
Parameterized Algorithms

for Even Cycle Transversal

Pranabendu Misra2, Venkatesh Raman1, M.S. Ramanujan1,
and Saket Saurabh1

1 The Institute of Mathematical Sciences, Chennai, India
{vraman,msramanujan,saket}@imsc.res.in

2 Chennai Mathematical Institute
pranabendu@cmi.ac.in

Abstract. We consider a decision version of the problem of finding the
minimum number of vertices whose deletion results in a graph without
even cycles. While this problem is a natural analogue of the Odd Cycle
Transversal problem (which asks for a subset of vertices to delete to
make the resulting graph bipartite), surprisingly this problem is not well
studied. We first observe that this problem is NP-complete and give a con-
stant factor approximation algorithm. Then we address the problem in pa-
rameterized complexity framework with the solution size k as a parameter.
We give an algorithm running in time O∗(2O(k)) for the problem and give
an O(k2) vertex kernel. (We write O∗(f(k)) for a time complexity of the
form O(f(k)nO(1)), where f(k) grows exponentially with k.)

1 Introduction

Cycle hitting set problems like Feedback Vertex Set and Odd Cycle
Transversal (OCT) are very well studied in graph theory, algorithms and
complexity. In the Feedback Vertex Set problem and the Odd Cycle
Transversal problem, we are given a graph G = (V,E) and a positive in-
teger k as inputs. The objective in these two problems is to check if there exists
a subset S ⊆ V of size at most k such that G − S does not have a cycle (i.e. it
is a forest) and does not have an odd cycle (it is bipartite), respectively. Both
these problems are well studied in the realm of parameterized and approximation
algorithms. In this paper, we consider a natural analogue of the Odd Cycle
Transversal, namely the Even Cycle Transversal (EvenCT) problem
and study this problem in the realm of parameterized complexity.

Even Cycle Transversal (EvenCT)

Instance: An undirected graph G = (V,E) and a positive integer k.
Parameter: k.

Problem: Does G have a set S of size at most k such that G− S
does not contain an even cycle?

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 172–183, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parameterized Algorithms for Even Cycle Transversal 173

We start with some basic definitions in parameterized complexity. For a deci-
sion problem with an input of size n and a parameter k, the goal in parameter-
ized complexity is to design an algorithm with a runtime f(k)nO(1) where f is a
function of k alone. Problems which admit such algorithms are said to be fixed
parameter tractable (FPT). A decision problem is said to have a kernelization
algorithm, if there is a polynomial time algorithm that takes an instance (I, k)
and returns an equivalent instance (I ′, k′) such that, k′ ≤ k and |I ′| ≤ g(k),
where g is a function of k alone. The theory of parameterized complexity was
developed by Downey and Fellows [2]. For recent developments, see the book by
Flum and Grohe [4].

The parameterized complexity of OCT was a long standing open problem,
which was resolved in 2003 by Reed et al. [11], who developed an algorithm
for the problem running in time O∗(3k). However, there has been no further
improvement over this algorithm in the last 9 years though several reinterpre-
tations of the algorithm have been published [7,9]. Only recently, an algorithm
with a running time O∗(2.32k) has been obtained [10]. Thus, it is rather sur-
prising that while OCT has attracted so much attention, EvenCT has so far
been largely been ignored. Recently, Kakimura et al. [8] studied a generaliza-
tion of EvenCT, called Subset Even Cycle Transversal. In this problem,
apart from a graph G = (V,E) and a positive integer k, we are also given a
T ⊆ V as the input. The objective is to determine whether there exists a vertex
set S ⊆ V of size at most k such that G − S does not contain any even cycle
whose intersection with T is non-empty. Observe that for T = V this is precisely
EvenCT. Their paper [8], shows that Subset Even Cycle Transversal is
FPT, and thus EvenCT is also FPT. However this algorithm utilizes graph mi-
nor machinery, and the dependence of this algorithm on the parameter k is at
least triply exponential. Hence, a second motivation is to find out if the special
case EvenCT has a better FPT algorithm.

In this paper, we do a systematic study of EvenCT and obtain the following
results.

