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Abstract. A bisection of a graph is a bipartition of its vertex set in
which the number of vertices in the two parts differ by at most one, and
the size of the bisection is the number of edges which go across the two
parts.

Every graph with m edges has a bisection of size at least �m/2�, and
this bound is sharp for infinitely many graphs. Therefore, Gutin and Yeo
considered the parameterized complexity of deciding whether an input
graph with m edges has a bisection of size at least �m/2�+ k, where k is
the parameter. They showed fixed-parameter tractability of this problem,
and gave a kernel with O(k2) vertices.

Here, we improve the kernel size to O(k) vertices. Under the Exponen-
tial Time Hypothesis, this result is best possible up to constant factors.

1 Introduction

A bisection of a graph is a bipartition of its vertex set in which the number
of vertices in the two parts differ by at most one, and its size is the number
of edges which go across the two parts. We are interested in finding bisections
of maximum size in a given graph, which is known as the Max-Bisection

problem. This problem is NP-hard by a simple reduction from the Max-Cut

problem. On the other hand, there is a simple randomized polynomial-time pro-
cedure [1] that finds in any m-edge graph a bisection of size at least �m/2�,
and there are graphs (such as stars) for which this bound cannot be improved.
Therefore, interest arose in the study of the problem Max-Bisection Above

Tight Lower Bound (or Max-Bisection ATLB for short), where we seek a
bisection of size at least m/2 + k when given an m-edge graph G together with
an integer k ∈ N. The NP-hardness of Max-Bisection ATLB follows from the
NP-hardness of Max-Bisection. On the positive side, Gutin and Yeo [1] showed
that Max-Bisection ATLB is fixed-parameter tractable, that is, pairs (G, k)
can be decided in time f(k) · nO(1) for some function f dependent only on k,
where n is the number of vertices of G. Fixed-parameter tractability directly im-
plies the existence of a kernelization [2], which is a polynomial-time algorithm
that efficiently compresses instances (G, k) to equivalent instances (G′, k′) (the
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kernel) of size |G′|+ k′ ≤ g(k) for some function g dependent only on k. Gutin
and Yeo’s fixed-parameter tractability result [1] is based on proving a kernel
with O(k2) vertices.

Here we improve their kernel as follows.

Theorem 1. Max-Bisection ATLB admits a kernel with at most 16k vertices.

We observe that the number of vertices in our kernel is asymptotically optimal,
assuming the Exponential Time Hypothesis introduced by Impagliazzo et al.[3].
The hypothesis implies that a large family of NP-complete problems cannot be
solved in subexponential time, including the Max-Cut problem. In the Max-

Cut problem the goal is to find any bipartition of the vertices (not necessarily
balanced as in the bisection case) that maximizes the number of edges crossing
it. The Max-Cut problem on a graph G = (V,E) can easily be reduced to the
maximum bisection problem by adding |V | additional isolated vertices to G to
obtain G′, and solving the bisection problem in G′. Clearly, the maximum bisec-
tion in G′ induces a bipartition of the vertices in G that solves the Max-Cut

problem. Now notice that a kernel for the Max-Bisection ATLB problem with
o(k) vertices, would imply that we could solve the Max-Bisection ATLB prob-
lem in 2o(k) time by checking all bisections of the kernel. By the above relation
to the Max-Cut problem this would yield a subexponential time algorithm for
Max-Cut, contradicting the Exponential Time Hypothesis [4].

We remark that for the Max-Cut problem, deciding the existence of a cut
with sizem/2+k is trivially fixed-parameter tractable, because any graph admits
a cut of size m/2+Ω(

√
m) due to a classical result of Edwards [5,6]. In fact, the

Max-Bisection problem forms an “extremal point” of a series of problems on
α-bisections, which are cuts in which both sides of the bipartition have at least
(1/2−α)n vertices. By a recent result of Lee et al. [7], for every α ∈ [0, 1/6] every
n-vertex graph with m edges and no isolated vertices contains an α-bisection
of size at least m/2 + αn. Thus, deciding the existence of an α-bisection of
size m/2 + k is trivially fixed-parameter tractable for all α ∈ (0, 1/6]. In this
paper we prove an essentially optimal kernel for the extremal case α = 0.

