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Abstract. In this paper we study properties of intersection graphs of k-
bend paths in the rectangular grid. A k-bend path is a path with at most
k 90 degree turns. The class of graphs representable by intersections of
k-bend paths is denoted by Bk-VPG. We show here that for every fixed
k, Bk-VPG � Bk+1-VPG and that recognition of graphs from Bk-VPG
is NP-complete even when the input graph is given by a Bk+1-VPG
representation. We also show that the class Bk-VPG (for k ≥ 1) is in
no inclusion relation with the class of intersection graphs of straight line
segments in the plane.

1 Introduction

In this paper we continue the study of Vertex-intersection graphs of Paths in
Grids1 (VPG graphs) started by Asinowski et. al [1,2]. A VPG representation
of a graph G is a collection of paths of the rectangular grid where the paths
represent the vertices of G in such a way that two vertices of G are adjacent if
and only if the corresponding paths share at least one vertex.

VPG representations arise naturally when studying circuit layout problems
and layout optimization [15] where layouts are modelled as paths (wires) on
grids. One approach to minimize the cost or difficulty of production involves
minimizing the number of times the wires bend [3,13]. Thus the research has
been focused on VPG representations parameterized by the number of times
each path is allowed to bend (these representations are also the focus of [1,2]).
In particular, a k-bend path is a path in the grid which contains at most k
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bends where a bend is when two consecutive edges on the path have different
horizontal/vertical orientation. In this sense a Bk-VPG representation of a graph
G is a VPG representation of G where each path is a k-bend path. A graph is
Bk-VPG if it has a Bk-VPG representation.

Several relationships between VPG graphs and traditional graph classes (i.e.,
circle graphs, circular arc graphs, interval graphs, planar graphs, segment (SEG)
graphs, and string (STRING) graphs) were observed in [1,2]. For example, the
equivalence between string graphs (the intersection graphs of curves in the plane)
and VPG graphs is formally proven in [2], but it was known as folklore result [6].
Additionally, the base case of this family of graph classes (namely, B0-VPG) is
a special case of segment graphs (the intersection graphs of line segments in the
plane). Specifically, B0-VPG is more well known as the 2-DIR2. The recognition
problem for the VPG = string graph class is known to be NP-Hard by [9] and in
NP by [14]. Similarly, it is NP-Complete to recognize 2-DIR = B0-VPG graphs
[11]. However, the recognition status of Bk-VPG for every k > 0 was given as
an open problem from [2] (all cases were conjectured to be NP-Complete). We
confirm this conjecture by proving a stronger result. Namely, we demonstrate
that deciding whether a Bk+1-VPG graph is a Bk-VPG graph is NP-Complete
(for any fixed k > 0) – see Section 4.

Furthermore, in [1,2] it is shown that B0-VPG � B1-VPG � VPG and it
was conjectured that Bk-VPG � Bk+1-VPG for every k > 0. We confirm this
conjecture constructively – see Section 3.

Finally, we consider the relationship between the Bk-VPG graph classes and
segment graphs. In particular, we show that SEG and Bk-VPG are incomparable
through the following pair of results (the latter of which is somewhat surprising):
(1) There is a B1-VPG graph which is not a SEG graph; (2) For every k, there
is a 3-DIR graph which has no Bk-VPG representation.

The paper is organized as follows. In Section 2 we introduce the Noodle-
Forcing Lemma, which is the key to restricting the topological structure of VPG
representations3. In Section 3 we introduce the “sausage” structure which is
the crucial gadget that we use for the hardness reduction and which by itself
shows that Bk-VPG is strict subset of Bk+1-VPG

4. We also demonstrate the
incomparability of Bk-VPG and SEG in Section 3. The NP-hardness reduction is
presented in Section 4. We end the paper with some remarks and open problems.

2 Noodle-Forcing Lemma

In this section, we present the key lemma of this paper (see Lemma 1). Essen-
tially, we prove that, for “proper” representations R of a graph G, there is a
graph G′ where G is an induced subgraph of G′ and R is “sub-representation”

2 Note: a k-DIR graph is an intersection graph of straight line segments in the plane
with at most k distinct directions (slopes).

3 This was inspired by the order forcing lemma of [12].
4 This gadget is named due to its VPG representation resembling sausage links.
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of every representation of G′ (i.e., all representations of G′ require the part cor-
responding to G to have the “topological structure” of R). We begin this section
with several definitions.

Let G = (V,E) be a graph. A representation of G is a collection R =
{R(v), v ∈ V } of piecewise linear curves in the plane, such that R(u) ∩ R(v)
is nonempty iff uv is an edge of G.

