
Multi-rooted Greedy Approximation

of Directed Steiner Trees with Applications�

Tomoya Hibi�� and Toshihiro Fujito���

Department of Computer Science and Engineering
Toyohashi University of Technology
Tempaku, Toyohashi 441-8580 Japan

hibi@algo.cs.tut.ac.jp,

fujito@cs.tut.ac.jp

Abstract. We present a greedy algorithm for the directed Steiner tree
problem (DST), where any tree rooted at any (uncovered) terminal can
be a candidate for greedy choice. It will be shown that the algorithm,
running in polynomial time for any constant l, outputs a directed Steiner
tree of cost no larger than 2(l−1)(lnn+1) times the cost of the minimum
l-restricted Steiner tree. We derive from this result that 1) DST for a
class of graphs, including quasi-bipartite graphs, in which the length of
paths induced by Steiner vertices is bounded by some constant can be
approximated within a factor of O(log n), and 2) the tree cover problem
on directed graphs can also be approximated within a factor of O(log n).

1 Introduction

The Steiner tree (in graphs) problem is one of the most well-known combina-
torial optimization problems with a long and rich history of being a subject
for mathematical and computational studies. The problem is of fundamental
importance especially in the areas of network design, network routing such as
multicasting, and so on, where it is required to find a minimum cost tree, in
a given edge-costed graph, spanning all the vertices specified as terminals. The
problem is, however, one of the Karp’s original NP-complete problems [9], and
various approximation algorithms as well as heuristics have been developed for
it. The case of undirected graphs has been and continues to be actively studied,
and after the basic result of a factor 2 approximation by the minimum span-
ning tree based approach, the best approximation factors have been renewed
several times [21,2,10,18], culminating with the recent breakthrough result with
a performance ratio of ln(4) + ε < 1.39 [1]. It is NP-hard, on the other hand, to
guarantee solutions of cost less than 96/95 times the optimal cost [3].

� Supported in part by a Grant in Aid for Scientific Research of the Ministry of
Education, Science, Sports and Culture of Japan.

�� Currently at NTT corporation.
��� Corresponding author. Also affiliated with Intelligent Sensing System Research

Center, Toyohashi Univ. of Tech.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 215–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

216 T. Hibi and T. Fujito

The case of directed graphs in contrast has seen much less progress. The
directed Steiner tree problem (DST), the main subject of the current paper, is
to find a minimum cost subgraph T , given a directed graph G = (V,A) with
arc costs c(a) (∀a ∈ A), a root vertex r ∈ V , and a subset X of vertices called
terminals, such that T contains a path starting at r and leading to every terminal,
where the cost of a subgraph is defined to be the total cost of arcs in it. Those
non-terminals (∈ V \X) are called Steiner vertices, and a (directed) tree in this
paper is assumed to be the one in which every arc is directed away from its
root towards a leaf. A directed Steiner tree (“dst” for short) is a tree spanning
all the terminals, and DST is then equivalently defined to be the problem of
computing a minimum cost dst rooted at r. The first nontrivial approximation
algorithm for DST was developed by Charikar et al., achieving a performance
ratio of l2(l− 1)|X |1/l in time O(nl|X |2l) for any l > 1 [4,5]. The algorithm thus
approximates DST within a factor of O(nε) for any ε > 0 in polynomial time
and at the same time within a factor of O(log3 |X |) in quasi-polynomial time
of nO(log |X|), raising a conjecture that a polylogarithmic approximation of DST
might be possible. It has, in fact, been attempted to improve the Charikar et
al.’s approximation bound [22,12,15], and without success, however, the O(nε)
factor of Charikar et al. [4] remains as the best performance ratio known today,
and the polylogarithmic approximability is still wide open for DST.

1.1 Greedy Approaches for Approximating DST

It is natural to consider DST to be a generalization of the set cover problem by
representing the notion of coverage by “reachability” from the root. Here, any
trees rooted at r are the subsets for covering elements and terminals are those el-
ements to be covered. The greedy set cover algorithm repeatedly selects into a so-
lution a most “cost-effective” subset until all the elements become covered. Here,
the cost-effectiveness of a subset is measured by the ratio of its cost to the number
of yet uncovered elements in it, and it is the density d(T) of a tree T rooted at r
in DST defined to be the ratio of its cost to the number of terminals in it not yet
reachable from r, i.e., d(T) = c(T)/(# of terminals in T not reachable from r).
If it were possible to compute a rooted tree with minimum density in polyno-
mial time, it would lead to an O(log n)-approximation for DST as is for the set
cover problem (or in more general, a factor of α approximation of the minimum
density tree yields an O(α logn) approximation of DST). It is hard to compute
it exactly, however, and this is why all the greedy approaches for DST includ-
ing ours have had to settle for trees with approximately lowest density in their
greedy choices.

