
Approximating Infeasible 2VPI-Systems

Neele Leithäuser1, Sven O. Krumke2, and Maximilian Merkert2

1 ITWM Fraunhofer Institut für Techno- und Wirtschaftsmathematik,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

neele.leithaeuser@itwm.fraunhofer.de
2 Dept. of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 14,

67663 Kaiserslautern, Germany
{krumke,merkert}@mathematik.uni-kl.de

Abstract. It is a folklore result that testing whether a given system
of equations with two variables per inequality (a 2VPI system) of the
form xi − xj = cij is solvable, can be done efficiently not only by Gaus-
sian elimination but also by shortest-path computation on an associ-
ated constraint graph. However, when the system is infeasible and one
wishes to delete a minimum weight set of inequalities to obtain feasibility
(MinFs2=), this task becomes NP-complete.

Our main result is a 2-approximation for the problem MinFs2= for
the case when the constraint graph is planar using a primal-dual ap-
proach. We also give an α-approximation for the related maximization
problem MaxFs2= where the goal is to maximize the weight of feasi-
ble inequalities. Here, α denotes the arboricity of the constraint graph.
Our results extend to obtain constant factor approximations for the case
when the domains of the variables are further restricted.

1 Introduction

The problem of checking whether a system of linear (in-)equalities admits a
solution is efficiently solvable by means of linear optimization methods. However,
in many applications it is known that a linear system is unsolvable. An instance
I = (X,C) of the maximum feasible subsystem problem (MaxFs) consists of a
finite set X of variables and a set C of constraints on the variables, and the goal
is to select a subset C′ ⊆ C of the constraints of maximum size such that the
corresponding reduced system (X,C′) is feasible. This problem has a wide range
of applications (see e.g. [2] and the references therein) and is well-known to be
NP-complete. The corresponding minimization problem MinFs asks to delete a
minimum number of constraints in order to obtain a feasible system.

In this paper we consider the versions of MinFs and MaxFs where the con-
straints are restricted to the special form xi − xj = cij , in particular there are
only two variables per inequality. Such a system is commonly referred to as a
2VPI-system. We are also given a nonnegative weight for each constraint, spec-
ifying the cost of removing it from the system. The problems MinFs2= and
MaxFs2= of deleting a minimum cost set of constraints or retaining a maxi-
mum cost set of constraints, respectively, are still NP-hard to solve, even in case
of unit costs for the constraints.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 225–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

226 N. Leithäuser, S.O. Krumke, and M. Merkert

With each instance I = (X,C) of a 2VPI-system, one can associate a cor-
responding constraint graph GI as follows. For each variable xi ∈ X there is
a vertex i in GI and for each constraint of the form xi − xj = cij there is a
directed arc a from i to j of length �(a) := cij . This arc may be traversed in
both directions, where the length for traversing in direction from j to i is given
by −cij . It is then easy to see that the system given in I = (X,C) is feasible
if and only if GI does not contain a negative length (undirected) cycle. Thus,
the consistency of such a system can be tested by an all-pairs shortest path
computation in O(mn) time, where n = |X | and m = |C| denote the number of
variables and constraints, respectively.

This graph-theoretic view on a 2VPI-system which we are going to take in this
paper means that the problem MinFs2= is equivalent to the following problem:
Delete a minimum cost set of the arcs of a given graph such that the resulting
graph does not contain any negative length cycle.

MaxFs and MinFs have been studied extensively in terms of complexity
and approximability, see, e.g., [2,10,4,13] and the references therein, and also
many heuristic algorithms have been proposed (e.g., [3,1]), but MaxFs2= and
MinFs2= have not been studied specifically so far in literature.

We present the first constant factor approximation algorithm for MaxFs2=

when restricted to planar graphs. We also give an exact pseudo-polynomial
time algorithm for series-parallel graphs and a polynomial time algorithm for
extension-parallel graphs. Moreover we derive new hardness results for general-
ized versions of the problems, where the variables have values in some domain
other than R or the operations are replaced by the group operations in some
group.

