
Chapter 6
Fast Switching Behavior in Nonlinear Electronic
Circuits: A Geometric Approach

Tina Thiessen, Sören Plönnigs, and Wolfgang Mathis

Abstract. In this paper an outline about the geometric concept of nonlinear elec-
tronic circuits is given. With this geometric concept the fast switching behavior
of circuits, i.e. the jumps in their state space, is illustrated and a jump condi-
tion is formulated. Furthermore, the developed geometric approach is adapted to
MNA based systems of equations. This new method enables the simulation of such
ill-conditioned circuits without regularization and presents an implementation ap-
proach for common circuit simulators like SPICE.

6.1 Introduction and Motivation

Circuit simulation is a key tool in the design of electronic circuits. Despite the suc-
cessful development on the construction of robust circuit simulators [1], there are
still some open problems, e.g. the simulation of fast switching behavior in nonlinear
circuits.

Interesting circuits for our purpose are circuits with fast switching behavior, i.e.
circuits with discontinuous changes, which are called ”jumps” in state space. At-
tributes which indicate fast switching behavior are for example topological prop-
erties like positive feedback and circuit characteristics like negative differential
resistance or port characteristics seen by capacitors and inductors. It is mentionable
that many so-called digital circuits belong to these class of circuits, because they
are in fact analog circuits that retain information by assuming a certain state. When
the information changes, fast transitions may occur. One can show, that those non-
regularized circuits contain a “fold” in their manifolds (see Fig. 6.1) and provide ex-
amples for the so-called “time-constant problem” of circuit simulation (see [2], [3]).
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Fig. 6.1 Folded state space of non regularized network

It can be shown, that the simulation with common circuit simulators of non-
regularized networks N fails, if their state space S exhibits a fold with respect to
a network specific projection direction and if the dynamics is in the vicinity of the
fold edge (cf. Fig. 6.1: fold edge is represented by the edge of the shaded area).
Such a fold leads to jumps in the embedding space from one point on S to another,
which corresponds to the fast switching in the transient solutions. The points during
the jump are no admitted points, because they are outside S . Therefore, we need
to introduce an embedding space E = Rk and where S is a subset of E . When the
network is ε-regularized [4], the jump behavior can be viewed as the limit ε → 0
of the solutions of the singularly perturbed system [5]. The state space Sε of the
regularized network Nε is defined in a different embedding space Eε = Rk+c and
contains parts of S . However, the fold edge of S marks - in particular for ε → 0
- the ill-conditioned areas of the dynamics of Nε. This fold edge corresponds also
to the impasse points described in [6], [7]. By adding suitably located ε-parasitic
inductors L or capacitors C considering Tikhonov’s Theorem [8], the network is
regularized [9]. Nevertheless, by choosing wrongly located L’s and C’s, the circuit
can be regularized indeed, but the determined transient solutions are inconsistent
with respect to N . Another problem are the widely spaced time-constants, which
appear due to the fact that the dynamics of a regularized circuit can be divided
into a slow and a fast part, leading to the so-called ”time-constant problem” of
circuit simulation [2]. This difficulty can be circumvented by using stiff solvers
(e.g. implicit integration methods like BDF or Gear method) if the reason for the
time-constant problem is not related to a jump behavior [3]. In previous publica-
tions [10], [11], we have shown the implementation of a geometric concept using
geodetic differential equations. In this work we will, for the first time, adapt an al-
ternative geometric concept to systems of equations based on the Modified Nodal
Analysis (MNA).
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6.2 Geometric Approach of Circuits and Fast Switching
Behavior

It is known that the state space S of an electronic circuit can be interpreted as a dif-
ferential manifold [12]. The branch voltages and currents must satisfy the algebraic
nonlinear resistive and Kirchhoff constraints. The Kirchhoffian space K is defined
as the set of all currents and voltages which satisfies Kirchhoff’s laws. Moreover
the Ohmian space O is defined as the set of all currents and voltages which sat-
isfies all resistive constitutive relations. Thus the state space of the circuit is de-
fined as the intersection of the Ohmian space O and the Kirchhoffian space K by
S := K ∩O [13], [14].
The dynamics of a nonlinear dynamic circuit are defined by the set of all solutions
of the descriptive differential equations on a sufficient smooth state space S . There-
fore the following conditions have to be fulfilled: 1) S is a smooth manifold. 2) The
dynamics can be created on S .

