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Preface

The last decade has witnessed a tremendous attention devoted to both modeling and
simulation of nonlinear dynamical systems. This high interest is due to the growing
awareness that nonlinear dynamics is inherent in a vast class of systems, phenomena
and events: natural biological systems, physical systems, engineering systems, etc.
A study of the relevant state-of-the-art reveals various scientific contributions based
on both modeling, simulation and control of nonlinear dynamical systems. Various
interesting and striking states of these systems are of particular interest: periodic,
quasi-periodic, stable, unstable, deterministic, stochastic, synchronized, torus and
chaotic dynamics, etc. A good understanding and mastering of these states does
lead to various potential interesting applications.

Model approximation appears to be a very common modeling technique in engi-
neering since accurate models are generally very complex and tough to solve either
analytically or even numerically. Further, it is well known that numerical simulation
is prone to accumulation of round-off errors during computation, which could result
into non-realistic outcomes especially in case of extremely stiff systems. Numerical
simulation is also eventually very time-consuming and simulation convergence of is
not well tractable systematically. Thus, some trade-off between the potential anal-
ysis techniques appears necessary. Approximate models are easily solvable either
analytically or numerically although the results obtained are of less accuracy. Ac-
curate modeling while mastering related computational concerns is indeed a serious
challenge for modern computational engineering.

This book is a collection of recent advanced contributions in the field of nonlinear
dynamics and synchronization, with special applications in the area of theoretical
electrical engineering. The book contains twenty-one chapters grouped in five parts.

The first part consisting of five chapters does focus on theoretical issues related
to chaos and synchronization and their potential applications in mechanics, trans-
portation, communication and security. The second part having six chapters handles
dynamic systems modeling and simulation with special applications to real physical
systems and phenomena. The third part consisting of four chapters discusses some
fundamentals of electromagnetics (EM) and addresses the modeling and simulation
in some real physical electromagnetic scenarios. The fourth part of three chapters
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does mainly address stability concerns. Finally, the last part having three chapters
assembles some sample applications in the area of optimization, data mining, pat-
tern recognition and image processing.

In the following the contents of twenty-one chapters of this books is respectively
briefly presented.

The first chapter, Synchronization of two nonidentical clocks: What Huygens
was able to observe?, by Krzysztof Czolczynski, Przemysław Perlikowski, An-
drzej Stefanski, and Tomasz Kapitaniak, addresses the synchronization of two non-
identical clocks. An in-depth analytical study is carried out to demonstrate the occur-
rence of both almost complete (in-phase) and almost anti-phase synchronizations.
These types of synchronization are defined in terms of the phase shift. Evidence is
provided to explain the phenomenon of almost anti-phase synchronization of two
pendulum clocks that Huygens was unable to observe experimentally in the XVIIth
century.

The second chapter, On the synchronization of 1D and 2D multi-scroll chaotic
oscillators, by J.M. Muñoz-Pacheco, E. Zambrano-Serrano, O.G. Félix-Beltrán, E.
Tlelo-Cuautle, L.C. Gómez-Pavón, R. Trejo-Guerra, A. Luis-Ramos, C. Sánchez-
López, investigates synchronization issues in 1D and 2D multi-scroll chaotic os-
cillators. The applicability of these issues in communication and security systems
is demonstrated. The 1D and 2D multi-scroll chaotic oscillators are simulated us-
ing the analog computing paradigm. A chaotic synchronization scheme for multi-
directional multi-scroll chaos generators is introduced and the Hamiltonian theory is
used to derive synchronization criteria. Finally, two schemes are set-up to transmit
encrypted binary and analog signals by applying chaotic switching technique and
additive chaotic masking, respectively. Both schemes are also implemented using
analog computing. This computing paradigm is simulated/emulated on

The third chapter, Nonlinear filtering of chaos for real-time applications, by
V. Kontorovich and Z. Lovtchikova investigates the nonlinear filtering of chaotic
signals in presence of additive white Gaussian noise (AWGN). Specifically, non-
linear filtering and chaotic phenomena are investigated with concrete applications
in electrical engineering, basically in communications, control, etc. It is demon-
strated that both nonlinear and chaotic filtering are processes leading to various
potential applications including those which are related to real-time regime condi-
tions. Examples of these applications include chaos-based communications systems
synchronization, real-time control of chaos, radio-frequency interference filtering
and mitigation, and chaotic system identification, just to name a few.

The fourth chapter, Time-of-flight estimation using synchronized chaotic sys-
tems, by Christian F. Wallinger and Markus Brandner develops a theoretical ranging
concept based on time-of-flight (ToF) estimation. It is demonstrated that the con-
cept involving chaotic signal leads to various potential metrological applications.
A series of performance criteria for these applications are defined as fundamen-
tal parameters of the delay estimation process. An experimental demonstration is
described showing the applicability of synchronized chaotic systems in a ToF mea-
surement system. Many time-delays are evaluated analytically and experimentally
and a comparison is performed to validate the concepts developed.
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The fifth chapter, Binary synchronization of complex dynamics in cellular au-
tomata and its applications in compressed sensing and cryptography, by Radu
Dogaru and Ioana Dogaru applies a concept involving cellular automata to both
modeling and synchronization of complex dynamics. A specific focus is devoted
to the binary synchronization of the transmitted bit stream. It is demonstrated that
the decoding of this stream is possible only when the structure of the cellular au-
tomata (encryption key) is known. Finally, some applications of the concept devel-
oped are considered in cryptography, spread spectrum communications, and com-
pressed sensing. Finally, an implementation of the concept on FPGA is presented.

The sixth chapter, Fast switching behavior in nonlinear electronic circuits: a
geometric approach, by Tina Thiessen, Sören Plönnigs and Wolfgang Mathis de-
velops a geometric concept to detect some striking and unexpected behavior of a
specific class of nonlinear electronic circuits. An example of this behavior is the
fast switching behavior of circuits which is characterized by the jumps in their state
space. An analytical study is developed and appropriate criteria are derived for the
occurrence of jump conditions. The approach developed in this work is essential
as it allows a separation between the transient states of the electronic circuits and
their permanent states. Finally, it is demonstrated that the geometric concept de-
veloped can easily be adapted to a system of equations based on MNA, allowing
an implementation on circuit simulators such as SPICE. Numerical simulations are
considered to validate the analytical results developed.

The seventh chapter, Dynamics of Liénard optoelectronic oscillators, by Bruno
Romeira, José Figueiredo, Charles N. Ironside and Julien Javaloyes investigates the
behavior a nonlinear optoelectronic oscillators (OEO) of Liénard types. It is demon-
strated that the effects due to negative differential resistance across the tunnel diode
leads to oscillations within the system. The concept developed in this chapter is vali-
dated by some recent experimental results presented by the relevant state-of-the-art.
A specific focus is devoted to both electrical and optical systems, likely to exhibit
complex dynamics ranging from self-sustained relaxation oscillations, to injection
locking and chaotic dynamics. Potential applications of the concept in this chapter
are found in the development of secure communication systems and highly stabi-
lized OEO devices for microwave-photonic systems.

The eighth chapter, Application of coupled dynamical systems for communi-
ties detection in complex networks, by Nikolai Nefedov, models the stable com-
munities’ detection and links predictions processes in complex networks by coupled
ordinary differential equations. The dynamics of the local states is described by the
well-known Kuramoto model. The method is based on the dynamical formulation of
modularity using a random walk and then is extended to coupled dynamical systems
to detect communities at different hierarchical levels. Both attractive and repulsive
coupling are considered and their effects on the dynamics of the global network are
analyzed. As proof of concepts of the approach developed in the chapter, practical
datasets recorded during the Nokia mobile-data collection campaign are considered
and the concept developed is applied to derive the potential structures of the social
community and to perform link predictions or recommendations.
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The ninth chapter, Infinite networks of hubs, spirals, and zig-zag patterns in
self-sustained oscillations of a tunnel diode and of an erbium-doped fiber-ring
laser, by Ricardo E. Francke, Thorsten Pöschel, and Jason A.C. Gallas, investi-
gates the dynamics of a nonlinear circuit containing diodes as analog devices. Some
strange and oscillating patterns are depicted analytically which cannot be explicitly
observed experimentally due to their appearance in a compressed form. To over-
come this problem a circuit using a tunnel diode is designed. This circuit is likely
to display two large spiral cascades over a wide range of parameter settings. It is
demonstrated that such a display can be easily observed experimentally.

The tenth chapter, Study of the dynamics of atmospheric pollution and its as-
sociation with environmental parameters, by Siwek Krzysztof, Osowski Stanis-
law, and Swiderski Bartosz investigates the dynamic processes of creation of atmo-
spheric pollution due to SO2, NO2 and ozone propagation. The interdependence
between the pollution and the environmental atmospheric parameters (e.g. temper-
ature, wing, humidity, insolation, etc) is investigated. It is demonstrated that the
interdependence is nonlinear and could lead to chaotic dynamics. Finally, the re-
sults of these studies are exploited in the development of prediction models of the
concentration of particular pollutants.

The eleventh chapter, System dynamics modeling of intelligent transportation
systems – Human and social requirements for the construction of dynamic hypothe-
ses, by Oana Mitrea, structures the knowledge and requirements for the (system
dynamics) modeling of distributed actions in the intelligent transportation systems
from the perspective of the sociology of technology. This chapter concentrates on
the potential of the theory of the distributiveness of actions in heterogeneous constel-
lations (sociology of technology) to enhance the formulation of dynamic hypotheses
for system dynamics modeling of ITS. It is demonstrated that the performance of
ITS systems depend not only on the interactivity between the vehicle-human sys-
tems and the environment, but also on the impact of socio-political and other con-
textual factors from a broader socio-technical constellation.

The twelfth chapter, Fundamentals of electrodynamics, by Branko Miškovic,
develops some fundamental basics of the electromagnetics (EM) theory. Some lights
are shed on important basic aspects of the EM theory which were not clearly ex-
plained by the relevant literature. This is achieved considering three classes of EM
quantities namely, electric charges, currents, and kinetic magnetic fields. A new
mathematical expression of the general kinetic central law is derived using the con-
cept developed in this chapter. Further, the secondary field transformations are also
completed. The relativistic postulates and respective kinematical transformations,
based on the incomplete field transformations, are finally disqualified. On the other
hand, Einstein’s equation and Lorentz’ mass function are explained and validated.
The circular spatial axes are also explained and validated by the wave cosmic pro-
cess, which determines by itself gravitational attraction, with unique and uniform
lapse of time, in agreement with the Galilean view.

The thirteenth chapter, Advanced adaptive algorithms in 2D finite elements
method of higher order of accuracy, by Pavel Karban, Ivo Doležel, František
Mach, and Bohuš Ulrych develops a new method for automatic adaptivity in
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finite element methods of higher order of accuracy. The main attention is devoted
to hp-adaptivity techniques that exhibit the highest level of flexibility and exponen-
tial convergence of results. The technologies are implemented in the adaptive FEM
codes and finally both Agros2D and Hermes2D based on a higher-order finite ele-
ment method are illustrated by three typical examples.

The fourteenth chapter, SPICE model for fast time domain simulation of
power transformers, exploiting the ferromagnetic hysteresis and eddy-currents,
by Lucian Mandache, Dumitru Topan, Mihai Iordache, and Ioana Gabriela Sirbu,
considers both modeling and simulation (using SPICE) of power transformers.
Specific states are depicted, namely saturation regime, static hysteresis and eddy
currents. The principle of magnetic circuit modeling is based on analog lumped
equivalent circuits and the SPICE implementation uses the principle of modular-
ity. It is demonstrated that the method developed in this chapter allows simulation
of normal operation modes, as well as critical transients and faulty conditions. A
case study is presented to prove the feasibility, usefulness and accuracy of the pro-
posed modeling and simulation approach, where the SPICE results are validated by
experimental ones.

The fifteenth chapter, Hard-coupled modeling of induction shrink fit of gas-
turbine active wheel, by Václav Kotlan, Pavel Karban, Bohuš Ulrych, Ivo Doležel,
and Pavel Kus, develops a hard-coupled model of induction heating of a ferromag-
netic disk. The mathematical model is derived from three coupled partial differential
equations (for the distribution of electromagnetic field, temperature field and field of
thermo-elastic displacements) whose coefficients are temperature-dependent func-
tions. The finite element method is implemented into the Hermes and Agros codes
and numerical solutions are obtained. The methodology is illustrated by a typical
example, i.e., heating of an active wheel of a high-speed gas turbine that is to be
hot-pressed on a shaft with the aim of obtaining a shrink fit allowing transferring
the given torque at the nominal revolutions. Finally the parameters of the heating
process in transverse and longitudinal magnetic fields are evaluated and discussed.

The sixteenth chapter, Stability analysis and limit cycles of high order sigma-
delta modulators, by Valeri Mladenov, considers the stability analysis of limit cycle
oscillations in a one bit high order sigma-delta modulators. An approach is devel-
oped and applied to sigma-delta modulators as a general analysis framework. The
approach developed is based on a parallel decomposition of the modulator and a di-
rect nonlinear systems analysis. In this representation, the general N-th order mod-
ulator is transformed into a decomposition of low order, generally complex modu-
lators, which interact only through the quantizer function.

The seventeenth chapter, Stability analysis of vector equalization based on
recurrent neural networks, by Mohamad Mostafa, Werner G. Teich, and Jürgen
Lindner, focuses on an application of RNNs in communications engineering, namely
the vector equalization. The importance of this procedure arises from the fact that
there is no need for training. The parameters of the RNN to act as vector equalizer
can be obtained by investigating the stability properties of these networks and by
choosing a suitable activation function, which is the core of this work. Both global
and local stability of the discrete-time and continuous-time RNN in the context of a
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vector equalizer are analyzed and the impact of the stability conditions on the equal-
ization process is depicted. It is shown that the global stability is interesting if the
weight matrix is not symmetric. Finally, it is demonstrated that a vector equalizer
based on RNNs with increasing slope of the activation function during the iteration
process can be interpreted as a scheme with a transition from global stability to local
stability.

The eighteenth chapter, Stability of linear circuits with interval data: a case
study, by Zygmunt A. Garczarczyk analyses the stability of a linear lumped elec-
tric circuit with interval data that model uncertainties of their element parameters
(passive element values R, L, C and controlled source coefficients k). An approach
is developed based on the checking of the stability of a symmetric interval matrix
associated with the state matrix and on some interval analysis results. The method is
demonstrated to be appropriate for the stability analysis. It’s depicted from both nu-
merical and experiment investigations that the procedure works effectively for some
interval state matrix.

The nineteenth chapter, Data reconciliation and bias estimation in on-line op-
timization, by Moufid Mansour, develops techniques for bias estimation (BE) and
data reconciliation (DR) for the detection, estimation and elimination of biases and
random errors. It is demonstrated that these techniques can be successfully em-
ployed within an online Integrated System Optimization and Parameter Estimation
(ISOPE) scheme for the determination of the process optimum, despite the exis-
tence of model-reality differences and measurement errors. The performance of the
resulting scheme is demonstrated by applying it to the optimization of a two tank
CSTR system. The robustness of the optimization scheme is confirmed when apply-
ing this scheme to particular process data with multiple biases and noise. Finally, it
is demonstrated that the BE and DR techniques are suitable for performing robust
online optimization event in cases of noisy and/or errors data.

The twentieth chapter, Image edge detection and orientation selection with
coupled nonlinear excitable elements, by Atsushi Nomura, Yoshiki Mizukami,
Koichi Okada and Makoto Ichikawa, develops an algorithm for edge detection and
orientation selection with a grid system consisting of coupled nonlinear excitable
elements. The model uses the well-known Fitz-Hugh-Nagumo coupled equations.
Two types of coupling are considered i.e. strong inhibitory coupling and strong non-
linearity induced stationary pulses. Using this latter type of coupling the algorithm
for edge detection is developed based on a technique where the grid system self-
organizes a pulse pattern at edges in an initial condition. This algorithm is further
experimentally applied (with a great success) to artificial binary and real images.
Finally a benchmarking is performed by comparing the results provided by the al-
gorithm developed in this wok with some results proposed by the relevant literature.

The chapter twenty-first, Consecutive repeating state cycles determined pe-
riodic points in a Turing Machine, by Michael Stephen Fiske studies the Turing
machine with new methods motivated by the notion of recurrence in classical dy-
namical systems theory. The state cycle of a Turing machine is introduced. It is
proven that each consecutive repeating state cycle in a Turing machine determines
a unique periodic configuration (point) and vice versa. This characterization is a
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periodic point theorem for Turing machines. Using the notion of a prime directed
edge and a mathematical operation called edge pattern substitution, a search (or op-
timization) procedure finds consecutive repeating state cycles. Both periodic and
aperiodic states are depicted and these states alternate together when monitoring a
control parameter.

Klagenfurt, The Guest Editors
August 2012
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Chapter 1
Synchronization of Two Nonidentical Clocks:
What Huygens was Able to Observe?

Krzysztof Czolczynski, Przemysaw Perlikowski,
Andrzej Stefanski, and Tomasz Kapitaniak

Abstract. We consider the synchronization of two clocks which are accurate (show
the same time) but have pendulums with different masses. We show that such clocks
hanging on the same beam can show the almost complete (in-phase) and almost
antiphase synchronizations. By almost complete and almost antiphase synchroniza-
tion we defined the periodic motion of the pendulums in which the phase shift be-
tween the displacements of the pendulums is respectively close (but not equal) to
0◦ or 180◦ . We give evidence that almost antiphase synchronization was the phe-
nomenon observed by Huygens in XVII century. We support our numerical studies
by considering the energy balance in the system and showing how the energy is
transferred between the pendulums via oscillating beam allowing the pendulums’
synchronization.

1.1 Introduction

In the 60-ties of XVII century the longitude problem, i.e., finding a robust, accurate
method of the longitude determination for marine navigation was the outstanding
challenge. Huygens believed that pendulum clocks, suitably modified to withstand
the rigors of the sea, could be sufficiently accurate to reliably determine the longi-
tude (The discrepancy in the clock rate equal to one oscillation of the second pendu-
lum (pendulum with a period of oscillations equal to 1 [s] in a day corresponds to the
error in the longitude determination, approximately equal to 500 m in a day (at the
equator).). In a letter to the Royal Society of London of 27 February 1665 Huygens
described his famous experiment which showed the tendency of two pendulums (of
the clocks) to synchronize, or anti-synchronize when mounted together on the same
beam (Huygens, 1665). Originally, he used the phrase “an odd kind of sympathy” to
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describe the observed behavior in two maritime clocks. The original drawing show-
ing this experiment is shown in Figure 1.1. Two pendulums, mounted together, will
always end up swinging in exactly opposite directions, regardless of their respective
individual motion. This was one of the first observations of the phenomenon of the
coupled harmonic oscillators, which have many applications in physics (Pikovsky
et al., 2001, Blekham, 1988; Strogatz & Steward, 1993, Golubitsky et al. 1999).
Huygens originally believed the synchronization occurs due to air currents shared
between two pendulums, but later after performing several simple tests he dismissed
this and attributed the sympathetic motion of pendulums to imperceptible movement
in the beam from which both pendulums are suspended.

Huygens’ study of two clocks operating simultaneously arose from the very prac-
tical requirement of the redundancy: if one clock stopped, had to be cleaned or
winded up, then the other one provided the proper timekeeping (Huygens 1669).
Ultimately, the innovation of the pendulum did not solve the longitude problem,
since slight and almost insensible motion was able to cause an alteration in their
going (Birch, 1756; Britten, 1973).

Recently, this idea has been validated by a few groups of researchers which tested
Huygens’ idea (Bennet et al., 2002, Pogromsky et al. (2003), Kanunnikov & Lam-
per, 2003, Senator, 2006, Dilao, 2009, Kumon et al., 2002, Fradkov, and B. An-
drievsky, 2007, J. Pantaleone, 2002, Ulrichs et al., 2009, Czolczynski et al., 2009a,b,
2011a,b). These studies do not give the definite answer to the question; what Huy-
gens was able to observe, e.g., Bennet et al. 2002 stated that to repeat Huygens’
results, the high precision (the precision that Huygens certainly could not achieve)
is necessary and Kanunnikov & Lamper, 2003 showed that the precise antiphase
motion of different pendulums noted by Huygens cannot occur. Different pendu-
lums (possibly with different masses) were definitely used by Huygens as can be
seen in his drawing shown in Figure 1.2. In this paper we consider the synchro-
nization of two clocks which have pendulums with the same length but different
masses. Such clocks are accurate, i.e., show the same time as both pendulums have
the same length. We show that two such clocks hanging on the same beam can show
the almost complete (in-phase) and almost antiphase synchronizations. By almost

Fig. 1.1 An original drawing of Huygens illustrating his expermiments with pendulum clocks
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complete and almost antiphase synchronization we defined the periodic motion of
the pendulums in which the phase shift between the pendulums displacements is
respectively close (but not equal) to 0◦ or 180◦. We give evidence that the almost
antiphase synchronization of the clocks was the phenomenon which Huygens ob-
served in XVII century. This paper is organized as follows. Sec. 1.2 describes the
model of the clocks which has been used. In Sec. 1.3 we derive the energy balance
of the synchronized pendulums. Section 1.4 presents the results of our numerical
simulations and describes the observed synchronizations states. Finally, we discuss
the energy balance of the synchronized pendulums and summarize our results in
Sec. 1.5.

1.2 Model

The analyzed system is shown in Figure 1.3. It consists of the rigid beam and two
pendulum clocks suspended on it. The beam of mass M can move in a horizontal
direction, its movement is described by coordinate x. The mass of the beam is con-
nected to the refuge of a linear spring and linear damper kx and cx. The clocks’
pendulum consists of the light beam of the length l and mass mounted at its end. We
consider the pendulums with the same length l but different masses m1 and m2. The
same length of both pendulums guarantees that the clocks are accurate, i.e., both
show the same time. The motion of the pendulums is described by angles ϕ1andϕ2
and is damped by the dampers(not shown in Figure 1.3) with the same damping
coefficients cϕ.

The pendulums are driven by the escapement mechanism described in details in
(Rawlings, 194, Lepschy et al., 1993, Roup et al., 2003, Moon and Stiefel, 2006,
Czolczynski et al. 2009b). Notice that when the swingng pendulums do not exceed

Fig. 1.2 Details of the Huygens’ experiment; it is clearly visible that the clocks used in the
experiment have not been identical, D denotes the weight used to stabilize the clock case
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Fig. 1.3 The model of the system – two pendulum clocks are mounted to the beam which
can move horizontally

certain angle γN , the escapement mechanisms generate the constant moments MN
(the same for both pendulums). This mechanism acts in two successive steps i.e.,
the first step is followed by the second on and the second one by the first one
(detailed description of the escapement mechanism has been given in our previ-
ous work (Czolczynski el al., 2009b)). In the first step if 0 < ϕi < γN (i=1,2)
then MD = MN and when ϕi < 0 then MD = 0. For the second stage one has for
−γN < ϕi < 0MD = −MN and for ϕi > 0MD = 0. The energy supplied by the
escapement mechanism balance the energy dissipated due to the damping. The pa-
rameters of this mechanics have been chosen in the way that for the beam M at the
rest both pendulums perform the oscillations with the same amplitude. Typically
pendulum clocks oscillate with amplitude smaller then 2π/36 and for the clocks
with long pendulums like marine clocks this amplitude is even smaller (Rawlings,
1994). Since the damping coefficients of the two pendulums are identical, in the case
of unmovable beam the pendulums oscillate with the same amplitude. the move-
ment of the beam may change both the period and the amplitude of pendulums’
oscillations.

