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Abstract. Finding minimal triangulations of graphs is a well-studied
problem with many applications, for instance as first step for efficiently
computing graph decompositions in terms of clique separators. Com-
puting a minimal triangulation can be done in O(nm) time and much
effort has been invested to improve this time bound for general and spe-
cial graphs. We propose a recursive algorithm which works for general
graphs and runs in linear time if the input is a claw-free graph and the
length of its longest path is bounded by a fixed value k. More precisely,
our algorithm runs in O(f + km) time if the input is a claw-free graph,
where f is the number of fill edges added, and k is the height of the exe-
cution tree; we find all the clique minimal separators of the input graph
at the same time. Our algorithm can be modified to a robust algorithm
which runs within the same time bound: given a non-claw free input, it
either triangulates the graph or reports a claw.

Keywords: claw-free graph, minimal triangulation, clique separator de-
composition.

1 Background and Motivation

Chordal graphs are an important class, with properties similar to those of trees,
and corresponding efficient algorithms. A graph is chordal, or triangulated, if it
has no induced chordless cycle on 4 or more vertices; any non-chordal graph
can be embedded into a chordal graph by adding a set of ‘fill’ edges, a process
called ‘triangulation’. Adding a minimum number of fill edges is an NP-complete
problem [39], but adding an inclusion-wise minimal set of edges, thus obtaining
a ‘minimal triangulation’, is polynomial.

Minimal triangulations have many applications (see [4], the recent survey [23]
and references therein). Originally, the problem stemmed from sparse matrix
computation [23,35], where triangulation was needed for Gaussian elimination
in sparse symmetric systems, but it is also useful in other fields such as database
management [1,38].
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One of the more surprising applications for minimal triangulation is that it
is currently a mandatory first step for efficiently computing a decomposition by
clique separators. Clique separator decomposition was introduced by Tarjan [37]
as hole- and C4- preserving, and refined to a unique and optimal decomposition
using clique minimal separators by [28]; this process consists in repeatedly find-
ing a clique minimal separator and copying it into the connected components it
defines (see [9] for details). This decomposition has attracted recent attention
in the context of characterizing graph classes [12,13], for Bayesian networks [31]
and for clustering gene expression data [26].

Regarding minimal triangulation, the seminal paper of Rose, Tarjan and
Lueker [36] presented an O(nm) time algorithmic process. Several other O(nm)
time algorithms have appeared recently [2,3,6,8]. Efforts have been invested into
improving this O(nm) time bound for the general case: [27] offer an O(n2.69)
time bound, later improved by [24] to O(nαlogn) = o(n2.376), where nα is the
time required to do matrix multiplication, currently n2.376. For special graph
classes, there are surprisingly few results which improve the time bound of the
general case: so far, chordal bipartite graphs and hole-and-diamond-free graphs
have been shown to have an O(n2) time algorithm [7]; co-comparability graphs
and AT-free claw-free graphs have a linear-time triangulation algorithm [30];
co-bipartite graphs, a subclass of AT-free claw-free graphs, have an even better
time, since only a subset of edges needs to be traversed [11].

In this paper, we address the issue of improving the computation of a minimal
triangulation for claw-free graphs. For this class, many significant results were
obtained during the past twenty years. A particularly active field of research
is improving the running times for computing maximum (weight) stable sets in
claw-free graphs [20,21,32,33], partly based on decomposing claw-free graphs in
an appropriate way [16,17,18].

A further recent result by [15] showed the presence of a hole containing a
pair of vertices when there is no clique separator between them. However, not
much is known on minimal triangulations and separators for claw-free graphs.
Investigating this aspect, we present some interesting properties, which enable
us to taylor an algorithm for computing both a minimal triangulation and the
clique minimal separators. We show that this algorithm runs in linear time if
the input is a claw-free graph where the length of the longest chordless path
is bounded. More precisely, the algorithm constructs a tree in the graph and
runs in O(f + km), where f is the number of fill edges and k is the length of a
longest branch of the tree. In fact, we present a ’robust’ algorithm which, given
any graph as input, will either triangulate it in O(f + km) or report a claw as
negative certificate. Moreover, as the recognition of claw-free graphs in general
is in O(m1.69) [25], our algorithm may improve finding a claw on some inputs.