A set possesses the structure of a differentiable (smooth) m-dimensional mani-
fold if it is locally equivalent to a Rm. A concrete representation of a manifold can
be given by means of a chart (map) that maps a part of S into Rm. A detailed dis-
cussion about differentiable manifolds can be found in the monograph of Guillemin
and Pollack [15].
The Kirchhoffian space K has a vector space structure in linear and nonlinear cir-
cuits since Kirchhoff’s laws are homogeneous equations. Therefore K has also the
structure of a differentiable manifold. But in general the Ohmian space O is not a
differentiable manifold and even if O wears the structure of a differentiable mani-
fold it is not obvious that the state space S wears this structure.
If we consider a circuit by its descriptive equations it means that the intersection
of the solution sets of the Kirchhoffian equations and the Ohmian equations is a
smooth manifold if these equations are “local” independent. From a geometric point
of view this means that the intersection of K and O is “transversal” or in a more
technical setting: if K and O are two submanifolds of R2n (where n is the number
of branches) we call K and O transversal, if the following condition is satisfied:

x ∈ K ∩O where TxK ⊕ TxO = TxR2n or x /∈ K ∩O (6.1)

Now, we are able to characterize the standard situation in nonlinear dynamical cir-
cuits. The state space S is a smooth manifold if: 1) the Ohmian spaceO is a smooth
manifold and 2) the state space S = K ∩ O is not empty as well as K and O are
transversal. These properties can be satisfied by applying a suitable remodelling
technique with resistive elements [16]. Therefore, this situation is typical or so-
called generic and in the following we assume S to be a smooth manifold.

The second condition requires the construction of a vector field X on the smooth
manifold S . We know that based on fundamental physical laws, the relationships
between currents and voltages of λ capacitors and γ inductors are given by means
of differential relations. Therefore these differential equations are formulated in iL
and uC coordinate planes Rλ

i ⊕R
γ
u of the embedding space R2n.
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We define a 1-form Ω and a 2-form G on the space of currents of inductors and
voltages of capacitors. Then a projection map π : S → Rλ

i ⊕ R
γ
u is chosen that

maps a certain part of S to the coordinate planes of the inductors and capacitors,
respectively. Now we use the map π∗ to ”lift” or “pull-back” Ω and G on the state
space S . This operation is local because there are situations where S is folded just
like in fig. 6.1. In this case, there is more than one part of S that can be mapped
to the same part of the coordinate planes. With respect to the local dynamics of a
circuit, the following theorem is fundamental.

If the Ohmian space O is a smooth manifold, the Kirchhoffian space K and the
Ohmian space O are transversal and a pullback map π∗ exists such that a 1-form
ω := π∗Ω and a non-degenerated 2-tensor (bilinear map) g := π∗G can be defined
on S , then there exists locally a unique vector field X : S → T(S) which satisfies

g(X,Y) = ω(Y) (6.2)

for all smooth vector fields Y. With this locally defined vector field X we are able
to define the (local) dynamics of a circuit by means of ξ̇ = X ◦ ξ.

6.2.1 Singular Points and Jumps

There are several cases where a locally defined vector field X does not exist. If
S is a smooth manifold, then it is essential that g is non-degenerated. The bilin-
ear map g := π∗G can be interpreted as an inner product such that the assumed
non-degeneracy of g follows from the condition g(X,Y) = 0 for all Y ⇔ X = 0.
Therefore a degeneracy of g results from defects of π∗ or G. G is degenerated if
L(i) or C(u) is zero for some i and u, respectively, where these nongeneric cases
can be remodelled by parasitic reactances. A defect of π∗ is related to a dependency
of the dynamic variables. With respect to the Kirchhoffian space K a defect of π∗
corresponds to loops of capacitors and independent voltage sources or so-called cut-
sets of inductors and independent current sources. With respect to the Ohmian space
O a defect of π∗ is related to a zero of duR/diR or diR/duR such that above men-
tioned loops and meshes arise. Also in these cases a remodelling process is available
in order to obtain a generic situation of the circuit dynamics. For further details the
reader is left to Mathis [16].

