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Abstract. For an undirected graph G = (V,E), we say that for �, u, v ∈
V , � separates u from v if the distance between u and � differs from the
distance from v to �. A set of vertices L ⊆ V is a feasible solution if for
every pair of vertices u, v ∈ V there is � ∈ L that separates u from v.
The metric dimension of a graph is the minimum cardinality of such a
feasible solution. Here, we extend this well-studied problem to the case
where each vertex v has a non-negative cost, and the goal is to find a
feasible solution with a minimum total cost. This weighted version is
NP-hard since the unweighted variant is known to be NP-hard. We show
polynomial time algorithms for the cases where G is a path, a tree, a
cycle, a cograph, a k-edge-augmented tree (that is, a tree with additional
k edges) for a constant value of k, and a (not necessarily complete) wheel.
The results for paths, trees, cycles, and complete wheels extend known
polynomial time algorithms for the unweighted version, whereas the other
results are the first known polynomial time algorithms for these classes of
graphs even for the unweighted version. Next, we extend the set of graph
classes for which computing the unweighted metric dimension of a graph
is known to be NPC by showing that for split graphs, bipartite graphs,
co-bipartite graphs, and line graphs of bipartite graphs, the problem of
computing the unweighted metric dimension of the graph is NPC.

1 Introduction

Let G = (V,E) be a simple, loopless, undirected graph. A vertex � ∈ V is called
a separating landmark for two vertices u, v ∈ V with u �= v, if the length of the
shortest path from u to � differs from the length of the shortest path from v
to �; sometimes we will then also say that vertex � separates or distinguishes u
from v. We denote the number of vertices in G by n = |V | and the number of
its edges by m = |E|. A subset L ⊆ V is a landmark set for the graph G, if for
any two vertices u, v ∈ V with u �= v there exists a separating landmark � ∈ L
that separates u from v. The metric dimension md(G) of the graph G is the
cardinality of the smallest landmark set in G. Note that md(G) is well-defined,
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as L = V trivially forms a landmark set for G. Additionally, md(G) = 0 iff
|V | = 1. We consider the problem of computing md(G) of an input graph G.
Applications of this optimization problem arise in diverse areas. See [2] for an
application of this problem in network verification, [6] for an application in
strategies for the Mastermind game, [9] for an application in metric geometry,
[12] for an application in digital geometry, namely in digitizing of images, [11] for
an application in robot navigation, and [4] for an application in drug discovery.

This metric dimension problem was introduced by Harary and Melter [9] and
by Slater [15], and studied widely in the combinatorics literature. In this line of re-
search, the exact values of the metric dimension or bounds on it for specific graph
classes are obtained. We refer to [1,3,4] for results additional to those stated here
(see also the survey [5]). It was shown that md(G) = 1 iff G is a path [11]. Tree in-
put graphs (which are not paths) were considered in [9,15,11,4]. It turns out that it
is possible to characterize the feasibility of a landmark set for a tree using a notion
of legs, which are paths of vertices of degree at most 2 connected to a vertex of a
higher degree. When the input graph is a cycle then md(G) = 2 [9]. Wheel graphs
were mentioned in [9] and further studied in [14]. Melter and Tomescu [12] consid-
ered the problem for grid-graphs induced by lattice points in the plane when the
distances are measured in the L1 norm or in the L∞ norm. Khuller, Raghavachari,
and Rosenfeld [11] generalized one result of [12] to lattice points contained inside
a d-dimensional rectangle where the distance is according to the L1 norm (that
is, the grid-graph over points in d-dimensional rectangle). The grid-graph with
Euclidean metrics was studied in [13] where they relate the problem to the combi-
natorial coin weighing problem. Recently, Diaz et al. [8] developed a polynomial
time algorithm for outerplanar graphs.

As for the complexity of the problem, Khuller, Raghavachari, and Rosenfeld
[11] proved that the problem is NP-hard for general graphs and showed that one
can apply the greedy algorithm for a set cover instance (where we would like to
cover the pairs of vertices in a graph using sets which are defined using a single
landmark). Thus, there is an (2 lnn+O(1))-approximation algorithm for general
graphs. Beerliova et al. [2] showed that if P �= NP then there is no o(log n)-
approximation algorithm for the problem. These results were strengthened in
[10], where it was shown that under another complexity condition there is no
((1 − ε) lnn)-approximation algorithm for any ε > 0. They give an improved
(1 + (1 + o(1)) lnn)-approximation algorithm. Diaz et al. [8] showed that the
problem is NP-hard even when restricted to planar graphs.