The paper is organized as follows: we will give in Section 2 some preliminaries
on minimal triangulation, minimal separation, and clique separators. In Section
3, we present and explain our algorithmic process. Section 4 gives the algorithm
and proves its correctness and complexity. In Section 5, we discuss the robustness
of our algorithm. We conclude with some final remarks.
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2 Preliminaries

Basics. All graphs in this work are connected, undirected and finite. A graph is
denoted by G = (V,E), with |V | = n and |E| = m. We say that a vertex x sees
a vertex y if xy ∈ E. The neighborhood of a vertex x in a graph G is NG(x),
the closed neighborhood is NG[x] = NG(x) ∪ {x}. The neighborhood of a set X
of vertices is NG(X) = ∪x∈XNG(x) −X . A clique is a set of pairwise adjacent
vertices; we say that we saturate a set X of vertices when we add all the edges
necessary to turn X into a clique. A clique module is a set X of vertices such
that ∀x, y ∈ X,N [x] = N [y]. G(X) denotes the subgraph induced by the set X
of vertices, but we will sometimes just denote this by X . A co-bipartite graph
is a graph whose vertex set can be partitioned into two cliques, K1 and K2; we
will call an edge external if it is neither inside K1 nor inside K2. A claw is an
induced subgraph on 4 vertices {x, y1, y2, y3} with 3 edges: xy1, xy2, xy3 where x
is called the center of the claw. The reader is referred to [22] and [14] for classical
graph definitions and results.

Separators. A set S of vertices of a connected graphG is a separator if G(V −S)
is not connected. A separator S is an xy-separator if x and y lie in two different
connected components of G(V − S). S is a minimal xy-separator if S is an xy-
separator and no proper subset S′ of S is also an xy-separator. A separator S is
said to be minimal if there are two vertices x and y such that S is a minimal xy-
separator. For any minimal separator S in a connected graph, there are at least
two connected components C1 and C2 ofG(V −S) such thatN(C1) = N(C2) = S
(called full components); this means that for any pair (x, y) of vertices from the
Cartesian product C1 × C2, S is a minimal xy-separator; note also that every
vertex of S sees both C1 and C2, and that, equivalently, any path from x to y
must go through S.

Property 1. [5] In any non-complete graph, there is a clique module whose neigh-
borhood is a minimal separator, called a moplex; the vertex numbered 1 by
LexBFS belongs to a moplex.

A clique minimal separator is a minimal separator which is a clique.
The minimal separators included in the neighborhood of a vertex x are called

the substars of x [6,29]. Computing these substars can be done as follows: let
{C1 . . . Cp} be the connected components of G(V −N [x]); then S is a substar of
x if (and only if) S = NG(Ci) for some i ∈ [1, p]. Thus the substars are exactly
the neighborhoods of the components defined when x and its neighborhood are
removed from the graph.

Chordal Graphs and Minimal Triangulations. A graph is chordal (or tri-
angulated) if it contains no chordless induced cycle of length 4 or more. Chordal
graphs can be recognized in linear time using Algorithm LexBFS [36]. A graph
is chordal if and only if all its minimal separators are cliques [19]. Given a non-
chordal graph G = (V,E), the supergraph H = (V,E + F ) is a triangulation of
G if H is chordal. F is the set of fill edges, |F | is denoted by f . The triangulation
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is minimal if for any proper subset of edges F ′ ⊂ F , the graph (V,E + F ′) fails
to be chordal.

