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Abstract. A graph is a multiclique if its connected components are cliques. A 
graph is a complete multipartite graph if it is the complement of a multiclique. 
A graph is a multiclique-multipartite graph if its vertex set has a partition U, W 
such that G(U) is complete multipartite, G(W) is a multiclique and every two 
vertices u∈U, v∈W are adjacent. We describe a polynomial time algorithm to 
find in polygon-circle graphs a maximum induced complete multipartite sub-
graph containing an induced K2,2. In addition, we describe polynomial time al-
gorithms to find maximum induced multicliques and multiclique-multipartite 
subgraphs in circle graphs. These problems have applications for clustering of 
proteins by PPI criteria.  
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1 Introduction 

We consider only finite graphs G(V,E) with no parallel edges and no self-loops, where 
V is the set of vertices and E the set of edges. For U⊆V, G(U) is the subgraph induced 
by U.  We denote N(v)={ u | u adjacent to v} and N[v]=N(v)∪{v}. The complement of 
a graph G is denoted coG. A graph is a multiclique if its connected components are 
cliques. A graph is a complete multipartite graph if its vertex set has a partition into 
independent sets such that every two vertices in different independent sets are adja-
cent, that is, its complement is a multiclique. A graph G(V,E) is a multiclique-
multipartite graph if its vertex set has a partition U, W such that G(U) is complete 
multipartite, G(W) is a multiclique and every two vertices u∈U, v∈W are adjacent.   

A graph G is an intersection graph of a family S of subsets of a set if there is a one-
to-one correspondence between the vertices of G and the subsets in S such that two 
vertices are adjacent if and only if their corresponding subsets in S intersect [19]. 
Intersection graphs of intervals on a line are called interval graphs [19]. Polygon-
circle graphs [15] are intersection graphs of families of convex polygons inscribed in 
a circle. Circle graphs are intersection graph of families of chords in a circle [3,6]. A 
transitively orientable graph is called a comparability graph [12,19]; a vertex is a 
source if all its edges are outgoing and is a sink if they are incoming. 
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A dissociation set of a graph is a vertex set which induces a subgraph whose  
connected components are edges or single vertices. In a bipartite graph, finding a 
maximum induced multiclique is NP-complete since it is the problem of finding a 
maximum dissociation set, while finding a maximum induced complete multipartite 
subgraph is polynomial [22].  

A graph is weakly-chordal if it has no holes or antiholes with five or more vertices. 
Cameron and Hell [1] described for these graphs a polynomial time algorithm for 
maximum weight dissociation sets, using the algorithm in [20] for maximum weight 
independent sets in weakly-chordal graphs.  

In the present paper we describe a polynomial time algorithm to find in polygon-
circle graphs a maximum induced complete multipartite subgraph containing an in-
duced K2,2. This algorithm can also be applied to the circle n-gon graphs and the circle 
trapezoid graphs, analyzed in [11].  In addition, we describe polynomial time algo-
rithms to find maximum induced multicliques and multiclique-multipartite subgraphs 
in circle graphs. These problems are NP-complete for general graphs [5]. The partition 
of all the vertices of a graph into a given number of independent sets and cliques, with 
various restrictions on mutual interconnections, was discussed in [2,13]. Note that the 
recognition problem of polygon-circle graphs is NP-complete [18].  

Gavril [10] described a polynomial time algorithm for maximum induced bicliques 
in polygon-circle graphs, using separation by chords. This algorithm can be extended 
to find maximum induced multicliques with a constant number k of cliques, by  
considering all combinations of k chords in the circle. 

The above problems have applications when a given set of entities related by some 
property, must be clustered into cliques and independent sets by some strongly  
connected vs. non-connected or similarity vs. dissimilarity criteria. For example, in 
Protein-Protein-Interaction (PPI) problems, the proteins must be clustered into strong-
ly interacting groups, with weak or no interaction between the groups. The criteria for 
clustering proteins are lock-and-key criteria [17], complementary domains criteria 
[21], domain-domain interaction criteria [14] or interacting motifs criteria [16].  

In Section 2 we describe a representation of polygon-circle graphs on a line. In 
Section 3 we describe an algorithm for maximum induced complete multipartite sub-
graphs containing an induced K2,2 in polygon-circle graphs. In Sections 4,5 we de-
scribe algorithms for maximum induced multiclique and multiclique-multipartite 
subgraphs in circle graphs.  