We generalize the problem to a weighted variant. Given a non-negative cost
function c : V → R+ the goal is to compute a landmark set L such that

∑
�∈L c(�)

is minimized. We let wmd(G) denotes this minimum cost and we say that wmd(G)
is the weighted metric dimension of G. The wmd problem is to compute a land-
mark set L of minimum total cost, and to find wmd(G). Our polynomial time
algorithms for special classes of graphs will be for solving wmd while our NP-
hardness proofs will hold even for the unweighted version of computing md(G)
and thus the same holds for the weighted variant as well. We are not aware of
any previous work on the weighted version. We say that a feasible landmark set
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is minimal if it is minimal with respect to inclusion. Note that there is always an
optimal solution which is also minimal (since the cost function is non-negative),
and thus we sometimes characterize the set of minimal solutions.

The problem is clearly in NP because given a landmark set, we can verify its
feasibility in polynomial time. To do this, we find the vectors of the distances of
each vertex in V from each of the landmarks. Afterwards, we check that there is
no pair of identical vectors. In some of our algorithms we perform an exhaustive
enumeration of landmark sets (among a restricted family of vertex subsets), and
we can always find a cheapest feasible solution among such a restricted family
of subsets (we first ensure that it contains at least one of the optimal solutions).
Our Results.We generalize the known polynomial time algorithms for md to wmd
for the cases where G is a path, a tree, a cycle, or a complete wheel. We develop
polynomial time algorithms for the weighted problem when G is a cograph, a
k-edge-augmented tree (that is, a tree with additional k edges) for a constant
value of k, and a (not necessarily complete) wheel. These results are the first
polynomial time algorithms even for the unweighted version when G belongs to
these classes of graphs. Next, we extend the set of graph classes for which md

is known to be NP-complete. We show that md is NP-complete when the input
graph for split graphs, bipartite graphs, co-bipartite graphs, and line graphs of
bipartite graphs. Omitted proofs and the hardness results will be given in the
full version of this paper.
Definitions and Notation. Given a graph G = (V,E), a vertex v ∈ V is a leaf
if its degree is 1, it is an isolated vertex if its degree is 0, if its degree is 2 it is
a path vertex, and higher degree vertices are called core vertices. For a pair of
vertices u, v we denote by du,v the length of the shortest path in G from u to v
(i.e., the number of edges in it).

2 Paths, Trees, Cycles, and Cographs

In this section we generalize some polynomial solvable cases of md(G) to the
weighted case. These simple cases emphasize the differences between the weighted
and the unweighted cases. Additionally we consider cographs.
Paths. Assume that G is a path. It suffices to have one landmark vertex at one
of the end-vertices of the path [11]. Our algorithm for computing wmd(G) for a
path G is as follows: We consider two alternative solutions and pick the better
one. The first one has a single vertex as a landmark: a minimum cost end point
v of the path (breaking ties arbitrarily). The second solution picks the cheapest
pair of distinct vertices v and v′.
Trees. Assume now that the input graph G is a tree which is not a path (and
so it has at least one core vertex). We say that a (non-empty) path in the tree
between a vertex adjacent to a core vertex u and a leaf v is a leg of u if the
vertices of the path have degree at most 2 (u is not considered to be a part of
the leg). For a vertex u we denote the number of legs of u by legu. Assume that
legu ≥ 2, then [11] showed that there is a landmark at each of the legs of u
except for at most one such leg. In fact, summing legu − 1 over all core vertices
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u with at least two legs, gives a tight bound on md(G). Here, we generalize their
approach. Consider the following algorithm. Compute legu for every core vertex
u. Each core vertex u with legu ≥ 2 is allocated legu − 1 landmarks. To place
these landmarks, we find a minimum cost set of legu − 1 vertices in the legs of
u, at most one vertex per leg (recall that u does not belong to its legs).

Proposition 1. The above algorithms solve wmd for any tree G in O(n) time.

Cycles. We assume that the input graph G is a cycle. We next characterize a
minimal (with respect to inclusion) feasible landmark set L. We say that a pair
of vertices u, v are opposite if their distance is exactly n

2 , and otherwise they are
non-opposite (in which case the shortest path from u to v is unique). Note that
if G is an odd-length cycle, then every pair of vertices are non-opposite.