These considerations can be discussed in a more concrete manner if circuit topol-
ogy is included. For this purpose we have to restrict ourself to RLC circuits. Then
interconnections of a circuit can be described by oriented graphs and its boundary
and coboundary operators or assuming a coordinate system (a chart) by its incidence
matrices. If we assume that a proper tree of a graph exists (i.e. a circuit including
all capacitor branches and no inductor branches), then no so-called ”forced degen-
eracies” arise. These forced degeneracies are defects of the dynamics related e. g. to
meshes of capacitors and cut-sets of inductors.

It is shown by Ichiraku [17] that a point (i,u) of the state space S is a singu-
lar point if and only if the characteristic manifold OR and the affine subspace KR
are not transverse at (iR,uR) := πR(R

2n) where πR is the natural projection from
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the embedding space R2n to the currents and voltages of the resistors. KR is the
Kirchhoffian space and OR is the Ohmian space of the resistive circuit obtained
from the given one by open-circuitting all inductor branches and short-circuitting
all capacitor branches.

In the following, we exclude forced degeneracies from our discussion (i.e.
meshes of capacitors and cut-sets of inductors, as well as L(i) = 0 or C(u) = 0),
which cause the dynamics to be degenerated [18].

6.3 Chart Representation of Circuits and Jump Phenomena

By choosing a suitable chart, the circuit equations can be considered as algebro-
differential equations (DAEs) [3] in a semi explicit form:

C(x)ẋ = g(x,y,z) g : Rk →Rn (6.3)

0 = f(x,y,z) f : Rk →Rm (6.4)

The vector x ∈ Rn corresponds to the capacitor voltages and inductor currents,
z ∈Rη is the vector corresponding to independent voltage or current input sources
(which can also be a function of time z(t)) and y ∈ Rm is a vector of additional
voltages and currents. Here, η is the number of independent sources. The matrix
C(x) is related to the dynamical elements and becomes a constant matrix for linear
inductances and capacitances. The nonlinear vector field with respect to x, y and z
is represented by g.

Now, we have to introduce the embedding space E = Rk and define S as a sub-
space of E . The solution set of the algebraic equations (6.4) represents the state
space S of the circuit, whereas the differential equations (6.3) represent its dy-
namical behavior. The dimension k of the embedding space can be determined by
k = n+m+ η. The state space S has the dimension l = n+ η and the codimension
is m = k− l.

6.3.1 Jumps in State Space

As mentioned in section 6.2.1, a generic dynamics of a circuit do not exist at points
where the projection map π∗ has singularities. Such singularities arise if the state
space is folded, which would result in a jump of the transient solution from one
point on S to another instantaneously. Considering that the energy of capacitors and
the charge of inductors is preserved, the voltages across capacitances and currents
through inductances have inertia through a jump process and do not change (i.e. the
values of x do not change during the jump). Another restriction is the fixed value of
z during a jump.

Then, with respect to the semi explicit DAE representation, the singular points
are defined at points where the local solvability to y is not guaranteed. These points
are specified by the following condition:
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det
(

∂f(x,y,z)
∂y

)
= 0 where f(x,y,z) = 0 (6.5)

Therefore we assume eq. (6.5) to be the necessary jump condition (cf. [19] [20],
[21]).

The zero set of all points fulfilling the m + 1 algebraic equations specified by
eq. (6.5) is called ”jump-set” Γ and represents a l − 1-dimensional subset of S .
Of course, the calculation of the solution set of this equation system is difficult.
However, we are not interested in all roots of eq. (6.5), but only in the actual chosen
jump point during a simulation. Hence, we trace the dynamics on S (specified by eq.
(6.3) and (6.4)) till reaching a stopping point Ps. This stopping point is defined as a
point, where the step size of the numerical solver reaches a lower boundary (which
is related to the machine constant of the simulating computer). In the next step,
we search for the ”nearest” point on Γ (by choosing a suitable norm) and define
it as actual jump point Pj (cf. Fig 6.2). Furthermore, we define a straight line ξs
connecting Ps and Pj, which will be used for determining the hit point.

