Isomorphism on four types of (H1, H2)-free classes (The-
orem 4 in Section 4): A structural analysis of the classes enables reductions to
the polynomially-solvable case of bounded color valence [1]. This reduction ap-
pears necessary since the polynomially-solvable classes of Theorem 4 encompass
all classes of graphs of bounded degree, and for these Luks’ group-theoretic ap-
proach [16] (implicit in [1]) is the only known polynomial-time technique. At
the core of the proof of Theorem 4 lie individualization-refinement techniques
and recursive structural analysis to allow for a reduction to the bounded color
valence case.

However, to put these results in context and obtain the mentioned classifica-
tion, we have to refine several known results for GI-completeness on bipartite,
split, and line graphs (Section 3). In particular, we arrive at a set of four graph
properties, which we call split conditions, such that Graph Isomorphism remains
complete on any class (H1, H2)-free unless each property is true for at least one
of the two forbidden subgraphs.

Based on this characterization we can state our results in more detail: If on
the one hand neither of the two forbidden subgraphs H1 and H2 exhibits all four
split conditions, then we have a dichotomy of GI on (H1, H2)-free classes into
polynomial and GI-complete classes; the polynomial cases are due to Theorem 4
(see Section 4) as well as tractability on cographs (i.e., P4-free graphs) [7], GI-
completeness follows by using both known results as well as our strengthened
reductions (see Section 3). Suppose on the other hand H1 and H2 are both not
basic and H1 simultaneously fulfills all four split conditions, then our hardness
and tractability results resolve all but a finite number of cases (i.e., each case is
one concrete class (H1, H2)-free), as showed in Theorem 6 (see Section 5). For
these cases Figure 1 shows the relevant maximal graphs that adhere to all four
split conditions.
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2 Preliminaries

We write H ≤ G if the graph G contains a graph H as an induced subgraph.
A graph G is H-free if H � G. It is (H1, . . . , Hk)-free, if it is Hi-free for all i.
A graph class C is H-free (resp. (H1, . . . , Hk)-free) if this is true for all G ∈ C.
A graph class C is hereditary if it is closed under taking induced subgraphs.
The class (H1, . . . , Hk)-free is the class of all (H1, . . . , Hk)-free graphs; each
class (H1, . . . , Hk)-free is hereditary.

By It, Kt, Pt, and Ct we denote the independent set, the clique, the path, and
the cycle on t vertices; K1,t is the claw with t leaves. By H ∪̇H ′ we denote the
disjoint union of H and H ′; we use tK2 for the disjoint union of t graphs K2.
By G we denote the (edge) complement of G. The graph K2 ∪̇ I2, i.e., the same
as a K4 minus one edge, is called diamond.

We recall that GI-completeness is inherited by superclasses while polynomial-
solvability of Graph Isomorphism is inherited by subclasses. Also recall that
Graph Isomorphism on a class C is exactly as hard as on C, the class of comple-
ments of graphs in C. Note that any H-free graph is also H ′-free if H ≤ H ′.

Proposition 1. Let H1, H2 be graphs and let C be any hereditary graph class.

1. (H1, H2)-free = (H1, H2)-free.
2. (H1, H2)-free ⊆ (H ′

1, H
′
2)-free for any H ′

1, H
′
2 with H1 ≤ H ′

1 and H2 ≤ H ′
2.

3. H1, H2 /∈ C implies C ⊆ (H1, H2)-free.

Definition 1. The pan is the graph P3 ∪̇K1, i.e., a vertex and triangle joined
by one edge. A graph is basic, if it is an independent set, a complete graph, the
graph P3 ∪̇K1, or the pan.

We now show that in the context of the isomorphism problem excluding a basic
graph is equivalent to excluding a complete graph or an independent set.

Lemma 1. Let G be a graph that contains P4 as an induced subgraph.

1. If G is co-connected then it contains I3 if and only if it contains P3 ∪̇K1.
2. If G is connected then it contains K3 if and only if it contains a pan.