2 Representation of Polygon-Circle Graphs on a Line 

Consider an intersection representation of G by polygons on a circle CR and let Z be a 
point on CR distinct from any corner point (Figure 1(a)). For every polygon with 
more than one chord we delete its chord facing Z, that is, its chord delimiting the arc 
containing Z. The intersection relationship does not change since two intersecting 
polygons have two pairs of crossing chords. Now, we open CR at Z, straighten CR 
into a line L (Figure 1(b)), and transform every chord into a semicircle arc above L 
through the chord's endpoints on L. The intersection relationship does not change 
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since two chords in CR are not crossing if and only if their corresponding semicircle 
arcs are not intersecting. The remaining boundary of every polygon becomes a se-
quence of semicircle arcs with their endpoints on L, called polygon-filament. The 
reverse process is also true, thus a graph is a polygon-circle graph if and only if it is 
the intersection graph of a family of polygon-filaments on a line. 

 
                      Z 
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                                                                                        x               
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Fig. 1. A family of polygons in a circle and its representation as polygon-filaments on a line 

These graphs are a subfamily of the interval-filament graphs defined by Gavril 
[7,8,9]. For a vertex v, we denote by a(v) its corresponding polygon-filament and by 
i(v) the interval on L delimiting a(v). For two vertices u,v having i(u)∩i(v)=φ , we 
denote by ii(u,v) the interval between i(u) and i(v). For a pair p=(u,v) of adjacent ver-
tices we denote i(p)=i(u)∪i(v), N[p]=N[u]∪N[v] and U(p)={ x | i(x)⊆i(p)}. For a 
point X on L we denote VX={ v | X∈i(v)}. The endpoints of a polygon-filament a(v), 
are the endpoints of its arcs. The interval i of an arc is the interval between its two 
endpoints. We denote by R(G) the intersection representation of a polygon-circle 
graph G by polygon-filaments. The edges of coG(VX) represent containment of inter-
vals of non-intersecting polygon-filaments, since the interval of every vertex of G(VX) 
contains X. We orient the edges u,v of coG(VX) from u to v, whenever i(u)⊂i(v); all 
edges of coG(VX) become oriented. This orientation is acyclic and transitive since 
i(u)⊂i(v)⊂i(w) implies i(u)⊂i(w). The properties of families of polygon-filaments are 
the following: 

 
Property 1. Two semicircle arcs of distinct polygon-filaments on L do not intersect 
(even when their polygon-filaments intersect) if and only if they have disjoint  
intervals or the interval of one arc appears between the endpoints of the other. This, 
because chords in CR corresponding to two non-intersecting arcs are non-crossing. 

 
Property 2. Two polygon-filaments b, c do not intersect if and only if they have  
disjoint intervals, or the interval of one i(b), is contained between the two endpoints 
of an arc of the other c (b, u in Figure 1(b)). 
 
Lemma 1. In G, R(G), for every pair p=(u,v) of adjacent or identical vertices, there 
are no edges between a vertex x∈U(p) and a vertex w∈V− (N[p]∪U(p)) (Figure 1(b)). 
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Proof. Consider a pair p=(u,v) of adjacent vertices and a vertex w∈V− (N[p]∪U(p)). 
If i(p)∩i(w)=φ then there are no edges between w and the vertices of U(p).  Otherwise, 
the interval i(p)=i(u)∪i(v) is contained between the endpoints of an arc of a(w) and so 
is the interval of every x∈U(p). Hence, by Property 2, a(x) and a(w) cannot intersect. 
 
Lemma 2. In G, R(G), consider four polygon-filaments b,c,x,y such that b,c have 
disjoint intervals, x,y are non-intersecting and both x,y intersect both b,c (Figure 1(b)). 
If there exists a polygon-filament u which intersects both x,y and does not intersect 
b,c, then u has an endpoint in ii(b,c) and i(b)⊂i(u) or i(c)⊂i(u) or both. 