There is a strong relationship between minimal triangulations and minimal
separators [34]. Minimal separators S and S′ are said to be crossing separators
in a connected graph if S′ has at least one vertex in every connected component
of G(V −S) (the crossing relation is symmetric). A minimal triangulation can be
computed by saturating a maximal set of pairwise non-crossing minimal separa-
tors (this set is of size less than n, whereas there may be an exponential number
of minimal separators in a non-chordal graph). Saturating a minimal separator S
causes all the minimal separators which were crossing with S to disappear. Thus
a minimal separator is a clique if and only if it crosses no other minimal separator
[6,34]. The process of repeatedly choosing a (non-clique) minimal separator of
a graph and saturating it, until there is no non-clique minimal separator left,
results in a minimal triangulation. The substars of a given vertex x are pairwise
non-crossing [6].

Given a graph G = (V,E) and a minimal triangulation H = (V,E + F ) of G,
any minimal separator S of H is a minimal separator of G, and G(V − S) has
the same connected components as H(V − S). Any clique minimal separator of
G is a minimal separator of H [9,34].

Clique Separator Decomposition. The decomposition by clique minimal
separators decomposes a graph (in a unique fashion) into atoms (also called
MP-subgraphs [28]), which are characterized as maximal connected subgraphs
containing no clique separator. In a chordal graph, the atoms are the maximal
cliques.

In [9] it was proved that the decomposition into atoms can be obtained by
repeatedly applying the following decomposition step, which we will call block
decomposition step, until none of the subgraphs obtained contains a clique sepa-
rator: let G = (V,E) be a graph, S a clique minimal separator of G, {C1 . . . Cp}
be the connected components of G(V −S); decompose the graph into the follow-
ing subgraphs: G((C1) ∪N(C1)) . . . G((Cp) ∪N(Cp)), which we will call blocks.
Note that N(Ci) is included in S and is a clique minimal separator in its own
right.

Property 2. [9] After an application of the block decomposition step on a con-
nected graph G using a clique minimal separator S, all the other minimal sepa-
rators of G are partitioned into the blocks obtained, i.e. each minimal separator
is included in exactly one block.

3 Algorithmic Process

In a previous work, we used substars to compute a minimal triangulation [2,6].
The basic step, which is then applied to each vertex of the graph successively, is
very simple: choose an unprocessed vertex x; compute the substars of x and sat-
urate them. In this work, we will use a variant of this algorithm: we will combine
this basic step with a decomposition step by clique minimal separators. Since
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after saturation, the substars become clique minimal separators of the resulting
graph, we can apply the block decomposition step to all the substars, in order
to obtain the corresponding blocks. This results in the following decomposition
step for a vertex x:

Decomposition Step 1
– compute the set {C1 . . . Cp} of connected components of G(V − N [x]) and

the corresponding substars {S1 = N(C1) . . . Sp = N(Cp)};
– saturate all the substars, thus obtaining a graph G′;
– decompose the resulting graph into the neighborhood piece G′(N [x]) and the

blocks of the form G′(Ci ∪ Si).

After applying Decomposition Step 1, we will independently triangulate the
neighborhood piece; we will also recursively apply the algorithm to each of the
resulting blocks.

In any new block obtained during the recursive decomposition process, we will
carefully choose the next vertex x which will be the center of the next substar,
such that x is in the new separator but not in any of the other previously defined
ones:

Property 3. Let G = (V,E) be a graph, let x1 be a vertex of G, let C1 be a
connected component of G(V − N [x1]), let S1 = NG(C1) be the corresponding
substar of x1, let B1 be the block S1 ∪C1, let x2 be a vertex of S1 which is not
universal in B1, let C2 be a connected component of V − (N [x2] ∪ S1) in the
graph induced by B1, let S2 = NG(C2) be the corresponding substar of x2; then
S2 − S1 contains at least one vertex.