Proof. By complementarity it suffices to prove Part 2. Fix a P4 in the graph.
Containment of a pan trivially implies containment of a triangle. For the con-
verse, it can be easily verified that there is a pan, if some some triangle contains
at least two vertices of the P4. Else, if a triangle contains one vertex p of the P4,
we can add a vertex of the P4 adjacent to p to the triangle, obtaining a pan.
Else (i.e., if no triangle is incident with the P4) consider the triangle closest to
the P4. Due to connectivity, there is a vertex that is adjacent to some vertex
of the triangle and closer to the P4. If this vertex is adjacent to exactly one
vertex of the triangle, a pan arises. Otherwise we find a closer triangle, which
contradicts our initial choice. ��
Theorem 1. Graph Isomorphism on a class C of K3-free graphs is polynomial
time equivalent to GI on the subclass of C that contains all pan-free graphs of C.
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Proof. Since Graph Isomorphism for P4-free graphs (so-called cographs) is solv-
able in polynomial time [7], the theorem follows from Lemma 1 and the fact that
graph isomorphism can be solved by comparing connected components. ��

3 Hardness Results

Our standard method to show GI-completeness for Graph Isomorphism on some
graph classH works by reducing the isomorphism problem of a classH′ for which
Graph Isomorphism is known to be GI-complete to a subclass of H. For this we
require a mapping π : H′ → π(H′) ⊆ H which is computable in polynomial
time and for which the images of two graphs are isomorphic if and only if the
two original graphs are. We call such a mapping π a GI-reduction. To show
hardness for a class (H1, H2)-free it suffices to provide a GI-reduction π for
which no graph G ∈ π(H′) contains H1 or H2 as an induced subgraph, implying
that π(H′) ⊆ (H1, H2)-free.

Our first reductions prove hardness results for bipartite graphs, split graphs,
and line graphs. However, the (previously known) GI-completeness for these
particular graph classes is not sufficient. We require hardness for more specific
subclasses avoiding specific small graphs. Subsequently, using a more involved
reduction, we show that isomorphism of (P4∪̇K1,K4)-free graphs is GI-complete.

3.1 Bipartite Graphs

A straightforward GI-reduction consists of subdividing each edge of a graph by
a new vertex. Since the obtained graphs are bipartite, this proves that Graph
Isomorphism remains GI-complete on bipartite graphs. This also implies that
Graph Isomorphism remains GI-complete on (H1, H2)-free graphs unless one of
the graphs is bipartite, since the class (H1, H2)-free contains all bipartite graphs
if neither H1 nor H2 is bipartite. Let us observe however, that we can draw
stronger conclusions namely that Graph Isomorphism remains GI-complete on
connected bipartite graphs without induced cycles of length 4, for which the
vertices in one of the partition classes have degree two. The following definition
allows us to make a first structural observation for the graphs H1, H2:

Definition 2. A path-star is a subdivision of the t-claw K1,t, for some t ∈ N.

Lemma 2. If neither H1 nor H2 is a disjoint union of path-stars, then Graph
Isomorphism on the class (H1, H2)-free is GI-complete.

Proof. If a graph is not a disjoint union of path-stars, then it either contains two
vertices of degree at least 3 which are in the same connected component, or it
contains a cycle. We use that two graphs G1 and G2 are isomorphic, if and only
if the graphs obtained by subdividing each edge in G1 and G2 respectively are
isomorphic. For any integer c there is an integer c′ such that a graph that has
been subdivided c′ times neither contains a cycle of length at most c nor two
vertices of degree at least three which are at a distance of at most c apart.

Thus, with a finite number of subdivision steps, we can reduce Graph Isomor-
phism on general graphs to isomorphism on (H1, H2)-free graphs. ��
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Using Part 1 of Proposition 1, we conclude that unless Graph Isomorphism is
GI-complete on (H1, H2)-free, one of the graphs H1, H2 is a forest and one of
the graphs is a co-forest.

Lemma 3. A graph H and its complement H are forests, if and only if H ≤ P4.

