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Abstract. Connectivity properties are very important characteristics
of a graph. Whereas it is usually referred to as a measure of a graph’s
vulnerability, a relatively new approach discusses a graph’s average con-
nectivity as a measure for the graph’s performance in some areas, such
as communication. This paper deals with Tower of Hanoi variants played
on digraphs, and proves they can be grouped into two categories, based
on a certain connectivity attribute to be defined in the sequel.

A major source for Tower of Hanoi variants is achieved by adding pegs
and/or restricting direct moves between certain pairs of pegs. It is natural
to represent a variant of this kind by a directed graph whose vertices are
the pegs, and an arc from one vertex to another indicates that it is allowed
to move a disk from the former peg to the latter, provided that the usual
rules are not violated. We denote the number of pegs by h. For example,
the variant with no restrictions on moves is represented by the Complete
Kh graph; the variant in which the pegs constitute a cycle and moves are
allowed only in one direction — by the uni-directional graph Cyclich.

For all 3-peg variants, the number of moves grows exponentially fast
with n. However, for h ≥ 4 peg variants, this is not the case. Whereas for
Cyclich the number of moves is exponential for any h, for most of the
other graphs it is sub-exponential. For example, for a path on 4 vertices

it is O(
√
n3

√
2n), for n disks.

This paper presents a necessary and sufficient condition for a graph to
be an H-subexp, i.e., a graph for which the transfer of n disks from a peg
to another requires sub-exponentially many moves as a function of n.

To this end we introduce the notion of a shed, as a graph property.
A vertex v in a strongly-connected directed graph G = (V,E) is a shed
if the subgraph of G induced by V − {v} contains a strongly connected
subgraph on 3 or more vertices. Graphs with sheds will be shown to be
much more efficient than those without sheds, for the particular domain
of the Tower of Hanoi puzzle. Specifically we show how, given a graph
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with a shed, we can indeed move a tower of n disks from any peg to any
other within O(2εn) moves, where ε > 0 is arbitrarily small.

Keywords: Tower of Hanoi, directed graphs, connectivity, sub-
exponential complexity, shed.

1 Introduction

Given are 3 pegs and a certain number n of disks of distinct sizes. Initially, the
disks form a tower: the largest at the bottom of one of the pegs (the source),
the second largest on top of it, and so on, until the smallest at the top of that
peg. The well-known Tower of Hanoi problem asks: how do we optimally move
the tower to another peg (the destination peg), bounded by the Hanoi rules
(henceforth HR): 1) At each step only one disk is moved. 2) The moved disk
must be a topmost one. 3) At any moment, no disk may reside on a smaller one.

The game was composed over a hundred years ago by Lucas [18]. Ever since
then, it was studied from numerous points of view. For example, in [1] it is
shown that, with a direct approach coding, the string representing the optimal
solution is square-free. This line of work was extended in [2]. As computer science
education evolved, the Tower of Hanoi problem has been used as a common
example, demonstrating the elegance of recursive programming. The reader is
referred to [29] for a review of the history of the problem, and to [30] for an
extensive bibliography of papers on various lines of research in the field.

Many variants of the original puzzle came up, some of which we will describe
here, though not chronologically. Without changing the basic peg configuration
(3 pegs, each pair being connected bi-directionally), one direction is solving the
problem for any initial and final configurations [12]. Other challenging versions
have been proposed and solved in [20],[21],[22],[23],[19]. In another direction a
disk may reside on top of a smaller one, with various limitations, [16], [9].

Another version of the original problem, which was discussed in several papers,
is where we impose restrictions on the movements between pegs. In [26], [29],
[14], the “three-in-a-row” (Path3) arrangement is studied. The uni-directional
cycle (Cyclic3) has been solved in [3],[11]. As was mentioned, it is natural to
represent a variant by a directed graph. Surprising in its simplicity, a necessary
and sufficient condition for a variant to be solvable, for any source and destina-
tion pegs and any number of disks, is that the corresponding graph is strongly
connected [17]. For 3 pegs there are 5 (up to isomorphism) strongly connected
variants. A single optimal algorithm for all these variants was obtained in [25],
accompanied with an explicit formula for the minimal number of moves for
each variant. (Note that individual algorithms and explicit formulas were known
beforehand for K3, Path3, Cyclic3, as mentioned above.)