Our paper is organized as follows: Section 3 contains our new hardness results
which among other things show that MinFs2= and MaxFs2= are still NP-hard
to solve, even if the corresponding constraint graph is planar. In Section 4 we
give a factor 2-approximation for MinFs2= on planar graphs. Our algorithm is
based on the primal-dual framework by Goemans and Williamson [8] and their
work on feedback vertex problems in [9]. In fact, although we apply a very similar
technique as Goemans and Williamson do in [9] for minimum feedback vertex
problems in planar graphs, we obtain an improved performance guarantee of 2
compared to 3 in [9] (their best result is a factor of 9

4).
1 In Section 5 we obtain

approximation algorithms for the maximization version MaxFs2=. In Section 6
we extend our results to the case of additional restrictions on the domains of the
variables.

2 Preliminaries and Problem Definition

An instance I of MaxFs2= (and MinFs2=) is given by a finite setX of variables
and a finite set E of equations of the form xi − xj = cij over the variables
in X . Also, for each equation e ∈ E we are given a nonnegative weight we.

1 We stress that, unfortunately, our results do not imply improved approximation
results for the feedback vertex problem.

Approximating Infeasible 2VPI-Systems 227

We call a subset E ′ ⊆ E of the equations consistent if the included equations
can be satisfied simultaneously, otherwise E ′ is termed inconsistent. The goal in
MaxFs2= is to find a consistent subset E ′ of the equations of maximum weight
w(E ′) =

∑
e∈E′ we. Similarly,MinFs2= asks to remove a minimum weight subset

of the equations to obtain a consistent system.
With each instance I of MaxFs2= (and MinFs2=), the associated constraint

graph GI contains a vertex i for each variable xi ∈ X and for each constraint xi−
xj = cij a directed arc a from i to j of length �(a) := cij . As mentioned before,
this arc may be traversed in both directions, where the length for traversing in
direction from j to i is given by−cij . In all what follows we identify a constraint e
with the corresponding arc in GI . As a consequence, in addition to its length,
any arc e has an associated weight we ≥ 0.

Since we allow traversing arcs against their directions at the corresponding
negative length,GI contains a negative length (undirected) cycle if and only ifGI

contains a cycle of positive length. Thus, we call any (undirected) cycle in GI

of nonzero length an inconsistent cycle. By the observations made in the intro-
duction, a subset of the equations is consistent if and only if the corresponding
subgraph of GI does not contain an inconsistent cycle.

Thus, one can state MaxFs2= (MinFs2=) equivalently in graph theoretic
terms as follows: Given a directed graph G = (V,E) with lengths and weights on
the arcs, find a maximum weight subset of the arcs (delete a minimum weight
subset of the arcs) such that the resulting subgraph does not contain any incon-
sistent cycle. We call such a subgraph a consistent subgraph. In the sequel we
assume that all graphs are (weakly) connected, since otherwise we can consider
the problem on each connected component separately.

3 Complexity of MinFs2= and MaxFs2=

AlthoughMaxFs2= andMinFs2= were defined in such a way that each equality
contains exactly two variables, in the following we will nevertheless consider
equations with only one variable, since this apparently more general case can
easily be reduced to MaxFs2= and MinFs2=, respectively: Introduce a new
variable x0 and add it with appropriate sign to every equation that has only one
variable, e.g., an equation xi = c is replaced by xi−x0 = c. This problem has an
optimal solution x∗ with x∗

0 = 0: Add −x̂0 to every component of an arbitrary
given solution x̂ to obtain a new solution with x0 = 0 and equally many (exactly
the same) satisfied equations.

Theorem 1. MaxFs2= is APX-hard.

Proof. We provide an L-reduction from the APX-complete optimization problem
Max-2-Sat: Given an instance I1 of Max-2-Sat with variables xi, i = 1, . . . , n
and clauses ycj1 ∨ ycj2 , j = 1, . . . ,m with exactly two literals, ycjl ∈ {xcjl , xcjl},
construct an instance I2 of MaxFs2= as follows: For every clause ycj1 ∨ ycj2 ,
j ∈ {1, . . . ,m} create the following 14 equations:

228 N. Leithäuser, S.O. Krumke, and M. Merkert

ycj1 − ycj2 = 0

ycj1 − ycj2 = 1

(where xcjl := xcjl)

xcj1 = 1, xcj2 = 1, xcj1 = 1, xcj2 = 1

xcj1 = 0, xcj2 = 0, xcj1 = 0, xcj2 = 0

xcj1 − xcj1 = 1, xcj2 − xcj2 = 1

xcj1 − xcj1 = −1, xcj2 − xcj2 = −1

This transformation is not cost preserving, but it is not too hard to verify that
it is in fact an L-reduction: There exists a solution x for the instance I2 of
MaxFs2= which satisfies kx equations if and only if there exists a solution
xSAT for I1 that satisfies at least kxSAT = kx−6m clauses. Moreover, OPT(I2) ≤
7m = 14 · m

2 ≤ 14 ·OPT(I1).

