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Daniël Paulusma1, and Micha�l Pilipczuk2

1 School of Engineering and Computing Sciences, Durham University, UK
{petr.golovach,daniel.paulusma}@durham.ac.uk

2 Department of Informatics, University of Bergen, Norway
{pinar.heggernes,pim.vanthof,fredrik.manne,michal.pilipczuk}@ii.uib.no

Abstract. Vertex elimination is a graph operation that turns the
neighborhood of a vertex into a clique and removes the vertex itself. It has
widely known applications within sparse matrix computations. We define
the Elimination problem as follows: given two graphs G and H , decide
whether H can be obtained from G by |V (G)| − |V (H)| vertex elim-
inations. We study the parameterized complexity of the Elimination
problem. We show that Elimination is W [1]-hard when parameterized
by |V (H)|, even if both input graphs are split graphs, and W [2]-hard
when parameterized by |V (G)| − |V (H)|, even if H is a complete graph.
On the positive side, we show that Elimination admits a kernel with
at most 5|V (H)| vertices in the case when G is connected and H is a
complete graph, which is in sharp contrast to the W [1]-hardness of the
related Clique problem. We also study the case when either G or H is
tree. The computational complexity of the problem depends on which
graph is assumed to be a tree: we show that Elimination can be solved
in polynomial time when H is a tree, whereas it remains NP-complete
when G is a tree.

1 Introduction

Consider the problem of choosing a set S of resilient communication hubs in a
network, such that if any subset of the hubs should stop functioning then all
the remaining hubs in S can still communicate. Such a set is attractive if the
probability of a hub failure is high, or if the network is dynamic and hubs can
leave the network. We can formulate this as a graph problem in the following
way. Given a graph G and an integer k, is there a set S of k vertices, such that
if any subset of S is removed from G, then every pair of remaining vertices in
S are still connected via paths in the modified graph. Obviously, choosing S to
be a clique of size k would solve the problem, but only allowing for cliques is
overly restrictive. A necessary and sufficient condition on S is that for each pair
u, v ∈ S, either u and v are adjacent or there is a path between u and v in G
not containing any vertex of S except u and v. Thus we can view the described
problem as a relaxation of the well-known Clique problem.
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The above problem can be stated in terms of a well-known graph operation
related to Gaussian elimination: vertex elimination [14]. The elimination of a
vertex v from a graph G is the operation that adds edges to G such that the
neighbors of v form a clique, and then removes v from the resulting graph. With
this operation, the above problem can be defined as follows: find a set S of size
k such that eliminating all vertices of V (G) \ S leaves S as a clique. In fact,
we state a more general problem: the Elimination problem takes as input two
graphs G and H , and asks whether a graph isomorphic to H can be obtained
by the elimination of |V (G)| − |V (H)| vertices from G. If this is possible, then
we say that H is an elimination of G.

The vertex elimination operation described above has long known applications
within linear algebra, and it simulates in graphs the elimination of a variable
from subsequent rows during Gaussian elimination of symmetric matrices [14].
The resulting Elimination Game [14] repeatedly chooses a vertex and eliminates
it from the graph until the graph becomes empty. The amount of edges added
during the process, called the fill-in, is crucial for sparse matrix computations,
and a vast amount of results have appeared on this subject during the last 40
years; see e.g., [6, 7, 14, 17]. Our problem Elimination is equivalent to stopping
Elimination Game after |V (G)|−|V (H)| steps to see whether the resulting graph
at that point is isomorphic to H . A crucial aspect of Elimination Game is the
order in which the vertices are chosen, as this influences the fill-in. Note however
that, for our problem, only the set of |V (G)| − |V (H)| vertices chosen to be
eliminated is important, and not the order in which they are eliminated.

Graph modification problems resulting from operations like vertex deletion,
edge deletion, edge contraction, and local complementation are well studied, es-
pecially within fixed-parameter tractability; see e.g., [1, 3, 5, 8, 9, 11–13, 15, 19].
Given the wide use of the vertex elimination operation, we find it surprising that
the Elimination problem does not seem to have been studied before. The only
related study we are aware of is by Samdal [18], who generated all eliminations
of the n× n grids for n ≤ 7.