Proof. For the if part it suffices to observe that P4 is a self-complementary forest.
The only if part is true for graphs of size at most 4. A forest on n ≥ 5 vertices
has at most n−1 edges. Since 2(n−1) <

(
n
2

)
for n ≥ 5 the statement follows. ��

Graph Isomorphism for P4-free graphs (cographs) is in P [7]. With the previous
two lemmas one can conclude that it remains GI-complete on H-free graphs
when H is not an induced subgraph of the P4; this gives a simple dichotomy for
the case of a single forbidden induced subgraph.

Theorem 2 (see [4]). Let H be a graph. Graph Isomorphism on H-free graphs
is in P, if H ≤ P4. GI on H-free graphs is GI-complete, if H � P4.

In the following, we focus on graph classes characterized by two forbidden in-
duced subgraphs. Since isomorphism of P4-free graphs is in P, we assume from
now on that H1 � P4 and H2 � P4. Due to Lemmas 2 and 3 and Part 1 of
Proposition 1 we may further assume that H1 is a disjoint union of path-stars
and H2 is the complement of a disjoint union of path-stars.

Being forests, unions of path-stars are bipartite. Since bipartite graphs play a
repeated role, we introduce some terminology: For a bipartite graphG, which has
been partitioned into two classes , the bipartite complement is the graph obtained
by replacing all edges that run between vertices from different partition classes by
non-edges and vice versa. (Note that the bipartite complement for unpartitioned
bipartite graphs is only well defined if the graph is connected.) A crossing co-
cycle is a set of vertices that form a cycle in the bipartite complement.

Lemma 4. Isomorphism of graphs that are (H1, H2)-free is GI-complete un-
less H1 or H2 can be partitioned as a bipartite graph without crossing co-cycle.

Proof. Graph Isomorphism is GI-complete on connected graphs. By repeatedly
subdividing a connected graph we produce a bipartite graph with an arbitrarily
high girth. If at least three subdivisions have been performed on a non-trivial
graph, its bipartite complement is connected. Thus taking the bipartite comple-
ment of such graphs is a GI-reduction (the bipartite complement of the bipartite
complement is the original graph), and we obtain the lemma. ��

Lemma 5. For each G ∈ {3K2, 2K2 ∪̇ I2, P4 ∪̇ I2}, Graph Isomorphism on
the class on the class of (H1, H2)-free graphs is GI-complete unless one of the
graphs H1 and H2 is bipartite and does not contain the graph G.

Proof. Using Lemma 4 this follows, since none of the graphs 3K2, 2K2 ∪̇ I2,
and P4 ∪̇ I2 can be partitioned as bipartite graph without crossing co-cycle. ��
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3.2 Split Graphs

We now turn our attention to split graphs. A split graph is a graph whose vertices
can be partitioned into an independent set and a clique. Recall that the split
graphs are exactly the (2K2, C4, C5)-free graphs. The reduction that subdivides
each edge and connects all newly introduced vertices produces a split graph, and
thus proves GI-completeness on that class. As in the previous section we are able
to draw further conclusions about the obtained graphs.

Definition 3. Let G be a split graph that has been partitioned into a clique K
and an independent set I. We say that the partition is

1. of type 1, if the vertices in class K have at most 2 neighbors in class I.
2. of type 2, if the vertices in class K have at most 2 non-neighbors in class I.
3. of type 3, if the vertices in class I have at most 2 neighbors in class K.
4. of type 4, if the vertices in class I have at most 2 non-neighbors in class K.

An unpartitioned graph G is said to fulfill split graph condition i (with i ∈
{1, 2, 3, 4}), if there is a split partition of the graph that is of type i.

Lemma 6. For any i ∈ {1, 2, 3, 4}, Graph Isomorphism on the class of graphs
that fulfill split graph condition i is GI-complete.

For the proof, we refer the reader to [12]. Since the class of graphs which fulfill
condition i is closed under taking induced subgraphs, the lemma implies that
Graph Isomorphism on the class (H1, H2)-free is GI-complete unless for all i ∈
{1, 2, 3, 4} one of the graphs H1 or H2 fulfills split graph condition i.

3.3 Line Graphs

The next graph class we consider is the class of line graphs. The line graph of
a graph G = (V,E) is the graph L(G) = (E,E′), in which two vertices are
adjacent, if they represent two incident edges in the graph G. The line graph of
a graph G encodes the isomorphism type of a graph G.

