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Abstract. We consider a graph parameter, the hydra number, arising
from an optimization problem for Horn formulas in propositional logic.
The hydra number of a graph G = (V,E) is the minimal number of hyper-
arcs of the form u, v → w required in a directed hypergraph H = (V, F ),
such that for every pair (u, v), the set of vertices reachable in H from
{u, v} is the entire vertex set V if (u, v) ∈ E, and it is {u, v} otherwise.
Here reachability is defined by the standard forward chaining or marking
algorithm.

Various bounds are given for the hydra number. We show that the
hydra number of a graph can be upper bounded by the number of
edges plus the path cover number of its line graph, and this is a sharp
bound for some graphs. On the other hand, we construct graphs with
hydra number equal to the number of edges, but having arbitrarily
large path cover number. Furthermore we characterize trees with low
hydra number, give bounds for the hydra number of complete binary
trees, discuss a related optimization problem and formulate several open
problems.

1 Introduction

We consider a problem concerning the minimal number of hyperarcs in directed
hypergraphs with prescribed reachability properties. In this paper, a directed
hypergraph H = (V, F ) has size-3 hyperarcs of the form u, v → w where u, v is
called the body (or tail) and w is called the head of the hyperarc. Reachability
is defined by a marking procedure known as forward chaining. A vertex w ∈ V
is reachable from a set S ⊂ V if the following process marks w: start by marking
vertices in S, and as long as there is a hyperarc a, b → c such that both a and b
are marked, mark c as well.

Given an undirected graph G = (V,E), we would like to find the minimal
number of hyperarcs in a directed hypergraph H = (V, F ), such that for every
pair (u, v) ∈ E, the set of vertices reachable from {u, v} in H is the whole vertex
set V if (u, v) ∈ E, and it is {u, v} otherwise. In other words, given a set of
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bodies, we look for the minimal total number of heads assigned to these bodies
such that every body can reach every vertex. The minimum is called the hydra
number1 of G, denoted by h(G).

The problem is a combinatorial reformulation of a special case of the min-
imization problem for propositional Horn formulas. Horn formulas are a basic
knowledge representation formalism. Horn minimization is the problem of finding
a shortest possible Horn formula equivalent to a given formula. There are ap-
proximation algorithms, computational hardness and inapproximability results
for this problem [1,2,3,4]. Special cases correspond to the well studied transi-
tive reduction and minimum equivalent digraph problems for directed graphs.
Estimating the size of a minimal formula is not well understood even in rather
simple cases. A hydra formula ϕ is a definite Horn formula with clauses of size
3 such that every body occurring in the formula occurs with all possible heads.
The minimal number of clauses needed to represent ϕ is the hydra number of
the undirected graph G corresponding to the bodies in ϕ.

Besides being a natural subproblem of Horn minimization, the hydra min-
imization problem may also be of interest for the following reason. The Horn
body minimization problem is the problem of finding, given a definite Horn for-
mula, an equivalent Horn formula with the minimal number of distinct bodies.
There are efficient algorithms for this problem [5,6,7,8]. Thus one possible ap-
proach to Horn minimization is to find an equivalent formula with the mini-
mal number of bodies and then to select as few heads as possible from the set
of heads assigned to the bodies. This approach is indeed used in an approxi-
mate Horn minimization algorithm [2]. Hydras are a natural test case for this
approach.

The paper is organized as follows. Section 2 contains some background, in-
cluding a discussion of the motivating Horn minimization problem. The rest of
the paper presents various results on hydra numbers.

It is easy to see that |E(G)| ≤ h(G) ≤ 2|E(G)| for every graph G on at
least three vertices. Graphs satisfying the lower bound are called single-headed.
In Section 3 we give some sufficient and some necessary conditions for single-
headedness. In Section 4 we show that the hydra number is related to the path
cover number of the line graph (Theorem 13, Theorem 14). In Section 5 it is
shown that single-headed trees are precisely the stars and that trees with hy-
dra number |E(G)| + 1 are precisely the non-star caterpillars (Theorem 16). In
Section 6 we show that the hydra number of a complete binary tree is between
13
12 |E (G)| and ⌈

8
7 |E (G) |⌉ (Theorem 19).

In Section 7 we consider the related problem of finding the minimal number
of hyperarcs for which every k-tuple of vertices is good, and we give almost
matching lower and upper bounds. We conclude the paper by mentioning several
open problems.