– We show that EvenCT can be solved in time 2O(k)nO(1). To this end, we
study the class of graphs Ge, which is all graphs which do not contain even
cycles as subgraphs. These graphs have been studied by Thomassen [13], who
obtained a more general result that if a graph G does not contain cycles of
length 0 modulo p for some fixed integer p then the treewidth of G is upper
bounded by a function of p. This implies that the treewidth of a graph which
does not contain even cycles is bounded by some constant. We show that,
in fact Ge is even more structured. Any pair of two odd cycles in a graph
from this class may intersect in at most one vertex. These kind of graphs are
known as cactus graphs and their treewidth at most 2.

– We also show that EvenCT admits a quadratic kernel. That is, we obtain a
polynomial time algorithm that, given an instance (G, k) of EvenCT returns
an equivalent instance (G′ = (V ′, E′), k′) such that k′ ≤ k and |V (G′)| +
|E(G′)| = O(k2). The kernelization algorithm is along similar lines as earlier

174 P. Misra et al.

kernelization algorithms for Feedback Vertex Set [12] and the problem
of Θc-Deletion [5].

This problem adds to the growing list of parity problems that are studied from
the point of view of parameterized complexity. We also mention in passing that
EvenCT is NP-complete and show that it has an approximation algorithm with
factor 10.

2 Preliminaries

Let G = (V,E) be an undirected graph. A cut vertex is a vertex v such that
G − {v} contains two or more connected components than G does. A block in
a graph is a maximal connected subgraph without a cut vertex. Thus blocks in
a graph G are either an isolated vertex, an edge or a maximally-2-connected
component. A pendant block is a block such that it has only one cut vertex.
Removing a pendant block from a graph means, deleting all the vertices in that
block except the cut vertex.

A cactus graph is a graph where each edge is part of at most one cycle.
Equivalently a graph is a cactus graph if and only if each of its block is isomorphic
to either K1, K2 or a cycle. An odd cactus graph is a cactus graph without any
even cycles.

Lemma 1. [∗]3 If there are two cycles C1 and C2 in G such that C1 and C2

intersect in at least 2 vertices, then there is an even cycle in G.

A set of vertices S ⊆ V (G) is called an ect if G − S does not contain an even
cycle.

Lemma 2. Let G be a graph and S be an ect of G. Then (G − S) is an odd
cactus graph.

Proof. Lemma 1 implies that any pair of cycles in (G − S) intersect in at most
1 vertex. Hence, (G− S) is a cactus graph. Additionally, since (G− S) excludes
even cycles, it is an odd cactus graph.

3 NP-Completeness and Constant Factor Approximation

3.1 NP-Completeness

By a simple reduction from theNP-Complete Feedback Vertex Set problem,
the NP-hardness of the problem is clear.

Theorem 1. [∗] The EvenCT problem is NP-Complete.

3 The proofs of results marked [∗] will appear in the full version of the paper.

Parameterized Algorithms for Even Cycle Transversal 175

3.2 An Approximation Algorithm

We will show that EvenCT has a 10-approximation algorithm. First we prove
the following easy lemma.

Lemma 3. [∗] EvenCT on cactus graphs is solvable in polynomial time.

The Diamond Hitting Problem. The diamond hitting problem is defined as
follows. Given a graph G, is there a subset S of at most k vertices of G such
that, (G− S) is a cactus graph. We need the following result by Fiorini et al.

Lemma 4 ([3], Theorem 6.6). There is a factor 9 approximation algorithm
for the diamond hitting problem.

Using Lemma 3 and Lemma 4, we prove the following theorem.

Theorem 2. There is a factor 10 approximation algorithm for EvenCT.

Proof. Let G be the input graph. Let S be an optimum ect of G. Since (G− S)
is a cactus graph, S is also a solution to the diamond hitting problem on G.
Hence, if T were an optimum solution to the diamond hitting problem on G,
then |T | ≤ |S|. We first apply Lemma 4 to obtain a factor 9 approximation to the
diamond hitting problem on G. Let S1 be the approximate solution obtained.
Observe that |S1| ≤ 9|S|.

