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Preface

The 38th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2012) took place in Ramat-Rachel on the outskirts of Jerusalem,
Israel, during June 26–28, 2012. There were 74 participants coming from five
continents, 14 different countries mostly from Europe.

The workshop continues a tradition of 37 previous WG workshops. Since 1975,
WG has taken place 21 times in Germany, four times in The Netherlands, twice
in Austria, France and the Czech Republic, and once in Greece, Italy, Norway,
Slovakia, Switzerland, and the UK. This year, WG 2012 took place in Israel for
the first time. The workshop aims to unite theory and practice by demonstrating
how graph theoretic concepts can be applied to various areas in computer science,
and by extracting new graph theoretic problems from applications. The goal is
to present new and recent research results as well as to identify and explore
directions of future research.

WG 2012 received 78 submissions, three of which were withdrawn for vari-
ous reasons before finalizing the review process. Each submission was carefully
reviewed by at least three members of the Program Committee. The Committee
accepted 29 papers to be presented at the workshop. Unfortunately, there were
several high-quality papers that had to be rejected for lack of time slots. The
workshop program was enriched by three interesting invited talks by outstanding
researchers: Dieter Rautenbach (Ulm, Germany), David Peleg (Rehovot, Israel),
and Amitava Bhattacharya (Mumbai, India). The talk by Amitava Bhattacharya
was dedicated to the memory of Uri N. Peled and was sponsored by the Caesarea
Rothschild Institute at the University of Haifa.

Greetings were given by Daniel Hershkowitz, Minister of Science of the State
of Israel, and a mathematician himself who has published many papers in linear
algebra, matrix theory, and their relationship with combinatorics and graph
theory.

In order to encourage more young scientists taking part in the workshop, for
the first time in the tradition of WG, there was a Student Poster Session, where
six posters were presented. The criterion for presentation of a poster was that
it must be based on a research paper accepted to a refereed computer science
or mathematics conference during the past year. We found the experience to be
very positive and it met our expectations. The Best Student Paper Award was
given to Marek Cygan, Marcin Pilipczuk, and Micha�l Pilipczuk for the paper
“On Group Feedback Vertex Set Parameterized by the Size of the Cutset.” The
scientific program of the workshop was complemented by two sightseeing tours.
One tour was to the Old City of Jerusalem, revealing the history of Jerusalem
related to the places visited. This guided walking tour from Jaffa Gate to the
Western Wall included a visit to the Church of the Holy Sepulchre, the Jewish
Quarter, and a walk through the Western Wall Tunnels. For those not too tired,
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the tour ended with a Sound and Light Spectacular Show at the Tower of David
at night. At the conclusion of the scientific program, a second (optional) tour
taking participants overnight to the Dead Sea, including swimming (well, to be
more accurate floating there), visiting the Botanical Gardens at Kibbutz Ein
Gedi, exploring Massada, and hiking to the waterfalls and streams of Nahal
David. We succeeded to exhaust everyone!

We would like to thank all who contributed to the success of WG 2012: the
authors who submitted very high quality papers, the speakers, the Program
Committee members for their devotion, and the referees. Special thanks to the
Local Organizing Committee: first of all Danielle Friedlander, who worked tire-
lessly during the months of preparation and the final execution of the wonderful
arrangements and coordination, and second to Hananel Hazan, who was our
ever present technology assistant and guy Friday. Without their work, WG 2012
could not have been such a success. Our tour guides in Jerusalem were Donna
Goldberg and Daniel Barkai. Donna (who happens to have a masters degree
in computer science) continued with us to the Dead Sea, Massada, and Nachal
David where she pushed us to our limits. Thanks also to Ruth Touito and Elad
Cohen for their assistance.

Special thanks for the sponsoring organizations: University of Haifa, the
Caesarea Rothschild Institute for Interdisciplinary Applications of Computer
Science, I-Core – Israeli Center of Excellence in Algorithms, and Springer.

August 2012 Martin Golumbic
Michal Stern
Avivit Levy

Gila Morgenstern
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Andreas Brandstädt University of Rostock, Germany
L. Sunil Chandran Indian Institute of Science, India
Jianer Chen Texas A&M University, USA
Lenore J. Cowen Tufts University, USA
Celina de Figueiredo Universidade Federal do Rio de Janeiro, Brazil
Fedor Fomin University of Bergen, Norway
Martin Charles Golumbic University of Haifa, Israel
Gregory Z. Gutin Royal Holloway, University of London, UK
Magnus M. Halldorsson Reykjavik University, Iceland
Pavol Hell Simon Fraser University, Canada
Seok-Hee Hong University of Sydney, Australia
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Account on Intervals

Dieter Rautenbach

University of Ulm, Germany

Abstract. The structural and algorithmic properties of interval graphs
have received considerable attention. While many aspects of this impor-
tant and classical class of graphs are well understood, some old problems
are still open. One such problem is the so-called interval count problem,
which asks for the minimum number of different interval lengths needed
to represent a given interval graph. Whereas graphs of interval count
1 coincide with unit interval graphs, not much is known about graphs
of interval count 2. In this talks we will survey some recent results and
discuss several open problems related to interval count 2 graphs.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Constructing Resilient Structures in Graphs:

Rigid vs. Competitive Fault-Tolerance

David Peleg

Weizmann Institute of Science, Israel

Abstract. The setting considered in this talk is that of a structure S
constructed over a given network G and intended to efficiently support
some service on it (e.g., a distributed database or a query-answering
oracle.) Such a structure is required to ensure certain desirable proper-
ties with respect to G. However, a failure event F might damage some
of the network’s vertices and edges, and cause S to malfunction. We
are interested in ways of making S fault-tolerant, namely, reinforcing it
so that following a failure event, its surviving part continues to satisfy
the requirements. The talk will distinguish between two types of fault-
tolerance, termed rigid and competitive fault tolerance, compare these
two notions, and illustrate them on a number of examples.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Alternating Reachability and Integer Sum

of Closed Alternating Trails

The 3rd Annual Uri N. Peled Memorial Lecture

Amitava Bhattacharya

Tata Institute of Fundamental Research, Mumbai, India

Abstract. We consider a graph with colored edges and study the fol-
lowing two problems.

(i) Suppose first that the number of colors is two, say red and blue. A
nonnegative real vector on the edges is said to be balanced if the red sum
equals the blue sum at every vertex. A balanced subgraph is a subgraph
whose characteristic vector is balanced (i.e., red degree equals blue de-
gree at every vertex). By a sum (respectively, fractional sum) of cycles
we mean a nonnegative integral (respectively, nonnegative rational) com-
bination of characteristic vectors of cycles. Similarly, we define sum and
fractional sum of balanced subgraphs. We show that a balanced sum of
cycles is a fractional sum of balanced subgraphs.
(ii) Next we consider the problem of finding a necessary and sufficient
condition for the existence of a balanced subgraph containing a given
edge. This problem is easily reduced to the alternating reachability prob-
lem, defined as follows. Given an edge colored graph (here we allow ≥ 2
colors) a trail (vertices may repeat but not edges) is called alternating
when successive edges have different colors. Given a set of vertices called
terminals, the alternating reachability problem is to find an alternating
trail connecting distinct terminals, if one exists. By reduction to the clas-
sical case of searching for an augmenting path with respect to a matching
we show that either there exists an alternating trail connecting distinct
terminals or there exists an obstacle, called a Tutte set, to the existence
of such trails. We also give a Gallai-Edmonds decomposition of the set
of nonterminals.

This work started when Uri Peled and Murali Srinivasan met in Cae-
sarea Edmond Benjamin de Rothschild Foundation Institute for Inter-
disciplinary Applications of Computer Science at the University of Haifa,
Israel during May–June 2003. This led to many interesting questions and
some of them are still open. In this talk we would like to discuss some of
them.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Student Poster Session

During WG 2012 there was a Student Poster Session, where the following posters
were presented (alphabetically ordered by student’s last name).

The Canadian Tour Operator Problem (Online Graph Exploration
with Disposal)

Sabine Büttner
In the prize-collecting travelling salesman problem, we are given a weighted
graphG = (V,E) with edge weights l : E → R+, a special vertex r ∈ V , penalties
p : V → R+ and the goal is to find a closed tour T such that r ∈ V (T ) and such
that the cost l(T ) + p(V \ V (T )) is minimized. We consider an online variant of
the prize-collecting travelling salesman problem related to graph exploration. In
the Canadian Tour Operator Problem (ctop) the task is to find a closed route for
a tourist bus in a given network G = (V,E) in which some edges are blocked by
avalanches. An online algorithm learns from a blocked edge only when reaching
one of its endpoints. The bus operator has the option to avoid visiting each
node v ∈ V by paying a refund of p(v) to the tourists. The goal is to minimize
the sum of the travel costs and the refunds. We show that no deterministic or
randomized algorithm can achieve a bounded competitive ratio for the CTOP
on general graphs. Further, we present a φ-competitive algorithm for the line
and give a Ski-Rental like 3-competitive algorithm for tree networks.
Joint work with Sven O. Krumke.

Fully Dynamic Approximate Distance Oracles for Planar Graphs via
Forbidden-Set Distance Labels [1]

Shiri Chechik
Distance oracle is a data structure that provides fast answers to distance queries.
Recently, the problem of designing distance oracles capable of answering re-
stricted distance queries, that is, estimating distances on a subgraph avoiding
some forbidden vertices, has attracted a lot of attention. We consider forbidden
set distance oracles for planar graphs. We present an efficient compact distance
oracle that is capable of handing any number of failures. In addition, we consider
a closely related notion of fully dynamic distance oracles. In the dynamic dis-
tance oracle problem instead of getting the failures in the query phase, we rather
need to handle an adversarial online sequence of update and query operations.
Each query operation involves two vertices s and t whose distance needs to be
estimated. Each update operation involves inserting/deleting a vertex/edge from
the graph. Our forbidden set distance oracle can be tweaked to give fully dy-
namic distance oracle with improved bounds compared to the previously known
fully dynamic distance oracle for planar graphs.
Joint work with Ittai Abraham and Cyril Gavoille.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 4–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Student Poster Session 5

Product Graphs Invariants with Applications to the Theory of
Information [4]

Marcin Jurkiewicz
There are a large number of graph invariants. We consider some of them, e.g. the
independence and chromatic numbers. It is well know that we cannot efficiently
calculate these numbers for arbitrary graphs. We present relations between these
invariants and some concepts from the theory of information. Concepts such as
source coding and transmission over a noisy channel with zero probability of
error are modeled using graph theoretical structures and are measured by the
independence and chromatic numbers of some products of graphs, i.e. graphs
arising from other graphs. It turns out that for some classes of product graphs,
there exist algorithms and methods for determining these invariants. Using op-
timization algorithms together with some theoretical results, we can establish
their values or bounds on previously mentioned invariants of product graphs.
Joint work with Marek Kubale.

Improved Approximation for Orienting Mixed Graphs [3]

Moti Medina
An instance of the maximum mixed graph orientation problem consists of a
mixed graph and a collection of source-target vertex pairs. The objective is to
orient the undirected edges of the graph so as to maximize the number of pairs
that admit a directed source-target path. This problem has recently arisen in
the study of biological networks, and it also has applications in communication
networks.
In this paper, we identify an interesting local-to-global orientation property.

This property enables us to modify the best known algorithms for maximum
mixed graph orientation and some of its special structured instances, due to El-
berfeld et al. (CPM ’11), and obtain improved approximation ratios. We further
proceed by developing an algorithm that achieves an even better approxima-
tion guarantee for the general setting of the problem. Finally, we study several
well-motivated variants of this orientation problem.
Joint work with Iftah Gamzu.

SINR Diagram with Interference Cancellation [2]

Merav Parter
This paper studies the reception zones of a wireless network in the SINR model
with receivers that employ interference cancellation (IC). IC is a recently devel-
oped technique that allows a receiver to decode interfering signals, and cancel
them from the received signal in order to decode its intended message. We first
derive the important topological properties of the reception zones and their re-
lation to high-order Voronoi diagrams and other geometric objects. We then
discuss the computational issues that arise when seeking an efficient description
of the zones. Our main fundamental result states that although potentially there
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are exponentially many possible cancellation orderings, and as a result, recep-
tion zones, in fact there are much fewer nonempty such zones. We prove a linear
bound (hence tight) on the number of zones and provide a polynomial time
algorithm to describe the diagram. Moreover, we introduce a novel parameter,
the Compactness Parameter, which influences the tightness of our bounds. We
then utilize these properties to devise a logarithmic time algorithm to answer
point-location queries for networks with IC.
Joint work with Chen Avin, Asaf Cohen, Yoram Haddad, Erez Kantor, Zvi

Lotker, and David Peleg

Approximating the Girth [5]

Roei Tov
This paper considers the problem of computing a minimum weight cycle in
weighted undirected graphs. Given a weighted undirected graph G(V,E,w), let
C be a minimum weight cycle of G, let w(C) be the weight of C and let wmax(C)
be the weight of the maximal edge of C. We obtain three new approximation
algorithms for the minimum weight cycle problem:

1. For integral weights from the range [1,M ] an algorithm that reports a cycle
of weight at most 4

3w(C) in O(n2 logn(log n+ logM)) time.
2. For integral weights from the range [1,M ] an algorithm that reports a cycle
of weight at most w(C) + wmax(C) in O(n2 logn(logn+ logM)) time.

3. For non-negative real edge weights an algorithm that for any ε > 0 reports
a cycle of weight at most (43 + ε)w(C) in O(1εn

2 log n(log logn)) time.

Joint work with Liam Roditty.

References

1. Abraham, I., Chechik, S., Gavoille, C.: Fully dynamic approximate distance oracles
for planar graphs via forbidden-set distance labels. In: Proc. the 44th Symposium
on Theory of Computing Conference, STOC 2012, pp. 1199–1218 (2012)

2. Avin, C., Cohen, A., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.:
In: Proc. the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, pp. 502–515 (2012)

3. Gamzu, I., Medina, M.: Improved Approximation for Orienting Mixed Graphs. In:
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Abstract. Finding minimal triangulations of graphs is a well-studied
problem with many applications, for instance as first step for efficiently
computing graph decompositions in terms of clique separators. Com-
puting a minimal triangulation can be done in O(nm) time and much
effort has been invested to improve this time bound for general and spe-
cial graphs. We propose a recursive algorithm which works for general
graphs and runs in linear time if the input is a claw-free graph and the
length of its longest path is bounded by a fixed value k. More precisely,
our algorithm runs in O(f + km) time if the input is a claw-free graph,
where f is the number of fill edges added, and k is the height of the exe-
cution tree; we find all the clique minimal separators of the input graph
at the same time. Our algorithm can be modified to a robust algorithm
which runs within the same time bound: given a non-claw free input, it
either triangulates the graph or reports a claw.

Keywords: claw-free graph, minimal triangulation, clique separator de-
composition.

1 Background and Motivation

Chordal graphs are an important class, with properties similar to those of trees,
and corresponding efficient algorithms. A graph is chordal, or triangulated, if it
has no induced chordless cycle on 4 or more vertices; any non-chordal graph
can be embedded into a chordal graph by adding a set of ‘fill’ edges, a process
called ‘triangulation’. Adding a minimum number of fill edges is an NP-complete
problem [39], but adding an inclusion-wise minimal set of edges, thus obtaining
a ‘minimal triangulation’, is polynomial.
Minimal triangulations have many applications (see [4], the recent survey [23]

and references therein). Originally, the problem stemmed from sparse matrix
computation [23,35], where triangulation was needed for Gaussian elimination
in sparse symmetric systems, but it is also useful in other fields such as database
management [1,38].
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One of the more surprising applications for minimal triangulation is that it
is currently a mandatory first step for efficiently computing a decomposition by
clique separators. Clique separator decomposition was introduced by Tarjan [37]
as hole- and C4- preserving, and refined to a unique and optimal decomposition
using clique minimal separators by [28]; this process consists in repeatedly find-
ing a clique minimal separator and copying it into the connected components it
defines (see [9] for details). This decomposition has attracted recent attention
in the context of characterizing graph classes [12,13], for Bayesian networks [31]
and for clustering gene expression data [26].
Regarding minimal triangulation, the seminal paper of Rose, Tarjan and

Lueker [36] presented an O(nm) time algorithmic process. Several other O(nm)
time algorithms have appeared recently [2,3,6,8]. Efforts have been invested into
improving this O(nm) time bound for the general case: [27] offer an O(n2.69)
time bound, later improved by [24] to O(nαlogn) = o(n2.376), where nα is the
time required to do matrix multiplication, currently n2.376. For special graph
classes, there are surprisingly few results which improve the time bound of the
general case: so far, chordal bipartite graphs and hole-and-diamond-free graphs
have been shown to have an O(n2) time algorithm [7]; co-comparability graphs
and AT-free claw-free graphs have a linear-time triangulation algorithm [30];
co-bipartite graphs, a subclass of AT-free claw-free graphs, have an even better
time, since only a subset of edges needs to be traversed [11].
In this paper, we address the issue of improving the computation of a minimal

triangulation for claw-free graphs. For this class, many significant results were
obtained during the past twenty years. A particularly active field of research
is improving the running times for computing maximum (weight) stable sets in
claw-free graphs [20,21,32,33], partly based on decomposing claw-free graphs in
an appropriate way [16,17,18].
A further recent result by [15] showed the presence of a hole containing a

pair of vertices when there is no clique separator between them. However, not
much is known on minimal triangulations and separators for claw-free graphs.
Investigating this aspect, we present some interesting properties, which enable
us to taylor an algorithm for computing both a minimal triangulation and the
clique minimal separators. We show that this algorithm runs in linear time if
the input is a claw-free graph where the length of the longest chordless path
is bounded. More precisely, the algorithm constructs a tree in the graph and
runs in O(f + km), where f is the number of fill edges and k is the length of a
longest branch of the tree. In fact, we present a ’robust’ algorithm which, given
any graph as input, will either triangulate it in O(f + km) or report a claw as
negative certificate. Moreover, as the recognition of claw-free graphs in general
is in O(m1.69) [25], our algorithm may improve finding a claw on some inputs.
The paper is organized as follows: we will give in Section 2 some preliminaries

on minimal triangulation, minimal separation, and clique separators. In Section
3, we present and explain our algorithmic process. Section 4 gives the algorithm
and proves its correctness and complexity. In Section 5, we discuss the robustness
of our algorithm. We conclude with some final remarks.
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2 Preliminaries

Basics. All graphs in this work are connected, undirected and finite. A graph is
denoted by G = (V,E), with |V | = n and |E| = m. We say that a vertex x sees
a vertex y if xy ∈ E. The neighborhood of a vertex x in a graph G is NG(x),
the closed neighborhood is NG[x] = NG(x) ∪ {x}. The neighborhood of a set X
of vertices is NG(X) = ∪x∈XNG(x) −X . A clique is a set of pairwise adjacent
vertices; we say that we saturate a set X of vertices when we add all the edges
necessary to turn X into a clique. A clique module is a set X of vertices such
that ∀x, y ∈ X,N [x] = N [y]. G(X) denotes the subgraph induced by the set X
of vertices, but we will sometimes just denote this by X . A co-bipartite graph
is a graph whose vertex set can be partitioned into two cliques, K1 and K2; we
will call an edge external if it is neither inside K1 nor inside K2. A claw is an
induced subgraph on 4 vertices {x, y1, y2, y3} with 3 edges: xy1, xy2, xy3 where x
is called the center of the claw. The reader is referred to [22] and [14] for classical
graph definitions and results.

Separators. A set S of vertices of a connected graphG is a separator if G(V −S)
is not connected. A separator S is an xy-separator if x and y lie in two different
connected components of G(V − S). S is a minimal xy-separator if S is an xy-
separator and no proper subset S′ of S is also an xy-separator. A separator S is
said to be minimal if there are two vertices x and y such that S is a minimal xy-
separator. For any minimal separator S in a connected graph, there are at least
two connected components C1 and C2 ofG(V −S) such thatN(C1) = N(C2) = S
(called full components); this means that for any pair (x, y) of vertices from the
Cartesian product C1 × C2, S is a minimal xy-separator; note also that every
vertex of S sees both C1 and C2, and that, equivalently, any path from x to y
must go through S.

Property 1. [5] In any non-complete graph, there is a clique module whose neigh-
borhood is a minimal separator, called a moplex; the vertex numbered 1 by
LexBFS belongs to a moplex.

A clique minimal separator is a minimal separator which is a clique.
The minimal separators included in the neighborhood of a vertex x are called

the substars of x [6,29]. Computing these substars can be done as follows: let
{C1 . . . Cp} be the connected components of G(V −N [x]); then S is a substar of
x if (and only if) S = NG(Ci) for some i ∈ [1, p]. Thus the substars are exactly
the neighborhoods of the components defined when x and its neighborhood are
removed from the graph.

Chordal Graphs and Minimal Triangulations. A graph is chordal (or tri-
angulated) if it contains no chordless induced cycle of length 4 or more. Chordal
graphs can be recognized in linear time using Algorithm LexBFS [36]. A graph
is chordal if and only if all its minimal separators are cliques [19]. Given a non-
chordal graph G = (V,E), the supergraph H = (V,E + F ) is a triangulation of
G if H is chordal. F is the set of fill edges, |F | is denoted by f . The triangulation
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is minimal if for any proper subset of edges F ′ ⊂ F , the graph (V,E + F ′) fails
to be chordal.
There is a strong relationship between minimal triangulations and minimal

separators [34]. Minimal separators S and S′ are said to be crossing separators
in a connected graph if S′ has at least one vertex in every connected component
of G(V −S) (the crossing relation is symmetric). A minimal triangulation can be
computed by saturating a maximal set of pairwise non-crossing minimal separa-
tors (this set is of size less than n, whereas there may be an exponential number
of minimal separators in a non-chordal graph). Saturating a minimal separator S
causes all the minimal separators which were crossing with S to disappear. Thus
a minimal separator is a clique if and only if it crosses no other minimal separator
[6,34]. The process of repeatedly choosing a (non-clique) minimal separator of
a graph and saturating it, until there is no non-clique minimal separator left,
results in a minimal triangulation. The substars of a given vertex x are pairwise
non-crossing [6].
Given a graph G = (V,E) and a minimal triangulation H = (V,E + F ) of G,

any minimal separator S of H is a minimal separator of G, and G(V − S) has
the same connected components as H(V − S). Any clique minimal separator of
G is a minimal separator of H [9,34].

Clique Separator Decomposition. The decomposition by clique minimal
separators decomposes a graph (in a unique fashion) into atoms (also called
MP-subgraphs [28]), which are characterized as maximal connected subgraphs
containing no clique separator. In a chordal graph, the atoms are the maximal
cliques.
In [9] it was proved that the decomposition into atoms can be obtained by

repeatedly applying the following decomposition step, which we will call block
decomposition step, until none of the subgraphs obtained contains a clique sepa-
rator: let G = (V,E) be a graph, S a clique minimal separator of G, {C1 . . . Cp}
be the connected components of G(V −S); decompose the graph into the follow-
ing subgraphs: G((C1) ∪N(C1)) . . . G((Cp) ∪N(Cp)), which we will call blocks.
Note that N(Ci) is included in S and is a clique minimal separator in its own
right.

Property 2. [9] After an application of the block decomposition step on a con-
nected graph G using a clique minimal separator S, all the other minimal sepa-
rators of G are partitioned into the blocks obtained, i.e. each minimal separator
is included in exactly one block.

3 Algorithmic Process

In a previous work, we used substars to compute a minimal triangulation [2,6].
The basic step, which is then applied to each vertex of the graph successively, is
very simple: choose an unprocessed vertex x; compute the substars of x and sat-
urate them. In this work, we will use a variant of this algorithm: we will combine
this basic step with a decomposition step by clique minimal separators. Since
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after saturation, the substars become clique minimal separators of the resulting
graph, we can apply the block decomposition step to all the substars, in order
to obtain the corresponding blocks. This results in the following decomposition
step for a vertex x:

Decomposition Step 1
– compute the set {C1 . . . Cp} of connected components of G(V − N [x]) and

the corresponding substars {S1 = N(C1) . . . Sp = N(Cp)};
– saturate all the substars, thus obtaining a graph G′;
– decompose the resulting graph into the neighborhood piece G′(N [x]) and the

blocks of the form G′(Ci ∪ Si).

After applying Decomposition Step 1, we will independently triangulate the
neighborhood piece; we will also recursively apply the algorithm to each of the
resulting blocks.
In any new block obtained during the recursive decomposition process, we will

carefully choose the next vertex x which will be the center of the next substar,
such that x is in the new separator but not in any of the other previously defined
ones:

Property 3. Let G = (V,E) be a graph, let x1 be a vertex of G, let C1 be a
connected component of G(V − N [x1]), let S1 = NG(C1) be the corresponding
substar of x1, let B1 be the block S1 ∪C1, let x2 be a vertex of S1 which is not
universal in B1, let C2 be a connected component of V − (N [x2] ∪ S1) in the
graph induced by B1, let S2 = NG(C2) be the corresponding substar of x2; then
S2 − S1 contains at least one vertex.

Proof. Suppose by contradiction that S2 − S1 is empty; since S1 is a minimal
separator of G, x2, which is in S1, must see some vertex z in C1; thus z is in
C1−C2, so C1 �= C2, so S1 �= S2. Let v be any vertex of C2; since C2 is connected,
there must be a chordless path P in C2 from v to z; let w be the first vertex of
P to be in C1 − C2; w by definition is in S2, as it is in N(C2), but it is not in
S1, a contradiction.

The benefit is that in the new block B2 = S2 ∪C2, all the already computed fill
edges are incident to x2, and thus will not be traversed when searching for the
substars of x2 in block B2. Moreover, we will be moving along a chordless path
during the recursive descent, as the newly chosen vertex x2 will be adjacent to
its father vertex x1, but not to the father of x1. The algorithm stops when there
are no new substars defined for the chosen vertex x in the new subgraph, which
means that x is universal in the block.
By Property 2, after an application of Decomposition Step 1, the remaining

minimal separators are partitioned into the various subgraphs obtained. There-
fore, when processing these subgraphs separately, we obtain the fill edges defin-
ing a minimal triangulation H of G, the minimal separators of H and the clique
minimal separators of G.
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We can initiate the algorithm with a vertex which belongs to a moplex, which
is easy to find according to Property 1; after this minimal separator is satu-
rated, the neighborhood piece is a clique, so no additional effort is required to
triangulate it.
This procedure works on general graphs. However, the time complexity may

not be interesting, because the successive neighborhood pieces are not easy to
triangulate except for the first one, and the substars defined at a given step may
overlap. In fact, checking whether the substars are clique separators and if not,
computing the fill edges necessary to saturate them, can be costly or require a
non-trivial data structure as is the case of the algorithm from [6]. Finally, when
the blocks overlap, a given vertex may be processed many times, with possibly
huge edge overlaps caused by copying the saturated substars.
For claw-free graphs, however, we will establish the following properties, which

will make this an efficient process.

– The first property is that in a claw-free graph, when we initiate the algorithm
by choosing a vertex x in a moplex, x defines a single substar (Corollary 1)
and thus a single block to start with.

– The second property is that if we initiate our algorithm as described above, at
each step of the process, the neighborhood piece obtained is a co-bipartite
graph with a universal vertex added to it (Theorem 1 c)). A co-bipartite
graph can be triangulated in time proportional to the number of external
edges [11]. Moreover, the external edges of the different neighborhood pieces
encountered do not overlap, so traversing the fill edges will globally cost at
most f , where f is the number of fill edges.

– The third property is an important invariant of Decomposition Step 1: each
block obtained remains claw-free, even if the resulting global triangulation
is not claw-free (Theorem 1 b)).

– Finally, at each step processing vertex x, the substars are pairwise disjoint,
and the blocks are also pairwise disjoint (Theorem 1 a)). As a result, a given
vertex will not be processed more than once; moreover, not all vertices will
be processed, as only one vertex per substar is processed, which results in a
possibly linear complexity.

The algorithm moves along what we will refer to as its execution tree T : it will
define a succession of centers of substars, forming a partial subgraph which is
a tree. We will now prove the properties above, which are special for claw-free
graphs.

Lemma 1. Let G be a connected claw-free graph, let S be a minimal separa-
tor of G; then G(V − S) has exactly two components (which are thus both full
components).

Proof. Consider two full components C1 and C2 of G(V −S). By definition, every
vertex of S sees both C1 and C2. If there is a third component C3 of G(V − S),
then at least one vertex x ∈ S has at least one neighbor c3 ∈ C3, forming a claw
with two of its neighbors c1 ∈ C1 and c2 ∈ C2.
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Corollary 1. In a claw-free graph G = (V,E), any vertex x belonging to a
moplex defines only one substar S. Moreover, C = V −N [x] induces a connected
graph, and S = N(C).

Lemma 2. Let G = (V,E) be a claw-free graph, S a minimal separator of G,
C1 and C2 the full components of G(V − S). For any vertex x of S, the sets
N(x) ∩ C1 and N(x) ∩C2 are cliques.

Proof. As C1 and C2 are full components of G(V −S), any vertex x of S sees both
C1 and C2. If there were two non-adjacent vertices in N(x)∩Ci, say c1, c

′
1 ∈ C1,

then x would form a claw together with c1, c
′
1 and any of its neighbors c2 ∈ C2

(or vice versa).

Theorem 1. Consider a claw-free graph G = (V,E) and apply Decomposition
Step 1 using a vertex x. Let G′ be the graph obtained from G after saturating all
the substars of x. Furthermore, for any connected component C of G(V −N [x]),
let S = NG(C) be the corresponding substar of x and B = G′(S ∪ C) be the
corresponding block. Then we have:

a) the substars of x as well as the resulting blocks are pairwise disjoint;
b) all the blocks are claw-free subgraphs of G′;
c) in any block B = G′(S ∪C), let us choose a vertex x′ in S; the neighborhood

piece G′(N [x′]) is a co-bipartite graph with x′ as additional universal vertex.

Proof. Consider a claw-free graph G and adopt the above notations:

a) The substars of x are pairwise disjoint: suppose vertex x has 2 non-disjoint
substars, Si = N(Ci) and Sj = N(Cj), and let y be a vertex in Si ∩ Sj ;
y must see some vertex yi in Ci, and y must see some vertex yj in Cj ;
{y, yi, yj , x} form a claw with center y. The blocks are pairwise disjoint,
as each substar results in a unique block: no substar can define more that 2
connected components by Lemma 1; one component contains x, so the other,
C, defines a unique block.

b) Every block B is claw-free: suppose by contradiction that B fails to be claw-
free; since the only added edges compared to the input graph in B are the fill
edges inside S, the claw in B must have its center in S. Let s be the center
of a claw; since S is a clique in B, there must be 2 non-adjacent vertices in
C which participate in the claw; but by Lemma 2, the neighborhood of s in
C must be a clique, a contradiction.

c) The neighborhood piece G′(N [x′]) is a co-bipartite graph with the universal
vertex x′ added to it: one part of this neighborhood is a minimal separator S
which has been saturated, as the processed vertex is chosen inside the min-
imal separator which defined the new block, and the other part is a clique
by Lemma 2.

Example 1. Let us illustrate our process with the simple example shown in
Figure 1.
a) Vertex x0 is chosen first.
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Fig. 1. The decomposition steps applied to a claw-free graph G

b) N(x0) is a minimal separator, which is S0 = {u, x1}, corresponding to the
connected component V − {x0, u, x1} of V −N [x0].
c) Fill edge ux1 is added, and the neighborhood piece {x0, u, x1} as well as the
block B1 = V − x0 are defined.
d) In block B1, x1 is chosen in S0; NB1(x1) = {u, x2, w, x4}; the connected com-
ponents of V −N [x1] in B1 are: C1 = {v, x3} and C′

1 = {z}; the corresponding
minimal separators are S1 = {u, x2} and S′

1 = {w, x4}; saturating S1 adds fill
edge ux2; S

′
1 is already a clique and thus is a clique minimal separator of the

input graph G.
e) Block B2 = {u, x2, v, x3} is defined by S1 and block B4 = {w, x4, z} is de-
fined from S′

1. The neighborhood piece P1 = N [x1] defines a co-bipartite graph
N(x1) = {u, x2, w, x4}, which is already chordal, so no fill edge is added; there
is only one minimal separator in this co-bipartite graph, namely the articulation
point {x2}, so {x2} ∪ {x1} = {x1, x2} is the unique associated (clique) minimal
separator of G.
f) In block B2, vertex x2 is chosen in S1 − S0; in B2, N(x2) = {u, x3}, defin-
ing only one connected component: {v}; the corresponding substar is {u, x3},
fill edge ux3 is added. The vertex x2 becomes simplicial, so the corresponding
neighborhood piece is complete and does not need to be processed.
g) Block B3 = {u, x3, v} is then recursively defined; vertex x3 is chosen; x3

is simplicial and universal, so this branch of the recursive algorithm stops.
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Afterwards, it only remains to choose x4 in block B4; x4 is likewise simplicial
and universal, so the algorithm terminates.
h) The resulting minimal triangulation is not claw-free, although each block and
each piece was claw-free: the triangulation has a claw {u, v, x2, x0} with center u.
i) The execution tree has a height of 3, requiring 3 linear-time graph searches
globally; only 5 vertices are processed, out of a total of 9 vertices. Note that in
the input graph, the longest path is of length 6.

4 The Algorithm

We now present our algorithm, consisting in a main algorithm (Claw-Free TRI-
DEC), which initiates the process and a recursive algorithm (REC), which is
called by the main algorithm. REC in turn uses another algorithm [11] which
for a co-bipartite graph computes a minimal triangulation represented by the set
F ′ of fill edges, the set S ′ of pairwise non-crossing minimal separators, and the
set K ′ of clique minimal separators of the co-bipartite graph. We first present
the algorithms Claw-Free TRI-DEC and REC in Section 4.1 and, for the sake of
completeness, in Section 4.2 also the algorithmic process from [11] to compute
a minimal triangulation of a co-bipartite graph.

4.1 Algorithms Claw-Free TRI-DEC and REC

Theorem 2. Given a claw-free graph G = (V,E), Algorithm Claw-Free TRI-
DEC computes a minimal triangulation of G, represented by a set F of fill edges,
and the minimal separators of G′ = (V,E + F ), as well as the set of clique
minimal separators of G in O(f + km) time, where f = |F |, k is the height of
the execution tree and m = |E|.

Proof. To initialize our algorithm, let y be the vertex numbered 1 by an execution
of LexBFS on a claw-free graph; note that y belongs to a moplex due to Property
1. By Corollary 1, y has only one substar, which is S0 = N(C0), where C0 =
V −N [y]; this costs O(m) time.
As the center of each new substar, we select a vertex xi in NG(Ci)−S, which

always exists according to Property 3.
The Decomposition Step 1 is obviously properly applied in REC and produces

a neighborhood piece and the necessary blocks with a single graph search. All
the resulting blocks are again claw-free by Theorem 1 b) which guarantees a
proper recursion. No fill edge is traversed in a given block, as all fill edges are
incident to the vertex chosen as center of the next substar, so this search can be
done in the input graph in O(m) time.
Because the substars and blocks are pairwise disjoint at each step (Theorem

1 a)), there will be no extra cost incurred by searching the substars to determine
which are clique minimal separators and which need to be filled.
The neighborhood piece without x is co-bipartite according to Theorem 1 c);

it was shown in [11] that, given a co-bipartite graph with set of external edges
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ALGORITHM Claw-Free TRI-DEC
Input : A claw-free graph G = (V,E).
Output: A set S of minimal separators defining a minimal triangulation of G,

the corresponding set F of fill edges, the set K of clique minimal
separators of G, and an execution tree T of G.

y ← vertex 1 by LexBFS ; C0 ← V −N [y]; S0 ← NG(C0); x0 ← a vertex of S0;
F ← ∅; T ← {y}; // T is a tree with only one node;
S ← S0; //minimal separators of the triangulation;
K ← ∅; //clique minimal separators of G;
if S0 is a clique then K ← K + {S0};
REC(S0, C0, x0);

REC
Input : a minimal separator S of G, a set C of vertices which together with S

defined a block in the father graph, and a vertex x of S.
Output: modification of global variables.

B ← G(S ∪ C); // B is the new block;
K ← NG(x) ∩ C; X ← K ∪ S; // X is the closed neighborhood of x in B;
G′ ← G(X − {x}); // G′ is the co-bipartite graph;
foreach connected component Ci of B(V −X) do

Si ← NG(Ci); S ← S + S; //Si is a substar of x;
if Si is not a clique then F ′

i ← set of fill edges needed to saturate Si;
else K ← K + S;
G′ ← G′ + F ′

i ; F ← F + F ′
i ;

(F ′,S ′,K ′) ← set of fill edges, set of minimal separators and set of clique
minimal separators obtained by computing a minimal triangulation of the
co-bipartite graph G′;
F ← F + F ′;
foreach minimal separator S in S ′ do S ← S + {S + {x}};
foreach clique minimal separator S in K ′ do K ← K + {S + {x}};
foreach substar Si of x do

CHOOSE a vertex xi in NG(Ci)− S;
T ← add node xi and edge xxi to T ;
REC(Si, Ci, xi);

Eext, one can compute in O(|Eext|) time: a minimal triangulationH = (V,E+F )
of G, the set of minimal separators of H , the set of fill edges F , and the set of
clique minimal separators of G. It is easy to see that if G′ is a graph with a
universal vertex x, then S is a minimal separator of G if and only if S − {x} is
a minimal separator of G−{x}, and S is a clique minimal separator of G if and
only if S−{x} is a clique minimal separator of G−{x}. The only fill edges to add
are external edges; no two neighborhood pieces have common external edges: in
each new block S ∪C defined, each external edge has one endpoint in S and the
other in C; the previous neighborhood piece contained S but no vertex of C;
thus we avoid encountering each fill edge more than once. As a result, processing
a neighborhood piece requires O(m + f ′) time, where f ′ is the set of fill edges
which must be added to the neighborhood piece to saturate the substars of x,
and globally, processing all the neighborhood pieces costs O(m+ f) time.
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In the course of Algorithm Claw-Free TRI-DEC on a claw-free graph G, all
the minimal separators of G are encountered, and thus all the clique minimal
separators of G are encountered: each minimal separator of G belongs either to
a neighborhood piece or is a substar at some step; each minimal separator of the
co-bipartite graph corresponding to the neighborhood piece is produced [11].
Each time the execution tree T has a branch, the graph is partitioned into

several disjoint blocks, by Theorem 1 a). Therefore the set of edges of G is also
partitioned, so each of the k layers of T can be processed globally in linear time.
Thus if k is the height of T , Algorithm Claw-Free TRI-DEC runs in O(f + km).

Note that in some graphs and with some executions, k may be small compared
to the length of a longest chordless path in the graph, as in Example 1.

4.2 Minimal Triangulation of a Co-bipartite Graph

Recently [11], an efficient process for computing a minimal triangulation of a
co-bipartite graph was presented. Given a co-bipartite graph G = (K1 +K2, E)
built on clique sets K1 and K2, this algorithm works in the complement G =
(K1 +K2, E) of G; G is thus a bipartite graph.
The process works as follows: first, a maximal chain of the lattice formed by

all the maximal bicliques of G is computed, thus computing a minimal subgraph
of G which is a chain graph:

ALGORITHM MAX-CHAIN[11]
Input : A bipartite graph G′ = (K1 +K2, E

′)
Output: A maximal chain C
prefix ← ∅ ; C ← ∅;
repeat

Choose a vertex x of maximum degree in K1; X ← {x};
Y ← N(x);
G′ ← remove x and K2 − Y from G′;
U ← set of universal vertices of G′;
X ← X + U ;
G′ ← remove all vertices of U from G′;
add (prefix+X,Y ) to C ;
prefix ← prefix+X;

until G′ is empty ;

Theorem 3. [11] Algorithm Max-Chain computes a maximal chain in O(min
(|E′|, |E′|)) time.

Given a maximal chain of a bipartite graph ((X1, Y1), (X2, Y2), . . . , (Xp, Yp)),
the following inclusions hold: X1 ⊂ X2 ⊂ . . . Y1 and Yk ⊂ . . . Y2 ⊂ Y1.
It was shown in [10] that the sets ((K1 −X1) ∪ (K2 − Y1)) . . . ((K1 −Xp) ∪

(K2−Yp)) form a maximal set of pairwise non-crossing minimal separators of the
corresponding co-bipartite graph. A corresponding minimal triangulation of the
co-bipartite graph is obtained by adding to the co-bipartite graph any missing
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edge from the Cartesian products (K1 − X1) × (K2 − Y1), (K1 − X2) × (K2 −
Y2) . . . (K1 −Xk)× (K2 − Yk).
Since X1 ⊂ X2 ⊂ . . . Y1 and Yk ⊂ . . . Y2 ⊂ Y1, we need only to check for the

absence of an edge in (K1 −X1)× (K2 − Y1), (K1 −X2)× (Y1 − Y2), . . . , (K1 −
Xk)× (Yk−1 − Yk), which can also be done in O(min(|E′|, |E′|)) time.

5 Robustness Properties of Algorithm Claw-Free
TRI-DEC

Algorithm Claw-Free TRI-DEC can be used with a non-claw-free input, and will
sometimes yield a minimal triangulation. If it fails to do so, we can detect a
claw.
Let us consider the situation when the input graph G is not claw-free.
On the one hand, a neighborhood piece G′(N [x]) may fail to define a co-

bipartite graph G′(N(x)) with cliques K1 and K2; while K1 is a clique by sat-
uration, K2 is not necessarily a clique. In a claw-free graph, K2 is a clique by
virtue of Lemma 2; if this is not the case, let v, v′ be two non-adjacent vertices
in K2, let y be the father of x in the execution; clearly, {x, v, v′, y} induce a claw
with center x in G. Testing at each step whether these neighborhoods are cliques
costs O(m) time, so these claws will be found at no extra cost.
On the other hand, the substars of a vertex x may fail to be disjoint. In this

case the graph has a claw: let y be the father of x in the execution; let C1 and
C2 be two connected components of G

′(V −N [x]) defining non-disjoint substars
and S2 = NG′(C2) of x; let v be in S1 ∩ S2, let v1 be in C1 ∩ NG′(v), let v2
be in C2 ∩ NG′(v); clearly, {v, v1, v2, y} induce a claw with center v in G. As
above, testing at each step whether these substars are disjoint costs O(m) time,
so these claws will be found at no extra cost.
When at each step the neighborhood piece is indeed co-bipartite and the

substars are indeed disjoint, the algorithm will run correctly, even if the input
graph contains a claw; such a claw could for example be included inside the first
minimal separator S0; the saturation of S0 will ‘hide’ that claw, but will not
prevent Algorithm Claw-Free TRI-DEC from running correctly.

6 Conclusion

We introduce new structural properties for the much-studied class of claw-free
graphs. This leads to a new algorithm, which computes a minimal triangula-
tion of a claw-free graph in O(f + km) time, where f is the number of fill edges,
and k is the height of the execution tree. When the graph is Pk-free for some
bounded value of k, the algorithm runs in linear time. Even in the case where
the graph is not Pk-free, the algorithm runs in linear time if the height of the
execution tree is small. In any case, for a claw-free input, the algorithm runs
in optimal O(nm) time, but we expect it to run faster than the other minimal
triangulation algorithms.
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Our algorithm computes, at the same time, the set of all minimal separators of
the minimal triangulation, as well as all the clique minimal separators of the
input graph; the decomposition by clique minimal separators can be computed
at no extra cost. The algorithm also defines a connected dominating set of the
graph, since the execution tree obtained is dominating by construction.
It is worth examining whether the algorithm can be streamlined to run in

linear time on quasi-line graphs, a subclass of claw-free graphs where the neigh-
borhood of every vertex partitions into two cliques.
The algorithm can be re-written into a robust algorithm, which, in the same

time bound, either computes a minimal triangulation of the input graph or
reports a claw. It would be interesting to identify some criteria for non-claw-free
graphs such that our robust version works without being disturbed by a claw.
A further question is whether the algorithm runs fast with other special

classes, such as some sparse graphs.
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Abstract. The only available combinatorial algorithm for the minimum
weighted clique cover (mwcc) in claw-free perfect graphs is due to Hsu
and Nemhauser [10] and dates back to 1984. More recently, Chudnovsky
and Seymour [3] introduced a composition operation, strip-composition,
in order to define their structural results for claw-free graphs; however,
this composition operation is general and applies to non-claw-free graphs
as well. In this paper, we show that a mwcc of a perfect strip-composed
graph, with the basic graphs belonging to a class G, can be found in poly-
nomial time, provided that the mwcc problem can be solved on G in poly-
nomial time.We also design a new, more efficient, combinatorial algorithm
for the mwcc problem on strip-composed claw-free perfect graphs.

Keywords: claw-free graphs, perfect graphs, minimum weighted clique
cover, odd pairs of cliques, strip-composed graphs.

1 Introduction

Given a graph G and a non-negative weight function w defined on the vertices
of G, a weighted clique cover of G is a collection of cliques, with a non-negative
weight yC assigned to each clique C in the collection, such that, for each vertex
v of G, the sum of the weights of the cliques containing v in the collection is
at least w(v). A minimum weighted clique cover of G (mwcc) is a clique cover
such that the sum of the weights of all the cliques in the collection is minimum.
When all weights are 1, a (minimum) weighted clique cover is simply called a
(minimum) clique cover. It is known that for a perfect graphG, the weight τw(G)
of a mwcc is the same as αw(G), the weight of a maximum weighted stable set
(mwss) of G, that is, a set of pairwise nonadjacent vertices such that the sum
of the weights of the vertices in the set is maximum.
In perfect graphs, the weight of a mwcc can be determined in polynomial

time by using Lovász’s θw(G) function. If one wants to compute also a mwcc
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of a perfect graph G (and not only the number τw(G)), a polynomial time al-
gorithm proposed by Grötschel, Lovász and Schrijver in [7] can be used. This
algorithm is not combinatorial and it uses the θw(G) function combined with
other techniques; however, for particular classes of perfect graphs, there also
exist polynomial time combinatorial algorithms.
This is the case, for instance, for claw-free perfect graphs, where combina-

torial algorithms for both the unweighted and the weighted version have been
proposed by Hsu and Nemhauser [9,10]. (A graph is claw-free if none of its
vertices has a stable set of size three in its neighborhood.) The algorithm for
the weighted case – in the paper we deal with this case, as it is more general
– is essentially a “dual” algorithm as it relies on any algorithm for the mwss

problem in claw-free graphs (we have, nowadays, several algorithms for this,
see [11,12,14,5,13,15]), and, in fact, builds a mwcc by a clever use of linear
programming complementarity slackness. The computational complexity of the
algorithm by Hsu and Nemhauser is O(|V (G)|5). To the best of our knowledge,
this is so far the only available combinatorial algorithm to solve the problem in
claw-free perfect graphs.
In the last years a lot of efforts have been devoted to a better understanding

of the structure of perfect graphs and of other relevant classes of graphs. Claw-
free graphs in particular have been investigated, with an outstanding series of
papers by Chudnovsky and Seymour (for a survey see [3]). The results by Chud-
novsky and Seymour show that claw-free graphs with stability number greater
than three are either fuzzy circular interval graphs (a generalization of proper
circular arc graphs, we do not give the definition, as it is not interesting for this
paper) or strip-composed, i.e., they are suitable composition of some basic graphs
(the formal definition is given in the next section). Understanding this “2-case”
structure of claw-free graphs has been the key for several developments for the
mwss problem [4,14,5] and the dominating set problem [8]. In particular, in [14]
it is shown that a mwss of a (non-necessarily claw-free) strip-composed graph,
with the basic graphs belonging to a class G, can be found in polynomial time by
solving a matching problem, provided that the mwss problem can be solved on
G in polynomial time. Building upon this result, new algorithms for the mwss

problem in claw-free graphs are given in [14] and [5].
In this paper, we provide an analogous of the result in [14] for the mwcc

problem. Namely, we show that a mwcc of a (non-necessarily claw-free) perfect
strip-composed graph, with the basic graphs belonging to a class G, can be
found in polynomial time, provided that the mwcc problem can be solved on G
in polynomial time. We point out that while the statement of this result goes
along the same lines of the result in [14], its proof is by far more challenging.
We apply this result to strip-composed claw-free perfect graphs, and provide
a O(|V (G)|3)-time algorithm for the mwcc problem that, differently from the
O(|V (G)|5)-time dual algorithm by Hsu and Nemhauser, has both a primal (on
each basic graph we directly compute a mwcc) and a primal-dual flavour (on
the composition of graphs we use a primal-dual algorithm for matching).
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We shall consider finite, simple, loopless, undirected graphs. When dealing
with multigraphs, we will say so explicitly. Let G be a graph. Denote by V (G)
its vertex set and by E(G) its edge set. For a subset V ′ ⊆ V (G), the j-th
neighborhood Nj(V

′) is the set of vertices u ∈ V (G) at distance j from the set
V ′. When V ′ = {v} we will write simply Nj(v) and when j = 1 we will write just
N(V ′) (resp. N(v)). We will denote by G[V ′] the subgraph of G induced by V ′,
and by G \ V ′ the subgraph of G induced by V (G) \ V ′. Two sets U,U ′ ⊂ V (G)
are complete (to each other) if every vertex in U is adjacent to all the vertices
in U ′. They are anticomplete (to each other) if no vertex of U is adjacent to a
vertex of U ′.
A claw is a graph formed by a vertex with three neighbors of degree one. An

odd hole is a chordless cycle of odd length at least 5. If H is a graph, a graph G
is called H-free if no induced subgraph of G is isomorphic to H .
A graph is cobipartite if its vertex set can be covered by two cliques. A cliqueK

of a connected graphG is distance simplicial if, for every j, its j-th neighborhood
is also a clique. In this case, G is distance simplicial w.r.t. K (or simply distance
simplicial). Note that a cobipartite graph is distance simplicial w.r.t. each of the
two cliques covering its vertex set. Also it is not difficult to see that distance
simplicial graphs are perfect.
The intersection graph of a family of sets C is the graph with vertex set C,

two sets in C being adjacent if and only if they intersect. The line graph L(G)
of a graph or multigraph G is the intersection graph of its edges. A graph H
is a line graph if there is a graph or multigraph G such that H = L(G) (G
is called a root graph of H). A star or a multistar is the set of edges incident
to a vertex v, while a triangle or multitriangle is a complete graph on three
vertices with possibly multiple edges. Amatching is a set of pairwise nonadjacent
edges of a graph (two edges are adjacent if they share a vertex). Note that the
multistars and multitriangles of a graph G correspond to the cliques of L(G),
while the matchings of G correspond to the stable sets of L(G). Note also that
the neighborhood of a vertex in a line graph can be always covered by two
cliques. A graph is quasi-line if the neighborhood of each vertex is cobipartite.
A quasi-line graph is, in particular, claw-free. Moreover, as observed by Hsu and
Nemhauser in [10], a claw-free perfect graph is indeed quasi-line.

2 The mwss Problem on Strip-Composed Graphs

Chudnovsky and Seymour [3] introduced a composition operation in order to
define their structural results for claw-free graphs. This composition operation
is general and applies to non-claw-free graphs as well.
A strip H = (G,A) is a graph G (not necessarily connected) with a multi-

family A of either one or two designated non-empty cliques of G. The cliques
in A are called the extremities of H , and H is said a 1-strip if |A| = 1, and a
2-strip if |A| = 2. Let G = (G1,A1), . . . , (Gk,Ak) be a family of k vertex disjoint
strips, and let P be a partition of the multi-set of the cliques in A1 ∪ . . . ∪ Ak.
The composition of the k strips w.r.t. P is the graph G that is obtained from the
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union of G1, . . . , Gk, by making adjacent vertices of A ∈ Ai and B ∈ Aj (i, j not
necessarily different) if and only if A and B are in the same class of the partition
P . In this case we also say that (G,P), where G = {(Gj ,Aj), j ∈ 1, . . . , k},
defines a strip decomposition of G. Note that we can assume w.l.o.g. that each
graph Gi is an induced subgraph of G.
We say that a graph G is strip-composed if G is a composition of some set

of strips w.r.t. some partition P . Each class of the partition of the extremities
P defines a clique of the composed graph, and is called a partition-clique. We
denote the extremities of the strip Hi by Ai = {Ai

1, A
i
2} if Hi is a 2-strip and by

Ai = {Ai
1} if Hi is a 1-strip. We often abuse notations, and when we refer to a

vertex of a strip (or to a stable set of a strip etc.) we indeed consider a vertex
(or a stable set etc.) of the graph in the strip.
The composition operation preserves some graph properties. Given a 2-strip

(G, {A1, A2}), the graph G+ is obtained from G by adding two vertices a1, a2
such that N(aj) = Aj , for j = 1, 2; for a 1-strip (G, {A1}) the graph G+ is
obtained from G by adding a vertex a1 such that N(a1) = A1. A strip (G,A) is
claw-free/quasi-line/line if the graph G+ is claw-free/quasi-line/line. The com-
position of claw-free/quasi-line/line strips is a claw-free/quasi-line/line graph
(see e.g. [5]).
Suppose we are given a graph G and its strip decomposition (G,P). In [14] it

is shown how to exploit this decomposition in order to solve the mwss on G.

Theorem 1. [14] Let G be the composition of strips Hi = (G
i,Ai) i = 1, . . . , k

w.r.t. a partition P. Suppose that for each i = 1, . . . , k one can compute a mwss

of Hi in time O(pi(|V (Gi)|)). Then the mwss problem on G can be solved in time

O(
∑k

i=1 pi(|V (Gi)|) +match(|V (G)|)), where match(n) is the time required to
solve the matching problem on a graph with n vertices. If pi(|V (Gi)|) is polyno-
mial for each i, then the mwss can be solved on G in polynomial time.

In order to prove their theorem [14], the authors replace every strip Hi with a
suitable simpler gadget strip Ti, that is a single vertex for each 1-strip and a
triangle for each 2-strip (in this second case the extremities are two different
edges of the triangle). Then they define a weight function on the vertices of
those simpler strips; for every strip Hi with extremities A

i
1 and Ai

2 this function
depends on the values αw(G

i), αw(G
i \Ai

1), αw(G
i \Ai

2), αw(G
i \ (Ai

1∪Ai
2)) and

αw(G
i \ (Ai

1ΔAi
2)). Thus, if one can compute a mwss of Gi in polynomial time,

then one can compute the weight function of the simpler strips in polynomial
time.
They define a suitable partition P̃ of the extremities of the gadget strips. In

this way they obtain a graph G̃ which is the strip-composition of the strips Ti,
i = 1, . . . , k, w.r.t. the partition P̃ , and, since the strips are line strips, this
graph is line. Moreover, from the construction of the simpler strips and of the
weights, it is easy to translate a mwss of G̃ into a mwss of G. Finally, as G̃ is
a line-graph, they can find a mwss of G̃ by building the root graph of G̃ and
computing a maximum weighted matching in this graph.
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3 The mwcc Problem on Strip-Composed Perfect Graphs

Suppose we are given a perfect graph G that is the composition of strips H1 =
(G1,A1), . . . , Hk = (Gk,Ak) w.r.t. a partition P , and a non-negative weight
function w on V (G). In this section we will show how to exploit the decomposi-
tion in order to solve the mwcc on G. We will follow the approach outlined in
the previous section for the mwss; however, as we explain in the following, the
task is now much more challenging.
We will compute a mwcc of G in three steps. Step 1. We replace each strip

Hi by a simple gadget strip H̃i = (G̃i, Ãi) and compose the strips H̃i with
respect to a suitable partition of the multi-set

⋃
i=1..k Ãi so as to obtain a graph

G̃. However, we cannot use the gadget strips defined in the previous section, as
the graph G̃ might be imperfect: this will lead us to define four different new
gadgets, with different parity properties, that are such that G̃ is odd hole free
and line, thus perfect [16]. We also define a suitable weight function w̃ on the
vertices of G̃, as well as new weight functions w1, . . . , wk on the vertices of each
strip. Step 2. Following [16], we may find a mwcc of G̃, w.r.t. the weight w̃, by
running a primal-dual algorithm for the maximum weighted matching [6] on the
root graph of G̃. Step 3.We reconstruct a mwcc of G from a mwcc of G̃ and a
mwcc of each of the strips Hi w.r.t. the weight function wi. Again, this will be
more involved than for the mwss problem, because unfortunately there is not
always a direct correspondence between cliques of G̃ and cliques of G. Moreover,
for some 2-strips Hi = (G

i,Ai), besides a mwcc of the strip, we will also need to
compute a mwcc of some auxiliary graphs associated to the strip: the graph Gi•
that is obtained from Gi by adding a new vertex x complete to both Ai

1 and Ai
2

and the graph Gi
= that is the graph obtained from Gi by making Ai

1 complete
to Ai

2.
In order to give a few more details we need some additional definitions. Let

U,W ⊆ V (G). We call a path P = v1, . . . , vk (k ≥ 1) a U–W path if P is
chordless, v1 ∈ U , vk ∈ W , and vi /∈ U ∪ W for 2 ≤ i ≤ k − 1. A 2-strip
Hi = (Gi,A1 = {Ai

1, A
i
2}) will be called non-connected if there is no Ai

1–A
i
2

path, and connected otherwise. We say that a connected 2-strip Hi is even (resp.
odd) if every Ai

1–A
i
2 path has even (resp. odd) length. If a connected 2-strip has

both even and odd length Ai
1–A

i
2 paths, then we say that Hi is an even-odd

strip. We call an odd or even-odd strip Hi odd-short if every odd Ai
1–A

i
2 path

has length one, and we call an even or even-odd strip Hi even-short if every even
Ai

1–A
i
2 path has length zero (i.e., it consists of a vertex in Ai

1 ∩ Ai
2). (With the

notation of [1], Hi is an odd strip if and only if A
i
1 and Ai

2 are an odd pair of
cliques in Gi.)

Theorem 2. Let G be a perfect graph, composition of strips Hi = (Gi,Ai)
i = 1, . . . , k w.r.t. a partition P. For each i = 1, . . . , k let O(pi(|V (Gi)|)) be the
time required to compute:
– a mwcc of Gi and of Gi

•, if Hi is an odd-short strip and Gi
• is an induced

subgraph of G (thus perfect);
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– a mwcc of Gi and of Gi
=, if G

i
= is an induced subgraph of G (thus perfect),

Ai
1 and in Ai

2 belong to the same class of P, and there is an A1–A2 path of
length two in the strip. In this case, when solving the mwcc on Gi

=, one can
restrict to the case where the weight function wi defined on V (Gi

=) is such
that αwi(Gi

=) = αwi(Gi
= \ (Ai

1 ∪ Ai
2));

– a mwcc of Gi else.
Then the mwcc problem on G can be solved in time O(

∑k
i=1 pi(|V (Gi)|) +

match(|V (G)|)), where match(n) is the time required to solve the matching prob-
lem on a graph with n vertices. If pi(|V (Gi)|) is polynomial for each i, then the
mwcc can be solved on G in polynomial time.

We devote the rest of this section to provide more details about Theorem 2 and
its proof. We first deal with the gadget strips (that in this section we simply
call gadgets) that will compose the graph G̃ and establish the relation between
τw(G) and τw̃(G̃). We make a heavy use of duality between the mwcc and the
mwss problem: the fact that for every induced subgraph J of G, αw(J) = τw(J),
is due to the perfection of G. We use this relation to easily prove the correctness
of the weight function defined on the vertices of each gadget.
To design the gadgets, we delve into three cases: (i) Hi = (Gi,Ai) is a 1-

strip; (ii) Hi = (Gi,Ai) is a 2-strip with the extremities in the same class of
the partition P ; (iii) Hi = (G

i,Ai) is a 2-strip with the extremities in different
classes of the partition.
(i)−(ii) For the first two cases the gadget will be a single vertex. In particular

we define the trivial 1-strip H̃0
i = (T i

0, Ãi
0), where the graph T i

0 consists of a
single vertex ci, and Ãi

0 = {{ci}}. Moreover, for (i) we let δi1 = αw(G
i \Ai

1) and
define w̃(ci) = αw(G

i) − δi1. For (ii) we let δ
i
1 = αw(G

i \ (Ai
1 ∪ Ai

2)) and define
w̃(ci) = max{αw(G

i \Ai
1), αw(G

i \Ai
2), αw(G

i \ (Ai
1�Ai

2))} − δi1. Finally, if we
use H̃0

i instead of Hi in the composition, the new partition is P ′ := (P \ {P})∪
{(P \ Ai) ∪ Ãi}, where P ∈ P was the set containing Ai. We can show that
replacing a 1-strip or a 2-strip with both extremities in the same class of P by
its corresponding gadget strip makes the value of the mwss drop by δi1.
(iii) Let us consider a 2-strip Hi = (G

i,Ai) with the extremities in different
classes of the partition P . We want to introduce a gadget H̃i = (G̃

i, Ãi) and a
new weight function w̃ on the vertices of G̃i in such a way that, when replacing
Hi by H̃i in the strip-composition for a suitable partition, the difference between
the weights of the mwss of the original graph and the mwss of the new graph
is δi1, where δ

i
1 = αw(G

i \ (Ai
1 ∪ Ai

2)).
This is satisfied by the gadget defined in [14], but it is an even-odd strip,

and we need to take into consideration the parity of the strips, otherwise the
composition may introduce odd holes. We will introduce three gadgets (an odd
strip, an even strip and a non-connected one). None of them will work for all the
cases, but depending on the fact that the relation αw(G

i \Ai
1) +αw(G

i \Ai
2) �

αw(G
i)+δi1 is satisfied with =, > or <. We will see later on that the satisfaction

of this relation is strictly related to the parity of the strips. Given a 2-strip
Hi = (G

i,Ai), we define three associated trivial strips as follows:
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(a) H̃1
i = (T i

1, Ãi
1) such that V (T i

1) = {ui
1, u

i
2}, E(T i

1) = ∅, Ãi
1 = {Ãi

1, Ã
i
2}

and Ãi
1 = {ui

1}, Ãi
2 = {ui

2}. The new weight function w̃ gives the following
weights to the vertices of T i

1: w̃(u
i
1) = αw(G

i \ Ai
2) − δi1, w̃(u

i
2) = αw(G

i \
Ai

1)− δi1.
(b) H̃2

i = (T
i
2, Ãi

2) such that V (T
i
2) = {ui

1, u
i
2, u

i
3}, E(T i

2) = {ui
1u

i
2, u

i
2u

i
3}, Ãi

2 =
{Ãi

1, Ã
i
2} and Ãi

1 = {ui
1, u

i
2}, Ãi

2 = {ui
3}. The new weight function w̃ gives

the following weights to the vertices of T i
2: w̃(u

i
1) = αw(G

i)− αw(G
i \ Ai

1),
w̃(ui

2) = αw(G
i \Ai

2)− δi1, w̃(u
i
3) = αw(G

i \Ai
1)− δi1.

(c) H̃3
i = (T

i
3, Ãi

3) such that V (T
i
3) = {ui

1, u
i
2, u

i
3}, E(T i

3) = {ui
1u

i
2, u

i
2u

i
3}, Ãi

3 =
{Ãi

1, Ã
i
2} and Ãi

1 = {ui
1, u

i
2}, Ãi

2 = {ui
2, u

i
3}. The new weight function w̃

gives the following weights to the vertices of T i
3: w̃(u

i
1) = αw(G

i \Ai
2)− δi1,

w̃(ui
2) = αw(G

i)− δi1, w̃(u
i
3) = αw(G

i \Ai
1)− δi1.

If we use either H̃1
i , H̃

2
i or H̃

3
i instead ofHi in the composition, the new partition

is P ′ := P \ {P1, P2} ∪ {(P1 \ {Ai
1})∪ {Ãi

1}, (P2 \ {Ai
2})∪ {Ãi

2}}, where P1, P2 ∈
P : Ai

1 ∈ P1, A
i
2 ∈ P2.

Lemma 1. Let G be the composition of strips H1 = (G
1,A1), . . . , Hk = (G

k,Ak)
w.r.t. a partition P, and let w be a non-negative weight function defined on
the vertices of G. Suppose that H1 is a 2-strip with the extremities in different
classes of the partition P. For some j ∈ {1, 2, 3}, let G′ be the composition of
strips H̃j

1 = (T
1
j ,A1

j ), H2 = (G
2,A2), . . . , Hk = (G

k,Ak) w.r.t. the partition P ′

previously defined. Let w′ be the weight function defined on the vertices of G′ as
w′(v) = w(v) for v ∈

⋃
i=2..k V (G

i), and w′(v) = w̃(v) for v ∈ V (T 1
j ).

(a) If j = 1 and αw(G
1 \ A1

1) + αw(G
1 \ A1

2) = αw(G
1) + δ11, then αw(G) =

αw′(G′) + δ11 .
(b) If j = 2 and αw(G

1 \ A1
1) + αw(G

1 \ A1
2) ≥ αw(G

1) + δ11, then αw(G) =
αw′(G′) + δ11 .

(c) If j = 3 and αw(G
1 \ A1

1) + αw(G
1 \ A1

2) ≤ αw(G
1) + δ11, then αw(G) =

αw′(G′) + δ11 .

Lemma 2. The following relations hold depending of the connection and parity
of a 2-strip H1 = (G

1,A1):
(a) if it is non-connected then αw(G

1 \A1
1) + αw(G

1 \A1
2) = αw(G

1) + δ11;
(b) if it is odd and G1 perfect then αw(G

1 \A1
1) + αw(G

1 \A1
2) ≥ αw(G

1) + δ11;
(c) if it is even and G1 perfect then αw(G

1 \A1
1)+αw(G

1 \A1
2) ≤ αw(G

1) + δ11.

We now give a method to choose one gadget for every 2-strip Hi. If we can
calculate the values of the minimum weighted clique covers τw(G

i), τw(G
i \Ai

2),
τw(G

i \Ai
1) and τw(G

i \ (Ai
1 ∪ Ai

2)) for each strip, we can determine which one
of these three relations holds
1. τw(G

i \Ai
1) + τw(G

i \Ai
2) = τw(G

i) + τw(G
i \ (Ai

1 ∪ Ai
2))

2. τw(G
i \Ai

1) + τw(G
i \Ai

2) > τw(G
i) + τw(G

i \ (Ai
1 ∪ Ai

2))
3. τw(G

i \Ai
1) + τw(G

i \Ai
2) < τw(G

i) + τw(G
i \ (Ai

1 ∪ Ai
2))

If 1) holds we can simply use H̃1
i as a suitable gadget. If 2) holds we know that

the strip is either odd or even-odd and we can use H̃2
i as a suitable gadget. If 3)

holds we know that the strip is either even or even-odd and we can use H̃3
i as a

suitable gadget.
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Remark 1. Let G be the composition of the stripsH1, H2, . . . , Hk with respect to
a partition P and suppose that G is odd hole free. Let G′ be the composition of
H̃j

1 , H2, . . . , Hk with respect to the partition P ′ previously defined. For j = 0, 1,
G′ is odd hole free. If H1 is odd or even-odd and j = 2, then G′ is odd hole free.
If H1 is even or even-odd and j = 3, then G′ is odd hole free.

Strips H̃0
i , H̃

1
i , H̃

2
i , H̃

3
i are line strips. So, if we iteratively replace each strip Hi

by the suitable gadget H̃j
i , according to the validity of 1, 2 or 3, the graph G̃ we

obtain is odd hole free and a line graph, thus perfect [16]. As a corollary of the

previous Lemmas, it follows that αw(G) = αw̃(G̃) +
∑k

i=1 δ
i
1. Since both graphs

are perfect, by duality the same relation holds for the values of the mwcc of the
two graphs.

G̃ is a line, perfect graph. Let H be a multigraph that is a root of G̃. Fol-
lowing [16], we may build a mwcc of G̃, by a primal-dual algorithm for the
maximum weighted matching [6]: this is because each maximal clique of G̃ cor-
responds to either a multistar of H or to a multitriangle of H . We therefore
compute a mwcc of G̃, w.r.t. the weight w̃. We now need to “translate” this
into a mwcc of G, w.r.t. the weight w. However, there is a catch: unfortunately
there are some cliques of G̃ that do not correspond to any clique of G. In order
to deal with this problem, we detail the structure of H .

Remark 2. Suppose that P = {P1, . . . , Pr}. Then H is composed by: a set of
vertices {x1, . . . , xr}, each xi corresponding to the class Pi of P ; an edge xjx�

for each strip Hi such that we use H̃
3
i in the composition and such that A

i
1 ∈ Pj

and Ai
2 ∈ P� (this edge corresponds to the vertex ui

2 of T
i
3); vertices z

i
j and zi�

and edges zijxj and z
i
�x� for each strip Hi such that we use H̃

3
i in the composition

and such that Ai
1 ∈ Pj and Ai

2 ∈ P� (the edges z
i
jxj and zi�x� correspond to the

vertices ui
1 and ui

3 of T
i
3, respectively); a vertex yij� and edges y

i
j�xj and yij�x�

for each strip Hi such that we use H̃
2
i in the composition and such that A

i
1 ∈ Pj

and Ai
2 ∈ P� (the edges y

i
j�xj and yij�x� correspond to the vertices u

i
2 and ui

3 of

T i
2, respectively); a vertex zij and an edge zijxj for each strip Hi such that we

use H̃2
i in the composition and such that A

i
1 ∈ Pj (the edge corresponds to the

vertex ui
1 of T

i
2); a vertex zij and an edge zijxj for each strip Hi such that we

use H̃0
i in the composition and such that A

i
1 ∈ Pj (the edge corresponds to the

vertex ci of T i
0); vertices z

i
j and zi� and edges z

i
jxj and zi�x� for each strip Hi

such that we use H̃1
i in the composition and such that A

i
1 ∈ Pj and Ai

2 ∈ P� (the
edges zijxj and zi�x� correspond to the vertices u

i
1 and ui

2 of T
i
1, respectively).

The maximal cliques of G̃ correspond to the multistars and multitriangles of H ,
i.e., the multistars centered at xj for j = 1, . . . , r, the possible multitriangles
xixjx� for i, j, 	 pairwise distinct elements in {1, . . . , r}, and, for each vertex yij�,
either the star centered at yij� or the multitriangle y

i
j�xjx� with j, 	 ∈ {1, . . . , r}

and j �= 	, depending on the existence of edges joining xj and x�. To each of

these cliques of G̃ we will assign a clique of G, except for the case of cliques
involving y-vertices. We have to deal with those cliques in a different way.



30 F. Bonomo, G. Oriolo, and C. Snels

To the clique of G̃ corresponding to the multistar centered at xj in H , we will

assign in G the partition-clique
⋃

Ai
d∈Pj

Ai
d. To the clique of G̃ corresponding

to the multitriangle xixjx� in H , we will assign in G the clique induced by⋃
d∈Iij�

(Ad
1∩Ad

2), where Iij� is the set of indices d of 2-strips in the decomposition,

that have been replaced by H̃3
d , and having their two extremities belonging to two

different sets in {Pi, Pj , P�} (we can prove that these intersections are nonempty).
Now we want to show how we deal with the star centered at yij� and the

multitriangles yij�xjx�. As we have already said, these two structures correspond

to cliques in G̃, but the corresponding cliques in G̃ cannot be extended to cliques
of G. Thus we have to show that we can rearrange the weight function of the
vertices of the strips in order to get a cover with the same value which includes
only cliques. First we show that if we have a multitriangle yij�xjx� in H , then the

2-strip (Gi,Ai) is odd-short, and there is a vertex x complete to both extremities
of it in G. Then we prove the following lemma. This lemma essentially says that
if we have assigned a weight a > 0 to the triangle yij�xjx� then we can discard

this triangle and ask for a mwcc of value δi1 + a in the graph induced by Gi

and Ak
1 ∩ Ak

2 for every k such that Ak
1 ∩ Ak

2 is complete to Ai
1 ∪ Ai

2 (this set of
vertices form a clique), in such a way that

⋃
k(A

k
1 ∩Ak

2) is covered by a quantity
greater or equal to a. W.l.o.g. we may consider that we need to cover just an
extra vertex x of weight a complete to Ai

1 ∪ Ai
2.

Lemma 3. Let Hi = (G
i,Ai) be a 2-strip. Let Gi

• be the graph obtained from Gi

by adding a new vertex x complete to both Ai
1 and Ai

2. Let w be a non-negative
weight function defined on the vertices of Gi. Let δi1 = αw(G

i \ (Ai
1 ∪ Ai

2)). Let
a, b1, b2 be non-negative numbers such that b1 ≥ αw(G

i)−αw(G
i \Ai

1), a+ b1 ≥
αw(G

i \ Ai
2) − δi1, a + b2 ≥ αw(G

i \ Ai
1) − δi1, and let wi be defined as wi(v) =

w(v) for v ∈ V (Gi) \ (Ai
1 ∪ Ai

2), w
i(v) = max{0, w(v) − b1} for v ∈ Ai

1 \ Ai
2,

wi(v) = max{0, w(v)− b2} for v ∈ Ai
2 \Ai

1, and wi(v) = max{0, w(v)− b1− b2}
for v ∈ Ai

1 ∩ Ai
2. Then αwi(Gi

•) = δi1 + a. In particular, αwi(Gi) ≤ δi1 + a.

We underline that the last sentence of Lemma 3 suggests also how to “translate”
the weight a possibly assigned to the star centered in yij� and, in general, how

to deal with the strips that have been replaced by H̃2.
Now we want to show that if we have a weighted clique cover of G̃, we can

cover the “residual” weight wi of each strip Hi = (G
i,Ai) with a weighted clique

cover of value at most δi. The following lemmas give the desired result for 1-
strips and 2-strips that have been replaced with H̃1 or H̃3. In particular, Lemma
6 considers the case of 2-strips with a non empty intersection of the extremities
that might cause multitriangles in the root graph of G̃.

Lemma 4. Let Hi = (Gi,Ai) be a 1-strip and let w be a non-negative weight
function defined on the vertices of Gi. Let δi1 = αw(G

i \Ai
1), let b ≥ αw(G

i)−δi1,
and let wi be defined as wi(v) = w(v) for v ∈ V (Gi)\Ai

1, w(v) = max{0, w(v)−b}
for v ∈ Ai

1. Then αwi(Gi) = δi1.
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Lemma 5. Let Hi = (Gi,Ai) be a 2-strip and let w be a non-negative weight
function defined on the vertices of Gi. Let δi1 = αw(G

i \ (Ai
1 ∪Ai

2)). Let b1, b2 be
numbers such that b1 ≥ αw(G

i \Ai
2)− δi1, b2 ≥ αw(G

i \Ai
1)− δi1, and b1 + b2 ≥

αw(G
i) − δi1, and let wi be defined as wi(v) = w(v) for v ∈ V (Gi) \ (Ai

1 ∪ Ai
2),

wi(v) = max{0, w(v) − b1} for v ∈ Ai
1 \ Ai

2, wi(v) = max{0, w(v) − b2} for
v ∈ Ai

2 \ Ai
1, and wi(v) = max{0, w(v) − b1 − b2} for v ∈ Ai

1 ∩ Ai
2. Then

αwi(Gi) = δi1.

Lemma 6. Let Hi = (G
i,Ai) be an even-short 2-strip such that Gi is perfect,

and let w be a non-negative weight function defined on the vertices of Gi. Let
δi1 = αw(G

i \(Ai
1∪Ai

2)). Let b1, b2, a be numbers such that b1 ≥ αw(G
i \Ai

2)−δi1,
b2 ≥ αw(G

i \ Ai
1) − δi1, and a + b1 + b2 ≥ αw(G

i) − δi1, and let wi be defined
as wi(v) = w(v) for v ∈ V (Gi) \ (Ai

1 ∪ Ai
2), w

i(v) = max{0, w(v)− b1} for v ∈
Ai

1 \Ai
2, w

i(v) = max{0, w(v)− b2} for v ∈ Ai
2 \Ai

1, and wi(v) = max{0, w(v)−
b1 − b2 − a} for v ∈ Ai

1 ∩ Ai
2. Then αwi(Gi) = δi1.

Finally, we analyze the case of 2-strips with both extremities in the same class of
P . Such a stripHi has been replaced with H̃

0
i , thus every vertex in its extremities

is covered by a quantity of at least max{αw(G
i \Ai

1), αw(G
i \Ai

2), αw(G
i \ (Ai

1�
Ai

2))} − δi1.

Lemma 7. Let Hi = (G
i,Ai) be a 2-strip. Let Gi

= be the graph obtained from
Gi by adding the edges between Ai

1 and Ai
2. Let w be a non-negative weight

function defined on the vertices of Gi. Let δi1 = αw(G
i \ (Ai

1 ∪ Ai
2)), let b ≥

max{αw(G
i \Ai

1), αw(G
i \Ai

2), αw(G
i \(Ai

1�Ai
2))}−δi1, and let wi be defined as

wi(v) = w(v) for v ∈ V (Gi)\(Ai
1∪Ai

2), w(v) = max{0, w(v)−b} for v ∈ Ai
1∪Ai

2.
Then αwi(Gi

=) = δi1. Moreover, if Gi
= is perfect, any mwcc of Gi

= w.r.t. wi does
not assign strictly positive weight to the clique Ai

1 ∪Ai
2.

Note that the last sentence of the previous lemma implies that, if Gi
= is perfect

and there are no two vertices v1 ∈ Ai
1 and v2 ∈ Ai

2 having a common neighbor
in V (Gi) \ (Ai

1 ∪ Ai
2), then any mwcc of Gi

= w.r.t. w
i is in fact a mwcc of Gi

w.r.t. wi. We also observe that whenever we cannot use Lemma 7 we must be
able to compute a mwcc of Gi

= in order to reconstruct a clique cover of G from
a clique cover of G̃. This is why we require in Theorem 2 that a mwcc of Gi

=

can be computed in time O(pi(|V (Gi)|)) in that case.

4 Application to Strip-Composed Claw-Free Perfect
Graphs

As an application of Theorem 2, we give a new algorithm for the mwcc on strip-
composed claw-free perfect graphs. Recall that claw-free perfect graphs are in
fact quasi-line. In the last decade the structure of quasi-line graphs was deeply
investigated, with some results providing a detailed description and characteri-
zation of the strips that, through composition, can be part of a quasi-line graph.
This is the case of the structure theorem by Chudnovsky and Seymour in [2].



32 F. Bonomo, G. Oriolo, and C. Snels

The following algorithmic decomposition theorem from [5] applies to quasi-line
graphs. (A net is a graph formed by a triangle and three vertices of degree one,
each of them adjacent to a distinct vertex of the triangle.)

Theorem 3. [5] LetG be a connected quasi-line graph. In timeO(|V (G)||E(G)|),
one can either recognize that G is net-free; or provide a decomposition of G into
k ≤ |V (G)| quasi-line strips (G1,A1), . . . , (Gk,Ak), w.r.t. a partition P, such
that each graph Gi is distance simplicial w.r.t. each clique A ∈ Ai. Moreover, if
Ai = {Ai

1, A
i
2}, then either Ai

1 = Ai
2 = V (Gi); or Ai

1 ∩ Ai
2 = ∅ and there exists

j2 such that Ai
2 ∩Nj2(A

i
1) �= ∅, Ai

2 ⊆ Nj2−1(A
i
1) ∪Nj2(A

i
1) and Nj2+1(A

i
1) = ∅,

where Nj(A
i
1) is the j-th neighborhood of Ai

1 in Gi (and, analogously, there exists
j1 such that Ai

1 ∩Nj1(A
i
2) �= ∅, Ai

1 ⊆ Nj1−1(A
i
2) ∪Nj1(A

i
2) and Nj1+1(A

i
2) = ∅).

Besides, each vertex in A has a neighbor in V (Gi) \ A, for each clique A ∈ Ai.
Finally, if Ai

1 and Ai
2 are in the same set of P, then Ai

1 is anticomplete to Ai
2.

Now suppose that we are given a strip decomposition obeying to Theorem 3
for a claw-free perfect graph G. If we are interested in finding a mwcc of G,
following Theorem 2, we must show that for a strip that is distance simplicial
we can compute in polynomial time: a mwcc of the strip; a mwcc of Gi

•, i.e. G
i

plus a vertex complete to both extremities, when the strip (Gi,Ai) is odd-short;
a mwcc of Gi

=, i.e. G
i plus the edges joining the extremities Ai

1, A
i
2 of the strip,

when they are in the same class of the partition and there is an A1–A2 path of
length two.
We start by briefly describing how to compute a mwcc in distance simplicial

graphs (recall that they are indeed perfect). We rely on a property of perfect
graphs, namely, there always exists a clique which intersects each mwss: we will
call such a clique crucial (crucial cliques are a key ingredient to the algorithm
in [10]). Our algorithm relies on the fact that for graphs that are distance simpli-
cial w.r.t. some identifiable clique K, we can inductively compute crucial cliques
and decide the value of this clique in a mwcc. The first crucial clique will be
K ′ := K ∪ {v /∈ K : v is complete to K}: we will suitably update the weight of
each vertex, and then find a new crucial clique (w.r.t. the new weights) in an
inductive way.
We now show that, for an odd-short distance simplicial strip Hi, we can

compute in polynomial time a mwcc of Gi
•. Note that, in this caseG

i
• is claw-free

and, following Theorem 2, perfect. In this case, we prove that Gi
• is cobipartite.

Note that, if Gi• is cobipartite, then it is distance simplicial w.r.t. each of the
two cliques covering its vertex set, so a mwcc can be found as above. We now
show that, for a distance simplicial strip Hi, such that the extremities are in
the same class of the partition and there is an A1–A2 path of length two, we
can compute in polynomial time a mwcc for Gi

=. Note that, in this case, G
i
= is

claw-free and, following Theorem 2, we may assume that it is perfect and that
αwi(Gi

=) = αwi(Gi \(Ai
1∪Ai

2)) holds, where w
i is the weight function defined on

the vertices of Gi (that w.l.o.g. we take strictly positive, i.e., we remove vertices
with wi(v) = 0). In this case, we prove that either Gi

= is cobipartite, or every
mwcc of Gi is also a mwcc of Gi

=. If G
i
= is not cobipartite, then we may simply
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ignore the edges between the two extremities of the strip and then compute a
mwcc in Gi, which is distance simplicial.
We have therefore the following theorem for strip-composed claw-free perfect

graphs. We underline that the resulting algorithm never requires the computa-
tion of any mwss on the strips, while it uses a primal-dual algorithm for the
maximum weighted matching on the root graph of G̃ (see Section 3).

Theorem 4. Let G be a claw-free perfect graph with a non-negative weight func-
tion w on V (G) and let G be as in case (ii) of Theorem 3. Then we can compute
a mwcc of G w.r.t. w in time O(|V (G)|3).
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Abstract. We study the complexity of the Graph Isomorphism problem
on graph classes that are characterized by a finite number of forbidden
induced subgraphs, focusing mostly on the case of two forbidden sub-
graphs. We show hardness results and develop techniques for the struc-
tural analysis of such graph classes, which applied to the case of two
forbidden subgraphs give the following results: A dichotomy into isomor-
phism complete and polynomial-time solvable graph classes for all but
finitely many cases, whenever neither of the forbidden graphs is a clique,
a pan, or a complement of these graphs. Further reducing the remaining
open cases we show that (with respect to graph isomorphism) forbidding
a pan is equivalent to forbidding a clique of size three.

1 Introduction

Given two graphsG1 andG2, the Graph Isomorphism problem (GI) asks whether
there exists a bijection from the vertices of G1 to the vertices of G2 that preserves
adjacency. This paper studies the complexity of GI on graph classes that are
characterized by a finite number of forbidden induced subgraphs, focusing mostly
on the case of two forbidden subgraphs. For a set of graphs {H1, . . . , Hk} we
let (H1, . . . , Hk)-free denote the class of graphs G that do not contain any Hi as
an induced subgraph.
As a first example, consider the class of graphs containing neither a clique Ks

on s vertices, nor an independent set It on t vertices. Ramsey’s Theorem [19]
states that the number of vertices in such graphs is bounded by a function f(s, t).
Thus the classes (Ks, It)-free are finite and Graph Isomorphism is trivial on them.
All other combinations of two forbidden subgraphs give graph classes of infinite
size, since they contain infinitely many cliques or independent sets.
As a second example, consider the graphs containing no clique Ks on s ver-

tices and no star K1,t (i.e., an independent set of size t with added universal
vertex adjacent to every other vertex). On the one hand this class contains all

� In this version some proofs are omitted. For these the reader is referred to [12].
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graphs of maximum degree less than min{s−1, t}, on the other hand, all graphs
in (Ks,K1,t)-free have bounded degree: Indeed, if the degree of a vertex is suffi-
ciently large, its neighborhood must contain a clique of size s or an independent
set of size t by Ramsey’s Theorem [19], leading to one of the two forbidden
subgraphs. Thus, using Luks’ algorithm [16] that solves Graph Isomorphism on
graphs of bounded degree in polynomial time, isomorphism of (Ks,K1,t)-free
graphs can also be decided in polynomial time.
To systematically study Graph Isomorphism on graph classes characterized

by forbidden subgraphs, we ask: Given a set of graphs {H1, . . . , Hk}, what is the
complexity of Graph Isomorphism on the class of (H1, . . . , Hk)-free graphs?

Related Work. The Graph Isomorphism problem is contained in the complex-
ity class NP, since the adjacency preserving bijection (the isomorphism) can
be checked in polynomial time. No polynomial-time algorithm is known and it
is known that Graph Isomorphism is not NP-complete unless the polynomial
hierarchy collapses [5]. More strongly, Graph Isomorphism is in the low hier-
archy [21]. This has led to the definition of the complexity class of problems
polynomially equivalent to Graph Isomorphism, the so-called GI-complete prob-
lems. There is a vast literature on the Graph Isomorphism Problem; for a general
overview see [22] or [10], for results on its parameterized complexity see [13].
A question analogous to ours, asking about Graph Isomorphism on any class

of (H1, . . . , Hk)-minor-free graphs, is answered completely by the fact that Graph
Isomorphism is polynomially solvable on any non-trivial minor closed class [18].
Recently, the corresponding statement for topological minor free classes was also
shown [8]. For the less restrictive family of hereditary classes, only closed un-
der vertex deletion (i.e., classes H-free for a possibly infinite set of graphs H),
both GI-complete and tractable cases are known: Graph Isomorphism is GI-
complete on split graphs, comparability graphs, and strongly chordal graphs [23].
Graph Isomorphism is known to be polynomially solvable for circle graphs and
circular-arc graphs [9], interval graphs [2,15], distance hereditary graphs [17],
and graphs of bounded degree [16]. For various subclasses of these polynomi-
ally solvable cases results with finer complexity analysis are available, but of
course the polynomial-time solvability for these subclasses follows already from
polynomial-time solvability of the mentioned larger classes. Further results, in
particular on GI-completeness, can be found in [4].
Concerning our question, for one forbidden subgraph, the answer, given by

Colbourn and Colbourn, can be found in a paper by Booth and Colbourn [4]:
If the forbidden induced subgraph H1 is an induced subgraph of the path P4

on four vertices, denoted by H1 ≤ P4, then Graph Isomorphism is polynomial
on H1-free graphs, otherwise it is GI-complete.
Apart from the isomorphism problem, other studies aiming at dichotomy re-

sults for algorithmic problems on graph classes characterized by two forbidden
subgraphs consider the chromatic number [11] and dominating sets [14].

Main Result. Let a graph be basic if it is an independent set, a clique, a P3∪̇K1,
or the complement of a P3 ∪̇K1 (also called pan). If neither H1 nor H2 is basic,
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t︷ ︸︸ ︷
. . .

It P4 ∪̇K1 K1,3 ∪̇ I2 fork

Fig. 1. The independent sets, the paths of length 3 with independent vertex, the claw
with two independent vertices, and the fork, obtained by subdividing an edge in a claw

then we obtain a classification of (H1, H2)-free classes into polynomial and GI-
complete cases, for all but a small finite number of classes. Theorem 1 justifies
the terminology basic by showing that in our context forbidding a basic graph
is equivalent to forbidding a complete graph. However, the case of forbidding a
clique (alongside a second graph) appears to be structurally different and for a
complete classification further new techniques are required.

Technical Contribution. Our main technical contribution lies in establishing
tractability of Graph Isomorphism on four types of (H1, H2)-free classes (The-
orem 4 in Section 4): A structural analysis of the classes enables reductions to
the polynomially-solvable case of bounded color valence [1]. This reduction ap-
pears necessary since the polynomially-solvable classes of Theorem 4 encompass
all classes of graphs of bounded degree, and for these Luks’ group-theoretic ap-
proach [16] (implicit in [1]) is the only known polynomial-time technique. At
the core of the proof of Theorem 4 lie individualization-refinement techniques
and recursive structural analysis to allow for a reduction to the bounded color
valence case.
However, to put these results in context and obtain the mentioned classifica-

tion, we have to refine several known results for GI-completeness on bipartite,
split, and line graphs (Section 3). In particular, we arrive at a set of four graph
properties, which we call split conditions, such that Graph Isomorphism remains
complete on any class (H1, H2)-free unless each property is true for at least one
of the two forbidden subgraphs.
Based on this characterization we can state our results in more detail: If on

the one hand neither of the two forbidden subgraphs H1 and H2 exhibits all four
split conditions, then we have a dichotomy of GI on (H1, H2)-free classes into
polynomial and GI-complete classes; the polynomial cases are due to Theorem 4
(see Section 4) as well as tractability on cographs (i.e., P4-free graphs) [7], GI-
completeness follows by using both known results as well as our strengthened
reductions (see Section 3). Suppose on the other hand H1 and H2 are both not
basic and H1 simultaneously fulfills all four split conditions, then our hardness
and tractability results resolve all but a finite number of cases (i.e., each case is
one concrete class (H1, H2)-free), as showed in Theorem 6 (see Section 5). For
these cases Figure 1 shows the relevant maximal graphs that adhere to all four
split conditions.
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2 Preliminaries

We write H ≤ G if the graph G contains a graph H as an induced subgraph.
A graph G is H-free if H � G. It is (H1, . . . , Hk)-free, if it is Hi-free for all i.
A graph class C is H-free (resp. (H1, . . . , Hk)-free) if this is true for all G ∈ C.
A graph class C is hereditary if it is closed under taking induced subgraphs.
The class (H1, . . . , Hk)-free is the class of all (H1, . . . , Hk)-free graphs; each
class (H1, . . . , Hk)-free is hereditary.
By It, Kt, Pt, and Ct we denote the independent set, the clique, the path, and

the cycle on t vertices; K1,t is the claw with t leaves. By H ∪̇H ′ we denote the
disjoint union of H and H ′; we use tK2 for the disjoint union of t graphs K2.
By G we denote the (edge) complement of G. The graph K2 ∪̇ I2, i.e., the same
as a K4 minus one edge, is called diamond.
We recall that GI-completeness is inherited by superclasses while polynomial-

solvability of Graph Isomorphism is inherited by subclasses. Also recall that
Graph Isomorphism on a class C is exactly as hard as on C, the class of comple-
ments of graphs in C. Note that any H-free graph is also H ′-free if H ≤ H ′.

Proposition 1. Let H1, H2 be graphs and let C be any hereditary graph class.

1. (H1, H2)-free = (H1, H2)-free.
2. (H1, H2)-free ⊆ (H ′

1, H
′
2)-free for any H ′

1, H
′
2 with H1 ≤ H ′

1 and H2 ≤ H ′
2.

3. H1, H2 /∈ C implies C ⊆ (H1, H2)-free.

Definition 1. The pan is the graph P3 ∪̇K1, i.e., a vertex and triangle joined
by one edge. A graph is basic, if it is an independent set, a complete graph, the
graph P3 ∪̇K1, or the pan.

We now show that in the context of the isomorphism problem excluding a basic
graph is equivalent to excluding a complete graph or an independent set.

Lemma 1. Let G be a graph that contains P4 as an induced subgraph.

1. If G is co-connected then it contains I3 if and only if it contains P3 ∪̇K1.
2. If G is connected then it contains K3 if and only if it contains a pan.

Proof. By complementarity it suffices to prove Part 2. Fix a P4 in the graph.
Containment of a pan trivially implies containment of a triangle. For the con-
verse, it can be easily verified that there is a pan, if some some triangle contains
at least two vertices of the P4. Else, if a triangle contains one vertex p of the P4,
we can add a vertex of the P4 adjacent to p to the triangle, obtaining a pan.
Else (i.e., if no triangle is incident with the P4) consider the triangle closest to
the P4. Due to connectivity, there is a vertex that is adjacent to some vertex
of the triangle and closer to the P4. If this vertex is adjacent to exactly one
vertex of the triangle, a pan arises. Otherwise we find a closer triangle, which
contradicts our initial choice. ��

Theorem 1. Graph Isomorphism on a class C of K3-free graphs is polynomial
time equivalent to GI on the subclass of C that contains all pan-free graphs of C.
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Proof. Since Graph Isomorphism for P4-free graphs (so-called cographs) is solv-
able in polynomial time [7], the theorem follows from Lemma 1 and the fact that
graph isomorphism can be solved by comparing connected components. ��

3 Hardness Results

Our standard method to show GI-completeness for Graph Isomorphism on some
graph classH works by reducing the isomorphism problem of a classH′ for which
Graph Isomorphism is known to be GI-complete to a subclass of H. For this we
require a mapping π : H′ → π(H′) ⊆ H which is computable in polynomial
time and for which the images of two graphs are isomorphic if and only if the
two original graphs are. We call such a mapping π a GI-reduction. To show
hardness for a class (H1, H2)-free it suffices to provide a GI-reduction π for
which no graph G ∈ π(H′) contains H1 or H2 as an induced subgraph, implying
that π(H′) ⊆ (H1, H2)-free.
Our first reductions prove hardness results for bipartite graphs, split graphs,

and line graphs. However, the (previously known) GI-completeness for these
particular graph classes is not sufficient. We require hardness for more specific
subclasses avoiding specific small graphs. Subsequently, using a more involved
reduction, we show that isomorphism of (P4∪̇K1,K4)-free graphs is GI-complete.

3.1 Bipartite Graphs

A straightforward GI-reduction consists of subdividing each edge of a graph by
a new vertex. Since the obtained graphs are bipartite, this proves that Graph
Isomorphism remains GI-complete on bipartite graphs. This also implies that
Graph Isomorphism remains GI-complete on (H1, H2)-free graphs unless one of
the graphs is bipartite, since the class (H1, H2)-free contains all bipartite graphs
if neither H1 nor H2 is bipartite. Let us observe however, that we can draw
stronger conclusions namely that Graph Isomorphism remains GI-complete on
connected bipartite graphs without induced cycles of length 4, for which the
vertices in one of the partition classes have degree two. The following definition
allows us to make a first structural observation for the graphs H1, H2:

Definition 2. A path-star is a subdivision of the t-claw K1,t, for some t ∈ N.

Lemma 2. If neither H1 nor H2 is a disjoint union of path-stars, then Graph
Isomorphism on the class (H1, H2)-free is GI-complete.

Proof. If a graph is not a disjoint union of path-stars, then it either contains two
vertices of degree at least 3 which are in the same connected component, or it
contains a cycle. We use that two graphs G1 and G2 are isomorphic, if and only
if the graphs obtained by subdividing each edge in G1 and G2 respectively are
isomorphic. For any integer c there is an integer c′ such that a graph that has
been subdivided c′ times neither contains a cycle of length at most c nor two
vertices of degree at least three which are at a distance of at most c apart.
Thus, with a finite number of subdivision steps, we can reduce Graph Isomor-

phism on general graphs to isomorphism on (H1, H2)-free graphs. ��
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Using Part 1 of Proposition 1, we conclude that unless Graph Isomorphism is
GI-complete on (H1, H2)-free, one of the graphs H1, H2 is a forest and one of
the graphs is a co-forest.

Lemma 3. A graph H and its complement H are forests, if and only if H ≤ P4.

Proof. For the if part it suffices to observe that P4 is a self-complementary forest.
The only if part is true for graphs of size at most 4. A forest on n ≥ 5 vertices
has at most n−1 edges. Since 2(n−1) <

(
n
2

)
for n ≥ 5 the statement follows. ��

Graph Isomorphism for P4-free graphs (cographs) is in P [7]. With the previous
two lemmas one can conclude that it remains GI-complete on H-free graphs
when H is not an induced subgraph of the P4; this gives a simple dichotomy for
the case of a single forbidden induced subgraph.

Theorem 2 (see [4]). Let H be a graph. Graph Isomorphism on H-free graphs
is in P, if H ≤ P4. GI on H-free graphs is GI-complete, if H � P4.

In the following, we focus on graph classes characterized by two forbidden in-
duced subgraphs. Since isomorphism of P4-free graphs is in P, we assume from
now on that H1 � P4 and H2 � P4. Due to Lemmas 2 and 3 and Part 1 of
Proposition 1 we may further assume that H1 is a disjoint union of path-stars
and H2 is the complement of a disjoint union of path-stars.
Being forests, unions of path-stars are bipartite. Since bipartite graphs play a

repeated role, we introduce some terminology: For a bipartite graphG, which has
been partitioned into two classes , the bipartite complement is the graph obtained
by replacing all edges that run between vertices from different partition classes by
non-edges and vice versa. (Note that the bipartite complement for unpartitioned
bipartite graphs is only well defined if the graph is connected.) A crossing co-
cycle is a set of vertices that form a cycle in the bipartite complement.

Lemma 4. Isomorphism of graphs that are (H1, H2)-free is GI-complete un-
less H1 or H2 can be partitioned as a bipartite graph without crossing co-cycle.

Proof. Graph Isomorphism is GI-complete on connected graphs. By repeatedly
subdividing a connected graph we produce a bipartite graph with an arbitrarily
high girth. If at least three subdivisions have been performed on a non-trivial
graph, its bipartite complement is connected. Thus taking the bipartite comple-
ment of such graphs is a GI-reduction (the bipartite complement of the bipartite
complement is the original graph), and we obtain the lemma. ��

Lemma 5. For each G ∈ {3K2, 2K2 ∪̇ I2, P4 ∪̇ I2}, Graph Isomorphism on
the class on the class of (H1, H2)-free graphs is GI-complete unless one of the
graphs H1 and H2 is bipartite and does not contain the graph G.

Proof. Using Lemma 4 this follows, since none of the graphs 3K2, 2K2 ∪̇ I2,
and P4 ∪̇ I2 can be partitioned as bipartite graph without crossing co-cycle. ��
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3.2 Split Graphs

We now turn our attention to split graphs. A split graph is a graph whose vertices
can be partitioned into an independent set and a clique. Recall that the split
graphs are exactly the (2K2, C4, C5)-free graphs. The reduction that subdivides
each edge and connects all newly introduced vertices produces a split graph, and
thus proves GI-completeness on that class. As in the previous section we are able
to draw further conclusions about the obtained graphs.

Definition 3. Let G be a split graph that has been partitioned into a clique K
and an independent set I. We say that the partition is

1. of type 1, if the vertices in class K have at most 2 neighbors in class I.
2. of type 2, if the vertices in class K have at most 2 non-neighbors in class I.
3. of type 3, if the vertices in class I have at most 2 neighbors in class K.
4. of type 4, if the vertices in class I have at most 2 non-neighbors in class K.

An unpartitioned graph G is said to fulfill split graph condition i (with i ∈
{1, 2, 3, 4}), if there is a split partition of the graph that is of type i.

Lemma 6. For any i ∈ {1, 2, 3, 4}, Graph Isomorphism on the class of graphs
that fulfill split graph condition i is GI-complete.

For the proof, we refer the reader to [12]. Since the class of graphs which fulfill
condition i is closed under taking induced subgraphs, the lemma implies that
Graph Isomorphism on the class (H1, H2)-free is GI-complete unless for all i ∈
{1, 2, 3, 4} one of the graphs H1 or H2 fulfills split graph condition i.

3.3 Line Graphs

The next graph class we consider is the class of line graphs. The line graph of
a graph G = (V,E) is the graph L(G) = (E,E′), in which two vertices are
adjacent, if they represent two incident edges in the graph G. The line graph of
a graph G encodes the isomorphism type of a graph G.

Lemma 7 ([24]). Let G1, G2 be connected graphs such that neither is a triangle.
Then G1 and G2 are isomorphic if and only if their line graphs are.

The class of line graphs has a characterization by 9 forbidden subgraphs [3].
However, we reduce to a subclass characterized by three forbidden subgraphs.

Lemma 8. Line graphs of graphs of girth at least 5 contain no K1,3, no C4,
and no diamond.

Proof. A claw K1,3 in a line graph L(G) would correspond to three edges in G
that each share an endpoint with a fourth edge; then two of the three edges must
share an endpoint (forcing an additional edge in L(G)). A C4 in L(G) corresponds
to a C4 in G. Finally, if three edges of a triangle-free graph G pairwise share
an endpoint, then they all three share the same endpoint. A fourth edge can
therefore not share an endpoint with exactly two of the edges without forming
triangle in G, i.e., there can be no diamond in L(G). ��
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. . . . . .

a

︸ ︷︷ ︸
b

︸ ︷︷ ︸
c

Fig. 2. A claw with a subdivision and added isolated vertices. Every split path-star is
a subgraph of such a graph. They are denoted by H(a, b, c) where a is the number of
subdivided edges, a+ b the degree of the claw, and c the number of isolated vertices.

Since there is essentially a one-to-one correspondence between graphs and their
line graphs, and Graph Isomorphism is GI-complete on triangle-free graphs
(since K3 � P4), it is also GI-complete on line graphs of triangle-free graphs.

Lemma 9. Graph Isomorphism is Graph Isomorphism-complete on the class
of (diamond, claw,C4)-free graphs.

Proof. Since Graph Isomorphism is GI-complete on connected graphs of girth at
least 5, and since graphs of girth at least 5 do not contain triangles, the lemma
follows from Lemmas 7 and 8. ��

3.4 A Reduction to (P4 ∪̇ K1,K4)-Free Graphs

There is a reduction that reduces the class of all graphs to the (P4 ∪̇K1,K4)-free
graphs. For an explicit description and correctness proof of the reduction, we re-
fer the reader to [12]. Our reduction generalizes the reduction to bipartite graphs,
making a replacement of the edges while additionally connecting some of the so-
created independent sets. In this sense the reduction (as many other established
reductions) is part of a larger scheme of GI-reductions, which use finitely many
independent sets, cliques, and relationships between them to encode graphs. We
obtain the following theorem.