Lemma 1. A minimal feasible landmark set is a pair of non-opposite vertices.

Our algorithm for solving wmd for a cycle G simply finds the cheapest pair of
non-opposite vertices in the cycle. By the above lemma, it finds an optimal
solution. Note that the running time of the algorithm is O(n) by first identifying
the cheapest set of three vertices (breaking ties arbitrarily), and finding the
cheapest pair of non-opposite vertices among them (breaking ties arbitrarily).
Our tie breaking rule is justified because even if the set of minimum weight
vertices has more than three vertices, it is sufficient to consider only three of
them, and similar arguments apply for the other extreme cases.
Dealing with Disconnected Input Graphs. Consider a disconnected graph
G = (V,E). A connected component of G is called non-trivial connected compo-
nent if it contains at least two vertices, and otherwise it is an isolated vertex. We
denote by (V1, E1), . . . , (Vp, Ep) the non-trivial connected components of G (for
p ≥ 0), and by v1, . . . , vt its isolated vertices (for t ≥ 0), where if p = 0 or t = 0
then there is no non-trivial connected component or an isolated vertex, respec-
tively. Without loss of generality, we assume that c(vt) = maxi:1≤i≤t c(vi). In
this section we show that it is sufficient to solve the weighted metric dimension
problem for each non-trivial connected component of G. The time complexity of
solving wmd is O(n +m) plus the total running times of solving wmd for each of
the non-trivial connected components of G.

Proposition 2. An optimal solution L for wmd is achieved by the union solu-
tions for the non-trivial connected components (Vi, Ei) of G and v1, v2, . . . , vt−1.

Cographs. For two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 =
∅, the disjoint union G1 ∪ G2 is the graph (V1 ∪ V2, E1 ∪ E2). The product
G1 × G2 of these two graphs is obtained by first taking the disjoint union of
G1 and G2 and then adding all the edges {v1, v2} with v1 ∈ V1 and v2 ∈ V2.
A graph G is a cograph, if (i) G consists of a single vertex or (ii) G is the
disjoint union of two cographs, or (iii) G is the product of two cographs. An
equivalent characterization states that G is a cograph iff it does not contain the
path P4 on four vertices as an induced subgraph. Note that the complement
graph G′ = (V, V × V − E) of a cograph G = (V,E) is a cograph as well.
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The cotree of a cograph G is a rooted binary tree whose leaves correspond
to single-vertex graphs and whose inner vertices correspond to subgraphs of G.
Every inner vertex of the cotree is labeled either by ∪ (union) or by × (product)
and has exactly two children: if it is labeled by ∪ then it corresponds to the
disjoint union of the two cographs that correspond to its two children, and if it
is labeled by × then it corresponds to the product of the two cographs. Corneil,
Perl, and Stewart [7] showed how to compute a cotree for a given cograph in
linear time O(m + n). Note that the number of inner vertices of the cotree is
n−1. By Proposition 2, we conclude that we may restrict ourselves to connected
cographs. Since a connected cograph is a product of two non-empty graphs, the
distance between a pair of vertices v, v′ of a connected cograph G is either 1 or
2. We define a binary landmark set L of an arbitrary cograph G (not necessarily
a connected one) to be a set of vertices such that for every pair of vertices
v, v′ ∈ V \ L there is a landmark � ∈ L such that either both {v, �} ∈ E and
{v′, �} /∈ E or both {v, �} /∈ E and {v′, �} ∈ E. In this case we say that �
separates v from v′. Given a connected cograph, a set of vertices is a feasible
landmark set iff it is a feasible binary landmark set. In the remainder of this
section we will present a linear time algorithm for computing a binary landmark
set of a minimum total cost. For a cograph G and its complement graph G′, a
set L ⊆ V is a binary landmark set for G iff L is a binary landmark set for G′.

We adapt our decomposition of the problem for disconnected graphs to the
problem of computing a binary landmark set.

Lemma 2. Assume that G is a disjoint union of G1 and G2 where Gi = (Vi, Ei).
(i)If L is a feasible binary landmark set for G, then Li = L ∩ Vi is a feasible
binary landmark set for Gi, for i = 1, 2. (ii) Assume that L1 and L2 are feasible
binary landmark set for G1 and G2, respectively. Then, L = L1∪L2 is a feasible
binary landmark set for G iff there exists i ∈ {1, 2} such that in Gi every vertex
v ∈ Vi \ Li is adjacent to a vertex of Li.