Definition 1. – An l-level tree is a tree in which no leaf is more than l arcs
away from the root.

– A Steiner tree in which all the terminals are at leaves (or at the root) is called
a full Steiner tree. Any Steiner tree can be decomposed into arc-disjoint full
Steiner trees (full components) by splitting all the non-leaf terminals, each
of them into a leaf of one tree and a root of the other tree.

– A Steiner tree is l-restricted if every full component in it is an l-leveled tree.

Multi-rooted Greedy Approximation of Directed Steiner Trees 217

The algorithm of Charikar et al. uses an l-level tree (in the metric closure of
an original graph) of which density is a factor of at most l − 1 away from that
of the minimum density l-level tree [4]. Zosin and Khuller show that a tree
of density bounded by D + 1 times the minimum density (of any tree rooted
at r) is polynomially computable if V − X induces a tree of depth D [22].
Either algorithm considers such trees rooted at a fixed root r only. Zelikovsky’s
algorithm, based on a different type of density function, considers any full Steiner
tree, and it computes (and adopts) a tree of which density is a factor of at
most (2+ ln |X |)l−2 away from that of the minimum density l-restricted Steiner
tree [20].

1.2 Our Approach and Contributions

The greedy algorithm designed in this paper iteratively chooses a full Steiner
tree rooted at either r or any “uncovered” terminal in a way similar to Ze-
likovsky’s [20]. It uses a density function different from Zelikovsky’s and natu-
rally from Charikar et al.’s and Zosin-Khuller’s as the notion of coverage cannot
be represented by “reachability from r” in our setting. A terminal in a full Steiner
tree T rooted at either r or any terminal is considered “covered by T ” if it is
not the root of T , and the density d(T) is then redefined to be the ratio of its
cost to the number of yet uncovered non-root terminals in T . The main theorem
(Theorem 1) of the paper states that this algorithm computes a dst in polyno-
mial time of which cost is no larger than 2(l − 1)(ln |X | + 1) times the cost of
the minimum l-restricted Steiner tree. It is interesting to compare this with the
Zelikovsky’s [20] and Charikar et al.’s [4] algorithms; the former outputs a dst
of cost no larger than (ln |X |+2)l−1 times the cost of the minimum l-restricted
Steiner tree, whereas the latter outputs an l-level dst of cost at most l(l − 1)
times the cost of the minimum l-level dst.

The main result described above does not lead to an improved performance
ratio for DST per se, yet some new approximation results can be derived from
it. One is the case of DST for a class of graphs G where Steiner vertices induce
no path of length longer than l in G. A quasi-bipartite graph belongs to such
a class with l = 0, and DST is known to be hard to approximate better than
O(log n) even when inputs are restricted to quasi-bipartite graphs. It can be
shown from the main theorem that our greedy algorithm approximates DST for
such a case within a factor of O(log |X |) for any constant l. When combined
with the Ω(log2−ε n) approximation hardness of DST on general graphs [8],
this separates the approximability of DST between the cases of quasi-bipartite
graphs and general graphs. It has been repeatedly observed, in case of undirected
graphs, that the Steiner tree problem is easier to approximate on quasi-bipartite
graphs than on general graphs since [17], and it is here proven to be true in case
of directed graphs.

Another application of the main theorem presented is in approximation of the
Directed Tree Cover problem (DTC). It is required in DTC, given an arc-costed
directed graph G and a root vertex r, to compute a minimum directed tree T
rooted at r such that there exists a path in T from r to every arc in G. In case of

218 T. Hibi and T. Fujito

undirected graphs, the tree cover problem is known to be approximable within
a factor of 2, by a simple algorithm for the uniform costs [19] and by a not so
simple one for general costs [7]. The approximability of DTC, on the other hand,
has remained wide open as mentioned in [11] 1. It will be shown, by reducing
general DTC to DST on bipartite graphs with terminal-Steiner bipartition, that
DTC can be approximated within a factor ofO(log n), again matching the known
approximation lower bound of Ω(log n) for DTC.