Our Contribution. In this paper we study the computational complexity of
Elimination. In particular, we show that Elimination is W [1]-hard when pa-
rameterized by |V (H)| even when both input graphs are split graphs, and W [2]-
hard when parameterized by |V (G)|− |V (H)| even when H is a complete graph.
On the positive side, for the case when H is complete, we show that Elimi-
nation is fixed-parameter tractable when parameterized by |V (H)|, and has a
kernel with at most 5|V (H)| vertices on connected graphs, which contrasts the
hardness of the Clique problem. We also study the cases when one of the input
graphs is a tree. It turns out that the complexity of the problem changes com-
pletely depending on which input graph is a tree; we show that if G is a tree
then the problem remains NP-complete, whereas if H is a tree then it can be
solved in polynomial time. The mentioned kernel result is obtained by proving a
combinatorial theorem on the maximum number of leaves in a spanning tree of a
graph, similar to a proof by Kleitman and West [10]. We find this a contribution
of independent interest.
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Notation. All graphs in this paper are undirected, finite, and simple. Let G =
(V,E) be a graph. We sometimes use V (G) and E(G) to denote V and E,
respectively. The neighborhood of a vertex v ∈ V is the set of its neighbors
NG(v) = {w ∈ V | vw ∈ E}, and the closed neighborhood of v is the set NG[v] =
NG(v) ∪ {v}. The degree of v is dG(v) = |NG(v)|. For any subset A ⊆ V , we
define NG[A] =

⋃
a∈A NG[a], NG(A) = NG[A] \ A, and dG(A) = |NG(A)|. For

any subset A ⊆ V , G[A] denotes the subgraph of G induced by A. For a subgraph
H of G, we write G \H to denote the graph obtained from G by deleting all the
vertices of H from G, i.e., G \H = G[V (G) \ V (H)].

A clique is a set of vertices that are all pairwise adjacent. A vertex v is
simplicial if NG(v) is a clique. A graph G is complete if V (G) is a clique. The
complete graph on k vertices is denoted by Kk. An independent set is a set of
vertices that are pairwise non-adjacent. If G is a bipartite graph, where (A,B)
is a partition of V into two independent sets, then we denote it as G = (A,B,E)
and we call (A,B) a bipartition of G. A graph is a split graph it its vertex set
can be partitioned into a clique and an independent set. A vertex is a cut-vertex
if the removal of the vertex leaves the graph with more connected components
than before.

A parameterized problem Q belongs to the class XP if each instance (I, k) can
be solved in f(k)|I|g(k) time for some functions f and g that depend only on the
parameter k, and |I| denotes the size of I. If a problem belongs to XP, then it can
be solved in polynomial time for every fixed k. If a parameterized problem can be
solved by an algorithm with running time f(k) |I|O(1), then we say the problem
is fixed-parameter tractable. The class of all fixed-parameter tractable problems
is denoted FPT. Between FPT and XP is a hierarchy of parameterized complexity
classes, FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP, where hardness for one of the
W-classes is considered to be strong evidence of intractability with respect to
the class FPT. A parameterized problem is said to admit a kernel if there is a
polynomial-time algorithm that transforms each instance of the problem into an
equivalent instance whose size and parameter value are bounded from above by
g(k) for some (possibly exponential) function g. We refer to the textbook by
Downey and Fellows [5] for formal background on parameterized complexity.

In this extended abstract, proofs of some theorems and lemmas, which are
marked with the symbol ♠, have been omitted due to page restrictions.

2 Preliminaries and Hardness of Elimination

We start this section with an observation that provides a characterization of
graphs that have some fixed graph H as an elimination. Our proofs heavily rely
on this observation.

Observation 1 ([17]). Let G and H be two graphs, where V (H) = {u1, . . . , uh}.
Then H is an elimination of G if and only if there exists a set S = {v1, . . . , vh}
of h vertices in G that satisfies the following: uiuj ∈ E(H) if and only if
vivj ∈ E(G) or there is a path in G between vi and vj whose internal vertices
are all in V (G) \ S, for 1 ≤ i < j ≤ h.
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For two input graphs G and H that form an instance of Elimination, we let n
denote the number of vertices in G. If G and H form a yes-instance, we say that
a subset X ⊆ V (G) is a solution if H is the resulting graph when all vertices in
X are eliminated. By Observation 1, the vertices in X can be eliminated in any
order. A vertex which is not eliminated is said to be saved. The set S = V (G)\X
of saved vertices is called a witness.