Probably the first multi-peg version is “The Reve’s Puzzle” [10, pp. 1−2],
in which there are 4 pegs and various specific numbers of disks. It has been
generalized to any number of pegs and any number of disks in [27], with solutions
in [28] and [13], which were (among several other solutions) proved to be identical
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in [15]. An analysis of the algorithm reveals, somewhat surprisingly, that the
number of moves in the solution grows sub-exponentially as a function of n. In

the case of 4 pegs, it grows like Θ(
√
n2

√
2n) (cf. [29]). The lower bound issue

was considered in [31] and [8], where it has been shown to grow at a rate close
to that yielded by the algorithm.

Allowing 4 pegs and above, and imposing movement restrictions, we obtain
a huge number of graphs (83 non-isomorphic strongly connected digraphs on 4
vertices already), and no algorithm seems a natural candidate to be optimal.
The question whether a variant is sub-exponential had been resolved only for
particular ones: Star [29], Cyclic [5] and Path [7]. Whereas the complexity of the
majority of the multi-peg variants is sub-exponential, Cyclic is among the few
which are exponential.

The fact that, even for the original multi-peg variants, on complete graphs,
it is not known whether the proposed algorithms are optimal, indicates that the
complexity issue here is non-trivial. Facing the wealth of variants, we would like
an easy way to determine, given a variant, whether it is exponential or sub-
exponential. This paper presents a simple necessary and sufficient condition for
a variant to be sub-exponential.

In Section 2 we describe the problem domain. The main results are introduced
in Section 3. The proofs of the theorems are presented in Section 4.

2 Problem Domain and Notations

Any arrangement of pegs and their immediate connections, such that each peg
is reachable from each other, constitutes a variant. As mentioned above, it is
natural to represent a variant by a digraph G, whose vertices are the pegs, and
an arc from one vertex to another designates the ability of moving a disk from
the former peg to the latter, provided that the HR are obeyed. In the sequel,
when we mention a variant graph, we mean a strongly connected simple directed
graph on h ≥ 3 vertices.

A configuration is a distribution of the disks among the pegs, satisfying HR.3.
A configuration is perfect if all disks reside on the same peg. Such a configuration
will be denoted by Ri,n, where n is the number of disks (disk 1 being the smallest
and disk n the largest) and i the peg containing the disks.

Given a variant graph G and a positive integer n, the corresponding configura-
tion graph G(n) is the graph whose vertices are all configurations of n disks over
G, where there is an arc from a vertex to another if one can pass from the former
to the latter by a single disk move. More generally, for any pair of configurations
there is a corresponding task, of passing from the first to the second. Thus, an
optimal solution of a task corresponds to a shortest path between the vertices
of G(n) representing the task’s initial and final configurations. The diameter of
G(n) is denoted by Dn(G).

A task is perfect if both its initial and final configurations are perfect. We use
the notation Ri,n → Rj,n both for the task and for a minimal length solution
of it. The length of such a minimal solution is expressed by |Ri,n → Rj,n|. We
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set di,j,n(G) = |Ri,n → Rj,n|. An interesting quantity is dn(G) = max
i,j

di,j,n(G),

which we call the little diameter of G(n). When the identity of the graph to
which we refer is clear, we may omit its indication. For example, we may write
Dn instead of Dn(G).

Formally, a move is composed of the disk being moved, the peg on which it
resides prior to the move, and the peg to which it is transferred. A solution to a
task is a sequence of moves accomplishing it. The algorithms constructed in the
proofs of our results produce solutions to all perfect tasks.

A variant graph G is H-exp if Dn(G) grows exponentially fast as a function of
the number of disks, namely there exist C > 0 and λ > 1 such thatDn(G) ≥ Cλn

for all n. G is H-subexp if for every ε > 0 there exists a constant C = C(ε) such
that Dn(G) ≤ C(1 + ε)n. It will follow, in particular, from Theorem 1 below
that each graph is either H-exp or H-subexp.