The problemMax-Bisection ATLB is an example of a so-called “above tight
lower bound paramaterization”, where the parameter k is chosen as the excess of
the solution value of the given instance over a non-trivial tight lower bound on the
solution value in arbitrary instances (here: �m/2�). For many parameterizations
above tight lower bound, it is often not even clear how to solve such problems in
time mk, let alone by a fixed-parameter algorithm in time f(k) ·mO(1) for some
function f dependent only on k. By now, several techniques have been developed
for fixed-parameter algorithms of above tight lower bound parameterizations
of important computational problems, such as Max-r-Sat [8], Max-Lin2 [9],
Permutation-CSPs [10], and Max-Cut [11]; see the survey by Gutin and
Yeo [12]. Most of these techniques are based on probabilistic analysis of carefully
chosen random variables, and they rarely yield kernels of linear size. Here, we
introduce a new technique to establish a linear vertex-kernel forMax-Bisection

ATLB, based on Edmonds-Gallai decompositions of graphs. We believe that this
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technique has the potential to find further applications in establishing linear
kernels for problems parameterized above tight lower bound.

2 Preliminaries

LetG be a loopless undirected graph with vertex set V (G) and edge set E(G). We
allow parallel edges. For each vertex v ∈ V (G), let N(v) = {u ∈ V (G) | {u, v} ∈
E(G)} be the set of neighbors of v. In particular, v �∈ N(v). For a vertex v ∈ V (G)
and a subset U ⊆ V (G), we denote by dU (v) = |{e ∈ E(G) | v ∈ e, e \ {v} ⊆ U}|
the degree of v in U , and write shorthand d(v) = dV (G)(v). Notice that if we
have parallel edges adjacent to v, then d(v) > |N(v)|. Let σ(G) denote the
number of connected components of G. For sets U,W ⊆ V (G), define E(U,W ) =
{{u,w} ∈ E(G) | u ∈ U,w ∈ W} and d(U,W ) = |E(U,W )|. For the special
case of U = {u} and W = {v} being singleton sets, we use the shorthand
d(u,w) = d({u}, {w}). The subgraph of G induced by a subset V ′ ⊆ V (G) is
denoted by G[V ′]. For v ∈ V , we use the shorthand G− v = G[V \ {v}].

For a graph G, a matching is a set M of pairwise non-adjacent edges; the
vertices in V (M) = {v ∈ e | e ∈ M} are saturated by M and vertices in V (G)\M
are unsaturated by M . A matching is perfect for G if it saturates every vertex of
G, and G is factor-critical if the graph G−v admits a perfect matching for every
v ∈ V (G). Denote by ν(G) the cardinality of a maximum size matching in G.

For a graph G, an Edmonds-Gallai decomposition [13] is a tuple (X,Y, Z) such
that {X,Y, Z} forms a tripartion of V (G), X is such that for every vertex v ∈ X
the size of a maximum cardinality matching in G − v and G are the same, Y
contains all neighbors ofX in V (G)\X , and Z = V (G)\(X∪Y ). Classical results
on the Edmonds-Gallai decomposition imply that every connected component
of G[X ] is factor-critical, every component of G[Z] admits a perfect matching,

and furthermore ν(G) = n−σ(G[X])+|Y |
2 .

3 Proof of Theorem 1

In this section we prove our main result, Theorem 1.
LetG be a loopless undirected graph with n = |V (G)| vertices andm = |E(G)|

edges, and let k ≥ 0 be an integer. An important ingredient that we use to
bound the size of the kernel is the following well-known fact, showing that large
matchings lead to large bisections.

Proposition 1 ([14]). Let G be a graph and M be a matching in G; then G has
a bisection of size at least �m/2�+ �|M |/2� and such can be found in O(m+ n)
time.

Another important fact, that will prove to be useful in our reduction to obtain
a small kernel, is that whenever there is a large set of vertices with the same
neighbors (and same number of parallel edges to the neighbors), the problem
can be reduced to a smaller one. This is a straightforward generalization of a
reduction used by Gutin and Yeo [1].
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Lemma 1 (straightforward extension of a result in [1]). Let G be a loop-
less undirected graph with a set I ⊆ V (G) of size �n/2+ j� for some j > 0 such
that d(u,w) = d(v, w) for all u, v ∈ I and w ∈ V (G). Then G has a bisection of
size �|E(G)|/2�+ k if and only if the graph G′ obtained from G by removing 2j
arbitrary vertices of I has a bisection of size �E(G′)/2�+ k.