Since we can check in polynomial time whether a set S ⊆ V (G) of |V (H)|
vertices is a witness, Observation 1 immediately implies the following result.

Corollary 1. Elimination is in XP when parameterized by |V (H)|.

Corollary 1 naturally raises the question whether Elimination is FPT when pa-
rameterized by |V (H)|. The following theorem shows that this is highly unlikely.

Theorem 1 (♠). Elimination is W [1]-hard when parameterized by |V (H)|,
even if both G and H are split graphs.

Since Elimination is unlikely to be FPT in general as a result of Theorem 1,
it is natural to ask whether certain restrictions on G or H make the problem
tractable. In Section 3, we restrict H to be a complete graph; note that due
to Theorem 1, restricting H to be a split graph does not suffice to guarantee
tractability. In Section 4, we study the variant where either G or H is a tree.

Another possible way of achieving tractibility is to investigate a different pa-
rameterization of the problem. For instance, instead of choosing the size of the
witness as the parameter, we can parameterize Elimination by the size of the
solution, i.e., the number of eliminated vertices. The next theorem shows that
the problem remains intractable with this parameter.

Theorem 2 (♠). Elimination is W [2]-hard when parameterized by |V (G)| −
|V (H)|, even if H is a complete graph.

We point out that the reductions used in the proofs of Theorems 1 and 2 imme-
diately imply that the unparameterized version of Elimination is NP-complete,
even if both G and H are split graphs, or if H is a complete graph.

3 Eliminating to a Complete Graph

In this section, we consider a special case of the Elimination problem when
H is a complete graph. This corresponds exactly to the problem described in
the first paragraph of Section 1. We define the problem Clique Elimination,
which takes as input a graph G on n vertices and an integer k, and asks whether
the complete graph Kk is an elimination of G. Since Clique Elimination is
W [2]-hard when parameterized by |V (G)|− k due to Theorem 2, we choose k as
the parameter throughout this section.

If G contains a tree T with k leaves as a subgraph, then Kk is an elimination of
G, as the leaves of T can serve as a witness. It is easy to observe that G contains
a tree with k leaves as a subgraph if and only if G contains K1,k, i.e., a star
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with k leaves, as a minor. Moreover, by Observation 1, for any fixed graph H ,
the property that H is an elimination of a graph G can be expressed in monadic
second-order logic. Since graphs that exclude K1,k as a minor have bounded
treewidth [16], Courcelle’s Theorem [4] implies that Clique Elimination is
FPT when parameterized by k.

Even though fixed-parameter tractability of Clique Elimination is already
established, two interesting questions remain. Does the problem admit a polyno-
mial kernel? Does there exist an algorithm for the problem with single-exponential
dependence on k? We provide an affirmative answer to both questions below. In
particular, we prove the following result.

Theorem 3. Clique Elimination admits a kernel with at most 5k vertices
for connected graphs.

We would like to remark that the assumption that the input graph is connected is
probably necessary, as Clique Elimination in general graphs admits a simple
composition algorithm that takes the disjoint union of instances, so existence of a
polynomial kernel in the general setting would imply that NP ⊆ coNP/poly. We
refer an interested reader to the work of Bodlaender et al. [2] for an introduction
to the methods of proving implausibility of polynomial kernelization algorithms.

As a result of Theorem 3, an algorithm with single-exponential dependence on
k can be obtained by kernelizing every connected component of the input graph
separately, and then running a brute-force search on each kernel. This gives us
a better running time than the aforementioned combination of meta-theorems.

Corollary 2. Clique Elimination can be solved in
(
5k
k

)
nO(1) ≤ 12.21k nO(1)

time and polynomial space.

The remainder of this section is devoted to the proof of Theorem 3. Before
presenting the formal proof, we give some intuition behind our approach. Our
kernelization algorithm is based on the observation that the max-leaf number of
a graph, i.e., the maximum number of leaves a spanning tree of the graph can
have, is a lower bound on the size of a complete graph that can be obtained as
an elimination. Kleitman and West [10] showed that a connected graph G with
minimum degree at least 3 admits a spanning tree with at least |V (G)|/4 + 2
leaves. Their result immediately leads to a linear kernel for Clique Elimination
provided that the input graph G has minimum degree at least 3. Unfortunately,
we are unable to get rid of all vertices of degree at most 2 in our setting. However,
we can modify our input graph in polynomial time such that we either can solve
the problem directly, or obtain a new graph G∗ with no vertices of degree 1 and
with no edge between any two vertices of degree 2. We then prove a modified
version of the aforementioned result by Kleitman and West [10], namely that
such graphs G∗ admit a spanning tree with at least |V (G∗)|/5 + 2 leaves. This
leads to Theorem 3.