 
Proof. Consider four such polygon-filaments b,c,x,y. Let X be the middle point of 
ii(b,c). Both i(x),i(y) must contain X, hence one of them must contain the other, say 
i(y)⊂i(x). Consider a polygon-filament u which intersects both x,y and does not inter-
sect b,c. If u has no endpoints in ii(b,c), then it has no endpoints in i(b)∪ii(b,c)∪i(c). 
Since X∈i(y), the interval i(y) must appear between the endpoints of i(x) in i(b) and 
i(c). Therefore i(y)⊂[i(b)∪ii(b,c)∪i(c)] implying that y and u cannot intersect. Thus, u 
has an endpoint in ii(b,c). If i(u)⊂ii(b,c),  then by the above argument c has an end-
point in ii(b,u)⊂ii(b,c) which is a contradiction. Therefore u has an endpoint in ii(b,c) 
and i(b)⊂i(u) or i(c)⊂i(u). 

 
Lemma 2 proves that in CR there are no three non-intersecting polygons b,c,u, each 
facing the other two, and two non-intersecting polygons x,y, intersecting b,c,u.  

 
Theorem 3. In a representation R(G) by polygon-filaments of a polygon-circle graph 
G, for every point X∈L, G(VX) is a weakly-chordal cocomparability graph. 

 
Proof. As described earlier, we orient the edges of the comparability graph coG(VX) 
by containment of intervals to obtain an acyclic transitive orientation. Cocomparabili-
ty graphs are perfect having no odd holes or antiholes with five or more vertices. Also 
[4], the cocomparability graphs cannot have holes with six or more vertices, since 
such holes contain asteroidal triples. Hence, G(VX) has no holes with five or more 
vertices.    

Assume that G(VX) has an even antihole h={v1, v2,…, v2k}  with six or more vertic-
es. The hole coh is transitively oriented by the orientation of coG(VX). W.l.o.g. as-
sume that the two edges of every v2i-1 are incoming and the two edges of every v2i are 
outgoing. Let arc(v) denote the arc of a(v) containing X.  

Let us prove that for two adjacent vertices v2i+1, v2j+1 of h, the intervals i(arc(v2i+1)), 
i(arc(v2j+1)) are intersecting but are not contained one into another. Assume that 
i(arc(v2i+1))⊂i(arc(v2j+1) and 2i<2i+1<2j+1 (when 2i+1=1, we take 2k for 2i), other-
wise we renumber the vertices. Hence, i(v2i)⊂i(arc(v2i+1))⊂i(arc(v2j+1)), implying, by 
Property 2, that a(v2i) cannot intersect a(v2j+1), contradicting the fact that v2i, v2j+1 are 
adjacent.  

Let us prove that for every three i(arc(v2i-1)), i(arc(v2i+1)), i(arc(v2i+3)), we have 
i(arc(v2i+1))⊂[i(arc(v2i-1))∪i(arc(v2i+3))] (when 2i+1=1, we take 2k-1 for 2i-1). Since 
every two of the three intervals are intersecting but are not contained one into another, 
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one of the three is contained in the union of the two others. Assume that 
i(arc(v2i+3))⊂[i(arc(v2i-1))∪i(arc(v2i+1))]. By above, neither i(arc(v2i+1) nor i(arc(v2i-1) 
can contain i(arc(v2i+3)). Thus [i(arc(v2i-1))∩i(arc(v2i+1))]⊂i(arc(v2i+3)) since the three 
intervals contain X. Then, X∈i(v2i)⊂[i(arc(v2i-1))∩i(arc(v2i+1))]⊂i(arc(v2i+3)) and by 
Property 2, a(v2i) cannot intersect a(v2i+3), contradicting the fact that v2i, v2i+3  are 
adjacent. 

Hence, the left (right) endpoint of i(arc(v2i+1)) appears on L between the left (right, 
respectively) endpoints of i(arc(v2i-1)) and i(arc(v2i+3)). Assume that the left endpoints 
of i(arc(v1)), i(arc(v3)), i(arc(v5)) appear from left to right on L in the order: left end-
point of i(arc(v1)), left endpoint of i(arc(v3)), left endpoint of i(arc(v5)). Then, by 
induction, we obtain that the left endpoints and the right endpoints of i(arc(v1)), 
i(arc(v3)),…,i(arc(v2k-1)) appear on L in this  order from left to right. Hence, 
i(v2k)⊂i(arc(v1))∩i(arc(v2k-1))⊂i(arc(v3)) and by Property 2, a(v2k) cannot intersect 
a(v3), contradicting the fact that v3, v2k  are adjacent. Therefore, G(VX) has no holes 
and antiholes with five or more vertices, and is weakly-chordal. 