2 Algorithm

Let G = (V,A) be a directed graph with non-negative arc cost c(a) for each
arc a ∈ A, a node r designated as a root, and a set X ⊆ V of terminals. The
greedy algorithm presented below grows a subgraph P of G in sequence, initially
consisting of r and all the terminals only (no arcs), by iteratively adding trees in
G rooted either at the “real” root r or at some terminals not yet covered. Here
any terminal becomes “covered” whenever a tree containing it as a “non-root”
is added to P by the algorithm (or equivalently, we may contract such a tree
into a single vertex). The algorithm repeats this as long as uncovered terminals
remain in G, and eventually ends up with a subgraph of G composed of all the
trees added with all the terminals covered by some of them. As it contains a
path from r to every terminal in X , a dst spanning all the terminals can be
found within it, and it will be output by the algorithm.

Algorithm 1: Multi-Rooted Greedy

Input: G = (V,A), root r ∈ V , and terminal set X ⊆ V
Output: a Steiner tree rooted at r spanning all terminals in X

1 Initialize: P = (X ∪ {r}, ∅) and C = ∅;
2 while there remain (uncovered) terminals in X \ C do
3 Compute a tree T of low density rooted at any vertex in {r} ∪ (X \ C);
4 Set P = (VP ∪ V (T), AP ∪ A(T));
5 Letting u be the root of T , add all terminals in T but u to C by setting

C = C ∪ (X(T)− u);
6 Reset c(a) = 0 for all a ∈ A(T) and recompute the metric closure of G;

7 end
8 Compute and output any tree within P rooted at r spanning all terminals in X.

It remains to elaborate on how to compute a small density tree T in step 3, and
we use the algorithm developed by Kortsarz, Peleg, and Charikar et al. [13,4],
assuming that we are working with the metric closure of the current graph
in what follows. Let d∗l (k, v,X) denote the minimum density of l-level trees
Tl rooted at v containing any k terminals from X . It was shown that good
approximation of the minimum density tree among l-level trees is possible when
l is a constant [4]:

1 In fact an O(log n)-approximation of DTC was claimed in error [14].

Multi-rooted Greedy Approximation of Directed Steiner Trees 219

Lemma 1 ([4]). For any v ∈ V,X ⊆ V, 1 ≤ k ≤ |X |, and l ≥ 2, an l-level tree
Tl can be found in time O(nlk2l−1) such that d(Tl) ≤ (l − 1)d∗l (k, v,X).

Let d∗l (X) denote the minimum density of l-level trees Tl rooted at any vertex
in {r} ∪X containing any number of terminals from X . It follows immediately
from Lemma 1, by running the algorithm used in it for each 1 ≤ k ≤ |X | and
v ∈ {r} ∪X , that

Lemma 2. For any X ⊆ V and l ≥ 2, an l-level tree Tl rooted at some vertex
in {r} ∪X can be found in time O(nl|X |2l+1) such that d(Tl) ≤ (l − 1)d∗l (X).

In the next section the approximation performance of Algorithm 1 is analyzed
assuming that trees T are computed in step 3 by the algorithm of Lemma 2.

3 Analysis

Definition 2. Let P = (VP , AP) be a subgraph of G and XP ⊆ X. (P, {r}∪XP)
is called a partial Steiner tree (PST) for (G, r,X) if

– {r} ∪X ⊆ VP , and
– every vertex in VP is reachable within P from some vertex in {r} ∪XP .

Lemma 3. Let P = (VP , AP) and C be a subgraph of G and a set of covered
terminals, respectively, computed at any iteration of the while-loop during the
execution of Algorithm 1. Then, (P, {r} ∪ (X \ C)) with XP = X \ C is a PST
for (G, r,X).

Proof. Initially, P = ({r}∪X, ∅) is clearly a PST for (G, r,X). Suppose at some
iteration a tree T is added to P and let u be its root. Then, all the terminals in
T but u become covered (and leave XP), but all the vertices in T are reachable
from u within T . So, any vertex reachable from those newly covered terminals
before addition of T becomes reachable now from u after addition of T .

For any PST (P = (VP , AP), {r} ∪ XP) for (G, r,X) every vertex v ∈ VP is
reachable from some vertex in {r} ∪ XP within P . If v is reachable from more
than one vertex in {r}∪XP , choose v itself if v ∈ {r}∪XP , but choose any one
of them otherwise, and denote it by r(v). Then, VP is partitioned into a family
of disjoint subsets, each of them consisting of vertices v ∈ VP with a common
representative vertex r(v) ∈ {r}∪XP , and the subset v belongs to is referred to
as V (r(v)) for any v ∈ VP .