Theorem 3. Graph Isomorphism is GI-complete on (P4 ∪̇K1,K4)-free graphs.

4 Structural Results and Polynomially-Solvable Cases

We have previously seen that Graph Isomorphism is GI-complete on graphs that
are (H1, H2)-free unless each of the four split conditions is fulfilled by one of the
two forbidden graphs (Lemma 6). This gives rise to two fundamental cases,
namely whether or not one of the two graphs simultaneously fulfills all split
conditions. In this section we address the case that neither graph fulfills all split
conditions simultaneously. Amongst other conclusions this implies that both
graphs must be split graphs or Graph Isomorphism will remain GI-complete.
Recall also that one graph must be a path-star while the other must be the
complement of a path-star or isomorphism of (H1, H2)-free graphs will be GI-
complete (w.l.o.g. neither of the graphs is an induced subgraph of P4 thus onlyHi

or Hi can be a forest or path-star). Using the results of the previous section we
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are able to fully characterize this case into classes with either polynomial or
GI-complete isomorphism problems.
Without loss of generality we take H1 to be a union of path-stars and H2 to

be the complement of a union of path-stars. We analyze first H1; the graph H2

must be a complement of the possible graphs we obtain. Since H1 is split,
i.e., (2K2, C4, C5)-free, it is a 2K2-free path-star. Therefore it contains at most
one non-trivial component and no induced path P5 on five vertices. Thus if H1

has a vertex v of degree three or larger, then at most one induced path of length
two is emanating from v. Together these observations show that H1 is an induced
subgraph of the type of graph depicted in Figure 2.
We denote by H(a, b, c) the graph that is depicted in Figure 2, with a ∈

{0, 1}, b ∈ N, and c ∈ N. We require that if a = 1 then b > 0, otherwise (if a = 1
and b = 0) we can reinterpret the graph with b = 2 and a = 0 (thus, a = 1 iff
the graph contains a P4). We also require a + b ≥ 1 since the independent set
and the clique fulfill all split conditions. Observe that any induced subgraph of
some H(a, b, c) is isomorphic to H(a′, b′, c′) for some values of a′, b′, c′ (it suffices
to consider the induced subgraphs of the claw with one subdivision).
We will argue that under these restrictions we may focus on the case that a =

a′ = 0, since Graph Isomorphism remains GI-complete otherwise.

Lemma 10. Let H1 = H(a, b, c) and H2 = H(a′, b′, c′) such that neither graph
fulfills all split conditions and such that a+a′ ≥ 1. Then GI remains GI-complete
on (H1, H2)-free graphs.

For the remaining discussion we may thus assume that a = 0 and a′ = 0.

Theorem 4. Isomorphism of (H(0, b, c), H(0, b′, c′))-free graphs is in P when:

1. b = 0 or b′ = 0 (i.e., one of the graphs is a clique or an independent set),
2. c, c′ ≤ 1 and b, b′ ≥ 1,
3. c, c′ ≥ 2 and b, b′ ∈ {1, 2},
4. (c ≥ 2, c′ ≤ 1, b ≥ 1, b′ ∈ {1, 2}), or (c′ ≥ 2, c ≤ 1, b′ ≥ 1, b ∈ {1, 2}).

In all other cases it is GI-complete.

To prove the theorem we use vertex-colorings of the input graphs. (In the context
of Graph Isomorphism the vertex colorings are not assumed to be proper). We say
that a vertex-colored graph has bounded color valences, if there is a constant D,
such that for every color classC every vertex v (possibly inC) has atmostD neigh-
bors or atmostD non-neighbors inC. In a graphwithoutH(0, b, c) andH(0, b′, c′),
bounded color valence within color classes implies bounded color valence overall.
For a proof of this, we refer the reader to [12]. Bounding the color valence one can
reduce the isomorphism problem to that of graphs of bounded degree.

Theorem 5 (Babai, Luks [1]). Graph Isomorphism for colored graphs of
bounded color valence is solvable in polynomial time.

To prove Theorem 4 we distinguish cases according to the numbers c and c′ in
the forbidden subgraphs H(0, b, c) and H(0, b′, c′).



Graph Isomorphism for Graph Classes Characterized 43

Proof (General proof strategy for Theorem 4.). For the full proof of Theorem 4,
we refer the reader to [12] and here, instead, provide a high level description of
the general proof-strategy. When proving each of the four cases our strategy is
as follows: The starting observation is that a colored (H(0, b, c), H(0, b′, c′))-free
graph, which has bounded degree or bounded co-degree within each color class,
also has bounded color valence between different color classes. This enables
the use of Theorem 5. Thus, we now intend to find a canonical (in particu-
lar isomorphism-respecting) way of coloring both input graphs, so that the color
classes have bounded degree or bounded co-degree. We employ two methods to
pick color classes, both of them ensure that the coloring preserves isomorphism.
Either we choose the colors of the vertices by properties of the vertices that can
be computed in polynomial time. Or we guess an ordered set of vertices of con-
stant size, color the vertices in this set with singleton colors, and then color the
remaining vertices according to their adjacencies to the vertices in the ordered
set. Guessing a constant number k of vertices increases the running time by a
factor of nk, and can therefore be performed in polynomial time. The second
coloring operation is typically referred to as individualization.
In Case 1 we individualize one vertex, and use induction to obtain a canoni-

cal coloring with the desired properties. In Case 2 we individualize one vertex,
and use a combinatorial argument to show that this gives a canonical coloring
with the desired properties. In Case 4, using Lemma 1, we reduce the prob-
lem to (H(0, b, c),K3)-free graphs, and then apply induction on c to obtain the
canonical coloring. Case 3 is the most interesting one (and rather involved). In
this case, by individualizing a finite number of vertices, we can obtain a colored
graph, in which each of the color classes is a cluster, or a co-cluster graph. (A
cluster is a P3-free graph or equivalently a disjoint union of cliques.) For our
purpose this is not sufficient, as for example a cluster graph can have vertices
that simultaneously have large degree and large co-degree. We call a cluster d-
diverse if it contains at least d disjoint cliques of size at least d. A d-diverse
co-cluster is the complement of a d-diverse cluster. We show that for large d
a (H(0, 2, c), H(0, 2, c′))-free graph cannot contain a d-diverse cluster and a d-
diverse co-cluster at the same time. With this (possibly taking complements) our
situation simplifies to the case where there is one color class A that is a cluster,
and all other color classes are of bounded degree or bounded co-degree. After
splitting off a bounded number of cliques from A, we can show that for each
of the remaining cliques there is only a bounded number of types by which the
vertices are connected to the vertices outside the cluster. Using this we replace
the cluster by a bounded number of representatives, one for each type, color-
encoding the number of vertices of each type. This leaves a graph with bounded
color valence and enables us to apply Theorem 5. ��

5 The Remaining Cases

In the previous section we investigated the case when neither of the two forbidden
induced subgraphs fulfills all split graph conditions. We now consider the case,
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where one of the two graphs fulfills all split graph conditions. W.l.o.g. we let H1

be this graph and require that H1 is a disjoint union of path-stars (otherwise we
take complements); there are only few choices forH1. For the proofs of Lemma 11
and Theorem 6, we refer the reader to [12].

Lemma 11. If a graph G is a union of path-stars and fulfills all split graph
conditions, then it is an induced subgraph of one of the following graphs (depicted
in Figure 1): An independent set, P4 ∪̇K1, K1,3 ∪̇ I2, or the fork.

Theorem 6. Suppose H1 is a nonbasic disjoint union of path-stars and fulfills
all split graph conditions. If H2 has more than 7 vertices, then an application
of one of Lemmas 2, 3, 5, or 9, or Theorems 2, 3, or 4 determines that (H1 ∪̇
H2)-free is GI-complete or polynomial-time solvable. More strongly, this can be
concluded unless H1 is one of the graphs {P4 ∪̇K1,K2 ∪̇ I2, P3 ∪̇ I2} and H2 has
at most 7 vertices and is a disjoint union of at most 3 paths.

6 Conclusion

In order to initiate a systematic study of the Graph Isomorphism Problem
on hereditary graph classes we considered graph classes characterized by two
forbidden induced subgraphs. We presented an almost complete characteriza-
tion of the case that neither of the two forbidden subgraphs is basic into GI-
complete and polynomial cases, leaving only few pairs of forbidden subgraphs.
Theorem 4 constitutes the main technical contribution towards this result. To-
gether with the tractability of P4-free graphs (Theorem 2, [7]) it establishes the
polynomially solvable cases. On the other hand suppose H1 and H2 are non-
basic and (H1, H2)-free is not a polynomial-time solvable case of Theorems 2
or 4. Then, Graph Isomorphism on the class of (H1, H2)-free graphs is GI-
complete, unless for H1 and H2, or for H1 and H2, one of the graphs is in
{P4 ∪̇K1,K2 ∪̇ I2, P3 ∪̇ I2}, and the other graph has at most 7 vertices and is
the complement of a union of at most 3 paths.
Several further cases, e.g., all cases involving the P6 or the P7, can be excluded

by variants of the reduction used for Theorem 3. Of the remaining cases, in
a preprint, Rao [20] resolves positively the case (P4 ∪̇ K1, P4 ∪̇K1)-free and
its subclasses; similar (modular) decomposition techniques appear to apply to
other cases as well. Several of the remaining cases are classes of bounded clique-
width [6], which could indicate their tractability.
For the case in which one of the forbidden graphs is basic, our reductions and

our polynomial-time algorithms are still applicable and resolve a large portion
of the cases. However, as mentioned in the introduction, complete resolution
appears to require new techniques. Future steps for studying the hereditary
graph classes include the resolution of the remaining cases and analysis of graph
classes characterized by more than two forbidden subgraphs.
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21. Schöning, U.: Graph isomorphism is in the low hierarchy. Journal of Computer and
System Sciences 37(3), 312–323 (1988)

22. Schweitzer, P.: Problems of unknown complexity: Graph isomorphism and Ramsey
theoretic numbers. PhD thesis, Universität des Saarlandes, Germany (2009)

23. Uehara, R., Toda, S., Nagoya, T.: Graph isomorphism completeness for chordal bi-
partite graphs and strongly chordal graphs. Discrete Applied Mathematics 145(3),
479–482 (2005)

24. Whitney, H.: Congruent graphs and the connectivity of graphs. American Journal
of Mathematics 54(1), 150–168 (1932)

http://www.labri.fr/perso/rao/publi/decompgemcogem.ps


Optimization Problems

in Dotted Interval Graphs

Danny Hermelin1, Julián Mestre2, and Dror Rawitz3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
hermelin@mpi-inf.mpg.de

2 School of Information Technologies, The University of Sydney, Australia
mestre@it.usyd.edu.au

3 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
rawitz@eng.tau.ac.il

Abstract. The class of D-dotted interval (D-DI) graphs is the class
of intersection graphs of arithmetic progressions with jump (common
difference) at most D. We consider various classical graph-theoretic op-
timization problems in D-DI graphs of arbitrarily, but fixed, D.

WeshowthatMaximumIndependentSet,MinimumVertexCover,
and Minimum Dominating Set can be solved in polynomial time in this
graphclass, answeringanopenquestionposedbyJiang (Inf.ProcessingLet-
ters, 98(1):29–33, 2006). We also show thatMinimumVertexCover can
be approximated within a factor of (1+ ε) for any ε > 0 in linear time. This
algorithmgeneralizes toawide class ofdeletionproblems including the clas-
sicalMinimumFeedbackVertexSet andMinimumPlanarDeletion

problems.
Our algorithms are based on classical results in algorithmic graph

theory and new structural properties of D-DI graphs that may be of
independent interest.

1 Introduction

A dotted interval I(s, t, d) is an arithmetic progression {s, s+ d, s+ 2d, . . . , t},
where s, t and d are positive integers, and the jump d divides t− s. When d = 1,
the dotted interval I(s, t, d) is simply the interval [s, t] over the positive integer
line. This paper is mainly concerned with dotted interval graphs. A dotted inter-
val graph is an intersection graph of dotted intervals. Each vertex v is associated
a dotted interval Iv and we have an edge (u, v) if Iu ∩ Iv �= ∅. If the jumps of all
intervals are at most D, we call the graph D-dotted-interval or D-DI for short.
See Figure 1 for an example.
Dotted interval graphs were introduced by Aumann et al. [2] in the context of

high throughput genotyping. They used dotted intervals to model microsatellite
polymorphisms which are used in a genotyping technique called microsatellite
genotyping. The respective genotyping problem translates to Minimum Col-

oring in D-DI graphs of small D. Aumann et al. [2] showed that Minimum

Coloring in D-DI graphs is NP-hard even for D = 2. They also provided

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 46–56, 2012.
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Fig. 1. Example of a 2-DI graph: On the right we have the 2-DI representation of the
graph on the left. Notice that graph is clearly not an interval graph since we have hole
of length 4.

a 3
2 -approximation algorithm for Minimum Coloring in 2-DI graphs, and a

(7D8 + Θ(1))-approximation algorithm for general fixed D ≥ 2. This algorithm
was later improved by Jiang [17], and subsequently also by Yanovsky [21]. The
current best approximation ratio for Minimum Coloring is 2D+4

3 [21].
Since a dotted interval with jump 1 is a regular interval, dotted interval graphs

form a natural generalizations of the well-studied class of interval graphs. Inter-
val graphs have been extensively researched in the graph-theoretic community,
in particular from the algorithmic viewpoint, because many real-life problems
translate to classical graph-theoretic problems in interval graphs, and because
its rich structure allows in many cases designing efficient algorithms for these
problems. Substantial research effort has been devoted into generalizing such
algorithms to larger classes of graphs. Examples include algorithms proposed
for circular arc graphs [13,15], disc graphs [11,16,19,20], rectangle graphs [1,5,9],
multiple-interval graphs [4,8], and multiple-subtree graphs [14].
In this paper we study the computational complexity of classical graph-

theoretic optimization problems in D-DI graphs. Note that as any graph G is a
D-DI graph for large enoughD [2], we are interested in studying D-DI graphs for
smallD; more precisely, we assumeD = O(1). Apart from theMinimum Color-

ing problem, Aumann et al. [2] also considered the Maximum Clique problem
in D-DI graphs, and showed that this problem is fixed parameter tractable with
respect to D. Jiang [17] studied the problem of Maximum Independent Set in
D-DI graphs. He presented a simple 3

2 -approximation algorithm for 2-DI graphs,

and a (5D6 + O(log d))-approximation algorithm or D-DI graphs. The question
of whether Maximum Independent Set in D-DI graphs, for constant D, is
NP-hard was left open by Jiang. He also pointed out that the complexity of
other classical graph theoretical problems, such as Minimum Vertex Cover

and Minimum Dominating Set, remain open in D-DI graphs.
In this paper we focus mainly on three classical graph-theoretic optimiza-

tion problems: Maximum Independent Set, Minimum Dominating Set,
and Minimum Vertex Cover. We present an O(DnD)-time algorithm for
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Maximum Independent Set and Minimum Vertex Cover in D-DI graphs
with n vertices, and give an O(D2nO(D2))-time algorithm for Minimum Dom-

inating Set. Thus, we show that both these problems are polynomial-time
solvable in D-DI graphs for fixed D. It is interesting to note that a similar
situation occurs in circular-arc graphs, which also generalize interval graphs,
where Maximum Independent Set and Minimum Dominating Set can be
solved in linear time [15] and Minimum Coloring is NP-hard [12]. (However,
Aumann et al. [2] show that there is a 2-DI graph that is not a circular arc
graph, and that for every D ≥ 1, there is a circular arc graph that is not a
D-DI graph.) We also present a linear-time (1 + ε)-approximation algorithm
for Minimum Vertex Cover in D-DI graphs. This algorithm can be general-
ized to a wide range of deletion problems which include among many the clas-
sical Minimum Feedback Vertex Set and Minimum Planar Deletion

problems. We assume that the D-DI representation of the input graph is given
to us.

2 Preliminaries

2.1 Definitions and Notation

For i, j ∈ Z such that i < j, we define [i, j] := {i, i+ 1, . . . , j − 1, j}.
Given a dotted interval I = {s, s+ d, s+ 2d, . . . , t}, we denote its starting

and finishing points by s(I) and t(I), respectively. The jump of I is denoted by
d(I), and the offset of I is defined as o(I) := s(I) mod d(I).
Given a set of dotted intervals I = {I1, . . . , In}, we assume that the intervals

are ordered by starting point, namely that s(Ii) ≤ s(Ii+1), for every i. Dotted
intervals with the same starting point are ordered arbitrarily. Given a dotted
interval Ii, we define I<i := {Ij : j < i}. Given a point p, and a set of dotted
intervals S ⊆ I, let Sp ⊆ S contain the dotted intervals that start at or before
p and end at or to the right of p, namely Sp := {I ∈ S : p ∈ [s(I), t(I)]}. (Note
that it is possible I ∈ Sp and p �∈ I.)
Let G = (V,E) be an undirected graph; for any subset A ⊆ V , we use G[A] =

(A, {(u, v) ∈ E : u ∈ A, v ∈ A}) to denote the graph induced by A. Let w : V →
R+ be a vertex weight function; for any A ⊆ V , we use the shorthand notation
w(A) =

∑
u∈A w(u). A subset A ⊆ V is said to be independent if no two vertices

in A are connected by an edge in E; the Maximum Independent Set problem
is to find an independent set of maximum weight. A subset A ⊆ V is said
to be dominating if every vertex v ⊆ V has at least one neighbor in A; the
Minimum Dominating Set problem is to find a dominating set of minimum
weight. A subset A ⊆ V is said to be a vertex cover if every edge in E has at
least one endpoint in A; the Minimum Vertex Cover is to find a vertex cover
of minimum weight.

2.2 Simple Observations

Let I be a representation of a D-DI graph G, and denote 	(D) = lcm {2, . . . , D},
the least common multiple of the numbers 2, . . . , D.
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Observation 1. Let I, J ∈ I be two dotted intervals, and let i ∈ I, J . If
t(I), t(J) ≥ i+ 	(D), then i+ 	(D) ∈ I, J .

Given a dotted interval I and an integer i, let

I(i) = {j : j ∈ I and j < i} ∪ {j − 	(i) : j ∈ I and j ≥ i+ 	(D)} .

Namely I(i) is obtained from I by removing the points in I ∩ [i, i+ 	(D)−1] and
gluing the two parts of I back together by moving the points in I∩[i+	(D), t(I)]
to the left. Let I(i) = {I(i) : I ∈ I}.

Observation 2. Let i be an integer such that [i, i+2	(D)− 1] does not contain
any starting or finishing point of a dotted interval from I. Then I(i) is also a
representation of G.

Given an arbitrary D-DI representation, we could apply the above observation
repeatedly to obtain an equivalent representation where all intervals with length
more than 2	(D) contain at least one end-point of some dotted interval.

Observation 3. Any D-DI graph G has a representation I such that

max
I∈I

t(I)−min
I∈I

s(I) ≤ 4n 	(D) . (1)

Hence wemay assume that the endpoints of dotted intervals in I are in {1, . . . , N},
where N ≤ 4n · 	(D). By our assumption that D = O(1) this means that N =
O(n). We also note that given a representation I of a D-DI graph G, a represen-
tation of G satisfying (1) can be computed in polynomial time.

3 Maximum Independent Set

In this section we present a dynamic programming algorithm for Maximum

Independent Set on D-DI graphs that runs in O(DnD) time, for any D. The
algorithm can be thought of as a generalization of the well known algorithm for
maximum independent set on interval graphs.
The dynamic programming algorithm for Maximum Independent Set in

interval graphs is based on the following property. Given an interval Ii and an
independent set S ⊆ I<i, let I be the interval with the right-most end point in
S. If S ′ ⊆ I \I<i is a maximum weight subset such that {I}∪S ′ is independent,
then S ′ is a maximum weight subset such that S ∪ S ′ is independent. Namely,
S can be represented by a single interval for the purpose of finding the best
completion of S from I \ I<i. Furthermore, checking whether S ∪ {Ii} is an
independent set can done by checking if Ii intersects I. Our algorithm is based
on an extension of this property for D-DI graphs.
First, we show that finding a maximum weight completion of S from I \ I<i

amounts to finding a maximum weight completion of Ss(Ii) from I \ I<i.
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Lemma 4. Let Ii ∈ I be a dotted interval, and let S ⊆ I<i be an independent
set. Also, let S ′ ⊆ I \ I<i be an independent set. If S ′ is a maximum weight
subset such that Ss(Ii) ∪ S ′ is independent, then S ′ is a maximum weight subset
of I \ I<i such that S ∪ S ′ is independent.

Proof. Consider an interval J ∈ I \ I<i. Any dotted interval I ∈ S intersects J
then it must satisfy s(Ii) ∈ [s(I), t(I)], which means that I ∈ Is(Ii). It follows
that if Ss(Ii) ∪ {J} is independent, then S ∪ {J} is also independent. ��

Suppose we are considering the addition of Ii to an independent set S ⊆ I<i.
Clearly, dotted intervals in S that terminate before s(Ii) may be ignored. We
show that, from the view point of Ii, only up to d−1 dotted intervals are needed
to represent an independent set S ⊆ I<i.

Lemma 5. Let Ii ∈ I be a dotted interval, and let S ⊆ I<i be an independent
set. S ∪ {Ii} is independent if and only if (i) Ss(Ii) ∪ {Ii} is independent, and
(ii) |Ss(Ii)| < D.

Proof. Any dotted interval I ∈ S intersecting Ii must satisfy s(Ii) ∈ [s(I), t(I)].
In addition, observe that any dotted interval I ∈ Ss(Ii) must contain at least one
point in [s(Ii)−D + 1, s(Ii)). Hence, |Ss(Ii)| < D. ��

Our dynamic programming algorithm is based on Lemmas 4 and 5. The dynamic
programming table Π is constructed as follows. A state is a pair of a dotted
interval Ii and an independent set P ⊆ Is(Ii) of size at most D − 1. The entry
Π(Ii,P) stands for the maximum weight of an independent set S ′ ⊆ I\I<i such
that S ′ ∪P is independent. Observe that the optimum is given by Π(I1, ∅). The
size of the table is O(nD).
In the base case, we have

Π(In,P) =
{
0 P ∪ {In} is not independent
w(In) otherwise .

For i < n, if P ∪ {Ii} is not an independent set we have

Π(Ii,P) = Π(Ii+1,P ∩ Is(Ii+1)) .

On the other hand, if P ∪{Ii} is an independent set, then there are two options.
If there exists an index k > i for which the size of (P ∪ {Ii})∩Is(Ik) is less than
D, then we have

Π(Ii,P) = min
{
Π(Ii+1,P ∩ Is(Ii+1)) , w(Ii) +Π(Ik, (P ∪ {Ii}) ∩ Is(Ik))

}
,

where k > i is the smallest index for which the size of (P ∪ {Ii}) ∩ Is(Ik) is less
than D. If such an index does not exist, then

Π(Ii,P) = min
{
Π(Ii+1,P ∩ Is(Ii+1)) , w(Ii)

}
.

The correctness of the algorithm is implied by Lemmas 4 and 5. Hence it remains
to show that the running time of the algorithm is O(DnD). We do so by proving
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that the running time of computing an entry of Π is O(D). First, checking
whether P ∪ {Ii} is an independent set takes O(D) time. Filtering out dotted
intervals from P or P ∪ {Ii} that do not belong to Is(Ii+1) or to Is(Ik) also
requires O(D) time. Also, finding k, if necessary, can be done in O(D) time.
The computation of Π(I1, ∅) can be modified to compute a corresponding

independent set using standard techniques. The complement of an independent
set is a vertex cover, so the complement of the set returned by our algorithm is
minimum weight vertex cover. Hence, we get the following theorem.

Theorem 1. There is an O(DnD)-time algorithm for Maximum Indepen-

dent Set and Minimum Vertex Cover in D-DI graphs with n vertices.

Notice that our algorithm runs in O(n) time when D = 1, so Theorem 1 can
be viewed as a strict generalization of the classical linear time algorithm for
Maximum Independent Set in interval graphs.

4 Dominating Set

Using a similar approach to the one used for Maximum Independent Set in
D-DI graphs, we can solve the Minimum Dominating Set problem in D-DI
graphs in O(D2nO(D2)) time, for any D.
Our algorithm forMinimum Dominating Set is based on the following idea.

Let S be a dominating set of I and consider the set S<i = S ∩ I<i. Clearly, S<i

covers some dotted intervals from I<i, but it may be the case that there are
dotted intervals in I<i that do not intersect S<i. Such dotted intervals must end
at or after s(Ii). Furthermore, S<i may cover dotted intervals in I \ I<i.
Given a dotted interval Ii and a subset S ⊆ I<i, we say that S ′ ⊆ I \ I<i is

a completion of S if S ∪ S ′ is a dominating set of I. Notice that it may be the
case that such a completion for S does not exist. Also, given a set T , we say
that I ∈ T is a left representative of T with jump d(I) and offset o(I) if

t(I) = min {t(I ′) : I ′ ∈ T and d(I ′) = d(I) and j(I ′) = j(I)} .

Similarly, I is a right representative of T with jump d(I) and offset o(I) if

t(I) = max {t(I ′) : I ′ ∈ T and d(I ′) = d(I) and j(I ′) = j(I)} .

The set of left and right representatives of T is denoted by T L and T R, and
contain one representative from each jump-offset pair realized by intervals in T .

Lemma 6. Let Ii ∈ I be a dotted interval, let S ⊆ I<i, and let T ⊆ I<i be
the subset of dotted intervals that are not covered by S. If S ′ ⊆ I \ I<i is a
minimum weight subset such that SR

s(Ii)
∪S ′ dominates T L∪ (I \I<i), then S ′ is

a minimum weight completion of S. Furthermore, |SR
s(Ii)

|+ |T L| ≤ 1
2D(D + 1).

Proof. First notice that if S covers a dotted interval I ∈ I \ I<i, then SR must
also cover I. Also, if S ′ covers T L, then it must cover T .
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Finally, observe that T ⊆ Is(Ii) since otherwise S cannot be completed. It
follows that it cannot be that I ∈ SR

s(Ii)
and J ∈ T L represent the same jump

and offset, since in this case I covers J . Hence, SR
s(Ii)

∪ T L contain at most one

representative for each pair of jump and offset, and there are 1
2D(D + 1) such

pairs. ��

The dynamic programming table Π is constructed as follows. A state is a triple
of a dotted interval Ii, and sets P and Q such that

– P ,Q ⊆ Is(Ii).
– P ∩ Q = ∅.
– P ∪Q contain at most one dotted interval for every pair of jump and offset.

The entry Π(Ii,P ,Q) stands for the minimum weight subset S′ such that P∪S ′

dominates (I \ I<i) ∪Q. Observe that the optimum is given by Π(I1, ∅, ∅). The
size of the table is nO(D2).
In the base case, we have

Π(In,P ,Q) =

⎧⎪⎨⎪⎩
0 Q = ∅ and P covers In,
w(In) Q �= ∅ and In covers Q,
∞ otherwise.

For i < n, if Q �⊆ Is(Ii), then

Π(Ii,P ,Q) =∞ .

otherwise,

Π(Ii,P ,Q) = min
{
Π(Ii+1,Ps(Ii+1),Q) , Π(Ii+1, (P ∪ {Ii})s(Ii+1),Q′)

}
,

where Q′ ⊆ Q is the subset of dotted intervals that are not covered by Ii.
The correctness of our algorithm is implied by Lemma 6. Computing the value

Π(Ii,P ,Q) can be done in O(D2). Hence, the running time of the algorithm

is O(D2nO(D2)). The computation of Π(I1, ∅) can be modified to compute a
corresponding independent set using standard techniques.

Theorem 2. There is an O(D2nO(D2))-time algorithm for Minimum Domi-

nating Set on D-DI graphs with n vertices.

5 Deletion Problems

This section presents an EPTAS for a wide class of deletion problems in D-
DI graphs. Three classical examples of such problems are Minimum Vertex

Cover, Minimum Feedback Vertex Set, and Minimum Planar Dele-

tion. For ease of presentation, we first describe our algorithm for Minimum

Vertex Cover, and then later explain how it generalizes to other deletion
problems. We begin by recalling the definition of a path decomposition [18]:
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Definition 1. A path decomposition of a given graph G is a path P whose
vertices V (P) ⊆ 2V (G) are subsets of vertices in G, called bags, satisfying the
following two properties:

–
⋃

P∈V (P)G[P ] = G, and

– for every v ∈ V , the set of bags {P ∈ V (P) : v ∈ P} induces a subpath in P.

The width of the path decomposition P is maxP∈P |P | − 1. The pathwidth of G
is the minimum width of any path decomposition of G.

It is well known that an interval graph with maximum clique size k has pathwidth
k − 1. The next lemma shows that this result generalizes quite nicely to D-DI
graphs.

Definition 2. A clique K in a D-DI graph with dotted interval representation
I is a point clique if there exists a point p ∈ N which is included in every Iv ∈ I
with v ∈ K.

Lemma 7. A D-DI graph with maximum point clique size k has pathwidth at
most Dk − 1.

Proof. Let G be a D-DI graph, and let I denote a set of dotted intervals corre-
sponding to G. Let Ki denote the set of all vertices whose corresponding dotted
interval include the integer i ∈ N. Define a path decomposition P := P1, . . . , PN

for G by Pi :=
⋃i+D−1

j=i Kj for all i ∈ {1, . . . , N}, where N is the maximum
integer included in any dotted interval of I. Since G has no clique of size k + 1,
we have |Ki| ≤ k for all i ∈ N. Thus, |Pi| ≤ Dk for all i ∈ {1, . . . , N}. We finish
the proof by showing that P is indeed a path decomposition of G.
First observe that any vertex of G is included in some Ki ⊆ Pi. Second, since

for any edge {u, v} ∈ E(G) we have i ∈ Iu ∩ Iv for some i ∈ {1, . . . , N}, every
edge is also completely contained in some Ki, which in turn is contained in Pi;
thus,

⋃
iG[Pi] = G. Finally, observe that for any vertex v, if v ∈ Pi ∩ Pi+2 for

any i ∈ {1, . . . , N − 2}, then it must be the case that v ∈ Pi+1; otherwise, the
jump of Iv must be at least D+1. Thus, the second condition in Definition 1 is
also satisfied, and P is a path decomposition of width at most Dk − 1. ��

Aumann et al. [2] show that for any D ∈ N there exists a finite bipartite graph
G which is not a D-DI graph. An interesting corollary of Lemma 7 is that such a
statement is true even for trees, a much more restricted class of bipartite graphs.

Corollary 1. For any D ∈ N there is a finite tree T which is not a D-DI graph.

Proof. Let D be given. Robertson and Seymour [18] argued that for any integer
w ∈ N there is a finite tree with pathwidth greater than w. By Lemma 7,
choosing such a tree for w := 2D gives a tree T which is not a D-DI graph, since
the maximum clique size of T is 2. ��

Another interesting corollary of Lemma 7 more relevant to our purposes is that
Minimum Vertex Cover can be solved optimally in D-DI graphs of maximum
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(point) clique size k in time 2O(Dk) ·n. This follows from the well known 2O(w) ·n
algorithm for Minimum Vertex Cover in graph of pathwidth at most w (see
e.g. [6]). Recall that by Observation 3, we can assume that N = O(n) so the
path decomposition obtain in the proof of Lemma 7 can be computed in linear
time.

Corollary 2. There is a linear-time algorithm for solving Minimum Vertex

Cover restricted to D-DI graphs given with representations that have maximum
point clique size k.

Theorem 3. For any fixed d ∈ N and ε > 0, there exists a linear time (1 + ε)-
approximation algorithm for unweighted Minimum Vertex Cover in D-DI
graphs.

Proof. Let G be a given D-DI graph with representation I, and let k := 1/ε.
We first greedily compute a maximal set K := {K1, . . . ,Kt} of pairwise disjoint
point cliques of size k + 1 in G. (Note that there can be several point cliques of
size k + 1 at the same point.) Such a set can be computed in linear time. Let
S1 :=

⋃
K, and let G1 := G[S1] and G2 := G[V \ S1]. Then G2 has maximum

point clique size k, and so by Corollary 2 we can compute an optimal vertex cover
S2 for G in linear time. Our algorithm outputs the set of vertices S := S1 ∪ S2.
Clearly, S is a vertex cover of G. We next argue that S is has size at most
(1 + ε)|opt|, where opt is a minimum vertex cover of G.
Let opt1 and opt2 respectively denote minimum vertex covers of the graphs

G1 and G2. Then |opt2| = |S2| and |opt1| + |opt2| ≤ |opt|. Observe that for
any clique K ∈ K, we must have |opt1 ∩K| ≥ k, otherwise opt1 would not be
a vertex cover of G1. Since each such K has size k + 1, we have

|S1| ≤ (1 + 1/k)|opt1| = (1 + ε)|opt1|.

Thus,
|S| = |S1|+ |S2| ≤ (1 + ε)|opt1|+ |opt2| ≤ (1 + ε)|opt|.

��

We next consider other deletion problems. For a graph class (property) G, the
Minimum G-Deletion problem takes as input a graph G, and the goal is to
compute a minimum size subset of vertices S in G such that G − S ∈ G. We
will be interested in this problem for graph classes G that have finite forbidden
subgraph, topological minor, or minor characterizations. We call such a graph
class finitely defined. For example, if G is the class of forests (and Minimum G-
Deletion is Minimum Feedback Vertex Set) then G has a finite forbidden
minor characterization which consists of the single graph K3; when G is the set
of all planar graphs then it has forbidden minor characterization consisting of
K3,3 and K5.
Let G be a finitely defined graph class. First, notice that for any positive

integer w, theMinimum G-Deletion problem can be solved in linear time when
restricted to graphs of treewidth w; this is due to an extension of Courcelle’s



Optimization Problems in Dotted Interval Graphs 55

Theorem [10] due to Borie et al. [7]. Second, notice that the clique-deletion
technique that is applied in the proof of Theorem 3 can be extended toMinimum

G-Deletion. Specifically, this is done by setting k := (h− 1)/ε, where h is the
minimum number of vertices in any graph of the forbidden characterization of G.
Clearly any solution S forMinimum G-Deletion must include at least k−h+1
vertices of any clique of size k in the input graph G, since otherwise G− S will
contain a graph from the forbidden characterization of G. Using this observation,
the argument used in Theorem 3 follows exactly as is.

Theorem 4. For any fixed d ∈ N and ε > 0, and any finitely defined graph
class G, there exists a linear time (1+ε)-approximation algorithm for unweighted
Minimum G-Deletion in D-DI graphs.

6 Concluding Remarks

This paper presents algorithms for a number of classical optimization problems in
D-DI graphs. We show an O(DnD)-time algorithm forMaximum Independent

Set andMinimum Vertex Cover in D-DI graphs, and give an O(D2nO(D2))-
time algorithm for Minimum Dominating Set. We also present a linear-time
(1 + ε)-approximation algorithm for unweighted Minimum Vertex Cover in
D-DI graphs, that generalizes to a wide range of deletion problems. We note
that for Minimum Vertex Cover and many other problems for this class,
our algorithm also works for the general weighted case using the local ratio
technique [3] for the clique-deletion process in the proof of Theorem 3. However
since the Borie et al. [7] extension of Courcelle’s Theorem does not work for
weighted graphs, Theorem 4 in its generality only applies to uniform weights.
Two main open problems stem from our work. The first is to settle the fix pa-

rameter tractability of these problems of the problems considered in this paper,
when parameterized by D. In particular, is Minimum Vertex Cover param-
eterized by D in FPT, or is it W[1]-hard? The second question arises from the
fact that our algorithms crucially exploit the D-DI representation of the input
graph. Thus, the natural question to ask is whether one can in polynomial-time
compute a D-DI representation for a given graph G and a fixed D, or to deter-
mine that none exists. This can be done efficiently when D = 1 since it reduces
to finding an interval representation of a given interval graph. We conjecture
that finding a D-DI representation is NP-hard for D ≥ 2.
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Abstract. Multiple interval graphs are variants of interval graphs where
instead of a single interval, each vertex is assigned a set of intervals on the
real line. We study the complexity of the MAXIMUM CLIQUE problem
in several classes of multiple interval graphs. The MAXIMUM CLIQUE
problem, or the problem of finding the size of the maximum clique, is
known to be NP-complete for t-interval graphs when t ≥ 3 and polynomial-
time solvable when t = 1. The problem is also known to be NP-complete
in t-track graphs when t ≥ 4 and polynomial-time solvable when t ≤ 2.
We show that MAXIMUM CLIQUE is already NP-complete for unit 2-
interval graphs and unit 3-track graphs. Further, we show that the prob-
lem is APX-complete for 2-interval graphs, 3-track graphs, unit 3-interval
graphs and unit 4-track graphs.We also introduce two new classes of graphs
called t-circular interval graphs and t-circular track graphs and study the
complexity of the MAXIMUM CLIQUE problem in them. On the pos-
itive side, we present a polynomial time t-approximation algorithm for
WEIGHTED MAXIMUM CLIQUE on t-interval graphs, improving ear-
lier work with approximation ratio 4t.

1 Introduction

Given a family of sets F , a graph G with vertex set V (G) and edge set E(G) is
said to be an “intersection graph of sets from F” if ∃f : V (G) → F such that
for distinct u, v ∈ V (G), uv ∈ E(G) ⇔ f(u) ∩ f(v) �= ∅. When F is the set of
all closed intervals on the real line, it defines the well-known class of interval
graphs. A t-interval is the union of t intervals on the real line. When F is the
set of all t-intervals, it defines the class of graphs called t-interval graphs. This
class was first defined and studied by Trotter and Harary [25]. Given t parallel
lines (or tracks), if each element of F is the union of t intervals on different lines,
one defines the class of t-track graphs. It is easy to see that this class forms a
subclass of t-interval graphs.
These classes of graphs received a lot of attention, for both their theoretical

simplicity and their use in various fields like Scheduling [4,13] or Computational
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Biology [3,9]. West and Shmoys [27] showed that recognizing t-interval graphs
for t ≥ 2 is NP-complete.
Given a circle, the intersection graphs of arcs of this circle forms the class of

circular arc graphs. We introduce similar generalizations of circular arc graphs. If
G has an intersection representation using t arcs on a circle per vertex, then G is
called a t-circular interval graph. If instead, G has an intersection representation
using t circles and exactly one arc on each circle corresponding to each vertex of
G, then G is called a t-circular track graph. Note that in this case, the class of
t-circular track graphs may not be a subclass of the class of t-circular interval
graphs. One can see after cutting the circles, that t-circular interval graphs and
t-circular track graphs are respectively contained in (t + 1)- and (2t)-interval
graphs.
For all these intersection families of graphs, one can define a subclass where all

the intervals or arcs have the same length. We respectively call those subclasses
unit t-interval, unit t-track, unit t-circular interval, and unit t-circular track
graphs.
MAXIMUM WEIGHTED CLIQUE is the problem of deciding, given a graph

G with weighted vertices and an integer k, whether G has a clique of weight k.
The case where all the weights are 1 is MAXIMUM CLIQUE. Zuckerman [28]
showed that unless P=NP, there is no polynomial time algorithm that approxi-
mates the maximum clique within a factor O(n1−ε), for any ε > 0. MAXIMUM
CLIQUE has been studied for many intersection graphs families. It has been
shown to be polynomial for interval filament graphs [12], a graph class including
circle graphs, chordal graphs and co-comparability graphs. It has been shown to
be NP-complete for B1-VPG graphs [21] (intersection of strings with one bend
and axis-parallel parts [2]), and for segment graphs [7] (answering a conjecture
of Kratochv́ıl and Nešetřil [20]).
MAXIMUM CLIQUE is polynomial for interval graphs (folklore) and for cir-

cular arc graphs [11,14]. However, Butman et al. [6] showed that MAXIMUM
CLIQUE is NP-complete for t-interval graphs when t ≥ 3. For t-track graphs,
MAXIMUM CLIQUE is polynomial-time solvable when t ≤ 2 and NP-complete
when t ≥ 4 [19]. Butman et al. also showed a polynomial-time t2−t+1

2 factor ap-
proximation algorithm for MAXIMUM CLIQUE in t-interval graphs. Koenig [19]
observed that a similar approximation algorithm with a slightly better approxi-

mation ratio t2−t
2 exists for MAXIMUM CLIQUE in t-track graphs. Butman et

al. asked the following questions:

– Is MAXIMUM CLIQUE NP-hard in 2-interval graphs?

– Is it APX-hard in t-interval graphs for any constant t ≥ 2?
– Can an algorithm with a better approximation ratio than t2−t+1

2 be achieved
for t-interval graphs?

We answer all of these questions in the affirmative. As far as the third question is
concerned, Kammer, Tholey and Voepel [18] have already presented an improved
polynomial-time approximation algorithm that achieves an approximation ratio
of 4t for t-interval graphs. In this paper (Section 3), we present a linear time
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2t-approximation algorithm, and a polynomial time t-approximation algorithm
for MAXIMUM WEIGHTED CLIQUE in t-interval graphs (and thus in t-track
graphs), t-circular interval graphs, and t-circular track graphs. Then we show in
Section 4 that MAXIMUM CLIQUE is APX-complete for many of these families
(including 2-interval graphs). Finally in Section 5, we show that for some of the
remaining classes (including unit 2-interval graphs) MAXIMUM CLIQUE is NP-
complete.

2 Preliminaries

Consider a circle C of length l with a distinguished point O. The coordinate of a
point p ∈ C is the length of the arc going clockwise from O to p. Given two reals
p and q, [p, q] is the arc of C going clockwise from the point with coordinate p to
the one with coordinate q. In the following, coordinates are understood modulo l.
A representation of a t-interval graph G is a set of t functions, I1, . . . , It,

assigning each vertex in V (G) to an interval of the real line. For t-track graphs
we have t lines L1, . . . , Lt, and each Ii assigns intervals from Li. Similarly, for a
representation of t-circular interval graphs (resp. t-circular track graphs) we have
a circle C (resp. t circles C1, . . . , Ct) and t functions Ii, assigning each vertex in
V (G) to an arc of C (resp. of Ci).

3 Approximation Algorithms

The first approximation algorithms for the MAXIMUM CLIQUE in t-interval
graphs and t-track graphs [6,19] are based on the fact that any t-interval rep-
resentation (resp. t-track representation) of a clique admits a transversal (i.e. a
set of points touching at least one interval of each vertex) of size τ = t2 − t+ 1
(resp. τ = t2−t) [17]. Scanning the representation of a graph G from left to right
(in time O(tn)) one passes through the points of the transversal of a maximum
clique K of G. At some of those points there are at least |K|/τ intervals forming
a subclique of K. Thus, this gives an O(tn)-time τ -approximation. Butman et al.
improved this ratio by 2 by considering every pair of points in the representation.
The intervals at these points induce a co-bipartite graph, for which computing
the maximum clique is polynomial (as computing a maximum independent set of
a bipartite graph is polynomial). Then one can see that this gives a polynomial
time (τ/2)-approximation algorithm. This actually gives a polynomial exact al-
gorithm for the MAXIMUM CLIQUE in 2-track graphs [19], as τ = 2 in this
case. For the other cases, Kammer et al. [18] greatly improved the approximation
ratios from roughly t2/2 to 4t, using the new notion of k-perfect orientability.
Actually, earlier observations by Alon [1] and by Bar-Yehuda et al. [4] (about
approximating the chromatic number of t-interval graphs) imply that the trivial
algorithm (finding the point of the representation belonging to the maximum
number of intervals) is a 2t-approximation algorithm. Using transversal argu-
ments, we can easily improve this ratio for some subclasses. A representation is
balanced if for each vertex, all its intervals (or arcs) have the same length.
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Remark 1. In any balanced t-interval (resp. t-track, t-circular interval, or t-
circular track) representation of a clique, the 2t interval extremities of the vertex
with the smallest intervals form a transversal. Thus, in those classes of graphs
MAXIMUM CLIQUE admits a linear time 2t-approximation algorithm, and a
polynomial time t-approximation algorithm.

We shall now show how to achieve the same approximation ratio without re-
straining to balanced representations.

Theorem 1. There is a linear time 2t-approximation algorithm as well as a poly-
nomial time t-approximation algorithm for MAXIMUM WEIGHTED CLIQUE
on t-interval graphs, t-track graphs, t-circular interval graphs, and t-circular track
graphs.

Proof. The problem is polynomial when t = 1, we thus assume that t ≥ 2.
Let us prove the theorem for t-interval graphs, the proofs for the other classes
are exactly the same. Let G be a weighted t-interval graph with weight function
w(u) on its vertices, and let K be a maximum weighted clique of G. Let I1, . . . , It
form a t-interval representation of G such that for any vertex u ∈ V (G), Ii(u) =
[ui, u

′
i]. For any edge uv there exists a i and a j ∈ [t] such that the point ui

belongs to Ij(v), or such that vj ∈ Ii(u). One can thus orient and color the
edges of G in such a way that uv goes from u to v in color i if ui ∈ Ij(v) for
some j. In K there is a vertex u with more weight on its out-neighbors in K than
on its in-neighbors in K. Indeed, this comes from the fact that in the oriented
graphs obtained from K by replacing each vertex u by w(u) vertices ui and by
putting an arc uivj if and only if there is an arc uv in K, there is a vertex ui

with d+(ui) ≥ d−(ui), which is equivalent to w(N
+
K(u)) ≥ w(N−

K (u)). Thus there
exists two distinct values i and j such that u has at least weight (w(K)−w(u))/2t
on its out-neighbors in color i, and at least weight (w(K) − w(u))/t on its
out-neighbors in color i or j. The vertex u and its out-neighbors in a given
color clearly induce a clique of G (they intersect at ui). Thus scanning the
representation from left to right looking for the point with the more weights
gives a clique of weight at least w(u) + (w(K) − w(u))/2t > w(K)/2t, which is
a 2t-approximation.
Then the graph induced by u and its out-neighbors in color i or j being

co-bipartite one can compute its maximum weighted clique in polynomial time
(as computing a maximum weighted independent set of a bipartite graph is
polynomial). This clique has weight at least w(u) + (w(K)−w(u))/t > w(K)/t
(the weight of the subclique of K induced by u and its neighbors in color i or j).
Thus, for each vertex u of the graph and any pair ui and uj of interval left end,
if we compute the maximum weighted clique of the corresponding co-bipartite
graph, we obtain a t-approximation.

4 APX-Hardness in Multiple Interval Graphs

The complement of a graph G is denoted by G. Given a graph G on n vertices
with V (G) = {x1, . . . , xn} and E(G) = {e1, . . . , em}, and a positive integer w,
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we define Subdw(G) to be the graph obtained by subdividing each edge of G
w times. If ek ∈ E(G) and ek = xixj where i < j, we define l(k) = i and
r(k) = j (as if xi and xj were respectively the left and the right end of ek). In
the following we subdivide edges 2 or 4 times. In Subd2(G) (resp. Subd4(G)),
the vertices subdividing ek are ak and bk (resp. ak, bk, ck, and dk) and they are
such that (xl(k), ak, bk, xr(k)) (resp. (xl(k), ak, bk, ck, dk, xr(k))) is the subpath of
Subd2(G) (resp. Subd4(G)) corresponding to ek. To prove APX-hardness results
we need the following structural theorem, which is of independent interest.

Theorem 2. Given any graph G,

– Subd4(G) is a 2-interval graph,
– Subd2(G) is a unit 3-interval graph,
– Subd2(G) is a 3-track graph,
– Subd2(G) is a unit 4-track graph,
– Subd2(G) is a unit 2-circular interval graph (and thus a 2-circular interval

graph),
– Subd2(G) is a 2-circular track graph, and
– Subd2(G) is a unit 4-circular track graph.

Furthermore, such representations can be constructed in linear time.

Since MAXIMUM INDEPENDENT SET is APX-hard even when restricted
to degree bounded graphs [22,5], Chleb́ık and Chleb́ıková [8] observed that
MAXIMUM INDEPENDENT SET is APX-hard even when restricted to 2k-
subdivisions of 3-regular graphs for any fixed integer k ≥ 0. Taking the com-
plement graphs, we thus have that MAXIMUM CLIQUE is APX-hard even
when restricted to the set C2k = {Subd2k(G) | any graph G}, for any fixed inte-
ger k ≥ 0. Thus, since MAXIMUM CLIQUE is approximable for all the graph
classes considered in Theorem 2, we clearly have the next result.

Theorem 3. MAXIMUM CLIQUE is APX-complete for:

– 2-interval graph,
– unit 3-interval graph,
– 3-track graph,
– unit 4-track graph,
– unit 2-circular interval graph (and thus for 2-circular interval graphs),
– 2-circular track graph, and
– unit 4-circular track graph.

Note that recently, Jiang [15] gave an alternative proof of the fact that MAX-
IMUM CLIQUE is APX-complete for 3-track graphs by refining the technique
used in [6].

Remark 2. To prove that MAXIMUM CLIQUE is NP-hard on B1-VPG graphs,
Middendorf and Pfeiffer [21] proved that for any graph G, Subd2(G) ∈ B1-VPG.
One can thus see that MAXIMUM CLIQUE is actually APX-hard for this class
of graphs.
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We only prove the first item of Theorem 2 in this extended abstract.

Proof. Recall that each edge ek = xixj of G where i < j, corresponds to the
path (xi, ak, bk, ck, dk, xj) in Subd4(G). We define the representation {I1, I2} of
Subd4(G) as follows (see also Figure 1). For 1 ≤ i ≤ n and 1 ≤ k ≤ m:

I1(ak) = [0,m(l(k)− 1) + k − 1]
I1(xi) = [mi,mn+mi]
I2(ak) = [mn+ml(k) + 1, 4mn+m−ml(k)− k + 1]
I1(bk) = [m(l(k)− 1) + k,mn+m− k]
I1(ck) = [mn+m− k + 1, 3mn+m−mr(k)− k + 1]
I1(dk) = [3mn+m−mr(k) − k + 2, 4mn+mr(k)]
I2(bk) = [4mn+m−ml(k)− k + 2, 5mn+ k]
I2(xi) = [4mn+mi+ 1, 5mn+mi+ 1]
I2(dk) = [5mn+mr(k) + k + 1, 6mn+m+ 1]
I2(ck) = [5mn+ k + 1, 5mn+mr(k) + k]

ak
(l(k), k)

bk

(l(k), k)

k

xi
i

ak
l(k)

ck
k

(r(k), k)

(l(k), k)

dk

bk ck

dkxi

(r(k), k) r(k)

(l(k), k)

k k

(r(k), k)

(r(k), k)

i i

i

Fig. 1. The 2-interval representation of Subd4(G)

Figure 1 (and the other figures of this kind) should be understood in the
following way. The leftmost block labeled ak corresponds to the intervals I1(ak),
and its shape, together with the label (l(k), k) on the arrow mean that,

– the left end of the intervals I1(ak) are the same (coordinate 0), and that
– the right end of the intervals I1(ak) are ordered (from left to right) accord-
ingly to l(k), and in case of equality, accordingly to k.

Here we can see that this block is close to the blocks I1(bk), and I1(xi).
The left end of the interval I1(bk) is also ordered (from left to right) accord-

ingly to (l(k), k). Such situation means that I1(ak) intersects every I1(bk′) such
that (l(k), k) > (l(k′), k′), i.e. such that l(k) > l(k′) or such that l(k) = l(k′)
and k > k′. Note that since, between I2(ak) and I2(bk) we have the opposite
situation, for any vertex ak, ak is adjacent to every bk′ , except bk.
The left end of the interval I1(xi) is ordered (from left to right) accordingly

to i. Such situation means that I1(ak) intersects every I1(xi) such that l(k) > i.
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Note that since, between I1(xi) and I2(ak) we have the opposite situation, for
any vertex ak, ak is adjacent to every xi, except xl(k).
We claim that I1 and I2 together form a valid 2-interval representation for

Subd4(G). We omit the proof in this extended abstract but one can check it with
Figure 1.

5 NP-Hardness in Unit 2-Interval and Unit 3-Track
Graphs

Valiant [26] has shown that every planar graph of degree at most 4 can be drawn
on a grid of linear size such that the vertices are mapped to points of the grid
and the edges to piecewise linear curves made up of horizontal and vertical line
segments whose endpoints are also points of the grid. It is immediately clear
that every planar graph G has a subdivision G′ that is an induced subgraph
of a grid graph such that each edge of G corresponds to a path of length at
most O(|V (G)|2) (see Figure 2). Note that here, some paths have even length
and some have odd length. An even subdivision (resp. odd subdivision) of G is
a graph obtained from G by subdividing each edge e of G an even (resp. odd)
number of times, and at most |V (G)|O(1) times.

Fig. 2. Embedding a planar graph in a grid

Note that for any integer k, we can embed G in a fine enough grid so that
every horizontal and vertical segment in the original drawing of G becomes a
path that contains at least k vertices in G′. In Figure 2, we have chosen k = 5.
Let R(w, h) be the rectangular grid of height h and width w. A path in R(w, h)

that contains only vertices from one row of the grid is called a horizontal grid-
path and one that contains vertices from only one column is called a vertical
grid-path. We denote by R′(w, h) the graph obtained by subdividing each edge
of R(w, h) once and by adding paths of length 3 between the newly introduced
vertices as shown in Figure 3.

Lemma 1. Any planar graph G, on n vertices and of maximum degree 4, has
an even subdivision that is an induced subgraph of R′(w, h) for some values of
w and h that are linear in n.
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Fig. 3. The graph R′(11, 7). The vertices of the grid are not shown.

Proof. Let H be the subdivision of G that is an induced subgraph of the grid
R(w, h). Let Pe denote the path in H corresponding to an edge e in G. We
assume that Pe is the union of horizontal and vertical grid-paths of length at
least 5. We now transform the grid R(w, h) into R′(w, h) by subdividing each
edge once and by adding paths of length 3 between the newly introduced vertices
as explained before. Clearly, a 1-subdivision of H , which we shall denote by H ′,
is an induced subgraph of R′(w, h). It is also clear that H ′ is an odd subdivision
of G. Let P ′

e denote the path in H ′ corresponding to an edge e of G. Note that
P ′
e consists of 1-subdivisions of vertical and horizontal grid-paths.
For every edge e of G, we do the following procedure on P ′

e in H ′ to obtain a
new graph H ′′: we replace one of the subdivided horizontal or vertical grid-paths
that make up P ′

e to obtain P ′′
e which has an even number of vertices as shown

in Figure 4. The new graph H ′′ so obtained is an even subdivision of G and is
also an induced subgraph of R′(w, h).

Lemma 2. For any w and h the graph R′(w, h) is both a unit 2-interval graph
as well as a unit 3-track graph. Thus since those classes are closed under taking
induced subgraphs, they also contain the induced subgraphs of R′(w, h).

We omit the proof in this extended abstract.

Theorem 4. MAXIMUM CLIQUE is NP-complete for unit 2-interval and unit
3-track graphs.

Proof. It is known that the MAXIMUM INDEPENDENT SET problem is NP-
complete even when restricted to planar graphs of degree at most 3 [10]. It is folk-
lore that the instance (G, k) of MAXIMUM INDEPENDENT SET is equivalent
to an instance (H, k+k′), where H is an even subdivision of G with |V (G)|+2k′
vertices. Thus according to Lemma 1, MAXIMUM INDEPENDENT SET is NP-
complete on the class of induced subgraphs of R′(w, h). MAXIMUM CLIQUE
is thus NP-complete on the class of induced subgraphs of R′(w, h). Finally by
Lemma 2 this class of graphs is contained in unit 2-interval and unit 3-track
graphs. MAXIMUM CLIQUE is thus NP-complete on these classes.
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Fig. 4. Modifying the paths in H ′ to obtain H ′′: A part of the graph in Figure 2 is
shown. The grid vertices are not drawn.

6 Concluding Remarks

The difference between the 4t-approximation of Kammer et al. [18] and our t-
approximation lies in two places. In their paper they proved that t-interval graphs
are 2t-perfectly orientable, but following the lines of Theorem 1 one can see that
those graphs are t-perfectly orientable. This improves their approximation for
MAXIMUM WEIGHTED INDEPENDENT SET, MINIMUM VERTEX COL-
ORING, and MINIMUM CLIQUE PARTITION in t-interval graphs. For MAXI-
MUM WEIGHTED INDEPENDENT SET and MINIMUM VERTEX COLOR-
ING this reaches the best known ratio of t [4] in a simpler way, and for the other
problems it improves the best known approximation ratios [18]. Then Kammer
et al. proved that MAXIMUM WEIGHTED CLIQUE can be 2k-approximated
in k-perfectly orientable graphs. Again, following the lines of Theorem 1 one can
see that MAXIMUM WEIGHTED CLIQUE can be k-approximated for those
graphs. This improves (by 2) their approximation for MAXIMUM WEIGHTED
CLIQUE in t-fat objects intersection graphs.
In our approximation algorithm (as in the previous algorithms) we assume

that we are given an interval representation. We wonder what we can do if we
are not given such representation.

Open Question. Can MAXIMUM (WEIGHTED) CLIQUE be polynomially
c(t)-approximated in t-interval graphs, for some function c, if we are not given
an interval representation?

This would be the case if there is an algorithm that computes, given a t-interval
graph G, a c(t)-interval representation of G. Actually even when we are given a
representation, the approximation ratio might be far from the optimal.

Open Question. Does there exists an approximation algorithm for MAXI-
MUM (WEIGHTED) CLIQUE in t-interval graphs with a better approximation
ratio?
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Let us call f(t) the better ratio a polynomial algorithm can achieve on t-interval
graphs (actually f(t) should be an infimum). For any graph G on n vertices, it
is easy to construct a n-interval representation of G. Thus since for any ε > 0,
one cannot O(n1−ε)-approximate the MAXIMUM CLIQUE unless P = NP [28],
we certainly have f(t) = Ω(t1−ε).
The current status of the complexity of the MAXIMUM CLIQUE problem

for the various classes of multiple interval graphs that were studied are shown
in the table below (where “Unres.” stands for “Unrestricted”).

t
t-track t-interval t-circular track t-circular interval

Unit Unres. Unit Unres. Unit Unres. Unit Unres.

1 P P P P P P P P
2 P P NP-c APX-c ? APX-c APX-c APX-c
3 NP-c APX-c APX-c APX-c NP-c APX-c APX-c APX-c
≥ 4 APX-c APX-c APX-c APX-c APX-c APX-c APX-c APX-c

The entries marked “NP-c” and “?” in this table clearly imply the following
questions.

Open Question. Is MAXIMUM CLIQUE for unit 2-interval graphs, unit 3-
track graphs or unit 3-circular track graphs APX-hard, or does it admit a PTAS?

Open Question. Is MAXIMUM CLIQUE for unit 2-circular track graphs
Polynomial or NP-complete?

Koenig [19] explains that 2-track graphs have a polynomial-time algorithm for
MAXIMUM CLIQUE because for any 2-track representation of a clique, there is
a transversal of size 2 (i.e. two points such that for every vertex, at least one of
its intervals contains one of these points). We note that this is not true for unit
2-circular track graphs as the complete graph on 5 vertices has a unit 2-circular
track representation in which each circular track induces a cycle on 5 vertices.
This representation clearly does not have a transversal of size 2.
Recently, Jiang and Zhang studied the class of complements of t-interval

graphs [16]. In particular they proved that MINIMUM (INDEPENDENT) DOM-
INATING SET parameterized by the solution size is in W[1] for co-2-interval
graphs, and they proved that MINIMUM DOMINATING SET is W[1]-hard for
co-3-track graphs.
Following the same line of proof as for Theorem 3 we can prove the following

APX-hardness results, for this kind of graph classes.

Theorem 5

(i) MINIMUM VERTEX COVER is APX-complete in co-2-interval graphs, and
the complement classes of all the classes of Theorem 2.

(ii) For any graph G, Subd3(G) is a co-2-interval, a co-unit-3-interval, a co-
3-track, a co-unit-4-track, and a co-2-circular track graph, and MINIMUM
(INDEPENDENT) DOMINATING SET is APX-hard for these classes of
graphs.
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Abstract. The stable roommates problem with payments has as input
a graph G = (V,E) with an edge weighting w : E → R+ and the problem
is to find a stable solution. A solution is a matching M with a vector
p ∈ RV

+ that satisfies pu + pv = w(uv) for all uv ∈ M and pu = 0 for all
u unmatched in M . A solution is stable if it prevents blocking pairs, i.e.,
pairs of adjacent vertices u and v with pu+pv < w(uv). By pinpointing a
relationship to the accessibility of the coalition structure core of matching
games, we give a simple constructive proof for showing that every yes-
instance of the stable roommates problem with payments allows a path of
linear length that starts in an arbitrary unstable solution and that ends
in a stable solution. This result generalizes a result of Chen, Fujishige
and Yang for bipartite instances to general instances. We also show that
the problems Blocking Pairs and Blocking Value, which are to find
a solution with a minimum number of blocking pairs or a minimum
total blocking value, respectively, are NP-hard. Finally, we prove that
the variant of the first problem, in which the number of blocking pairs
must be minimized with respect to some fixed matching, is NP-hard,
whereas this variant of the second problem is polynomial-time solvable.

1 Introduction

Consider a group of tennis players participating in a doubles tennis tournament.
Each two players estimate the expected prize money they could win together by
forming a pair in the tournament. Moreover, each player can negotiate his share
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of the prize money with his chosen partner in order to maximize his own prize
money. Can the players be matched together such that no two players have an
incentive to leave the matching in order to form a pair together? This example
has been given by Eriksson and Karlander [6] to introduce the stable roommates
problem with payments. This problem generalizes the stable marriage problem
with payments [14] and can be modeled by a weighted graph G = (V,E), i.e.,
that has an edge weighting w : E → R+. A vector p ∈ RV with pu ≥ 0 for all
u ∈ V is said to be a matching payoff if there exists a matching M in G, such
that pu + pv = w(uv) for all uv ∈M , and pu = 0 for each u that is not incident
to an edge in M . We then say that p is a payoff with respect to M , and we call
the pair (M,p) a matching with payoffs. A pair of adjacent vertices (u, v) is a
blocking pair of p ∈ RV if pu+ pv < w(uv), and their blocking value with respect
to p is ep(u, v)

+ = max{0, w(uv)− (pu + pv)}, which expresses to which extent
(u, v) is a blocking pair. We define the set of blocking pairs of a vector p ∈ RV as
B(p) = {(u, v) | pu + pv < w(uv)}, and we define the total blocking value of p as
b(p) =

∑
uv∈E ep(u, v)

+. The problem Stable Roommates with Payments

is to test whether a weighted graph allows a stable solution, i.e., a matching with
payoffs (M,p) such that B(p) = ∅, or equivalently, b(p) = 0. This problem is
well known to be polynomial-time solvable (cf. [6]); recently, an O(nm+n2 logn)
time algorithm for weighted graphs on n vertices and m edges has been given [3].
We consider two natural questions in our paper:

1. Can we gradually transform an unstable solution into a stable solution as-
suming that a stable solution exists?

2. Can we find solutions for no-instances that are “as stable as possible”?

Question 1 is of importance, as it will give us insight into the coalition formation
process. A sequence of solutions starting from an unstable one and ending in a
stable one is called a path to stability; we give a precise definition later. Ques-
tion 2 is relevant when we consider no-instances of Stable Roommates with

Payments. In order to answer it, we generalize this problem in two different
ways leading to the following two decision problems. Given a weighted graph G
and an integer k ≥ 0, the Blocking Pairs problem is to test whether G allows
a matching payoff p with |B(p)| ≤ k, and the Blocking Value problem is to
test whether G allows a matching payoff p with b(p) ≤ k.
Questions 1 and 2 have been studied in two closely related settings that are

well known and formed a motivation for our study. The first related setting is
similar to ours except that payments are not allowed. Instead, each vertex u in
an (unweighted) graph G(V,E) has a linear order on its neighbors expressing
a certain preference. Then two adjacent vertices u and v form a blocking pair
regarding a matching M if either u is not matched in M or else u prefers v to
its partner in M , and simultaneously, the same holds for v. This leads to the
widely studied problem Stable Roommates introduced by Gale and Shapley
[7]. In this setting, the results are as follows. Answering a question by Knuth
[12], Roth and Vande Vate [13] showed the existence of a path to stability for
any yes-instance provided that the instance is bipartite. Later, their result was
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generalized by Diamantoudi et al. [5] to be valid for general instances. Abra-
ham, Biró and Manlove [1] showed that the problem of finding a matching with
a minimum number of blocking pairs is NP-complete; note that the problem
Blocking Value cannot be translated to this setting, due to the absence of
cardinal utilities.
The second related setting originates from cooperative game theory. A coop-

erative game with transferable utilities (TU-game) is a pair (N, v), where N is
a set of n players and a value function v : 2N → R with v(∅) = 0 defined for
every coalition S, which is a subset of N . In a matching game (N, v), the set N
of players is the vertex set of weighted graph G, and the value of a coalition S is
v(S) =

∑
e∈M w(e), whereM is a maximum weight matching in the subgraph of

G induced by S. The strong relationship between the two settings stems from the
fact that finding a core allocation, i.e., a vector x ∈ RN with

∑
u∈N xu = v(N)

and
∑

u∈S xu ≥ v(S) for all S ⊆ N is equivalent to solving the Stable Room-

mates with Payments (cf. [6]). The algorithms of Béal et al. [2] and Yang
[15] applied to an n-player matching game with a nonempty core find a path to
stability with length at most (n2+4n)/4 and 2n− 1, respectively. For matching
games, the problems Blocking Pairs and Blocking Value are formulated as
the problems that are to test whether a matching game (N,E) allows an alloca-
tion x with |B(x)| ≤ k, or b(x) ≤ k, respectively, for some given integer k. Biró,
Kern and Paulusma [3] showed that the first problem is NP-complete and that
the second is polynomial-time solvable by formulating it as a linear program.

Our Results. In Section 2, we answer Question 1 by showing that any unsta-
ble solution for a weighted n-vertex graph G that is a yes-instance of Stable
Roommates with Payments allows a path to stability of length at most 2n.
This generalizes a result of Chen, Fujishige and Yang [4], who show the exis-
tence of a path to stability for the aforementioned stable marriage problem with
payments, which corresponds to the case when G is bipartite. In Section 3 we
answer Question 2 by proving that Blocking Pairs and Blocking Value

are NP-complete. The latter result is somewhat surprising, as the corresponding
problem is polynomial-time solvable for matching games; we refer to Table 1 for
a survey. In addition, we show that Blocking Value does become polynomial-
time solvable if the desired matching payoff is to be with respect to some specified
matching M that is part of the input, whereas this variant of Blocking Pairs

turns out to be NP-complete.

Table 1. A comparison of the results for the existence of a path to stability and
the problems Blocking Pairs and Blocking Value in the three different settings
of stable roommates (SR), stable roommates with payments (SRwP) and matching
games (MG). The three results marked by a ∗ are the new results shown in this paper.

SR SRwP MG

Path to Stability Yes Yes∗ Yes

Blocking Pairs NP-complete NP-complete∗ NP-complete

Blocking Value n/a NP-complete∗ P
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2 Paths to Stability

We first give a useful lemma, which immediately follows from the aforemen-
tioned fact that finding a core allocation in a matching game (N, v) defined on
a weighted graph G = (N,E) is equivalent to finding a stable solution for G.

Lemma 1 ([6]). Let G be a weighted graph that forms a yes-instance of Stable
Roommates with Payments. Then G allows a stable solution (M∗, p∗) where
M∗ is a maximum weight matching of G.

Let G = (V,E) be a graph and M be a matching. If uv ∈ M , then we say that
u and v are partners in M , denoted M(u) = v and M(v) = u. If u is unmatched
in M , then we let M(u) = u. Let uv be a blocking pair for some payoff p with
respect to some matching M ; note that uv /∈M by definition. Let p′ be a payoff
with respect to a matching M ′. We say that (M ′, p′) is obtained from (M,p) by
satisfying blocking pair (u, v) if the following four conditions hold:

(i) uv ∈M ′;
(ii) pu ≤ p′u and pv ≤ p′v;
(iii) if M(u) �= u then M(u) is unmatched in M ′ (hence p′M(u) = 0), and

if M(v) �= v then M(v) is unmatched in M ′ (hence p′M(v) = 0);

(iv) M ′(z) =M(z) and p′(z) = p(z) for every z ∈ V \ {u, v,M(u),M(v)}.

That is, the players of a blocking pair become matched to each other by leaving
their former partners unmatched (if there were any) and they share the extra
utility coming from their cooperation in such a way that neither of them gets
worse off. Note that at least one of them strictly improves, i.e., we have p′u > pu
or p′v > pv. This is due to the following two arguments. First, by the definition
of a blocking pair, pu + pv < w(uv). Second, p′u + p′v = w(uv), because p′ is a
payoff with respect to M ′ and uv ∈M ′ by condition (i).
Let G be a weighted graph that forms a yes-instance of Stable Roommates

with Payments. A path to stability for G is a sequence of matchings with
payoffs

(M0, p0), (M1, p1), . . . , (Mk, pk),

where (M0, p0), . . . , (Mk−1, pk−1) are unstable solutions and (Mk, pk) is a stable
solution, such that (M i+1, pi+1) is obtained from (M i, pi) for i = 0, . . . , k− 1 by
satisfying some blocking pair.
A known proof technique for finding a path to stability is to make use of a so-

called reference solution (see e.g. [5,2,11,15]). In our setting, this comes down to
the following. We say that (M ′, p′) is obtained from (M,p) by satisfying blocking
pair (u, v) with respect to a payoff p∗ of some stable solution (M∗, p∗) that is
called a reference solution, if in addition to conditions (i)–(iv) also the following
condition is satisfied:

(v) if pu ≤ p∗u then p′u ≤ p∗u, and if pv ≤ p∗v then p′v ≤ p∗v.
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We define S∗(p) = {u ∈ V (G) : pu > p∗u} to be the set of overpaid vertices in
(M,p) with respect to (M∗, p∗). We note that when (M ′, p′) is obtained from
(M,p) by satisfying a blocking pair with respect to p∗ then S∗(p′) ⊆ S∗(p).
In order to prove the existence of a path to stability for some graph G that is
a yes-instance of Stable Roommates with Payments, it may be easier to
find a path to stability (M0, p0), (M1, p1), . . . , (Mk, pk), where (M i+1, pi+1) is
obtained from (M i, pi) for i = 1, . . . , k by satisfying some blocking pair with
respect to p∗, in such a way that S∗(pi+1) ⊆ S∗(pi) for i = 0, . . . , k − 1, with
strict inclusion occurring after a certain number of steps; the latter property
is then to guarantee that an algorithm for solving this problem will eventually
terminate in a stable solution.
We will use the approach described above in order to show that any weighted

n-vertex graph G that forms a yes-instance of Stable Roommates with Pay-

ments allows a path to stability of length 2n that starts in an arbitrary unstable
solution. Before we give the proof, we first explain in more detail how our result
is connected to results from the literature. Our result is based on the work of
Kóczy and Lauwers [11] on the so-called accessibility of the coalition structure
core. Their result implies the existence of a path to stability for any TU-game
with a nonempty core. In this setting, a path to stability is a sequence of grad-
ual changes that transform a non-core allocation to a core allocation. Recently,
Béal et al. [2] and Yang [15] built on the work of Kóczy and Lauwers [11] in
order to show the accessibility of the coalition structure core in quadratic time.
In particular, Yang [15] obtained a linear upper bound on the length of a path
to stability for all TU-games with a nonempty core, which include the match-
ing games with a nonempty core. We can use their proof techniques [2,15] for
our setting. Our arguments are slightly different though, because for matching
games (N, v) every coalition S ⊆ N may be blocking instead of only pairs {u, v}
as in our setting. As a consequence, for matching games several blocking pairs
may be satisfied in one step by choosing the affected vertices to form a blocking
coalition. Moreover, even if the starting solution is a matching with payoffs and
the final solution is a stable matching with payoffs, the intermediate solutions in
a path to stability for matching games are not necessarily such allocations that
can be realized as matchings with payoffs. Therefore, the arguments of Yang [15]
for restricting the path length cannot be translated to obtain our linear upper
bound. By pinpointing the connection to the setting of cooperative games, we
are not only able to generalize the corresponding result of Chen, Fujishige and
Yang [4] for the existence of a path to stability for bipartite instances (which are
always yes-instances) to general yes-instances, but we could also give a simpler
proof of this result with a linear upper bound on the number of blocking pairs
that need to be satisfied.

Theorem 1. Let G be a weighted n-vertex graph that forms a yes-instance of
Stable Roommates with Payments; Let (M0, p0) be a matching with payoffs.
Then there exists a path to stability of length at most 2n that starts in (M0, p0).

Proof. Let G be a weighed n-vertex graph that forms a yes-instance of Stable
Roommates with Payments; we also call such a graph G stable. Let (M0, p0)
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be a matching with payoffs. We fix a stable reference solution (M∗, p∗), where
we may assume that M∗ is a maximum weight matching due to Lemma 1. Note
that |M∗| ≤ n

2 and |M0| ≤ n
2 . Moreover, |S∗(p0)| ≤ n

2 , because the vertices u
and v of a pair uv ∈ M0 cannot both belong to S∗(p0), as otherwise p0u > p∗u,
p0v > p∗v and w(uv) = p0u + p0v would imply that uv is blocking for (M

∗, p∗).

Input: a matching with payoffs (M0, p0) in a weighted stable graph G
Output: a stable solution

Set i := 0.

Phase 1: while there is a blocking pair uv for (M i, pi) such that uv ∈ M∗ do
satisfy uv with respect to p∗, (M i+1, pi+1) ← (M i, pi); set i := i+ 1.

Phase 2: if there is a blocking pair uv for (M i, pi) then
satisfy uv with respect to p∗, (M i+1, pi+1) ← (M i, pi); set i := i+ 1, and
return to Phase 1.

Return (M i, pi).

Fig. 1. The algorithm for finding a path to stability. Contrary to the algorithms of
Béal et al. [2] and Yang [15], we do not have to specify the payoff pi+1; any vector pi+1

that is a payoff with respect to M i+1 and satisfies conditions (ii)-(v) may be chosen.

To obtain a path of stability we run the algorithm displayed in Figure 1.
Recall that S∗(pi+1) ⊆ S∗(pi) for any solution (M i, pi) for which the algorithm
performs Phase 1 or 2. Now we will prove that whenever we satisfy a blocking
pair uv /∈M∗ in Phase 2 the above relation is strict. More precisely, let (M i, pi)
be a solution after a termination of Phase 1, and let (M i+1, pi+1) be the solution
obtained after satisfying a blocking pair uivi /∈ M∗ for (M i, pi). Then we will
show that S∗(pi+1) ⊂ S∗(pi). We first show three claims, where we write w(M) =∑

uv∈M w(uv) for a matching M .

Claim 1. p∗u + p∗v = piu + piv for all uv ∈M∗ and M i has maximum weight.

We prove Claim 1 as follows. Because no uv ∈ M∗ is blocking for (M i, pi) we
have p∗u + p∗v = w(uv) ≤ piu + piv for all uv ∈M∗. This implies that

w(M∗) =
∑

uv∈M∗
p∗u + p∗v ≤

∑
uv∈M∗

piu + piv ≤ w(M i)

However, because M∗ is a maximum weight matching, we have equality every-
where, i.e., we have p∗u + p∗v = piu + piv for all uv ∈ M∗, and w(M i) = w(M∗).
The latter equality implies that M i is a maximum weight matching as well.

Claim 2. piu + piv = p∗u + p∗v for all uv ∈M i.

We prove Claim 2 as follows. The stability of (M∗, p∗) implies that piu + piv =
w(uv) ≤ p∗u + p∗v for all uv ∈M i. This leads to

w(M i) =
∑

uv∈Mi

piu + piv ≤
∑

uv∈Mi

p∗u + p∗v ≤ w(M∗).
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Together with the maximality of M i that follows from Claim 1, this means that
we have equality everywhere again, so piu + piv = p∗u + p∗v for all uv ∈M i.

Claim 3. If w is unmatched in M i or M∗, then piw = p∗w = 0.

We prove Claim 3 as follows. Suppose that w is unmatched in M i. Then piw = 0
by definition. We use Claim 2 and the fact thatM∗ andM i are maximum weight
matchings to obtain w(M∗) = w(M i) =

∑
uv∈Mi(piu + piv) =

∑
uv∈Mi (p∗u + p∗v).

By definition, w(M∗) =
∑

u∈V p∗u. Due to these two equalities, p
∗
w = 0. The case

when w is unmatched inM∗ can be proven by similar arguments. This completes
the proof of Claim 3.

We now consider the pair (ui, vi) and write u = ui and v = vi. Because uv /∈
M∗ is blocking for (M i, pi), and (M∗, p∗) is a stable solution, we deduce that
piu + piv < w(uv) ≤ p∗u + p∗v; note that this means that w(uv) > 0. If u and v are
both unmatched in M i, then p∗u = p∗v = 0 by Claim 3. Then w(uv) ≤ 0, which
is not possible. Hence, we are left to analyze two cases.
First suppose that one of u, v, say u, is unmatched inM i, whereas v is matched

by M i, say vy ∈M i. Because u is unmatched, piu = p∗u = 0 by Claim 3. Because
we already deduced that piu + piv < p∗u + p∗v, this means that piv < p∗v. The
inequality piv < p∗v and the equality piv + piy = p∗v + p∗y from Claim 2 imply that

piy > p∗y, i.e., y ∈ S∗(pi). Because y becomes unmatched after satisfying uv by

definition, we find that pi+1(y) = 0. Hence, S∗(pi+1) ⊂ S∗(pi).
Now suppose that both u and v are matched inM i. Let xu ∈M i and vy ∈M i.

The equalities pix+piu = p∗x+p∗u and p
i
v+piy = p∗v+p∗y from Claim 2, together with

the aforementioned inequality piu + piv < p∗u + p∗v, imply that pix + piy > p∗x + p∗y.
Hence, pix > p∗x or p

i
y > p∗y. This means that x or y is in S∗(pi). We may assume

without loss of generality that x ∈ S∗(pi). Because x becomes unmatched after
satisfying uv by definition, we find that pi+1(x) = 0. Hence, S∗(pi+1) ⊂ S∗(pi)
also in this case.
Because the number of overpaid vertices decreases after each execution of

Phase 2, the algorithm terminates and the returned solution (M �, p�) is stable.
Consequently, we have shown the existence of a path to stability.
Now we set the linear upper bound for the number of steps 	 required to reach

a stable solution. Each time we satisfy a blocking pair not in M∗ in Phase 2,
the number of overpaid vertices decreases. Hence, we cannot satisfy more than
|S∗(p0)| ≤ n

2 of them. Regarding the pairs of M
∗, after the first time we satisfy

a pair uv ∈ M∗ we may need to satisfy it again only if u or v is involved in
a blocking pair xu or uy, respectively, that is not in M∗ and that is satisfied
in Phase 2. Hence, the satisfaction of a pair xu not in M∗ may result that at
most two pairs in M∗, involving either x or u, can be subsequently satisfied in
Phase 1, but all the other pairs ofM∗ satisfied in this execution of Phase 1 must
be satisfied for the first time. Therefore we have the following upper bounds:

• We satisfy at most n
2 pairs not in M∗.

• We satisfy at most n
2 pairs of M

∗ for the first time.
• We satisfy pairs of M∗ not for the first time at most 2 · n2 = n times.
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Thus we satisfy at most 	 = n
2 +

n
2 +n = 2n pairs. This completes our proof. ��

Remark. Our proof of Theorem 1 is constructive. The algorithm of Figure 1
constructs a path to stability starting in any unstable solution. Due to the linear
upper bound stated in Theorem 1, its running time is O(n2) time for weighted
graphs on n vertices, given a stable reference solution (M∗, p∗) which, if neces-
sary, we can compute in O(nm+ n2 logn) [3].

3 Blocking Pairs and Blocking Value

We start this section by showing that Blocking Pairs and Blocking Value

are NP-complete. We prove the hardness of these two problems by a reduction
from Independent Set, in a similar way as was done for the Blocking Pairs

problem in the setting of matching games [3]. However, the latter setting and our
setting are quite different in nature; in particular, we recall that the Blocking

Value problem is polynomial-time solvable in the setting of matching games [3].
Hence, our hardness proof uses a number of different arguments than the hard-
ness proof for Blocking Pairs in the setting of matching games [3].

Theorem 2. Blocking Pairs and Blocking Value are NP-complete.

Proof. Clearly, both problems are in NP. In order to prove NP-completeness,
we reduce from the Independent Set problem. This problem takes as input
a graph G with an integer k and is to test whether G contains an independent
set of size at least k, i.e., a set S with |S| ≥ k such that there is no edge in G
between any two vertices of S. Garey, Johnson and Stockmeyer [9] show that
Independent Set is already NP-complete for the class of 3-regular graphs, i.e.,
graphs in which all vertices are of degree three. So we may assume that G is
3-regular. We also assume that k ≥ 2. Let n = |V | and let V = {v1, . . . , vn}.

v1

v′1

G vn

v′n

G∗ MV1

V1

K1 Kk
u1 uk

Fig. 2. The graph G∗ and an example of a matching MV1 . The edges within the sub-
graph G of G∗ have not been drawn.

From G we construct a weighted graph G∗ = (V ∗, E∗) on 2n + k(4k + 3)
vertices. First, we add a set V ′ of n new vertices v′1, . . . , v′n, where we add an
edge between vi and v′i for i = 1, . . . , n. So, every v′i has a unique neighbor in
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the resulting graph, namely vi. Now let K be a complete graph on r = 4k + 3
vertices; note that r is odd. We add k mutually vertex-disjoint copiesK1, . . . ,Kk

of K to the graph constructed so far. In each copy Ki we specify a vertex ui

leading to a set U = {u1, . . . , uk}. We then finish our construction of G∗ by
adding an edge uhvi for all 1 ≤ h ≤ k and all 1 ≤ i ≤ n; see Figure 2. It remains
to define an edge weighting w on G∗. We let w(uhvi) =

1
2 for all 1 ≤ h ≤ k and

all 1 ≤ i ≤ n, whereas we assign all other edges e of G∗ weight w(e) = 1.
We make the following observation that is important for the remainder of the

proof. By our construction, there exist a matching MV1 for each subset V1 ⊆ V
of size k that can be decomposed asMV1 =M1∪· · ·∪Mk∪MUV1 ∪MV2V ′

2
, where

Mh is a perfect matching ofK
h−uh for h = 1, . . . , k,MUV1 is a perfect matching

of G∗[U ∪ V1] and MV2V ′
2
is a perfect matching of G∗[V2 ∪ V ′

2 ] for V2 = V \ V1

and its set of neighbors V ′
2 in V ′. We call a matching MV1 as defined above a

V1-matching. Note that V1 has more than one V1-matching, because we can pick
different perfect matchings for the decomposition of MV1 (except for the perfect
matching MV2V ′

2
of G[V2, V

′
2 ], which is unique).

For our two NP-hardness reductions, it suffices to show that the following
three statements are equivalent.

(i) G has an independent set S of size at most k.
(ii) |B(p)| ≤ k for some matching payoff p of G∗.
(iii) b(p) ≤ k for some matching payoff p of G∗.

“(i) ⇒ (ii)” Suppose that G has an independent set S of size |S| ≥ k. Then we
may assume without loss of generality that |S| = k, as otherwise we could just
remove some vertices from S. We pick an arbitrary S-matchingMS and define a
payoff p with respect to MS as follows. We let p ≡ 1

2 on K1 ∪ · · · ∪Kk, whereas
we let p ≡ 1 on V \S and p ≡ 0 on S ∪ V ′. Because S is an independent set and
p ≡ 1 on V \ S, no pair (vi, vj) is a blocking pair. This and the definition of p
ensures that B(p) = {(vi, v′i) | vi ∈ S}, which has size k.

“(ii) ⇒ (iii)” Suppose that |B(p)| ≤ k for some matching payoff p of G∗. Then
b(p) ≤ k, because each blocking pair in B(p) can contribute at most a value of
1 to the total blocking value b(p) as the maximum value of w is 1.

“(iii) ⇒ (i)” Suppose that b(p) ≤ k for some matching payoff p of G∗. Assume
that b(p) is minimum over all matching payoffs. LetM be the associated match-
ing. We first show three useful claims.

Claim 1. For all 1 ≤ h ≤ k, every z ∈ VKh \ {uh} is matched by M .

We prove Claim 1 as follows. First suppose that there exists some complete
graph Kh that contains a nonempty subset D of vertices that are not equal to
uh and that are unmatched in M . Let A = VKh \ {uh ∪ D}. We write α = |A|
and δ = |D|. By our construction, the vertices in A can only be matched by M
via matching edges in Kh[A]. By definition, pz + pz′ = 1 for all zz′ ∈ M with
z, z′ ∈ A. This means that

∑
z∈A pz =

1
2α. Moreover, p ≡ 0 on D by definition,

and δ ≥ 1 by our assumption. We let E1 be the set of edges with one end-vertex
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in A and the other one in D. We let E2 be the set of edges with both end-vertices
in D. By using the properties of A and D, we find that

k ≥ b(p) ≥
∑

zz′∈E1

(1− pz − pz′) +
∑

zz′∈E2

(1− pz − pz′)

= δ
∑
z∈A

(1− pz) +
∑

zz′∈E2

1

= αδ − 1
2αδ +

1

2
δ(δ − 1)

= 1
2αδ +

1

2
δ(δ − 1).

Recall that δ ≥ 1. We distinguish three cases. If δ = 1, then α = r−δ−1 = r−2.
Then our deduction implies that k ≥ 1

2α = 1
2 (r − 2), which is equivalent to

r ≤ 2k+2. If δ = 2, then α = r− 3, and we find that k ≥ α+1 = r− 2, which is
equivalent to r ≤ k + 2. If δ ≥ 3, then we find that k ≥ 3

2α+ δ ≥ α+ δ = r − 1,
which is equivalent to r ≤ k+1. Hence, in all three cases, we find that r ≤ 2k+2.
This is not possible, because r = 4k + 3 > 2k + 2. We conclude that D = ∅.
Hence, we have proven Claim 1.

Claim 2. There exists a subset V1 ⊆ V such that the restriction of M to the edges
of G∗[V1 ∪ U ] is a perfect matching.

We prove Claim 2 as follows. First suppose that there exists some uh that is
unmatched in M . Then puh

= 0 by definition. Let A = VKh \ {uh}. Note that
|A| = r − 1 is even, because r is odd. Claim 1 tells us that the vertices of
A are matched by edges of M . By construction, these matching edges must
have both end-vertices in A. Because pz + pz′ = 1 for all zz′ ∈ M and p ≥ 0,
this means that there are at least 1

2 (r − 1) vertices in A, whose payoff is at
most 1

2 . We consider the edges between v and those vertices and deduce that
k ≥ b(p) ≥ 1

2 (r − 1)(1 −
1
2 − 0), which is equivalent to r ≤ 4k + 1. This is not

possible, because r = 4k + 3. Hence, every uh is matched by M .
Now suppose that uh forms a matching edge of M together with some other

vertex z of Kh. Then M cannot cover all vertices of Kh, because r is odd. This
is not possible due to Claim 1. Hence, every uh forms a matching edge ofM with
some vertex vi from V . This gives us the set V1, and we have proven Claim 2.

Claim 3. p ≡ 1
2 on U .

We prove Claim 3 as follows. Suppose that puh
< 1

2 for some 1 ≤ h ≤ k. By
Claim 2, uh forms a matching edge of M with some vertex vi. Then puh

+ pvi =
w(uhvi) =

1
2 . Then pvi = ε > 0. We modify p into a new payoff p′ with respect

to M by increasing the payoff to uh with ε and decreasing the payoff of vi to
zero. Because G is 3-regular, vi has 3 neighbors in G. As in the proof of Claim 2,
there are at least 1

2 (r− 1) vertices in Kh−uh, whose payoff is at most
1
2 . Hence,

taking into account the other neighbors of vi in G∗ as well, our modification of
p decreases the total blocking value by at most (k + 4)ε but at the same time
increases it by at least 1

2 (r − 1)ε. Hence, b(p′) ≥ b(p) − (k + 4)ε + 1
2 (r − 1)
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ε = b(p) + (12 (r − 1)− (k + 4))ε > b(p), where the latter inequality follows from
the fact that r ≥ 4k+2 ≥ 2k+5, as we assume that k ≥ 2. However, b(p′) > b(p)
contradicts the minimality of b(p). Hence, we have proven Claim 3.

We are now ready to argue how to find an independent set of size at least k
in G. Let V1 be the set from Claim 2. By Claim 3 and the fact that the weights
w(e) of every edge e between U and V is set to 1

2 , we find that p ≡ 0 on V1.
Due to Claim 2, no vertex v′i with vi ∈ V1 can be matched by M . Hence, pv′

i
= 0

for every vi ∈ V1. Because |U | = k, we find that |V1| = k. Let E′
1 denote the

set of edges viv
′
i with vi ∈ V1. Because |V1| = k, we obtain |E′

1| = k. Suppose
that V1 contains two adjacent vertices vi and vj . Then b(p) ≥

∑
zz′∈E′

1
(1− pz −

pz′) + (1− pvi − pvj ) = k + 1. This is not possible, because b(p) ≤ k. Hence, no
two vertices in V1 are adjacent. In other words, V1 is an independent set of size
|V1| = k, as desired. This completes the proof of Theorem 2. ��

The problems Restricted Blocking Pairs and Restricted Blocking

Value take as input a graph G, an integer k, and a matching M of G, and
are to decide whether G has a payoff p with respect to M such that |B(p)| ≤ k
or b(p) ≤ k, respectively. We show the following result, the proof of which we
omit due to space restrictions.

Theorem 3. The Restricted Blocking Value problem is polynomial-time
solvable, whereas the Restricted Blocking Pairs problem is NP-complete
even for graphs with unit edge weights.

4 Future Work

We finish our paper by stating the following two open problems. What is the
computational complexity of Blocking Pairs and Blocking Value restricted
to input graphs with unit edge weights?
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Abstract. Connectivity properties are very important characteristics
of a graph. Whereas it is usually referred to as a measure of a graph’s
vulnerability, a relatively new approach discusses a graph’s average con-
nectivity as a measure for the graph’s performance in some areas, such
as communication. This paper deals with Tower of Hanoi variants played
on digraphs, and proves they can be grouped into two categories, based
on a certain connectivity attribute to be defined in the sequel.

A major source for Tower of Hanoi variants is achieved by adding pegs
and/or restricting direct moves between certain pairs of pegs. It is natural
to represent a variant of this kind by a directed graph whose vertices are
the pegs, and an arc from one vertex to another indicates that it is allowed
to move a disk from the former peg to the latter, provided that the usual
rules are not violated. We denote the number of pegs by h. For example,
the variant with no restrictions on moves is represented by the Complete
Kh graph; the variant in which the pegs constitute a cycle and moves are
allowed only in one direction — by the uni-directional graph Cyclich.

For all 3-peg variants, the number of moves grows exponentially fast
with n. However, for h ≥ 4 peg variants, this is not the case. Whereas for
Cyclich the number of moves is exponential for any h, for most of the
other graphs it is sub-exponential. For example, for a path on 4 vertices

it is O(
√
n3

√
2n), for n disks.

This paper presents a necessary and sufficient condition for a graph to
be an H-subexp, i.e., a graph for which the transfer of n disks from a peg
to another requires sub-exponentially many moves as a function of n.

To this end we introduce the notion of a shed, as a graph property.
A vertex v in a strongly-connected directed graph G = (V,E) is a shed
if the subgraph of G induced by V − {v} contains a strongly connected
subgraph on 3 or more vertices. Graphs with sheds will be shown to be
much more efficient than those without sheds, for the particular domain
of the Tower of Hanoi puzzle. Specifically we show how, given a graph
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with a shed, we can indeed move a tower of n disks from any peg to any
other within O(2εn) moves, where ε > 0 is arbitrarily small.

Keywords: Tower of Hanoi, directed graphs, connectivity, sub-
exponential complexity, shed.

1 Introduction

Given are 3 pegs and a certain number n of disks of distinct sizes. Initially, the
disks form a tower: the largest at the bottom of one of the pegs (the source),
the second largest on top of it, and so on, until the smallest at the top of that
peg. The well-known Tower of Hanoi problem asks: how do we optimally move
the tower to another peg (the destination peg), bounded by the Hanoi rules
(henceforth HR): 1) At each step only one disk is moved. 2) The moved disk
must be a topmost one. 3) At any moment, no disk may reside on a smaller one.
The game was composed over a hundred years ago by Lucas [18]. Ever since

then, it was studied from numerous points of view. For example, in [1] it is
shown that, with a direct approach coding, the string representing the optimal
solution is square-free. This line of work was extended in [2]. As computer science
education evolved, the Tower of Hanoi problem has been used as a common
example, demonstrating the elegance of recursive programming. The reader is
referred to [29] for a review of the history of the problem, and to [30] for an
extensive bibliography of papers on various lines of research in the field.
Many variants of the original puzzle came up, some of which we will describe

here, though not chronologically. Without changing the basic peg configuration
(3 pegs, each pair being connected bi-directionally), one direction is solving the
problem for any initial and final configurations [12]. Other challenging versions
have been proposed and solved in [20],[21],[22],[23],[19]. In another direction a
disk may reside on top of a smaller one, with various limitations, [16], [9].
Another version of the original problem, which was discussed in several papers,

is where we impose restrictions on the movements between pegs. In [26], [29],
[14], the “three-in-a-row” (Path3) arrangement is studied. The uni-directional
cycle (Cyclic3) has been solved in [3],[11]. As was mentioned, it is natural to
represent a variant by a directed graph. Surprising in its simplicity, a necessary
and sufficient condition for a variant to be solvable, for any source and destina-
tion pegs and any number of disks, is that the corresponding graph is strongly
connected [17]. For 3 pegs there are 5 (up to isomorphism) strongly connected
variants. A single optimal algorithm for all these variants was obtained in [25],
accompanied with an explicit formula for the minimal number of moves for
each variant. (Note that individual algorithms and explicit formulas were known
beforehand for K3, Path3, Cyclic3, as mentioned above.)
Probably the first multi-peg version is “The Reve’s Puzzle” [10, pp. 1−2],

in which there are 4 pegs and various specific numbers of disks. It has been
generalized to any number of pegs and any number of disks in [27], with solutions
in [28] and [13], which were (among several other solutions) proved to be identical



Which Multi-peg Tower of Hanoi Problems Are Exponential? 83

in [15]. An analysis of the algorithm reveals, somewhat surprisingly, that the
number of moves in the solution grows sub-exponentially as a function of n. In

the case of 4 pegs, it grows like Θ(
√
n2

√
2n) (cf. [29]). The lower bound issue

was considered in [31] and [8], where it has been shown to grow at a rate close
to that yielded by the algorithm.
Allowing 4 pegs and above, and imposing movement restrictions, we obtain

a huge number of graphs (83 non-isomorphic strongly connected digraphs on 4
vertices already), and no algorithm seems a natural candidate to be optimal.
The question whether a variant is sub-exponential had been resolved only for
particular ones: Star [29], Cyclic [5] and Path [7]. Whereas the complexity of the
majority of the multi-peg variants is sub-exponential, Cyclic is among the few
which are exponential.
The fact that, even for the original multi-peg variants, on complete graphs,

it is not known whether the proposed algorithms are optimal, indicates that the
complexity issue here is non-trivial. Facing the wealth of variants, we would like
an easy way to determine, given a variant, whether it is exponential or sub-
exponential. This paper presents a simple necessary and sufficient condition for
a variant to be sub-exponential.
In Section 2 we describe the problem domain. The main results are introduced

in Section 3. The proofs of the theorems are presented in Section 4.

2 Problem Domain and Notations

Any arrangement of pegs and their immediate connections, such that each peg
is reachable from each other, constitutes a variant. As mentioned above, it is
natural to represent a variant by a digraph G, whose vertices are the pegs, and
an arc from one vertex to another designates the ability of moving a disk from
the former peg to the latter, provided that the HR are obeyed. In the sequel,
when we mention a variant graph, we mean a strongly connected simple directed
graph on h ≥ 3 vertices.
A configuration is a distribution of the disks among the pegs, satisfying HR.3.

A configuration is perfect if all disks reside on the same peg. Such a configuration
will be denoted by Ri,n, where n is the number of disks (disk 1 being the smallest
and disk n the largest) and i the peg containing the disks.
Given a variant graph G and a positive integer n, the corresponding configura-

tion graph G(n) is the graph whose vertices are all configurations of n disks over
G, where there is an arc from a vertex to another if one can pass from the former
to the latter by a single disk move. More generally, for any pair of configurations
there is a corresponding task, of passing from the first to the second. Thus, an
optimal solution of a task corresponds to a shortest path between the vertices
of G(n) representing the task’s initial and final configurations. The diameter of
G(n) is denoted by Dn(G).
A task is perfect if both its initial and final configurations are perfect. We use

the notation Ri,n → Rj,n both for the task and for a minimal length solution
of it. The length of such a minimal solution is expressed by |Ri,n → Rj,n|. We
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set di,j,n(G) = |Ri,n → Rj,n|. An interesting quantity is dn(G) = max
i,j

di,j,n(G),

which we call the little diameter of G(n). When the identity of the graph to
which we refer is clear, we may omit its indication. For example, we may write
Dn instead of Dn(G).
Formally, a move is composed of the disk being moved, the peg on which it

resides prior to the move, and the peg to which it is transferred. A solution to a
task is a sequence of moves accomplishing it. The algorithms constructed in the
proofs of our results produce solutions to all perfect tasks.
A variant graph G is H-exp if Dn(G) grows exponentially fast as a function of

the number of disks, namely there exist C > 0 and λ > 1 such thatDn(G) ≥ Cλn

for all n. G is H-subexp if for every ε > 0 there exists a constant C = C(ε) such
that Dn(G) ≤ C(1 + ε)n. It will follow, in particular, from Theorem 1 below
that each graph is either H-exp or H-subexp.

3 Main Results

The main problem we study is how to identify, given a variant graph, whether
it is H-subexp or H-exp. We start by proving that the number of moves behaves
regularly as a function of the number of disks.
For a variant graph G, denote λG = infn≥1

n
√
dn+1(G).

Theorem 1. For any variant graph G

lim
n→∞

n
√
dn(G) = λG .

Let us recall Corollary 1 of [6]:

Proposition 1. For any variant graph and any number of disks,

Dn ≤ (2n− 1)dn .

Combining Theorem 1 and Proposition 1 one can infer

Corollary 1. For every ε > 0 there exists an n0 such that

λn−1
G ≤ dn(G) ≤ Dn(G) ≤ (λG + ε)n−1, n ≥ n0.

The main question this paper answers is: what property must G have so that
λG = 1? To answer this, we need the following notion.

Definition 1. A shed in a strongly connected digraph G (see Fig. 1) is a vertex
w with the property that the graph induced by V (G)− {w} contains a strongly
connected subgraph of size at least 3.

Our main result is

Theorem 2. A variant graph G with h ≥ 3 vertices is H-subexp if and only if
it contains a shed.
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4 (the shed)

1

3

1

2

G

4 (a shed)

1

3

G2

2

Fig. 1. Two example graphs with sheds

Unlike the proof of sub-exponentiality for K4 (cf. [29]) or the path Ph [7], the
proof for general graphs containing a shed is quite cumbersome. The reason is,
intuitively, that the former graphs have (at least) two sheds. This means that
there are a lot more options of keeping a block of small disks on some peg for a
while, taking care in the meantime of other (large) disks. On the other hand, if
the graph has a single shed, then no obvious sub-exponential algorithm comes to
mind, and in fact it may seem surprising at first glance that such an algorithm
exists at all.

4 Proofs

To prove Theorem 1, we first need

Lemma 1. For every strongly connected graph G,

dm+n−1 ≤ dmdn m,n ≥ 1.

The proof follows, to a certain extent, the idea of the proof of Theorem 2(a) in
[5], and is omitted.

Proof of Theorem 1: Putting bn = ln dn+1, we obtain by Lemma 1:

bm+n ≤ bn + bm , m, n ≥ 0 .

The sequence (bn)
∞
n=0 is thus sub-additive, which implies that the sequence

bn
n

converges to its greatest lower bound (cf. [24, p. 198]), and hence so does the
sequence

ebn/n = n
√
dn+1 ,

thus proving the theorem.

Proof of Corollary 1: Since n
√
dn+1(G) converges to λG from above, for any

ε > 0 and sufficiently large n

λG ≤ n
√
dn+1(G) ≤ λG + ε ,
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or, equivalently,
λn−1
G ≤ dn(G) ≤ (λG + ε)n−1 .

In combination with Proposition 1, this proves the corollary.

Remark 1. Corollary 1 states that dn and Dn are not too far apart, justifying
that it suffices to focus on dn.

To establish the proof of the ‘if’ part (which is the main part) of Theorem 2,
we will need several definitions. Unless explicitly stated otherwise, G will denote
a strongly connected graph with h ≥ 4 vertices containing a shed w, and G

′

− a strongly connected subgraph of size at least 3 of the graph left after w is
removed. (Note that G may contain more than one shed, and for each choice
of a shed there may be several appropriate strongly connected subgraphs of
G, but for our purposes any choice of a shed vertex and a strongly connected
component in accordance with that shed is suitable.) Taking a shortest path
from w ∈ V (G) − V (G

′
) to G

′
, we denote the entrance vertex to G

′ − the last
vertex on this path and the only one that belongs to G

′ − by e. Similarly, an
exit vertex x ∈ V (G

′
) is the first vertex on a shortest path leading from G

′

to w. These paths will be denoted by pw,e and px,w, respectively. The sequence
of moves of disk r along, say, the path pw,e is expressed by tw,e,r. S(l) is the l-th
move in a sequence of moves S.

Example 1. In each of the graphs G1 and G2 in Figure 1, the shed is vertex w =
4. (In G2 one could choose any vertex but 2 and 3 as a shed.) For G1 we have e =
x = 1, whereas for G2 we have e = 2, x = 3.