We now proceed with the formal proof of Theorem 3. Following Observation 1,
we will be looking for a set S that is a witness of cardinality k, i.e., every two
non-adjacent vertices of S can be connected by a path all internal vertices of
which are outside S.
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We start by providing four reduction rules, i.e., polynomial-time algorithms
that, given an instance (G, k) of Clique Elimination, output an equivalent
instance (G′, k′). Each time, we apply the rule with the smallest number among
the applicable ones. We argue that if none of the rules is applicable, then
the modified graph has no vertices of degree 1 and no edge between any two
vertices of degree 2. Recognizing whether a rule can be applied, as well as the
application of the rule itself, will trivially be polynomial-time operations. The
total number of applications will be bounded by a polynomial in the input size.

Reduction Rule 1. If k ≤ 3 or n ≤ 3, then resolve the instance in polyno-
mial time via a brute-force algorithm, and output a trivial yes- or no-instance,
depending on the result.

The safeness of the above rule is obvious.

Reduction Rule 2. If G contains a vertex v of degree 1, eliminate its sole
neighbor v′ to obtain a graph G′. Output the instance (G′, k).

Lemma 1. Reduction Rule 2 is safe.

Proof. We need to argue that if we can find a witness S, then we can also find
a witness S′ of the same size that does not contain v′. If v′ /∈ S, then we set
S′ = S. If v′ ∈ S, then v /∈ S. Otherwise, since v is adjacent only to v′, k ≤ 2
and we could have applied Reduction Rule 1. We now set S′ = (S \ {v′}) ∪ {v}
to obtain a witness set of the same cardinality that does not contain v′. ��

Reduction Rule 3. If G contains a triangle v′, v1, v2 such that v1, v2 are of
degree 2, then eliminate v′ to obtain a graph G′. Output the instance (G′, k).

Lemma 2. Reduction Rule 3 is safe.

Proof. Again, we need to argue that if we can find a witness S, then we can also
find a witness S′ of the same size that does not contain v′. If v′ /∈ S, then we set
S′ = S. Suppose that v′ ∈ S. As Reduction Rule 1 was not applicable, we find
that k > 3. Then neither v1 nor v2 belongs to S. We set S′ = (S \ {v′}) ∪ {v1}
to obtain a witness set of the same cardinality that does not contain v′. ��

Reduction Rule 4. If G has a path v0, v1, v2, v3 such that v1, v2 are of degree 2
and v0 	= v3, then eliminate v0 to obtain a graph G′. Output the instance (G′, k).

Lemma 3. Reduction Rule 4 is safe.

Proof. We need to argue that if we can find a witness S, then we can also find
a witness S′ of the same size that does not contain v0. If v0 /∈ S, then we set
S′ = S. Suppose that v0 ∈ S. As Reduction Rule 1 was not applicable, we
find that k > 3. Hence, S contains at most one vertex from the set {v1, v2, v3},
as otherwise one of them could be connected to at most two other vertices
from S via paths avoiding other vertices from S. If |S ∩ {v1, v2, v3}| = 0, then
we take S′ = (S \ {v0}) ∪ {v1}, while if |S ∩ {v1, v2, v3}| = 1, then we take
S′ = (S \ {v0, v1, v2, v3}) ∪ {v1, v2}. It is easy to check that S′ defined in this
manner is a witness of the same cardinality that does not contain v0. ��



326 P.A. Golovach et al.

If, after applying our four reduction rules exhaustively, we have not yet solved
the problem, then we have obtained a graph G∗ with no vertices of degree 1 and
no edge between any two vertices of degree 2. If G∗ has at most 5k− 11 vertices,
then we output the instance as the obtained kernel. Otherwise, i.e., if G∗ has
at least 5k− 10 vertices, then we can safely return a trivial yes-instance due to
the next result, which is our modified version of the aforementioned result by
Kleitman and West [10]. This concludes the proof of Theorem 3.

Theorem 4. Let G be a connected graph with minimum degree at least 2 such
that no two vertices of degree 2 are adjacent. Then G admits a spanning tree
with at least |V (G)|/5 + 2 leaves.