The equations of motion of considered systems are as follow:

m1l2 ϕ̈ + m1ẍl cos ϕ1 + cϕ ϕ̇1 + m1gl sin ϕ1 = MD

m2l2 ϕ̈ + m2ẍl cos ϕ2 + cϕ ϕ̇2 + m2gl sin ϕ2 = MD
(1.1)

(
M +

2

∑
i=1

mi

)
ẍ + cxẋ + kxx +

2

∑
i=1

mil(ϕ̈i cos ϕi − ϕ̇2
i sin ϕi) = 0 (1.2)

Note that the escapement mechanism acts only when the amplitude of the pendulum
oscillations is larger than γN.
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1.3 Energy Balance

1.3.1 Energy Balance of the Pendulum

Multiplication of both sides of eq.(1.1) by the angular velocity of the i-th pendulum
gives:

mil
2 ϕ̈i ϕ̇i + migl ϕ̇i sin ϕi = MD ϕ̇2

i −miẍl cos ϕi ϕ̇i, i = 1,2 (1.3)

In the case of the periodic motion of the pendulums after integration eq.(1.3) gives
the energy balance of the i-th pendulum in one period of motion:

∫ T

0
mil

2 ϕ̈i ϕ̇idt +
∫ T

0
migl ϕ̇i sin ϕidt =

∫ T

0
MD ϕ̇idt−

∫ T

0
cϕ ϕ̇2

i dt−
∫ T

0
miẍl cos ϕi ϕ̇idt, i = 1,2

(1.4)

Left hand side of eq.(1.4) represents the decrease of the total energy of the i-th
pendulum. In the case of the periodic behavior of the system(1,2) this decrease is
equal to zero, so

∫ T

0
mil

2 ϕ̈i ϕ̇idt +
∫ T

0
migl ϕ̇isin ϕidt = 0, i = 1,2 (1.5)

The work done by the escapement mechanism during one period of pendulum’s
oscillations can be expressed as

WDRIVE =
∫ T

0
MD ϕ̇idt = 2

∫ γN

0
MNdϕi = 2MNγN, i = 1,2 (1.6)

Note that WDRIVE does not depend on the pendulum’s masses, displacement
ϕ1,2(ϕ1,2 > γN) and velocity. Energy dissipated in the damper is given by

WDAMP
i =

∫ T

0
cφφ̇2

i dt, i = 1,2 (1.7)

The last component of eq.(1.7) represents the energy transferred from the i-th pen-
dulum to the beam M (the pendulum loses part of its energy to force the beam to
oscillate), so we have:

WSYN
i =

∫ T

0
miẍl cosφiφ̇idt, i = 1,2 (1.8)

Note that in the case of pendulums in the state of complete synchronization (φ1(t) =
φ2(t)), energies dissipated by dampers are equal and energies transmitted to the
beam are proportional to pendulums’ masses. Substituting eqs. ((1.5)-(1.8)) into
eq.(1.4),
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WDRIVE −WDAMP
1 −WSYN

1 = 0,WDRIVE −WDAMP
2 −WSYN

2 = 0, (1.9)

one gets energy balances for pendulums.

1.3.2 Energy Balance of the Beam and Whole System (1,2)

Multiplying equation of the beam motion (2) by beam velocity ẋ one gets:(
M +

2

∑
i=1

mi

)
ẍẋ + cxẋ2 + kxxẋ +

(
2

∑
i=1

mil(φ̈i cos φi − φ̇2
i sin φi

)
ẋ = 0

(1.10)
Integrating eq.(1.10)) over the period of oscillations we obtain the following energy
balance:

∫ 2

0

(
M +

2

∑
i=1

mi

)
ẍẋdt +

∫ 2

0
kxxẋdt+=

−
∫ T

0

(
2

∑
i=1

mil(φ̈i cos φi − φ̇2
i sin φi

)
ẋdt = −

∫ T

0
cxẋ2dt

(1.11)

Left hand side of eq.(1.11) represents the increase of the total energy of the beam
which for the periodic oscillations is equal to zero:

∫ 2

0

(
M +

2

∑
i=1

mi

)
ẍẋdt +

∫ 2

0
kxxẋdt+= 0 (1.12)

The first component on the right-hand side of eq.(1.11) represents the work per-
formed by the horizontal component of the force with which the pendulums act on
the beam causing its motion:

WDRIVE
beam = −

∫ T

0

(
∑
i=1

2mil(φ̈i cos φi − φ̇2
i sinφi)

)
ẋdt. (1.13)

The second component on the right hand side of eq.(1.11) represents the energy
dissipated by the damper cx:

WDAMP
beam =

∫ T

0
cxẋ2dt. (1.14)

Substituting eqs.((1.12)-(1.14)) into eq.(1.11) one gets energy balance in the follow-
ing form

WDRIVE
beam −WDAMP

beam = 0. (1.15)

In the case of the periodic oscillations it is possible to prove that
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WSYN
1 + WSYN

2 = WDRIVE
beam . (1.16)

Adding eqs.(1.9) and (1.15)

2WDRIVE −WDAMP
1 −WDAMP

2 −WSYN
1 −WSYN

2 +WDRIVE
beam −WDAMP

beam = 0,

and considering eq.(1.16) one obtains

2WDRIVE −WDAMP
1 −WDAMP

2 −WDAMP
beam = 0, (1.17)

Eq.(1.17) represents the energy balance of the whole system (1,2).

1.4 Numerical Results

In our numerical simulations eqs ((1.1),(1.2)) have been integrated by the Runge-
Kutta method. The stability of the obtained synchronous states has been investigated
using the variational equations as described in (Czolczynski et. al. 2009(a,b)).

We used the following system parameters: mass of pendulum 1 m1 = 1.0[kg];
the length of the pendulums l = g/4π2=0.2485 [m] (it has been selected in such
a way when the beam M is at rest, the period of pendulum oscillations is equal to
T=1.0 [s] and oscillations frequency to α = 2π[s−1]), g=9.81[m/s2] is an accelera-
tion due to the gravity, beam mass M=10.0[kg], damping coefficients cφ=0.01 [Ns]
and cx=1.53 [Ns/m] and stiffness coefficient kx=4.0 [N/m]. When the displacements
of the pendulums are smaller than γN=5.0◦, the escapement mechanisms generate
driving moments MN = 0.075[Nm] and allow the pendulums to oscillate with am-
plitude Φ1 = Φ2 = Φ = 0.2575 (≈ 14.75◦) when beam M is at rest. The mass m2 of
the pendulum 2 has been taken as a control parameter. It varied in the wide interval
to examine the influence of its changes on the type of the observed synchronization.

1.4.1 From Complete to (Almost) Antiphase Synchronization

The evolution of system (1,2) behavior starting from complete synchronization of
identical clocks (m1=m2=1.0 [kg]) and the increase of the values of control parame-
ter m2 is illustrated in Figure 1.4(a-d). In Figure 1.4(a) we present the bifurcation di-
agram of the system (1,2). The mass of pendulum 2−m2 has been taken as a control
parameter and it increases in the interval [1.0, 41.0]. In the initial state (m1 = m2)
the pendulums exhibit complete synchronization (φ1 = φ2) and the beam moves in
contrary phase to the pendulums. The increase of the bifurcation parameter leads
to the reduction of the oscillations amplitudes of both pendulums which are in the
state almost complete synchronization; their movements are not identical, but very
close to identical as shown in Figure 1.4(b). Figure 1.4(b) shows the displacements
of the pendulums φ1, φ2 and the beam x (for better visibility enlarged 10 times) for
m1=1.0 [kg] and m2=3.0 [kg]. Time on the horizontal axis is given in the follow-
ing way t = NT, where N=1,2,3,. . . and T is a period of pendulum’s oscillations
when the beam is at rest. Notice that φ1 ≈ φ2 as the differences are hardy visible.
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Further increase of the mass m2 results in the further reduction of pendulums’ am-
plitudes and the increase of the beam amplitude as can be seen in Figure 1.4(c) for
the m2=20.0 [kg]. The period of pendulums’ oscillations decreases (in Figure 1.4(b)
we observe 11.5 periods while in Figure 1.4(c) 17.5 in the same time interval). This
reduction is due to the fact that while increasing mass of pendulum 2, the center
of the mass moves towards the ends of the pendulums, i.e., towards the material
points with masses m1 and m2 and moves away from the beam with constant mass
M. For m2=30.3 [kg] the amplitude of pendulums’ oscillations decreases to limit
Φ ≈ γN = 5◦, below which the escapement mechanism is turned off. For larger
values of m2, we observe oscillations of pendulum 1 with amplitude Φ ≈ 15◦, and
small oscillations of pendulum 2 (whose escapement mechanism is turned off as can
be seen in Figure 1.4(d). The pendulum moves due to the energy supplied to it by
pendulum 1 via the beam. The bifurcation diagram of Figure 1.4(a) shows the ex-
istence of: (i) complete synchronization for m1=m2=1.0 [kg], (ii) almost complete
synchronization for 1.0 [kg] < m2 < 30.3 [kg], (iii) almost antiphase synchroniza-
tion, with one pendulum with turned off escapement mechanism (in Figure 1.4(d)
pendulum 2 has turned off mechanism) for m2 > 30.3 [kg].

Fig. 1.4 Evolution from complete to almost antiphase synchronization; (a) bifurcation dia-
gram for increasing values of m2, (b) time series of almost complete synchronization m1=1.0
[kg] and m2=3.0 [kg]; (c) time series of almost complete synchronization m1=1.0 [kg] and
m2=20.0 [kg]; (d) time series of almost antiphase synchronization for m1=1.0 [kg] and
m2=35.0 [kg]– the escapement mechanism of pendulum 2 is turned off
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1.4.2 From Complete Synchronization to Quasiperiodic
Oscillations

Evolution of system (1,2) behavior starting from complete synchronization of iden-
tical pendulums (m1=m2=1.0 [kg]) and the decrease of the values of the control
parameter m2 is illustrated in Figure 1.5(a-d). Figure 1.5(a) shows the bifurcation
diagram for decreasing values of mass m2 (m2 ∈[0.01,1.00]). In the interval 1.0 [kg]
> m2 >0.25 [kg], both pendulums are in a state of almost-complete synchroniza-
tion. Their oscillations are ”almost identical” as can be seen in Figure 1.5(b) for
m1=1.0 [kg] and m2=0.3 [kg], the differences between the amplitudes and phases of
φ1 and φ2 are close to zero, both pendulums remain in the (almost) antiphase to the
oscillations of the beam. Further reduction of mass m2 leads to the loss of synchro-
nization and the motion of the system becomes quasiperiodic as shown in Figure
1.5(c). Figure 1.5(d) presents the Poincare map (the displacements and velocities
of the pendulums has been taken at the moments of the greatest positive displace-
ment of the first pendulum) for m2=0.2 [kg]. In summary, the bifurcation diagram of
Figure 1.5(a) shows the existence of: (i) complete synchronization for m1=m2=1.0
[kg], (ii) almost complete synchronization for 1.0 [kg] > m2 >0.25 [kg], (iii) the
lack of synchronization and a quasiperiodic oscillations for m2 <0.25 [kg].

Fig. 1.5 Evolution from complete synchronization to quasiperiodic oscillations; (a) bifurca-
tion diagram for increasing values of m2, (b) time series of almost complete synchronization
for m1=1.0 [kg] and m2=0.3 [kg], (c) time series of quasiperiod oscillations for m1=1.0 [kg]
and m2=0.2 [kg], (d) Poincare map showing quasiperiodic oscillations for m1=1.0 [kg] and
m2=0.2 [kg]
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1.4.3 From Antiphase to Almost-Antiphase Synchronization

The evolution of system (1,2) behavior starting from antiphase synchronization of
identical pendulums (m1=m2=1.0) and the increase of the values of the control pa-
rameter m2 is illustrated in Figure 1.6(a-c). Figure 1.6(a) presents another bifurca-
tion diagram for the increasing values of m2 (m2 ∈[1.0,41.0]). This time we start
with a state of antiphase synchronization of pendulums with masses m1=m2=1.0
[kg], during which two pendulums are moving in the opposite way, such that
φ1(t)=−φ2(t) and the beam is at rest. The increase of bifurcation parameter m2
leads to the increase of the oscillations amplitude of pendulum 1 (with constant
mass (m1=1.0 [kg]) and decrease of the amplitude of the pendulum 2 (with increas-
ing mass m2). The pendulums remain in the state of almost-antiphase synchroniza-
tion as phase shift between their displacements is close to 180◦ as shown in Figure
1.6(b) for m1=1.0 [kg] and m2=2.0 [kg]. In Figure 1.6(b) displacements φ1 and
φ2 are almost in antiphase (difference between antiphase and almost antiphase is
hardly visible). The beam is oscillating and its displacement x is shifted by approx-
imately 90deg (respectively forward and backward) in relation to the pendulums’
displacements. The beam oscillations are caused by the energy transmitted to the
beam by pendulum 2. Part of this energy is dissipated in the beam damper cx and

Fig. 1.6 Evolution from antiphase to almost antiphase synchronization; (a) bifurcation di-
agram for increasing values of m2, (b) time series of almost antiphase synchronization for
m1=1.0 [kg] and m2=2.0 [kg], (c) Poincare map of quasiperiodic oscillations for m1=1.0
[kg] and m2=5.0 [kg]
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part is transferred to pendulum 1. As the results of this transfer pendulum 1 os-
cillates with the amplitude larger than initial Φ ≈ 15◦ (see discussion in Sec.1.3).
When mass m2 reaches a value equal to 4.45 [kg] the amplitude of pendulum 2
oscillations decreases below the critical value Φ ≈ γN = 5◦. In the interval 4.45
[kg] < m2 <5.3 [kg] we observe a quasiperiodic oscillations of the system (1,2),
in this range the escapement mechanism of pendulum 2 is turned off. The exam-
ple of quasiperidic oscillations is shown in Figure 1.6(c). There are two irregular
phases of these oscillations: (i) after turning off the escapement mechanism of pen-
dulum 2, it does not provide energy to pendulum 1, the amplitude of pendulum
1 oscillations decreases and simultaneously the amplitude of pendulum 2 oscilla-
tions increases and its escapement mechanism is turned on, (ii) after turning on of
the escapement mechanism of pendulum 2, it provides the energy to pendulum 1,
which causes the reduction of pendulum 2 amplitude and leads to the turn off of
the escapement mechanism. For m2 >5.3 [kg] the escapement mechanism of pen-
dulum 2 is still turned off and the system tends to almost antiphase synchronization.
The bifurcation diagram of Figure 1.6(a) shows the existence of: (i) antiphase syn-
chronization for m1=m2=1.0 [kg], (ii) almost-antiphase synchronization for 1.0 [kg]
< m2 <4.45 [kg], (iii) the lack of synchronization and quasi-periodic oscillations
for 4.45 [kg]<m2 <5.3 [kg].(iv) almost-antiphase synchronization with the turn off
of the escapement mechanism of pendulum 2 for m2 >5.3 [kg].

1.4.4 From Antiphase Synchronization to Quasiperiodic
Oscillations

The evolution of system (1,2) behavior starting from antiphase synchronization of
identical pendulums (m1=m2=1.0 [kg]) and the decrease of the values of the control
parameter m2 is illustrated in Figure 1.7(a,b)). Figure 1.7(a) shows the bifurcation
diagram of the system (1,2) for decreasing values of m2 (m2 decreases from an
initial value 1.0 [kg] up to 0.01 [kg]). We start from the state of antiphase synchro-
nization observed for m1=m2=1.0 [kg]. In the interval 1.0 [kg]> m2 >0.38 [kg]

Fig. 1.7 Evolution from antiphase synchronization to quasiperiodic oscillations; (a) bifurca-
tion diagram of system (1,2) for decreasing m2, (b) time series of almost antiphase synchro-
nization for m1=1.0 [kg], m2=0.5 [kg]
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both pendulums are in the state of almost antiphase synchronization. Its displace-
ments are out of phase by an angle close to 180◦ as shown in Figure 1.7(b) showing
the time series of φ1, φ2 and x for m1=1.0 [kg] and m2=0.5 [kg]. When the mass m2
decreases from 1.0 [kg] to 0.56 [kg], the amplitude of oscillations of pendulum 1
decreases and the amplitude of oscillations of pendulum 2 increases. In the interval
0.56 [kg]> m2 >0.38 [kg] we observe fast decrease of pendulum 2 amplitude up
to the limit value Φ ≈ γ = 5◦. For m2=0.38 [kg] system (1,2) changes the type of
the synchronization to almost complete (previously observed in Figure 1.5(b) and
described in Sec.1.4.3). Further reduction of m2 leads to the quasi-periodic motion
of the system (as described in Sec.1.4.3). The bifurcation diagram of Figure 1.7(a)
shows the existence of: (i) antiphase synchronization for m1 = m2=1.0 [kg], (ii) al-
most antiphase synchronization for 1.0 [kg]> m2 > 0.38 [kg], (iii) almost complete
synchronization for 0.38 [kg]> m2 >0.25 [kg], (iv) the lack of synchronization and
quasiperiodic oscillations for m2 <0.25 [kg].

1.5 From Complete to (Almost) Antiphase Synchronization

In the considered system of two clocks suspended on the horizontally movable beam
we identified the following types of synchronizations: (i) the complete synchroniza-
tion during which the pendulums’ displacements fulfill the relation φ1(t) = φ2(t)
and the phase shift between pendulums displacements φ1(t) and φ2(t) is equal to
zero, (ii) the almost complete synchronization during which the pendulums’ dis-
placements fulfill the relation φ1(t)≈ φ2(t) and the phase shift between pendulums’
displacements φ1(t) and φ2(t) is close to zero, (iii) antiphase synchronization during
which the pendulums’ displacements fulfill the relation φ1(t) = φ2(t) and the phase
shift between the pendulum displacements is equal to 180◦, (iv) almost antiphase
synchronization during which the phase shift between the pendulum displacements
is close to 180◦. Additionally, in our previous work we find the possibility of long pe-
riod synchronization during which the difference of the pendulums’ displacements
φ1 − φ2 is a periodic function of time and chaotic behavior of the clocks’ pendu-
lums (Czolczynski et al., 2011b). Note that types (i) and (iii) are possible only for
non robust case of identical pendulum masses (m1 = m2). For cases (ii) and (iv)
pendulums’ energy balance looks differently as can be shown in Figure 1.8(a-c).

(i) Energy balance in the state of almost complete synchronization
In the state of complete synchronization pendulums’ displacements fulfill the

relation φ1(t) = φ2(t), both dampers dissipate the same amount of energy and both
pendulums transfer the same amount of energy to the beam:

WDAMP
1 =

∫ T

0
cφφ̇2

1dt =
∫ T

0
cφφ̇2

2dt = WDAMP
2 ,

m2WSYN
1 =m2

∫ T

0
m1 ẍl cosφ1φ̇1dt = m1

∫ T

0
m2 ẍl cosφ2φ̇2dt = m1WSYN

2 .
(1.18)

After substituting the energy values satisfying eqs.(1.18) into eqs.(1.9), eqs.(1.9)
are not contradictory equations only in two cases: (i) masses of both pendulums are
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equal (m1 = m2) and both pendulums transmit the same amount of energy to the
beam (see Figure 1.8(a)), (ii) synchronization energies WSYN

1,2 are equal to zero, i.e.,
both pendulums dissipate the whole energy supplied by the escapement mechanism
(see Figure 1.8(b)). In general case when m1 �= m2 and cx �= 0.0, instead of com-
plete synchronization we observe almost complete synchronizations during which
the pendulums’ displacements are not identical (but close to each other) and one
gets the following expressions for considered energies

WDAMP
1 =

∫ T

0
cφφ̇2

1dt ≈
∫ T

0
cφφ̇2

2dt = WDAMP
2 ,

WSYN
1 =

∫ T

0
m1ẍl cos φ1φ̇1dt ≈

∫ T

0
m2ẍl cos φ2φ̇2dt = WSYN

2 .
(1.19)

which fulfills eqs.(1.9). The scheme of the energy balance is similar to the one in
Figure 1.8(a).

(ii). Energy balance in the state of almost antiphase synchronization
In the state of antiphase synchronization the pendulums’ displacements fulfill the

relation φ1(t) = −φ2(t) and both dampers dissipate the same amount of energy.
The energies transmitted to the beam have the same absolute values but opposite
signs, i.e.,

WDAMP
1 =

∫ T

0
cφφ̇2

1dt =
∫ T

0
cφφ̇2

2dt = WDAMP
2 ,

m2WSYN
1 =m2

∫ T

0
m1ẍl cos φ1φ̇1dt =−m1

∫ T

0
m2ẍl cos φ2φ̇2dt =−m1WSYN

2

(1.20)

After substituting the energy values satisfying eqs.(1.20) into eqs.(1.9), eqs.(1.9) are
not contradictory equations only when the beam acceleration is zero, which implies
the zero value of its velocity and displacement (in the synchronization state of the
behavior of the system is periodic). This condition requires a balancing of the forces
which pendulums act on the beam, and this in turn requires that the pendulum have
the same mass. The scheme of the energy balance is similar to the one in Figure
1.8(b). If the pendulums’ masses are different, instead of antiphase synchronization
we observe an almost-antiphase synchronization, during which the displacement
pendulums have different amplitude and phase shift between these displacements is
close, but not equal to 180◦. Hence

WDAMP
1 �= WDAMP

2 ,WSYN
1 �= WSYN

2 (1.21)

The energy balance for the case of almost antiphase synchronization is shown in
Figure 1.8(c). Part of the energy supplied by the escapement mechanism of pen-
dulum 1 (let us assume that it has smaller mass) WDRIVE

1 is dissipated by the
damper of this pendulum (WDAMP

1 ) and the rest (WSYN
1 ) is transmitted to the beam.

The damper of pendulum 2 dissipates the energy WDRIVE
2 supplied by the escape-

ments mechanism and energy (WSYN
2 ) transmitted from the beam (mathematically
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Fig. 1.8 Energy balance schemes: (a) almost complete synchronization – both pendulums
driver the beam, (b) antiphase synchronization – beam at rest, (c) almost antiphase synchro-
nization – pendulum 1 drives the beam and supplies energy to pendulum 2



1 What Huygens Was Able to Observe? 17

this energy is negative). The damper of the beam dissipates the rest of the energy
WSYN

1 : WSYN
beam =WSYN

1 − (−WSYN
2 ). Finally we give answer to the initial question

(posed in the title): our results give evidence that Huygens in his famous experiment
was unable to observe antiphase synchronization as stated in his letters (Huygens,
1665) but observed almost antiphase synchronization of two pendulum clocks. In
his times the distinction between antiphase and almost antiphase synchronization
for the clock with similar masses of the pendulums was impossible.
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Chapter 2
On the Synchronization of 1D and 2D
Multi-scroll Chaotic Oscillators

J.M. Muñoz-Pacheco, E. Zambrano-Serrano, O.G. Félix-Beltrán, E. Tlelo-Cuautle,
L.C. Gómez-Pavón, R. Trejo-Guerra, A. Luis-Ramos, and C. Sánchez-López

Abstract. In this chapter, the guidelines to synchronize one-directional (1D) and
two-directional (2D) multi-scroll chaos generators by means of Generalized Hamil-
tonian forms are presented. First, the multi-scroll chaotic oscillator is simulated
at the electronic system level by applying state-variables and piecewise-linear ap-
proaches. Besides, we apply scaling procedures to modify the breaking points,
slopes and frequency of the chaotic signals in order to reduce their excursion lev-
els within practical values for electronic devices. Second, a chaotic synchronization
scheme for multi-directional multi-scroll chaos generators is introduced. We use
Generalized Hamiltonian forms approach to determine the synchronization condi-
tions when one and two state-variables of the master system are sent to control the
nonlinear functions in the slave system. Additionally, two schemes are set-up to
transmit encrypted binary and analog signals by applying chaotic switching tech-
nique and additive chaotic masking, respectively. Both schemes are implemented
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by using traditional operational amplifiers. Finally, theoretical results are confirmed
by performing numerical and SPICE simulation results.