Our algorithm for solving wmd of a cograph uses the cotree structure. Let a point
be a vertex which is not a landmark. If a subgraph is a disjoint union of two
subgraphs, then we treat recursively each of the two subgraphs but we keep track
of the existence of a point which is not adjacent to any landmark in its subgraph.
If a subgraph is the product of two subgraphs, then we transform our problem
to the complement of the subgraph, and apply the first case. Since by moving
from a graph to its complement, the role of a point which is not adjacent to any
landmark switches with the role of a point which is adjacent to all landmarks, we
will keep track of the number of points (zero or one) of each of these types, and
every subgraph in the cotree corresponds to four optimization problems. Thus,
wmd can be solved in linear time O(m+ n) for cographs.

3 k-Edge-Augmented Trees

In this section we consider the class of connected graphs for which a removal
of at most k edges results in a spanning tree. We call this class of graphs k-
edge-augmented trees. Our polynomial time algorithm for computing wmd first
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applies a preprocessing step which handles the tree-like part, and then uses an
exhaustive enumeration approach for selecting an optimal landmark set in a
reduced problem. Clearly our algorithm is polynomial only if k is a constant and
it is unlikely that there is an algorithm which is polynomial in n and k for solving
this problem (since any connected graph is also a k-edge-augmented tree for a
sufficiently large value of k, and the problem is NP-hard for general graphs).
Preprocessing step.Our preprocessing step uses the following procedure which
can be applied on a vertex u of degree at least 3 with p legs (where a leg is a
path consisting of at least one vertex, starting at a neighbor of u and ending at
a leaf, where all vertices except for the leaf have degree 2) for p ≥ 2. Consider
subsets of p − 1 vertices which belong to the legs of u, at most one vertex per
leg. We choose Lu to be a set of minimum cost among the sets which satisfy
these constraints. We will place landmarks at Lu and remove from the graph
every vertex belonging to a leg of u which contains a vertex of Lu (that is, the
leg which does not contain a vertex of Lu is not removed). In the remaining
graph we change the cost of u to zero, and thus allow the solution to place a
landmark at u without increasing its cost. We apply this preprocessing on one
vertex at a time until there is no vertex which has at least two legs, and in
the remaining graph every vertex has at most one leg. Since we already dealt
with trees in Proposition 1, we assume that the input graph is not a tree. The
following lemma holds in fact for trees as well (but in order to prove it for trees
as well, the special case of a spider graph should be treated separately).

Lemma 3. Denote by G = (V,E) the input graph which is not a tree, and
by G′ = (V ′, E′) the graph obtained after applying the procedure at a vertex u
(that is, the set of vertices after removing all the legs of u but one). Let Lu

denote the set of landmarks which we placed on the removed legs of u, and let
L′ denote the set of landmarks in an optimal solution of the remaining graph.
Then, L = Lu ∪ L′ \ {u} is an optimal landmark set in G.

The case of k = 1. The unweighted version of computing md(G) for the case of 1-
edge-augmented tree is discussed in [4] (where such graphs are called unicycles).
Here we consider the weighted case. If k = 1, then at the end of the preprocessing
phase we are left with a cycle C where some of its vertices have legs (at most one
leg for each vertex of C). Recall that some of the vertices of G may have zero cost
resulting from the preprocessing step, and if we choose to place a landmark at
such a vertex u, then the solution returned by the algorithm skips it (but has at
least one landmark in the tree-like part connected to u which was removed in the
preprocessing step). In what follows we only consider the graph G resulting from
the preprocessing. We next characterize a minimal landmark set for this type
of graphs. This characterization shows that any minimal landmark set for the
resulting graph has at most three vertices. By enumerating all subsets consisting
of two or three vertices we can choose the cheapest feasible landmark set and
solve wmd in polynomial time.

We denote by nC the number of vertices in C. For a vertex v, we let v′ be
its cycle vertex which is defined as follows. v′ is the closest vertex in C to v,
that is if v ∈ C then v′ = v and otherwise v belongs to some leg of a vertex in
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C, and we let v′ denote this vertex of C. Consider a path P from u to v, then
its C-length is defined as the number of edges of C which belong to P . We say
that a path P from u to v is a clockwise path if it traverses the edges in P ∩ C
in a clockwise order, and otherwise it is a counterclockwise path. We say that
two vertices are non-opposite in G if their cycle vertices are distinct, and the
C-length of the shortest path from u to v is not equal to nC

2 .