3 Algorithm for Complete Multipartite Subgraphs Containing 
an Induced K2,2, in Polygon-Circle Graphs 

Consider a polygon-filament representation R(G) of a polygon-circle graph G(V,E). 
 

Lemma 4. For two non-adjacent vertices u,v having i(u)⊂i(v) let 
 

V(u,v)={ w | i(u)⊂i(w)⊂i(v), w∉N(u)∪N(v)}. 
 
Then, every vertex z∈N(u)∩N(v) is adjacent to every vertex w∈V(u,v) (Figure 2). 
 
Proof. Assume that there are two non-adjacent vertices z∈N(u)∩N(v) and w∈V(u,v). If 
i(w)⊂i(z) then i(u)⊂i(w)⊂i(z) and a(z) cannot intersect a(u). If i(z)⊂i(w) then 
i(z)⊂i(w)⊂i(v) and a(z) cannot intersect a(v). If i(w)∩i(z)=φ, then i(u)∩i(z)=φ, since 
i(u)⊂i(w). All three cases contradict the fact that z is adjacent to both u and v but not to w. 

 
                                          vi                              vj                                 
                                                w                                                             
                                                                                        
                                                               
         b                           ui                                             uj              c        

                                                      ii(b,c)                       

Fig. 2. For w∉N(ui)∪N(vi) and i(ui)⊂i(w)⊂i(vi), every vertex vj∈N(ui)∩N(vi) is adjacent to w 

The algorithm to find a maximum induced complete multipartite subgraph of a po-
lygon-circle graph G solves separately the following two cases: 
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Case 1: The solution B(IND1,…,INDk,E), where every INDj is an independent set, 
contains two vertices with disjoint intervals. W.l.o.g. assume that IND1 has two ver-
tices b,c having i(b)∩i(c)=φ, and their intervals are minimal in IND1 (Figure 2). Con-
sider some INDj, 2≤j≤k: for every x∈INDj, i(x) contains the middle point X of ii(b,c); 
hence INDj⊆VX. In addition, every two vertices u,v∈INDj, being non-adjacent and 
their intervals containing the point X, fulfill i(u)⊂i(v). Thus, INDj cannot contain two 
vertices both with minimal or both with maximal intervals, since the interval of one 
must be contained into the other. Let uj, vj be the unique vertices of INDj with minimal 
and maximal intervals; we may have uj=vj. Then, by Lemma 4 (Figure 2), 
INDj⊆V(uj,vj)∪{uj,vj} and for every s≠j INDs⊆N(uj)∩N(vj); we assign the weight 
|INDj| to the pair uj,vj.  The vertices of every pair uj,vj, 2≤j≤k, are not adjacent while 
every two vertices in different pairs are adjacent. Thus, the set of pairs uj,vj, 2≤j≤k, 
forms a weighted dissociation set of the complement coG(VX) of  G(VX).  

Since B contains an induced K2,2, some INDj, 2≤j≤k, contains at least two vertices. 
Hence by Lemma 2, the polygon-filament of every vertex d∈IND1, d≠b,c, has an 
endpoint in ii(b,c) and i(b)⊂i(d) or i(c)⊂i(d) or both. The above implies that 
IND1−{b,c} is a subset of 

  
S(b,c)={ d | d∉N(b)∪N(c), a(d) has an endpoint in ii(b,c) and i(b)⊂i(d) or i(c)⊂i(d)} 

 
and for every 2≤j≤k, INDj is a subset of VX(b,c)=VX∩N(b)∩N(c). The two sets 
S(b,c)∪{b,c} and VX(b,c) are disjoint. Therefore, the family INDj, 1≤j≤k, is defined by 
the family of pairs {(b,c)}∪{(uj,vj)| 2≤j≤k} fulfilling that the vertices of every pair are 
not adjacent while, every two vertices in different pairs are adjacent. Thus, for Case 1, 
the algorithm considers every two non-adjacent vertices b,c fulfilling i(b)∩i(c)=φ, and 
the middle point X of ii(b,c). The algorithm finds by the algorithm in [7] a maximum 
independent set in S(b,c) to obtain IND1− {b,c}, for every pair u,v of non-adjacent 
vertices in VX(b,c) finds a maximum independent set IND in V(u,v) and assigns the 
weight |IND∪{u,v}| to the pair u,v. Now, the algorithm finds a maximum weight dis-
sociation set in coG(VX(b,c)), by the algorithm in [1,20], since by Theorem 3, 
coG(VX(b,c)) is weakly-chordal. By the above explanation, the independent sets cor-
responding in G to this maximum weight dissociation set together with IND1 form a 
maximum induced complete multipartite subgraph of G. 