Note that for the definition of MaxFs2= we do not need to have a multiplication
on the domains and also no algorithm presented in this paper relies on the fact
that there is a multiplication on R. In fact a group is perfectly sufficient. For
these algebraic versions we have a similar complexity result, which essentially
uses the same construction as in Theorem 1 if the group has an element of order
greater than 2 and otherwise uses a reduction from MaxCut:

Theorem 2. For every nontrivial group (G,+), MaxFs2=, where all variables
must attain values in G, is APX-hard. ��
A simple greedy method shows that furthermoreMaxFs2= can be approximated
within the constant factor |G| for any finite group. The algorithm iteratively
chooses a variable xi. Let U denote the equations which are (currently) unary
with respect to xi, i.e., which currently contain no variable other than xi. It then
assigns a value to xi which maximizes the number of satisfied equations in U
(if U is empty, an arbitrary value is assigned to xi) and updates the remaining
equations by substituting the chosen value for xi. It is easy to see that this
provides a |G|-approximation.

By a reduction from Partition we can prove the following result:

Theorem 3. MaxFs2= is NP-hard, even if the constraint graph is series-
parallel. ��
Theorem 4. MaxFs2= is strongly NP-hard, even if all weights are unit weights
and the constraint graph is planar.

Proof. Due to lack of space, we only sketch the proof. We provide a reduction
from the strongly NP-complete problem Rectilinear Steiner Tree Problem mrst
([6, ND13]). We are given a set P ⊂ Z×Z of points in the plane and an integer k.
The task is to decide whether there is a finite set Q ⊂ Z×Z such that there is a
spanning tree of total weight k or less for the vertex set V ∪Q, where the weight
of an edge {(x1, y1), (x2, y2)} is measured with respect to the rectilinear metric
|x1 − x2|+ |y1 − y2|.

Approximating Infeasible 2VPI-Systems 229

As common, we call the points in P terminals. Given an arbitrary instance I1
from mrst with a terminal set P = {v1, . . . , vn} ⊂ Z×Z where vi = (xi, yi), we
compute

xmin := min
i=1,...,n

xi ymin := min
i=1,...,n

yi

xmax := max
i=1,...,n

xi ymax := max
i=1,...,n

yi

and set up a grid-graph G∗ = (V,E∗) with nodes V = {vx,y : x ∈ Z ∩
[xmin, xmax], y ∈ Z ∩ [ymin, ymax]}. The edges connect vertices that are hori-
zontally or vertically adjacent, that is, E∗ = {e = [(x1, y1), (x2, y2)] : |x1 −x2| =
1, |y1 − y2| = 1}. Since the original reduction in [6] constructs only terminal
points within a grid of maximal extension in O(n3), we can assume that in-
stance I1 also induces a grid which is polynomially bounded in n and hence only
polynomially many nodes have to be introduced in G∗.

We now construct an instance I2 of MinFs2= on the plane dual graph G =
(G∗)∗ of G∗ as follows: In G the vertices in G∗ correspond to faces and the edges
incident to a vertex in G∗ form the boundary of the corresponding face in G.
Assign a value to every node of G∗ as follows:

c(vi) :=

⎧
⎪⎨

⎪⎩

i, if i ∈ {1, . . . , n− 1}
− 1

2n(n− 1), if i = n

0, otherwise.

It can then be shown that we can always assign lengths to the edges of G such
that the clockwise length of the face corresponding to vertex vi equals c(vi).

The graph G corresponds in fact to an instance of MinFs2=. Observe that
for no strict subset of the terminals their (face) values add up to zero. It can now
be seen that the feasible solutions for the instance I2 of MinFs2= correspond
exactly to Steiner trees for I1 and that I2 has a consistent subset of at least
m− k edges if and only if for I1, there is a Steiner Tree with at most k edges.