Lemma 4. Let L ⊆ V be a feasible minimal landmark set. There is no cycle
vertex u such that L contains a pair of vertices v1, v2 whose cycle vertex is u.

In what follows, we focus on a minimal landmark set, and thus assume that it
does not contain two vertices with a common cycle vertex.

Lemma 5. (i) If L ⊆ V contains a pair of non-opposite vertices u1, u2, then
for every pair of vertices x1, x2 ∈ C, there exists w ∈ {u1, u2} that separates x1

from x2. (ii) If L consists of at least three vertices, no pair of which have the
same cycle vertex, then for every pair of vertices x, y ∈ C there is � ∈ L that
separates x from y.

We next define a covering of the legs by landmarks. We say that a landmark
� clockwise-covers (counterclockwise-covers) the leg of a vertex u if one of the
following conditions hold: Either � is one of the vertices of the leg of u, or the
clockwise path (counterclockwise path) from u to � has C-length of at least 1
and at most nC+1

2 (u cannot cover its own leg). We say that a leg is covered by
L ⊆ V if there is a landmark in L which clockwise-covers the leg and (perhaps
another) landmark in L which counterclockwise-covers the leg.

Lemma 6. Let L be a set of vertices, where |L| ≥ 3 and no two of which have
the same cycle vertex. L is a feasible landmark set iff every leg is covered by L.

Lemma 7. Let L be a minimal landmark set. Then |L| ≤ 3.

To summarize, our algorithm for computing wmd(G) where G is a 1-edge-
augmented tree is to apply the preprocessing step, and afterwards try all pos-
sibilities of sets L such that |L| ≤ 3, and for each of them test its feasibility in
polynomial time, and among the feasible solution we pick a cheapest one. Clearly,
the algorithm runs in polynomial time and computes a cheapest minimal feasible
landmark set. Therefore, we have established the following.

Proposition 3. There is a polynomial time algorithm for solving wmd for 1-
edge-augmented trees.

The General Case. Assume that G = (V,E) is the graph resulting from ap-
plying the preprocessing step, so in G every vertex has at most one leg. The case
of k = 1 is already solved, and here we assume that k ≥ 2 is a fixed constant.
We next define a subgraph of G called the base graph Gb = (Vb, Eb) resulting
from G by removing the vertices of all legs. We next characterize the structure
of this base graph. That is, we will show that it consists of O(k) edge disjoint
paths connecting core vertices where all internal vertices are path vertices.
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The Structure of the Base Graph. For a vertex u ∈ Vb, we denote by
degb(u) its degree in Gb. Note that Gb contains no leaves, and thus the degree
of every vertex is at least 2. Moreover, since Gb is a connected subgraph of G
and every cycle of G belongs to Gb as well, Gb results from a tree T by adding
exactly k edges. Thus the tree T has |Vb| − 1 edges, and thus the number of
edges in Gb is |Vb|+ k − 1. Therefore,

∑
u∈Vb

degb(u) = 2|Vb|+ 2k − 2 and thus∑
u∈Vb

(degb(u)− 2) = 2k − 2.

Lemma 8. The base graph Gb is decomposed into q ≤ 3k−3 edge disjoint paths,
where in Gb every internal vertex of a path has degree 2, and the end-vertices of
such a path are core vertices.

Given a vertex v ∈ V , we define its base vertex as the vertex v′ ∈ Vb which
is the closest to v. Given the path decomposition defined above, we associate
each vertex v in V with one of the paths in the following way. If the base vertex
of v belongs to exactly one of the paths then we associate v with this path.
Otherwise, the base vertex v′ of v is a core vertex in Gb, and we associate all
the vertices in G whose base vertex is v′ with one of the paths incident to v′.
Bounding the Number of Landmarks Associated with One Path. Next,
we consider a minimal feasible landmark set L, and one specific path P in the
path decomposition of Gb. Our goal is to bound the number of landmarks in L
which are associated with P . The following lemma generalizes Lemma 4 to the
case of k ≥ 2.

Lemma 9. (i) Let L be a minimal feasible landmark set, and let P be a path
in the path decomposition of Gb. Then, the number of vertices in L which are
associated with P is at most six. (ii) Let L be a minimal landmark set of a graph
G which results from a k-edge-augmented tree by the preprocessing step (where
k ≥ 2). Then |L| ≤ 18k − 18.

