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Abstract. We study kernelization (a kind of efficient preprocessing)
for NP-hard problems on planar graphs. Our main result is a kernel
of size at most 9k vertices for the Planar Maximum Nonseparating

Independent Set problem. A direct consequence of this result is that
Planar Connected Vertex Cover has no kernel with at most 9/8k
vertices, assuming P �= NP. We also show a very simple 5k-vertices
kernel for Planar Max Leaf, which results in a lower bound of 5/4k
vertices for the kernel of Planar Connected Dominating Set (also
under P �= NP).

1 Introduction

Many NP-complete problems, while most likely not solvable efficiently, admit
kernelization algorithms, i.e. efficient algorithms which replace input instances
with an equivalent, but often much smaller one. More precisely, a kernelization
algorithm takes an instance I of size n and a parameter k ∈ N, and after time
polynomial in n it outputs an instance I ′ (called a kernel) with a parameter k′

such that I is a yes-instance iff I ′ is a yes instance, k′ ≤ k, and |I ′| ≤ f(k)
for some function f depending only on k. The most desired case is when the
function f is polynomial, or even linear (then we say that the problem admits a
polynomial or linear kernel). In such a case, when the parameter k is relatively
small, the input instance, possibly very large, is “reduced” to a small one. In
this paper by the size of the instance |I| we always mean the number of vertices.

In the area of kernelization of graph problems the class of planar graphs (and
more generally H-minor-free graphs) is given special attention. This is not only
because planar graphs are models of many real-life networks but also because
many problems do not admit a (polynomial) kernel for general graphs, while
restricted to planar graphs they have a polynomial (usually even linear) kernel.
A classic example is the 335k-vertex kernel for the Planar Dominating Set

due to Alber et al. [1]. In search for optimal results, and motivated by practical
applications, recently researchers try to optimize the constants in the linear
function bounding the kernel size, e.g. the current best bound for the size of
the kernel for the Dominating Set is 67k [2]. Such improvements often require
nontrivial auxiliary combinatorial results which might be of independent interest.
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Our paper fits into this framework. We focus on kernelization of the following
problem:

Maximum Nonseparating Independent Set (NSIS) Parameter: k
Input: a graph G = (V,E) and an integer k ∈ N

Question: Is there an independent set I of size at least k such that G[V − I]
is connected?

In what follows, |V | is denoted by n. This problem is closely related with Con-

nected Vertex Cover (CVC in short), where given a graph G = (V,E) and
an integer k we ask whether there is a set S ⊆ V of size at most k such that
S is a vertex cover (i.e. S touches every edge of G) and S induces a connected
subgraph of G. The CVC problem has been intensively studied, in particular
there is a series of results on kernels for planar graphs [6,10] culminating in the
recent 11

3 k kernel [8]. It is easy to see that C is a connected vertex cover iff V −C
is a nonseparating independent set. In other words, (G, k) is a yes-instance of
CVC iff (G,n−k) is a yes-instance of NSIS. In such a case we say that NSIS is a
parametric dual of CVC. An important property of a parametric dual, discovered
by Chen et al [2], is that if the dual problem admits a kernel of size at most αk,
then the original problem has no kernel of size smaller than α/(α − 1)k, unless
P=NP.

As we will see, the NSIS problem in planar graphs is strongly related to the
Max Leaf problem: given a graph G and an integer k, find a spanning tree
with at least k leaves.

Our Kernelization Results. We study Planar Maximum Nonseparat-

ing Independent Set (Planar NSIS in short), which is the NSIS problem
restricted to planar graphs. We show a kernel of size at most 9k for Planar

NSIS. This implies that Planar Connected Vertex Cover has no kernel
of size smaller than 9/8k, unless P=NP. This is the first non-trivial lower bound
for the kernel size of the Planar CVC problem. Our kernelization algorithm
is very efficient: it can be implemented to run in O(n) time. As a by-product of
our considerations we also show a 5k kernel for both Max Leaf and Planar

Max Leaf, which in turn implies a lower bound of 5/4k for its parametric dual,
i.e. Planar Connected Dominating Set.