2.1 Introduction

The vast discipline of nonlinear engineering divides into two complementary prac-
tices: one that pursues the elimination of undesired nonlinear effects, and another
one that seeks to harness nonlinear effects for useful engineering purposes [1].
Focusing in the second practice, nonlinear science has had quite a triumph in all
conceivable applications in science and technology [1–6]. In this manner, the most
studied nonlinear phenomenon is the complex, random-like behavior called chaos.
Chaos can occur widely on both natural and man-made systems and it possesses
special features such as being extremely sensitive to tiny variations of its initial
conditions, fractional topological dimension and a positive Lyapunov exponent [2].

In recent years, chaotic systems have been an attractive field for research in var-
ious areas, among them physics, communications, robotics, and electronics where
there are potential applications involving true random number generators [7], liq-
uid mixers [8], cooperative robotics and robot navigation [9, 10], high-performance
electronics circuits like sigma-delta modulators [11], radar systems [12] and se-
cure communications [13, 14]. Although remarkable research efforts have been in-
vested in recent years, trying to export concepts from physics and mathematics into
real-world engineering applications, the circuit implementation of reliable nonlinear
circuits for generating various complex chaotic signals is a key issue for future appli-
cations of chaos [5]. In particular, creating various complex multi-directional multi-
scroll chaotic attractors by using some simple electronic devices is a topic of both
theoretical and practical interests [3]. However, it has been identified that it is quite
difficult to synthesize multi-directional multi-scrolls by analog electronic circuits
directly, because a wide dynamic range for the amplifiers is required for the physi-
cal realization of nonlinear resistors with multiple segments [3–5]. To cope with this
challenge, in [5] is presented an approach based on behavioral modeling for synthe-
sizing chaotic systems from mathematical level to electronic circuit level, which
offers one possible way to abstract the features of interest into a circuit block. Indi-
vidual blocks can be realized using diverse kinds of operational amplifiers [6], e.g.
voltage operational amplifiers [3, 5], current-feedback operational amplifiers [15],
current conveyors, etc. In this chapter, the 1D and 2D multi-scroll chaotic oscillator
is numerically simulated at the electronic system level by applying state-variables
and piecewise-linear approximations [5, 16]. Later, we apply a scaling procedure to
modify the breaking points and slopes of the saturated functions in order to reduce
the excursion levels of the chaotic signals within practical values for electronic de-
vices and finally, current-saturated and voltage-saturated functions are synthesized
using traditional voltage operational amplifiers [17].

In the applications side, some of the most pressing issues involve privacy and
security for processing communication signals [1–5]. This new practice is evolving
on many fronts and levels, reaching a state of maturity where it can be applied to
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real-world problems. However, a synchronization process is highly required in order
to exploit chaos based secure communications [15]. The classical synchronization
has been known since at least the seventeenth century; what was unexpected was
that a similar phenomenon could be had with chaotic signals, as demonstrated by
Pecora and Carroll in 1990 [18]. This issue generates a turning point in the inves-
tigation of chaos for communication systems, which allows chaos to be modulated
and demodulated like in an analog carrier. We can count five basic chaotic synchro-
nization techniques [19]:

• Master-slave synchronization: It is based on an autonomous system that unidi-
rectionally drives a stable subsystem.

• Non-autonomous synchronization: It is based on a non-autonomous system that
unidirectionally drives a stable identical non-autonomous system.

• Inverse system synchronization: It is based on a receiver that is a formal dynami-
cal inverse of the transmitter, which will reproduce the latter’s forcing function.

• Adaptive control synchronization: It is based on the numerous variants of adap-
tive control for chaotic systems.

• Coupled synchronization: It is based on bidirectionally coupled identical systems
similar to the traditional classical form involving sinusoidal oscillators.

The first four forms of chaotic synchronization are suitable for standard commu-
nications purposes, while the fifth is suitable for network communications [19].
Focusing on the former technique, this chapter introduces the guidelines to syn-
chronize one-directional (1D) and two-directional (2D) multi-scroll chaos genera-
tors by means of Generalized Hamiltonian forms because it has foremost advantages
over other synchronization methods [20], namely: a) enables synchronization to be
achieved in a systematic way and clarifies the issue of deciding on the nature of
the output signal to be transmitted; b) it can be successfully applied to several well-
known chaotic systems; c) it does not require the computations of any Lyapunov
exponent and; d) it does not require initial conditions belonging to the same basin
of attraction. Recently, multi-scroll chaotic oscillators have been addressed as a po-
tential solution to improve the security in encrypted communications by using their
native properties; i.e. the direction (1D or 2D) of the chaotic attractor; the effort to
estimate chaotic dynamics according to the system parameters and the high sensitiv-
ity of chaotic systems to initial conditions. These characteristics imply strong cryp-
tographic properties for data encryption, which makes them robust against attacks
on the public channel [20, 21]. Because of the newness of these discoveries, many
studies are still needed to face important engineering and operational issues [4].

The aim of this chapter is to present an approach for synchronizing 1D and 2D
multi-scroll chaos generators by controlling the nonlinear functions in the nonlin-
ear observer with a combination of the number of state-variables from the master
system. The difference of this approach, compared with other papers on this sub-
ject [22], is the introduction of the synchronization conditions for multi-dimensional
(1D, 2D, and 3D) chaos generators with multiple nonlinear functions, no matter the
values of their Lyapunov exponents. Also, it is proposed a quasi-optimal region for
synchronization gains.



22 J.M. Muñoz-Pacheco et al.

The safeguard of information is a central and old problem of great interest for
the humanity. Nowadays, data security plays an increasing role in common life;
e.g. Internet, banking, commerce, industry, personal communications, etc. Different
methods have been proposed for implementing and demonstrating analog or digital
modulation of information using a chaotic carrier. In essence, the information is hid-
den in the noise in transmission and can be extracted or decoding in the receiver us-
ing the inherent determinism of chaos and subtracting or filtering operations. Major
chaos-based modulation methods being investigated and developed internationally
for communication applications, including [19]:

• Additive chaotic masking: Here, the information is added to the carrier as a small
perturbation and usually demodulated using a cascaded form of master-slave syn-
chronization.

• Chaotic switching: Here, an analog signal of finite duration represents a digital
symbol consisting of one or more bits. In this case, the digital symbol is uniquely
mapped to an analog waveform segment coming from a distinct region of a single
strange attractor.

• Forcing function modulation: Here, a sinusoidal forcing function in a nonau-
tonomous chaotic system is analog or digitally modulated with the information
in a classical manner, with the transmitted signal being some other state variable.
This modulation typically involves the nonautonomous or inverse synchroniza-
tion methods and is the basis for the Aerospace development effort addressing
high-data-rate, chaos-based communications.

• Multiplicative chaotic mixing: It is based on a chaos-based version of the tradi-
tional direct-sequence spread-spectrum approach, except in this case; the receiver
actually divides by the chaotic carrier to extract the original information.

• Parametric modulation: In this case, the information directly modulates a cir-
cuit parameter value (such as resistance, capacitance, or inductance), and some
state variable from the chaotic system is sent that contains the information in a
complex manner.

• Independent source modulation: Here, the information becomes an independent
voltage/current source that is inserted in the chaotic transmitter circuit.

• Generalized modulation: In this approach, the information and chaotic carrier are
combined in a more general invertible manner.

Implications between theoretical postulates and engineering applications are being
pursued by researches in order to exploit the deterministic, yet random-like behavior
of chaos, particularly with regard to inherently secure signal processing and trans-
mission. In this manner, this chapter also presents two chaos-based communication
schemes to transmit encrypted information. First, a scheme is set-up to transmit bi-
nary signals by applying chaotic switching technique [19–21]. Both, the coupling
signal and the confidential message are sent by only one transmission channel. Ad-
ditionally, a second scheme is proposed to encrypted analog signals by using ad-
ditive chaotic masking, which uses two transmission channels [19–21]. Theoretical
results are confirmed by performing numerical and SPICE simulations to show the
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usefulness of the proposed synchronization technique. Finally, we use traditional
operational amplifiers for designing the encryption schemes.

The chapter is organized as follows: the circuit synthesis of the 1D and 2D multi-
scroll chaotic oscillators is covered in section 2.2. The Generalized Hamiltonian
forms and synchronization conditions for 2D-4- and 3D-4-scroll chaos generators
are discussed in section 2.3. Design tradeoffs of the proposed encrypted communi-
cation schemes as well as SPICE simulations are introduced in section 2.4. Finally,
the conclusions are summarized in section 2.5.

2.2 General Aspects for the Amplifiers-Based Design of Chaotic
Oscillators

The design methodology for chaotic systems is performed by three hierarchical lev-
els as introduced in [5, 17]. The high-level descriptions capture the behavior of the
chaotic attractor and include the number of scrolls, position of the scrolls, voltage or
current level of the chaotic signals, and frequency of the attractor. Besides, the real-
ization of a nonlinear characteristic with multi-segments is needed for implementing
chaotic attractors with multi-directional orientation.

2.2.1 High-Level Modeling

The continuous-time chaos generator in (2.1) is taken as the core for generating
chaotic behavior in 1D, 2D and 3D. The chaotic system is modeled by applying
state variables approach, where x,y,z are the state variables and a,b, c positive real
constants. To guide the linear system (2.1) to generate chaotic behavior in 1D, 2D
and 3D; one, two or three nonlinear controllers should be added to stretch and fold
the trajectories of the system repeatedly, respectively. The nonlinear functions are
approximated by using the piecewise-linear (PWL) approximation defined by (2.2),
where k > 0 is the slope and plateau of the saturated function series, h > 2 is the
saturated delay time of the saturated function series, p and q are positive integers
and α is the breakpoint; as depicted in Fig. 2.1. Details on the 1D n-scrolls attractor
behavioral modeling are given in [5]. 2D chaotic attractors are obtained by using
(2.3) [17].

ẋ = y
ẏ = z
ż = −ax− by− cz + d1 f (x;k1,h1, p1,q1),

(2.1)

f (x;α,k,h, p,q) =

⎧⎪⎪⎨
⎪⎪⎩

(2q + 1)k, if x > qh + α
k/α(x − ih) + 2ik, if |x− ih| ≤ α,−p ≤ i ≤ q
(2i + 1)k, if ih + α < x < (i + 1)h − α,−p ≤ i ≤ q− 1
−(2p + 1)k, if x < −ph− α.

(2.2)
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ẋ = y− d2
b f (y;k2,h2, p2,q2)

ẏ = z
ż = −ax− by− cz + d1 f (x;k1,h1, p1,q1) + d2 f (y;k2,h2, p2,q2),

(2.3)

f(x)

2k

h h+h-

k

x
h h+h-

k

k

3k

f(x)

x
αα α α α

Fig. 2.1 PWL function to generate odd and even n-scrolls

Note that for implementing multi-directional multi-scroll attractors using practi-
cal operational amplifiers (opamps), a scaling procedure should be applied on the
excursion levels of the chaotic signals, to accomodate the maximum dynamic range
of the opamps [17]. In this manner, α is used to change the breakpoints of the PWL
function and consequently reduce the excursion of the signal. Similarly, by chang-
ing the value of the passive elements (capacitors and inductors), one can modify the
frequency response of the attractor as shown in [23].

2.2.2 Opamp-Based Circuit Synthesis

A voltage-saturated function can emulate the behavior of the PWL function shown
in Fig. 2.1. Therefore, the opamp finite-gain model is herein used to synthesize
the nonlinear controller. In [17] is proposed a generic basic cell based in opamps
devoted to generate the required plateaus and slopes. For instance, Fig. 2.2 shows
the circuit synthesis of a PWL function to generate a 2D-4-scroll chaotic attractor,
where Rc realizes the current-voltage transformation. By parallel-connecting basic
cells, one can obtain a higher number of scrolls [5, 17]. The value of the plateaus k,
in voltage and current, the breakpoints α, and the saturated delay h are close related
to the gain, bandwidth, slew rate and saturation of the opamps by using SPICE
macro-models and Verilog-A behavioral models [5]. Moreover, the chaotic system
in (2.3) can also be synthesized using opamps, as shown in Fig. 2.3. Note that, the
blocks SF(x1) and SF(x2) represent the PWL functions in Fig. 2.2.

By selecting Vsat =±6.4V, R = 10KΩ, Rca = 64KΩ, Ria = 1KΩ and R f a =
1MΩ, in Fig. 2.2; and C = 2.2nF, Rx = Ry= Rz = 7KΩ, Ri = R f = 10KΩ in Fig.
2.3 one gets a 2D-4-scrolls chaotic oscillator as shown in Fig. 2.4. The Lyapunov
exponents are computed by using the method published in [24]. These are LE1=
0.155, LE2=0, LE3=-0.851.
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Fig. 2.2 Opamp-based synthesis of PWL function in Fig. 2.1
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Fig. 2.3 Opamp-based synthesis of chaotic system in (2.3)

2.3 Hamiltonian-Based Synchronization of Multi-directional
Multi-scroll Chaotic Oscillators

Synchronizing chaotic oscillators implemented with electronic devices is quite im-
portant in engineering, such as in secure communications [10,13,21,25–27]. Robust
applications require chaotic oscillators with more complex behavior than by simply
using traditional double scroll attractors [23, 25], e.g. chaotic oscillators generating
multi-scrolls (1D) [3, 6, 15, 24, 28], and multi-directional behavior (2D) [5, 17, 29].
Because the multi-direction of a chaotic attractor (1D and 2D), is closely linked to
an increased number of equilibrium points and consequently an increased effort to
estimate chaotic dynamics according to the system parameters and the high sensi-
tivity of the chaotic systems to initial conditions.
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Fig. 2.4 SPICE simulation results of a 2D-4-scrolls chaotic attractor

Lets us consider the dynamical system

ẋ = f (x) (2.4)

where x ∈ Rn is the state vector and f : Rn → Rn is a nonlinear function; so that
(2.4) can be written in the following generalized canonical form [20]:

ẋ = J(x) ∂H
∂x + S(x) ∂H

∂x , x ∈ Rn, (2.5)

where H(x) describes an energy function which is globally positive-definite in Rn.
The gradient vector of H(x), denoted by ∂H/∂x, is assumed that exists every-
where [20]. Frequently, quadratic energy functions of the form: H(x) = 1

2 xt Mx, are
used, with M being a symmetric matrix positive-definite. In this case ∂H/∂x = Mx.
The squared matrices J(x) and S(x) in (2.5) satisfy: J(x) + JT(x) = 0 and S(x) =
ST(x) which represents the energy structure of the system [20–25]. Considered a
special class of generalized Hamiltonian systems with destabilizing vector fields
and linear output y, it is given by

ẋ = J(y) ∂H
∂x + S(y) ∂H

∂x + F(y), x ∈ Rn

y = C ∂H
∂x , y ∈ Rm (2.6)

being S a constant symmetric matrix, y the output vector of the system and C a
constant matrix. By selecting ξ as the estimated state vector of x, and η as the
estimated output in terms of ξ; a dynamic nonlinear state observer for (2.6) is given
in (2.7); with K being a constant vector, known as the observer gain [20].

ξ̇ = J(y) ∂H
∂ξ + S(y) ∂H

∂ξ + F(y) + K(y− η),
η = C ∂H

∂ξ .
(2.7)
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The following theorems must be accomplished in order to demonstrate the synchro-
nization by using generalized Hamiltonian forms [20–25].

Theorem 2.1. The state x of the nonlinear system (2.6) can be globally, exponen-
tially, asymptotically estimated by the state ξ of an observer of the form (2.7), if the
pair of matrices C,S are either observable or, at least, detectable.

Theorem 2.2. The state x of the nonlinear system (2.6) can be globally, exponen-
tially, asymptotically estimated, by the state ξ of the observer (2.7) if and only if
there is a constant matrix K; such as [W − KC] + [W − KC]T = 2[S − 1

2 (KC −
CTKT)], and is negative definite.

2.3.1 Synchronization of 2D-4-Scroll Chaos Generators

Lets us consider the 2D multi-scroll chaotic system defined by (2.3), we propose a
Hamilton energy function and its gradient vector as given in (2.8) and (2.9), respec-
tively.

H(x) =
1
2

[
ax2

1 + bx2
2 + x2

3

]
, (2.8)

∂H
∂x

=

⎡
⎣ ax1

bx2
x3

⎤
⎦ , (2.9)

One can obtain the matrices S and J as shown in (2.10) and (2.11), respectively. Thay
way, the 2D chaos generator in (2.3) can be described in generalized Hamiltonian
forms given in (2.6) and (2.7), as shown in (2.12) and (2.13), where (2.13) is the
nonlinear state observer of (2.12).

S(x) =
1
2

⎧⎨
⎩
⎡
⎣ 0 1

b 0
0 0 1
−1 −1 −c

⎤
⎦+

⎡
⎣ 0 0 −1

1
b 0 −1
0 1 −c

⎤
⎦
⎫⎬
⎭ =

⎡
⎣ 0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤
⎦ (2.10)

J(x) =
1
2

⎧⎨
⎩
⎡
⎣ 0 1

b 0
0 0 1
−1 −1 −c

⎤
⎦−

⎡
⎣ 0 0 −1

1
b 0 −1
0 1 −c

⎤
⎦
⎫⎬
⎭ =

⎡
⎣ 0 1

2b
1
2

− 1
2b 0 1

− 1
2 −1 0

⎤
⎦ . (2.11)

⎡
⎣ ẋ1

ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ 0 1

2b
1
2

− 1
2b 0 1

− 1
2 −1 0

⎤
⎦ ∂H

∂x
+

⎡
⎣ 0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤
⎦ ∂H

∂x
+

⎡
⎣ − d2

b f (x2)
0

d1 f (x1) + d2 f (x2)

⎤
⎦ (2.12)

⎡
⎣ ξ̇1

ξ̇2
ξ̇3

⎤
⎦ =

⎡
⎣ 0 1

2b
1
2

− 1
2b 0 1

− 1
2 −1 0

⎤
⎦ ∂H

∂ξ
+

⎡
⎣ 0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤
⎦ ∂H

∂ξ
(2.13)



28 J.M. Muñoz-Pacheco et al.

+

⎡
⎣ − d2

b f (x2)
0

d1 f (x1) + d2 f (x2)

⎤
⎦+

⎡
⎣ k1 k4

k2 k5
k3 k6

⎤
⎦ (y− η).

with η being

η =

[
d1
a

d2
b 0

0 d2
b2 0

]
∂H
∂ξ

(2.14)

By evaluating the stability of the approach using Observability’s criterion, one
obtains

det

∣∣∣∣∣∣∣∣
d1
a

d2
2b2

(
1

4b2 +
1
4b

)
d1

a
d2
b

d1
2ab

d2
4b3

0 − d1
2a

cd1
2a − d2

4b2

∣∣∣∣∣∣∣∣
�= 0, (2.15)

Besides, it is also necessary to demonstrate Theorem 2.2, in order to gain insight
about the synchronization of two-directional chaos generators. So that matrices S,
C and K are used to evaluate the equation in Theorem 2.2, resulting on (2.16).

2

⎡
⎢⎣
⎡
⎣ 0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤
⎦− 1

2

⎧⎪⎨
⎪⎩
⎡
⎣ k1 k4

k2 k5
k3 k6

⎤
⎦
[

d1
a

d2
b 0

0 d2
b2 0

]
+

⎡
⎢⎣

d1
a 0

d2
b

d2
b2

0 0

⎤
⎥⎦
[

k1 k2 k3
k4 k5 k6

]⎫⎪⎬
⎪⎭
⎤
⎥⎦

=

⎡
⎢⎣

− 2k1d1
a

1
b − k1d2

b − k4d2
b2 − k2d1

a −1− k3d1
a

1
b − k1d2

b − k4d2
b2 − k2d1

a − 2k2d2
b − k5d2

b2 − k3d2
b − k6d2

b2

− 1
b − k3d1

a − k3d2
b − k6d2

b2 −2c

⎤
⎥⎦

(2.16)
The Sylvester’s criterion [20–25], is used herein to demonstrate that the matrix in
(2.16) is negative definite. Indeed, the values for the observer gain, matrix in (2.13),
are also obtained by calculating the roots of the determinants in (2.16). For the first
determinant, one obtains

−2k1d1

a
< 0 =⇒ k1 > 0 (2.17)

Equation (2.18) is obtained by solving for the minor of the matrix 2x2 in (2.16).

det = − 1
b4a2

(
−2k1d1d2b3ak2 − 4k1d1d2b2ak5 + b2a2 − 2b2a2k1d2 − 2ba2k4d2 (2.18)

−2b3ak2d1 + k2
1d2

2b2a2 + 2k1d2
2ba2k4 + k2

4d2
2a2 + 2k4d2ak2d1b2 + k2

2d2
1b4

)
< 0

Considering that k1 = k4, k2 = k5 y k3 = k6, (2.18) can be updated by (2.19). This
assumption is valid since the nonlinear functions f (x1) and f (x2) in (2.11) are the
same.

det2 = − 1
b4a2

(
−2k1d1d2b3ak2 − 2k1d1d2b2ak2 + b2a2 − 2b2a2k1d2 − 2ba2k1d2

(2.19)
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−2b3ak2d1 + k2
1d2

2b2a2 + 2k2
1d2

2ba2 + k2
1d2

2a2 + k2
2d2

1b4
)
< 0

By solving (2.19), the interval values for K2 are obtained as shown in (2.20).(
b + k1d2b + k1d2 − 2

√
b2k1d2 + k1d2b

)
a

d1b2 < k2 (2.20)

<

(
b + k1d2b + k1d2 + 2

√
b2k1d2 + k1d2b

)
a

d1b2 .

Note that, K3 since it has no influence on the observable eigenvalues of the noncon-
servative structure of the 2D chaos generator.

2.3.2 Synchronization of 3D-4-Scroll Chaos Generators

Lets us consider the 3D-multi-scroll chaotic system defined by (2.21), with f (x1),
f (x2) and f (x3) being a PWL function.

ẋ1 = x2 − d2
b f (x2)

ẋ2 = x3 − d3
b f (x3)

ẋ3 = −ax1 − bx2 − cx3 + d1 f (x1) + d2 f (x2) + d3 f (x3),
(2.21)

where x1, x2, x3 are state-variables, and a,b, c,d1,d2,d3 = 0.7 are positive real con-
stants. By using (2.6), (2.7) and (2.9), the 3D chaos generator in (2.21) can be de-
scribed in generalized Hamiltonian forms given in (2.5) as shown in (2.22). Conse-
quently, the nonlinear state observer for 3D chaos generator in (2.21), according to
(2.7), is shown in (2.23).⎡

⎣ ẋ1
ẋ2
ẋ3

⎤
⎦=

⎡
⎣ 0 1

2b
1
2

− 1
2b 0 1

− 1
2 −1 0

⎤
⎦ ∂H

∂x
+

⎡
⎣ 0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤
⎦ ∂H

∂x

+

⎡
⎣ − d2

b f (x2)

− d3
b f (x3)

d1 f (x1) + d2 f (x2) + d3 f (x3)

⎤
⎦ (2.22)

⎡
⎣ ξ̇1

ξ̇2
ξ̇3

⎤
⎦ =

⎡
⎣ 0 1

2b
1
2

− 1
2b 0 1

− 1
2 −1 0

⎤
⎦ ∂H

∂ξ
+

⎡
⎣ 0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤
⎦ ∂H

∂ξ

+

⎡
⎣ − d2

b f (x2)

− d3
b f (x3)

d1 f (x1) + d2 f (x2) + d3 f (x3)

⎤
⎦+

⎡
⎣ k1 k4 k7

k2 k5 k8
k3 k6 k9

⎤
⎦ (y− η). (2.23)
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with η being

η =

⎡
⎢⎣

d1
a

d2
b

d3
b

0 d2
b2 0

0 0 d3
b

⎤
⎥⎦ ∂H

∂ξ
(2.24)

According to (2.15), the approach is stable and the demonstration of Theorem 2.2
for the synchronization of three-directional chaos generators is given in (2.25), by
using the matrices S,K, and C in (2.10), (2.23) and (2.24), respectively.