To summarize, our algorithm for computing wmd(G) where G is a k-edge-
augmented tree (for k ≥ 2) is to apply the preprocessing step, afterwards, try
all possibilities of sets L such that |L| ≤ 18k − 18, for each of them test its fea-
sibility in polynomial time, and among the feasible solution we pick a cheapest
one. Clearly, the algorithm runs in polynomial time (for a constant value of k)
and computes a cheapest minimal feasible landmark set.

4 Wheels

Complete Wheels. In this section we consider complete wheels. A (complete)
wheel on n vertices {1, 2, . . . , n} is defined as follows. There is a cycle C over the
vertices 1, 2, . . . , n−1 (the clockwise order of the vertices along C is 1, 2, . . . , n−
1, 1), and vertex n is adjacent to all other vertices. Vertex n is called the hub of
the wheel, whereas the other vertices are called cycle-vertices. The distances in
G are either 1 or 2, clearly the distance between every cycle-vertex and the hub
is 1, the distance of every cycle-vertex and its two neighbors along the cycle is 1,
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and between every pair of (non-adjacent) cycle-vertices are reachable via a two-
edge path through the hub. Consider a feasible landmark set L. A gap between
consecutive landmarks is defined as follows: If �, �′ ∈ L are cycle vertices such
that along the clockwise path from � to �′ there is no other landmark, then the
set of internal vertices of the clockwise path from � to �′ is the gap (between �
and �′), and we say that the gap is adjacent to � and �′. The length of the gap is
the number of vertices in the gap. Here, we characterize the lengths of the gaps
in a feasible solution L.

Lemma 10. Assume that G is a wheel over at least 8 vertices. Let L ⊆ V . L is
a feasible landmark set iff the following three conditions hold with respect to L:
1. There is no gap of length at least 4. 2. There is at most one gap of length 3.
3. Two gaps of length at least two are not adjacent to a common vertex of L∩C.

Theorem 1. Given a complete wheel G, wmd can be solved in linear time.

A minimal landmark set L does not contain the hub, and based this charac-
terization, our algorithm is a simple dynamic program. By [14], for a complete
wheel G on n vertices, md(G) = Θ(n), and since it is a (n− 1)-edge-augmented
tree, a k-edge-augmented tree needs Ω(k) landmarks in any feasible solution.

The general case A (non-complete) wheel on n vertices {1, 2, . . . , n} is defined
as follows. There is a cycle C over the vertices 1, 2, . . . , n−1 (the clockwise order
of the vertices along C is 1, 2, . . . , n − 1, 1), and vertex n is adjacent to some
of the other vertices. Vertex n is called the hub of the wheel, whereas the other
vertices are called cycle-vertices. The neighbors of n are called connectors, and
the edges incident at n are called chords. We let layer j be the set of vertices of
distance j from n, and denote it by Vj (i.e., Vj = {u ∈ V : du,n = j}, and thus
V0 = {n} and V1 is the set of connectors). Let L ⊆ V , we say that a cycle vertex
u is close to � ∈ L if d�,u < d�,n + dn,u. We say that u is close to L if there is
� ∈ L such that u is close to �. In this section we consider wheels with at least
22 connectors, and present a polynomial time algorithm for solving wmd for such
a graph. Since wheels with at most 21 connectors are k-edge-augmented trees
for a value of k such that k ≤ 21, we conclude that we will obtain a polynomial
time algorithm for solving wmd on (arbitrary) wheels. Thus let G = (V,E) be a
wheel with at least 22 connectors. We first characterize a minimal landmark set.

Lemma 11. (i) Let L be a feasible landmark set. Then for every j there is at
most one vertex of Vj which is not close to L. Moreover, the vertices in V which
are not close to L form a shortest path from some vertex v to the hub. (ii) Let
� ∈ V . The set of vertices which are close to � is a subpath P of C containing �.
Moreover, consider P as a clockwise path from u to v, then the subpath of P from
u to � (including u, �) has at most two connectors, and the subpath of P from
� to v has at most two connectors. Thus, P contains at most four connectors.
(iii) L is a feasible landmark set iff the following two conditions hold: For every
layer Vj , there is at most one vertex of Vj which is not close to L. For every
� ∈ L and every j, if u1, u2 ∈ Vj are close to � and d�,u1 = d�,u2 , then there is
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�′ ∈ L\{�} which is close to at least one of the vertices u1 or u2. (iv) A minimal
landmark set L does not contain the hub, and |L| ≥ 6.