4 Approximation Algorithm for MinFs2= on Planar
Graphs

The problem MinFs2= is a special case of the well-known Hitting Set Prob-
lem. In the general Hitting Set Problem, we are given a collection C of subsets
of a finite set E and weights we ≥ 0 for all e ∈ E. The goal is to find a minimum
weight subset A ⊂ E such that A contains at least one element from each subset
in C. In the case of MinFs2=, the collection C is the set of all inconsistent cycles
and the finite set of ground elements is the set of all arcs in the constraint graph
with their respective weights.

Goemans and Williamson [8] gave a general primal-dual framework for design-
ing approximation algorithms for Hitting Set. The problem can be formulated
as an Integer Linear Program whose linear relaxation and dual read as follows:

230 N. Leithäuser, S.O. Krumke, and M. Merkert

min
∑

e∈E

wexe

s.t.
∑

e∈C

xe ≥ 1 ∀C ∈ C

xe ≥ 0 ∀e ∈ E

max
∑

C∈C
yC

s.t.
∑

C∈C:e∈C

yC ≤ we ∀e ∈ E

yC ≥ 0 ∀C ∈ C
The primal-dual-method constructs simultaneously a feasible solution x for the
Integer Linear Program and a feasible solution y for the dual of the LP-relaxation.
The algorithm starts with the trivial dual feasible solution y = 0 and uses a vio-
lation oracle violation, which outputs for a given subset S of the ground set E
a subset of the sets not hit by S. It then increases the dual variables of all the
sets in violation(S) until one of the dual packing constraints becomes tight
for some element, which then gets added to the solution. At the end, a cleanup
step is performed. Algorithm 1 shows the translation of the general algorithm for
MinFs2=. We assume without loss of generality that we > 0 for all e ∈ E, since
edges of zero weight can be removed from the graph at the beginning without
adding to the solution cost.

A key theorem from Goemans and Williamson [8] is the following:

Theorem 5 ([8]). The primal-dual algorithm 1 delivers a solution for Hitting
Set of weight at most γ

∑
C∈C yC ≤ γOPT if for any infeasible E and any

minimal augmentation F of E, the collection V(E) returned by the violation
oracle on input E satisfies:

∑

C∈V(E)

|C ∩ F | ≤ γ|V(E)|.

A minimal augmentation is a feasible solution F containing E which is inclu-
sionwise minimal, that is, for any e ∈ F it holds that F \ {e} is infeasible.

In order to apply the result of Theorem 5 we need to design an appropriate
violation oracle. The techniques will be similar to that in [9], where Goemans
and Williamson construct a primal-dual 3-approximation for feedback problems
on planar graphs. We will use the following intuitive definitions:

Definition 1 (cf. [9]). Let G be a directed plane graph (i.e., G is planar and
has been embedded in the plane, so it makes sense to talk about faces of G). A
face of G whose boundary forms an inconsistent cycle is called a inconsistent
face. Every cycle C of G divides the plane into two regions, the interior (the one
with finite diameter) and the exterior. We define f(C) to be the set of all faces
in the interior of C. We say that a cycle C1 contains a cycle C2 if f(C1) ⊇ f(C2)
and write C2 ⊆f C1.

The relation “⊆f” defines a partial order on the set C of inconsistent cycles
of G. The inclusionwise minimal inconsistent cycles with respect to this partial
order are of particular interest. We will abuse notation slightly and call them the
minimal inconsistent cycles.

Two cycles C1 and C2 cross if none of the sets f(C1) ∩ f(C2), f(C1)\f(C2),
f(C2)\f(C1) is empty. A family of cycles is called laminar if no two of its cycles

Approximating Infeasible 2VPI-Systems 231

Algorithm 1 Primal-Dual Approximation Algorithm for MinFs2=

1: Input: Graph G = (V,E) with arc lengths and weights we ≥ 0.
2: Output: An edge set A ⊆ E such that the subgraph (V,E \ A) does not contain

any inconsistent cycles, i.e., an edge set A such that C∩A �= ∅ for each inconsistent
cycle C.

3: y = 0 {dual solution}
4: A = ∅ {primal solution, initially empty}
5: Set xe = 0 for all edges e ∈ E.
6: l = 0 {iteration count}
7: while there is an inconsistent cycle in (V,E \A) do
8: V = violation(A)
9: Increase yC uniformly for all C ∈ V until ∃el /∈ A :

∑
C:el∈C yC = wel

10: A = A ∪ {el}
11: end while
12: for all j = l, . . . , 1 do
13: if A \ el is feasible then
14: A = A \ {el}
15: end if
16: end for

are crossing, i.e., any two cycles either do not share an interior face or one of
them contains the other.