⎡
⎢⎣ − 2k1d1

a
1
b − k1d2

b − k4d2
b2 − k2d1

a −1− k3d1
a − k1d3

b − k7d3
b

1
b − k1d2

b − k4d2
b2 − k2d1

a − 2k2d2
b − 2k5d2

b2 − k2d3
b − k8d3

b − k3d2
b − k6d2

b2

− 1
b − k3d1

a − k1d3
b − k7d3

b − k2d3
b − k8d3

b − k3d2
b − k6d2

b2 −2c− 2k3d3
b − k9d3

b

⎤
⎥⎦

(2.25)

Similarly, the values of the observer gain are calculated by using the Sylvester’s cri-
terion as previously shown in subsection 2.3.1. Note that the first two determinants
in (2.25) are identical to that on (2.16), since the extra nonlinear function f (x3)
is only related to state-variable x3. In this manner, the intervals for k1 and k2 are
also given by (2.17) and (2.19), respectively. Now, considering that k1 = k4 = k7,
k2 = k5 = k8 and k3 = k6 = k9, since the nonlinear functions f (x1), f (x2) and
f (x3) in (2.23) are the same. By evaluating (2.23), it is found the interval of values
for k3 shown in (2.27). For sake of simplicity, the results are shown by substituting
the values of a,b, c,d1,d2,d3 = 0.7.

det3×3 = 16.58k3 − 9.71k1 + 9.78k2 + 0.18k2k3 − 3.45k2
2 + 6.93k2

3 + 16.42k1k2 (2.26)

−(2e− 9)k1k2
3 − 28.20k3k1 + 8.25k2

1 + (2e− 9)k1k2k3 + 2.85 < 0

k3 =
4.14e9

−3.46e9 + k1
+

4.59e7k2

−3.46e9 + k1
− 4.05e9k1
−3.46e9 + k1

+
0.50k1k2

−3.46e9 + k1

+
1

−3.46e9 + k1
(0.50(4.89e19− 6.7e19k2 − 1.66e20k1 − 1.16e20k1k2

+2.39e19k2
2 − 6.73e9k1k2

2 + 1.41e20k2
14.64e9k2

1k2 + k2
1k2

2 + 1.65e10k3
1

)1/2
) (2.27)

2.3.3 Numerical Simulation Results

This section is devoted to show the usefulness of the proposed approach. By select-
ing k1 = k4 = 1, k2 = k5 = 2 and k3 = k6 = 0 for the observer in (2.13), one obtains
the synchronization of 2D-4-scroll chaos generators, the coincidence of their states
is represented by a straight line, with slope equal to unity, in the phase plane for
each state and its error ex, which is the difference between the observed state x and
the estimated state ξ, as shown in Fig. 2.5 and Fig. 2.6, respectively.

By selecting k1 = k4 = k7 = 1, k2 = k5 = k8 = 2 and k3 = k6 = k9 = 0 for the
observer in (2.23); one obtains Fig. 2.7 and Fig. 2.8.
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Fig. 2.5 (a) Observed and estimated state in time-domain for two 2D-4-scroll chaos genera-
tors, (b) Error between the synchronized 2D-4-scroll chaos generators

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x(1)

x'
(1
)

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x(2)

x'
(2
)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x(3)

x'
(3
)

Fig. 2.6 Phase plane diagrams for the state-variables in (2.12) and (2.13)

A prediction of the values for the observer gain is shown in Fig. 2.9. The solution
is calculated from (2.20) and any value selected between solution (+) and solution
(-) as shown in Fig. 2.9 leads to the synchronization for 2D and 3D-multi-scroll
chaos generators given in (2.3) and (2.21).
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2.4 Design of Chaos-Based Encrypted Communication Schemes

The multi-directional multi-scroll chaotic system introduced in section 2.2 and pre-
viously synchronized is used to design two synchronization schemes in order to
transmit confidential information [21]. As a result, the proposed scheme is shown
in Fig. 2.10 when 1D-4-scroll chaotic oscillator is used. It can be seen from Fig.
2.10 that x1 will be the coupling signal f (y) which is transmitted from the master
circuit to the observer. As one can infer, the nonlinear component SF in Fig. 2.10, is
expected to be controlled directly by the master circuit.

The following subsections introduce two schemes for sending encrypted infor-
mation using the synchronized circuit shown above by selecting Rix = 10KΩ,
C = 2.2n f , R = 7KΩ, Rx = Ry = Rz = 10KΩ, Ri = 10KΩ, R f = 10KΩ,
Rhio = 10kΩ, Rh f o = 3.9MΩ, Rhko = 18Ω. Resistor Rhko transforms the output
voltage from the opamp in a current feedback that is injected to the slave system.
Note that, the difference between the master signal and slave signal is compared at
the differential amplifier and its error signal must be sent to the slave in order to
progressively minimize the error and reach the synchronization. On the other hand,
the necessary and sufficient condition, for master-slave synchronization to occur, is
that the non-driven slave subsystem must be asymptotically stable. This is proved
by adopting the generalized Hamiltonian forms as demonstrated in this chapter, be-
cause it does not require initial conditions belonging to the same basin of attraction.
Therefore, the time-series generated from the slave and master circuits will con-
verge as time increases. This is valid if the necessary and sufficient conditions are
satisfied. In this context, Hamilton offers a good method for synchronizing chaotic
systems, independently of their initial conditions. However, if the parameters of the
circuits suffer a several variation, the chaotic behavior disappears. Advanced circuit
analysis such as corner analysis [28] could be used to estimate the impact of these
non-idealities.
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Fig. 2.10 Circuit diagram to synchronize 1D multi-scrolls chaotic oscillators

2.4.1 Binary Transmission

A state from the original chaotic system is usually pointed by the Hamiltonian
approach as the signal to be transmitted. This makes possible the synchronization
in the receiver circuit and also to notice the differences (error signal) experienced
when the master circuit has been perturbed regarding the information to be trans-
mitted [19, 29]. From Fig. 2.10, the coupling signal (data carrier) is x1. In order to
transmit binary data using the chaotic switching technique [19], six components in
the transmitter of Fig. 2.11(a) are chosen to switch between two different values for
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experimenting the synchronizing and no-synchronizing of the receiver to the signal
x1. Therefore, the consequent changes in the synchronization error are available at
the receiver as a voltage [13,14]. The basic idea of this scheme is as follows: A pri-
vate message is transmitted over an insecure communication channel. To avoid any
unauthorized intruder located at the mentioned channel; the message is encrypted
prior to transmission to generate an encrypted message by using two n-chaotic os-
cillators that generate, in this case, 1D-4-scrolls.

The encrypted binary message is sent to the receiver, where the message is re-
covered by the synchronization error. The chaotic switching technique is based on
one transmission channel, which is a remarkable feature, since a single channel is
usually available for communication applications [19].

A secure channel (bold line in Fig.2.11(a)) is used for transmission of data and
the synchronization keys, which are obtained by switching the parameters that de-
termine the dynamics of the chaotic oscillators; such as: Rx = Ry = Rz = 10KΩ,
Rca = 100KΩ, R f a = 1MΩ, Ria = 10KΩ, E1 = 2V; and Rxb = Ryb = Rzb =
11KΩ, Rcb = 105KΩ, R f = 10KΩ, Ri = 10KΩ E1 = 2V, R = 7KΩ, at transmit-
ter and receiver, respectively. With these values, the transmitter exhibits two differ-
ent but qualitatively similar chaotic attractors. Therefore, to encoding ”1” or ”0” the
private message is used to drive switches in Fig. 2.4. SPICE simulation results for
the encrypted transmission of 8 bits are shown in Fig. 2.12(a).

Although chaotic switching is more robust and simplest form of chaotic param-
eter modulation, it suffers from a lower information transmission rate because the
receiver has to wait until synchronization is achieved [19–21]. Nevertheless, given
the observer-based synchronization scheme, the convergence rate of synchroniza-
tion can be assigned by appropriately selecting the observer gain given by k [25].
High information transmission rate may cause big synchronization error which used
to decode binary signals.

2.4.2 Analog Transmission

The experimental set-up to transmit private analog signals by chaotic additive mask-
ing [19–21] is shown in Fig. 2.11(b). The basic idea is similar to the previously
proposed one to transmit binary data. With respect to the observer equation, the sys-
tem requires the injection of a current proportional to the error signal, between state
x1 and ξ1. Therefore, the transmitter and receiver circuits are synchronized when
the chaotic signal x1(t) is sent by the first channel; while the confidential mes-
sage m(t) is encrypted in the chaotic signal x2(t) by means of a additive process
with Rs = 10KΩ. In this manner, the confidential information is sent by the second
channel. To recover the original message, it is only necessary to apply the reverse
operation as shown in Fig. 2.12(b).
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2.5 Conclusions

It has been shown the synthesis of 2D-4-scrolls attractors by behavioral modeling.
The 2D multi-scroll chaotic oscillator was modeled by state-variables and PWL ap-
proximations, and the synthesis process was focused on the implementation of PWL
approximations by scaling the excursion levels of the chaotic signals to implement
those ones using opamps. In this manner, it was shown that voltage and current satu-
rated functions can be synthesized with opamps by controlling the break points and
slopes. As a result, guidelines to synchronize multi-directional multi-scroll chaos
generators were introduced. In particular, it was shown the synchronization of 2D-
4-scroll and 3D-4 scroll chaotic attractors by using the generalized Hamiltonian
forms. The synchronization was achieved by controlling the nonlinear functions in
the slave chaos generator with the state-variables from the master chaos generator.
Furthermore, it has also been presented a prediction for the values of the observer
gain.

To demonstrate the potential application of multi-directional multi-scroll chaotic
systems in secure communications, two communication schemes of practical re-
alization to transmit encrypted confidential information, in particular, binary and
analog messages, were presented. The proposed communication schemes are based
on chaotic switching and chaotic additive masking, respectively. Since SPICE sim-
ulations are in good agreement with theoretical results, we can conclude on the
usefulness of the proposed synchronization approach. Finally, we use traditional op-
erational amplifiers for designing the encryption schemes. This is an important part
of the chapter since it opens new lines for future research on the implementations
using different kinds of electronic devices.
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Chapter 3
Nonlinear Filtering of Chaos for Real Time
Applications

V. Kontorovich and Z. Lovtchikova

Abstract. Nowadays chaotic modelling of real phenomena in electrical engineer-
ing problems, particularly in communications, control, etc, is a topic of growing
interest. Therefore, the filtering of chaos is one of the most important techniques for
many applications including those which are related to real- time regime conditions.
These applications include, but are not limited to chaos-based communication sys-
tem synchronization, real-time control of chaos, radio-frequency interference filter-
ing and mitigation, chaotic system identification, etc. This chapter presents among
well known original results of a study of nonlinear filtering of chaotic signals in
presence of additive white Gaussian noise (AWGN) and related topics.

3.1 Introduction

Chaos filtering is one of the most important techniques for many applications
of chaos: chaos-based communications, control systems, interference modelling,
chaotic system identification, etc. In fact, the complete list of references related to
this topic is enormous and it is hardly possible to provide it. However, to get famil-
iar to some of them, it is possible to make search at [18–20] and references therein.
Despite of the growing interest of researches, practical specialists and academics in
the topics of chaos filtering, some of the main problems related to real time applica-
tions of nonlinear algorithms are still not solved. For instance: why chaos filtering
(even for quasi-optimum cases) provide with higher accuracy of filtering compared
with traditional models?, which is the reasonable compromise between accuracy
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requirements for filtering and complexity of algorithms?, how to improve the accu-
racy of filtering for low Signal/Noise scenarios? and many, many others. Sure, in the
framework of the short chapter it is hardly possible to give the complete answers on
those questions and many others about filter synchronization, chaos quantification,
etc immensely important for this topic.Due to the lack of space, authors decided
to concentrate on the presentation of the original material of quasi-optimum algo-
rithms of nonlinear filtering for low-dimensional chaotic signals and of the trends of
their improvement in order to encourage readers to pay attention to this new trends.

The first part of this chapter is a brief extraction from a previous publication
[12] not related to filtering and dedicated to the cumulants analysis of chaos It is
shown that chaotic signals generated by strange attractors and applied as models
for real time phenomena can be considered as Non-Gaussian stochastic process.
Moreover, it is explained that these chaotic signals can be seen as a degenerated
or quasi-deterministic Markov processes described by Stochastic Differential Equa-
tions (SDE) with external white noise force tending to zero. This material is intro-
ductory and helps for better understanding of the ongoing material. Then, the prob-
lem of optimum filtering of chaos as a degenerated Markov process is described
following the fundamental ideas of R. Stratonovich and H. Kushner.

Chaotic signals considered in this chapter for modelling real phenomena in the
filtering problem are those generated from the well known attractors: Lorentz, Chua
and Rössler.

Optimum filtering algorithms are difficult to implement in real-time applica-
tions. In this regard, the approximate nonlinear algorithms are considered: Extended
Kalman Filter(EKF), Functional, Integral approximation approaches for a-posteriori
PDF, Unscented filter algorithms, Quadrature Kalman Filters, etc., and the results
of the comparative study of these algorithms are presented. Then, one opportunistic
approach for improving of the filtering accuracy is discussed as well.

3.2 Chaotic Modelling of Random Signals

It is well known [4], that each dissipative continuous time dynamic system (strange
attractor) can be defined with the following equation:

ẋ = f(x(t)), x ∈ Rn, x(t0) = x0, (3.1)

where f (•) = [ f1 (x) , ..., f1 (x)]T

Chaotic attractors, described by (3.1) can be classified as hyperbolic, quasi-
hyperbolic and non-hyperbolic [5]. All attractors, considered here (see, for ex-
ample [4, 5]) are of the quasi-hyperbolic or non-hyperbolic type: (Lorenz, Chua,
Rössler, etc.). The quasi-hyperbolic attractors do not actually differ from the hyper-
bolic (robust, ideal) attractors and the existence of an invariant measure for them
is practically guaranteed (see details in [1, 2]). If the invariant measure is a station-
ary PDF of the chaos, then its existence is immensely important for the applica-
tions. In the following, we will take a physical measure [12] as an invariant measure
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applying the following idea of Kolmogorov: in (3.1) weak external noise ξ(t) has
to be considered, i.e

ẋ = f(x(t) + εξ(t)) (3.2)

where ξ(t) is a vector of a weak external white noise with the related positive de-
fined matrix of “intensities” ε =

[
ε ij
]nxn

It can be seen that (3.2) is a Stochastic Differential Equation (SDE), gener-
ating the continuous Markov process with a physical measure (PDF) [4, 5, 20].
Note that relations between chaotic continuous processes and Markov processes
were thoroughly discussed in [5]. We will only stress here, that the linear
Kolmogorov-Fokker-Plank (KFP) operator for Wε (x, t) for SDE (3.2) has the prop-
erty: limt→∞Wε (x, t) = Wε

st (x) when the vector function f (•) does not depend on
time ’t’ (sufficient conditions, see [20]).

Thus, the physical measure Wst (x, t) has to be taken as

Wst(x) = lim ∀ε ij→0Wε
st(x) (3.3)

When noise intensities in SDE (3.2) tend to zero, the Markov process is a so-called
’quasi-deterministic’ or ’degenerated’ Markov process.

The existence of the stationary PDF for Rössler attractor was confirmed at [2].
The same was checked experimentally by the authors for Lorenz and Chua attrac-
tors.

As any PDF, the Wst (x, t) as well as its characteristic function, is totally defined
by the complete set of cumulants [18].

Since Wst (x, t) = F−1 {θ (jυ)} , where F{•} and F−1 {•} are direct and inverse
Fourier transforms respectively, and θ (jυ) is the characteristic function defined as:

θ(jυ) = exp

[
∑∞

s=1
js

s!

s

∑
m1,m2,...,mn

κ
ξ1,ξ2,...,ξn
m1,m2,...,mn υm1

1 ...υmn
n

]
, (3.4)

where {ξi}n
1 are random variables, m1 + m2 + . . . + mn = s,κξ1,...,ξn

m1,...,mn is the joint
cumulant of the s-th order.

We will concentrate hereafter on the analytical representations of PDF’s for
Lorenz, Chua and Rössler attractors.

3.2.1 Approximations for PDF of Strange Attractors

In this section, the mathematical representations for the above considered strange
attractors will be presented.

Lorenz Attractor

ẋ = σ (y− x) ,
ẏ = Rx− y− z,

ż = xy− Bz, (3.5)
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where σ, B and R are the parameters of the attractor , x = [x,y,z]T.

Chua Attractor

ẋ = β1 (y− x)− αh (x) ,
ẏ = β2 (x− y) + β4z,

ż = −β3y, (3.6)

where β1÷ β4 and α are the parameters of the attractor; x = [x,y,z]T and an inertial
non-linearity h(x) has the following form:

h (x) =

⎧⎨
⎩
−L x < −L

x |x| < L
L x > L

(3.7)

Rössler Attractor

Equation (3.1) for the Rössler attractor has the following form:

ẋ =−y− z,
ẏ = x + ay,

ż = b + zx− zc, (3.8)

where a,b, c are the parameters of the attractor, x = [x,y,z]T

All above mentioned attractors are represented by ordinary differential equations
of third order with components “x”, “y”, and “z”, so the number of dimensions
of the chaotic models applied in the following is rather low. Now, some analytical
approximations for the PDF’s for components of attractors are presented.

It is worth to mention that different approaches were applied for analytical
approximations. These approaches utilize significantly the values of cumulants
of chaos (Gramm-Charlie method, etc.) and they were explained in details at
[12, 18, 20]

The PDF W(x) (in normalized scale) for the component “x” for the Lorenz at-
tractor as well as the experimental (simulation) histogram and the approximate PDF-
Gaussian distribution is illustrated in Fig. 3.1.

Let us present an analytical approximation for the Chua attractor also for the
x-component. An approximation of the PDF histogram that presents bimodal char-
acteristics is chosen (Fig. 3.2) according to the following equation [20]:

W (x) = C (p,q)exp
(

px2 − qx4
)

, (3.9)

where C represents a normalization constant, while p and q are approximations
parameters.

The parameters p and q can be obtained from the central moments equations for
(3.9):
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Fig. 3.1 The Lorenz attractor and its approximations

x2n =
Γ
(

n + 1
2

)
D−n− 1

2
(−δ)

√
πD− 1

2
(−δ) (2q)n/2

, (3.10)

where n = 1,2, ... , δ = p√
2q

which can be found from κx
2 and κx

4 .

Parameters “p” and “q” are q = 1.5; p = 3.5 while the normalization constant C
is 0.063.

In order to confirm that the approximation is valid, the comparison between the
histogram of the PDF obtained from the attractor and the analytical approximation
was made using the Kolmogorov-Smirnoff goodness of fit test (KST) (Fig. 3.3)
with a level of significance: α = 0.05. From that test, it can be concluded that the
analytical approximation is valid.

For Rössler attractor, the PDF histograms for “x” and “y” components are de-
scribed by means of the Laplace distribution defined as:

f (x) =
1

2λ
exp

{
−|x− μ|

λ

}
, (3.11)

where μ and λ are location and scale parameters, respectively. The use of Laplace
distribution allows to make a right description for the “x” and “y” components of
the Rössler attractor as it is observed in Figures 3.4 and 3.5.

Then, as it follows from Figures 3.4 and 3.5, the PDF for the “x” component
of the Rössler attractor is approximated by a Laplace distribution with the local
parameter μ = 0 and scale parameter λ = 1.1 and for the “y” component with local
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parameter μ = 0 and scale parameter λ = 0.85. Examples of the practical validity
of such kind of approximations can be found at [12].

As it can be seen from the material presented above and [12], chaotic models
can be interpreted as significantly Non-Gaussian random processes: let us stress
here that these PDF’s for instantaneous values are typical, at least, for the Radio-
Frequency Interferences (RFI) Non-Gaussian statistical features. But for the rather
complete characterization of the Non-Gaussian processes it is not enough to men-
tion only one-moment statistical characteristics and it is reasonable to consider cu-
mulants (cumulants functions) of the higher order and its multi-moment statistical
description.

As it was mentioned in the Introduction, these characteristics provide with correct
“choice” of the filtering strategy for chaos. Hereafter only few material of multi-
moment cumulant functions description will be presented. The detailed analysis is
rather cumbersome (see [14, 18]).

3.2.2 Degenerated Cumulant Equations for Two-Moment
Cumulants

Let us consider equations (3.1) and (3.2).Then, as it follows from [18, 20] to ob-
tain the transient PDF W (x, t|x0, t0) for solution of SDE (3.2), operating with the
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Fig. 3.3 Illustration of the KST application of Chua attractor with approximation.

linear Kolmogorov-Fokker-Plank (FPK) operator and its adjoin inverse Kolmogorov
operator L+ (x) [2, 18, 20]:

L+(x) = K1 i(x)
∂

∂xi
+ K2ij(x)

∂2

∂xi∂xj
, (3.12)

where K1 i(x) = f (x) and K2ij =
[
ε ij
]n×n are kinetic coefficients [20] and εi j are

the white noise intensities defined at (3.2). Taking into account that the two-moment
PDF: W (x0, t0,x, t) = W (x0, t0)W (x, t|x0, t0) , satisfies the same FPK equation
as W (x, t|x0, t0) applying the same methodology to obtain degenerated cumulant
equations as it was presented in [12].

For stationary conditions, which are assumed in the following, t− t0 is defined
as τ and all two-moment cumulants will be two-moment cumulant functions that
depend on τ. In the following, only final results for concrete attractors are presented
and detailed analysis can be found at [14].

Lorenz Attractor

Let us make the following notations:
< x1, x1τ >= κ1

2(0,τ), is a covariance function of the first component. Then
using (3.4), it is possible to get:

κ1
2(0,τ) = κ1

2 exp

[
−σ

(
1− κ1,2

1,1(0,τ)

κ1
2(0,τ)

)
|τ|

]
(3.13)
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Fig. 3.4 Laplace approximation of the x component

For two asymptotic cases from (3.13) τ << τcorr and τ >> τcorr (here τcorr is a
correlation time) one can get:

When τ << τcorr , κ1,2
1,1 ≈ κ1

2 and κ1
2(0,τ)≈ κ1

2 , so it is easy to show, that:

κ1
2(0,τ) = κ1

20

(
1− (Δ fe f f τ)2

2

)
, (3.14)

where Δ fe f f is the effective bandwidth for the first component of the statistically

linearized attractor; τcorr ∼ 1
Δ fe f f

(see [20] for details).