Fix one l-restricted Steiner tree T(l) for (G, r,X). Since XP ⊆ X , each vertex
in XP is contained in T(l). Denote by s(v) for v ∈ XP the lowest ancestor of v
within T(l) such that r(v) 	= r(s(v)) (thus, V (r(v)) ∩ V (r(s(v))) = ∅). As T(l) is
rooted at r and v 	= r, s(v) exists for any v ∈ XP . Consider the set of s(v)-v
paths for all v ∈ XP , and denote it by T0, i.e., T0 = {s(v)-v path | v ∈ XP }. The
following properties of the paths in T0 can be verified by recalling the choice
of s(v) for v ∈ XP , that all the paths in T0 are parts of tree T(l) and that
V (r(u)) ∩ V (r(v)) = ∅ for any u, v ∈ XP if u 	= v.

220 T. Hibi and T. Fujito

Lemma 4. The paths in T0 possess the following properties:

1. On any s(v)-v path all the vertices but s(v) come from V (r(v)) ∪ (V \ VP).
2. Suppose two paths, s(u)-u and s(v)-v, in T0 overlap.

(a) If s(u) = s(v), s(u)-u and s(v)-v paths overlap only in their initial seg-
ments, i.e., the subpaths starting at s(u) = s(v) followed by a sequence
of vertices in V \ VP only.

(b) If s(u) 	= s(v),

i. either s(u) is a proper ancestor of s(v) in T(l), or the other way
around, and

ii. if s(u) is a proper ancestor of s(v) (the other case is similar), u
and s(v) must belong to the same set V (r(u)) = V (r(s(v))), and
therefore, they can overlap only in the initial segment of s(v)-v path
consisting of s(v) and vertices in V \ VP only.

For any v ∈ XP , collect all the s(u)-u paths in T0 with s(u) = s(v), and merge
them into a single tree rooted at the common starting vertex s(v) (if s(u) 	= s(v)
for any u ∈ XP − {v}, s(v)-v path is such a tree by itself). Call a subtree of
T(l) thus constructed from some paths in T0 and rooted at s(v) as s(v)-tree, and
denote by T1 the collection of all s(v)-trees.

Lemma 5. T1 satisfies the following properties:

1. Every vertex in XP occurs at a leaf of exactly one tree in T1.
2. No arc of T(l) occurs in more than two trees of T1.
3. For any tree with multiple leaves in T1, any branching occurs within the

distance of l − 1 from the root.

Proof. 1. This is clear from the construction of T0 and T1.
2. Suppose an arc (y, z) of T(l) is shared by three trees, s(v1)-, s(v2)-, and s(v3)-

trees, from T1. Then, it must be the case that no two of s(v1), s(v2), and s(v3)
can coincide, and that all of s(v1), s(v2), and s(v3) are ancestors of y in T(l).
Then, s(v1)-z, s(v2)-z, and s(v3)-z paths are all the initial segments of dis-
tinct three paths in T0, all of them lying on the r-z path of T(l). There is no
way, however, that they can satisfy property 2(b)ii. of Lemma 4.

3. Recall that any paths running from the root to leaves in a tree of T1 come
from T0, and hence, any two of them must satisfy property 2(a) of Lemma 4.
Recall also that T(l) is an l-restricted tree, and hence, the length of a consecu-
tive run of Steiner vertices on any path is bounded by l−2 in T(l). Therefore,
any two paths starting at the same vertex must branch out within the dis-
tance of l − 1 from the starting vertex.

Let us assume henceforth that PST (P, {r} ∪ XP) for (G, r,X) is the one gen-
erated during the execution of Algorithm 1 (Lemma 3); i.e., P = (VP , AP) and
C are a subgraph of G and a set of covered terminals, respectively, computed at
any iteration of the while-loop, and XP = X \ C. For any s(v)-tree T in T1, we
do the following operations:

Multi-rooted Greedy Approximation of Directed Steiner Trees 221

1. When a path is followed from s(v) to a leaf w, no branching occurs after
passing the (l − 1)st vertex u (property 3 in Lemma 5). As we are working
with the metric closure of the current graph, there exists an arc (u,w) of
cost no larger than that of the subpath running from u to w. So, replacing
such a subpath by such an arc on any path leading to a leaf if it is longer
than l, T becomes an l-level tree of no larger cost.