Let L∗ be a fixed optimal solution. We say that two landmarks �1 and �2 are
consecutive if the clockwise path from �1 to �2 does not contain an additional
landmark, such a path is called the natural path between the landmarks. Given
a landmark � ∈ L∗, we say that a pair of cycle-vertices x, y is a bad pair with
respect to � (or of �), if x, y are close to �, belong to a common layer, dx,� = dy,�,
and the clockwise path from x to y traverses �. Recall that in this case there
must be a landmark �′ �= � which is close to at least one of x and y, and we say
that �′ covers the bad pair x, y of �. A minimal bad pair of a landmark � is a bad
pair x, y such that dx,� is minimal among all bad pairs of �.

Lemma 12. (i) Let x, y be a bad pair with respect to a landmark �. Let �′ �= �
be a landmark which is close to at least one of x and y. Let �1 and �2 be land-
marks such that �1 and � are consecutive landmarks and � and �2 are consecutive
landmarks. Then the landmark �1 is close to x, or the landmark �2 is close to y
(or both). (ii) Let �′ �= � be a landmark that covers a minimal bad pair x, y of �
such that either �′, � or �, �′ are consecutive, then �′ covers every bad pair of �.

We say that a minimal bad pair x, y of � which is covered by �′ is covered from
the left by �′ if �′ and � are consecutive, and otherwise if � and �′ are consecutive
we say that x, y are covered from the right by �′. By Lemma 12, a bad pair which
is covered is either covered from the right or from the left, by some �′.

Corollary 1. A landmark set L ⊆ V is a minimal feasible landmark set iff it
satisfies the following three conditions. 1. n /∈ L. 2. The set of vertices which are
not close to L forms a shortest path from n to some vertex v (possibly v = n),
in particular, if v �= n then the path contains exactly one connector and no
landmark. 3. For every � ∈ L, there is �′ ∈ L \ {�} which covers the minimal bad
pair of � either from the left or from the right (if there exists a bad pair of �).

If there is a cycle-vertex which is not close to L∗, then all such cycle-vertices form
a path not containing a landmark. We guess a pair of consecutive landmarks in
L∗ such that if there exists a cycle-vertex not close to L∗, then all such vertices
appear along the natural path between the two guessed landmarks. Without loss
of generality assume that the two guessed landmarks are 1 and k ≤ n − 1 and
the natural path between them is the clockwise path from k to 1. The number
of possibilities for the selection of 1, k is O(n2). We verify that the set of vertices
along the natural path from k to 1 which are not close to 1 or to k (if such a cycle-
vertex exists) form a shortest path from some vertex to n (and it contains at most
one connector since all connectors are in V1). If this condition does not hold, then
this possibility is impossible, and we stop considering it. In what follows, we con-
sider a possibility which passed this test. Since the number of connectors along
the natural path from k to 1 is at most 5 connectors, the clockwise path from 1 to
k contains at least 17 connectors, and it is not a shortest path.

Let 1 < v < k. We define low(v) as the minimum index i such that 1 ≤ i ≤ v
and the clockwise path from i to v is a unique shortest path. We let high(v)
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be the maximum index i such that v ≤ i ≤ k and the clockwise path from v
to i is the unique shortest path. δ(v) is the minimum number i ≥ 1 such that
v− i ≥ low(v) and v+ i ≤ high(v) belong to a common layer. If such i does not
exist, we let δ(v) = ∞. The motivation for this definition of δ(v) is to identify
the minimal bad pair of v (if it exists).

Claim. Let 1 < v < k be a landmark such that �1, v are consecutive landmarks
and v, �2 are consecutive landmarks (1 ≤ �1 < v < �2 ≤ k since 1, k are
landmarks), assume that v has a bad pair, and let x, y be the minimal bad pair
of v. If {x, y} is not contained in the clockwise path from 1 to k, then either 1 or
k covers x, y. Otherwise, x, y is covered iff at least one of the following conditions
holds: (i) x ≤ high(�1), (ii) y ≥ low(�2).