3 Main Results

The main problem we study is how to identify, given a variant graph, whether
it is H-subexp or H-exp. We start by proving that the number of moves behaves
regularly as a function of the number of disks.

For a variant graph G, denote λG = infn≥1
n
√
dn+1(G).

Theorem 1. For any variant graph G

lim
n→∞

n
√
dn(G) = λG .

Let us recall Corollary 1 of [6]:

Proposition 1. For any variant graph and any number of disks,

Dn ≤ (2n− 1)dn .

Combining Theorem 1 and Proposition 1 one can infer

Corollary 1. For every ε > 0 there exists an n0 such that

λn−1
G ≤ dn(G) ≤ Dn(G) ≤ (λG + ε)n−1, n ≥ n0.

The main question this paper answers is: what property must G have so that
λG = 1? To answer this, we need the following notion.

Definition 1. A shed in a strongly connected digraph G (see Fig. 1) is a vertex
w with the property that the graph induced by V (G)− {w} contains a strongly
connected subgraph of size at least 3.

Our main result is

Theorem 2. A variant graph G with h ≥ 3 vertices is H-subexp if and only if
it contains a shed.
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4 (the shed)
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4 (a shed)
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Fig. 1. Two example graphs with sheds

Unlike the proof of sub-exponentiality for K4 (cf. [29]) or the path Ph [7], the
proof for general graphs containing a shed is quite cumbersome. The reason is,
intuitively, that the former graphs have (at least) two sheds. This means that
there are a lot more options of keeping a block of small disks on some peg for a
while, taking care in the meantime of other (large) disks. On the other hand, if
the graph has a single shed, then no obvious sub-exponential algorithm comes to
mind, and in fact it may seem surprising at first glance that such an algorithm
exists at all.

4 Proofs

To prove Theorem 1, we first need

Lemma 1. For every strongly connected graph G,

dm+n−1 ≤ dmdn m,n ≥ 1.

The proof follows, to a certain extent, the idea of the proof of Theorem 2(a) in
[5], and is omitted.

Proof of Theorem 1: Putting bn = ln dn+1, we obtain by Lemma 1:

bm+n ≤ bn + bm , m, n ≥ 0 .

The sequence (bn)
∞
n=0 is thus sub-additive, which implies that the sequence bn

n
converges to its greatest lower bound (cf. [24, p. 198]), and hence so does the
sequence

ebn/n = n
√
dn+1 ,

thus proving the theorem.

Proof of Corollary 1: Since n
√
dn+1(G) converges to λG from above, for any

ε > 0 and sufficiently large n

λG ≤ n
√
dn+1(G) ≤ λG + ε ,



86 D. Berend and A. Sapir

or, equivalently,
λn−1
G ≤ dn(G) ≤ (λG + ε)n−1 .

In combination with Proposition 1, this proves the corollary.

Remark 1. Corollary 1 states that dn and Dn are not too far apart, justifying
that it suffices to focus on dn.

To establish the proof of the ‘if’ part (which is the main part) of Theorem 2,
we will need several definitions. Unless explicitly stated otherwise, G will denote
a strongly connected graph with h ≥ 4 vertices containing a shed w, and G

′

− a strongly connected subgraph of size at least 3 of the graph left after w is
removed. (Note that G may contain more than one shed, and for each choice
of a shed there may be several appropriate strongly connected subgraphs of
G, but for our purposes any choice of a shed vertex and a strongly connected
component in accordance with that shed is suitable.) Taking a shortest path
from w ∈ V (G) − V (G

′
) to G

′
, we denote the entrance vertex to G

′ − the last
vertex on this path and the only one that belongs to G

′ − by e. Similarly, an
exit vertex x ∈ V (G

′
) is the first vertex on a shortest path leading from G

′

to w. These paths will be denoted by pw,e and px,w, respectively. The sequence
of moves of disk r along, say, the path pw,e is expressed by tw,e,r. S(l) is the l-th
move in a sequence of moves S.