Due to space limitations, the proof of Theorem 19 is omitted. Further results
on hydra numbers will appear in [9].

1 In Greek mythology the Lernaean Hydra is a beast possessing many heads.
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2 Background

A definite Horn clause is a disjunction of literals where exactly one literal is
unnegated. Such a disjunction can also be viewed as an implication, for example
the clause x̄ ∨ ȳ ∨ z is equivalent to the implication x, y → z. The tuple x, y is
the body and the variable z is the head of the clause. The size of a clause is
the number of its literals. A definite d-Horn formula is a conjunction of definite
Horn clauses of size d. A clause C is an implicate of a formula ϕ if every truth
assignment satisfying ϕ satisfies C as well. The implicate C is a prime implicate
if none of its proper subclauses is an implicate.

Implication between a definite Horn formula ϕ and a definite Horn clause C
can be decided by forward chaining: mark every variable in the body of C, and
while there is a clause in ϕ with all its body variables marked, mark the head of
that clause as well. Then ϕ implies C iff the head of C gets marked.

Definition 1. A definite 3-Horn formula ϕ is a hydra formula, or a hydra, if
for every clause x, y → z in ϕ and every variable u, the clause x, y → u also
belongs to ϕ.

For example, (x, y → z) ∧ (x, y → u) ∧ (x, z → y) ∧ (x, z → u) is a hydra2.
In the following proposition we note that every prime implicate of a hy-

dra is a clause occurring in the hydra itself (this is not true for definite 3-
Horn formulas in general). Thus minimization for hydras amounts to selecting
a minimal number of clauses from the hydra that are equivalent to the original
formula.

Proposition 2. Every prime implicate of a hydra belongs to the hydra.

Proof. First note that all prime implicates of a definite Horn formula are definite
Horn clauses [10]. Let us consider a hydra ϕ and a definite Horn clause C. If
the body of C is of size 1, or it is of size 2 but it does not occur as a body
in ϕ then forward chaining cannot mark any further variables, thus C cannot
be an implicate. If the body of C has size at least 3 then it must contain a
body x, y occurring in ϕ, otherwise, again, forward chaining cannot mark any
further variables. But then the clause x, y → head(C) occurs in ϕ and so C is not
prime. �	
A definite Horn formula may also be viewed as a directed hypergraph of the type
described in the introduction, and the two descriptions of forward chaining are
equivalent. The closure clH(S) of a set of vertices S with respect to H is the set
of vertices marked by forward chaining started from S. A set of vertices is good
if its closure is the set of all vertices.

For completeness, we restate the main notions used in this paper.

Definition 3. A directed 3-hypergraph H = (V, F ) represents an undirected
graph G = (V,E) if

2 Redundant clauses like x, y → x are omitted for simplicity.
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i. (u, v) ∈ E implies clH(u, v) = V ,
ii. (u, v) 
∈ E implies clH(u, v) = {u, v}.
Definition 4. The hydra number h(G) of an undirected graph G = (V,E) is

min{|F | : H = (V, F ) representsG}.

Proposition 2 implies that the minimal formula size of a hydra ϕ and the hydra
number of the undirected graph G formed by the bodies in ϕ are the same.

Remark 5. For the rest of the paper we assume that every variable in a hydra
occurs in some body, or, equivalently, that graphs contain no isolated vertices.
The removal of a variable occurring only as a head decreases minimal formula
size by one, and, similarly, the removal of an isolated vertex decreases the hydra
number by one.

For the remainder of the paper we use hypergraph terminology.

3 The Hydra Number of Graphs

In this section we note some simple properties of the hydra number.

Proposition 6. For every graph G = (V,E) with at least three vertices

|E(G)| ≤ h(G) ≤ 2|E(G)|.

Proof. For the upper bound construct a hypergraph of size 2|E(G)| by first
ordering the edges of G, and then using each edge as the body of two hyperarcs
whose heads are the two endpoints of the next edge in G. For the lower bound,
note that each edge of G must be a body of at least one hyperarc. �	
Equality holds in the upper bound when G is a matching. Graphs satisfying
the lower bound are of particular interest as they represent ‘most compressible’
hydras.