Proof. We gradually grow a tree T in G keeping track of three parameters:

– n, the number of vertices in T ;

– l, the number of leaves in T ;

– m, the number of dead leaves in T , i.e., leaves that have no neighbor in G\T .

The tree will be grown via a number of operations called expansions: by an
expansion of a vertex x ∈ V (T ) we mean the adding of all the vertices v ∈
V (G) \ V (T ) with xv ∈ E(G) and all the edges xv ∈ E(G) with v /∈ V (T ) to
the tree T . We start with a tree T such that only leaves of T have neighbors
in G \ T . Therefore, if we only use expansions to grow the tree, at each step of
the growth process only the leaves of T are adjacent to G \ T . A leaf that is not
dead, is called alive.

For a tree T , let us consider the potential φ(T ) defined as φ(T ) = 4l+m−n.
The goal is to

(a) find a starting tree T with φ(T ) ≥ 9;

(b) provide a set of growing rules, such that there is always a rule applicable
unless T is a spanning tree, and φ(T ) does not decrease during the application
of any rule;

(c) prove that during the whole process the potential increases by at least 1.

If goals (a), (b) and (c) are accomplished, then we can grow T using the rules
until it becomes a spanning tree; in this situation we have l = m and n = |V (G)|.
As the potential increased by at least 1 during the whole process, we infer that
5l ≥ |V (G)| + 10, and hence l ≥ |V (G)|/5 + 2, as claimed.

Goal (a) can be achieved by a careful case study; we omit the details due to
page restrictions.

Having chosen the starting tree T , we can proceed with the growing rules. In
order to grow the tree we always choose the rule that has the lowest number
among the applicable ones, i.e., when applying a rule, we can always assume
that the ones with lower numbers are not applicable. We would like to point out
that the first three rules were already used in the original proof of Kleitman and
West.

Growing Rule 1. If some leaf of T has at least two neighbors from G \ T ,
expand it. The potential φ(T ) increases by at least 4 · (d− 1) − d = 3d− 4 ≥ 2,
where d ≥ 2 is the number of the aforementioned neighbors from G \ T .
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Growing Rule 2. If some vertex v ∈ V (G\T ) is adjacent to at least two leaves
of T , expand one of these leaves. Observe that, as Rule 1 was not applicable and
only leaves of T are adjacent to G \T , this expansion results in adding only v to
T . Moreover, all the remaining leaves adjacent to v were alive but become dead,
so the potential φ(T ) increases by at least 1 − 1 = 0.

Growing Rule 3. If there is a vertex v ∈ V (G \ T ) of degree at least 3 in G
that is adjacent to a leaf of T , expand this leaf (which results in adding only v
to T , as Rule 1 was not applicable) and then v. The potential increases by at
least 4 · (d− 2)− d = 3d− 8 ≥ 1, where d ≥ 3 is the degree of v, as all the other
neighbors of v are added to T as leaves, due to Rule 2 not being applicable.

Growing Rule 4. If there is a vertex v ∈ V (G \ T ) of degree 2 in G that is
adjacent to a leaf of T , expand this leaf (which results only in adding v as a
leaf, as Rule 1 was not applicable), then expand v, and then expand the second
neighbor v′ of v that became a leaf in T during the previous expansion. Note
that v′ could not be already in T , as otherwise Rule 2 would be triggered on
vertex v. Since we assumed that no vertices of degree 2 are adjacent in G, the
degree of v′ is at least 3 and, as Rule 3 was not applicable, none of the neighbors
of v′ was in T . Denote by d the degree of v′; therefore, we have added to the
tree T exactly d+ 1 vertices (v, v′ and d− 1 other neighbors of v′) and increased
the number of leaves by exactly d − 2. Hence, the increase of the potential is
4(d− 2) − (d + 1) = 3d− 9 ≥ 0, as d ≥ 3.