The definition of our violation oracle is the first and also the most important
point where we make use of the planarity of the constraint graph G := GI : De-
fine Violation(A) to be the set of all minimal inconsistent cycles in the graph
obtained by deleting all edges in A from G. As we will show, the minimal incon-
sistent cycles are all inconsistent faces and therefore it is clear that Violation
can be computed in polynomial time.

Choose an orientation for the plane and orient the boundaries of the faces of
G accordingly. Summing up all (the lengths of) those boundaries we see that
every edge contributes to exactly two summands and with different sign, so the
result must be 0. Also, if we only sum up all the boundaries of the faces inside
some cycle C, all inner boundaries cancel, leaving only the edges of C.

To put this into a formula, define �(C) to be the length of the cycle C (=sum
of the signed lengths of its edges) with clockwise orientation. If C is the boundary
of a face F , we also define �(F) := �(C), except for the exterior face, where we
set �(F) := −�(C). This gives us

∑

F : is a face of G

�(F) = 0 (1)

and

�(C) =
∑

F∈f(C)

�(F) for all cycles C of G. (2)

232 N. Leithäuser, S.O. Krumke, and M. Merkert

Lemma 1. If there is an inconsistent cycle C in G, there are (at least) two
faces corresponding to inconsistent cycles, one of which lies in the interior of C
and the other one in the exterior of C.

Proof. We first show that the existence of one inconsistent face implies that there
are actually two inconsistent faces. To see this use Equation (1). If there were
only one inconsistent face, its boundary would be the only nonzero summand,
which means that the sum is nonzero contradicting (1).

Let C ∈ C be an inconsistent cycle in G. Consider the subgraph Gint of
G, which only contains C and all edges and vertices in the interior of C. By
construction, C is the boundary of an inconsistent face of Gint (namely the
exterior face) and by the above claim Gint must have another inconsistent
face, which lies in the interior of C. But this is, of course, also an inconsistent
face in G.

The existence of an inconsistent face in the exterior of C follows analogously
if we consider the subgraph Gext of G, which only contains C and all edges and
vertices in the exterior of C, instead of Gint.

Proposition 1. Every minimal cycle in C with respect to ⊆f is the boundary of
a face of G and, therefore, face-minimal inconsistent cycles do not cross.

Proof. Follows immediately from Lemma 1.

Lemma 2. A graph is consistent if and only if all face-minimal cycles are con-
sistent.

Proof. Immediately from Proposition 1.

Inspired by Lemma 2, given a partial solution A, our violation oracle returns
the collection of face-minimal inconsistent cycles in G = (V,E \ A). Observe
that this violation oracle can be implemented to run in polynomial time, since
there is only a linear number of faces, which can be checked exhaustively. Our
main ingredient for the analysis of the primal-dual algorithm for MinFs2= is
the following:

Theorem 6. Let G be a planar graph and let M be a collection of face-minimal
inconsistent cycles. Then, for any minimal solution A we have

∑

C∈M
|A ∩ C| ≤ 2|A| ≤ 2|M|.

In order to prove the theorem, we need a number of auxiliary results. Let A be an
inclusionwise minimal solution for MinFs2=. By the minimality of A, for every
e ∈ A there must be an inconsistent cycle Ce such that Ce ∩ A = {e}. In fact,
if the intersection were empty or contained more than {e} for every inconsistent
cycle, then we could remove e from A because it either hits only cycles which
are already being hit or it does not hit any cycle. We call such a cycle Ce with
Ce ∩ A = {e} a witness cycle of e.

Due to lack of space, the proof of the following lemma is deferred to the full
version of the paper:

Approximating Infeasible 2VPI-Systems 233

Lemma 3. Let A ⊂ E be an inclusionwise minimal solution. Then, there exists
a laminar family of witness cycles Ce ∈ C, e ∈ A. ��
We are now ready to complete the proof of Theorem 6. We first see from
Lemma 2 that the violation oracle V , which returns all face-minimal inconsis-
tent cycles is valid in the sense that if G contains an inconsistent cycle, V will be
non-empty.