As hinted above, most of the work is required for the ‘if’ part of Theorem 2. The
following lemma shows that some of the tasks are of sub-exponential complexity.
Let Inner = V (G

′
)−{e, x}. We first show that tasks, in which the source is the

shed and the destination lies in Inner (or vice versa), are sub-exponential.

Lemma 2. Let G,G
′
, w be as above and v ∈ Inner. Then |Rw,n → Rv,n| and

|Rv,n → Rw,n| grow sub-exponentially fast as functions of n.

Sketch of proof: Fix a number λ > λG′ . It suffices to show that for every ε > 0
there exists a C = C(ε) such that

|Rw,n → Rv,n| ≤ Cλεn , n = 1, 2, . . . ,

and
|Rv,n → Rw,n| ≤ Cλεn , n = 1, 2, . . . .

The proof is based on the procedures ShedToInner(1 . . .n) (Algorithm 1) and
InnerToShed(1 . . .n) (of a similar kind), which perform the tasks Rw,n → Rv,n

and Rv,n → Rw,n in fw,v(n) ≤ Cλεn and fv,w(n) ≤ Cλεn moves, respectively.
The following lemma is required for the proof of the ‘only if’ part of Theorem 2.
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Algorithm 1. ShedToInner(1 . . .n)

/* This algorithm moves a tower of n disks from the shed w to vertex v, which is
neither the entrance nor the exit vertex with respect to w. */
if n ≤ 1

ε
then

T ← a sequence of moves that performs the task
else

m ← �n(1− ε)

T ← ShedToInner(1 . . .m)

for r ← m+ 1 to n do
T ← T ∗ tw,e,r

T ← T∗ InnerToShed(1 . . .m)

T ← T∗ Accumulate(e, v, r,m+ 1 . . . r − 1)
T ← T∗ ShedToInner(1 . . .m)

end for
end if
return T

Lemma 3. There exists a constant C with the following property. For any graph
G, not containing a strongly connected component of size 3 or more, and for any
initial configuration, the number of different disks which can participate in any
legal sequence of moves is bounded above by Ch

1
2 lg h+2 , where h = |V (G)|, and

lg h ≡ log2 h.

Proof: Let T be any legal move sequence and i any peg.

Set l=�(h−2)Ch
lgh
2 �+2 (where the constant C is sufficiently large; see below).

Consider the first move of the disk residing at the l-th place (counting from
the top) of peg i before T is started. Right before this move, all smaller disks
(residing on peg i prior to T ) have to be spread on h − 2 of the other pegs,
making it necessary for at least one peg to accept more than Ch

1
2 lg h disks from

peg i, contradicting [4, Theorem 1.3] if C is sufficiently large. It follows that the
overall number of disks that can participate in any task is bounded above by
h(h− 2)Ch

1
2 lg h + 2h, proving the lemma.

Proof of Theorem 2: (a) We prove first the ‘if’ part of the theorem. Let w
and G′ be as before. Take λ > λG′ . We will show that, for every pair of vertices
i, j ∈ V (G) and ε > 0, there exists a constant K such that

|Ri,n → Rj,n| ≤ Kλεn , n = 1, 2, . . . . (1)

Take v ∈ V (G′)−{e, x}, where e is the entrance vertex and x the exit vertex in
G′. Due to Lemma 2, it remains to consider the following cases:

– Case 1: i = w, j ∈ V (G
′
)− {v},

– Case 2: i ∈ V (G
′
)− {v}, j = w,

– Case 3: i, j ∈ V (G
′
),

– Case 4: i, j ∈ V (G), where at least one of i, j does not belong to V (G
′
)∪{w}.
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(In fact, in Case 1 we need only to take care of the case where j = e, and in
Case 2 only of i = x, but this is of no consequence.)

Case 1: We employ ShedToAny(j, 1 . . .n) (Algorithm 2), which moves a tower
of n disks from the shed to any vertex j �= v ∈ G

′
. It divides the disks into p+1

sets, where p =
⌊

n

εn�

⌋
of the sets consist of l = �εn� consecutive disks each, and

the remaining (possibly empty) set consists of up to l − 1 disks, which are the
smallest disks. Then it moves each set to its destination (vertex j) by:

– Moving all the disks from the shed to vertex v.
– Moving all but the largest �εn� disks in the set from vertex v back to the
shed.

– Moving the largest �εn� disks from vertex v to the destination.

The procedure MoveInG
′
(e, v,m+ 1 . . . r − 1) performs the task of moving the

tower consisting of disks m+1, . . . , r− 1 from e to v. By Theorem 1, the length
of the solution it produces is bounded above by C

′
λr−m−1, where C

′
is an

appropriate constant, determined by G
′
.

Accumulate(e, v, r,m+1 . . .r−1) adds the ‘next‘ disk to the column already
handled. Starting with disks m + 1 . . . r − 1 on peg v and disk r on peg e,
utilizing G

′
only, it unites them so that all disks will reside on peg v. Thus, the

number of moves produced by its (r − m)-th invocation is bounded above by
2C

′
λr−m.

Algorithm 2. ShedToAny(j, 1 . . .n)

/* ShedToAny moves a tower of n disks from the shed to any vertex j �= v ∈ G
′
. */

if n ≤ 1
ε
then

T ← a sequence of moves that performs the task
else

l ← �nε� ; p ←
⌊
n
l

⌋
; m ← n− p l

T ← [ ] /* The empty sequence */
for r ← 1 to p do

T ← T∗ ShedToInner(1 . . . n)
T ← T∗ InnerToShed(1 . . . n− l)
T ← T∗ MoveInG

′
(v, j, n− l + 1 . . . n)

n ← n− l
end for
T ← T ∗ ShedToInner(1 . . .m) ∗ MoveInG′

(v, j, 1 . . .m)

end if
return T

ShedToInner(1 . . .n) and InnerToShed(1 . . .n) require at most Cλεn moves
each, for an appropriate C. We now bound the number of moves fw,j(n) per-
formed by the procedure ShedToAny(j, 1 . . .n). For sufficiently large n:
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fw,j(n) ≤ (p+ 1)C
′
λl + 2

∑p
r=1Cλεlr + Cλεn

≤ ((p+ 1)C ′
+ 3C)λεn + 2C

∑p−1
r=1 λ

εlr

≤ ((1ε + 2)C
′
+ 3C)λεn + 2C λεl( 1

ε
+1)

1
2λ

εl

≤ ((1ε + 2)C
′
+ 7C)λεn .

Case 2: We employ AnyToShed(i, 1 . . .n) , which moves a tower of n disks from
any vertex i �= v ∈ G

′
to the shed. We omit the description of this algorithm,

which is similar to ShedToAny in the way it works, as well as in its analysis.
Case 3 is a consequence of the first two cases, by first moving all disks from i

to w, and then moving them from w to j.
Case 4: Observe that, once G′ has been set, any vertex in V (G) − V (G′)

may serve as a shed. Thus, for any i ∈ V (G′) and j ∈ V (G) − V (G′), both
inequalities |Ri,n → Rj,n| ≤ Kλεn and |Rj,n → Ri,n| ≤ Kλεn hold. Now let
i, j ∈ V (G) − V (G′). Take a vertex k ∈ V (G′). We move a tower of disks from
i to j by first moving it from i to k, and then from k to j. This proves the
correctness of (1) in this case.

(b) Sketch of proof of the ‘only if’ part of Theorem 2.
Take any strongly connected graph G without a shed. Start with any con-

figuration C. Denote by v0 the vertex on which disk 1 resides in C. Without
reaching the same configuration more than once, what is the maximal number
of moves which may be done without moving disk 1?
Clearly, as long as we do not move disk 1, all other disks may use only the

graph induced by V − {v0}. This graph has no strongly connected component
of size at least 3. By Lemma 3, since in this graph there are h − 1 vertices,
m = C(h − 1) 1

2 lg(h−1)+2 is an upper bound for the number of disks that may
participate in any sequence of moves, yielding exponential growth.
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Abstract. We study the problem of computing h-quasi planar drawings in linear
area; in an h-quasi planar drawing the number of mutually crossing edges is at
most h − 1. We prove that every n-vertex partial k-tree admits a straight-line
h-quasi planar drawing in O(n) area, where h depends on k but not on n. For
specific sub-families of partial k-trees, we present ad-hoc algorithms that com-
pute h-quasi planar drawings in linear area, such that h is significantly reduced
with respect to the general result. Finally, we compare the notion of h-quasi pla-
narity with the notion of h-planarity, where each edge is allowed to be crossed at
most h times.

1 Introduction

Area requirement of graph layouts is a widely studied topic in Graph Drawing and Geo-
metric Graph Theory. Many asymptotic bounds have been proven for a variety of graph
families and drawing styles. One of the most fundamental results in this scenario estab-
lishes that every planar graph admits a planar straight-line grid drawing in O(n2) area
and that this bound is worst-case optimal [8]. This has motivated lot of work devoted
to discover sub-families of planar graphs that admit planar straight-line drawings in
o(n2) area. Unfortunately, sub-quadratic upper bounds are known only for trees [7] and
outerplanar graphs [9], while super-linear lower bounds are known for series-parallel
graphs [19]. Bounds for planar poly-line drawings are also known [3,4].

Although planarity is one of the most desirable properties when drawing a graph,
many real-world graphs are in fact non-planar. Furthermore, planarity often imposes
severe limitations on the optimization of the drawing area, which may sometimes be
overcome by allowing either “few” edge crossings or specific types of edge crossings
that do not affect too much the drawing readability. So far, only a few papers have fo-
cused on computing non-planar layouts in sub-quadratic area. Wood proved that every
k-colorable graph admits a non-planar straight-line grid drawing in linear area [22],
which implies that planar graphs admit such a drawing. However, the technique by
Wood does not provide any guarantee on the type and number of edge crossings. More
recently, Angelini et al. provided techniques for constructing poly-line large angle
crossing drawings (LAC drawings) of planar graphs in sub-quadratic area [1]. We recall
that the study of drawings with large angle crossings started in [13].
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M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 91–102, 2012.
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In this paper we study the problem of computing linear area straight-line drawings
of graphs with controlled crossing complexity, i.e., drawings where some types of edge
crossings are forbidden. We study h-quasi planar drawings, i.e., drawings with no h
mutually crossing edges; this measure of crossing complexity can be regarded as a sort
of planarity relaxation. The combinatorial properties of h-quasi planar drawings have
been widely investigated [18,21]. The contributions of the paper are as follows: (i) We
prove that every n-vertex partial k-tree (i.e., any graph with bounded treewidth) ad-
mits a straight-line h-quasi planar drawing in O(n) area, where h depends on k but not
on n (Section 3). (ii) For specific sub-families of partial k-trees (outerplanar graphs,
flat series-parallel graphs, and proper simply-nested graphs), we provide ad-hoc algo-
rithms that compute h-quasi planar drawings in O(n) area with values of h significantly
smaller than those obtained with the general technique (Section 4). (iii) We compare
the notion of h-quasi planarity with that of h-planarity, which allows every edge to be
crossed at most h times. We prove that h-quasi planarity is, in some cases, less restric-
tive than h-planarity in terms of area requirement. Namely, while linear area h-quasi
planar drawings exist for series-parallel graphs (i.e. partial 2-trees) with h = 11, we
prove that for any given constant h there exists a family of series-parallel graphs that do
not admit a linear area straight-line h-planar drawing (Section 5). For reasons of space,
many proofs are omitted in this extended abstract.

2 Preliminaries

A drawing Γ of a graph G maps each vertex v of G to a point pv on the plane, and each
edge e = (u, v) to a Jordan arc connecting pu and pv not passing through any other
vertex; furthermore, any two edges have at most one point in common. If all edges are
mapped to straight-line segments, Γ is a straight-line drawing of G. If all vertices are
mapped to points with integer coordinates, Γ is a grid drawing of G. The bounding
box of a straight-line grid drawing Γ is the minimum axis-aligned box containing the
drawing. If the bounding box has side lengths X − 1 and Y − 1, then we say that Γ
is a drawing with area X × Y . A drawing Γ is h-quasi planar if it has no h mutually
crossing edges. A 3-quasi planar drawing is also called a quasi planar drawing.

We recall now definitions about track layouts which have been introduced and stud-
ied by Dujmović, Pór and Wood [15]. A vertex coloring {Vi : i ∈ I} of a graph G is a
partition of the vertices of G such that no edge has both endvertices in the same partition
set Vi (i ∈ I). The elements of I are colors and each set Vi is a color class. A t-track
assignment of G consists of a vertex coloring with t colors and a total ordering <i of
the vertices in each color class Vi. Each pair (Vi, <i) is a track and will be denoted as
τi. An X-crossing in a track assignment consists of two edges (u, v) and (w, z) such
that u,w ∈ Vi, v, z ∈ Vj , u <i w and z <j v, for i �= j. An edge c-coloring of G is
a partition of the edges of G into c sets, each set called a color. A (c, t)-track layout of
G consists of a t-track assignment of G and an edge c-coloring of G such that no two
edges of the same color form an X-crossing. The minimum t such that a graph G ad-
mits a (c, t)-track layout is denoted by tnc(G). A (1, t)-track layout is called a t-track
layout. The track-number of G is tn1(G), simply denoted by tn(G).

A k-tree, k ∈ N, is defined as follows. The clique of size k is a k-tree; the graph
obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of
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size k is also a k-tree. A partial k-tree is a subgraph of a k-tree. A graph has bounded
treewidth if and only if it is a partial k-tree [5].

3 Compact h-Quasi Planar Drawings of Partial k-Trees

In this section we first describe a general technique to “transform” a (c, t)-track layout
into an h-quasi planar drawing in linear area with h = c(t − 1) + 1. We then describe
how to compute a (2, t)-track layout of a k-tree where t depends on k but not on n. The
two results imply that every partial k-tree admits an h-quasi planar drawing in linear
area, where h depends on k but not on n.

Lemma 1. Let G be a graph with n vertices. If G admits a (c, t)-track layout, then G
admits an h-quasi planar grid drawing in O(t3n) area, where h = c(t− 1) + 1.

Proof. We describe how to use a (c, t)-track layout γ of G to compute an h-quasi planar
grid drawing in O(t3n) area, where h = c(t − 1) + 1. The vertices of each track τi
(i = 0, . . . , t− 1) are drawn as points of a horizontal segment si whose y-coordinate is
−i. The idea is to place the t segments si on a parabola in such a way that no connection
between two segments crosses a third. We place the vertices on si from left to right
according to <i. As a consequence, no two edges whose endvertices belong to two
tracks τi and τj can cross in the drawing unless they form an X-crossing in γ. We
will use this fact to bound the number of mutually crossing edges. More precisely, the
vertices are placed on si from left to right according to <i, with unit distance between
any two consecutive vertices. Each segment has length n∗, where n∗ = maxi{|τi|}− 1
(thus, the length of si is sufficient to host all vertices of τi). We denote by pi and qi
the leftmost and the rightmost point of si, respectively. Also, we denote by xi the x-
coordinate of pi. We place each segment si in such a way that xi = xi−1+n∗+Δi+1,
where Δi = 2(i− 1)n∗ + i (see Figure 1 for an example).

n∗Δi−1 Δi Δi+1 Δi+2

xi−2 xi−1 xi xi+1 xi+2

si−2

si−1
si

si+1
si+2

1 1 1 1
n∗ n∗ n∗ n∗

Fig. 1. Illustration of the construction described in Lemma 1

We prove now that the computed drawing Γ is an h-quasi planar grid drawing of G
with h = c(t− 1) + 1. First of all we prove that no edge in the drawing passes through
a vertex in Γ . Let (u, v) be an edge with u ∈ τi and v ∈ τj , with i < j. If (u, v) passed
through a vertex w, then w would belong to a track τl with i < l < j. We prove that
segment sl is in fact completely to the left of the segment pipj and therefore w is to the
left of (u, v). The proof is by induction on j − i. The base case is when j − i = 2 (and
l = i+1). In this case si+1 is to the left of pipi+2 by construction; namely, the slope of
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the segment piqi+1 is − 1
xi+1+n∗−xi

= − 1
2(i+1)n∗+i+2 , while the slope of the segment

pipi+2 is − 2
xi+2−xi

= − 1
2(i+1)n∗+i+2.5 , which implies that the whole segment si+1 is

to the left of pipi+2. Assume now that j − i > 2. All segments sr with i < r < j − 1
are to the left of segment pipj−1 by induction; sj−1 is to the left of pj−2pj also by
induction. It follows that all segments sr with i < r < j − 1 are to the left of pipj .

Every edge (u, v) with u drawn on si and v drawn on sj is completely contained
in the parallelogram Πi,j whose corners are pi, qi, pj , and qj (0 ≤ i, j ≤ t − 1). By
definition of (c, t)-track layout there are at most c mutually crossing edges inside each
parallelogram. We will show that at most t − 1 parallelograms Πi,j mutually overlap,
which implies that there are at most c(t − 1) mutually crossing edges in our drawing.
Consider two parallelograms Πi,j and Πr,l and assume without loss of generality that
i < j and r < l. It is easy to see that Πi,j and Πr,l overlap if and only if one of the
following three conditions hold: (α) i < r < j < l; (β) i = r; (γ) j = l. The proof
that at most t − 1 parallelogram mutually overlap in Γ is by induction on t. If t = 2,
there is a single parallelogram and the statement trivially holds. Assume now that t > 2.
We denote by Γi (0 ≤ i ≤ t − 1) the subdrawing of Γ induced by the vertices drawn
on the segments s0, . . . , si. Suppose, as a contradiction, that there is a set S of at least
t mutually overlapping parallelograms in Γt−1. Partition S into two subsets P and R
defined as follows. P = {Πi1,t−1, Πi2,t−1, . . . , Πi|P |,t−1} is the set of parallelograms
having st−1 as rightmost side and R = S\P . Since, by induction, there are at most t−2
mutually overlapping parallelograms in Γt−2, P contains at least two parallelograms,
i.e., |P | ≥ 2. Observe that, by conditions α, β, γ, the parallelograms in R have a side sj
with 0 ≤ j ≤ i1 and a side sl with i|P |+1 ≤ l ≤ t−2. Also, all these parallelograms are
present in Γt−2. By our assumption that S contains at least t parallelograms, it follows
that |R| ≥ t − |P |. Let l be the greatest index among the segments in R (i|P | + 1 ≤
l ≤ t − 2); we have that each parallelogram in the set Q = {Πi2,l,. . . ,Πi|P |,l} and
all the parallelograms in R mutually overlap. Thus, they form a bundle of mutually
overlapping parallelograms of size |R| + |Q| ≥ t − |P | + |P | − 1 = t − 1 in Γt−2, a
contradiction.

We conclude the proof by showing that the area of the computed drawing is O(t3n).
We have xi = xi−1 + (2i − 1)n∗ + i + 1. We show by induction that xi = x0 +

i2(n∗ + 1) − i(i−3)
2 . This is true for i = 0; assume it is true for i − 1, we have xi =

(x0+(i−1)2(n∗+1)− (i−1)(4−i)
2 )+(2i−1)n∗+i+1 = x0+i2(n∗+1)− i(i−3)

2 . The

width of the drawing is xt−1+n∗− x0 which is (t− 1)2(n∗+1)− (t−1)(t−4)
2 +n∗ =

O(t2n∗) = O(t2n). Since the height is O(t) the statement follows. ��

Lemma 1 implies that every graph with constant track number admits an h-quasi planar
grid drawing in linear area with h being a constant. Since it is known that partial k-trees
have track number that is constant in n (although depending on k) [14], this implies
that every partial k-tree admit an h-quasi planar grid drawing in linear area where the
value of h does not depend on n. The current best upper bound on the track number of
k-trees is given in [12]. Thus, every k-tree has an hk-quasi planar drawing in O(n) area
with hk ∈ O(1). In what follows we will improve this result by presenting a technique
that gives better values for hk.
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Now we describe an algorithm, called kTreeLayouter, that computes a (2, t)-
track layout of a k-tree where t depends on k but not on n. We start by recalling a
decomposition technique introduced by Dujmović, Morin, and Wood [14] and by giving
some further definitions that will be used to prove our results. Let G = (V (G), E(G))
be a graph and let T = (V (T ), E(T )) be a rooted tree. Let {Tμ ⊆ V (G) | μ ∈ V (T )}
be a set of subsets of V (G) indexed by the nodes of T . The pair (T, {Tμ | μ ∈ V (T )})
is a tree partition of G if: (i) ∀μ, ν ∈ V (T ), if μ �= ν then Tμ ∩ Tν = ∅; (ii) ∀(u, v) ∈
E(G), either ∃ a node μ ∈ V (T ) with u, v ∈ Tμ, or ∃ an edge (μ, ν) ∈ E(T ) such that
u ∈ Tμ and v ∈ Tν . Let μ be an element of V (T ) of a tree partition of G. The pertinent
graph of μ is the subgraph of G induced by the vertices in Tμ; the pertinent graph of μ
is denoted as Gμ. The following result about tree-partitions of k-trees is proved in [14].

Theorem 1. [14] Let G be a k-tree. There exists a tree-partition (T, {Tμ | μ ∈ V (T )})
of G such that for every node μ of T : (i) The pertinent graph Gμ is a connected partial
(k − 1)-tree. (ii) If μ is a non-root node of T and ν is the parent of μ in T , then the set
of vertices in Tν with a neighbour in Tμ induce a clique of size k in G.

The clique induced by the vertices in Tν with a neighbour in Tμ is called the parent
clique of μ. From now on, we shall only consider tree partitions with the properties
of Theorem 1. For reasons of brevity, we shall often use T rather than (T, {Tμ | μ ∈
V (T )}) to denote a tree partition. Let (μ, ν) be an edge of T such that μ is the parent
of ν. Let e = (u, v) be an edge of G such that u ∈ Tμ and v ∈ Tν . Edge e is a jumping
edge, vertex u is the parent vertex of e, and vertex v is the child vertex of e. We call
r-prism a group of r tracks (r > 1) and i-clique a clique of size i (i > 0). Let G be a
k-tree, let γ(G) be a (c, t)-track layout of G and let Θ be a subset of k + 1 tracks of
γ(G). Let C be an (k + 1)-clique of G. C covers Θ if C has one vertex in each track
of Θ. Let C0 and C1 be two (k + 1)-cliques of G. C0 and C1 are of the same category
if they cover the same subset of tracks in γ(G). The number of distinct categories of
γ(G) is called the a-number of γ(G). Let C0 and C1 be two (k + 1)-cliques of G of
the same category. C0 and C1 have the same color if the vertices of one of them (say
C0) precede (or possibly coincide with) the vertices of the other one (i.e., C1) on all
the tracks covered by the two cliques. This means that no two edges of the two cliques
form an X-crossing. Notice that, given two cliques of the same color it is possible to
order them according to the order of their vertices on the tracks that they cover. The
maximum number of colors over all categories of γ(G) is called the b-number of γ(G).
Two (k+1)-cliques of G are of the same type if they are of the same category and have
the same color. The number of distinct types (which is at most a · b) is called the c-
number of γ(G). Since the cliques of the same color can be totally ordered, the cliques
of the same type can be totally ordered accordingly. We denote such an ordering as ≺c.

Let G be a k-tree, an equipped tree partition T of G is a tree partition such that each
node μ is equipped with a (gμ, tμ)-track layout γ(Gμ) of its pertinent graph Gμ. Let
aμ, bμ, and cμ be the a-number, the b-number, and the c-number of γ(Gμ), respectively.
We denote by tT the value maxμ∈V (T ) tμ. Analogously, we set aT = maxμ∈V (T ) aμ,
bT = maxμ∈V (T ) bμ, and cT = maxμ∈V (T ) cμ. In order to compute a (2, t)-track
layout of a k-tree G, we use a recursive technique based on an equipped tree partition
of G. The pertinent graph Gμ of any node μ of the tree-partition T is a partial (k − 1)-
tree. Gμ is augmented to a k-tree and a (2, tμ)-track layout γ(Gμ) of Gμ with at most
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tT tracks is recursively computed. The maximum number of types of cliques in any
γ(Gμ) is cT . For each type of clique in Gμ the (at most) tT -tracks of the (2, tμ)-track
layout of each node whose parent clique is of that type are identified with the tT tracks
of a different tT -prism. We define a total order ≺T of the nodes of the equipped tree
partition T of G. To this aim we first define a total order ≺n of the children of each
node λ of T . The children of λ are first ordered according to the categories of their
parent cliques (the categories are ordered arbitrarily), within the same category they
are ordered according to their parent clique color (the colors are ordered arbitrarily),
within the same type they are ordered according to the order≺c of their parent cliques;
if they have the same parent clique they are ordered arbitrarily. The total order ≺T of
the nodes of T is the order given by a preorder visit of T where the children of each
node are visited according to ≺n.

We are now ready to describe the algorithm kTreeLayouter to compute a
(2, (cT + 1)tT )-track layout of G. We will use (cT + 1) tT -prisms denoted as P0, . . . ,
PcT . This results in a number of tracks equal to (cT + 1)tT . The tracks of prism Ph

(0 ≤ h ≤ cT ) are denoted as τh·tT+i (0 ≤ i ≤ tT−1). The nodes of T are processed one
per time according to the total ordering≺T . Let Gμ be the pertinent graph of the current
node μ, let λ be the parent of μ and let Ph be the tT -prism whose tracks contain the
vertices of Gλ. Let C be the parent clique of μ and let χi,j be its type (0 ≤ i ≤ aT − 1,
0 ≤ j ≤ bT − 1), the (at most) tT -tracks of the (2, tμ)-track layout γ(Gμ) of Gμ

are identified with the tT tracks of the tT -prism Ph′ with h′ = (h + bT · i + j + 1)
mod (cT + 1). Notice that, h + 1 ≤ bT · i + j + 1 ≤ h + cT , which means that the
tT -prism Ph′ is different from Ph. Consider now a vertex v of Gμ and suppose that v
belongs to a track τl (0 ≤ l ≤ tT − 1) in γ(Gμ); v is assigned to the track τh′·tT+l

of Ph′ . Moreover, the vertices of Gμ are ordered in the tracks of Ph′ in such a way
that: (i) their relative order is the same as the one they have in γ(Gμ); (ii) they follow
the vertices on their track that belong to the pertinent graph Gμ′ of any node μ′ of T
that has been processed before μ by the algorithm. It is easy to see that the algorithm
kTreeLayouter computes a ((cT+1)tT )-track assignment γ(G). Namely, the edges
of each Gμ do not have both endvertices in the same track because γ(Gμ) is a (2, tμ)-
track layout; the jumping edges have endvertices in different tracks because they are in
different tT prisms. To prove that γ(G) is a (2, (cT + 1)tT )-track layout of G, we give
a preliminary lemma.

Lemma 2. Let G be a k-tree and let γ(G) be the track assignment computed by algo-
rithm kTreeLayouter. Let τh and τl (0 ≤ h, l ≤ (cT + 1)tT − 1) be two tracks
of γ(G). Let e0 = (u0, v0) and e1 = (u1, v1) be two jumping edges of G such that
u0, u1 ∈ τh, v0, v1 ∈ τl, u0 is the parent vertex of e0 and u1 is the parent vertex of e1.
Then e0 and e1 do not form an X-crossing.

Lemma 3. Let G be a k-tree. The algorithm kTreeLayouter correctly computes a
(2, (cT + 1)tT )-track layout γ(G) of G.

Proof. In [15] it has been shown that, given a t-track assignment γ, it is possible to
color the edges with c distinct colors so that no two edges of the same color form an
X-crossing (i.e., to compute a (c, t)-track layout) if and only if γ has no crossing (c+1)-
tuple. A set S of c+ 1 edges in a track assignment γ is called a crossing (c+ 1)-tuple
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if each pair of edges in S form an X-crossing in γ. Thus, to prove our statement it
sufficient to show that there is no crossing 3-tuple in γ(G). Consider any three edges
e0 = (u0, v0), e1 = (u1, v1), and e2 = (u2, v2) such that u0, u1, and u2 are in the same
track τh and v0, v1, and v2 are in the same track τl (0 ≤ h, l ≤ (cT +1)tT −1). Assume
first that τh and τl belong to the same tT -prism. If e0, e1, and e2 are edges of the same
pertinent graph Gμ, then they do not form a crossing 3-tuple because otherwise there
would be a crossing 3-tuple in the (2, tT )-track layout γ(Gμ) of Gμ. If e0, e1, and e2 are
edges of different pertinent graphs, then at least two of them do not form an X-crossing
(give two distinct pertinent graphs on the same tT -prism, the vertices of one of them
follow the vertices of the other one) and therefore they cannot form a crossing 3-tuple.

Assume now that τh and τl belong to different tT -prisms (e0, e1, and e2 are jumping
edges). At least two among u0, u1, and u2 are either parent vertices or child vertices of
their jumping edges. By Lemma 2, at least two among e0, e1 and e2 do not cross. ��

The proof of the upper bound to the value (cT + 1)tT is omitted. We can prove that
the values of hk given in Theorem 2 are smaller than those obtained by using the track
number upper bound in [12].

Theorem 2. Every partial k-tree with n vertices admits an hk-quasi planar grid draw-
ing in O(t3kn) area, where hk = 2tk − 1 and tk is given by the following recursive
equation:

tk = (ck−1,k + 1)tk−1

ck,i = (ck−1,k + 1)(ck−1,i +
ck−1,k

4

i−1∑
j=1

ck−1,j · ck−1,i−j) (i = 1, . . . , k + 1)

ck,k+2 = 0

(1)

with t1 = 2 and c1,1 = 4 and c1,2 = 2.

By Theorem 2, every partial 2-tree admits an 11-quasi planar drawing in O(n) area.
Partial 2-trees are SP-graphs [5], which will be further investigated in the next sections.

4 Improved Bounds for Specific Families of Planar Partial k-Trees

According to Theorem 2, every n-vertex partial k-tree admits an h-quasi planar draw-
ing in O(n) area with h ∈ O(1). In this section we describe some ad-hoc drawing
techniques that, still producing drawing in linear area, reduce the value of h for some
sub-families of partial k-trees.

Outerplanar graphs. A graph G is outerplanar if it admits a planar embedding such
that all vertices are on the external face (i.e., an outerplanar embedding). It is known
that outerplanar graphs are partial 2-trees [5]. Thus, from Theorem 2 they admit an 11-
quasi planar drawing in O(n) area. We prove that the value of h can be reduced from
11 to 3, describing an algorithm OuterplanarDrawer, which takes as input an n-
vertex outerplanar graph G with a given outerplanar embedding and returns a quasi
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planar grid drawing of G. The algorithm uses an approach similar to the one described
in [17]. It can be divided in two main steps. In the first step it computes a drawing
Γ ∗ of G as follows. Perform a breadth-first-search of G (starting from any vertex) and
assign to each vertex v of G two numbers: level(v) which is the depth of v in the BFS
tree, and order(v) which is the progressive number of v in the BFS order. For each
vertex v of G set x∗(v) = order(v) and y∗(v) = level(v), where x∗(v) and y∗(v)
are the x- and y-coordinates of v in Γ ∗, respectively. In the second step, it “wraps” the
drawing Γ ∗ of G on two levels, producing the final drawing Γ . For each vertex v of G,
it sets x(v) = x∗(v) and y(v) = y∗(v) mod 2, where x(v) and y(v) are the x- and
y-coordinates of v in Γ , respectively.

Theorem 3. Every outerplanar graph with n vertices admits a quasi planar grid draw-
ing in O(n) area.

Flat series-parallel graphs. A series-parallel graph, or SP-graph, is flat if it does not
contain two nested parallel components. For an exact definition of flat SP-graphs and
decomposition tree see [11]. Flat SP-graphs are a meaningful subfamily of SP-graphs,
previously studied in [11]. We lower the value of h for flat SP-graphs from 11 to 5.

Let G be a flat SP-graph and let T be its decomposition tree. We assign to each
node ν of T a number, denoted as level(ν), computed as follows. The root ρ of T
has level(ρ) = 0. For each non-root node ν, if ν is an S-node then level(ν) =
level(parent(ν)) + 1, else level(ν) = level(parent(ν)). Using the level number-
ing of T we assign a number level(v) to each vertex v of G, which is the minimum
among the levels of all the nodes of T having v as a pole. We call jumping edges those
edges whose end-vertices are assigned to different levels. Notice that the level number-
ing is such that the level number changes in correspondence of the S-nodes. In [11] it
has been proved that the leftmost child and the rightmost child of an S-node are both
Q-nodes and the edges associated with them are both jumping edges.

We can now describe the drawing algorithm FlatSPDrawer, which takes as input
a flat SP-graphG and its decomposition tree T and returns a 5-quasi planar grid drawing
of G. Also in this case the algorithm has two main steps. In the first step we produce
a preliminary drawing Γ ∗ of G. For each vertex v of G, we set y∗(v) = level(v) and
compute x∗ as follows. We perform a breadth first search of T , initializing a counter
i = 0 before starting the visit. For each node ν of T in the BFS order, if ν is a P -node
or a Q-node we process its two poles s and t: if the x-coordinate of the source s has
not yet been assigned we set x∗(s) = i and increment i by one unit; if the x-coordinate
of the sink t has not yet been assigned we set x∗(t) = i and increment i. Notice that if
both the poles of ν have not been processed before considering ν (i.e., ν does not share
them with its parent), then they receive consecutive x-coordinates. Again, Γ is obtained
from Γ ∗ by setting x(v) = x∗(v) and y(v) = y∗(v) mod 2 for each vertex v of G.

Lemma 4. Let G be a flat SP-graph and let T be its decomposition tree. Let l ≤ n be
the number of levels assigned to the nodes of T by the algorithm LevelNumbering.
The first step of the algorithm FlatSPDrawer produces a drawing Γ ∗ of G on l
levels, such that: (i) for every edge e of G either e connects two vertices on the same
level, or e is a jumping edge connecting vertices between two consecutive levels; (ii)
there are no overlaps among edges; (iii) there are no three mutually crossing edges.
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Proof. By definition a non-jumping edge e = (u, v) has |level(u)− level(v)| = 0, and
therefore e connects two vertices on the same level. For a jumping edge e = (u, v), we
have, by definition, |level(u)− level(v)| > 0. Let e be a jumping edge. As already said,
the Q node representing e in T is either the leftmost or the rightmost child of a non-root
S-node ν. As a consequence, one end vertex of e, say u, is a pole shared by ν and its
parent (a P -node); the other end vertex v is a pole shared by two consecutive children of
ν (one of which is the leftmost or rightmost child) and not shared with ν. Since the level
number changes only in correspondence of the S-nodes, level(u) = level(parent(ν))
and level(v) = level(ν), i.e., |level(u)− level(v)| = 1.

Since every vertex v has a different x-coordinate, there can be only two kinds of
crossings: an overlap between two non jumping edges, or a proper crossing between
two jumping edges. We prove now that the first case never happen. Let ν be a P -node
or a Q-node of T such that level(ν) = j, let s and t be its two poles and let μ be
its parent node. We have the following cases: (1) ν is a P -node and μ is an S-node.
In this case ν and μ do not share a pole (the leftmost and rightmost child of μ are Q-
nodes), thus the two poles of ν have consecutive x-coordinates, i.e., x∗(s)− x∗(t) = 1
and y∗(s) = y∗(t). (2) ν is a Q-node and μ is a P -node. In this case ν represents a
transitive edge connecting the two poles of μ which have already been processed when
μ was considered; by case 1 we have x∗(s) − x∗(t) = 1 and y∗(s) = y∗(t). (3) ν is
a Q-node and μ is an S-node. If ν is the leftmost/rightmost child of μ, its associated
edge is a jumping edge and the two poles have distinct y-coordinates. If ν is not the
leftmost/rightmost child of μ, then ν and μ do not share a pole. Also in this case the two
poles of ν have consecutive x-coordinates, i.e., x∗(s) − x∗(t) = 1 and y∗(s) = y∗(t).
If e is a non-jumping edge, then either Case 2 or 3 holds for its corresponding Q-node.
In both cases the endvertices of e have consecutive x-coordinates. It follows that there
can not be an overlap between two non-jumping edges.

Now we prove that there are no more than 2 mutually crossing jumping edges. We
assign to a jumping edge the red color if its corresponding Q-node is the leftmost child
of its parent and the blue color if its corresponding Q-node is the rightmost child of
its parent. Let e = (u, v) and e′ = (w, z) be two jumping edges of the same color. If
level(u) �= level(w) or level(v) �= level(z) then it is immediate to see that e and e′

do not cross. Assume then level(u) = level(w) = j and level(v) = level(z) = j + 1.
If e and e′ share an end vertex they obviously cannot cross. If e and e′ do not share an
end vertex, u and w are two poles of two different S-nodes νu and νw. Assume that
x∗(u) < x∗(w), which means that νu is visited before νw in the BFS visit of T . This
implies that the Q-node of e is visited before the Q-node of e′. Thus, x∗(v) < x∗(z)
and e and e′ cannot cross. Hence, there cannot be three mutually crossing edges because
red edges can cross only blue edges and vice versa. ��

Theorem 4. Every flat SP-graph with n vertices admits a 5-quasi planar grid drawing
in O(n) area.

Proper simply-nested graphs. A graph is k-outerplanar (k > 1) if it admits a planar
embedding such that the graph remaining after removing all vertices on the external
face is a (k − 1)-outerplanar graph. A graph is 1-outerplanar if it is outerplanar. In
other words a graph is k-outerplanar if it admits a planar embedding such that it can be
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made empty by removing the vertices on the external face k times. The vertices that are
on the external face after i (0 ≤ i ≤ k− 1) removals are called vertices of level i+1. A
simply-nested graph is a k-outerplanar graph such that the vertices of levels from 1 to
k − 1 are chordless cycles and level k is either a cycle or a tree. Simply-nested graphs
have been widely studied in the literature (see, e.g., [2]). We say that a simply-nested
graph is proper if level k is a chordless cycle. It is known that k-outerplanar graphs have
treewidth at most 3k − 1 [5]. By using the technique of Section 3 we would obtain an
h-quasi planar drawing in linear area with h given by Equation 1. Notice that h would
be a function of the number of levels k. We show that for simply-nested graphs h can
be reduced to 3 (independent of the number of levels). We remark that proper simply-
nested graphs may require quadratic area if we want a planar drawing; they include the
classical examples used to prove the quadratic area lower bound of planar graphs.

Theorem 5. Every proper simply-nested graph with n vertices admits a quasi planar
grid drawing in O(n) area.

Sketch of Proof: Let G be a proper simply-nested graph. We describe an algorithm to
compute a quasi planar grid drawing of G. Let C1, C2, . . . , Ck be the cycles of levels
1, 2, . . . , k, respectively. We assume that all the internal faces of G except possibly the
one delimited by Ck are triangles. If this is not the case, we can add edges to guarantee
this property. For each cycle Ci we choose a vertex, denoted as vi, called the reference
vertex of Ci. The references vertices are chose in such a way that vi is adjacent to vi−1.

We draw the vertices of each cycle Ci on an isosceles triangle Ti whose basis has
length 2(ni − 2) and height 2, where ni = |Ci|. The y-coordinate of the apex of Ti

is 3 if i is odd or 0 if i is even. The y-coordinate of the basis of Ti is 1 if i is odd
or 2 if i is even. All the vertices of Ci, except vi, are placed on the basis of Ti on
grid points with even x-coordinates so that their left-to-right order coincides with (is
opposite to) their counter-clockwise order along Ci if i is odd (if i is even). Vertex vi
is drawn at the apex of Ti. Denote by xi the x-coordinate of vi (i = 1, . . . , k) and let
mi = max{ni−1, ni} (i = 2, . . . , k). The triangles are placed so that x1 = n1 − 2 and
xi = xi−1 + � 32 (mi − 1)�. �

5 Comparing h-Quasi Planarity and h-Planarity

Other definition of crossing complexity are possible, for example h-planarity [20]. A
drawing of a graph is h-planar if no edge has more than h crossings. Straight-line 1-
planar drawings are studied in [16]. A natural question deriving from the results of Sec-
tions 3 and 4 is whether analogous results also hold for h-planar drawings. Theorem 6
shows that, for every constant h, ω(n) area is required for SP-graphs, while Theorem 2
implies that every SP-graph admits an 11-quasi planar drawing in O(n) area.

Let G be a graph, we define the h∗-extension of G as a graph G∗, constructed by
attaching h∗ paths of length 2 to each edge of G.

Lemma 5. Let h be a positive integer, and let G be a planar graph. In any h-planar
drawing of the 3h-extension G∗ of G, there are no two edges of G that cross each other.
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Theorem 6. Let h be a positive integer, for every n > 0 there exist a Θ(n)-vertex
series-parallel graph such that any h-planar straight-line or poly-line grid drawing
requires Ω(n2

√
logn) area.

Proof. Let G be an n-vertex graph of the family defined by Frati in [19], which requires
Ω(n2

√
log n) area in any planar straight-line or poly-line drawing. By Lemma 5 there

exists an n∗-vertex planar graphG∗, with n∗ = Θ(n), such that in any h-planar drawing
Γ of G∗ the underlying graph G must be drawn planar. Since G∗ is still a SP-graph (the
3h-extension preserves the property of being a SP-graph) the statement follows. ��

With the same argument, we can prove the following theorem for general planar graphs.
Notice that it states that quadratic area is necessary if we impose h(n) ∈ O(1).

Theorem 7. Let ε be given such that 0 ≤ ε ≤ 0.5 and let h(n) : N → N be a function
such that h(n) ≤ n0.5−ε ∀n ∈ N. For every n > 0 there exists an O(n)-vertex graph
G such that any h(n)-planar straight-line grid drawing of G requires Ω(n1+2ε) area.

6 Concluding Remarks and Open Problems

In this paper we studied the problem of computing compact h-quasi planar drawings
of partial k-trees. Indeed, our algorithms can be regarded as drawing techniques that
produce drawings with optimal area and with bounded crossing complexity. This point
of view is particularly interesting in the case of planar graphs. As recalled in the intro-
duction, planar graphs can be drawn with either optimal crossing complexity (i.e., in
a planar way), in which case they may require Ω(n2) area [8], or with optimal Θ(n)
area but without any guarantee on the crossing complexity [22]. These two extremal
results naturally raise the following question: is it possible to compute a drawing of a
planar graph “controlling” both the area and the crossing complexity? In particular, it
is possible to compute an h-quasi planar drawing of a planar graph in o(n2) area and
h ∈ o(n)? In Section 4 we showed that O(n) area and h ∈ O(1) can be simultaneously
achieved for some families of planar graphs. In fact our results imply a positive answer
to the above question even for general planar graphs.

Theorem 8. Every planar graph with n vertices admits a O(log16 n)-quasi planar grid
drawing in O(n log48 n) area.

Proof. Let G be a n-vertex graph with acyclic chromatic number χa(G) ≤ c and queue
number qn(G) ≤ q, then G has track-number tn(G) ≤ c(2q)c−1 [14]. If G is pla-
nar then qn(G) ∈ O(log4 n) [10] and χa(G) = 5 [6]. Thus, every planar graph has
tn(G) ∈ O(log16 n) and by Lemma 1 the statement follows. ��

The results in this paper give rise to several interesting open problems. Among them:
(1) Reducing the value of hk given by Equation 1 for other sub-families of partial k-
trees. (2) Studying whether planar graphs admits h-quasi planar drawings in O(n) area
with h ∈ o(n), possibly h ∈ O(1). (3) Studying h-quasi planar drawings in linear area
and aspect ratio o(n).
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20. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17, 427–439
(1997)

21. Suk, A.: k-Quasi-Planar Graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp.
266–277. Springer, Heidelberg (2011)

22. Wood, D.R.: Grid drawings of k-colourable graphs. CGTA 30(1), 25–28 (2005)



The Duals of Upward Planar Graphs
on Cylinders�

Christopher Auer, Christian Bachmaier, Franz J. Brandenburg,
Andreas Gleißner, and Kathrin Hanauer

University of Passau, Germany
{auerc,brandenb,bachmaier,gleissner,hanauer}@fim.uni-passau.de

Abstract. We consider directed planar graphs with an upward planar
drawing on the rolling and standing cylinders. These classes extend the
upward planar graphs in the plane. Here, we address the dual graphs. Our
main result is a combinatorial characterization of these sets of upward
planar graphs. It basically shows that the roles of the standing and the
rolling cylinders are interchanged for their duals.

1 Introduction

Directed graphs are used as a model for structural relations where the edges
express dependencies. Such graphs are often acyclic and are drawn as hierarchies
using the framework introduced by Sugiyama et al. [21]. This drawing style
transforms the edge direction into a geometric direction: all edges point upward.
If only plane drawings are allowed, one obtains upward planar graphs, for short
UP. These graphs can be drawn in the plane such that the edge curves are
monotonically increasing in y-direction and do not cross. Hence, UP graphs
respect the unidirectional flow of information as well as planarity.

There are some fundamental differences between upward planar and undi-
rected planar graphs. For instance, there are several linear time planarity tests
[17], whereas the recognition problem for UP is NP-complete [13]. The differ-
ence between planarity and upward planarity becomes even more apparent when
different types of surfaces are studied: For instance, it is known that every graph
embeddable on the plane is also embeddable on any surface of genus 0, e. g.,
the sphere and the cylinder, and vice versa. However, there are graphs with an
upward embedding on the sphere with edge curves increasing from the south to
the north pole, which are not upward planar [16]. The situation becomes even
more challenging if upward embeddability is extended to other surfaces even if
these are of genus 0.

Upward planarity on surfaces other than the plane generally considers em-
beddings of graphs on a fixed surface in R3 such that the curves of the edges
are monotonically increasing in y-direction. Examples for such surfaces are the
standing [7, 14, 19, 20, 22] and the rolling cylinder [7], the sphere and the trun-
cated sphere [10,12,15,16], and the lying and standing tori [9,11]. We generalized
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upward planarity to arbitrary two-dimensional manifolds endowed with a vector
field which prescribes the direction of the edges [2]. We also studied upward pla-
narity on standing and rolling cylinders, where the former plays an important
role for radial drawings [3] and the latter in the context of recurrent hierar-
chies [4]. We showed that upward planar drawings on the rolling cylinder can be
simplified to polyline drawings, where each edge needs only finitely many bends
and at most one winding around the cylinder [7]. The same holds for the stand-
ing cylinder, where all windings can be eliminated [7]. In accordance to [2], we
use the fundamental polygon to define the plane, the standing and the rolling
cylinders. The plane is identified with I × I, where I is the open interval from
−1 to +1, i. e., I × I is the (interior of the) square with side length two. The
rolling (standing) cylinder is obtained by identifying the bottom and top (left
and right) sides. By identifying the boundaries of I, we obtain I◦. Then, the
standing and the rolling cylinder are defined by I◦ × I and I × I◦, respectively.
Let RUP be the set of graphs which can be drawn on the rolling cylinder such
that the edge curves do not cross and are monotonically increasing in y-direction.
If the edge curves are permitted to be non-decreasing in y-direction, horizontal
lines are allowed. Since the top and bottom sides of the fundamental polygon
are identified, “upward” means that edge curves wind around the cylinder all in
the same direction. Specifically, RUP allows for cycles. Accordingly, let SUP
denote the class of graphs with a planar drawing on the standing cylinder and in-
creasing curves for the edges and let wSUP be the corresponding class of graphs
with non-decreasing curves. The novelty of wSUP graphs are cycles with hori-
zontal curves, whereas SUP graphs are acyclic, i. e., SUP � wSUP. In [2] we
established that a graph is in SUP if and only if it is upward planar on the
sphere. These spherical graphs were studied in [10,12,15,16]. Finally, let UP be
the class of upward planar graphs (in the plane) [8, 18]. Note that for UP and
RUP graphs non-decreasing curves can be replaced by increasing ones and the
corresponding classes coincide [2].

Upward planar graphs in the plane and on the sphere or on the standing cylin-
der were characterized by using acyclic dipoles. An acyclic dipole is a directed
acyclic graph with a single source s and a single sink t. More specifically, a graph
G is SUP/spherical if and only if it is a spanning subgraph of a planar acyclic
dipole [14, 16, 19]. The idea behind acyclic dipoles is that s corresponds to the
south and t to the north pole of the sphere. Moreover, a graph G is in UP if
and only if the dipole has in addition the (s, t) edge [8, 18].

In contrast, there is no related characterization of RUP graphs. Acyclic
dipoles cannot be used since RUP graphs may have cycles winding around
the rolling cylinder. However, the idea behind dipoles can be applied indirectly
to RUP graphs, namely, to their duals. For this, we generalize acyclic dipoles
to dipoles which may also contain cycles.

Section 2 provides the necessary definitions. We develop our new characteri-
zation of RUP and SUP graphs in terms of their duals in Sect. 3. In Sect. 4 we
obtain related results for wSUP graphs. All formal proofs can be found in [1].
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2 Preliminaries

The graphs in this work are connected, planar (unless stated otherwise), directed
multigraphs G = (V, E) with non-empty sets of vertices V and edges E, where
pairs of vertices may be connected by multiple edges. G can be drawn in the
plane such that the vertices are mapped to distinct points and the edges to
non-intersecting Jordan curves. Then, G has a planar drawing. It implies an
embedding of G, which defines (cyclic) orderings of incident edges at the vertices.
In the following, we only deal with embedded graphs and all paths and cycles
are simple.

A face f of G is defined by a (underlying undirected) circle C = (v1, e1, v2,
e2, . . . , vk−1, ek−1, vk = v1) such that ei ∈ E is the direct successor of ei−1 ∈ E
according to the cyclic ordering at vi. The edges/vertices of C are said to be the
boundary of f and C is a clockwise traversal of f . Accordingly, the counterclock-
wise traversal of f is obtained by choosing the predecessor edge at each vertex in
the circle. The embedding defines a unique (directed) dual graph G∗ = (F, E∗),
whose vertex set is the set of faces F of G [5]. Let f ∈ F be a face of G and
e = (u, v) ∈ E be part of its boundary. If the counterclockwise traversal of f
passes e in its direction, we say that f is to the left of e. If the same holds for
e and another face g in clockwise direction, then g is to the right of e. For each
edge e ∈ E there is an edge in E∗ from the face to the left of e to the face
right of e. This definition establishes a bijection between E and E∗. Whenever
necessary, we refer to G as the primal of G∗. By vertex we mean an element of
V , whereas the vertices F of G∗ are called faces.

Note that G∗ is connected and the dual of G∗ is isomorphic to the converse
G−1 of G where all edges are reversed, since G is connected. Hence, an embed-
ding of G implies an embedding of G∗, and vice versa. G and G−1 share many
properties, see Proposition 1.

An embedding of a graph is an X embedding with X ∈ {RUP,SUP, wSUP,
UP} if it is obtained from an X drawing. For every graph in class X , we assume
that a corresponding X embedding is given. Given an embedded graph G, a face
f is to the left of a face g if there is a path f � g in G∗. Note that a face can
simultaneously lie to the left and to the right of another face, and “to the left”
does not directly correspond to the geometric left-to-right relation in a drawing.
A cycle in a RUP embedding winds exactly once around the cylinder [7]. We
say that a face f ∈ F lies left (right) of a cycle C if there is another face g ∈ F
such that f is to the left (right) of g and each path f � g in the dual contains
at least one edge of C. Each edge/face of f ’s boundary is then also said to lie to
the left (right) of C.

Next we introduce graphs which represent the high-level structure of a given
graph and which inherit its embedding. Let the equivalence class [v] denote the
set of vertices of the strongly connected component containing the vertex v ∈ V
and let V be the set of strongly connected components of G. The component graph
G = (V,E) of G contains an edge ([v], [w]) ∈ E for each original edge (v, w) ∈ E
with [v] �= [w]. G is an acyclic multigraph which inherits the embedding of G. A
component γ ∈ V is a compound, if it contains more than one vertex or consists
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of a single vertex with a loop. Its induced subgraph is denoted by Gγ ⊆ G. For
the sake of convenience, we identify Gγ with γ and call both compound. The set
of all compounds is denoted by VC . Each component [v] that is not a compound
consists of a single vertex v and is called trivial component. A trivial component
which is a source (sink) in G is called source (sink) terminal and the set of
all terminals is denoted by T ⊆ V. Based on the component graph, we define
the compound graph G = (VC ∪ T,E), whose vertices are the compounds and
terminals. Let u, v ∈ VC ∪T be two vertices of the compound graph. There is an
edge (u, v) ∈ E if there is a path u � v in G which internally visits only trivial
components. Note that G is a simple graph. Each edge τ ∈ E corresponds to a
set of paths in G. Denote by Gτ the subgraph of G which is induced by the set
of paths belonging to edge τ . We call τ and its induced graph Gτ transit. See
Fig. 1 for an example, where the fundamental polygon of the rolling cylinder is
represented by rectangles with identified bottom and top sides. Based on these
definitions, we are now able to define dipoles.

Definition 1. A graph is a dipole if it has exactly one source s and one sink t
and its compound graph is a path from s to t.

Note that similar to the definition of st-graphs [8,18], a dipole is not necessarily
planar.

Lemma 1. Let G = (V, E) be a graph with a source s and a sink t. Then, G
is a dipole if and only if every path s � t contains at least one vertex of each
compound and for every vertex v ∈ V there are paths s � v and v � t.

Proposition 1. A graph G is (i) acyclic, (ii) strongly connected, (iii) upward
planar, or (iv) a dipole if and only if the same holds for its converse G−1.

Thus, in the subsequent statements on the relationship between a graph G and
its dual G∗, the roles of G and G∗ are interchangeable.

Lemma 2. A graph G is acyclic if and only if its dual G∗ is strongly connected.

The proof is deduced from the one for polynomial solvability of the feedback arc
set problem on planar graphs as given in [5].

3 RUP and SUP Graphs and Their Duals

We consider RUP graphs, i. e., upward planar graphs on the rolling cylinder,
and characterize them in terms of their duals. Our main result is:

Theorem 1. A graph G is a RUP graph if and only if G is a spanning subgraph
of a planar graph H without sources or sinks whose dual H∗ is a dipole.

The theorem is proved by a series of lemmata which are also of interest in their
own. For our first observation, consider the RUP drawing of graph G in Fig. 1(a),
where all vertices within a compound are drawn on a shaded background. The
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γ τ

(a) Graph G ∈ RUP

s t

(b) The dual of
the second com-
pound γ of G

γ τ

(c) The component graph G and the compound
graph G of G

(d) The dual
of the second
transit τ of G

s t

s t

(e) The component graph G∗ and the compound
graph G∗ of the dual G∗ with s, t ∈ T

Fig. 1. A RUP example
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component graph G of G is displayed in Fig. 1(c) along with its compound
graph G below, where the compounds are shaded black. Note that G has the
structure of an (undirected) path. Due to Lemma 2, each transit, i. e., edge in G,
becomes a compound and each compound, i. e., vertex in G, becomes a transit
in the dual G∗ of G. Hence, the path-like structure of G must carry over to
the compound graph G∗ of G∗. Moreover, since all cycles in the RUP drawing
have the same orientation, i. e., they all wind around the cylinder in the same
direction, the transits in G∗ point into the same direction. Also note that G
contains neither sources nor sinks, i. e., both the left and right border of the
drawing are directed cycles Cl and Cr, respectively. Hence, in the dual G∗ of G,
the face to the left of Cl is a source s and the face to the right of Cr is a sink t. All
these observations together indicate that the compound graph of G∗ is a path
s � t, i. e., G∗ is a dipole. Indeed, this can be seen for the example in Fig. 1(e),
where the component graph of G∗ and its compound graph are depicted.

Lemma 3. The dual G∗ of a RUP graph G without sources and sinks is a
dipole.

For the following lemma, there is a physical interpretation: Consider an upward
drawing of a planar acyclic dipole on the standing cylinder and suppose that an
electric current flows from the bottom to the top of the cylinder in direction of
the edges. This current induces a magnetic field wrapping around the standing
cylinder. Intuitively, by Lemma 4, we can show that a dipole’s dual is upward
planar with respect to the induced magnetic field, i. e., its embedding is a RUP
embedding.

Lemma 4. The embedding of a strongly connected graph G is a RUP embedding
if and only if its dual G∗ is an acyclic dipole.

The only-if direction follows from Lemmata 2 and 3. For the if direction, we
give a sketch of the proof. Let G∗ = (F, E∗) be the dual of G and consider a
topological ordering f1, . . . , fk of the faces F . We subsequently process the faces
according to their topological ordering and construct a drawing of G by placing
the edges and vertices of the faces in that order. We start with the only source f1

in G∗, which corresponds to a directed cycle in G (Fig. 2(a)). In the drawing with
the boundaries of all faces f1, . . . , fi, we can show that one part of the boundary
of face fi+1 consists of a directed path p = (u, . . . , v) along the right border of
the current drawing (solid black vertices in Fig. 2(b)). The second part of the
boundary, absent in the current drawing, is also a directed path p′ = (u, . . . , v)
with the same end points and direction as p (white vertices in Fig. 2(b)). The
drawing can be augmented by this path p′ while preserving planarity and all
edges are monotonically increasing in y-direction (Fig. 2(c)).

Since each SUP graph is a subgraph of a planar, acyclic dipole [16], Lemma 4
implies:

Corollary 1. The dual G∗ of a strongly connected RUP graph G is in SUP.

Consider again the component graph G and its compound graph G in Fig. 1(c) of
the RUP graph G in Fig. 1(a). In the dual G∗ of G, compounds and transits of



The Duals of Upward Planar Graphs on Cylinders 109

f1

(a) Base case

fi+1fi+1Gi

p p′

(b) Induction step

Gi+1

(c) After the in-
duction step

Fig. 2. Inductive construction of a RUP drawing from its dual

G swap their roles, i. e., compounds become transits and vice versa, cf. Fig. 1(e).
As a compound of G is a strongly connected RUP graph, its dual is an acyclic
dipole by Lemma 4. For instance, consider the second compound γ in Fig. 1(a),
i. e., the vertices on the second shaded area labeled with γ. Its dual is indeed an
acyclic dipole as depicted in Fig. 1(b). For the transits, the same holds but with
swapped roles, i. e., the dual of a transit is a strongly connected RUP graph. As
an example, the dual of the second transit τ in Fig. 1(a) is shown in Fig. 1(d) and
it is indeed a strongly connected RUP graph. The following lemma subsumes
these observations.

Lemma 5. Let G be a RUP graph without sources and sinks and G = (VC ,E)
be its compound graph. Then,

(i) the dual of each compound γ ∈ VC is a planar, acyclic dipole and, thus, it
is in SUP.

(ii) each transit τ ∈ E is a planar, acyclic dipole and, thus, its dual is a strongly
connected RUP graph.

Both (i) and (ii) follow from Lemma 4. For (ii) note that the graph induced by
a transit is an acyclic dipole.

By Lemma 3 we have seen that the dual of a RUP graph that contains neither
sources nor sinks is a dipole. Also the converse holds:

Lemma 6. A graph G without sources and sinks is a RUP graph if its dual G∗

is a dipole.

Consider again the example RUP graph in Fig. 1(a) and the compound graph G∗
of its dual G∗. Since G∗ is a dipole, G∗ is a path p = (s, τ∗

1 , γ∗
1 , τ∗

2 , γ∗
2 , . . . , τ∗

4 , t)
consisting of compounds γ∗

i , transits τ∗
j , and two terminals s and t. Note that

each element on p corresponds to a subgraph in the primal G, i. e., for each
γ∗

i there is a transit τi in G and for each τ∗
j there is a compound γj in G.

In the proof of Lemma 6, we construct a RUP drawing of G by subsequently
processing the elements of p. We start with transit τ∗

1 , whose induced subgraph
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in G∗ is an acyclic dipole, and obtain a RUP drawing of γ1 which respects the
given embedding by Lemma 4. Then we proceed with γ∗

1 , a compound in G∗,
for which we obtain a SUP drawing of τ1 which respects the given embedding
by Lemma 4. However, this SUP drawing is upward only with respect to the x-
direction, i. e., from left to right. We transform this drawing, while preserving its
embedding, such that it is also upward in y-direction. The so obtained drawing
of τ1 is then attached to the right border of the drawing of γ1. Then, the drawing
of γ2 is attached to the right side of τ1 and so forth until we reach t. Note that
since all transits τ∗

j point into the same direction in G∗, i. e., from s to t, all cycles
of the compounds in G have the same orientation in the obtained drawing, i. e.,
they all wind around the cylinder in the same direction.

Lemmata 3 and 6 both require that the graph at hand contains neither sources
nor sinks. At a first glance, this requirement seems to be a strong limitation.
However, in the following lemma we show that each RUP graph can be aug-
mented by edges such that all sources and sinks vanish while still preserving
RUP embeddability.

Lemma 7. A RUP graph G is a spanning subgraph of a RUP graph H without
sources and sinks.

The proof shows that each source (sink) can be connected to another vertex
while preserving the upward planar drawability. We follow the construction of
the proof of Theorem 1 in [16], which shows that every graph in SUP is a
spanning subgraph of a planar dipole. Alternatively, the proof can be obtained
using techniques from [7].

The proof of Theorem 1 is now complete. The only-if direction follows from
Lemmata 7 and 3 and the if direction is a consequence of Lemma 6 and the fact
that every subgraph of a RUP graph is a RUP graph.

4 wSUP Graphs and Their Duals

We now turn to spherical graphs and upward planar embeddings on the stand-
ing cylinder. These graphs were characterized as spanning subgraphs of planar,
acyclic dipoles [14,16,19]. We already provided a new characterization for SUP
in terms of dual graphs in Lemma 4 in combination with Proposition 1. Now
we consider graphs which have a weakly upward planar drawing on the standing
cylinder. These graphs have not been characterized before.

For a start, consider an upward drawing of a wSUP graph. If there are cycles,
they must wind around the cylinder horizontally, which leads us to the following
observation.

Lemma 8. Let G be a graph in wSUP. Then, all cycles of G are (vertex)
disjoint.

For the characterization of wSUP graphs, we use supergraphs which may have
an extra source or sink and extend techniques for SUP graphs from [16].



The Duals of Upward Planar Graphs on Cylinders 111

(a) Graph G ∈ wSUP (b) The component
graph G of G

s1
s2

t

(c) The compound
graph G of G

Fig. 3. A wSUP example

Lemma 9. A graph G is a wSUP graph if and only if it has a wSUP super-
graph H ⊇ G with one source and one sink.

Consider again an upward drawing of a wSUP graph G, e. g., the one depicted
in Fig. 3. The cycles subdivide the graph into sections as in Fig. 3(a), where the
intermediate section is shaded gray. In the component graph, cycles are merged
into non-trivial strongly connected components (Fig. 3(b)). The corresponding
compound graph has a structure as in Fig. 3(c). We proceed section-wise and
eliminate sources and sinks as in [16] except for one source in the lowermost
section and one sink in the uppermost one, where the lowermost section is not
limited by a cycle from below and the uppermost section by a cycle from above.
If any of these two sections is empty, a new source or sink is added to the section
and connected to the cycle above or below, respectively. This leaves us with a
wSUP graph with exactly one source and one sink. Conversely, any subgraph
of a wSUP graph is in wSUP.

We are now able to give a first characterization of wSUP graphs.

Theorem 2. A graph G is a wSUP graph if and only if it has a supergraph
H ⊇ G such that H is a planar dipole whose cycles are (vertex) disjoint.

The supergraph H of G can be constructed according to Lemma 9 and is a dipole.
By Lemma 8, H has only disjoint cycles. We can obtain a wSUP drawing for
a planar dipole H whose cycles are disjoint by partitioning the dipole into its
compounds and transits. Since transits are acyclic dipoles, the induced subgraph
can be drawn upward according to its SUP embedding. The compounds consist
of single cycles only, which we draw horizontally, i. e., such that each winds
around the cylinder once. So H has a wSUP drawing and the implied embedding
is a wSUP embedding. Since G is a subgraph of H , also G is in wSUP.

Next, we turn to the duals of wSUP graphs. Recall from Lemma 4 in combi-
nation with Proposition 1 that a graph with one source and one sink is in SUP
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if and only if its dual is a strongly connected RUP graph. Introducing vertex
disjoint cycles, the characterization via dual graphs now reads as follows.

Theorem 3. A graph G with exactly one source and sink is a wSUP graph if
and only if its dual G∗ is a RUP graph that has no trivial strongly connected
components.

We know from Theorem 1 and Proposition 1 that G∗ is in RUP since G is a
dipole. If G is acyclic, G∗ is strongly connected by Lemma 4 and Proposition 1.
Otherwise, G consists of compounds and transits. The duals of the transits are
strongly connected RUP components with at least one edge and, therefore, not
trivial. Now consider a compound in G. It consists of a single cycle C, which
implies that its dual consists of simple edges from the faces to the left of C to
the faces to its right, which themselves are also part of the strongly connected
RUP components. Hence, all vertices are contained in compounds and G∗ has
no trivial strongly connected components.

Conversely, a similar argument shows that only single, disjoint cycles can occur
in the primal graph of a RUP graph without any trivial strongly connected
components. Furthermore, by Lemma 3 and Proposition 1, G is a dipole and,
therefore, has only one source and one sink. By Theorem 2, G is in wSUP.

From Theorem 3 and Lemma 9 we directly obtain the following corollary,
which concludes our second characterization of wSUP graphs.

Corollary 2. Every wSUP graph G has a wSUP supergraph H whose dual
H∗ is a RUP graph without trivial strongly connected components.

5 Summary

We have shown that a directed graph has a planar upward drawing on the
rolling cylinder if and only if it is a spanning subgraph of a planar graph with-
out sources and sinks whose dual is a dipole. This result completes the known
characterizations of planar upward drawings in the plane [8, 18] and on the
sphere [10, 12, 15, 16]. Every SUP graph is a spanning subgraph of a planar,
acyclic dipole and every UP graph is a spanning subgraph of a planar, acyclic
dipole with an st-edge. Moreover, a graph has a weakly upward drawing on the
standing cylinder if and only if it is a subgraph of a planar dipole with disjoint
cycles.

Concerning dual graphs, the duals of the acyclic components of RUP graphs
are in RUP and the duals of the strongly connected components are in SUP.
In particular, the dual of a strongly connected RUP graph is in SUP. Every
wSUP graph has a planar supergraph whose dual is a RUP graph without
trivial strongly connected components.

Future work is to investigate whether the characterization by means of dual
graphs leads to new insights on the upward embeddability on other surfaces, e. g.,
the torus. Also, the duals of quasi-upward planar graphs [6] shall be considered.
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Abstract. For an undirected graph G = (V,E), we say that for �, u, v ∈
V , � separates u from v if the distance between u and � differs from the
distance from v to �. A set of vertices L ⊆ V is a feasible solution if for
every pair of vertices u, v ∈ V there is � ∈ L that separates u from v.
The metric dimension of a graph is the minimum cardinality of such a
feasible solution. Here, we extend this well-studied problem to the case
where each vertex v has a non-negative cost, and the goal is to find a
feasible solution with a minimum total cost. This weighted version is
NP-hard since the unweighted variant is known to be NP-hard. We show
polynomial time algorithms for the cases where G is a path, a tree, a
cycle, a cograph, a k-edge-augmented tree (that is, a tree with additional
k edges) for a constant value of k, and a (not necessarily complete) wheel.
The results for paths, trees, cycles, and complete wheels extend known
polynomial time algorithms for the unweighted version, whereas the other
results are the first known polynomial time algorithms for these classes of
graphs even for the unweighted version. Next, we extend the set of graph
classes for which computing the unweighted metric dimension of a graph
is known to be NPC by showing that for split graphs, bipartite graphs,
co-bipartite graphs, and line graphs of bipartite graphs, the problem of
computing the unweighted metric dimension of the graph is NPC.

1 Introduction

Let G = (V,E) be a simple, loopless, undirected graph. A vertex 	 ∈ V is called
a separating landmark for two vertices u, v ∈ V with u �= v, if the length of the
shortest path from u to 	 differs from the length of the shortest path from v
to 	; sometimes we will then also say that vertex 	 separates or distinguishes u
from v. We denote the number of vertices in G by n = |V | and the number of
its edges by m = |E|. A subset L ⊆ V is a landmark set for the graph G, if for
any two vertices u, v ∈ V with u �= v there exists a separating landmark 	 ∈ L
that separates u from v. The metric dimension md(G) of the graph G is the
cardinality of the smallest landmark set in G. Note that md(G) is well-defined,
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as L = V trivially forms a landmark set for G. Additionally, md(G) = 0 iff
|V | = 1. We consider the problem of computing md(G) of an input graph G.
Applications of this optimization problem arise in diverse areas. See [2] for an
application of this problem in network verification, [6] for an application in
strategies for the Mastermind game, [9] for an application in metric geometry,
[12] for an application in digital geometry, namely in digitizing of images, [11] for
an application in robot navigation, and [4] for an application in drug discovery.
This metric dimension problem was introduced by Harary and Melter [9] and

by Slater [15], and studied widely in the combinatorics literature. In this line of re-
search, the exact values of the metric dimension or bounds on it for specific graph
classes are obtained. We refer to [1,3,4] for results additional to those stated here
(see also the survey [5]). It was shown that md(G) = 1 iff G is a path [11]. Tree in-
put graphs (which are not paths) were considered in [9,15,11,4]. It turns out that it
is possible to characterize the feasibility of a landmark set for a tree using a notion
of legs, which are paths of vertices of degree at most 2 connected to a vertex of a
higher degree. When the input graph is a cycle then md(G) = 2 [9]. Wheel graphs
were mentioned in [9] and further studied in [14]. Melter and Tomescu [12] consid-
ered the problem for grid-graphs induced by lattice points in the plane when the
distances are measured in the L1 norm or in the L∞ norm. Khuller, Raghavachari,
and Rosenfeld [11] generalized one result of [12] to lattice points contained inside
a d-dimensional rectangle where the distance is according to the L1 norm (that
is, the grid-graph over points in d-dimensional rectangle). The grid-graph with
Euclidean metrics was studied in [13] where they relate the problem to the combi-
natorial coin weighing problem. Recently, Diaz et al. [8] developed a polynomial
time algorithm for outerplanar graphs.
As for the complexity of the problem, Khuller, Raghavachari, and Rosenfeld

[11] proved that the problem is NP-hard for general graphs and showed that one
can apply the greedy algorithm for a set cover instance (where we would like to
cover the pairs of vertices in a graph using sets which are defined using a single
landmark). Thus, there is an (2 lnn+O(1))-approximation algorithm for general
graphs. Beerliova et al. [2] showed that if P �= NP then there is no o(log n)-
approximation algorithm for the problem. These results were strengthened in
[10], where it was shown that under another complexity condition there is no
((1 − ε) lnn)-approximation algorithm for any ε > 0. They give an improved
(1 + (1 + o(1)) lnn)-approximation algorithm. Diaz et al. [8] showed that the
problem is NP-hard even when restricted to planar graphs.
We generalize the problem to a weighted variant. Given a non-negative cost

function c : V → R+ the goal is to compute a landmark set L such that
∑

�∈L c(	)
is minimized. We let wmd(G) denotes this minimum cost and we say that wmd(G)
is the weighted metric dimension of G. The wmd problem is to compute a land-
mark set L of minimum total cost, and to find wmd(G). Our polynomial time
algorithms for special classes of graphs will be for solving wmd while our NP-
hardness proofs will hold even for the unweighted version of computing md(G)
and thus the same holds for the weighted variant as well. We are not aware of
any previous work on the weighted version. We say that a feasible landmark set
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is minimal if it is minimal with respect to inclusion. Note that there is always an
optimal solution which is also minimal (since the cost function is non-negative),
and thus we sometimes characterize the set of minimal solutions.
The problem is clearly in NP because given a landmark set, we can verify its

feasibility in polynomial time. To do this, we find the vectors of the distances of
each vertex in V from each of the landmarks. Afterwards, we check that there is
no pair of identical vectors. In some of our algorithms we perform an exhaustive
enumeration of landmark sets (among a restricted family of vertex subsets), and
we can always find a cheapest feasible solution among such a restricted family
of subsets (we first ensure that it contains at least one of the optimal solutions).
Our Results.We generalize the known polynomial time algorithms for md to wmd
for the cases where G is a path, a tree, a cycle, or a complete wheel. We develop
polynomial time algorithms for the weighted problem when G is a cograph, a
k-edge-augmented tree (that is, a tree with additional k edges) for a constant
value of k, and a (not necessarily complete) wheel. These results are the first
polynomial time algorithms even for the unweighted version when G belongs to
these classes of graphs. Next, we extend the set of graph classes for which md

is known to be NP-complete. We show that md is NP-complete when the input
graph for split graphs, bipartite graphs, co-bipartite graphs, and line graphs of
bipartite graphs. Omitted proofs and the hardness results will be given in the
full version of this paper.
Definitions and Notation. Given a graph G = (V,E), a vertex v ∈ V is a leaf
if its degree is 1, it is an isolated vertex if its degree is 0, if its degree is 2 it is
a path vertex, and higher degree vertices are called core vertices. For a pair of
vertices u, v we denote by du,v the length of the shortest path in G from u to v
(i.e., the number of edges in it).

2 Paths, Trees, Cycles, and Cographs

In this section we generalize some polynomial solvable cases of md(G) to the
weighted case. These simple cases emphasize the differences between the weighted
and the unweighted cases. Additionally we consider cographs.
Paths. Assume that G is a path. It suffices to have one landmark vertex at one
of the end-vertices of the path [11]. Our algorithm for computing wmd(G) for a
path G is as follows: We consider two alternative solutions and pick the better
one. The first one has a single vertex as a landmark: a minimum cost end point
v of the path (breaking ties arbitrarily). The second solution picks the cheapest
pair of distinct vertices v and v′.
Trees. Assume now that the input graph G is a tree which is not a path (and
so it has at least one core vertex). We say that a (non-empty) path in the tree
between a vertex adjacent to a core vertex u and a leaf v is a leg of u if the
vertices of the path have degree at most 2 (u is not considered to be a part of
the leg). For a vertex u we denote the number of legs of u by legu. Assume that
legu ≥ 2, then [11] showed that there is a landmark at each of the legs of u
except for at most one such leg. In fact, summing legu − 1 over all core vertices



The (Weighted) Metric Dimension of Graphs: Hard and Easy Cases 117

u with at least two legs, gives a tight bound on md(G). Here, we generalize their
approach. Consider the following algorithm. Compute legu for every core vertex
u. Each core vertex u with legu ≥ 2 is allocated legu − 1 landmarks. To place
these landmarks, we find a minimum cost set of legu − 1 vertices in the legs of
u, at most one vertex per leg (recall that u does not belong to its legs).

Proposition 1. The above algorithms solve wmd for any tree G in O(n) time.

Cycles. We assume that the input graph G is a cycle. We next characterize a
minimal (with respect to inclusion) feasible landmark set L. We say that a pair
of vertices u, v are opposite if their distance is exactly n

2 , and otherwise they are
non-opposite (in which case the shortest path from u to v is unique). Note that
if G is an odd-length cycle, then every pair of vertices are non-opposite.

Lemma 1. A minimal feasible landmark set is a pair of non-opposite vertices.

Our algorithm for solving wmd for a cycle G simply finds the cheapest pair of
non-opposite vertices in the cycle. By the above lemma, it finds an optimal
solution. Note that the running time of the algorithm is O(n) by first identifying
the cheapest set of three vertices (breaking ties arbitrarily), and finding the
cheapest pair of non-opposite vertices among them (breaking ties arbitrarily).
Our tie breaking rule is justified because even if the set of minimum weight
vertices has more than three vertices, it is sufficient to consider only three of
them, and similar arguments apply for the other extreme cases.
Dealing with Disconnected Input Graphs. Consider a disconnected graph
G = (V,E). A connected component of G is called non-trivial connected compo-
nent if it contains at least two vertices, and otherwise it is an isolated vertex. We
denote by (V1, E1), . . . , (Vp, Ep) the non-trivial connected components of G (for
p ≥ 0), and by v1, . . . , vt its isolated vertices (for t ≥ 0), where if p = 0 or t = 0
then there is no non-trivial connected component or an isolated vertex, respec-
tively. Without loss of generality, we assume that c(vt) = maxi:1≤i≤t c(vi). In
this section we show that it is sufficient to solve the weighted metric dimension
problem for each non-trivial connected component of G. The time complexity of
solving wmd is O(n +m) plus the total running times of solving wmd for each of
the non-trivial connected components of G.

Proposition 2. An optimal solution L for wmd is achieved by the union solu-
tions for the non-trivial connected components (Vi, Ei) of G and v1, v2, . . . , vt−1.

Cographs. For two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 =
∅, the disjoint union G1 ∪ G2 is the graph (V1 ∪ V2, E1 ∪ E2). The product
G1 × G2 of these two graphs is obtained by first taking the disjoint union of
G1 and G2 and then adding all the edges {v1, v2} with v1 ∈ V1 and v2 ∈ V2.
A graph G is a cograph, if (i) G consists of a single vertex or (ii) G is the
disjoint union of two cographs, or (iii) G is the product of two cographs. An
equivalent characterization states that G is a cograph iff it does not contain the
path P4 on four vertices as an induced subgraph. Note that the complement
graph G′ = (V, V × V − E) of a cograph G = (V,E) is a cograph as well.
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The cotree of a cograph G is a rooted binary tree whose leaves correspond
to single-vertex graphs and whose inner vertices correspond to subgraphs of G.
Every inner vertex of the cotree is labeled either by ∪ (union) or by × (product)
and has exactly two children: if it is labeled by ∪ then it corresponds to the
disjoint union of the two cographs that correspond to its two children, and if it
is labeled by × then it corresponds to the product of the two cographs. Corneil,
Perl, and Stewart [7] showed how to compute a cotree for a given cograph in
linear time O(m + n). Note that the number of inner vertices of the cotree is
n−1. By Proposition 2, we conclude that we may restrict ourselves to connected
cographs. Since a connected cograph is a product of two non-empty graphs, the
distance between a pair of vertices v, v′ of a connected cograph G is either 1 or
2. We define a binary landmark set L of an arbitrary cograph G (not necessarily
a connected one) to be a set of vertices such that for every pair of vertices
v, v′ ∈ V \ L there is a landmark 	 ∈ L such that either both {v, 	} ∈ E and
{v′, 	} /∈ E or both {v, 	} /∈ E and {v′, 	} ∈ E. In this case we say that 	
separates v from v′. Given a connected cograph, a set of vertices is a feasible
landmark set iff it is a feasible binary landmark set. In the remainder of this
section we will present a linear time algorithm for computing a binary landmark
set of a minimum total cost. For a cograph G and its complement graph G′, a
set L ⊆ V is a binary landmark set for G iff L is a binary landmark set for G′.
We adapt our decomposition of the problem for disconnected graphs to the

problem of computing a binary landmark set.

Lemma 2. Assume that G is a disjoint union of G1 and G2 where Gi = (Vi, Ei).
(i)If L is a feasible binary landmark set for G, then Li = L ∩ Vi is a feasible
binary landmark set for Gi, for i = 1, 2. (ii) Assume that L1 and L2 are feasible
binary landmark set for G1 and G2, respectively. Then, L = L1∪L2 is a feasible
binary landmark set for G iff there exists i ∈ {1, 2} such that in Gi every vertex
v ∈ Vi \ Li is adjacent to a vertex of Li.

Our algorithm for solving wmd of a cograph uses the cotree structure. Let a point
be a vertex which is not a landmark. If a subgraph is a disjoint union of two
subgraphs, then we treat recursively each of the two subgraphs but we keep track
of the existence of a point which is not adjacent to any landmark in its subgraph.
If a subgraph is the product of two subgraphs, then we transform our problem
to the complement of the subgraph, and apply the first case. Since by moving
from a graph to its complement, the role of a point which is not adjacent to any
landmark switches with the role of a point which is adjacent to all landmarks, we
will keep track of the number of points (zero or one) of each of these types, and
every subgraph in the cotree corresponds to four optimization problems. Thus,
wmd can be solved in linear time O(m+ n) for cographs.

3 k-Edge-Augmented Trees

In this section we consider the class of connected graphs for which a removal
of at most k edges results in a spanning tree. We call this class of graphs k-
edge-augmented trees. Our polynomial time algorithm for computing wmd first
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applies a preprocessing step which handles the tree-like part, and then uses an
exhaustive enumeration approach for selecting an optimal landmark set in a
reduced problem. Clearly our algorithm is polynomial only if k is a constant and
it is unlikely that there is an algorithm which is polynomial in n and k for solving
this problem (since any connected graph is also a k-edge-augmented tree for a
sufficiently large value of k, and the problem is NP-hard for general graphs).
Preprocessing step.Our preprocessing step uses the following procedure which
can be applied on a vertex u of degree at least 3 with p legs (where a leg is a
path consisting of at least one vertex, starting at a neighbor of u and ending at
a leaf, where all vertices except for the leaf have degree 2) for p ≥ 2. Consider
subsets of p − 1 vertices which belong to the legs of u, at most one vertex per
leg. We choose Lu to be a set of minimum cost among the sets which satisfy
these constraints. We will place landmarks at Lu and remove from the graph
every vertex belonging to a leg of u which contains a vertex of Lu (that is, the
leg which does not contain a vertex of Lu is not removed). In the remaining
graph we change the cost of u to zero, and thus allow the solution to place a
landmark at u without increasing its cost. We apply this preprocessing on one
vertex at a time until there is no vertex which has at least two legs, and in
the remaining graph every vertex has at most one leg. Since we already dealt
with trees in Proposition 1, we assume that the input graph is not a tree. The
following lemma holds in fact for trees as well (but in order to prove it for trees
as well, the special case of a spider graph should be treated separately).

Lemma 3. Denote by G = (V,E) the input graph which is not a tree, and
by G′ = (V ′, E′) the graph obtained after applying the procedure at a vertex u
(that is, the set of vertices after removing all the legs of u but one). Let Lu

denote the set of landmarks which we placed on the removed legs of u, and let
L′ denote the set of landmarks in an optimal solution of the remaining graph.
Then, L = Lu ∪ L′ \ {u} is an optimal landmark set in G.

The case of k = 1. The unweighted version of computing md(G) for the case of 1-
edge-augmented tree is discussed in [4] (where such graphs are called unicycles).
Here we consider the weighted case. If k = 1, then at the end of the preprocessing
phase we are left with a cycle C where some of its vertices have legs (at most one
leg for each vertex of C). Recall that some of the vertices of G may have zero cost
resulting from the preprocessing step, and if we choose to place a landmark at
such a vertex u, then the solution returned by the algorithm skips it (but has at
least one landmark in the tree-like part connected to u which was removed in the
preprocessing step). In what follows we only consider the graph G resulting from
the preprocessing. We next characterize a minimal landmark set for this type
of graphs. This characterization shows that any minimal landmark set for the
resulting graph has at most three vertices. By enumerating all subsets consisting
of two or three vertices we can choose the cheapest feasible landmark set and
solve wmd in polynomial time.
We denote by nC the number of vertices in C. For a vertex v, we let v′ be

its cycle vertex which is defined as follows. v′ is the closest vertex in C to v,
that is if v ∈ C then v′ = v and otherwise v belongs to some leg of a vertex in
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C, and we let v′ denote this vertex of C. Consider a path P from u to v, then
its C-length is defined as the number of edges of C which belong to P . We say
that a path P from u to v is a clockwise path if it traverses the edges in P ∩ C
in a clockwise order, and otherwise it is a counterclockwise path. We say that
two vertices are non-opposite in G if their cycle vertices are distinct, and the
C-length of the shortest path from u to v is not equal to nC

2 .

Lemma 4. Let L ⊆ V be a feasible minimal landmark set. There is no cycle
vertex u such that L contains a pair of vertices v1, v2 whose cycle vertex is u.

In what follows, we focus on a minimal landmark set, and thus assume that it
does not contain two vertices with a common cycle vertex.

Lemma 5. (i) If L ⊆ V contains a pair of non-opposite vertices u1, u2, then
for every pair of vertices x1, x2 ∈ C, there exists w ∈ {u1, u2} that separates x1

from x2. (ii) If L consists of at least three vertices, no pair of which have the
same cycle vertex, then for every pair of vertices x, y ∈ C there is 	 ∈ L that
separates x from y.

We next define a covering of the legs by landmarks. We say that a landmark
	 clockwise-covers (counterclockwise-covers) the leg of a vertex u if one of the
following conditions hold: Either 	 is one of the vertices of the leg of u, or the
clockwise path (counterclockwise path) from u to 	 has C-length of at least 1
and at most nC+1

2 (u cannot cover its own leg). We say that a leg is covered by
L ⊆ V if there is a landmark in L which clockwise-covers the leg and (perhaps
another) landmark in L which counterclockwise-covers the leg.

Lemma 6. Let L be a set of vertices, where |L| ≥ 3 and no two of which have
the same cycle vertex. L is a feasible landmark set iff every leg is covered by L.

Lemma 7. Let L be a minimal landmark set. Then |L| ≤ 3.

To summarize, our algorithm for computing wmd(G) where G is a 1-edge-
augmented tree is to apply the preprocessing step, and afterwards try all pos-
sibilities of sets L such that |L| ≤ 3, and for each of them test its feasibility in
polynomial time, and among the feasible solution we pick a cheapest one. Clearly,
the algorithm runs in polynomial time and computes a cheapest minimal feasible
landmark set. Therefore, we have established the following.

Proposition 3. There is a polynomial time algorithm for solving wmd for 1-
edge-augmented trees.

The General Case. Assume that G = (V,E) is the graph resulting from ap-
plying the preprocessing step, so in G every vertex has at most one leg. The case
of k = 1 is already solved, and here we assume that k ≥ 2 is a fixed constant.
We next define a subgraph of G called the base graph Gb = (Vb, Eb) resulting
from G by removing the vertices of all legs. We next characterize the structure
of this base graph. That is, we will show that it consists of O(k) edge disjoint
paths connecting core vertices where all internal vertices are path vertices.
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The Structure of the Base Graph. For a vertex u ∈ Vb, we denote by
degb(u) its degree in Gb. Note that Gb contains no leaves, and thus the degree
of every vertex is at least 2. Moreover, since Gb is a connected subgraph of G
and every cycle of G belongs to Gb as well, Gb results from a tree T by adding
exactly k edges. Thus the tree T has |Vb| − 1 edges, and thus the number of
edges in Gb is |Vb|+ k − 1. Therefore,

∑
u∈Vb

degb(u) = 2|Vb|+ 2k − 2 and thus∑
u∈Vb

(degb(u)− 2) = 2k − 2.

Lemma 8. The base graph Gb is decomposed into q ≤ 3k−3 edge disjoint paths,
where in Gb every internal vertex of a path has degree 2, and the end-vertices of
such a path are core vertices.

Given a vertex v ∈ V , we define its base vertex as the vertex v′ ∈ Vb which
is the closest to v. Given the path decomposition defined above, we associate
each vertex v in V with one of the paths in the following way. If the base vertex
of v belongs to exactly one of the paths then we associate v with this path.
Otherwise, the base vertex v′ of v is a core vertex in Gb, and we associate all
the vertices in G whose base vertex is v′ with one of the paths incident to v′.
Bounding the Number of Landmarks Associated with One Path. Next,
we consider a minimal feasible landmark set L, and one specific path P in the
path decomposition of Gb. Our goal is to bound the number of landmarks in L
which are associated with P . The following lemma generalizes Lemma 4 to the
case of k ≥ 2.

Lemma 9. (i) Let L be a minimal feasible landmark set, and let P be a path
in the path decomposition of Gb. Then, the number of vertices in L which are
associated with P is at most six. (ii) Let L be a minimal landmark set of a graph
G which results from a k-edge-augmented tree by the preprocessing step (where
k ≥ 2). Then |L| ≤ 18k − 18.

To summarize, our algorithm for computing wmd(G) where G is a k-edge-
augmented tree (for k ≥ 2) is to apply the preprocessing step, afterwards, try
all possibilities of sets L such that |L| ≤ 18k − 18, for each of them test its fea-
sibility in polynomial time, and among the feasible solution we pick a cheapest
one. Clearly, the algorithm runs in polynomial time (for a constant value of k)
and computes a cheapest minimal feasible landmark set.

4 Wheels

Complete Wheels. In this section we consider complete wheels. A (complete)
wheel on n vertices {1, 2, . . . , n} is defined as follows. There is a cycle C over the
vertices 1, 2, . . . , n−1 (the clockwise order of the vertices along C is 1, 2, . . . , n−
1, 1), and vertex n is adjacent to all other vertices. Vertex n is called the hub of
the wheel, whereas the other vertices are called cycle-vertices. The distances in
G are either 1 or 2, clearly the distance between every cycle-vertex and the hub
is 1, the distance of every cycle-vertex and its two neighbors along the cycle is 1,
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and between every pair of (non-adjacent) cycle-vertices are reachable via a two-
edge path through the hub. Consider a feasible landmark set L. A gap between
consecutive landmarks is defined as follows: If 	, 	′ ∈ L are cycle vertices such
that along the clockwise path from 	 to 	′ there is no other landmark, then the
set of internal vertices of the clockwise path from 	 to 	′ is the gap (between 	
and 	′), and we say that the gap is adjacent to 	 and 	′. The length of the gap is
the number of vertices in the gap. Here, we characterize the lengths of the gaps
in a feasible solution L.

Lemma 10. Assume that G is a wheel over at least 8 vertices. Let L ⊆ V . L is
a feasible landmark set iff the following three conditions hold with respect to L:
1. There is no gap of length at least 4. 2. There is at most one gap of length 3.
3. Two gaps of length at least two are not adjacent to a common vertex of L∩C.

Theorem 1. Given a complete wheel G, wmd can be solved in linear time.

A minimal landmark set L does not contain the hub, and based this charac-
terization, our algorithm is a simple dynamic program. By [14], for a complete
wheel G on n vertices, md(G) = Θ(n), and since it is a (n− 1)-edge-augmented
tree, a k-edge-augmented tree needs Ω(k) landmarks in any feasible solution.

The general case A (non-complete) wheel on n vertices {1, 2, . . . , n} is defined
as follows. There is a cycle C over the vertices 1, 2, . . . , n−1 (the clockwise order
of the vertices along C is 1, 2, . . . , n − 1, 1), and vertex n is adjacent to some
of the other vertices. Vertex n is called the hub of the wheel, whereas the other
vertices are called cycle-vertices. The neighbors of n are called connectors, and
the edges incident at n are called chords. We let layer j be the set of vertices of
distance j from n, and denote it by Vj (i.e., Vj = {u ∈ V : du,n = j}, and thus
V0 = {n} and V1 is the set of connectors). Let L ⊆ V , we say that a cycle vertex
u is close to 	 ∈ L if d�,u < d�,n + dn,u. We say that u is close to L if there is
	 ∈ L such that u is close to 	. In this section we consider wheels with at least
22 connectors, and present a polynomial time algorithm for solving wmd for such
a graph. Since wheels with at most 21 connectors are k-edge-augmented trees
for a value of k such that k ≤ 21, we conclude that we will obtain a polynomial
time algorithm for solving wmd on (arbitrary) wheels. Thus let G = (V,E) be a
wheel with at least 22 connectors. We first characterize a minimal landmark set.

Lemma 11. (i) Let L be a feasible landmark set. Then for every j there is at
most one vertex of Vj which is not close to L. Moreover, the vertices in V which
are not close to L form a shortest path from some vertex v to the hub. (ii) Let
	 ∈ V . The set of vertices which are close to 	 is a subpath P of C containing 	.
Moreover, consider P as a clockwise path from u to v, then the subpath of P from
u to 	 (including u, 	) has at most two connectors, and the subpath of P from
	 to v has at most two connectors. Thus, P contains at most four connectors.
(iii) L is a feasible landmark set iff the following two conditions hold: For every
layer Vj , there is at most one vertex of Vj which is not close to L. For every
	 ∈ L and every j, if u1, u2 ∈ Vj are close to 	 and d�,u1 = d�,u2 , then there is
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	′ ∈ L\{	} which is close to at least one of the vertices u1 or u2. (iv) A minimal
landmark set L does not contain the hub, and |L| ≥ 6.

Let L∗ be a fixed optimal solution. We say that two landmarks 	1 and 	2 are
consecutive if the clockwise path from 	1 to 	2 does not contain an additional
landmark, such a path is called the natural path between the landmarks. Given
a landmark 	 ∈ L∗, we say that a pair of cycle-vertices x, y is a bad pair with
respect to 	 (or of 	), if x, y are close to 	, belong to a common layer, dx,� = dy,�,
and the clockwise path from x to y traverses 	. Recall that in this case there
must be a landmark 	′ �= 	 which is close to at least one of x and y, and we say
that 	′ covers the bad pair x, y of 	. A minimal bad pair of a landmark 	 is a bad
pair x, y such that dx,� is minimal among all bad pairs of 	.

Lemma 12. (i) Let x, y be a bad pair with respect to a landmark 	. Let 	′ �= 	
be a landmark which is close to at least one of x and y. Let 	1 and 	2 be land-
marks such that 	1 and 	 are consecutive landmarks and 	 and 	2 are consecutive
landmarks. Then the landmark 	1 is close to x, or the landmark 	2 is close to y
(or both). (ii) Let 	′ �= 	 be a landmark that covers a minimal bad pair x, y of 	
such that either 	′, 	 or 	, 	′ are consecutive, then 	′ covers every bad pair of 	.

We say that a minimal bad pair x, y of 	 which is covered by 	′ is covered from
the left by 	′ if 	′ and 	 are consecutive, and otherwise if 	 and 	′ are consecutive
we say that x, y are covered from the right by 	′. By Lemma 12, a bad pair which
is covered is either covered from the right or from the left, by some 	′.

Corollary 1. A landmark set L ⊆ V is a minimal feasible landmark set iff it
satisfies the following three conditions. 1. n /∈ L. 2. The set of vertices which are
not close to L forms a shortest path from n to some vertex v (possibly v = n),
in particular, if v �= n then the path contains exactly one connector and no
landmark. 3. For every 	 ∈ L, there is 	′ ∈ L \ {	} which covers the minimal bad
pair of 	 either from the left or from the right (if there exists a bad pair of 	).

If there is a cycle-vertex which is not close to L∗, then all such cycle-vertices form
a path not containing a landmark. We guess a pair of consecutive landmarks in
L∗ such that if there exists a cycle-vertex not close to L∗, then all such vertices
appear along the natural path between the two guessed landmarks. Without loss
of generality assume that the two guessed landmarks are 1 and k ≤ n − 1 and
the natural path between them is the clockwise path from k to 1. The number
of possibilities for the selection of 1, k is O(n2). We verify that the set of vertices
along the natural path from k to 1 which are not close to 1 or to k (if such a cycle-
vertex exists) form a shortest path from some vertex to n (and it contains at most
one connector since all connectors are in V1). If this condition does not hold, then
this possibility is impossible, and we stop considering it. In what follows, we con-
sider a possibility which passed this test. Since the number of connectors along
the natural path from k to 1 is at most 5 connectors, the clockwise path from 1 to
k contains at least 17 connectors, and it is not a shortest path.
Let 1 < v < k. We define low(v) as the minimum index i such that 1 ≤ i ≤ v

and the clockwise path from i to v is a unique shortest path. We let high(v)
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be the maximum index i such that v ≤ i ≤ k and the clockwise path from v
to i is the unique shortest path. δ(v) is the minimum number i ≥ 1 such that
v− i ≥ low(v) and v+ i ≤ high(v) belong to a common layer. If such i does not
exist, we let δ(v) = ∞. The motivation for this definition of δ(v) is to identify
the minimal bad pair of v (if it exists).

Claim. Let 1 < v < k be a landmark such that 	1, v are consecutive landmarks
and v, 	2 are consecutive landmarks (1 ≤ 	1 < v < 	2 ≤ k since 1, k are
landmarks), assume that v has a bad pair, and let x, y be the minimal bad pair
of v. If {x, y} is not contained in the clockwise path from 1 to k, then either 1 or
k covers x, y. Otherwise, x, y is covered iff at least one of the following conditions
holds: (i) x ≤ high(	1), (ii) y ≥ low(	2).
For the vertex 1, we define the parameters Low(1), High(1), Δ(1) as follows.

Low(1) is the minimum index i such that the clockwise path from i to 1 is the
unique shortest path (by definition n−1 satisfies this condition, hence Low(1) is
well-defined, and thus the vertices i, i+1, . . . , n−1 are close to 1). High(1) is the
maximum index i such that the clockwise path from 1 to i is the unique shortest
path (similarly to the existence of Low(1), the value of High(1) is well-defined,
vertices 2, 3, . . . , High(1) are close to 1, and High(1) < k). Δ(1) is the minimum
number i ≥ 1 such that i+1 and n− i ≥ k+1 are both close to 1 (and have the
same distance from 1) and belong to a common layer. If such i does not exist,
we let Δ(1) = ∞. It can be the case that there exists a bad pair of 1 even if
Δ(1) =∞ but in this case we show later that k covers all such bad pairs.
For the vertex k, we define similar parameters Low(k), High(k), Δ(k) as fol-

lows. Low(k) is the minimum index i > 1 such that the clockwise path from i to
k is the unique shortest path (by definition k − 1 satisfies this condition, hence
Low(k) is well-defined). High(k) is the maximum index i ≤ n− 1 such that the
clockwise path from k to i is the unique shortest path (note that it is possible
that vertex 1 is also close to k, using the clockwise path from k to 1, but we
are not interested whether this holds or not). Delta(k) is the minimum number
i ≥ 1 such that k + i ≤ n − 1 and k − i ≥ 1 are both close to k (and have the
same distance from k) and belong to a common layer. If such i does not exist,
we let Δ(k) =∞. We also let low(1) = 1, high(1) = High(1), low(k) = Low(k)
and high(k) = k. We define δ(1) and δ(k) in the following way. We let δ(1) =∞
if High(k) ≥ n − Δ(1). Otherwise, δ(1) = Δ(1). The motivation is to define
δ(1) to be infinite if there is no bad pair of 1, or if k covers the minimal bad
pair of 1. Similarly, we define δ(k) = ∞ if Low(1) ≤ k + Δ(k). Otherwise,
we let δ(k) = Δ(k). The differences between Δ and δ, and the property that
Δ(1), Δ(k) can be infinite even if there is a bad pair of 1, and k, respectively,
follow since High(k) ≥ n −Δ(1) iff the minimal bad pair of 1 is covered by k,
and Low(1) ≤ k +Δ(k) iff the minimal bad pair of k is covered by 1.
We define a function F : {1, 2, . . . , k} × {left, right} → R+ as fol-

lows. F (v, right) (F (v, left)) is the minimum cost of a set L such that
1, v ∈ L, every 1 < i < v is close to at least one of the vertices in L,
and for every 	 ∈ L \ {v} (	 ∈ L, respectively) such that δ(	) is finite
the minimal bad pair of 	 is covered by a vertex in L \ {	}. We compute
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the values of F using the following dynamic program. If δ(1) = ∞, then
F (1, right) = F (1, left) = c(1), and if δ(1) is finite, then F (1, left) = ∞ and
F (1, right) = c(1). For 	 > 1 we define sets of feasible values of 	′ < 	 (to be
consecutive landmarks) α(	) = {	′ ∈ {1, 2, . . . , 	 − 1} : high(	′) ≥ low(	) − 1},
β(	) = {	′ ∈ α(	) : high(	′) ≥ 	 − δ(	)}, γ(	) = {	′ ∈ α(	) : low(	) ≤ 	′ + δ(	′)}.
The recursive formula is as follows.

1. F (	, left) = min
{
min�′∈β(�) F (	

′, left),min�′∈β(�)∩γ(�) F (	
′, right)

}
+ c(	),

2. F (	, right) = min
{
min�′∈α(�) F (	

′, left),min�′∈γ(�) F (	
′, right)

}
+ c(	).

If δ(k) = ∞, then we are looking for F (k, right), and otherwise we are looking
for F (k, left). Then, by backtracking we compute the optimal landmark set. We
conclude that the algorithm computes an optimal solution in polynomial time.
Thus, we proved that for a wheel G, wmd can be solved in polynomial time.
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Abstract. An L(2, 1)-labeling of a graph is a mapping from its vertex
set into a set of integers {0, .., k} such that adjacent vertices get labels
that differ by at least 2 and vertices in distance 2 get different labels.
The main result of the paper is an algorithm finding an optimal L(2, 1)-
labeling of a graph (i.e. an L(2, 1)-labeling in which the largest label is
the least possible) in time O∗(7.4922n) and polynomial space. Moreover,
a new interesting extremal graph theoretic problem is defined and solved.

1 Introduction

The Frequency Assignment Problem is the problem of assigning channels (rep-
resented by nonnegative integers) to each radio transmitter in a network so that
no transmitters interfere with each other. Hale [11] formulated this problem in
terms of so-called T -coloring of graphs. According to [10], Roberts was the first
one who proposed a modification of this problem, which is called an L(2, 1)-
labeling problem. It asks for a labeling with nonnegative integer labels in which
no vertices in distance 2 in a graph have the same label and labels of adjacent
vertices differ by at least 2.

The span of an L(2, 1)-labeling is the difference between the largest and small-
est labels used. By λ(G) we denote the L(2, 1)-span of a graph G, which is the
smallest span over all L(2, 1)-labelings of G.

The problem of L(2, 1)-labeling has been extensively studied (see [4] for a
survey on the problem and its generalizations). A considerable attention has
been given to bounding the value of λ(G) by some function of G.

Griggs and Yeh [10] proved that λ(G) ≤ Δ2+2Δ (where Δ denotes the largest
vertex degree in G) and conjectured, that λ(G) ≤ Δ2 for every graph G. There
are several results supporting this conjecture, for example Gonçalves [9] proved
that λ(G) ≤ Δ2 + Δ − 2 for graphs with Δ ≥ 3. Havet et al. [12] have settled

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 126–137, 2012.
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the conjecture in affirmative for graphs with Δ ≥ 1069. For graphs with smaller
Δ, the conjecture still remains open.