It remains to argue that goal (c) is achieved. It is clear that if Growing Rule 1
or 3 is applied at least once, then the potential increases by at least 1. Suppose
only Growing Rules 2 and 4 are applied during the whole process. Let x be a
vertex of G that was added to T as a leaf during the very last rule application.
Then x is a dead leaf. Since this was not taken into account when we determined
a lower bound of 0 on the increase of the potential, the potential increases by

Fig. 1. A graph on 30 vertices for which the maximum possible number of leaves in a
spanning tree is exactly 8; the bold (blue) edges indicate a spanning tree with 8 leaves.
This example shows that the bound in Theorem 4 is tight.
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at least 1. Thus, from the previously described analysis we conclude that using
the presented method we are able to grow a tree with at least |V (G)|/5 + 2
leaves. ��

The bound |V (G)|/5 + 2 is best possible. A family of examples with tight in-
equality can be obtained by connecting a number of diamonds in the way as
shown in Figure 1.

4 Elimination on Trees

In this section, we study Elimination when G or H is a tree. When H is a tree,
we show that the problem can be solved in polynomial time. Then we show that
when G is a tree, the problem is NP-complete.

For a tree H with at least two vertices, we denote by L(H) the set of leaves of
H . The remaining set of vertices is denoted by I(H) = V (H) \L(H) and called
the inner vertices. For a graph G, by C(G) we denote the set of cut-vertices of G.
A connected graph is 2-connected if it does not contain a cut-vertex. A maximal
2-connected subgraph of G is called a biconnected component (bicomp for short),
and we denote by B(G) the set of bicomps of G. Consider the bipartite graph
TG with the vertex set C(G)∪B(G), where (C(G),B(G)) is the bipartition, such
that c ∈ C(G) and B ∈ B(G) are adjacent if and only if c ∈ V (B). This graph
TG is a tree if G is connected, and is called the bicomp-tree of G.

Let G and H be an instance of Elimination where H is a tree. Since a graph
G can be eliminated to a connected graph H if and only if at least one connected
component of G can be eliminated to H , we assume without loss of generality
that G is connected. Also it is easy to see that any graph G with at least one
vertex can be eliminated to K1, and K2 is an elimination of a graph G whenever
G has at least one edge. Hence, we can assume that H has at least three vertices.
Therefore, L(H) 	= ∅ and I(H) 	= ∅.

Suppose that H is an elimination of G. Let S = {vx | x ∈ V (H)} be the
witness, where vx is the vertex of G that corresponds to the vertex x of H ,
and let X = V (G) \ S be the corresponding solution yielding H . The witness S
satisfies the structural properties given in the two following lemmas.

Lemma 4 (♠). For any bicomp B ∈ B(G) it holds that |V (B) ∩ S| ≤ 2, and if
vx, vy ∈ V (B) ∩ S for x 	= y, then xy ∈ E(H).

Lemma 5 (♠). For any x ∈ I(H), vx ∈ C(G).

Now we choose an arbitrary inner vertex z of H and say that it is the root of
H . The root defines the parent-child relation between any two adjacent vertices
of H . For any two vertices x, y ∈ V (H), we say that y is a descendant of x if x
lies on the unique path in H from y to the root z. If y is a descendant of x and
xy ∈ E(H), then y is a child of x, and x is the parent of y. By definition, every
vertex x ∈ V (H) is a descendant of itself. For a vertex x ∈ V (H), Hx denotes
the subtree of H induced by the descendants of x, and for a vertex x ∈ V (H)
with a child y, Hxy is the subtree of H induced by x and the descendants of y.
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Consider r = vz ∈ V (G). We choose r to be the root of the bicomp-tree TG
of G. By Lemma 5, r is a cut-vertex in G. The root r defines the parent-child
relation on TG. Each bicomp B is a child of some inner vertex c in TG, and
we say that the vertices of B are children of the corresponding cut-vertex c in
G. A vertex v ∈ V (G) is a descendant of a cut-vertex c if v is a child of some
descendant of c in TG. For a cut-vertex c, we write Gc to denote the subgraph
of G induced by the descendants of c. For a cut-vertex c and a bicomp B such
that B is a child of c in TG, GcB is the subgraph of G induced by the vertices of
B and the descendants of all cut-vertices c′ ∈ V (B) \ {c}.

Now consider two vertices x and y in H , such that neither is a descendant
of the other, and let p be their lowest common ancestor. A crucial observation
in our algorithm is that vx and vy are descendants of vp in G, but they do not
appear in the same subgraph GvpB for some bicomp B that is a child of vp. The
following lemma formalizes this idea.