Since H = G − S1, is a cactus graph, we can apply Lemma 3 to obtain an
optimum ect S2 forH in polynomial time. Since H is a subgraph of G, |S2| ≤ |S|.
Therefore, the set S1 ∪ S2 which is clearly an ect for G, has size at most 10|S|.

This algorithm forms a critical part of the kernelization procedure in Section 5.

4 FPT Algorithm

In this section we give an algorithm for EvenCT which runs in time O∗(2O(k)).
Towards this, we first apply the technique of iterated compression. The idea is
to start with a solution of size k+1 and try to ‘compress’ it to a solution of size
k if possible.

We start with the compression version of the problem.

4.1 Compression Version

Compression EvenCT
Input: Graph G, a positive integer k and an ect S of G such that |S| =

k + 1
Parameter: k
Question: Does G have an ect of size at most k ?

176 P. Misra et al.

We fix an ect of G of size at most k (assuming one exists) and denote it by
S∗. Let Y = S ∩ S∗ and N = S − Y . We attempt to find an ect of the graph
(G − S) ∪N such that it has size at most k − |Y | and is contained in (G − S).
Since the ect has to be disjoint from the set N , the graph N cannot contain even
cycles and hence must be a cactus graph.

We give a branching algorithm to find the ect S∗. This algorithm works in two
phases. In the first phase, we use an appropriate branching, at the end of which,
every connected component C in G − S is such that C ∪N has no even cycles
and all the edges from C to N are incident on the same connected component
of N . In the second phase, we use the structure provided by the first phase to
deal with the remaining even cycles in (G− S) ∪N .

R ecall that G− S is an odd cactus graph. Let C be a connected component of
G−S such that either C∪N contains an even cycle, or there are at least 2 edges
which have one end point in C, and the other end point in distinct components
of N . In both cases, our aim is to find a ‘minimal’ path in C that satisfies the
property (of forming an even cycle with N or having adjacency in more than two
components of N). This will then suggest ways of branching (by picking vertices
from this ‘minimal’ path).

Let P be any path in C and let r be any vertex of C. Let v ∈ P be a vertex
such that there is a path from r to v, which intersects P only at v, and let RP (r)
be the set of all such vertices in P .

Lemma 5. For any vertex r and any path P in C, |RP (r)| ≤ 2.

Proof. Suppose that there are 3 vertices {u, v, w} in RP (r). By definition of
RP (r), there is a path from r to u which doesn’t intersect {v, w}; similarly for v
and w. Let T1 be a minimal subtree of (G−P)∪RP (r), that contains {u, v, w, r},
such that {u, v, w} is the set of leaves of T1. Let T2 be a minimal sub-path of P
which connects {u, v, w}. Then in T1 ∪ T2, there are two cycles that have two or
more common vertices. But then by Lemma 1, there is an even cycle in (G−S),
a contradiction.

Observation 1. Given a vertex r and a path P in a component C of G− S, r
is not reachable from any vertex in P −RP (r).

Now, to identify a path with the required property, we define a partial order
on all the paths in the component. Towards this end, we fix a root rC for the
component and measure distances of the paths from rC . Let dist(u, v) be the
length of a shortest path between the two vertices u and v. Suppose for P
|RP (rC)| = 2, then the depth of P , denoted by d(P), is defined as the ordered pair
(dist(u, rC), dist(v, rC)), where RP (rC) = {u, v} and dist(u, rC) ≥ dist(v, rC).
If |RP (rC)| = 1, then d(P) = (dist(u, rC), dist(u, rC)). As it will be clear from
the context, we drop the symbol rC from RP (rC) hereafter. Given two paths
P1 and P2, we say that P1 is smaller than P2 if either d(P1) > d(P2) in the
lexicographic order or, d(P1) = d(P2) and P1 is a sub-path of P2. This relation
induces a partial order on the set of all paths of a component C.

Parameterized Algorithms for Even Cycle Transversal 177

In the rest of the paper, by P ∪ N we refer to the graph obtained by con-
sidering the path P , the graph induced on N and all the edges between the
vertices in P and the vertices in N . We call a path P a branching path if either
P ∪ N contains an even cycle, or vertices in P have adjacencies to more than
one connected component of N . Note that in the latter case, P ∪ N has fewer
connected components than N has. By a minimal branching path, we mean a
minimal element in the partial order defined above.