Our Combinatorial Results. Some of our auxiliary combinatorial results
might be of independent interest. We mention two of them here. Kleitman and
West [7] showed that an n-vertex graph of minimum degree three contains a
spanning tree with at least n/4 leaves. We generalize their result to graphs that
contain no separator consisting of only degree two vertices. We also show that
every n-vertex outerplanar graph contains an independent set I and a collection
of vertex-disjoint cycles C such that 9|I| ≥ 4n− 3|C|.
Previous Results. As the CVC is NP-complete even in planar graphs [5], so
is NSIS. To the best of our knowledge there is no prior work on the parameter-
ized complexity of Maximum Nonseparating Independent Set. The reason
for that is simple: a trivial reduction from Independent Set (add a vertex
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connected to all the vertices of the original graph) shows that NSIS is W[1]-hard,
i.e. existence of an algorithm of complexity O(f(k)· |V |O(1)) is very unlikely (and
so is the existence of a polynomial kernel). However, by general results on ker-
nelization for sparse graphs [4], one can see that NSIS admits a O(k) kernel for
apex-minor-free graphs, so in particular for planar graphs. However, the general
approach does not provide a good bound on the constant hidden in the asymp-
totic notation. Observe that this constant is crucial: since we deal with an NP-
complete problem, in order to find an exact solution in the reduced instance,
most likely we need exponential time (or at least superpolynomial, because

for planar graphs 2O(
√
k)-time algorithms are often possible), and the constant

appears in the exponent.
Max Leaf has been intensively studied. Although there is a 3.75k kernel even

for general graphs due to Estivill-Castro et al. [3], some of their reductions do
not preserve planarity. Moreover, the algorithm and its analysis are extremely
complicated, while our method is rather straightforward.

Yet Another Equivalent Formulation of NSIS. Consider the NSIS prob-
lem again. It is easy to see that if graph G has two nontrivial (i.e. with at least
two vertices) connected components, then the answer is NO. Furthermore, an
instance (G, k) consisting of a connected component C and an independent set I
is equivalent to the instance (G[C], k− |I|). Hence, w.l.o.g. we may assume that
the input graph G is connected. It is easy to see that the Maximum Nonsep-

arating Independent Set problem for connected graphs is equivalent to the
following problem, which we name Maximum Independent Leaf Spanning

Tree:

Maximum Independent Leaf Spanning Tree Parameter: k
Input: a graph G = (V,E) and an integer k ∈ N

Question: Is there a spanning tree T such that the set of leaves of T
contains a subset of size k that is independent in G?

In what follows, we will use the above formulation, since it directly corresponds
to our approach.

Terminology and Notation. By NG(v) we denote the set of neighbors of
vertex v, G[S] denotes the subgraph of graph G induced by a set of vertices S.
If G = (V,E) is a connected graph and S ⊂ V , then we say that S is a separator
if G[V − S] is disconnected. By a d-vertex we mean a vertex of degree d.

2 A Simple 12k Kernel for Planar NSIS

In this section we describe a relatively simple algorithm that finds a 12k kernel for
Planar NSIS. This is achieved by the following three steps. First, in Section 2.1
we show a reduction rule and a linear-time algorithm which, given an instance
(G, k), returns an equivalent instance (G′, k′) such that |V (G′)| ≤ |V (G)|, k′ ≤
k, and moreover G′ has no separator consisting of only 2-vertices. Second, in
Section 2.2 we show that G′ has a spanning tree T with at least |V (G′)|/4 leaves
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(and it can be found in linear time). Denote the set of leaves of T by L. Third, in
Section 2.3 we show that the graph G′[L] is outerplanar. It follows that G′[L] has
an independent set of size at least |L|/3 (which can be easily found in linear time)
and, consequently, T has at least |V (G′)|/12 leaves that form an independent
set. Hence, if k′ ≤ |V (G′)|/12 our algorithm returns the answer YES (and the
relevant feasible solution if needed). Otherwise |V (G′)| < 12k′ ≤ 12k so (G′, k′)
is indeed the desired kernel.

