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Abstract. The local minimum degree of a graph is the minimum degree
reached by means of a series of local complementations. In this paper, we
investigate on this quantity which plays an important role in quantum
computation and quantum error correcting codes.

First, we show that the local minimum degree of the Paley graph of
order p is greater than

√
p− 3

2
, which is, up to our knowledge, the high-

est known bound on an explicit family of graphs. Probabilistic methods
allows us to derive the existence of an infinite number of graphs whose
local minimum degree is linear in their order with constant 0.189 for
graphs in general and 0.110 for bipartite graphs. As regards the com-
putational complexity of the decision problem associated with the local
minimum degree, we show that it is NP-complete and that there exists
no l-approximation algorithm for this problem for any constant l unless
P = NP .

1 Introduction

For any undirected graph G, the local complementation is an operation which
consists in complementing the neighborhood of a given vertex of a graph. It that
has been introduced by Kotzig [Kot68] and the study of this quantity is moti-
vated by several applications: Bouchet [Bou90, Bou94] and de Fraysseix [dF81]
used local complementation to give a characterization of circle graphs, and Oum
[Oum08] links the notion of “vertex minor of a graph” to the equivalence classes
up to local complementation. One of the most important results is established
by Bouchet in [Bou87]: deciding whether two graphs are equivalent up to local
complementations can be done in polynomial time.

In the field of quantum information theory, the rate of some quantum codes
obtained by graph concatenation can be bounded by the minimum degree up to
local complementation (called “local minimum degree” and denoted δloc) of the
constructed graphs [BCG+11]. Another application of δloc is the preparation of
graph states (quantum states represented by a graph), which are a very pow-
erful tool used for measurement-based quantum computing [RB01] and blind
quantum computing [BFK09], for example. In [HMP06], it has been proven that
the complexity of preparation of a graph state is bounded by its local minimal
degree. Threshold quantum secret sharing protocols from graph states (first in-
troduced in [MS08]) can be built from graph states with the methods described
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in [JMP11], and the local minimum degree of the corresponding graphs gives,
under additional parity conditions, a value for the threshold that can be reached
with these graph states. Moreover, we also focus on bipartite graphs which are
of high interest for entanglement purification [ADB05] and the study of Schmidt
measure [Sev06], for example.

In this paper, several techniques from different backgrounds are used. We
consider a family of graphs defined from quadratic residues, the Paley graphs
Palp, and the bound that we give on δloc(Palp) is closely related to a fundamental
result in algebraic geometry (see Lemma 2). Probabilistic methods are also used
to prove the existence of graphs with large local minimum degree. In particular,
we use the asymmetric version of the Lovász Local Lemma [Lov75] (see Lemma 4)
to prove the existence of an infinite family of graphs with linear δloc. We also use
this family to derive a polynomial reduction to a problem from coding theory in
order to find the computational complexity of finding the local minimum degree
of a graph in the general case.

In section 2, we recall the definition of the local minimum degree, main notion
of this paper, and we give an explicit family of graphs Palp of order p such that
δloc(Palp) ≥ √

p − 3
2 , which is, up to our knowledge, the best known lower

bound for any family of graphs. The next section is dedicated to the proof
of the existence of graphs with linear δloc. In the last section, we show that
the decision problem associated with δloc is NP-complete even on the family of
bipartite graphs, and we show that there exists no approximation algorithm up
to a constant factor for this problem unless P = NP .

2 Definitions

Local complementation is defined as follows:

Definition 1. The local complementation of a graph G with respect to one of its
vertices u results in a graph G∗u = GΔKN (u) where Δ stands for the symmetric
difference between edges and KN (u) is the complete graph on the neighbors of u.

The transitive closure of a graph with respect to the local complementation
forms an equivalence class. In [Bou87], Bouchet gives a polynomial algorithm
that tells whether any two graphs are in the same equivalence class with respect
to local complementation. For a given graph G, the quantity we will focus on is
the minimum degree of the graphs in its equivalence class. This value is called
the local minimum degree and is written δloc(G). Its formal definition follows:

Definition 2. Given a graph G, δloc(G) = min
{
δ(G′)

∣
∣ G ≡LC G′ } where

δ(G′) is the minimal degree of G′ and the equivalence relation G1 ≡LC G2 is
verified when G1 can be changed into G2 by a series of local complementations.

In [HMP06], a characterization of the quantity δloc has been established by means
of the odd and even neighborhoods of subsets of vertices of a graph defined as
follows:
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Definition 3. Let G be an undirected graph and D a subset of its vertices.