Proof. Suppose by contradiction that S2 − S1 is empty; since S1 is a minimal
separator of G, x2, which is in S1, must see some vertex z in C1; thus z is in
C1−C2, so C1 �= C2, so S1 �= S2. Let v be any vertex of C2; since C2 is connected,
there must be a chordless path P in C2 from v to z; let w be the first vertex of
P to be in C1 − C2; w by definition is in S2, as it is in N(C2), but it is not in
S1, a contradiction.

The benefit is that in the new block B2 = S2 ∪C2, all the already computed fill
edges are incident to x2, and thus will not be traversed when searching for the
substars of x2 in block B2. Moreover, we will be moving along a chordless path
during the recursive descent, as the newly chosen vertex x2 will be adjacent to
its father vertex x1, but not to the father of x1. The algorithm stops when there
are no new substars defined for the chosen vertex x in the new subgraph, which
means that x is universal in the block.

By Property 2, after an application of Decomposition Step 1, the remaining
minimal separators are partitioned into the various subgraphs obtained. There-
fore, when processing these subgraphs separately, we obtain the fill edges defin-
ing a minimal triangulation H of G, the minimal separators of H and the clique
minimal separators of G.
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We can initiate the algorithm with a vertex which belongs to a moplex, which
is easy to find according to Property 1; after this minimal separator is satu-
rated, the neighborhood piece is a clique, so no additional effort is required to
triangulate it.

This procedure works on general graphs. However, the time complexity may
not be interesting, because the successive neighborhood pieces are not easy to
triangulate except for the first one, and the substars defined at a given step may
overlap. In fact, checking whether the substars are clique separators and if not,
computing the fill edges necessary to saturate them, can be costly or require a
non-trivial data structure as is the case of the algorithm from [6]. Finally, when
the blocks overlap, a given vertex may be processed many times, with possibly
huge edge overlaps caused by copying the saturated substars.

For claw-free graphs, however, we will establish the following properties, which
will make this an efficient process.

– The first property is that in a claw-free graph, when we initiate the algorithm
by choosing a vertex x in a moplex, x defines a single substar (Corollary 1)
and thus a single block to start with.

– The second property is that if we initiate our algorithm as described above, at
each step of the process, the neighborhood piece obtained is a co-bipartite
graph with a universal vertex added to it (Theorem 1 c)). A co-bipartite
graph can be triangulated in time proportional to the number of external
edges [11]. Moreover, the external edges of the different neighborhood pieces
encountered do not overlap, so traversing the fill edges will globally cost at
most f , where f is the number of fill edges.

– The third property is an important invariant of Decomposition Step 1: each
block obtained remains claw-free, even if the resulting global triangulation
is not claw-free (Theorem 1 b)).

– Finally, at each step processing vertex x, the substars are pairwise disjoint,
and the blocks are also pairwise disjoint (Theorem 1 a)). As a result, a given
vertex will not be processed more than once; moreover, not all vertices will
be processed, as only one vertex per substar is processed, which results in a
possibly linear complexity.

The algorithm moves along what we will refer to as its execution tree T : it will
define a succession of centers of substars, forming a partial subgraph which is
a tree. We will now prove the properties above, which are special for claw-free
graphs.

Lemma 1. Let G be a connected claw-free graph, let S be a minimal separa-
tor of G; then G(V − S) has exactly two components (which are thus both full
components).

Proof. Consider two full components C1 and C2 of G(V −S). By definition, every
vertex of S sees both C1 and C2. If there is a third component C3 of G(V − S),
then at least one vertex x ∈ S has at least one neighbor c3 ∈ C3, forming a claw
with two of its neighbors c1 ∈ C1 and c2 ∈ C2.
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Corollary 1. In a claw-free graph G = (V,E), any vertex x belonging to a
moplex defines only one substar S. Moreover, C = V −N [x] induces a connected
graph, and S = N(C).

Lemma 2. Let G = (V,E) be a claw-free graph, S a minimal separator of G,
C1 and C2 the full components of G(V − S). For any vertex x of S, the sets
N(x) ∩ C1 and N(x) ∩C2 are cliques.