2.1 The Separator Rule

Now we describe our main reduction rule, which we call separator rule. It is
easier for us to prove the correctness of the rule for the CVC problem and then
convert it to a rule for the NSIS problem.

Separator Rule. Assume there is a separator S consisting of only 2-
vertices. As long as S contains two adjacent vertices, remove one of them
from S (note that S is still a separator). Next, choose any v ∈ S such
that the two neighbors a, b of v belong to distinct connected components
of G[V − S]. If deg(a) = deg(b) = 1, remove a from G. If deg(a) = 1
and deg(b) ≥ 2, remove a from G and decrease the parameter k by 1.
Proceed analogously when deg(b) = 1 and deg(a) ≥ 2. Finally, when
deg(a), deg(b) ≥ 2, contract the path avb into a single vertex v′ and
decrease k by 2.

We say that a reduction rule for a parameterized problem P is correct when for
every instance (G, k) of P it returns an instance (G′, k′) such that:

a) (G′, k′) is an instance of P ,
b) (G, k) is a yes-instance of P iff (G′, k′) is a yes-instance of P ,
c) k′ ≤ k.

Lemma 1. The separator rule is correct for Planar CVC.

Proof. Since the separator rule modifies the graph by removing a vertex or con-
tracting a path it is planarity preserving, so a) holds. The condition c) is easy
to check so we focus on b), i.e. the equivalence of the instances.

The case when deg(a) = deg(b) = 1 are trivial so we skip the argument.
Now assume deg(a) = 1, deg(b) ≥ 2 (the case deg(b) = 1, deg(a) ≥ 2 is

symmetric). If C is a minimum connected vertex cover of G, |C| ≤ k, then v ∈ C
and a �∈ C. Since G[C] is connected, deg(v) = 2 and deg(b) ≥ 2, also b ∈ C. It
follows that C \ {v} is a connected vertex cover of G′ of size at most k′ = k− 1.
In the other direction, if C′ is a connected vertex cover of G′, |C′| ≤ k′ = k− 1,
then b ∈ C′ and clearly C′ ∪ {v} is a connected vertex cover of G.

Finally, assume deg(a), deg(b) ≥ 2. Let A and B be the connected components
of G[V −S] that contain a and b, respectively. Let a0 (resp. b0) be any neighbor
of a (resp. b) distinct from v (a0 and b0 exist since deg(a), deg(b) ≥ 2). Note
that a0 ∈ A ∪ S, b0 ∈ B ∪ S and a0, b0 ∈ G′.
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Let us first assume that G′ has a connected vertex cover C′, |C′| ≤ k′. We
show that G′ has a connected vertex cover D′, |D′| ≤ k′ such that v′ ∈ D′. Then
it is easy to check that C = (D′ \{v′})∪{a, v, b} is the required connected vertex
cover of G, and |C| = |D′| + 2 ≤ k.

If v′ ∈ C′ we just put D′ = C′ so suppose that v′ �∈ C′. Then a0, b0 ∈ C′.
Since G′[C′] is connected, there is a path P from a0 to b0 in G′[C′], possibly of
length 0. Since a0 ∈ A ∪ S and b0 ∈ B ∪ S we infer that P contains a vertex
w ∈ S ∩ C′. It follows that D′ = C′ \ {w} ∪ {v′} is a connected vertex cover of
G′ of size at most k′.

Let us now assume that (G, k) has a connected vertex cover C, |C| ≤ k.
If {a, v, b} ⊆ C, then clearly C′ = (C \ {a, v, b}) ∪ {v′} is a connected vertex
cover of G′ with |C′| ≤ k − 2 = k′. On the other hand, if {a, v, b} �⊆ C, then
G[C ∪{a, v, b}] contains a cycle (because C is connected). Since S is a separator,
this cycle has to contain some w1 ∈ S other than v. In this case we claim that
C′ = (C \ {w1}) ∪ {a, v, b} is a connected vertex cover of G′ and |C′| ≤ k′. It is
clear that C′ is a connected vertex cover. The size bound follows from the fact,
that C has to contain two out of the three vertices {a, v, b}. 
�
Now, we convert the separator rule to the dual separator rule as follows. Let
(G, �) be an instance of (Planar) NSIS. Put k = |V (G)|−�, apply the separator
rule to (G, k) and get (G′, k′). Put �′ = |V (G′)| − k′ and return (G′, �′).