Lemma 7 ([24]). Let G1, G2 be connected graphs such that neither is a triangle.
Then G1 and G2 are isomorphic if and only if their line graphs are.

The class of line graphs has a characterization by 9 forbidden subgraphs [3].
However, we reduce to a subclass characterized by three forbidden subgraphs.

Lemma 8. Line graphs of graphs of girth at least 5 contain no K1,3, no C4,
and no diamond.

Proof. A claw K1,3 in a line graph L(G) would correspond to three edges in G
that each share an endpoint with a fourth edge; then two of the three edges must
share an endpoint (forcing an additional edge in L(G)). A C4 in L(G) corresponds
to a C4 in G. Finally, if three edges of a triangle-free graph G pairwise share
an endpoint, then they all three share the same endpoint. A fourth edge can
therefore not share an endpoint with exactly two of the edges without forming
triangle in G, i.e., there can be no diamond in L(G). ��
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Fig. 2. A claw with a subdivision and added isolated vertices. Every split path-star is
a subgraph of such a graph. They are denoted by H(a, b, c) where a is the number of
subdivided edges, a+ b the degree of the claw, and c the number of isolated vertices.

Since there is essentially a one-to-one correspondence between graphs and their
line graphs, and Graph Isomorphism is GI-complete on triangle-free graphs
(since K3 � P4), it is also GI-complete on line graphs of triangle-free graphs.

Lemma 9. Graph Isomorphism is Graph Isomorphism-complete on the class
of (diamond, claw,C4)-free graphs.

Proof. Since Graph Isomorphism is GI-complete on connected graphs of girth at
least 5, and since graphs of girth at least 5 do not contain triangles, the lemma
follows from Lemmas 7 and 8. ��

3.4 A Reduction to (P4 ∪̇ K1,K4)-Free Graphs

There is a reduction that reduces the class of all graphs to the (P4 ∪̇K1,K4)-free
graphs. For an explicit description and correctness proof of the reduction, we re-
fer the reader to [12]. Our reduction generalizes the reduction to bipartite graphs,
making a replacement of the edges while additionally connecting some of the so-
created independent sets. In this sense the reduction (as many other established
reductions) is part of a larger scheme of GI-reductions, which use finitely many
independent sets, cliques, and relationships between them to encode graphs. We
obtain the following theorem.

Theorem 3. Graph Isomorphism is GI-complete on (P4 ∪̇K1,K4)-free graphs.

4 Structural Results and Polynomially-Solvable Cases

We have previously seen that Graph Isomorphism is GI-complete on graphs that
are (H1, H2)-free unless each of the four split conditions is fulfilled by one of the
two forbidden graphs (Lemma 6). This gives rise to two fundamental cases,
namely whether or not one of the two graphs simultaneously fulfills all split
conditions. In this section we address the case that neither graph fulfills all split
conditions simultaneously. Amongst other conclusions this implies that both
graphs must be split graphs or Graph Isomorphism will remain GI-complete.
Recall also that one graph must be a path-star while the other must be the
complement of a path-star or isomorphism of (H1, H2)-free graphs will be GI-
complete (w.l.o.g. neither of the graphs is an induced subgraph of P4 thus onlyHi

or Hi can be a forest or path-star). Using the results of the previous section we
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are able to fully characterize this case into classes with either polynomial or
GI-complete isomorphism problems.

Without loss of generality we take H1 to be a union of path-stars and H2 to
be the complement of a union of path-stars. We analyze first H1; the graph H2

must be a complement of the possible graphs we obtain. Since H1 is split,
i.e., (2K2, C4, C5)-free, it is a 2K2-free path-star. Therefore it contains at most
one non-trivial component and no induced path P5 on five vertices. Thus if H1

has a vertex v of degree three or larger, then at most one induced path of length
two is emanating from v. Together these observations show that H1 is an induced
subgraph of the type of graph depicted in Figure 2.