Proof. As C1 and C2 are full components of G(V −S), any vertex x of S sees both
C1 and C2. If there were two non-adjacent vertices in N(x)∩Ci, say c1, c

′
1 ∈ C1,

then x would form a claw together with c1, c
′
1 and any of its neighbors c2 ∈ C2

(or vice versa).

Theorem 1. Consider a claw-free graph G = (V,E) and apply Decomposition
Step 1 using a vertex x. Let G′ be the graph obtained from G after saturating all
the substars of x. Furthermore, for any connected component C of G(V −N [x]),
let S = NG(C) be the corresponding substar of x and B = G′(S ∪ C) be the
corresponding block. Then we have:

a) the substars of x as well as the resulting blocks are pairwise disjoint;
b) all the blocks are claw-free subgraphs of G′;
c) in any block B = G′(S ∪C), let us choose a vertex x′ in S; the neighborhood

piece G′(N [x′]) is a co-bipartite graph with x′ as additional universal vertex.

Proof. Consider a claw-free graph G and adopt the above notations:

a) The substars of x are pairwise disjoint: suppose vertex x has 2 non-disjoint
substars, Si = N(Ci) and Sj = N(Cj), and let y be a vertex in Si ∩ Sj ;
y must see some vertex yi in Ci, and y must see some vertex yj in Cj ;
{y, yi, yj , x} form a claw with center y. The blocks are pairwise disjoint,
as each substar results in a unique block: no substar can define more that 2
connected components by Lemma 1; one component contains x, so the other,
C, defines a unique block.

b) Every block B is claw-free: suppose by contradiction that B fails to be claw-
free; since the only added edges compared to the input graph in B are the fill
edges inside S, the claw in B must have its center in S. Let s be the center
of a claw; since S is a clique in B, there must be 2 non-adjacent vertices in
C which participate in the claw; but by Lemma 2, the neighborhood of s in
C must be a clique, a contradiction.

c) The neighborhood piece G′(N [x′]) is a co-bipartite graph with the universal
vertex x′ added to it: one part of this neighborhood is a minimal separator S
which has been saturated, as the processed vertex is chosen inside the min-
imal separator which defined the new block, and the other part is a clique
by Lemma 2.

Example 1. Let us illustrate our process with the simple example shown in
Figure 1.
a) Vertex x0 is chosen first.
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Fig. 1. The decomposition steps applied to a claw-free graph G

b) N(x0) is a minimal separator, which is S0 = {u, x1}, corresponding to the
connected component V − {x0, u, x1} of V −N [x0].
c) Fill edge ux1 is added, and the neighborhood piece {x0, u, x1} as well as the
block B1 = V − x0 are defined.
d) In block B1, x1 is chosen in S0; NB1(x1) = {u, x2, w, x4}; the connected com-
ponents of V −N [x1] in B1 are: C1 = {v, x3} and C′

1 = {z}; the corresponding
minimal separators are S1 = {u, x2} and S′

1 = {w, x4}; saturating S1 adds fill
edge ux2; S

′
1 is already a clique and thus is a clique minimal separator of the

input graph G.
e) Block B2 = {u, x2, v, x3} is defined by S1 and block B4 = {w, x4, z} is de-
fined from S′

1. The neighborhood piece P1 = N [x1] defines a co-bipartite graph
N(x1) = {u, x2, w, x4}, which is already chordal, so no fill edge is added; there
is only one minimal separator in this co-bipartite graph, namely the articulation
point {x2}, so {x2} ∪ {x1} = {x1, x2} is the unique associated (clique) minimal
separator of G.
f) In block B2, vertex x2 is chosen in S1 − S0; in B2, N(x2) = {u, x3}, defin-
ing only one connected component: {v}; the corresponding substar is {u, x3},
fill edge ux3 is added. The vertex x2 becomes simplicial, so the corresponding
neighborhood piece is complete and does not need to be processed.
g) Block B3 = {u, x3, v} is then recursively defined; vertex x3 is chosen; x3

is simplicial and universal, so this branch of the recursive algorithm stops.
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Afterwards, it only remains to choose x4 in block B4; x4 is likewise simplicial
and universal, so the algorithm terminates.
h) The resulting minimal triangulation is not claw-free, although each block and
each piece was claw-free: the triangulation has a claw {u, v, x2, x0} with center u.
i) The execution tree has a height of 3, requiring 3 linear-time graph searches
globally; only 5 vertices are processed, out of a total of 9 vertices. Note that in
the input graph, the longest path is of length 6.