For the vertex 1, we define the parameters Low(1), High(1), Δ(1) as follows.
Low(1) is the minimum index i such that the clockwise path from i to 1 is the
unique shortest path (by definition n−1 satisfies this condition, hence Low(1) is
well-defined, and thus the vertices i, i+1, . . . , n−1 are close to 1). High(1) is the
maximum index i such that the clockwise path from 1 to i is the unique shortest
path (similarly to the existence of Low(1), the value of High(1) is well-defined,
vertices 2, 3, . . . , High(1) are close to 1, and High(1) < k). Δ(1) is the minimum
number i ≥ 1 such that i+1 and n− i ≥ k+1 are both close to 1 (and have the
same distance from 1) and belong to a common layer. If such i does not exist,
we let Δ(1) = ∞. It can be the case that there exists a bad pair of 1 even if
Δ(1) = ∞ but in this case we show later that k covers all such bad pairs.

For the vertex k, we define similar parameters Low(k), High(k), Δ(k) as fol-
lows. Low(k) is the minimum index i > 1 such that the clockwise path from i to
k is the unique shortest path (by definition k − 1 satisfies this condition, hence
Low(k) is well-defined). High(k) is the maximum index i ≤ n− 1 such that the
clockwise path from k to i is the unique shortest path (note that it is possible
that vertex 1 is also close to k, using the clockwise path from k to 1, but we
are not interested whether this holds or not). Delta(k) is the minimum number
i ≥ 1 such that k + i ≤ n − 1 and k − i ≥ 1 are both close to k (and have the
same distance from k) and belong to a common layer. If such i does not exist,
we let Δ(k) = ∞. We also let low(1) = 1, high(1) = High(1), low(k) = Low(k)
and high(k) = k. We define δ(1) and δ(k) in the following way. We let δ(1) = ∞
if High(k) ≥ n − Δ(1). Otherwise, δ(1) = Δ(1). The motivation is to define
δ(1) to be infinite if there is no bad pair of 1, or if k covers the minimal bad
pair of 1. Similarly, we define δ(k) = ∞ if Low(1) ≤ k + Δ(k). Otherwise,
we let δ(k) = Δ(k). The differences between Δ and δ, and the property that
Δ(1), Δ(k) can be infinite even if there is a bad pair of 1, and k, respectively,
follow since High(k) ≥ n −Δ(1) iff the minimal bad pair of 1 is covered by k,
and Low(1) ≤ k +Δ(k) iff the minimal bad pair of k is covered by 1.

We define a function F : {1, 2, . . . , k} × {left, right} → R+ as fol-
lows. F (v, right) (F (v, left)) is the minimum cost of a set L such that
1, v ∈ L, every 1 < i < v is close to at least one of the vertices in L,
and for every � ∈ L \ {v} (� ∈ L, respectively) such that δ(�) is finite
the minimal bad pair of � is covered by a vertex in L \ {�}. We compute
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the values of F using the following dynamic program. If δ(1) = ∞, then
F (1, right) = F (1, left) = c(1), and if δ(1) is finite, then F (1, left) = ∞ and
F (1, right) = c(1). For � > 1 we define sets of feasible values of �′ < � (to be
consecutive landmarks) α(�) = {�′ ∈ {1, 2, . . . , � − 1} : high(�′) ≥ low(�) − 1},
β(�) = {�′ ∈ α(�) : high(�′) ≥ � − δ(�)}, γ(�) = {�′ ∈ α(�) : low(�) ≤ �′ + δ(�′)}.
The recursive formula is as follows.

1. F (�, left) = min
{
min�′∈β(�) F (�′, left),min�′∈β(�)∩γ(�) F (�′, right)

}
+ c(�),

2. F (�, right) = min
{
min�′∈α(�) F (�′, left),min�′∈γ(�) F (�′, right)

}
+ c(�).

If δ(k) = ∞, then we are looking for F (k, right), and otherwise we are looking
for F (k, left). Then, by backtracking we compute the optimal landmark set. We
conclude that the algorithm computes an optimal solution in polynomial time.
Thus, we proved that for a wheel G, wmd can be solved in polynomial time.
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3. Cáceres, J., Hernando, M.C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C.,
Wood, D.R.: On the metric dimension of cartesian products of graphs. SIAM Jour-
nal on Discrete Mathematics 21(2), 423–441 (2007)

4. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs
and the metric dimension of a graph. Discrete Applied Mathematics 105(1-3),
99–113 (2000)

5. Chartrand, G., Zhang, P.: The theory and applications of resolvability in graphs:
A survey. Congressus Numerantium 160, 47–68 (2003)
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