Corollary 1. The dual separator rule is correct for Planar NSIS.

Proof. The condition c) is easy to check while Lemma 1 implies a) and b). 
�
It is clear that the dual separator rule can be implemented in linear time. How-
ever, we would like to stress a stronger claim: there is a linear-time algorithm
that given a graph G applies the separator rule as long as it is applicable. This
algorithm can be sketched as follows. First we remove all 1-vertices that are ad-
jacent to 2-vertices, and we modify k as described in the separator rule. Second,
we find all maximal paths that contain 2-vertices only. For every such path, if it
contains at least 3 vertices (and hence two of them form a separator), we replace
it by a path of two vertices. It is easy to implement these two steps in linear
time. Now, every 2-vertex has at most one neighboring 2-vertex. We remove all
2-vertices that do not have neighbors of degree 2 and for each pair of adjacent
2-vertices we remove exactly one of them. Next, we pick a connected component
A of the resulting graph and we mark all its vertices. Then we consider all degree
2 neighbors of this component (that has been removed). If such a neighbor v has
an unmarked neighbor then it connects A with another component B. We apply
the separator rule to the vertex v (in constant time) and we mark v as processed.
Then we mark all the vertices of B. As a result the components A and B are
joined into a new component A. In any case, the vertex v is not considered any
more. We continue the procedure as long as the graph gets connected. All the
removed 2-vertices that are not marked as processed are put back in the graph.
Since every vertex of G is marked at most once, the whole algorithm works in
linear time.
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2.2 Finding a Spanning Tree with Many Leaves

Kleitman and West [7] showed how to find a spanning tree with at least n/4
leaves in a graph of minimum degree 3. In this section we generalize their result
by proving the following theorem.

Theorem 1. Let G be a connected n-vertex graph that does not contain a sepa-
rator consisting of only 2-vertices. Then G has a spanning tree with at least n/4
leaves. Moreover, such a tree can be found in linear time.

We will slightly modify the approach of Kleitman and West so that vertices of
smaller degree are allowed.

First note that it suffices to show a simplified case where G has no edge uv
such that both u and v are 2-vertices (and we still assume the nonexistence of
a separator consisting of only 2-vertices). Indeed, if the theorem holds for the
simplified case, we just remove from G all the edges uv such that both u and v
are 2-vertices, call the new graph G̃. Note that G̃ is connected and G̃ does not
contain a separator consisting of only 2-vertices (otherwise the old G contains
such a separator). Hence we get a spanning tree T of G̃ with at least |V (G̃)|/4
leaves by applying the simplified case. However, since |V (G̃)| = |V (G)| and T is
also a spanning tree of G, so T is also the required tree for the general claim.
Hence in what follows we assume that G has no edge with both endpoints of
degree 2.

In order to build a spanning tree T our algorithm begins with a tree consisting
of an arbitrarily chosen vertex (called a root), and then the spanning tree is built
by a sequence of expansions. To expand a leaf v ∈ T means to add the vertices
of NG(v) \ V (T ) to T and connect them to v in T . Note that in a tree T built
from a root by a sequence of expansions, if a vertex in V (G)− V (T ) is adjacent
with v ∈ V (T ), then v is a leaf.

The order in which the leaves are expanded is important. To describe this
order, we introduce three operations (operations O1 and O3 are the same as
in [7], but O2 is modified):

(O1) Applies when there is a leaf v ∈ V (T ) such that |NG(v) \V (T )| ≥ 2. Then
v is expanded.

(O2) Applies when there is a leaf v ∈ V (T ) such that |NG(v) \ V (T )| = 1 (let
NG(v)\V (T ) = {x}), and moreover |NG(x)\V (T )| = 0 or |NG(x)∩V (T )| ≥
2. Then v is expanded.

(O3) Applies when there is a leaf v ∈ V (T ) such that |NG(v) \ V (T )| = 1
(let NG(v) \ V (T ) = {x}), and moreover |NG(x) \ V (T )| ≥ 2. Then v is
expanded and afterwards x is expanded.