4 The Algorithm

We now present our algorithm, consisting in a main algorithm (Claw-Free TRI-
DEC), which initiates the process and a recursive algorithm (REC), which is
called by the main algorithm. REC in turn uses another algorithm [11] which
for a co-bipartite graph computes a minimal triangulation represented by the set
F ′ of fill edges, the set S ′ of pairwise non-crossing minimal separators, and the
set K ′ of clique minimal separators of the co-bipartite graph. We first present
the algorithms Claw-Free TRI-DEC and REC in Section 4.1 and, for the sake of
completeness, in Section 4.2 also the algorithmic process from [11] to compute
a minimal triangulation of a co-bipartite graph.

4.1 Algorithms Claw-Free TRI-DEC and REC

Theorem 2. Given a claw-free graph G = (V,E), Algorithm Claw-Free TRI-
DEC computes a minimal triangulation of G, represented by a set F of fill edges,
and the minimal separators of G′ = (V,E + F ), as well as the set of clique
minimal separators of G in O(f + km) time, where f = |F |, k is the height of
the execution tree and m = |E|.

Proof. To initialize our algorithm, let y be the vertex numbered 1 by an execution
of LexBFS on a claw-free graph; note that y belongs to a moplex due to Property
1. By Corollary 1, y has only one substar, which is S0 = N(C0), where C0 =
V −N [y]; this costs O(m) time.

As the center of each new substar, we select a vertex xi in NG(Ci)−S, which
always exists according to Property 3.

The Decomposition Step 1 is obviously properly applied in REC and produces
a neighborhood piece and the necessary blocks with a single graph search. All
the resulting blocks are again claw-free by Theorem 1 b) which guarantees a
proper recursion. No fill edge is traversed in a given block, as all fill edges are
incident to the vertex chosen as center of the next substar, so this search can be
done in the input graph in O(m) time.

Because the substars and blocks are pairwise disjoint at each step (Theorem
1 a)), there will be no extra cost incurred by searching the substars to determine
which are clique minimal separators and which need to be filled.

The neighborhood piece without x is co-bipartite according to Theorem 1 c);
it was shown in [11] that, given a co-bipartite graph with set of external edges
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ALGORITHM Claw-Free TRI-DEC
Input : A claw-free graph G = (V,E).
Output: A set S of minimal separators defining a minimal triangulation of G,

the corresponding set F of fill edges, the set K of clique minimal
separators of G, and an execution tree T of G.

y ← vertex 1 by LexBFS ; C0 ← V −N [y]; S0 ← NG(C0); x0 ← a vertex of S0;
F ← ∅; T ← {y}; // T is a tree with only one node;
S ← S0; //minimal separators of the triangulation;
K ← ∅; //clique minimal separators of G;
if S0 is a clique then K ← K + {S0};
REC(S0, C0, x0);

REC
Input : a minimal separator S of G, a set C of vertices which together with S

defined a block in the father graph, and a vertex x of S.
Output: modification of global variables.