ξs

Fig. 6.2 Concept for jump point calculation; Γ: green triangles; trajectory: blue circles; ξs:
red line

The sufficient jump condition is first given in a heuristic sense:
A point, which is specified by eq. (6.5) and whose neighborhood includes a Lya-
punov stable and an unstable point, is called proper jump point Pj. The sufficient
jump condition can be verified by calculating the eigenvalues λi of the characteris-
tic equation

det
(

∂f(x,y,z)
∂y

− λ · E
)
= 0 (6.6)

λm + βm−1 · λm−1 + · · ·+ β1 · λ1 + β0 = 0 , (6.7)

where E is the identity matrix (cf. theory of discontinuous oscillators e.g. [21], [22]).
If all λi of eq. (6.7) have negative real parts, the sufficient jump condition is not
fulfilled and there are no proper jump points. The difference from the definition in
this work to the one in the theory of discontinuous oscillators [21], [22] is, that we
interpret z as variables and therefore extend the approach to all systems with fast
switching behavior caused by a fold in their state space manifold and not only to
autonomous circuits.

The jump-set Γ separate the state space manifold in a stable S− and an unstable
S+ part, which are defined by the real part of the eigenvalues
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S− : �e{λi} < 0, ∀i ∈ N, i ≤ k (6.8)

S+ : �e{λi} > 0, ∃i ∈ N, i ≤ k . (6.9)

By crossing the jump-set Γ between stable and unstable region, there appears either
one real positive λ or a pair of conjugate complex λ1,λ2 with positive real parts.
The appearance of more than two λi with positive real parts is uncommon and will
not be analyzed [21]. In the following we will restrict ourself to the case, where only
one real positive λ appears. Then, for points on Γ there is only one eigenvalue equal
to zero. As a result the constant term of eq. (6.7) (which corresponds to eq. (6.5)
β0 = det

(
∂yf(x,y,z)

)
) is equal to zero. Therefore, the necessary and sufficient

jump condition can be tested by the zero crossing of the determinant (6.5).
Because of the fixed values of x and z during the jump, the jump takes place

in a tangential space of Rm, which corresponds to the coordinate space of y. In
the following, the jump space will be denoted by J S . Because we introduced the
embedding space, the hit point Ph can be calculated by the intersection of the jump
space defined in the jump point and the state space, excluding the jump point (Ph ∈
(J SPj ∩ S)�Γ). Therewith, it is guaranteed that the values of xj = xh and zj = zh
before and after the jump are the same. Hence the corresponding ”hit-set” is the
intersection of the ”bundle” of all jump spaces at points of the jump-set and the
state space S .

The conditions for fast switching can be summarized as follows:

• The necessary and sufficient jump condition have to be fulfilled: This can be
tested by the zero crossing of det

(
∂yf(x,y,z)

)
for points on S .

• The trajectories hit again the manifold: The intersection of J S and S have an-
other solution than the jump point itself, i.e. (J SPj ∩ S)�Γ is transversal and
not empty.

6.3.2 Determining the State Space

If one is interested in plotting the state space in a certain area, the following con-
siderations are necessary. Since there are electronic circuits like e.g. the Schmitt
Trigger circuit which exhibits a fold respectively the independent input sources z,
S is “near the jump” not unique with respect to z. Thus, for the determination of
S , one has to interpret z as variables and not as a constant or time dependent input
value. Furthermore, also the values of x are fixed during the jump. As a consequence
S is “near the jump” unique with respect to y and not unique with respect to x and z
(cf. Fig. 6.3). So, by specifying l components of y, one can determine S . During the
determination of S , the determinant criterion can be checked by the local evaluation
of eq. (6.5) yielding the jump-set. Nevertheless, there are circuits (e.g. the series
connection of resonant tunneling diodes), where the state space is not unique to
any coordinate. In this case, the determination of S is not possible with the method
described here. One possibility could be the usage of geodesic coordinates.
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y