Odd(D) =
{
v ∈ V (G)

∣
∣ |N (v) ∩D| = 1 mod 2

}
(1)

Even(D) =
{
v ∈ V (G)

∣
∣ |N (v) ∩D| = 0 mod 2

}
(2)

The local minimum degree is related to the size of the smallest set of the form
D ∪Odd(D):

Property 1 ([HMP06]). Let G be an undirected graph.

δloc(G) = min
{ |D ∪Odd(D)| ∣∣ D 	= ∅, D ⊆ V (G)

}− 1 (3)

3 Local Minimum Degree of Paley Graphs

It is challenging to find a family of graphs with “high” local minimum degree.
The family of hypercubes, for example, has a logarithmic local minimal degree
[HMP06].

In the following, we prove that a Paley graph of order n has a δloc greater
than

√
n. This value is only a lower bound, and we do not know whether it is

reached. This family is defined with quadratic residues over a finite field. Up to
our knowledge, there is no known family of graphs whose local minimum degree
is greater than the square root of their order.

For any prime p such that p = 1 mod 4, the Paley graph Palp is a graph on
p vertices where each vertex is an element of Fp. There is an edge between two
vertices i and j if and only if i− j is a square in Fp.

Theorem 1. For any prime p = 1 mod 4,

δloc(Palp) ≥ √
p− 3

2
(4)

where Palp is the Paley graph of order p.

The rest of this section is dedicated to the proof of Theorem 1. To this end, we
give a bound on the size of the sets of the form D ∪ Odd(D) in Paley graphs.
The size of such sets is characterized as follows:

Lemma 1. For any non-empty set S ⊆ V (Palp) and any i ∈ V (Palp),

∣
∣∣
∣
∣

p−1∑

i=0

χL (fS(i))

∣
∣∣
∣
∣
=

∣∣ |S ∪Odd(S)| − |S ∪ Even(S)| ∣∣ (5)

where fS(i) =
∏

j∈S(i − j) and χL is the Legendre character (χL(x) = x
p−1
2

mod p).
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Proof. First, note that χL(0) = 0, χL(x) = 1 if x is a quadratic residue in
Fp and χL(x) = −1 otherwise. Since the Legendre character is multiplicative,∣
∣
∣
∑p−1

i=0 χL (fS(i))
∣
∣
∣ =

∣
∣
∣
∑p−1

i=0

∏
j∈S χL(i− j)

∣
∣
∣. If i ∈ S the quantity

∏
j∈S χL(i−j)

equals 0. Otherwise, the product equals (−1)|S|−|N (i)∩S|, which is (−1)|S| if
i ∈ Even(S)\S and −(−1)|S| if i ∈ Odd(S)\S. Then, the sum over all vertices i
is the difference between the exclusive odd and even neighborhood of the set S:∣
∣
∣
∑p−1

i=0

∏
j∈S χL(i− j)

∣
∣
∣ =

∣
∣ |Odd(S) \ S| − |Even(S) \ S| ∣∣. The last expression

can be written
∣
∣ |S ∪Odd(S)| − |S ∪ Even(S)| ∣∣. �

A well-known result from algebraic geometry related to the hyperelliptic curve
of equation y2 =

∏
j∈S(x − j) can be found in [Wei48] or [Sch04], for example,

and is reformulated by Joyner in [Joy06]:

Lemma 2 ([Joy06], Proposition 1). For any non-empty set S ⊆ Fp, let
fS(x) =

∏
j∈S(x − j). Then

∣
∣
∣
∣
∣
∣

∑

i∈Fp

χL (fS(i))

∣
∣
∣
∣
∣
∣
≤ (|S| − 1)

√
p+ 1 (6)

This allows us to derive a bound on the sets of type S∪Odd(S) and S∪Even(S)
in Paley graphs.

Lemma 3. Let Palp be the Paley graph of order p. For all S ⊆ V (Pp), S 	= ∅,
we have

√
p− 1

2 ≤ |S ∪Odd(S)| and √
p− 1

2 ≤ |S ∪Even(S)|.
Proof. We consider the case |S ∪Odd(S)| ≤ |S ∪ Even(S)|, the other case can
be treated a similar way. Lemma 1 states that |S ∪Odd(S)| − |S ∪ Even(S)| =
−
∣
∣
∣
∑

i∈Fp
χL(fS(i))

∣
∣
∣. On the other hand, the equality |S ∪Odd(S)| +

|S ∪ Even(S)| = p + |S| is always true. Thus adding both equalities, p + |S| −∣
∣
∣
∑

i∈Fp
χL(fS(i))

∣
∣
∣ = 2 |S ∪Odd(S)|. Thanks to Lemma 2, we derive p + |S| −

(|S| − 1)
√
p− 1 ≤ 2 |S ∪Odd(S)|.

