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Abstract. Graph spanners are sparse subgraphs that preserve the dis-
tances of the original graph, up to some small multiplicative factor or ad-
ditive term (known as the stretch of the spanner). A number of algorithms
are known for constructing sparse spanners with small multiplicative or
additive stretch. Recently, the problem of constructing fault-tolerant mul-
tiplicative spanners for general graphs was given some algorithms. This
paper addresses the analogous problem of constructing fault tolerant ad-
ditive spanners for general graphs.

We establish the following general result. Given an n-vertex graph G,
if H1 is an ordinary additive spanner for G with additive stretch α, and
H2 is a fault tolerant multiplicative spanner for G, resilient against up
to f edge failures, with multiplicative stretch μ, then H = H1 ∪ H2 is
an additive fault tolerant spanner of G, resilient against up to f edge
failures, with additive stretch O(f̃(α + μ)) where f̃ is the number of
failures that have actually occurred (f̃ ≤ f).

This allows us to derive a poly-time algorithm Span
f−t
add for construct-

ing an additive fault tolerant spanner H of G, relying on the existence
of algorithms for constructing fault tolerant multiplicative spanners and
(ordinary) additive spanners. In particular, based on some known span-
ner construction algorithms, we show how to construct for any n-vertex
graph G an additive fault tolerant spanner with additive stretch O(f̃)
and size O(fn4/3).

1 Introduction

1.1 Background and Motivation

The concept of spanners is a generalization of the notion of spanning trees. A
spanner of a given graph is a subgraph that faithfully preserves the distances
of the original graph. Two widely studied types of spanners are multiplicative
spanners and additive spanners. A multiplicative spanner of the graph G is a
subgraph H that preserves the distances between any two vertices in G up to a
constant multiplicative factor (referred to as the stretch of the spanner), whereas
an additive spanner of G preserves distances up to a constant additive term.
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More formally, a subgraph H = (V,EH) is a μ-multiplicative spanner of the
graph G = (V,EG) if EH ⊆ EG and dist(u, v,H) ≤ μ · dist(u, v,G) for every
u, v ∈ V , where dist(u, v,G′) for a graph G′ is the distance between u and v in
G′. Similarly, a subgraph H = (V,EH) is an α-additive spanner of the graph
G = (V,EG) if EH ⊆ EG and dist(u, v,H) ≤ dist(u, v,G)+α for every u, v ∈ V .

Additive spanners provide, in some sense, a much stronger guarantee than
multiplicative ones, especially when dealing with long routes, because the penalty
in taking the alternative route offered by the spanner is not proportional to the
length of the original one, but bounded by a fixed term. Clearly any graph is
a 1-multiplicative spanner and a 0-additive spanner of itself, so usually we are
interested in computing spanners that are compact in the number of edges.

This paper considers settings in which the underlying graph G may occa-
sionally suffer edge failures. In such settings, we are interested in fault tolerant
spanners, both in the case of multiplicative and in the case of additive. These are
spanners that keep the locality properties even after a number of faults occur.
This robustness is important in systems that are prone to local malfunctions,
like for example broken links in communication networks.

We say that a subgraph H = (V,EH) is a (μ, f)-multiplicative fault tolerant
spanner of the graph G = (V,EG) if for every F = {e1, . . . , ef} ⊆ EG and
u, v ∈ V , dist(u, v,H \ F ) ≤ μ · dist(u, v,G \ F ).

Analogously, we define the notion of additive fault tolerant spanners as follows.
A subgraph H = (V,EH) is an (α, f)-additive fault tolerant spanner of graph
G = (V,EG) if for every F = {e1, . . . , ef} ⊆ EG and u, v ∈ V , dist(u, v,H \F ) ≤
dist(u, v,G \ F ) + α.

Fault tolerant spanners were first considered by Levcopoulos, Narasimhan and
Smid [11] in the context of geometric graphs (where the nodes are assumed to be
in the Euclidean space and the distance between every two nodes is the Euclidean
distance between them). Levcopoulos et al. [11] presented efficient constructions
for fault tolerant spanners with (1 + ε) multiplicative stretch. The size of the
spanner was later improved by Lukovszki [12] and then by Czumaj and Zhao [6].

Constructions for multiplicative fault tolerant spanners for general graphs that
are robust to edge or vertex failures were presented in [5], later the construction
for vertex failures was improved in [7]. In this paper we show a construction for
additive fault tolerant spanners. We deal only with edge failures. Our result relies
on the existence of fault tolerant multiplicative spanners and (ordinary) additive
spanners and uses algorithms for constructing such spanners as subroutines.