 
Case 2: No independent set in the solution B(IND1,…,INDk,E) has two vertices b,c 
having i(b)∩i(c)=φ. Then every two intervals corresponding to vertices in B have a 
non-empty intersection and by the Helly property there is a point X on L contained in 
all these intervals. Therefore, as in Case 1, the problem is reduced to finding a maxi-
mum weight dissociation set in the weakly-chordal comparability graph coG(VX). 

 
The algorithm works in time O(|V|5+|V|2F(|V|)), where F(|V|) is the time required to 
find a maximum weight dissociation set in a weakly-chordal comparability graph.  

In the special case when B contains no induced K2,2 implying that every INDj, 2≤j≤k, 
contains one vertex, the problem is to find a maximum induced subgraph with a vertex 
partition into an independent set IND and a clique C, completely interconnected. If IND 
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contains at least three vertices b,c,d, with mutually disjoint intervals, the above algorithm 
cannot be applied, and the problem remains open. Note that in such a case, by Lemma 2, 
N(b)∩N(c)∩N(d) is a clique. 

4 Algorithm for Multicliques in Circle Graphs 

Consider a polygon-filament representation R(G) of a circle graph G(V,E): a vertex is 
represented by one semicircle. For a clique C let i(C)=∪w∈C i(w) and a(C)=∪w∈C a(w). 
The pair of (not necessarily distinct) vertices u,v∈C to which the endpoints of i(C) 
belong, fulfils i(C)=i(u)∪i(v); we say that the pair p=(u,v) delimits i(C) (Figure 3). By 
Lemma 1, there are no edges between vertices in U(p) and vertices in 
V−(N[p]∪U(p)). Let H be the graph whose vertices are pairs of adjacent or identical 
vertices of G, two pairs p,q being connected by an edge if and only if they have a 
vertex in common, or two vertices one in p one in q are adjacent. The graph H is an 
intersection graph, in which every vertex p=(u,v) is represented by the union a(p) of 
the two intersecting polygon-filaments a(u) and a(v). Let E2 be the oriented edge 
subset {q→p} of the edge set of coH given by the relation i(q)⊂i(p) and a(q)∩a(p)=φ; 
this orientation of E2 is transitive. By Lemma 1, for an edge q→p in E2, there are no 
edges in E between U(q) and U(p)−(N[q]∪U(q)).  

 
                                          u            

                        z                                                                            v 
                                                                                              
                                    q1       q2                          q3                       q4

                            q5                                                                             
       x                                                  y                                

 

Fig. 3. For the pair p=(u,v) we have Cp={u,z,v}, PM(p)={q1,q3,q4,q5}, sinks are q1, q3, q4, and 
M(p)=Cp∪M(q1)∪M(q3)∪M(q4); in the interval ij,p=[x,y], s1=q1 is the unique sink of 
coH(PM∩W(ij,p),E2) 