The above lemma can easily be seen to be true by observing that any balanced
bipartition (V1, V2) of V must satisfy |I ∩ V1| ≥ j and |I ∩ V2| ≥ j, due to the
large size of I and the balancedness of the bipartition (V1, V2). One can then
observe that any balanced bipartition (V1, V2) of V leading to a bisection of size

at least |E(G)|
2 +k can be transformed into a bisection of G′ of size |E(G′)|

2 +k by
removing any j vertices of |I ∩ Vi| from Vi, for i = 1, 2. Similarly, any bisection

(V ′
1 , V

′
2) of G

′ of size at least |E(G′)|
2 + k can be completed to a bisection (V1, V2)

of G of size |E(G)|
2 +k by adding any j vertices of V (G)\V (G′) to V1 to obtain V ′

1 ,
and the remaining vertices of V (G) \ V (G′) to V2 to obtain V ′

2 .
From now on, we assume that ν(G) < 2k, since otherwise there is a bisection

of size m/2 + k due to Proposition 1, and such can be found efficiently through
a simple randomized switching argument that can be derandomized through
conditional expectations. (Details of such a derandomization in a similar setting
are given by Ries and Zenklusen [15].) Furthermore, we assume that G does not
contain any large set I ⊆ V as defined in Lemma 1, for otherwise we could apply
Lemma 1 to reduce the size of the graph.

Let (X,Y, Z) be a Gallai-Edmonds decomposition of G. As a reminder, G[X ]
consists of factor-critical components, Y are all neighbors of X , and G[Z] admits

a perfect matching. Furthermore, ν(G) = n−σ(G[X])+|Y |
2 .

We partition X into sets X0, X1, X2, defined as

X0 = {v ∈ X | d(v) = 0},
X1 = {v ∈ X | dX(v) = 0} \X0,

X2 = {v ∈ X | dX(v) ≥ 1}.
Hence, G[X2] contains all connected components of G[X ] with more than one
vertex. Notice that since these components are factor-critical, each of them has
size at least 3.

Lemma 2. We have |X2|/3 + |Y |+ |Z|/2 < 2k.

Proof. Consider a maximum matching M ⊆ E(G) in G. It is a well-known prop-
erty of the Gallai-Edmonds decomposition [13] that M saturates all vertices
in Y ∪ Z. More precisely, M can be partitioned into M = MX � MY � MZ ,
where MX are the edges of M having both endpoints in X , MY are the edges
of M having one endpoint in Y , and MZ are the edges of M having both end-
points in Z. Furthermore, MZ is a perfect matching in G[Z], and all edges of MY

connect a vertex of Y with one of X . Additionally, in each connected compo-
nent G[X ′] of G[X ], the edges of MX with both endpoints in X ′ saturate all but
one vertex of X ′. Observe that X2 are precisely those vertices in X that belong
to connected components of G[X ] of size at least 3. Hence,
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|MX | ≥ |X2|/3,

because the number of edges |MX | is minimized when all vertices in X2 are in
connected components of size precisely 3. This is the case since in a connected
component of G[X ] of size 2p + 1 ≥ 3 (whose size must be odd since G[X ] is
factor-critical), the ratio between number of vertices and matching edges between
them is p

2p+1 , and this ratio is minimized for p = 1.

Furthermore, |MY | = |Y | and |MZ | = |Z|/2. Thus

|M | = |MX |+ |MY |+ |MZ | ≥ |X2|/3 + |Y |+ |Z|/2.

Since |M | < 2k (by assumption there is no matching of size ≥ 2k), the result
follows. ��

Our key technique to show that |V (G)| ≤ 16k is a generalized version of the ran-
domized argument used to show that a large matching leads to a large bisection.
We replace the role of a matching by what we call switching units on V (G). A
switching unit is a tuple (A,B) with A,B ⊆ V (G), A∩B = ∅ and |A| = |B|. We
will construct a switching family (Ai, Bi)i, which is a collection of mutually dis-
joint switching units, i.e., (Ai∪Bi)∩(Aj∪Bj) = ∅ for i �= j. Any switching family
can be used to define a random bisection (V1, V2) of V (G) by randomly and in-
dependently assigning the vertices of each switching unit (Ai, Bi) to the sets
V1, V2 as follows: with probability 1/2 assign the vertices of Ai to V1 (Ai ⊆ V1)
and the vertices of Bi to V2 (Bi ⊆ V2), otherwise set Ai ⊆ V2 and Bi ⊆ V1.