Example 1. In each of the graphs G1 and G2 in Figure 1, the shed is vertex w =
4. (In G2 one could choose any vertex but 2 and 3 as a shed.) For G1 we have e =
x = 1, whereas for G2 we have e = 2, x = 3.

As hinted above, most of the work is required for the ‘if’ part of Theorem 2. The
following lemma shows that some of the tasks are of sub-exponential complexity.
Let Inner = V (G

′
)−{e, x}. We first show that tasks, in which the source is the

shed and the destination lies in Inner (or vice versa), are sub-exponential.

Lemma 2. Let G,G
′
, w be as above and v ∈ Inner. Then |Rw,n → Rv,n| and

|Rv,n → Rw,n| grow sub-exponentially fast as functions of n.

Sketch of proof: Fix a number λ > λG′ . It suffices to show that for every ε > 0
there exists a C = C(ε) such that

|Rw,n → Rv,n| ≤ Cλεn , n = 1, 2, . . . ,

and
|Rv,n → Rw,n| ≤ Cλεn , n = 1, 2, . . . .

The proof is based on the procedures ShedToInner(1 . . .n) (Algorithm 1) and
InnerToShed(1 . . .n) (of a similar kind), which perform the tasks Rw,n → Rv,n

and Rv,n → Rw,n in fw,v(n) ≤ Cλεn and fv,w(n) ≤ Cλεn moves, respectively.
The following lemma is required for the proof of the ‘only if’ part of Theorem 2.
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Algorithm 1. ShedToInner(1 . . .n)

/* This algorithm moves a tower of n disks from the shed w to vertex v, which is
neither the entrance nor the exit vertex with respect to w. */
if n ≤ 1

ε
then

T ← a sequence of moves that performs the task
else

m← �n(1− ε)�
T ← ShedToInner(1 . . .m)

for r ← m+ 1 to n do
T ← T ∗ tw,e,r

T ← T∗ InnerToShed(1 . . .m)

T ← T∗ Accumulate(e, v, r,m+ 1 . . . r − 1)
T ← T∗ ShedToInner(1 . . .m)

end for
end if
return T

Lemma 3. There exists a constant C with the following property. For any graph
G, not containing a strongly connected component of size 3 or more, and for any
initial configuration, the number of different disks which can participate in any
legal sequence of moves is bounded above by Ch

1
2 lg h+2 , where h = |V (G)|, and

lg h ≡ log2 h.

Proof: Let T be any legal move sequence and i any peg.

Set l=�(h−2)Ch
lgh
2 	+2 (where the constant C is sufficiently large; see below).

Consider the first move of the disk residing at the l-th place (counting from
the top) of peg i before T is started. Right before this move, all smaller disks
(residing on peg i prior to T ) have to be spread on h − 2 of the other pegs,

making it necessary for at least one peg to accept more than Ch
1
2 lg h disks from

peg i, contradicting [4, Theorem 1.3] if C is sufficiently large. It follows that the
overall number of disks that can participate in any task is bounded above by
h(h− 2)Ch

1
2 lg h + 2h, proving the lemma.

Proof of Theorem 2: (a) We prove first the ‘if’ part of the theorem. Let w
and G′ be as before. Take λ > λG′ . We will show that, for every pair of vertices
i, j ∈ V (G) and ε > 0, there exists a constant K such that

|Ri,n → Rj,n| ≤ Kλεn , n = 1, 2, . . . . (1)

Take v ∈ V (G′)−{e, x}, where e is the entrance vertex and x the exit vertex in
G′. Due to Lemma 2, it remains to consider the following cases:

– Case 1: i = w, j ∈ V (G
′
)− {v},

– Case 2: i ∈ V (G
′
)− {v}, j = w,

– Case 3: i, j ∈ V (G
′
),

– Case 4: i, j ∈ V (G), where at least one of i, j does not belong to V (G
′
)∪{w}.
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(In fact, in Case 1 we need only to take care of the case where j = e, and in
Case 2 only of i = x, but this is of no consequence.)