The second main direction of research in L(2, 1)-labeling was to analyze its
computational complexity. Griggs and Yeh [10] proved that computing λ(G) is
an NP-hard problem. Fiala et al. [8] later proved that deciding λ(G) ≤ k remains
NP-complete for every fixed k ≥ 4 (for k ≤ 3 the problem is polynomial). NP-
completeness for planar inputs was proved by Bodlaender et al. [2] for k = 8,
by Janczewski et al. [15] for k = 4 and finally by Eggeman et al. [6] for all
k ≥ 4. When k is part of the input, the problem remains NP-complete even for
series-parallel graphs (see Fiala et al. [7]).

Král’ [20] presented an exact algorithm for a more general problem called
Channel Assignment, which solves L(2, 1)-labeling problem in time O∗(4n) ‡.
Havet et al. [13] presented an algorithm for computing λ(G), which works in
time O(3.8730n). This algorithm has been improved [18,19], achieving a com-
plexity bound O(3.2361n). Cygan and Kowalik published [5] an algorithm solving
Channel Assignment Problem, which restricted to L(2, 1)-labeling works in time
O∗(3n). The currently fastest algorithm for L(2, 1)-labeling with a complexity
bound O(2.6488n) has been presented in [16]. All the algorithms mentioned above
use exponential amount of memory. Havet et al. [13] presented a branching algo-
rithm which determines if λ(G) ≤ k in time O∗((k−2.5)n) and polynomial space.

Until now, no algorithm for L(2, 1)-labeling with time complexity O(cn) for
some constant c and polynomial space complexity has been published. How-
ever, there are such algorithms for a related problem of classical graph coloring.
The first one, with time complexity O(5.2830n), was shown by Bodlaender and
Kratsch [3]. The best currently known algorithm for graph coloring with poly-
nomial space complexity is by Björklund et al. [1], using the inclusion-exclusion
principle. Its time complexity is O(2.2461n).

The main idea of the algorithm presented in this paper was invented (but
not published) by Havet et al. [14] and independently by Junosza-Szaniawski
and Rzążewski [17]. Both groups obtained the algorithm with time complexity
O((9+ε)n) for arbitrarily small positive constant ε. In this joint paper we develop
the idea to obtain the the following theorem.

Theorem 1. The L(2, 1)-span of a graph on n vertices can be computed in time
O(7.4922n) and polynomial space.

To prove the complexity bound of the algorithm, in Section 4 we consider an ex-
tremal combinatorial problem, which is highly related to famous results concern-
ing the maximum number of maximal independent sets, obtained independently
by Miller and Muller [21], and Moon and Moser [22].

2 Preliminaries

A graph is a pair G = (V,E), where V is a finite set, called the set of vertices,
and E is a family of 2-element subsets of V . A k-L(2, 1)-labeling of a graph G
is any function ψ : V → {0, . . . k} such that
‡ In the O∗ notation we omit polynomially bounded terms.
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1. |ψ(v)− ψ(w)| ≥ 1 for all v, w ∈ V (G) such that ∃u ∈ V vu, uw ∈ E(G),
2. |ψ(v)− ψ(w)| ≥ 2 for all v, w ∈ V (G) such that vw ∈ E(G).

By λ(G) we denote the smallest k such that there exists a k-L(2, 1)-labeling of
G. We will define L(2, 1)-labeling in a more general way and for that we will
need graphs with two kinds of edges. A triple G = (V,R,B) is called a red-black
graph if V is finite, R,B are disjoint families of 2-element subsets of V fulfilling
the condition: if vw ∈ B and vu ∈ B, then uw ∈ R ∪B for any vertices v, u, w.
For a red-black graph G = (V,R,B) we refer to V , R, B, R∪B by V (G), R(G),
B(G), E(G), respectively. We call R(G) the set of red edges and B(G) the set
of black edges, while E(G) is the set of edges.

An R-closure of a graph G is a red-black graph H , such that V (H) = V (G),
B(H) = E(G) and R(H) = E(G2) \ E(G) = {uw ∈ V (G) : ∃v ∈ V (G) uv ∈
E(G) and vw ∈ E(G) and uw /∈ E(G)}.

For a red-black graph H we define a k-L-labeling as a function ϕ : V (H) →
{1, . . . , k} (we do not use 0 as a label for convenience) fulfilling

1. |ϕ(v) − ϕ(w)| ≥ 1 for all v, w ∈ V (G) such that vw ∈ R(G)
2. |ϕ(v) − ϕ(w)| ≥ 2 for all v, w ∈ V (G) such that vw ∈ B(G).

Notice that a (k + 1)-L-labeling of the R-closure of a graph G corresponds to a
k-L(2, 1)-labeling of G.

Remark 1. If ψ is a k-L(2, 1)-labeling of a graph G and H is an R-closure of G,
then a labeling ϕ defined by ϕ(v) = ψ(v) + 1 is a (k + 1)-L-labeling of H and
vice-versa.

For technical reasons we need to consider two more restrictions. Suppose that
the given instance is a red-black graph G and sets P,Q. A labeling ϕ : V (G)→
{1, . . . , k} is a k-LP

Q-labeling of G if it is a k-L-labeling of G and Q∩ϕ−1(1) = ∅
and P ∩ϕ−1(k) = ∅. A function ϕ is an LP

Q-labeling of G if it is a k-LP
Q-labeling

of G for some k. Note that every LP
Q labeling of G is in fact a L

P∩V (G)
Q∩V (G)-labeling

of G. However, we will not restrict the definition to sets P,Q ⊆ V (G), as it
makes the description of the algorithm simpler.

Let ΛP
Q(G) denote the smallest possible k ≥ 0 admitting the existence of

a k-LP
Q-labeling of G. In particular, for a graph with no vertices we have

ΛP
Q((∅, ∅, ∅))

def.
= 0.

The considered generalized problem asks to compute ΛP
Q(G). Any k-LP

Q-
labeling of G with k = ΛP

Q(G) is called optimal. We observe that even if ϕ is an
optimal LP

Q-labeling of G, then any of the sets ϕ−1(1) and ϕ−1(ΛP
Q(G)) may be

empty. In the extremal case, if P = Q = V (G), then ϕ−1(1) = ϕ−1(k) = ∅ for
all k and feasible k-LP

Q-labelings ϕ of G.
Notice that if H is an R-closure of a graph G then Λ∅

∅(H) = λ(G) + 1, by
Remark 1. In this way we shall use our algorithm to compute an L(2, 1)-span of
a given input graph.

Let N(v) = {u ∈ V (G) : (u, v) ∈ E(G)} denote the set of neighbors (the neigh-
borhood) of a vertex v. A red neighborhood (black neighborhood, respectively) of a
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vertex v, denoted byNR(v) (NB(v), respectively), is the set of verticesw such that
vw ∈ R(G) (vw ∈ B(G), respectively). The neighborhood, red neighborhood,
black neighborhood of a set Y of vertices inG are denoted by N(Y ) =

⋃
v∈Y N(v),

NR(Y ) =
⋃

v∈Y NR(v), NB(Y ) =
⋃

v∈Y NB(v), respectively.
For a red-black graph G = (V,R,B) and for a set of vertices V ′ ⊆ V (G) let

G[V ′] = (V ′, {e ∈ R(G) : e ⊆ V ′}, {e ∈ B(G) : e ⊆ V ′}) denote the subgraph of
G induced by the set of vertices V ′.

A set of vertices Y is independent if no two vertices in this set are adjacent
(the color of edges is not important here). An independent set Y is R-maximal
if every vertex v such that NR(v) = N(v) is either in Y or has a neighbor in Y .
A pair (X,Y ) of disjoint subsets of V (G) is proper if Y is independent. A proper
pair is R-maximal if Y is R-maximal.

A triple of sets (X,Y, Z) is a balanced partition of G if

1. The sets X,Y, Z form a partition of V (G).
2. The set Y is independent.
3. All sets X,Y, Z are non-empty.
4. |X | ≤ |V (G)|

2 and |Z| ≤ |V (G)|
2 .

A triple of sets (X,Y, Z) is a correct partition of G if it is a balanced partition
of G and Y is an R-maximal independent set. Note that if (X,Y, Z) is a correct
partition of G, then (X,Y ) is an R-maximal proper pair. Hence we obtain the
following Remark.

Remark 2. The number of R-maximal proper pairs in G is an upper bound for
the number of correct partitions of G.

3 Algorithm

The algorithm presented in this section is based on the classical Divide-and-
Conquer paradigm. The main idea is based on two key observations, described
in Lemmas 1 and 2.

Lemma 1. Let ϕ be a k-LP
Q-labeling of G. For h ∈ {1, . . . , k} let Xh =⋃h−1

i=1 ϕ−1(i), Yh = ϕ−1(h) and Zh =
⋃k

i=h+1 ϕ
−1(i). There exists h ∈ {1, . . . , k}

such that one of the following cases occurs:

1. Xh = ∅ and |Yh| ≥ |V (G)|/2,
2. Zh = ∅ and |Yh| ≥ |V (G)|/2,
3. the triple (Xh, Yh, Zh) is a balanced partition of G.

Proof. We shall prove that if neither the case 1 nor the case 2 occurs, then
we can choose h in such a way, that the case 3 occurs. Notice that for every
h ∈ {1, . . . , k} the sets Xh, Yh and Zh clearly form a partition of V (G) and Yh

is independent. Let h be the smallest number, such that |Xh ∪ Yh| ≥ |V (G)|/2.
Clearly Yh �= ∅, because otherwise we would choose h−1. By the choice of h, since
the cases 1 and 2 did not occur, Xh �= ∅ and Zh �= ∅. Hence |Xh| ≤ |V (G)|/2.
Moreover, the fact that |Xh ∪ Yh| ≥ |V (G)|/2 implies that |Zh| ≤ |V (G)|/2. ��
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Lemma 2. Let k = ΛP
Q(G) and h ∈ {2, . . . , k − 1}. There exists an optimal

LP
Q-labeling ϕ of G, such that the set ϕ−1(h) is R-maximal.

Proof. Let ϕ be an optimal LP
Q-labeling of G. If ϕ−1(h) is R-maximal, then ϕ

is the optimal labeling we are looking for. Otherwise, there exists at least one
vertex v such that:

1. for all w ∈ N(v) holds vw ∈ R(G) and ϕ−1(w) �= h
2. ϕ−1(v) �= h

Note that we can change the label of v to h obtaining an optimal LP
Q-labeling

ϕ′ of G. Applying such a relabeling recursively, we finally obtain a labeling
satisfying our criteria. ��

Moreover, we observe that if the graph is disconnected, we can label each of its
connected components separately. Hence for all graphs G and sets P,Q

ΛP
Q(G) = max{ΛP

Q(C) : C is a connected component of G}. (1)

Therefore we may assume that the input graph G is connected.
The algorithm partitions the vertex set V (G) into all possible triples of sets

X,Y, Z, which form a correct partition of G. The graphs G[X ] and G[Z] are then
labeled recursively. Due to restrictions related to the sets P and Q, the cases
when X = ∅ or Z = ∅ have to be considered separately.

The labeling of the whole G is constructed from the labelings found in the
recursive calls. The sets of labels used on the sets X and Z are separated from
each other by the label used for the R-maximal independent set Y . This allows
to solve the subproblems for G[X ] and G[Z] independently from each other.
Iterating over all such partitions of V (G), the algorithm computes the minimum
k admitting the existence of a k-LP

Q-labeling of G, which is by definition ΛP
Q(G).

The pseudo-code of our algorithm is given by Algorithm 1.

Lemma 3. For a red-black graph G = (V, ∅, ∅) and any sets P,Q, it holds that
ΛP
Q(G) ≤ 3.

Proof. The labeling ϕ : V → {1, 2, 3} such that ϕ(v) = 2 for every v ∈ V is a
feasible 3-LP

Q-labeling of G. ��

Lemma 4. For any graph G and sets P,Q, the algorithm call Find-Lambda(G,
P,Q) returns ΛP

Q(G).

Proof. The proof proceeds by the induction on |V (G)|. If V (G) = ∅, the correct
result is given in line 1 (by the definition of ΛP

Q(∅, ∅, ∅)). If ΛP
Q(G) ≤ 3, the

result is found by the exhaustive search in line 3. Notice that if |V (G)| ≤ 1, then
ΛP
Q(G) ≤ 3 by Lemma 3.
Assume that the statement is true for all graphs G′ and all sets P ′, Q′, such

that |V (G′)| < n, where n > 1. Let G be a graph on n vertices and P,Q be sets.
We may also assume that ΛP

Q(G) > 3, because otherwise it would be labeled by
the exhaustive search in line 3. Let k be the value returned by the algorithm call
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Algorithm 1. Find-Lambda(G,P,Q)

Input: Red-black graph G, Sets P,Q
1 if V (G) = ∅ then return 0
2 for k ← 1 to 3 do
3 if there exists a k-LP

Q-labeling of G then return k

4 foreach connected component C of G do
5 k[C] ← ∞
6 foreach independent set Y ⊆ V (C) such that |Y | ≥ |V (C)|/2 do
7 k1 ← Find-Lambda(C − Y,NB(Y ), Q)
8 k2 ← Find-Lambda(C − Y, P,NB(Y ))
9 if Y ∩ P �= ∅ then k1 ← k1 + 1

10 if Y ∩Q �= ∅ then k2 ← k2 + 1
11 k[C] ← min(k[C], k1 + 1, k2 + 1)

12 foreach correct partition (X,Y, Z) of C do
13 kX ← Find-Lambda(C[X], NB(Y ), Q)
14 kZ ← Find-Lambda(C[Z], P,NB(Y ))
15 k[C] ← min(k[C], kX + 1 + kZ)

16 return ΛP
Q(G) = max{k[C] : C is a connected component of G}

Find-Lambda(G,P,Q). To show that k = ΛP
Q(G) it is enough to show that that

k[C] = ΛP
Q(C) for every connected component C (for k[C] defined as in the algo-

rithm). Having proven this, we have k = max{k[C] : C is a component of G} =
max{ΛP

Q[C] : C is a component of G} = ΛP
Q(G) (by (1)). Let C be a connected

component of G.
First we will show that k[C] ≥ ΛP

Q(C), i.e. there exists a k-LP
Q-labeling

of C. Assume that k[C] was set in the line 11. Consider the independent set
Y and the iteration of the loop in lines 6–11 for which k was set. Let k′1 =
Find-Lambda(C − Y,NB(Y ), Q) and k′2 = Find-Lambda(C − Y, P,NB(Y )).
By the inductive assumption there exist a k′1-L

NB(Y )
Q -labeling ϕ′ of C−Y and a

k′2-LP
NB(Y )-labeling ϕ′′ of C−Y . Notice that k[C] ∈ {k′1+1, k′1+2, k′2+1, k′2+2}

and at least one of the following cases occurs.

Case 1: k[C] = k′1 + 1 and Y ∩ P = ∅. In this case we can extend ϕ′ in the
following way

ϕ(v) =

{
ϕ′(v) if v ∈ V (C) \ Y
k′1 + 1 if v ∈ Y

obtaining a k[C]-LP
Q-labeling ϕ of C.

Case 2: k[C] = k′1 + 2 and Y ∩ P �= ∅. In this case we can extend ϕ′ in the
following way

ϕ(v) =

{
ϕ′(v) if v ∈ V (C) \ Y
k′1 + 1 if v ∈ Y
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obtaining a k[C]-LP
Q-labeling ϕ of C (note that due to restriction on P the label

k′1 + 2 is counted as used, despite the fact that no vertex has this label).

Case 3: k[C] = k′2 + 1 and Y ∩ Q = ∅. In this case we can extend ϕ′ in the
following way

ϕ(v) =

{
1 if v ∈ Y

ϕ′(v) + 1 if v ∈ V (C) \ Y

obtaining a k[C]-LP
Q-labeling ϕ of C.

Case 4: k[C] = k′2 + 2 and Y ∩ Q �= ∅. In this case we can extend ϕ′ in the
following way

ϕ(v) =

{
2 if v ∈ Y

ϕ′(v) + 2 if v ∈ V (C) \ Y

obtaining a k[C]-LP
Q-labeling ϕ of C.

Now assume that that k[C] was set in line 15. Consider the correct partition
(X,Y, Z) and the iteration of the loop in lines 12–15 for which k was set. Let
kX and kZ be defined as in lines 13 and 14 for this iteration. Hence k[C] =

kX + 1 + kZ . By the inductive assumption there exists kX -LNB(Y )
Q -labeling ϕX

of C[X ] and kZ-LP
NB(Y )-labeling ϕZ of C[Z]. We can define a k[C]-LP

Q-labeling
of C in the following way:

ϕ(v) =

⎧⎪⎨⎪⎩
ϕX(v) if v ∈ X

kX + 1 if v ∈ Y

kX + 1 + ϕZ(v) if v ∈ Z

Notice that sets X,Y, Z are non-empty since (X,Y, Z) is a correct partition of
C. Hence kX , kZ ≥ 1 and ϕ−1(1) ∩Q = ϕ−1(kX + 1 + kZ) ∩ P = ∅.

Now we will show that k[C] ≤ ΛP
Q(C). Let ϕ be an optimal LP

Q-labeling of C.
Recall that ΛP

Q(C) > 3. One of the following cases occurs.

Case 1: ϕ−1(1) ≥ |V (C)|/2. Consider the iteration of the loop in lines 6–11
for Y = ϕ−1(1). By the inductive assumption the algorithm Find-Lambda
sets k2 = ΛP

NB(Y )(C − Y ). Notice that ΛP
NB(Y )(C − Y ) = ΛP

Q(C) − 1

and ϕ−1(1) ∩ Q = ∅. Hence the condition in line 10 is not fulfilled and k2
is equal to ΛP

Q(C)−1. By the condition in line 11 we have k[C] ≤ k2+1 ≤ ΛP
Q(C).

Case 2: ϕ−1(1) = ∅ and ϕ−1(2) ≥ |V (C)|/2. Consider the iteration of the
loop in lines 6–11 for Y = ϕ−1(2). By the inductive assumption the algorithm
Find-Lambda sets k2 = ΛP

NB(Y )(C − Y ). Notice that ϕ−1(1) ∩ Q �= ∅
since otherwise we could decrease the label of every vertex by one, obtaining
(ΛP

Q(C) − 1)-LP
Q-labeling of C. Hence ΛP

NB(Y )(C − Y ) = ΛP
Q(C) − 2 and the

algorithm Find-Lambda in line 10 sets k2 to ΛP
Q(C)− 2 + 1. By the condition

in line 11 k[C] ≤ k2 + 1 ≤ ΛP
Q(C) − 2 + 1 + 1 = ΛP

Q(C).

Case 3: ϕ−1(ΛP
Q(C)) ≥ |V (C)|/2 is symmetric to the Case 1.
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Case 4: ϕ−1(ΛP
Q(C)) = ∅ and ϕ−1(ΛP

Q(C) − 1) ≥ |V (C)|/2 is symmetric to the
Case 2.

Notice that that neither the case ϕ−1(1) = ϕ−1(2) = ∅ nor
ϕ−1(ΛP

Q(C)) = ϕ−1(ΛP
Q(C) − 1) = ∅ may occur, since the labeling ϕ is

optimal. Hence the only case remaining is:

Case 5: 0 < |ϕ−1(1)| ≤ |V (C)|/2 or 0 < |ϕ−1(1) ∪ ϕ−1(2)| ≤ |V (C)|/2 and 0 <
|ϕ−1(ΛP

Q(C))| ≤ |V (C)|/2 or 0 < |ϕ−1(ΛP
Q(C)) ∪ ϕ−1(ΛP

Q(C)− 1)| ≤ |V (C)|/2.
Let h be defined as in Lemma 1, i.e. h = min{j ∈ {1, . . . , ΛP

Q(C)} such that
|
⋃j

i=1 ϕ
−1(i)| ≥ |V (C)|/2}. Note that 1 < h < ΛP

Q(C), because of the conditions

of the Case 5. The triple (
⋃h−1

i=1 ϕ−1(i), ϕ−1(h),
⋃ΛP

Q(C)

i=h+1 ϕ
−1(h)) is a balanced

partition of G.
Let ϕ′ be an optimal LP

Q-labeling of C, constructed from ϕ as in the proof of

the Lemma 2. Let X =
⋃h−1

i=1 ϕ′−1(i), Y = ϕ′−1(h) and Z =
⋃ΛP

Q(C)

i=h+1 ϕ
′−1(h).

Notice that

– Y is R-maximal
– ∅ �= ϕ−1(h) ⊆ Y and therefore Y �= ∅
– X ⊆

⋃h−1
i=1 ϕ−1(i) and therefore |X | ≤ |V (C)|/2

– Z ⊆
⋃ΛP

Q(C)

i=h+1 ϕ
−1(h)) and therefore |Z| ≤ |V (C)|/2.

Moreover X �= ∅ and Z �= ∅, because otherwise Case 2 or Case 4 would occur.
Hence (X,Y, Z) is a correct partition of C and it is considered in the iteration
of the loop in lines 12–15. In the iteration for (X,Y, Z) the algorithm sets kX =

Λ
NB(Y )
Q (C(X)) = h−1 in line 13 and kX = ΛP

NB(Y )(C(Z)) = ΛP
Q(C)−h in line 14

(by the inductive assumption). Hence k[C] ≤ kX+1+kZ = h−1+1+ΛP
Q(C)−h =

ΛP
Q(C). This finishes the proof. ��

4 The Number of R-Maximal Proper Pairs

This section is purely combinatorial. We consider the maximum number of R-
maximal proper pairs, which will be used later to bound the complexity of the
algorithm Find-Lambda. Let ρ(G) denote the number of R-maximal proper pairs
in a red-black graph G. Let ρ(n) denote the maximum value of ρ(G) over all
connected red-black graphs on n vertices.

In this section we prove the following Theorem.

Theorem 2. The maximum number of R-maximal proper pairs in a connected
red-black graph on n vertices is Θ(

√
8
n
).

First let us prove the bound for red graphs, i.e. red-black graphs with no black
edges. Let ρR(n) denote the maximum value of ρ(G) over all red graphs on n
vertices. Note that R-maximal independent sets in a red graph are just maximal
independent sets. Therefore R-maximal proper pairs in a red graph are the pairs
(X,Y ) of disjoint set, where Y is a maximal independent set. The proof of
Theorem 3 is inspired by an elegant proof by Wood [23].
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Theorem 3. If a graph G is red, then ρ(G) = O
(

5
√
80

n
)
= O(2.4023n), where

n is the number of vertices in G.

Proof. We shall prove the statement by induction on the number of vertices n.
If n ≤ 2, the statement is obviously true. Assume that n ≥ 3 and the statement
is true for all red graphs with less than n vertices.

Let G be a red graph on n vertices, such that ρ(G) = ρR(n). Let v be the
vertex of G having the smallest degree (denoted by δ). Notice that for every
R-maximal proper pair (X,Y ), at least one of the vertices in N [v] must be
in Y (since Y is a maximal independent set). Let w ∈ N [v] ∩ Y . Since the
set Y is independent, none of the vertices from N(w) belongs to it. However,
each of them can be in X or not. Hence we obtain the following recursion:
ρR(n) ≤

∑
w∈N [v] 2

degwρR(n−degw−1). Let d be the element from {δ, . . . , n−1}
maximizing the expression 2dρR(n − d − 1). Then ρR(n) ≤

∑
w∈N [v] 2

dρR(n −
d− 1) = (δ + 1)2dρR(n− d− 1) ≤ (d+ 1)2dρR(n− d− 1).

From this we obtain that ρR(n) = O
((

d+1
√
(d+ 1)2d

)n)
. One can easily

verify that this value is maximized for d = 4. Hence ρR(n) = O
(

5
√
80

n
)
=

O(2.4023n). ��

The proof for the lower bound ρR(n) is also analogical to the case of max-
imal independent sets (see [21,22]). Consider a red graph Hk consisting of
k disjoint copies of a complete graph K5. A direct computation shows that
ρ(Hk) = Θ

(
(5 · 24)k

)
= Θ

(
5
√
80

n
)
, which proves that ρR(n) = Θ

(
5
√
80

n
)
.

It is interesting to mention that the same bound applies if we restrict ourselves
to connected red graphs. Let H ′

m be a graph Hm with one additional vertex
adjacent to exactly one vertex from each copy of K5. It is easy to check that
ρ(H ′

m) = Θ
(

5
√
80

n
)
.

Having the bound on ρR(n), we can now proceed to bounding the number
of R-maximal proper pairs in all connected red-black graphs. In the analysis of
the number of R-maximal proper pairs we shall use the concept of partitioning
graphs to stars, used by Havet et al. [13] to bound the number of 2-packings in
a connected graph.

For a red-black graph G let GB denote the graph induced by the set of vertices
belonging to black edges, i.e. G[

⋃
e∈B(G) e]. By GR we denote the subgraph

induced by the set of vertices V (G) \ V (GB). We say that a graph G is black if
G = GB.

Lemma 5. The maximum number of R-maximal proper pairs in a black graph
G without isolated vertices is upper-bounded by O(

√
8
n
) = O(2.8285n).

Proof. Let us consider a partition of the vertex set of G with disjoint black stars
S1, S2, . . . , Sd, each containing at least 2 vertices. To construct such a partition,
let us consider a graph G′ = (

⋃
e∈B(G) e,B(G)) and consider each connected

component C of G′ separately. Let T be a spanning tree of C and let v and
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u be, respectively, the end-vertex and its neighbor on a longest path in T . All
neighbors of u in T except at most one are leaves in T . We add the star S induced
by u and all its neighbors which are leaves in T to our partition and proceed
recursively with the tree T \ S.

Let uk(n) denote the maximum number of k-element independent sets Y in G.
Note that at most one vertex from each black star Si can be in Y , since the graph
G is red-black. Therefore we observe that uk(n) ≤

∑
1≤i1<...<ik≤d

∏k
�=1 |Si� |. It

can be easily proven (see Havet et al. [13]) that this expression has the largest
value for |S1| = |S2| = . . . = |Sd|. Thus uk(n) ≤

∑
1≤i1<...<ik≤d 2

k =
(
n/2
k

)
2k.

Notice that every vertex that is not in Y can be included in X or not. Fi-
nally, we obtain the following formula: ρ(G) =

∑n
k=0 uk(n)2

n−k = O(
√
8
n
) =

O(2.8285n). ��

Proof of Theorem 2. We shall construct proper pairs (X,Y ) in two steps:

1. From GB select an independent set YB and a set XB disjoint with YB .
2. From GR select a maximal independent set YR such that YR ∩ N(YB) = ∅,
and a set XR disjoint with YR.
3. Return X = XB ∪XR and Y = YB ∪ YR.

Notice that such constructed pairs (X,Y ) are exactly R-maximal proper pairs in
G. Since the graph GB has no isolated vertices, for |V (GB)| = n′ we obtain the

following formula. ρ(n) = ρ(G) = O(
√
8
n′
·ρR(n−n′)) = O(

√
8
n′
·2.4023n−n′

) =

O(
√
8
n
) = O(2.8285n).

To show that this bound is best possible, let us consider the graph Mk con-
sisting of k disjoint black edges and a vertex v connected with a red edge to one
vertex from each black edge.

A direct calculation shows that ρ(Mk) = Θ(8k) = Θ(8n/2). Thus ρ(n) =

Θ(
√
8
n
). This finishes the proof of Theorem 2. ��

It is easy to observe that R-maximal proper pairs in connected black graphs
are exactly the proper pairs, considered in [16].

Theorem 4 (J.-S.,L.,K.,Rossmanith, Rz. [16]). Let ρB(n) denote the max-
imum value of ρ(G) over all graphs G, which are an R-closure of some connected
graph H on n vertices. Then ρB(n) = O(2.6488n) and ρB(n) = Ω(2.6117n).

Fig. 1. Graph M4, straight edges are black and zig-zag edges are red
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5 Complexity of the Algorithm

A direct estimation of the computation complexity of our algorithm gives a
running-time O((9 + ε)n). By using the bounds from Section 4, we can improve
this running-time upper bound, as claimed in the next Lemma :

Lemma 6. The algorithm Find-Lambda computes ΛP
Q(G) of a red-black graph

in time O((8 + ε)n) and polynomial space, where n is the number of vertices in
G and ε is an arbitrarily small positive constant.

Proof. Verifying if a given set Y is independent can be performed in polynomial
time. We can check if a given function ϕ : V (G) → N is an LP

Q-labeling of G in
polynomial time as well. The algorithm Find-Lambda first checks in constant
time if V (G) = ∅. Then it exhaustively checks if there exists a k-LP

Q-labeling of
G for k ∈ {1, 2, 3}. There are 3n functions ϕ : V (G) → {1, 2, 3}, so this step is
performed in time nO(1) · 3n.

Then for every connected component C of G the algorithm checks all inde-
pendent sets of size at least |V (C)|/2 (there are no more than 2n such sets) and
all correct partitions of C (by Theorem 2 and Remark 2 there are at most

√
8
n

considered partitions). The algorithm is called recursively for at most two sets
of size at most n/2 per component. Hence we obtain the following inequality for
the complexity:

T (n) ≤ (2n +
√
8
n
)nO(1)T (n/2) (2)

The solution of this recursion is bounded by O(8nnO(1) log n) = O(8n2O(1) log2 n),
which is bounded by O((8 + ε)n), for all ε > 0. The space complexity of the
algorithm is clearly polynomial. ��

Proof of Theorem 1. Notice that if we are looking for the L(2, 1)-labeling of
G, we can assume that G is connected (otherwise we would label each of its
components separately) and the initial graph given to the algorithm is an R-
closure of G (R-closure of a graph can be found in polynomial time).

Hence the complexity of the algorithm is bounded by

T ′(n) ≤ (2n + 2.6488n)nO(1)T (n/2), (3)

where T is given by inequality (2). From (3) this we obtain T ′(n) = O(7.4922n).
��
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Jérôme Javelle2, Mehdi Mhalla1,2, and Simon Perdrix1,2

1 CNRS
2 Laboratoire d’Informatique de Grenoble, Grenoble University

Abstract. The local minimum degree of a graph is the minimum degree
reached by means of a series of local complementations. In this paper, we
investigate on this quantity which plays an important role in quantum
computation and quantum error correcting codes.

First, we show that the local minimum degree of the Paley graph of
order p is greater than

√
p− 3

2
, which is, up to our knowledge, the high-

est known bound on an explicit family of graphs. Probabilistic methods
allows us to derive the existence of an infinite number of graphs whose
local minimum degree is linear in their order with constant 0.189 for
graphs in general and 0.110 for bipartite graphs. As regards the com-
putational complexity of the decision problem associated with the local
minimum degree, we show that it is NP-complete and that there exists
no l-approximation algorithm for this problem for any constant l unless
P = NP .

1 Introduction

For any undirected graph G, the local complementation is an operation which
consists in complementing the neighborhood of a given vertex of a graph. It that
has been introduced by Kotzig [Kot68] and the study of this quantity is moti-
vated by several applications: Bouchet [Bou90, Bou94] and de Fraysseix [dF81]
used local complementation to give a characterization of circle graphs, and Oum
[Oum08] links the notion of “vertex minor of a graph” to the equivalence classes
up to local complementation. One of the most important results is established
by Bouchet in [Bou87]: deciding whether two graphs are equivalent up to local
complementations can be done in polynomial time.
In the field of quantum information theory, the rate of some quantum codes

obtained by graph concatenation can be bounded by the minimum degree up to
local complementation (called “local minimum degree” and denoted δloc) of the
constructed graphs [BCG+11]. Another application of δloc is the preparation of
graph states (quantum states represented by a graph), which are a very pow-
erful tool used for measurement-based quantum computing [RB01] and blind
quantum computing [BFK09], for example. In [HMP06], it has been proven that
the complexity of preparation of a graph state is bounded by its local minimal
degree. Threshold quantum secret sharing protocols from graph states (first in-
troduced in [MS08]) can be built from graph states with the methods described

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 138–147, 2012.
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in [JMP11], and the local minimum degree of the corresponding graphs gives,
under additional parity conditions, a value for the threshold that can be reached
with these graph states. Moreover, we also focus on bipartite graphs which are
of high interest for entanglement purification [ADB05] and the study of Schmidt
measure [Sev06], for example.
In this paper, several techniques from different backgrounds are used. We

consider a family of graphs defined from quadratic residues, the Paley graphs
Palp, and the bound that we give on δloc(Palp) is closely related to a fundamental
result in algebraic geometry (see Lemma 2). Probabilistic methods are also used
to prove the existence of graphs with large local minimum degree. In particular,
we use the asymmetric version of the Lovász Local Lemma [Lov75] (see Lemma 4)
to prove the existence of an infinite family of graphs with linear δloc. We also use
this family to derive a polynomial reduction to a problem from coding theory in
order to find the computational complexity of finding the local minimum degree
of a graph in the general case.
In section 2, we recall the definition of the local minimum degree, main notion

of this paper, and we give an explicit family of graphs Palp of order p such that
δloc(Palp) ≥

√
p − 3

2 , which is, up to our knowledge, the best known lower
bound for any family of graphs. The next section is dedicated to the proof
of the existence of graphs with linear δloc. In the last section, we show that
the decision problem associated with δloc is NP-complete even on the family of
bipartite graphs, and we show that there exists no approximation algorithm up
to a constant factor for this problem unless P = NP .

2 Definitions

Local complementation is defined as follows:

Definition 1. The local complementation of a graph G with respect to one of its
vertices u results in a graph G∗u = GΔKN (u) where Δ stands for the symmetric
difference between edges and KN (u) is the complete graph on the neighbors of u.

The transitive closure of a graph with respect to the local complementation
forms an equivalence class. In [Bou87], Bouchet gives a polynomial algorithm
that tells whether any two graphs are in the same equivalence class with respect
to local complementation. For a given graph G, the quantity we will focus on is
the minimum degree of the graphs in its equivalence class. This value is called
the local minimum degree and is written δloc(G). Its formal definition follows:

Definition 2. Given a graph G, δloc(G) = min
{
δ(G′)

∣∣ G ≡LC G′ } where
δ(G′) is the minimal degree of G′ and the equivalence relation G1 ≡LC G2 is
verified when G1 can be changed into G2 by a series of local complementations.

In [HMP06], a characterization of the quantity δloc has been established by means
of the odd and even neighborhoods of subsets of vertices of a graph defined as
follows:
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Definition 3. Let G be an undirected graph and D a subset of its vertices.

Odd(D) =
{
v ∈ V (G)

∣∣ |N (v) ∩D| = 1 mod 2
}

(1)

Even(D) =
{
v ∈ V (G)

∣∣ |N (v) ∩D| = 0 mod 2
}

(2)

The local minimum degree is related to the size of the smallest set of the form
D ∪Odd(D):

Property 1 ([HMP06]). Let G be an undirected graph.

δloc(G) = min
{
|D ∪Odd(D)|

∣∣ D �= ∅, D ⊆ V (G)
}
− 1 (3)

3 Local Minimum Degree of Paley Graphs

It is challenging to find a family of graphs with “high” local minimum degree.
The family of hypercubes, for example, has a logarithmic local minimal degree
[HMP06].
In the following, we prove that a Paley graph of order n has a δloc greater

than
√
n. This value is only a lower bound, and we do not know whether it is

reached. This family is defined with quadratic residues over a finite field. Up to
our knowledge, there is no known family of graphs whose local minimum degree
is greater than the square root of their order.
For any prime p such that p = 1 mod 4, the Paley graph Palp is a graph on

p vertices where each vertex is an element of Fp. There is an edge between two
vertices i and j if and only if i− j is a square in Fp.

Theorem 1. For any prime p = 1 mod 4,

δloc(Palp) ≥
√
p− 3

2
(4)

where Palp is the Paley graph of order p.

The rest of this section is dedicated to the proof of Theorem 1. To this end, we
give a bound on the size of the sets of the form D ∪ Odd(D) in Paley graphs.
The size of such sets is characterized as follows:

Lemma 1. For any non-empty set S ⊆ V (Palp) and any i ∈ V (Palp),∣∣∣∣∣
p−1∑
i=0

χL (fS(i))

∣∣∣∣∣ = ∣∣ |S ∪Odd(S)| − |S ∪ Even(S)|
∣∣ (5)

where fS(i) =
∏

j∈S(i − j) and χL is the Legendre character (χL(x) = x
p−1
2

mod p).
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Proof. First, note that χL(0) = 0, χL(x) = 1 if x is a quadratic residue in
Fp and χL(x) = −1 otherwise. Since the Legendre character is multiplicative,∣∣∣∑p−1

i=0 χL (fS(i))
∣∣∣ = ∣∣∣∑p−1

i=0

∏
j∈S χL(i− j)

∣∣∣. If i ∈ S the quantity
∏

j∈S χL(i−j)
equals 0. Otherwise, the product equals (−1)|S|−|N (i)∩S|, which is (−1)|S| if
i ∈ Even(S)\S and −(−1)|S| if i ∈ Odd(S)\S. Then, the sum over all vertices i
is the difference between the exclusive odd and even neighborhood of the set S:∣∣∣∑p−1

i=0

∏
j∈S χL(i− j)

∣∣∣ = ∣∣ |Odd(S) \ S| − |Even(S) \ S|
∣∣. The last expression

can be written
∣∣ |S ∪Odd(S)| − |S ∪ Even(S)|

∣∣. �

A well-known result from algebraic geometry related to the hyperelliptic curve
of equation y2 =

∏
j∈S(x − j) can be found in [Wei48] or [Sch04], for example,

and is reformulated by Joyner in [Joy06]:

Lemma 2 ([Joy06], Proposition 1). For any non-empty set S ⊆ Fp, let
fS(x) =

∏
j∈S(x − j). Then∣∣∣∣∣∣

∑
i∈Fp

χL (fS(i))

∣∣∣∣∣∣ ≤ (|S| − 1)√p+ 1 (6)

This allows us to derive a bound on the sets of type S∪Odd(S) and S∪Even(S)
in Paley graphs.

Lemma 3. Let Palp be the Paley graph of order p. For all S ⊆ V (Pp), S �= ∅,
we have

√
p− 1

2 ≤ |S ∪Odd(S)| and √p− 1
2 ≤ |S ∪Even(S)|.

Proof. We consider the case |S ∪Odd(S)| ≤ |S ∪ Even(S)|, the other case can
be treated a similar way. Lemma 1 states that |S ∪Odd(S)| − |S ∪ Even(S)| =
−

∣∣∣∑i∈Fp
χL(fS(i))

∣∣∣. On the other hand, the equality |S ∪Odd(S)| +
|S ∪ Even(S)| = p + |S| is always true. Thus adding both equalities, p + |S| −∣∣∣∑i∈Fp

χL(fS(i))
∣∣∣ = 2 |S ∪Odd(S)|. Thanks to Lemma 2, we derive p + |S| −

(|S| − 1)√p− 1 ≤ 2 |S ∪Odd(S)|.
If |S| ≤ √p then the left-hand side of the previous inequality can be bounded:

p + |S| − (|S| − 1)√p − 1 = p + |S|(1 − √p) +
√
p − 1 ≥ 2√p − 1. Thus, √p −

1
2 ≤ |S ∪Odd(S)|, otherwise |S| > √

p and the previous inequality is obviously
true. �

Proof of Theorem 1: The characterization given by Property 1 and the bounds
on the size of sets of the form D ∪Odd(D) obtained in Lemma 3 imply that the
local minimum degree for Paley graphs is greater than the square root of the
order of the graph. This ends the proof of Theorem 1.
It is significant and interesting to notice that the conjecture of the existence

of an infinite family of Paley graphs with linear δloc is equivalent to the Bazzi-
Mitter conjecture [BM06]. However, it is already known that not all Paley graphs
have a linear δloc: there exists no p0 ∈ N such that for all p > p0, δloc(Palp) is
linear in p thanks to Theorem 7 of [Joy06].
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4 Existence of Graphs with Linear Local Minimum
Degree

In this section, we give a proof of the existence of bipartite graphs for which
the local minimum degree is linear in the order of the graph. The proof uses the
asymmetric version of Lovász Local Lemma [Lov75]:

Lemma 4 (Asymmetric Lovász Local Lemma). Let A = {A1, · · · , An} be
a set of bad events in an arbitrary probability space and let Γ (A) denote a subset
of A such that A is independent from all the events outside A and Γ (A). If for
all Ai there exists σ(Ai) ∈ [0, 1) such that Pr(Ai) ≤ σ(Ai)

∏
Bj∈Γ (Ai)

(1−σ(Bj))

then we have Pr(A1, · · · , An) ≥
∏

Aj∈A(1− σ(Aj)).

We apply the Local Lovász Lemma (Lemma 4) on random bipartite graphs to
show the existence of bipartite graphs with linear local minimum degree.

Theorem 2. There exists ν0 ∈ N such that for all ν > ν0 there exists a bipartite
graph of order n = 2ν whose local minimum degree is greater than 0.110n.

Proof. Let GB be a bipartite graph of order n = 2ν with two independent sets
of size ν and where any possible edge exists with probability 1

2 . An event which
implies that a graph G has a linear δloc is: “∀D ⊆ V (G), |D ∪ Odd(D)| > cn”
for some c ∈ ]0, 1]. In the case of GB, it is sufficient to verify the previous event
for sets D such that D ⊆ V1 or D ⊆ V2. Indeed, GB is bipartite, therefore
|D ∪ Odd(D)| ≥ |(D ∩ V1) ∪ Odd(D ∩ V1)|. Therefore we consider the “bad”
events A1

D and A2
D defined as follows: if D ⊆ V1 (resp. V2), A

1
D (resp. A2

D) =
“|D ∪Odd(D)| ≤ cn”.
We want to compute Pr(A1

D) with D ⊆ V1. Let |D| = dν for some d ∈
]0, 1]. For any u ∈ V2, Pr(“u ∈ Odd(D)”) = 1

2 . Thus, Pr(|Odd(D)| ≤ x) =

(12 )
ν
∑x

k=0

(
ν
k

)
≤

(
1
2

)ν
2νH(

x
ν ) where H : t �→ −t log2(t) − (1 − t) log2(1 − t)

is the binary entropy function. Then, Pr(A1
D) = Pr(“|D ∪ Odd(D)| ≤ cn”) =

Pr(“|D|+ |Odd(D)| ≤ cn”) = Pr(“|Odd(D)| ≤ cn− |D|”) ≤ 2ν(H(2c−d)−1).
Let σ(A1

D) =
1

r( ν
dν)

for some r ∈ R that will be chosen later. First, we verify

that Pr(A1
D) ≤ σ(A1

D)
∏

D′∈V1,D′′∈V2
(1 − σ(A1

D′ ))(1 − σ(A2
D′′ )). The product

of the right-hand side of the previous equation can be written p =
∏ν

|D′|=1(
1− 1

r( ν
|D′|)

)2( ν
|D′|)

=

[∏ν
|D′|=1

(
1− 1

r( ν
|D′|)

)r( ν
|D′|)

] 2
r

. The function f : x �→(
1− 1

x

)x
verifies f(x) ≥ 1

4 when x ≥ 2, therefore p ≥
(
1
4

)ν∗ 2
r = 2−

4ν
r for any

r ≥ 2. Thus, it is sufficient to have 2ν(H(2c−d)−1) ≤ 1

r( ν
dν)
2−

4ν
r . Rewriting this

inequality gives r
(
ν
dν

)
2(2c−1)ν−dν+ 4ν

r ≤ 1. Thanks to the bound
(
ν
dν

)
≤ 2νH( dν

ν )

and after applying the logarithm function and dividing by ν, it is sufficient that
log2 r

ν +H(d)+H(2c− d)− 1+ 4
r ≤ 0. Therefore, if we take r = ν and ν → +∞,
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the asymptotic condition on the value of c is H(d) +H(2c − d) − 1 ≤ 0. Since
this bound must be verified for all d ∈ (0, 1], it must be true for the value
of d for which the function d �→ H(d) + H(2c − d) − 1 is minimum. Usual
techniques show that the minimum is reached for d = c, and a numerical analysis
shows that c = 0.110 satisfies the condition Pr(A1

D) ≤ σ(A1
D)p for some r ∈

R and ν > ν0. A similar reasoning is used to prove Pr(A2
D) ≤ σ(A2

D)p for
all D ∈ V2.
The conditions and the choice of the weights σ(A1

D) and σ(A
1
D) allow us to use

the Lovász Local Lemma (Lemma 4), and we derive Pr
({

A1
D

∣∣ D ∈ V1

}
,
{
A2

D

∣∣
D ∈ V2

})
≥ p > 0, which proves that Pr (δloc(GB) ≥ cn) > 0 for any c ≤ 0.110

and for ν > ν0. Then there exists at least one bipartite graph GB of order n
such that δloc(GB) ≥ 0.110n. �

The general case of a random graph without the bipartite constraint leads to a
slightly better constant:

Theorem 3. There exists n0 ∈ N such that for all n > n0 there exists a graph
of order n whose local minimum degree is greater than 0.189n.

Due to its similarity to the above proof, the proof of this theorem is given in
Appendix.

5 NP-Completeness of the Local Minimum Degree
Problem

In this section, we show that given a graph G and an integer d, deciding whether
δloc(G) ≤ d is NP-complete even for the family of bipartite graphs. This result is
established through a reduction to the problem of the shortest word of a linear
code [Var97] and uses the families of graphs whose existence has been proven in
the previous section.

Lemma 5. Let G = (V,E) be a bipartite graph. Let V = V1 ∪ V2 where V1

and V2 are the two parties of the graph G. There exists D0 ⊆ V such that
δloc(G) + 1 = |D0 ∪Odd(D0)| and D0 ⊆ V1 or D0 ⊆ V2.

Proof. Let D ⊆ V such that |D∪Odd(D)| = δloc(G)+1. We write D = D1∪D2

with D1 ⊆ V1 and D2 ⊆ V2. D �= ∅, then without loss of generality, we assume
that D1 �= ∅. G is bipartite, then Odd(D1) ⊆ V2 and Odd(D2) ⊆ V1. Thus
Odd(D1 ∪ D2) = Odd(D1) ∪ Odd(D2), and δloc(G) + 1 = |D ∪ Odd(D)| =
|D1 ∪ Odd(D1) ∪D2 ∪ Odd(D2)| ≥ |D1 ∪ Odd(D1)| ≥ δloc(G) + 1. The bounds
are tight, therefore |D1 ∪Odd(D1)|+ 1 = δloc(G). �

Theorem 4. Given a graph G and an integer d, deciding whether δloc(G) ≤ d
is NP-complete for the family of bipartite graphs.
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Proof. The problem is in NP since a set of the form D ∪ Odd(D) with D �= ∅
and |D∪Odd(D)| = δloc is a Y ES certificate. We do a reduction to the problem
of the shortest codeword. Let A ∈ Mn+k,k(F2) be the generating matrix of a
binary code. Using oracle for the problem related to the quantity δloc on bipartite
graphs, we answer the problem of finding the shortest word of A.
If dim(Ker(A)) �= 0 then minX∈F

k
2 ,X �=0{w(AX)} = 0, where w is the

Hamming weight function. Otherwise, minX∈F
k
2 ,X �=0{w(AX)} = minX∈F

k
2 ,X �=0

{w(X) + w(A′X)} where A is written in the form

(
Ik
A′

)
. Thus, A′ is of size

n× k.
We want to construct a bipartite graph G (Figure 1) on which the oracle call is

performed. To this purpose, we build two auxiliary graphs GA′ and GB in a first
time. Let GA′ = (VA′

1
∪ VA′

2
, EA′) be the bipartite graph defined as follows: the

sets VA′
1
of size k and VA′

2
of size n denote both sides of the bipartition of GA′ ,

and for all x ∈ VA′
1
and x′ ∈ VA′

2
, (x, x′) ∈ EA′ if and only ifA′

x′,x = 1. After that,
thanks to Theorem 2, there exists n0 ∈ N such that for all n > n0 there exists a
bipartite graph GB = (VB1 ∪ VB2 , EB) of order 10(n+ 1) such that δloc(GB) >
n + 1. The sets VB1 and VB2 denote both sides of the bipartition of GB. Let u
be any vertex of VB1 . Consider the bipartite graph G = (V1 ∪ V2, E) (Figure 1)
defined as follows: V1 = V1L ∪ V1R with V1L = VA′

1
× {u} and V1R = VA′

2
× VB2 ,

and V2 = VA′
2
× VB1 . For all (x, y) ∈ V1 and (x

′, y′) ∈ V2,
(
(x, y), (x′, y′)

)
∈ E if

and only if
(
(x, x′) ∈ EA′ ∧ y = y′

)
∨
(
(y, y′) ∈ EB ∧ x = x′).

Both independent sets V1 and V2 form a partition of the vertices of the graph.
Thanks to Lemma 5, there exists a non-empty setD0 ⊆ V (G) such that δloc(G)+
1 = |D0 ∪Odd(D0)| and D0 ⊆ V1 or D0 ⊆ V2.
Suppose that D0 ⊆ V2. Therefore δloc(G) = |D0 ∪Odd(D0)|− 1 ≥ δloc(GB) >

n+ 1 ≥ δ(G) + 1 ≥ δloc(G). This leads to a contradiction, therefore D0 ⊆ V1.
Suppose that D0 ∩ V1R �= ∅. Let v ∈ D0 ∩ V1R. Then δloc(G) = |D0 ∪

Odd(D0)| − 1 ≥ |{v} ∪Odd({v})| − 1 ≥ δloc(GB) > n+ 1 ≥ δ(G) + 1 ≥ δloc(G).
This also leads to a contradiction, therefore D0 ⊆ V1L.
The reader will notice that since D0 ⊆ V1L, |Odd(D0)| in the graph G can

be written w(A′XD0) where XD0 is the vector representation of the set D0.
Moreover, since V1L is an independent set, |D0∪Odd(D0)| = |D0|+ |Odd(D0)| =
w(XD0) + w(A′XD0). By definition of D0, we have δloc(G) + 1 = minX∈F

k
2 ,X �=0

{w(AX)}, which ends the reduction to the shortest codeword problem which is
NP-complete [Var97]. �

Notice that a constructive version of NP -completeness on non-necessarily bi-
partite graphs can be done by replacing the graph GB by a Paley graph in the
above reduction.
Since finding the local minimum degree is hard, one can wonder whether

there exists a l-approximation algorithm for this problem for some constant l.
The previous reduction also shows that such an algorithm does not exist unless
P = NP , even for the family of bipartite graphs.
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GA′

GB

GB

•
...

...

•

...

...

V1L

V2
V1R

Fig. 1. Construction of the graph G from the bipartite graph GA′ (ellipses) and several
copies of the bipartite graph GB (rectangles). V1 = V1L ∪ V1R

Theorem 5. There exists no approximation algorithm with a constant factor
for the problem of finding the local minimum degree of bipartite graphs, unless
P = NP .

Proof. In the proof of Theorem 4, the value of δloc(G) where G is constructed as
described in Figure 1 is the same as the shortest word of the linear code described
by its generating matrix A. This is true for any A, therefore for any constant l,
any l-approximation of δloc(G) is a l-approximation of the Hamming weight of
the shortest word of A. Under the hypothesis P �= NP , since finding the shortest
codeword of a linear code is known to have no approximation algorithm with
a constant factor [DMS03, CW09], there exists no polynomial approximation
algorithm with a constant factor for the problem of finding the local minimum
degree of bipartite graphs. �

6 Conclusion

After having shown that the local minimum degree of the family of Paley graphs
is greater than the square root of their order, we proved that there exist an infi-
nite family of graphs whose local minimum degree is linear in their order (with
constant at least 0.189 in general and 0.110 for bipartite graphs). Then, a study
of the computational complexity of the decision problem associated with δloc
with a polynomial reduction to the problem of the shortest word of a linear code
shows its NP-completeness, even on bipartite graphs. It is also impossible to find
an approximation algorithm with any constant factor for this problem, unless
P = NP . The specificity of the reduction performed lies in the fact that the con-
struction of an instance for the problem associated with δloc uses the existence
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of a family of bipartite graphs proven above. Thus, in a way, we proved that a
polynomial reduction exists without constructing it explicitly.
Some questions remain open: is it possible to give an explicit family of

graphs with linear local minimum degree? Can we find a constructive proof of
NP -completeness for the decision problem associated with δloc on bipartite
graphs? Can we find an infinite family of Paley graphs whose local minimum
degree is linear? The answer of the last question would provide an answer to the
Bazzi-Mitter conjecture [BM06] on hyperelliptic curves.
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A Proof of Theorem 3

Theorem 3 There exists n0 ∈ N such that for all n > n0 there exists a graph
of order n whose local minimum degree is greater than 0.189n.

Proof. Let G be a graph of order n where any possible edge exists with probabil-
ity 1

2 . We are looking for the greatest value of c such that Pr (δloc(G) ≥ cn) > 0.
Thus, we want that “∀D ⊆ V (G), |D∪Odd(D)| > cn”. Consequently, the events
to avoid are AD: “|D ∪ Odd(D)| ≤ cn”. Obviously, it is sufficient to consider
only the events AD with D ≤ cn.
For all D sucht that |D| ≤ cn, we want to get an upper bound on Pr(AD).

Let |D| = dn for some d ∈ (0, c]. For all u ∈ V \ D, Pr(“u ∈ Odd(D)”) =
1
2 . If D is fixed, the events “u ∈ Odd(D)” when u is outside D are inde-
pendent. Therefore, if the event AD is true, any but at most (c − d)n ver-
tices outside D are contained in Odd(D). There are (1 − d)n vertices outside

D, then Pr(AD) =
(
1
2

)(1−d)n ∑(c−d)n
k=0

(
(1−d)n

k

)
≤

(
1
2

)(1−d)n
2(1−d)nH( c−d

1−d ) =

2(1−d)n[H( c−d
1−d )−1] where H : t �→ −t log(t) − (1 − t) log(1 − t) is the binary

entropy function.
Let σ(AD) =

1

r( n
|D|)

. Let p =
∏

|D′|≤cn(1 − σ(AD′)). In order to apply the

Lóvasz Local Lemma (Lemma 4), we want to have Pr(AD) ≤ σ(AD)p. The prod-

uct p verifies p =
∏cn

|D′|=1

(
1− 1

r( n
|D′|)

)( n
|D′|)

=

[∏cn
|D′|=1

(
1− 1

r( n
|D′|)

)r( n
|D′|)

] 1
r

.

The function f : x �→
(
1− 1

x

)x
verifies f(x) ≥ 1

4 when x ≥ 2, therefore

p ≥
(
1
4

) cn
r = 2−

2cn
r for any r ≥ 2. Thus, it is sufficient that 2(1−d)n[H( c−d

1−d )−1] ≤
1

r( n
dn)
2−

2cn
r . Rewriting this inequality with the bound

(
n
dn

)
≤ 2nH(

dn
n ) and ap-

plying the logarithm function and dividing by n gives the following sufficient

condition: (1 − d)
[
H

(
c−d
1−d

)
− 1

]
+ H(d) + 2c

r +
log2 r

n ≤ 0. Taking r = n, the

condition becomes asymptotically (1− d)
[
H

(
c−d
1−d

)
− 1

]
+H(d) ≤ 0.

Numerical analysis shows that this condition is true for any c ≤ 0.189
and for all d such that 0 < d ≤ cn. Therefore, Lemma 4 ensures that
Pr

({
AD

∣∣ |D| ≤ cn
})
≥ p > 0, which proves the existence of at least one graph

G of order n such that δloc(G) ≥ 0.189n. This ends the proof of Theorem 3. �



On the Stable Degree of Graphs

Haiko Müller

University of Leeds, School of Computing
Leeds, LS2 9JT, United Kingdom

h.muller@leeds.ac.uk

Abstract. We define the stable degree s(G) of a graph G by s(G) =
minU maxv∈U dG(v), where the minimum is taken over all maximal in-
dependent sets U of G. For this new parameter we prove the following.
Deciding whether a graph has stable degree at most k is NP-complete
for every fixed k ≥ 3; and the stable degree is hard to approximate. For
asteroidal triple-free graphs and graphs of bounded asteroidal number
the stable degree can be computed in polynomial time. For graphs in
these classes the treewidth is bounded from below and above in terms of
the stable degree.

1 Introduction

An asteroidal triple, or AT for short, is a set of three pairwise non-adjacent
vertices in a graph such that any two of them are connected by a path that
avoids the neighbourhood of the third. Graphs without asteroidal triples are
AT-free [7]. This applies for instance to interval graphs, the intersection graphs
of intervals on the real line. More precisely, interval graphs are exactly the chordal
AT-free graphs [13]. Unlike the subclass of interval graphs, the whole class of AT-
free graphs is not contained in the class of perfect graphs. For instance, C5, the
chordless cycle on five vertices, is AT-free, but not perfect. AT-free graphs form
an interesting class of graphs due to their structural properties and also when
studying the complexity on AT-free graphs for problems being NP-complete in
general [5,12].
An independent set of vertices in a graph is asteroidal if each three-element

subset forms an AT [11]. The maximal size of an asteroidal set in a graph is its
asteroidal number. Lots of the polynomial time algorithms for AT-free graphs,
i.e. graphs of asteroidal number at most two, generalise to graphs of bounded
asteroidal number [6,5].
The treewidth is a parameter that measures the tree-likeness of a graph. Defini-

tions are given in 2.2. Lots of the polynomial time algorithms for trees generalise
to graphs of bounded treewidth. This applies to all problems that can be de-
fined in monadic second order logic [8]. The pathwidth is a parameter similar to
treewidth. For AT-free graphs, both parameters coincide [14], but are still hard
to compute [1].
We introduce a new parameter, the stable degree of a graph. In Sections 3 and

4 we bound the treewidth in terms of the asteroidal number and stable degree.
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In Section 5 we show that the stable degree is hard to compute in general, but
if we restrict the input to AT-free graphs, or even graphs of bounded asteroidal
number, then the stable degree can be computed by a polynomial time algorithm.
As an immediate consequence, this enables new constant-factor approximations
for the treewidth of AT-free graphs and graphs of bounded asteroidal number. In
both cases these approximation algorithms are not better than the best known
algorithms [3,4], see Section 5.5.

2 Preliminaries

For a vertex v of a graph G = (V,E) let NG(v) = {u | {u, v} ∈ E} denote its
open neighbourhood. The closed neighbourhood of v is NG[v] = {v}∪NG(v). Both
concepts generalise to sets U ⊆ V as follows: NG[U ] =

⋃
v∈U NG[v] and NG(U) =

NG[U ] \ U . The degree of a vertex is the cardinality of its open neighbourhood,
dG(v) = |NG(v)|. We omit the subscript G for neighbourhoods and degrees if
there is no ambiguity about the graph G.
The set U is independent in G if U ∩ N(u) = ∅ for all u ∈ U , and U is dom-

inating in G if N[U ] = V . An independent dominating set is both independent
and dominating. An independent set is maximal (with respect to set inclusion)
if and only if it is dominating.

2.1 Degrees

We introduce a new graph parameter based on the notion of degree. The stable
degree of a graph G is defined by

s(G) = min
U
max
v∈U

dG(v)

where the minimum is taken over all maximal independent sets U of G.
We recall some parameters of a graph G = (V,E) with complement (V,E):

minimum degree δ(G) = min{dG(v) | v ∈ V }
2nd smallest degree δ2(G) = 0 if |V | ≤ 1 and

δ2(G) = min{dG(v) | v ∈ V ∧ ∃u ∈ V \ {v}
(
dG(u) ≤ dG(v)

)
} otherwise

degeneracy d(G) = max{δ(G[U ]) | U ⊆ V }
Ramachandramurthi-bound γR(G) = |V | − 1 if G is a complete graph and

γR(G) = min{max{dG(u), dG(w)} | {u,w} ∈ E} otherwise
maximum degree Δ(G) = max{dG(v) | v ∈ V }

For all graphs G the following inequalities hold: δ(G) ≤ δ2(G) ≤ d(G) ≤ Δ(G),
δ2(G) ≤ γR(G) ≤ Δ(G) and δ2(G) ≤ s(G) ≤ Δ(G) [15]. For more information
on these parameters and their use in lower bounding the treewidth of graphs we
refer to [2].
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2.2 Tree Decomposition

A pair (X,T ) is a tree decomposition of a graph G = (V,E) if T = (I, F ) is a
tree and X : I → 2V maps the nodes of T to bags, i.e. subsets of V , such that

– for all v ∈ V there is an i ∈ I such that v ∈ X(i),
– for all e ∈ E there is an i ∈ I such that e ⊆ X(i)
– for all v ∈ V , T (v) is connected, where T (v) is the subgraph of T induced
by the i ∈ I with v ∈ X(i).

The width of (X,T ) is max{|X(i)| | i ∈ I} − 1, and the treewidth tw(G) of G is
the minimal width of a tree decomposition of G.
The pathwidth pw(G) of G is the minimal width of a tree decomposition (X,T )

of G where T is a path. For all AT-free graphs G we have tw(G) = pw(G) by a
result from [14].
In [15] Ramachandramurthi showed that γR is a lower bound on the treewidth.

In Section 4 we use his idea to prove a lower bound in terms of the stable degree.

2.3 Asteroidal Sets

A set A ⊆ V is asteroidal in G = (V,E) if for every vertex u ∈ A there is a
connected component G[C] of G−N[u] containing A \ {u}. Consequently every
asteroidal set is independent, and every independent set of size at most two is
asteroidal. By an(G) we denote the asteroidal number of G that is the maximum
cardinality of an asteroidal set in the graph G.
For different and non-adjacent vertices u and v of G = (V,E) let C(u, v)

induce the connected component of G − N[u] containing v. We can use this
notation to characterise asteroidal sets: an independent set A is asteroidal if and
only if C(u, v) = C(u,w) holds for every triple of different vertices u, v, w ∈ A.
The interior of an asteroidal set A in (V,E) is the subset of V \ N[A] of

vertices that belong to the same connected component of G − N[u] as A \ {u}
for all u ∈ A. For |A| > 1 let C(u,A) denote the set of vertices in this connected
component, i.e. C(u,A) = C(u, v) for all v ∈ A \ {u}. This enables us to define
interior I(A) formally by I(A) =

⋂
u∈A C(u,A). Furthermore we set I(∅) = V

and I({u}) = V \N[u] for each vertex u ∈ V . A subset A of an asteroidal set B
is asteroidal too, and we have I(B) ∪ (B \ A) ⊆ I(A) since C(u,A) = C(u,B)
for all u ∈ A.
A subset A ⊆ D is a cell of the independent set D if A is asteroidal and

I(A) ∩ D = ∅. For two cells A and B of D, A ⊆ B implies A = B because
B \A ⊆ I(A) ∩D.

3 Upper Bound on Treewidth

Theorem 1. For all non-empty graphs G we have tw(G) < an(G) · s(G).

For G = (V,∅) we have tw(G) ≤ 0, an(G) = min{2, |V |} and s(G) = 0.
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1

2

3

4

5

6

7

Fig. 1. A = {1, 2, 6, 7} is an asteroidal set of this graph with interior I(A) = {3, 4, 5}.
A ∪ {4} is independent but not asteroidal. Its cells are the sets {1, 2, 4} and {4, 6, 7}.

Proof. Let D be a maximal independent set of G = (V,E), and let C be the
collection of cells of D. We construct a tree-decomposition (X,T ) of G with
T = (C ∪D,F ) and X defined by

X(A) = N(A) for all A ∈ C X(v) = N[v] for all v ∈ D .

If D was chosen such that s(G) = max{dG(v) | v ∈ D}, we have |X(v)| ≤
dG(v) + 1 for all v ∈ D, which implies |X(v)| ≤ s(G) + 1. For all A ∈ C we have
|X(A)| ≤ |A| · s(G), and hence |X(A)| ≤ an(G) · s(G) since A is asteroidal. So
the width of (X,T ) will be less than an(G) ·s(G), since E �= ∅ implies s(G) ≥ 1.
It remains to show that for each D there is an F such that (X,T ) is indeed

a tree-decomposition of G. Since D is a maximal independent set of G we have
V =

⋃
v∈D N[v] and therefore V =

⋃
i∈C∪D X(i). We prove that (X,T ) has the

remaining properties of a tree-decomposition by induction on |C|.
In the base case D is an asteroidal set of G. So we have C = {D}. We make T

a star with centre D and a leaf u for each vertex u ∈ D. Let {u, v} be an edge
of G. If there is a vertex w ∈ {u, v}∩D then we have {u, v} ⊆ X(w). Otherwise
there are vertices c and d in D that are adjacent to u and v because D is a
dominating set of G. In this case we have {u, v} ⊆ X(D). Next we prove that,
for every vertex v ∈ V , the bags containing v induce a subtree T (v) of T . This
is obvious for v ∈ D because X(v) is the only bag containing v. Each vertex
v ∈ V \D belongs to the central bag X(D) and since T is a star, the subgraph
T (v) is connected.
In the inductive step there is a vertex v ∈ D such that different connected

components of G−N[v] contain vertices in D. That is, D is not asteroidal. Let
B1, B2, . . . , Bk induce the connected components of G−N[v]. For j = 1, 2, . . . , k
we define Gj = G[N[v] ∪Bj ], Dj = {v} ∪ (Bj ∩D), and Cj to be the set of cells
of Dj in Gj . We have D =

⋃k
j=1 Dj and C ⊇

⋃k
j=1 Cj. Consider an asteroidal set

A ⊆ D that is not asteroidal in any Gj . Then A contains vertices in different
connected components of G−N[v], which implies v ∈ I(A). That is, A /∈ C and
therefore C =

⋃k
j=1 Cj .

By induction hypothesis there is, for each j = 1, 2, . . . , k, a set Fj of edges such
that Tj = (Cj ∪ Dj , Fj) is a tree, and the pair (Xj , Tj) is a tree-decomposition

of Gj . Let T = (C ∪D,F ) be the tree defined by F =
⋃k

j=1 Fj .
We show that (X,T ) is a tree-decomposition of G. For each edge {u,w} of G

there is an index j such that {u,w} is an edge of Gj . By induction hypothesis
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there is an i ∈ Cj ∪ Dj such that {u,w} ⊆ X(i). Finally we show that T (w) is
a tree for every vertex w ∈ V . This is obvious for w = v because X(v) is the
only bag containing v. For each vertex w �= v that is not adjacent to v there is a
unique index j ∈ {1, 2, . . . , k} such that w ∈ Bj. All the bags containing w are
contained in Bj , and by induction hypothesis the indices {i | w ∈ X(i)} induce
a subtree Tj(w) of Tj . Clearly Tj(w) is the subtree T (w) of T . If w is adjacent
to v then the elements of Ij(w) = {i ∈ Cj ∪ Dj | w ∈ X(i)} induce a subtree
Tj(w) of Tj for every j ∈ {1, 2, . . . , k}. Since v ∈ Ij(w) for each j, the union of
all the Tj(w) is the tree T (w), which is a subtree of T . ��

Corollary 1. For all non-empty AT-free graphs G we have pw(G) < 2 · s(G).

Proof. For all AT-free graphs G we have pw(G) = tw(G) [14]. ��

4 Lower Bound on Treewidth

In Lemma 1 we give the treewidth of chain graphs, which form a subclass of
AT-free graphs. This result is used in the proof of Theorem 2, which provides
a lower bound on the treewidth of a graph in terms of its stable degree and its
asteroidal number.

4.1 Chain Graphs

A connected bipartite graph G = (A,B,E) is a chain graph if the vertices in A
can be numbered a1, a2, . . . , ap such that N(ai−1) ⊇ N(ai) holds for all indices i
with 1 < i ≤ p.
Let G = (A,B,E) be a chain graph with A = {ai | 1 ≤ i ≤ p} and B =

{bj | 1 ≤ j ≤ q} as above. We define Π(G) to be the set of all pairs (s, t) with
1 < s ≤ p and 1 ≤ t < q such that (as, bt+1, as−1, bt) is a P4 of G, but not a C4.

Lemma 1. For every chain graph G with Π(G) �= ∅ we have
tw(G) = min{d(as) + d(bt)− 1 | (s, t) ∈ Π(G)}.

We omit the proof due to space restrictions. A chain graph G = (A,B,E) with
Π(G) = ∅ is complete bipartite. In this case we have tw(G) = min{|A|, |B|}.

4.2 Construction

A tree decomposition is small if no bag is contained in another bag. If (X,T ) is
not small then T has an edge {i, j} such that X(i) ⊆ X(j) or X(i) ⊇ X(j). We
can contract the edge {i, j} to obtain tree decomposition of the same graph and
the same width, but with smaller index set I. To do so we choose a new index
l /∈ I, define X(l) = X(i)∪X(j), replace I by {l}∪ I \ {i, j}, and modify T such
that N(l) = N({i, j}). Iteration leads to a small tree decomposition.

Lemma 2. Let (X,T ) be a small tree decomposition of a graph G. Then G has
a vertex that is contained in exactly one bag.
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input : A tree decomposition (X,T ) of width t of a graph G = (V,E) with
an(G) ≤ a

output : A maximal independent set D of G with dG(v) ≤ at2 for all v ∈ D

1 begin
2 D ← ∅;
3 while V �= ∅ do
4 while there is a contractible edge of (X,T ) do contract it;
5 choose a vertex v ∈ V that appears in exactly one bag of (X,T );
6 D ← D ∪ {v}; V ← V \NG[v];
7 for i ∈ I do X(i) ← X(i) \NG[v]

Theorem 2. For all non-empty graphs G we have s(G) ≤ an(G) · tw(G)2.

Proof. Let G = (V,E) be a graph and let (X,T ) be its tree decomposition
of width w. We consider the set D ⊆ V constructed by the algorithm above.
Throughout the algorithm (X,T ) is a tree decomposition of the shrinking graph
G, and the width of (X,T ) does not increase.
The set D is independent in G because we remove in Line 6 the closed neigh-

bourhood of v from G for every vertex v added to D. The algorithm terminates
when V = ∅ holds. Therefore D is a maximal independent set of G.
To bound the degree of a vertex v ∈ D we consider the sets U = NG(v)

and W = NG(U), and define a partial order  on W such that NG(w1) ∩
U ⊂ NG(w2) ∩ U implies w1  w2 for all vertices w1, w2 ∈ W . For different
vertices w1, w2 ∈W with NG(w1)∩U = NG(w2)∩U we ensure that  becomes
antisymmetric by fixing w1 � w2 or w2 � w1 accordingly, for instance based on
a given linear order on V .
The set U splits into new and old neighbours of v. The new neighbours are

in the unique bag of (X,T ) containing v when v is chosen. There are at most t
new neighbours. The old neighbours are adjacent to v and a vertex w that was
added to D before v. These old neighbours of v were new neighbours of w and
removed from G together with w (Line 6).
Let C ⊆ W be a maximal chain of (W, ), i.e. C is a set of  -comparable

vertices, and ⊆-maximal with this property. Let B be the new neighbours in U of
vertices in C. We define a bipartite graph H = (B,C, F ) with F = E ∩ {{b, c} |
b ∈ B, c ∈ C}. By maximality we have v ∈ C. Therefore H is a chain graph. We
define subsets B1 ⊆ B and C1 ⊆ C as follows:

– If Π(H) = ∅ and |B| ≤ |C| then B1 = B and C1 = ∅.
– If Π(H) = ∅ and |B| > |C| then B1 = ∅ and C1 = C.
– If (r, s) ∈ Π(H) and tw(H) = dH(br) + dH(cs) − 1 then B1 = NH(cs) and

C1 = NH(br).

In all three cases let B2 = B \ B1 and C2 = C \ C1. We have |B1| + |C1| ≤ t
because H is a subgraph of G, which implies tw(H) ≤ tw(G). Moreover we have
|B2| ≤ t · |C1| since there is no edge of H with endpoints in B2 and C2, that
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is, all vertices in B2 are new neighbours of vertices in C1. This implies |B| ≤ t2

since t ≥ 1 because of E �= ∅.
Next let A ⊆ W be an antichain of (W, ), i.e. A is a set of  -incomparable

vertices. For different verticesw1, w2 ∈ A there is a vertex u2 ∈ N(w2)∩U\N(w1).
It establishes a path (w2, u2, v) in G − N[w1]. Since such a path exists for all
w2 ∈ A \ {w1} we have A \ {w1} ⊆ C(w1, v). Since this holds for all w1 ∈ A the
set A is asteroidal in G. Consequently we have |A| ≤ a for every antichain A of
(W, ).
By Dilworth’s theorem W can be covered by k chains of of (W, ), where k

is the maximum size of an antichain. U is the union of the B-sets for the chains
in the cover. With k ≤ a this implies dG(v) ≤ at2 for all v ∈ D. ��

There might be a better lower bound on the stable degree:

Conjecture 1. For every graph G we conjecture s(G) ≤ an(G) · tw(G).

For AT-free graphs we can prove this conjecture:

Theorem 3. For every AT-free graph G we have s(G) ≤ 2 tw(G).

Proof. We assume a tree decomposition (X,T ) of G where T = (I, F ) is a path
with I = {1, 2, . . . , 	} and F = {{i − 1, i} | 1 < i ≤ 	}. We construct D by the
algorithm as before and choose v always from the bag indexed by the maximum
leaf of T . Let l(v) = min{i ∈ I | v ∈ X(i)} and r(v) = max{i ∈ I | v ∈ X(i)}
for each vertex v. To prove s(G) ≤ 2 tw(G) it suffices to show N[v] ⊆ X(l(v)) ∪
X(r(v)) for all v ∈ D. Assume a neighbour v′ ∈ N(v)\(X(l(v))∪X(r(v))). Then
v′ and v belong to a bag X(i) with l(v) < i < r(v), contradicting the fact that
v appears in exactly one bag when chosen. ��

5 Computing the Stable Degree

5.1 Polynomial Cases: k ≤ 2

We define the decision problems SD and k-SD for every k ∈ N by

SD = {(G, k) | s(G) ≤ k} k-SD = {G | s(G) ≤ k} .

Lemma 3. The problem k-SD can be solved in polynomial time for k ∈ {0, 1, 2}.

Proof. If C induces a component of G then s(G) � max{Δ(G[C]), s(G − C)}.
On this observation we base the following reduction rule for k-SD:

Low-degree component: If C induces a component in G with Δ(G[C]) ≤ k
then we replace G by G− C because G ∈ k-SD ⇐⇒ G− C ∈ k-SD.

In a graph G = (V,E) with s(G) ≤ k the set Dk = {v ∈ V | d(v) ≤ k} is
dominating. For k = 0 and k = 1 this necessary condition for G ∈ k-SD is also
sufficient. For k = 2, more reduction rules are required:
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Pendant vertex: Let (x, y1, y2, y3, . . . , yl, z) be a path in G with d(x) = 1,
d(yi) = 2 for i = 1, 2, 3, . . . , l and d(z) > 2. Then we replace G by the graph
G′ = G− {x, y1, y2, . . . , yl, z} because G ∈ 2-SD ⇐⇒ G′ ∈ 2-SD.

Long path: Let (x, y1, y2, . . . , yl, z) be a path in G with d(x) > 2, d(yi) = 2
for i = 1, . . . , l, d(z) > 2 and l /∈ {0, 2}. Then G ∈ 2-SD if and only if
G− {x, y1, y2, . . . , yk, z} ∈ 2-SD.

Unique neighbour: Let (x, y1, y2, z) be a path in G, with d(x) > 2, d(y1) = 2,
d(y2) = 2 and d(z) > 2. If N(z) ∩ D2 = {y2} then G ∈ 2-SD if and only if
G− {y1, y2, z} ∈ 2-SD.

If none of these reduction rules apply then the minimum degree δ(G) of G =
(V,E) is at least two. We will show that our necessary condition for G ∈ k-SD is
also sufficient. Let X = {v ∈ V | d(v) > 2} and Y = {v ∈ V | d(v) = 2}. Clearly,
if there is a vertex in X without neighbour in Y then G /∈ 2-SD. Otherwise we
will show that G ∈ 2-SD.
We construct an auxiliary bipartite graph H = (X ∪ Z, F ) where Z is the

set of edges of G[Y ] and F = {{x, z} | x ∈ X, z ∈ Z,NG(x) ∩ z �= ∅}. We
have dH(x) ≥ 2 for all x ∈ X and dH(z) = 2 for all z ∈ Z. This implies
|NH(A)| ≥ |A| for all A ⊆ X and therefore H has an X-saturating matching.
The X-saturating matching of H corresponds to an X-saturating matching M
of G. The M -saturated vertices in Y form an independent set that dominates
X . Therefore this subset extends to a maximal independent subset of Y , and we
have G ∈ 2-SD. ��

5.2 Hardness for k ≥ 3

Lemma 4. For every k ≥ 3, the problem k-SD is NP-complete.

Proof. Clearly the problem k-SD is in NP. To show the NP-hardness we reduce
from a restricted version of SAT, where every boolean variable x appears in at
most two clauses positively, that is as x, and in at most two clauses negatively
as x [16].
Let ϕ be a formula in CNF with this property. For each variable xi appearing

in ϕ, 1 ≤ i ≤ n, we create a truth assignment component which is a K2,2 with
partite sets {x1

i , x
2
i } and {x1

i , x
2
i }. For the clause cj of ϕ, 1 ≤ j ≤ m, we create

a satisfaction test component which consists of a single vertex cj . We add the
edge {xl

i, cj} if the clause cj contains the lth appearance of the positive literal
xi, and we create the edge {xl

i, cj} if the clause cj contains the lth appearance
of the negative literal xi. We complete the construction of the reduction graph
G by adding all edges {cj , cl} for j �= l.
Every vertex v in a truth assignment component of G has degree at most

three, and every vertex in a satisfaction test component has degree at least m.
We may assume k < n < m.
Let a : {x1, x2, . . . , xn} → {true, false} be a satisfying truth assignment of ϕ.

Then D = {xl
i | a(xi) = true, l ∈ {1, 2}} ∪ {xl

i | a(xi) = false, l ∈ {1, 2}} is a
maximal independent set of G, and therefore s(G) ≤ k.
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On the other hand, let D be a maximal independent set of G with dG(v) ≤ k
for all v ∈ D. By this degree condition D contains only vertices from truth
assignment components of G. Since D is independent, these are either x1

i and
x2
i or x

1
i and x2

i . We define a(xi) = true if x1
i ∈ D and a(xi) = false if x1

i ∈ D.
Assume that a clause cj is not satisfied. Then the vertex cj has no neighbour in
D, contradicting the fact that D is maximal. ��

In fact the reduction shows that the stable degree is hard to approximate: ϕ ∈
SAT implies s(G) ≤ 3 and ϕ /∈ SAT implies s(G) ≥ m. Since SAT remains
NP-complete when restricted to formulae with more than m clauses (for fixed
value of m), we have the following lemma.

Lemma 5. There is no polynomial time algorithm approximating the stable de-
gree by a constant factor, unless P = NP.

5.3 Bounded Cliquewidth

For fixed values of k the problem k-SD can be formulated in MSOL. Therefore
its restriction to graphs of bounded tree- or cliquewidth can be solved in linear
time [8,9].

5.4 Bounded Asteroidal Number

In this subsection we develop an algorithm computing the stable degree of graphs
of bounded asteroidal number, such as (unit) interval graphs or AT-free graphs,
which have unbounded tree- and cliquewidth. We start with technical lemmas on
connected components and cells. Remember that C(u, v) induces the connected
component of G− N[u] containing v.

Lemma 6. For all independent triples {u, v, w} of a graph, C(v, u) �= C(v, w)
implies C(v, u) ⊆ C(w, u) and C(v, w) ⊆ C(u,w).

u v w

C(w, u) C(v, u) C(v, w) C(u,w)

Fig. 2. An example illustrating Lemma 6
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Proof. Let x be a vertex in C(v, u), which means there is a path (x, . . . , u) in
G[C(v, u)]. In G this path avoids N[w] since C(v, u) �= C(v, w). Therefore it
exists in G[C(w, u)] as well, and hence C(v, u) ⊆ C(w, u) holds. By a symmetric
argument we have C(v, w) ⊆ C(u,w). ��
Remember that an asteroidal subset A of an independent set D is a cell of D if
the interior of A does not contain a vertex in D.

Lemma 7. Let D be an independent set of G = (V,E), v ∈ V \ N[D], and let
B be the union of all subsets A ⊆ D such that A∪{v} is a cell of D∪{v}. Then
B is a cell of D and v ∈ I(B).

Proof. Let C be the set of all subsets A ⊆ D such that A∪{v} is a cell of D∪{v}.
For every A ∈ C and every u ∈ A we have A \ {u} ⊆ C(u, v) because A ∪ {v} is
asteroidal. For vertices u and w in different sets in C we have C(u,w) = C(u, v)
and C(w, u) = C(w, v) by Lemma 6. Hence B is an asteroidal set of G and
v ∈ I(B).
To show that B is a cell of D we assume a vertex x ∈ I(B) ∩ D. Because

x /∈ B, the set {v, x} is not asteroidal, and therefore we have x ∈ N[v], which
contradicts x ∈ D and v ∈ V \N[D]. ��
Lemma 8. Let B be a cell of an independent set D of G = (V,E). Each vertex
v ∈ I(B) defines a partition C of B such that A ∪ {v} is a cell of D ∪ {v} for
each A ∈ C.
Proof. Let C1, C2, . . . , Ck induce the connected components of G − N[v]. Then
C = {B ∩Ci | 1 � i � k} is a partition of B, and for every set A ∈ C, A ∪ {v} is
asteroidal. By Lemma 7, I(A ∪ {v}) ⊆ I(B), which implies I(A ∪ {v}) ∩D = ∅
because B is a cell ofD. Since v /∈ I(A∪{v}) we conclude I(A∪{v})∩(D∪{v}) =
∅, and hence A ∪ {v} is a cell of D ∪ {v}. ��
Corollary 2. 1. Every vertex in an independent set D belongs to a cell of D.
2. For every independent set D of (V,E), V \N[D] is the disjoint union of the

interiors of the cells of D.
3. An independent set D is maximal independent if and only if I(A) = ∅ holds

for every cell A of D.

Let G = (V,E) be a graph, A an asteroidal set of G, and let B ⊆ I(A) induce
some connected components of G[I(A)]. We define

s(A,B) = min
U
max
u∈U

dG(u)

where the minimum is taken over all maximal independent sets U of G[B]. Then
s(G) = s(∅, V ). The following recurrence allows us to compute the values of
s(A,B):

s(A,∅) = 0

s(A,B) = max
D∈D(B)

s(A,D) if G[B] is disconnected

s(A,B) = min
v∈B

max
(
dG(v), max

C∈C(A∪{v})
s(C, I(C))

)
if G[B] is connected
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where C(S) is the set of cells of the independent set S, and D(B) is the set of
vertex sets that induce a connected component of G[B]. The recurrent equation
above directly translates into an algorithm. The correctness follows from Lemmas
7 and 8.
A bottom-up dynamic programming algorithm first sorts all objects (A,B)

by the cardinality of B and processes them in increasing order of |B|. It store
the values s(A,B) computed in a table that is an array indexed by B.
We bound the running time of the algorithm in terms of k = an(G), n = |V |

and m = |E|. The algorithm considers at most
∑k

i=0

(
n
i

)
= O(nk) asteroidal sets

A of G. For each A it considers at most n+1 subsets B ⊆ I(A), namely B = I(A)
and all set B that induce a connected component of G[I(A)]. For a fixed pair
(A,B), it needs time O(n+m) to organise the look up of values computed before
if G[B] is disconnected. This is mainly for computing the connected components
of G[B]. If G[B] is connected, the algorithm minimises over O(n) vertices v ∈ B,
and spends O(n +m) time per vertex v to organise the table look-up. That is,
the algorithm runs in time O(nk+1m).

Theorem 4. For graphs G with an(G) ≤ k, s(G) can be computed in time
O(nk+1m).

5.5 Approximating Treewidth

By Theorems 1 and 3 we have

1
2 · s(G) ≤ tw(G) < 2 · s(G)

for AT-free graphs G, and in general Theorems 1 and 2 imply√
s(G)/an(G) < tw(G) < an(G) · s(G) .

These lower and upper bounds enable us to extend the algorithm from the pre-
vious subsection such that it approximates the treewidth of AT-free graphs by a
factor of 4 in the worst case. In contrast, the algorithm developed in [3] guaran-
tees an approximation factor of 2 for AT-free graphs. Theorem 1 and Conjecture
1 would imply

1

an(G)
· s(G) ≤ tw(G) < an(G) · s(G) ,

and the constant factor approximation would generalise to graphs G of bounded
asteroidal number. Its ratio would be an(G)2 in the worst case, which would
beat the 8 an(G) factor from [4] if the bound on the asteroidal number is less
than eight. With Theorem 2 instead of Conjecture 1 we obtain an approximation
ratio of s(G)1/2 an(G)3/2 via the stable degree.

6 Conclusions

Graph problems definable in MSOL can be solved in linear time when restricted
to graphs of bounded treewidth [8]. We showed that inside AT-free graphs,
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bounded treewidth can be replaced by bounded stable degree. This allows us
to concentrate on the hard cases when we consider problems on AT-free graphs
for which the complexity status is still unknown, such as vertex colouring or
Hamiltonicity.
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Abstract. We study kernelization (a kind of efficient preprocessing)
for NP-hard problems on planar graphs. Our main result is a kernel
of size at most 9k vertices for the Planar Maximum Nonseparating

Independent Set problem. A direct consequence of this result is that
Planar Connected Vertex Cover has no kernel with at most 9/8k
vertices, assuming P �= NP. We also show a very simple 5k-vertices
kernel for Planar Max Leaf, which results in a lower bound of 5/4k
vertices for the kernel of Planar Connected Dominating Set (also
under P �= NP).

1 Introduction

Many NP-complete problems, while most likely not solvable efficiently, admit
kernelization algorithms, i.e. efficient algorithms which replace input instances
with an equivalent, but often much smaller one. More precisely, a kernelization
algorithm takes an instance I of size n and a parameter k ∈ N, and after time
polynomial in n it outputs an instance I ′ (called a kernel) with a parameter k′

such that I is a yes-instance iff I ′ is a yes instance, k′ ≤ k, and |I ′| ≤ f(k)
for some function f depending only on k. The most desired case is when the
function f is polynomial, or even linear (then we say that the problem admits a
polynomial or linear kernel). In such a case, when the parameter k is relatively
small, the input instance, possibly very large, is “reduced” to a small one. In
this paper by the size of the instance |I| we always mean the number of vertices.
In the area of kernelization of graph problems the class of planar graphs (and

more generally H-minor-free graphs) is given special attention. This is not only
because planar graphs are models of many real-life networks but also because
many problems do not admit a (polynomial) kernel for general graphs, while
restricted to planar graphs they have a polynomial (usually even linear) kernel.
A classic example is the 335k-vertex kernel for the Planar Dominating Set

due to Alber et al. [1]. In search for optimal results, and motivated by practical
applications, recently researchers try to optimize the constants in the linear
function bounding the kernel size, e.g. the current best bound for the size of
the kernel for the Dominating Set is 67k [2]. Such improvements often require
nontrivial auxiliary combinatorial results which might be of independent interest.
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Our paper fits into this framework. We focus on kernelization of the following
problem:

Maximum Nonseparating Independent Set (NSIS) Parameter: k
Input: a graph G = (V,E) and an integer k ∈ N
Question: Is there an independent set I of size at least k such that G[V − I]
is connected?

In what follows, |V | is denoted by n. This problem is closely related with Con-

nected Vertex Cover (CVC in short), where given a graph G = (V,E) and
an integer k we ask whether there is a set S ⊆ V of size at most k such that
S is a vertex cover (i.e. S touches every edge of G) and S induces a connected
subgraph of G. The CVC problem has been intensively studied, in particular
there is a series of results on kernels for planar graphs [6,10] culminating in the
recent 11

3 k kernel [8]. It is easy to see that C is a connected vertex cover iff V −C
is a nonseparating independent set. In other words, (G, k) is a yes-instance of
CVC iff (G,n−k) is a yes-instance of NSIS. In such a case we say that NSIS is a
parametric dual of CVC. An important property of a parametric dual, discovered
by Chen et al [2], is that if the dual problem admits a kernel of size at most αk,
then the original problem has no kernel of size smaller than α/(α − 1)k, unless
P=NP.
As we will see, the NSIS problem in planar graphs is strongly related to the

Max Leaf problem: given a graph G and an integer k, find a spanning tree
with at least k leaves.

Our Kernelization Results. We study Planar Maximum Nonseparat-

ing Independent Set (Planar NSIS in short), which is the NSIS problem
restricted to planar graphs. We show a kernel of size at most 9k for Planar
NSIS. This implies that Planar Connected Vertex Cover has no kernel
of size smaller than 9/8k, unless P=NP. This is the first non-trivial lower bound
for the kernel size of the Planar CVC problem. Our kernelization algorithm
is very efficient: it can be implemented to run in O(n) time. As a by-product of
our considerations we also show a 5k kernel for both Max Leaf and Planar

Max Leaf, which in turn implies a lower bound of 5/4k for its parametric dual,
i.e. Planar Connected Dominating Set.

Our Combinatorial Results. Some of our auxiliary combinatorial results
might be of independent interest. We mention two of them here. Kleitman and
West [7] showed that an n-vertex graph of minimum degree three contains a
spanning tree with at least n/4 leaves. We generalize their result to graphs that
contain no separator consisting of only degree two vertices. We also show that
every n-vertex outerplanar graph contains an independent set I and a collection
of vertex-disjoint cycles C such that 9|I| ≥ 4n− 3|C|.
Previous Results. As the CVC is NP-complete even in planar graphs [5], so
is NSIS. To the best of our knowledge there is no prior work on the parameter-
ized complexity ofMaximum Nonseparating Independent Set. The reason
for that is simple: a trivial reduction from Independent Set (add a vertex
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connected to all the vertices of the original graph) shows that NSIS is W[1]-hard,
i.e. existence of an algorithm of complexity O(f(k)· |V |O(1)) is very unlikely (and
so is the existence of a polynomial kernel). However, by general results on ker-
nelization for sparse graphs [4], one can see that NSIS admits a O(k) kernel for
apex-minor-free graphs, so in particular for planar graphs. However, the general
approach does not provide a good bound on the constant hidden in the asymp-
totic notation. Observe that this constant is crucial: since we deal with an NP-
complete problem, in order to find an exact solution in the reduced instance,
most likely we need exponential time (or at least superpolynomial, because

for planar graphs 2O(
√
k)-time algorithms are often possible), and the constant

appears in the exponent.
Max Leaf has been intensively studied. Although there is a 3.75k kernel even

for general graphs due to Estivill-Castro et al. [3], some of their reductions do
not preserve planarity. Moreover, the algorithm and its analysis are extremely
complicated, while our method is rather straightforward.

Yet Another Equivalent Formulation of NSIS. Consider the NSIS prob-
lem again. It is easy to see that if graph G has two nontrivial (i.e. with at least
two vertices) connected components, then the answer is NO. Furthermore, an
instance (G, k) consisting of a connected component C and an independent set I
is equivalent to the instance (G[C], k− |I|). Hence, w.l.o.g. we may assume that
the input graph G is connected. It is easy to see that the Maximum Nonsep-

arating Independent Set problem for connected graphs is equivalent to the
following problem, which we name Maximum Independent Leaf Spanning

Tree:

Maximum Independent Leaf Spanning Tree Parameter: k
Input: a graph G = (V,E) and an integer k ∈ N
Question: Is there a spanning tree T such that the set of leaves of T
contains a subset of size k that is independent in G?

In what follows, we will use the above formulation, since it directly corresponds
to our approach.

Terminology and Notation. By NG(v) we denote the set of neighbors of
vertex v, G[S] denotes the subgraph of graph G induced by a set of vertices S.
If G = (V,E) is a connected graph and S ⊂ V , then we say that S is a separator
if G[V − S] is disconnected. By a d-vertex we mean a vertex of degree d.

2 A Simple 12k Kernel for Planar NSIS

In this section we describe a relatively simple algorithm that finds a 12k kernel for
Planar NSIS. This is achieved by the following three steps. First, in Section 2.1
we show a reduction rule and a linear-time algorithm which, given an instance
(G, k), returns an equivalent instance (G′, k′) such that |V (G′)| ≤ |V (G)|, k′ ≤
k, and moreover G′ has no separator consisting of only 2-vertices. Second, in
Section 2.2 we show that G′ has a spanning tree T with at least |V (G′)|/4 leaves
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(and it can be found in linear time). Denote the set of leaves of T by L. Third, in
Section 2.3 we show that the graph G′[L] is outerplanar. It follows that G′[L] has
an independent set of size at least |L|/3 (which can be easily found in linear time)
and, consequently, T has at least |V (G′)|/12 leaves that form an independent
set. Hence, if k′ ≤ |V (G′)|/12 our algorithm returns the answer YES (and the
relevant feasible solution if needed). Otherwise |V (G′)| < 12k′ ≤ 12k so (G′, k′)
is indeed the desired kernel.

2.1 The Separator Rule

Now we describe our main reduction rule, which we call separator rule. It is
easier for us to prove the correctness of the rule for the CVC problem and then
convert it to a rule for the NSIS problem.

Separator Rule. Assume there is a separator S consisting of only 2-
vertices. As long as S contains two adjacent vertices, remove one of them
from S (note that S is still a separator). Next, choose any v ∈ S such
that the two neighbors a, b of v belong to distinct connected components
of G[V − S]. If deg(a) = deg(b) = 1, remove a from G. If deg(a) = 1
and deg(b) ≥ 2, remove a from G and decrease the parameter k by 1.
Proceed analogously when deg(b) = 1 and deg(a) ≥ 2. Finally, when
deg(a), deg(b) ≥ 2, contract the path avb into a single vertex v′ and
decrease k by 2.

We say that a reduction rule for a parameterized problem P is correct when for
every instance (G, k) of P it returns an instance (G′, k′) such that:

a) (G′, k′) is an instance of P ,
b) (G, k) is a yes-instance of P iff (G′, k′) is a yes-instance of P ,
c) k′ ≤ k.

Lemma 1. The separator rule is correct for Planar CVC.

Proof. Since the separator rule modifies the graph by removing a vertex or con-
tracting a path it is planarity preserving, so a) holds. The condition c) is easy
to check so we focus on b), i.e. the equivalence of the instances.
The case when deg(a) = deg(b) = 1 are trivial so we skip the argument.
Now assume deg(a) = 1, deg(b) ≥ 2 (the case deg(b) = 1, deg(a) ≥ 2 is

symmetric). If C is a minimum connected vertex cover of G, |C| ≤ k, then v ∈ C
and a �∈ C. Since G[C] is connected, deg(v) = 2 and deg(b) ≥ 2, also b ∈ C. It
follows that C \ {v} is a connected vertex cover of G′ of size at most k′ = k− 1.
In the other direction, if C′ is a connected vertex cover of G′, |C′| ≤ k′ = k− 1,
then b ∈ C′ and clearly C′ ∪ {v} is a connected vertex cover of G.
Finally, assume deg(a), deg(b) ≥ 2. Let A and B be the connected components

of G[V −S] that contain a and b, respectively. Let a0 (resp. b0) be any neighbor
of a (resp. b) distinct from v (a0 and b0 exist since deg(a), deg(b) ≥ 2). Note
that a0 ∈ A ∪ S, b0 ∈ B ∪ S and a0, b0 ∈ G′.
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Let us first assume that G′ has a connected vertex cover C′, |C′| ≤ k′. We
show that G′ has a connected vertex cover D′, |D′| ≤ k′ such that v′ ∈ D′. Then
it is easy to check that C = (D′ \{v′})∪{a, v, b} is the required connected vertex
cover of G, and |C| = |D′|+ 2 ≤ k.
If v′ ∈ C′ we just put D′ = C′ so suppose that v′ �∈ C′. Then a0, b0 ∈ C′.

Since G′[C′] is connected, there is a path P from a0 to b0 in G′[C′], possibly of
length 0. Since a0 ∈ A ∪ S and b0 ∈ B ∪ S we infer that P contains a vertex
w ∈ S ∩ C′. It follows that D′ = C′ \ {w} ∪ {v′} is a connected vertex cover of
G′ of size at most k′.
Let us now assume that (G, k) has a connected vertex cover C, |C| ≤ k.

If {a, v, b} ⊆ C, then clearly C′ = (C \ {a, v, b}) ∪ {v′} is a connected vertex
cover of G′ with |C′| ≤ k − 2 = k′. On the other hand, if {a, v, b} �⊆ C, then
G[C ∪{a, v, b}] contains a cycle (because C is connected). Since S is a separator,
this cycle has to contain some w1 ∈ S other than v. In this case we claim that
C′ = (C \ {w1}) ∪ {a, v, b} is a connected vertex cover of G′ and |C′| ≤ k′. It is
clear that C′ is a connected vertex cover. The size bound follows from the fact,
that C has to contain two out of the three vertices {a, v, b}. ��

Now, we convert the separator rule to the dual separator rule as follows. Let
(G, 	) be an instance of (Planar) NSIS. Put k = |V (G)|−	, apply the separator
rule to (G, k) and get (G′, k′). Put 	′ = |V (G′)| − k′ and return (G′, 	′).

Corollary 1. The dual separator rule is correct for Planar NSIS.

Proof. The condition c) is easy to check while Lemma 1 implies a) and b). ��

It is clear that the dual separator rule can be implemented in linear time. How-
ever, we would like to stress a stronger claim: there is a linear-time algorithm
that given a graph G applies the separator rule as long as it is applicable. This
algorithm can be sketched as follows. First we remove all 1-vertices that are ad-
jacent to 2-vertices, and we modify k as described in the separator rule. Second,
we find all maximal paths that contain 2-vertices only. For every such path, if it
contains at least 3 vertices (and hence two of them form a separator), we replace
it by a path of two vertices. It is easy to implement these two steps in linear
time. Now, every 2-vertex has at most one neighboring 2-vertex. We remove all
2-vertices that do not have neighbors of degree 2 and for each pair of adjacent
2-vertices we remove exactly one of them. Next, we pick a connected component
A of the resulting graph and we mark all its vertices. Then we consider all degree
2 neighbors of this component (that has been removed). If such a neighbor v has
an unmarked neighbor then it connects A with another component B. We apply
the separator rule to the vertex v (in constant time) and we mark v as processed.
Then we mark all the vertices of B. As a result the components A and B are
joined into a new component A. In any case, the vertex v is not considered any
more. We continue the procedure as long as the graph gets connected. All the
removed 2-vertices that are not marked as processed are put back in the graph.
Since every vertex of G is marked at most once, the whole algorithm works in
linear time.
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2.2 Finding a Spanning Tree with Many Leaves

Kleitman and West [7] showed how to find a spanning tree with at least n/4
leaves in a graph of minimum degree 3. In this section we generalize their result
by proving the following theorem.

Theorem 1. Let G be a connected n-vertex graph that does not contain a sepa-
rator consisting of only 2-vertices. Then G has a spanning tree with at least n/4
leaves. Moreover, such a tree can be found in linear time.

We will slightly modify the approach of Kleitman and West so that vertices of
smaller degree are allowed.
First note that it suffices to show a simplified case where G has no edge uv

such that both u and v are 2-vertices (and we still assume the nonexistence of
a separator consisting of only 2-vertices). Indeed, if the theorem holds for the
simplified case, we just remove from G all the edges uv such that both u and v
are 2-vertices, call the new graph G̃. Note that G̃ is connected and G̃ does not
contain a separator consisting of only 2-vertices (otherwise the old G contains
such a separator). Hence we get a spanning tree T of G̃ with at least |V (G̃)|/4
leaves by applying the simplified case. However, since |V (G̃)| = |V (G)| and T is
also a spanning tree of G, so T is also the required tree for the general claim.
Hence in what follows we assume that G has no edge with both endpoints of
degree 2.
In order to build a spanning tree T our algorithm begins with a tree consisting

of an arbitrarily chosen vertex (called a root), and then the spanning tree is built
by a sequence of expansions. To expand a leaf v ∈ T means to add the vertices
of NG(v) \ V (T ) to T and connect them to v in T . Note that in a tree T built
from a root by a sequence of expansions, if a vertex in V (G)− V (T ) is adjacent
with v ∈ V (T ), then v is a leaf.
The order in which the leaves are expanded is important. To describe this

order, we introduce three operations (operations O1 and O3 are the same as
in [7], but O2 is modified):

(O1) Applies when there is a leaf v ∈ V (T ) such that |NG(v) \V (T )| ≥ 2. Then
v is expanded.

(O2) Applies when there is a leaf v ∈ V (T ) such that |NG(v) \ V (T )| = 1 (let
NG(v)\V (T ) = {x}), and moreover |NG(x)\V (T )| = 0 or |NG(x)∩V (T )| ≥
2. Then v is expanded.

(O3) Applies when there is a leaf v ∈ V (T ) such that |NG(v) \ V (T )| = 1
(let NG(v) \ V (T ) = {x}), and moreover |NG(x) \ V (T )| ≥ 2. Then v is
expanded and afterwards x is expanded.