Furthermore, for all remaining vertices ˜V = V (G) \⋃i(Ai ∪Bi), i.e., all vertices

not part of any switching unit, we pick uniformly at random a bisection (˜V1, ˜V2)

of ˜V , and assign all vertices in ˜V1 to V1 and all vertices of ˜V2 to V2. We call
the thus obtained random bisection (V1, V2) a random bisection corresponding
to the switching family (Ai, Bi)i.

To compute the expected number of edges E[d(V1, V2)] in the random bisection
(V1, V2) corresponding to (Ai, Bi)i, we observe that all edges not having both
endpoints in the same switching set Ai ∪ Bi are in the bisection (V1, V2) with
probability at least 1/2. (Notice that this probability can indeed be strictly larger
than 1/2, e.g., when considering a graph consisting of two vertices connected by
a single edge, then this edge will be in the bisection with probability one.) It
remains to consider for each switching unit (Ai, Bi) its contribution to d(V1, V2).
Notice that this contribution is deterministic and equals d(Ai, Bi).

Since we are interested in how much E[d(V1, V2)] exceeds the tight lower
bound m/2, we introduce the excess ex(Ai, Bi) of the switching unit (Ai, Bi) as
follows:

ex(Ai, Bi) = 2d(Ai, Bi)− d(Ai ∪Bi, Ai ∪Bi)

= d(Ai, Bi)− d(Ai, Ai)− d(Bi, Bi) .

In words, the excess of (Ai, Bi) is the difference between the number of edges
in G[Ai ∪ Bi] crossing the bisection (Ai, Bi) and those who do not. Using the
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notion of excess, we can express the expected number of edges in the random
bisection (V1, V2) by

E[d(V1, V2)] ≥ m

2
+

1

2

∑

i

ex(Ai, Bi), (1)

because every edge is in the bisection with probability at least 1/2, except for
edges e with both endpoints in one switching unit (Ai, Bi), in which case e is
in the bisection if e ∈ E(Ai, Bi) and e is not in the bisection if e ∈ E(Ai, Ai) ∪
E(Bi, Bi).

In the following, we describe a way to construct a switching family (Ai, Bi)i
with a high total excess

∑

i ex(Ai, Bi). Let Y = {y1, . . . , y�}. We start by con-
structing iteratively for each i = 1, . . . , � a switching unit (Ai, Bi), which might
be chosen to be (∅, ∅). Assume that we already constructed switching units
(A1, B1), . . . , (Ai−1, Bi−1). Let

Ni = X1 \
i−1
⋃

j=1

(Aj ∪Bj),

where N1 = X1. Consider the partition of Ni into sets N0
i , N

1
i , . . . , where

N j
i = {v ∈ Ni | d(yi, v) = j}.

If Ni = N j
i for some j ∈ Z+, we set Ai = Bi = ∅. Otherwise, we start by

assigning yi to Ai and we choose any element v ∈ Ni \N0
i that we assign to Bi.

Then, as long as there is an unassigned pair (u, v) ∈ Ni ×Ni with u ∈ N j1
i and

v ∈ N j2
i , where j1 < j2, we assign u to Ai and v to Bi. Clearly, at the end of

this procedure, all elements in Ni \ (Ai ∪Bi) belong to a single group N j
i . The

key observation is that for every pair u ∈ N j1
i , v ∈ N j2

i with j1 < j2 that we
add, ex(Ai, Bi) increases by at least one unit because v has at least one more
edge adjacent to yi than u has. Furthermore, also the assignment at the start
of yi to Ai and of an arbitrarily chosen vertex v ∈ Ni\N0

i to Bi creates an excess
of at least one unit. Thus, for each i ∈ {1, . . . , �}, the switching unit (Ai, Bi)
satisfies the following properties:

(a) ex(Ai, Bi) ≥ |Ai∪Bi|/2, since any added pair of vertices increases the excess
by at least one unit, and

(b) d(yi, v) = d(yi, u) for any u, v ∈ Ni, since otherwise another pair of vertices
could have been added to the switching unit (Ai, Bi).