For a multiclique M, let PM be the vertex set of H corresponding to the pairs deli-
miting the cliques in M; PM is an independent set of H. For a pair p(u,v)∈PM (Figure 
3), let PM(p)={ q | q∈PM, i(q)⊆i(p)} and let M(p) be the partial multiclique of M de-
fined by PM(p) in the subgraph G(U(p)). M(p) is composed of a clique 
Cp⊆N[u]∩N[v]∩U(p) and of the cliques defined by PM(p)−{p}. Every pair q in 
PM(p)−{p}  fulfils i(q)⊂i(p) and  a(q)∩a(p)=φ,  implying that q→p∈E2 and p is a sink 
of PM(p) in coH(PM,E2). Similarly, for every two pairs s,q in PM(p)−{p} either 
s→q∈E2 or i(s)∩i(q)=φ.  Let q1,...,qk be the sinks of PM(p)−{p} in the transitive orien-
tation of coH(PM,E2). Then, M(p)=Cp∪M(q1)∪...∪M(qk) and for every 
q∈M(q1)∪...∪M(qk), i(q) appears between consecutive endpoints of a(Cp). When M is 
a maximum induced multiclique, M(p) is a maximum induced multiclique of G(U(p)), 
otherwise we can replace M(p) by a maximum one. We assign to p the weight 
weight(p)=|M(p)|=|Cp|+|M(q1)|+ ...+|M(qk)|. Consider an interval ij,p between two 
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consecutive endpoints of a(Cp). Let W(ij,p)={ q | i(q)⊂ij,p}; the polygon-filaments cor-
responding to the vertices of W(ij,p) do not intersect the polygon-filaments correspond-
ing to the vertices of Cp or of the cliques of M delimited by intervals of a(Cp) disjoint 
from ij,p. Consider the weighted interval graph I(W(ij,p)) in which every vertex q in 
W(ij,p) is represented by i(q) with weight(q). Let s1,...,sr be the sinks of 
coH(PM∩W(ij,p),E2). When M is a maximum induced multiclique, s1,...,sr is a maxi-
mum weight independent set of the interval graph I(W(ij,p)), otherwise we could  
obtain a larger induced multiclique by replacing s1,...,sr by a maximum weight  
independent set.  

The algorithm works as follows: Using the topological ordering defined by the 
transitive orientation of E2 on coH, we go from sources to sinks on E2 and construct 
for every pair p=(u,v) a maximum induced multiclique M(p) of G(U(p)), using the 
maximum induced multicliques M(q) of the pairs q having q→p∈E2. For a given p, 
we must find a clique Cp⊆ N[u]∩N[v]∩U(p), and a maximum weight independent set 
IND which is the union of maximum weight independent sets (with sinks s1,...,sr) in 
the intervals between consecutive endpoints of a(Cp) such that |Cp|+weight(s1)+...+ 
weight(sr) is maximum. Then, Cp∪M(s1)∪...∪M(sr) is a maximum induced multicli-
que of G(U(p)). 

By the Helly property of intervals on a line, every clique in N[u]∩N[v]∩U(p) is 
contained in a vertex set VX for a point X in i(u)∩i(v): we must consider every subin-
terval between consecutive endpoints of polygon-filaments, in i(u)∩i(v), in each a 
point X, and for each X we must construct Cp and IND. For the semicircle a(u) of a 
vertex u, let lu, ru denote its left and right endpoints. 

 
Lemma 5.  In a circle graph G, the vertices of a clique Cp, p=(u,v), Cp⊆VX,  are 
represented by semicircles whose endpoints at the left and the right of X are in the 
same order. 

 
Proof. Assume that the endpoints of a(x), a(y) representing x,y∈Cp are in order lx<ly at 
the left of X and in ry<rx at the right of X. Then, the endpoints of a(y) are contained in 
i(x) and a(x),a(y) cannot intersect, contradicting the fact that x,y∈Cp. 

 
For a pair p=(u,v) and a point X in i(u)∩i(v) we denote by lu=l1< l2<,…,< ls=lv<X the 
left endpoints of the semicircles representing the vertices in U(p)∩VX. For a vertex wi 
whose left endpoint of i(wi) is li, we denote the right endpoint by ri; note that 
X<ru<ri<rv. We now go on the left endpoints from left to right and for every i we find 
a maximum multiclique M(p,1,i) within the intervals [l1,li]∪[r1,ri]; let Cp,i denote its 
clique containing u and wi. Assume that we found such a solution for 1,..,i-1 and we 
want to find one for i and wi. We consider every lj<li, such that wj, wi are adjacent, 
hence by Lemma 5 rj<ri, and we evaluate a maximum weight independent set 
IM(p,j,i) in the weighted interval graph I(W([lj,li])∪W([rj,ri])) in which every vertex q 
is represented by i(q) with weight(q). By Lemma 5, every vertex wk of the clique Cp,j 
in the partial solution M(p,1,j) has lk≤lj<li and rk≤rj<ri, hence wk is adjacent to wi im-
plying that Cp,j∪{wi} is a clique, Among all j, we take the solution with maximum 
|M(p,1,j)|+weight(IM(p,j,i))+1 and assign it to i as M(p,1,i); by induction 
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{wi}∪M(p,1,j)∪{ M(q) | q∈IM(p,j,i)} is a maximum induced multiclique M(p,1,i). For 
the final solution, we find a maximum weight independent set in the interval graph 
defined by all the pairs of adjacent vertices in G. 