Now we can describe the algorithm for Theorem 1, which we call GENERIC:

1. choose an arbitrary vertex r ∈ V and let T = {r},
2. apply O1-O3 as long as possible, giving precedence to O1.
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We claim that GENERIC returns a spanning tree of G. Assume for a contra-
diction that at some point the algorithm is able to apply none of O1-O3 but
V (G) �= V (T ). Consider any leaf v ∈ T such that NG(v) �⊆ V (T ). Such a
leaf exists because V (G) �= V (T ) and T is built by a sequence of expansions
. Since O1 does not apply, |NG(v) \ V (T )| = 1. Let NG(v) \ V (T ) = {x}.
Since O2 does not apply, NG(x) ∩ V (T ) = {v}. Since neither O2 nor O3 apply,
|NG(x) \ V (T )| = 1. It follows that degG(x) = 2. Moreover, since there are no
edges between 2-vertices, the neighbor of x outside of T is not a 2-vertex. It
follows that

⋃
v∈L(T ) NG(v) \ V (T ) is a separator consisting of 2-vertices, which

is the desired contradiction.
It remains to show that if a spanning tree T was constructed, then it has at

least n/4 leaves. It can be done exactly as in the work of Kleitman and West [7].
However, we do it in a different way, in order to introduce and get used to
some notation that will be used in later sections, where we describe an improved
kernel.
We say that a leaf u of T is dead if NG(u) \ V (T ) = ∅. Note that after

performing O2 there is at least one new dead leaf: if |NG(x) \ V (T )| = 0 then x
is a dead leaf, and if |NG(x) ∩ V (T )| ≥ 2 then all of (NG(x) ∩ V (T )) \ {v} are
dead leaves, because of O1 precedence. For any tree T̂ , by L(T̂ ) we denote the
set of leaves of T̂ .
Let Xi be the set of the inner vertices of T that were expanded by an operation

of type Oi. LetX be the set of the inner vertices of T ; note thatX = X1∪X2∪X3.
Since T is rooted, the standard notions of parent and children apply. For a
positive integer i, let Pi denote the set of vertices of T with exactly i children.
Since every vertex besides r is a child of some vertex, we have

∑
d≥1 d|Pd| =

n − 1. Since the set of vertices with one child is equal to X2 ∪ (X3 ∩ P1) and
|X3 ∩ P1| = |X3 ∩ P≥2| it follows that

|X2|+ |X3 ∩ P≥2|+
∑
d≥2

d|Pd| = n− 1. (1)

Since during O2 at least one leaf dies, |X2| ≤ |L(T )|. Similarly, since after
expanding a vertex from X3∩P≥2 the cardinality of L(T ) increases, |X3∩P≥2| ≤
|L(T )| − 1. Finally,

∑
d≥2 d|Pd| ≤

∑
d≥2 2(d − 1)|Pd| = 2(|L(T )| − 1). After

plugging these three bounds to (1) we get |L(T )| > n/4, as required. This finishes
the proof of Theorem 1.

2.3 Outerplanarity

Lemma 2. If G is a planar graph and T is a spanning tree of G, then the graph
G[L(T )] is outerplanar.

Proof. Fix a plane embedding of G and consider the induced plane subgraph
G′ = G[L(T )]. Since T is connected, all vertices of L(T ) lie on the same face of
G′. Therefore G′ is outerplanar. ��
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Corollary 2. If G is a planar graph and T is a spanning tree of G then there
is a subset of leaves of T of size at least |L(T )|/3 that is independent in G (and
it can be found in linear time).

Proof. It is well-known that outerplanar graphs are 3-colorable and the 3-coloring
can be found in linear time. So, by Lemma 2 we can 3-color G[L(T )] and we
choose the largest color class. ��

3 A 9k Kernel

In this section we present an improved kernel for the Maximum Independent

Leaf Spanning Tree problem. Although the analysis is considerably more
involved than that of the 12k kernel, the algorithm is almost the same. We need
only to force a certain order of the operations O1-O3 in step 2. As before, the
algorithm always performs the O1 operation if possible (we will refer to this as
the O1 rule). Moreover, if more than one O1 operation applies then we choose
the one which maximizes the number of vertices added to T (we will refer to
this as the largest branching rule). If there is still more than one such operation
applicable then among them we choose the one which expands a vertex that was
added to T later than the vertices which would be expanded by other operation
(we will refer to this as the DFS rule). Similarly, if there are no O1 operations
applicable but more than one O2/O3 operations apply, we also use the DFS rule.
The algorithm GENERIC with the order of operations described above will be
called BRANCHING.
Note that the algorithm BRANCHING is just a special case of GENERIC, so

all the claims we proved in Section 2 apply. Let us think where the bottleneck in
this analysis is. There are two sources of trouble: first, if there are many O2/O3
operations we get a spanning tree with few leaves: in particular there might
be only O2 operations and O3 operations that add just two leaves (consider a
cubic graph which can be built by joining a number of diamonds by edges to
form a cycle) and we get roughly n/4 leaves. Second, if the outerplanar graph
G[L(T )] is far from being bipartite (i.e. has many short odd cycles) then we get
a small independent set: in particular, when G[L(T )] is a collection of disjoint
triangles, the maximum independent set in G[L(T )] is of size exactly |L(T )|/3.
However, we will show that these two extremes cannot happen simultaneously.
More precisely, we prove the following two theorems.

Theorem 2. Let G be a connected n-vertex graph that does not contain a sep-
arator consisting of only 2-vertices. Then G has a spanning tree T such that if
C is a collection of vertex-disjoint cycles in G[L(T )], then

|L(T )| ≥ n+ 3|C|
4

.

Moreover, T can be found in linear time.

Theorem 3. Every n-vertex outerplanar graph contains
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– an independent set I, and
– a collection of vertex-disjoint cycles C

such that 9|I| ≥ 4n− 3|C|.
Note that Theorem 3 is tight, which is easy to see by considering an outerplanar
graph consisting of disjoint triangles. From the above two theorems and Lemma 2
we easily get the following corollary.

Corollary 3. Let G be a connected n-vertex graph that does not contain a sepa-
rator consisting of only 2-vertices. Then G has a spanning tree T such that L(T )
has a subset of size at least n/9 which is independent in G.

By a similar reasoning as in the beginning of Section 2 we get a 9k-kernel for
the Maximum Independent Leaf Spanning Tree problem. In what follows,
we prove Theorem 2. Because of the space constraints the proof of Theorem 3 is
deferred to the journal version.

Proof of Theorem 2

Note that similarly as in Theorem 1 it suffices to show a simplified case when
G has no edge uv such that both u and v are 2-vertices. Indeed, if the theorem
holds for the simplified case, as before we create a new graph G̃ by removing
from G all the edges with both endpoints of degree 2 and as before G̃ does not
contain a separator consisting of only 2-vertices. Then we apply the simplified
case and we get a spanning tree T such that for any collection C of vertex-disjoint
cycles in G̃[L(T )], we have |L(T )| ≥ (|V (G̃)|+ 3|C|)/4 and T is a spanning tree
of G as well. Moreover, no edge of E(G̃) \ E(G) belongs to a cycle in G[L(T )]
for otherwise both of its endpoints have degree at least 3 in G. Hence if C is
a collection of vertex-disjoint cycles in G[L(T )] then it is also a collection of
vertex-disjoint cycles in G̃[L(T )], so the desired inequality holds. Hence in what
follows we assume that G has no edge with both endpoints of degree 2. Since
we proved that in this case the algorithm GENERIC returns a spanning tree,
and each execution of BRANCHING is just a special case of an execution of
GENERIC we infer that BRANCHING returns a spanning tree of G, which will
be denoted by T .
Let C be an arbitrary collection of vertex-disjoint cycles in G[L(T )]. Our

general plan for proving the claim of Theorem 2 is to show that if |C| is large
then we have few O2/O3 operations — by (1) this will improve our bound on
|L(T )|. To be more precise, let us introduce several definitions.
Recall the O2 operation: it adds a single vertex x to T and at least one leaf

of T dies. We choose exactly one of these dead leaves and we assign it to x.
However, if the vertex x dies we always assign x to itself (so if some other leaves
die during this operation, they are unassigned). Let Lu be the set of unassigned
leaves of T . Clearly, |X2| = |L(T )| − |Lu|. In order to show that there are few
O2 operations, we will show that |Lu| is big.
Let x1, x2, . . . x|X| be the inner vertices of T in the order of expanding them (in

particular x1 = r). A run is a maximal subsequence xb, xb+1, . . . , xe of vertices
from P≥2, i.e. the nodes in T that have at least two children.
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Lemma 3. Vertices of any run R = xb, . . . , xe form a subtree of T rooted at xb.

Proof. Assume that a vertex x ∈ {xb+1, . . . , xe} has the parent xp outside the
run. Then p < b and x was a leaf in T while xb was being expanded. Hence, by
the definition of a run, xb−1 ∈ P1, and in particular xb−1 was expanded by O2
or O3. However, when this operation was performed, it was possible to expand x
by O1, a contradiction with the O1 rule. Hence every vertex x ∈ {xb+1, . . . , xe}
has the parent in the run, which is equivalent to the claim of the lemma. ��

In what follows, the subtree from Lemma 3 is denoted by TR. Moreover, let
ch(TR) denote the set of children of the leaves of TR, i.e.

ch(TR) = {v ∈ V (T ) \ V (TR) : TR contains the parent of v}.

We say that a run R opens a cycle C in C if the first vertex of C that was added
to T belongs to ch(TR). The following lemma shows a relation between cycles in
C and runs.

Lemma 4. Every cycle in C is opened by some run.

Proof. Consider any cycle C ∈ C and let v be the first vertex of C that is added
to T . Note that v is not added by O2, for otherwise just after adding v to T ,
v has at least two neighbors and by the O1 rule v would be the next vertex
expanded and hence not a leaf of T , a contradiction. It follows that v is added
by O1 or O3 and consequently v ∈ ch(TR) for some run R. ��

Now we can sketch our idea for bounding the number of O3 operations (#O3).
Both after O1 and O3 the cardinality of L(T ) increases. Hence, if we fix the
number of leaves in the final tree, then if |X1| is large then #O3 should be
small. Since a run contains at most one vertex of |X3| (e.g. by Lemma 3), it
means that a tree TR with a large number of children contains plenty of vertices
from |X1|. We will show that if a run opens many cycles, then indeed |ch(TR)|
is large. Let CR denote the set of cycles in C opened by R.

Lemma 5. Let R be a run. For any cycle C ∈ CR one of the following conditions
holds:

(i) |ch(TR) ∩ V (C)|+ |Lu ∩ V (C)| ≥ 4, or
(ii) |ch(TR) ∩ V (C)|+ |Lu ∩ V (C)| = 3 and |R ∩ P≥3| ≥ 1.

Proof. Let v1 be the vertex of C that is added first to the tree T . By the definition
of CR, v1 ∈ ch(TR). We see that at least one neighbor of v1, call it v2, is in
ch(TR), for otherwise just after expanding the last vertex of R the vertex v1 can
be expanded by O1, while the algorithm chooses O2/O3, a contradiction with
the O1 rule.
Let w be the neighbor of v2 on C that is distinct from v1. Assume w �∈ ch(TR).

Then just after expanding the last vertex of R we have N(v2) \ T = {w}, since
if |N(v2) \ T | ≥ 2 then it is possible to expand v2 by O1. Hence if v2 is assigned
then it is assigned to w. However, then w is added to T by O2 so w dies during
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this operation (otherwise w is expanded because of the DFS rule so w �∈ L(T )),
and hence w is assigned to w and v2 ∈ Lu. To conclude, w ∈ ch(TR) or v2 ∈ Lu.
If we denote by u the neighbor of v1 on C that is distinct from v2, by the

same argument we get u ∈ ch(TR) or v1 ∈ Lu.
It follows that (i) holds, unless u = w (i.e. C is a triangle), v1, v2 �∈ Lu and

w ∈ ch(TR). Let us investigate this last case. We see that |ch(TR) ∩ V (C)| = 3.
We will show that |R∩P≥3| ≥ 1. Since v2, w ∈ ch(TR), they could not be added
by O2 and hence v1 is assigned to a vertex x �∈ V (C). Note that x is added to T
after v2 and w. Assume w.l.o.g. that v2 was added to T before w. We consider
two cases. If v2 was not added to T by expanding the parent of v1, then the
parent p of v2 has at least three children (otherwise instead of expanding p the
algorithm can expands v1 and add at least three children, a contradiction with
the largest branching rule), so |R∩P≥3| ≥ 1 as required. Finally, if v2 was added
to T by expanding the parent p of v1, then p ∈ P≥3 for otherwise just after
expanding p O1 is applicable to v1 so either v1 or v2 is expanded by the DFS
rule. This concludes the proof. ��

By applying Lemma 5 to all cycles of a single run R we get the following corollary.

Corollary 4. For any run R that opens at least one cycle,

|ch(TR) ∩ V (CR)|+ |Lu ∩ V (CR)|+ |R ∩ P≥3| ≥ 3|CR|+ 1.

Lemma 6. For any run R,

|Lu ∩ V (CR)|+
∑
d≥2

(2d− 3)|R ∩ Pd| − |R ∩X3| ≥ 3|CR|. (2)

Because of the space limitations the proof of Lemma 6 is deferred to the journal
version. Now we are ready to prove the claim of Theorem 2, i.e. that |L(T )| ≥
(n+ 3|C|)/4.
Let us add

∑
d≥2(2d− 3)|Pd| to both sides of (1):

|X2|+ |X3 ∩ P≥2|+ 3
∑
d≥2

(d− 1)|Pd| = n− 1 +
∑
d≥2

(2d− 3)|Pd|. (3)

Since |X2| = |L(T )| − |Lu| and
∑

d≥2(d− 1)|Pd| = |L(T )| − 1 we get

4|L(T )| = n+ 2 + |Lu|+
∑
d≥2

(2d− 3)|Pd| − |X3 ∩ P≥2|. (4)

By Lemma 4 after summing (2) over all runs we get

|Lu|+
∑
d≥2

(2d− 3)|Pd| − |X3 ∩ P≥2| ≥ 3|C|. (5)

The claim follows immediately after plugging (5) to (4).
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4 A Simple 5k Kernel for (Planar) Max Leaf

In this section we show a simple kernelization algorithm for Max Leaf and
Planar Max Leaf. Below we describe three simple rules, which preserve pla-
narity.

– (1, 2)-rule If there is a 1-vertex u adjacent with a 2-vertex v then remove v.
– Adjacent 2-vertices Rule Assume that there are two adjacent 2-vertices

u and v. If uv is a bridge, contract uv, otherwise remove uv.
– Trivial Rule If G consists of a single edge, return YES if k ≤ 2.

It is quite clear that the above rules are correct for (Planar) Max Leaf (see
e.g. [9], Rules 1-3 for a proof). Note that if none of our rules applies to a connected
graph G, then every edge of G has an endpoint of degree at least 3.

Theorem 4. Let G be a connected graph in which every edge has an endpoint
of degree at least 3. Then G has a spanning tree with at least n/5 leaves.

The proof of Theorem 4 is deferred to the journal version.
Let G′ be the graph obtained from G by applying our three rules as long as

one of them applies. By Theorem 4, if k ≤ n/5 we can return the answer YES.
Hence n < 5k and G′ is a 5k-kernel for Planar Max Leaf and Max Leaf.

Acknowledgments. We are very grateful for the reviewers for numerous com-
ments. We also thank Michal Debski for helpful discussions.
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Abstract. We consider a decision version of the problem of finding the
minimum number of vertices whose deletion results in a graph without
even cycles. While this problem is a natural analogue of the Odd Cycle

Transversal problem (which asks for a subset of vertices to delete to
make the resulting graph bipartite), surprisingly this problem is not well
studied. We first observe that this problem is NP-complete and give a con-
stant factor approximation algorithm. Then we address the problem in pa-
rameterized complexity framework with the solution size k as a parameter.
We give an algorithm running in time O∗(2O(k)) for the problem and give
an O(k2) vertex kernel. (We write O∗(f(k)) for a time complexity of the
form O(f(k)nO(1)), where f(k) grows exponentially with k.)

1 Introduction

Cycle hitting set problems like Feedback Vertex Set and Odd Cycle

Transversal (OCT) are very well studied in graph theory, algorithms and
complexity. In the Feedback Vertex Set problem and the Odd Cycle

Transversal problem, we are given a graph G = (V,E) and a positive in-
teger k as inputs. The objective in these two problems is to check if there exists
a subset S ⊆ V of size at most k such that G − S does not have a cycle (i.e. it
is a forest) and does not have an odd cycle (it is bipartite), respectively. Both
these problems are well studied in the realm of parameterized and approximation
algorithms. In this paper, we consider a natural analogue of the Odd Cycle

Transversal, namely the Even Cycle Transversal (EvenCT) problem
and study this problem in the realm of parameterized complexity.

Even Cycle Transversal (EvenCT)

Instance: An undirected graph G = (V,E) and a positive integer k.
Parameter: k.

Problem: Does G have a set S of size at most k such that G− S
does not contain an even cycle?

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 172–183, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We start with some basic definitions in parameterized complexity. For a deci-
sion problem with an input of size n and a parameter k, the goal in parameter-
ized complexity is to design an algorithm with a runtime f(k)nO(1) where f is a
function of k alone. Problems which admit such algorithms are said to be fixed
parameter tractable (FPT). A decision problem is said to have a kernelization
algorithm, if there is a polynomial time algorithm that takes an instance (I, k)
and returns an equivalent instance (I ′, k′) such that, k′ ≤ k and |I ′| ≤ g(k),
where g is a function of k alone. The theory of parameterized complexity was
developed by Downey and Fellows [2]. For recent developments, see the book by
Flum and Grohe [4].
The parameterized complexity of OCT was a long standing open problem,

which was resolved in 2003 by Reed et al. [11], who developed an algorithm
for the problem running in time O∗(3k). However, there has been no further
improvement over this algorithm in the last 9 years though several reinterpre-
tations of the algorithm have been published [7,9]. Only recently, an algorithm
with a running time O∗(2.32k) has been obtained [10]. Thus, it is rather sur-
prising that while OCT has attracted so much attention, EvenCT has so far
been largely been ignored. Recently, Kakimura et al. [8] studied a generaliza-
tion of EvenCT, called Subset Even Cycle Transversal. In this problem,
apart from a graph G = (V,E) and a positive integer k, we are also given a
T ⊆ V as the input. The objective is to determine whether there exists a vertex
set S ⊆ V of size at most k such that G − S does not contain any even cycle
whose intersection with T is non-empty. Observe that for T = V this is precisely
EvenCT. Their paper [8], shows that Subset Even Cycle Transversal is
FPT, and thus EvenCT is also FPT. However this algorithm utilizes graph mi-
nor machinery, and the dependence of this algorithm on the parameter k is at
least triply exponential. Hence, a second motivation is to find out if the special
case EvenCT has a better FPT algorithm.
In this paper, we do a systematic study of EvenCT and obtain the following

results.

– We show that EvenCT can be solved in time 2O(k)nO(1). To this end, we
study the class of graphs Ge, which is all graphs which do not contain even
cycles as subgraphs. These graphs have been studied by Thomassen [13], who
obtained a more general result that if a graph G does not contain cycles of
length 0 modulo p for some fixed integer p then the treewidth of G is upper
bounded by a function of p. This implies that the treewidth of a graph which
does not contain even cycles is bounded by some constant. We show that,
in fact Ge is even more structured. Any pair of two odd cycles in a graph
from this class may intersect in at most one vertex. These kind of graphs are
known as cactus graphs and their treewidth at most 2.

– We also show that EvenCT admits a quadratic kernel. That is, we obtain a
polynomial time algorithm that, given an instance (G, k) of EvenCT returns
an equivalent instance (G′ = (V ′, E′), k′) such that k′ ≤ k and |V (G′)| +
|E(G′)| = O(k2). The kernelization algorithm is along similar lines as earlier
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kernelization algorithms for Feedback Vertex Set [12] and the problem
of Θc-Deletion [5].

This problem adds to the growing list of parity problems that are studied from
the point of view of parameterized complexity. We also mention in passing that
EvenCT is NP-complete and show that it has an approximation algorithm with
factor 10.

2 Preliminaries

Let G = (V,E) be an undirected graph. A cut vertex is a vertex v such that
G − {v} contains two or more connected components than G does. A block in
a graph is a maximal connected subgraph without a cut vertex. Thus blocks in
a graph G are either an isolated vertex, an edge or a maximally-2-connected
component. A pendant block is a block such that it has only one cut vertex.
Removing a pendant block from a graph means, deleting all the vertices in that
block except the cut vertex.
A cactus graph is a graph where each edge is part of at most one cycle.

Equivalently a graph is a cactus graph if and only if each of its block is isomorphic
to either K1, K2 or a cycle. An odd cactus graph is a cactus graph without any
even cycles.

Lemma 1. [∗]3 If there are two cycles C1 and C2 in G such that C1 and C2

intersect in at least 2 vertices, then there is an even cycle in G.

A set of vertices S ⊆ V (G) is called an ect if G − S does not contain an even
cycle.

Lemma 2. Let G be a graph and S be an ect of G. Then (G − S) is an odd
cactus graph.

Proof. Lemma 1 implies that any pair of cycles in (G − S) intersect in at most
1 vertex. Hence, (G− S) is a cactus graph. Additionally, since (G− S) excludes
even cycles, it is an odd cactus graph.

3 NP-Completeness and Constant Factor Approximation

3.1 NP-Completeness

By a simple reduction from theNP-Complete Feedback Vertex Set problem,
the NP-hardness of the problem is clear.

Theorem 1. [∗] The EvenCT problem is NP-Complete.

3 The proofs of results marked [∗] will appear in the full version of the paper.
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3.2 An Approximation Algorithm

We will show that EvenCT has a 10-approximation algorithm. First we prove
the following easy lemma.

Lemma 3. [∗] EvenCT on cactus graphs is solvable in polynomial time.

The Diamond Hitting Problem. The diamond hitting problem is defined as
follows. Given a graph G, is there a subset S of at most k vertices of G such
that, (G− S) is a cactus graph. We need the following result by Fiorini et al.

Lemma 4 ([3], Theorem 6.6). There is a factor 9 approximation algorithm
for the diamond hitting problem.

Using Lemma 3 and Lemma 4, we prove the following theorem.

Theorem 2. There is a factor 10 approximation algorithm for EvenCT.

Proof. Let G be the input graph. Let S be an optimum ect of G. Since (G− S)
is a cactus graph, S is also a solution to the diamond hitting problem on G.
Hence, if T were an optimum solution to the diamond hitting problem on G,
then |T | ≤ |S|. We first apply Lemma 4 to obtain a factor 9 approximation to the
diamond hitting problem on G. Let S1 be the approximate solution obtained.
Observe that |S1| ≤ 9|S|.
Since H = G − S1, is a cactus graph, we can apply Lemma 3 to obtain an

optimum ect S2 forH in polynomial time. Since H is a subgraph of G, |S2| ≤ |S|.
Therefore, the set S1 ∪ S2 which is clearly an ect for G, has size at most 10|S|.

This algorithm forms a critical part of the kernelization procedure in Section 5.

4 FPT Algorithm

In this section we give an algorithm for EvenCT which runs in time O∗(2O(k)).
Towards this, we first apply the technique of iterated compression. The idea is
to start with a solution of size k+1 and try to ‘compress’ it to a solution of size
k if possible.
We start with the compression version of the problem.

4.1 Compression Version

Compression EvenCT

Input: Graph G, a positive integer k and an ect S of G such that |S| =
k + 1

Parameter: k
Question: Does G have an ect of size at most k ?
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We fix an ect of G of size at most k (assuming one exists) and denote it by
S∗. Let Y = S ∩ S∗ and N = S − Y . We attempt to find an ect of the graph
(G − S) ∪N such that it has size at most k − |Y | and is contained in (G − S).
Since the ect has to be disjoint from the set N , the graph N cannot contain even
cycles and hence must be a cactus graph.
We give a branching algorithm to find the ect S∗. This algorithm works in two

phases. In the first phase, we use an appropriate branching, at the end of which,
every connected component C in G − S is such that C ∪N has no even cycles
and all the edges from C to N are incident on the same connected component
of N . In the second phase, we use the structure provided by the first phase to
deal with the remaining even cycles in (G− S) ∪N .

R ecall that G− S is an odd cactus graph. Let C be a connected component of
G−S such that either C∪N contains an even cycle, or there are at least 2 edges
which have one end point in C, and the other end point in distinct components
of N . In both cases, our aim is to find a ‘minimal’ path in C that satisfies the
property (of forming an even cycle with N or having adjacency in more than two
components of N). This will then suggest ways of branching (by picking vertices
from this ‘minimal’ path).
Let P be any path in C and let r be any vertex of C. Let v ∈ P be a vertex

such that there is a path from r to v, which intersects P only at v, and let RP (r)
be the set of all such vertices in P .

Lemma 5. For any vertex r and any path P in C, |RP (r)| ≤ 2.

Proof. Suppose that there are 3 vertices {u, v, w} in RP (r). By definition of
RP (r), there is a path from r to u which doesn’t intersect {v, w}; similarly for v
and w. Let T1 be a minimal subtree of (G−P )∪RP (r), that contains {u, v, w, r},
such that {u, v, w} is the set of leaves of T1. Let T2 be a minimal sub-path of P
which connects {u, v, w}. Then in T1 ∪ T2, there are two cycles that have two or
more common vertices. But then by Lemma 1, there is an even cycle in (G−S),
a contradiction.

Observation 1. Given a vertex r and a path P in a component C of G− S, r
is not reachable from any vertex in P −RP (r).

Now, to identify a path with the required property, we define a partial order
on all the paths in the component. Towards this end, we fix a root rC for the
component and measure distances of the paths from rC . Let dist(u, v) be the
length of a shortest path between the two vertices u and v. Suppose for P
|RP (rC)| = 2, then the depth of P , denoted by d(P ), is defined as the ordered pair
(dist(u, rC), dist(v, rC)), where RP (rC) = {u, v} and dist(u, rC) ≥ dist(v, rC).
If |RP (rC)| = 1, then d(P ) = (dist(u, rC), dist(u, rC)). As it will be clear from
the context, we drop the symbol rC from RP (rC) hereafter. Given two paths
P1 and P2, we say that P1 is smaller than P2 if either d(P1) > d(P2) in the
lexicographic order or, d(P1) = d(P2) and P1 is a sub-path of P2. This relation
induces a partial order on the set of all paths of a component C.
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In the rest of the paper, by P ∪ N we refer to the graph obtained by con-
sidering the path P , the graph induced on N and all the edges between the
vertices in P and the vertices in N . We call a path P a branching path if either
P ∪ N contains an even cycle, or vertices in P have adjacencies to more than
one connected component of N . Note that in the latter case, P ∪ N has fewer
connected components than N has. By a minimal branching path, we mean a
minimal element in the partial order defined above.

The following lemma shows that we can compute a branching path in polynomial
time.

Lemma 6. [∗] Let H be a connected odd cactus graph such that H ∪ N either
contains an even cycle or H ∪N has fewer connected components than N has.
Then we can find a path P of H in polynomial time such that P is a branching
path.

The next lemma shows that we can compute a minimal branching path in poly-
nomial time. Furthermore, such a path Q has the crucial property that there is
a subset of vertices AQ in Q such that |AQ| ≤ 6 and there exists an optimum
ect that either doesn’t intersect Q or intersects only in a subset of AQ. We call
AQ the set of important vertices in Q.

Lemma 7. [∗] Suppose P is a branching path in a connected component C of
G−S. Then there is a branching path Q and a subset of its vertices AQ containing
at most 6 vertices such that, if any vertex v in (Q−AQ) is in some solution T ,
then there is a solution T ′ of size at most |T | which doesn’t contain v. Given P ,
we can find Q and AQ in polynomial time.

Using the above two lemmas we show the following,

Lemma 8. Compression EvenCT is fixed-parameter tractable.

Proof. We are given as input G and a solution S of size at most k+ 1. We wish
to construct a new solution S∗ of size at most k. We consider partitions of S
into two sets Y and N , where Y = S∗ ∩ S and N = S − Y .
For each such partition we delete Y from G. We then attempt to find an ect

R of (G−S)∪N such that R ⊆ V (G−S) and |R| ≤ k−|Y |. For such a solution
to exist, we require N to be an odd cactus graph. This can be easily checked
by taking a block decomposition of N and checking for blocks not isomorphic to
K1, K2 or an odd cycle.
To find an ect of (G − S) ∪ N we use a branching algorithm which we will

analyze with the measure

μ = (k − |Y |+ number of components in N. )

It is easy to see that μ ≤ 2(k−|Y |)+1. During the branching we update (G−S)
and N by deleting vertices or moving vertices from (G− S) to N .
We first apply the following preprocessing rule. Let C be a connected compo-

nent of G − S such that there is at most one edge with one endpoint in C and
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the other in N . Then, no vertex of C is part of an even cycle in (G − S) ∪ N ,
and hence we delete C from G− S.
Let C be a connected component of G−S such that C ∪N has an even cycle

or has fewer connected components than N has. We apply Lemma 6 to find a
branching path Q. We then apply Lemma 7 on Q to find a minimal branching
path P and AP and branch on the vertices in AP . Since |AP | ≤ 6, there are at
most 7 branches, the first six branches each correspond to one of the vertices in
Ap being added to the solution R and in the final branch, no vertex is chosen
and we move the entire path P to N . Note that picking no vertex from P may
not be feasible if P ∪N contains an even cycle. When we add a vertex into the
solution set R and delete it from the graph, μ decreases by 1. Also, since P was
a branching path, moving P to N , reduces the number of connected components
in N by at least 1. Hence, in every branch the measure μ drops by at least 1.
We do the above branching for every component in (G− S). Eventually we’ll

reach a state where no component of G−S satisfies the conditions of Lemma 6.
Hence all the edges from each component are to the same connected component
of N . Furthermore, if more than two edges from a component C are adjacent to
a component of N , then it can be easily argued that there is an even cycle in
C ∪ N . Hence, every component of G − S has edges to exactly one component
of N and exactly two such edges. Let Bi be the set of vertices in a component
Ci of G− S such that they have a neighbour in N . Note that |Bi| ≤ 2. We will
show the following,

Claim. There exists an optimum solution to the compression EvenCT instance
that, for any component Ci of G− S, is either disjoint from Ci or intersects Ci

in a subset of Bi.

Proof. The claim follows from the observation that every even cycle intersecting
Ci must also intersect b1 and b2, where b1 and b2 are the vertices in Bi.

For a pair of connected components Ci, Cj of (G−S), let Hij = Ci∪Cj ∪N . We
can check if Hij contains an even cycle. If we find one, by the above claim we
have a four-way branching on the vertices in Bi ∪Bj and in each branch we add
a vertex to R and delete it from the graph. In every branch μ drops by 1. We do
this for every pair of connected components in (G−S). Finally, let (G− S)∪N
be the remaining graph. We will show that there are no even cycles left in this
graph.

Claim. [∗] If there is a cycle in (G−S)∪N passing through some l > 2 connected
components of (G − S), then there is a cycle passing through at most l − 1
components of G− S.

Claim. [∗] If there is a cycle in (G − S) ∪ N passing through two connected
components C1, C2 of (G− S), then there is an even cycle in C1 ∪C2 ∪N .

The above two claims imply that (G− S)∪N now has no even cycles. For, if
there was an even cycle, then it must pass through some l connected components
of G− S. If l = 1, then there would be a connected component C of G− S such
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that C ∪ N contains an even cycle, a contradiction. Otherwise if l ≥ 3, then
we apply the first claim repeatedly to conclude that there are two components
C1 and C2 such that C1 ∪ C2 ∪ N contains a cycle which passes through both
C1 and C2. Then by the second claim, there is an even cycle in C1 ∪ C2 ∪ N ,
a contradiction. Hence, we conclude that at the end of the above branching
procedure we have constructed a solution R and the remaining graph is even
cycle free.
For a partition of S into Y and N , the above branching takes time

O∗(72(k−|Y |)). Summing over all the 2k+1 partitions of S we see that the overall

algorithm takes time
∑k

i=0

(
k+1
i

)
O∗(72k−2i) = O∗(50k).

Finally the following claim proves the correctness of the algorithm.

Claim. [∗] Suppose S′ were some solution to this EvenCT compression instance
of size at most k. Let S∗ be the solution constructed by the above algorithm.
Then |S∗| ≤ k.

4.2 FPT Algorithm for EvenCT

Theorem 3. EvenCT parameterized by solution size has an FPT algorithm
running in time O∗(50k).

Proof. Suppose G is the input graph and k is the parameter. We arbitrarily order
the vertices of G and define a sequence of graphs Gk+2, Gk+3, . . . , Gn, where Gi

is the induced subgraph on the first i vertices of G.
It is easy to see that if for some i, Gi doesn’t have an ect of size at most k,

then G doesn’t have an ect of size at most k. And if G has an ect of size k, then
each Gi has an ect of size at most k. We start with the graph Gk+2 and let Sk+2

be the first k + 1 vertices. Clearly Sk+2 is an ect of size k + 1 for Gk+2. We use
Lemma 8 to compute a solution S of size at most k for Gk+2. If we fail, then
there is no ect of size k for G and so we answer NO. And if we succeed then
Sk+3 = S ∪ {vk+3} is an ect of size k + 1 for Gk+3. We then repeat the above
process.
Note that there are at most O(n) iterations and each iteration takes time

O∗(50k). So this algorithm runs in time O∗(50k).

5 Polynomial Kernel

In this section we give a quadratic kernel for EvenCT. We first introduce re-
duction rules which allow us to establish a bound on the maximum degree of the
graph. During this process we may introduce parallel edges in the graph, which
we can remove via a simple preprocessing. Following that we use the bounded
degree of the graph to design further reduction rules, to obtain the kernel.
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5.1 Bounding the Degree of the Graph

Definition 1. For a vertex v, a set of even cycles is called a flower passing
through v if the even cycles intersect only at v. If the number of even cycles in
the set is t, then this set is called a t-flower passing through v. Each even cycle
of a flower is called a petal.

We will now use an approach similar to that in [5] and [12] to design reduction
rules to eliminate vertices of high degree. We begin by proving a few lemmas
which will be used crucially in designing a reduction rule that removes high
degree vertices.

Lemma 9. [∗] Given a graph G such that tw(G) = r for some constant r, and
a vertex v in G, we can find in linear time, the size of the largest flower passing
through v in G.

Lemma 10. [∗] Given a graph G = (V,E) let v ∈ V be a vertex such that
G − {v} is an odd cactus graph, and let k be an integer. Then, in polynomial
time, we can either compute an ect X of size O(k) in G such that X is disjoint
from v or conclude that there is a k + 1-flower passing through v.

Lemma 11. [∗] There is a polynomial time procedure, which, for every vertex
v in the graph, either returns a set Sv such that v /∈ Sv, |Sv| = O(k) and Sv is
a solution or conclude that there is a k + 1-flower passing through v.

We now move ahead to the description of the reduction rules.

Reduction 1. If there are more than 2 parallel edges between a pair of vertices,
delete all but 2 of them.

Reduction 2. For every vertex v, apply Lemma 11. If some vertex has a (k + 1)-
flower passing through it, then delete this vertex from the graph and reduce k by 1.

Correctness. The correctness follows from the fact that such a vertex must be
part of every solution of size at most k.

Definition 2. For a vertex v, let Cv
1 , . . . , C

v
r be the set of connected components

of G− (Sv ∪ {v}) which are adjacent to v in G.

Observation 2. A vertex v cannot have more than 2 neighbors in any compo-
nent Cv

i .

Proof. The proof follows from Lemma 1.

Reduction 3. If there is a component Cv
i which does not have an edge to Sv,

then we delete the vertices in this component.
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Correctness. The correctness follows from the fact the vertices of this component
cannot be part of an even cycle in the given graph.

Definition 3. Define a graph Gv = (A,B,E) to be the bipartite graph where
the vertices in A correspond to the components Cv

1 , . . . , C
v
r , and the vertices in

B correspond to the vertices in Sv. We add an edge between two vertices ai ∈ A
and u ∈ B if there is an edge from the component Cr

i to the vertex u.

We now state without proof (a slightly weaker form of) the well known q-
expansion lemma which we will use to define the high degree vertices. This
lemma is a generalization of a lemma in [12]. A q-star is defined as a star with q
leaves. We say that a vertex v has a q-star in the vertex set T if v is the center
of a q-star and the leaves of the star all lie in T .

Lemma 12. Let q be a positive integer and let G be a bipartite graph with vertex
bipartition A " B. If there are no isolated vertices in B and |B| > q|A|, then
there are non-empty vertex sets S ⊆ A and T ⊆ B such that S has |S| many
vertex disjoint q-stars in T and S separates the vertices of T from the rest of the
graph. Furthermore, the sets S and T can be computed in polynomial time.

Reduction 4. If deg(v) ≥ 8|Sv| , then compute a 3-expansion set X ⊆ B in
the graph Gv = (A,B,E). Delete the components corresponding to the neighbors
of X, and add parallel edges between v and u for every vertex u ∈ X.

Note that, in each application of this rule, the degree of v decreases by at
least |X | > 0. When the Rule 4 cannot be applied on any vertex in the graph,
then the maximum degree of the graph is bounded by O(k). Further note that
because of Rule 1, there can be at most 2 parallel edges between any two vertices
u and v. For the sake of convenience, we would like to deal with simple graphs
and hence we do the following. For each pair of vertices u and v in G with 2
parallel edges, replace one of the edges by a path (u, a, b, v) of length 3 where
a and b are two new vertices. It is easy to see that this process preserves the
bound on the degree and the solution size, while resulting in a simple graph.

5.2 Bounding an Irreducible Yes Instance

Now, we prove a bound on the size of an irreducible Yes instance. At this point,
we have a graph G where every vertex has O(k) neighbors, and an approximate
solution A of size O(k). Note that the number of edges going across the cut
(G − A,A) is bounded by O(k2). Since G − A is an odd cactus graph, we can
find a block decomposition of this graph [6] and the corresponding block graph
T [1]. T is a forest which contains a vertex for every block and every cut-vertex
in G − A. There is an edge between two vertices u and v, where u corresponds
to a cut-vertex and v corresponds to a block Bv in G−A, if u ∈ Bv in the graph
G−A. We call a vertex of G− A an affected vertex if it is adjacent to a vertex
in A. We call a block of G−A an affected block if it contains a cut vertex.

Reduction 5. Delete any pendant block in G−A which is not affected.
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Correctness. It follows from the observation that such blocks are never part of
any even cycle in G.

Reduction 6. If there is a maximal path P in G−A such that every vertex is
of degree two and is unaffected, except for the endpoints which could either be
affected vertices or be vertices of degree three or more, then replace P by a path
of length two (or one) if this path is of even (or odd) length.

Correctness. It follows from the observation that we can substitute for any such
vertex by one of the endpoints, and the replacement doesn’t change the parity
of any cycle in G.

Definition 4. Consider a path P of degree two vertices in T such that no vertex
in P corresponds to an affected vertex or an affected block in G−A. We call the
corresponding sequence of blocks B1, . . . Bl a chain in G−A.

It has the property that, no vertex in ∪l
i=1Bi has a neighbour in A, and every

block has exactly two cut vertices. We call the two cut vertices at the two ends
of a chain, the endpoints of the chain.

Reduction 7. If there is a chain such that it consists of a single block which is
an odd cycle of size greater than three, or contains at least two blocks with one
of them an odd cycle, then replace this chain with a triangle which is formed by
the two endpoints of the chain and a new vertex.
If the chain contains no odd cycles, then the chain is a path in G−A. Further-
more, suppose that this chain contains at least three blocks. Then replace this
path by a path of length two(or one) if this path is of even (or odd) length.

Correctness. The correctness follows from the fact that any vertex of the chain
which is part of the solution can be simply replaced by one of the endpoints of
the chain. ��

Lemma 13. The number of affected vertices in G−A is O(k2) and the number
of affected blocks is O(k2).

Proof. The bound on the number of affected vertices follows from the fact that
|A| = O(k) and every vertex in A has a degree O(k). This clearly implies the
second statement.

The following two lemmas give a bound on the number of vertices in the block
graph T , and then on the number of vertices in G−A.

Lemma 14. [∗] The number of vertices in the block graph is O(k2).

Lemma 15. [∗] There are O(k2) vertices in G−A.

Using the above lemma and the fact that |A| = O(k) we have the following
theorem.

Theorem 4. EvenCT parameterized by the solution size has an O(k2) vertex
kernel.
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12. Thomassé, S.: A quadratic kernel for feedback vertex set. In: SODA, pp. 115–119
(2009)

13. Thomassen, C.: On the presence of disjoint subgraphs of a specified type. Journal
of Graph Theory 12(1), 101–111 (1988)

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://doi.acm.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272


Bisections above Tight Lower Bounds

Matthias Mnich1 and Rico Zenklusen2,�

1 Cluster of Excellence, Saarbrücken, Germany
m.mnich@mmci.uni-saarland.de

2 Massachusetts Institute of Technology, Cambridge, MA, USA
ricoz@math.mit.edu

Abstract. A bisection of a graph is a bipartition of its vertex set in
which the number of vertices in the two parts differ by at most one, and
the size of the bisection is the number of edges which go across the two
parts.

Every graph with m edges has a bisection of size at least �m/2
, and
this bound is sharp for infinitely many graphs. Therefore, Gutin and Yeo
considered the parameterized complexity of deciding whether an input
graph with m edges has a bisection of size at least �m/2
+ k, where k is
the parameter. They showed fixed-parameter tractability of this problem,
and gave a kernel with O(k2) vertices.

Here, we improve the kernel size to O(k) vertices. Under the Exponen-
tial Time Hypothesis, this result is best possible up to constant factors.

1 Introduction

A bisection of a graph is a bipartition of its vertex set in which the number
of vertices in the two parts differ by at most one, and its size is the number
of edges which go across the two parts. We are interested in finding bisections
of maximum size in a given graph, which is known as the Max-Bisection

problem. This problem is NP-hard by a simple reduction from the Max-Cut

problem. On the other hand, there is a simple randomized polynomial-time pro-
cedure [1] that finds in any m-edge graph a bisection of size at least �m/2�,
and there are graphs (such as stars) for which this bound cannot be improved.
Therefore, interest arose in the study of the problem Max-Bisection Above

Tight Lower Bound (orMax-Bisection ATLB for short), where we seek a
bisection of size at least m/2 + k when given an m-edge graph G together with
an integer k ∈ N. The NP-hardness of Max-Bisection ATLB follows from the
NP-hardness ofMax-Bisection. On the positive side, Gutin and Yeo [1] showed
that Max-Bisection ATLB is fixed-parameter tractable, that is, pairs (G, k)
can be decided in time f(k) · nO(1) for some function f dependent only on k,
where n is the number of vertices of G. Fixed-parameter tractability directly im-
plies the existence of a kernelization [2], which is a polynomial-time algorithm
that efficiently compresses instances (G, k) to equivalent instances (G′, k′) (the
� Supported by NSF grants CCF-1115849 and CCF-0829878, and by ONR grants
N00014-11-1-0053 and N00014-09-1-0326.
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kernel) of size |G′|+ k′ ≤ g(k) for some function g dependent only on k. Gutin
and Yeo’s fixed-parameter tractability result [1] is based on proving a kernel
with O(k2) vertices.
Here we improve their kernel as follows.

Theorem 1. Max-Bisection ATLB admits a kernel with at most 16k vertices.

We observe that the number of vertices in our kernel is asymptotically optimal,
assuming the Exponential Time Hypothesis introduced by Impagliazzo et al.[3].
The hypothesis implies that a large family of NP-complete problems cannot be
solved in subexponential time, including the Max-Cut problem. In the Max-

Cut problem the goal is to find any bipartition of the vertices (not necessarily
balanced as in the bisection case) that maximizes the number of edges crossing
it. The Max-Cut problem on a graph G = (V,E) can easily be reduced to the
maximum bisection problem by adding |V | additional isolated vertices to G to
obtain G′, and solving the bisection problem in G′. Clearly, the maximum bisec-
tion in G′ induces a bipartition of the vertices in G that solves the Max-Cut

problem. Now notice that a kernel for theMax-Bisection ATLB problem with
o(k) vertices, would imply that we could solve theMax-Bisection ATLB prob-
lem in 2o(k) time by checking all bisections of the kernel. By the above relation
to the Max-Cut problem this would yield a subexponential time algorithm for
Max-Cut, contradicting the Exponential Time Hypothesis [4].
We remark that for the Max-Cut problem, deciding the existence of a cut

with sizem/2+k is trivially fixed-parameter tractable, because any graph admits
a cut of size m/2+Ω(

√
m) due to a classical result of Edwards [5,6]. In fact, the

Max-Bisection problem forms an “extremal point” of a series of problems on
α-bisections, which are cuts in which both sides of the bipartition have at least
(1/2−α)n vertices. By a recent result of Lee et al. [7], for every α ∈ [0, 1/6] every
n-vertex graph with m edges and no isolated vertices contains an α-bisection
of size at least m/2 + αn. Thus, deciding the existence of an α-bisection of
size m/2 + k is trivially fixed-parameter tractable for all α ∈ (0, 1/6]. In this
paper we prove an essentially optimal kernel for the extremal case α = 0.
The problemMax-Bisection ATLB is an example of a so-called “above tight

lower bound paramaterization”, where the parameter k is chosen as the excess of
the solution value of the given instance over a non-trivial tight lower bound on the
solution value in arbitrary instances (here: �m/2�). For many parameterizations
above tight lower bound, it is often not even clear how to solve such problems in
time mk, let alone by a fixed-parameter algorithm in time f(k) ·mO(1) for some
function f dependent only on k. By now, several techniques have been developed
for fixed-parameter algorithms of above tight lower bound parameterizations
of important computational problems, such as Max-r-Sat [8], Max-Lin2 [9],
Permutation-CSPs [10], and Max-Cut [11]; see the survey by Gutin and
Yeo [12]. Most of these techniques are based on probabilistic analysis of carefully
chosen random variables, and they rarely yield kernels of linear size. Here, we
introduce a new technique to establish a linear vertex-kernel forMax-Bisection

ATLB, based on Edmonds-Gallai decompositions of graphs. We believe that this
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technique has the potential to find further applications in establishing linear
kernels for problems parameterized above tight lower bound.

2 Preliminaries

LetG be a loopless undirected graph with vertex set V (G) and edge set E(G). We
allow parallel edges. For each vertex v ∈ V (G), let N(v) = {u ∈ V (G) | {u, v} ∈
E(G)} be the set of neighbors of v. In particular, v �∈ N(v). For a vertex v ∈ V (G)
and a subset U ⊆ V (G), we denote by dU (v) = |{e ∈ E(G) | v ∈ e, e \ {v} ⊆ U}|
the degree of v in U , and write shorthand d(v) = dV (G)(v). Notice that if we
have parallel edges adjacent to v, then d(v) > |N(v)|. Let σ(G) denote the
number of connected components of G. For sets U,W ⊆ V (G), define E(U,W ) =
{{u,w} ∈ E(G) | u ∈ U,w ∈ W} and d(U,W ) = |E(U,W )|. For the special
case of U = {u} and W = {v} being singleton sets, we use the shorthand
d(u,w) = d({u}, {w}). The subgraph of G induced by a subset V ′ ⊆ V (G) is
denoted by G[V ′]. For v ∈ V , we use the shorthand G− v = G[V \ {v}].
For a graph G, a matching is a set M of pairwise non-adjacent edges; the

vertices in V (M) = {v ∈ e | e ∈M} are saturated by M and vertices in V (G)\M
are unsaturated by M . A matching is perfect for G if it saturates every vertex of
G, and G is factor-critical if the graph G−v admits a perfect matching for every
v ∈ V (G). Denote by ν(G) the cardinality of a maximum size matching in G.
For a graph G, an Edmonds-Gallai decomposition [13] is a tuple (X,Y, Z) such

that {X,Y, Z} forms a tripartion of V (G), X is such that for every vertex v ∈ X
the size of a maximum cardinality matching in G − v and G are the same, Y
contains all neighbors ofX in V (G)\X , and Z = V (G)\(X∪Y ). Classical results
on the Edmonds-Gallai decomposition imply that every connected component
of G[X ] is factor-critical, every component of G[Z] admits a perfect matching,

and furthermore ν(G) = n−σ(G[X])+|Y |
2 .

3 Proof of Theorem 1

In this section we prove our main result, Theorem 1.
LetG be a loopless undirected graph with n = |V (G)| vertices andm = |E(G)|

edges, and let k ≥ 0 be an integer. An important ingredient that we use to
bound the size of the kernel is the following well-known fact, showing that large
matchings lead to large bisections.

Proposition 1 ([14]). Let G be a graph and M be a matching in G; then G has
a bisection of size at least �m/2�+ �|M |/2� and such can be found in O(m+ n)
time.

Another important fact, that will prove to be useful in our reduction to obtain
a small kernel, is that whenever there is a large set of vertices with the same
neighbors (and same number of parallel edges to the neighbors), the problem
can be reduced to a smaller one. This is a straightforward generalization of a
reduction used by Gutin and Yeo [1].
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Lemma 1 (straightforward extension of a result in [1]). Let G be a loop-
less undirected graph with a set I ⊆ V (G) of size �n/2+ j� for some j > 0 such
that d(u,w) = d(v, w) for all u, v ∈ I and w ∈ V (G). Then G has a bisection of
size �|E(G)|/2�+ k if and only if the graph G′ obtained from G by removing 2j
arbitrary vertices of I has a bisection of size �E(G′)/2�+ k.

The above lemma can easily be seen to be true by observing that any balanced
bipartition (V1, V2) of V must satisfy |I ∩ V1| ≥ j and |I ∩ V2| ≥ j, due to the
large size of I and the balancedness of the bipartition (V1, V2). One can then
observe that any balanced bipartition (V1, V2) of V leading to a bisection of size

at least |E(G)|
2 +k can be transformed into a bisection of G′ of size |E(G′)|

2 +k by
removing any j vertices of |I ∩ Vi| from Vi, for i = 1, 2. Similarly, any bisection

(V ′
1 , V

′
2) of G

′ of size at least |E(G′)|
2 + k can be completed to a bisection (V1, V2)

of G of size |E(G)|
2 +k by adding any j vertices of V (G)\V (G′) to V1 to obtain V

′
1 ,

and the remaining vertices of V (G) \ V (G′) to V2 to obtain V ′
2 .

From now on, we assume that ν(G) < 2k, since otherwise there is a bisection
of size m/2 + k due to Proposition 1, and such can be found efficiently through
a simple randomized switching argument that can be derandomized through
conditional expectations. (Details of such a derandomization in a similar setting
are given by Ries and Zenklusen [15].) Furthermore, we assume that G does not
contain any large set I ⊆ V as defined in Lemma 1, for otherwise we could apply
Lemma 1 to reduce the size of the graph.
Let (X,Y, Z) be a Gallai-Edmonds decomposition of G. As a reminder, G[X ]

consists of factor-critical components, Y are all neighbors of X , and G[Z] admits

a perfect matching. Furthermore, ν(G) = n−σ(G[X])+|Y |
2 .

We partition X into sets X0, X1, X2, defined as

X0 = {v ∈ X | d(v) = 0},
X1 = {v ∈ X | dX(v) = 0} \X0,

X2 = {v ∈ X | dX(v) ≥ 1}.

Hence, G[X2] contains all connected components of G[X ] with more than one
vertex. Notice that since these components are factor-critical, each of them has
size at least 3.

Lemma 2. We have |X2|/3 + |Y |+ |Z|/2 < 2k.

Proof. Consider a maximum matchingM ⊆ E(G) in G. It is a well-known prop-
erty of the Gallai-Edmonds decomposition [13] that M saturates all vertices
in Y ∪ Z. More precisely, M can be partitioned into M = MX "MY " MZ ,
where MX are the edges of M having both endpoints in X , MY are the edges
of M having one endpoint in Y , and MZ are the edges of M having both end-
points in Z. Furthermore,MZ is a perfect matching in G[Z], and all edges ofMY

connect a vertex of Y with one of X . Additionally, in each connected compo-
nent G[X ′] of G[X ], the edges ofMX with both endpoints in X ′ saturate all but
one vertex of X ′. Observe that X2 are precisely those vertices in X that belong
to connected components of G[X ] of size at least 3. Hence,
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|MX | ≥ |X2|/3,

because the number of edges |MX | is minimized when all vertices in X2 are in
connected components of size precisely 3. This is the case since in a connected
component of G[X ] of size 2p + 1 ≥ 3 (whose size must be odd since G[X ] is
factor-critical), the ratio between number of vertices and matching edges between
them is p

2p+1 , and this ratio is minimized for p = 1.

Furthermore, |MY | = |Y | and |MZ | = |Z|/2. Thus

|M | = |MX |+ |MY |+ |MZ | ≥ |X2|/3 + |Y |+ |Z|/2.

Since |M | < 2k (by assumption there is no matching of size ≥ 2k), the result
follows. ��

Our key technique to show that |V (G)| ≤ 16k is a generalized version of the ran-
domized argument used to show that a large matching leads to a large bisection.
We replace the role of a matching by what we call switching units on V (G). A
switching unit is a tuple (A,B) with A,B ⊆ V (G), A∩B = ∅ and |A| = |B|. We
will construct a switching family (Ai, Bi)i, which is a collection of mutually dis-
joint switching units, i.e., (Ai∪Bi)∩(Aj∪Bj) = ∅ for i �= j. Any switching family
can be used to define a random bisection (V1, V2) of V (G) by randomly and in-
dependently assigning the vertices of each switching unit (Ai, Bi) to the sets
V1, V2 as follows: with probability 1/2 assign the vertices of Ai to V1 (Ai ⊆ V1)
and the vertices of Bi to V2 (Bi ⊆ V2), otherwise set Ai ⊆ V2 and Bi ⊆ V1.

Furthermore, for all remaining vertices Ṽ = V (G) \
⋃

i(Ai ∪Bi), i.e., all vertices

not part of any switching unit, we pick uniformly at random a bisection (Ṽ1, Ṽ2)

of Ṽ , and assign all vertices in Ṽ1 to V1 and all vertices of Ṽ2 to V2. We call
the thus obtained random bisection (V1, V2) a random bisection corresponding
to the switching family (Ai, Bi)i.
To compute the expected number of edges E[d(V1, V2)] in the random bisection

(V1, V2) corresponding to (Ai, Bi)i, we observe that all edges not having both
endpoints in the same switching set Ai ∪ Bi are in the bisection (V1, V2) with
probability at least 1/2. (Notice that this probability can indeed be strictly larger
than 1/2, e.g., when considering a graph consisting of two vertices connected by
a single edge, then this edge will be in the bisection with probability one.) It
remains to consider for each switching unit (Ai, Bi) its contribution to d(V1, V2).
Notice that this contribution is deterministic and equals d(Ai, Bi).
Since we are interested in how much E[d(V1, V2)] exceeds the tight lower

bound m/2, we introduce the excess ex(Ai, Bi) of the switching unit (Ai, Bi) as
follows:

ex(Ai, Bi) = 2d(Ai, Bi)− d(Ai ∪Bi, Ai ∪Bi)

= d(Ai, Bi)− d(Ai, Ai)− d(Bi, Bi) .

In words, the excess of (Ai, Bi) is the difference between the number of edges
in G[Ai ∪ Bi] crossing the bisection (Ai, Bi) and those who do not. Using the
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notion of excess, we can express the expected number of edges in the random
bisection (V1, V2) by

E[d(V1, V2)] ≥
m

2
+
1

2

∑
i

ex(Ai, Bi), (1)

because every edge is in the bisection with probability at least 1/2, except for
edges e with both endpoints in one switching unit (Ai, Bi), in which case e is
in the bisection if e ∈ E(Ai, Bi) and e is not in the bisection if e ∈ E(Ai, Ai) ∪
E(Bi, Bi).
In the following, we describe a way to construct a switching family (Ai, Bi)i

with a high total excess
∑

i ex(Ai, Bi). Let Y = {y1, . . . , y�}. We start by con-
structing iteratively for each i = 1, . . . , 	 a switching unit (Ai, Bi), which might
be chosen to be (∅, ∅). Assume that we already constructed switching units
(A1, B1), . . . , (Ai−1, Bi−1). Let

Ni = X1 \
i−1⋃
j=1

(Aj ∪Bj),

where N1 = X1. Consider the partition of Ni into sets N
0
i , N

1
i , . . . , where

N j
i = {v ∈ Ni | d(yi, v) = j}.

If Ni = N j
i for some j ∈ Z+, we set Ai = Bi = ∅. Otherwise, we start by

assigning yi to Ai and we choose any element v ∈ Ni \N0
i that we assign to Bi.

Then, as long as there is an unassigned pair (u, v) ∈ Ni ×Ni with u ∈ N j1
i and

v ∈ N j2
i , where j1 < j2, we assign u to Ai and v to Bi. Clearly, at the end of

this procedure, all elements in Ni \ (Ai ∪Bi) belong to a single group N j
i . The

key observation is that for every pair u ∈ N j1
i , v ∈ N j2

i with j1 < j2 that we
add, ex(Ai, Bi) increases by at least one unit because v has at least one more
edge adjacent to yi than u has. Furthermore, also the assignment at the start
of yi to Ai and of an arbitrarily chosen vertex v ∈ Ni\N0

i to Bi creates an excess
of at least one unit. Thus, for each i ∈ {1, . . . , 	}, the switching unit (Ai, Bi)
satisfies the following properties:

(a) ex(Ai, Bi) ≥ |Ai∪Bi|/2, since any added pair of vertices increases the excess
by at least one unit, and

(b) d(yi, v) = d(yi, u) for any u, v ∈ Ni, since otherwise another pair of vertices
could have been added to the switching unit (Ai, Bi).

The switching units (Ai, Bi) with i ∈ {1, . . . , 	} are completed by adding switch-
ing units corresponding to a perfect matching MZ of G[Z] and a maximum
matching MX2 in G[X2], i.e., for each {u, v} ∈ MZ ∪ MX2 , we construct a
switching unit ({u}, {v}). These trivial switching units together with the ones
constructed above complete the construction of our switching family, which we
denote by (Ai, Bi).
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We first provide a lower bound for E[d(V1, V2)]. Let X̃1 = X1 \
⋃�

i=1(Ai ∪Bi).

Lemma 3. It holds that E[d(V1, V2)] ≥ m
2 +

1
4

(
|X1 \ X̃1|+ |Z|

)
+ 1

6 |X2|.

Proof. Using (1), we have E[d(V1, V2)] ≥ m
2 +

1
2

∑
i ex(Ai, Bi). We recall that the

sum
∑

i ex(Ai, Bi) is composed of three types of terms

∑
i

ex(Ai, Bi) =

�∑
i=1

ex(Ai, Bi) +
∑

{u,v}∈MZ

ex({u}, {v}) +
∑

{u,v}∈MX2

ex({u}, {v}),

(2)
where (Ai, Bi) for i ∈ {1, . . . , 	} are the iteratively constructed switching units,
the second term corresponds to switching units stemming from a perfect match-
ing MZ in G[Z], and the third term corresponds to switching units stemming
from a maximum matching MX2 in G[X2].

Consider the first term of (2). By property (a), we have ex(Ai, Bi) ≥ |Ai∪Bi|
2

for i ∈ {1, . . . , 	}. Since
⋃�

i=1(Ai ∪ Bi) contains all edges of X1 \ X̃1 (together
with some additional vertices of Y ), we obtain

�∑
i=1

ex(Ai, Bi) ≥
1

2
|X1 \ X̃1| . (3)

Now consider the second and third term of (2). Since MZ is a perfect matching

over G[Z], we have |MZ | ≥ |Z|
2 . Furthermore, since each connected component

of G[X2] is factor-critical and has size at least 3, we have |MX2 | ≥
|X2|
3 . Notice

that ex({u}, {v}) ≥ 1, and the inequality can be strict in case of parallel edges
between u and v. Hence ∑

{u,v}∈MZ

ex({u}, {v}) ≥ |Z|
2

,

∑
{u,v}∈MX2

ex({u}, {v}) ≥ |X2|
3

.

Combining the above inequalities with (3) and (2) and using E[d(V1, V2)] ≥
m
2 +

1
2

∑
i ex(Ai, Bi), the desired result is obtained. ��

The next step is to show that not both X̃1 and X0 can have a large size. For
this we start with the following observation that follows immediately from prop-
erty (b) of our iterative way to define the switching sets (Ai, Bi) for i ∈ {1, . . . , 	}.

Proposition 2. All vertices in X̃1 have the same neighborhood structure, i.e.,
for any u, v ∈ X̃1 and w ∈ V (G), we have d(u,w) = d(v, w).

Lemma 4. If |X̃1| ≥ 2k and |X0| ≥ 2k − 1 then G has a bisection of G of size
at least m/2 + k, and such can be found efficiently.



Bisections above Tight Lower Bounds 191

Proof. Assume |X̃1| ≥ 2k and |X0| ≥ 2k − 1. Consider the following switching
unit (A,B). Let v ∈ N(u) for an arbitrary u ∈ X̃1. Notice that the choice of u
does not matter due to Proposition 2, and v ∈ Y . Observe further that N(u) �= ∅,
since any element u ∈ X̃1 ⊆ X1 has at least one neighbor in Y , as otherwise
it would belong to X0. Let A = {v} ∪ X ′

0, where X ′
0 ⊆ X0 is any set with

|X ′
0| = 2k− 1, and let B = X̃ ′

1 where X̃
′
1 ⊆ X̃1 is any set with |X̃ ′

1| = 2k. Notice
that since all elements of B have the same neighborhood because B ⊆ X̃1, there
is an edge between any vertex of B and v.
Instead of considering a random bisection using the switching units (Ai, Bi)i,

consider a random bisection (VA, VB) corresponding to the single switching
unit (A,B). Notice that G[A ∪ B] is a bipartite graph with bipartition {A,B}.
Hence, ex(A,B) is equal to the number of edges in E(G) with both endpoints
in A∪B. Since each edge of B is connected to v ∈ A, we have ex(A,B) ≥ |B| =
2k. By (1) we thus obtain

E[d(VA, VB)] ≥
m

2
+

ex(A,B)

2
≥ m

2
+ k .

A bisection of size at leastm/2+k can then be found efficiently through standard
derandomization arguments using conditional expectations. ��

We are now ready to combine all ingredients to obtain a kernel of size at most
16k. To obtain the desired kernel, we first repeatedly apply Lemma 1 to reduce
the given graph as long as the conditions of Lemma 1 are fulfilled, i.e., as long as
there are large vertex sets with the same neighborhood structure. After that, if
we can either apply Proposition 1, Lemma 4, or if the switching family (Ai, Bi)i
leads to a random bisection (V1, V2) with E[d(V1, V2)] ≥ m

2 + k, then we can
obtain a large bisection with ≥ m

2 + k edges. The remaining case, when none of
these results leads to a large bisection, is covered by the following theorem.

Theorem 2. Let G be a loopless graph on m edges and let k ∈ N. Then either

– G has at most 16k vertices, or
– we can reduce G to a graph G′ on m′ < m edges such that G has a bisection

of size at least m/2 + k if and only if G′ has a bisection of size at least
m′/2 + k, or

– G has a bisection of size at least m/2 + k that we can find efficiently.

Proof. First, suppose that G satisfies one of the following properties.

(i) If ν(G) ≥ 2k then we obtain a bisection of G of size at least m
2 + k by

Proposition 1.

(ii) If |X0| > |V (G)|
2 then we can apply Lemma 1 to the vertices in X0 to reduce

the graph G, since all vertices in X0 have the same neighborhood structure.

(iii) If |X̃1| > |V (G)|
2 then we can apply Lemma 1 to the vertices in X̃1, since all

these vertices have the same neighborhood structure due to Proposition 2.
(iv) If min{|X0|, |X̃1|} ≥ 2k then Lemma 4 implies that there is a bisection of

size at least m/2 + k in G.
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(v) If the random bisection (V1, V2) corresponding to the switching family
(Ai, Bi)i satisfies E[d(V1, V2)] ≥ m

2 + k then a standard derandomization
as given by Ries and Zenklusen [15] leads to a bisection of size at least
m/2 + k in G.

Second, suppose that G satisfies none of the conditions (i)–(v); we show that
|V (G)| ≤ 16k. By assumption, (v) does not hold, and so by Lemma 3 we have

m

2
+ k > E[d(V1, V2)] ≥

m

2
+
1

4
(|X1 \ X̃1|+ |Z|) +

1

6
|X2|,

implying

4k > |X1 \ X̃1|+ |Z|+
2

3
|X2| . (4)

Hence, we obtain

|V (G)| = |X0|+ |X1|+ |X2|+ |Y |+ |Z|

= |X1 \ X̃1|+ |Z|+
2

3
|X2|︸ ︷︷ ︸

<4k by (4)

+
1

3
|X2|+ |Y |︸ ︷︷ ︸

<2k by Lemma 2

+ |X0|+ |X̃1|

< 6k + |X0|+ |X̃1|
= 6k +min{|X0|, |X̃1|}︸ ︷︷ ︸

<2k by (iv)

+ max{|X0|, |X̃1|}︸ ︷︷ ︸
≤ |V |

2 by (ii) and (iii)

< 8k +
|V (G)|
2

.

Therefore, |V (G)| < 16k. ��

Finally, as mentioned above, Theorem 1 is a direct consequence of Theorem 2.

4 Discussion

Our main result in this paper is a linear vertex-kernel for the Max-Bisection

ATLB problem. Recently, Lee et al. [7] showed that for every α ∈ [0, 1/6], every
n-vertex graph with m edges and no isolated vertices contains an α-bisection of
size at least m/2+αn, where each side of the bipartition has at least (1/2−α)n
vertices. Thus, a natural problem to study is Max-α-Bisection ATLB for
every α ∈ [0, 1/6], where we wish to decide the existence of an α-bisection of
size at least m/2+αn+ k in a given n-vertex m-edge graph. We conjecture this
problem to be fixed-parameter tractable and admit a polynomial-size kernel.

Acknowledgment. We are grateful to the referees for their helpful suggestions
and comments.
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Abstract. We study parameterized complexity of a generalization of the classi-
cal FEEDBACK VERTEX SET problem, namely the GROUP FEEDBACK VERTEX

SET problem: we are given a graph G with edges labeled with group elements,
and the goal is to compute the smallest set of vertices that hits all cycles of G that
evaluate to a non-null element of the group. This problem generalizes not only
FEEDBACK VERTEX SET, but also SUBSET FEEDBACK VERTEX SET, MULTI-
WAY CUT and ODD CYCLE TRANSVERSAL. Completing the results of Guillemot
[Discr. Opt. 2011], we provide a fixed-parameter algorithm for the parameteriza-
tion by the size of the cutset only. Our algorithm works even if the group is given
as a blackbox performing group operations.

1 Introduction

The parameterized complexity is an approach for tackling NP-hard problems by de-
signing algorithms that perform well, when the instance is in some sense simple; its
difficulty is measured by an integer, called the parameter, additionally appended to the
input. Formally, we say that a problem is fixed-parameter tractable (FPT), if it admits
an algorithm that given input of length n and parameter k, resolves the task in time
f(k)nc, where f is some computable function and c is a constant independent of the
parameter.

The search for fixed-parameter algorithms led to the development of a number of
new techniques and gave valuable insight into structures of many classes of NP-hard
problems. Among them, there is a family of so-called graph cut problems, where the
goal is to delete as few as possible edges or vertices (depending on the variant) in order
to make the graph satisfy a global separation requirement. This class is perhaps best
represented by the classical FEEDBACK VERTEX SET problem (FVS) where, given an
undirected graph G, we seek for a minimum set of vertices that hits all cycles of G.
Other examples are MULTIWAY CUT (MWC: separate each pair from a given set of
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terminals in a graph with a minimum cutset) or ODD CYCLE TRANSVERSAL (OCT:
make a graph bipartite by a minimum number of vertex deletions).

The research on the aforementioned problems had a great impact on the development
of parameterized complexity. The long line of research concerning parameterized algo-
rithms for FVS contains [1,2,3,4,10,11,12,14,15,20], leading to an algorithm working
in O(3knO(1)) time [7]. The search for a polynomial kernel for FVS lead to surprising
applications of deep combinatorial results such as the Gallai’s theorem [23], which has
also been found useful in designing FPT algorithms [9]. While investigating the graph
cut problems such as MWC, Márx [18] introduced the important separator technique,
which turned out to be very robust and is now the key ingredient in parameterized al-
gorithms for various problems such as variants of FVS [5,9] or ALMOST 2-SAT [21].
Moreover, the recent developments on MWC show applicability of linear programming
in parameterized complexity, leading to the fastest currently known algorithms not only
for MWC, but also ALMOST 2-SAT and OCT [8,19]. Last but not least, the research
on the OCT problem resulted in the introduction of iterative compression, a simple yet
powerful technique for designing parameterized algorithms [22].

Considered problem. In this paper we study a generalization of the FVS problem,
namely GROUP FEEDBACK VERTEX SET1. Let Σ be a finite (not necessarily abelian)
group, with unit element 1Σ . We use the multiplicative convention for denoting the
group operation.

Definition 1. For a finite group Σ, a directed graph G = (V,A) and a labeling func-
tion Λ : A→ Σ, we call (G,Λ) a Σ-labeled graph iff for each arc (u, v) ∈ A we have
(v, u) ∈ A and Λ((u, v)) = Λ((v, u))−1.

We somehow abuse the notation and by (G \X,Λ) denote the Σ-labeled graph (G,Λ)
with vertices of X removed, even though formally Λ has in its domain arcs that do not
exist in G \X .

For a path2 P = (v1, . . . , v�) we denote Λ(P ) = Λ((v1, v2)) · . . . · Λ((v�−1, v�)).
Similarly, for a cycle C = (v1, . . . , v�, v1) we denote Λ(C) = Λ((v1, v2)) · . . . ·
Λ((v�−1, v�)) · Λ((v�, v1)). We call a cycle C a non-null cycle, iff Λ(C) �= 1Σ . Ob-
serve that if the group Σ is non-abelian, then it may happen that cyclic shifts of the
same cycle yield different elements of the group; nevertheless, the notion of a non-null
cycle is well-defined, as either all of them are equal to 1Σ or none of them.

Lemma 2. Assume that (x1, . . . , x�, x1) is a cycle in a Σ-labeled graph (G,Λ). If
Λ((x1, . . . , x�, x1)) �= 1Σ , then Λ((x2, . . . , x�, x1, x2)) �= 1Σ .

Proof. Let g1 = Λ((x1, x2)) and g2 = Λ((x2, . . . , x�, x1)). We have that g1 · g2 = 1Σ
iff g2 · g1 = 1Σ and the lemma follows. ��

In the GROUP FEEDBACK VERTEX SET problem we want to hit all non-null cycles in
a Σ-labeled graph using at most k vertices.

1 In this paper, we follow the notation of Guillemot [13].
2 In this paper, all paths and cycles are simple.
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GROUP FEEDBACK VERTEX SET (GFVS) Parameter: k
Input: A Σ-labeled graph (G,Λ) and an integer k.
Question: Does there exist a set X ⊆ V (G) of at most k vertices, such that there
are no non-null cycles in (G \X,Λ)?

As observed in [13], for a graph excluding a non-null cycle we can define a consistent
labeling.

Definition 3. For a Σ-labeled graph (G,Λ) we call λ : V → Σ a consistent labeling
iff for each arc (u, v) = a ∈ A(G) we have λ(v) = λ(u) · Λ(a).

Lemma 4 ([13]). A Σ-labeled graph (G,Λ) has a consistent labeling iff it does not
contain a non-null cycle. Moreover, there is a polynomial-time algorithm which, given
(G,Λ), finds either a non-null cycle in G or a consistent labeling of G.

Note that when analyzing the complexity of the GFVS problem, it is important how the
group Σ is represented. In [13] it is assumed that Σ is given via its multiplication table
as a part of the input. In this paper we assume a more general model, where operations
in Σ are computed by a given blackbox. More precisely, we assume that we are given
subroutines that can multiply two elements, return an inverse of an element, provide
the neutral element 1Σ , or check whether two elements are equal. The running times of
our algorithms are always measured in terms of basic operations and group operations,
while space complexity is measured in the number of bits and group elements stored.

As noted in [17], GFVS subsumes not only the classical FVS problem, but also
OCT (with Σ = Z2) and MWC (with Σ being an arbitrary group of size not smaller
than the number of terminals). We note that if Σ is given in the blackbox, GROUP

FEEDBACK VERTEX SET subsumes also EDGE SUBSET FEEDBACK VERTEX SET,
which is equivalent to SUBSET FEEDBACK VERTEX SET [9].

EDGE SUBSET FEEDBACK VERTEX SET (ESFVS) Parameter: k
Input: An undirected graph G, a set S ⊆ E(G) and an integer k.
Question: Does there exist a set X ⊆ V (G) of at most k vertices, such that in
G \X there are no cycles with at least one edge from S?

Lemma 5. Given an ESFVS instance (G,S, k), one can in polynomial time construct

an equivalent GFVS instance (G′, Λ, k) with group Σ = Z|S|
2 .

Proof. To construct the new GFVS instance, create the graphG′ by replacing each edge
of G with arcs in both direction, keep the parameter k, take Σ = Z|S|

2 and construct a
Σ-labelingΛ by setting any |S| linearly independent values of Λ((u, v)) for uv ∈ S and
Λ((u, v)) = 1Σ for uv /∈ S. Clearly, this construction can be done in polynomial time
and the operations on the group Σ can be performed by a subroutine in time polynomial
in |S| by representing elements of Σ as bit vectors of length |S|. ��

We note that the GROUP FEEDBACK VERTEX SET problem was also studied from the
graph theoretical point of view, as, in addition to the aforementioned reductions, it also
subsumes the setting of Mader’s S-paths theorem [6,16]. In particular, Kawarabayashi
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and Wollan proved the Erdös-Pósa property for non-null cycles in highly connected
graphs, generalizing a list of previous results [16].

The study of parameterized complexity of GFVS was initiated by Guillemot [13],
who presented a fixed-parameter algorithm for GFVS parameterized by |Σ| + k run-
ning in time3 O∗(2O(k log |Σ|)). When parameterized by k, Guillemot showed a fixed-
parameter algorithm for the easier edge-deletion variant of GFVS, running in time
O∗(2O(k log k)). Very recently, Kratsch and Wahlström presented a randomized kernel-
ization algorithm that reduces the size of a GFVS instance to O(k2|Σ|) [17].

Before we proceed to the description of our results, let us briefly sketch their moti-
vation. The main purpose of studying the GFVS problem is to find the common points
in the fixed-parameter algorithms for problems it generalizes. Precisely this approach
has been presented by Guillemot in [13], where at the base of the algorithm lies a sub-
routine that solves a very general version of MULTIWAY CUT. When reducing various
graph cut problems to GFVS, usually the size of the group depends on the number of
distinguished vertices or edges in the instance, as in Lemma 5. Hence, an application
of the general O∗(2O(k log |Σ|)) algorithm of Guillemot unfortunately incorporates this
parameter in the running time. It appears that by a more refined combinatorial analysis,
usually one can get rid of this dependence; this is the case both in SUBSET FEEDBACK

VERTEX SET [9] and in MULTIWAY CUT [8,19]. This suggested that the phenomenon
can be, in fact, more general.

Our result and techniques. Our main result is a fixed-parameter algorithm for GFVS
parameterized by the size of the cutset only. Recall that time and space complexities
refer to basic and group operations performed, and bits and group elements stored,
respectively.

Theorem 6. GROUP FEEDBACK VERTEX SET can be solved in O∗(2O(k log k)) time
and polynomial space.

Our algorithm uses a similar approach as described by Kratsch and Wahlström in [17]:
in each step of iterative compression, when we are given a solution Z of size k + 1, we
guess the values of a consistent labeling on the vertices of Z , and reduce the problem
to MULTIWAY CUT. However, by a straightforward application of this approach we ob-
tain O∗(2O(k log |Σ|)) time complexity. To reduce the dependency on |Σ|, we carefully
analyze the structure of a solution, provide a few reduction rules in a spirit of the ones
used in the recent algorithm for SUBSET FEEDBACK VERTEX SET [9] and, finally, for
each vertex of Z we reduce the number of choices for a value of a consistent labeling
to polynomial in k. Therefore, the number of reasonable consistent labelings of Z is
bounded by 2O(k log k) and we can afford solving a MULTIWAY CUT instance for each
such labeling.

Note that the bound on the running time of our algorithm matches the currently best
known algorithm for SUBSET FEEDBACK VERTEX SET [9]. Therefore, we obtain the
same running time as in [9] by applying a much more general framework.

3 The O∗() notation suppresses terms polynomial in the input size.
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2 Preliminaries

Notation. We use standard graph notation. For a graphG, byV (G) andE(G)we denote
its vertex and edge sets, respectively. In case of a directed graph G, we denote the arc
set of G by A(G). For v ∈ V (G), its neighborhood NG(v) is defined as NG(v) = {u :
uv ∈ E(G)}, and NG[v] = NG(v) ∪ {v} is the closed neighborhood of v. We extend
this notation to subsets of vertices: NG[X ] =

⋃
v∈X NG[v] and NG(X) = NG[X ]\X .

For a set X ⊆ V (G) by G[X ] we denote the subgraph of G induced by X . For a set X
of vertices or edges of G, by G\X we denote the graph with the vertices or edges of X
removed; in case of vertex removal, we remove also all the incident edges. By somehow
abusing the notation, we often treat the (directed) Σ-labeled graph also as an undirected
graph, as the neighborhood relation in the underlying undirected graph is the same.

In the GROUP FEEDBACK VERTEX SET problem definition in [13] a set of forbidden
vertices F ⊆ V (G) is additionally given as a part of the input. One can easily gadget
such vertices by replacing each of them by a clique of size k + 1 labeled with 1Σ ;
therefore, for the sake of simplicity we assume that all the vertices are allowed.

3 Algorithm

In this section we prove Theorem 6. We proceed with a standard application of the it-
erative compression technique in Section 3.1. In each step of the iterative compression,
we solve a COMPRESSION GROUP FEEDBACK VERTEX SET problem, where we are
given a solution Z of size a bit too large — k + 1 — and we are to find a new solu-
tion disjoint with it. We first prepare the COMPRESSION GROUP FEEDBACK VERTEX

SET instance by untangling it in Section 3.2, in the same manner as it is done in the
kernelization algorithm of [17]. The main step of the algorithm is done in Section 3.3,
where we provide a set of reduction rules that enable us for each vertex v ∈ Z to limit
the number of choices for a value of a consistent labeling on v to polynomial in k. Fi-
nally, we iterate over all O∗(2O(k log k)) remaining labelings of Z and, for each labeling,
reduce the instance to MULTIWAY CUT (Section 3.4).

3.1 Iterative Compression

The first step in the proof of Theorem 6 is a standard technique in the design of pa-
rameterized algorithms, that is, iterative compression, introduced by Reed et al. [22].
Iterative compression was also the first step of the parameterized algorithm for SUBSET

FEEDBACK VERTEX SET [9].
We define a compression problem, where the input additionally contains a feasible

solution Z ⊆ V (G), and we are asked whether there exists a solution of size at most k
which is disjoint with Z .

COMPRESSION GROUP FEEDBACK VERTEX SET (C-GFVS) Parameter: k + |Z|
Input: A Σ-labeled graph (G,Λ), an integer k and a set Z ⊆ V (G), such that
(G \ Z,Λ) has no non-null cycle.
Goal: Find a set X ⊆ V (G) \Z of at most k vertices, such that there is no non-null
cycle in (G \X,Λ) or return NO, if such a set does not exist.
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In Section 3.2 we prove the following lemma providing a parameterized algorithm
for COMPRESSION GROUP FEEDBACK VERTEX SET.

Lemma 7. The COMPRESSION GROUP FEEDBACK VERTEX SET problem can be
solved in O∗(2O(|Z|(log k+log |Z|)) · 2k) time and polynomial space.

Armed with the aforementioned result, we can easily prove Theorem 6.

Proof (of Theorem 6). In the iterative compression approach we start with an empty
solution for an empty graph, and in each of the n steps we add a single vertex both to
a feasible solution and to the graph; we use Lemma 7 to compress the feasible solution
after guessing which vertices of the solution of size at most k+1 should not be removed.

Formally, for a given instance (G = (V,A), Λ, k) let V = {v1, . . . , vn}. For 0 ≤ i ≤
n define Vi = {v1, . . . , vi} (in particular, V0 = ∅) and let Λi be the functionΛ restricted
to the set of arcs Ai = {(u, v) ∈ A : u, v ∈ Vi}. Initially we set X0 = ∅, which is
a solution to the graph (G[V0], Λ0). For each i = 1, . . . , n we set Zi = Xi−1 ∪ {vi},
which is a feasible solution to (G[Vi], Λi) of size at most k+1. If |Zi| ≤ k, then we set
Xi = Zi and continue the inductive process. Otherwise, if |Zi| = k + 1, we guess by
trying all possibilities a subset of vertices Z ′

i ⊆ Zi that is not removed in a solution of
size k to (G[Vi], Λi) and use Lemma 7 for the instance IZ′

i
= (G[Vi\(Zi\Z ′

i)], Λi, k
′ =

|Z ′
i| − 1, Z ′

i). If for each set Z ′
i the algorithm from Lemma 7 returns NO, then there is

no solution for (G[Vi], Λi) and, consequently, there is no solution for (G,Λ). However,
if for some Z ′

i the algorithm from Lemma 7 returns a set X ′
i of size smaller than |Z ′

i|,
then we set Xi = (Zi \ Z ′

i) ∪X ′
i . Since |Xi| = |Zi \ Z ′

i| + |X ′
i| < |Zi| = k + 1, the

set Xi is a solution of size at most k for the instance (Gi, Λi).
Finally, we observe that since (Gn, Λn) = (G,Λ), the set Xn is a solution for the

initial instance (G = (V,A), Λ, k) of GROUP FEEDBACK VERTEX SET. The claimed
bound on the running time follows from the observation that |Zi| ≤ k + 1 for each of
polynomially many steps. ��

At this point a reader might wonder why we do not add an assumption |Z| ≤ k+1 to the
C-GFVS problem definition and parameterize the problem solely by k. The reason for
this is that in Section 3.3 we will solve the C-GFVS problem recursively, sometimes
decreasing the value of k without decreasing the size of Z , and to always work with a
feasible instance of the C-GFVS problem we avoid adding the |Z| ≤ k+1 assumption
to the problem definition.

3.2 Untangling

In order to prove Lemma 7 we use the concept of untangling, previously used by
Kratsch and Wahlström [17]. We transform an instance of C-GFVS to ensure that each
arc (u, v) with both endpoints in V (G) \ Z is labeled 1Σ by Λ.

Definition 8. We call an instance (G = (V,A), Λ, k, Z) of C-GFVS untangled, iff for
each arc (u, v) ∈ A such that u, v ∈ V \ Z we have Λ((u, v)) = 1Σ .
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Moreover, by untangling a labeling Λ around vertex x with a group element g we
mean changing the labeling to Λ′ : A→ Σ, such that for (u, v) = a ∈ A, we have

Λ′(a) =

⎧⎨⎩
g · Λ(a) if u = x;
Λ(a) · g−1 if v = x;
Λ(a) otherwise.

Lemma 9. Let (G = (V,A), Λ) be a Σ-labeled graph, x ∈ V be a vertex of G and let
g ∈ Σ be a group element. For any subset of vertices X ⊆ V the graph (G \ X,Λ)
contains a non-null cycle iff (G \ X,Λ′) contains a non-null cycle, where Λ′ is the
labeling Λ untangled around the vertex x with a group element g.

Proof. The lemma follows from the fact that for any cycle C in G we have Λ(C) = 1Σ
iff Λ′(C) = 1Σ . ��

In Section 3.3 we prove the following lemma.

Lemma 10. The COMPRESSION GROUP FEEDBACK VERTEX SET problem for un-
tangled instances can be solved in O∗(2O(|Z|(log k+log |Z|)) · 2k) time and polynomial
space.

Having Lemmata 9 and 10 we can prove Lemma 7.

Proof (of Lemma 7). Let (G,Λ, k, Z) be an instance of C-GFVS. Since (G \ Z) has
no non-null cycle, by Lemma 4 there is a consistent labeling λ of (G \ Z,Λ).

Let Λ′ be a result of untangling Λ around each vertex v ∈ V (G) \Z with λ(v). Note
that, by associativity of Σ, the order in which we untangle subsequent vertices does not
matter. After all the untangling operations, for an arc a = (u, v) ∈ A(G), such that
u, v ∈ V (G) \ Z , we have Λ′(a) = (λ(u) · Λ(a)) · λ(v)−1 = λ(v) · λ(v)−1 = 1Σ .
Therefore, by Lemma 9 the instance (G,Λ′, k, Z) is an untangled instance of C-GFVS,
which is a YES-instance iff (G,Λ, k, Z) is a YES-instance. Consequently, we can use
Lemma 10 and the claim follows. ��

3.3 Fixing a Labeling on Z

In this section we prove Lemma 10 using the following lemma, which we prove in
Section 3.4.

Lemma 11. Let (G,Λ, k, Z) be an untangled instances of C-GFVS. There is an algo-
rithm which for a given function φ : Z → Σ, finds a set X ⊆ V (G) \ Z of size at most
k, such that there exists a consistent labeling λ : V (G) \X → Σ of (G \X,Λ), where
λ|Z = φ, or checks that such a set X does not exist; the algorithm works in O∗(2k)
time and uses polynomial space.

We could try all (|Σ| + 1)|Z| possible assignments φ and use the algorithm from
Lemma 11. Unfortunately, since |Σ| is not our parameter we cannot iterate over all
such assignments. Therefore, the goal of this section is to show that after some prepro-
cessing, it is enough to consider only 2O(|Z|(log k+log |Z|)) assignments φ; together with
Lemma 11 this suffices to prove Lemma 10.
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Definition 12. Let (G,Λ, k, Z) be an untangled instance of C-GFVS, let z be a vertex
in Z and by Σz denote the set Λ({(z, v) ∈ A(G) : v ∈ V (G) \ Z}).

By a flow graphF (G,Λ,Z, z), we denote the undirected graph (V ′, E′), where V ′ =
(V (G)\Z)∪Σz and E′ = {uv : (u, v) ∈ A(G[V (G)\Z])}∪{gv : (z, v) ∈ A(G), v ∈
V (G) \ Z,Λ((z, v)) = g}.

Less formally, in the flow graph we take the underlying undirected graph ofG[V (G)\Z]
and add a vertex for each group element g ∈ Σz , that is a group element for which there
exists an arc from z to V (G) \ Z labeled with g by Λ. A vertex g ∈ Σz is adjacent to
all the vertices of V (G) \ Z for which there exists an arc going from z, labeled with
g by Λ.

Lemma 13. Let (G,Λ, k, Z) be an untangled instance of C-GFVS. Let H be the flow
graph F (G,Λ,Z, z) for some z ∈ Z . If for some vertex v ∈ V (G) \ Z , in H there are
at least k + 2 paths from v to Σz that are vertex disjoint apart from v, then v belongs
to every solution of C-GFVS.

Proof. Let us assume, that v is not a part of a solution X ⊆ V (G) \Z , where |X | ≤ k.
Then at least 2 out of the k + 2 paths from v to Σz remain in H \X . These two paths
are vertex disjoint apart from v and end in different elements of Σz , so they correspond
to a non-null cycle in G \X , a contradiction. ��

Definition 14. For an untangled instance (G,Λ, k, Z) of C-GFVS by an external path
we denote any path P beginning and ending in Z , but with all internal vertices belong-
ing to V (G) \Z . Moreover, for two distinct vertices z1, z2 ∈ Z by Σ(z1, z2) we denote
the set of all elements g ∈ Σ, for which there exists an external path P from z1 to z2
with Λ(P ) = g.

Note that an arc (z1, z2) for z1, z2 ∈ Z also forms an external path from z1 to z2.

Lemma 15. Let (G,Λ, k, Z) be an untangled instance of C-GFVS. If for each z ∈ Z
and v ∈ V (G) \ Z there are at most k + 1 vertex disjoint paths from v to Σz in
F (G,Λ,Z, z) and for some z1, z2 ∈ Z , z1 �= z2, we have |Σ(z1, z2)| ≥ k3(k+1)2+2,
then there is no solution for (G,Λ, k, Z).

Proof. Let us assume that X ⊆ V (G) \ Z is a solution for (G,Λ, k, Z); in particular,
|X | ≤ k. Let P be a set of external paths from z1 to z2, containing exactly one path P
for each g ∈ Σ(z1, z2) with Λ(P ) = g. Note that the only arcs with non-null labels in
P are possibly the first and the last arc.

By the pigeon-hole principle, there exists a vertex v ∈ X , which belongs to at least
k2(k + 1)2 + 1 paths in P, since otherwise there would be at least two paths in P

disjoint with X , creating a non-null closed walk disjoint with X . Note that existence
of a non-null closed walk disjoint with X is a sufficient proof that X is not a solu-
tion to (G,Λ, k, Z), as it contradicts existence of a consistent labeling, guaranteed by
Lemma 4.

Consider a connected component C of G[V (G) \ Z] to which v belongs. Observe
that there exists a vertex z ∈ {z1, z2} that has at least k(k + 1) + 1 incident arcs going
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to C with pairwise different labels in Λ, since otherwise v would belong to at most
k2(k + 1)2 paths in P.

Let H be the flow graph F (G,Λ,Z, z) and let T ⊆ Σz be the set of labels of arcs
going from z to C; recall that |T | > k(k + 1). Since there is no non-null cycle in
(G \X,Λ), we infer that in H0 = H [C ∪ T ] \ (X ∩C), no two vertices of T belong to
the same connected component. Moreover, as C is connected in G, for each t ∈ T there
exists a path Pt with endpoints v and t in H [C ∪ T ]. Let wt be the closest to t vertex
from X on the path Pt; note that such a vertex always exists, as v ∈ X . As |X | ≤ k
and |T | > k(k + 1), there exists w ∈ X such that w = wt for at least k + 2 elements
t ∈ T . By the definition of the vertices wt and the fact that there are no two vertices
of T in the same connected component of H0, the subpaths of Pt from t to wt for all t
with w = wt are vertex disjoint apart from w. As there are at least k + 2 of them, we
have a contradiction. ��
We are now ready to prove Lemma 10 given Lemma 11.

Proof (of Lemma 10). If there exists a vertex v satisfying the properties of Lemma 13,
we can assume that it has to be a part of the solution; therefore, we can remove the
vertex from the graph and solve the problem for decremented parameter value. Hence,
we assume that for each z ∈ Z and v ∈ V (G)\Z , there are at most k+1 vertex disjoint
paths from v to Σz in F (G,Λ,Z, z). We note that one can compute the number of such
vertex disjoint paths in polynomial time, using a maximum flow algorithm.

By Lemma 15, if there is a pair of vertices z1, z2 ∈ Z with |Σ(z1, z2)| ≥ k3(k +
1)2 + 2, we know that there is no solution. Observe, that one can easily verify the
cardinality of Σ(z1, z2), since the only non-null label arcs on paths contributing to
Σ(z1, z2) are the first and the last one, and we can iterate over all such arcs and check
whether their endpoints are in the same connected component in G[V (G) \Z]. Clearly,
this can be done in polynomial time.

Knowing that the sets Σ(z1, z2) have sizes bounded by a function of k, we can
enumerate all the reasonable labelings of Z . For the sake of analysis let G′ = (Z,E′)
be an auxiliary undirected graph, where two vertices of Z are adjacent, when they are
connected by an external path in G \ X , for some fixed solution X ⊆ V (G) \ Z . Let
F be any spanning forest of G′. Since F has at most |Z| − 1 edges, we can guess F ,
by trying at most |Z| · |Z|2(|Z|−1) possibilities. Let us assume, that we have guessed
F correctly. Observe that for any two vertices z1, z2 ∈ Z , belonging to two different
connected components of F , there is no path between z1 and z2 in G \ X . Therefore,
there exists a consistent labeling of G \X , which labels an arbitrary vertex from each
connected component of F with 1Σ . Having fixed the labeling on one vertex from each
component of F , we can root the components in corresponding vertices and iteratively
guess the labeling on the remaining vertices in a top-down manner. At each step we
use the fact that if we have already fixed a value φ(z1), then for each external path
corresponding to an edge z1z2 of F , there are at most k3(k + 1)2 + 1 possible values
of φ(z2), since φ−1(z1) · φ(z2) ∈ Σ(z1, z2). Hence, having fixed F there are at most
2O(|Z| log k) possible labelings φ of Z , as for each edge of the forest F we choose one
of at most k3(k + 1)2 + 1 options. As the number of choices of F is bounded by
2O(|Z| log |Z|), we obtain at most 2O(|Z|(log k+log |Z|)) labelings φ of Z in total, and we
can use Lemma 11 for each of them. ��
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3.4 Reduction to Multiway Cut

In this section, we prove Lemma 11, by a reduction to MULTIWAY CUT. A similar
reduction was also used recently by Kratsch and Wahlström in the kernelization algo-
rithm for GROUP FEEDBACK VERTEX SET parameterized by k with constant |Σ| [17].
Currently the fastest FPT algorithm for MULTIWAY CUT is due to Cygan et al. [8], and
it solves the problem in O∗(2k) time and polynomial space.

MULTIWAY CUT Parameter: k
Input: An undirected graph G = (V,E), a set of terminals T ⊆ V , and a positive
integer k.
Goal: Find a set X ⊆ V \ T , such that |X | ≤ k and no pair of terminals from the
set T is contained in one connected component of the graph G[V \ X ], or return
NO if such a set X does not exist.

Proof (of Lemma 11). Firstly, we check whether the given function φ satisfies φ(z2) =
φ(z1) · Λ((z1, z2)), for each arc (z1, z2) ∈ G[Z], since otherwise there is no set X we
are looking for.

Given a Σ-labeled graph (G,Λ), a set Z , an integer k, and a function φ : Z → Σ, we
create an undirected graphG′ = (V ′, E′). As the vertex set, we set V ′ = (V (G)\Z)∪T
and T = {g : (u, v) ∈ A(G), u ∈ Z, v ∈ V (G)\Z, φ(u)·Λ((u, v)) = g}. Note that in
the set T there are exactly these elements ofΣ, which are potential values of a consistent
labeling of (G,Λ) that matches φ on Z . As the edge set, we set E′ = {uv : (u, v) ∈
A(G[V (G)\Z])}∪{gv : (u, v) ∈ A(G), u ∈ Z, v ∈ V (G)\Z, φ(u)·Λ((u, v)) = g}.
We show that (G′, T, k) is a YES-instance of MULTIWAY CUT iff there exists a set
X ⊆ V (G) \ Z , such that there exists a consistent labeling λ of (G \ X,Λ) with
λ|Z = φ.

Let X be solution for (G′, T, k). We define a consistent labeling λ of (G\X,Λ). For
v ∈ Z we set λ(v) = φ(v). For v ∈ (V (G) \ Z) \X , if v is reachable from a terminal
g ∈ T in G′ \X , we set λ(v) = g. If v ∈ (V (G) \ Z) \X is not reachable from any
terminal in G′, we set λ(v) = 1Σ . Since each arc in A(G[V (G) \ Z]) is labeled 1Σ by
Λ, and each vertex in V (G) \ Z is reachable from at most one terminal in G′ \X , λ is
a consistent labeling of (G \X,Λ).

Let X ⊆ V (G) \Z be a set of vertices of G, |X | ≤ k, such that there is a consistent
labeling λ of (G \ X,Λ), where λ|Z = φ. By the definition of edges between T and
V (G) \Z in G′, each vertex of V (G) \Z is reachable from at most one terminal in G′,
since otherwise λ would not be a consistent labeling of (G \ X,λ). Therefore, X is a
solution for (G′, T, k).

We can now apply the algorithm for MULTIWAY CUT of [8] to the instance (G′, T, k)
in order to conclude the proof. ��

4 Conclusions and Open Problems

We have shown a relatively simple fixed-parameter algorithm for GROUP FEEDBACK

VERTEX SET running in time O∗(2O(k log k)). Our algorithm works even in a robust
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blackbox model, that allows us to generalize the recent algorithm for SUBSET FEED-
BACK VERTEX SET [9] within the same complexity bound.

We would like to note that if we represent group elements by strings consisting g and
g−1 for g ∈ Λ(A(G)) (formally, we perform the computations in the free group over
generators corresponding to the arcs of the graph), then after slight modifications of our
algorithm we can solve the GROUP FEEDBACK VERTEX SET problem even for infinite
groups for which the word problem, i.e., the problem of checking whether results of
two sequences of multiplications are equal, is polynomial-time solvable. The lengths
of representations of group elements created during the computation can be bounded
linearly in the size of the input graph. Therefore, if a group admits a polynomial-time
algorithm solving the word problem, then we can use this algorithm as the blackbox.

Both our algorithm and the algorithm for SUBSET FEEDBACK VERTEX SET of [9]
seems hard to speed up to time complexity O∗(2O(k)). Can these problems be solved
in O∗(2O(k)) time, or can we prove that such a result would violate Exponential Time
Hypothesis?

Acknowledgements. We thank Stefan Kratsch and Magnus Wahlström for inspiring
discussions on graph separation problems and for drawing our attention to the GROUP

FEEDBACK VERTEX SET problem.
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Abstract. Graph spanners are sparse subgraphs that preserve the dis-
tances of the original graph, up to some small multiplicative factor or ad-
ditive term (known as the stretch of the spanner). A number of algorithms
are known for constructing sparse spanners with small multiplicative or
additive stretch. Recently, the problem of constructing fault-tolerant mul-
tiplicative spanners for general graphs was given some algorithms. This
paper addresses the analogous problem of constructing fault tolerant ad-
ditive spanners for general graphs.

We establish the following general result. Given an n-vertex graph G,
if H1 is an ordinary additive spanner for G with additive stretch α, and
H2 is a fault tolerant multiplicative spanner for G, resilient against up
to f edge failures, with multiplicative stretch μ, then H = H1 ∪ H2 is
an additive fault tolerant spanner of G, resilient against up to f edge
failures, with additive stretch O(f̃(α + μ)) where f̃ is the number of
failures that have actually occurred (f̃ ≤ f).

This allows us to derive a poly-time algorithm Span
f−t
add for construct-

ing an additive fault tolerant spanner H of G, relying on the existence
of algorithms for constructing fault tolerant multiplicative spanners and
(ordinary) additive spanners. In particular, based on some known span-
ner construction algorithms, we show how to construct for any n-vertex
graph G an additive fault tolerant spanner with additive stretch O(f̃)
and size O(fn4/3).

1 Introduction

1.1 Background and Motivation

The concept of spanners is a generalization of the notion of spanning trees. A
spanner of a given graph is a subgraph that faithfully preserves the distances
of the original graph. Two widely studied types of spanners are multiplicative
spanners and additive spanners. A multiplicative spanner of the graph G is a
subgraph H that preserves the distances between any two vertices in G up to a
constant multiplicative factor (referred to as the stretch of the spanner), whereas
an additive spanner of G preserves distances up to a constant additive term.
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More formally, a subgraph H = (V,EH) is a μ-multiplicative spanner of the
graph G = (V,EG) if EH ⊆ EG and dist(u, v,H) ≤ μ · dist(u, v,G) for every
u, v ∈ V , where dist(u, v,G′) for a graph G′ is the distance between u and v in
G′. Similarly, a subgraph H = (V,EH) is an α-additive spanner of the graph
G = (V,EG) if EH ⊆ EG and dist(u, v,H) ≤ dist(u, v,G)+α for every u, v ∈ V .
Additive spanners provide, in some sense, a much stronger guarantee than

multiplicative ones, especially when dealing with long routes, because the penalty
in taking the alternative route offered by the spanner is not proportional to the
length of the original one, but bounded by a fixed term. Clearly any graph is
a 1-multiplicative spanner and a 0-additive spanner of itself, so usually we are
interested in computing spanners that are compact in the number of edges.
This paper considers settings in which the underlying graph G may occa-

sionally suffer edge failures. In such settings, we are interested in fault tolerant
spanners, both in the case of multiplicative and in the case of additive. These are
spanners that keep the locality properties even after a number of faults occur.
This robustness is important in systems that are prone to local malfunctions,
like for example broken links in communication networks.
We say that a subgraph H = (V,EH) is a (μ, f)-multiplicative fault tolerant

spanner of the graph G = (V,EG) if for every F = {e1, . . . , ef} ⊆ EG and
u, v ∈ V , dist(u, v,H \ F ) ≤ μ · dist(u, v,G \ F ).
Analogously, we define the notion of additive fault tolerant spanners as follows.

A subgraph H = (V,EH) is an (α, f)-additive fault tolerant spanner of graph
G = (V,EG) if for every F = {e1, . . . , ef} ⊆ EG and u, v ∈ V , dist(u, v,H \F ) ≤
dist(u, v,G \ F ) + α.
Fault tolerant spanners were first considered by Levcopoulos, Narasimhan and

Smid [11] in the context of geometric graphs (where the nodes are assumed to be
in the Euclidean space and the distance between every two nodes is the Euclidean
distance between them). Levcopoulos et al. [11] presented efficient constructions
for fault tolerant spanners with (1 + ε) multiplicative stretch. The size of the
spanner was later improved by Lukovszki [12] and then by Czumaj and Zhao [6].
Constructions for multiplicative fault tolerant spanners for general graphs that

are robust to edge or vertex failures were presented in [5], later the construction
for vertex failures was improved in [7]. In this paper we show a construction for
additive fault tolerant spanners. We deal only with edge failures. Our result relies
on the existence of fault tolerant multiplicative spanners and (ordinary) additive
spanners and uses algorithms for constructing such spanners as subroutines.

1.2 Our Results

In this paper we prove the following general construction scheme.

Theorem 1. Let G = (V,E) be a general graph, H1 = (V,E1) be an α-additive
spanner of G and H2 be a μ-multiplicative fault tolerant spanner of G, resilient
against up to f edge failures. Then H = H1 ∪H2 is an α′-additive fault tolerant
spanner resilient against up to f failures, with additive stretch α′ ≤ O(f̃ (μ+α))
where f̃ ≤ f is the number of actual faults.
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Note that the stretch guarantee depends on the number of failures that have
actually occurred. Hence if no failures occur, we get a stretch bound of α, in-
dependent of f , and the stretch deteriorates as the actual number of faults
increases.
As a corollary, relying on existing spanner construction algorithms, we prove

that for any graph G = (V,E) there exists a poly-time constructible α′-additive
fault tolerant spanner H = (V,E′), resilient against up to f edge failures, with
additive stretch α′ ≤ O(f̃) and size |E′| ≤ O(fn4/3).

1.3 Related Work

Graph Spanners were first introduced by Peleg and Ullman [13] as a technique for
generating synchronizers. Later, spanners were used in various contexts including
routing in communication networks and distributed systems [14,17], broadcast-
ing [10], distance oracles [3,18], etc.
It is well known how to construct (2k − 1)-multiplicative spanners with

O(n1+1/k) edges [2]. This size-stretch tradeoff is also conjectured to be optimal.
The picture for additive spanners is far from being complete, basically there

are two known constructions for additive spanners. Aingworth et al. [1] presented
a construction for 2-additive spanner with O(n3/2) edges (for further follow-up
see [8,9,19,16]). Later, Baswana et al. [4] presented an efficient construction for
6-additive spanner with O(n4/3) edges.
In lack of truly understanding the complete picture for additive spanners,

many papers consider the problem of constructing spanners with either non-
constant additive stretch or with both multiplicative and additive stretch (e.g.,
[9,19,15,4]).
In order to achieve the constants mentioned above, we make use of exist-

ing constructions of ordinary additive spanners and multiplicative fault tolerant
spanners. In practice, we may use the construction for additive spanners pre-
sented in [1,4] and the construction for multiplicative fault tolerant spanners
presented in [5].