1.2 Our Results

In this paper we prove the following general construction scheme.

Theorem 1. Let G = (V,E) be a general graph, H1 = (V,E1) be an α-additive
spanner of G and H2 be a μ-multiplicative fault tolerant spanner of G, resilient
against up to f edge failures. Then H = H1 ∪H2 is an α′-additive fault tolerant
spanner resilient against up to f failures, with additive stretch α′ ≤ O(f̃ (μ+α))
where f̃ ≤ f is the number of actual faults.
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Note that the stretch guarantee depends on the number of failures that have
actually occurred. Hence if no failures occur, we get a stretch bound of α, in-
dependent of f , and the stretch deteriorates as the actual number of faults
increases.

As a corollary, relying on existing spanner construction algorithms, we prove
that for any graph G = (V,E) there exists a poly-time constructible α′-additive
fault tolerant spanner H = (V,E′), resilient against up to f edge failures, with
additive stretch α′ ≤ O(f̃) and size |E′| ≤ O(fn4/3).

1.3 Related Work

Graph Spanners were first introduced by Peleg and Ullman [13] as a technique for
generating synchronizers. Later, spanners were used in various contexts including
routing in communication networks and distributed systems [14,17], broadcast-
ing [10], distance oracles [3,18], etc.

It is well known how to construct (2k − 1)-multiplicative spanners with
O(n1+1/k) edges [2]. This size-stretch tradeoff is also conjectured to be optimal.

The picture for additive spanners is far from being complete, basically there
are two known constructions for additive spanners. Aingworth et al. [1] presented
a construction for 2-additive spanner with O(n3/2) edges (for further follow-up
see [8,9,19,16]). Later, Baswana et al. [4] presented an efficient construction for
6-additive spanner with O(n4/3) edges.

In lack of truly understanding the complete picture for additive spanners,
many papers consider the problem of constructing spanners with either non-
constant additive stretch or with both multiplicative and additive stretch (e.g.,
[9,19,15,4]).

In order to achieve the constants mentioned above, we make use of exist-
ing constructions of ordinary additive spanners and multiplicative fault tolerant
spanners. In practice, we may use the construction for additive spanners pre-
sented in [1,4] and the construction for multiplicative fault tolerant spanners
presented in [5].

2 Preliminaries

Denote by dist(u, v,G) the distance between u and v in G (if there is no path
from u to v inG then dist(u, v,G) =∞). Denote by SP (u, v,G) the shortest path
between u and v in G (if there is no path from u to v in G then SP (u, v,G) = ∅,
if there is more than one such path then choose one arbitrarily). For a simple
path P , denote by |P | the number of edges in P . For a path P in the graph
and vertices x, y on this path, denote by P [x, y] the subpath of P from x to
y. For a graph G = (V,E) and a set of edges F , denote by G \ F the graph
G′ = (V,E \ F ). Throughout this paper, when talking about fault tolerant
additive spanners we distinguish between f , the maximum number of faults that
the spanner can tolerate while keeping its stretch promise, and f̃ , the number of
edges that actually fail. The size of a graph G(V,E) is defined to be its number
of edges, |E|.



Fault Tolerant Additive Spanners 209

3 Constructing (α, f)-Additive Fault Tolerant Spanners

3.1 The Construction

We start by describing the algorithm for constructing a fault tolerant additive
spanner and continue with the analysis of the worst case additive stretch guaran-
teed by this construction. We rely on the existence of known algorithms Spanadd
constructing an α-additive spanner for a given graph G (for certain values of

α), and Span
f−t
mult constructing a (μ, f)-multiplicative fault tolerant spanner for

G (for certain values of μ) cf. [5,1,4].

Algorithm Span
f−t
add

1. Invoke Algorithm Spanadd to generate an α-additive spanner H1 of G

2. Invoke Algorithm Span
f−t
mult to generate a (μ, f)-multiplicative

fault tolerant spanner H2 of G
3. H ← H1 ∪H2

4. Return H

3.2 Analysis

We next analyze the additive stretch of the subgraph H constructed by Algo-
rithm Span

f−t
add , and prove that it is bounded by a constant linear in μ, α and f̃ ,

the number of actual failures.
Our analysis proceeds as follows. We inspect the shortest path P between two

vertices s and t in the graph G \ F and distinguish several key points on that
path. Then we show that the additive spanner H1 provides for each pair of these
key points a fault-free detour that is not too long. In other parts along the path
P we use the fault tolerant multiplicative spanner H2 in order to progress while
avoiding faults. Finally we show that the union of all of these detours provides a
path in the constructed spanner H that is completely free of faults and is close
in length to the shortest path P (up to an additive term).