If |S| ≤ √
p then the left-hand side of the previous inequality can be bounded:

p + |S| − (|S| − 1)
√
p − 1 = p + |S|(1 − √

p) +
√
p − 1 ≥ 2

√
p − 1. Thus,

√
p −

1
2 ≤ |S ∪Odd(S)|, otherwise |S| > √

p and the previous inequality is obviously
true. �

Proof of Theorem 1: The characterization given by Property 1 and the bounds
on the size of sets of the form D ∪Odd(D) obtained in Lemma 3 imply that the
local minimum degree for Paley graphs is greater than the square root of the
order of the graph. This ends the proof of Theorem 1.

It is significant and interesting to notice that the conjecture of the existence
of an infinite family of Paley graphs with linear δloc is equivalent to the Bazzi-
Mitter conjecture [BM06]. However, it is already known that not all Paley graphs
have a linear δloc: there exists no p0 ∈ N such that for all p > p0, δloc(Palp) is
linear in p thanks to Theorem 7 of [Joy06].
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4 Existence of Graphs with Linear Local Minimum
Degree

In this section, we give a proof of the existence of bipartite graphs for which
the local minimum degree is linear in the order of the graph. The proof uses the
asymmetric version of Lovász Local Lemma [Lov75]:

Lemma 4 (Asymmetric Lovász Local Lemma). Let A = {A1, · · · , An} be
a set of bad events in an arbitrary probability space and let Γ (A) denote a subset
of A such that A is independent from all the events outside A and Γ (A). If for
all Ai there exists σ(Ai) ∈ [0, 1) such that Pr(Ai) ≤ σ(Ai)

∏
Bj∈Γ (Ai)

(1−σ(Bj))

then we have Pr(A1, · · · , An) ≥
∏

Aj∈A(1− σ(Aj)).

We apply the Local Lovász Lemma (Lemma 4) on random bipartite graphs to
show the existence of bipartite graphs with linear local minimum degree.

Theorem 2. There exists ν0 ∈ N such that for all ν > ν0 there exists a bipartite
graph of order n = 2ν whose local minimum degree is greater than 0.110n.

Proof. Let GB be a bipartite graph of order n = 2ν with two independent sets
of size ν and where any possible edge exists with probability 1

2 . An event which
implies that a graph G has a linear δloc is: “∀D ⊆ V (G), |D ∪ Odd(D)| > cn”
for some c ∈ ]0, 1]. In the case of GB, it is sufficient to verify the previous event
for sets D such that D ⊆ V1 or D ⊆ V2. Indeed, GB is bipartite, therefore
|D ∪ Odd(D)| ≥ |(D ∩ V1) ∪ Odd(D ∩ V1)|. Therefore we consider the “bad”
events A1

D and A2
D defined as follows: if D ⊆ V1 (resp. V2), A

1
D (resp. A2

D) =
“|D ∪Odd(D)| ≤ cn”.

We want to compute Pr(A1
D) with D ⊆ V1. Let |D| = dν for some d ∈

]0, 1]. For any u ∈ V2, Pr(“u ∈ Odd(D)”) = 1
2 . Thus, Pr(|Odd(D)| ≤ x) =

(12 )
ν
∑x

k=0

(
ν
k

) ≤ (
1
2

)ν
2νH(

x
ν ) where H : t → −t log2(t) − (1 − t) log2(1 − t)

is the binary entropy function. Then, Pr(A1
D) = Pr(“|D ∪ Odd(D)| ≤ cn”) =

Pr(“|D|+ |Odd(D)| ≤ cn”) = Pr(“|Odd(D)| ≤ cn− |D|”) ≤ 2ν(H(2c−d)−1).
Let σ(A1

D) = 1

r( ν
dν)

for some r ∈ R that will be chosen later. First, we verify

that Pr(A1
D) ≤ σ(A1

D)
∏

D′∈V1,D′′∈V2
(1 − σ(A1

D′ ))(1 − σ(A2
D′′ )). The product

of the right-hand side of the previous equation can be written p =
∏ν

|D′|=1

(
1− 1

r( ν
|D′|)