Let F = {Ce|e ∈ A} be a laminar family of witness cycles for A, which exists
by Lemma 3. Since F is laminar, we can construct a forest with node set F
representing the partial order induced by “⊆f” restricted to the elements of F .
We add a root node r, connect it to all maximal elements of F , and denote the
resulting tree by T . For the analysis we now assign an edge e ∈ A to the node
of T corresponding to its witness cycle; furthermore, every element C of M can
be assigned to (the node of T corresponding to) the smallest witness cycle that
contains C; if there is no such witness cycle, C is assigned to the root node r. Let
Me denote the set of elements of M which are assigned to node Ce. Note that
Me might be empty for some nodes of T , but never for leaves. This is because
by Lemma 1, there must be some inconsistent face inside every witness cycle.

We wish to bound
∑

C∈Me
|A∩C| from above: For a cycle C ∈ Me, we know

that |A ∩ C| can only contain the edge e and edges assigned to the children of
Ce, since no element of M crosses any element of F and every witness cycle
contains exactly one element of A (and therefore separates its inside faces from
all elements of A but the aforementioned ones). By definition of T , the number of
those candidate edges is degT (Ce), i.e., the degree of node Ce in the tree T . Since
every edge touches at most two inconsistent faces, each edge can only appear
once in

∑
C∈Me

|A ∩ C|, so
∑

C∈Me

|A ∩ C| ≤ degT (Ce).

If Me = ∅, we can use 0 as a trivial better bound. Summing up over all e ∈ A,
we obtain:

∑

C∈M
|A ∩ C| =

∑

e∈A

∑

C∈Me

|A ∩ C| ≤
∑

e∈A:Me �=∅
degT (Ce)

The average vertex-degree of a tree with n nodes is 2n−2
n ; we would like to use

this, but the sum on the right-hand side does not contain all vertex-degrees of
T , but only some of them. Here the key observation is that all the leaves of
T appear in the sum; and the absence of any node with degree ≥ 2 can only
decrease the average vertex-degree, which is below 2. A special case is the root
node: It may have degree 1 but Mr can be empty. Taking this into account,
we get

∑

e∈A:Me �=∅
degT (Ce) ≤ 2|{e ∈ A : Me �= ∅}| − 1 ≤ 2|M| − 1.

This completes the proof of Theorem 6. Together with Theorem 5, we thus
obtain:

234 N. Leithäuser, S.O. Krumke, and M. Merkert

Corollary 1. There exists a polynomial time 2-approximation algorithm for
MinFs2= when the associated constraint graph is planar. ��

5 Approximation Algorithms for MaxFs2=

It is easy to obtain a 2-approximation algorithm for MaxFS2≤, that is, for the
case when all constraints are inequalities of the form xi − xj ≤ cij . Numbering
the vertices in the constraint graph GI from 1 to n, one splits the arcs into
two groups, one that contains those arcs going from smaller to higher numbers
and one that contains the other arcs going from higher to smaller numbers.
Thus, the arc set of GI is partitioned into two parts each of which forms an
acyclic subgraph (and hence is consistent in the case of inequalities). One of the
subgraphs contains at least one half of the total weight of the arcs and is, thus,
a 2-approximation to MaxFS2≤.

Unfortunately, this approach fails for MaxFs2=. On the other hand, if the
constraint graph associated with an instance of MaxFs2= is a forest, it is triv-
ially consistent. This observation can be used to obtain an approximation for
MaxFs2=. Recall that the arboricity of a graph is the minimum number of
forests in which the edge set of a graph can be partitioned. This value can be
computed in polynomial time as shown in [5,12]. Moreover, a simple planar graph
with n vertices can be edge-partitioned into three forests in O(n) time [14].

Suppose first that the constraint graph does not contain parallel edges. Then,
computing a decomposition of the constraint graph G into the minimum number
of forests and then selecting the one with the largest weight by averaging yields
an approximation with a factor α, where α is the arboricity of G. Now, suppose
that G does contain parallel edges. Let e1 and e2 be such two parallel edges. If
they have the same length �, we can collapse them into one edge with length �
and weight w(e1) + w(e2); otherwise no solution at all can contain both e1 and
e2, since they form an inconsistent cycle. In this case, we remove the lighter edge.
Thus, we can eliminate all parallel edges without affecting solution quality.