Consider a source vertex s, a target vertex t and a set of f̃ edge faults F =
{e1, . . . , ef̃} (f̃ ≤ f). Let P = SP (s, t, G \ F ) be the shortest path from s to t
after the failure event. Denote by p(v) the position of v on P , where p(v) = 0 if
v is the first vertex on P and p(v) = |P | if v is the last vertex on P . Since H
is a spanner of G, every pair of vertices w1, w2 ∈ P s.t. p(w1) < p(w2), has an
alternative path in H . We refer to the shortest such path SP (w1, w2, H), as the
bypass of w1 and w2 in H .

We classify the bypasses as follows. If the bypass contains an edge in F ,
we say that the pair (w1, w2) belongs to class (u, v) if the first faulty edge
that occurs on SP (w1, w2, H) starting from w1 is (u, v). Note that we take into
consideration the direction of the edge, i.e., for every undirected edge e we have
two different classes, one for each direction. For every pair of vertices w1, w2 ∈ P
s.t. p(w1) < p(w2), if SP (w1, w2, H) does not use any edge of F , we say that the
pair (w1, w2) is of class Φ.
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Note that if the pair (w1, w2) is of class Φ, then

dist(w1, w2, H \ F ) = dist(w1, w2, H)

≤ dist(w1, w2, G) + α

≤ dist(w1, w2, G \ F ) + α ,

and therefore
dist(w1, w2, H \ F ) ≤ |P [w1, w2]|+ α .

Next, order all pairs of vertices (w1, w2) ∈ P s.t. p(w1) < p(w2) in a lexicographic
order according to the value (p(w1), p(w2)).

Lemma 1. Let x1, x2 and y1, y2 be two pairs of vertices on path P of the same
class (v, u) and p(x1) < p(x2) ≤ p(y1) < p(y2). Then

dist(x1, y1, H \ F ) ≤ |P [x1, y1]|+ 2α.

Fig. 1. Bypasses of class (v, u)

Proof. Consider the bypass Bx = SP (x1, x2, H), By = SP (y1, y2, H), and the
subpaths B1 = Bx[x1, v], B2 = Bx[v, x2], B3 = By[y1, v], P1 = P [x1, x2], P2 =
P [x2, y1] (see Figure 1). By the definition of the class (v, u), the paths B1 and
B3 do not contain any faults. Therefore,

dist(x1, y1, H \ F ) ≤ |B1|+ |B3| . (1)

Since H contains H1 and H1 is an additive spanner of G, dist(w1, w2, H) ≤
|Q| + α for any two nodes w1, w2 and any path Q from w1 to w2 in G. In
particular,

|B1|+ |B2| ≤ |P1|+ α (2)
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and also

|B3| ≤ |B2|+ |P2|+ α . (3)

Using Inequalities (1), (2) and (3), we get that

dist(x1, y1, H \ F ) ≤ |B1|+ |B3|
≤ |B1|+ |B2|+ |P2|+ α

≤ |P1|+ |P2|+ 2α

= |P [x1, y1]|+ 2α

Lemma 2. Let (x1, x2) be the first pair in the lexicographic order of class dif-
ferent than Φ and let its class be (v, u). Let (y1, y2) be the last pair of class (v, u)
in P . Then

dist(x1, y1, H \ F ) ≤ |P [x1, y1]|+ 2α.

Proof. Note that p(x1) ≤ p(y1), since (x1, x2) is the first pair of class (v, u). If
there is only one pair of class (v, u), then the analysis is the same as if p(x1) =
p(y1), p(x2) = p(y2). We consider two cases. The first case is where p(y1) < p(x2).
Then the pair (x1, y1) is of class Φ (because it appears before the pair (x1, x2)
in the lexicographic order and (x1, x2) is the first pair of class different than Φ).
It follows that dist(x1, y1, H \ F ) ≤ |P [x1, y1]| + α. The second case is where
p(x2) ≤ p(y1), and then it follows from Lemma 1 that dist(x1, y1, H \ F ) ≤
|P [x1, y1]|+ 2α.

Claim. Let (x1, x2) be the first pair in the lexicographic order of class different
than Φ and let its class be (v, u). Let (y1, y2) be the last pair of the class (v, u),
and let s1 be the neighbor of y1 on the path P [y1, y2]. Then either dist(s, s1, H \
F ) ≤ |P [s, s1]|+ 2α+ μ− 1 or dist(s, t,H \ F ) ≤ |P |+ α.