The switching units (Ai, Bi) with i ∈ {1, . . . , �} are completed by adding switch-
ing units corresponding to a perfect matching MZ of G[Z] and a maximum
matching MX2 in G[X2], i.e., for each {u, v} ∈ MZ ∪ MX2 , we construct a
switching unit ({u}, {v}). These trivial switching units together with the ones
constructed above complete the construction of our switching family, which we
denote by (Ai, Bi).
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We first provide a lower bound for E[d(V1, V2)]. Let ˜X1 = X1 \
⋃�

i=1(Ai ∪Bi).

Lemma 3. It holds that E[d(V1, V2)] ≥ m
2 + 1

4

(

|X1 \ ˜X1|+ |Z|
)

+ 1
6 |X2|.

Proof. Using (1), we have E[d(V1, V2)] ≥ m
2 + 1

2

∑

i ex(Ai, Bi). We recall that the
sum

∑

i ex(Ai, Bi) is composed of three types of terms

∑

i

ex(Ai, Bi) =

�
∑

i=1

ex(Ai, Bi) +
∑

{u,v}∈MZ

ex({u}, {v}) +
∑

{u,v}∈MX2

ex({u}, {v}),

(2)
where (Ai, Bi) for i ∈ {1, . . . , �} are the iteratively constructed switching units,
the second term corresponds to switching units stemming from a perfect match-
ing MZ in G[Z], and the third term corresponds to switching units stemming
from a maximum matching MX2 in G[X2].

Consider the first term of (2). By property (a), we have ex(Ai, Bi) ≥ |Ai∪Bi|
2

for i ∈ {1, . . . , �}. Since ⋃�
i=1(Ai ∪ Bi) contains all edges of X1 \ ˜X1 (together

with some additional vertices of Y ), we obtain

�
∑

i=1

ex(Ai, Bi) ≥ 1

2
|X1 \ ˜X1| . (3)

Now consider the second and third term of (2). Since MZ is a perfect matching

over G[Z], we have |MZ | ≥ |Z|
2 . Furthermore, since each connected component

of G[X2] is factor-critical and has size at least 3, we have |MX2 | ≥ |X2|
3 . Notice

that ex({u}, {v}) ≥ 1, and the inequality can be strict in case of parallel edges
between u and v. Hence

∑

{u,v}∈MZ

ex({u}, {v}) ≥ |Z|
2

,

∑

{u,v}∈MX2

ex({u}, {v}) ≥ |X2|
3

.

Combining the above inequalities with (3) and (2) and using E[d(V1, V2)] ≥
m
2 + 1

2

∑

i ex(Ai, Bi), the desired result is obtained. ��

The next step is to show that not both ˜X1 and X0 can have a large size. For
this we start with the following observation that follows immediately from prop-
erty (b) of our iterative way to define the switching sets (Ai, Bi) for i ∈ {1, . . . , �}.
Proposition 2. All vertices in ˜X1 have the same neighborhood structure, i.e.,
for any u, v ∈ ˜X1 and w ∈ V (G), we have d(u,w) = d(v, w).

Lemma 4. If | ˜X1| ≥ 2k and |X0| ≥ 2k − 1 then G has a bisection of G of size
at least m/2 + k, and such can be found efficiently.
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Proof. Assume | ˜X1| ≥ 2k and |X0| ≥ 2k − 1. Consider the following switching

unit (A,B). Let v ∈ N(u) for an arbitrary u ∈ ˜X1. Notice that the choice of u
does not matter due to Proposition 2, and v ∈ Y . Observe further that N(u) �= ∅,
since any element u ∈ ˜X1 ⊆ X1 has at least one neighbor in Y , as otherwise
it would belong to X0. Let A = {v} ∪ X ′

0, where X ′
0 ⊆ X0 is any set with

|X ′
0| = 2k− 1, and let B = ˜X ′

1 where ˜X ′
1 ⊆ ˜X1 is any set with | ˜X ′

1| = 2k. Notice

that since all elements of B have the same neighborhood because B ⊆ ˜X1, there
is an edge between any vertex of B and v.