If τ >> τcorr and supposing that lim
τ→∞

κ1,2
1,1 (0,τ) ∼ 0, with assumption that the

tendency to zero, when τ →∞, is “faster” for κ1,2
1,1(0,τ) than for κ1

2(0,τ). Then for
τ → ∞:

κ1
2(0,τ)→ 0 (3.15)

Chua Attractor

Almost in the same way as it was done above for the Lorenz case, it is possible to
get: For τ << τcorr :

κ1
2(0,τ)≈ κ1

20

(
1− Δ fe f f |τ|

)
(3.16)
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For τ << τcorr:

κ1
2(0,τ)

τ→∞→ 0 (3.17)

When τ << τcorr , the behavior of κ1
2(0,τ) for Lorenz and Chua attractors is com-

pletely different. The approximate method for calculating κ1
20

was presented at [12].
Examples of the higher order cumulants functions can be found at [14].

3.3 Filtering of Chaotic Signals in Presence of Additive
Gaussian Noise

3.3.1 Markov Theory of Non-linear Filtering

Let us consider the following filtering scenario where the received signal is:

y(t) = s (t, x(t)) + n0(t) (3.18)

where y(t) is vector of the received signal with dimension “m”, s (·) is a vector
function of the desired signal of the same dimension “m”, n0 is the vector of the
white additive noises with the intensity matrix N0(mxm). Here the signal s (·) de-
pends on the “message” x(t) (see SDE (3.1) and (3.2)) which is subject of filtering



50 V. Kontorovich and Z. Lovtchikova

and is modeled by means of the following SDE as an n-dimensional Markov diffu-
sion process:

ẋ = g (t, x) + ξ(t) (3.19)

Formally, SDE coincides with (3.2) and the vector function g (·) is similar to f (·)
in (3.2); the matrix of intensities in (3.19) is D. As it is well known (see, for exam-
ple [20,22], etc.) with this assumption the a priori Probability Density Function, or a
priori PDF for x(t) follows the so called Fokker-Plank-Kolmogorov (FPK) equation:

∂WPR(x, t)
∂t

=−
n

∑
i=1

∂

∂xi
[gi(t, x)WPR(x, t)] +

1
2

n

∑
i=1

n

∑
j=1

∂2

∂xi∂xj

[
DijWPR(x, t)

]
,

(3.20)
where WPR (x, t0) = W0 (x)

The equation (3.20) can be rewritten in another form [10, 21]:

∂WPR(x, t)
∂t

= −divπ(x, t) (3.21)

or

∂WPR(x, t)
∂t

= LPR {WPR(x, t)} (3.22)

where π (x, t) is a probabilistic “flow” with the components:

π(x, t) = gi(x, t)WPR(x, t)− 1
2

n

∑
j=1

∂

∂xj

[
DijWPR(x, t)

]
(3.23)

In (3.20)-(3.23) {gi(x, t)}n
1 are drift coefficients and

{
Dij

}
are diffusion coeffi-

cients of the Markov process. Note that in the following, they are defined in the
Stratonovich sense [20, 22]and LPR {•} is a FPK linear operator. Then, as it was
shown in [22] the integro-differential equation for the a posteriori PDF WPS (x, t) is
given in the following equivalent forms:

∂WPS(x, t)
∂t

=LPR {WPS(x, t)}+

1
2

⎡
⎣F(x, t)−

∞∫
−∞

F(x, t)WPS(x, t)dx

⎤
⎦WPS(x, t)

(3.24)

or

∂WPS(x, t)
∂t

= −divπ̂(x, t) +
1
2
[F(x, t)−< F(x, t) >]WPS(x, t), (3.25)
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where < F(x, t)>=
∞∫

−∞
F(x, t)WPS(x, t)dx, π̂(x, t) is (3.25), WPR (x, t) is substi-

tuted by WPS (x, t) and

F(x, t) =
[

y(t)− 1
2

s(x, t)
]T

N−1
0

[
y(t)− 1

2
s(x, t)

]
(3.26)

Equations (3.24), (3.25) together with (3.26) are called Stratonovich-Kushner Equa-
tions (SKE) and have a following interpretation: the first summand in (3.26), (3.27)
describes the dynamics of the a priori dates of the x(t) and the second summand
depends on the innovation of the a priori dates from the analysis of observations(see
details at [13]).

Note that the equation SKE fully describes the “evolution” of WPS (x, t) in time
but actually does not provide exact analytical solutions. There are very few excep-
tions: linear SDE (3.4) [7, 10, 16, 17, 21–23]; the Zakai approach [24], etc. Due to
this the nonlinear filtering algorithms are practically always approx-imate.

Supposing of the main practical interest of low SNR, it might be reasonable to
consider the application of the high order cumulants (HOS) (see [11, 21, 22] for
example).

As it follows from the material of the section 2, the filtering of chaos is equivalent
to the filtering of quasi-deterministic (or degenerated) Markov process and for this
special case it can be found some general features of the solutions of SKE equations
(3.31)-(3.33): the WPS (x, t) at least for very low and very high signal to noise ratios
(SNR) tends to a delta-function ,defined at the completely deterministic solution
of (3.1). Such kinds of solutions are “singular” ones and show that the filtering
algorithm is “tuned” to the attractor solution and asymptotically does not depend
on the SNR value. This property of the optimum algorithms of chaos filtering was
proofed in [13] and in the following it will be shown and proofed by simulations,
that beginning from the rather low SNR, it is true for the approximate algorithms of
nonlinear filtering as well.

3.3.2 Approximate Algorithms of Non-linear Filtering of Chaos

As it was commented in [3,21], it is always “better” to approximate the a posteriori
PDF WPS (x, t) than the nonlinearity at (3.21), (3.26). In this context, let us mention
the following approximate approaches for WPS (x, t):

• Gaussian approximations: Extended Kalman Filter (EKF) [16,21,22]; Unscented
Kalman Filter (UKF) [8]; Quadrature Kalman Filter (QKF) [3]; Integrated
Kalman Filter (IKF), etc. It is the main stream “ideological” trend for the cre-
ation of the approximate algorithms (see references above).

• Functional approximations for WPS (x, t) [10, 21];
• Integral or Global approximations for WPS (x, t) [10];
• HOS approximations for WPS (x, t); etc.
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Let us start with the Extended Kalman Filter (EKF). Considering WPS (x, t) as a
three dimensional Gaussian PDF ŴG(x, t) From (3.31) it is possible to obtain the
following equations for per-component of the mean estimates {x̂i}3

1 and for esti-

mates of the elements of the a posteriori covariance matrix
{

R̂ij
}3

i,j=1:

·
x̂i =

∞∫
−∞

(
π̂T (x, t)gradxi

)
dx+

1
2

⎡
⎣ ∞∫
−∞

xiF (x, t)
�

WG (x, t)dx−�
xi

∞∫
−∞

F (x, t)
�

WG (x, t)dx

⎤
⎦

(3.27)

or

·
�

Rij =

∞∫
−∞

(
π̂T (x, t)grad

·
xi
·
xj

)
dx+

1
2

⎡
⎣ ∞∫
−∞

·
xi
·
xjF (x, t)

�

WG (x, t)dx−�

Rij

∞∫
−∞

F (x, t)
�

WG (x, t)dx

⎤
⎦ ,

(3.28)

where
◦
xi = xi − x̂i,

◦
xj = xj − x̂j.

Practically it is possible to assume for ∀R̂ij(t), (when t → ∞) that they are con-

verging to the stationary values Rij, and in consequence the second equation in
(3.31) usually tends to the system of non-linear algebraic equations, which can be
solved numerically.

WPS(x, t) =
3

∏
i=1

WPS(xi)

[
1 +

3

∑
q=2

q−1

∑
j=1

Rqj

RqqRji
(xq − x̂q)(xj − x̂j)

]
(3.29)

From (3.32), it is possible to observe that the Functional Approximation for the
PDF is sufficiently non-Gaussian (marginal WPS (xi, t) are arbitrary) but for “joint”
characterization of the vector x̂, only elements of the a posteriori covariance matrix
are considered.

It can be shown that the equations for {x̂i}n
1 and

{
R̂ij

}
are the same as in (3.31),

being the only difference that instead of ŴG(x, t), the approximation (3.32) for
WPS (x, t) has to substituted in (3.31). The corresponding integrals can be solved
analytically or by the Gauss-Hermit quadrature formula (see [3, 8]).

When the SNR is low, it is necessary to look for approach, which is called In-
tegral approximation. This approach was proposed for successful approximation of
WPS (x, t) including the PDF’s “tails”, i.e. for the whole span of x. For the lack
of space it will be omitted here; however, description of this approach is presented
at [13].
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Let us present an example of the analytical treatment of the approximate algo-
rithm.

For simplicity let us consider the following special case of the one dimensional
scenario:

y(t) = x1(t) + n0(t) (3.30)

where x1(t) is the first (observable) component of any strange attractor (Lorenz,
Chua, Rössler) and n0(t) is an scalar white noise.

Let us consider clearly Non-Gaussian case of the Chua attractor; additionally let
us assume the low SNR scenario and applying the functional approximation (3.33)
for WPS (x, t), it is possible to get:

·
x̂1 =− 2Dx̂1(p1 + q1) + 2Dq1R̂11+

2Dp1
2(y(t)− x̂1)R̂11

N0
− x̂1

N0

(
y2(t)− R̂11

) (3.31)

If D → 0 and the SNR is low, then from (3.34) and (3.31) it follows:

·
x̂1 =−2Dx̂1(p1 + q1) +

2(y(t)− x̂1)

N0
(3.32)

and immediately obtain:

·
x̂11 = −D

2
+

R̂2
11

N0
+ 4D(p1 + q1)R̂11 (3.33)

It is easy to show, that (3.35), (3.36) coincides totally with the EKF for one compo-
nent x1. For t → ∞ R̂11(t) tends to its stationary value R11, which can be simply
calculated as

R11 =
−4D(p1 + q1) +

√
16D2(p1 + q1)

2 + D
N0

2
N0

≥ 0 (3.34)

Invoking D → 0,

R11
∼= 0.71 ·√N0D (3.35)

Assuming that N0
∼= 1, then

R11 << 1 (3.36)

Therefore, the EKF shows its adequacy for application to the case of Chua at-
tractor. Unfortunately the analytical analysis of all approximate algorithms men-
tioned above is impossible to achieve. So in the next section the simulation results
for some of them will be presented.
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3.3.3 Comparative Analysis of Nonlinear Filtering Approach

In this section, extended Kalman filter (EKF), unscented Kalman filter (UKF) ,
Gauss-Hermite Quadrature filter (GHF), and Kalman Quadrature filter (KQF) are
compared by simulations from the point of view MSE = f (SNR), where MSE is a
minimum square error of filtering.

The detailed description of the algorithms for these filtered are presented in the
above cited references. Hereafter only the simulation results of application of these
algorithms for the filtering of components of Lorenz, Chua and Rössler at-tractors
are presented.

It can be easily shown that UKF involves the bigger complexity, while EKF seems
to be the simpler algorithm.

Chua Attractor

Fig. 3.6 shows the MSE vs. SNR for the Chua attractor for the different filters men-
tioned above. Even so, the MSE generated by the EKF is really small (SNR is about
0.5)
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Fig. 3.7 MSE vs.SNR for Lorenz attractor
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56 V. Kontorovich and Z. Lovtchikova

Lorenz Attractor

The effectiveness of the filtering methods working on the Lorenz attractor is ana-
lyzed by plotting the MSE versus SNR in. Simulation results appear in Fig. 3.7.

For the case of Lorenz attractor, GHF, QKF and EKF give better results than UKF.
MSE for GHF and QKF are omitted here as they indistinguishable with x-axis.

Rössler Attractor

For Rössler system, shown in Fig 3.8, EKF works better than GHF, QKF, and UKF.
It can be seen that as a compromise between complexity and filtering accuracy, the
EKF is the best choice for the real time applications as it provides with the less than
0.1% MSE for SNR about 0.5(-3 db) and is rather simple for implementation.

3.4 “Multi-moment” Nonlinear Filtering of Chaos

From section 3, it is possible to observe that all algorithms tackled there are of “one-
moment” type, i.e they are dealing instantaneously with the data of one moment of
time. However, it might be challenging if it is possible to apply more a-priori infor-
mation regarding statistical features of the filtered process to improve the filtering

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

SNR

M
SE

 

 
EKF
GHF
UKF
QKF

Fig. 3.9 Chua attractor



3 Nonlinear Filtering of Chaos for Real Time Applications 57

Fig. 3.10 Lorenz attractor
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accuracy (see [15]). The latter is the main idea behind of the “multi-moment” algo-
rithm design.

The heuristic quasi-optimum algorithm which for only two-moment filtering
shows that practically without increasing the complexity of the EKF is possible
to increase the filtering accuracy.

As for one moment algorithms but for two-moment case it is possible to expect
the same MSE with almost 30% less SNR. This is presented at the Figs. 3.9- 3.11
for the cases of Lorenz, Chua and Rössler attractors.
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Chapter 4
Time-of-Flight Estimation Using Synchronized
Chaotic Systems

Christian F. Wallinger and Markus Brandner

Abstract. Time-of-Flight (ToF) estimation is a basic building block in many metro-
logical applications. Performance criteria for these applications are the variance and
the bias of the derived delay estimate. From a signal processing point of view chaotic
signals exhibit properties which make them well suited for metrological applica-
tions. In this chapter we experimentally investigate the applicability of synchronized
chaotic systems in a ToF measurement system. In particular, we show that the choice
of the numerical solver has a significant impact on the estimation performance. We
further present a new delay estimator based on Poincaré intersections and compare
the resultant estimation performance with the performance of a standard correlation-
based delay estimator.

4.1 Introduction

Time-of-Flight (ToF) estimates are primary measurands in many metrological appli-
cations such as distance measurement, localization, and tracking. From the metro-
logical point of view such applications are required to deliver estimates with small
measurement uncertainties in the presence of bandwidth limitations, small signal-
to-noise ratios (SNRs), and different kinds of disturbers. In the last two decades, the
synchronization of chaotic systems has received a great deal of attention in the area
of signal processing and communication engineering [16]. In this context, the ben-
eficial properties of signals generated by chaotic systems are their unpredictability
and their noise-like appearance.

For any discrete-time implementation of the chaotic system, the resolution of the
measurand is inherently limited by the sampling interval. However, it is possible to
increase the temporal resolution of the estimator using interpolation schemes. The
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Time-Delay τ

TX RX

Fig. 4.1 ToF measurements using chaotic systems. The delay parameter is estimated at the
receiver (RX) based on the acquired acoustic signal and an undistorted reference signal pro-
vided by the transmitter (TX).

frequently applied polynomial interpolation is known to introduce an estimation
bias [4]. Other approaches are based on the design of proper inverse systems using
a synchronized receiver system as filter to reconstruct a transmitted information
signal [5], [15]. Alonge et al. [3] report about a ToF measurement system using
a chaotic modulated information signal as reference and pulse position modulation
for transmission. In a recent work, Sorrentino and DeLellis [13] propose an adaptive
method for estimating the ToF utilizing the self-synchronization process of chaotic
systems itself.

In this chapter, we experimentally compare the performance of different ToF es-
timators using two synchronized chaotic systems. We modulate the amplitude of a
carrier signal with the output of a Lorenz system. The demodulated signal is used
to synchronize a second Lorenz system at the receiver side. In particular, we inves-
tigate the estimation bias and variance with respect to the use of different numerical
solvers, interpolation schemes, and SNRs of Gaussian noise channels. The results
are compared with a standard correlation-based ToF estimator.

4.1.1 Time-of-Flight Measurements

The principle setup of a ToF measurement system is depicted in Figure 4.1. A trans-
mitter (TX) generates a signal which is transmitted over a communication channel.
Apart from other disturbers this channel adds a time-delay τ to the signal. In metro-
logical terms the unknown quantity τ is referred to as the measurand. The subse-
quent receiver (RX) is now able to provide an estimate τ̂ of this delay given an
undistorted reference signal transmitted by the TX using an ideal (e.g. undistorted
and zero-delay) channel. A practical implementation of a ToF measurement system
uses a modulated ultrasound signal which is transmitted over a variable distance
to a receiver while the reference signal is passed directly from the TX to the RX.
The estimated delay now corresponds to the time-of-flight of the ultrasound signal
on the channel. The ideal ToF estimator τ̂ is unbiased, i.e. b(τ̂) = E{τ̂} − τ = 0,
and exhibits a minimum variance var(τ̂) = E{(τ̂− E{τ̂})2}, where E{·} denotes
the expectation operator. This combination of properties ensures that the resultant
measurement system is able to deliver ToF estimates with a small measurement
uncertainty.
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4.1.2 Outline

The remainder of this chapter is structured as follows: The subsequent Section 4.2
introduces the notation of synchronized chaotic systems and presents different im-
plementation details. Experimental results using different numerical solvers and
channel parameters are presented in Section 4.3. We close our discussion with con-
clusions and an outlook to future work in Section 4.4.

4.2 Synchronized Chaotic Systems

In this work we use the self-synchronization property of coupled autonomous
chaotic systems to estimate the ToF of a signal. We consider two identical unidi-
rectionally coupled Lorenz systems using real state variables x, y, and z as well
as real parameters ρ, σ and β. Commonly, the parameter ρ is used as bifurcation
parameter. The transmitter system is given by

F(xT) :
ẋT = σ (yT − xT)
ẏT = ρxT − xTzT − yT
żT = xTyT − βzT ,

(4.1)

where the transmitted signal is given by sT(t) = xT(t). On the receiver side a signal
sR(t) = φ(sT(t)) is observed, where the real-valued mapping φ(·) summarizes the
influences of the channel including in particular the measurand τ. In the simplest
case, the received signal is a delayed version of the transmitted signal, i.e. sR(t) =
sT(t− τ). The receiver system is given by

F(xR) + C (xR, sR − xR) :
ẋR = σ (yR − xR)
ẏR = ρxR − xRzR − yR + α (ρ− zR) (sR − xR)
żR = xRyR − βzR + αyR (sR − xR) ,

(4.2)
where a unidirectional coupling scheme with a coupling strength α is applied. In
order to derive the according error system, we use the notation xR,τ+ = xR(t + τ)
to take care of the delayed receiver system. By introducing the transverse manifold
ex := xT − xR,τ+ , ey := yT − yR,τ+ , and ez := zT − zR,τ+ , summarized in the state
vector eT = [ex, ey, ez]T the error system is given by

ė = F(xT)− F(xR,τ+)− C
(
xR,τ+ , sR,τ+ − xR,τ+

)
(4.3)

=
σ
(
ey − ex

)
(ρ− zT) ex − ey − xTez − α (ρ− zT) ex + (1− α)exez
yTex + xTey − βez − αyTex + (1− α)exey

= (DF (xT) + DC (xT,0))e + gF (e) + gC (e) .
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The error system can be divided into a linear part A := DF (xT) + DC (xT,0) rep-
resented by the Jacobian matrix DF (xT) and the derivative of the coupling function
DC (xT,0) determining the linear combinations of the error state variables for the
coupling. All terms of higher order in e are summarized in the nonlinear driving
terms gF (e) and gC (e) vanishing in the case of e = 0. Although the coupling is
based on a time-dependent weighting between the receiver’s state variable xR and
the received signal through the factor α(ρ− zR) in the differential equation ẏR and
the factor αyR in the differential equation of the state variable zR, it can be shown
that the overall dynamical behavior of the synchronization framework is not affected
by the time-delay τ, i.e. the error system (Equation 4.3) has its equilibria in the
origin.

In any practical implementation, the set of systems need to be solved numerically.
From a metrological point of view this requires the consideration of the convergence
behavior, numerical issues, and the derivation of estimators.

4.2.1 Convergence

In this subsection we investigate the convergence rate within the range of complete
synchronization. In principle the convergence rate is given by the maximum condi-
tional Lyapunov coefficient λmax of the according linearized error system [10], [7],
i.e. the driving terms gF (e) and gC (e) in Equation 4.3 will be neglected yielding
λmax{A}. Two identical systems coupled in the presented way will converge for
λmax < 0. In contrast, if λmax > 0 the systems will diverge. This stability condition
is necessary but does not guarantee that there are no areas of local unstability on the
attractor [11] because of its averaging behavior characterizing the global stability
over the whole chaotic attractor. The rate of convergence determined by λmax is an
important indicator for the time it takes to meet a certain measurement uncertainty
threshold. In general, it will give a bound on the speed of tracking perturbations at
the receiver.

From the multiplicative ergodic theorem of Oseledec [1] we know that, in the
limit t → ∞ the Lyapunov coefficients converge independently of the trajectory of
the system or its initial values in the basin of attraction. For finite time intervals the
estimates of the Lyapunov coefficients depend on both the observation time (i.e. the
window length) and the trajectory of the system. In situations where a linearized
error system is available the Lyapunov spectrum can be used to evaluate the local
convergence behavior of the system [2], [8], [18], [12]. An alternative approach to
the determination of the local convergence behavior is based on the fact that the
convergence rate directly depends on λmax. Thus an estimator can be derived using
the synchronization error of the coupled systems. Figure 4.2a illustrates our estima-
tion principle from the error time series. Once the synchronization error measured
as the Euclidean distance between the transmitter xT

T = [xT , yT, zT ]
T and receiver

xT
R = [xR, yR, zR]

T given as SE :=‖ xT − xR ‖2 is transformed into the natural
logarithmic domain, λmax can be estimated as the slope of a regression line (black
line in Figure 4.2a). This estimator is asymptotically unbiased and has a variance
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which decreases with increasing window length L. However, the estimation is lim-
ited because of the existing synchronization noise floor. Hence, L cannot be made
arbitrary large. Figure 4.2b shows histograms of estimated conditional λmax-values
(105 estimates) for a coupling strength α = 1 and three different window sizes L.
The parameters of the according Lorenz systems are ρ = 45.92, β = 4 and σ = 16.
The decrease of the standard deviation follows L−ν with an estimated ν∼= 0.87. This
is in good agreement with [2]. For better illustration the normalized histograms are
presented within a logarithmic ordinate.
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Fig. 4.2 (a) Principle of estimating the local conditional λmax as slope of the regression line
of the synchronization error between the transmitter and receiver, ‖ xT − xR ‖2. The length
of the regression line indicates the estimation window length. (b) Normalized histogram
ρ(λmax) showing the distribution λmax estimated from different window length (light gray
300 iteration steps, dark grey 600 iteration steps and black 1200 iteration steps (iteration
step-size = 0.01)) at a coupling strength α = 1. The black dashed line indicates the mean
value of the distributions. In order to illustrate the decreasing variance of the estimates with
increasing window length, the histograms are illustrated within a logarithmic ordinate.

The convergence rate strongly depends on the coupling strength α. Figure 4.3a
shows the behavior of λmax(α) at a time-delay τ = 0 calculated from the linearized
error model (Equation 4.3). Whereas Figure 4.3b illustrates λmax(α) estimated from
the error time series SE. As can be seen, the results are in good agreement. The
Lorenz systems (TX and RX) are bounded in phase space [14]. Thus, even if no
complete synchronization happens, the error trajectory is bounded in phase space,
too. In general, this yields an upper bound on the ability of the estimator to detect
positive Lyapunov coefficients, λmax ≤ 0 except for the case of close enough initial
conditions of TX and RX.