Now we can describe the algorithm for Theorem 1, which we call GENERIC:

1. choose an arbitrary vertex r ∈ V and let T = {r},

2. apply O1-O3 as long as possible, giving precedence to O1.
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We claim that GENERIC returns a spanning tree of G. Assume for a contra-
diction that at some point the algorithm is able to apply none of O1-O3 but
V (G) �= V (T ). Consider any leaf v ∈ T such that NG(v) �⊆ V (T ). Such a
leaf exists because V (G) �= V (T ) and T is built by a sequence of expansions
. Since O1 does not apply, |NG(v) \ V (T )| = 1. Let NG(v) \ V (T ) = {x}.
Since O2 does not apply, NG(x) ∩ V (T ) = {v}. Since neither O2 nor O3 apply,
|NG(x) \ V (T )| = 1. It follows that degG(x) = 2. Moreover, since there are no
edges between 2-vertices, the neighbor of x outside of T is not a 2-vertex. It
follows that

⋃
v∈L(T ) NG(v) \ V (T ) is a separator consisting of 2-vertices, which

is the desired contradiction.
It remains to show that if a spanning tree T was constructed, then it has at

least n/4 leaves. It can be done exactly as in the work of Kleitman and West [7].
However, we do it in a different way, in order to introduce and get used to
some notation that will be used in later sections, where we describe an improved
kernel.

We say that a leaf u of T is dead if NG(u) \ V (T ) = ∅. Note that after
performing O2 there is at least one new dead leaf: if |NG(x) \ V (T )| = 0 then x
is a dead leaf, and if |NG(x) ∩ V (T )| ≥ 2 then all of (NG(x) ∩ V (T )) \ {v} are
dead leaves, because of O1 precedence. For any tree T̂ , by L(T̂ ) we denote the
set of leaves of T̂ .

Let Xi be the set of the inner vertices of T that were expanded by an operation
of type Oi. Let X be the set of the inner vertices of T ; note that X = X1∪X2∪X3.
Since T is rooted, the standard notions of parent and children apply. For a
positive integer i, let Pi denote the set of vertices of T with exactly i children.

Since every vertex besides r is a child of some vertex, we have
∑

d≥1 d|Pd| =
n − 1. Since the set of vertices with one child is equal to X2 ∪ (X3 ∩ P1) and
|X3 ∩ P1| = |X3 ∩ P≥2| it follows that

|X2| + |X3 ∩ P≥2| +
∑

d≥2

d|Pd| = n− 1. (1)

Since during O2 at least one leaf dies, |X2| ≤ |L(T )|. Similarly, since after
expanding a vertex from X3∩P≥2 the cardinality of L(T ) increases, |X3∩P≥2| ≤
|L(T )| − 1. Finally,

∑
d≥2 d|Pd| ≤ ∑

d≥2 2(d − 1)|Pd| = 2(|L(T )| − 1). After
plugging these three bounds to (1) we get |L(T )| > n/4, as required. This finishes
the proof of Theorem 1.

2.3 Outerplanarity

Lemma 2. If G is a planar graph and T is a spanning tree of G, then the graph
G[L(T )] is outerplanar.

Proof. Fix a plane embedding of G and consider the induced plane subgraph
G′ = G[L(T )]. Since T is connected, all vertices of L(T ) lie on the same face of
G′. Therefore G′ is outerplanar. 
�
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Corollary 2. If G is a planar graph and T is a spanning tree of G then there
is a subset of leaves of T of size at least |L(T )|/3 that is independent in G (and
it can be found in linear time).