Definition 7. A graph G is single-headed if h(G) = |E(G)|.
A graph is single-headed iff there is a hypergraph H = (V, F ) such that every
edge of G has exactly one head assigned to it, every hyperarc body inH is an edge
of G and every edge of G is good in H . Cycles, for example, are single-headed,
as shown by the directed hypergraph

(v1, v2 → v3), (v2, v3 → v4), . . . , (vk−1, vk → v1). (1)

Adding edges to the cycle preserves single-headedness. For example, the graph
obtained by adding edge (vi, vj) is represented by the directed hypergraph ob-
tained from (1) by adding the hyperarc vi, vj → vi+1, where i+1 is meant modulo
m. Thus we obtain the following.
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Proposition 8. Hamiltonian graphs are single-headed.

We will discuss stronger forms of this statement in the next section. Matchings,
on the other hand, satisfy the upper bound in Proposition 6. Indeed, every edge
must occur as the body of at least two hyperarcs as otherwise forward chaining
cannot mark any further vertices.

We call a body u, v single-headed (resp., multi-headed) with respect to a
directed hypergraph H representing a graph G, if it is the body of exactly one
(resp., more than one) hyperarc of H .

Remark 9. Assume that the directed hypergraph H = (V, F ) represents the
graph G = (V,E) and |V | ≥ 4. If u, v → w ∈ F and u, v is single-headed in H
then w must be a neighbor of u or v. Indeed, otherwise clH(u, v) = {u, v, w} ⊂ V .
This is a fact which we use numerous times in our proofs without referring to it
explicitly.

The following proposition generalizes the argument proving Proposition 8.

Proposition 10. Let G be a connected graph and let G′ be a connected spanning
subgraph of G. Then

h(G) ≤ h(G′) + |E(G)| − |E(G′)|.

If G′ is single-headed then G is also single-headed.

Proof. Let H ′ be a directed hypergraph of size h(G′) representing G′. Since G′

is a connected spanning subgraph of G, for every edge (u, v) ∈ E(G) � E(G′)
there is an edge (v, w) ∈ E(G′). The directed hypergraph H representing G
obtained from H ′ by adding the hyperarc u, v → w to H ′ for each edge (u, v) ∈
E(G)�E(G′) satisfies the requirements. The second statement follows trivially.

�	

A second proposition gives a sufficient condition for single-headedness based on
single-headedness of a non-spanning subgraph.

Proposition 11. Let G be a connected graph and (u, v) 
∈ E(G). Construct
the graph Ĝ with vertex set V (Ĝ) = V (G) ∪ {w} and edge set E(Ĝ) = E(G) ∪
{(u, v), (v, w)}, for some w 
∈ V (G). If G is single-headed then Ĝ is single-headed.

Proof. Let H be a directed hypergraph representing G and containing exactly
|E(G)| hyperarcs. Construct Ĥ from H by adding hyperarcs u, v → w and
v, w → z, where z is a neighbor of v in G guaranteed to exist by the connectiv-
ity of G. Since all pairs in E(G) reach both u and v in H (and in Ĥ), hyperarc
u, v → w ensures all pairs in E(G) can reach in Ĥ the new variable w as well. On
the other hand, hyperarc v, w → z ensures that the new pairs (u, v) and (v, w)
can reach all other variables. Finally, there are |E(Ĝ)| hyperarcs in H . �	

Next we see a general sufficient condition for a graph not to be single-headed.
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Proposition 12. Let G be the union of two disjoint subgraphs G1 = (V1, E1)
and G2 = (V2, E2), connected by a cut-edge. If both G1, G2 contain at least two
vertices then G is not single-headed.

Proof. Assume that G is single-headed and let H be a directed hypergraph
demonstrating this. Let u ∈ G1, v ∈ G2, and (u, v) be the cut-edge. There is
exactly one hyperarc of the form u, v → z in H . If z is in G1 (resp., in G2) then
forward chaining started from z, u (resp., z, v) cannot mark any vertices in G2

(resp., G1) other than v (resp., u). �	

4 Line Graphs

In this section we consider a graph parameter that can be used to prove bounds
on the hydra number. The line graph L(G) of G has vertex set V (L(G)) = E(G)
and edge set E(L(G)) = {(e, f)|e 
= f ∈ E(G) and e∩f 
= ∅}. A (vertex-disjoint)
path cover of G is a set of vertex-disjoint paths such that every vertex v ∈ V is
in exactly one path. The path cover number of G is the smallest integer k such
that G has a path cover containing k paths.