4.2.2 Detection Range

An upper bound on the maximum detectable time-delay exists due to the synchro-
nization mechanism of chaotic systems. The analysis of this bound is based on sta-
bility considerations of the underlying error system. In contrast to one-dimensional
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Fig. 4.3 Estimations of λmax as a function of the coupling strength α at a channel time-delay
τ = 0. In (a), λmax is calculated from the linearized synchronization error system, whereas
in (b) λmax is estimated from the error time series.

equations, stability criteria are much harder to derive for systems of the form as
given in Equation 4.3. For that reason stability is analyzed numerically. To study
the stability of the synchronization manifold, we compute trajectories for different
coupling strengths α and different channel time-delays τ. As discussed in the pre-
vious subsection, the stability is given by a negative maximal Lyapunov coefficient
λmax. Thus, the region of stability is defined implicitly by its boundaries at which
λmax > 0. Since we want to apply the synchronization of chaotic systems in mea-
surement science we are interested in complete synchronization of the transmitter
and receiver. In order to detect the region of complete synchronization the higher
order terms in Equation 4.3 will be neglected. As can be seen in Figure 4.4, the
stability region for this coupling remains constant within an interval 0.5 < α < 2.2
over a range of different time-delays τ. Of course, the results of this study represent
a theoretically detection range given by the synchronization framework, i.e. when-
ever a real transmission channel exists and has an impact on the synchronization,
the detection range will be limited to a certain ToF.

4.2.3 Discretization Algorithms and Numerical Issues

Analytical error models as denoted in Equation 4.3 have stable equilibria at the
origin, which allows for unbiased synchronization. Different numerical solvers exist
to transform and iterate those continuous-time dynamical systems into the discrete-
time domain. These solvers differ in their numerical behavior. In particular, when
integrating a chaotic system, any errors associated with the solver in combination
with the information generating property lead to trajectory hopping [9]. While this
effect can be neglected for many applications, this is no longer true for synchronized
chaotic systems: Trajectory hopping is no problem at the master system, but its
appearance at the slave leads to synchronization errors. As a consequence of this
biased synchronization will happen [17].
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Fig. 4.4 A numerically estimated stability diagram for the coupled Lorenz systems as a func-
tion of the channel time-delay τ. Complete synchronization is achieved approximately within
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Fig. 4.5 Synchronization error as a function of the coupling strength as well as different nu-
merical integration schemes (4th-order Runge-Kutta (RK4) and 4th-order Adams-Bashforth
predictor (AB4)). Furthermore, different half-step generating filters for the RK4 method are
compared at a step-size Δ = 0.01.

Figure 4.5 compares different solver strategies in the context of a varying cou-
pling strength at a step-size Δ = 0.01. In particular, a comparison in terms of
the averaged synchronization error defined in the text of subsection 4.2.1 of 4th-
order Runge-Kutta (RK4) methods and explicit 4th-order Adams-Bashforth predic-
tor (AB4) is given. At the RK4 method, the generation of the next iteration step is
based on predicted gradients at half the step-size Δ. Since the receiver is driven by
the detected signal sR(t), we also need information of this signal at half the step-size
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at the receiver. In general, an analytical description of the detected signal sR(t) at the
receiver does not exist. Thus, this information must be generated by a filtering pro-
cess of the driving signal. Different filtering processes such as zero order- [6], first
order-, and third order polynomial filtering are compared. Any group delay intro-
duced by the filtering method needs to be properly considered in order not to misin-
terpret resultant synchronization errors. As an alternative method to filtering, the in-
put signal at the receiver is sampled at half the step-size (≡ Δ

2 ). From Figure 4.5 we
can see that the Runge-Kutta solver introduces a systematic bias depending on the
applied filter. This systematic bias appears as a noise floor and will act as a bound on
the achievable performance, i.e., in the context of metrology it will limit the achiev-
able uncertainty. Moreover, this synchronization error induced by the RK4 methods
strongly depend on the step-size. In contrast, the Adams-Bashforth solver does not
require any interpolation and leads to unbiased synchronization errors which are
dominated by the number representation of the applied system environment. In the
present case the MATLAB simulation environment is used.

In general, the AB4 solver and the RK4 solver are based on different strate-
gies [9]. The AB4 solver belongs to the class of multi-step methods, whereas the
RK4 solver is a representative of single-step methods. Thus, we have to verify, if
the global dynamical behavior of the systems and their synchronization behavior
will be conserved. For this reason, we compare the numerically evaluated Lyapunov
spectrum of the Lorenz system obtained from the RK4 and AB4 solver. In both cases
λmax ≈ 1.5, λmiddle ≈ 0 and λmin ≈−22.5 being in good agreement with the esti-
mates presented in [2]. Figure 4.6 represents estimated histograms of the conditional
λmax describing the synchronization convergence behavior for the different solver
strategies at a short window length and a coupling strength α = 1. From this exper-
iment we conclude, that the RK4 method using zero-order hold filtering causes a
significant variation of λmax, whereas the high-order RK4 methods (3rd-order poly-
nomial filtering, doubling the sampling frequency (2fs) at the receiver) and the AB4
method show the same behavior.

In the AB4 solver, the generation of the next iteration step is based on a weighted
sum of the last four gradients including the current one. In principle, this only re-
quires the calculation of the current gradient and the storage of the last three gradi-
ents. In contrast, the RK4 solver is based on a weighted sum of four gradients too,
but these gradients are based on the current iteration step and therefore, they have
to be calculated at every iteration step. Thus, the RK4 solver requires 4 times the
evaluation of the vector field at every iteration step. Of course, it does not need to
keep any gradients in a storage. A quite big difference between these two solver
strategies relates to the problem of initialization. Whereas the RK4 method needs
only an initialization point at time index 0, the AB4 method needs initialization in-
formation for time indices = {0,−1,−2,−3}. To overcome this problem, one can
pursue the strategy of starting with a 1st-order, followed by a 2nd- and 3rd-order
Adams-Bashforth solver and finally the proposed AB4 will be applied. Note that
the 1st-order AB predictor represents the forward Euler algorithm.
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Fig. 4.6 Comparison of normalized histograms ρ(λmax) of the max. conditional Lyapunov
coefficient λmax for different numerical integration schemes at a window size of 300 iteration
steps and a coupling strength α = 1. The histograms are based on 105 estimates.

4.2.4 Delay Estimators

A classical method to estimate the time-delay is based on the cross-correlation of
the transmitted and the received signal. We use this method as reference standard in
the subsequent comparison of different estimators. The following discussion is re-
stricted to coupled Lorenz systems with matched parameters as described by Equa-
tions 4.1 and 4.2. We consider three types of estimators as outlined in the signal
model shown in Figure 4.7:

• τ̂Signal: The ToF is estimated given the position of the maximum of the
cross-correlation between the state variables sT(t) and sR(t).

• τ̂Lorenz: The receiver is used as a filter so that the ToF is based on the position of
the maximum of the cross-correlation between sT(t) and the synchronized state
xR(t).

• τ̂State: Again, the receiver is used as a filter. For each Lorenz system a sequence
of dirac impulses is generated based on the intersection of the trajectory with a
Poincaré plane. The ToF estimation is based on the position of the maximum of
the cross-correlation between the derived impulse sequences.

4.2.4.1 Poincaré Estimator Design

The Lorenz system has in its chaotic regime one unstable equilibrium at EQ1 =
(0,0,0) and two symmetric, unstable equilibria at
EQ2,3 = (±√β(ρ− 1),±√β(ρ− 1), ρ− 1). When the transmitter and receiver
are in synchrony the trajectories of both systems are traveling around the same equi-
libria EQ2 and EQ3 in state space which have a distance ρ− 1 in z-direction from
the origin. By inserting a 2-dimensional Poincaré hyperplane in the 3-dimensional
state space positioned at a constant distance of z = ρ− 1, we are able to detect the
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Fig. 4.7 Overview of different ToF estimators based on the cross-correlation of a transmitter
sequence and a receiver sequence

individual time instances of intersection of the trajectories with the according hy-
perplane. This hyperplane segments the state space into two distinct regions which
are assigned the symbols +1 if the trajectory is above the Poincaré plane and −1
if the trajectory is below the described Poincaré plane. Consequently, deriving the
generated symbol sequence we obtain an uncorrelated impulse sequence, which can
be used for a computationally efficient and robust subsample ToF estimation.

For the Lorenz system, the symbol sequences can be generated by quantizing the
z-component as depicted in Figure 4.8a. The Poincaré plane (dashed line) carries out
a binary quantization of the state space marked by the symbols +1 and − 1. This
leads to a pseudo random sequence of rectangular pulses. By deriving the square
wave we obtain the according impulse sequence as illustrated in Fig. 4.8b. The auto-
correlation function of such a sequence as shown in Figure 4.8c exhibits a Dirac-like
behavior indicating its applicability to ToF measurement.

4.2.4.2 Subsampling Techniques

Both the transmitter and the receiver system are evaluated in discrete time using the
step-size Δ as underlying quantization step. Without any further interpolation proce-
dures the quantization error Q of the correlation-based estimators is bounded by half
the step-size, i.e., |Q| ≤ Δ

2 . In order to be able to detect fractional delays subsample
interpolation is applied. Unfortunately, the design of a minimum-variance-unbiased
estimator is not possible because analytical correlation sequences of the used Lorenz
state variables (sT(t), sR(t) and xR(t)) are to the best of our knowledge unknown.
Interpolators are used to be able to detect fractional delays. Due to the approxi-
mation of the true correlation sequences by using a proper interpolation filter, in
general, we are not able to estimate the true position of the maximum of the cross-
correlation unbiased, i.e., the estimates of the time-delay τ are biased. In Figure 4.9
the underlying basic problem in correlation analysis is depicted. The pins yi rep-
resent the discrete correlation sequence centered around the correlation shift zero.
The true maximum τ is given by the dashed line but this is unknown. Hence, the
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Fig. 4.8 Derivation of symbol sequence from Poincaré plane. (a) Typical z-component of
a Lorenz trajectory quantized by the Poincaré plane (dashed line) at z = ρ − 1 resulting in
the symbol sequence (bold line). (b) Normalized impulse sequence. (c) represents a typical
auto-correlation sequence of such an impulse sequence.
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Fig. 4.9 Illustration of the basic problem in correlation analysis. The analytical description
of the correlation sequence (solid line with according maximum τ (dashed line)) is unknown.
Estimating the position of the maximum a proper interpolation filter (dotted line) is used
ending up in a biased estimate τ̂ (dashed-dotted line).

position of the maximum is estimated by using a proper interpolation filter (dotted
line) ending up in an biased estimate τ̂ (dashed-dotted line). In the ongoing discus-
sion, we give a brief overview of the investigated interpolators.

• Cosine-Interpolation
One possibility of modeling the main lobe of the cross-correlation sequence is
given by y = Acos(ωx + φ(τ)). Such a cosine-function consists of 3 degrees-
of-freedom namely the amplitude A, the frequency ω and the time-delay
dependent phase φ(τ). Again, knowing the correlation samples y−1,y0 and y1
we are able to determine the parameters as

ω =
1
Δ

arccos
(

y−1 + y1

2y0

)
(4.4)

φ(τ) = arctan
(

y−1 − y1

2y0 sin(ωΔ)

)

A =
y0

cos(φ(τ))
.

The time-delay estimate τ̂ is given by the phase φ(τ)

τ̂ =−φ(τ)

ω
. (4.5)

• Center of Gravity
For the time-delay estimation based on the cross-correlation of the impulse se-
quences we do not need an approximative interpolation. This is due to the fact
that these sequences are unique. Hence, the time-delay can easily be determined
by the center of gravity. The time-delay estimate by the center of gravity needs in
an ideal case only 2 correlation samples. This is, those two correlation samples
in the vicinity of the true position of the correlation maximum. Hence, referring
to the notation given in Figure 4.9 the time-delay estimator τ̂ is given by
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τ̂ =
y0

y0 + y1
Δ. (4.6)

Other influencing factors which are not covered in this work relate to practical im-
plications of using finite non-rectangular windows.

4.3 Experiments

This section presents experiments related to the feasibility of synchronized chaotic
systems for ToF measurements. Two coupled Lorenz systems with a parameter set
ρ = 45.92, β = 4 and σ = 16 and a coupling strength α = 1 are used in a discrete-
time realization with an iteration step-size of Δ = 0.01. Both systems are con-
nected with a unit-gain additive white Gaussian noise (AWGN) channel introducing
a known time-delay τ. All the estimates are evaluated using averages of 100 pairs of
time series uniformly initialized within the basin of attraction for each time-delay.
The computations are done after the transient phase of the synchronization process,
i.e. we start the measurements at 20 times λmax. The performance of the time-delay
estimation is given in terms of the bias b(τ̂) and an according standard deviation
obtained by fitting the estimates to a Gaussian distribution.

The experiments consist of three parts: Part I determines the influence of the win-
dow size of a rectangular window on the estimator performance of τ̂Signal, τ̂Lorenz
and τ̂State applying the discussed subsample interpolators. Part II determines the
influence of the AWGN channel on the estimator performance for signal-to-noise
ratios (SNR) ranging from 100dB down to 20dB. In order to explore the influence
of the numerical solver routine all the experiments are executed for both the nu-
merical solvers RK4 and AB4. Part III discusses ToF-estimates depending on the
order of the numerical solver. We compare results obtained from the proposed AB4
predictor and results obtained from the AB3 and AB5 predictor.

4.3.1 Different Window Lengths

In correlation analysis, in general, the window length has a scaling impact on the es-
timation uncertainty, i.e., if the window length increases, the parameter uncertainty
decreases. In order to verify this behavior, we compare time-delay estimates of the
τ̂Signal-, τ̂Lorenz- and τ̂State-estimators for a correlation window length of 10s and
100s and an ideal transmission channel. In Figure 4.10a the estimation performance
of the τ̂Signal- estimator is depicted as a function of the true time-delay τ. Both
RK4 and AB4 exhibit a similar performance in this experiment. Figure 4.10b shows
the estimation performance when applying the τ̂Lorenz-estimator (synchronization
is used). In this case the ToF estimates obtained from the low-order interpolation
methods at the receiver when applying the RK4 solver show a worse situation. For
the other methods the behavior is roughly the same as without synchronization. Both
results are obtained utilizing the cosine-subsample interpolation. When applying the
Poincaré estimator τ̂State (Figure 4.10c) the situation is in this ideal case quite the
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Fig. 4.10 Bias and standard deviations of ToF estimations for (a) τ̂Signal-, (b) τ̂Lorenz-
and (c) τ̂State-estimators using a correlation window length of 10 s. Cosine-subsample in-
terpolation is used in the first two estimators.

same except for the variances of the estimates, which become smaller. All the ex-
periments are carried out for a correlation window length of 10s.

In the next step, we increase the correlation window length to 100s. As al-
ready mentioned, the uncertainty of the estimators should decrease. Figure 4.11a
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represents the results for the τ̂Signal-estimator. In Figure 4.11b the estimation per-
formance of the τ̂Lorenz-estimator is depicted. Again Cosine-subsample interpola-
tion is used for these estimators. Figure 4.11c represents the estimation performance
obtained from the τ̂State-estimator.

Estimation errors of all estimators are decreased by a factor of ∼ 1
10 . As can be

seen, the bias of the estimates obtained by the low-order interpolation methods from
the RK4 solver (zero-order and first-order hold) does not change with the window
length. We attribute this behavior to the limiting synchronization noise floor induced
by the RK4 solver. For scaling reasons and to enable a closer look, we neglected the
estimation error performance of the RK4 solver using zero-order hold interpolation
at the receiver in Figure 4.11c. As expected, the RK4 method using higher-order
interpolation methods (3rd-order polynomial and cubic spline interpolation as well
as 2fs) shows the same performance as the AB4 solver.

4.3.2 Different Noise Levels

In the second part of the presented experiments we investigate the influence of dif-
ferent noise levels of the transmission channel on the ToF estimation performance.
Results of the τ̂Lorenz- (Figure 4.12a) and τ̂State- (Figure 4.12b) estimators based on
the AB4 solver are presented for SNRs of 100dB, 50dB, 30dB and 20dB and a cor-
relation window length of 100s. Again, cosine-subsample interpolation is applied
in the τ̂Lorenz-estimator. As one can see throughout those experiments, the error
performance of the time-delay estimates decreases with decreasing SNR. Having
a closer look at the statistics of the estimates, the variances of the τ̂State-estimator
are smaller when compared with the τ̂Lorenz-estimator, except in the situations of
integer time-delays of the step-size. Moreover, the estimation bias induced by the
τ̂State-estimator shows systematic behavior with decreasing SNR ending up in a cor-
rectable uncertainty.

4.3.3 Different Orders of Numerical Solver

In the previous subsections we compared different numerical solvers of 4th-order.
Now, we investigate and briefly discuss the question about the dependency of the
ToF estimates on the order of the numerical solver. In what follows, we compare ToF
estimates obtained from the τ̂Lorenz- and τ̂State-estimators utilizing the AB3, AB4,
and AB5 solver strategy. Figure 4.13 illustrates results obtained from the τ̂Lorenz es-
timator in the case of an ideal transmission channel (a) and SNR = 20 dB (b). The
correlation window length is 100s. As one can see, the AB4 solver outperforms the
AB3 and AB5 solver throughout these experiments. Figure 4.14 illustrates results
obtained from the same experimental setup utilizing the τ̂State estimator. In this case,
the estimates are based on cross-correlation sequences representing time informa-
tion. Of course, this time information is again derived from amplitude information
(Poincaré estimator), but it is more robust against amplitude variations within cer-
tain boundaries. Thus, the behavior of the different solver strategies are similar in
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Fig. 4.11 Bias and standard deviations of ToF estimations for (a) τ̂Signal-, (b) τ̂Lorenz-
and (c) τ̂State-estimators using a correlation window length of 100 s. Cosine-subsample in-
terpolation is used in the first two cases. For scaling reasons the error performance of the
RK4 solver using zero-order hold interpolation at the receiver is neglected in (c). Whereas
the error performance of the RK4 method using higher-order interpolation at the receiver and
the AB4 solver scales down with increasing correlation window length, the methods based on
low-order interpolation remain constant compared to the results utilizing the short window
length.
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Fig. 4.12 Bias and standard deviations of ToF estimations for (a) τ̂Lorenz- and (b) τ̂State-
estimators for different SNRs: SNR = 100 dB, 50 dB, 30 dB and 20 dB. Results are based
on the AB4 solver.
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Fig. 4.13 Bias and standard deviations of ToF estimations for the τ̂Lorenz-estimator applying
the AB3, AB4 and AB5 solver strategy. (a) Error estimates for an ideal transmission channel
(SNR→ ∞ dB). (b) Error estimates at SNR = 20 dB.

the undistorted case. In the case of a decreasing SNR (Figure 4.14b), the amplitude
variations of the AB3 and AB5 become stronger ending up in a worse estimation
performance. From this point of view we can conclude that the ToF estimation in
principle is not an invariant of the order of the numerical solver, but utilizing our
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Fig. 4.14 Bias and standard deviations of ToF estimations for the τ̂State-estimator applying
the AB3, AB4 and AB5 solver strategy. (a) Error estimates for an ideal transmission channel
(SNR→ ∞ dB). (b) Error estimates at SNR = 20 dB.

proposed Poincaré estimator, we are able to keep the impact of the order of the
numerical solver restricted.

4.4 Summary and Conclusions

This paper discusses the application of synchronized chaotic systems to ToF mea-
surements. We show that two coupled Lorenz systems with identical parameters can
be used to robustly estimate the ToF of an additive white Gaussian noise channel
with unit-gain.
We present a novel delay estimator based on Poincaré intersections and compare its
performance to a standard correlation-based estimator. The paper further covers the
influence of numerical issues such as the choice of the solver strategy and of interpo-
lation schemes. Of course, the proposed ToF-estimation framework is also applica-
ble to other chaotic systems like the well known Roessler system or Chua circuit just
to mention a few. Since the method is based on the self-synchronization property of
chaotic systems, the main question is, how strong can the self-synchronization prop-
erty of such systems be distorted by the transmission channel?

Future work is concerned with the investigation of additional channel models and
the practical implementation of a ToF measurement system.
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Chapter 5
Binary Synchronization of Complex Dynamics
in Cellular Automata and its Applications in
Compressed Sensing and Cryptography

Radu Dogaru and Ioana Dogaru

Abstract. Complex dynamics of the type used in random number generators may
emerge in elementary cellular automata with properly designed structures and cells.
This chapter reviews recent results in quantifying the complexity of the dynamics in
cellular automata with an emphasis on the recently discovered phenomenon called
binary synchronization. It allows that two cellular automata systems with the same
structure will synchronize (the receiver will duplicate the n-dimensional state vector
of the transmitter) receiving only a single bit stream, produced by the output of a
single cell of the transmitter cellular automaton. The decoding of this stream is
possible only when the structure of the cellular automata (encryption key) is known.
It is shown how the key space may be increased using various methods (e.g. using
hybrid models or perturbing the cellular network model into a small-worlds model).
Applications in cryptography, spread spectrum communications, and compressed
sensing are reviewed. Some particularities for the implementation of such cellular
automata systems in FPGA technologies are provided.

5.1 Introduction and Motivation

In various applications (remote sensing, secure data transmission, compressive sens-
ing [1]) some message must be passed from a transmitter system (abbreviated in the
next as Tx) to a remote receiver (abbreviated in the next Rx), such that cannot be
intercepted by an unauthorized intruder. This problem is usually approached by var-
ious methods form the mature area of cryptography. Yet, some applications require
low power consumption and consequently a simple mechanism is needed for gen-
erating ciphering sequences, given a key. Correspondingly, a simple algorithm for
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deciphering will be implemented in the receiver. Starting with the work of Pecora
and Caroll [2], proving that continuous-time chaotic signals generated by nonlin-
ear dynamic system may be used to synchronize a receiver with a similar structure
(“drive-response” method), such an approach was further considered and developed
as an alternative to the traditional encryption methods, particularly for low power
and low complexity applications.

The main idea of chaos synchronization is that a nonlinear dynamic system can be
tuned in its vector of parameters G to produce a chaotic signal s(t) capable to modu-
late the useful message m(t) in the transmitter (Tx). The resulting signal r(t) is sent
over a channel and is received by a receiver (Rx) built around an identical nonlinear
dynamic system (i.e. defined by the same equations and parameters G). A replica
ŝ(t) of the original chaotic signal s(t) is extracted from r(t) and used to synchronize
the state of the receiver. For a properly chosen dynamic system and its parameters G,
the Rx system will synchronize (after a certain amount of time) such that its entire
state vector will duplicate the state vector in the Tx. Since the state vector was used
to encrypt the message m(t), the recovered version of the Tx state vector can now be
used in receiver to decrypt the received message. The encryption key corresponds to
set of parameters G and the equations defining the nonlinear systems with complex
(chaotic) dynamics. Various modulation and demodulation schemes were proposed
[3][4] but, although initially chaos synchronization for communications held much
promise, its critics (e.g. [5][6]) pointed out on several potential drawbacks that must
be carefully considered before successfully using it in applications:

i) The case of continuous time and state (often discussed in theory) corresponds
in practice to implementations of two identical analog circuits (e.g. Chua’s circuit
and other similar). Such a requirement is extremely difficult to ensure in mass pro-
duction and parameter mismatches result in loss of synchronization or at least in
a degradation of the recovered message. To date, the above drawback is alleviated
considering discrete-time and discrete-state (finite computing precision) nonlinear
systems, with digital implementations. Common examples of such systems used in
chaos-based cryptography are the logistic map [7][8], tent map [9] and other non-
linear maps. In order to ensure good quality of the encryption sequences, various
techniques are used (sub-sampling, mixing, delays) but they usually increase the
system implementation complexity. As shown in the next, good cryptographic prop-
erties at low implementation complexity can be achieved using the equivalent of the
nonlinear map approach cast into the cellular automata framework (Section 2). Par-
ticularly, for the proposed cellular automata systems, there is no transient time, as
is usually the case for various nonlinear maps [10]. ii) There are nonlinear dynamic
system theorems [11] showing that the structure of the Tx nonlinear system (includ-
ing all its hidden states) can be recovered based on output samples coming from
the system, with the single condition to have at least 2n such consecutive samples
(where n is the number of state variables, that is usually unknown for the intruder).
In other words the ”key” (structure of the system) may be revealed by the appar-
ently encrypted message sent over the channel. To alleviate this problem, the state
vector dimension n must be very large. This requirement leads to difficulties in de-
signing a nonlinear system, particularly when it is required to have in addition the
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synchronization property. On the other hand, the solution discussed herein considers
the cellular automaton with n cells as the nonlinear dynamic system. Since cellular
automata are scalable, there is no problem to choose n as large as desired to mini-
mize the risk of cryptographic attack; iii) To our knowledge, most of systems pro-
posed for chaos synchronization provide a continuous-state (or its finite precision
representation) signal s(t). Synchronization in such systems will suffer from low
immunity to channel noise. Instead, a binary stream s(t) will ensure the highest im-
munity to noise, as required in practical applications. Only a few exceptions were so
far reported, but they are built around low-dimensional dynamical systems [12][13]
thus suffering from drawbacks discussed in paragraph (ii). In [14] we proved for
the first time that synchronization can be achieved between properly designed dy-
namical systems while sending a minimal quantity of information over the channel.
Recently [15] this phenomenon was more carefully investigated in the context of
cellular automata, providing that design solutions for building high-dimensional,
yet having low complexity, nonlinear dynamic systems with synchronization capa-
bility do exists. This chapter reviews recent results in defining a novel class of chaos
synchronization systems suitable for implementation in digital technologies. Such
systems achieve good cryptographic properties while maintaining the low level of
complexity required by certain type of applications (mostly in the area of remote
sensing). Our synchronization model is provided in Fig. 5.1.