)2( ν
|D′|)

=

[
∏ν

|D′|=1

(
1− 1

r( ν
|D′|)

)r( ν
|D′|)

] 2
r

. The function f : x →
(
1− 1

x

)x
verifies f(x) ≥ 1

4 when x ≥ 2, therefore p ≥ (
1
4

)ν∗ 2
r = 2−

4ν
r for any

r ≥ 2. Thus, it is sufficient to have 2ν(H(2c−d)−1) ≤ 1

r( ν
dν)

2−
4ν
r . Rewriting this

inequality gives r
(
ν
dν

)
2(2c−1)ν−dν+ 4ν

r ≤ 1. Thanks to the bound
(
ν
dν

) ≤ 2νH(
dν
ν )

and after applying the logarithm function and dividing by ν, it is sufficient that
log2 r

ν +H(d)+H(2c− d)− 1+ 4
r ≤ 0. Therefore, if we take r = ν and ν → +∞,
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the asymptotic condition on the value of c is H(d) +H(2c − d) − 1 ≤ 0. Since
this bound must be verified for all d ∈ (0, 1], it must be true for the value
of d for which the function d → H(d) + H(2c − d) − 1 is minimum. Usual
techniques show that the minimum is reached for d = c, and a numerical analysis
shows that c = 0.110 satisfies the condition Pr(A1

D) ≤ σ(A1
D)p for some r ∈

R and ν > ν0. A similar reasoning is used to prove Pr(A2
D) ≤ σ(A2

D)p for
all D ∈ V2.

The conditions and the choice of the weights σ(A1
D) and σ(A1

D) allow us to use

the Lovász Local Lemma (Lemma 4), and we derive Pr
({

A1
D

∣
∣ D ∈ V1

}
,
{
A2

D

∣
∣

D ∈ V2

}) ≥ p > 0, which proves that Pr (δloc(GB) ≥ cn) > 0 for any c ≤ 0.110

and for ν > ν0. Then there exists at least one bipartite graph GB of order n
such that δloc(GB) ≥ 0.110n. �

The general case of a random graph without the bipartite constraint leads to a
slightly better constant:

Theorem 3. There exists n0 ∈ N such that for all n > n0 there exists a graph
of order n whose local minimum degree is greater than 0.189n.

Due to its similarity to the above proof, the proof of this theorem is given in
Appendix.

5 NP-Completeness of the Local Minimum Degree
Problem

In this section, we show that given a graph G and an integer d, deciding whether
δloc(G) ≤ d is NP-complete even for the family of bipartite graphs. This result is
established through a reduction to the problem of the shortest word of a linear
code [Var97] and uses the families of graphs whose existence has been proven in
the previous section.

Lemma 5. Let G = (V,E) be a bipartite graph. Let V = V1 ∪ V2 where V1

and V2 are the two parties of the graph G. There exists D0 ⊆ V such that
δloc(G) + 1 = |D0 ∪Odd(D0)| and D0 ⊆ V1 or D0 ⊆ V2.

Proof. Let D ⊆ V such that |D∪Odd(D)| = δloc(G)+1. We write D = D1∪D2

with D1 ⊆ V1 and D2 ⊆ V2. D 	= ∅, then without loss of generality, we assume
that D1 	= ∅. G is bipartite, then Odd(D1) ⊆ V2 and Odd(D2) ⊆ V1. Thus
Odd(D1 ∪ D2) = Odd(D1) ∪ Odd(D2), and δloc(G) + 1 = |D ∪ Odd(D)| =
|D1 ∪ Odd(D1) ∪D2 ∪ Odd(D2)| ≥ |D1 ∪ Odd(D1)| ≥ δloc(G) + 1. The bounds
are tight, therefore |D1 ∪Odd(D1)|+ 1 = δloc(G). �

Theorem 4. Given a graph G and an integer d, deciding whether δloc(G) ≤ d
is NP-complete for the family of bipartite graphs.
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Proof. The problem is in NP since a set of the form D ∪ Odd(D) with D 	= ∅

and |D∪Odd(D)| = δloc is a Y ES certificate. We do a reduction to the problem
of the shortest codeword. Let A ∈ Mn+k,k(F2) be the generating matrix of a
binary code. Using oracle for the problem related to the quantity δloc on bipartite
graphs, we answer the problem of finding the shortest word of A.