The following lemma shows that we can compute a branching path in polynomial
time.

Lemma 6. [∗] Let H be a connected odd cactus graph such that H ∪ N either
contains an even cycle or H ∪N has fewer connected components than N has.
Then we can find a path P of H in polynomial time such that P is a branching
path.

The next lemma shows that we can compute a minimal branching path in poly-
nomial time. Furthermore, such a path Q has the crucial property that there is
a subset of vertices AQ in Q such that |AQ| ≤ 6 and there exists an optimum
ect that either doesn’t intersect Q or intersects only in a subset of AQ. We call
AQ the set of important vertices in Q.

Lemma 7. [∗] Suppose P is a branching path in a connected component C of
G−S. Then there is a branching path Q and a subset of its vertices AQ containing
at most 6 vertices such that, if any vertex v in (Q−AQ) is in some solution T ,
then there is a solution T ′ of size at most |T | which doesn’t contain v. Given P ,
we can find Q and AQ in polynomial time.

Using the above two lemmas we show the following,

Lemma 8. Compression EvenCT is fixed-parameter tractable.

Proof. We are given as input G and a solution S of size at most k+ 1. We wish
to construct a new solution S∗ of size at most k. We consider partitions of S
into two sets Y and N , where Y = S∗ ∩ S and N = S − Y .

For each such partition we delete Y from G. We then attempt to find an ect
R of (G−S)∪N such that R ⊆ V (G−S) and |R| ≤ k−|Y |. For such a solution
to exist, we require N to be an odd cactus graph. This can be easily checked
by taking a block decomposition of N and checking for blocks not isomorphic to
K1, K2 or an odd cycle.

To find an ect of (G − S) ∪ N we use a branching algorithm which we will
analyze with the measure

μ = (k − |Y |+ number of components in N.)

It is easy to see that μ ≤ 2(k−|Y |)+1. During the branching we update (G−S)
and N by deleting vertices or moving vertices from (G− S) to N .

We first apply the following preprocessing rule. Let C be a connected compo-
nent of G − S such that there is at most one edge with one endpoint in C and

178 P. Misra et al.

the other in N . Then, no vertex of C is part of an even cycle in (G − S) ∪ N ,
and hence we delete C from G− S.

Let C be a connected component of G−S such that C ∪N has an even cycle
or has fewer connected components than N has. We apply Lemma 6 to find a
branching path Q. We then apply Lemma 7 on Q to find a minimal branching
path P and AP and branch on the vertices in AP . Since |AP | ≤ 6, there are at
most 7 branches, the first six branches each correspond to one of the vertices in
Ap being added to the solution R and in the final branch, no vertex is chosen
and we move the entire path P to N . Note that picking no vertex from P may
not be feasible if P ∪N contains an even cycle. When we add a vertex into the
solution set R and delete it from the graph, μ decreases by 1. Also, since P was
a branching path, moving P to N , reduces the number of connected components
in N by at least 1. Hence, in every branch the measure μ drops by at least 1.

We do the above branching for every component in (G− S). Eventually we’ll
reach a state where no component of G−S satisfies the conditions of Lemma 6.
Hence all the edges from each component are to the same connected component
of N . Furthermore, if more than two edges from a component C are adjacent to
a component of N , then it can be easily argued that there is an even cycle in
C ∪ N . Hence, every component of G − S has edges to exactly one component
of N and exactly two such edges. Let Bi be the set of vertices in a component
Ci of G− S such that they have a neighbour in N . Note that |Bi| ≤ 2. We will
show the following,

Claim. There exists an optimum solution to the compression EvenCT instance
that, for any component Ci of G− S, is either disjoint from Ci or intersects Ci

in a subset of Bi.

Proof. The claim follows from the observation that every even cycle intersecting
Ci must also intersect b1 and b2, where b1 and b2 are the vertices in Bi.

For a pair of connected components Ci, Cj of (G−S), let Hij = Ci∪Cj ∪N . We
can check if Hij contains an even cycle. If we find one, by the above claim we
have a four-way branching on the vertices in Bi ∪Bj and in each branch we add
a vertex to R and delete it from the graph. In every branch μ drops by 1. We do
this for every pair of connected components in (G−S). Finally, let (G− S)∪N
be the remaining graph. We will show that there are no even cycles left in this
graph.