Proof. It is well-known that outerplanar graphs are 3-colorable and the 3-coloring
can be found in linear time. So, by Lemma 2 we can 3-color G[L(T )] and we
choose the largest color class. 
�

3 A 9k Kernel

In this section we present an improved kernel for the Maximum Independent

Leaf Spanning Tree problem. Although the analysis is considerably more
involved than that of the 12k kernel, the algorithm is almost the same. We need
only to force a certain order of the operations O1-O3 in step 2. As before, the
algorithm always performs the O1 operation if possible (we will refer to this as
the O1 rule). Moreover, if more than one O1 operation applies then we choose
the one which maximizes the number of vertices added to T (we will refer to
this as the largest branching rule). If there is still more than one such operation
applicable then among them we choose the one which expands a vertex that was
added to T later than the vertices which would be expanded by other operation
(we will refer to this as the DFS rule). Similarly, if there are no O1 operations
applicable but more than one O2/O3 operations apply, we also use the DFS rule.
The algorithm GENERIC with the order of operations described above will be
called BRANCHING.

Note that the algorithm BRANCHING is just a special case of GENERIC, so
all the claims we proved in Section 2 apply. Let us think where the bottleneck in
this analysis is. There are two sources of trouble: first, if there are many O2/O3
operations we get a spanning tree with few leaves: in particular there might
be only O2 operations and O3 operations that add just two leaves (consider a
cubic graph which can be built by joining a number of diamonds by edges to
form a cycle) and we get roughly n/4 leaves. Second, if the outerplanar graph
G[L(T )] is far from being bipartite (i.e. has many short odd cycles) then we get
a small independent set: in particular, when G[L(T )] is a collection of disjoint
triangles, the maximum independent set in G[L(T )] is of size exactly |L(T )|/3.
However, we will show that these two extremes cannot happen simultaneously.
More precisely, we prove the following two theorems.

Theorem 2. Let G be a connected n-vertex graph that does not contain a sep-
arator consisting of only 2-vertices. Then G has a spanning tree T such that if
C is a collection of vertex-disjoint cycles in G[L(T )], then

|L(T )| ≥ n + 3|C|
4

.

Moreover, T can be found in linear time.

Theorem 3. Every n-vertex outerplanar graph contains
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– an independent set I, and
– a collection of vertex-disjoint cycles C

such that 9|I| ≥ 4n− 3|C|.
Note that Theorem 3 is tight, which is easy to see by considering an outerplanar
graph consisting of disjoint triangles. From the above two theorems and Lemma 2
we easily get the following corollary.

Corollary 3. Let G be a connected n-vertex graph that does not contain a sepa-
rator consisting of only 2-vertices. Then G has a spanning tree T such that L(T )
has a subset of size at least n/9 which is independent in G.

By a similar reasoning as in the beginning of Section 2 we get a 9k-kernel for
the Maximum Independent Leaf Spanning Tree problem. In what follows,
we prove Theorem 2. Because of the space constraints the proof of Theorem 3 is
deferred to the journal version.

Proof of Theorem 2

Note that similarly as in Theorem 1 it suffices to show a simplified case when
G has no edge uv such that both u and v are 2-vertices. Indeed, if the theorem
holds for the simplified case, as before we create a new graph G̃ by removing
from G all the edges with both endpoints of degree 2 and as before G̃ does not
contain a separator consisting of only 2-vertices. Then we apply the simplified
case and we get a spanning tree T such that for any collection C of vertex-disjoint
cycles in G̃[L(T )], we have |L(T )| ≥ (|V (G̃)| + 3|C|)/4 and T is a spanning tree
of G as well. Moreover, no edge of E(G̃) \ E(G) belongs to a cycle in G[L(T )]
for otherwise both of its endpoints have degree at least 3 in G. Hence if C is
a collection of vertex-disjoint cycles in G[L(T )] then it is also a collection of
vertex-disjoint cycles in G̃[L(T )], so the desired inequality holds. Hence in what
follows we assume that G has no edge with both endpoints of degree 2. Since
we proved that in this case the algorithm GENERIC returns a spanning tree,
and each execution of BRANCHING is just a special case of an execution of
GENERIC we infer that BRANCHING returns a spanning tree of G, which will
be denoted by T .

Let C be an arbitrary collection of vertex-disjoint cycles in G[L(T )]. Our
general plan for proving the claim of Theorem 2 is to show that if |C| is large
then we have few O2/O3 operations — by (1) this will improve our bound on
|L(T )|. To be more precise, let us introduce several definitions.