2. Recall that s(v) is reachable from r(s(v)) within P , where every arc has
a zero cost (due to step 6 of Algorithm 1). Hence, by connecting r(s(v))
directly to each child of s(v) by an arc, the root of s(v)-tree can be replaced
by r(s(v)) without increasing its cost nor its levels.

Let us denote by T2 the set of l-level trees resulting from applications of the
operations above to the s(v)-trees in T1. The next lemma is a key to our main
theorem and we prove it by examining properties of T2:

Lemma 6. Let T(l) be any l-restricted Steiner tree rooted at r in G. Suppose
(P, {r} ∪XP) is a PST for (G, r,X) generated by Algorithm 1 during its execu-
tion. Then, there exists an l-level tree Tl in G rooted at some vertex in {r}∪XP

such that d(Tl) ≤ 2c(T(l))/|XP |.

Proof. Consider T2. Each l-level tree in it is rooted at some vertex in {r} ∪XP

(due to operation 2), and every vertex in XP occurs at a leaf of some tree in
T2 (Lemma 5.1). Therefore, all the terminals in XP can be covered by using all
the trees in T2. The total cost of trees in T2 is no larger than that of those trees
in T1. The latter can be bounded by 2c(T(l)) because of Lemma 5.2. Therefore,
those trees in T2 can jointly cover |XP | uncovered terminals, and it costs at most
2c(T(l)) to do so. Hence, there must be a tree Tl in T2 of density no larger than
2c(T(l))/|XP |.

We are now ready to bound the cost of a dst output by Algorithm 1:

Theorem 1. Let OPT(l) denote the cost of the minimum l-restricted Steiner
tree for (G, r,X). Algorithm 1 computes a dst of cost no larger than 2(l −
1)H(|X |)OPT(l), in time O(nl|X |2l+2), where H(k) is the kth harmonic number
and H(k) = 1 + 1/2 + · · ·+ 1/k.

Proof. The running time is dominated by that consumed in step 3, which is
executed in total O(|X |) times.

Suppose T is the tree computed in step 3 at any iteration of the while-loop.
Assign d(T) to each of the terminals newly covered by T . Total value assigned
in one iteration of the while-loop coincides with the cost of T chosen during the
iteration by definition of density d(T). By doing this at every iteration, each
terminal in X gets assigned with some density exactly once, and hence, total
cost of trees chosen by Algorithm 1 can be recovered by collecting all the density
values assigned to the terminals in X .

The density d(T) of T can be bounded by 2(l − 1)OPT(l)/|X \ C| according
to Lemmas 2 and 6. Order the terminals in X in the order of becoming covered
by Algorithm 1, and let xi be the ith terminal covered by Algorithm 1 for

222 T. Hibi and T. Fujito

1 ≤ i ≤ |X |. As there remain at least |X | − (i− 1) uncovered terminals when xi

is covered, the density xi receives is no larger than 2(l−1)OPT(l)/(|X |−(i−1)).
Therefore, the total density assigned to all the terminals in X is bounded by

|X|∑

i=1

2(l − 1)OPT(l)

|X | − (i− 1)
= 2(l− 1)OPT(l)

|X|∑

i=1

1

i
= 2(l − 1)OPT(l)H(|X |).

The output tree is a subgraph of PST P , of which cost is bounded as above, and
the claim follows.

4 Applications

A graph G = (V,A) is called quasi-bipartite (with respect to terminal set X)
when the set of Steiner vertices (= V \ X) induces no arc in G. It is easy to
confirm the following corollary of Theorem 1 by observing that every Steiner
tree is (l + 2)-restricted in such special inputs as given below:

Corollary 1. When inputs (G = (V,A), r,X) are limited to those in which V \X
induces no path of length longer than l, Algorithm 1 approximates DST within
a factor of 2(l + 1)H(|X |) = O(l log |X |), running in polynomial time for any
constant l. In particular, when inputs are restricted to quasi-bipartite graphs,
DST can be approximated within a factor of 2H(|X |) ≤ 2 ln |X |+ 2.

The set cover problem can be embedded in DST on bipartite graphs G = (X ∪
(V \X), A). Because of Ω(log n) lower bound for set cover approximation [16,6],
it can be said that Algorithm 1 yields an optimal approximation for such special
cases as given in Corollary 1 for any constant l.