Claim. [∗] If there is a cycle in (G−S)∪N passing through some l > 2 connected
components of (G − S), then there is a cycle passing through at most l − 1
components of G− S.

Claim. [∗] If there is a cycle in (G − S) ∪ N passing through two connected
components C1, C2 of (G− S), then there is an even cycle in C1 ∪C2 ∪N .

The above two claims imply that (G− S)∪N now has no even cycles. For, if
there was an even cycle, then it must pass through some l connected components
of G− S. If l = 1, then there would be a connected component C of G− S such

Parameterized Algorithms for Even Cycle Transversal 179

that C ∪ N contains an even cycle, a contradiction. Otherwise if l ≥ 3, then
we apply the first claim repeatedly to conclude that there are two components
C1 and C2 such that C1 ∪ C2 ∪ N contains a cycle which passes through both
C1 and C2. Then by the second claim, there is an even cycle in C1 ∪ C2 ∪ N ,
a contradiction. Hence, we conclude that at the end of the above branching
procedure we have constructed a solution R and the remaining graph is even
cycle free.

For a partition of S into Y and N , the above branching takes time
O∗(72(k−|Y |)). Summing over all the 2k+1 partitions of S we see that the overall

algorithm takes time
∑k

i=0

(
k+1
i

)
O∗(72k−2i) = O∗(50k).

Finally the following claim proves the correctness of the algorithm.

Claim. [∗] Suppose S′ were some solution to this EvenCT compression instance
of size at most k. Let S∗ be the solution constructed by the above algorithm.
Then |S∗| ≤ k.

4.2 FPT Algorithm for EvenCT

Theorem 3. EvenCT parameterized by solution size has an FPT algorithm
running in time O∗(50k).

Proof. Suppose G is the input graph and k is the parameter. We arbitrarily order
the vertices of G and define a sequence of graphs Gk+2, Gk+3, . . . , Gn, where Gi

is the induced subgraph on the first i vertices of G.
It is easy to see that if for some i, Gi doesn’t have an ect of size at most k,

then G doesn’t have an ect of size at most k. And if G has an ect of size k, then
each Gi has an ect of size at most k. We start with the graph Gk+2 and let Sk+2

be the first k + 1 vertices. Clearly Sk+2 is an ect of size k + 1 for Gk+2. We use
Lemma 8 to compute a solution S of size at most k for Gk+2. If we fail, then
there is no ect of size k for G and so we answer NO. And if we succeed then
Sk+3 = S ∪ {vk+3} is an ect of size k + 1 for Gk+3. We then repeat the above
process.

Note that there are at most O(n) iterations and each iteration takes time
O∗(50k). So this algorithm runs in time O∗(50k).

5 Polynomial Kernel

In this section we give a quadratic kernel for EvenCT. We first introduce re-
duction rules which allow us to establish a bound on the maximum degree of the
graph. During this process we may introduce parallel edges in the graph, which
we can remove via a simple preprocessing. Following that we use the bounded
degree of the graph to design further reduction rules, to obtain the kernel.

180 P. Misra et al.

5.1 Bounding the Degree of the Graph

Definition 1. For a vertex v, a set of even cycles is called a flower passing
through v if the even cycles intersect only at v. If the number of even cycles in
the set is t, then this set is called a t-flower passing through v. Each even cycle
of a flower is called a petal.

We will now use an approach similar to that in [5] and [12] to design reduction
rules to eliminate vertices of high degree. We begin by proving a few lemmas
which will be used crucially in designing a reduction rule that removes high
degree vertices.

Lemma 9. [∗] Given a graph G such that tw(G) = r for some constant r, and
a vertex v in G, we can find in linear time, the size of the largest flower passing
through v in G.

Lemma 10. [∗] Given a graph G = (V,E) let v ∈ V be a vertex such that
G − {v} is an odd cactus graph, and let k be an integer. Then, in polynomial
time, we can either compute an ect X of size O(k) in G such that X is disjoint
from v or conclude that there is a k + 1-flower passing through v.