We denote by H(a, b, c) the graph that is depicted in Figure 2, with a ∈
{0, 1}, b ∈ N, and c ∈ N. We require that if a = 1 then b > 0, otherwise (if a = 1
and b = 0) we can reinterpret the graph with b = 2 and a = 0 (thus, a = 1 iff
the graph contains a P4). We also require a + b ≥ 1 since the independent set
and the clique fulfill all split conditions. Observe that any induced subgraph of
some H(a, b, c) is isomorphic to H(a′, b′, c′) for some values of a′, b′, c′ (it suffices
to consider the induced subgraphs of the claw with one subdivision).

We will argue that under these restrictions we may focus on the case that a =
a′ = 0, since Graph Isomorphism remains GI-complete otherwise.

Lemma 10. Let H1 = H(a, b, c) and H2 = H(a′, b′, c′) such that neither graph
fulfills all split conditions and such that a+a′ ≥ 1. Then GI remains GI-complete
on (H1, H2)-free graphs.

For the remaining discussion we may thus assume that a = 0 and a′ = 0.

Theorem 4. Isomorphism of (H(0, b, c), H(0, b′, c′))-free graphs is in P when:

1. b = 0 or b′ = 0 (i.e., one of the graphs is a clique or an independent set),
2. c, c′ ≤ 1 and b, b′ ≥ 1,
3. c, c′ ≥ 2 and b, b′ ∈ {1, 2},
4. (c ≥ 2, c′ ≤ 1, b ≥ 1, b′ ∈ {1, 2}), or (c′ ≥ 2, c ≤ 1, b′ ≥ 1, b ∈ {1, 2}).
In all other cases it is GI-complete.

To prove the theorem we use vertex-colorings of the input graphs. (In the context
of Graph Isomorphism the vertex colorings are not assumed to be proper). We say
that a vertex-colored graph has bounded color valences, if there is a constant D,
such that for every color classC every vertex v (possibly inC) has atmostD neigh-
bors or atmostD non-neighbors inC. In a graphwithoutH(0, b, c) andH(0, b′, c′),
bounded color valence within color classes implies bounded color valence overall.
For a proof of this, we refer the reader to [12]. Bounding the color valence one can
reduce the isomorphism problem to that of graphs of bounded degree.

Theorem 5 (Babai, Luks [1]). Graph Isomorphism for colored graphs of
bounded color valence is solvable in polynomial time.

To prove Theorem 4 we distinguish cases according to the numbers c and c′ in
the forbidden subgraphs H(0, b, c) and H(0, b′, c′).
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Proof (General proof strategy for Theorem 4.). For the full proof of Theorem 4,
we refer the reader to [12] and here, instead, provide a high level description of
the general proof-strategy. When proving each of the four cases our strategy is
as follows: The starting observation is that a colored (H(0, b, c), H(0, b′, c′))-free
graph, which has bounded degree or bounded co-degree within each color class,
also has bounded color valence between different color classes. This enables
the use of Theorem 5. Thus, we now intend to find a canonical (in particu-
lar isomorphism-respecting) way of coloring both input graphs, so that the color
classes have bounded degree or bounded co-degree. We employ two methods to
pick color classes, both of them ensure that the coloring preserves isomorphism.
Either we choose the colors of the vertices by properties of the vertices that can
be computed in polynomial time. Or we guess an ordered set of vertices of con-
stant size, color the vertices in this set with singleton colors, and then color the
remaining vertices according to their adjacencies to the vertices in the ordered
set. Guessing a constant number k of vertices increases the running time by a
factor of nk, and can therefore be performed in polynomial time. The second
coloring operation is typically referred to as individualization.