In Proposition 8 we noted that hamiltonian graphs are single-headed. This
can be extended to show that hamiltonicity of the line graph is also sufficient for
single-headedness. Note that hamiltonicity of the line graph is a strictly weaker
condition than hamiltonicity. Hamiltonicity of the graph is easily seen to imply
hamiltonicity of the line graph, and a triangle with a pendant edge shows that
the converse fails. Furthermore, the path cover number of the line graph of any
spanning connected subgraph gives a general upper bound for the hydra number.

Theorem 13. Let G be a connected graph and G′ be a connected spanning sub-
graph of G. Then the following statements are true:

i. If L(G′) is hamiltonian then G is single-headed.

ii. If L(G′) has a path cover of size k then h(G) ≤ |E(G)| + k.

Proof. By Proposition 10 it is sufficient to prove the bounds for G′.
For i, let C be a hamiltonian cycle in L(G′). Direct the edges of C so that

�C is a directed hamiltonian cycle. The directed hypergraph H satisfying the
requirements is constructed by adding a hyperarc u, v → w for each directed
edge (e, f) ∈ �C, where e = (u, v) and f = (v, w).

For ii, let {Pi}k1 be the minimum path cover of L(G′) and let li be the number

of vertices of the path Pi. Direct the edges of each path Pi so that �Pi is a
directed path. Let ei = (xi, yi) and fi = (ui, vi) be the first and last edges in �Pi,

respectively (if �Pi is a single vertex then ei = fi).
We construct a directed hypergraph H representing G′ and satisfying the

requirements as follows. First, for each path �Pi of at least 2 vertices we add li−1
hyperarcs: for each directed edge (e, f) ∈ �Pi, where e = (u, v) and f = (v, w),
add a hyperarc u, v → w to H .
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If k = 1 then we complete the construction of H by adding two hyperarcs,
u1, v1 → x1 and u1, v1 → y1. If k > 1 then we complete the construction by
adding the 2k hyperarcs

(uk, vk → x1), (uk, vk → y1) and (ui, vi → xi+1), (ui, vi → yi+1),

for 1 ≤ i ≤ k − 1. �	

The condition of Theorem 13(i) is sufficient but not necessary for a graphG to be
single-headed. In fact there exist single-headed graphs such that the line graph
of any of the connected spanning subgraphs has a large path cover number.

Theorem 14. There is a family of single-headed graphs Gk with Θ(k) edges
such that for every spanning, connected subgraph G′ ⊆ Gk, L(G

′) has path cover
number Θ (k).

Proof. Consider the sequence of graphs {Gk : k ≥ 1} constructed from an
8k-cycle, with vertices v0, . . . , v8k−1, and pendant edges xiv4i and yiv4k+4i

for 0 ≤ i ≤ k − 1. Add a vertex zi and the edges (xi, yi), (yi, zi), for each i,
0 ≤ i ≤ k − 1, corresponding to the construction in Proposition 11.

By Proposition 11, Gk is single-headed, since a cycle with attached pendant
edges has a hamiltonian line graph. We will show that for an arbitrary connected
spanning subgraph G′ ⊆ Gk the path cover number of L(G′) is at least k/4.

Define Di to be the set of vertices in the ith diagonal of L(G′), namely xiv4i,
xiyi, yizi, and yiv4k+4i. Consider an arbitrary path cover S = {Pj : 1 ≤ j ≤ s}
of the vertices of L(G′).
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Fig. 1. Single-headed graph Gk for k = 4 from Theorem 14 (left) and its line graph
(right)
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Lemma 15. Let Di
′ = Di ∩ V (L(G′)), and let G[Di

′] be the subgraph of L(G′)
induced by Di

′. If G[Di
′] does not contain an endpoint of a path in S, then

Di
′ = Di and one path in S covers all vertices in Di.