x

z S

Fig. 6.3 Uniqueness of the state space with respect to y

6.3.3 Transient Solution and Hit Point Calculation

For the computation of the transient solution, of course, the time dependency of the
input sources z(t) has to be taken into account. Since the dynamics is not defined
at points of the jump-set, it increases very fast nearby the jump-set while tracing it.
Therefore we have defined a stopping criterion, which compares the actual step size
of the numerical integrator with a lower boundary (see section 6.3.1). When the step
size reaches this boundary, the integration is stopped at a point Ps. From here, the
jump point Pj is calculated as described in section 6.3.1. Then, the corresponding
hit-point Ph will be calculated by the intersection of the jump space J S defined in
a point Pj′ and S (cf. Fig. 6.4; here J S is one-dimensional). The point Pj′ is chosen
not to be the actual jump point Pj which lies in S . After calculating the jump point
Pj, we use the distance Δ from Ps to Pj on ξs to calculate Pj′ (see Fig. 6.4). Thereby,
we make sure that Pj′ does not lie in S and the numerical solver is able to find a
unique hit-point Ph′ . If one is interested to get a more exact numerical solution of
Ph, one can calculate the solution of the intersection of J SPj ∩ S with the initial
value Ph′ . But, as we will see in section 6.5, the hit point Ph′ is comparable to the
hit point of a regularized circuit. From Ph the dynamics can be traced, till reaching
the jump-set again.

JS

Fig. 6.4 Concept for hit point calculation
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6.4 Adaption of the Geometric Approach to MNA Based
System of Equations

Common circuit simulators (e.g. SPICE) are based on MNA, which leads in the
description of electronic circuits to a high dimensional system of equations. To apply
the methods described in section 6.3, several modifications to the classical MNA are
necessary [23].

6.4.1 Modification of the System of Equations

From a given netlist of an electronic circuit, we obtain the system of equations
(6.10), which results from applying the MNA stamps [24].

C̃(n)ṅ + G̃n = B̃u(n, t) (6.10)

C̃(n) is the matrix related to the dynamical elements which is, for typical circuits,
a singular matrix. If there are nonlinear capacitances or inductances, one approach
is to separate C̃(n) in a linear and a nonlinear part. But, for simplicity, in the fol-
lowing we only consider linear inductances and capacitances, so that C̃ is a constant
matrix. G̃ is the coefficient matrix related to the non-dynamic elements and B̃ is
the coefficient matrix related to the input sources. The vector n contains node volt-
ages and currents including at least the currents iL through inductances. The nonlin-
ear elements are considered as nonlinear dependent current or voltage sources and
summarized together with the input sources in the vector u(n, t). Now, we have to
modify the system of equations to apply the methods described earlier.

Since we exclude forced degeneracies from our discussion (i.e. meshes of capac-
itors and cut-sets of inductors, as well as L(i) = 0 or C(u) = 0), the rank rC of
C̃ is equal to the number of capacitances and inductances. Therefore, we add the
rows of C̃, so that there are only rC non zero rows remaining. Simultaneously, we
manipulate the matrices G̃ and B̃ in the same manner, yielding:

C∗ṅ + G∗n = B∗u(n, t) . (6.11)

By now, the vector n includes only node voltages and currents. To distinct n in
conserved quantities and non conserved quantities, i.e. in x and y, we have to in-
sert the capacitor voltages. Therefore, we add algebraic equations which describe
the relations between capacitor voltages and the corresponding node voltages (e.g.
UC1 = ϕn3 − ϕn7) to the system of equations. We summarize all capacitor voltages
and inductor currents in the vector x and all additional node voltages and currents in
the vector y. The input vector u is divided into nonlinear sources h(x,y), constant
bias sources u0 and independent input sources z (which can also be a function of
time z(t)). The further modifications leads to the system of equations:
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C
(

ẋ
ẏ

)
+ G

(
x
y

)
= B

⎛
⎝ h(x,y)

u0
z

⎞
⎠ , (6.12)

which can be formulated as semi explicit system of equations:(
C11 0

0 0

)(
ẋ
ẏ

)
+

(
G11 G12
G21 G22

)(
x
y

)
=

(
B11 B12 B13
B21 B22 B23

)⎛
⎝h(x,y)

u0
z

⎞
⎠ . (6.13)

Furthermore, it becomes apparent that the addition of branch voltages is suitable.
These additional voltages are stored in the vector b, which can be determined by
b = L · y, where L is the matrix relating the node potentials to their branch voltage.