In Case 1 we individualize one vertex, and use induction to obtain a canoni-
cal coloring with the desired properties. In Case 2 we individualize one vertex,
and use a combinatorial argument to show that this gives a canonical coloring
with the desired properties. In Case 4, using Lemma 1, we reduce the prob-
lem to (H(0, b, c),K3)-free graphs, and then apply induction on c to obtain the
canonical coloring. Case 3 is the most interesting one (and rather involved). In
this case, by individualizing a finite number of vertices, we can obtain a colored
graph, in which each of the color classes is a cluster, or a co-cluster graph. (A
cluster is a P3-free graph or equivalently a disjoint union of cliques.) For our
purpose this is not sufficient, as for example a cluster graph can have vertices
that simultaneously have large degree and large co-degree. We call a cluster d-
diverse if it contains at least d disjoint cliques of size at least d. A d-diverse
co-cluster is the complement of a d-diverse cluster. We show that for large d
a (H(0, 2, c), H(0, 2, c′))-free graph cannot contain a d-diverse cluster and a d-
diverse co-cluster at the same time. With this (possibly taking complements) our
situation simplifies to the case where there is one color class A that is a cluster,
and all other color classes are of bounded degree or bounded co-degree. After
splitting off a bounded number of cliques from A, we can show that for each
of the remaining cliques there is only a bounded number of types by which the
vertices are connected to the vertices outside the cluster. Using this we replace
the cluster by a bounded number of representatives, one for each type, color-
encoding the number of vertices of each type. This leaves a graph with bounded
color valence and enables us to apply Theorem 5. ��

5 The Remaining Cases

In the previous section we investigated the case when neither of the two forbidden
induced subgraphs fulfills all split graph conditions. We now consider the case,
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where one of the two graphs fulfills all split graph conditions. W.l.o.g. we let H1

be this graph and require that H1 is a disjoint union of path-stars (otherwise we
take complements); there are only few choices forH1. For the proofs of Lemma 11
and Theorem 6, we refer the reader to [12].

Lemma 11. If a graph G is a union of path-stars and fulfills all split graph
conditions, then it is an induced subgraph of one of the following graphs (depicted
in Figure 1): An independent set, P4 ∪̇K1, K1,3 ∪̇ I2, or the fork.

Theorem 6. Suppose H1 is a nonbasic disjoint union of path-stars and fulfills
all split graph conditions. If H2 has more than 7 vertices, then an application
of one of Lemmas 2, 3, 5, or 9, or Theorems 2, 3, or 4 determines that (H1 ∪̇
H2)-free is GI-complete or polynomial-time solvable. More strongly, this can be
concluded unless H1 is one of the graphs {P4 ∪̇K1,K2 ∪̇ I2, P3 ∪̇ I2} and H2 has
at most 7 vertices and is a disjoint union of at most 3 paths.

6 Conclusion

In order to initiate a systematic study of the Graph Isomorphism Problem
on hereditary graph classes we considered graph classes characterized by two
forbidden induced subgraphs. We presented an almost complete characteriza-
tion of the case that neither of the two forbidden subgraphs is basic into GI-
complete and polynomial cases, leaving only few pairs of forbidden subgraphs.
Theorem 4 constitutes the main technical contribution towards this result. To-
gether with the tractability of P4-free graphs (Theorem 2, [7]) it establishes the
polynomially solvable cases. On the other hand suppose H1 and H2 are non-
basic and (H1, H2)-free is not a polynomial-time solvable case of Theorems 2
or 4. Then, Graph Isomorphism on the class of (H1, H2)-free graphs is GI-
complete, unless for H1 and H2, or for H1 and H2, one of the graphs is in
{P4 ∪̇K1,K2 ∪̇ I2, P3 ∪̇ I2}, and the other graph has at most 7 vertices and is
the complement of a union of at most 3 paths.

Several further cases, e.g., all cases involving the P6 or the P7, can be excluded
by variants of the reduction used for Theorem 3. Of the remaining cases, in
a preprint, Rao [20] resolves positively the case (P4 ∪̇ K1, P4 ∪̇K1)-free and
its subclasses; similar (modular) decomposition techniques appear to apply to
other cases as well. Several of the remaining cases are classes of bounded clique-
width [6], which could indicate their tractability.

For the case in which one of the forbidden graphs is basic, our reductions and
our polynomial-time algorithms are still applicable and resolve a large portion
of the cases. However, as mentioned in the introduction, complete resolution
appears to require new techniques. Future steps for studying the hereditary
graph classes include the resolution of the remaining cases and analysis of graph
classes characterized by more than two forbidden subgraphs.
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10. Köbler, J., Schöning, U., Torán, J.: The graph isomorphism problem: its structural
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