Both Tx and Rx systems are implemented as digital nonlinear maps F. The nov-
elty of our approach is that F is implemented as the feedback loop of cellular

Fig. 5.1 A general chaos synchronization model based on nonlinear maps represented in fi-
nite precision (n bits). Both Tx and Rx systems implement nonlinear maps. For each time-step
only m bits are sent over the channel. In the limit m=1 binary synchronization is implemented.
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automata or “small world” networks. The detailed architecture of such systems is
presented in Section 2. We are particularly interested to optimize F such that:

i) Binary synchronization is achieved, i.e. m=1 bit in the model represented in
Fig. 5.1. In this case the information needed to resynchronize the Rx is minimal and
consists of only 1 bit per iteration. Consequently it may be easily embedded and
recovered in various forms of modulation/demodulation.

ii) Complex dynamics (we avoid the term “chaotic” since it is normally asso-
ciated with continuous state systems) is achieved; In particular, some measures of
complexity are defined in Section 3. In particular we are interested in implementing
conservative systems (with no transients) with maximal cycle length and high degree
of chaos In Section 5.5 some efficient methods to implement such systems in FPGA
technologies are discussed. Finally some specific applications of the proposed com-
plex signal synchronization scheme are briefly exposed in Section 5.

5.2 Automata Network Models and the Key Space

In order to implement the nonlinear dynamic system to be embedded in both Tx and
Rx systems (see the model in Fig. 5.1) cellular automata (CA) systems and their
variations were chosen. The choice is motivated by the following reasons: a) In [16]
an in-depth analysis of the elementary cellular automata dynamics is provided. Par-
ticularly it is shown that CA with odd number n of cells governed by rules ID=45
(and its 3 equivalents ID=75,89, and 101) or ID=154 (or its equiv-alents, ID=166,
180, 210) are the single non-linear rules leading to conservative dynamic behav-
iors. In other words, such automata have the state space organized such that no state
is ”ephemeral” i.e. there is no transient. All states are enclosed in one or more cy-
cles, and the effort will be directed to further adjust the structure F such that there
will be one very long cycle (almost 22 states for an automaton with n cells) with
complex (chaotic) behavior. The existence of transients in usual maps (like the lo-
gistic, etc.) is well known and has a negative impact on designing communication
systems based on chaos. Only recently a model is proposed to estimate the duration
of such transients [10] but their existence demonstrates that a part of the state space
is lost (they belong to the transient, not to the useful cycle providing the complex
sequence). On the other hand, in [15] it is shown that among the conservative rules,
only ID=45 (and its 3 equivalents ID=75,89, and 101) ensures the property of binary
synchronization (m = 1 bits in the model presented in Fig. 5.1). None of the few
linear rules (or their combinations in form of hybrid cellular automata, frequently
cited in the literature [17][18]) ensuring conservative behaviors posses the binary
synchronization property as follows from results in [19] which extensively discuss
synchronization in linear CA. Note that in linear CA, Boolean functions describing
the cell have the canonical form y = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x3, where ⊕ denotes
the exclusive-or (XOR) operator and ai are binary coefficients. b) Cellular systems,
where each cell is in fact a Boolean function with only 3 inputs (to be connected to
other cells in the network) are perfectly suited for low complexity implementations
in digital technologies, as detailed in [20] and in Section 5.5. Figure 5.2 presents
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two automata structures that were successfully tested for having both binary syn-
chronization and long chaotic cycle properties. Note that they can be operated in
either autonomous mode (as is the case in the Tx) or with one input forced by the
synchronization signal (as is the case in the Rx).

The discrete-time dynamics of the hybrid cellular automata (HCA) in Fig.5.2
is given by the next equation, which applies synchronously to all cells (a cell is
identified by an index i ∈ {1,2, ...,n} ):

xT
i (t + 1) = mi ⊕ Cell(xT

i−1(t), xT
i (t), xT

i+1(t), ID) (5.1)

where the upper index ”T” stands for the transmitting CA counter, ⊕ is the logical
XOR operator and Cell(u1,u2andu3) is a Boolean function with 3 binary inputs
(u1,u2, andu3), also called the CA (local) rule. The local CA rule is character-
ized by a decimal identifier (ID), which encodes the relationship between inputs
and output. For instance ID=101, with its binary representation 01100101, pro-
vides the outputs for each of the 8 possible input codes. In its binary representation,
the most significant bit of ID corresponds to the cell output when the input code
[u3,u2,u1] = [1,1,1]. A periodic boundary condition is also assumed i.e. the left-
most cell (i = 1) is connected to the rightmost one (i = n). The binary mask vector
mathb f m = [m1,m2, ...,mn] has to be optimized [21] for any odd counter size up
to n≤ 29 to obtain a maximal cycle length (r = N/22 → 1). Note that if all mi = 0
(non-inverted cell outputs), the cellular automaton is a standard, homogenous one.
The cells with inverted outputs correspond to ID=154 (the remaining non-linear rule
credited for conservative dynamics [16] when used in cellular automata). As shown
in [15], in the case of homogenous CA, a maximal cycle length is not always attain-
able for an arbitrary n. The optimization process of hybrid CA is a simple random

Fig. 5.2 Two automata network structures using 3-input cells that have both binary synchro-
nization property and complex (chaotic) dynamics
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search and may be performed successfully on actual standard PC platforms only for
n ≤ 29 due to the exponential computational complexity. For instance, in the case
n = 21 the optimal mask vector is [000000000010100000010] or 1282 in decimal.
A table with optimal masks for n ≤ 29 is provided in [21]. In the above example,
the length of the maximal cycle is 2097151, i.e. 221 − 1. It is possible to have more
different masks, providing the same maximal length.

The key space for this CA model is represented by the number of cells n , the
value of “mother cell” (it can be ID=101 or any of its 3 equivalents [16]) and the
specified mask vector.

There are many possibilities to increase the key space. One possibility, recently
investigated, is to consider an alteration of the regular cellular topology into a “small
worlds” one, as shown in Fig.5.2 (right side). Essentially the model is described
by the same equation ((5.1)) where the mask can be removed (i.e. all mi = 0) but
where the optimization of the maximal cycle length may now be achieved using a
random search process in a space of permutations (one or more pairs of outputs are
swapped as shown in Fig.5.2). The mask is now replaced by the set of swapping
pairs (isw, jsw). In addition one can consider the hybrid cellular model instead of
the homogenous one, and consequently expand the key space furthermore.

5.3 Characterizing Complex Dynamics in Automata

Any automata, including the models discussed above, has a finite state space with
2n states. A tableau of all possible dynamics in such a state space is given in Fig.5.3
for the case n = 4. In addition to the binary synchronization property we want to
design the feedback logic F under the constraints of the chosen cellular models (de-
scribed in Section 2) such that the maximal length of the major cycle is maximized
(and consequently the number of cycles is reduced) and the dynamics on this cycle
is complex. In order to describe the complexity of the dynamics we consider the
following approach:

In [15] a simplified measure of dynamics complexity (chaos) was defined observ-
ing that in a “chaotic counting automata”, unlike in a “normal counting automata”
the average jumps (in terms of Hamming distance) between consecutive binary vec-
tor states (as given by the n cell outputs) becomes n/2 instead of 1. Therefore for
any arbitrary counting cycle Cj of length Lj a scattering coefficient Sj is defined by
averaging the Hamming distances between all consecutive binary vector states in
that cycle:

Sj =
1

nLj

Lj

∑
k=1

n

∑
i=1
|xi(k)− xi(k− 1)| (5.2)

where k is the time index of consecutive states in the cycle j A degree of chaos
λj is defined such that it becomes maximum if Sj = 0.5 and zero for the extreme,
non-chaotic cases of both fixed points and period 2 cycles (with Sj = 0 and Sj = 1
respectively):
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λj = 1− |2Sj − 1| (5.3)

The degree of chaos may be regarded as qualitatively similar to the Lyapunov expo-
nent, usually used in continuous-state systems to characterize chaotic behaviors. In
our case its largest value is λj = 1 indicating the highest degree of randomness in
a finite-length cycle. It ranges between λj = 0 for low complexity dynamics (fixed
points, periodic limit cycles where consecutive states are close to each other), to
λj = 1 in good random number generators. This is actually the case for the ar-
chitectures presented in Section 5.2, as an effect of the ID choice. It is important to
note that rule ID=101 (and its equivalents) belong the most complex classes (Hyper-
Bernoulli-shift) in Chua’s taxonomy of elementary cellular automata dynamics [16].
The conservative property of homogenous CA with rule ID=101 guarantees the ab-
sence of transients and the effective use of all states in the state space. The modified
models proposed in Section 5.2 to increase the key space and improve the maxi-
mal cycle length are also conservative, as resulted from our numerical simulations.
Note that in comparison with digital implementation of the logistic map, the cel-
lular models discussed in Section 2 have several clear advantages, as pointed out
in [22]:

a) They have a very low implementation complexity growing linearly (O(n))
with the number of cells. Instead, implementation of F in the case of logistic map
requires multiplication, an operation requiring an implementation complexity of
O(n2);

b) There are no transients and the entire state space is efficiently used. Also there
are no finite-precision effects as in the case of the logistic function. For instance,

Fig. 5.3 Profile of the state space in an automata network (here exemplified for n = 4 cells). A
good random number generator must have no transient and a small number of cycles (ideally
one cycle) with maximal length T and complex dynamic behavior.
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a logistic map implementation with n = 29 bits converges towards cycles with a
length of only T=16420 states. Instead, the hybrid CA with the same number of
cells ensures the maximal cycle with a length T=2097151 (almost 128 times longer
!!). Other usually employed nonlinear maps have similar problems.

c) They have the binary synchronization property, not common among usual non-
linear maps. In terms of synchronization time Ts (i.e. average number of iterations
required by a receiver initialized in a randomly chosen state) our experimental re-
sults shown in Fig.5.4 emphasize an exponential dependence on n following the
approximate formulae: Ts ∼= 1.6n.

In addition to a strict dynamical characterization of automata (or nonlinear map)
systems producing chaotic sequences, it is important to answer whether the gener-
ated sequences are passing or not standard statistical tests. Fortunately, the cellular
automata with ID=101 was already submitted to difficult batteries of such tests by
other authors [18], in the context of evolutionary search for CA with very good
cryptographic properties.

Notably, the authors mention that only 3 rules: ID=30, ID=86 and ID=101 passed
both the FIPS 140-2 standard testing and the battery of 23 strong tests of the Diehard
program [23]. But from what was discussed above, only automata networks based on
rule ID=101 is conservative (giving complex dynamics with no transient times) and
binary synchronizable. The modifications in the homogenous CA model presented
in Section 5.2 were found to have no influence on the results of the statistical tests.

Fig. 5.4 Experimentally determined average synchronization time and its dependence on the
number of cells n
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5.4 FPGA Implementations of Cellular Automata

Usual microcontrollers may be used to implement the cellular automata networks
with binary synchronization capability, however maximal speed and efficiency can
be achieved when CA models are implemented in a fully parallel fashion. In [20]
we provide a convenient methodology to generate VHDL representations using the
Algebraic Normal Form conversion. For the case of any elementary CA (with cells
defined as 3-inputs Boolean functions) the ANF representation is:

y = k0 ⊕ k1u1 ⊕ k2u2 ⊕ k3u3 ⊕ k4u1u2 ⊕ k5u2u3 ⊕ k6u3u1 ⊕ k7u1u2u3 (5.4)

The translation from ordinary (Truth Table) representation to the ANF is done us-
ing a procedure in [24]. This procedure, together with other information describing
the cellular automata structure (encryption key) is embedded into a specialized soft-
ware tool which automatically produces the VHDL description of either a single
(Tx) cellular automata or of the both systems as required in a transmission chain.
Effective implementations were successfully tested on the DE2 University Program
board from Altera equipped with Cyclone II EP2C35F672C6 device. The resource
allocation on the FPGA device for a particular example (autonomous hybrid CA
with rule 101 and 7 cells) is given in Table 5.1.

Table 5.1 Resource Allocation of a HCA implementation on the Cyclone II -
EP2C35F672C6 FPGA device

Total logical elements (LE): 7/33,216(< 1%)
Combinational functions: 7
Logic registers: 7

Total pins: 9/475 (2%)
Total memory bits: 0/483,840 (0%)
Embedded 9-bit Multipliers: 0/70 (0%)

Note the very efficient allocation of one cell per FPGA logic register. The above
results confirm that cellular automata with very large n (n = 33216 in the case of the
chip on the DE2 board) can be easily realized in low cost series FPGA. Compared
to other FPGA implementations reported in the literature, ours provides the most
compact implementation. The same VHDL description may be used to generate part
of specialized sensor chips (e.g. in addition to low power image sensors [25]) using
an ASIC design flow. The result would be a fully integrated sensor system with
encryption, compression and other capabilities, as discussed in [26]. Such a sensor
would perform compressed sensing using a different, more efficient approach than
recently proposed compressive sensing [1].



90 R. Dogaru and I. Dogaru

5.5 Applications

Since CA models discussed above (sometimes called chaotic counters, since they
are counting through the maximal length cycle) are similar with any of the previ-
ously investigated nonlinear discrete maps using finite computing precision, pre-
viously reported applications [27] for such chaotic maps may benefit by replacing
them with the proposed CA models. There are three main positive effects:

a) CA models have a higher implementation efficiency than nonlinear maps;
b) CA models will offer maximal length cycles with no transient effects;
c) A simple and efficient mechanism for synchronization is provided. There are

however two classes of novel applications particularly suited for the proposed com-
plex sequence generators. They will be briefly discussed next:

5.5.1 Compressed Sensing Based on Chaotic Scan

This class of applications is a compact alternative to the compressive sensing meth-
ods [1] and was first proposed in [26]. The simplified model is given in Fig. 5.6, with
regards to an image sensor. The idea may be further extended to any other kind of
multi-dimensional sensor in order to reduce the number of samples effectively trans-
mitted from the sensor. The method is effective assuming that adjacent elements in
the array are highly correlated. Chaotic scan implemented with low implementation
complexity chaotic counters perform simultaneously a form of compression as well
as ciphering and open the possibility to develop low cost sensors with compres-
sive sensing and radio-transmission facilities. To demonstrate the main idea of the

Fig. 5.5 Upper row: picture coverage with raster scan and chaotic scan after sending 5% of all
pixels from the transmitter; Lower row: optimization of the reconstruction error by choosing
different sizes L of the pixel neighborhood at receiving point
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Fig. 5.6 An alternative model for compressed sensing based on chaotic scan: Pixels in a sen-
sor array are chaotically selected by the chaotic counter. At receiving point a similar chaotic
counter, synchronized with the one in Tx, is recomposing the image form the serially re-
ceived pixel value while estimating its L-sized neighborhood. A small fraction of samples
from the Tx image suffices to recover a good quality replica of the original image with a
certain acceptable information loss.

method and its effectiveness, for a given image (leftmost one in Fig.5.5) both raster
scan (using conventional counters to address the array) and chaotic scan using the
hybrid CA rule 101 cellular automaton were performed in order to sample and send
a small fraction of only 5% of the pixels. It is clear that by sampling uncorrelated
pixels the image content is better retrieved in the case of chaotic scan. On the other
hand, controlling the size of the neighborhood filled with the same value of the
received pixel allows optimizing the reconstruction error.

Ordinary chaotic maps (i.e. logistic, tent, etc.) cannot be used in such applications
since their finite computing precision implementations often produce cycles with
only a very small fraction of state vectors (each addressing a pixel in the image
sensor array) belonging to the counting cycle. Consequently, only a small fraction
of the sensing elements will be addressed, compromising the information aquisition
process.

5.5.2 Efficient Generation of Spreading Sequences

A more detailed treatment of this application is provided in [28]. The principle
is exposed in Fig.5.7. An important feature of the chaotic counters described in
Section 2 is exploited in this case: The output of each cell can be considered as
generating a spreading sequence. Simulations for the case n = 29 confirmed that
such sequences can be considered orthogonal. When synchronization is needed, the
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Fig. 5.7 A model of a low complexity code division multiple access (CDMA) system with
spreading sequences generated by each cell of the cellular automata chaotic counter

signal associated with the first user is set to u1(t) = M, while all others are set to 0.
When the two counters (in Tx and Rx) are synchronized, the spreading sequences
are recovered at the receiving point allowing to decode the specific’s user message.
In designing such systems, a tradeoff is considered between the number of users
M and the spreading factor L (that is, the number of basic clock cycles allocated
to each symbol) such that a desired bit error rate BER is achieved. The transmis-
sion channel is usually modeled as an additive white Gaussian noise – or AWGN
- type. In order to compare the performances of our system, we considered a more
complex implementation solution based on logistic maps [29][30]. It turned out that
both systems have similar functional performances. It follows that the HCA-based
chaotic map with a low complexity implementation may replace more sophisticated
systems employing logistic maps without decreasing the functional capabilities. In
both cases the ratio L/M ∼= 32 in order to have bit-error BER=0 when the signal to
noise ratio is SNR=10 dB.

5.6 Conclusions

This chapter reviews recent results and applications of complex (chaotic) binary
sequences generated using non-linear elementary cellular automata. Since these au-
tomata were optimized to count most from all 2n possible states, they are also called
“chaotic counters”. Two architectures were considered, built around cells associated
with the Boolean function with 3-inputs ID=101, namely a hybrid model where
some properly selected cells have inverted outputs and a “small-worlds” model
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where some properly selected outputs are swapped. Compared to other nonlinear
maps used in discrete time and discrete space (finite computing implementations)
cellular automata models presented herein posses several advantages:

a) Binary synchronization property: One single bit (the output of only one of the
n cells) suffices to recover the entire n-bits state at the receiver through a simple
“drive-response” chaos synchronization process.

b) Efficient use of resources: This property makes the proposed automata models
highly effective for low power implementations as desired on sensor chips when
such functions as compressive sensing and encryption are needed. It is shown that
such models have a simple and scalable hardware description language represen-
tation producing implementations with allocated resources following a linear law
O(n). Such implementations do not use multipliers or other sophisticated operators,
as it is the norm in the case of nonlinear maps;

c) The proposed automata models are scalable, making thus possible to build
cryptographic systems with high immunity to attacks. As shown, low cost FPGA
chips can easily accommodate cellular automata networks with tens of thousands of
cells;

d) The proposed CA are non-linear unlike most of the previously proposed cel-
lular automata for cryptography that are linear (the most common example is the
hybrid CA with rules 90/150). Consequently the CA models proposed herein are
in the same category with Non Linear Feedback Shift Registers (NLFSR) that are
recently proposed to replace classic Linear Feedback Shift Registers (LFSR) [31]
due to their increased immunity to cryptographic attacks. As quoted in [31] O(2n)
observations (consecutive bits in the complex sequence) are needed in the case of
nonlinear automata instead of only O(n) in the case of linear ones in order to extract
the CA structure and therefore reconstruct the transmitter.

e) As any conservative automata, the models proposed herein are characterized
by 0-transient, a property that makes them useful since no supplementary precaution
is needed to enter the stationary regime (typical problem with all known nonlinear
maps).

f) Since the proposed cellular automata models are optimized to run on a longest
possible cycle they act as counters providing the basis for a special kind of compres-
sive sensing [26], with less computational efforts than traditional methods. Further
research to compare these methods is in progress. Another application where such
cellular automata models provide efficient implementations (as discussed in Section
5) is the generation of quasi-orthogonal binary spreading sequences, as required by
the CDMA systems.

Further research is devoted to improve the methods to optimize the encryption
key (structure of the automata), a problem which remains difficult to solve when
n > 31.
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Chapter 6
Fast Switching Behavior in Nonlinear Electronic
Circuits: A Geometric Approach

Tina Thiessen, Sören Plönnigs, and Wolfgang Mathis

Abstract. In this paper an outline about the geometric concept of nonlinear elec-
tronic circuits is given. With this geometric concept the fast switching behavior
of circuits, i.e. the jumps in their state space, is illustrated and a jump condi-
tion is formulated. Furthermore, the developed geometric approach is adapted to
MNA based systems of equations. This new method enables the simulation of such
ill-conditioned circuits without regularization and presents an implementation ap-
proach for common circuit simulators like SPICE.

6.1 Introduction and Motivation

Circuit simulation is a key tool in the design of electronic circuits. Despite the suc-
cessful development on the construction of robust circuit simulators [1], there are
still some open problems, e.g. the simulation of fast switching behavior in nonlinear
circuits.

Interesting circuits for our purpose are circuits with fast switching behavior, i.e.
circuits with discontinuous changes, which are called ”jumps” in state space. At-
tributes which indicate fast switching behavior are for example topological prop-
erties like positive feedback and circuit characteristics like negative differential
resistance or port characteristics seen by capacitors and inductors. It is mentionable
that many so-called digital circuits belong to these class of circuits, because they
are in fact analog circuits that retain information by assuming a certain state. When
the information changes, fast transitions may occur. One can show, that those non-
regularized circuits contain a “fold” in their manifolds (see Fig. 6.1) and provide ex-
amples for the so-called “time-constant problem” of circuit simulation (see [2], [3]).
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Fig. 6.1 Folded state space of non regularized network

It can be shown, that the simulation with common circuit simulators of non-
regularized networks N fails, if their state space S exhibits a fold with respect to
a network specific projection direction and if the dynamics is in the vicinity of the
fold edge (cf. Fig. 6.1: fold edge is represented by the edge of the shaded area).
Such a fold leads to jumps in the embedding space from one point on S to another,
which corresponds to the fast switching in the transient solutions. The points during
the jump are no admitted points, because they are outside S . Therefore, we need
to introduce an embedding space E = Rk and where S is a subset of E . When the
network is ε-regularized [4], the jump behavior can be viewed as the limit ε → 0
of the solutions of the singularly perturbed system [5]. The state space Sε of the
regularized network Nε is defined in a different embedding space Eε = Rk+c and
contains parts of S . However, the fold edge of S marks - in particular for ε → 0
- the ill-conditioned areas of the dynamics of Nε. This fold edge corresponds also
to the impasse points described in [6], [7]. By adding suitably located ε-parasitic
inductors L or capacitors C considering Tikhonov’s Theorem [8], the network is
regularized [9]. Nevertheless, by choosing wrongly located L’s and C’s, the circuit
can be regularized indeed, but the determined transient solutions are inconsistent
with respect to N . Another problem are the widely spaced time-constants, which
appear due to the fact that the dynamics of a regularized circuit can be divided
into a slow and a fast part, leading to the so-called ”time-constant problem” of
circuit simulation [2]. This difficulty can be circumvented by using stiff solvers
(e.g. implicit integration methods like BDF or Gear method) if the reason for the
time-constant problem is not related to a jump behavior [3]. In previous publica-
tions [10], [11], we have shown the implementation of a geometric concept using
geodetic differential equations. In this work we will, for the first time, adapt an al-
ternative geometric concept to systems of equations based on the Modified Nodal
Analysis (MNA).