Theorem 7. MaxFs2= can be approximated within a factor of α, where α is
the arboricity of the reduced graph, where parallel edges have been processed as
above. ��
An immediate corollary is the following:

Corollary 2. Choosing a maximum weight spanning tree of the constraint graph
yields an approximation within a factor of α. ��

6 Extensions to Bounded Domains

In this section, we replace the domain R for each variable xi by an interval [ai, bi].
We then have additional box constraints ai ≤ xi ≤ bi, which are not optional,
but need all to be satisfied. We call the extension of MinFs2= and MaxFs2= to
interval domains MinFs2=-D and MaxFs2=-D respectively. Note that we can

Approximating Infeasible 2VPI-Systems 235

test whether all box constraints can be satisfied simultaneously in polynomial
time by a a shortest-path computation.

Analogously to inconsistent cycles, we define (domain) inconsistent paths: A
(domain) inconsistent path p = v1, . . . , vk is a simple path with the property
that either

av1 +

k−1∑

i=1

�(vi, vi+1) > bvk or bv1 +

k−1∑

i=1

�(vi, vi+1) < avk .

Obviously, an inconsistent path or an inconsistent cycle render the whole system
invalid. In fact, we can show that it is also sufficient to destroy all inconsistent
paths and cycles in order to have a domain feasible system.

Due to lack of space, most of the proofs of the following results will be deferred
to the full version of the paper.

Theorem 8. The problem of hitting all inconsistent paths by a subset of edges
of minimum weight is NP-complete in general graphs. It remains strongly NP-
complete on planar graphs, even if no vertex is incident to more than three arcs.

Theorem 9. The problems MinFs2=-D and MaxFs2=-D are polynomial solv-
able on trees. The result still holds if we have domains of the form [av, bv] ∩ Z.

Theorem 10. MinFs2=-D on graphs without inconsistent cycles can be ap-
proximated within a factor of O(log n), where n is the number of vertices. In the
special case of planar graphs, there is a constant approximation factor.

Proof. Given a graph without inconsistent cycles, each path between two nodes i
and j has the same length dij . We can therefore determine which node pairs are
connected by inconsistent paths. Consequently, we can regard the problem as a
multicut problem with the conflicting nodes as terminal pairs and use the ap-
proximation algorithm from [7] which provide the stated approximation factors.

��
Using the result of Theorem 9 with the techniques of Section 5 we obtain:

Theorem 11. MaxFs2=-D has an α-approximation guarantee on general
graphs, where α is again the arboricity of the reduced graph. MinFs2=-D has a
constant approximation guarantee on planar graphs.

References

1. Amaldi, E., Bruglieri, M., Casale, G.: A two-phase relaxation-based heuristic for
the maximum feasible subsystem problem. Computers and Operations Research 35,
1465–1482 (2008)

2. Amaldi, E., Kann, V.: The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical Computer Science 147(1-2),
181–210 (1995)

236 N. Leithäuser, S.O. Krumke, and M. Merkert

3. Chinneck, J.: Fast heuristics for the maximum feasible subsystem problem. IN-
FORMS Journal on Computing 13(3), 211–223 (2001)

4. Elbassioni, K., Raman, R., Ray, S., Sitters, R.A.: On the approximability of the
maximum feasible subsystem problem with 0/1-coefficients. In: Proceedings of
the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1210–1219
(2009)

5. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms for ma-
troid sums and applications. Algorithmica 7(1), 465–497 (1992)

6. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 826–834 (1977)

7. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut
theorems and their applications. SIAM Journal on Computing 25, 235 (1996)

8. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation
algorithms and its application to network design problems. In: [11], pp. 144–191.
PWS Publishing Company (1997)

9. Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feed-
back problems in planar graphs. Combinatorica 18(1), 37–59 (1998)

10. Greer, R.: Trees and hills: Methodology for maximizing functions of systems of
linear relations. Annals of Discrete Mathematics 22 (1984)

11. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS
Publishing Company, 20 Park Plaza, Boston, MA 02116–4324 (1997)

12. Nash-Williams, C.: Decomposition of finite graphs into forests. Journal of the Lon-
don Mathematical Society 1(1), 12 (1964)

13. Pfetsch, M.: Branch-and-cut for the maximum feasible subsystem problem. SIAM
Journal on Optimization 19(1), 21–38 (2008)

14. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148 (1990)

	Approximating Infeasible 2VPI-Systems
	Introduction
	Preliminaries and Problem Definition
	Complexity of MinFs2= and MaxFs2=
	Approximation Algorithm for MinFs2= on Planar Graphs
	Approximation Algorithms for MaxFs2=
	Extensions to Bounded Domains
	References