Proof. Suppose that G[Di
′] does not contain an endpoint of a path in S, and as-

sume for contradiction that e ∈ Di\Di
′. SinceG′ is both spanning and connected,

it must contain the edge (yi, zi), and so e 
= yizi. Also e 
∈ {xiyi, yiv4k+4i}, else
yizi would be a degree-1 vertex in L(G′), and thus it would be an endpoint of
a path in S. Furthermore e 
= xiv4i, otherwise S must have a path endpoint
in the triangle {xiyi, yizi, yiv4k+4i}. Thus Di is contained in the vertex set of
L(G′), and due to the structure of the diagonal and the assumption that no path
endpoints of S fall in Di, all vertices in the diagonal are covered by exactly one
path P of S. �	
Define Xi to include all vertices in Di along with the cycle vertices v4i−3v4i−2,
v4i−2v4i−1, v4i−1v4i, v4iv4i+1, v4i+1v4i+2, v4i+2v4i+3, and their antipodes on
the circle v4k+4i−3v4k+4i−2, v4k+4i−2v4k+4i−1, v4k+4i−1v4k+4i, v4k+4iv4k+4i+1,
v4k+4i+1v4k+4i+2, v4k+4i+2v4k+4i+3.

Let Xi
′ = Xi ∩ V (L(G′)). We claim that the subgraph G[Xi

′] induced by
the vertex set Xi

′ contains at least one endpoint of a path in S. Suppose not.
By Lemma 15 all vertices in Di are in L(G′). A case analysis shows that all
other vertices in Xi must be present, otherwise a degree-1 vertex is introduced
in G[Xi

′] or G′ is not both spanning and connected. Thus there must be a path
P in S going through all the vertices of Xi. A further case analysis shows that
this is not possible.

G[Xi
′], which is a contradiction.

There are k/2 disjoint sets Xi
′ and so there are at least k/4 paths in S. �	

A more involved case analysis gives at least two endpoints of paths of S in Xi
′,

and so at least k/2 paths in S.

5 Trees with Low Hydra Number

In this section we begin the discussion of the hydra number of trees, with trees
having low hydra numbers, that is, hydra number |E(T )| or |E(T )|+ 1.

A star is a tree that contains no length-3 path. A caterpillar is a tree for
which deleting all vertices of degree one and their incident edges from the tree
gives a path. We call this path the spine of T , and note that it is unique. A
useful characterization of caterpillars is that they do not contain the subgraph
in Fig. 2 [11] (see also [12, p.88]).

Caterpillars have been instrumental in [13], where finding maximal caterpillars
starting from the leaves of the tree was the basis for a polynomial algorithm used
to find a minimum hamiltonian completion of the line graph of a tree (which is
the same as finding a minimum path cover). A linear algorithm was later put
forth by [14] for the same problem. For general graphs the problem is NP-hard.
Furthermore, [15] proves that finding a hamiltonian path is NP-complete even
for line graphs.
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Fig. 2. The forbidden subgraph for caterpillars

Stars are the only trees that are single-headed, and caterpillars are the only
non-star trees that can attain h(T ) = |E(T )|+ 1.

Theorem 16. Let T be a tree. Then

i. h(T ) = |E(T )| if and only if T is a star.
ii. h(T ) = |E(T )|+ 1 if and only if T is a non-star caterpillar.

We first show that a tree that is not a star cannot be single-headed.

Lemma 17. If T is a tree that is not a star, then h(T ) ≥ |E(T )|+ 1.

Proof. Since T is not a star, it contains a path of length three. The middle edge
is a cut-edge between two components of at least two vertices, hence we can
apply Proposition 12. �	
In fact a hypergraph that represents a non-caterpillar tree requires even more
hyperarcs.

Lemma 18. If T is a tree that is not a caterpillar then h(T ) > |E(T )|+ 1.

Proof. A non-caterpillar tree T contains the subgraph in Fig. 2. Let us call the
central vertex of that forbidden subgraph u.

Assume for contradiction that H is a hypergraph with |E(T )| + 1 hyperarcs
that represents T . Let the two-headed body of H be α.

We claim α must have a head in every non-singleton subtree attached to u
that does not contain both vertices of α. Suppose not. Let v be a neighbor of u,
and let Tv be a non-singleton subtree of T not containing any heads of α, and

u

v

w

Tv

Fig. 3. Part of the non-caterpillar tree T from the proof of Lemma 18
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also not containing both vertices of α. Finally let w ∈ V (Tv) be a neighbor of v.
(See Fig. 3.) Body u, v must have a head that is a neighbor of v in Tv: among
the vertices in Tv, only v itself can be a head to a body completely outside Tv;
so if u, v has only heads outside of Tv, then u, v cannot reach w. Body u, v must
also have a head outside Tv, because otherwise only vertices in Tv and u would
be reachable from u, v in H . So u, v must be α, which contradicts α having no
heads in Tv.