6.5 Application on Two Simple Example Circuits

The described concept is illustrated on an emitter coupled multivibrator shown in
Fig. 6.5 and on a Schmitt Trigger shown in Fig. 6.13. To analyze the circuits, we use
the Ebers-Moll model in forward mode. For the comparison of our non-regularized
solution with the solution of the regularized system, the parasitic base-emitter ca-
pacitances Creg parallel to the diodes D1 and D2 were added.

6.5.1 Emitter Coupled Multivibrator

The design parameters are R = 500Ω, Ri = 100kΩ,C = 33nF, IS = 7 f A,VT =
26mV and αF = 0.99. For the simulation we use a constant bias voltage U0 = 5V
and a constant bias current I1 = I2 = 0.26mA.

The resulting vector u can be found in Fig. 6.6, the vector n in Fig. 6.7 and
the matrix dimension in Fig. 6.8. Here the dimension of the embedding space is
k = 9 and because rC = 1, we have to split one dynamic equation from the algebraic
ones. The state space is one-dimensional (l = k − m = 1) and the codimension is
m = 8. To display S , we assign the diode voltages to the corresponding node volt-
ages UD1 = ϕn5 − ϕn1 and UD2 = ϕn6 − ϕn2. In Fig. 6.9 the state space (blue) in
the coordinate system UD1 − UD2 − UC is shown. The associated jump is repre-
sented by the red line (triangles) and, for comparison, the transient solution of the
regularized system is shown by the green line (circles).

In Fig. 6.10 the transient solutions of the circuit in relation to different regular-
ization capacitances ε is shown. As one can see, Pjump,reg and Phit,reg approaches
for ε → 0 the non regularized case. Pjump,reg represents the point where the tran-
sient solution significantly comes off S and Phit,reg represents the point, where the
transient solution first proceeds in the near of S . Furthermore one can see, that the
overshoots of the transient responses after reaching the stable part of S again is
independent from ε.
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R

I2

U0ID1 ID2

I0

I1

R

αFID1 αFID2

CD1 D2

Ri Ri

Fig. 6.5 Emitter coupled multivibrator

u =

⎡
⎢⎢⎢⎢⎣

ID1
ID2
I1
I2

UVS

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

7 · 10−15 · (e
ϕn5−ϕn1
26·10−3 − 1)

7 · 10−15 · (e
ϕn6−ϕn2
26·10−3 − 1)

0.00026
0.00026

5

⎤
⎥⎥⎥⎥⎥⎦

Fig. 6.6 Vector u including input sources and nonlinear dependent sources

n =

[
x
y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UC
ϕn7
ϕn6
ϕn5
ϕn1
ϕn2
IVS
ID1
ID2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6.7 Vector n including x and y

matrix rows columns

C 9 9
B 9 5
G 9 9
L 2 8

Fig. 6.8 Matrix dimensions

By comparing Fig. 6.11 and 6.12, one can see, that our concept enables a sim-
ulation without regularization. Of course, the peaking during the switching process
does not exist in our solution, but the main problem, namely the functionality of the
circuit, is guaranteed.
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Fig. 6.9 State space (blue) in UD1 − UD2 − UC coordinate system; non-regularized jump
solution (red triangles); regularized solution (green circles) Creg = 500pF