An intersection point of a representationR is a point in the plane that belongs
to (at least) two distinct curves of R. Let In(R) denote the set of intersection
points of R.

A representation is proper if

1. each R(v) is a simple curve, i.e., it does not intersect itself,
2. R has only finitely many intersection points (in particular no two curves may

overlap) and finitely many bends, and
3. each intersection point p belongs to exactly two curves of R, and the two

curves cross in p (in particular, the curves may not touch, and an endpoint
of a curve may not belong to another curve).

LetR be a proper representation ofG = (V,E), let R′ be another (not necessarily
proper) representation of G, and let φ be a mapping from In(R) to In(R′). We
say that φ is order-preserving if it is injective and has the property that for
every v ∈ V , if p1, p2, . . . , pk are all the distinct intersection points on R(v),
then φ(p1), . . . , φ(pk) all belong to R′(v) and they appear on R′(v) in the same
relative order as the points p1, . . . , pk on R(v). (If R′(v) visits the point φ(pi)
more than once, we may select one visit of each φ(pi), such that the selected
visits occur in the correct order φ(p1), . . . , φ(pk).)

For a set P of points in the plane, the ε-neighborhood of P , denoted by Nε(P ),
is the set of points that have distance less than ε from P .

Lemma 1 (Noodle-Forcing Lemma). Let G = (V,E) be a graph with a
proper representation R = {R(v), v ∈ V }. Then there exists a graph G′ =
(V ′, E′) containing G as an induced subgraph, which has a proper representation
R′ = {R′(v), v ∈ V ′} such that R(v) = R′(v) for every v ∈ V , and R′(w) is a
horizontal or vertical segment for w ∈ V ′ \V . Moreover, for any ε > 0, any (not
necessarily proper) representation of G′ can be transformed by a homeomorphism
of the plane and by circular inversion into a representation Rε = {Rε(v), v ∈ V ′}
with these properties:

1. for every vertex v ∈ V , the curve Rε(v) is contained in the ε-neighborhood
of R(v), and R(v) is contained in the ε-neighborhood of Rε(v).

2. there is an order-preserving mapping φ : In(R) → In(Rε), with the additional
property that for every p ∈ In(R), the point φ(p) coincides with the point p.

Due to space limitations, we only sketch the proof of the lemma. Suppose R is a
proper representation of a graph G. The main idea is to overlay the representa-
tion R with a sufficiently fine grid-like configuration C of short horizontal and
vertical segments, so that the position of a curve R(v) ∈ R is well approximated
by the set of segments of C that are intersected by R(v). We refer to this step



Bend-Bounded Path Intersection Graphs: Sausages, Noodles, and Waffles 277

as ‘grilling’ of the representation R, since the segments of C form a structure
resembling a grill.

We let R′ be the representation R ∪ C and G′ be the graph represented
by R′. Moreover, let GC be the graph whose intersection representation is C.
The configuration of C has the property that any representation C′ of the graph
GC can be transformed into the representation C by a homeomorphism and a
circular inversion, followed possibly by a truncation of some of the curves of C′.
In particular, any representation of G′ can be transformed by a homeomorphism
and a circular inversion into a representation R′′ that essentially contains a copy
of C. The segments of C then constrain the relative positions of the curves
representing the vertices of G in R′′.

This allows us to argue that the curve R′′(v) ∈ R′′ representing a vertex v
of G can be deformed to be arbitrarily close to the corresponding curve R(v)
of R, and conversely, every point of R(v) is close to a point of R′′(v). In fact, for
every ε, we may deform R′′(v) into a curve Rε(v) which is confined to the the
ε-neighborhood of the original curve R(v), without affecting the intersections
between this curve and the curves of C′. We call the ε-neighborhood of R(v) the
noodle of R(v), denoted by N(v).

It now remains to provide the order-preserving mapping φ. Suppose that R(u)
and R(v) are two curves of R that cross at a point p. Assuming ε is small
enough, N(u) and N(v) intersect in a parallelogram-shaped region surrounding
the point p. We call this region the zone of p. We may assume that distinct
intersection points of R have disjoint zones.

Assume from now on that all the curves of R and Rε have a prescribed ori-
entation, i.e., a fixed beginning and end. Suppose that a curve R(v) contains k
intersection points p1, . . . , pk appearing in this order, with zones P1, . . . , Pk. We
may assume that the two endpoints of Rε(v) are ε-close to the corresponding
endpoints of R(v), otherwise we only consider a truncated part of Rε(v) that has
this property. Following the curve Rε(v) from beginning to end, we eventually
encounter all the zones P1, . . . , Pk. Of course, a given zone Pi may be intersected
several times by Rε(v), since the curve Rε(v) may be folded inside N(v) in a
complicated way. For every zone Pi, we fix the first occurrence when Rε(v) enters
inside Pi and then exits through the opposite side of Pi. The subcurve of Rε(v)
inside Pi that corresponds to this occurrence will be called the representative of
Rε(v) inside Pi, and denoted by ri(v). Note that the representatives appear on
Rε(v) in the ‘correct’ order, i.e., r1(v), r2(v), . . . , rk(v).