Recall the O2 operation: it adds a single vertex x to T and at least one leaf
of T dies. We choose exactly one of these dead leaves and we assign it to x.
However, if the vertex x dies we always assign x to itself (so if some other leaves
die during this operation, they are unassigned). Let Lu be the set of unassigned
leaves of T . Clearly, |X2| = |L(T )| − |Lu|. In order to show that there are few
O2 operations, we will show that |Lu| is big.

Let x1, x2, . . . x|X| be the inner vertices of T in the order of expanding them (in
particular x1 = r). A run is a maximal subsequence xb, xb+1, . . . , xe of vertices
from P≥2, i.e. the nodes in T that have at least two children.
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Lemma 3. Vertices of any run R = xb, . . . , xe form a subtree of T rooted at xb.

Proof. Assume that a vertex x ∈ {xb+1, . . . , xe} has the parent xp outside the
run. Then p < b and x was a leaf in T while xb was being expanded. Hence, by
the definition of a run, xb−1 ∈ P1, and in particular xb−1 was expanded by O2
or O3. However, when this operation was performed, it was possible to expand x
by O1, a contradiction with the O1 rule. Hence every vertex x ∈ {xb+1, . . . , xe}
has the parent in the run, which is equivalent to the claim of the lemma. 
�
In what follows, the subtree from Lemma 3 is denoted by TR. Moreover, let
ch(TR) denote the set of children of the leaves of TR, i.e.

ch(TR) = {v ∈ V (T ) \ V (TR) : TR contains the parent of v}.
We say that a run R opens a cycle C in C if the first vertex of C that was added
to T belongs to ch(TR). The following lemma shows a relation between cycles in
C and runs.

Lemma 4. Every cycle in C is opened by some run.

Proof. Consider any cycle C ∈ C and let v be the first vertex of C that is added
to T . Note that v is not added by O2, for otherwise just after adding v to T ,
v has at least two neighbors and by the O1 rule v would be the next vertex
expanded and hence not a leaf of T , a contradiction. It follows that v is added
by O1 or O3 and consequently v ∈ ch(TR) for some run R. 
�
Now we can sketch our idea for bounding the number of O3 operations (#O3).
Both after O1 and O3 the cardinality of L(T ) increases. Hence, if we fix the
number of leaves in the final tree, then if |X1| is large then #O3 should be
small. Since a run contains at most one vertex of |X3| (e.g. by Lemma 3), it
means that a tree TR with a large number of children contains plenty of vertices
from |X1|. We will show that if a run opens many cycles, then indeed |ch(TR)|
is large. Let CR denote the set of cycles in C opened by R.

Lemma 5. Let R be a run. For any cycle C ∈ CR one of the following conditions
holds:

(i) |ch(TR) ∩ V (C)| + |Lu ∩ V (C)| ≥ 4, or
(ii) |ch(TR) ∩ V (C)| + |Lu ∩ V (C)| = 3 and |R ∩ P≥3| ≥ 1.

Proof. Let v1 be the vertex of C that is added first to the tree T . By the definition
of CR, v1 ∈ ch(TR). We see that at least one neighbor of v1, call it v2, is in
ch(TR), for otherwise just after expanding the last vertex of R the vertex v1 can
be expanded by O1, while the algorithm chooses O2/O3, a contradiction with
the O1 rule.

Let w be the neighbor of v2 on C that is distinct from v1. Assume w �∈ ch(TR).
Then just after expanding the last vertex of R we have N(v2) \ T = {w}, since
if |N(v2) \ T | ≥ 2 then it is possible to expand v2 by O1. Hence if v2 is assigned
then it is assigned to w. However, then w is added to T by O2 so w dies during



170 �L. Kowalik and M. Mucha

this operation (otherwise w is expanded because of the DFS rule so w �∈ L(T )),
and hence w is assigned to w and v2 ∈ Lu. To conclude, w ∈ ch(TR) or v2 ∈ Lu.

If we denote by u the neighbor of v1 on C that is distinct from v2, by the
same argument we get u ∈ ch(TR) or v1 ∈ Lu.