The algorithm works in time O(|V|6). Polygon-circle graphs do not fulfill Lemma 5 
and their problem remains open.  

5 Algorithm for Multipartite-Multiclique Subgraphs in Circle 
Graphs 

Consider a circle graph G(V,E) represented as an intersection graph of chords in a 
circle CR.  

Let M(U,W) be an induced multiclique-multipartite subgraph of G(V,E)  where 
M(U) is complete multipartite, M(W) is a multiclique and every two vertices u∈U, 
v∈W are adjacent. Consider a vertex u in U with chord XuYu (Figure 4). Let xv,xz be 
the endpoints of  chords of vertices v,z in W closest to Xu. Let yw,ys be the endpoints of 
chords of vertices w,s in W  closest to Yu. We denote all arcs counterclockwise. Every 
vertex in W is adjacent to u∈U, hence its chord intersects the chord XuYu and has its 
endpoints in the disjoint arcs xvyw and ysxz. The vertices v,z can be identical or must 
have intersecting chords; similarly for w,s. Let Z(v,z,w,s) be the set of vertices of G 
whose chords have the endpoints one in each arc xvyw and ysxz. Thus W⊆Z(v,z,w,s). 
Let Q(v,z,w,s) be the set of vertices of G whose chords have the endpoints one in each 
arc xz,xv and yw,ys. 

 
                      Xu                  
          xv                       xz

  yz                                       yv 
                     
 xs                                        xw 

     yw                                 ys

                    Yu      
 

Fig. 4. The chords on CR of the vertices u∈U and v,z,y,s∈W; the pairs v,z and y,s are in  
different cliques of W. 

Case 1: Assume that M(W) has at least two cliques. This implies that the chords of v,z 
do not intersect the chords of w,s. Since the chord of every vertex in U intersects the 
chords of all the vertices in W, it has its endpoints one in each arc xz,xv and yw,ys. 
Hence, U⊆Q(v,z,w,s). The algorithm works as follows: We consider every two pairs 
v,z and w,s of adjacent (or identical) vertices with no interconnecting edges (Figure 
4). Let Z(v,z,w,s) and Q(v,z,w,s) be defined as above. By the algorithms in Sections 
3,4, we find a maximum induced multiclique G(W) in G(Z(v,z,w,s)), and a maximum 



306 F. Gavril 

induced multipartite subgraph G(U) in G(Q(v,z,w,s)). Among these pairs v,z and w,s 
we chose the induced multipartite-multiclique subgraph with a maximum number of 
vertices. 
 
Case 2: Assume that M(W) has only one clique C. Hence v=s, z=w and v,z are adja-
cent. Therefore, among the four arcs defined by the chords of v,z on CR, there is a pair 
of opposite arcs such that the chords corresponding to the vertices of U have the end-
points one in each arc of this pair. The algorithm works as follows: For every pair v,z 
of adjacent vertices and for every pair of their opposite arcs we find a maximum cli-
que G(W) for the pair v,z, and a maximum induced multipartite subgraph G(U) for 
their opposite pairs of arcs. To find G(U): we use the algorithm in Section 3, to cover 
the case that it contains an induced K2,2; we use an algorithm to find a maximum in-
dependent set in a permutation graph to cover the case that G(U) has no induced K2,2 
and thus has only one independent set. Among all pairs v,z of adjacent vertices, we 
chose the induced multipartite-multiclique subgraph with a maximum number of ver-
tices. Note that this covers the case that M(U,W) has one independent set and one 
clique, unsolved in Section 4. 

 
The algorithm works in time O(|V|4F1(V)+|V|4F2(V)) where F1(V) is the time required 
to find a maximum induced multiclique in G(Z(v,z,w,s)), and F2(V) the time required 
to find a maximum induced multipartite subgraph  in G(Q(v,z,w,s)). 
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