We now define the order-preserving mapping φ. Let p ∈ In(R) be an inter-
section point of two curves R(u) and R(v), and let P be its zone. Let r(u)
and r(v) be the representatives of Rε(u) and Rε(v) inside this zone, and let
p′′ be an arbitrary intersection of r(u) and r(v). We then put φ(p) = p′′.
This mapping is order-preserving by the construction of the representatives.
Deforming the curves of Rε inside each zone, we may even assume that p′′

coincides with p. This completes the sketch of proof of the Noodle-Forcing
Lemma.
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3 Relations between Classes

With the Noodle-Forcing Lemma, we can prove our separation results.

Theorem 1. For any k ≥ 1, there is a graph G′ that has a proper representation
using k-bend axis-parallel curves, but has no representation using (k − 1)-bend
axis-parallel curves.

Proof. Consider the graph K2 consisting of a single edge uv, with a represen-
tation R in which both u and v are represented by weakly increasing k-bend
staircase curves that have k + 1 common intersections p1, . . . , pk+1, in left-to-
right order, see Fig.1. We refer to this representation as a sausage due to it
resembling sausage links.

→
α

Fig. 1. The sausage representation for k = 3 and its grilled version

We now grill the sausage (i.e., we apply the Noodle-Forcing Lemma to K2 and
R) to obtain a graphG′ with a k-bend representationR′. We claim that G′ has no
(k−1)-bend representation. Assume for contradiction that there is a (k−1)-bend
representation R′′ of G′. Lemma 1 then implies that there is an order-preserving
mapping φ : In(R) → In(R′′). Let si(u) be the subcurve of R′′(u) between the
points φ(pi) and φ(pi+1), and similarly for si(v) and R′′(v). Consider, for each
i = 1, . . . , k, the union ci = si(u)∪si(v). We know from Lemma 1 that si(u) and
si(v) cannot completely overlap, and therefore the closed curve ci must surround
at least one nonempty bounded region of the plane. Therefore ci contains at least
two bends different from φ(pi) and φ(pi+1). We conclude that R′′(u) and R′′(v)
together have at least 2k bends, a contradiction.

A straightforward consequence is the following.

Corollary 1. For every k, Bk-VPG � Bk+1-VPG.

Because two straight-line segments in the plane cross at most once, the
Noodle-Forcing Lemma also implies the following.

Corollary 2. For every k ≥ 1, Bk-VPG �⊂ SEG.
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This raises a natural question: Is there some k such that every SEG graph is
contained in Bk-VPG? The following theorem answers it negatively.

Theorem 2. For every k, there is a graph which belongs to 3-DIR but not to
Bk-VPG.

Proof. We fix an arbitrary k. Consider, for an integer n, a representation R ≡
R(n) formed by 3n segments, where n of them are horizontal, n are vertical and n
have a slope of 45 degrees. Suppose that every two segments of R with different
slopes intersect, and their intersections form the regular pattern depicted in
Figure 2 (with a little bit of creative fantasy this pattern resembles a waffle,
especially when viewed under a linear transformation).

Fig. 2. The ‘waffle’ representation R from Theorem 2 and its transformed
representation

Note that the representation R forms Ω(n2) empty internal triangular faces
bounded by segments of R, and the boundaries of these faces intersect in at most
a single point. Suppose that n is large enough, so that there are more than 3kn
such triangular faces. Let G be the graph represented by R.

The representation R is proper, so we can apply the Noodle-Forcing Lemma
to R and G, obtaining a graph G′ together with its 3-DIR representation R′. We
claim that G′ has no Bk-VPG representation.

Suppose for contradiction that there is a Bk-VPG representation R′′ of G′.
We will show that the 3n curves of R′′ that represent the vertices of G contain
together more than 3kn bends.