Lemma 6 (♠). For any inner vertex x ∈ V (H), if y ∈ V (H) is a descendant
of x in H, then vy is a descendant of vx in G. Moreover, if y1, . . . , yl are the
children of x in H, then there are distinct children B1, . . . , Bl of vx in the bicomp-
tree for which the following holds: for each i ∈ {1, . . . , l}, if y ∈ V (Hxyi), then
vy ∈ GvxBi .

We are now ready to describe our algorithm in the proof of the following theorem.

Theorem 5 (♠). Elimination can be solved in time O(n9/2) when H is a tree.

Proof. Let G and H be an instance of Elimination where H is a tree. Clearly,
if |V (H)| > n, then we have a no-instance of the problem. Hence, we assume
that |V (H)| ≤ n. Recall that it is sufficient to solve the problem for connected
graphs G and trees H with at least three vertices. For the tree H , we choose an
arbitrary inner vertex z and make it the root of H . For the graph G, we find the
set of cut-vertices C(G) and the set of bicomps B, and construct the bicomp-tree
TG. Then we construct a set U ⊆ V (G) as follows: for each bicomp B that is a
leaf of TG, we choose an arbitrary vertex u ∈ V (B) \ C(G) and include it in U .
It can be shown that H is an elimination of G if only if G can be eliminated to
H with a witness S ⊆ C(G)∪U . A formal proof of this statement requires some
additional lemmas; we omit the details here due to page restrictions.

Suppose H is an elimination of G with a witness S = {vx | x ∈ V (H)}. Since
we chose z to be an inner vertex of H , the vertex vz is a cut-vertex of G due to
Lemma 5. Hence, by Lemma 6 there is a cut-vertex r in G such that if y is a
descendant of x in H rooted at z, then vy is a descendant of vx in G rooted at
r. We check all cut-vertices r ∈ C(G), and for each r, we root G at r and try
to find a witness that satisfies this condition. Clearly, H is an elimination of G
if and only if we find such a witness for some r, and we have a no-instance of
Elimination otherwise.

From now on, we assume that the root vertex r of G is fixed, and we construct
a dynamic programming algorithm. For each vertex u ∈ C(G)∪U , the algorithm
will create a set Ru ⊆ V (H) such that:
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• for any u ∈ U , Ru = L(H);

• for any u ∈ C(G), Ru is the set of all vertices x of H such that Hx is an
elimination of Gu with the property that for any y, y′ ∈ V (Hx), if y′ is a
descendant of y in Hx, then vy′ is a descendant of vy in Gr, where vy, vy′

are the saved vertices in Gu corresponding to y, y′.

The algorithm returns yes if Rr contains z, and no otherwise.
Notice that the sets for u ∈ U are already defined. The sets Ru for cut-vertices

u are constructed as follows. Denote by B1, . . . , Bk the bicomps of G that are
children of the cut-vertex u in the bicomp-tree TG . Let Du be the set of all vertices
w ∈ C(G)∪U other than u that are descendants of u and are contained in some

bicomp together with u. In other words, Du = (C(G) ∪ U \ {u}) ∩
⋃k

i=1 V (Bi).
Suppose that the sets Rw have already been constructed for all w ∈ Du. We
then create Ru in two steps.

Step 1. All the vertices that are in Rw for some w ∈ Du are included in Ru.

Step 2. Let Ti = ∪w∈Du∩V (Bi)Rw for i ∈ {1, . . . , k}. A vertex x ∈ V (H) with
children y1, . . . , yl is included in Ru if there is a set {i1, . . . , il} ⊆ {1, . . . , k} such
that yj ∈ Tij for j ∈ {1, . . . , l}.

In order to perform Step 2, whose correctness is guaranteed by Lemma 6, we need
to solve a matching problem on an auxiliary graph. The full proof of correctness
and the running time analysis of our algorithm will appear in the journal version
of this paper. ��

Finally, we consider the case when G is a tree and H is an arbitrary graph. First,
we make the following observation. A connected graph is called a block graph if
each of its bicomps is a complete graph. Observe that if G is a block graph,
then elimination of any vertex v results in another block graph, because this
operation unites all maximal cliques that contain v into a single clique and then
removes v. Since trees are block graphs, it gives us the following proposition.

Proposition 1. If H is an elimination of a tree G, then H is a block graph.

Despite the fact that graphs that are eliminations of trees have relatively simple
structure, it turns out that Elimination remains intractable when G is assumed
to be a tree.

Theorem 6 (♠). Elimination is NP-complete, even if G is restricted to be
a tree.
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