If dim(Ker(A)) 	= 0 then minX∈F
k
2 ,X �=0{w(AX)} = 0, where w is the

Hamming weight function. Otherwise, minX∈F
k
2 ,X �=0{w(AX)} = minX∈F

k
2 ,X �=0

{w(X) + w(A′X)} where A is written in the form

(
Ik
A′

)
. Thus, A′ is of size

n× k.
We want to construct a bipartite graph G (Figure 1) on which the oracle call is

performed. To this purpose, we build two auxiliary graphs GA′ and GB in a first
time. Let GA′ = (VA′

1
∪ VA′

2
, EA′) be the bipartite graph defined as follows: the

sets VA′
1
of size k and VA′

2
of size n denote both sides of the bipartition of GA′ ,

and for all x ∈ VA′
1
and x′ ∈ VA′

2
, (x, x′) ∈ EA′ if and only ifA′

x′,x = 1. After that,
thanks to Theorem 2, there exists n0 ∈ N such that for all n > n0 there exists a
bipartite graph GB = (VB1 ∪ VB2 , EB) of order 10(n+ 1) such that δloc(GB) >
n + 1. The sets VB1 and VB2 denote both sides of the bipartition of GB. Let u
be any vertex of VB1 . Consider the bipartite graph G = (V1 ∪ V2, E) (Figure 1)
defined as follows: V1 = V1L ∪ V1R with V1L = VA′

1
× {u} and V1R = VA′

2
× VB2 ,

and V2 = VA′
2
× VB1 . For all (x, y) ∈ V1 and (x′, y′) ∈ V2,

(
(x, y), (x′, y′)

) ∈ E if

and only if
(
(x, x′) ∈ EA′ ∧ y = y′

) ∨ (
(y, y′) ∈ EB ∧ x = x′).

Both independent sets V1 and V2 form a partition of the vertices of the graph.
Thanks to Lemma 5, there exists a non-empty setD0 ⊆ V (G) such that δloc(G)+
1 = |D0 ∪Odd(D0)| and D0 ⊆ V1 or D0 ⊆ V2.

Suppose that D0 ⊆ V2. Therefore δloc(G) = |D0 ∪Odd(D0)|− 1 ≥ δloc(GB) >
n+ 1 ≥ δ(G) + 1 ≥ δloc(G). This leads to a contradiction, therefore D0 ⊆ V1.

Suppose that D0 ∩ V1R 	= ∅. Let v ∈ D0 ∩ V1R. Then δloc(G) = |D0 ∪
Odd(D0)| − 1 ≥ |{v} ∪Odd({v})| − 1 ≥ δloc(GB) > n+ 1 ≥ δ(G) + 1 ≥ δloc(G).
This also leads to a contradiction, therefore D0 ⊆ V1L.

The reader will notice that since D0 ⊆ V1L, |Odd(D0)| in the graph G can
be written w(A′XD0) where XD0 is the vector representation of the set D0.
Moreover, since V1L is an independent set, |D0∪Odd(D0)| = |D0|+ |Odd(D0)| =
w(XD0) + w(A′XD0). By definition of D0, we have δloc(G) + 1 = minX∈F

k
2 ,X �=0

{w(AX)}, which ends the reduction to the shortest codeword problem which is
NP-complete [Var97]. �

Notice that a constructive version of NP -completeness on non-necessarily bi-
partite graphs can be done by replacing the graph GB by a Paley graph in the
above reduction.

Since finding the local minimum degree is hard, one can wonder whether
there exists a l-approximation algorithm for this problem for some constant l.
The previous reduction also shows that such an algorithm does not exist unless
P = NP , even for the family of bipartite graphs.
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GA′

GB

GB

•
...

...

•

...

...

V1L

V2
V1R

Fig. 1. Construction of the graph G from the bipartite graph GA′ (ellipses) and several
copies of the bipartite graph GB (rectangles). V1 = V1L ∪ V1R

Theorem 5. There exists no approximation algorithm with a constant factor
for the problem of finding the local minimum degree of bipartite graphs, unless
P = NP .