It follows that (i) holds, unless u = w (i.e. C is a triangle), v1, v2 �∈ Lu and
w ∈ ch(TR). Let us investigate this last case. We see that |ch(TR) ∩ V (C)| = 3.
We will show that |R∩P≥3| ≥ 1. Since v2, w ∈ ch(TR), they could not be added
by O2 and hence v1 is assigned to a vertex x �∈ V (C). Note that x is added to T
after v2 and w. Assume w.l.o.g. that v2 was added to T before w. We consider
two cases. If v2 was not added to T by expanding the parent of v1, then the
parent p of v2 has at least three children (otherwise instead of expanding p the
algorithm can expands v1 and add at least three children, a contradiction with
the largest branching rule), so |R∩P≥3| ≥ 1 as required. Finally, if v2 was added
to T by expanding the parent p of v1, then p ∈ P≥3 for otherwise just after
expanding p O1 is applicable to v1 so either v1 or v2 is expanded by the DFS
rule. This concludes the proof. 
�

By applying Lemma 5 to all cycles of a single run R we get the following corollary.

Corollary 4. For any run R that opens at least one cycle,

|ch(TR) ∩ V (CR)| + |Lu ∩ V (CR)| + |R ∩ P≥3| ≥ 3|CR| + 1.

Lemma 6. For any run R,

|Lu ∩ V (CR)| +
∑

d≥2

(2d− 3)|R ∩ Pd| − |R ∩X3| ≥ 3|CR|. (2)

Because of the space limitations the proof of Lemma 6 is deferred to the journal
version. Now we are ready to prove the claim of Theorem 2, i.e. that |L(T )| ≥
(n + 3|C|)/4.

Let us add
∑

d≥2(2d− 3)|Pd| to both sides of (1):

|X2| + |X3 ∩ P≥2| + 3
∑

d≥2

(d− 1)|Pd| = n− 1 +
∑

d≥2

(2d− 3)|Pd|. (3)

Since |X2| = |L(T )| − |Lu| and
∑

d≥2(d− 1)|Pd| = |L(T )| − 1 we get

4|L(T )| = n + 2 + |Lu| +
∑

d≥2

(2d− 3)|Pd| − |X3 ∩ P≥2|. (4)

By Lemma 4 after summing (2) over all runs we get

|Lu| +
∑

d≥2

(2d− 3)|Pd| − |X3 ∩ P≥2| ≥ 3|C|. (5)

The claim follows immediately after plugging (5) to (4).
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4 A Simple 5k Kernel for (Planar) Max Leaf

In this section we show a simple kernelization algorithm for Max Leaf and
Planar Max Leaf. Below we describe three simple rules, which preserve pla-
narity.

– (1, 2)-rule If there is a 1-vertex u adjacent with a 2-vertex v then remove v.
– Adjacent 2-vertices Rule Assume that there are two adjacent 2-vertices

u and v. If uv is a bridge, contract uv, otherwise remove uv.
– Trivial Rule If G consists of a single edge, return YES if k ≤ 2.

It is quite clear that the above rules are correct for (Planar) Max Leaf (see
e.g. [9], Rules 1-3 for a proof). Note that if none of our rules applies to a connected
graph G, then every edge of G has an endpoint of degree at least 3.

Theorem 4. Let G be a connected graph in which every edge has an endpoint
of degree at least 3. Then G has a spanning tree with at least n/5 leaves.

The proof of Theorem 4 is deferred to the journal version.
Let G′ be the graph obtained from G by applying our three rules as long as

one of them applies. By Theorem 4, if k ≤ n/5 we can return the answer YES.
Hence n < 5k and G′ is a 5k-kernel for Planar Max Leaf and Max Leaf.

Acknowledgments. We are very grateful for the reviewers for numerous com-
ments. We also thank Michal Debski for helpful discussions.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004)

2. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kerneliza-
tion: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4),
1077–1106 (2007)

3. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
Time Extremal Structure I. In: ACiD 2005, pp. 1–41 (2005)

4. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Charikar, M. (ed.) SODA, pp. 503–510. SIAM (2010)

5. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem in NP complete.
SIAM Journal of Applied Mathematics 32, 826–834 (1977)

6. Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar
Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
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