Lemma 11. [∗] There is a polynomial time procedure, which, for every vertex
v in the graph, either returns a set Sv such that v /∈ Sv, |Sv| = O(k) and Sv is
a solution or conclude that there is a k + 1-flower passing through v.

We now move ahead to the description of the reduction rules.

Reduction 1. If there are more than 2 parallel edges between a pair of vertices,
delete all but 2 of them.

Reduction 2. For every vertex v, apply Lemma 11. If some vertex has a (k + 1)-
flower passing through it, then delete this vertex from the graph and reduce k by 1.

Correctness. The correctness follows from the fact that such a vertex must be
part of every solution of size at most k.

Definition 2. For a vertex v, let Cv
1 , . . . , C

v
r be the set of connected components

of G− (Sv ∪ {v}) which are adjacent to v in G.

Observation 2. A vertex v cannot have more than 2 neighbors in any compo-
nent Cv

i .

Proof. The proof follows from Lemma 1.

Reduction 3. If there is a component Cv
i which does not have an edge to Sv,

then we delete the vertices in this component.

Parameterized Algorithms for Even Cycle Transversal 181

Correctness. The correctness follows from the fact the vertices of this component
cannot be part of an even cycle in the given graph.

Definition 3. Define a graph Gv = (A,B,E) to be the bipartite graph where
the vertices in A correspond to the components Cv

1 , . . . , C
v
r , and the vertices in

B correspond to the vertices in Sv. We add an edge between two vertices ai ∈ A
and u ∈ B if there is an edge from the component Cr

i to the vertex u.

We now state without proof (a slightly weaker form of) the well known q-
expansion lemma which we will use to define the high degree vertices. This
lemma is a generalization of a lemma in [12]. A q-star is defined as a star with q
leaves. We say that a vertex v has a q-star in the vertex set T if v is the center
of a q-star and the leaves of the star all lie in T .

Lemma 12. Let q be a positive integer and let G be a bipartite graph with vertex
bipartition A 	 B. If there are no isolated vertices in B and |B| > q|A|, then
there are non-empty vertex sets S ⊆ A and T ⊆ B such that S has |S| many
vertex disjoint q-stars in T and S separates the vertices of T from the rest of the
graph. Furthermore, the sets S and T can be computed in polynomial time.

Reduction 4. If deg(v) ≥ 8|Sv| , then compute a 3-expansion set X ⊆ B in
the graph Gv = (A,B,E). Delete the components corresponding to the neighbors
of X, and add parallel edges between v and u for every vertex u ∈ X.

Note that, in each application of this rule, the degree of v decreases by at
least |X | > 0. When the Rule 4 cannot be applied on any vertex in the graph,
then the maximum degree of the graph is bounded by O(k). Further note that
because of Rule 1, there can be at most 2 parallel edges between any two vertices
u and v. For the sake of convenience, we would like to deal with simple graphs
and hence we do the following. For each pair of vertices u and v in G with 2
parallel edges, replace one of the edges by a path (u, a, b, v) of length 3 where
a and b are two new vertices. It is easy to see that this process preserves the
bound on the degree and the solution size, while resulting in a simple graph.

5.2 Bounding an Irreducible Yes Instance

Now, we prove a bound on the size of an irreducible Yes instance. At this point,
we have a graph G where every vertex has O(k) neighbors, and an approximate
solution A of size O(k). Note that the number of edges going across the cut
(G − A,A) is bounded by O(k2). Since G − A is an odd cactus graph, we can
find a block decomposition of this graph [6] and the corresponding block graph
T [1]. T is a forest which contains a vertex for every block and every cut-vertex
in G − A. There is an edge between two vertices u and v, where u corresponds
to a cut-vertex and v corresponds to a block Bv in G−A, if u ∈ Bv in the graph
G−A. We call a vertex of G− A an affected vertex if it is adjacent to a vertex
in A. We call a block of G−A an affected block if it contains a cut vertex.

Reduction 5. Delete any pendant block in G−A which is not affected.

182 P. Misra et al.

Correctness. It follows from the observation that such blocks are never part of
any even cycle in G.