From the Noodle-Forcing Lemma, we deduce that there exists an order-
preserving mapping φ : In(Rn) → In(R′′

n). Let T be a triangular face of the
representationR. The boundary of T consists of three intersection points p, q, r ∈
In(R) and three subcurves a, b, c. The three intersection points φ(p), φ(q) and
φ(r) determine the corresponding subcurves a′′, b′′ and c′′ in R′′.
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The Noodle-Forcing Lemma implies that there is a homeomorphism h which
sends a′′, b′′, and c′′ into small neighborhoods of a, b and c, respectively. This
shows that each of the three curves a′′, b′′ and c′′ contains a point that does not
belong to any of the other two curves. This in turn shows that at least one of
the three curves is not a segment, i.e., it has a bend in its interior.

Since the triangular faces of R have non-overlapping boundaries, and since
φ is order-preserving, we see that for each triangular face of R there is at least
one bend in R′′ belonging to a curve representing a vertex of G. Since G has 3n
vertices and R determines more than 3kn triangular faces, we conclude that at
least one curve of R′′ has more than k bends, a contradiction.

4 Hardness Results

In this section we strengthen the separation result of Corollary 1 by showing
that not only are the classes Bk-VPG and Bk+1-VPG different, but providing a
Bk+1-VPG representation does not help in deciding Bk-VPG membership. This
also settles the conjecture on NP-hardness of recognition of these classes stated
in [2], in a considerably stronger form than it was asked.

Theorem 3. For every k ≥ 0, deciding membership in Bk-VPG is NP-complete
even if the input graph is given with a Bk+1-VPG representation.

Proof. It is not difficult to see that recognition of Bk-VPG is in NP and there-
fore we will be concerned in showing NP-hardness only. We use the NP-hardness
reduction developed in [11] for showing that recognizing grid intersection graphs
is NP-complete. Grid intersection graphs are intersection graphs of vertical and
horizontal segments in the plane with additional restriction that no two segments
of the same direction share a common point. Thus these graphs are formally close
but not equal to B0-VPG graphs (where paths of the same direction are allowed
to overlap). However, bipartite B0-VPG graphs are exactly grid intersection
graphs. This follows from a result of Bellantoni et al. [4] who proved that bipar-
tite intersection graphs of axes parallel rectangles are exactly grid intersection
graphs.

The reduction in [11] constructs, given a Boolean formula Φ, a graphGΦ which
is a grid intersection graph if and only if Φ is satisfiable. In arguing about this,
a representation by vertical and horizontal segments is described for a general
layout of GΦ for which it is also shown how to represent its parts corresponding
to the clauses of the formula, referred to as clause gadgets, if at least one literal
is true. The clause gadget is reprinted with a generous approval of the author
in Fig. 3, while Fig. 4 shows the grid intersection representations of satisfied
clauses, and Fig. 5 shows the problem when all literals are false. In Fig. 6, we
show that in the case of all false literals, the clause gadget can be represented
by grid paths with at most 1 bend each. It follows that GΦ ∈ B1-VPG and a
1-bend representation can be constructed in polynomial time. Thus, recognition
of B0-VPG is NP-complete even if the input graph is given with a B1-VPG
representation.
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Fig. 3. The clause gadget reprinted from [11]

Fig. 4. The representations of satisfied clauses reprinted from [11]

Fig. 5. The problem preventing the representation of an unsatisfied clause reprinted
from [11]
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a

b
d

c

u1 v1

v3 u3

u2

v2

w

Fig. 6. The representation of an unsatisfied clause gadget via curves with one bend

We use a similar approach for arbitrary k > 0 with a help of the Noodle-
Forcing Lemma. We grill the same representation R of K2 as in the proof of
Theorem 1. We call the resulting graph P (u) where u is one of the vertices of
the K2, the one whose curve in R is ending in a boundary cell denoted by α in the
schematic Fig. 1. We call this graph the pin since it follows from Lemma 1 that
it has a Bk-VPG representation such that the bounding paths of the cell α wrap
around the grill and the last segment of R(u) extends arbitrarily far (see the
schematic Fig. 7). We will refer to this extending segment as the tip of the pin.
It is crucial to observe that in any Bk-VPG representation R′ of P (u) all bends
of R′(u) are consumed between the crossing points with the curve representing
the other vertex of K2 and hence the part of R′(u) that lies in the α cell of R′

is necessarily straight.

→

Fig. 7. Construction of a pin

Next we combine two pins together to form a clothespin. The construction is
illustrated in the schematic Fig. 8. We start with a K4 whose edges are subdi-
vided by one vertex each. Every STRING representation of this graph contains



Bend-Bounded Path Intersection Graphs: Sausages, Noodles, and Waffles 283

→ x1

x2 x2

x1

β1

β2 β2

β1

Fig. 8. Construction of a clothespin

4 basic regions which correspond to the faces of a drawing of the K4 (this is true
for every 3-connected planar graph and it is seen by contracting the curves cor-
responding to the degree 2 vertices, the argument going back to Sinden [15]). We
add two vertices x1, x2 that are connected by paths of length 2 to the boundary
vertices of two triangles, say β1 and β2. The curves representing x1 and x2 must
lie entirely inside the corresponding regions. Then we add two pins, say P (u1)
and P (u2), connect the vertices of the boundary of αi to xi by paths of length
2 and make ui adjacent to a vertex on the boundary of βi (for i = 1, 2). Finally,
we add a third pin P (u3) and make u3 adjacent to u1 and u2. We denote the
resulting graph by CP (u).