B ← G(S ∪ C); // B is the new block;
K ← NG(x) ∩ C; X ← K ∪ S; // X is the closed neighborhood of x in B;
G′ ← G(X − {x}); // G′ is the co-bipartite graph;
foreach connected component Ci of B(V −X) do

Si ← NG(Ci); S ← S + S; //Si is a substar of x;
if Si is not a clique then F ′

i ← set of fill edges needed to saturate Si;
else K ← K + S;
G′ ← G′ + F ′

i ; F ← F + F ′
i ;

(F ′,S ′,K ′)← set of fill edges, set of minimal separators and set of clique
minimal separators obtained by computing a minimal triangulation of the
co-bipartite graph G′;
F ← F + F ′;
foreach minimal separator S in S ′ do S ← S + {S + {x}};
foreach clique minimal separator S in K ′ do K ← K + {S + {x}};
foreach substar Si of x do

CHOOSE a vertex xi in NG(Ci)− S;
T ← add node xi and edge xxi to T ;
REC(Si, Ci, xi);

Eext, one can compute in O(|Eext|) time: a minimal triangulationH = (V,E+F )
of G, the set of minimal separators of H , the set of fill edges F , and the set of
clique minimal separators of G. It is easy to see that if G′ is a graph with a
universal vertex x, then S is a minimal separator of G if and only if S − {x} is
a minimal separator of G−{x}, and S is a clique minimal separator of G if and
only if S−{x} is a clique minimal separator of G−{x}. The only fill edges to add
are external edges; no two neighborhood pieces have common external edges: in
each new block S ∪C defined, each external edge has one endpoint in S and the
other in C; the previous neighborhood piece contained S but no vertex of C;
thus we avoid encountering each fill edge more than once. As a result, processing
a neighborhood piece requires O(m + f ′) time, where f ′ is the set of fill edges
which must be added to the neighborhood piece to saturate the substars of x,
and globally, processing all the neighborhood pieces costs O(m+ f) time.
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In the course of Algorithm Claw-Free TRI-DEC on a claw-free graph G, all
the minimal separators of G are encountered, and thus all the clique minimal
separators of G are encountered: each minimal separator of G belongs either to
a neighborhood piece or is a substar at some step; each minimal separator of the
co-bipartite graph corresponding to the neighborhood piece is produced [11].

Each time the execution tree T has a branch, the graph is partitioned into
several disjoint blocks, by Theorem 1 a). Therefore the set of edges of G is also
partitioned, so each of the k layers of T can be processed globally in linear time.
Thus if k is the height of T , Algorithm Claw-Free TRI-DEC runs in O(f + km).

Note that in some graphs and with some executions, k may be small compared
to the length of a longest chordless path in the graph, as in Example 1.

4.2 Minimal Triangulation of a Co-bipartite Graph

Recently [11], an efficient process for computing a minimal triangulation of a
co-bipartite graph was presented. Given a co-bipartite graph G = (K1 +K2, E)
built on clique sets K1 and K2, this algorithm works in the complement G =
(K1 +K2, E) of G; G is thus a bipartite graph.

The process works as follows: first, a maximal chain of the lattice formed by
all the maximal bicliques of G is computed, thus computing a minimal subgraph
of G which is a chain graph:

ALGORITHM MAX-CHAIN[11]
Input : A bipartite graph G′ = (K1 +K2, E

′)
Output: A maximal chain C
prefix ← ∅ ; C ← ∅;
repeat

Choose a vertex x of maximum degree in K1; X ← {x};
Y ← N(x);
G′ ← remove x and K2 − Y from G′;
U ← set of universal vertices of G′;
X ← X + U ;
G′ ← remove all vertices of U from G′;
add (prefix+X,Y ) to C ;
prefix ← prefix+X;

until G′ is empty ;

Theorem 3. [11] Algorithm Max-Chain computes a maximal chain in O(min
(|E′|, |E′|)) time.

Given a maximal chain of a bipartite graph ((X1, Y1), (X2, Y2), . . . , (Xp, Yp)),
the following inclusions hold: X1 ⊂ X2 ⊂ . . . Y1 and Yk ⊂ . . . Y2 ⊂ Y1.