Reduction 6. If there is a maximal path P in G−A such that every vertex is
of degree two and is unaffected, except for the endpoints which could either be
affected vertices or be vertices of degree three or more, then replace P by a path
of length two (or one) if this path is of even (or odd) length.

Correctness. It follows from the observation that we can substitute for any such
vertex by one of the endpoints, and the replacement doesn’t change the parity
of any cycle in G.

Definition 4. Consider a path P of degree two vertices in T such that no vertex
in P corresponds to an affected vertex or an affected block in G−A. We call the
corresponding sequence of blocks B1, . . . Bl a chain in G−A.

It has the property that, no vertex in ∪l
i=1Bi has a neighbour in A, and every

block has exactly two cut vertices. We call the two cut vertices at the two ends
of a chain, the endpoints of the chain.

Reduction 7. If there is a chain such that it consists of a single block which is
an odd cycle of size greater than three, or contains at least two blocks with one
of them an odd cycle, then replace this chain with a triangle which is formed by
the two endpoints of the chain and a new vertex.
If the chain contains no odd cycles, then the chain is a path in G−A. Further-
more, suppose that this chain contains at least three blocks. Then replace this
path by a path of length two(or one) if this path is of even (or odd) length.

Correctness. The correctness follows from the fact that any vertex of the chain
which is part of the solution can be simply replaced by one of the endpoints of
the chain.
�
Lemma 13. The number of affected vertices in G−A is O(k2) and the number
of affected blocks is O(k2).

Proof. The bound on the number of affected vertices follows from the fact that
|A| = O(k) and every vertex in A has a degree O(k). This clearly implies the
second statement.

The following two lemmas give a bound on the number of vertices in the block
graph T , and then on the number of vertices in G−A.

Lemma 14. [∗] The number of vertices in the block graph is O(k2).

Lemma 15. [∗] There are O(k2) vertices in G−A.

Using the above lemma and the fact that |A| = O(k) we have the following
theorem.

Theorem 4. EvenCT parameterized by the solution size has an O(k2) vertex
kernel.

Parameterized Algorithms for Even Cycle Transversal 183

References

1. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, 3rd edn., vol. 173.
Springer, Heidelberg (2005), http://www.math.uni-hamburg.de/home/diestel/

books/graph.theory/GraphTheoryIII.pdf

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

3. Fiorini, S., Joret, G., Pietropaoli, U.: Hitting Diamonds and Growing Cacti. In:
Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 191–204.
Springer, Heidelberg (2010)

4. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

5. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden
minors: Approximation and kernelization. In: STACS, pp. 189–200 (2011)

6. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph ma-
nipulation. Commun. ACM 16, 372–378 (1973), http://doi.acm.org/10.1145/

362248.362272

7. Hüffner, F.: Algorithm engineering for optimal graph bipartization. J. Graph Al-
gorithms Appl. 13(2), 77–98 (2009)

8. Kakimura, N., Ichi Kawarabayashi, K., Kobayashi, Y.: Erdös-pósa property and
its algorithmic applications: parity constraints, subset feedback set, and subset
packing. In: SODA, pp. 1726–1736 (2012)

9. Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler Parameterized Algorithm for
OCT. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874,
pp. 380–384. Springer, Heidelberg (2009)

10. Loksthanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh,
S.: Faster Parameterized Algorithms using Linear Programming. ArXiv e-prints
(March 2012)

11. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.
Lett. 32(4), 299–301 (2004)

12. Thomassé, S.: A quadratic kernel for feedback vertex set. In: SODA, pp. 115–119
(2009)

13. Thomassen, C.: On the presence of disjoint subgraphs of a specified type. Journal
of Graph Theory 12(1), 101–111 (1988)

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://doi.acm.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272

	Parameterized Algorithms for Even Cycle Transversal
	Introduction
	Preliminaries
	NP-Completeness and Constant Factor Approximation
	NP-Completeness
	An Approximation Algorithm

	FPT Algorithm
	Compression Version
	FPT Algorithm for EvenCT

	Polynomial Kernel
	Bounding the Degree of the Graph
	Bounding an Irreducible Yes Instance

	References