ϵ→0

ϵ→0UC

UD1

UD2

Pjump

Phit

Phit ,reg

Pjump,reg

S

Fig. 6.10 Transient solution in relation to different regularization capacitances Creg = ε
Creg = 900nF (green triangles), Creg = 10nF (yellow circles) and Creg = 0 (red crosses)
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Fig. 6.11 Transient solution of non regularized multivibrator;
UD1 (blue circles), UD2 (green triangles) and UC (red)
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Fig. 6.12 Transient solution of regularized multivibrator Creg = 500pF;
UD1 (blue circles), UD2 (green triangles) and UC (red)

6.5.2 Schmitt Trigger

The design parameters are RC1 = RC2 = 1kΩ, Re = 100Ω, R1 = 8.2kΩ, R2 =
2.7kΩ, RV = 4.7kΩ, IS = 6.734 f A,VT = 26mV and αF = 0.99. For the simula-
tion we use a constant bias voltage U0 = 10V.
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RC1 RC2

U0

Uout

R1

R2Re

D1 D2
IF1 IF2

αFIF1
αFIF2

Uin

RV

Fig. 6.13 Schmitt Trigger

u =

⎡
⎢⎢⎣

ID1
ID2
UV1
UIN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

6.734 · 10−15 · (e
ϕN6−ϕN7

26·10−3 − 1)

6.734 · 10−15 · (e
ϕN4−ϕN7

26·10−3 − 1)
10

1.5 + 1.5 · (sin(2 · π · 1000 · t))

⎤
⎥⎥⎥⎦

Fig. 6.14 Vector u including input sources and nonlinear dependent sources

n =

[
x
y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕN1
ϕN2
ϕN6
ϕN5
ϕN4
ϕN3
ϕN7
IV1
IVI N
ID1
ID2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6.15 Vector n including x and y

matrix rows columns

C 11 11
B 11 4
G 11 11
L 4 11

Fig. 6.16 Matrix dimensions
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2

U
IN

UD2 UD1

Fig. 6.17 State space (blue) in UD1 −UD2 −UIN coordinate system non-regularized jump
solution (red triangles); regularized solution (green circles) Creg = 200pF

Fig. 6.18 Transient solution in relation to different regularization capacitances Creg = ε
Creg = 800pF (yellow circles), Creg = 50pF (green triangles) and Creg = 0 (red crosses)

The resulting vector u can be found in Fig. 6.14, the vector n in Fig. 6.15 and
the matrix dimension in Fig. 6.16. Here the dimension of the embedding space is
k = 12 and there is one independent input voltage. Therefore state space is one-
dimensional (l = k − m = 1) and the codimension is m = 11. To display S , we
assign the diode voltages to the corresponding node voltages UD1 = ϕn6 − ϕn7
and UD2 = ϕn4 − ϕn7. In Fig. 6.17 the state space (blue) in the coordinate system
UD1 − UD2 − UIN is shown. The associated jump is represented by the red line
(triangles) and, for comparison, the transient solution of the regularized system is
shown by the green line (circles).
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Fig. 6.19 Transfer characteristic in UIN −UOUT coordinate system state space (blue), tran-
sient solution (red)

In Fig. 6.18 the transient solutions of the circuit in relation to different regular-
ization capacitances ε is shown. Here, the regularized solution is far from the state
space manifold and approaches for ε→ 0 the non regularized case. Also the distance
d from transient solution and S vanishes for ε → 0.

At the end, the known input output characteristic in form of a hysteresis is shown
in Fig. 6.19.

6.6 Conclusion

In this article we have described why certain circuits with jumps sometimes require
adding regularizing capacitors or inductors. We have given a geometric interpreta-
tion of jumps in state space and formulated a concrete local criterion to check if a
circuit’s state space manifold exhibits a fold. With our approach, it will not be nec-
essary to add a regularization to get the transient solutions of a circuit. Furthermore
we have shown, for the first time, a complete concept for adapting this geometric
approach to a system of equations based on MNA. Therefore, the developed concept
can be implemented in an MNA based circuit simulator like SPICE. Finally we have
proven the functionality of our concept by numerical results of two BJT circuits. In
a further work [25], we have adapted the non MNA based geometric approach to
MOS circuits, where the EKV model is used as equivalent circuit diagram. How-
ever, the developed theory presented in this paper can be adapted to any electronic
circuit containing a fold in their state space.
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