Proof. If the class of pair (s, t) is Φ, then the bypass from s to t in H contains
no failures, so dist(s, t,H \F ) = dist(s, t,H) ≤ |P |+α and we are done. So now
suppose the pair (s, t) is not of class Φ. Then x1 = s since otherwise p(x1) > p(s)
in contradiction to the assumption that (x1, x2) is the first pair of class different
than Φ. According to Lemma 2,

dist(s, y1, H \ F ) ≤ |P [s, y1]|+ 2α . (4)

Since H contains H2, which is a (μ, f)-multiplicative fault tolerant spanner of G,

dist(y1, s1, H \ F ) ≤ |P [y1, s1]| · μ = 1 · μ = |P [y1, s1]|+ μ− 1 . (5)

Combining Inequalities (4) and (5), we get that

dist(s, s1, H \ F ) ≤ dist(s, y1, H \ F ) + dist(sy1, s1, H \ F )

≤ |P [s, y1]|+ |P [y1, s1]|+ 2α+ μ− 1

= |P [s, s1]|+ 2α+ μ− 1
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Lemma 3. Let N be the number of classes on SP (s, t, G \ F ). Then

dist(s, t,H \ F ) ≤ dist(s, t, G \ F ) +N(2α+ μ− 1) + α .

Proof. We prove the lemma by induction on N . For N = 0, the pair (s, t) is of
class Φ and the lemma holds. Assume that the lemma holds for any n < N . By
Claim 3.2, either dist(s, t,H \ F ) ≤ |P |+ α in which case we are done, or

dist(s, s1, H \ F ) ≤ |P [s, s1]|+ 2α+ μ− 1 . (6)

Notice that the path P [s1, t] does not contain any pair of class (v, u). It follows
that the number of classes on the path P [s1, t] is smaller than N , and clearly
P [s1, t] is the shortest path from s1 to t on G \ F . Therefore the induction
assumption holds for the path P [s1, t], and it follows that

dist(s1, t,H \ F ) ≤ dist(s1, t, G \ F ) + (N − 1)(2α+ μ− 1) + α . (7)

Combining Inequalities (6) and (7), we get that

dist(s, t,H \ F ) ≤ dist(s, s1, H \ F ) + dist(s1, t,H \ F )

≤ dist(s, s1, G \ F ) + dist(s1, t, G \ F )

+(2α+ μ− 1) + (N − 1)(2α+ μ− 1) + α

= dist(s, t, G \ F ) +N(2α+ μ− 1) + α .

Theorem 2. H is an (α′, f)-additive fault tolerant spanner of G with α′ =
O(f̃(α + μ)), and its size is |E(H)| = |E(H1)|+ |E(H2)|.
Proof. The size bound is immediate from the construction. Since there are at
most 2f̃ different classes (excluding Φ), Lemma 3 implies that dist(s, t,H \F ) ≤
dist(s, t, G \ F ) + 2f̃(2α+ μ− 1) + α.

A poly-time algorithm Spanadd for constructing a 6-additive spanner of size
O(n4/3) for any n-vertex graph G is presented in [4]. In [5] a poly-time algorithm

Span
f−t
mult for constructing, for any n-vertex graph, a (μ, f)-multiplicative fault

tolerant spanner of size O(fn1+ 2
µ+1 ) for every odd μ and every f . Using these

two results and Theorem 2, choosing μ = 5, yields the following,

Corollary 1. For every f , every graph G contains a (poly-time constructible)
(α′, f)-additive fault tolerant spanner of size O(fn4/3) with α′ = 32f̃ + 6.

4 Conclusions and Open Problems

Although the concept of spanners is well established and bounds have been
proven for fault tolerance in the case of multiplicative spanners, up until now
there were no known constructions or lower bounds on the space and stretch
of fault tolerant additive spanners. Hopefully this paper will open the door for
more research in the field, as it leaves open several interesting problems. Our
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construction is relatively simple and uses previously known constructions as a
black box. This leaves the possibility that there might exist a more sophisticated
construction for fault tolerant additive spanners, with stretch that is sublinear
in the number of faults f . Moreover, our analysis deals only with edge failures,
and future research may focus on overcoming vertex failures. Finally, it would
be interesting to consider fault tolerant (α, β)-spanners. For example, by simply
applying our construction and analysis and using any construction for (α, β)-
spanners and (μ, f)-fault tolerant multiplicative spanner as building blocks, one
can present an (α′, β′)-spanner that is robust to f faults, where α′ = α2 and
β′ = O(f̃ (αβ + μ)), but this is by no means known to be the best possible.
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