2 Preliminaries

Denote by dist(u, v,G) the distance between u and v in G (if there is no path
from u to v inG then dist(u, v,G) =∞). Denote by SP (u, v,G) the shortest path
between u and v in G (if there is no path from u to v in G then SP (u, v,G) = ∅,
if there is more than one such path then choose one arbitrarily). For a simple
path P , denote by |P | the number of edges in P . For a path P in the graph
and vertices x, y on this path, denote by P [x, y] the subpath of P from x to
y. For a graph G = (V,E) and a set of edges F , denote by G \ F the graph
G′ = (V,E \ F ). Throughout this paper, when talking about fault tolerant
additive spanners we distinguish between f , the maximum number of faults that
the spanner can tolerate while keeping its stretch promise, and f̃ , the number of
edges that actually fail. The size of a graph G(V,E) is defined to be its number
of edges, |E|.
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3 Constructing (α, f)-Additive Fault Tolerant Spanners

3.1 The Construction

We start by describing the algorithm for constructing a fault tolerant additive
spanner and continue with the analysis of the worst case additive stretch guaran-
teed by this construction. We rely on the existence of known algorithms Spanadd
constructing an α-additive spanner for a given graph G (for certain values of

α), and Span
f−t
mult constructing a (μ, f)-multiplicative fault tolerant spanner for

G (for certain values of μ) cf. [5,1,4].

Algorithm Span
f−t
add

1. Invoke Algorithm Spanadd to generate an α-additive spanner H1 of G

2. Invoke Algorithm Span
f−t
mult to generate a (μ, f)-multiplicative

fault tolerant spanner H2 of G
3. H ← H1 ∪H2

4. Return H

3.2 Analysis

We next analyze the additive stretch of the subgraph H constructed by Algo-
rithm Span

f−t
add , and prove that it is bounded by a constant linear in μ, α and f̃ ,

the number of actual failures.
Our analysis proceeds as follows. We inspect the shortest path P between two

vertices s and t in the graph G \ F and distinguish several key points on that
path. Then we show that the additive spanner H1 provides for each pair of these
key points a fault-free detour that is not too long. In other parts along the path
P we use the fault tolerant multiplicative spanner H2 in order to progress while
avoiding faults. Finally we show that the union of all of these detours provides a
path in the constructed spanner H that is completely free of faults and is close
in length to the shortest path P (up to an additive term).
Consider a source vertex s, a target vertex t and a set of f̃ edge faults F =

{e1, . . . , ef̃} (f̃ ≤ f). Let P = SP (s, t, G \ F ) be the shortest path from s to t
after the failure event. Denote by p(v) the position of v on P , where p(v) = 0 if
v is the first vertex on P and p(v) = |P | if v is the last vertex on P . Since H
is a spanner of G, every pair of vertices w1, w2 ∈ P s.t. p(w1) < p(w2), has an
alternative path in H . We refer to the shortest such path SP (w1, w2, H), as the
bypass of w1 and w2 in H .
We classify the bypasses as follows. If the bypass contains an edge in F ,

we say that the pair (w1, w2) belongs to class (u, v) if the first faulty edge
that occurs on SP (w1, w2, H) starting from w1 is (u, v). Note that we take into
consideration the direction of the edge, i.e., for every undirected edge e we have
two different classes, one for each direction. For every pair of vertices w1, w2 ∈ P
s.t. p(w1) < p(w2), if SP (w1, w2, H) does not use any edge of F , we say that the
pair (w1, w2) is of class Φ.
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Note that if the pair (w1, w2) is of class Φ, then

dist(w1, w2, H \ F ) = dist(w1, w2, H)

≤ dist(w1, w2, G) + α

≤ dist(w1, w2, G \ F ) + α ,

and therefore
dist(w1, w2, H \ F ) ≤ |P [w1, w2]|+ α .

Next, order all pairs of vertices (w1, w2) ∈ P s.t. p(w1) < p(w2) in a lexicographic
order according to the value (p(w1), p(w2)).

Lemma 1. Let x1, x2 and y1, y2 be two pairs of vertices on path P of the same
class (v, u) and p(x1) < p(x2) ≤ p(y1) < p(y2). Then

dist(x1, y1, H \ F ) ≤ |P [x1, y1]|+ 2α.

Fig. 1. Bypasses of class (v, u)

Proof. Consider the bypass Bx = SP (x1, x2, H), By = SP (y1, y2, H), and the
subpaths B1 = Bx[x1, v], B2 = Bx[v, x2], B3 = By[y1, v], P1 = P [x1, x2], P2 =
P [x2, y1] (see Figure 1). By the definition of the class (v, u), the paths B1 and
B3 do not contain any faults. Therefore,

dist(x1, y1, H \ F ) ≤ |B1|+ |B3| . (1)

Since H contains H1 and H1 is an additive spanner of G, dist(w1, w2, H) ≤
|Q| + α for any two nodes w1, w2 and any path Q from w1 to w2 in G. In
particular,

|B1|+ |B2| ≤ |P1|+ α (2)
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and also

|B3| ≤ |B2|+ |P2|+ α . (3)

Using Inequalities (1), (2) and (3), we get that

dist(x1, y1, H \ F ) ≤ |B1|+ |B3|
≤ |B1|+ |B2|+ |P2|+ α

≤ |P1|+ |P2|+ 2α
= |P [x1, y1]|+ 2α

Lemma 2. Let (x1, x2) be the first pair in the lexicographic order of class dif-
ferent than Φ and let its class be (v, u). Let (y1, y2) be the last pair of class (v, u)
in P . Then

dist(x1, y1, H \ F ) ≤ |P [x1, y1]|+ 2α.

Proof. Note that p(x1) ≤ p(y1), since (x1, x2) is the first pair of class (v, u). If
there is only one pair of class (v, u), then the analysis is the same as if p(x1) =
p(y1), p(x2) = p(y2). We consider two cases. The first case is where p(y1) < p(x2).
Then the pair (x1, y1) is of class Φ (because it appears before the pair (x1, x2)
in the lexicographic order and (x1, x2) is the first pair of class different than Φ).
It follows that dist(x1, y1, H \ F ) ≤ |P [x1, y1]| + α. The second case is where
p(x2) ≤ p(y1), and then it follows from Lemma 1 that dist(x1, y1, H \ F ) ≤
|P [x1, y1]|+ 2α.

Claim. Let (x1, x2) be the first pair in the lexicographic order of class different
than Φ and let its class be (v, u). Let (y1, y2) be the last pair of the class (v, u),
and let s1 be the neighbor of y1 on the path P [y1, y2]. Then either dist(s, s1, H \
F ) ≤ |P [s, s1]|+ 2α+ μ− 1 or dist(s, t,H \ F ) ≤ |P |+ α.

Proof. If the class of pair (s, t) is Φ, then the bypass from s to t in H contains
no failures, so dist(s, t,H \F ) = dist(s, t,H) ≤ |P |+α and we are done. So now
suppose the pair (s, t) is not of class Φ. Then x1 = s since otherwise p(x1) > p(s)
in contradiction to the assumption that (x1, x2) is the first pair of class different
than Φ. According to Lemma 2,

dist(s, y1, H \ F ) ≤ |P [s, y1]|+ 2α . (4)

Since H contains H2, which is a (μ, f)-multiplicative fault tolerant spanner of G,

dist(y1, s1, H \ F ) ≤ |P [y1, s1]| · μ = 1 · μ = |P [y1, s1]|+ μ− 1 . (5)

Combining Inequalities (4) and (5), we get that

dist(s, s1, H \ F ) ≤ dist(s, y1, H \ F ) + dist(sy1, s1, H \ F )
≤ |P [s, y1]|+ |P [y1, s1]|+ 2α+ μ− 1
= |P [s, s1]|+ 2α+ μ− 1
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Lemma 3. Let N be the number of classes on SP (s, t, G \ F ). Then

dist(s, t,H \ F ) ≤ dist(s, t, G \ F ) +N(2α+ μ− 1) + α .

Proof. We prove the lemma by induction on N . For N = 0, the pair (s, t) is of
class Φ and the lemma holds. Assume that the lemma holds for any n < N . By
Claim 3.2, either dist(s, t,H \ F ) ≤ |P |+ α in which case we are done, or

dist(s, s1, H \ F ) ≤ |P [s, s1]|+ 2α+ μ− 1 . (6)

Notice that the path P [s1, t] does not contain any pair of class (v, u). It follows
that the number of classes on the path P [s1, t] is smaller than N , and clearly
P [s1, t] is the shortest path from s1 to t on G \ F . Therefore the induction
assumption holds for the path P [s1, t], and it follows that

dist(s1, t,H \ F ) ≤ dist(s1, t, G \ F ) + (N − 1)(2α+ μ− 1) + α . (7)

Combining Inequalities (6) and (7), we get that

dist(s, t,H \ F ) ≤ dist(s, s1, H \ F ) + dist(s1, t,H \ F )
≤ dist(s, s1, G \ F ) + dist(s1, t, G \ F )
+(2α+ μ− 1) + (N − 1)(2α+ μ− 1) + α

= dist(s, t, G \ F ) +N(2α+ μ− 1) + α .

Theorem 2. H is an (α′, f)-additive fault tolerant spanner of G with α′ =
O(f̃(α + μ)), and its size is |E(H)| = |E(H1)|+ |E(H2)|.

Proof. The size bound is immediate from the construction. Since there are at
most 2f̃ different classes (excluding Φ), Lemma 3 implies that dist(s, t,H \F ) ≤
dist(s, t, G \ F ) + 2f̃(2α+ μ− 1) + α.

A poly-time algorithm Spanadd for constructing a 6-additive spanner of size
O(n4/3) for any n-vertex graph G is presented in [4]. In [5] a poly-time algorithm

Span
f−t
mult for constructing, for any n-vertex graph, a (μ, f)-multiplicative fault

tolerant spanner of size O(fn1+ 2
μ+1 ) for every odd μ and every f . Using these

two results and Theorem 2, choosing μ = 5, yields the following,

Corollary 1. For every f , every graph G contains a (poly-time constructible)
(α′, f)-additive fault tolerant spanner of size O(fn4/3) with α′ = 32f̃ + 6.

4 Conclusions and Open Problems

Although the concept of spanners is well established and bounds have been
proven for fault tolerance in the case of multiplicative spanners, up until now
there were no known constructions or lower bounds on the space and stretch
of fault tolerant additive spanners. Hopefully this paper will open the door for
more research in the field, as it leaves open several interesting problems. Our
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construction is relatively simple and uses previously known constructions as a
black box. This leaves the possibility that there might exist a more sophisticated
construction for fault tolerant additive spanners, with stretch that is sublinear
in the number of faults f . Moreover, our analysis deals only with edge failures,
and future research may focus on overcoming vertex failures. Finally, it would
be interesting to consider fault tolerant (α, β)-spanners. For example, by simply
applying our construction and analysis and using any construction for (α, β)-
spanners and (μ, f)-fault tolerant multiplicative spanner as building blocks, one
can present an (α′, β′)-spanner that is robust to f faults, where α′ = α2 and
β′ = O(f̃ (αβ + μ)), but this is by no means known to be the best possible.
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Abstract. We present a greedy algorithm for the directed Steiner tree
problem (DST), where any tree rooted at any (uncovered) terminal can
be a candidate for greedy choice. It will be shown that the algorithm,
running in polynomial time for any constant l, outputs a directed Steiner
tree of cost no larger than 2(l−1)(lnn+1) times the cost of the minimum
l-restricted Steiner tree. We derive from this result that 1) DST for a
class of graphs, including quasi-bipartite graphs, in which the length of
paths induced by Steiner vertices is bounded by some constant can be
approximated within a factor of O(log n), and 2) the tree cover problem
on directed graphs can also be approximated within a factor of O(log n).

1 Introduction

The Steiner tree (in graphs) problem is one of the most well-known combina-
torial optimization problems with a long and rich history of being a subject
for mathematical and computational studies. The problem is of fundamental
importance especially in the areas of network design, network routing such as
multicasting, and so on, where it is required to find a minimum cost tree, in
a given edge-costed graph, spanning all the vertices specified as terminals. The
problem is, however, one of the Karp’s original NP-complete problems [9], and
various approximation algorithms as well as heuristics have been developed for
it. The case of undirected graphs has been and continues to be actively studied,
and after the basic result of a factor 2 approximation by the minimum span-
ning tree based approach, the best approximation factors have been renewed
several times [21,2,10,18], culminating with the recent breakthrough result with
a performance ratio of ln(4) + ε < 1.39 [1]. It is NP-hard, on the other hand, to
guarantee solutions of cost less than 96/95 times the optimal cost [3].
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The case of directed graphs in contrast has seen much less progress. The
directed Steiner tree problem (DST), the main subject of the current paper, is
to find a minimum cost subgraph T , given a directed graph G = (V,A) with
arc costs c(a) (∀a ∈ A), a root vertex r ∈ V , and a subset X of vertices called
terminals, such that T contains a path starting at r and leading to every terminal,
where the cost of a subgraph is defined to be the total cost of arcs in it. Those
non-terminals (∈ V \X) are called Steiner vertices, and a (directed) tree in this
paper is assumed to be the one in which every arc is directed away from its
root towards a leaf. A directed Steiner tree (“dst” for short) is a tree spanning
all the terminals, and DST is then equivalently defined to be the problem of
computing a minimum cost dst rooted at r. The first nontrivial approximation
algorithm for DST was developed by Charikar et al., achieving a performance
ratio of l2(l− 1)|X |1/l in time O(nl|X |2l) for any l > 1 [4,5]. The algorithm thus
approximates DST within a factor of O(nε) for any ε > 0 in polynomial time
and at the same time within a factor of O(log3 |X |) in quasi-polynomial time
of nO(log |X|), raising a conjecture that a polylogarithmic approximation of DST
might be possible. It has, in fact, been attempted to improve the Charikar et
al.’s approximation bound [22,12,15], and without success, however, the O(nε)
factor of Charikar et al. [4] remains as the best performance ratio known today,
and the polylogarithmic approximability is still wide open for DST.

1.1 Greedy Approaches for Approximating DST

It is natural to consider DST to be a generalization of the set cover problem by
representing the notion of coverage by “reachability” from the root. Here, any
trees rooted at r are the subsets for covering elements and terminals are those el-
ements to be covered. The greedy set cover algorithm repeatedly selects into a so-
lution a most “cost-effective” subset until all the elements become covered. Here,
the cost-effectiveness of a subset is measured by the ratio of its cost to the number
of yet uncovered elements in it, and it is the density d(T ) of a tree T rooted at r
in DST defined to be the ratio of its cost to the number of terminals in it not yet
reachable from r, i.e., d(T ) = c(T )/(# of terminals in T not reachable from r).
If it were possible to compute a rooted tree with minimum density in polyno-
mial time, it would lead to an O(log n)-approximation for DST as is for the set
cover problem (or in more general, a factor of α approximation of the minimum
density tree yields an O(α logn) approximation of DST). It is hard to compute
it exactly, however, and this is why all the greedy approaches for DST includ-
ing ours have had to settle for trees with approximately lowest density in their
greedy choices.

Definition 1. – An l-level tree is a tree in which no leaf is more than l arcs
away from the root.

– A Steiner tree in which all the terminals are at leaves (or at the root) is called
a full Steiner tree. Any Steiner tree can be decomposed into arc-disjoint full
Steiner trees (full components) by splitting all the non-leaf terminals, each
of them into a leaf of one tree and a root of the other tree.

– A Steiner tree is l-restricted if every full component in it is an l-leveled tree.
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The algorithm of Charikar et al. uses an l-level tree (in the metric closure of
an original graph) of which density is a factor of at most l − 1 away from that
of the minimum density l-level tree [4]. Zosin and Khuller show that a tree
of density bounded by D + 1 times the minimum density (of any tree rooted
at r) is polynomially computable if V − X induces a tree of depth D [22].
Either algorithm considers such trees rooted at a fixed root r only. Zelikovsky’s
algorithm, based on a different type of density function, considers any full Steiner
tree, and it computes (and adopts) a tree of which density is a factor of at
most (2+ ln |X |)l−2 away from that of the minimum density l-restricted Steiner
tree [20].

1.2 Our Approach and Contributions

The greedy algorithm designed in this paper iteratively chooses a full Steiner
tree rooted at either r or any “uncovered” terminal in a way similar to Ze-
likovsky’s [20]. It uses a density function different from Zelikovsky’s and natu-
rally from Charikar et al.’s and Zosin-Khuller’s as the notion of coverage cannot
be represented by “reachability from r” in our setting. A terminal in a full Steiner
tree T rooted at either r or any terminal is considered “covered by T ” if it is
not the root of T , and the density d(T ) is then redefined to be the ratio of its
cost to the number of yet uncovered non-root terminals in T . The main theorem
(Theorem 1) of the paper states that this algorithm computes a dst in polyno-
mial time of which cost is no larger than 2(l − 1)(ln |X | + 1) times the cost of
the minimum l-restricted Steiner tree. It is interesting to compare this with the
Zelikovsky’s [20] and Charikar et al.’s [4] algorithms; the former outputs a dst
of cost no larger than (ln |X |+2)l−1 times the cost of the minimum l-restricted
Steiner tree, whereas the latter outputs an l-level dst of cost at most l(l − 1)
times the cost of the minimum l-level dst.
The main result described above does not lead to an improved performance

ratio for DST per se, yet some new approximation results can be derived from
it. One is the case of DST for a class of graphs G where Steiner vertices induce
no path of length longer than l in G. A quasi-bipartite graph belongs to such
a class with l = 0, and DST is known to be hard to approximate better than
O(log n) even when inputs are restricted to quasi-bipartite graphs. It can be
shown from the main theorem that our greedy algorithm approximates DST for
such a case within a factor of O(log |X |) for any constant l. When combined
with the Ω(log2−ε n) approximation hardness of DST on general graphs [8],
this separates the approximability of DST between the cases of quasi-bipartite
graphs and general graphs. It has been repeatedly observed, in case of undirected
graphs, that the Steiner tree problem is easier to approximate on quasi-bipartite
graphs than on general graphs since [17], and it is here proven to be true in case
of directed graphs.
Another application of the main theorem presented is in approximation of the

Directed Tree Cover problem (DTC). It is required in DTC, given an arc-costed
directed graph G and a root vertex r, to compute a minimum directed tree T
rooted at r such that there exists a path in T from r to every arc in G. In case of
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undirected graphs, the tree cover problem is known to be approximable within
a factor of 2, by a simple algorithm for the uniform costs [19] and by a not so
simple one for general costs [7]. The approximability of DTC, on the other hand,
has remained wide open as mentioned in [11] 1. It will be shown, by reducing
general DTC to DST on bipartite graphs with terminal-Steiner bipartition, that
DTC can be approximated within a factor ofO(log n), again matching the known
approximation lower bound of Ω(log n) for DTC.

2 Algorithm

Let G = (V,A) be a directed graph with non-negative arc cost c(a) for each
arc a ∈ A, a node r designated as a root, and a set X ⊆ V of terminals. The
greedy algorithm presented below grows a subgraph P of G in sequence, initially
consisting of r and all the terminals only (no arcs), by iteratively adding trees in
G rooted either at the “real” root r or at some terminals not yet covered. Here
any terminal becomes “covered” whenever a tree containing it as a “non-root”
is added to P by the algorithm (or equivalently, we may contract such a tree
into a single vertex). The algorithm repeats this as long as uncovered terminals
remain in G, and eventually ends up with a subgraph of G composed of all the
trees added with all the terminals covered by some of them. As it contains a
path from r to every terminal in X , a dst spanning all the terminals can be
found within it, and it will be output by the algorithm.

Algorithm 1: Multi-Rooted Greedy

Input: G = (V,A), root r ∈ V , and terminal set X ⊆ V
Output: a Steiner tree rooted at r spanning all terminals in X

1 Initialize: P = (X ∪ {r}, ∅) and C = ∅;
2 while there remain (uncovered) terminals in X \ C do
3 Compute a tree T of low density rooted at any vertex in {r} ∪ (X \ C);
4 Set P = (VP ∪ V (T ), AP ∪ A(T ));
5 Letting u be the root of T , add all terminals in T but u to C by setting

C = C ∪ (X(T )− u);
6 Reset c(a) = 0 for all a ∈ A(T ) and recompute the metric closure of G;

7 end
8 Compute and output any tree within P rooted at r spanning all terminals in X.

It remains to elaborate on how to compute a small density tree T in step 3, and
we use the algorithm developed by Kortsarz, Peleg, and Charikar et al. [13,4],
assuming that we are working with the metric closure of the current graph
in what follows. Let d∗l (k, v,X) denote the minimum density of l-level trees
Tl rooted at v containing any k terminals from X . It was shown that good
approximation of the minimum density tree among l-level trees is possible when
l is a constant [4]:

1 In fact an O(log n)-approximation of DTC was claimed in error [14].
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Lemma 1 ([4]). For any v ∈ V,X ⊆ V, 1 ≤ k ≤ |X |, and l ≥ 2, an l-level tree
Tl can be found in time O(nlk2l−1) such that d(Tl) ≤ (l − 1)d∗l (k, v,X).

Let d∗l (X) denote the minimum density of l-level trees Tl rooted at any vertex
in {r} ∪X containing any number of terminals from X . It follows immediately
from Lemma 1, by running the algorithm used in it for each 1 ≤ k ≤ |X | and
v ∈ {r} ∪X , that

Lemma 2. For any X ⊆ V and l ≥ 2, an l-level tree Tl rooted at some vertex
in {r} ∪X can be found in time O(nl|X |2l+1) such that d(Tl) ≤ (l − 1)d∗l (X).

In the next section the approximation performance of Algorithm 1 is analyzed
assuming that trees T are computed in step 3 by the algorithm of Lemma 2.

3 Analysis

Definition 2. Let P = (VP , AP ) be a subgraph of G and XP ⊆ X. (P, {r}∪XP )
is called a partial Steiner tree (PST) for (G, r,X) if

– {r} ∪X ⊆ VP , and
– every vertex in VP is reachable within P from some vertex in {r} ∪XP .

Lemma 3. Let P = (VP , AP ) and C be a subgraph of G and a set of covered
terminals, respectively, computed at any iteration of the while-loop during the
execution of Algorithm 1. Then, (P, {r} ∪ (X \ C)) with XP = X \ C is a PST
for (G, r,X).

Proof. Initially, P = ({r}∪X, ∅) is clearly a PST for (G, r,X). Suppose at some
iteration a tree T is added to P and let u be its root. Then, all the terminals in
T but u become covered (and leave XP ), but all the vertices in T are reachable
from u within T . So, any vertex reachable from those newly covered terminals
before addition of T becomes reachable now from u after addition of T .

For any PST (P = (VP , AP ), {r} ∪ XP ) for (G, r,X) every vertex v ∈ VP is
reachable from some vertex in {r} ∪ XP within P . If v is reachable from more
than one vertex in {r}∪XP , choose v itself if v ∈ {r}∪XP , but choose any one
of them otherwise, and denote it by r(v). Then, VP is partitioned into a family
of disjoint subsets, each of them consisting of vertices v ∈ VP with a common
representative vertex r(v) ∈ {r}∪XP , and the subset v belongs to is referred to
as V (r(v)) for any v ∈ VP .
Fix one l-restricted Steiner tree T(l) for (G, r,X). Since XP ⊆ X , each vertex

in XP is contained in T(l). Denote by s(v) for v ∈ XP the lowest ancestor of v
within T(l) such that r(v) �= r(s(v)) (thus, V (r(v)) ∩ V (r(s(v))) = ∅). As T(l) is
rooted at r and v �= r, s(v) exists for any v ∈ XP . Consider the set of s(v)-v
paths for all v ∈ XP , and denote it by T0, i.e., T0 = {s(v)-v path | v ∈ XP }. The
following properties of the paths in T0 can be verified by recalling the choice
of s(v) for v ∈ XP , that all the paths in T0 are parts of tree T(l) and that
V (r(u)) ∩ V (r(v)) = ∅ for any u, v ∈ XP if u �= v.
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Lemma 4. The paths in T0 possess the following properties:

1. On any s(v)-v path all the vertices but s(v) come from V (r(v)) ∪ (V \ VP ).
2. Suppose two paths, s(u)-u and s(v)-v, in T0 overlap.

(a) If s(u) = s(v), s(u)-u and s(v)-v paths overlap only in their initial seg-
ments, i.e., the subpaths starting at s(u) = s(v) followed by a sequence
of vertices in V \ VP only.

(b) If s(u) �= s(v),

i. either s(u) is a proper ancestor of s(v) in T(l), or the other way
around, and

ii. if s(u) is a proper ancestor of s(v) (the other case is similar), u
and s(v) must belong to the same set V (r(u)) = V (r(s(v))), and
therefore, they can overlap only in the initial segment of s(v)-v path
consisting of s(v) and vertices in V \ VP only.

For any v ∈ XP , collect all the s(u)-u paths in T0 with s(u) = s(v), and merge
them into a single tree rooted at the common starting vertex s(v) (if s(u) �= s(v)
for any u ∈ XP − {v}, s(v)-v path is such a tree by itself). Call a subtree of
T(l) thus constructed from some paths in T0 and rooted at s(v) as s(v)-tree, and
denote by T1 the collection of all s(v)-trees.

Lemma 5. T1 satisfies the following properties:

1. Every vertex in XP occurs at a leaf of exactly one tree in T1.
2. No arc of T(l) occurs in more than two trees of T1.
3. For any tree with multiple leaves in T1, any branching occurs within the

distance of l − 1 from the root.

Proof. 1. This is clear from the construction of T0 and T1.
2. Suppose an arc (y, z) of T(l) is shared by three trees, s(v1)-, s(v2)-, and s(v3)-
trees, from T1. Then, it must be the case that no two of s(v1), s(v2), and s(v3)
can coincide, and that all of s(v1), s(v2), and s(v3) are ancestors of y in T(l).
Then, s(v1)-z, s(v2)-z, and s(v3)-z paths are all the initial segments of dis-
tinct three paths in T0, all of them lying on the r-z path of T(l). There is no
way, however, that they can satisfy property 2(b)ii. of Lemma 4.

3. Recall that any paths running from the root to leaves in a tree of T1 come
from T0, and hence, any two of them must satisfy property 2(a) of Lemma 4.
Recall also that T(l) is an l-restricted tree, and hence, the length of a consecu-
tive run of Steiner vertices on any path is bounded by l−2 in T(l). Therefore,
any two paths starting at the same vertex must branch out within the dis-
tance of l − 1 from the starting vertex.

Let us assume henceforth that PST (P, {r} ∪ XP ) for (G, r,X) is the one gen-
erated during the execution of Algorithm 1 (Lemma 3); i.e., P = (VP , AP ) and
C are a subgraph of G and a set of covered terminals, respectively, computed at
any iteration of the while-loop, and XP = X \ C. For any s(v)-tree T in T1, we
do the following operations:
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1. When a path is followed from s(v) to a leaf w, no branching occurs after
passing the (l − 1)st vertex u (property 3 in Lemma 5). As we are working
with the metric closure of the current graph, there exists an arc (u,w) of
cost no larger than that of the subpath running from u to w. So, replacing
such a subpath by such an arc on any path leading to a leaf if it is longer
than l, T becomes an l-level tree of no larger cost.

2. Recall that s(v) is reachable from r(s(v)) within P , where every arc has
a zero cost (due to step 6 of Algorithm 1). Hence, by connecting r(s(v))
directly to each child of s(v) by an arc, the root of s(v)-tree can be replaced
by r(s(v)) without increasing its cost nor its levels.

Let us denote by T2 the set of l-level trees resulting from applications of the
operations above to the s(v)-trees in T1. The next lemma is a key to our main
theorem and we prove it by examining properties of T2:

Lemma 6. Let T(l) be any l-restricted Steiner tree rooted at r in G. Suppose
(P, {r} ∪XP ) is a PST for (G, r,X) generated by Algorithm 1 during its execu-
tion. Then, there exists an l-level tree Tl in G rooted at some vertex in {r}∪XP

such that d(Tl) ≤ 2c(T(l))/|XP |.

Proof. Consider T2. Each l-level tree in it is rooted at some vertex in {r} ∪XP

(due to operation 2), and every vertex in XP occurs at a leaf of some tree in
T2 (Lemma 5.1). Therefore, all the terminals in XP can be covered by using all
the trees in T2. The total cost of trees in T2 is no larger than that of those trees
in T1. The latter can be bounded by 2c(T(l)) because of Lemma 5.2. Therefore,
those trees in T2 can jointly cover |XP | uncovered terminals, and it costs at most
2c(T(l)) to do so. Hence, there must be a tree Tl in T2 of density no larger than
2c(T(l))/|XP |.

We are now ready to bound the cost of a dst output by Algorithm 1:

Theorem 1. Let OPT(l) denote the cost of the minimum l-restricted Steiner
tree for (G, r,X). Algorithm 1 computes a dst of cost no larger than 2(l −
1)H(|X |)OPT(l), in time O(nl|X |2l+2), where H(k) is the kth harmonic number
and H(k) = 1 + 1/2 + · · ·+ 1/k.

Proof. The running time is dominated by that consumed in step 3, which is
executed in total O(|X |) times.
Suppose T is the tree computed in step 3 at any iteration of the while-loop.

Assign d(T ) to each of the terminals newly covered by T . Total value assigned
in one iteration of the while-loop coincides with the cost of T chosen during the
iteration by definition of density d(T ). By doing this at every iteration, each
terminal in X gets assigned with some density exactly once, and hence, total
cost of trees chosen by Algorithm 1 can be recovered by collecting all the density
values assigned to the terminals in X .
The density d(T ) of T can be bounded by 2(l − 1)OPT(l)/|X \ C| according

to Lemmas 2 and 6. Order the terminals in X in the order of becoming covered
by Algorithm 1, and let xi be the ith terminal covered by Algorithm 1 for
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1 ≤ i ≤ |X |. As there remain at least |X | − (i− 1) uncovered terminals when xi

is covered, the density xi receives is no larger than 2(l−1)OPT(l)/(|X |−(i−1)).
Therefore, the total density assigned to all the terminals in X is bounded by

|X|∑
i=1

2(l − 1)OPT(l)

|X | − (i− 1) = 2(l− 1)OPT(l)

|X|∑
i=1

1

i
= 2(l − 1)OPT(l)H(|X |).

The output tree is a subgraph of PST P , of which cost is bounded as above, and
the claim follows.

4 Applications

A graph G = (V,A) is called quasi-bipartite (with respect to terminal set X)
when the set of Steiner vertices (= V \ X) induces no arc in G. It is easy to
confirm the following corollary of Theorem 1 by observing that every Steiner
tree is (l + 2)-restricted in such special inputs as given below:

Corollary 1. When inputs (G = (V,A), r,X) are limited to those in which V \X
induces no path of length longer than l, Algorithm 1 approximates DST within
a factor of 2(l + 1)H(|X |) = O(l log |X |), running in polynomial time for any
constant l. In particular, when inputs are restricted to quasi-bipartite graphs,
DST can be approximated within a factor of 2H(|X |) ≤ 2 ln |X |+ 2.
The set cover problem can be embedded in DST on bipartite graphs G = (X ∪
(V \X), A). Because of Ω(log n) lower bound for set cover approximation [16,6],
it can be said that Algorithm 1 yields an optimal approximation for such special
cases as given in Corollary 1 for any constant l.
Let us turn our attention to the directed tree cover problem (DTC). The set

cover problem can be embedded in DTC by the almost same construction as
in DST, and hence, the same approximation hardness of Ω(log n) lower bound
holds. For the upper bound, we use the following reduction:

Lemma 7. DTC on general graphs is reducible to DST on bipartite graphs with
terminal-Steiner bipartition in an approximation preserving manner.

Proof. Let (G = (V,A), r, c) be an instance of DTC. For each arc a = (u, v) ∈ A,
introduce a new vertex xa as a terminal for DST. Each arc a = (u, v) ∈ A is
replaced by three arcs, (u, xa), (xa, v), and (v, xa), and the costs of these arcs are
set equal to 0, c(a), and 0, respectively. An instance (G′ = (V ′, A′), r,X, c′) of
DST is constructed from a DTC instance (G, r, c) in this way such thatX = {xa |
a ∈ A}, V ′ = V ∪ X,A′ = {(u, xa), (xa, v), (v, xa) | a = (u, v) ∈ A}, and ∀a ∈
A, c′(u, xa) = c′(v, xa) = 0, c

′(xa, v) = c(a). It is not hard to verify that a tree
cover of any cost exists in (G, r, c) if and only if a dst of the same cost exits in
(G′, r,X, c′). It is also clear that G′ = (V ∪X,A′) constructed from G = (V,A)
in the reduction is a bipartite graph for any G.

Due to this lemma, the following optimal approximation for DTC follows from
Theorem 1 as in Corollary 1:
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Theorem 2. DTC can be approximated by Algorithm 1 within a factor of
2H(|A|) ≤ 2 ln |A|+ 2.
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3. Chleb́ık, M., Chleb́ıková, J.: The Steiner tree problem on graphs: Inapproximability
results. Theory Comput. Syst. 406(3), 207–214 (2008)

4. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Ap-
proximation algorithms for directed Steiner tree problems. J. Algorithms 33, 73–91
(1999)

5. Calinescu, G., Zelikovsky, A.: The polymatroid Steiner problems. J. Comb. Opt. 9,
281–294 (2005)

6. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652
(1998)

7. Fujito, T.: How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost
Tree Cover. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 431–442. Springer, Heidelberg (2006)

8. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proc. 35th
STOC, pp. 585–594 (2003)

9. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

10. Karpinski, M., Zelikovsky, A.Z.: New approximation algorithms for the Steiner tree
problem. J. Comb. Opt. 1, 47–65 (1997)

11. Könemann, J., Konjevod, G., Parekh, O., Sinha, A.: Improved Approximations for
Tour and Tree Covers. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS,
vol. 1913, pp. 184–193. Springer, Heidelberg (2000)

12. Konjevod, G.: Directed Steiner trees, linear programs and randomized rounding, 8
pages (2005) (manuscript)

13. Kortsarz, G., Peleg, D.: Approximating the weight of shallow Steiner trees. Discrete
Applied Mathematics 93, 265–285 (1999)

14. Nguyen, V.H.: Approximation Algorithm for the Minimum Directed Tree Cover.
In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 144–159.
Springer, Heidelberg (2010)

15. Rothvoß, T.: Directed Steiner tree and the Lasserre hierarchy. ArXiv e-prints
(November 2011)

16. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. 29th STOC, pp.
475–484 (1997)

17. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric
Steiner tree problem. In: Proc. 10th SODA, pp. 742–751 (1999)

18. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation.
SIAM J. Discrete Math. 19, 122–134 (2005)



224 T. Hibi and T. Fujito

19. Savage, C.: Depth-first search and the vertex cover problem. Inform. Process.
Lett. 14(5), 233–235 (1982)

20. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica 18, 99–110 (1997)

21. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica 9, 463–470 (1993)

22. Zosin, L., Khuller, S.: On directed Steiner trees. In: Proc. 13th SODA, pp. 59–63
(2002)



Approximating Infeasible 2VPI-Systems
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Abstract. It is a folklore result that testing whether a given system
of equations with two variables per inequality (a 2VPI system) of the
form xi − xj = cij is solvable, can be done efficiently not only by Gaus-
sian elimination but also by shortest-path computation on an associ-
ated constraint graph. However, when the system is infeasible and one
wishes to delete a minimum weight set of inequalities to obtain feasibility
(MinFs2

=), this task becomes NP-complete.
Our main result is a 2-approximation for the problem MinFs2

= for
the case when the constraint graph is planar using a primal-dual ap-
proach. We also give an α-approximation for the related maximization
problem MaxFs2

= where the goal is to maximize the weight of feasi-
ble inequalities. Here, α denotes the arboricity of the constraint graph.
Our results extend to obtain constant factor approximations for the case
when the domains of the variables are further restricted.

1 Introduction

The problem of checking whether a system of linear (in-)equalities admits a
solution is efficiently solvable by means of linear optimization methods. However,
in many applications it is known that a linear system is unsolvable. An instance
I = (X,C) of the maximum feasible subsystem problem (MaxFs) consists of a
finite set X of variables and a set C of constraints on the variables, and the goal
is to select a subset C′ ⊆ C of the constraints of maximum size such that the
corresponding reduced system (X,C′) is feasible. This problem has a wide range
of applications (see e.g. [2] and the references therein) and is well-known to be
NP-complete. The corresponding minimization problem MinFs asks to delete a
minimum number of constraints in order to obtain a feasible system.
In this paper we consider the versions of MinFs and MaxFs where the con-

straints are restricted to the special form xi − xj = cij , in particular there are
only two variables per inequality. Such a system is commonly referred to as a
2VPI-system. We are also given a nonnegative weight for each constraint, spec-
ifying the cost of removing it from the system. The problems MinFs2

= and
MaxFs2

= of deleting a minimum cost set of constraints or retaining a maxi-
mum cost set of constraints, respectively, are still NP-hard to solve, even in case
of unit costs for the constraints.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 225–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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With each instance I = (X,C) of a 2VPI-system, one can associate a cor-
responding constraint graph GI as follows. For each variable xi ∈ X there is
a vertex i in GI and for each constraint of the form xi − xj = cij there is a
directed arc a from i to j of length 	(a) := cij . This arc may be traversed in
both directions, where the length for traversing in direction from j to i is given
by −cij . It is then easy to see that the system given in I = (X,C) is feasible
if and only if GI does not contain a negative length (undirected) cycle. Thus,
the consistency of such a system can be tested by an all-pairs shortest path
computation in O(mn) time, where n = |X | and m = |C| denote the number of
variables and constraints, respectively.
This graph-theoretic view on a 2VPI-system which we are going to take in this

paper means that the problemMinFs2
= is equivalent to the following problem:

Delete a minimum cost set of the arcs of a given graph such that the resulting
graph does not contain any negative length cycle.

MaxFs and MinFs have been studied extensively in terms of complexity
and approximability, see, e.g., [2,10,4,13] and the references therein, and also
many heuristic algorithms have been proposed (e.g., [3,1]), but MaxFs2

= and
MinFs2

= have not been studied specifically so far in literature.
We present the first constant factor approximation algorithm for MaxFs2

=

when restricted to planar graphs. We also give an exact pseudo-polynomial
time algorithm for series-parallel graphs and a polynomial time algorithm for
extension-parallel graphs. Moreover we derive new hardness results for general-
ized versions of the problems, where the variables have values in some domain
other than R or the operations are replaced by the group operations in some
group.
Our paper is organized as follows: Section 3 contains our new hardness results

which among other things show thatMinFs2
= andMaxFs2

= are still NP-hard
to solve, even if the corresponding constraint graph is planar. In Section 4 we
give a factor 2-approximation for MinFs2

= on planar graphs. Our algorithm is
based on the primal-dual framework by Goemans and Williamson [8] and their
work on feedback vertex problems in [9]. In fact, although we apply a very similar
technique as Goemans and Williamson do in [9] for minimum feedback vertex
problems in planar graphs, we obtain an improved performance guarantee of 2
compared to 3 in [9] (their best result is a factor of 9

4 ).
1 In Section 5 we obtain

approximation algorithms for the maximization versionMaxFs2
=. In Section 6

we extend our results to the case of additional restrictions on the domains of the
variables.

2 Preliminaries and Problem Definition

An instance I of MaxFs2
= (andMinFs2

=) is given by a finite setX of variables
and a finite set E of equations of the form xi − xj = cij over the variables
in X . Also, for each equation e ∈ E we are given a nonnegative weight we.

1 We stress that, unfortunately, our results do not imply improved approximation
results for the feedback vertex problem.
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We call a subset E ′ ⊆ E of the equations consistent if the included equations
can be satisfied simultaneously, otherwise E ′ is termed inconsistent. The goal in
MaxFs2

= is to find a consistent subset E ′ of the equations of maximum weight
w(E ′) =

∑
e∈E′ we. Similarly,MinFs2

= asks to remove a minimum weight subset
of the equations to obtain a consistent system.
With each instance I of MaxFs2

= (andMinFs2
=), the associated constraint

graph GI contains a vertex i for each variable xi ∈ X and for each constraint xi−
xj = cij a directed arc a from i to j of length 	(a) := cij . As mentioned before,
this arc may be traversed in both directions, where the length for traversing in
direction from j to i is given by−cij . In all what follows we identify a constraint e
with the corresponding arc in GI . As a consequence, in addition to its length,
any arc e has an associated weight we ≥ 0.
Since we allow traversing arcs against their directions at the corresponding

negative length,GI contains a negative length (undirected) cycle if and only ifGI

contains a cycle of positive length. Thus, we call any (undirected) cycle in GI

of nonzero length an inconsistent cycle. By the observations made in the intro-
duction, a subset of the equations is consistent if and only if the corresponding
subgraph of GI does not contain an inconsistent cycle.
Thus, one can state MaxFs2

= (MinFs2
=) equivalently in graph theoretic

terms as follows: Given a directed graph G = (V,E) with lengths and weights on
the arcs, find a maximum weight subset of the arcs (delete a minimum weight
subset of the arcs) such that the resulting subgraph does not contain any incon-
sistent cycle. We call such a subgraph a consistent subgraph. In the sequel we
assume that all graphs are (weakly) connected, since otherwise we can consider
the problem on each connected component separately.

3 Complexity of MinFs2= and MaxFs2=

AlthoughMaxFs2
= andMinFs2

= were defined in such a way that each equality
contains exactly two variables, in the following we will nevertheless consider
equations with only one variable, since this apparently more general case can
easily be reduced to MaxFs2

= and MinFs2
=, respectively: Introduce a new

variable x0 and add it with appropriate sign to every equation that has only one
variable, e.g., an equation xi = c is replaced by xi−x0 = c. This problem has an
optimal solution x∗ with x∗

0 = 0: Add −x̂0 to every component of an arbitrary
given solution x̂ to obtain a new solution with x0 = 0 and equally many (exactly
the same) satisfied equations.

Theorem 1. MaxFs2
= is APX-hard.

Proof. We provide an L-reduction from the APX-complete optimization problem
Max-2-Sat: Given an instance I1 of Max-2-Sat with variables xi, i = 1, . . . , n
and clauses ycj1 ∨ ycj2 , j = 1, . . . ,m with exactly two literals, ycjl ∈ {xcjl , xcjl},
construct an instance I2 of MaxFs2

= as follows: For every clause ycj1 ∨ ycj2 ,
j ∈ {1, . . . ,m} create the following 14 equations:
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ycj1 − ycj2 = 0

ycj1 − ycj2 = 1

(where xcjl := xcjl)

xcj1 = 1, xcj2 = 1, xcj1 = 1, xcj2 = 1

xcj1 = 0, xcj2 = 0, xcj1 = 0, xcj2 = 0

xcj1 − xcj1 = 1, xcj2 − xcj2 = 1

xcj1 − xcj1 = −1, xcj2 − xcj2 = −1

This transformation is not cost preserving, but it is not too hard to verify that
it is in fact an L-reduction: There exists a solution x for the instance I2 of
MaxFs2

= which satisfies kx equations if and only if there exists a solution
xSAT for I1 that satisfies at least kxSAT = kx−6m clauses. Moreover, OPT(I2) ≤
7m = 14 · m2 ≤ 14 ·OPT(I1).

Note that for the definition of MaxFs2
= we do not need to have a multiplication

on the domains and also no algorithm presented in this paper relies on the fact
that there is a multiplication on R. In fact a group is perfectly sufficient. For
these algebraic versions we have a similar complexity result, which essentially
uses the same construction as in Theorem 1 if the group has an element of order
greater than 2 and otherwise uses a reduction from MaxCut:

Theorem 2. For every nontrivial group (G,+), MaxFs2
=, where all variables

must attain values in G, is APX-hard. ��

A simple greedy method shows that furthermoreMaxFs2
= can be approximated

within the constant factor |G| for any finite group. The algorithm iteratively
chooses a variable xi. Let U denote the equations which are (currently) unary
with respect to xi, i.e., which currently contain no variable other than xi. It then
assigns a value to xi which maximizes the number of satisfied equations in U
(if U is empty, an arbitrary value is assigned to xi) and updates the remaining
equations by substituting the chosen value for xi. It is easy to see that this
provides a |G|-approximation.
By a reduction from Partition we can prove the following result:

Theorem 3. MaxFs2
= is NP-hard, even if the constraint graph is series-

parallel. ��

Theorem 4. MaxFs2
= is strongly NP-hard, even if all weights are unit weights

and the constraint graph is planar.

Proof. Due to lack of space, we only sketch the proof. We provide a reduction
from the strongly NP-complete problem Rectilinear Steiner Tree Problem mrst

([6, ND13]). We are given a set P ⊂ Z×Z of points in the plane and an integer k.
The task is to decide whether there is a finite set Q ⊂ Z×Z such that there is a
spanning tree of total weight k or less for the vertex set V ∪Q, where the weight
of an edge {(x1, y1), (x2, y2)} is measured with respect to the rectilinear metric
|x1 − x2|+ |y1 − y2|.
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As common, we call the points in P terminals. Given an arbitrary instance I1
from mrst with a terminal set P = {v1, . . . , vn} ⊂ Z×Z where vi = (xi, yi), we
compute

xmin := min
i=1,...,n

xi ymin := min
i=1,...,n

yi

xmax := max
i=1,...,n

xi ymax := max
i=1,...,n

yi

and set up a grid-graph G∗ = (V,E∗) with nodes V = {vx,y : x ∈ Z ∩
[xmin, xmax], y ∈ Z ∩ [ymin, ymax]}. The edges connect vertices that are hori-
zontally or vertically adjacent, that is, E∗ = {e = [(x1, y1), (x2, y2)] : |x1−x2| =
1, |y1 − y2| = 1}. Since the original reduction in [6] constructs only terminal
points within a grid of maximal extension in O(n3), we can assume that in-
stance I1 also induces a grid which is polynomially bounded in n and hence only
polynomially many nodes have to be introduced in G∗.
We now construct an instance I2 of MinFs2

= on the plane dual graph G =
(G∗)∗ of G∗ as follows: In G the vertices in G∗ correspond to faces and the edges
incident to a vertex in G∗ form the boundary of the corresponding face in G.
Assign a value to every node of G∗ as follows:

c(vi) :=

⎧⎪⎨⎪⎩
i, if i ∈ {1, . . . , n− 1}
− 1

2n(n− 1), if i = n

0, otherwise.

It can then be shown that we can always assign lengths to the edges of G such
that the clockwise length of the face corresponding to vertex vi equals c(vi).
The graph G corresponds in fact to an instance of MinFs2

=. Observe that
for no strict subset of the terminals their (face) values add up to zero. It can now
be seen that the feasible solutions for the instance I2 of MinFs2

= correspond
exactly to Steiner trees for I1 and that I2 has a consistent subset of at least
m− k edges if and only if for I1, there is a Steiner Tree with at most k edges.

4 Approximation Algorithm for MinFs2= on Planar
Graphs

The problem MinFs2
= is a special case of the well-known Hitting Set Prob-

lem. In the general Hitting Set Problem, we are given a collection C of subsets
of a finite set E and weights we ≥ 0 for all e ∈ E. The goal is to find a minimum
weight subset A ⊂ E such that A contains at least one element from each subset
in C. In the case of MinFs2

=, the collection C is the set of all inconsistent cycles
and the finite set of ground elements is the set of all arcs in the constraint graph
with their respective weights.
Goemans and Williamson [8] gave a general primal-dual framework for design-

ing approximation algorithms for Hitting Set. The problem can be formulated
as an Integer Linear Program whose linear relaxation and dual read as follows:
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min
∑
e∈E

wexe

s.t.
∑
e∈C

xe ≥ 1 ∀C ∈ C

xe ≥ 0 ∀e ∈ E

max
∑
C∈C

yC

s.t.
∑

C∈C:e∈C

yC ≤ we ∀e ∈ E

yC ≥ 0 ∀C ∈ C

The primal-dual-method constructs simultaneously a feasible solution x for the
Integer Linear Program and a feasible solution y for the dual of the LP-relaxation.
The algorithm starts with the trivial dual feasible solution y = 0 and uses a vio-
lation oracle violation, which outputs for a given subset S of the ground set E
a subset of the sets not hit by S. It then increases the dual variables of all the
sets in violation(S) until one of the dual packing constraints becomes tight
for some element, which then gets added to the solution. At the end, a cleanup
step is performed. Algorithm 1 shows the translation of the general algorithm for
MinFs2

=. We assume without loss of generality that we > 0 for all e ∈ E, since
edges of zero weight can be removed from the graph at the beginning without
adding to the solution cost.
A key theorem from Goemans and Williamson [8] is the following:

Theorem 5 ([8]). The primal-dual algorithm 1 delivers a solution for Hitting

Set of weight at most γ
∑

C∈C yC ≤ γOPT if for any infeasible E and any

minimal augmentation F of E, the collection V(E) returned by the violation
oracle on input E satisfies: ∑

C∈V(E)

|C ∩ F | ≤ γ|V(E)|.

A minimal augmentation is a feasible solution F containing E which is inclu-
sionwise minimal, that is, for any e ∈ F it holds that F \ {e} is infeasible.
In order to apply the result of Theorem 5 we need to design an appropriate

violation oracle. The techniques will be similar to that in [9], where Goemans
and Williamson construct a primal-dual 3-approximation for feedback problems
on planar graphs. We will use the following intuitive definitions:

Definition 1 (cf. [9]). Let G be a directed plane graph (i.e., G is planar and
has been embedded in the plane, so it makes sense to talk about faces of G). A
face of G whose boundary forms an inconsistent cycle is called a inconsistent
face. Every cycle C of G divides the plane into two regions, the interior (the one
with finite diameter) and the exterior. We define f(C) to be the set of all faces
in the interior of C. We say that a cycle C1 contains a cycle C2 if f(C1) ⊇ f(C2)
and write C2 ⊆f C1.

The relation “⊆f” defines a partial order on the set C of inconsistent cycles
of G. The inclusionwise minimal inconsistent cycles with respect to this partial
order are of particular interest. We will abuse notation slightly and call them the
minimal inconsistent cycles.

Two cycles C1 and C2 cross if none of the sets f(C1) ∩ f(C2), f(C1)\f(C2),
f(C2)\f(C1) is empty. A family of cycles is called laminar if no two of its cycles
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Algorithm 1 Primal-Dual Approximation Algorithm for MinFs2
=

1: Input: Graph G = (V,E) with arc lengths and weights we ≥ 0.
2: Output: An edge set A ⊆ E such that the subgraph (V,E \ A) does not contain

any inconsistent cycles, i.e., an edge set A such that C∩A �= ∅ for each inconsistent
cycle C.

3: y = 0 {dual solution}
4: A = ∅ {primal solution, initially empty}
5: Set xe = 0 for all edges e ∈ E.
6: l = 0 {iteration count}
7: while there is an inconsistent cycle in (V,E \A) do
8: V = violation(A)
9: Increase yC uniformly for all C ∈ V until ∃el /∈ A :

∑
C:el∈C yC = wel

10: A = A ∪ {el}
11: end while
12: for all j = l, . . . , 1 do
13: if A \ el is feasible then
14: A = A \ {el}
15: end if
16: end for

are crossing, i.e., any two cycles either do not share an interior face or one of
them contains the other.

The definition of our violation oracle is the first and also the most important
point where we make use of the planarity of the constraint graph G := GI : De-
fine Violation(A) to be the set of all minimal inconsistent cycles in the graph
obtained by deleting all edges in A from G. As we will show, the minimal incon-
sistent cycles are all inconsistent faces and therefore it is clear that Violation

can be computed in polynomial time.
Choose an orientation for the plane and orient the boundaries of the faces of

G accordingly. Summing up all (the lengths of) those boundaries we see that
every edge contributes to exactly two summands and with different sign, so the
result must be 0. Also, if we only sum up all the boundaries of the faces inside
some cycle C, all inner boundaries cancel, leaving only the edges of C.
To put this into a formula, define 	(C) to be the length of the cycle C (=sum

of the signed lengths of its edges) with clockwise orientation. If C is the boundary
of a face F , we also define 	(F ) := 	(C), except for the exterior face, where we
set 	(F ) := −	(C). This gives us ∑

F : is a face of G

	(F ) = 0 (1)

and

	(C) =
∑

F∈f(C)

	(F ) for all cycles C of G. (2)



232 N. Leithäuser, S.O. Krumke, and M. Merkert

Lemma 1. If there is an inconsistent cycle C in G, there are (at least) two
faces corresponding to inconsistent cycles, one of which lies in the interior of C
and the other one in the exterior of C.

Proof. We first show that the existence of one inconsistent face implies that there
are actually two inconsistent faces. To see this use Equation (1). If there were
only one inconsistent face, its boundary would be the only nonzero summand,
which means that the sum is nonzero contradicting (1).
Let C ∈ C be an inconsistent cycle in G. Consider the subgraph Gint of

G, which only contains C and all edges and vertices in the interior of C. By
construction, C is the boundary of an inconsistent face of Gint (namely the
exterior face) and by the above claim Gint must have another inconsistent
face, which lies in the interior of C. But this is, of course, also an inconsistent
face in G.
The existence of an inconsistent face in the exterior of C follows analogously

if we consider the subgraph Gext of G, which only contains C and all edges and
vertices in the exterior of C, instead of Gint.

Proposition 1. Every minimal cycle in C with respect to ⊆f is the boundary of
a face of G and, therefore, face-minimal inconsistent cycles do not cross.

Proof. Follows immediately from Lemma 1.

Lemma 2. A graph is consistent if and only if all face-minimal cycles are con-
sistent.

Proof. Immediately from Proposition 1.

Inspired by Lemma 2, given a partial solution A, our violation oracle returns
the collection of face-minimal inconsistent cycles in G = (V,E \ A). Observe
that this violation oracle can be implemented to run in polynomial time, since
there is only a linear number of faces, which can be checked exhaustively. Our
main ingredient for the analysis of the primal-dual algorithm for MinFs2

= is
the following:

Theorem 6. Let G be a planar graph and letM be a collection of face-minimal
inconsistent cycles. Then, for any minimal solution A we have∑

C∈M
|A ∩ C| ≤ 2|A| ≤ 2|M|.

In order to prove the theorem, we need a number of auxiliary results. Let A be an
inclusionwise minimal solution for MinFs2

=. By the minimality of A, for every
e ∈ A there must be an inconsistent cycle Ce such that Ce ∩ A = {e}. In fact,
if the intersection were empty or contained more than {e} for every inconsistent
cycle, then we could remove e from A because it either hits only cycles which
are already being hit or it does not hit any cycle. We call such a cycle Ce with
Ce ∩ A = {e} a witness cycle of e.
Due to lack of space, the proof of the following lemma is deferred to the full

version of the paper:
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Lemma 3. Let A ⊂ E be an inclusionwise minimal solution. Then, there exists
a laminar family of witness cycles Ce ∈ C, e ∈ A. ��
We are now ready to complete the proof of Theorem 6. We first see from
Lemma 2 that the violation oracle V , which returns all face-minimal inconsis-
tent cycles is valid in the sense that if G contains an inconsistent cycle, V will be
non-empty.
Let F = {Ce|e ∈ A} be a laminar family of witness cycles for A, which exists

by Lemma 3. Since F is laminar, we can construct a forest with node set F
representing the partial order induced by “⊆f” restricted to the elements of F .
We add a root node r, connect it to all maximal elements of F , and denote the
resulting tree by T . For the analysis we now assign an edge e ∈ A to the node
of T corresponding to its witness cycle; furthermore, every element C ofM can
be assigned to (the node of T corresponding to) the smallest witness cycle that
contains C; if there is no such witness cycle, C is assigned to the root node r. Let
Me denote the set of elements ofM which are assigned to node Ce. Note that
Me might be empty for some nodes of T , but never for leaves. This is because
by Lemma 1, there must be some inconsistent face inside every witness cycle.
We wish to bound

∑
C∈Me

|A∩C| from above: For a cycle C ∈ Me, we know
that |A ∩ C| can only contain the edge e and edges assigned to the children of
Ce, since no element of M crosses any element of F and every witness cycle
contains exactly one element of A (and therefore separates its inside faces from
all elements of A but the aforementioned ones). By definition of T , the number of
those candidate edges is degT (Ce), i.e., the degree of node Ce in the tree T . Since
every edge touches at most two inconsistent faces, each edge can only appear
once in

∑
C∈Me

|A ∩ C|, so∑
C∈Me

|A ∩ C| ≤ degT (Ce).

IfMe = ∅, we can use 0 as a trivial better bound. Summing up over all e ∈ A,
we obtain: ∑

C∈M
|A ∩ C| =

∑
e∈A

∑
C∈Me

|A ∩ C| ≤
∑

e∈A:Me �=∅
degT (Ce)

The average vertex-degree of a tree with n nodes is 2n−2
n ; we would like to use

this, but the sum on the right-hand side does not contain all vertex-degrees of
T , but only some of them. Here the key observation is that all the leaves of
T appear in the sum; and the absence of any node with degree ≥ 2 can only
decrease the average vertex-degree, which is below 2. A special case is the root
node: It may have degree 1 but Mr can be empty. Taking this into account,
we get ∑

e∈A:Me �=∅
degT (Ce) ≤ 2|{e ∈ A :Me �= ∅}| − 1 ≤ 2|M| − 1.

This completes the proof of Theorem 6. Together with Theorem 5, we thus
obtain:
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Corollary 1. There exists a polynomial time 2-approximation algorithm for
MinFs2

= when the associated constraint graph is planar. ��

5 Approximation Algorithms for MaxFs2=

It is easy to obtain a 2-approximation algorithm for MaxFS2
≤, that is, for the

case when all constraints are inequalities of the form xi − xj ≤ cij . Numbering
the vertices in the constraint graph GI from 1 to n, one splits the arcs into
two groups, one that contains those arcs going from smaller to higher numbers
and one that contains the other arcs going from higher to smaller numbers.
Thus, the arc set of GI is partitioned into two parts each of which forms an
acyclic subgraph (and hence is consistent in the case of inequalities). One of the
subgraphs contains at least one half of the total weight of the arcs and is, thus,
a 2-approximation to MaxFS2

≤.
Unfortunately, this approach fails for MaxFs2

=. On the other hand, if the
constraint graph associated with an instance of MaxFs2

= is a forest, it is triv-
ially consistent. This observation can be used to obtain an approximation for
MaxFs2

=. Recall that the arboricity of a graph is the minimum number of
forests in which the edge set of a graph can be partitioned. This value can be
computed in polynomial time as shown in [5,12]. Moreover, a simple planar graph
with n vertices can be edge-partitioned into three forests in O(n) time [14].
Suppose first that the constraint graph does not contain parallel edges. Then,

computing a decomposition of the constraint graph G into the minimum number
of forests and then selecting the one with the largest weight by averaging yields
an approximation with a factor α, where α is the arboricity of G. Now, suppose
that G does contain parallel edges. Let e1 and e2 be such two parallel edges. If
they have the same length 	, we can collapse them into one edge with length 	
and weight w(e1) + w(e2); otherwise no solution at all can contain both e1 and
e2, since they form an inconsistent cycle. In this case, we remove the lighter edge.
Thus, we can eliminate all parallel edges without affecting solution quality.

Theorem 7. MaxFs2
= can be approximated within a factor of α, where α is

the arboricity of the reduced graph, where parallel edges have been processed as
above. ��

An immediate corollary is the following:

Corollary 2. Choosing a maximum weight spanning tree of the constraint graph
yields an approximation within a factor of α. ��

6 Extensions to Bounded Domains

In this section, we replace the domain R for each variable xi by an interval [ai, bi].
We then have additional box constraints ai ≤ xi ≤ bi, which are not optional,
but need all to be satisfied. We call the extension of MinFs2

= andMaxFs2
= to

interval domains MinFs2
=
-D and MaxFs2

=
-D respectively. Note that we can
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test whether all box constraints can be satisfied simultaneously in polynomial
time by a a shortest-path computation.
Analogously to inconsistent cycles, we define (domain) inconsistent paths: A

(domain) inconsistent path p = v1, . . . , vk is a simple path with the property
that either

av1 +

k−1∑
i=1

	(vi, vi+1) > bvk or bv1 +

k−1∑
i=1

	(vi, vi+1) < avk .

Obviously, an inconsistent path or an inconsistent cycle render the whole system
invalid. In fact, we can show that it is also sufficient to destroy all inconsistent
paths and cycles in order to have a domain feasible system.
Due to lack of space, most of the proofs of the following results will be deferred

to the full version of the paper.

Theorem 8. The problem of hitting all inconsistent paths by a subset of edges
of minimum weight is NP-complete in general graphs. It remains strongly NP-
complete on planar graphs, even if no vertex is incident to more than three arcs.

Theorem 9. The problems MinFs2
=
-D and MaxFs2

=
-D are polynomial solv-

able on trees. The result still holds if we have domains of the form [av, bv] ∩ Z.

Theorem 10. MinFs2
=
-D on graphs without inconsistent cycles can be ap-

proximated within a factor of O(log n), where n is the number of vertices. In the
special case of planar graphs, there is a constant approximation factor.

Proof. Given a graph without inconsistent cycles, each path between two nodes i
and j has the same length dij . We can therefore determine which node pairs are
connected by inconsistent paths. Consequently, we can regard the problem as a
multicut problem with the conflicting nodes as terminal pairs and use the ap-
proximation algorithm from [7] which provide the stated approximation factors.

��

Using the result of Theorem 9 with the techniques of Section 5 we obtain:

Theorem 11. MaxFs2
=
-D has an α-approximation guarantee on general

graphs, where α is again the arboricity of the reduced graph. MinFs2
=
-D has a

constant approximation guarantee on planar graphs.
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Abstract. We consider a graph parameter, the hydra number, arising
from an optimization problem for Horn formulas in propositional logic.
The hydra number of a graph G = (V,E) is the minimal number of hyper-
arcs of the form u, v → w required in a directed hypergraph H = (V, F ),
such that for every pair (u, v), the set of vertices reachable in H from
{u, v} is the entire vertex set V if (u, v) ∈ E, and it is {u, v} otherwise.
Here reachability is defined by the standard forward chaining or marking
algorithm.

Various bounds are given for the hydra number. We show that the
hydra number of a graph can be upper bounded by the number of
edges plus the path cover number of its line graph, and this is a sharp
bound for some graphs. On the other hand, we construct graphs with
hydra number equal to the number of edges, but having arbitrarily
large path cover number. Furthermore we characterize trees with low
hydra number, give bounds for the hydra number of complete binary
trees, discuss a related optimization problem and formulate several open
problems.

1 Introduction

We consider a problem concerning the minimal number of hyperarcs in directed
hypergraphs with prescribed reachability properties. In this paper, a directed
hypergraph H = (V, F ) has size-3 hyperarcs of the form u, v → w where u, v is
called the body (or tail) and w is called the head of the hyperarc. Reachability
is defined by a marking procedure known as forward chaining. A vertex w ∈ V
is reachable from a set S ⊂ V if the following process marks w: start by marking
vertices in S, and as long as there is a hyperarc a, b→ c such that both a and b
are marked, mark c as well.
Given an undirected graph G = (V,E), we would like to find the minimal

number of hyperarcs in a directed hypergraph H = (V, F ), such that for every
pair (u, v) ∈ E, the set of vertices reachable from {u, v} in H is the whole vertex
set V if (u, v) ∈ E, and it is {u, v} otherwise. In other words, given a set of
� An earlier version of this paper entitled “Hydra formulas and directed hypergraphs:
A preliminary report” appears in the online proceedings of the International Sym-
posium on Artificial Intelligence and Mathematics 2012.

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 237–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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bodies, we look for the minimal total number of heads assigned to these bodies
such that every body can reach every vertex. The minimum is called the hydra
number1 of G, denoted by h(G).
The problem is a combinatorial reformulation of a special case of the min-

imization problem for propositional Horn formulas. Horn formulas are a basic
knowledge representation formalism. Horn minimization is the problem of finding
a shortest possible Horn formula equivalent to a given formula. There are ap-
proximation algorithms, computational hardness and inapproximability results
for this problem [1,2,3,4]. Special cases correspond to the well studied transi-
tive reduction and minimum equivalent digraph problems for directed graphs.
Estimating the size of a minimal formula is not well understood even in rather
simple cases. A hydra formula ϕ is a definite Horn formula with clauses of size
3 such that every body occurring in the formula occurs with all possible heads.
The minimal number of clauses needed to represent ϕ is the hydra number of
the undirected graph G corresponding to the bodies in ϕ.
Besides being a natural subproblem of Horn minimization, the hydra min-

imization problem may also be of interest for the following reason. The Horn
body minimization problem is the problem of finding, given a definite Horn for-
mula, an equivalent Horn formula with the minimal number of distinct bodies.
There are efficient algorithms for this problem [5,6,7,8]. Thus one possible ap-
proach to Horn minimization is to find an equivalent formula with the mini-
mal number of bodies and then to select as few heads as possible from the set
of heads assigned to the bodies. This approach is indeed used in an approxi-
mate Horn minimization algorithm [2]. Hydras are a natural test case for this
approach.
The paper is organized as follows. Section 2 contains some background, in-

cluding a discussion of the motivating Horn minimization problem. The rest of
the paper presents various results on hydra numbers.
It is easy to see that |E(G)| ≤ h(G) ≤ 2|E(G)| for every graph G on at

least three vertices. Graphs satisfying the lower bound are called single-headed.
In Section 3 we give some sufficient and some necessary conditions for single-
headedness. In Section 4 we show that the hydra number is related to the path
cover number of the line graph (Theorem 13, Theorem 14). In Section 5 it is
shown that single-headed trees are precisely the stars and that trees with hy-
dra number |E(G)| + 1 are precisely the non-star caterpillars (Theorem 16). In
Section 6 we show that the hydra number of a complete binary tree is between
13
12 |E (G)| and

⌈
8
7 |E (G) |

⌉
(Theorem 19).

In Section 7 we consider the related problem of finding the minimal number
of hyperarcs for which every k-tuple of vertices is good, and we give almost
matching lower and upper bounds. We conclude the paper by mentioning several
open problems.
Due to space limitations, the proof of Theorem 19 is omitted. Further results

on hydra numbers will appear in [9].

1 In Greek mythology the Lernaean Hydra is a beast possessing many heads.
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2 Background

A definite Horn clause is a disjunction of literals where exactly one literal is
unnegated. Such a disjunction can also be viewed as an implication, for example
the clause x̄ ∨ ȳ ∨ z is equivalent to the implication x, y → z. The tuple x, y is
the body and the variable z is the head of the clause. The size of a clause is
the number of its literals. A definite d-Horn formula is a conjunction of definite
Horn clauses of size d. A clause C is an implicate of a formula ϕ if every truth
assignment satisfying ϕ satisfies C as well. The implicate C is a prime implicate
if none of its proper subclauses is an implicate.
Implication between a definite Horn formula ϕ and a definite Horn clause C

can be decided by forward chaining: mark every variable in the body of C, and
while there is a clause in ϕ with all its body variables marked, mark the head of
that clause as well. Then ϕ implies C iff the head of C gets marked.

Definition 1. A definite 3-Horn formula ϕ is a hydra formula, or a hydra, if
for every clause x, y → z in ϕ and every variable u, the clause x, y → u also
belongs to ϕ.

For example, (x, y → z) ∧ (x, y → u) ∧ (x, z → y) ∧ (x, z → u) is a hydra2.
In the following proposition we note that every prime implicate of a hy-

dra is a clause occurring in the hydra itself (this is not true for definite 3-
Horn formulas in general). Thus minimization for hydras amounts to selecting
a minimal number of clauses from the hydra that are equivalent to the original
formula.

Proposition 2. Every prime implicate of a hydra belongs to the hydra.

Proof. First note that all prime implicates of a definite Horn formula are definite
Horn clauses [10]. Let us consider a hydra ϕ and a definite Horn clause C. If
the body of C is of size 1, or it is of size 2 but it does not occur as a body
in ϕ then forward chaining cannot mark any further variables, thus C cannot
be an implicate. If the body of C has size at least 3 then it must contain a
body x, y occurring in ϕ, otherwise, again, forward chaining cannot mark any
further variables. But then the clause x, y → head(C) occurs in ϕ and so C is not
prime. ��

A definite Horn formula may also be viewed as a directed hypergraph of the type
described in the introduction, and the two descriptions of forward chaining are
equivalent. The closure clH(S) of a set of vertices S with respect to H is the set
of vertices marked by forward chaining started from S. A set of vertices is good
if its closure is the set of all vertices.
For completeness, we restate the main notions used in this paper.

Definition 3. A directed 3-hypergraph H = (V, F ) represents an undirected
graph G = (V,E) if

2 Redundant clauses like x, y → x are omitted for simplicity.
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i. (u, v) ∈ E implies clH(u, v) = V ,
ii. (u, v) �∈ E implies clH(u, v) = {u, v}.

Definition 4. The hydra number h(G) of an undirected graph G = (V,E) is

min{|F | : H = (V, F ) representsG}.

Proposition 2 implies that the minimal formula size of a hydra ϕ and the hydra
number of the undirected graph G formed by the bodies in ϕ are the same.

Remark 5. For the rest of the paper we assume that every variable in a hydra
occurs in some body, or, equivalently, that graphs contain no isolated vertices.
The removal of a variable occurring only as a head decreases minimal formula
size by one, and, similarly, the removal of an isolated vertex decreases the hydra
number by one.

For the remainder of the paper we use hypergraph terminology.

3 The Hydra Number of Graphs

In this section we note some simple properties of the hydra number.

Proposition 6. For every graph G = (V,E) with at least three vertices

|E(G)| ≤ h(G) ≤ 2|E(G)|.

Proof. For the upper bound construct a hypergraph of size 2|E(G)| by first
ordering the edges of G, and then using each edge as the body of two hyperarcs
whose heads are the two endpoints of the next edge in G. For the lower bound,
note that each edge of G must be a body of at least one hyperarc. ��

Equality holds in the upper bound when G is a matching. Graphs satisfying
the lower bound are of particular interest as they represent ‘most compressible’
hydras.

Definition 7. A graph G is single-headed if h(G) = |E(G)|.

A graph is single-headed iff there is a hypergraph H = (V, F ) such that every
edge of G has exactly one head assigned to it, every hyperarc body inH is an edge
of G and every edge of G is good in H . Cycles, for example, are single-headed,
as shown by the directed hypergraph

(v1, v2 → v3), (v2, v3 → v4), . . . , (vk−1, vk → v1). (1)

Adding edges to the cycle preserves single-headedness. For example, the graph
obtained by adding edge (vi, vj) is represented by the directed hypergraph ob-
tained from (1) by adding the hyperarc vi, vj → vi+1, where i+1 is meant modulo
m. Thus we obtain the following.
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Proposition 8. Hamiltonian graphs are single-headed.

We will discuss stronger forms of this statement in the next section. Matchings,
on the other hand, satisfy the upper bound in Proposition 6. Indeed, every edge
must occur as the body of at least two hyperarcs as otherwise forward chaining
cannot mark any further vertices.
We call a body u, v single-headed (resp., multi-headed) with respect to a

directed hypergraph H representing a graph G, if it is the body of exactly one
(resp., more than one) hyperarc of H .

Remark 9. Assume that the directed hypergraph H = (V, F ) represents the
graph G = (V,E) and |V | ≥ 4. If u, v→ w ∈ F and u, v is single-headed in H
then w must be a neighbor of u or v. Indeed, otherwise clH(u, v) = {u, v, w} ⊂ V .
This is a fact which we use numerous times in our proofs without referring to it
explicitly.

The following proposition generalizes the argument proving Proposition 8.

Proposition 10. Let G be a connected graph and let G′ be a connected spanning
subgraph of G. Then

h(G) ≤ h(G′) + |E(G)| − |E(G′)|.

If G′ is single-headed then G is also single-headed.

Proof. Let H ′ be a directed hypergraph of size h(G′) representing G′. Since G′

is a connected spanning subgraph of G, for every edge (u, v) ∈ E(G) � E(G′)
there is an edge (v, w) ∈ E(G′). The directed hypergraph H representing G
obtained from H ′ by adding the hyperarc u, v → w to H ′ for each edge (u, v) ∈
E(G)�E(G′) satisfies the requirements. The second statement follows trivially.

��

A second proposition gives a sufficient condition for single-headedness based on
single-headedness of a non-spanning subgraph.

Proposition 11. Let G be a connected graph and (u, v) �∈ E(G). Construct
the graph Ĝ with vertex set V (Ĝ) = V (G) ∪ {w} and edge set E(Ĝ) = E(G) ∪
{(u, v), (v, w)}, for some w �∈ V (G). If G is single-headed then Ĝ is single-headed.

Proof. Let H be a directed hypergraph representing G and containing exactly
|E(G)| hyperarcs. Construct Ĥ from H by adding hyperarcs u, v → w and
v, w → z, where z is a neighbor of v in G guaranteed to exist by the connectiv-
ity of G. Since all pairs in E(G) reach both u and v in H (and in Ĥ), hyperarc
u, v → w ensures all pairs in E(G) can reach in Ĥ the new variable w as well. On
the other hand, hyperarc v, w → z ensures that the new pairs (u, v) and (v, w)
can reach all other variables. Finally, there are |E(Ĝ)| hyperarcs in H . ��

Next we see a general sufficient condition for a graph not to be single-headed.
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Proposition 12. Let G be the union of two disjoint subgraphs G1 = (V1, E1)
and G2 = (V2, E2), connected by a cut-edge. If both G1, G2 contain at least two
vertices then G is not single-headed.

Proof. Assume that G is single-headed and let H be a directed hypergraph
demonstrating this. Let u ∈ G1, v ∈ G2, and (u, v) be the cut-edge. There is
exactly one hyperarc of the form u, v → z in H . If z is in G1 (resp., in G2) then
forward chaining started from z, u (resp., z, v) cannot mark any vertices in G2

(resp., G1) other than v (resp., u). ��

4 Line Graphs

In this section we consider a graph parameter that can be used to prove bounds
on the hydra number. The line graph L(G) of G has vertex set V (L(G)) = E(G)
and edge set E(L(G)) = {(e, f)|e �= f ∈ E(G) and e∩f �= ∅}. A (vertex-disjoint)
path cover of G is a set of vertex-disjoint paths such that every vertex v ∈ V is
in exactly one path. The path cover number of G is the smallest integer k such
that G has a path cover containing k paths.
In Proposition 8 we noted that hamiltonian graphs are single-headed. This

can be extended to show that hamiltonicity of the line graph is also sufficient for
single-headedness. Note that hamiltonicity of the line graph is a strictly weaker
condition than hamiltonicity. Hamiltonicity of the graph is easily seen to imply
hamiltonicity of the line graph, and a triangle with a pendant edge shows that
the converse fails. Furthermore, the path cover number of the line graph of any
spanning connected subgraph gives a general upper bound for the hydra number.

Theorem 13. Let G be a connected graph and G′ be a connected spanning sub-
graph of G. Then the following statements are true:

i. If L(G′) is hamiltonian then G is single-headed.

ii. If L(G′) has a path cover of size k then h(G) ≤ |E(G)| + k.

Proof. By Proposition 10 it is sufficient to prove the bounds for G′.
For i, let C be a hamiltonian cycle in L(G′). Direct the edges of C so that

�C is a directed hamiltonian cycle. The directed hypergraph H satisfying the
requirements is constructed by adding a hyperarc u, v→ w for each directed
edge (e, f) ∈ �C, where e = (u, v) and f = (v, w).
For ii, let {Pi}k1 be the minimum path cover of L(G′) and let li be the number

of vertices of the path Pi. Direct the edges of each path Pi so that �Pi is a
directed path. Let ei = (xi, yi) and fi = (ui, vi) be the first and last edges in �Pi,

respectively (if �Pi is a single vertex then ei = fi).
We construct a directed hypergraph H representing G′ and satisfying the

requirements as follows. First, for each path �Pi of at least 2 vertices we add li−1
hyperarcs: for each directed edge (e, f) ∈ �Pi, where e = (u, v) and f = (v, w),
add a hyperarc u, v→ w to H .
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If k = 1 then we complete the construction of H by adding two hyperarcs,
u1, v1 → x1 and u1, v1 → y1. If k > 1 then we complete the construction by
adding the 2k hyperarcs

(uk, vk → x1), (uk, vk → y1) and (ui, vi → xi+1), (ui, vi → yi+1),

for 1 ≤ i ≤ k − 1. ��

The condition of Theorem 13(i) is sufficient but not necessary for a graphG to be
single-headed. In fact there exist single-headed graphs such that the line graph
of any of the connected spanning subgraphs has a large path cover number.

Theorem 14. There is a family of single-headed graphs Gk with Θ(k) edges
such that for every spanning, connected subgraph G′ ⊆ Gk, L(G

′) has path cover
number Θ (k).

Proof. Consider the sequence of graphs {Gk : k ≥ 1} constructed from an
8k-cycle, with vertices v0, . . . , v8k−1, and pendant edges xiv4i and yiv4k+4i

for 0 ≤ i ≤ k − 1. Add a vertex zi and the edges (xi, yi), (yi, zi), for each i,
0 ≤ i ≤ k − 1, corresponding to the construction in Proposition 11.
By Proposition 11, Gk is single-headed, since a cycle with attached pendant

edges has a hamiltonian line graph. We will show that for an arbitrary connected
spanning subgraph G′ ⊆ Gk the path cover number of L(G

′) is at least k/4.
Define Di to be the set of vertices in the ith diagonal of L(G

′), namely xiv4i,
xiyi, yizi, and yiv4k+4i. Consider an arbitrary path cover S = {Pj : 1 ≤ j ≤ s}
of the vertices of L(G′).
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Fig. 1. Single-headed graph Gk for k = 4 from Theorem 14 (left) and its line graph
(right)



244 R.H. Sloan, D. Stasi, and G. Turán

Lemma 15. Let Di
′ = Di ∩ V (L(G′)), and let G[Di

′] be the subgraph of L(G′)
induced by Di

′. If G[Di
′] does not contain an endpoint of a path in S, then

Di
′ = Di and one path in S covers all vertices in Di.

Proof. Suppose that G[Di
′] does not contain an endpoint of a path in S, and as-

sume for contradiction that e ∈ Di\Di
′. SinceG′ is both spanning and connected,

it must contain the edge (yi, zi), and so e �= yizi. Also e �∈ {xiyi, yiv4k+4i}, else
yizi would be a degree-1 vertex in L(G′), and thus it would be an endpoint of
a path in S. Furthermore e �= xiv4i, otherwise S must have a path endpoint
in the triangle {xiyi, yizi, yiv4k+4i}. Thus Di is contained in the vertex set of
L(G′), and due to the structure of the diagonal and the assumption that no path
endpoints of S fall in Di, all vertices in the diagonal are covered by exactly one
path P of S. ��

Define Xi to include all vertices in Di along with the cycle vertices v4i−3v4i−2,
v4i−2v4i−1, v4i−1v4i, v4iv4i+1, v4i+1v4i+2, v4i+2v4i+3, and their antipodes on
the circle v4k+4i−3v4k+4i−2, v4k+4i−2v4k+4i−1, v4k+4i−1v4k+4i, v4k+4iv4k+4i+1,
v4k+4i+1v4k+4i+2, v4k+4i+2v4k+4i+3.
Let Xi

′ = Xi ∩ V (L(G′)). We claim that the subgraph G[Xi
′] induced by

the vertex set Xi
′ contains at least one endpoint of a path in S. Suppose not.

By Lemma 15 all vertices in Di are in L(G′). A case analysis shows that all
other vertices in Xi must be present, otherwise a degree-1 vertex is introduced
in G[Xi

′] or G′ is not both spanning and connected. Thus there must be a path
P in S going through all the vertices of Xi. A further case analysis shows that
this is not possible.

G[Xi
′], which is a contradiction.

There are k/2 disjoint sets Xi
′ and so there are at least k/4 paths in S. ��

A more involved case analysis gives at least two endpoints of paths of S in Xi
′,

and so at least k/2 paths in S.

5 Trees with Low Hydra Number

In this section we begin the discussion of the hydra number of trees, with trees
having low hydra numbers, that is, hydra number |E(T )| or |E(T )|+ 1.
A star is a tree that contains no length-3 path. A caterpillar is a tree for

which deleting all vertices of degree one and their incident edges from the tree
gives a path. We call this path the spine of T , and note that it is unique. A
useful characterization of caterpillars is that they do not contain the subgraph
in Fig. 2 [11] (see also [12, p.88]).
Caterpillars have been instrumental in [13], where finding maximal caterpillars

starting from the leaves of the tree was the basis for a polynomial algorithm used
to find a minimum hamiltonian completion of the line graph of a tree (which is
the same as finding a minimum path cover). A linear algorithm was later put
forth by [14] for the same problem. For general graphs the problem is NP-hard.
Furthermore, [15] proves that finding a hamiltonian path is NP-complete even
for line graphs.
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Fig. 2. The forbidden subgraph for caterpillars

Stars are the only trees that are single-headed, and caterpillars are the only
non-star trees that can attain h(T ) = |E(T )|+ 1.

Theorem 16. Let T be a tree. Then

i. h(T ) = |E(T )| if and only if T is a star.
ii. h(T ) = |E(T )|+ 1 if and only if T is a non-star caterpillar.

We first show that a tree that is not a star cannot be single-headed.

Lemma 17. If T is a tree that is not a star, then h(T ) ≥ |E(T )|+ 1.

Proof. Since T is not a star, it contains a path of length three. The middle edge
is a cut-edge between two components of at least two vertices, hence we can
apply Proposition 12. ��

In fact a hypergraph that represents a non-caterpillar tree requires even more
hyperarcs.

Lemma 18. If T is a tree that is not a caterpillar then h(T ) > |E(T )|+ 1.

Proof. A non-caterpillar tree T contains the subgraph in Fig. 2. Let us call the
central vertex of that forbidden subgraph u.
Assume for contradiction that H is a hypergraph with |E(T )| + 1 hyperarcs

that represents T . Let the two-headed body of H be α.
We claim α must have a head in every non-singleton subtree attached to u

that does not contain both vertices of α. Suppose not. Let v be a neighbor of u,
and let Tv be a non-singleton subtree of T not containing any heads of α, and

u

v

w

Tv

Fig. 3. Part of the non-caterpillar tree T from the proof of Lemma 18
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also not containing both vertices of α. Finally let w ∈ V (Tv) be a neighbor of v.
(See Fig. 3.) Body u, v must have a head that is a neighbor of v in Tv: among
the vertices in Tv, only v itself can be a head to a body completely outside Tv;
so if u, v has only heads outside of Tv, then u, v cannot reach w. Body u, v must
also have a head outside Tv, because otherwise only vertices in Tv and u would
be reachable from u, v in H . So u, v must be α, which contradicts α having no
heads in Tv.
Since there are at least three non-singleton subtrees attached to u, it must

be that two of those subtrees each contain one head of α, and the third subtree
contains both vertices of α. The two heads of α must not be adjacent to α,
because they are in different subtrees. Those two heads also cannot be adjacent
to each other. Therefore, the only vertices reachable from α in H are α’s two
heads and α itself. ��
Proof (of Theorem 16). We need to prove the upper bounds. The single-
headedness of stars is easily seen directly, or follows from Theorem 13(i). For T
a caterpillar, the upper bound follows from Theorem 13(ii) as the line graph of
a caterpillar contains a hamiltonian path. ��

6 Complete Binary Trees

In this section we obtain upper and lower bounds for h(G) when G is a complete
binary tree. A complete binary tree of depth d, denoted Bd, is a tree with d+ 1
levels, where every node on levels 1 through d has exactly 2 children. Bd has
2d+1 − 1 vertices and 2d+1 − 2 edges.
Theorem 19. For d ≥ 3 it holds that

13

12
|E (Bd)| ≤ h (Bd) ≤

⌈
8

7
|E (Bd)|

⌉
.

Proof omitted due to space constraints.

7 Minimal Directed Hypergraphs with All k-Tuples Good

In this section we consider a problem related to hydra numbers. Given n and a
number k (2 ≤ k ≤ n − 1), let f(n, k) be the minimal number of hyperarcs in
an n-vertex hypergraph H such that every k-element subset of the vertices is
good for H . The case k = 2 is just the hydra number of complete graphs and so
f(n, 2) =

(
n
2

)
.

We use Turán’s theorem from extremal graph theory (see, e.g. [12]). The Turán
graph T (n, k − 1) is formed by dividing n vertices into k − 1 parts as evenly as
possible (i.e., into parts of size �n/(k − 1)� and �n/(k − 1)�) and connecting
two vertices iff they are in different parts. The number of edges of T (n, k− 1) is
denoted by t(n, k − 1). If k − 1 divides n then

t(n, k − 1) =
(
1− 1

k − 1

)
n2

2
.
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Turán’s theorem states that if an n-vertex graph contains no k-clique then it has
at most t(n, k − 1) edges and the only extremal graph is T (n, k − 1). Switching
to complements it follows that if an n-vertex graph has no empty subgraph on
k vertices then it has at least

(
n
2

)
− t(n, k − 1) edges.

Theorem 20. If k ≤ (n/2) + 1 then(
n

2

)
− t(n, k − 1) ≤ f(n, k) ≤

(
n

2

)
− t(n, k − 1) + (k − 1).

Proof. Suppose H is a 3-uniform directed hypergraph with all k-tuples good.
Then every k-element set S of vertices must contain at least one body of a
hyperarc in H , otherwise forward chaining started from S cannot mark any
vertices. Thus the undirected graph formed by the bodies in H contains no
empty subgraph on k vertices, and the lower bound follows by Turán’s theorem.
For the upper bound we construct a directed hypergraph based on the com-

plement of T (n, k−1) over the vertex set {x1, . . . , xn}, consisting of k−1 cliques
of size differing by at most 1. Assume that each clique has size at least 3. In
each clique do the following. Pick a hamiltonian path, direct it, and introduce
hyperarcs as in (1) (with the exception of the last edge closing the cycle). For
every other edge (u, v), introduce a hyperarc u, v → w where w is a vertex on the
hamiltonian path that is adjacent to u or v. For each edge e closing a hamiltonian
cycle, add two hyperarcs with body e, and heads the endpoints of the first edge
on the hamiltonian path of the next clique (where ‘next’ assumes an arbitrary
cyclic ordering of the cliques). For cliques of size 2 the single edge in the clique
plays the role of the unassigned edge and the construction is similar. ��

8 Open Problems

We list only a few of the related open problems. As computing hydra numbers
is a special case of Horn minimization, it would be interesting to determine the
computational complexity of computing hydra numbers and recognizing single-
headed graphs. What is the maximal hydra number among connected n-vertex
graphs? Can the path cover number of the line graph be used to get a lower
bound for the hydra number of trees?
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Abstract. We consider the following multi–level opinion spreading model on
networks. Initially, each node gets a weight from the set {0, . . . , k − 1}, where
such a weight stands for the individuals conviction of a new idea or product. Then,
by proceeding to rounds, each node updates its weight according to the weights of
its neighbors. We are interested in the initial assignments of weights leading each
node to get the value k − 1 –e.g. unanimous maximum level acceptance– within
a given number of rounds. We determine lower bounds on the sum of the initial
weights of the nodes under the irreversible simple majority rules, where a node
increases its weight if and only if the majority of its neighbors have a weight that
is higher than its own one. Moreover, we provide constructive tight upper bounds
for some class of regular topologies: rings, tori, and cliques.

Keywords: multicolored dynamos, information spreading, linear threshold
models.

1 Introduction

New opinions and behaviors usually spread gradually through social networks. In 1966
a classical study showed how doctors’ willingness to prescribe a new antibiotic diffused
through professional contacts. A similar pattern can be detected in a variety of innova-
tions: Initially a few innovators adopt, then people in contact with the innovators get
interested and then adopt, and so forth until eventually the innovation spreads through-
out the society. A classical question is then how many innovators are needed, and how
they need to be disposed, in order to get a fast unanimous adoption [17].

In the wide set of the information spreading models, the first computational study
about information diffusion [9] used the linear threshold model where the threshold
triggering the adoption of a new idea to a node is given by the majority of its active
neighbors.

Recently, information spreading has been intensively studied also in the context of
viral marketing, which uses social networks to achieve marketing objectives through
self-replicating viral processes, analogous to the spread of viruses. The goal here is
to create a marketing message that can initially convince a selected set of people and
then spread to the whole network in a short period of time [6]. One problem in viral
marketing is the target set selection problem which asks for identifying the minimal
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c© Springer-Verlag Berlin Heidelberg 2012



250 S. Brunetti et al.

number of nodes which can activate, under some conditions, the whole network [7].
The target set selection problem has been proved to be NP-hard through a reduction to
the node cover problem [10]. Recently, inapproximability results of opinion spreading
problems have been presented in [5].

In this paper, we consider the following novel opinion spreading model. Initially,
each node is assigned a weight from the set {0, . . . , k − 1}; where the weight of a
node represents the level of acceptance of the opinion by the actor represented by the
node itself. Then, the process proceeds in synchronous rounds where each node updates
its weight depending on the weights of its neighbors. We are interested in the initial
assignments of weights leading to the all–(k − 1) configuration within a given number
of rounds. The goal is to minimize the sum of the initial weights of the nodes.

Essentially, we want everyone to completely accept the new opinion within a given
time bound while minimizing the initial convincing effort (sum of the initial node
weights).

We notice that we are interested in the case in which the spreading is essentially a
one-way process: once an agent has adopted an opinion (or behavior, innovation, . . .),
she sticks with it. These are usually referred as irreversible spreading processes.

Dynamic Monopolies and Opinion Spreading. In a different scenario, spreading pro-
cesses have been studied under the name of dynamic monopolies. Monopolies were
initially introduced to deal with faulty nodes in distributed computing systems. A
monopoly in a graph is a subset M of nodes such that each other node of the graph has
a prescribed number of neighbors belonging to M . The problem of finding monopolies
in graphs has been widely studied, see for example [1], [12], and [13] for connections
with minimum dominating set problem.

Dynamic monopolies or shortly dynamo were introduced by Peleg [15]. A strong
relationship between opinion spreading problems, such as the target set selection, and
dynamic monopolies exists. Indeed, they can be used to model the irreversible spread
of opinions in social networks.

Dynamic monopolies have been intensively studied with respect to the bounds of the
size of the monopolies, the time needed to converge into a fixed point, and topologies
over which the interaction takes place [2], [3], [8], [11], [14], [16].

Our Results: Weighted Opinion Spreading. We model the opinion spreading process
considered in this paper, by means of weighted dynamos.

We extend the setting of dynamos from 2 possible weights (denoting whether a node
has accepted the opinion or not) to k levels of opinion acceptance (a different extension
has been studied in [4]). Initially, each node has a weight (which represents the node
initial level of acceptance of the opinion) in the set {0, . . . , k − 1}. Then, each node
updates its weight by increasing it of one unit if the weights of the simple majority of
its neighbors is larger than its own. We call k-dynamos, the initial weight assignments
which lead each node in the network to have maximum weight k− 1. We are interested
in the minimum weight (i.e. the sum of the weight initially assigned to the nodes) of a
k-dynamo. We focus on both the weight and the time (e.g., number of rounds needed to
reach the final configuration); namely, we study k-dynamos of minimum weight which
converge into at most t rounds.
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Paper Organization. In Section 2, we formalize the model and fix the notation. In
Section 3, we determine lower bounds on the weight of k-dynamos which converge
into at most t rounds. Section 4 provides tight constructive upper bounds for rings, tori
and cliques. In the last section, we conclude and state a few open problems.

2 The Model

Let G = (V,E) be an undirected connected graph. For each v ∈ V , we denote by
N(v) = {u ∈ V | {u, v} ∈ E} the neighborhood of v and by d(v) = |N(v)| its
cardinality (i.e., the degree of v).

We assume the nodes of G to be weighted by the set [k] = {0, 1, . . . , k − 1} of the
first k ≥ 2 integers. For each v ∈ V we denote by cv ∈ [k] the weight assigned to a
given node v.

Definition 1. A configuration C on G is a partition of V into k sets {V0, V1, . . . , Vk−1},
where Vj = {v ∈ V | cv = j} is the set of nodes of weight j. The weight w(C) of C is
the weighted sum of its nodes

w(C) =
k−1∑
j=0

j × |Vj | =
∑
v∈V

cv.

Consider the following node weighting game played on G using the set of weights [k]
and a threshold value λ (for some 0 < λ ≤ 1):

In the initial configuration, each node has a weight in [k]. Then node weights are
updated in synchronous rounds (i.e., round i depends on round i−1 only). Let cv(i)
denote the weight of node v at the end of round i ≥ 0; during round i ≥ 1, each
node updates its weight according to the weight of its neighbors at round i − 1.
Specifically, each node v
• first computes the number n+(v) = |{u ∈ N(v) | cu(i − 1) > cv(i − 1)}| of

neighbors having a weight larger than its current one cv(i − 1);
• then, it applies the following irreversible rule:

cv(i) =

{
cv(i−1) + 1 if n+(v) ≥ �λd(v)�
cv(i−1) otherwise

We denote the initial configuration by C0 and the configuration at round i by Ci.
We are interested into initial configurations that converge to the unanimous all-(k− 1)s
configuration – i.e., there exists a round t∗ such that for each i ≥ t∗ and for each node
v, it holds cv(i) = k− 1. Such configurations are named k-weights dynamic monopoly
(henceforth k-dynamo).

A (k, t)-dynamo is a k-dynamo which reaches its final configuration within t rounds,
that is, cv(i) = k − 1 for each node v ∈ V and i ≥ t. An example of (k, t)-dynamo,
with λ = 1/2, is depicted in Figure 1. Given a graph G, a set of weights [k], a threshold
λ, and an integer t > 0, we aim for a minimum weight (k, t)-dynamo.

Definition 2. A (k, t)-dynamo on a graph G with threshold λ is optimal if its weight is
minimal among all the (k, t)-dynamos for the graph G with threshold λ.
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3 Time Bounded Dynamos

In this section we provide a lower bound on the weight of a (k, t)–dynamo and study the
minimum value of t for which an optimal (k, t)–dynamo coincides with a k–dynamo.

Fig. 1. A (3, 2)-dynamo on a 3× 3 Tori (λ = 1/2): Starting from the initial configuration (left),
two rounds are needed to reach the final all-(2)s configuration

3.1 Preliminary Results

Definition 3. Consider an undirected connected graph G = (V,E). Let k ≥ 2 and
t ≥ 1 be integers and 0 < λ ≤ 1. An initial configuration C for G is called (k, t)-
simple-monotone if V can be partitioned into t + 1 sets X−s, X−s+1, . . .Xk−1 (here
s = t− k + 1) where Xk−1 �= ∅ , and for each v ∈ Xi

(i) cv(0) = max(i, 0);
(ii) v has at least �λd(v)� neighbours in

⋃k−1
j=i+1 Xj .

Lemma 1. Any (k, t)-simple-monotone configuration for an undirected connected
graph G is a (k, t)-dynamo for G.

Proof. We show that for each i = −s,−s + 1, . . . , k − 1 (here s = t − k + 1) and
j = 0, . . . , t and for each u ∈ Xi

cu(j) =

{
min(j + i, k − 1) if j + i > 0
0 otherwise.

We prove this statement by induction on i from k − 1 back to −s. For i = k − 1 the
nodes in Xk−1 have weight k − 1 from the initial configuration and the statement is
trivially true for each round j.

Assume now that the statement is true for any r > i. For each u ∈ Xi, we know that
u has at least �λd(v)� neighbours which belong to

⋃k−1
r=i+1 Xr. By induction, each of

this neighbor nodes, for each round j has a weight greater or equal tomin(j+i+1, k−1)
if j + (i+ 1) > 0.

Hence, u preserves its weight cu(j) = max(i, 0) = 0 until it increases its weight at
each round j such that j+(i+1) > 1 (i.e. j+i > 0) and cu(j) < k−1; as a result each
node in Xi has weightmin(j + i, k − 1) whenever j + i > 0, for each j = 0, 1, . . . , t.

The Lemma follows since at round t, i+ j = i + t ≥ −s+ t = k − 1 > 0. Hence,
all the nodes will have weightmin(i+ t, k − 1) = k − 1. ��

Lemma 2. Let G = (V,E) be an undirected connected graph. There exists an optimal
(k, t)-dynamo for G which is a (k, t)-simple-monotone configuration for G.
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Proof. Let C be an optimal (k, t)-dynamo. Define a new configuration C′ as follows:
Let s = t− k+1, for i = k− 1, k− 2, . . . ,−s, let Xi be the set of nodes that, starting
with configuration C, reaches permanently the weight k − 1 at round k − 1− i, that is,

Xi = {u ∈ V | cu(k− 2− i) �= k− 1, and cu(j) = k− 1 for each j ≥ k− 1− i}.
In C′, for each u ∈ Xi set c′u(0) = max(i, 0).
Notice that since C is a k-dynamo which converges into t rounds,

{X−s, X−s+1, . . . , Xk−1} is a partition of V and Xk−1 �= ∅. We now show
that w(C′) ≤ w(C) and C′ is a (k, t)-simple-monotone configuration for G. Clearly,

(a) for each index i ≤ 0, and for each u ∈ Xi, cu(0) ≥ c′u(0) = 0;
(b) for each i > 0 and for each u ∈ Xi we have cu(0) ≥ c′u(0) = i (otherwise u

cannot reach the final weight k − 1 by round k − 1− i, since the weight of a node
increases by at most 1 at each round).

By using (a) and (b) above we have that w(C′) ≤ w(C). It remains to show that C′ is
a (k, t)-simple-monotone configuration for G. By construction, C′ satisfies point (i) of
Definition 3. Moreover, for each u ∈ Xi, we know that u in the configuration C reaches
the weight k−1 at round k−1− i. Hence at least �λd(v)� of its neighbors have weight
k− 1 at round k− 1− i− 1 = k− 1− (i+1), that is at least �λd(v)� of its neighbors
belong to

⋃k−1
j=i+1 Xj . Hence, point (ii) of Definition 3 also holds. ��

3.2 A Lower Bound

Theorem 1. Consider an undirected connected graph G = (V,E) and let k ≥ 2 and
t ≥ 1 be integers. Any (k, t)-dynamo C, with λ = 1/2, has weight

w(C) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|V |
2ρ(�+s+1)+1 × (k−1 + ρ	(	+1))

where 	 =

⌊√
(2ρs+ρ+1)2+4ρ(k−1)−(2ρs+ρ+1)

2ρ

⌋
if t ≥ k − 1

|V |
2ρ(�+s+1)+1 × (k−1 + ρ(	(	+1)− s(s+1)))

where 	 =

⌊√
4ρ(t+1)+(ρ−1)2−(2ρs+ρ+1)

2ρ

⌋
otherwise,

where ρ is the ratio between the maximum and the minimum degree of the nodes in V
and s = t− k + 1.

Proof. By Lemma 2 we can restrict our attention to (k, t)-simple-monotone con-
figurations for G. Therefore, the set V can be partitioned into t + 1 subsets
X−s, X−s+1, . . . , Xk−1 where s = t − k + 1 and for i = −s,−s + 1, . . . , k − 1,
Xi denotes the set of nodes whose weight at round j is max(0,min(j + i, k − 1)).
Henceforth, we denote the size of Xi by xi and the sum of the degree of nodes in
A ⊆ V by d(A).

In order to prove the theorem, we first show that, for each i = −s,−s+1, . . . , k−2,
it holds

xi ≤ 2ρxk−1. (1)

Let E(A,B) = |{e = (u, v) ∈ E : u ∈ A and v ∈ B}| denote the number of edges
between a node in A and one in B. Each node v ∈ Xi must increase its weight for each
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round r such that 0 < r+ i < k− 1; hence, at round r = max(−i+1, 0), node v must
have at least �d(v)/2� neighbors which belong to

⋃k−1
j=i+1 Xj . Overall the number of

edges between Xi and
⋃k−1

j=i+1 Xj satisfies

E

⎛⎝Xi,

k−1⋃
j=i+1

Xj

⎞⎠ ≥ d(Xi)

2
≥ |Xi|dmin

2
=

xidmin

2
, (2)

where dmin represents the minimum degree of a node in G. Moreover, for each i =

−s,−s+ 1, . . . , k − 2, the number of edges between Xi and
⋃k−1

j=i+1 Xj is

E

⎛⎝Xi,

k−1⋃
j=i+1

Xj

⎞⎠ ≤
k−1∑

j=i+1

d(Xj)− 2E

⎛⎝Xi+1,

k−1⋃
j=i+1

Xj

⎞⎠− 2E
⎛⎝Xi+2,

k−1⋃
j=i+2

Xj

⎞⎠−. . .

. . .− 2E (Xk−2, Xk−2 ∪Xk−1)− 2E (Xk−1, Xk−1)

≤
k−1∑

j=i+1

d(Xj)− 2

⎡⎣E
⎛⎝Xi+1,

k−1⋃
j=i+2

Xj

⎞⎠+ E

⎛⎝Xi+2,

k−1⋃
j=i+3

Xj

⎞⎠+
. . .+ E(Xk−2, Xk−1)]

≤
k−1∑

j=i+1

d(Xj)− 2 [d(Xi+1)/2 + d(Xi+2)/2 + . . .+ d(Xk−2)/2]

= d(Xk−1) ≤ dmax|Xk−1| = dmaxxk−1,

where dmax is the maximum node degree of a node in G. By this and (2), recalling that
ρ = dmax/dmin, we get (1).