Proof. In the proof of Theorem 4, the value of δloc(G) where G is constructed as
described in Figure 1 is the same as the shortest word of the linear code described
by its generating matrix A. This is true for any A, therefore for any constant l,
any l-approximation of δloc(G) is a l-approximation of the Hamming weight of
the shortest word of A. Under the hypothesis P 	= NP , since finding the shortest
codeword of a linear code is known to have no approximation algorithm with
a constant factor [DMS03, CW09], there exists no polynomial approximation
algorithm with a constant factor for the problem of finding the local minimum
degree of bipartite graphs. �

6 Conclusion

After having shown that the local minimum degree of the family of Paley graphs
is greater than the square root of their order, we proved that there exist an infi-
nite family of graphs whose local minimum degree is linear in their order (with
constant at least 0.189 in general and 0.110 for bipartite graphs). Then, a study
of the computational complexity of the decision problem associated with δloc
with a polynomial reduction to the problem of the shortest word of a linear code
shows its NP-completeness, even on bipartite graphs. It is also impossible to find
an approximation algorithm with any constant factor for this problem, unless
P = NP . The specificity of the reduction performed lies in the fact that the con-
struction of an instance for the problem associated with δloc uses the existence
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of a family of bipartite graphs proven above. Thus, in a way, we proved that a
polynomial reduction exists without constructing it explicitly.

Some questions remain open: is it possible to give an explicit family of
graphs with linear local minimum degree? Can we find a constructive proof of
NP -completeness for the decision problem associated with δloc on bipartite
graphs? Can we find an infinite family of Paley graphs whose local minimum
degree is linear? The answer of the last question would provide an answer to the
Bazzi-Mitter conjecture [BM06] on hyperelliptic curves.
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A Proof of Theorem 3

Theorem 3 There exists n0 ∈ N such that for all n > n0 there exists a graph
of order n whose local minimum degree is greater than 0.189n.

Proof. Let G be a graph of order n where any possible edge exists with probabil-
ity 1

2 . We are looking for the greatest value of c such that Pr (δloc(G) ≥ cn) > 0.
Thus, we want that “∀D ⊆ V (G), |D∪Odd(D)| > cn”. Consequently, the events
to avoid are AD: “|D ∪ Odd(D)| ≤ cn”. Obviously, it is sufficient to consider
only the events AD with D ≤ cn.

For all D sucht that |D| ≤ cn, we want to get an upper bound on Pr(AD).
Let |D| = dn for some d ∈ (0, c]. For all u ∈ V \ D, Pr(“u ∈ Odd(D)”) =
1
2 . If D is fixed, the events “u ∈ Odd(D)” when u is outside D are inde-
pendent. Therefore, if the event AD is true, any but at most (c − d)n ver-
tices outside D are contained in Odd(D). There are (1 − d)n vertices outside

D, then Pr(AD) =
(
1
2

)(1−d)n∑(c−d)n
k=0

(
(1−d)n

k

) ≤ (
1
2

)(1−d)n
2(1−d)nH( c−d

1−d ) =

2(1−d)n[H( c−d
1−d )−1] where H : t → −t log(t) − (1 − t) log(1 − t) is the binary

entropy function.
Let σ(AD) = 1

r( n
|D|)

. Let p =
∏

|D′|≤cn(1 − σ(AD′)). In order to apply the

Lóvasz Local Lemma (Lemma 4), we want to have Pr(AD) ≤ σ(AD)p. The prod-

uct p verifies p =
∏cn

|D′|=1

(
1− 1

r( n
|D′|)

)( n
|D′|)

=

[
∏cn

|D′|=1

(
1− 1

r( n
|D′|)

)r( n
|D′|)

] 1
r

.

The function f : x → (
1− 1

x

)x
verifies f(x) ≥ 1

4 when x ≥ 2, therefore

p ≥ (
1
4

) cn
r = 2−

2cn
r for any r ≥ 2. Thus, it is sufficient that 2(1−d)n[H( c−d

1−d )−1] ≤
1

r( n
dn)

2−
2cn
r . Rewriting this inequality with the bound

(
n
dn

) ≤ 2nH(
dn
n ) and ap-

plying the logarithm function and dividing by n gives the following sufficient

condition: (1 − d)
[
H

(
c−d
1−d

)
− 1

]
+ H(d) + 2c

r + log2 r
n ≤ 0. Taking r = n, the

condition becomes asymptotically (1− d)
[
H

(
c−d
1−d

)
− 1

]
+H(d) ≤ 0.

Numerical analysis shows that this condition is true for any c ≤ 0.189
and for all d such that 0 < d ≤ cn. Therefore, Lemma 4 ensures that
Pr

({
AD

∣
∣ |D| ≤ cn

}) ≥ p > 0, which proves the existence of at least one graph
G of order n such that δloc(G) ≥ 0.189n. This ends the proof of Theorem 3. �
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