Instead of considering a random bisection using the switching units (Ai, Bi)i,
consider a random bisection (VA, VB) corresponding to the single switching
unit (A,B). Notice that G[A ∪ B] is a bipartite graph with bipartition {A,B}.
Hence, ex(A,B) is equal to the number of edges in E(G) with both endpoints
in A∪B. Since each edge of B is connected to v ∈ A, we have ex(A,B) ≥ |B| =
2k. By (1) we thus obtain

E[d(VA, VB)] ≥ m

2
+

ex(A,B)

2
≥ m

2
+ k .

A bisection of size at leastm/2+k can then be found efficiently through standard
derandomization arguments using conditional expectations. ��
We are now ready to combine all ingredients to obtain a kernel of size at most
16k. To obtain the desired kernel, we first repeatedly apply Lemma 1 to reduce
the given graph as long as the conditions of Lemma 1 are fulfilled, i.e., as long as
there are large vertex sets with the same neighborhood structure. After that, if
we can either apply Proposition 1, Lemma 4, or if the switching family (Ai, Bi)i
leads to a random bisection (V1, V2) with E[d(V1, V2)] ≥ m

2 + k, then we can
obtain a large bisection with ≥ m

2 + k edges. The remaining case, when none of
these results leads to a large bisection, is covered by the following theorem.

Theorem 2. Let G be a loopless graph on m edges and let k ∈ N. Then either

– G has at most 16k vertices, or
– we can reduce G to a graph G′ on m′ < m edges such that G has a bisection

of size at least m/2 + k if and only if G′ has a bisection of size at least
m′/2 + k, or

– G has a bisection of size at least m/2 + k that we can find efficiently.

Proof. First, suppose that G satisfies one of the following properties.

(i) If ν(G) ≥ 2k then we obtain a bisection of G of size at least m
2 + k by

Proposition 1.

(ii) If |X0| > |V (G)|
2 then we can apply Lemma 1 to the vertices in X0 to reduce

the graph G, since all vertices in X0 have the same neighborhood structure.

(iii) If | ˜X1| > |V (G)|
2 then we can apply Lemma 1 to the vertices in ˜X1, since all

these vertices have the same neighborhood structure due to Proposition 2.
(iv) If min{|X0|, | ˜X1|} ≥ 2k then Lemma 4 implies that there is a bisection of

size at least m/2 + k in G.
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(v) If the random bisection (V1, V2) corresponding to the switching family
(Ai, Bi)i satisfies E[d(V1, V2)] ≥ m

2 + k then a standard derandomization
as given by Ries and Zenklusen [15] leads to a bisection of size at least
m/2 + k in G.

Second, suppose that G satisfies none of the conditions (i)–(v); we show that
|V (G)| ≤ 16k. By assumption, (v) does not hold, and so by Lemma 3 we have

m

2
+ k > E[d(V1, V2)] ≥ m

2
+

1

4
(|X1 \ ˜X1|+ |Z|) + 1

6
|X2|,

implying

4k > |X1 \ ˜X1|+ |Z|+ 2

3
|X2| . (4)

Hence, we obtain

|V (G)| = |X0|+ |X1|+ |X2|+ |Y |+ |Z|
= |X1 \ ˜X1|+ |Z|+ 2

3
|X2|

︸ ︷︷ ︸

<4k by (4)

+
1

3
|X2|+ |Y |

︸ ︷︷ ︸

<2k by Lemma 2

+ |X0|+ | ˜X1|

< 6k + |X0|+ | ˜X1|
= 6k +min{|X0|, | ˜X1|}

︸ ︷︷ ︸

<2k by (iv)

+ max{|X0|, | ˜X1|}
︸ ︷︷ ︸

≤ |V |
2 by (ii) and (iii)

< 8k +
|V (G)|

2
.

Therefore, |V (G)| < 16k. ��

Finally, as mentioned above, Theorem 1 is a direct consequence of Theorem 2.

4 Discussion

Our main result in this paper is a linear vertex-kernel for the Max-Bisection

ATLB problem. Recently, Lee et al. [7] showed that for every α ∈ [0, 1/6], every
n-vertex graph with m edges and no isolated vertices contains an α-bisection of
size at least m/2+αn, where each side of the bipartition has at least (1/2−α)n
vertices. Thus, a natural problem to study is Max-α-Bisection ATLB for
every α ∈ [0, 1/6], where we wish to decide the existence of an α-bisection of
size at least m/2+αn+ k in a given n-vertex m-edge graph. We conjecture this
problem to be fixed-parameter tractable and admit a polynomial-size kernel.
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