It was shown in [10] that the sets ((K1 −X1) ∪ (K2 − Y1)) . . . ((K1 −Xp) ∪
(K2−Yp)) form a maximal set of pairwise non-crossing minimal separators of the
corresponding co-bipartite graph. A corresponding minimal triangulation of the
co-bipartite graph is obtained by adding to the co-bipartite graph any missing
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edge from the Cartesian products (K1 − X1) × (K2 − Y1), (K1 − X2) × (K2 −
Y2) . . . (K1 −Xk)× (K2 − Yk).

Since X1 ⊂ X2 ⊂ . . . Y1 and Yk ⊂ . . . Y2 ⊂ Y1, we need only to check for the
absence of an edge in (K1 −X1)× (K2 − Y1), (K1 −X2)× (Y1 − Y2), . . . , (K1 −
Xk)× (Yk−1 − Yk), which can also be done in O(min(|E′|, |E′|)) time.

5 Robustness Properties of Algorithm Claw-Free
TRI-DEC

Algorithm Claw-Free TRI-DEC can be used with a non-claw-free input, and will
sometimes yield a minimal triangulation. If it fails to do so, we can detect a
claw.

Let us consider the situation when the input graph G is not claw-free.
On the one hand, a neighborhood piece G′(N [x]) may fail to define a co-

bipartite graph G′(N(x)) with cliques K1 and K2; while K1 is a clique by sat-
uration, K2 is not necessarily a clique. In a claw-free graph, K2 is a clique by
virtue of Lemma 2; if this is not the case, let v, v′ be two non-adjacent vertices
in K2, let y be the father of x in the execution; clearly, {x, v, v′, y} induce a claw
with center x in G. Testing at each step whether these neighborhoods are cliques
costs O(m) time, so these claws will be found at no extra cost.

On the other hand, the substars of a vertex x may fail to be disjoint. In this
case the graph has a claw: let y be the father of x in the execution; let C1 and
C2 be two connected components of G′(V −N [x]) defining non-disjoint substars
and S2 = NG′(C2) of x; let v be in S1 ∩ S2, let v1 be in C1 ∩ NG′(v), let v2
be in C2 ∩ NG′(v); clearly, {v, v1, v2, y} induce a claw with center v in G. As
above, testing at each step whether these substars are disjoint costs O(m) time,
so these claws will be found at no extra cost.

When at each step the neighborhood piece is indeed co-bipartite and the
substars are indeed disjoint, the algorithm will run correctly, even if the input
graph contains a claw; such a claw could for example be included inside the first
minimal separator S0; the saturation of S0 will ‘hide’ that claw, but will not
prevent Algorithm Claw-Free TRI-DEC from running correctly.

6 Conclusion

We introduce new structural properties for the much-studied class of claw-free
graphs. This leads to a new algorithm, which computes a minimal triangula-
tion of a claw-free graph in O(f + km) time, where f is the number of fill edges,
and k is the height of the execution tree. When the graph is Pk-free for some
bounded value of k, the algorithm runs in linear time. Even in the case where
the graph is not Pk-free, the algorithm runs in linear time if the height of the
execution tree is small. In any case, for a claw-free input, the algorithm runs
in optimal O(nm) time, but we expect it to run faster than the other minimal
triangulation algorithms.
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Our algorithm computes, at the same time, the set of all minimal separators of
the minimal triangulation, as well as all the clique minimal separators of the
input graph; the decomposition by clique minimal separators can be computed
at no extra cost. The algorithm also defines a connected dominating set of the
graph, since the execution tree obtained is dominating by construction.

It is worth examining whether the algorithm can be streamlined to run in
linear time on quasi-line graphs, a subclass of claw-free graphs where the neigh-
borhood of every vertex partitions into two cliques.

The algorithm can be re-written into a robust algorithm, which, in the same
time bound, either computes a minimal triangulation of the input graph or
reports a claw. It would be interesting to identify some criteria for non-claw-free
graphs such that our robust version works without being disturbed by a claw.

A further question is whether the algorithm runs fast with other special
classes, such as some sparse graphs.
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