It is easy to check that the clothespin has a Bk-VPG representation Ř such
that the tips of Ř(u1) and Ř(u2) are parallel and extend arbitrarily far from the
rest of the representation, as indicated in Fig. 8.

On the other hand, in any Bk-VPG representation R′ of CP (u), if a curve
crosses R′(u1) and R′(u2) and no other path of R′(CP (u)), then it must cross
the tips of R′(u1) and R′(u2). This follows from the fact that for i = 1, 2, R′(xi)
must lie in αi (to be able to reach all its bounding curves), and hence, by circle
inversion, all bends of R′(ui) are trapped inside βi. If a curve crosses both R′(u1)
and R′(u2), it must cross them outside β1∪β2, and hence it only may cross their
tips.

Now we are ready to describe the construction of G′
Φ. We take GΦ as con-

structed in [11] replace every vertex u by a clothespin CP (u), and whenever
uv ∈ E(GΦ), we add edges uivj , i, j = 1, 2. Now we claim that G′

Φ ∈ Bk-VPG if
and only if Φ is satisfiable, while G′

Φ ∈ Bk+1-VPG is always true.
On one hand, if G′

Φ ∈ Bk-VPG and R′ is a Bk-VPG representation of G′
Φ,

then the tips of R′(u1), u ∈ V (GΦ) form a 2-DIR representation of GΦ (R′(u1)
and R′(v1) may only intersect in their tips) and Φ is satisfiable.

On the other hand, if Φ is satisfiable, we represent GΦ as a grid intersection
graph and replace every segment of the representation by a clothespin with slim
parallel tips and the body of the pin tiny enough so that does not intersect
anything else in the representation. Similarly, if Φ is not satisfiable, we mod-
ify a 1-bend representation of GΦ by replacing the paths of the representation
by clothespins with 1-bend on the tips, thus obtaining a Bk+1-VPG represen-
tation of GΦ. The representation consists of a large part inherited from the
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representation of GΦ and tiny parts representing the heads of the pins, but these
can be made all of the same constant size and thus providing only a constant
ratio refinement of the representation of GΦ. The representation is thus still of
linear size and can be constructed in polynomial time.

5 Concluding Remarks

In this paper we have affirmatively settled two main conjectures of Asinowski
et al [2] regarding VPG graphs. We have also demonstrated the relationship
between Bk-VPG graphs and segment graphs.

The first conjecture that we settled claimed that Bk-VPG is a strict subset
of Bk+1-VPG for all k. We have proven this constructively. Previously only the
following separation was known: B0-VPG � B1-VPG � VPG.

The second conjecture claimed that the Bk-VPG recognition problem is NP-
Complete for all k. We have actually proven a stronger result; namely, that the
Bk-VPG recognition problem is NP-Complete for all k even when the input
graph is a Bk+1-VPG graph. Previously only the NP-Completeness of B0-VPG
(from 2-DIR [11]) and VPG (from STRING [9,14]) were known.

Finally due to the close relationship between VPG graphs and segment graphs
(i.e., since B0-VPG = 2-DIR, and SEG � STRING = VPG) we have considered
the relationship between these classes. In particular, we have shown that:

– There is no k such that 3-DIR is contained in Bk-VPG (i.e., SEG is not
contained in Bk-VPG for any k).

– B1-VPG is not contained in SEG.

Thus, to obtain polynomial time recognition algorithms, one would need to re-
strict attention to specific cases with (potentially) useful structure. In this re-
spect, in [8], certain subclasses of B0-VPG graphs have been characterized and
shown to admit polynomial time recognition; namely split, chordal claw-free,
and chordal bull-free B0-VPG graphs are discussed in [8]. Additionally, in [5],
B0-VPG chordal and 2-row B0-VPG

5 have been shown to have polynomial time
recognition algorithms. In particular, we conjecture that applying similar re-
strictions to the Bk-VPG graph class will also yield polynomial time recognition
algorithms. It is interesting to note that since our separating examples are not
chordal it is also open whether Bk-VPG chordal � Bk+1-VPG chordal.
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