Let us turn our attention to the directed tree cover problem (DTC). The set
cover problem can be embedded in DTC by the almost same construction as
in DST, and hence, the same approximation hardness of Ω(log n) lower bound
holds. For the upper bound, we use the following reduction:

Lemma 7. DTC on general graphs is reducible to DST on bipartite graphs with
terminal-Steiner bipartition in an approximation preserving manner.

Proof. Let (G = (V,A), r, c) be an instance of DTC. For each arc a = (u, v) ∈ A,
introduce a new vertex xa as a terminal for DST. Each arc a = (u, v) ∈ A is
replaced by three arcs, (u, xa), (xa, v), and (v, xa), and the costs of these arcs are
set equal to 0, c(a), and 0, respectively. An instance (G′ = (V ′, A′), r,X, c′) of
DST is constructed from a DTC instance (G, r, c) in this way such thatX = {xa |
a ∈ A}, V ′ = V ∪ X,A′ = {(u, xa), (xa, v), (v, xa) | a = (u, v) ∈ A}, and ∀a ∈
A, c′(u, xa) = c′(v, xa) = 0, c′(xa, v) = c(a). It is not hard to verify that a tree
cover of any cost exists in (G, r, c) if and only if a dst of the same cost exits in
(G′, r,X, c′). It is also clear that G′ = (V ∪X,A′) constructed from G = (V,A)
in the reduction is a bipartite graph for any G.

Due to this lemma, the following optimal approximation for DTC follows from
Theorem 1 as in Corollary 1:

Multi-rooted Greedy Approximation of Directed Steiner Trees 223

Theorem 2. DTC can be approximated by Algorithm 1 within a factor of
2H(|A|) ≤ 2 ln |A|+ 2.

References

1. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approxi-
mation for Steiner tree. In: Proc. 42nd STOC, pp. 583–592 (2010)

2. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem.
In: Proc. 3rd SODA, pp. 325–334 (1992)

3. Chleb́ık, M., Chleb́ıková, J.: The Steiner tree problem on graphs: Inapproximability
results. Theory Comput. Syst. 406(3), 207–214 (2008)

4. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Ap-
proximation algorithms for directed Steiner tree problems. J. Algorithms 33, 73–91
(1999)

5. Calinescu, G., Zelikovsky, A.: The polymatroid Steiner problems. J. Comb. Opt. 9,
281–294 (2005)

6. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652
(1998)

7. Fujito, T.: How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost
Tree Cover. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 431–442. Springer, Heidelberg (2006)

8. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proc. 35th
STOC, pp. 585–594 (2003)

9. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

10. Karpinski, M., Zelikovsky, A.Z.: New approximation algorithms for the Steiner tree
problem. J. Comb. Opt. 1, 47–65 (1997)

11. Könemann, J., Konjevod, G., Parekh, O., Sinha, A.: Improved Approximations for
Tour and Tree Covers. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS,
vol. 1913, pp. 184–193. Springer, Heidelberg (2000)

12. Konjevod, G.: Directed Steiner trees, linear programs and randomized rounding, 8
pages (2005) (manuscript)

13. Kortsarz, G., Peleg, D.: Approximating the weight of shallow Steiner trees. Discrete
Applied Mathematics 93, 265–285 (1999)

14. Nguyen, V.H.: Approximation Algorithm for the Minimum Directed Tree Cover.
In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 144–159.
Springer, Heidelberg (2010)

15. Rothvoß, T.: Directed Steiner tree and the Lasserre hierarchy. ArXiv e-prints
(November 2011)

16. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. 29th STOC, pp.
475–484 (1997)

17. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric
Steiner tree problem. In: Proc. 10th SODA, pp. 742–751 (1999)

18. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation.
SIAM J. Discrete Math. 19, 122–134 (2005)

224 T. Hibi and T. Fujito

19. Savage, C.: Depth-first search and the vertex cover problem. Inform. Process.
Lett. 14(5), 233–235 (1982)

20. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica 18, 99–110 (1997)

21. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica 9, 463–470 (1993)

22. Zosin, L., Khuller, S.: On directed Steiner trees. In: Proc. 13th SODA, pp. 59–63
(2002)

	Multi-rooted Greedy Approximation of Directed Steiner Trees with Applications
	Introduction
	Greedy Approaches for Approximating DST
	Our Approach and Contributions

	Algorithm
	Analysis
	Applications
	References