Case 1: We employ ShedToAny(j, 1 . . .n) (Algorithm 2), which moves a tower
of n disks from the shed to any vertex j �= v ∈ G

′
. It divides the disks into p+1

sets, where p =
⌊

n
�εn	

⌋
of the sets consist of l = �εn	 consecutive disks each, and

the remaining (possibly empty) set consists of up to l − 1 disks, which are the
smallest disks. Then it moves each set to its destination (vertex j) by:

– Moving all the disks from the shed to vertex v.
– Moving all but the largest �εn	 disks in the set from vertex v back to the

shed.
– Moving the largest �εn	 disks from vertex v to the destination.

The procedure MoveInG
′
(e, v,m+ 1 . . . r − 1) performs the task of moving the

tower consisting of disks m+1, . . . , r− 1 from e to v. By Theorem 1, the length
of the solution it produces is bounded above by C

′
λr−m−1, where C

′
is an

appropriate constant, determined by G
′
.

Accumulate(e, v, r,m+1 . . .r−1) adds the ‘next‘ disk to the column already
handled. Starting with disks m + 1 . . . r − 1 on peg v and disk r on peg e,
utilizing G

′
only, it unites them so that all disks will reside on peg v. Thus, the

number of moves produced by its (r − m)-th invocation is bounded above by
2C

′
λr−m.

Algorithm 2. ShedToAny(j, 1 . . .n)

/* ShedToAny moves a tower of n disks from the shed to any vertex j 	= v ∈ G
′
. */

if n ≤ 1
ε
then

T ← a sequence of moves that performs the task
else

l ← �nε� ; p← ⌊
n
l

⌋
; m← n− p l

T ← [ ] /* The empty sequence */
for r ← 1 to p do

T ← T∗ ShedToInner(1 . . . n)
T ← T∗ InnerToShed(1 . . . n− l)
T ← T∗ MoveInG′

(v, j, n− l + 1 . . . n)
n← n− l

end for
T ← T ∗ ShedToInner(1 . . .m) ∗ MoveInG′

(v, j, 1 . . .m)

end if
return T

ShedToInner(1 . . .n) and InnerToShed(1 . . .n) require at most Cλεn moves
each, for an appropriate C. We now bound the number of moves fw,j(n) per-
formed by the procedure ShedToAny(j, 1 . . .n). For sufficiently large n:
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fw,j(n) ≤ (p+ 1)C
′
λl + 2

∑p
r=1Cλεlr + Cλεn

≤ ((p+ 1)C
′
+ 3C)λεn + 2C

∑p−1
r=1 λ

εlr

≤ ((1ε + 2)C
′
+ 3C)λεn + 2C λεl( 1

ε
+1)

1
2λ

εl

≤ ((1ε + 2)C
′
+ 7C)λεn .

Case 2: We employ AnyToShed(i, 1 . . .n) , which moves a tower of n disks from
any vertex i �= v ∈ G

′
to the shed. We omit the description of this algorithm,

which is similar to ShedToAny in the way it works, as well as in its analysis.
Case 3 is a consequence of the first two cases, by first moving all disks from i

to w, and then moving them from w to j.
Case 4: Observe that, once G′ has been set, any vertex in V (G) − V (G′)

may serve as a shed. Thus, for any i ∈ V (G′) and j ∈ V (G) − V (G′), both
inequalities |Ri,n → Rj,n| ≤ Kλεn and |Rj,n → Ri,n| ≤ Kλεn hold. Now let
i, j ∈ V (G) − V (G′). Take a vertex k ∈ V (G′). We move a tower of disks from
i to j by first moving it from i to k, and then from k to j. This proves the
correctness of (1) in this case.

(b) Sketch of proof of the ‘only if’ part of Theorem 2.
Take any strongly connected graph G without a shed. Start with any con-

figuration C. Denote by v0 the vertex on which disk 1 resides in C. Without
reaching the same configuration more than once, what is the maximal number
of moves which may be done without moving disk 1?

Clearly, as long as we do not move disk 1, all other disks may use only the
graph induced by V − {v0}. This graph has no strongly connected component
of size at least 3. By Lemma 3, since in this graph there are h − 1 vertices,
m = C(h − 1)

1
2 lg(h−1)+2 is an upper bound for the number of disks that may

participate in any sequence of moves, yielding exponential growth.
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