Define now yi = xi/xk−1. By (1), 0 ≤ yi ≤ 2ρ. Our goal is to minimize the weight

function w(C) =
∑k−1

j=1 jxj = xk−1

(
(k − 1) +

∑k−2
j=1 jyj

)
with |V | =

∑k−1
j=−s xj =

xk−1

(
1 +

∑k−2
j=−s yj

)
. Hence, xk−1 =

|V |
1+

∑k−2
j=−s yj

and we can write

w(C) = |V | ×
k − 1 +

∑k−2
j=1 jyj

1 +
∑k−2

j=−s yj
. (3)

We distinguish now two cases depending on whether t ≥ k − 1 or t < k − 1.

Case I (t ≥ k − 1): In this case, it is possible to show that the rightmost term of (3) is
minimized when

yi =

{
2ρ if − s ≤ i ≤ 	

0 if 	 < i ≤ k − 2,
(4)

where 	=

⌊√
(2ρs+ρ+1)2+4ρ(k−1)−(2ρs+ρ+1)

2ρ

⌋
is the floor of the positive root of the

equation ρi2 + (2ρs+ρ+1)i− (k+1).
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Let f(y−s, y−s+1, . . . , yk−2) =
k−1+

∑k−2
j=1 jyj

1+
∑k−2

j=−s yj
. This function is decreasing in yi for

each −s ≤ i ≤ 0. Hence, since 0 ≤ yj ≤ 2ρ for each j,

f(y−s, y−s+1, . . . , y0, y1, . . . , yk−2) ≥ f(2ρ, 2ρ, . . . , 2ρ, y1, . . . , yk−2).

Moreover, we show that the following two inequalities hold:

f(2ρ, 2ρ, . . . , 2ρ, y1, . . . , y�, . . . , yk−2) ≥ f(2ρ, 2ρ, . . . , 2ρ, y2, . . . , y�, . . . , yk−2)

≥ f(2ρ, 2ρ, . . . , 2ρ, y3, . . . , y�, . . . , yk−2)

≥ ...

≥ f(2ρ, 2ρ, . . . , 2ρ, y�+1, . . . yk−2) (5)

f(2ρ, 2ρ, . . . , 2ρ, y�+1, . . . yk−2) ≥ f(2ρ, 2ρ, . . . , 2ρ, y�+1, . . . yk−3, 0)

≥ f(2ρ, 2ρ, . . . , 2ρ, y�+1, . . . yk−4, 0, 0)

≥ . . .

≥ f(2ρ, 2ρ, . . . , 2ρ, 0, 0, . . . , 0). (6)

We first prove (5). Each inequality in (5) is obtained by considering the following one
for some i ≤ 	 (recalling that 	 is the floor of the positive root of the equation ρi2 +
(2ρs+ρ+1)i− (k+1))

f(2ρ, . . . , 2ρ, yi, . . . , yk−2)=
A+iyi
B+yi

≥A+2ρi

B+2ρ
=f(2ρ, . . . , 2ρ, yi+1, . . . , yk−2) (7)

where A = k−1 +
∑k−2

j=i+1 jyj + ρi(i− 1) and B = 1 +
∑k−2

j=i+1 yj + 2ρ(i+ s).

We notice that (7) is satisfied whenever yi(A− iB) ≤ 2ρ(A− iB) and that for i ≤ 	

A− iB = k − 1 +
k−2∑

j=i+1

jyj + ρi(i− 1)− i

⎛⎝1 + k−2∑
j=i+1

yj + 2ρ(i+ s)

⎞⎠
= k − 1 +

k−2∑
j=i+1

(j − i)yj + ρi2 − ρi− i− 2ρi2 − 2ρis

≥ −ρi2 − (2ρs+ ρ+ 1)i+ k − 1 ≥ 0.

Hence, (7) and consequently (5) are satisfied. In order to get (6), we show that for each
i > 	

f(2ρ, . . . , 2ρ, y�+1, . . . , yi, 0, . . . , 0) =
C+iyi
D+yi

≥ C

D
=f(2ρ, . . . , 2ρ, y�+1, . . . , yi−1, 0, . . . , 0) (8)

where C = k−1 +
∑i−1

j=�+1 jyj + ρ	(	+ 1) and D = 1 +
∑i−1

j=�+1 yj + 2ρ(s+	+1).
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Since (8) is satisfied whenever yi(C − iD) ≤ 0 and since now i > 	 we get

C − iD = k − 1 +
i−1∑

j=�+1

jyj + ρ	(	+ 1)− i

⎛⎝1 + i−1∑
j=�+1

yj + 2ρ(s+ 	+ 1)

⎞⎠
≤ k − 1 + ρ	2 + ρ	− (	 + 1)− 2ρ(	+ 1)s− 2ρ(	+ 1)	− 2ρ(	+ 1)
= −ρ	2 − (2ρs+ 3ρ+ 1)	+ k − 2ρs− 2ρ− 2 ≤ 0.

Hence, (8) and consequently (6) are satisfied. Summarizing, we have that the minimiz-
ing values are

xi =

⎧⎪⎨⎪⎩
|V |

1+
∑k−2

j=−s yj
= |V |

2ρ(�+s+1)+1 , for i = k − 1

2ρxk−1 =
2ρ|V |

2ρ(�+s+1)+1 for i = −s,−s+ 1, . . . , 	
0 otherwise.

Therefore,

k−1∑
j=1

jxj =
|V |

2ρ(	+s+1)+1

⎛⎝k−1+2ρ
�∑

j=1

j

⎞⎠ =
|V |

2ρ(	+s+1)+1
× (k−1+ρ	(	+1)) ,

and we can conclude that w(C) ≥ |V |
2ρ(�+s+1)+1 × (k − 1 + ρ	(	+ 1)), when t ≥ k−1.

Case II (t < k − 1): The proof of this case is left to the reader. ��

Corollary 1. Consider an undirected connected d-regular graph G = (V,E). Let k ≥
2 and t ≥ 1 be integers. Any (k, t)-dynamo C, with λ = 1/2, has weight

w(C) ≥

⎧⎪⎨⎪⎩
|V |

2�+2s+3 × (k−1+	(	+1)) where 	 = �
√
t+1+s2+s�−(s+1) if t ≥ k−1

|V |
2�+2s+3 × (k−1+	(	+1)− s(s+1)) where 	 = �

√
t+1�−(s+1)otherwise,

where s = t− k + 1.

We are now able to answer the question: Which is the smallest value of t such that the
optimal dynamo contains only two weights? By analyzing the value of 	 in the case
t ≥ k− 1 we have that whenever t > k(2ρ+1)−2ρ−4

2ρ then 	 = 0, hence only the weights
0 and k − 1 will appear in the optimal configuration. When ρ = 1 (i.e., on regular
graphs) one has t > 3

2k − 3.

Remark 1. Our result generalizes the one in [8] with k = 2. Indeed, when t ≥ k−1 = 1
by the above consideration we get t > 3

2k − 3 = 0 and 	 = 0. Hence, w(C) ≥
|V |
2s+3 × (k − 1) =

|V |
2t+1 .

Theorem 2. Let G = (V,E) be an undirected connected graph, if t is sufficiently large,
then:

(i) any optimal (k, t)-dynamo contains only the weights 0 and k − 1;
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(ii) let k ≥ 2 be an integer and C2 a 2–dynamo on G. Let Ck be obtained from C2 by
replacing the weight 1 with the weight k−1. If C2 is an optimal 2-dynamo then Ck is
an optimal k-dynamo. Moreover,w(Ck) = w(C2)×(k−1) and t(Ck) = t(C2)+k−2
(where t(C) is the time needed to reach the final configuration).

Proof omitted.

4 Building (k, t)-Dynamo

In this section we provide several optimal (or almost optimal) (k, t)-dynamo construc-
tions for Rings and Tori (λ = 1/2 ) and Cliques (any λ).

4.1 Rings

A n-node ring Rn consists of n nodes and n− 1 edges, where for i = 0, 1, . . . , n− 1
each node vi is connected with v(i−1) mod n and v(i+1) mod n.

A necessary condition for C(Rn, k) to be a k-dynamo (λ ≤ 1/2) is that at least one
node ofRn is weighted by k − 1. This condition is also sufficient.

Theorem 3. An optimal k-dynamo (λ ≤ 1/2) C(Rn, k) has weight w(C(Rn, k)) =
(k − 1), and it reaches its final configuration within t = k − 2 + �n−1

2 � rounds.

A (k, t)-dynamo (λ = 1/2) for a ring Rn is obtained by the following partition of V
which defines the initial configuration (see Figure 2) C(Rn, k, t): for i = 0, 1, . . . , n,

∀vi ∈ Rn, vi ∈

⎧⎨⎩
Xk−1 if j = 0
X�+1−j if 1 ≤ j ≤ 	+ s+ 1
Xj−�−2s−2 if 	+ s+ 2 ≤ j ≤ 2	+ 2s+ 2

where s = t− k + 1, j = i mod (2	+ 2s+ 3) and 	 = �
√
t+ 1+ s2 + s� − (s+ 1)

if t ≥ k − 1 and 	 = �
√
t+ 1� − (s+ 1) otherwise.

Fig. 2. (k, t)-dynamos on Rings: (a) C(R9, 8, 9), a (8,9)-dynamo on R9 (� = 1), in this partic-
ular case n = 2� + 2s + 3; (b) C(R12, 8, 9) a (8,9)-dynamo on R12 (� = 1); (c) C(R5, 6, 3),
a (6,3)-dynamo on R5 (� = 3), in this particular case n = 2� + 2s + 3; (d) C(R12, 6, 3), a
(6,3)-dynamo on R12 (� = 3).
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Theorem 4. (i) The configuration C(Rn, k, t) is a (k, t)-dynamo for any value of n,
λ = 1/2, k ≥ 2 and t ≥ 1. (ii) The weight of C(Rn, k, t) is

w(C(Rn, k, t)) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌈
n

2�+2s+3

⌉
(k−1 + 	(	+1)) if t ≥ k − 1

where 	 = �
√
t+ 1 + s2 + s� − (s+1)⌈

n
2�+2s+3

⌉
(k−1 + 	(	+1)− s(s+1)) otherwise

where 	 = �
√
t+ 1� − (s+1)

Proof. (i) By construction C(Rn, k, t) is (k, t)-simple-monotone, hence by Lemma 1,
C(Rn, k, t) is a (k, t)-dynamo. (ii) There are two cases to consider: if t ≥ k − 1,
then starting from v0 each set of 2	 + 2s + 3 nodes weights k − 1 + 2

∑�
i=1 i =

k−1+	(	+1). Then the weight of C(Rn, k, t) is smaller than the weight of C(Rn, k, t)
where n = � n

2�+2s+3� × (2	 + 2s + 3). Hence, w(C(Rn, k, t)) ≤ w(C(Rn, k, t)) =⌈
n

2�+2s+3

⌉
(k−1 + 	(	+1)). Similarly for t < k − 1. ��

By Corollary 1 and Theorem 4 we have the following Corollary.

Corollary 2. When n/(2	+2s+3) is integer, C(Rn, k, t) is an optimal (k, t)-dynamo.

4.2 Tori

A n × m-node tori Tn,m consists of n × m nodes and 2(n × m) edges, where for
i = 0, 1, . . . , n − 1 and j = 0, 1, . . . ,m − 1, each node vi,j is connected with four
nodes: vi,(j−1) mod m, vi,(j+1) mod m, v(i−1) mod n,j and v(i+1) mod n,j .

A (k, t)-dynamo (λ = 1/2) for T2�+2s+3,2�+2s+3 is obtained by weighting diagonals
with the same order defined for dynamos on rings. Specifically, the configuration
C(T2�+2s+3,2�+2s+3, k, t) is defined by the partition of V described as follows,

let Di = {va,b : i = (b − a) mod (2	 + 2s + 3)} denote the i-th diagonal of
T2�+2s+3,2�+2s+3, for i = 0, 1, . . . , 2	+ 2s+ 2,

∀v ∈ Di, v ∈

⎧⎨⎩
Xk−1 if i = 0
X�+1−i if 1 ≤ i ≤ 	+ s+ 1
Xi−�−2s−2 if 	+ s+ 2 ≤ i ≤ 2	+ 2s+ 2,

Fig. 3. (k, t)-dynamos on Tori: (left) C(T3,3, 3, 2), a (3,2)-dynamo on T3,3 (�=0); (middle)
C(T5,5, 6, 3), a (6,3)-dynamo on T5,5 (�=3); (right) C(T9,9, 8, 9) a (8,9)-dynamo on T9,9 (�=1)
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where s = t − k + 1, 	 = �
√
t+ 1 + s2 + s� − (s + 1) if t ≥ k − 1 and 	 =

�
√
t+ 1� − (s+ 1) otherwise. Some examples are depicted in Figure 3.

Theorem 5. The configuration C(T2�+2s+3,2�+2s+3, k, t) is an optimal (k, t)-dynamo
for any k ≥ 2, t ≥ 1 and λ = 1/2.

Proof. Let C = C(T2�+2s+3,2�+2s+3, k, t). By construction C is (k, t)-simple-
monotone, hence by Lemma 1, it is a (k, t)-dynamo. To show its optimality we dis-
tinguish two cases. If t ≥ k − 1, each row (resp. each column) corresponds to
C(R2�+2s+3, k, t) and its weight is k − 1 + 	(	 + 1). Overall, w(C) = (2	 + 2s +
3)× (k − 1 + 	(	+ 1)) that matches the bound in Corollary 1. Similarly for t < k− 1.

��

A (k, t)-dynamo for Tn,m is obtained by building a grid � n
2�+2s+3�×�

m
2�+2s+3�, where

each cell is filled with a configuration C(T2�+2s+3,2�+2s+3, k, t) defined above. Then,
the exceeding part is removed and the last row and the last column are updated. In
particular, for each column (resp. row), if the removed part contains a k − 1, then the
element in the last row (resp. column) is given the value k − 1 (see Figure 4). We call
this configuration C(Tn,m, k, t).

Theorem 6.
(i) C(Tn,m, k, t) is a (k, t)-dynamo for any value of n, m,λ = 1/2, k ≥ 2 and t ≥ 1.
(ii) The weight of C(Tn,m, k, t) is

w(C(Tn,m, k, t)) ≤

⎧⎪⎪⎨
⎪⎪⎩

� n
2�+2s+3


� m
2�+2s+3


(2�+2s+3) (k−1+�(�+1)) if t ≥ k − 1

where � = �
√
t+1+s2+s�−(s+1)

� n
2�+2s+3


� m
2�+2s+3


(2�+2s+3) (k−1+�(�+1)−s(s+1)) otherwise
where � = �

√
t+1�−(s+1).

Proof. (i) By construction C(Tn,m, k, t) is (k, t)-simple-monotone (cfr. Figure 4), hence
by Lemma 1, C(Tn,m, k, t) is a (k, t)-dynamo.
(ii) The grid contains � n

2�+2s+3� × �
m

2�+2s+3� cells. If t ≥ k − 1, each cell has weight
w(C(T2�+2s+3,2�+2s+3, k, t)) = (2	+ 2s+ 3)× (k − 1 + 	(	+ 1)) .

Fig. 4. C(T12,18, 9, 8), a (9, 8)-dynamo on T12,18 (� = 2): (left) a grid 2 × 3 is filled with 6
configuration C(T7,7, 9, 8); (right) The exceeding parts i.e., the last two rows and the last three
columns are removed. Finally the last row and the last column are updated in order to obtain a
configuration that satisfies Lemma 1.
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Moreover, the nodes that change their weight take the weight of a removed element.
Hence, the weight of C(Tn,m, k, t) is upper bounded by the weight of the full grid which
is � n

2�+2s+3�×�
m

2�+2s+3�×w(C(T2�+2s+3,2�+2s+3, k, t)). Similarly for t < k−1. ��

By Corollary 1 and Theorem 6 we have the following Corollary.

Corollary 3. If both n and m are multiples of 2	+ 2s+ 3, C(Tn,m, k, t) is an optimal
(k, t)-dynamo.

4.3 Cliques

Let Kn be the clique on n nodes. A necessary condition for a k-dynamo C(Kn, k)
is that �λ(n − 1)� nodes are weighted by k − 1. The condition is also sufficient and
if the remaining �λ(n − 1)� nodes are weighted by 0, the k-dynamo is optimal and
reaches its final configuration within t = k− 1 rounds. So, when t ≥ k− 1 the optimal
configuration is obtained by weighting �λ(n − 1)� nodes by k − 1 and the remaining
nodes by 0. For t < k − 1, an optimal (k,t)-dynamo is obtained by assigning weight
k − t− 1 to all the non-k − 1 weighted nodes. Clearly this configuration is optimal, if
we assign a weight smaller than k − t− 1 to a node v, then v can not reach the weight
k − 1 within t rounds. Therefore:

Theorem 7. Let Kn be the clique on n nodes. An optimal (k,t)-dynamo C(Kn, k, t)
has weight w(C(Kn, k, t)) = (k− 1)×�λ(n− 1)�+max(k− t− 1, 0)×�λ(n− 1)�.

5 Conclusion and Open Problems

We studied multivalued dynamos with respect to both weight and time. We derived
lower bounds on the weight of (k, t)-dynamo and provided constructive tight upper
bounds for rings, tori and cliques. Several questions remain open: In particular, different
updating rules could also be investigated, as for instance reversible rules. Construction
based on different graphs would also be interesting.

Acknowledgments. We would like to thank Ugo Vaccaro for many stimulating dis-
cussions and the anonymous referees whose helpful comments allowed to significantly
improve the presentation of their work.
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Abstract. We study the graphs G for which the hull number h(G) and
the geodetic number g(G) with respect to P3-convexity coincide. These
two parameters correspond to the minimum cardinality of a set U of
vertices of G such that the simple expansion process that iteratively adds
to U , all vertices outside of U that have two neighbors in U , produces the
whole vertex set of G either eventually or after one iteration, respectively.
We establish numerous structural properties of the graphsG with h(G) =
g(G), which allow the constructive characterization as well as the efficient
recognition of all triangle-free such graphs. Furthermore, we characterize
the graphs G that satisfy h(H) = g(H) for every induced subgraph H of
G in terms of forbidden induced subgraphs.

Keywords: Hull number, geodetic number, P3-convexity, irreversible
2-threshold processes, triangle-free graphs.

1 Introduction

As one of the most elementary models of the spreading a property within a
network — like sharing an idea or disseminating a virus — one can consider
a graph G, a set U of vertices of G that initially possess the property, and an
iterative process whereby new vertices u enter U whenever sufficiently many
neighbors of u are already in U . The simplest choice for “sufficiently many”
that results in interesting effects is 2. This choice leads to the irreversible 2-
threshold processes considered by Dreyer and Roberts [5]. Similar models were
studied in various contexts such as statistical physics, social networks, marketing,
and distributed computing under different names such as bootstrap percolation,
influence dynamics, local majority processes, irreversible dynamic monopolies,
catastrophic fault patterns and many others [1–3, 5, 7–10].
From the point of view of discrete convexity, the above spreading process is

nothing but the formation of the convex hull of the set U of vertices of G with

M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 262–273, 2012.
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respect to the so-called P3-convexity in G, where a set C of vertices of G is
considered to be P3-convex if no vertex of G outside of C has two neighbors in
C. A P3-hull set of G is a set of vertices whose P3-convex hull equals the whole
vertex set of G, and the minimum cardinality of a P3-hull set of G is the P3-hull
number h(G) of G.
Closely related to the notion of hull sets and the hull number of a graph

are geodetic sets and the geodetic number. A P3-geodetic set of graph G is a
set of vertices such that every vertex u of G either belongs to the set or has
two neighbors in the set. The minimum cardinality of a P3-geodetic set of G
is the P3-geodetic number g(G) of G. Different types of graph convexities have
been considered in the literature, and the definitions of hull and geodetic sets
change accordingly. For the special case of P3-convexity, the P3-geodetic number
coincides with the well-studied 2-domination number [6].
In view of the iterative spreading process considered above, a hull set even-

tually distributes the property within the entire network, whereas a geodetic set
spreads the property within the entire network in exactly one iteration. In [11]
we considered spreading processes with arbitrary deadlines between 1 and ∞.
Clearly, every geodetic set is a hull set, which implies

h(G) ≤ g(G) (1)

for every graph G. Furthermore, both parameters are computationally hard
in general, and efficient algorithms are only known for quite restricted graph
classes [4, 6].
In the present paper we study graphs that satisfy (1) with equality. After

summarizing useful notation and terminology, we collect numerous structural
properties of such graphs in Section 2. Based on these properties, we construct
a large subclass of those graphs in Section 3, comprising all triangle-free such
graphs. In Section 4 we derive an efficient algorithm for the recognition of the
triangle-free graphs that satisfy (1) with equality. In Section 5 we give a com-
plete characterization in terms of forbidden induced subgraphs of the class of all
graphs for which (1) holds with equality for every induced subgraph. Finally, we
conclude with some open problems in Section 6.

1.1 Notation and Terminology

We consider finite and simple graphs and digraphs, and use standard terminol-
ogy. For a graph G, the vertex set is denoted V (G) and the edge set is denoted
E(G). For a vertex u of a graph G, the neighborhood of u in G is denoted NG(u)
and the degree of u in G is denoted dG(u). A vertex of a graph whose removal
increases the number of components is a cut vertex. A set C of vertices of G
is P3-convex exactly if no vertex of G outside C has two neighbors in C. The
P3-convexity of G is the collection C(G) of all P3-convex sets. Since we only
consider P3-convexity, we will omit the prefix “P3-” from now on.
For a set U of G, let the interval IG(U) of U in G be the set U ∪ {u ∈

V (G) \ U | |NG(u) ∩ U | ≥ 2}, and let HG(U) denote the convex hull of U in
G, that is, HG(U) is the unique smallest set in C(G) containing U . Within this
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notation, U is a geodetic set of G if IG(U) = V (G), and U is a hull set of G if
HG(U) = V (G). The inequality (1) follows from the immediate observation that
IG(U) ⊆ HG(U) for every set U of vertices of some graph G.
If U is a hull set of G, then there is an acyclic orientation D of a spanning

subgraph of G such that the in-degree d−D(u) is 0 for every vertex u in U and 2
for every vertex u in V (G) \ U . We call D a hull proof for U in G.
Since the hull number and the geodetic number are both additive with respect

to the components of G, we consider the set of graphs

H = {G | G is a connected graph with h(G) = g(G)}.

2 Structural Properties of Graphs in H
We collect some structural properties of the graphs in H in the form of lemmas
which will be required to prove our main results in the next section. The proofs
of many lemmas in this section, however, were omitted due to space limitations
and left to an extended version of this paper.
Let G be a fixed graph in H. Let W be a geodetic set of G of minimum

order and let B = V (G) \ W . By definition, every vertex in B has at least
two neighbors in W . Therefore, G has a spanning bipartite subgraph G0 with
bipartition V (G0) = W ∪ B such that every vertex in B has degree exactly
2 in G0. Let E1 denote the set of edges in E(G) \ E(G0) between vertices in
the same component of G0 and let E2 denote the set of edges in E(G) \ E(G0)
between vertices in distinct components of G0. Note that, by construction, W
is a geodetic set of G0. Since |W | = g(G) = h(G) ≤ h(G0) ≤ g(G0) ≤ |W |, we
obtain h(G0) = g(G0) = |W |, that is, G0 has no geodetic set and no hull set
of order less than |W |. Thus, if C is a component of G0, then W ∩ V (C) is a
minimum geodetic set of C as well as a minimum hull set of C.

Lemma 1. Let C be a component of G0.

(i) No two vertices in C are incident with edges in E2.
(ii) If some vertex u in C is incident with at least two edges in E2, then u

belongs to B and u is a cut vertex of C.

Proof. (i) We consider different cases. If two vertices w and w′ in V (C)∩W are
incident with edges in E2, then let P : w1b1 . . . wl−1bl−1wl be a shortest path in
C between w = w1 and w′ = wl. The set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is
a hull set of G, which is a contradiction.
If a vertex w in V (C)∩W and a vertex b in V (C)∩B are incident with edges in

E2, then let P : w1b1 . . . wlbl be a shortest path in C between w = w1 and b = bl.
Note that b has a neighbor in G0 that does not belong to P . Therefore, the set
(W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a contradiction.
Finally, if two vertices b and b′ in V (C) ∩ B are incident with edges in E2,

then let P : b1w1 . . . bl−1wl−1bl be a shortest path in C between b = b1 and
b′ = bl. Note that b and b′ both have neighbors in G0 that do not belong to P .
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Therefore, the set (W \ {w1, . . . , wl−1})∪{b2, . . . , bl−1} is a hull set of G, which
is a contradiction.

(ii) If a vertex w in V (C) ∩W is incident with at least two edges in E2, then
W \ {w} is a hull set of G, which is a contradiction.
If a vertex b in V (C) ∩ B that is not a cut vertex of C is incident with at

least two edges in E2, then let P : w1b1 . . . wl−1bl−1wl be a path in C avoiding b
between the two neighbors w1 and wl of b in G0. The set (W \ {w1, . . . , wl}) ∪
{b1, . . . , bl−1} is a hull set of G, which is a contradiction and completes the proof.

Lemma 2. If G0 is not connected, no two vertices in W that belong to the same
component of G0 are adjacent.

Proof. For contradiction, we assume that ww′ is an edge of G where w and
w′ are vertices in W that belong to the same component C of G0. Since G is
connected, there is an edge uv in E2 with u ∈ V (C) and v ∈ V (G) \ V (C).
First, we assume that u belongs to W . Let P : w1b1 . . . wl−1bl−1wl be a

shortest path in C between u = w1 and a vertex wl in {w,w′}. Note that l = 1
is possible. The set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which
is a contradiction.
Next, we assume that u belongs to B. Let P : b1w1 . . . blwl be a shortest path

in C between u = b1 and a vertex wl in {w,w′}. Note that l = 1 is possible.
Furthermore, note that b1 has a neighbor in G0 that does not belong to P . The
set (W \ {w1, . . . , wl}) ∪ {b2, . . . , bl} is a hull set of G, which is a contradiction
and completes the proof.

Lemma 3. If G0 is not connected and C is a component of G0, then there are
no two vertices w in V (C)∩W and b in V (C)∩B such that wb ∈ E(G)\E(G0).

Proof. For contradiction, we assume that wb is an edge of G where w in W and
b in B belong to the same component C of G0. Since G is connected, there is an
edge uv in E2 with u ∈ V (C) and v ∈ V (G) \ V (C).
First, we assume that u ∈ W . Let P be a shortest path in C between u and

a vertex u′ in {w, b}. If u′ = w, then let P : w1b1 . . . bl−1wl where u = w1 and
w = wl. Note that l = 1 is possible. In this case the set (W \ {w1, . . . , wl}) ∪
{b1, . . . , bl−1} is a hull set of G, which is a contradiction. If u′ = b, then let
P : w1b1 . . . bl−1wlbl where u = w1 and b = bl. Note that l = 1 is possible.
Furthermore, note that b has a neighbor in G0 that does not belong to P . In
this case, the set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is
a contradiction.
Next, we assume that u = b. Let P : b1w1 . . . blwl be a shortest path in C

between b = b1 and w = wl. Note that the edge bw does not belong to C, hence
l ≥ 2. Furthermore, note that b has a neighbor in G0 that does not belong to P .
In this case, the set (W \ {w1, . . . , wl}) ∪ {b2, . . . , bl} is a hull set of G, which is
a contradiction.
Finally, we assume that u ∈ B \ {b}. Let P be a shortest path in C between

u and a vertex u′ in {w, b}. If u′ = w, then let P : b1w1 . . . blwl, where u = b1
and w = wl. Note that l = 1 is possible. Furthermore, note that w is the unique
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neighbor of b in P , and that u has a neighbor in G0 that does not belong to P .
In this case, the set (W \ {w1, . . . , wl})∪{b2, . . . , bl} is a hull set of G, which is a
contradiction. If u′ = b, then let P : b1w1 . . . wl−1bl, where u = b1 and b = bl. In
this case, the set (W \ {w1, . . . , wl−1}) ∪ {b2, . . . , bl−1} is a hull set of G, which
is a contradiction and completes the proof.

Lemma 4. Let G0 be disconnected and let b and b′ be two vertices in B that
belong to the same component C of G0 satisfying bb′ ∈ E1.

(i) Neither b nor b′ is incident with an edge in E2.
(ii) If some vertex w in V (C) ∩ W is incident with an edge in E2 and P :

w1b1 . . . wlbl is a path in C between w = w1 and a vertex bl in {b, b′}, then
wl is adjacent to both b and b′, and C contains no path between b and b′

that does not contain wl.
(iii) If some vertex b′′ in (V (C)∩B)\ {b, b′} is incident with an edge in E2 and

P : b1w1 . . . wl−1bl is a path in C between b′′ = b1 and a vertex bl in {b, b′},
then wl−1 is adjacent to both b and b′ and C contains no path between b
and b′ that does not contain wl−1.

Lemma 5. If C is a component of G0, then there are no two vertices w and w′

of C that belong to W and two edges e and e′ that belong to E(G) \E(G0) such
that w is incident with e, w′ is incident with e′, and e′ is distinct from ww′.

Lemma 6. If C is a component of G0, then there are no two edges wb and wb′

that belong to E(G) \ E(G0) with w ∈W ∩ V (C) and b, b′ ∈ B ∩ V (C).

Lemma 7. If G0 is connected and G is triangle-free, then there are no two edges
ww′ and bb′ in G with w,w′ ∈ W and b, b′ ∈ B.

Lemma 8. If G0 is connected and G is triangle-free, then there are no two edges
wb and b′b′′ in G with w ∈W and b, b′, b′′ ∈ B.

Lemma 9. If G0 is connected and G is triangle-free, then there are no two
distinct edges bb′ and b′′b′′′ in G with b, b′, b′′, b′′′ ∈ B.

3 Constructing All Triangle-Free Graphs in H
Let G0 denote the set of all bipartite graphs G0 with a fixed bipartition V (G0) =
B ∪W such that every vertex in B has degree exactly 2.
We consider four distinct operations that can be applied to a graph G0

from G0.

– Operation O1

Add one arbitrary edge to G0.
– Operation O′

1

Select two vertices w1 and w2 fromW and arbitrarily add new edges between
vertices in {w1, w2} ∪ (NG0(w1) ∩NG0(w2)) .
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– Operation O2

Add one arbitrary edge between vertices in distinct components of G0.
– Operation O3

Choose a non-empty subset X of B such that all vertices in X are cut
vertices of G0 and no two vertices in X lie in the same component of G0.
Add arbitrary edges between vertices in X so that X induces a connected
subgraph of the resulting graph. For every component C of G0 that does not
contain a vertex from X , add one arbitrary edge between a vertex in C and
a vertex in X .

Let G1 denote the set of graphs that are obtained by applying operation O1 once
to a connected graph G0 in G0. Let G′

1 denote the set of graphs that are obtained
by applying operation O′

1 once to a connected graph G0 in G0. Let G2 denote the
set of graphs that are obtained by applying operation O2 once to a graph G0 in
G0 that has exactly two components. Let G3 denote the set of graphs that are
obtained by applying operation O3 once to a graph G0 in G0 that has at least
three components. Note that O3 can only be applied if G0 has at least one cut
vertex that belongs to B.
Finally, let

G = G1 ∪ G′
1 ∪ G2 ∪ G3. (2)

Since the operation O′
1 allows that no edges are added, the set G′

1 contains all
connected graphs in G0.

Theorem 1. G ⊆ H.

Proof. Let G be a graph in G that is obtained by applying some operation to a
graph G0 in G0. Let V (G0) = B ∪W be the fixed bipartition of G0. Since every
vertex in B has two neighbors in W , the partite setW is a geodetic set of G and
therefore g(G) ≤ |W |. By (1), it suffices to show that h(G) ≥ |W | to conclude
the proof. For contradiction, we assume that U is a hull set of G with |U | < |W |.
Let D be a hull proof for U in G.
The proof naturally splits into four cases according to which of the four sets

G1, G′
1, G2, and G3 the graph G belongs to. Due to space limitation, we give the

details of the proof only for one case.

Case 1. G ∈ G1.

Let W1 =W \ U and B0 = B ∩U . Note that, by the above assumption, |W1| >
|B0| ≥ 0.
We claim that there is at most one vertex w in W1 for which the set NG0(w)

contains exactly one vertex of B0 and that for every other vertex w′ in W1, the
set NG0(w

′) contains at least two vertices of B0. In other words, there is a vertex
w∗ in W1 such that

|NG0(w) ∩B0| ≥
{
1, w = w∗,
2, w ∈W1 \ {w∗}. (3)
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Let w be a vertex inW1. Since |W1| > |B0|, we may assume thatNG0(w) contains
at most one vertex from B0. Let x and y denote the two in-neighbors of w in D.
Let e denote the edge added by operation O1.
If x belongs to W , then e is the edge xw. Hence y ∈ B and dG(y) = 2.

Therefore y ∈ B0, that is, y ∈ NG0(w)∩B0. Furthermore, for every other vertex
w′ in W1 \ {w}, its two in-neighbors x′ and y′ in D both belong to B and are
not incident with e. Hence dG(x

′) = dG(y
′) = 2 and therefore x′, y′ ∈ B0, that

is, x′, y′ ∈ NG0(w) ∩B0. Hence, we may assume that x and y both belong to B.
If e is the edge wx, then we obtain as above that y ∈ NG0(w) ∩B0. Hence x

does not belong to B0. This implies that the two edges of G0 incident with x are
both oriented towards x in D. For every other vertex w′ in W1 \ {w}, it follows
that its two in-neighbors x′ and y′ in D satisfy x′, y′ ∈ NG0(w) ∩B0. Hence, we
may assume that e is neither wx nor wy.
Since NG0(w) contains at most one element from B0, we may assume that e is

incident with x and oriented towards x in D. This implies that y ∈ NG0(w)∩B0.
Furthermore, for every other vertex w′ in W1 \ {w}, its two in-neighbors x′

and y′ in D both belong to B, and, if they are incident with e, then e is not
oriented towards them in D. This implies that x′ and y′ belong to B0, that is,
x′, y′ ∈ NG0(w

′) ∩B0.
Altogether, the existence of a vertex w∗ in W1 with (3) follows. If m denotes

the number of edges in G0 between W1 and B0, then (3) implies m ≥ 2(|W1| −
1) + 1. Furthermore, every vertex in B has degree 2 in G0 and therefore m ≤
2|B0|. Thus, 2|W1| − 1 ≤ 2|B0|. Since both cardinalities are integers, we obtain
|W1| ≤ |B0|, hence

|U | = |W ∩ U |+ |B ∩ U | ≥ |W ∩ U |+ |W \ U | = |W |,

which is a contradiction. This completes the proof.

In conjunction, the results in Sections 2 and Theorem 1 allow for a complete
constructive characterization of the triangle-free graphs in H.

Corollary 1. If T denotes the set of all triangle-free graphs, then G∩T = H∩T .

Proof. Theorem 1 implies G ∩T ⊆ H∩T . For the converse inclusion, let G be a
triangle-free graph in H. Similarly as in Section 2, let W be a minimum geodetic
set of G, let B = V (G) \W , and let G0 be a spanning bipartite subgraph of G
with bipartition V (G0) =W ∪B such that every vertex in B has degree exactly
2 in G0. Let E1 denote the set of edges in E(G) \ E(G0) between vertices in
the same component of G0 and let E2 denote the set of edges in E(G) \ E(G0)
between vertices in distinct components of G0.
First, we assume that G0 is connected. In this case, E1 = E(G) \ E(G0). For

contradiction, we assume that E1 contains two edges e and e′. By Lemmas 5
and 6, the edges e and e′ are not both incident with vertices in W . We may
therefore assume that e connects two vertices from B. Now, since G is triangle-
free, Lemmas 7, 8, and 9 imply a contradiction. Hence E1 contains at most one
edge, which implies G ∈ G1 ∪ G′

1.
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Next, we assume that G0 is disconnected. By Lemmas 2 and 3, all vertices
incident with edges in E1 belong to B. For contradiction, we assume that E1 is
not empty. Let bb′ ∈ E1, where b and b

′ belong to some component C of G0. Since
G is connected but G0 is not, some vertex of C is incident with an edge f from
E2. By Lemma 4, the edge f is not incident with b or b′. Furthermore, by Lemma
4 (ii) and (iii), G necessarily contains a triangle, which is a contradiction. Hence
E1 is empty. Now Lemma 1 immediately implies G ∈ G2 ∪ G3, which completes
the proof.

Corollary 1 implies several restrictions on the cycle structure of a triangle-free
graph G in H. Let G0 with bipartition B ∪W be the underlying graph in G0.
Clearly, all cycles of G that are also cycles of G0 are of even length and alternate
between B and W . Furthermore, at most one of the vertices from B in such a
cycle can have degree more than 2 in G. If G0 is connected, the cycles of G are
either such cycles of G0 or they contain the unique edges in E(G)\E(G0). If G0

has two components, then G arises from G0 by adding a bridge and all cycles of
G are also cycles of G0. Finally, if G0 has at least three components and X is as
described in O3, then X induces an arbitrary connected triangle-free graph in G,
that is, the cycle structure of G[X ] can be quite complicated. Nevertheless, all
cycles in G[X ] contain only vertices of degree at least 4 in G. All further cycles
of G are totally contained within one component of G0 and contain at least one
vertex from B that has degree 2 in G.

4 Recognizing All Triangle-Free Graphs in H
By Corollary 1, the structure of the triangle-free graphs in H is quite restricted.
In fact, it is not difficult to recognize these graphs in polynomial time. This
section is devoted to the details of a corresponding algorithm.
Let G be a given connected triangle-free input graph. By Corollary 1, the

graph G belongs to H if and only if either G belongs to G0∪G1∪G2 or G belongs
to G3.

Lemma 10. It can be checked in polynomial time whether G ∈ G0 ∪ G1 ∪ G2.

Proof. By definition, the graph G belongs to G0 ∪ G1 ∪ G2 if and only if deleting
at most one edge from G results in a graph in G0 with at most two components.
Since the graphs in G0 can obviously be recognized in linear time, it suffices
to check whether G ∈ G0 and to consider each edge e of G in turn and check
whether G − e ∈ G0. Since the graphs in G0 ∪ G1 ∪ G2 have a linear number of
edges, all this can be done in quadratic time. This completes the proof.

In view of Lemma 10, we may assume from now on that G does not belong
G0 ∪G1 ∪G2. The following lemma is an immediate consequence of the definition
of operation O3.

Lemma 11. If G belongs to G3, then there is a vertex x of G of degree at least
three and two edges el = xyl and er = xyr of G incident with x such that, in the
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graph G′ that arises by deleting from G all edges incident with x except for el and
er, the component C(x, el, er) of G

′ that contains x has the following properties:

(i) x is a cut vertex of C(x, el, er);
(ii) C(x, el, er) has a unique bipartition with partite sets Bl ∪ {x} ∪ Br and

Wl ∪Wr;
(iii) Every vertex in Bl ∪ {x} ∪Br has degree 2 in C(x, el, er);
(iv) Bl ∪ Wl and Br ∪ Wr are the vertex sets of the two components of

C(x, el, er)− x such that yl ∈ Wl and yr ∈ Wr;
(v) None of the deleted edges connects x to a vertex from V (C(x, el, er)) \ {x};
(vi) Wl and Wr both contain a vertex of odd degree.

Proof. Choosing as x one of the vertices from the non-empty set X in the defi-
nition of O3 and choosing as e1 and e2 the two edges of G0 incident with x, the
properties (i) to (v) follow immediately. Note that C(x, el, er) is the component
of G0 that contains x. For property (vi), observe that the number of edges of
C(x, el, er) between Bl ∪ {x} and Wl is exactly 2|Bl| + 1, that is, it is an odd
number, which implies that not all vertices ofWl can be of even degree. A similar
argument applies to Wr. This completes the proof.

The key observation for the completion of the algorithm is the following lemma,
which states that the properties from Lemma 11 uniquely characterize the
elements of X .

Lemma 12. If G belongs to G3 and a vertex x of G of degree at least three and
two edges el = xyl and er = xyr of G incident with x are such that properties
(i) to (vi) from Lemma 11 hold, then

(i) G is obtained by applying operation O3 to a graph G0 in G0 with at least
three components such that x belongs to the set X used by operation O3

and
(ii) C(x, el, er) defined as in Lemma 11 is the component of G0 that contains

x.

We proceed to the main result in this section.

Theorem 2. For a given triangle-free graph G, it can be checked in polynomial
time whether h(G) = g(G) holds.

Proof. Clearly, we can consider each component of G separately and may there-
fore assume that G is connected. Let n denote the order of G. By Lemma 10,
we can check in O(n2) time whether G belongs G0 ∪ G1 ∪ G2. If this is the case,
then Corollary 1 implies h(G) = g(G). Hence, we may assume that G does not
belong to G0∪G1 ∪G2. Note that there are O(n3) choices for a vertex x of G and
two incident edges el and er of G. Furthermore, note that for every individual
choice of the triple (x, el, er), the properties (i) to (vi) from Lemma 11 can be
checked in O(n) time. Therefore, by Lemmas 11 and 12, in O(n4) time, we can

– either determine that no choice of (x, el, er) satisfies the conclusion of Lemma
11, which, by Corollary 1, implies h(G) �= g(G),
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– or find a suitable triple (x, el, er) and reduce the instance G to a smaller
instance G− = G− V (C(x, el, er)).

Since the order of G− is at least three less than n, this leads to an overall running
time of O(n5). This completes the proof.

5 Forbidden Induced Subgraphs

It is an easy exercise to prove h(G) = g(G) whenever G is a path, a cycle, or a
star.

� �

� �

�

G1

� �

�

�

�
��

�
��

G2

� �

� �

�

�

G3

� �

� �

� �

�
�
�
��

G4

� �

� �

� �

�
�
�
��

�
�
�

��

G5

Fig. 1. The five graphs G1, . . . , G5

Theorem 3. If G is a graph, then h(H) = g(H) for every induced subgraph H
of G if and only if G is {G1, . . . , G5}-free.

Proof. Since 3 = h(G1) = h(G3) < g(G1) = g(G3) = 4 and 2 = h(G2) =
h(G4) = h(G5) < g(G2) = g(G4) = g(G5) = 3, the “only if”-part of the state-
ment follows. In order to prove the “if”-part, we may assume, for contradiction,
that G is a connected {G1, . . . , G5}-free graph with h(G) < g(G). We consider
different cases.

Case 1. G contains a triangle T : abca.

Since G is G2-free, no vertex has exactly one neighbor on T .
If some vertex has no neighbor on T , then, by symmetry, we may assume that

there are two vertices u and v of G such that uva is a path and u has no neighbor
on T . Since G is G2-free, we may assume that v is adjacent to b. Now u, v, a,
and b induce G2, which is a contradiction. Hence every vertex has at least one
neighbor on T . This implies that the vertex set of G can be partitioned as

V (G) = {a, b, c} ∪N({a, b}) ∪N({a, c}) ∪N({b, c}) ∪N({a, b, c}),

where N(S) = {u ∈ V (G) \ {a, b, c} | NG(u) ∩ {a, b, c} = S}.
If two vertices, say u and v, in N({a, b}) are adjacent, then u, v, a, and c

induce G2, which is a contradiction. Hence, by symmetry, each of the three sets
N({a, b}), N({a, c}), and N({b, c}) is independent. If some vertex u in N({a, b})
is not adjacent to some vertex v in N({a, c}), then u, v, a, and b induce G2, which
is a contradiction. Hence, by symmetry, there are all possible edges between
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every two of the three sets N({a, b}), N({a, c}), and N({b, c}). If some vertex u
in N({a, b}) is not adjacent to some vertex v in N({a, b, c}), then u, v, a, and c
induce G2, which is a contradiction. Hence, by symmetry, there are all possible
edges between the two sets N({a, b}) ∪ N({a, c}) ∪ N({b, c}) and N({a, b, c}).
If N({a, b}) contains exactly one vertex, say u, then IG({u, c}) = V (G), which
implies the contradiction 2 ≤ h(G) ≤ g(G) ≤ 2. Hence, by symmetry, none of
the three sets N({a, b}), N({a, c}), and N({b, c}) contains exactly one vertex. If
there are two vertices in N({a, b}), say u1 and u2, and two vertices in N({b, c}),
say v1 and v2, then u1, u2, v1, v2, a, and c induce G5, which is a contradiction.
Hence no two of the three sets N({a, b}), N({a, c}), and N({b, c}) contain at
least two vertices.
Altogether, we may assume, by symmetry, that N({a, c}) and N({b, c}) are

empty. Now IG({a, b}) = V (G), which implies the contradiction 2 ≤ h(G) ≤
g(G) ≤ 2 and completes the proof in this case.
Case 2. G contains no triangle but a cycle of length four C : abcda.

If some vertex has no neighbor on C, then, by symmetry, we may assume that
there are two vertices u and v of G such that uva is a path. Since G is triangle-
free, v is not adjacent to b or d. Hence u, v, a, b, and d induce G1, which is
a contradiction. Hence every vertex has at least one neighbor on C. Since G is
triangle-free, this implies that the vertex set of G can be partitioned as

V (G) = {a, b, c, d}∪N({a})∪N({b})∪N({c})∪N({d})∪N({a, c})∪N({b, d}),

where N(S) = {u ∈ V (G) \ {a, b, c, d} | NG(u) ∩ {a, b, c, d} = S}.
If there is a vertex u in N({a}) and a vertex v in N({c}), then u and v are

adjacent, because G is G3-free. Now u, v, a, b, and d induce G1, which is a
contradiction. Hence, by symmetry, we may assume that N({c}) ∪ N({d}) is
empty. If there is a vertex u in N({b}) and a vertex v in N({a, c}), then u and v
are not adjacent, because G is G4-free. Now u, v, a, b, and d induce G1, which is
a contradiction. Hence, by symmetry, one of the two sets N({b}) and N({a, c})
is empty and one of the two sets N({a}) and N({b, d}) is empty. If there is a
vertex u in N({a, c}) and a vertex v in N({b, d}), then u, v, a, b, c, and d induce
either G4 or G5, which is a contradiction. Hence, by symmetry, we may assume
that N({b, d}) is empty.
Since G is G1-free, there are all possible edges between the two sets N({a})

and N({b}).
Since G is G1-free, both of the sets N({a}) and N({b}) contain at most one

vertex.
Since G is G1-free, there is no edge between N({a}) and N({a, c}).
If both of the sets N({a}) and N({b}) are not empty, then G is a graph of

order 6 with h(G) = g(G) = 3, which is a contradiction. Hence, by symmetry,
we may assume that

V (G) = {a, b, c, d} ∪N({a}) ∪N({a, c}).

If N({a}) is empty, then IG({a, c}) = V (G), which implies the contradiction
2 ≤ h(G) ≤ g(G) ≤ 2. Hence N({a}) contains exactly one vertex, say u, and
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IG({a, c, u}) = V (G), which implies g(G) ≤ 3. If HG(U) = V (G) for some set
U of vertices of G, then u ∈ U . In view of the structure of G, it follows easily
that h(G) ≥ 3, which implies the contradiction h(G) = g(G) and completes the
proof in this case.

Case 3. G does not contain a triangle or a cycle of length four.

If G contains no vertex of degree at least 3, then G is a path or a cycle, which
implies the contradiction h(G) = g(G). Hence, we may assume G contains a
vertex of degree at least 3. Since G is G1-free, G is a star, which implies the
contradiction h(G) = g(G) and completes the proof.

6 Conclusion

Several open problems/tasks are immediate.

– Give a constructive characterization of all graphs in H.
– Describe an efficient algorithm to recognize all graphs in H.
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Abstract. In this paper we study properties of intersection graphs of k-
bend paths in the rectangular grid. A k-bend path is a path with at most
k 90 degree turns. The class of graphs representable by intersections of
k-bend paths is denoted by Bk-VPG. We show here that for every fixed
k, Bk-VPG � Bk+1-VPG and that recognition of graphs from Bk-VPG
is NP-complete even when the input graph is given by a Bk+1-VPG
representation. We also show that the class Bk-VPG (for k ≥ 1) is in
no inclusion relation with the class of intersection graphs of straight line
segments in the plane.

1 Introduction

In this paper we continue the study of Vertex-intersection graphs of Paths in
Grids1 (VPG graphs) started by Asinowski et. al [1,2]. A VPG representation
of a graph G is a collection of paths of the rectangular grid where the paths
represent the vertices of G in such a way that two vertices of G are adjacent if
and only if the corresponding paths share at least one vertex.
VPG representations arise naturally when studying circuit layout problems

and layout optimization [15] where layouts are modelled as paths (wires) on
grids. One approach to minimize the cost or difficulty of production involves
minimizing the number of times the wires bend [3,13]. Thus the research has
been focused on VPG representations parameterized by the number of times
each path is allowed to bend (these representations are also the focus of [1,2]).
In particular, a k-bend path is a path in the grid which contains at most k
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bends where a bend is when two consecutive edges on the path have different
horizontal/vertical orientation. In this sense a Bk-VPG representation of a graph
G is a VPG representation of G where each path is a k-bend path. A graph is
Bk-VPG if it has a Bk-VPG representation.
Several relationships between VPG graphs and traditional graph classes (i.e.,

circle graphs, circular arc graphs, interval graphs, planar graphs, segment (SEG)
graphs, and string (STRING) graphs) were observed in [1,2]. For example, the
equivalence between string graphs (the intersection graphs of curves in the plane)
and VPG graphs is formally proven in [2], but it was known as folklore result [6].
Additionally, the base case of this family of graph classes (namely, B0-VPG) is
a special case of segment graphs (the intersection graphs of line segments in the
plane). Specifically, B0-VPG is more well known as the 2-DIR

2. The recognition
problem for the VPG = string graph class is known to be NP-Hard by [9] and in
NP by [14]. Similarly, it is NP-Complete to recognize 2-DIR = B0-VPG graphs
[11]. However, the recognition status of Bk-VPG for every k > 0 was given as
an open problem from [2] (all cases were conjectured to be NP-Complete). We
confirm this conjecture by proving a stronger result. Namely, we demonstrate
that deciding whether a Bk+1-VPG graph is a Bk-VPG graph is NP-Complete
(for any fixed k > 0) – see Section 4.
Furthermore, in [1,2] it is shown that B0-VPG � B1-VPG � VPG and it

was conjectured that Bk-VPG � Bk+1-VPG for every k > 0. We confirm this
conjecture constructively – see Section 3.
Finally, we consider the relationship between the Bk-VPG graph classes and

segment graphs. In particular, we show that SEG and Bk-VPG are incomparable
through the following pair of results (the latter of which is somewhat surprising):
(1) There is a B1-VPG graph which is not a SEG graph; (2) For every k, there
is a 3-DIR graph which has no Bk-VPG representation.
The paper is organized as follows. In Section 2 we introduce the Noodle-

Forcing Lemma, which is the key to restricting the topological structure of VPG
representations3. In Section 3 we introduce the “sausage” structure which is
the crucial gadget that we use for the hardness reduction and which by itself
shows that Bk-VPG is strict subset of Bk+1-VPG

4. We also demonstrate the
incomparability of Bk-VPG and SEG in Section 3. The NP-hardness reduction is
presented in Section 4. We end the paper with some remarks and open problems.

2 Noodle-Forcing Lemma

In this section, we present the key lemma of this paper (see Lemma 1). Essen-
tially, we prove that, for “proper” representations R of a graph G, there is a
graph G′ where G is an induced subgraph of G′ and R is “sub-representation”

2 Note: a k-DIR graph is an intersection graph of straight line segments in the plane
with at most k distinct directions (slopes).

3 This was inspired by the order forcing lemma of [12].
4 This gadget is named due to its VPG representation resembling sausage links.
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of every representation of G′ (i.e., all representations of G′ require the part cor-
responding to G to have the “topological structure” of R). We begin this section
with several definitions.
Let G = (V,E) be a graph. A representation of G is a collection R =

{R(v), v ∈ V } of piecewise linear curves in the plane, such that R(u) ∩ R(v)
is nonempty iff uv is an edge of G.
An intersection point of a representationR is a point in the plane that belongs

to (at least) two distinct curves of R. Let In(R) denote the set of intersection
points of R.
A representation is proper if

1. each R(v) is a simple curve, i.e., it does not intersect itself,
2. R has only finitely many intersection points (in particular no two curves may
overlap) and finitely many bends, and

3. each intersection point p belongs to exactly two curves of R, and the two
curves cross in p (in particular, the curves may not touch, and an endpoint
of a curve may not belong to another curve).

LetR be a proper representation ofG = (V,E), let R′ be another (not necessarily
proper) representation of G, and let φ be a mapping from In(R) to In(R′). We
say that φ is order-preserving if it is injective and has the property that for
every v ∈ V , if p1, p2, . . . , pk are all the distinct intersection points on R(v),
then φ(p1), . . . , φ(pk) all belong to R′(v) and they appear on R′(v) in the same
relative order as the points p1, . . . , pk on R(v). (If R′(v) visits the point φ(pi)
more than once, we may select one visit of each φ(pi), such that the selected
visits occur in the correct order φ(p1), . . . , φ(pk).)
For a set P of points in the plane, the ε-neighborhood of P , denoted by Nε(P ),

is the set of points that have distance less than ε from P .

Lemma 1 (Noodle-Forcing Lemma). Let G = (V,E) be a graph with a
proper representation R = {R(v), v ∈ V }. Then there exists a graph G′ =
(V ′, E′) containing G as an induced subgraph, which has a proper representation
R′ = {R′(v), v ∈ V ′} such that R(v) = R′(v) for every v ∈ V , and R′(w) is a
horizontal or vertical segment for w ∈ V ′ \V . Moreover, for any ε > 0, any (not
necessarily proper) representation of G′ can be transformed by a homeomorphism
of the plane and by circular inversion into a representation Rε = {Rε(v), v ∈ V ′}
with these properties:

1. for every vertex v ∈ V , the curve Rε(v) is contained in the ε-neighborhood
of R(v), and R(v) is contained in the ε-neighborhood of Rε(v).

2. there is an order-preserving mapping φ : In(R)→ In(Rε), with the additional
property that for every p ∈ In(R), the point φ(p) coincides with the point p.

Due to space limitations, we only sketch the proof of the lemma. Suppose R is a
proper representation of a graph G. The main idea is to overlay the representa-
tion R with a sufficiently fine grid-like configuration C of short horizontal and
vertical segments, so that the position of a curve R(v) ∈ R is well approximated
by the set of segments of C that are intersected by R(v). We refer to this step
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as ‘grilling’ of the representation R, since the segments of C form a structure
resembling a grill.
We let R′ be the representation R ∪ C and G′ be the graph represented

by R′. Moreover, let GC be the graph whose intersection representation is C.
The configuration of C has the property that any representation C′ of the graph
GC can be transformed into the representation C by a homeomorphism and a
circular inversion, followed possibly by a truncation of some of the curves of C′.
In particular, any representation of G′ can be transformed by a homeomorphism
and a circular inversion into a representation R′′ that essentially contains a copy
of C. The segments of C then constrain the relative positions of the curves
representing the vertices of G in R′′.
This allows us to argue that the curve R′′(v) ∈ R′′ representing a vertex v

of G can be deformed to be arbitrarily close to the corresponding curve R(v)
of R, and conversely, every point of R(v) is close to a point of R′′(v). In fact, for
every ε, we may deform R′′(v) into a curve Rε(v) which is confined to the the
ε-neighborhood of the original curve R(v), without affecting the intersections
between this curve and the curves of C′. We call the ε-neighborhood of R(v) the
noodle of R(v), denoted by N(v).
It now remains to provide the order-preserving mapping φ. Suppose that R(u)

and R(v) are two curves of R that cross at a point p. Assuming ε is small
enough, N(u) and N(v) intersect in a parallelogram-shaped region surrounding
the point p. We call this region the zone of p. We may assume that distinct
intersection points of R have disjoint zones.
Assume from now on that all the curves of R and Rε have a prescribed ori-

entation, i.e., a fixed beginning and end. Suppose that a curve R(v) contains k
intersection points p1, . . . , pk appearing in this order, with zones P1, . . . , Pk. We
may assume that the two endpoints of Rε(v) are ε-close to the corresponding
endpoints of R(v), otherwise we only consider a truncated part of Rε(v) that has
this property. Following the curve Rε(v) from beginning to end, we eventually
encounter all the zones P1, . . . , Pk. Of course, a given zone Pi may be intersected
several times by Rε(v), since the curve Rε(v) may be folded inside N(v) in a
complicated way. For every zone Pi, we fix the first occurrence when R

ε(v) enters
inside Pi and then exits through the opposite side of Pi. The subcurve of R

ε(v)
inside Pi that corresponds to this occurrence will be called the representative of
Rε(v) inside Pi, and denoted by ri(v). Note that the representatives appear on
Rε(v) in the ‘correct’ order, i.e., r1(v), r2(v), . . . , rk(v).
We now define the order-preserving mapping φ. Let p ∈ In(R) be an inter-

section point of two curves R(u) and R(v), and let P be its zone. Let r(u)
and r(v) be the representatives of Rε(u) and Rε(v) inside this zone, and let
p′′ be an arbitrary intersection of r(u) and r(v). We then put φ(p) = p′′.
This mapping is order-preserving by the construction of the representatives.
Deforming the curves of Rε inside each zone, we may even assume that p′′

coincides with p. This completes the sketch of proof of the Noodle-Forcing
Lemma.
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3 Relations between Classes

With the Noodle-Forcing Lemma, we can prove our separation results.

Theorem 1. For any k ≥ 1, there is a graph G′ that has a proper representation
using k-bend axis-parallel curves, but has no representation using (k − 1)-bend
axis-parallel curves.

Proof. Consider the graph K2 consisting of a single edge uv, with a represen-
tation R in which both u and v are represented by weakly increasing k-bend
staircase curves that have k + 1 common intersections p1, . . . , pk+1, in left-to-
right order, see Fig.1. We refer to this representation as a sausage due to it
resembling sausage links.

→
α

Fig. 1. The sausage representation for k = 3 and its grilled version

We now grill the sausage (i.e., we apply the Noodle-Forcing Lemma to K2 and
R) to obtain a graphG′ with a k-bend representationR′. We claim that G′ has no
(k−1)-bend representation. Assume for contradiction that there is a (k−1)-bend
representation R′′ of G′. Lemma 1 then implies that there is an order-preserving
mapping φ : In(R) → In(R′′). Let si(u) be the subcurve of R′′(u) between the
points φ(pi) and φ(pi+1), and similarly for si(v) and R′′(v). Consider, for each
i = 1, . . . , k, the union ci = si(u)∪si(v). We know from Lemma 1 that si(u) and
si(v) cannot completely overlap, and therefore the closed curve ci must surround
at least one nonempty bounded region of the plane. Therefore ci contains at least
two bends different from φ(pi) and φ(pi+1). We conclude that R

′′(u) and R′′(v)
together have at least 2k bends, a contradiction.

A straightforward consequence is the following.

Corollary 1. For every k, Bk-VPG � Bk+1-VPG.

Because two straight-line segments in the plane cross at most once, the
Noodle-Forcing Lemma also implies the following.

Corollary 2. For every k ≥ 1, Bk-VPG �⊂ SEG.
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This raises a natural question: Is there some k such that every SEG graph is
contained in Bk-VPG? The following theorem answers it negatively.

Theorem 2. For every k, there is a graph which belongs to 3-DIR but not to
Bk-VPG.

Proof. We fix an arbitrary k. Consider, for an integer n, a representation R ≡
R(n) formed by 3n segments, where n of them are horizontal, n are vertical and n
have a slope of 45 degrees. Suppose that every two segments of R with different
slopes intersect, and their intersections form the regular pattern depicted in
Figure 2 (with a little bit of creative fantasy this pattern resembles a waffle,
especially when viewed under a linear transformation).

Fig. 2. The ‘waffle’ representation R from Theorem 2 and its transformed
representation

Note that the representation R forms Ω(n2) empty internal triangular faces
bounded by segments of R, and the boundaries of these faces intersect in at most
a single point. Suppose that n is large enough, so that there are more than 3kn
such triangular faces. Let G be the graph represented by R.
The representation R is proper, so we can apply the Noodle-Forcing Lemma

to R and G, obtaining a graph G′ together with its 3-DIR representation R′. We
claim that G′ has no Bk-VPG representation.
Suppose for contradiction that there is a Bk-VPG representation R′′ of G′.

We will show that the 3n curves of R′′ that represent the vertices of G contain
together more than 3kn bends.
From the Noodle-Forcing Lemma, we deduce that there exists an order-

preserving mapping φ : In(Rn) → In(R′′
n). Let T be a triangular face of the

representationR. The boundary of T consists of three intersection points p, q, r ∈
In(R) and three subcurves a, b, c. The three intersection points φ(p), φ(q) and
φ(r) determine the corresponding subcurves a′′, b′′ and c′′ in R′′.
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The Noodle-Forcing Lemma implies that there is a homeomorphism h which
sends a′′, b′′, and c′′ into small neighborhoods of a, b and c, respectively. This
shows that each of the three curves a′′, b′′ and c′′ contains a point that does not
belong to any of the other two curves. This in turn shows that at least one of
the three curves is not a segment, i.e., it has a bend in its interior.
Since the triangular faces of R have non-overlapping boundaries, and since

φ is order-preserving, we see that for each triangular face of R there is at least
one bend in R′′ belonging to a curve representing a vertex of G. Since G has 3n
vertices and R determines more than 3kn triangular faces, we conclude that at
least one curve of R′′ has more than k bends, a contradiction.

4 Hardness Results

In this section we strengthen the separation result of Corollary 1 by showing
that not only are the classes Bk-VPG and Bk+1-VPG different, but providing a
Bk+1-VPG representation does not help in deciding Bk-VPG membership. This
also settles the conjecture on NP-hardness of recognition of these classes stated
in [2], in a considerably stronger form than it was asked.

Theorem 3. For every k ≥ 0, deciding membership in Bk-VPG is NP-complete
even if the input graph is given with a Bk+1-VPG representation.

Proof. It is not difficult to see that recognition of Bk-VPG is in NP and there-
fore we will be concerned in showing NP-hardness only. We use the NP-hardness
reduction developed in [11] for showing that recognizing grid intersection graphs
is NP-complete. Grid intersection graphs are intersection graphs of vertical and
horizontal segments in the plane with additional restriction that no two segments
of the same direction share a common point. Thus these graphs are formally close
but not equal to B0-VPG graphs (where paths of the same direction are allowed
to overlap). However, bipartite B0-VPG graphs are exactly grid intersection
graphs. This follows from a result of Bellantoni et al. [4] who proved that bipar-
tite intersection graphs of axes parallel rectangles are exactly grid intersection
graphs.
The reduction in [11] constructs, given a Boolean formula Φ, a graphGΦ which

is a grid intersection graph if and only if Φ is satisfiable. In arguing about this,
a representation by vertical and horizontal segments is described for a general
layout of GΦ for which it is also shown how to represent its parts corresponding
to the clauses of the formula, referred to as clause gadgets, if at least one literal
is true. The clause gadget is reprinted with a generous approval of the author
in Fig. 3, while Fig. 4 shows the grid intersection representations of satisfied
clauses, and Fig. 5 shows the problem when all literals are false. In Fig. 6, we
show that in the case of all false literals, the clause gadget can be represented
by grid paths with at most 1 bend each. It follows that GΦ ∈ B1-VPG and a
1-bend representation can be constructed in polynomial time. Thus, recognition
of B0-VPG is NP-complete even if the input graph is given with a B1-VPG
representation.
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Fig. 3. The clause gadget reprinted from [11]

Fig. 4. The representations of satisfied clauses reprinted from [11]

Fig. 5. The problem preventing the representation of an unsatisfied clause reprinted
from [11]
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a

b
d

c

u1 v1

v3 u3

u2

v2

w

Fig. 6. The representation of an unsatisfied clause gadget via curves with one bend

We use a similar approach for arbitrary k > 0 with a help of the Noodle-
Forcing Lemma. We grill the same representation R of K2 as in the proof of
Theorem 1. We call the resulting graph P (u) where u is one of the vertices of
theK2, the one whose curve in R is ending in a boundary cell denoted by α in the
schematic Fig. 1. We call this graph the pin since it follows from Lemma 1 that
it has a Bk-VPG representation such that the bounding paths of the cell α wrap
around the grill and the last segment of R(u) extends arbitrarily far (see the
schematic Fig. 7). We will refer to this extending segment as the tip of the pin.
It is crucial to observe that in any Bk-VPG representation R′ of P (u) all bends
of R′(u) are consumed between the crossing points with the curve representing
the other vertex of K2 and hence the part of R

′(u) that lies in the α cell of R′

is necessarily straight.

→

Fig. 7. Construction of a pin

Next we combine two pins together to form a clothespin. The construction is
illustrated in the schematic Fig. 8. We start with a K4 whose edges are subdi-
vided by one vertex each. Every STRING representation of this graph contains
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→ x1

x2 x2

x1

β1

β2 β2

β1

Fig. 8. Construction of a clothespin

4 basic regions which correspond to the faces of a drawing of the K4 (this is true
for every 3-connected planar graph and it is seen by contracting the curves cor-
responding to the degree 2 vertices, the argument going back to Sinden [15]). We
add two vertices x1, x2 that are connected by paths of length 2 to the boundary
vertices of two triangles, say β1 and β2. The curves representing x1 and x2 must
lie entirely inside the corresponding regions. Then we add two pins, say P (u1)
and P (u2), connect the vertices of the boundary of αi to xi by paths of length
2 and make ui adjacent to a vertex on the boundary of βi (for i = 1, 2). Finally,
we add a third pin P (u3) and make u3 adjacent to u1 and u2. We denote the
resulting graph by CP (u).
It is easy to check that the clothespin has a Bk-VPG representation Ř such

that the tips of Ř(u1) and Ř(u2) are parallel and extend arbitrarily far from the
rest of the representation, as indicated in Fig. 8.
On the other hand, in any Bk-VPG representation R′ of CP (u), if a curve

crosses R′(u1) and R′(u2) and no other path of R
′(CP (u)), then it must cross

the tips of R′(u1) and R′(u2). This follows from the fact that for i = 1, 2, R
′(xi)

must lie in αi (to be able to reach all its bounding curves), and hence, by circle
inversion, all bends of R′(ui) are trapped inside βi. If a curve crosses both R′(u1)
and R′(u2), it must cross them outside β1∪β2, and hence it only may cross their
tips.
Now we are ready to describe the construction of G′

Φ. We take GΦ as con-
structed in [11] replace every vertex u by a clothespin CP (u), and whenever
uv ∈ E(GΦ), we add edges uivj , i, j = 1, 2. Now we claim that G′

Φ ∈ Bk-VPG if
and only if Φ is satisfiable, while G′

Φ ∈ Bk+1-VPG is always true.
On one hand, if G′

Φ ∈ Bk-VPG and R′ is a Bk-VPG representation of G′
Φ,

then the tips of R′(u1), u ∈ V (GΦ) form a 2-DIR representation of GΦ (R
′(u1)

and R′(v1) may only intersect in their tips) and Φ is satisfiable.
On the other hand, if Φ is satisfiable, we represent GΦ as a grid intersection

graph and replace every segment of the representation by a clothespin with slim
parallel tips and the body of the pin tiny enough so that does not intersect
anything else in the representation. Similarly, if Φ is not satisfiable, we mod-
ify a 1-bend representation of GΦ by replacing the paths of the representation
by clothespins with 1-bend on the tips, thus obtaining a Bk+1-VPG represen-
tation of GΦ. The representation consists of a large part inherited from the
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representation of GΦ and tiny parts representing the heads of the pins, but these
can be made all of the same constant size and thus providing only a constant
ratio refinement of the representation of GΦ. The representation is thus still of
linear size and can be constructed in polynomial time.

5 Concluding Remarks

In this paper we have affirmatively settled two main conjectures of Asinowski
et al [2] regarding VPG graphs. We have also demonstrated the relationship
between Bk-VPG graphs and segment graphs.
The first conjecture that we settled claimed that Bk-VPG is a strict subset

of Bk+1-VPG for all k. We have proven this constructively. Previously only the
following separation was known: B0-VPG � B1-VPG � VPG.
The second conjecture claimed that the Bk-VPG recognition problem is NP-

Complete for all k. We have actually proven a stronger result; namely, that the
Bk-VPG recognition problem is NP-Complete for all k even when the input
graph is a Bk+1-VPG graph. Previously only the NP-Completeness of B0-VPG
(from 2-DIR [11]) and VPG (from STRING [9,14]) were known.
Finally due to the close relationship between VPG graphs and segment graphs

(i.e., since B0-VPG = 2-DIR, and SEG � STRING = VPG) we have considered
the relationship between these classes. In particular, we have shown that:

– There is no k such that 3-DIR is contained in Bk-VPG (i.e., SEG is not
contained in Bk-VPG for any k).

– B1-VPG is not contained in SEG.

Thus, to obtain polynomial time recognition algorithms, one would need to re-
strict attention to specific cases with (potentially) useful structure. In this re-
spect, in [8], certain subclasses of B0-VPG graphs have been characterized and
shown to admit polynomial time recognition; namely split, chordal claw-free,
and chordal bull-free B0-VPG graphs are discussed in [8]. Additionally, in [5],
B0-VPG chordal and 2-row B0-VPG

5 have been shown to have polynomial time
recognition algorithms. In particular, we conjecture that applying similar re-
strictions to the Bk-VPG graph class will also yield polynomial time recognition
algorithms. It is interesting to note that since our separating examples are not
chordal it is also open whether Bk-VPG chordal � Bk+1-VPG chordal.
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Abstract. A graph G = (V,E) is called equistable if there exist a
positive integer t and a weight function w : V −→ N such that S ⊆ V is a
maximal stable set of G if and only if w(S) = t. The function w, if exists,
is called an equistable function of G. No combinatorial characterization
of equistable graphs is known, and the complexity status of recogniz-
ing equistable graphs is open. It is not even known whether recognizing
equistable graphs is in NP.

Let k be a positive integer. An equistable graph G = (V,E) is said to
be k-equistable if it admits an equistable function which is bounded by
k. For every constant k, we present a polynomial time algorithm which
decides whether an input graph is k-equistable.

Keywords: maximal stable set, equistable graph, polynomial time
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1 Introduction and Preliminaries

All graphs considered in this paper will be finite, simple and undirected. For
a graph G, we denote by V = V (G) the vertex set of G, and by E = E(G)
its edge set. Let n = |V | and m = |E|. A set S ⊆ V is stable if its members
are pairwise non-adjacent. A stable set is maximal if it is not a subset of an-
other stable set. A graph G = (V,E) is called equistable if there exist a positive
integer t and a weight function w : V −→ N such that a set S ⊆ V is a max-
imal stable set of G if and only if w(S) =

∑
v∈S w(v) = t [33]. The function

w, if exists, is called an equistable function of G, while the pair (w, t) is called
an equistable structure. No combinatorial characterization of equistable graphs
is known, and the complexity status of recognizing equistable graphs is open.
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It is not even known whether recognizing equistable graphs is in NP. There is
an exponential time algorithm based on linear programming to recognize equi-
stable graphs [19]. Deciding whether a given weight function on the vertices of a
graph G is an equistable function is co-NP-complete [29]. Our current level of
(non-)understanding the structure of equistable graphs provides ample moti-
vation for further investigation of their structural properties and complexity
aspects, initiated for general equistable graphs in [23] and continued for par-
ticular graph classes in [18–20, 23, 27, 34] and for general equistable graphs and
related classes in [28, 29].
Mahadev et al. introduced in [23] a subclass of equistable graphs, called

strongly equistable graphs, using the following notation and definitions. The
set of all maximal stable sets of a graph G = (V,E) is denoted S(G), and the
set of all other nonempty subsets of V is denoted by T (G). A graph G = (V,E)
is said to be strongly equistable if for each T ∈ T (G) and each γ ≤ 1 there
exists a weight function w : V −→ R+ such that w(S) = 1 for all S ∈ S(G), and
w(T ) �= γ.

Theorem 1. [23] All strongly equistable graphs are equistable.

Conjecture 1. [23] All equistable graphs are strongly equistable.

This conjecture is known to hold for perfect graphs [23], for series-parallel graphs
[18], for AT-free graphs [27], for simplicial graphs [20], for very well covered
graphs [20], for line graphs [20], and for various product graphs [27].
Although no combinatorial characterization of equistable graphs is known,

there are some necessary and sufficient conditions of a combinatorial flavor for
a graph to be equistable. Following [31, 32], we say that a graph G is a triangle
graph if for every maximal stable set S in G and every edge uv in G − S there
is a vertex s ∈ S such that {u, v, s} induces a triangle in G.

Theorem 2. [27] Every equistable graph is a triangle graph.

A graph G = (V,E) is a general partition graph if there exists a set U and an
assignment of non-empty subsets Uv ⊆ U to the vertices v ∈ V such that two
vertices x and y are adjacent if and only if Ux ∩ Uy �= ∅, and for every maximal
stable set S of G, the set {Ux : x ∈ S} is a partition of U . General partition
graphs arise in the geometric setting of lattice polygon triangulations [11] and
were studied in a series of papers [1, 8–10,12, 17, 20, 27]. It is proved in [24] that
all general partition graphs are triangle graphs.
A strong clique in a graph G is a set of pairwise adjacent vertices that meets

all maximal stable sets. The following two theorems relate strong cliques and
equistable graphs.

Theorem 3. [23] Every equistable graphwitha strong clique is strongly equistable.

Theorem 4. [24] Let G be a graph. The following are equivalent:

(i) G is a general partition graph.
(ii) Every edge of G is contained in a strong clique.
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Theorem 5. (Jim Orlin (personal communication, 2009), see [27] for a proof)
All general partition graphs are equistable.

Conjecture 2. (Jim Orlin (personal communication, 2009)) All equistable
graphs are general partition graphs.

Theorems 3, 4 and 5 imply the following.

Theorem 6. All general partition graphs are strongly equistable.

The inclusion relations between the considered graph classes read as follows:

general partition graphs ⊆ strongly equistable graphs

⊆ equistable graphs ⊂ triangle graphs .

Let k be a positive integer. An equistable graph G = (V,E) is said to be k-
equistable if it admits an equistable function w : V −→ [k] := {1, . . . , k}. Such
a weight function is called a k-equistable function, and the corresponding struc-
ture (w, t) is a k-equistable structure. In this paper, we present a polynomial
time algorithm which decides for any constant k whether an input graph is k-
equistable. If the answer is affirmative, then the algorithm finds a k-equistable
function of the input graph. The algorithm, presented in Section 3, relies on the
notion of the twin equivalence relation, which we define and analyze in Section 2.
We conclude the paper with some remarks in Section 4.

2 The Twin Equivalence Relation

We say that vertices u and v of a graph G are twins if they have exactly the
same set of neighbors, other than u and v. We denote the twin relation by ∼t:

u ∼t v if and only if N(u) \ {v} = N(v) \ {u} .

Note that twins may be either adjacent or non-adjacent. Adjacent twins are true
twins and non-adjacent twins are false twins.
We now list some easily verified properties of the twin relation. We start with

the following basic observation.

Lemma 7. Let G = (V,E) be a graph. The twin relation is an equivalence
relation, and every equivalence class is either a clique or a stable set.

An equivalence class of the twin relation will be referred to as a twin class. Twin
classes that are cliques will be referred to true twin classes, and the remaining
classes will be referred as false twin classes. The set of all twin classes will be
denoted by Π(G) and referred to as the twin partition of G. The number of
twin classes of G will be denoted by π(G) = |Π(G)|. The twin relation was



On the Recognition of k-Equistable Graphs 289

also considered in the literature under the name similarity [13]. For further
applications of the notion of twin classes, see [2, 6, 15].1

Two disjoint sets of vertices X and Y in a graph G see each other if every
vertex of X is adjacent to every vertex of Y , and they miss each other if every
vertex of X is non-adjacent to every vertex of Y . A vertex x sees a set Y ⊆
V (G)\{x} if the singleton {x} sees Y , and similarly x misses Y if {x} misses Y .

Lemma 8. Every two distinct twin classes either see each other or miss each
other.

For later use, we also mention a straightforward consequence of the homogeneous
structure of the twin classes specified by the last two lemmas:

Corollary 9. For every graph G and for every two permutations (u1, . . . , un)
and (v1, . . . , vn) of V (G) such that ui ∼t vi for every 1 ≤ i ≤ n, the mapping
ϕ : V (G)→ V (G) given by ϕ(ui) = vi for all i is an automorphism of G.

The following quotient graph of G, denoted Q(G), is well defined: Its vertex set
is Π(G), and two twin classes are adjacent if and only if they see each other.
Given a graph G, it is possible to find in linear time the twin partition Π(G),
the quotient graph Q(G) and π(G), using any of the linear time algorithms for
modular decomposition [7, 26, 36].

3 A Recognition Algorithm for k-Equistable Graphs

In this section, we show that k-equistable graphs can be recognized in polynomial
time. We adopt the usual simplifying assumption that addition and comparison
of two numbers can be carried out in O(1) time. Recall that an equistable graph
G = (V,E) is said to be k-equistable if it admits an equistable function w : V −→
[k] := {1, . . . , k}. For a graph G, we denote by κ(G) the minimum integer k such
that G is k-equistable. In particular κ(G) is finite if and only if G is equistable.

Theorem 10. For every fixed k, there is an O
(
n2k

)
algorithm for recognizing

graphs with κ(G) ≤ k. In case of a positive instance, the algorithm also produces
a k-equistable structure of G.

The main idea behind the algorithm is to examine the space of all kn weight
functions w : V → [k]. First, based on the notion of twin classes, we develop
some necessary conditions that every k-equistable graph and every k-equistable
function of it must satisfy. Exploiting the structural properties of the twin classes,
we then partition the weight functions satisfying the necessary conditions into

1 Besides the twin relation, the similarly defined true twin relation and false twin
relation were also considered in the literature [35]. Equivalence classes with respect
to true twin relation appeared in the literature under various names such as maximal
clique modules [3, 4, 25], maxmods [5] and critical cliques [21]. See also [14, 30].
Equivalence classes of the false twin relation appeared in the literature under various
names such as maximal independent-set modules [16], or similarity classes [22].
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polynomially many equivalence classes such that for every equivalence class,
either all or none of the functions from the class are equistable. Finally, we show
how to efficiently test whether a representative function from each equivalence
class is equistable.

3.1 Necessary Conditions

Lemma 11. For every equistable function w of an equistable graph G, every
two vertices x and y of the same weight are twins.

Proof. Suppose for a contradiction that there exist an equistable function w
of G, and two vertices x and y such that w(x) = w(y) and N(x) \ {y} �=
N(y)\ {x}. Without loss of generality, we may assume that there exists a vertex
z ∈ (N(x) \ {y}) \ (N(y) \ {x}). Clearly, z �= x. Let S be a maximal stable set
in G containing y and z, and let T = (S \ {y})∪{x}. Then w(T ) = w(S), which
is a contradiction since T is not stable. ��
The following are immediate consequences of Lemmas 7 and 11.

Corollary 12. For every equistable function w of G and for every i, the set
Wi = {x ∈ V : w(x) = i} is either a clique or a stable set in G.

Corollary 13. For every equistable graph G, π(G) ≤ κ(G) .

Hence, in what follows, we will assume that the input graphG satisfies π(G) ≤ k,
since otherwise G is not k-equistable.
The following lemma is a partial converse of Lemma 11.

Lemma 14. For every equistable function w of an equistable graph G and for
every two true twins x and y, it holds that w(x) = w(y).

Proof. Suppose for a contradiction that in some equistable function w of G,
there exist two true twins, x and y, such that w(x) �= w(y). Let S be any
maximal stable set in G containing x. Then y �∈ S, and S′ = (S \ {x}) ∪ {y}
is a maximal stable set in G. Since w(x) �= w(y), it follows that w(S′) �= w(S),
which contradicts the fact that w is an equistable function of G. ��
Remark 1. If x and y are false twins in an equistable graph G, and w is an
equistable function of the graph, then it is possible that w(x) �= w(y). An example
of the above is the 4-cycle with vertices v1, v2, v3, v4 in the cyclic order, and the
equistable structure of it given by w(v1) = w(v3) = 2, w(v2) = 1, w(v4) = 3
and t = 4. Moreover, it is easy to see that every equistable function of this graph
assigns different weights to at least one pair of false twins.

By Lemmas 11 and 14, in our search for a k-equistable function of G, we can
restrict our attention to functions w : V → [k] satisfying the following two
properties:

1. If w(x) = w(y) then x and y are twins.
2. If x and y are true twins then w(x) = w(y).

A weight function w : V → [k] satisfying these two properties will be called a
candidate weight function of (G, k).
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3.2 Witnesses and Equivalent Weight Functions

We now describe a useful way of partitioning the set of candidate weight func-
tions of (G, k) into polynomially many equivalence classes. This partition relies
on the notion of witness, defined as follows: A witness of (G, k) is a 2k-tuple
ω = (C1, . . . , Ck, n1, . . . , nk) such that:

1. For every 1 ≤ i ≤ k, either Ci = ∅ or Ci is a twin class of G.
2. For every 1 ≤ i ≤ k, it holds that ni ∈ {0, 1, . . . , |Ci|}, with ni = |Ci| if Ci

is a clique in G.
3. For every twin class C of G, it holds that

∑
{ni : 1 ≤ i ≤ k and Ci = C} =

|C|.

Given a candidate weight function w of (G, k), we can associate to it a unique
witness of (G, k)

ω(w) = (C1, . . . , Ck, n1, . . . , nk)

(called witness of w) as follows: for every 1 ≤ i ≤ k, set ni = |{x ∈ V : w(x) = i}|
and

Ci =

{
the unique twin class of G containing vertices of weight i, if ni > 0;
∅, otherwise.

Using Properties 1 and 2 of candidate weight functions, it can be easily verified
that ω(w) is well defined, and a witness of (G, k).
Conversely, for every witness ω = (C1, . . . , Ck, n1, . . . , nk) of (G, k) there

exists a candidate weight function w such that ω(w) = ω : For every twin class
C of G, let I = {i ∈ [k] : Ci = C}. By property 3 of witnesses, there exists
a partition {Wi : i ∈ IC} of C indexed over I such that |Wi| = ni. Moreover,
the set {IC : C ∈ Π(G)} forms a partition of [k], and the set {Wi : i ∈ [k]}
forms a partition of V . Hence, ω is the witness of the candidate weight function
w : V → [k], defined by w(x) = i if and only if x ∈Wi.
Let us now partition the set of all candidate weight functions of (G, k) into

equivalence classes as follows: we say that two functions w and w′ are equivalent
if and only if ω(w) = ω(w′). It follows from Corollary 9 that for every two
equivalent functions w and w′, function w is an equistable function of G if and
only if w′ is. Thus, we can examine the space of all candidate weight functions of
(G, k) by working with equivalence classes represented by witnesses of (G, k). We
say that a witness ω of (G, k) is equistable if there exists a k-equistable function
w of G such that ω(w) = ω. (Equivalently: every candidate weight function w
such that ω(w) = ω is an equistable function of G.)

3.3 Testing a Witness for Equistability

We now derive a polynomially testable necessary and sufficient condition for a
witness ω of (G, k) to be equistable. Let ω = (C1, . . . , Ck, n1, . . . , nk) be a witness
of (G, k). Fix an arbitrary candidate weight function w such that ω(w) = ω. For
i ∈ [k], letWi = {x ∈ V : w(x) = i}. (Notice that |Wi| = ni.) Recall that w is an
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equistable function of G if and only if there exists an integer t such that a subset
S ⊆ V is maximal stable set in G if and only if w(S) = t. Using similar ideas as
above, let us now argue that this can be tested in polynomial time, avoiding an
explicit generation of all 2n subsets of V .
We say that a vector x ∈ Zk is dominated by ω if 0 ≤ xi ≤ ni for every i ∈ [k].

Let us denote by X(ω) the set of all vectors dominated by ω. To every subset
S ⊆ V , we can associate a vector xS ∈ X(ω) by setting (xS)i = |S ∩Wi| for all
i ∈ [k]. And conversely, for every vector x ∈ X(ω), there exists a subset S of V
such that xS = x: just put in S, for every i ∈ [k], exactly xi vertices from Wi.
Now, let us partition the power set of V according to the following equivalence

relation: two subsets S, S′ ⊆ V are equivalent if and only if xS = xS′
. It follows

from Properties 1 and 2 that for every two equivalent sets S and S′, S is a
maximal stable set in G if and only if S′ is; moreover w(S) = w(S′) =

∑k
i=1 ixi

where x = xS . Therefore, to determine whether w is an equistable function of
G, it suffices to test the defining property for an arbitrary collection of sets
{Sx : x ∈ X(ω)} where for every vector x ∈ X(ω), Sx ⊆ V is an arbitrary set

such that xSx = x. Let us also define the weight of x ∈ X(ω) as w(x) :=
∑k

i=1 ixi.
We say that a vector x ∈ X(ω) is a maximal stable set vector if Sx is a maximal

stable set of G. This happens if and only if the following conditions hold:

1. For all i ∈ [k] such that xi > 0, it holds that

xi =

{
1, if the unique twin class of G containing Wi is a clique;
ni, otherwise.

2. The set {C ∈ Π(G) : (∃i ∈ [k])(xi > 0 and Wi ⊆ C)} is a maximal stable
set of the quotient graph Q(G).

Hence, it is possible to test whether x is a maximal stable set vector in O(k2)
time.

Lemma 15. Function w is an equistable function of G if and only if there exists
an integer t such that for every vector x ∈ X(ω), it holds that w(x) = t if and
only if x is a maximal stable set vector.

Notice that |X(ω)| = O(nk). Hence verifying whether w is an equistable function
can be done in time O(k2nk).

3.4 The Algorithm

In summary, the following algorithm tests whether G is k-equistable, returning
a k-equistable structure of G in case of a positive instance.
The correctness of the algorithm follows from the above discussion in this

section. Let us analyze its running time. The twin partition Π(G), the quo-
tient graph Q(G) and π(G) can be computed in time O(n +m), using any of
the linear time algorithms for modular decomposition [7, 26, 36]. Computing a
maximal stable set S of G can be done in time O(n +m) by a straightforward



On the Recognition of k-Equistable Graphs 293

Algorithm 1. Recognizing graphs with κ(G) ≤ k

Input: A graph G = (V,E);
Output: A k-equistable structure of G if one exists, no, otherwise.

1 compute the twin partition Π(G), the quotient graph Q(G), and π(G);
2 if π(G) > k then

// G is not k-equistable because it has too many twin classes

3 return no;

4 compute an arbitrary maximal stable set S of G;
5 compute the set of all witnesses of (G, k);
6 for every witness ω = (C1, . . . , Ck, n1, . . . , nk) of (G, k) do

// compute the weight t of S with respect to the candidate weight

functions represented by ω
7 t ←

∑
{i : Ci is a clique and S ∩ Ci �= ∅}+∑
{ini : Ci is a stable set and S ∩ Ci �= ∅} ;

8 compute the set X(ω) of all vectors dominated by ω;
9 for every vector x ∈ X(ω) do

10 w(x) ←
∑k

i=1 ixi;
11 if x is a maximal stable set vector then
12 if w(x) �= t then

// witness ω is not equistable

13 go to the next iteration of the for loop in line 6;

14 else if w(x) = t then
// witness ω is not equistable

15 go to the next iteration of the for loop in line 6;

// witness ω is equistable

16 let w be an arbitrary candidate weight function w such that ω(w) = ω;
17 return (w, t);

// no equistable witness was found

18 return no;

algorithm. Computing the set of all O((kn)k) witnesses of (G, k) can be done in
time O(k(kn)k) (for each of the O((kn)k) 2k-tuples ω = (C1, . . . , Ck, n1, . . . , nk)
such that for every 1 ≤ i ≤ k, either Ci = ∅ or Ci is a twin class of G, and
ni ∈ {0, 1, . . . , |Ci|}, we can test in O(k) time whether ω is a witness of (G, k)).
The for loop in line 6 will be executed at most O((kn)k) times. Within each
execution, the set X(ω) of all O(nk) vectors dominated by ω can be computed
in time O(knk). The for loop in line 9 will be executed at most O(nk) times,
incurring a total time complexity of O(k2nk)). Line 17 can be carried out in
O(n) time.
Hence, the overall time complexity is O

(
n + m + k(kn)k + (kn)k(

k(kn)k + k2nk
) )
= O

(
k2k+1n2k

)
. For a fixed k this complexity is polynomial

in n, namely, O(n2k).
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As an application of Theorem 10, we remark that if a k-equistable structure
(w, t) of an equistable graph G is given, then the maximum weight stable set

and the weighted independent domination problems for G can be solved
by dynamic programming in time O(nt), which, for fixed k, is of the order
O(n2) [29].

4 Concluding Remarks

No combinatorial characterization of equistable graphs is known, and the com-
plexity status of recognizing equistable graphs is open. In this paper, we intro-
duced the parameter κ(G) of equistable graphs as the smallest k such that G
admits an equistable weight function bounded by k. Exploiting the relationship
between equistable weight functions and the twin classes, we showed that for
every k, equistable graphs with κ(G) ≤ k (that is, the k-equistable graphs) can
be recognized in O

(
k2k+1n2k

)
time.

It seems natural to consider the parameterized version of the problem.

Question 1. Is there an FPT algorithm for recognizing k-equistable graphs?

Another natural question is to ask for explicit characterizations of k-equistable
graphs for small values of k. Such characterizations might lead to faster recog-
nition algorithms. For example:

– Corollary 12 implies that a graph is 1-equistable if and only if it is either
complete or edgeless.

– For k = 2, the class of 2-equistable graphs can be characterized in terms of 8
forbidden induced subgraphs. Moreover, a graph is 2-equistable if and only if
it is either a complete graph, an edgeless graph, a complete graph minus an
edge, the disjoint union of a complete graph with K1 or K2, or the disjoint
union of an edgeless graph with K2.

We postpone the proofs of these characterizations of 2-equistable graphs together
with a further investigation of k-equistable graphs to the journal version of the
paper.
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6. Bui-Xuan, B.-M., Suchý, O., Telle, J.A., Vatshelle, M.: Feedback vertex set on
graphs of low cliquewidth. European J. of Combinatorics (2011) (accepted for pub-
lication)

7. Cournier, A., Habib, M.: A New Linear Algorithm of Modular Decomposition. In:
Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

8. DeTemple, D., Dineen, M.J., Robertson, J.M., McAvaney, K.L.: Recent examples
in the theory of partition graphs. Discrete Math. 113, 255–258 (1993)

9. DeTemple, D., Harary, F., Robertson, J.M.: Partition graphs. Soochow J. Math. 13,
121–129 (1987)

10. DeTemple, D., Robertson, J.M.: Constructions and the realization problem for
partition graphs. J. Combin. Inform. System Sci. 13, 50–63 (1988)

11. DeTemple, D., Robertson, J.M.: Graphs associated with triangulations of lattice
polygons. J. Austral. Math. Soc. Ser. A 47, 391–398 (1989)

12. DeTemple, D., Robertson, J.M., Harary, F.: Existential partition graphs. J. Com-
bin. Inform. System Sci. 9, 193–196 (1984)

13. Feder, T., Hell, P.: On realizations of point determining graphs, and obstructions
to full homomorphisms. Discrete Math. 308, 1639–1652 (2008)

14. de Figueiredo, C.M.H., Meidanis, J., de Mello, C.P.: A linear-time algorithm for
proper interval graph recognition. Inform. Process. Lett. 56, 179–184 (1995)

15. Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Dis-
crete Applied Math. 145, 183–197 (2005)

16. Heggernes, P., Meister, D., Papadopoulos, C.: Graphs of linear clique-width at
most 3. Theoret. Comput. Sci. 412, 5466–5486 (2011)

17. Kloks, T., Lee, C.-M., Liu, J., Müller, H.: On the Recognition of General Parti-
tion Graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 273–283.
Springer, Heidelberg (2003)

18. Korach, E., Peled, U.N.: Equistable series-parallel graphs. Stability in Graphs and
Related Topics. Discrete Appl. Math. 132, 149–162 (2003)

19. Korach, E., Peled, U.N., Rotics, U.: Equistable distance-hereditary graphs. Discrete
Appl. Math. 156, 462–477 (2008)

20. Levit, V.E., Milanič, M.: Equistable simplicial, very well-covered, and line graphs
(2011) (submitted for publication)

21. Lin, G.-H., Jiang, T., Kearney, P.E.: Phylogenetic k-Root and Steiner k-Root. In:
Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer,
Heidelberg (2000)
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2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)



M.C. Golumbic et al. (Eds.): WG 2012, LNCS 7551, pp. 297–307, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Maximum Induced Multicliques and Complete 
Multipartite Subgraphs in Polygon-Circle Graphs  
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Abstract. A graph is a multiclique if its connected components are cliques. A 
graph is a complete multipartite graph if it is the complement of a multiclique. 
A graph is a multiclique-multipartite graph if its vertex set has a partition U, W 
such that G(U) is complete multipartite, G(W) is a multiclique and every two 
vertices u∈U, v∈W are adjacent. We describe a polynomial time algorithm to 
find in polygon-circle graphs a maximum induced complete multipartite sub-
graph containing an induced K2,2. In addition, we describe polynomial time al-
gorithms to find maximum induced multicliques and multiclique-multipartite 
subgraphs in circle graphs. These problems have applications for clustering of 
proteins by PPI criteria.  

Keywords: polygon-circle graph, circle graph, induced multiclique, induced 
complete multipartite subgraph, Protein-Protein-Interaction. 

1 Introduction 

We consider only finite graphs G(V,E) with no parallel edges and no self-loops, where 
V is the set of vertices and E the set of edges. For U⊆V, G(U) is the subgraph induced 
by U.  We denote N(v)={ u | u adjacent to v} and N[v]=N(v)∪{v}. The complement of 
a graph G is denoted coG. A graph is a multiclique if its connected components are 
cliques. A graph is a complete multipartite graph if its vertex set has a partition into 
independent sets such that every two vertices in different independent sets are adja-
cent, that is, its complement is a multiclique. A graph G(V,E) is a multiclique-
multipartite graph if its vertex set has a partition U, W such that G(U) is complete 
multipartite, G(W) is a multiclique and every two vertices u∈U, v∈W are adjacent.   

A graph G is an intersection graph of a family S of subsets of a set if there is a one-
to-one correspondence between the vertices of G and the subsets in S such that two 
vertices are adjacent if and only if their corresponding subsets in S intersect [19]. 
Intersection graphs of intervals on a line are called interval graphs [19]. Polygon-
circle graphs [15] are intersection graphs of families of convex polygons inscribed in 
a circle. Circle graphs are intersection graph of families of chords in a circle [3,6]. A 
transitively orientable graph is called a comparability graph [12,19]; a vertex is a 
source if all its edges are outgoing and is a sink if they are incoming. 
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A dissociation set of a graph is a vertex set which induces a subgraph whose  
connected components are edges or single vertices. In a bipartite graph, finding a 
maximum induced multiclique is NP-complete since it is the problem of finding a 
maximum dissociation set, while finding a maximum induced complete multipartite 
subgraph is polynomial [22].  

A graph is weakly-chordal if it has no holes or antiholes with five or more vertices. 
Cameron and Hell [1] described for these graphs a polynomial time algorithm for 
maximum weight dissociation sets, using the algorithm in [20] for maximum weight 
independent sets in weakly-chordal graphs.  

In the present paper we describe a polynomial time algorithm to find in polygon-
circle graphs a maximum induced complete multipartite subgraph containing an in-
duced K2,2. This algorithm can also be applied to the circle n-gon graphs and the circle 
trapezoid graphs, analyzed in [11].  In addition, we describe polynomial time algo-
rithms to find maximum induced multicliques and multiclique-multipartite subgraphs 
in circle graphs. These problems are NP-complete for general graphs [5]. The partition 
of all the vertices of a graph into a given number of independent sets and cliques, with 
various restrictions on mutual interconnections, was discussed in [2,13]. Note that the 
recognition problem of polygon-circle graphs is NP-complete [18].  

Gavril [10] described a polynomial time algorithm for maximum induced bicliques 
in polygon-circle graphs, using separation by chords. This algorithm can be extended 
to find maximum induced multicliques with a constant number k of cliques, by  
considering all combinations of k chords in the circle. 

The above problems have applications when a given set of entities related by some 
property, must be clustered into cliques and independent sets by some strongly  
connected vs. non-connected or similarity vs. dissimilarity criteria. For example, in 
Protein-Protein-Interaction (PPI) problems, the proteins must be clustered into strong-
ly interacting groups, with weak or no interaction between the groups. The criteria for 
clustering proteins are lock-and-key criteria [17], complementary domains criteria 
[21], domain-domain interaction criteria [14] or interacting motifs criteria [16].  

In Section 2 we describe a representation of polygon-circle graphs on a line. In 
Section 3 we describe an algorithm for maximum induced complete multipartite sub-
graphs containing an induced K2,2 in polygon-circle graphs. In Sections 4,5 we de-
scribe algorithms for maximum induced multiclique and multiclique-multipartite 
subgraphs in circle graphs.  

2 Representation of Polygon-Circle Graphs on a Line 

Consider an intersection representation of G by polygons on a circle CR and let Z be a 
point on CR distinct from any corner point (Figure 1(a)). For every polygon with 
more than one chord we delete its chord facing Z, that is, its chord delimiting the arc 
containing Z. The intersection relationship does not change since two intersecting 
polygons have two pairs of crossing chords. Now, we open CR at Z, straighten CR 
into a line L (Figure 1(b)), and transform every chord into a semicircle arc above L 
through the chord's endpoints on L. The intersection relationship does not change 
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since two chords in CR are not crossing if and only if their corresponding semicircle 
arcs are not intersecting. The remaining boundary of every polygon becomes a se-
quence of semicircle arcs with their endpoints on L, called polygon-filament. The 
reverse process is also true, thus a graph is a polygon-circle graph if and only if it is 
the intersection graph of a family of polygon-filaments on a line. 

 
                      Z 

                 w                                            
                                      (a)                                               (b) 
           u                w'                                               w 
    b                                 CR 
                    v            z                                 u              v                               
                                                                                        x               
             x                                               b                    y                     z        w'  
              y                                                                                c                        
                            c                L 
                                                                                          ii(b,c)  

Fig. 1. A family of polygons in a circle and its representation as polygon-filaments on a line 

These graphs are a subfamily of the interval-filament graphs defined by Gavril 
[7,8,9]. For a vertex v, we denote by a(v) its corresponding polygon-filament and by 
i(v) the interval on L delimiting a(v). For two vertices u,v having i(u)∩i(v)=φ , we 
denote by ii(u,v) the interval between i(u) and i(v). For a pair p=(u,v) of adjacent ver-
tices we denote i(p)=i(u)∪i(v), N[p]=N[u]∪N[v] and U(p)={ x | i(x)⊆i(p)}. For a 
point X on L we denote VX={ v | X∈i(v)}. The endpoints of a polygon-filament a(v), 
are the endpoints of its arcs. The interval i of an arc is the interval between its two 
endpoints. We denote by R(G) the intersection representation of a polygon-circle 
graph G by polygon-filaments. The edges of coG(VX) represent containment of inter-
vals of non-intersecting polygon-filaments, since the interval of every vertex of G(VX) 
contains X. We orient the edges u,v of coG(VX) from u to v, whenever i(u)⊂i(v); all 
edges of coG(VX) become oriented. This orientation is acyclic and transitive since 
i(u)⊂i(v)⊂i(w) implies i(u)⊂i(w). The properties of families of polygon-filaments are 
the following: 

 
Property 1. Two semicircle arcs of distinct polygon-filaments on L do not intersect 
(even when their polygon-filaments intersect) if and only if they have disjoint  
intervals or the interval of one arc appears between the endpoints of the other. This, 
because chords in CR corresponding to two non-intersecting arcs are non-crossing. 

 
Property 2. Two polygon-filaments b, c do not intersect if and only if they have  
disjoint intervals, or the interval of one i(b), is contained between the two endpoints 
of an arc of the other c (b, u in Figure 1(b)). 
 
Lemma 1. In G, R(G), for every pair p=(u,v) of adjacent or identical vertices, there 
are no edges between a vertex x∈U(p) and a vertex w∈V− (N[p]∪U(p)) (Figure 1(b)). 
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Proof. Consider a pair p=(u,v) of adjacent vertices and a vertex w∈V− (N[p]∪U(p)). 
If i(p)∩i(w)=φ then there are no edges between w and the vertices of U(p).  Otherwise, 
the interval i(p)=i(u)∪i(v) is contained between the endpoints of an arc of a(w) and so 
is the interval of every x∈U(p). Hence, by Property 2, a(x) and a(w) cannot intersect. 
 
Lemma 2. In G, R(G), consider four polygon-filaments b,c,x,y such that b,c have 
disjoint intervals, x,y are non-intersecting and both x,y intersect both b,c (Figure 1(b)). 
If there exists a polygon-filament u which intersects both x,y and does not intersect 
b,c, then u has an endpoint in ii(b,c) and i(b)⊂i(u) or i(c)⊂i(u) or both. 

 
Proof. Consider four such polygon-filaments b,c,x,y. Let X be the middle point of 
ii(b,c). Both i(x),i(y) must contain X, hence one of them must contain the other, say 
i(y)⊂i(x). Consider a polygon-filament u which intersects both x,y and does not inter-
sect b,c. If u has no endpoints in ii(b,c), then it has no endpoints in i(b)∪ii(b,c)∪i(c). 
Since X∈i(y), the interval i(y) must appear between the endpoints of i(x) in i(b) and 
i(c). Therefore i(y)⊂[i(b)∪ii(b,c)∪i(c)] implying that y and u cannot intersect. Thus, u 
has an endpoint in ii(b,c). If i(u)⊂ii(b,c),  then by the above argument c has an end-
point in ii(b,u)⊂ii(b,c) which is a contradiction. Therefore u has an endpoint in ii(b,c) 
and i(b)⊂i(u) or i(c)⊂i(u). 

 
Lemma 2 proves that in CR there are no three non-intersecting polygons b,c,u, each 
facing the other two, and two non-intersecting polygons x,y, intersecting b,c,u.  