Since there are at least three non-singleton subtrees attached to u, it must
be that two of those subtrees each contain one head of α, and the third subtree
contains both vertices of α. The two heads of α must not be adjacent to α,
because they are in different subtrees. Those two heads also cannot be adjacent
to each other. Therefore, the only vertices reachable from α in H are α’s two
heads and α itself. �	
Proof (of Theorem 16). We need to prove the upper bounds. The single-
headedness of stars is easily seen directly, or follows from Theorem 13(i). For T
a caterpillar, the upper bound follows from Theorem 13(ii) as the line graph of
a caterpillar contains a hamiltonian path. �	

6 Complete Binary Trees

In this section we obtain upper and lower bounds for h(G) when G is a complete
binary tree. A complete binary tree of depth d, denoted Bd, is a tree with d+ 1
levels, where every node on levels 1 through d has exactly 2 children. Bd has
2d+1 − 1 vertices and 2d+1 − 2 edges.

Theorem 19. For d ≥ 3 it holds that

13

12
|E (Bd)| ≤ h (Bd) ≤

⌈
8

7
|E (Bd)|

⌉
.

Proof omitted due to space constraints.

7 Minimal Directed Hypergraphs with All k-Tuples Good

In this section we consider a problem related to hydra numbers. Given n and a
number k (2 ≤ k ≤ n − 1), let f(n, k) be the minimal number of hyperarcs in
an n-vertex hypergraph H such that every k-element subset of the vertices is
good for H . The case k = 2 is just the hydra number of complete graphs and so
f(n, 2) =

(
n
2

)
.

We use Turán’s theorem from extremal graph theory (see, e.g. [12]). The Turán
graph T (n, k − 1) is formed by dividing n vertices into k − 1 parts as evenly as
possible (i.e., into parts of size �n/(k − 1)� and �n/(k − 1)�) and connecting
two vertices iff they are in different parts. The number of edges of T (n, k− 1) is
denoted by t(n, k − 1). If k − 1 divides n then

t(n, k − 1) =

(
1− 1

k − 1

)
n2

2
.
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Turán’s theorem states that if an n-vertex graph contains no k-clique then it has
at most t(n, k − 1) edges and the only extremal graph is T (n, k − 1). Switching
to complements it follows that if an n-vertex graph has no empty subgraph on
k vertices then it has at least

(
n
2

)− t(n, k − 1) edges.

Theorem 20. If k ≤ (n/2) + 1 then

(
n

2

)
− t(n, k − 1) ≤ f(n, k) ≤

(
n

2

)
− t(n, k − 1) + (k − 1).

Proof. Suppose H is a 3-uniform directed hypergraph with all k-tuples good.
Then every k-element set S of vertices must contain at least one body of a
hyperarc in H , otherwise forward chaining started from S cannot mark any
vertices. Thus the undirected graph formed by the bodies in H contains no
empty subgraph on k vertices, and the lower bound follows by Turán’s theorem.

For the upper bound we construct a directed hypergraph based on the com-
plement of T (n, k−1) over the vertex set {x1, . . . , xn}, consisting of k−1 cliques
of size differing by at most 1. Assume that each clique has size at least 3. In
each clique do the following. Pick a hamiltonian path, direct it, and introduce
hyperarcs as in (1) (with the exception of the last edge closing the cycle). For
every other edge (u, v), introduce a hyperarc u, v → w where w is a vertex on the
hamiltonian path that is adjacent to u or v. For each edge e closing a hamiltonian
cycle, add two hyperarcs with body e, and heads the endpoints of the first edge
on the hamiltonian path of the next clique (where ‘next’ assumes an arbitrary
cyclic ordering of the cliques). For cliques of size 2 the single edge in the clique
plays the role of the unassigned edge and the construction is similar. �	

8 Open Problems

We list only a few of the related open problems. As computing hydra numbers
is a special case of Horn minimization, it would be interesting to determine the
computational complexity of computing hydra numbers and recognizing single-
headed graphs. What is the maximal hydra number among connected n-vertex
graphs? Can the path cover number of the line graph be used to get a lower
bound for the hydra number of trees?
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