 
Theorem 3. In a representation R(G) by polygon-filaments of a polygon-circle graph 
G, for every point X∈L, G(VX) is a weakly-chordal cocomparability graph. 

 
Proof. As described earlier, we orient the edges of the comparability graph coG(VX) 
by containment of intervals to obtain an acyclic transitive orientation. Cocomparabili-
ty graphs are perfect having no odd holes or antiholes with five or more vertices. Also 
[4], the cocomparability graphs cannot have holes with six or more vertices, since 
such holes contain asteroidal triples. Hence, G(VX) has no holes with five or more 
vertices.    

Assume that G(VX) has an even antihole h={v1, v2,…, v2k}  with six or more vertic-
es. The hole coh is transitively oriented by the orientation of coG(VX). W.l.o.g. as-
sume that the two edges of every v2i-1 are incoming and the two edges of every v2i are 
outgoing. Let arc(v) denote the arc of a(v) containing X.  

Let us prove that for two adjacent vertices v2i+1, v2j+1 of h, the intervals i(arc(v2i+1)), 
i(arc(v2j+1)) are intersecting but are not contained one into another. Assume that 
i(arc(v2i+1))⊂i(arc(v2j+1) and 2i<2i+1<2j+1 (when 2i+1=1, we take 2k for 2i), other-
wise we renumber the vertices. Hence, i(v2i)⊂i(arc(v2i+1))⊂i(arc(v2j+1)), implying, by 
Property 2, that a(v2i) cannot intersect a(v2j+1), contradicting the fact that v2i, v2j+1 are 
adjacent.  

Let us prove that for every three i(arc(v2i-1)), i(arc(v2i+1)), i(arc(v2i+3)), we have 
i(arc(v2i+1))⊂[i(arc(v2i-1))∪i(arc(v2i+3))] (when 2i+1=1, we take 2k-1 for 2i-1). Since 
every two of the three intervals are intersecting but are not contained one into another, 
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one of the three is contained in the union of the two others. Assume that 
i(arc(v2i+3))⊂[i(arc(v2i-1))∪i(arc(v2i+1))]. By above, neither i(arc(v2i+1) nor i(arc(v2i-1) 
can contain i(arc(v2i+3)). Thus [i(arc(v2i-1))∩i(arc(v2i+1))]⊂i(arc(v2i+3)) since the three 
intervals contain X. Then, X∈i(v2i)⊂[i(arc(v2i-1))∩i(arc(v2i+1))]⊂i(arc(v2i+3)) and by 
Property 2, a(v2i) cannot intersect a(v2i+3), contradicting the fact that v2i, v2i+3  are 
adjacent. 

Hence, the left (right) endpoint of i(arc(v2i+1)) appears on L between the left (right, 
respectively) endpoints of i(arc(v2i-1)) and i(arc(v2i+3)). Assume that the left endpoints 
of i(arc(v1)), i(arc(v3)), i(arc(v5)) appear from left to right on L in the order: left end-
point of i(arc(v1)), left endpoint of i(arc(v3)), left endpoint of i(arc(v5)). Then, by 
induction, we obtain that the left endpoints and the right endpoints of i(arc(v1)), 
i(arc(v3)),…,i(arc(v2k-1)) appear on L in this  order from left to right. Hence, 
i(v2k)⊂i(arc(v1))∩i(arc(v2k-1))⊂i(arc(v3)) and by Property 2, a(v2k) cannot intersect 
a(v3), contradicting the fact that v3, v2k  are adjacent. Therefore, G(VX) has no holes 
and antiholes with five or more vertices, and is weakly-chordal. 

3 Algorithm for Complete Multipartite Subgraphs Containing 
an Induced K2,2, in Polygon-Circle Graphs 

Consider a polygon-filament representation R(G) of a polygon-circle graph G(V,E). 
 

Lemma 4. For two non-adjacent vertices u,v having i(u)⊂i(v) let 
 

V(u,v)={ w | i(u)⊂i(w)⊂i(v), w∉N(u)∪N(v)}. 
 
Then, every vertex z∈N(u)∩N(v) is adjacent to every vertex w∈V(u,v) (Figure 2). 
 
Proof. Assume that there are two non-adjacent vertices z∈N(u)∩N(v) and w∈V(u,v). If 
i(w)⊂i(z) then i(u)⊂i(w)⊂i(z) and a(z) cannot intersect a(u). If i(z)⊂i(w) then 
i(z)⊂i(w)⊂i(v) and a(z) cannot intersect a(v). If i(w)∩i(z)=φ, then i(u)∩i(z)=φ, since 
i(u)⊂i(w). All three cases contradict the fact that z is adjacent to both u and v but not to w. 

 
                                          vi                              vj                                 
                                                w                                                             
                                                                                        
                                                               
         b                           ui                                             uj              c        

                                                      ii(b,c)                       

Fig. 2. For w∉N(ui)∪N(vi) and i(ui)⊂i(w)⊂i(vi), every vertex vj∈N(ui)∩N(vi) is adjacent to w 

The algorithm to find a maximum induced complete multipartite subgraph of a po-
lygon-circle graph G solves separately the following two cases: 
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Case 1: The solution B(IND1,…,INDk,E), where every INDj is an independent set, 
contains two vertices with disjoint intervals. W.l.o.g. assume that IND1 has two ver-
tices b,c having i(b)∩i(c)=φ, and their intervals are minimal in IND1 (Figure 2). Con-
sider some INDj, 2≤j≤k: for every x∈INDj, i(x) contains the middle point X of ii(b,c); 
hence INDj⊆VX. In addition, every two vertices u,v∈INDj, being non-adjacent and 
their intervals containing the point X, fulfill i(u)⊂i(v). Thus, INDj cannot contain two 
vertices both with minimal or both with maximal intervals, since the interval of one 
must be contained into the other. Let uj, vj be the unique vertices of INDj with minimal 
and maximal intervals; we may have uj=vj. Then, by Lemma 4 (Figure 2), 
INDj⊆V(uj,vj)∪{uj,vj} and for every s≠j INDs⊆N(uj)∩N(vj); we assign the weight 
|INDj| to the pair uj,vj.  The vertices of every pair uj,vj, 2≤j≤k, are not adjacent while 
every two vertices in different pairs are adjacent. Thus, the set of pairs uj,vj, 2≤j≤k, 
forms a weighted dissociation set of the complement coG(VX) of  G(VX).  

Since B contains an induced K2,2, some INDj, 2≤j≤k, contains at least two vertices. 
Hence by Lemma 2, the polygon-filament of every vertex d∈IND1, d≠b,c, has an 
endpoint in ii(b,c) and i(b)⊂i(d) or i(c)⊂i(d) or both. The above implies that 
IND1−{b,c} is a subset of 

  
S(b,c)={ d | d∉N(b)∪N(c), a(d) has an endpoint in ii(b,c) and i(b)⊂i(d) or i(c)⊂i(d)} 

 
and for every 2≤j≤k, INDj is a subset of VX(b,c)=VX∩N(b)∩N(c). The two sets 
S(b,c)∪{b,c} and VX(b,c) are disjoint. Therefore, the family INDj, 1≤j≤k, is defined by 
the family of pairs {(b,c)}∪{(uj,vj)| 2≤j≤k} fulfilling that the vertices of every pair are 
not adjacent while, every two vertices in different pairs are adjacent. Thus, for Case 1, 
the algorithm considers every two non-adjacent vertices b,c fulfilling i(b)∩i(c)=φ, and 
the middle point X of ii(b,c). The algorithm finds by the algorithm in [7] a maximum 
independent set in S(b,c) to obtain IND1− {b,c}, for every pair u,v of non-adjacent 
vertices in VX(b,c) finds a maximum independent set IND in V(u,v) and assigns the 
weight |IND∪{u,v}| to the pair u,v. Now, the algorithm finds a maximum weight dis-
sociation set in coG(VX(b,c)), by the algorithm in [1,20], since by Theorem 3, 
coG(VX(b,c)) is weakly-chordal. By the above explanation, the independent sets cor-
responding in G to this maximum weight dissociation set together with IND1 form a 
maximum induced complete multipartite subgraph of G. 

 
Case 2: No independent set in the solution B(IND1,…,INDk,E) has two vertices b,c 
having i(b)∩i(c)=φ. Then every two intervals corresponding to vertices in B have a 
non-empty intersection and by the Helly property there is a point X on L contained in 
all these intervals. Therefore, as in Case 1, the problem is reduced to finding a maxi-
mum weight dissociation set in the weakly-chordal comparability graph coG(VX). 

 
The algorithm works in time O(|V|5+|V|2F(|V|)), where F(|V|) is the time required to 
find a maximum weight dissociation set in a weakly-chordal comparability graph.  

In the special case when B contains no induced K2,2 implying that every INDj, 2≤j≤k, 
contains one vertex, the problem is to find a maximum induced subgraph with a vertex 
partition into an independent set IND and a clique C, completely interconnected. If IND 
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contains at least three vertices b,c,d, with mutually disjoint intervals, the above algorithm 
cannot be applied, and the problem remains open. Note that in such a case, by Lemma 2, 
N(b)∩N(c)∩N(d) is a clique. 

4 Algorithm for Multicliques in Circle Graphs 

Consider a polygon-filament representation R(G) of a circle graph G(V,E): a vertex is 
represented by one semicircle. For a clique C let i(C)=∪w∈C i(w) and a(C)=∪w∈C a(w). 
The pair of (not necessarily distinct) vertices u,v∈C to which the endpoints of i(C) 
belong, fulfils i(C)=i(u)∪i(v); we say that the pair p=(u,v) delimits i(C) (Figure 3). By 
Lemma 1, there are no edges between vertices in U(p) and vertices in 
V−(N[p]∪U(p)). Let H be the graph whose vertices are pairs of adjacent or identical 
vertices of G, two pairs p,q being connected by an edge if and only if they have a 
vertex in common, or two vertices one in p one in q are adjacent. The graph H is an 
intersection graph, in which every vertex p=(u,v) is represented by the union a(p) of 
the two intersecting polygon-filaments a(u) and a(v). Let E2 be the oriented edge 
subset {q→p} of the edge set of coH given by the relation i(q)⊂i(p) and a(q)∩a(p)=φ; 
this orientation of E2 is transitive. By Lemma 1, for an edge q→p in E2, there are no 
edges in E between U(q) and U(p)−(N[q]∪U(q)).  

 
                                          u            

                        z                                                                            v 
                                                                                              
                                    q1       q2                          q3                       q4

                            q5                                                                             
       x                                                  y                                

 

Fig. 3. For the pair p=(u,v) we have Cp={u,z,v}, PM(p)={q1,q3,q4,q5}, sinks are q1, q3, q4, and 
M(p)=Cp∪M(q1)∪M(q3)∪M(q4); in the interval ij,p=[x,y], s1=q1 is the unique sink of 
coH(PM∩W(ij,p),E2) 

For a multiclique M, let PM be the vertex set of H corresponding to the pairs deli-
miting the cliques in M; PM is an independent set of H. For a pair p(u,v)∈PM (Figure 
3), let PM(p)={ q | q∈PM, i(q)⊆i(p)} and let M(p) be the partial multiclique of M de-
fined by PM(p) in the subgraph G(U(p)). M(p) is composed of a clique 
Cp⊆N[u]∩N[v]∩U(p) and of the cliques defined by PM(p)−{p}. Every pair q in 
PM(p)−{p}  fulfils i(q)⊂i(p) and  a(q)∩a(p)=φ,  implying that q→p∈E2 and p is a sink 
of PM(p) in coH(PM,E2). Similarly, for every two pairs s,q in PM(p)−{p} either 
s→q∈E2 or i(s)∩i(q)=φ.  Let q1,...,qk be the sinks of PM(p)−{p} in the transitive orien-
tation of coH(PM,E2). Then, M(p)=Cp∪M(q1)∪...∪M(qk) and for every 
q∈M(q1)∪...∪M(qk), i(q) appears between consecutive endpoints of a(Cp). When M is 
a maximum induced multiclique, M(p) is a maximum induced multiclique of G(U(p)), 
otherwise we can replace M(p) by a maximum one. We assign to p the weight 
weight(p)=|M(p)|=|Cp|+|M(q1)|+ ...+|M(qk)|. Consider an interval ij,p between two 



304 F. Gavril 

consecutive endpoints of a(Cp). Let W(ij,p)={ q | i(q)⊂ij,p}; the polygon-filaments cor-
responding to the vertices of W(ij,p) do not intersect the polygon-filaments correspond-
ing to the vertices of Cp or of the cliques of M delimited by intervals of a(Cp) disjoint 
from ij,p. Consider the weighted interval graph I(W(ij,p)) in which every vertex q in 
W(ij,p) is represented by i(q) with weight(q). Let s1,...,sr be the sinks of 
coH(PM∩W(ij,p),E2). When M is a maximum induced multiclique, s1,...,sr is a maxi-
mum weight independent set of the interval graph I(W(ij,p)), otherwise we could  
obtain a larger induced multiclique by replacing s1,...,sr by a maximum weight  
independent set.  

The algorithm works as follows: Using the topological ordering defined by the 
transitive orientation of E2 on coH, we go from sources to sinks on E2 and construct 
for every pair p=(u,v) a maximum induced multiclique M(p) of G(U(p)), using the 
maximum induced multicliques M(q) of the pairs q having q→p∈E2. For a given p, 
we must find a clique Cp⊆ N[u]∩N[v]∩U(p), and a maximum weight independent set 
IND which is the union of maximum weight independent sets (with sinks s1,...,sr) in 
the intervals between consecutive endpoints of a(Cp) such that |Cp|+weight(s1)+...+ 
weight(sr) is maximum. Then, Cp∪M(s1)∪...∪M(sr) is a maximum induced multicli-
que of G(U(p)). 

By the Helly property of intervals on a line, every clique in N[u]∩N[v]∩U(p) is 
contained in a vertex set VX for a point X in i(u)∩i(v): we must consider every subin-
terval between consecutive endpoints of polygon-filaments, in i(u)∩i(v), in each a 
point X, and for each X we must construct Cp and IND. For the semicircle a(u) of a 
vertex u, let lu, ru denote its left and right endpoints. 

 
Lemma 5.  In a circle graph G, the vertices of a clique Cp, p=(u,v), Cp⊆VX,  are 
represented by semicircles whose endpoints at the left and the right of X are in the 
same order. 

 
Proof. Assume that the endpoints of a(x), a(y) representing x,y∈Cp are in order lx<ly at 
the left of X and in ry<rx at the right of X. Then, the endpoints of a(y) are contained in 
i(x) and a(x),a(y) cannot intersect, contradicting the fact that x,y∈Cp. 

 
For a pair p=(u,v) and a point X in i(u)∩i(v) we denote by lu=l1< l2<,…,< ls=lv<X the 
left endpoints of the semicircles representing the vertices in U(p)∩VX. For a vertex wi 
whose left endpoint of i(wi) is li, we denote the right endpoint by ri; note that 
X<ru<ri<rv. We now go on the left endpoints from left to right and for every i we find 
a maximum multiclique M(p,1,i) within the intervals [l1,li]∪[r1,ri]; let Cp,i denote its 
clique containing u and wi. Assume that we found such a solution for 1,..,i-1 and we 
want to find one for i and wi. We consider every lj<li, such that wj, wi are adjacent, 
hence by Lemma 5 rj<ri, and we evaluate a maximum weight independent set 
IM(p,j,i) in the weighted interval graph I(W([lj,li])∪W([rj,ri])) in which every vertex q 
is represented by i(q) with weight(q). By Lemma 5, every vertex wk of the clique Cp,j 
in the partial solution M(p,1,j) has lk≤lj<li and rk≤rj<ri, hence wk is adjacent to wi im-
plying that Cp,j∪{wi} is a clique, Among all j, we take the solution with maximum 
|M(p,1,j)|+weight(IM(p,j,i))+1 and assign it to i as M(p,1,i); by induction 
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{wi}∪M(p,1,j)∪{ M(q) | q∈IM(p,j,i)} is a maximum induced multiclique M(p,1,i). For 
the final solution, we find a maximum weight independent set in the interval graph 
defined by all the pairs of adjacent vertices in G. 

The algorithm works in time O(|V|6). Polygon-circle graphs do not fulfill Lemma 5 
and their problem remains open.  

5 Algorithm for Multipartite-Multiclique Subgraphs in Circle 
Graphs 

Consider a circle graph G(V,E) represented as an intersection graph of chords in a 
circle CR.  

Let M(U,W) be an induced multiclique-multipartite subgraph of G(V,E)  where 
M(U) is complete multipartite, M(W) is a multiclique and every two vertices u∈U, 
v∈W are adjacent. Consider a vertex u in U with chord XuYu (Figure 4). Let xv,xz be 
the endpoints of  chords of vertices v,z in W closest to Xu. Let yw,ys be the endpoints of 
chords of vertices w,s in W  closest to Yu. We denote all arcs counterclockwise. Every 
vertex in W is adjacent to u∈U, hence its chord intersects the chord XuYu and has its 
endpoints in the disjoint arcs xvyw and ysxz. The vertices v,z can be identical or must 
have intersecting chords; similarly for w,s. Let Z(v,z,w,s) be the set of vertices of G 
whose chords have the endpoints one in each arc xvyw and ysxz. Thus W⊆Z(v,z,w,s). 
Let Q(v,z,w,s) be the set of vertices of G whose chords have the endpoints one in each 
arc xz,xv and yw,ys. 

 
                      Xu                  
          xv                       xz

  yz                                       yv 
                     
 xs                                        xw 

     yw                                 ys

                    Yu      
 

Fig. 4. The chords on CR of the vertices u∈U and v,z,y,s∈W; the pairs v,z and y,s are in  
different cliques of W. 

Case 1: Assume that M(W) has at least two cliques. This implies that the chords of v,z 
do not intersect the chords of w,s. Since the chord of every vertex in U intersects the 
chords of all the vertices in W, it has its endpoints one in each arc xz,xv and yw,ys. 
Hence, U⊆Q(v,z,w,s). The algorithm works as follows: We consider every two pairs 
v,z and w,s of adjacent (or identical) vertices with no interconnecting edges (Figure 
4). Let Z(v,z,w,s) and Q(v,z,w,s) be defined as above. By the algorithms in Sections 
3,4, we find a maximum induced multiclique G(W) in G(Z(v,z,w,s)), and a maximum 
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induced multipartite subgraph G(U) in G(Q(v,z,w,s)). Among these pairs v,z and w,s 
we chose the induced multipartite-multiclique subgraph with a maximum number of 
vertices. 
 
Case 2: Assume that M(W) has only one clique C. Hence v=s, z=w and v,z are adja-
cent. Therefore, among the four arcs defined by the chords of v,z on CR, there is a pair 
of opposite arcs such that the chords corresponding to the vertices of U have the end-
points one in each arc of this pair. The algorithm works as follows: For every pair v,z 
of adjacent vertices and for every pair of their opposite arcs we find a maximum cli-
que G(W) for the pair v,z, and a maximum induced multipartite subgraph G(U) for 
their opposite pairs of arcs. To find G(U): we use the algorithm in Section 3, to cover 
the case that it contains an induced K2,2; we use an algorithm to find a maximum in-
dependent set in a permutation graph to cover the case that G(U) has no induced K2,2 
and thus has only one independent set. Among all pairs v,z of adjacent vertices, we 
chose the induced multipartite-multiclique subgraph with a maximum number of ver-
tices. Note that this covers the case that M(U,W) has one independent set and one 
clique, unsolved in Section 4. 

 
The algorithm works in time O(|V|4F1(V)+|V|4F2(V)) where F1(V) is the time required 
to find a maximum induced multiclique in G(Z(v,z,w,s)), and F2(V) the time required 
to find a maximum induced multipartite subgraph  in G(Q(v,z,w,s)). 
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Abstract. A circle graph is the intersection graph of a set of chords in
a circle. Keil [Discrete Applied Mathematics, 42(1):51-63, 1993] proved
that Dominating Set, Connected Dominating Set, and Total

Dominating Set are NP-complete in circle graphs. To the best of our
knowledge, nothing was known about the parameterized complexity of
these problems in circle graphs. In this paper we prove the following
results, which contribute in this direction:
• Dominating Set, Independent Dominating Set, Connected

Dominating Set, Total Dominating Set, and Acyclic Dom-

inating Set are W [1]-hard in circle graphs, parameterized by the
size of the solution.

• Whereas both Connected Dominating Set and Acyclic Domi-

nating Set are W [1]-hard in circle graphs, it turns out that Con-

nected Acyclic Dominating Set is polynomial-time solvable in
circle graphs.

• If T is a given tree, deciding whether a circle graph has a dominating
set isomorphic to T is NP-complete when T is in the input, and FPT

when parameterized by |V (T )|. We prove that the FPT algorithm is
subexponential.

Keywords: circle graphs, domination problems, parameterized com-
plexity, parameterized algorithms, dynamic programming, constrained
domination.

1 Introduction

A circle graph is the intersection graph of a set of chords in a circle (see Fig. 1
for an example of a circle graph G together with a circle representation of it).
The class of circle graphs has been extensively studied in the literature, due in
part to its applications to sorting [12] and VLSI design [27]. Many problems
which are NP-hard in general graphs turn out to be solvable in polynomial time
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Fig. 1. A circle graph G on 8 vertices together with a circle representation of it

when restricted to circle graphs. For instance, this is the case of Maximum

Clique and Maximum Independent Set [17], Treewidth [24], Minimum

Feedback Vertex Set [18], Recognition [19,28], Dominating Clique [22],
or 3-Colorability [30].
But still a few problems remain NP-complete in circle graphs, like k-

Colorability for k ≥ 4 [29], Hamiltonian Cycle [8], or Minimum Clique

Cover [23]. In this article we study a variety of domination problems in cir-
cle graphs, from a parameterized complexity perspective. A dominating set in a
graph G = (V,E) is a subset S ⊆ V such that every vertex in V \ S has at least
one neighbor in S. Some extra conditions can be imposed to a dominating set.
For instance, if S ⊆ V is a dominating set and G[S] is connected (resp. acyclic,
an independent set, a graph without isolated vertices, a tree, a path), then S
is called a connected (resp. acyclic, independent, total, tree, path) dominating
set. In the example of Fig. 1, vertices 1 and 5 (resp. 3, 4, and 6) induce an
independent (resp. connected) dominating set. The corresponding minimization
problems are defined in the natural way. Given a set of graphs G, the Minimum

G-Dominating Set problem consists in, given a graph G, finding a dominating
set S ⊆ V (G) of G of minimum cardinality such that G[S] is isomorphic to some
graph in G. Throughout the article, we may omit the word “Minimum” when
referring to a specific problem.
For an introduction to parameterized complexity theory, see for instance

[10, 14, 26]. A decision problem with input size n and parameter k having an
algorithm which solves it in time f(k) · nO(1) (for some computable function f
depending only on k) is called fixed-parameter tractable, or FPT for short. The
parameterized problems which are W [i]-hard for some i ≥ 1 are not likely to be
FPT [10, 14, 26]. A parameterized problem is in XP if it can be solved in time
f(k) · ng(k), for some (unrestricted) functions f and g. The parameterized ver-
sions of the above domination problems when parameterized by the cardinality
of a solution are also defined naturally.

Previous Work. Dominating Set is one of the most prominent classical
graph-theoretic NP-complete problems [16], and has been studied intensively in
the literature. Keil [22] proved that Dominating Set, Connected Dominat-

ing Set, and Total Dominating Set are NP-complete when restricted to
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circle graphs, and Damian and Pemmaraju [9] proved that Independent Dom-

inating Set is also NP-complete in circle graphs, answering an open question
from Keil [22].
Hedetniemi, Hedetniemi, and Rall [20] introduced acyclic domination in

graphs. In particular, they proved thatAcyclic Dominating Set can be solved
in polynomial time in interval graphs and proper circular-arc graphs. Xu, Kang,
and Shan [31] proved that Acyclic Dominating Set is linear-time solvable in
bipartite permutation graphs. The complexity status of Acyclic Dominating

Set in circle graphs was unknown.
In the theory of parameterized complexity [10,14,26], Dominating Set also

plays a fundamental role, being the paradigm of a W [2]-hard problem. For some
graph classes, like planar graphs, Dominating Set remains NP-complete [16]
but becomes FPT when parameterized by the size of the solution [2]. Other
more recent examples can be found in H-minor-free graphs [3] and claw-free
graphs [7].
The parameterized complexity of domination problems has been also studied

in geometric graphs, like k-polygon graphs [11], multiple-interval graphs and
their complements [13, 21], k-gap interval graphs [15], or graphs defined by the
intersection of unit squares, unit disks, or line segments [25]. But to the best of
our knowledge, the parameterized complexity of the aforementioned domination
problems in circle graphs was open.

Our Contribution. In this paper we prove the following results, which settle
the parameterized complexity of a number of domination problems in circle
graphs:

• In Section 2, we prove that Dominating Set, Connected Dominat-

ing Set, Total Dominating Set, Independent Dominating Set, and
Acyclic Dominating Set areW [1]-hard in circle graphs, parameterized by
the size of the solution. Note that Acyclic Dominating Set was not even
known to be NP-hard in circle graphs. The reductions are from k-Colored

Clique in general graphs.

• Whereas both Connected Dominating Set and Acyclic Dominating

Set are W [1]-hard in circle graphs, it turns out that Connected Acyclic

Dominating Set is polynomial-time solvable in circle graphs. This is proved
in Section 3.

• Furthermore, if T is a given tree, we prove in Section 3 that the problem of
deciding whether a circle graph has a dominating set isomorphic to T is NP-
complete but FPT when parameterized by |V (T )|. The NP-completeness
reduction is from 3-Partition, and we prove that the running time of the
FPT algorithm is subexponential. As a corollary of this algorithm, we also
deduce that if T has bounded degree, then deciding whether a circle graph
has a dominating set isomorphic to T can be solved in polynomial time.

Due to lack of space, the proofs marked with ‘[�]’ have been omitted in this
extended abstract, and can be found in [5].
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Further Research. Some interesting questions remain open. We proved that
several domination problems are W [1]-hard in circle graphs. Are they W [1]-
complete, or may they also be W [2]-hard? On the other hand, we proved that
finding a dominating set isomorphic to a tree can be done in polynomial time. It
could be interesting to generalize this result to dominating sets isomorphic to a
connected graph of fixed treewidth. Finally, even if Dominating Set parame-
terized by treewidth is FPT in general graphs due to Courcelle’s theorem [6], it is
not plausible that it has a polynomial kernel in general graphs [4]. It may be the
case that the problem admits a polynomial kernel parameterized by treewidth
(or by vertex cover) when restricted to circle graphs.

2 W [1]-Hardness Results

In this section we prove hardness results for a number of domination problems
in circle graphs. In a representation of a circle graph, we will always consider the
circle oriented anticlockwise. Given three points a, b, c in the circle, by a < b < c
we mean that starting from a and moving anticlockwise along the circle, b comes
before c. In a circle representation, we say that two chords with endpoints (a, b)
and (c, d) are parallel twins if a < c < d < b, and there is no other endpoint of a
chord between a and c, nor between d and b. Note that for any pair of parallel
twins (a, b) and (c, d), we can slide c (resp. d) arbitrarily close to a (resp. b)
without modifying the circle representation.
We start with the main result of this section.

Theorem 1. Dominating Set is W [1]-hard in circle graphs, when parameter-
ized by the size of the solution.

Proof: The reduction is from the k-Colored Clique problem: given a graph
G = (V,E) and a coloring of V using k colors, the question is whether there is
clique of size k in G containing exactly one vertex from each color. This problem
is W [1]-hard when parameterized by k [13]. It can be easily seen that we may
assume that all color classes are independent sets of the same size. We shall
reduce the k-Colored Clique problem to the problem of finding a dominating
set of size at most k(k + 1)/2 in circle graphs. Let k be an integer and let G
be a k-colored graph on kn vertices such that n vertices are colored with color
i for all 1 ≤ i ≤ k. For every 1 ≤ i ≤ k, we denote by xi

j the vertices of color i,
with 1 ≤ j ≤ n. Let us prove that G has a k-colored clique of size k if and only
if the following circle graph C has a dominating set of size at most k(k + 1)/2.
We choose an arbitrary point of the circle as the origin. The circle graph C is
defined as follows:

• We divide the circle into k disjoint open intervals ]si, s
′
i[ for 1 ≤ i ≤ k,

called sections. Each section is divided into k + 1 disjoint intervals ]cij , c
′
ij [

for 1 ≤ j ≤ k+1, called clusters (see Fig. 2 for an illustration). Each cluster
has n particular points denoted by 1, . . . , n following the order of the circle.
These intervals are constructed in such a way that the origin is not in a
section.
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1st section

2nd section

2nd cluster

1st cluster

Fig. 2. Sections and clusters in the reduction of Theorem 1

• Sections are numbered from 1 to k following the anticlockwise order from
the origin. Similarly, the clusters inside each section are numbered from 1 to
k + 1.

• For each 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1, we add a chord with endpoints cij and
c′ij , which we call the extremal chord of the j-cluster of the i-th section.

• For each 1 ≤ i ≤ k and 1 ≤ j ≤ k, we add chords between the j-th and
the (j + 1)-th clusters of the i-th section as follows. For each 0 ≤ l ≤ n,
we add two parallel twin chords, each having one endpoint in the interval
]l, l+1[ of the j-th cluster, and the other endpoint in the interval ]l, l+1[ of
the (j+1)-th cluster. These chords are called inner chords (see Fig. 3(a) for
an illustration). We note that the endpoints of the inner chords inside each
interval can be chosen arbitrarily. The interval ]0, 1[ is the interval between
cij and the point 1, and similarly ]n, n+1[ is the interval between the point
n and c′ij .

• We also add chords between the first and the last clusters of each section.
For each 1 ≤ i ≤ k and 1 ≤ l ≤ n, we add a chord joining the point l of the
first cluster and the point l of the last cluster of the i-th section. For each
1 ≤ i ≤ k, these chords are called the i-th memory chords.

• Extremal, inner, and memory chords will ensure some structure on the so-
lution. On the other hand, the following chords will simulate the behavior
of the original graph. In fact, the n particular points in each cluster of the
i-th section will simulate the behavior of the n vertices of color i in G. Let
i < j. The chords from the i-th section to the j-th section are between the
j-th cluster of the i-th section and the (i+ 1)-th cluster of the j-th section.
Between this pair of clusters, we add a chord joining the point h (in the i-th
section) and the point l (in the j-th section) if and only if xi

hx
j
l ∈ E(G). We

say that such a chord is called associated with an edge of the graph G, and
such chords are called outer chords. In other words, there is an outer chord
in C if the corresponding vertices are connected in G.

Intuitively, the idea of the above construction is as follows. For each 1 ≤ i ≤ k,
among the k + 1 clusters in the i-th section, the first and the last one do not
contain endpoints of outer chords, and are only used for technical reasons (as
discussed below). The remaining k − 1 clusters in the i-th section capture the
edges of G between vertices of color i and vertices of the remaining k− 1 colors.
Namely, for any two distinct colors i and j, there is a cluster in the i-th section
and a cluster in the j-th section such that the outer chords between these two
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��o
(b)(a)

ci,j 1 2 3 n c′i,j ci,j+11 2 3 n c′i,j+1

Fig. 3. (a) Representation of the chords between the j-th and the (j +1)-th cluster of
the i-th section. The higher chords are extremal chords. The others are inner chords
and have to be replaced by two parallel twin chords. (b) The general form of a solution.
Thick chords are memory chords and the other ones are outer chords. The origin is
depicted with a small “o”.

clusters correspond to the edges in G between colors i and j. The rest of the
proof is structured along a series of claims.

Claim 1. [�] If there exists a k-colored clique in G, then there exists a domi-
nating set of size k(k + 1)/2 in C.

In the following we will state some properties about the dominating sets in C of
size k(k + 1)/2.

Claim 2. [�] A dominating set in C has size at least k(k + 1)/2, and a domi-
nating set of this size has exactly one endpoint in each cluster.

Claim 3. [�] A dominating set of size k(k + 1)/2 in C contains no inner nor
extremal chord.

By Claim 3, a dominating set in C of size k(k+1)/2 contains only memory and
outer chords. Thus, the unique (by Claim 2) endpoint of the dominating set in
each cluster is one of the points {1, . . . , n}, and we call it the value of a cluster.
Fig. 3(b) illustrates the general form of a solution.

Claim 4. [�] Assume that C contains a dominating set of size k(k+1)/2. Then,
in a given section, the value of a cluster does not increase between consecutive
clusters.

Claim 5. [�] Assume that C contains a dominating set of size k(k+1)/2. Then,
for each 1 ≤ i ≤ k, all the clusters of the i-th section have the same value.

The value of a section is the value of the clusters in this section (note that it
is well-defined by Claim 5). The vertex associated with the i-th section is the
vertex xi

k if the value of the i-th section is k.
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Claim 6. [�] If there is a dominating set in C of size k(k + 1)/2, then for each
pair (i, j) with 1 ≤ i < j ≤ k, the vertex associated with the i-th section is
adjacent in G to the vertex associated with the j-th section. Therefore, G has a
k-colored clique.

Claims 1 and 6 together ensure that C has a dominating set of size k(k+1)/2 if
and only if G has a k-colored clique. The reduction can be easily done in poly-
nomial time, and the parameters of the problems are polynomially equivalent.
Thus, Dominating Set in circle graphs is W [1]-hard. This completes the proof
of Theorem 1. �

Note that in the construction of Theorem 1, if there is a dominating set of size
k(k + 1)/2 in C, it is necessarily connected (see the form of the solution in
Fig. 3(b)). Indeed, the memory chords ensure the connectivity between all the
chords with one endpoint in a section. Since there is a chord between each pair of
sections, the dominating set is connected. Note also that a connected dominating
set is also a total dominating set, as it contains no isolated vertices. Therefore,
we obtain the following corollary.

Corollary 1. Connected Dominating Set and Total Dominating Set

are W [1]-hard in circle graphs, when parameterized by the size of the solution.

In the following hardness result, we use a completely different reduction from
k-Colored Clique.

Theorem 2. [�] Independent Dominating Set is W [1]-hard in circle graphs.

The construction of Theorem 2 can be appropriately modified to deal with the
case when the dominating set is required to induce an acyclic subgraph.

Theorem 3. [�] Acyclic Dominating Set is W [1]-hard in circle graphs.

3 Tree Dominating Sets

In this section we focus on finding dominating sets in a circle graph which induce
graphs isomorphic to trees. Namely, in Theorem 4 we give a polynomial-time
algorithm to find a dominating set isomorphic to some tree. We prove in Theo-
rem 5 that finding a dominating set isomorphic to a given tree is NP-complete.
In Theorem 6 we modify the algorithm of Theorem 4 to find a dominating set
isomorphic to a given tree T in FPT time, the parameter being the size of T .
By carefully analyzing its running time, we prove that this FPT algorithm runs
in subexponential time. It also follows from this analysis that if the given tree
T has bounded degree (in particular, if it is a path), then the problem of find a
dominating set isomorphic to T can be solved in polynomial time. Note that, in
contrast with Theorem 4 below, Theorem 3 in Section 2 states that, if F is the
set of all forests, then F-Dominating Set is W [1]-hard in circle graphs.
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Theorem 4. Let T be the set of all trees. Then T -Dominating Set can be
solved in polynomial time in circle graphs. In other words, Connected Acyclic

Dominating Set can be solved in polynomial time in circle graphs.

Proof: Let C be a circle graph on n vertices, and let C be a circle representation
of C. We denote by P the set of intersections of the circle and the chords in
this representation. The elements of P are called points. W.l.o.g., we can assume
that only one chord intersects a given point. Given two points a, b ∈ P , the
interval [a, b] is the interval from a to b in the anticlockwise order. Given four
(non-necessarily distinct) points a, b, c, d ∈ P , with a ≤ c ≤ d ≤ b, by the region
ab−cd we mean the union of the two intervals [a, c] and [d, b]. Note that these two
intervals can be obtained by “subtracting” the interval [c, d] from the interval
[a, b]; this is why we use the notation ab− cd.
In the following, by size of a set of chords we mean the number of vertices

of C in this set. We say that a forest F of C spans a region ab − cd if each of
a, b, c, and d is an endpoint of some chord in F , and each endpoint of a chord
of F is either in [a, c] or in [d, b]. A forest F is split by a region ab − cd if for
each connected component of F there is exactly one chord with one endpoint in
[a, c] and one endpoint in [d, b]. Given a region ab − cd, a forest F is (ab − cd)-
dominating if all the chords of C with both endpoints either in the interval [a, c]
or in the interval [d, b] are dominated by F . A forest is valid for a region ab− cd
if it spans ab− cd, is split by ab− cd, and is (ab − cd)-dominating.
Note that an (ab− cd)-dominating forest with several connected components

might not dominate some chord going from [a, c] to [d, b]. This is not the case if
F is connected, as stated in the following claim.

Claim 7. [�] Let T be a valid tree for a region ab − cd. Then all the chords of
C with both endpoints in [a, c] ∪ [d, b] are dominated by T .

We now state two properties that will be useful in the algorithm. Their correct-
ness is proved below.

T1. Let F1 and F2 be two valid forests for two regions ab − cd and ef − gh,
respectively, such that a ≤ c ≤ e ≤ g ≤ h ≤ f ≤ d ≤ b. If there is no
chord with both endpoints either in [c, e] or in [f, d], then F1 ∪ F2 is valid
for ab− gh (see Fig. 4).

T2. Let F1 and F2 be two valid forests for two regions ab − cd and ef − gh,
respectively (F2 being possibly empty), and let uv be a chord such that
u ≤ a ≤ c ≤ e ≤ g ≤ v ≤ h ≤ f ≤ d ≤ b, and such that there is no chord
with both endpoints either in [u, a], or in [g, v], or in [v, h], or in [b, u]. Then
F1 ∪ F2 ∪ {uv} is a tree which is valid for df − ce. When F2 is empty, we
consider that e, f, g, h correspond to the point v. (see Fig. 4).

Roughly speaking, the intuitive idea behind this two properties is to reduce the
length of the circle in which we still have to do some computation (that is,
outside the valid regions). Again, the proof is structured along a series of claims.
Before verifying the correctness of Properties T1 and T2, let us first state a
useful general fact.
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Fig. 4. On the left (resp. right), regions corresponding to Property T1 (resp. Prop-
erty T2). Full lines correspond to real chords of C, dashed lines correspond to the
limit of regions. Bold intervals correspond to intervals with no chord of C with both
endpoints in the interval.

Claim 8. [�] Let ab− cd be a region and let F be a valid forest for ab− cd. The
chords with one endpoint in [c, d] and one endpoint in [d, c] are dominated by F .

Claim 9. [�] Properties T1 and T2 are correct.

For a region ab−cd, we denote by vfab,cd (resp. v
t
ab,cd) the least integer l for which

there is a valid forest (resp. tree) of size l for ab− cd. If there is no valid forest

(resp. tree) for ab − cd, we set vfab,cd = +∞ (resp. vtab,cd = +∞). Let us now
describe our algorithm based on dynamic programming.With each region ab−cd,
we associate two integers v1ab,cd and v2ab,cd. Algorithm 1 below calculates these

two values for each region. We next show that v1ab,cd = vfab,cd and v2ab,cd = vtab,cd,
and that Algorithm 1 correctly computes the result in polynomial time.

Algorithm 1. Dynamic programming for computing a dominating tree

for each region ab− cd do v1ab,cd ← ∞; v2ab,cd ← ∞
for each chord ab of the circle graph do v1ab,ab ← 1; v2ab,ab ← 1
for j = 2 to n do

if there are two regions ab− cd and ef − gh such that v1ab,cd = j1 and v1ef,gh = j2
with j1 + j2 = j satisfying Property T1, with v1ab,gh = +∞ then

v1ab,gh ← j
if there is a region ab − cd and a chord uv such that v1ab,cd = j − 1 satisfying
Property T2 with an empty second forest then

if v1dv,cv = +∞ then
v1dv,cv ← j

if v2dv,cv = +∞ then
v2dv,cv ← j

if there are two regions ab− cd and ef − gh and a chord uv such that v1ab,cd = j1
and v1ef,gh = j2 with j1 + j2 = j − 1 satisfying Property T2 then

if v1df,ce = +∞ then
v1df,ce ← j

if v2df,ce = +∞ then
v2df,ce ← j
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Claim 10. [�] For any region ab− cd, v1ab,cd = vfab,cd and v2ab,cd = vtab,cd.

Let us now explain how we can verify if there is a dominating set in C isomorphic
to some tree of a given size.

Claim 11. [�] Let k be a positive integer. There is a dominating tree of size at
most k in C if and only if there is a region ab− cd such that vtab,cd ≤ k and such
that there is no chord strictly contained in [b, a] nor in [c, d].

By Claims 10 and 11, it follows that Algorithm 1 computes the regions for
which there is a valid tree of any size from 1 to n. Given a region ab − cd with
vtab,cd ≤ k, we just have to verify that there are no chords in the intervals [b, a]
and [c, d], which can clearly be done in polynomial time. One can easily check
that Algorithm 1 runs in time O(n10), but we did not make any attempt to
improve its time complexity. �

It turns out that when we seek a dominating set isomorphic to a given tree T ,
the problem is NP-complete. The reduction is from the 3-Partition problem,
which consists in deciding whether a given multiset of integers can be partitioned
into triples such that the three integers in each triple have the same sum.

Theorem 5. [�] Let T be a given tree. Then {T }-Dominating Set is NP-
complete in circle graphs when T is part of the input.

Finally, we show that {T }-Dominating Set in circle graphs can be solved by
a subexponential FPT algorithm, when parameterized by |V (T )|.
The algorithm of Theorem 6 below goes along the same lines of Algorithm 1

given in the proof of Theorem 4. The main difference is that in the proof of
Theorem 4, when Properties T1 or T2 are satisfied, we can directly apply them
and still obtain a forest or a tree. But when looking for a given tree T , when
we make the union of two forests, we have to make sure that the union of these
two forests is still a subforest of T , and that we can correctly complete it to
obtain the desired tree T . For obtaining that, we will apply two new properties
corresponding to Properties T1 or T2, whenever it is possible to create forests
which are induced by the children of the same vertex of T .
Let us give some more intuition on the algorithm. We consider the tree T

rooted at an arbitrary vertex r. Let v be a vertex of T , and let w1, . . . , wl be
the children of v. We define T (v) as the forest T [w1] ∪ T [w2] . . . ∪ T [wl], where
T [wi] is the subtree of the rooted tree T induced by wi and the descendants
of wi. Roughly speaking, the idea of the algorithm is to exhaustively seek a
dominating set isomorphic to any possible subforest of F (v) for every vertex v
in T , and then try to grow it until hopefully obtaining the target tree T . Note
that if a vertex v of T has k children, there are a priori 2k possible subsets of
children of y, which define 2k possible types of subforests in F (v). But the key
point in order to obtain a subexponential algorithm is that if some of the trees
in F (v) are isomorphic, some of the choices of subsets of subforests will give
rise to the same tree. In order to avoid this redundancy, for each vertex v of T ,
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we partition the trees in F (v) into isomorphism classes, and then the choices
within each isomorphism class reduce to choosing the multiplicity of this tree.
Note that carrying out this partition into isomorphism classes can be done in
polynomial time (in the size of T ) for each vertex of T , using the fact that one
can test whether two rooted trees T1 and T2 with t vertices are isomorphic in
O(t) time [1]. The details can be found in [5].
From our analysis, it also follows that if T has bounded degree (in particular,

if it is a path), then {T }-Dominating Set can be solved in polynomial time in
circle graphs.

Theorem 6. [�] Let T be a given tree. There exists an FPT algorithm to solve
{T }-Dominating Set in a circle graph on n vertices, when parameterized by

t = |V (T )|, running in time 2O(t· log log t
log t ) · nO(1) = 2o(t) · nO(1). Furthermore, if

T has bounded degree, then {T }-Dominating Set can be solved in polynomial
time in circle graphs.

Acknowledgment. We would like to thank Sylvain Guillemot for stimulating
discussions that motivated some of the research carried out in this paper.
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Abstract. Vertex elimination is a graph operation that turns the
neighborhood of a vertex into a clique and removes the vertex itself. It has
widely known applications within sparse matrix computations. We define
the Elimination problem as follows: given two graphs G and H , decide
whether H can be obtained from G by |V (G)| − |V (H)| vertex elim-
inations. We study the parameterized complexity of the Elimination

problem. We show that Elimination is W [1]-hard when parameterized
by |V (H)|, even if both input graphs are split graphs, and W [2]-hard
when parameterized by |V (G)| − |V (H)|, even if H is a complete graph.
On the positive side, we show that Elimination admits a kernel with
at most 5|V (H)| vertices in the case when G is connected and H is a
complete graph, which is in sharp contrast to the W [1]-hardness of the
related Clique problem. We also study the case when either G or H is
tree. The computational complexity of the problem depends on which
graph is assumed to be a tree: we show that Elimination can be solved
in polynomial time when H is a tree, whereas it remains NP-complete
when G is a tree.

1 Introduction

Consider the problem of choosing a set S of resilient communication hubs in a
network, such that if any subset of the hubs should stop functioning then all
the remaining hubs in S can still communicate. Such a set is attractive if the
probability of a hub failure is high, or if the network is dynamic and hubs can
leave the network. We can formulate this as a graph problem in the following
way. Given a graph G and an integer k, is there a set S of k vertices, such that
if any subset of S is removed from G, then every pair of remaining vertices in
S are still connected via paths in the modified graph. Obviously, choosing S to
be a clique of size k would solve the problem, but only allowing for cliques is
overly restrictive. A necessary and sufficient condition on S is that for each pair
u, v ∈ S, either u and v are adjacent or there is a path between u and v in G
not containing any vertex of S except u and v. Thus we can view the described
problem as a relaxation of the well-known Clique problem.
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The above problem can be stated in terms of a well-known graph operation
related to Gaussian elimination: vertex elimination [14]. The elimination of a
vertex v from a graph G is the operation that adds edges to G such that the
neighbors of v form a clique, and then removes v from the resulting graph. With
this operation, the above problem can be defined as follows: find a set S of size
k such that eliminating all vertices of V (G) \ S leaves S as a clique. In fact,
we state a more general problem: the Elimination problem takes as input two
graphs G and H , and asks whether a graph isomorphic to H can be obtained
by the elimination of |V (G)| − |V (H)| vertices from G. If this is possible, then
we say that H is an elimination of G.
The vertex elimination operation described above has long known applications

within linear algebra, and it simulates in graphs the elimination of a variable
from subsequent rows during Gaussian elimination of symmetric matrices [14].
The resulting Elimination Game [14] repeatedly chooses a vertex and eliminates
it from the graph until the graph becomes empty. The amount of edges added
during the process, called the fill-in, is crucial for sparse matrix computations,
and a vast amount of results have appeared on this subject during the last 40
years; see e.g., [6, 7, 14, 17]. Our problem Elimination is equivalent to stopping
Elimination Game after |V (G)|−|V (H)| steps to see whether the resulting graph
at that point is isomorphic to H . A crucial aspect of Elimination Game is the
order in which the vertices are chosen, as this influences the fill-in. Note however
that, for our problem, only the set of |V (G)| − |V (H)| vertices chosen to be
eliminated is important, and not the order in which they are eliminated.
Graph modification problems resulting from operations like vertex deletion,

edge deletion, edge contraction, and local complementation are well studied, es-
pecially within fixed-parameter tractability; see e.g., [1, 3, 5, 8, 9, 11–13, 15, 19].
Given the wide use of the vertex elimination operation, we find it surprising that
the Elimination problem does not seem to have been studied before. The only
related study we are aware of is by Samdal [18], who generated all eliminations
of the n× n grids for n ≤ 7.

Our Contribution. In this paper we study the computational complexity of
Elimination. In particular, we show that Elimination is W [1]-hard when pa-
rameterized by |V (H)| even when both input graphs are split graphs, and W [2]-
hard when parameterized by |V (G)|− |V (H)| even when H is a complete graph.
On the positive side, for the case when H is complete, we show that Elimi-

nation is fixed-parameter tractable when parameterized by |V (H)|, and has a
kernel with at most 5|V (H)| vertices on connected graphs, which contrasts the
hardness of the Clique problem. We also study the cases when one of the input
graphs is a tree. It turns out that the complexity of the problem changes com-
pletely depending on which input graph is a tree; we show that if G is a tree
then the problem remains NP-complete, whereas if H is a tree then it can be
solved in polynomial time. The mentioned kernel result is obtained by proving a
combinatorial theorem on the maximum number of leaves in a spanning tree of a
graph, similar to a proof by Kleitman and West [10]. We find this a contribution
of independent interest.
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Notation. All graphs in this paper are undirected, finite, and simple. Let G =
(V,E) be a graph. We sometimes use V (G) and E(G) to denote V and E,
respectively. The neighborhood of a vertex v ∈ V is the set of its neighbors
NG(v) = {w ∈ V | vw ∈ E}, and the closed neighborhood of v is the set NG[v] =
NG(v) ∪ {v}. The degree of v is dG(v) = |NG(v)|. For any subset A ⊆ V , we
define NG[A] =

⋃
a∈A NG[a], NG(A) = NG[A] \ A, and dG(A) = |NG(A)|. For

any subset A ⊆ V , G[A] denotes the subgraph of G induced by A. For a subgraph
H of G, we write G \H to denote the graph obtained from G by deleting all the
vertices of H from G, i.e., G \H = G[V (G) \ V (H)].
A clique is a set of vertices that are all pairwise adjacent. A vertex v is

simplicial if NG(v) is a clique. A graph G is complete if V (G) is a clique. The
complete graph on k vertices is denoted by Kk. An independent set is a set of
vertices that are pairwise non-adjacent. If G is a bipartite graph, where (A,B)
is a partition of V into two independent sets, then we denote it as G = (A,B,E)
and we call (A,B) a bipartition of G. A graph is a split graph it its vertex set
can be partitioned into a clique and an independent set. A vertex is a cut-vertex
if the removal of the vertex leaves the graph with more connected components
than before.
A parameterized problem Q belongs to the class XP if each instance (I, k) can

be solved in f(k)|I|g(k) time for some functions f and g that depend only on the
parameter k, and |I| denotes the size of I. If a problem belongs to XP, then it can
be solved in polynomial time for every fixed k. If a parameterized problem can be
solved by an algorithm with running time f(k) |I|O(1), then we say the problem
is fixed-parameter tractable. The class of all fixed-parameter tractable problems
is denoted FPT. Between FPT and XP is a hierarchy of parameterized complexity
classes, FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP, where hardness for one of the
W-classes is considered to be strong evidence of intractability with respect to
the class FPT. A parameterized problem is said to admit a kernel if there is a
polynomial-time algorithm that transforms each instance of the problem into an
equivalent instance whose size and parameter value are bounded from above by
g(k) for some (possibly exponential) function g. We refer to the textbook by
Downey and Fellows [5] for formal background on parameterized complexity.
In this extended abstract, proofs of some theorems and lemmas, which are

marked with the symbol ♠, have been omitted due to page restrictions.

2 Preliminaries and Hardness of Elimination

We start this section with an observation that provides a characterization of
graphs that have some fixed graph H as an elimination. Our proofs heavily rely
on this observation.

Observation 1 ([17]). Let G and H be two graphs, where V (H) = {u1, . . . , uh}.
Then H is an elimination of G if and only if there exists a set S = {v1, . . . , vh}
of h vertices in G that satisfies the following: uiuj ∈ E(H) if and only if
vivj ∈ E(G) or there is a path in G between vi and vj whose internal vertices
are all in V (G) \ S, for 1 ≤ i < j ≤ h.
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For two input graphs G and H that form an instance of Elimination, we let n
denote the number of vertices in G. If G and H form a yes-instance, we say that
a subset X ⊆ V (G) is a solution if H is the resulting graph when all vertices in
X are eliminated. By Observation 1, the vertices in X can be eliminated in any
order. A vertex which is not eliminated is said to be saved. The set S = V (G)\X
of saved vertices is called a witness.
Since we can check in polynomial time whether a set S ⊆ V (G) of |V (H)|

vertices is a witness, Observation 1 immediately implies the following result.

Corollary 1. Elimination is in XP when parameterized by |V (H)|.

Corollary 1 naturally raises the question whether Elimination is FPT when pa-
rameterized by |V (H)|. The following theorem shows that this is highly unlikely.

Theorem 1 (♠). Elimination is W [1]-hard when parameterized by |V (H)|,
even if both G and H are split graphs.

Since Elimination is unlikely to be FPT in general as a result of Theorem 1,
it is natural to ask whether certain restrictions on G or H make the problem
tractable. In Section 3, we restrict H to be a complete graph; note that due
to Theorem 1, restricting H to be a split graph does not suffice to guarantee
tractability. In Section 4, we study the variant where either G or H is a tree.
Another possible way of achieving tractibility is to investigate a different pa-

rameterization of the problem. For instance, instead of choosing the size of the
witness as the parameter, we can parameterize Elimination by the size of the
solution, i.e., the number of eliminated vertices. The next theorem shows that
the problem remains intractable with this parameter.

Theorem 2 (♠). Elimination is W [2]-hard when parameterized by |V (G)| −
|V (H)|, even if H is a complete graph.

We point out that the reductions used in the proofs of Theorems 1 and 2 imme-
diately imply that the unparameterized version of Elimination is NP-complete,
even if both G and H are split graphs, or if H is a complete graph.

3 Eliminating to a Complete Graph

In this section, we consider a special case of the Elimination problem when
H is a complete graph. This corresponds exactly to the problem described in
the first paragraph of Section 1. We define the problem Clique Elimination,
which takes as input a graph G on n vertices and an integer k, and asks whether
the complete graph Kk is an elimination of G. Since Clique Elimination is
W [2]-hard when parameterized by |V (G)|− k due to Theorem 2, we choose k as
the parameter throughout this section.
If G contains a tree T with k leaves as a subgraph, thenKk is an elimination of

G, as the leaves of T can serve as a witness. It is easy to observe that G contains
a tree with k leaves as a subgraph if and only if G contains K1,k, i.e., a star
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with k leaves, as a minor. Moreover, by Observation 1, for any fixed graph H ,
the property that H is an elimination of a graph G can be expressed in monadic
second-order logic. Since graphs that exclude K1,k as a minor have bounded
treewidth [16], Courcelle’s Theorem [4] implies that Clique Elimination is
FPT when parameterized by k.
Even though fixed-parameter tractability of Clique Elimination is already

established, two interesting questions remain. Does the problem admit a polyno-
mial kernel? Does there exist an algorithm for the problemwith single-exponential
dependence on k? We provide an affirmative answer to both questions below. In
particular, we prove the following result.

Theorem 3. Clique Elimination admits a kernel with at most 5k vertices
for connected graphs.

We would like to remark that the assumption that the input graph is connected is
probably necessary, as Clique Elimination in general graphs admits a simple
composition algorithm that takes the disjoint union of instances, so existence of a
polynomial kernel in the general setting would imply that NP ⊆ coNP/poly. We
refer an interested reader to the work of Bodlaender et al. [2] for an introduction
to the methods of proving implausibility of polynomial kernelization algorithms.
As a result of Theorem 3, an algorithm with single-exponential dependence on

k can be obtained by kernelizing every connected component of the input graph
separately, and then running a brute-force search on each kernel. This gives us
a better running time than the aforementioned combination of meta-theorems.

Corollary 2. Clique Elimination can be solved in
(
5k
k

)
nO(1) ≤ 12.21k nO(1)

time and polynomial space.

The remainder of this section is devoted to the proof of Theorem 3. Before
presenting the formal proof, we give some intuition behind our approach. Our
kernelization algorithm is based on the observation that the max-leaf number of
a graph, i.e., the maximum number of leaves a spanning tree of the graph can
have, is a lower bound on the size of a complete graph that can be obtained as
an elimination. Kleitman and West [10] showed that a connected graph G with
minimum degree at least 3 admits a spanning tree with at least |V (G)|/4 + 2
leaves. Their result immediately leads to a linear kernel forClique Elimination

provided that the input graph G has minimum degree at least 3. Unfortunately,
we are unable to get rid of all vertices of degree at most 2 in our setting. However,
we can modify our input graph in polynomial time such that we either can solve
the problem directly, or obtain a new graph G∗ with no vertices of degree 1 and
with no edge between any two vertices of degree 2. We then prove a modified
version of the aforementioned result by Kleitman and West [10], namely that
such graphs G∗ admit a spanning tree with at least |V (G∗)|/5 + 2 leaves. This
leads to Theorem 3.
We now proceed with the formal proof of Theorem 3. Following Observation 1,

we will be looking for a set S that is a witness of cardinality k, i.e., every two
non-adjacent vertices of S can be connected by a path all internal vertices of
which are outside S.
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We start by providing four reduction rules, i.e., polynomial-time algorithms
that, given an instance (G, k) of Clique Elimination, output an equivalent
instance (G′, k′). Each time, we apply the rule with the smallest number among
the applicable ones. We argue that if none of the rules is applicable, then
the modified graph has no vertices of degree 1 and no edge between any two
vertices of degree 2. Recognizing whether a rule can be applied, as well as the
application of the rule itself, will trivially be polynomial-time operations. The
total number of applications will be bounded by a polynomial in the input size.

Reduction Rule 1. If k ≤ 3 or n ≤ 3, then resolve the instance in polyno-
mial time via a brute-force algorithm, and output a trivial yes- or no-instance,
depending on the result.

The safeness of the above rule is obvious.

Reduction Rule 2. If G contains a vertex v of degree 1, eliminate its sole
neighbor v′ to obtain a graph G′. Output the instance (G′, k).

Lemma 1. Reduction Rule 2 is safe.

Proof. We need to argue that if we can find a witness S, then we can also find
a witness S′ of the same size that does not contain v′. If v′ /∈ S, then we set
S′ = S. If v′ ∈ S, then v /∈ S. Otherwise, since v is adjacent only to v′, k ≤ 2
and we could have applied Reduction Rule 1. We now set S′ = (S \ {v′}) ∪ {v}
to obtain a witness set of the same cardinality that does not contain v′. ��

Reduction Rule 3. If G contains a triangle v′, v1, v2 such that v1, v2 are of
degree 2, then eliminate v′ to obtain a graph G′. Output the instance (G′, k).

Lemma 2. Reduction Rule 3 is safe.

Proof. Again, we need to argue that if we can find a witness S, then we can also
find a witness S′ of the same size that does not contain v′. If v′ /∈ S, then we set
S′ = S. Suppose that v′ ∈ S. As Reduction Rule 1 was not applicable, we find
that k > 3. Then neither v1 nor v2 belongs to S. We set S′ = (S \ {v′}) ∪ {v1}
to obtain a witness set of the same cardinality that does not contain v′. ��

Reduction Rule 4. If G has a path v0, v1, v2, v3 such that v1, v2 are of degree 2
and v0 �= v3, then eliminate v0 to obtain a graph G′. Output the instance (G′, k).

Lemma 3. Reduction Rule 4 is safe.

Proof. We need to argue that if we can find a witness S, then we can also find
a witness S′ of the same size that does not contain v0. If v0 /∈ S, then we set
S′ = S. Suppose that v0 ∈ S. As Reduction Rule 1 was not applicable, we
find that k > 3. Hence, S contains at most one vertex from the set {v1, v2, v3},
as otherwise one of them could be connected to at most two other vertices
from S via paths avoiding other vertices from S. If |S ∩ {v1, v2, v3}| = 0, then
we take S′ = (S \ {v0}) ∪ {v1}, while if |S ∩ {v1, v2, v3}| = 1, then we take
S′ = (S \ {v0, v1, v2, v3}) ∪ {v1, v2}. It is easy to check that S′ defined in this
manner is a witness of the same cardinality that does not contain v0. ��
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If, after applying our four reduction rules exhaustively, we have not yet solved
the problem, then we have obtained a graph G∗ with no vertices of degree 1 and
no edge between any two vertices of degree 2. If G∗ has at most 5k− 11 vertices,
then we output the instance as the obtained kernel. Otherwise, i.e., if G∗ has
at least 5k− 10 vertices, then we can safely return a trivial yes-instance due to
the next result, which is our modified version of the aforementioned result by
Kleitman and West [10]. This concludes the proof of Theorem 3.

Theorem 4. Let G be a connected graph with minimum degree at least 2 such
that no two vertices of degree 2 are adjacent. Then G admits a spanning tree
with at least |V (G)|/5 + 2 leaves.

Proof. We gradually grow a tree T in G keeping track of three parameters:

– n, the number of vertices in T ;

– l, the number of leaves in T ;

– m, the number of dead leaves in T , i.e., leaves that have no neighbor in G\T .
The tree will be grown via a number of operations called expansions: by an
expansion of a vertex x ∈ V (T ) we mean the adding of all the vertices v ∈
V (G) \ V (T ) with xv ∈ E(G) and all the edges xv ∈ E(G) with v /∈ V (T ) to
the tree T . We start with a tree T such that only leaves of T have neighbors
in G \ T . Therefore, if we only use expansions to grow the tree, at each step of
the growth process only the leaves of T are adjacent to G \ T . A leaf that is not
dead, is called alive.
For a tree T , let us consider the potential φ(T ) defined as φ(T ) = 4l+m−n.

The goal is to

(a) find a starting tree T with φ(T ) ≥ 9;
(b) provide a set of growing rules, such that there is always a rule applicable

unless T is a spanning tree, and φ(T ) does not decrease during the application
of any rule;

(c) prove that during the whole process the potential increases by at least 1.

If goals (a), (b) and (c) are accomplished, then we can grow T using the rules
until it becomes a spanning tree; in this situation we have l = m and n = |V (G)|.
As the potential increased by at least 1 during the whole process, we infer that
5l ≥ |V (G)| + 10, and hence l ≥ |V (G)|/5 + 2, as claimed.
Goal (a) can be achieved by a careful case study; we omit the details due to

page restrictions.
Having chosen the starting tree T , we can proceed with the growing rules. In

order to grow the tree we always choose the rule that has the lowest number
among the applicable ones, i.e., when applying a rule, we can always assume
that the ones with lower numbers are not applicable. We would like to point out
that the first three rules were already used in the original proof of Kleitman and
West.

Growing Rule 1. If some leaf of T has at least two neighbors from G \ T ,
expand it. The potential φ(T ) increases by at least 4 · (d− 1)− d = 3d− 4 ≥ 2,
where d ≥ 2 is the number of the aforementioned neighbors from G \ T .
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Growing Rule 2. If some vertex v ∈ V (G\T ) is adjacent to at least two leaves
of T , expand one of these leaves. Observe that, as Rule 1 was not applicable and
only leaves of T are adjacent to G \T , this expansion results in adding only v to
T . Moreover, all the remaining leaves adjacent to v were alive but become dead,
so the potential φ(T ) increases by at least 1− 1 = 0.

Growing Rule 3. If there is a vertex v ∈ V (G \ T ) of degree at least 3 in G
that is adjacent to a leaf of T , expand this leaf (which results in adding only v
to T , as Rule 1 was not applicable) and then v. The potential increases by at
least 4 · (d− 2)− d = 3d− 8 ≥ 1, where d ≥ 3 is the degree of v, as all the other
neighbors of v are added to T as leaves, due to Rule 2 not being applicable.

Growing Rule 4. If there is a vertex v ∈ V (G \ T ) of degree 2 in G that is
adjacent to a leaf of T , expand this leaf (which results only in adding v as a
leaf, as Rule 1 was not applicable), then expand v, and then expand the second
neighbor v′ of v that became a leaf in T during the previous expansion. Note
that v′ could not be already in T , as otherwise Rule 2 would be triggered on
vertex v. Since we assumed that no vertices of degree 2 are adjacent in G, the
degree of v′ is at least 3 and, as Rule 3 was not applicable, none of the neighbors
of v′ was in T . Denote by d the degree of v′; therefore, we have added to the
tree T exactly d+1 vertices (v, v′ and d− 1 other neighbors of v′) and increased
the number of leaves by exactly d − 2. Hence, the increase of the potential is
4(d− 2)− (d+ 1) = 3d− 9 ≥ 0, as d ≥ 3.

It remains to argue that goal (c) is achieved. It is clear that if Growing Rule 1
or 3 is applied at least once, then the potential increases by at least 1. Suppose
only Growing Rules 2 and 4 are applied during the whole process. Let x be a
vertex of G that was added to T as a leaf during the very last rule application.
Then x is a dead leaf. Since this was not taken into account when we determined
a lower bound of 0 on the increase of the potential, the potential increases by

Fig. 1. A graph on 30 vertices for which the maximum possible number of leaves in a
spanning tree is exactly 8; the bold (blue) edges indicate a spanning tree with 8 leaves.
This example shows that the bound in Theorem 4 is tight.
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at least 1. Thus, from the previously described analysis we conclude that using
the presented method we are able to grow a tree with at least |V (G)|/5 + 2
leaves. ��

The bound |V (G)|/5 + 2 is best possible. A family of examples with tight in-
equality can be obtained by connecting a number of diamonds in the way as
shown in Figure 1.

4 Elimination on Trees

In this section, we study Elimination when G or H is a tree. When H is a tree,
we show that the problem can be solved in polynomial time. Then we show that
when G is a tree, the problem is NP-complete.
For a tree H with at least two vertices, we denote by L(H) the set of leaves of

H . The remaining set of vertices is denoted by I(H) = V (H) \L(H) and called
the inner vertices. For a graph G, by C(G) we denote the set of cut-vertices of G.
A connected graph is 2-connected if it does not contain a cut-vertex. A maximal
2-connected subgraph of G is called a biconnected component (bicomp for short),
and we denote by B(G) the set of bicomps of G. Consider the bipartite graph
TG with the vertex set C(G)∪B(G), where (C(G),B(G)) is the bipartition, such
that c ∈ C(G) and B ∈ B(G) are adjacent if and only if c ∈ V (B). This graph
TG is a tree if G is connected, and is called the bicomp-tree of G.
Let G and H be an instance of Elimination where H is a tree. Since a graph

G can be eliminated to a connected graph H if and only if at least one connected
component of G can be eliminated to H , we assume without loss of generality
that G is connected. Also it is easy to see that any graph G with at least one
vertex can be eliminated to K1, and K2 is an elimination of a graph G whenever
G has at least one edge. Hence, we can assume that H has at least three vertices.
Therefore, L(H) �= ∅ and I(H) �= ∅.
Suppose that H is an elimination of G. Let S = {vx | x ∈ V (H)} be the

witness, where vx is the vertex of G that corresponds to the vertex x of H ,
and let X = V (G) \ S be the corresponding solution yielding H . The witness S
satisfies the structural properties given in the two following lemmas.

Lemma 4 (♠). For any bicomp B ∈ B(G) it holds that |V (B) ∩ S| ≤ 2, and if
vx, vy ∈ V (B) ∩ S for x �= y, then xy ∈ E(H).

Lemma 5 (♠). For any x ∈ I(H), vx ∈ C(G).

Now we choose an arbitrary inner vertex z of H and say that it is the root of
H . The root defines the parent-child relation between any two adjacent vertices
of H . For any two vertices x, y ∈ V (H), we say that y is a descendant of x if x
lies on the unique path in H from y to the root z. If y is a descendant of x and
xy ∈ E(H), then y is a child of x, and x is the parent of y. By definition, every
vertex x ∈ V (H) is a descendant of itself. For a vertex x ∈ V (H), Hx denotes
the subtree of H induced by the descendants of x, and for a vertex x ∈ V (H)
with a child y, Hxy is the subtree of H induced by x and the descendants of y.
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Consider r = vz ∈ V (G). We choose r to be the root of the bicomp-tree TG
of G. By Lemma 5, r is a cut-vertex in G. The root r defines the parent-child
relation on TG. Each bicomp B is a child of some inner vertex c in TG, and
we say that the vertices of B are children of the corresponding cut-vertex c in
G. A vertex v ∈ V (G) is a descendant of a cut-vertex c if v is a child of some
descendant of c in TG. For a cut-vertex c, we write Gc to denote the subgraph
of G induced by the descendants of c. For a cut-vertex c and a bicomp B such
that B is a child of c in TG, GcB is the subgraph of G induced by the vertices of
B and the descendants of all cut-vertices c′ ∈ V (B) \ {c}.
Now consider two vertices x and y in H , such that neither is a descendant

of the other, and let p be their lowest common ancestor. A crucial observation
in our algorithm is that vx and vy are descendants of vp in G, but they do not
appear in the same subgraph GvpB for some bicomp B that is a child of vp. The
following lemma formalizes this idea.

Lemma 6 (♠). For any inner vertex x ∈ V (H), if y ∈ V (H) is a descendant
of x in H, then vy is a descendant of vx in G. Moreover, if y1, . . . , yl are the
children of x in H, then there are distinct children B1, . . . , Bl of vx in the bicomp-
tree for which the following holds: for each i ∈ {1, . . . , l}, if y ∈ V (Hxyi), then
vy ∈ GvxBi .

We are now ready to describe our algorithm in the proof of the following theorem.

Theorem 5 (♠). Elimination can be solved in time O(n9/2) when H is a tree.

Proof. Let G and H be an instance of Elimination where H is a tree. Clearly,
if |V (H)| > n, then we have a no-instance of the problem. Hence, we assume
that |V (H)| ≤ n. Recall that it is sufficient to solve the problem for connected
graphs G and trees H with at least three vertices. For the tree H , we choose an
arbitrary inner vertex z and make it the root of H . For the graph G, we find the
set of cut-vertices C(G) and the set of bicomps B, and construct the bicomp-tree
TG. Then we construct a set U ⊆ V (G) as follows: for each bicomp B that is a
leaf of TG, we choose an arbitrary vertex u ∈ V (B) \ C(G) and include it in U .
It can be shown that H is an elimination of G if only if G can be eliminated to
H with a witness S ⊆ C(G)∪U . A formal proof of this statement requires some
additional lemmas; we omit the details here due to page restrictions.
Suppose H is an elimination of G with a witness S = {vx | x ∈ V (H)}. Since

we chose z to be an inner vertex of H , the vertex vz is a cut-vertex of G due to
Lemma 5. Hence, by Lemma 6 there is a cut-vertex r in G such that if y is a
descendant of x in H rooted at z, then vy is a descendant of vx in G rooted at
r. We check all cut-vertices r ∈ C(G), and for each r, we root G at r and try
to find a witness that satisfies this condition. Clearly, H is an elimination of G
if and only if we find such a witness for some r, and we have a no-instance of
Elimination otherwise.
From now on, we assume that the root vertex r of G is fixed, and we construct

a dynamic programming algorithm. For each vertex u ∈ C(G)∪U , the algorithm
will create a set Ru ⊆ V (H) such that:
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• for any u ∈ U , Ru = L(H);

• for any u ∈ C(G), Ru is the set of all vertices x of H such that Hx is an
elimination of Gu with the property that for any y, y′ ∈ V (Hx), if y

′ is a
descendant of y in Hx, then vy′ is a descendant of vy in Gr, where vy, vy′

are the saved vertices in Gu corresponding to y, y′.

The algorithm returns yes if Rr contains z, and no otherwise.
Notice that the sets for u ∈ U are already defined. The sets Ru for cut-vertices

u are constructed as follows. Denote by B1, . . . , Bk the bicomps of G that are
children of the cut-vertex u in the bicomp-tree TG . LetDu be the set of all vertices
w ∈ C(G)∪U other than u that are descendants of u and are contained in some

bicomp together with u. In other words, Du = (C(G) ∪ U \ {u}) ∩
⋃k

i=1 V (Bi).
Suppose that the sets Rw have already been constructed for all w ∈ Du. We
then create Ru in two steps.

Step 1. All the vertices that are in Rw for some w ∈ Du are included in Ru.

Step 2. Let Ti = ∪w∈Du∩V (Bi)Rw for i ∈ {1, . . . , k}. A vertex x ∈ V (H) with
children y1, . . . , yl is included in Ru if there is a set {i1, . . . , il} ⊆ {1, . . . , k} such
that yj ∈ Tij for j ∈ {1, . . . , l}.
In order to perform Step 2, whose correctness is guaranteed by Lemma 6, we need
to solve a matching problem on an auxiliary graph. The full proof of correctness
and the running time analysis of our algorithm will appear in the journal version
of this paper. ��

Finally, we consider the case when G is a tree and H is an arbitrary graph. First,
we make the following observation. A connected graph is called a block graph if
each of its bicomps is a complete graph. Observe that if G is a block graph,
then elimination of any vertex v results in another block graph, because this
operation unites all maximal cliques that contain v into a single clique and then
removes v. Since trees are block graphs, it gives us the following proposition.

Proposition 1. If H is an elimination of a tree G, then H is a block graph.

Despite the fact that graphs that are eliminations of trees have relatively simple
structure, it turns out that Elimination remains intractable when G is assumed
to be a tree.

Theorem 6 (♠). Elimination is NP-complete, even if G is restricted to be
a tree.

Acknowledgements. We would like to thank �Lukasz Kowalik for an inspiring
discussion on the theorem of Kleitman and West.
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Abstract. We study the problem of finding small s–t separators that
induce graphs having certain properties. It is known that finding a min-
imum clique s–t separator is polynomial-time solvable (Tarjan 1985),
while for example the problems of finding a minimum s–t separator that
is a connected graph or an independent set are fixed-parameter tractable
(Marx, O’Sullivan and Razgon, manuscript). We extend these results the
following way:

(1) Finding a minimum c-connected s–t separator is FPT for c = 2 and
W [1]-hard for any c ≥ 3.

(2) Finding a minimum s–t separator with diameter at most d is W [1]-
hard for any d ≥ 2.

(3) Finding a minimum r-regular s–t separator is W [1]-hard for any
r ≥ 1.

(4) For any decidable graph property, finding a minimum s–t separator
with this property is FPT parameterized jointly by the size of the
separator and the maximum degree.

We also show that finding a connected s–t separator of minimum size
does not have a polynomial kernel, even when restricted to graphs of
maximum degree at most 3, unless NP ⊆ coNP/poly.

1 Introduction

One of the classic topics in combinatorial optimization and algorithmic graph
theory deals with finding cuts and separators in graphs. Recently, the study
of this type of problems from a parameterized complexity point of view has
attracted a large amount of interest [5, 6, 11, 14–21]. Given a graph G and two
vertices s and t of G, a subset of vertices S ⊆ V (G)\{s, t} is an s–t separator if s
and t appear in different connected components of the graph G−S. In separation
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problems, we are typically looking for small separators S. A natural extension
of the problem is to demand G[S], i.e., the subgraph induced by S, to satisfy a
certain property. (For convenience, when the graph G[S] has a certain property,
we will say that the set S itself also has this property; for example, we say that
a set S ⊆ V (G) is 2-connected if G[S] is 2-connected.) A classical result in this
direction by Tarjan [22] shows that finding small clique separators is polynomial-
time solvable. To our knowledge, this is the only known polynomial-time solvable
problem of this type. Therefore, we explore here the problem from the viewpoint
of parameterized complexity.
Parameterized complexity associates with every instance of a problem a non-

negative integer k, called the parameter. As is common in the parameterized
study of separator problems, the parameter k in this paper will always be the
size of the separator we are looking for. We use n and m to denote the number
of vertices and edges, respectively, in the input graph. A parameterized problem
is fixed-parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for
some function f that only depends on k [9]. By showing that a parameterized
problem is W[1]-hard, we can give strong evidence that it is unlikely to be FPT;
we refer to [9] for more background on parameterized complexity.
For any graph class G, let us consider the following parameterized problem.

G-Separator
Input: A graph G, two vertices s and t of G, and an integer k.
Parameter: k.
Question: Does G have an s–t separator S of size at most k such
that G[S] ∈ G?

If G is the class of all complete graphs, then G-Separator is polynomial-time
solvable by the result of Tarjan [22]. Furthermore, Marx et al. [18, 19] showed
that the problem is fixed-parameter tractable for many natural classes G. We
say that G is hereditary if, for every graph in G, each of its induced subgraphs
also belongs to G.

Theorem 1 ([18, 19]). For any decidable and hereditary graph class G, the
G-Separator problem can be solved in time fG(k) · (n+m).

For example, by letting G be the class of all graphs without edges, Theorem 1
shows that finding an independent set of size at most k separating s and t is FPT.
The proof is based on a combinatorial statement called Treewidth Reduction
Theorem, which shows (roughly speaking) that all the inclusionwise minimal s–t
separators lie in a bounded-treewidth part of the graph and hence they can be
found efficiently. Note that if G is hereditary, then we can always assume that
the separator is inclusionwise minimal (otherwise we can remove vertices from
it without leaving G).
Theorem 1 naturally raises the question what the parameterized complexity

of the G-Separator problem is for graph classes G that are not hereditary.
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Perhaps the most natural candidate is the class of connected graphs. The Con-

nected Separator problem of deciding whether a graph G has a connected
s–t separator of size at most k has been studied by Marx et al. [19]. Although
it is not immediately clear how to apply the Treewidth Reduction Theorem to
this problem, Marx et al. [19] managed to extend their framework from [18] to
prove the following result.

Theorem 2 ([19]). The Connected Separator problem can be solved in
time f(k) · (n+m).

Our Results. Motivated by the results in [18, 19], we study the problem of
finding small s–t separators satisfying different non-hereditary properties. Let us
focus on the three tractable classes mentioned above (connected graphs, cliques,
independent sets) and try to investigate further related classes.
As Connected Separator is FPT, it is natural to explore what happens if

we require higher-order connectivity. It turns out that, somewhat surprisingly,
finding a c-connected s–t separator of size at most k remains FPT also for c = 2,
but becomes W [1]-hard for any c ≥ 3. In order to prove this, we show that
the natural c-connected generalization of Steiner Tree is FPT for c = 2 and
W [1]-hard for any c ≥ 3. This result could be of independent interest.
We can generalize the class of cliques by considering the class of graphs with

diameter at most d. We show that the problem of finding an s–t separator of size
at most k that induces a graph with diameter d in G is W [1]-hard for any d ≥ 2.
This is in stark contrast with the case d = 1, as the problem of finding a clique
separator of size at most k is known to be solvable in polynomial time [22].
Independent sets can be thought of as 0-regular graphs. This motivates ex-

ploring the problem of finding an r-regular s–t separator. We show that, unlike
the r = 0 case which is FPT by Theorem 1, for any r ≥ 1, it is W [1]-hard to
decide if a graph G has an r-regular s–t separator of size at most k.
All the above results are on general graphs, i.e., graph G can be arbitrary.

It comes as no surprise that the problem is much easier restricted to bounded-
degree graphs. In particular, finding a small connected separator is FPT due
to the fact that a bounded-degree graph contains only a bounded number of
small connected sets. More interestingly, we show in Section 4 that for every
(not necessarily hereditary) decidable graph class G, the G-Separator problem
can be can be solved in time hG(k,Δ) · m logn on graphs of maximum degree
at most Δ. We prove this by showing that the following problem can be solved
in time f(|V (H)|, Δ) ·m logn on graphs of maximum degree at most Δ: Given
two graphs G and H and two vertices s and t of G, decide whether G has an s–t
separator S such that G[S] is isomorphic to H . This means that we can solve the
G-Separator problem by simply trying all members H of G having k vertices.
Finally, we investigate the existence of polynomial kernels for the problem of

finding small s–t separators. A parameterized problem is said to admit a kernel if
there is a polynomial-time algorithm that transforms each instance of the prob-
lem into an equivalent instance whose size and parameter value are bounded from
above by g(k) for some (possibly exponential) function g. It is known that a pa-
rameterized problem is FPT if and only if it is decidable and admits a kernel [9].
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In the desirable case that g(k) is a polynomial in k, we say that the problem ad-
mits a polynomial kernel. Many problems have been shown to admit polynomial
kernels, including classes of problems that are covered by some kernelization
meta-theorems [3, 12]. Recently developed methods for proving non-existence of
polynomial kernels, up to some complexity theoretical assumptions [2, 4, 13],
significantly contributed to the establishment of kernelization as an important
and rapidly growing subfield of parameterized complexity.
Although the Connected Separator problem is FPT by Theorem 2 and

therefore admits a kernel [9], we show in Section 5 that this problem does not
have a polynomial kernel, even when restricted to input graphs of maximum
degree at most 3, unless NP ⊆ coNP/poly. This means that techniques other
than kernelization (e.g., treewidth reduction) seem to be essential for the efficient
solution of the problem even on bounded-degree graphs.

2 Finding s–t Separators with Higher Connectivity

Theorem 2 states that the problem of finding a connected s–t separator of size
at most k is FPT. In this section, we study the parameterized complexity of
finding s–t separators of higher connectivity. A graph G = (V,E) is c-connected
if |V | > c and G − X is connected for every X ⊆ V with |X | < c. Menger’s
Theorem provides an equivalent definition (see [8]): a graph is c-connected if
any two of its vertices can be joined by c internally vertex-disjoint paths. For
any integer c ≥ 1, the c-Connected Separator problem takes as input a
graph G, two vertices s and t of G, and an integer k (the parameter), and asks
whether there is an s–t separator of size at most k that induces a c-connected
graph. Theorem 2 states that this problem is FPT when c = 1. Interestingly, it
turns out that the problem remains FPT for c = 2, but becomes W [1]-hard for
any c ≥ 3.
The algorithm in [19] for finding a minimum connected s–t separator uses an

FPT algorithm for Steiner Tree as a subroutine. For our purposes, we need
to define the following natural c-connected generalization of the Steiner Tree

problem. For any integer c ≥ 1, the c-Connected Steiner problem takes as
input a graph G, a set T ⊆ V (G) of terminals and an integer k (the parameter).
The objective is to decide whether G has a c-connected subgraph H on at most
k vertices such that H contains all the terminals. Such a graph H is called a
solution. A solution H is minimal if no proper subgraph of H is a solution,
and H is minimum if there is no solution H ′ with |V (H ′)| < |V (H)|. When
c = 1, this problem is equivalent to the well-known Steiner Tree problem,
which is known to be FPT when parameterized by k [10]. We show below that
the c-Connected Steiner problem remains FPT when c = 2, but becomes
W [1]-hard for higher values of c.
A different way of generalizing Steiner Tree would be to require the weaker

condition saying that H contains c internally vertex-disjoint paths between any
two terminals. The following lemma shows that for c = 2 this is almost the same
problem, as any minimal solution satisfying the weaker requirement satisfies the
stronger requirement as well:
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Lemma 1. (�)1 Let H be a graph and T ⊆ V (H) a set of vertices such that
there are two internally vertex-disjoint paths between any t1, t2 ∈ T . If H has no
proper subgraph (containing T ) having this property, then H is 2-connected.

We note that for c ≥ 3, the analog of Lemma 1 is not true. Thus the weaker
requirement would result in a different problem, but we do not investigate it
further in the current paper.
Our algorithm for 2-Connected Steiner crucially depends on the following

structural property of any minimal solution:

Lemma 2. Let (G, T, k) be an instance of the 2-Connected Steiner problem.
If H is a minimal solution, then H − T is a forest.

Proof. Since the lemma trivially holds when |T | ≤ 1, we assume that |T | ≥ 2.
Suppose H is a minimal solution. We show that every cycle in H contains at
least one vertex of T , which implies that H − T is a forest. For contradiction,
let C be a cycle in H that contains none of the terminals. We will identify an
edge e of C such that it remains true in H − e that there are two internally
vertex-disjoint paths between any two terminals. Then by Lemma 1, H − e has
a 2-connected subgraph which is a solution, contradicting the minimality of H .
We define a partition T1, T2 of the terminals as follows. A terminal t ∈ T

belongs to T2 if there is another terminal t
′ ∈ T such that for every pair P1, P2

of internally vertex-disjoint paths between t and t′ in H , both P1 and P2 use at
least one vertex of C, i.e., if t and t′ belong to different connected components
of H − V (C). Note that in such a case t′ is also in T2. We define T1 = T \ T2.
Let t ∈ T1. By definition, for any t′ ∈ T \ {t}, there exist two internally

vertex-disjoint paths in H between t and t′ such that at least one of them does
not use any vertex of C. Let H ′ be the graph obtained from H by deleting any
edge of C. Then H ′ still contains two internally vertex-disjoint paths between t
and any t′ ∈ T \ {t}, as any path between t and t′ that used the deleted edge
can be rerouted on the cycle. Hence, if T2 is empty, we can delete any edge from
C and obtain a new solution, contradicting the minimality of H .
Now suppose T2 �= ∅. Let us define a shortcut of C to be a path P of length at

least 2 between two vertices a and b of C, such that none of the internal vertices
of P are in C. It follows from the definition of T2 that for each t ∈ T2, there are
two distinct vertices a, b on C such that there are two internally vertex-disjoint
paths Pa, Pb from t to a and b, respectively, whose internal vertices are not in
C. In other words, for every t ∈ T2, there is a shortcut of C that contains t. Let
M be a shortest subpath of C such that there is a shortcut P ∗ of C between
the endpoints a and b of M . Let M be the other path between a and b on the
cycle C. Let a′ be the neighbor of a on M (possibly a′ = b). We claim that after
removing the edge aa′ from H , the obtained graph H − aa′ still contains two
internally vertex-disjoint paths between each pair of terminals in T2.
By the well-known properties of the 2-connected components of graphs, the

relation “being in the same 2-connected component” (or equivalently, the relation

1 Proofs marked with a star have been omitted due to page restrictions.
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“there is a cycle containing both edges”) defined on the edges of H − aa′ is an
equivalence relation. Every edge of M is in the same equivalence class of this
relation:M together with P ∗ forms a cycle containing all these edges. We claim
that every t ∈ T2 is also in this 2-connected component. As observed above, there
is a shortcut Pt going through t. Let Mt be the subpath of the cycle C between
the endpoints of Pt avoiding aa′. The paths Pt and Mt together form a cycle.
This cycle contains at least one edge ofM , sinceMt cannot be a proper subpath
of M by the minimality of M . Thus the edges of this cycle are in the same 2-
connected component as the edges of M . We have shown that every t ∈ T2 is in
this 2-connected component of H − aa′. Consequently, there are two internally
vertex-disjoint paths in H − aa′ between any two terminals t1, t2 ∈ T , yielding
the desired contradiction to the assumption that H is a minimal solution.
We conclude that every cycle in H contains at least one vertex of T , which

implies that H − T is a forest. ��

Lemma 2 tells us that we have to find an appropriate forest that connects to
the terminals in an appropriate way. Fixed-parameter tractability results for
finding trees (or more generally, bounded-treewidth graphs) under various tech-
nical constraints can usually be obtained using standard application of dynamic
programming. Here we need the following variant:

Lemma 3. (�) Let F be a forest, G an undirected graph, and c : V (F ) ×
V (G)→ Z+ a cost function. In time f(|V (F )|) · nO(1), one can find a mapping
φ : V (F )→ V (G) such that φ(u)φ(v) ∈ E(G) for every uv ∈ E(F ) and the total
cost

∑
v∈V (F ) c(v, φ(v)) is minimized.

The structural observation of Lemma 2 and the algorithm of Lemma 3 allow
us to establish the fixed-parameter tractability of the 2-Connected Steiner

problem, which could be interesting in its own right. Furthermore, it will be used
as a subroutine in our FPT-algorithm for finding a 2-connected s–t separator of
size at most k.

Theorem 3. The 2-Connected Steiner problem is FPT.

Proof. Let (G, T, k) be a yes-instance of the 2-Connected Steiner problem
and let H be a minimal solution. By Lemma 2, H − T is a forest. We try all
graphs H on at most k vertices that are candidates for being isomorphic to the
solution H : that is, H is 2-connected, T ⊆ V (H), and H − T is a forest. The
number of such graphs is a function of k only. For each such H , we define a cost
function c such that for x ∈ V (H − T ) and y ∈ V (G), we have c(x, y) = 0 if
NH(x) ∩ T ⊆ NG(y) ∩ T and c(x, y) = ∞ otherwise. In other words, we allow
mapping x to y only if every terminal neighbor of x in H is also a neighbor of
y in G. Let us use the algorithm of Lemma 3 to find a mapping φ of H − T
into G minimizing the cost. If the cost of φ is 0, then φ can be extended to
a mapping of H into G, showing that H is a subgraph of G, which gives us a
solution. Otherwise, we proceed with the next candidate H . If the algorithm
finds no solution after processing all candidates, we can safely return “no”. ��
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In order to prove that 2-Connected Separator is FPT, we will make use of
the Treewidth Reduction Theorem due to Marx, O’Sullivan and Razgon [18, 19].
In fact, instead of using the Treewidth Reduction Theorem itself, we use a lemma
(a slight reformulation of Lemma 2.8 in [18]) that forms its crucial ingredient.
In order to state it, we need an additional definition. Let G be a graph and
C ⊆ V (G). The graph torso(G,C) has vertex set C, and vertices a, b ∈ C are
connected by an edge if ab ∈ E(G) or if there is a path in G connecting a and b
whose internal vertices are not in C.

Lemma 4 ([18]). Let s and t be two vertices of a graph G, let k be an integer,
and let C be the union of all minimal s–t separators in G of size at most k. Then
there is an f(k) · (n+m) time algorithm that returns a set C′ ⊇ C ∪ {s, t}, such
that the treewidth of torso(G,C′) is at most g(k).

Note that even if G has a 2-connected s–t separator S of size at most k, G might
not have a minimal s–t separator of size at most k that is 2-connected, since
2-connectivity is not a hereditary property. However, G does contain a minimal
s–t separator that can be extended to a 2-connected set of size at most k. We
call a set S′ ⊆ V (G) k-biconnectable if there is a 2-connected set S ⊆ V (G) of
size at most k such that S′ ⊆ S.

Observation 4. Let G be a graph. A set S′ ⊆ V (G) is k-biconnectable if and
only if (G,S′, k) is a yes-instance of the 2-Connected Steiner problem.

The set C′ in Lemma 4 contains every minimal s–t separator S′ that is k-
biconnectable, but there is no guarantee that S′ can be extended to a 2-connected
set within C′. The next lemma shows that we can extend C′ to a larger set C′′

such that every k-biconnectable s–t separator S′ ⊆ C′ can be extended to a
2-connected s–t separator S ⊆ C′′ of size at most k.

Lemma 5. Let s and t be two vertices of a graph G, and let k be an integer.
There is a set C′′ ⊆ V (G) such that the treewidth of torso(G,C′′) is bounded by
a constant depending only on k and the following holds: if G has a 2-connected
s–t separator of size at most k, then G also has a 2-connected s–t separator S
of size at most k such that S ⊆ C′′. Moreover, such a set C′′ can be found in
time h(k) · nO(1).

Proof. Let C′ ⊆ V (G) be the set of Lemma 4 that contains every minimal s–t
separator of G of size at most k, such that the treewidth of torso(G,C′) is
bounded by a function of k. Let K1, . . . ,Kq be the connected components of
G − C′, and let Ni be the neighborhood of Ki in C′ for 1 ≤ i ≤ q. By the
definition of torso, each Ni forms a clique in torso(G,C′). Since each clique of a
graph must appear in a single bag of any tree decomposition of that graph, we
have |Ni| ≤ tw(torso(G,C′))+1, so the size of each Ni is bounded by a function
of k only.
Our algorithm for constructing C′′ iterates over all i ∈ {1, . . . , q}, all non-

empty subsets X ⊆ Ni, all graphs Fi,X on at most k − |X | vertices, and all
possible ways in which the vertices of Fi,X can be made adjacent to the vertices
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ofX . For each of those choices, letGi,X be the graph obtained from G[V (Ki)∪X ]
and Fi,X by adding edges between these two graphs in the way that we chose
earlier. We then run the algorithm of Theorem 3 to check if there is a solution
Hi,X for the 2-Connected Steiner problem with instance (Gi,X , V (Fi,X) ∪
X, k). If so, we take Hi,X to be the minimum such solution; otherwise we let
Hi,X = ∅. For each Hi,X , we mark all the vertices of Hi,X that belong to Ki.
Finally, we define C′′ to be the set consisting of all the vertices of C′ plus all the
vertices that were marked during this entire process.
In order to prove the correctness of this algorithm, let us consider a 2-

connected s–t separator S of size at most k in G such that |S \ C′′| is as small
as possible. We need to show that |S \ C′′| = 0. For contradiction, we assume
that |S \ C′′| ≥ 1. Let Ki be a connected component of G − C′ such that
Ki contains a vertex of S \ C′′, let Si = S \ V (Ki), and let X = S ∩ Ni.
Note that X �= ∅. Also note that Si is a k-biconnectable set in the graph
G[V (Ki) ∪ Si]. Hence, by Observation 4, (G[V (Ki) ∪ Si], Si, k) is a yes-instance
of 2-Connected Steiner. Since X �= ∅, in some iteration of the algorithm, we
considered a graph Gi,X that is isomorphic to G[V (Ki) ∪ Si] and hence found
a minimum solution Hi,X of 2-Connected Steiner for exactly the instance
(G[V (Ki)∪Si], Si, k). Let S

′ = Si∪V (Hi,X). By construction, S
′ is 2-connected.

Note that S∩C′ is an s–t separator, since otherwise there would be a minimal s–t
separator of size at most k in G that contains a vertex outside C′, contradicting
Lemma 4. Since S ∩ C′ ⊆ S′, S′ is an s–t separator. It is clear that S′ ⊆ C′′,
which means that |S′ \ C′′| = 0. Hence |S′ \ C′′| < |S \ C′′|, contradicting the
minimality of S.
For each i ∈ {1, . . . , q}, C′′ contains at most k|Ni|k vertices of Ki, and hence

the treewidth of torso(Ki, C
′′∩V (Ki)) is bounded by a constant depending only

on k. It follows that the difference between the treewidth of torso(G,C′′) and
the treewidth of torso(G,C′) is a constant depending on k (see also Lemma 2.9
in [19]), implying that the treewidth of torso(G,C′′) is bounded by a function of
k. Finding the set C′ can be done in time f(k) · (m+ n) by Lemma 4. For each
choice of i andX , the possible number of different graphsGi,X , and consequently
the number of instances of 2-Connected Steiner we have to solve, is bounded
by some function of k. Since 2-Connected Steiner is FPT by Theorem 3, the
overall running time of the algorithm is h(k) · nO(1) for some function h that
depends only on k. ��

Theorem 5. The 2-Connected Separator problem is FPT.

Proof. Let (G, s, t, k) be an instance of 2-Connected Separator. We start by
constructing the set C′′ ⊆ V (G) of Lemma 4. Let G∗ = torso(G,C′′). We assign
a color to each edge uv in G∗: we color uv black if uv is also an edge in G, and
we color uv red otherwise. By Lemma 5, G contains a 2-connected s–t separator
S of size at most k if and only if G∗ contains an s–t separator S∗ of size at most
k such that deleting the red edges from G∗[S∗] results in a 2-connected graph.
The theorem now follows from Courcelle’s Theorem [7] and the fact that this
problem can be expressed in monadic second-order logic (see [19]). ��
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We now show that the c-Connected Steiner problem becomes hard when the
connectivity of the solution is required to be at least 3.

Theorem 6. (�) c-Connected Steiner is W [1]-hard for any c ≥ 3.

Since we can transform an instance of c-Connected Steiner into an instance
of c-Connected Separator by making two new vertices s and t adjacent to
each of the terminals, Theorem 6 readily implies the following result.

Theorem 7. c-Connected Separator is W [1]-hard for any c ≥ 3.

3 More W [1]-Hardness Results on General Graphs

We say that a graph G is r-regular if the degree of every vertex in G is exactly r.
For every r ≥ 0, let r-Regular Separator denote the problem of deciding
whether an input graphG has an s–t separator S of size at most k such that G[S]
is r-regular. Since the class of 0-regular graphs is hereditary, Theorem 1 implies
that 0-Regular Separator, i.e., the problem of finding an s–t separator that
is an independent set of size at most k, is FPT. We show that r-Regular

Separator is W [1]-hard for every r ≥ 1 when parameterized by k. Note that
the class of r-regular graphs is not hereditary for any r ≥ 1.

Theorem 8. (�) r-Regular Separator is W [1]-hard for any r ≥ 1.

The diameter of a graph G is the maximum distance between any two vertices
in G, where the distance between two vertices u and v is defined as the number
of edges in a shortest path from u to v. The problem of finding an s–t separator
that forms a clique is well-known to be solvable in polynomial time [22]. Since
cliques induce subgraphs of diameter 1, it is natural to consider the problem of
finding an s–t separator that induces a graph of diameter 2, or, more generally,
of any fixed diameter d ≥ 2. Note that for any d ≥ 2, the class of graphs with
diameter (at most) d is not hereditary; consider for example a chordless cycle
on 2d+ 1 vertices. The class of graphs with diameter 1, however, is hereditary.
d-Diameter Separator is the problem of deciding if an input graph G has an
s–t separator S of size at most k such that G[S] has diameter d.

Theorem 9. (�) d-Diameter Separator is W [1]-hard for any d ≥ 2.

4 Finding s–t Separators in Graphs of Bounded Degree

Theorem 1 states that G-Separator is FPT for any decidable and hereditary
graph class G. In the previous sections, we identified several non-hereditary graph
classes G for which G-Separator isW [1]-hard on general graphs. In this section,
we prove that for any decidable (but not necessarily hereditary) graph class G,
the G-Separator problem is FPT on graphs of bounded degree. We do this by
showing that the following problem is FPT on graphs of bounded degree.
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Pattern Separator

Input: Two graphs G and H , and two vertices s and t of G.
Parameter: k = |V (H)|.
Question: Does G have an s–t separator S such that G[S] is
isomorphic to H?

We use a variant of the color coding technique of Alon, Yuster and Zwick [1]
to reduce the Pattern Separator problem on bounded degree graphs to the
problem of finding an s–t separator of size at most k that has a certain hereditary
property, which enables us to use Theorem 1.
For the remainder of this section, let G and H be two graphs, let s and t be

two vertices of G, and let H1, . . . , Hc be the connected components of H . We use
n and m to denote the number of vertices and edges in G, respectively, and k to
denote the number of vertices in H . Let ψ be a (not necessarily proper) coloring
of G. A subset of vertices V ′ ⊆ V (G) is colorful if ψ colors no two vertices of
V ′ with the same color. For any subset C′ of colors, we say that V ′ ⊆ V (G) is
C′-colorful if |V ′| = |C′| and every vertex in V ′ receives a different color from C′.

Definition 1. Let ψ : V (G) → {1, 2, . . . , c, c + 1} be a (c + 1)-coloring of G.
We say that ψ is H-good if G has an s–t separator S satisfying the following
properties:

(i) each connected component of G[S] is colored monochromatically with a color
from {1, . . . , c};

(ii) no two connected components of G[S] receive the same color;
(iii) the connected component of G[S] with color i is isomorphic to Hi;
(iv) every vertex in NG(S) receives color c+ 1.

It immediately follows from Definition 1 that (G,H, s, t) is a yes-instance of Pat-
tern Separator if and only if G has an H-good coloring. The main idea of our
algorithm is that finding a separator S satisfying these requirements essentially
boils down to finding a separator that is a colorful independent set, which is
fixed-parameter tractable by the results of [18, 19]. The following lemma plays
a crucial role in our FPT algorithm.

Lemma 6. (�) Given a (c+1)-coloring ψ of G, we can decide in g(k) · (n+m)
time whether ψ is H-good.

Let (G,H, s, t) be an instance of Pattern Separator, where the graph G has
maximum degree at mostΔ. Suppose (G,H, s, t) is a yes-instance, and let S be an
s–t separator of G such that G[S] is isomorphic to H . Since |S| = |V (H)| = k,
and every vertex in S has at most Δ neighbors, |NG[S]| ≤ (Δ + 1)k. Using
the notion of a k-perfect family of hash functions, we can construct in time
((Δ + 1)k)! · 2O((Δ+1)k) · logn a family Φ of (c + 1)-colorings of G such that
(G,H, s, t) is a yes-instance if and only if Φ contains an H-good coloring, where
the size of Φ is bounded by ((Δ+ 1)k)! · 2O((Δ+1)k) · logn (see for example [1]).
By Lemma 6, we can check for each coloring in Φ whether or not it is H-good in
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g(k) · (n+m) time, for some function g that does not depend on n. This yields
the following result.

Theorem 10. (�) Pattern Separator can be solved in f(k,Δ)·m logn time
on graphs of maximum degree at most Δ.

We can solve G-Separator by using our algorithm for Pattern Separator

to try every member of G having size at most k:

Theorem 11. (�) For any decidable class G, the G-Separator problem can
be solved in time hG(k,Δ) ·m logn on graphs of maximum degree at most Δ.

5 No Polynomial Kernel for Connected Separator

In this section, we show that the Connected Separator problem does not ad-
mit a polynomial kernel, even when restricted to graphs with maximum degree at
most 3, unless NP ⊆ coNP/poly. The Connected Separator problem is easily
seen to be NP-complete by a simple polynomial-time reduction from Steiner

Tree. The following result shows that the problem remains NP-complete on
graphs of maximum degree at most 3.

Theorem 12. (�) The Connected Separator problem is NP-complete on
graphs of maximum degree at most 3, in which the vertices s and t have degree 2.

An or-composition algorithm for a parameterized problem Q ⊆ Σ∗ × N is an
algorithm that receives as input a sequence ((x1, k), . . . , (xr, k)), with (xi, k) ∈
Σ∗ × N+ for each 1 ≤ i ≤ r, and outputs a pair (x′, k′), such that

– the algorithm uses time polynomial in
∑r

i=1 |xi|+ k;
– k′ is bounded by a polynomial in k; and
– (x′, k′) ∈ Q if and only if there exists an i ∈ {1, . . . , r} with (xi, k) ∈ Q.

A parameterized problem Q is said to be or-compositional if there exists an
or-composition algorithm for Q.

Theorem 13. (�) The Connected Separator problem, restricted to graphs
with maximum degree at most 3, is or-compositional.

Combining results of Bodlaender et al. [2] and Fortnow and Santhanam [13]
on the non-existence of polynomial kernels, together with Theorems 12 and 13,
yields the following result.

Theorem 14. (�) The Connected Separator problem, restricted to graphs
of maximum degree at most 3, has no polynomial kernel, unless NP ⊆ coNP/poly.
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4. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

5. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L.,
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