6 Fast Switching Behavior in Nonlinear Electronic Circuits 101

6.2 Geometric Approach of Circuits and Fast Switching
Behavior

It is known that the state space S of an electronic circuit can be interpreted as a dif-
ferential manifold [12]. The branch voltages and currents must satisfy the algebraic
nonlinear resistive and Kirchhoff constraints. The Kirchhoffian space K is defined
as the set of all currents and voltages which satisfies Kirchhoff’s laws. Moreover
the Ohmian space O is defined as the set of all currents and voltages which sat-
isfies all resistive constitutive relations. Thus the state space of the circuit is de-
fined as the intersection of the Ohmian space O and the Kirchhoffian space K by
S := K ∩O [13], [14].
The dynamics of a nonlinear dynamic circuit are defined by the set of all solutions
of the descriptive differential equations on a sufficient smooth state space S . There-
fore the following conditions have to be fulfilled: 1) S is a smooth manifold. 2) The
dynamics can be created on S .

A set possesses the structure of a differentiable (smooth) m-dimensional mani-
fold if it is locally equivalent to a Rm. A concrete representation of a manifold can
be given by means of a chart (map) that maps a part of S into Rm. A detailed dis-
cussion about differentiable manifolds can be found in the monograph of Guillemin
and Pollack [15].
The Kirchhoffian space K has a vector space structure in linear and nonlinear cir-
cuits since Kirchhoff’s laws are homogeneous equations. Therefore K has also the
structure of a differentiable manifold. But in general the Ohmian space O is not a
differentiable manifold and even if O wears the structure of a differentiable mani-
fold it is not obvious that the state space S wears this structure.
If we consider a circuit by its descriptive equations it means that the intersection
of the solution sets of the Kirchhoffian equations and the Ohmian equations is a
smooth manifold if these equations are “local” independent. From a geometric point
of view this means that the intersection of K and O is “transversal” or in a more
technical setting: if K and O are two submanifolds of R2n (where n is the number
of branches) we call K and O transversal, if the following condition is satisfied:

x ∈ K ∩O where TxK ⊕ TxO = TxR2n or x /∈ K ∩O (6.1)

Now, we are able to characterize the standard situation in nonlinear dynamical cir-
cuits. The state space S is a smooth manifold if: 1) the Ohmian spaceO is a smooth
manifold and 2) the state space S = K ∩ O is not empty as well as K and O are
transversal. These properties can be satisfied by applying a suitable remodelling
technique with resistive elements [16]. Therefore, this situation is typical or so-
called generic and in the following we assume S to be a smooth manifold.

The second condition requires the construction of a vector field X on the smooth
manifold S . We know that based on fundamental physical laws, the relationships
between currents and voltages of λ capacitors and γ inductors are given by means
of differential relations. Therefore these differential equations are formulated in iL
and uC coordinate planes Rλ

i ⊕R
γ
u of the embedding space R2n.



102 T. Thiessen, S. Plönnigs, and W. Mathis

We define a 1-form Ω and a 2-form G on the space of currents of inductors and
voltages of capacitors. Then a projection map π : S → Rλ

i ⊕ R
γ
u is chosen that

maps a certain part of S to the coordinate planes of the inductors and capacitors,
respectively. Now we use the map π∗ to ”lift” or “pull-back” Ω and G on the state
space S . This operation is local because there are situations where S is folded just
like in fig. 6.1. In this case, there is more than one part of S that can be mapped
to the same part of the coordinate planes. With respect to the local dynamics of a
circuit, the following theorem is fundamental.

If the Ohmian space O is a smooth manifold, the Kirchhoffian space K and the
Ohmian space O are transversal and a pullback map π∗ exists such that a 1-form
ω := π∗Ω and a non-degenerated 2-tensor (bilinear map) g := π∗G can be defined
on S , then there exists locally a unique vector field X : S → T(S) which satisfies

g(X,Y) = ω(Y) (6.2)

for all smooth vector fields Y. With this locally defined vector field X we are able
to define the (local) dynamics of a circuit by means of ξ̇ = X ◦ ξ.

6.2.1 Singular Points and Jumps

There are several cases where a locally defined vector field X does not exist. If
S is a smooth manifold, then it is essential that g is non-degenerated. The bilin-
ear map g := π∗G can be interpreted as an inner product such that the assumed
non-degeneracy of g follows from the condition g(X,Y) = 0 for all Y ⇔ X = 0.
Therefore a degeneracy of g results from defects of π∗ or G. G is degenerated if
L(i) or C(u) is zero for some i and u, respectively, where these nongeneric cases
can be remodelled by parasitic reactances. A defect of π∗ is related to a dependency
of the dynamic variables. With respect to the Kirchhoffian space K a defect of π∗
corresponds to loops of capacitors and independent voltage sources or so-called cut-
sets of inductors and independent current sources. With respect to the Ohmian space
O a defect of π∗ is related to a zero of duR/diR or diR/duR such that above men-
tioned loops and meshes arise. Also in these cases a remodelling process is available
in order to obtain a generic situation of the circuit dynamics. For further details the
reader is left to Mathis [16].

These considerations can be discussed in a more concrete manner if circuit topol-
ogy is included. For this purpose we have to restrict ourself to RLC circuits. Then
interconnections of a circuit can be described by oriented graphs and its boundary
and coboundary operators or assuming a coordinate system (a chart) by its incidence
matrices. If we assume that a proper tree of a graph exists (i.e. a circuit including
all capacitor branches and no inductor branches), then no so-called ”forced degen-
eracies” arise. These forced degeneracies are defects of the dynamics related e. g. to
meshes of capacitors and cut-sets of inductors.

It is shown by Ichiraku [17] that a point (i,u) of the state space S is a singu-
lar point if and only if the characteristic manifold OR and the affine subspace KR
are not transverse at (iR,uR) := πR(R

2n) where πR is the natural projection from
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the embedding space R2n to the currents and voltages of the resistors. KR is the
Kirchhoffian space and OR is the Ohmian space of the resistive circuit obtained
from the given one by open-circuitting all inductor branches and short-circuitting
all capacitor branches.

In the following, we exclude forced degeneracies from our discussion (i.e.
meshes of capacitors and cut-sets of inductors, as well as L(i) = 0 or C(u) = 0),
which cause the dynamics to be degenerated [18].

6.3 Chart Representation of Circuits and Jump Phenomena

By choosing a suitable chart, the circuit equations can be considered as algebro-
differential equations (DAEs) [3] in a semi explicit form:

C(x)ẋ = g(x,y,z) g : Rk →Rn (6.3)

0 = f(x,y,z) f : Rk →Rm (6.4)

The vector x ∈ Rn corresponds to the capacitor voltages and inductor currents,
z ∈Rη is the vector corresponding to independent voltage or current input sources
(which can also be a function of time z(t)) and y ∈ Rm is a vector of additional
voltages and currents. Here, η is the number of independent sources. The matrix
C(x) is related to the dynamical elements and becomes a constant matrix for linear
inductances and capacitances. The nonlinear vector field with respect to x, y and z
is represented by g.

Now, we have to introduce the embedding space E = Rk and define S as a sub-
space of E . The solution set of the algebraic equations (6.4) represents the state
space S of the circuit, whereas the differential equations (6.3) represent its dy-
namical behavior. The dimension k of the embedding space can be determined by
k = n+m+ η. The state space S has the dimension l = n+ η and the codimension
is m = k− l.

6.3.1 Jumps in State Space

As mentioned in section 6.2.1, a generic dynamics of a circuit do not exist at points
where the projection map π∗ has singularities. Such singularities arise if the state
space is folded, which would result in a jump of the transient solution from one
point on S to another instantaneously. Considering that the energy of capacitors and
the charge of inductors is preserved, the voltages across capacitances and currents
through inductances have inertia through a jump process and do not change (i.e. the
values of x do not change during the jump). Another restriction is the fixed value of
z during a jump.

Then, with respect to the semi explicit DAE representation, the singular points
are defined at points where the local solvability to y is not guaranteed. These points
are specified by the following condition:
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det
(

∂f(x,y,z)
∂y

)
= 0 where f(x,y,z) = 0 (6.5)

Therefore we assume eq. (6.5) to be the necessary jump condition (cf. [19] [20],
[21]).

The zero set of all points fulfilling the m + 1 algebraic equations specified by
eq. (6.5) is called ”jump-set” Γ and represents a l − 1-dimensional subset of S .
Of course, the calculation of the solution set of this equation system is difficult.
However, we are not interested in all roots of eq. (6.5), but only in the actual chosen
jump point during a simulation. Hence, we trace the dynamics on S (specified by eq.
(6.3) and (6.4)) till reaching a stopping point Ps. This stopping point is defined as a
point, where the step size of the numerical solver reaches a lower boundary (which
is related to the machine constant of the simulating computer). In the next step,
we search for the ”nearest” point on Γ (by choosing a suitable norm) and define
it as actual jump point Pj (cf. Fig 6.2). Furthermore, we define a straight line ξs
connecting Ps and Pj, which will be used for determining the hit point.

ξs

Fig. 6.2 Concept for jump point calculation; Γ: green triangles; trajectory: blue circles; ξs:
red line

The sufficient jump condition is first given in a heuristic sense:
A point, which is specified by eq. (6.5) and whose neighborhood includes a Lya-
punov stable and an unstable point, is called proper jump point Pj. The sufficient
jump condition can be verified by calculating the eigenvalues λi of the characteris-
tic equation

det
(

∂f(x,y,z)
∂y

− λ · E
)
= 0 (6.6)

λm + βm−1 · λm−1 + · · ·+ β1 · λ1 + β0 = 0 , (6.7)

where E is the identity matrix (cf. theory of discontinuous oscillators e.g. [21], [22]).
If all λi of eq. (6.7) have negative real parts, the sufficient jump condition is not
fulfilled and there are no proper jump points. The difference from the definition in
this work to the one in the theory of discontinuous oscillators [21], [22] is, that we
interpret z as variables and therefore extend the approach to all systems with fast
switching behavior caused by a fold in their state space manifold and not only to
autonomous circuits.

The jump-set Γ separate the state space manifold in a stable S− and an unstable
S+ part, which are defined by the real part of the eigenvalues
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S− : �e{λi} < 0, ∀i ∈ N, i ≤ k (6.8)

S+ : �e{λi} > 0, ∃i ∈ N, i ≤ k . (6.9)

By crossing the jump-set Γ between stable and unstable region, there appears either
one real positive λ or a pair of conjugate complex λ1,λ2 with positive real parts.
The appearance of more than two λi with positive real parts is uncommon and will
not be analyzed [21]. In the following we will restrict ourself to the case, where only
one real positive λ appears. Then, for points on Γ there is only one eigenvalue equal
to zero. As a result the constant term of eq. (6.7) (which corresponds to eq. (6.5)
β0 = det

(
∂yf(x,y,z)

)
) is equal to zero. Therefore, the necessary and sufficient

jump condition can be tested by the zero crossing of the determinant (6.5).
Because of the fixed values of x and z during the jump, the jump takes place

in a tangential space of Rm, which corresponds to the coordinate space of y. In
the following, the jump space will be denoted by J S . Because we introduced the
embedding space, the hit point Ph can be calculated by the intersection of the jump
space defined in the jump point and the state space, excluding the jump point (Ph ∈
(J SPj ∩ S)�Γ). Therewith, it is guaranteed that the values of xj = xh and zj = zh
before and after the jump are the same. Hence the corresponding ”hit-set” is the
intersection of the ”bundle” of all jump spaces at points of the jump-set and the
state space S .

The conditions for fast switching can be summarized as follows:

• The necessary and sufficient jump condition have to be fulfilled: This can be
tested by the zero crossing of det

(
∂yf(x,y,z)

)
for points on S .

• The trajectories hit again the manifold: The intersection of J S and S have an-
other solution than the jump point itself, i.e. (J SPj ∩ S)�Γ is transversal and
not empty.

6.3.2 Determining the State Space

If one is interested in plotting the state space in a certain area, the following con-
siderations are necessary. Since there are electronic circuits like e.g. the Schmitt
Trigger circuit which exhibits a fold respectively the independent input sources z,
S is “near the jump” not unique with respect to z. Thus, for the determination of
S , one has to interpret z as variables and not as a constant or time dependent input
value. Furthermore, also the values of x are fixed during the jump. As a consequence
S is “near the jump” unique with respect to y and not unique with respect to x and z
(cf. Fig. 6.3). So, by specifying l components of y, one can determine S . During the
determination of S , the determinant criterion can be checked by the local evaluation
of eq. (6.5) yielding the jump-set. Nevertheless, there are circuits (e.g. the series
connection of resonant tunneling diodes), where the state space is not unique to
any coordinate. In this case, the determination of S is not possible with the method
described here. One possibility could be the usage of geodesic coordinates.
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y

x

z S

Fig. 6.3 Uniqueness of the state space with respect to y

6.3.3 Transient Solution and Hit Point Calculation

For the computation of the transient solution, of course, the time dependency of the
input sources z(t) has to be taken into account. Since the dynamics is not defined
at points of the jump-set, it increases very fast nearby the jump-set while tracing it.
Therefore we have defined a stopping criterion, which compares the actual step size
of the numerical integrator with a lower boundary (see section 6.3.1). When the step
size reaches this boundary, the integration is stopped at a point Ps. From here, the
jump point Pj is calculated as described in section 6.3.1. Then, the corresponding
hit-point Ph will be calculated by the intersection of the jump space J S defined in
a point Pj′ and S (cf. Fig. 6.4; here J S is one-dimensional). The point Pj′ is chosen
not to be the actual jump point Pj which lies in S . After calculating the jump point
Pj, we use the distance Δ from Ps to Pj on ξs to calculate Pj′ (see Fig. 6.4). Thereby,
we make sure that Pj′ does not lie in S and the numerical solver is able to find a
unique hit-point Ph′ . If one is interested to get a more exact numerical solution of
Ph, one can calculate the solution of the intersection of J SPj ∩ S with the initial
value Ph′ . But, as we will see in section 6.5, the hit point Ph′ is comparable to the
hit point of a regularized circuit. From Ph the dynamics can be traced, till reaching
the jump-set again.

JS

Fig. 6.4 Concept for hit point calculation
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6.4 Adaption of the Geometric Approach to MNA Based
System of Equations

Common circuit simulators (e.g. SPICE) are based on MNA, which leads in the
description of electronic circuits to a high dimensional system of equations. To apply
the methods described in section 6.3, several modifications to the classical MNA are
necessary [23].

6.4.1 Modification of the System of Equations

From a given netlist of an electronic circuit, we obtain the system of equations
(6.10), which results from applying the MNA stamps [24].

C̃(n)ṅ + G̃n = B̃u(n, t) (6.10)

C̃(n) is the matrix related to the dynamical elements which is, for typical circuits,
a singular matrix. If there are nonlinear capacitances or inductances, one approach
is to separate C̃(n) in a linear and a nonlinear part. But, for simplicity, in the fol-
lowing we only consider linear inductances and capacitances, so that C̃ is a constant
matrix. G̃ is the coefficient matrix related to the non-dynamic elements and B̃ is
the coefficient matrix related to the input sources. The vector n contains node volt-
ages and currents including at least the currents iL through inductances. The nonlin-
ear elements are considered as nonlinear dependent current or voltage sources and
summarized together with the input sources in the vector u(n, t). Now, we have to
modify the system of equations to apply the methods described earlier.

Since we exclude forced degeneracies from our discussion (i.e. meshes of capac-
itors and cut-sets of inductors, as well as L(i) = 0 or C(u) = 0), the rank rC of
C̃ is equal to the number of capacitances and inductances. Therefore, we add the
rows of C̃, so that there are only rC non zero rows remaining. Simultaneously, we
manipulate the matrices G̃ and B̃ in the same manner, yielding:

C∗ṅ + G∗n = B∗u(n, t) . (6.11)

By now, the vector n includes only node voltages and currents. To distinct n in
conserved quantities and non conserved quantities, i.e. in x and y, we have to in-
sert the capacitor voltages. Therefore, we add algebraic equations which describe
the relations between capacitor voltages and the corresponding node voltages (e.g.
UC1 = ϕn3 − ϕn7) to the system of equations. We summarize all capacitor voltages
and inductor currents in the vector x and all additional node voltages and currents in
the vector y. The input vector u is divided into nonlinear sources h(x,y), constant
bias sources u0 and independent input sources z (which can also be a function of
time z(t)). The further modifications leads to the system of equations:
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C
(

ẋ
ẏ

)
+ G

(
x
y

)
= B

⎛
⎝ h(x,y)

u0
z

⎞
⎠ , (6.12)

which can be formulated as semi explicit system of equations:(
C11 0

0 0

)(
ẋ
ẏ

)
+

(
G11 G12
G21 G22

)(
x
y

)
=

(
B11 B12 B13
B21 B22 B23

)⎛
⎝h(x,y)

u0
z

⎞
⎠ . (6.13)

Furthermore, it becomes apparent that the addition of branch voltages is suitable.
These additional voltages are stored in the vector b, which can be determined by
b = L · y, where L is the matrix relating the node potentials to their branch voltage.

6.5 Application on Two Simple Example Circuits

The described concept is illustrated on an emitter coupled multivibrator shown in
Fig. 6.5 and on a Schmitt Trigger shown in Fig. 6.13. To analyze the circuits, we use
the Ebers-Moll model in forward mode. For the comparison of our non-regularized
solution with the solution of the regularized system, the parasitic base-emitter ca-
pacitances Creg parallel to the diodes D1 and D2 were added.

6.5.1 Emitter Coupled Multivibrator

The design parameters are R = 500Ω, Ri = 100kΩ,C = 33nF, IS = 7 f A,VT =
26mV and αF = 0.99. For the simulation we use a constant bias voltage U0 = 5V
and a constant bias current I1 = I2 = 0.26mA.

The resulting vector u can be found in Fig. 6.6, the vector n in Fig. 6.7 and
the matrix dimension in Fig. 6.8. Here the dimension of the embedding space is
k = 9 and because rC = 1, we have to split one dynamic equation from the algebraic
ones. The state space is one-dimensional (l = k − m = 1) and the codimension is
m = 8. To display S , we assign the diode voltages to the corresponding node volt-
ages UD1 = ϕn5 − ϕn1 and UD2 = ϕn6 − ϕn2. In Fig. 6.9 the state space (blue) in
the coordinate system UD1 − UD2 − UC is shown. The associated jump is repre-
sented by the red line (triangles) and, for comparison, the transient solution of the
regularized system is shown by the green line (circles).

In Fig. 6.10 the transient solutions of the circuit in relation to different regular-
ization capacitances ε is shown. As one can see, Pjump,reg and Phit,reg approaches
for ε → 0 the non regularized case. Pjump,reg represents the point where the tran-
sient solution significantly comes off S and Phit,reg represents the point, where the
transient solution first proceeds in the near of S . Furthermore one can see, that the
overshoots of the transient responses after reaching the stable part of S again is
independent from ε.
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R

I2

U0ID1 ID2

I0

I1

R

αFID1 αFID2

CD1 D2

Ri Ri

Fig. 6.5 Emitter coupled multivibrator

u =

⎡
⎢⎢⎢⎢⎣

ID1
ID2
I1
I2

UVS

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

7 · 10−15 · (e
ϕn5−ϕn1
26·10−3 − 1)

7 · 10−15 · (e
ϕn6−ϕn2
26·10−3 − 1)

0.00026
0.00026

5

⎤
⎥⎥⎥⎥⎥⎦

Fig. 6.6 Vector u including input sources and nonlinear dependent sources

n =

[
x
y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UC
ϕn7
ϕn6
ϕn5
ϕn1
ϕn2
IVS
ID1
ID2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6.7 Vector n including x and y

matrix rows columns

C 9 9
B 9 5
G 9 9
L 2 8

Fig. 6.8 Matrix dimensions

By comparing Fig. 6.11 and 6.12, one can see, that our concept enables a sim-
ulation without regularization. Of course, the peaking during the switching process
does not exist in our solution, but the main problem, namely the functionality of the
circuit, is guaranteed.
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Fig. 6.9 State space (blue) in UD1 − UD2 − UC coordinate system; non-regularized jump
solution (red triangles); regularized solution (green circles) Creg = 500pF

ϵ→0

ϵ→0UC

UD1

UD2

Pjump

Phit

Phit ,reg

Pjump,reg

S

Fig. 6.10 Transient solution in relation to different regularization capacitances Creg = ε
Creg = 900nF (green triangles), Creg = 10nF (yellow circles) and Creg = 0 (red crosses)
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Fig. 6.11 Transient solution of non regularized multivibrator;
UD1 (blue circles), UD2 (green triangles) and UC (red)
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Fig. 6.12 Transient solution of regularized multivibrator Creg = 500pF;
UD1 (blue circles), UD2 (green triangles) and UC (red)

6.5.2 Schmitt Trigger

The design parameters are RC1 = RC2 = 1kΩ, Re = 100Ω, R1 = 8.2kΩ, R2 =
2.7kΩ, RV = 4.7kΩ, IS = 6.734 f A,VT = 26mV and αF = 0.99. For the simula-
tion we use a constant bias voltage U0 = 10V.
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RC1 RC2

U0

Uout

R1

R2Re

D1 D2
IF1 IF2

αFIF1
αFIF2

Uin

RV

Fig. 6.13 Schmitt Trigger

u =

⎡
⎢⎢⎣

ID1
ID2
UV1
UIN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

6.734 · 10−15 · (e
ϕN6−ϕN7

26·10−3 − 1)

6.734 · 10−15 · (e
ϕN4−ϕN7

26·10−3 − 1)
10

1.5 + 1.5 · (sin(2 · π · 1000 · t))

⎤
⎥⎥⎥⎦

Fig. 6.14 Vector u including input sources and nonlinear dependent sources

n =

[
x
y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕN1
ϕN2
ϕN6
ϕN5
ϕN4
ϕN3
ϕN7
IV1
IVI N
ID1
ID2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6.15 Vector n including x and y

matrix rows columns

C 11 11
B 11 4
G 11 11
L 4 11

Fig. 6.16 Matrix dimensions
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Fig. 6.17 State space (blue) in UD1 −UD2 −UIN coordinate system non-regularized jump
solution (red triangles); regularized solution (green circles) Creg = 200pF

Fig. 6.18 Transient solution in relation to different regularization capacitances Creg = ε
Creg = 800pF (yellow circles), Creg = 50pF (green triangles) and Creg = 0 (red crosses)

The resulting vector u can be found in Fig. 6.14, the vector n in Fig. 6.15 and
the matrix dimension in Fig. 6.16. Here the dimension of the embedding space is
k = 12 and there is one independent input voltage. Therefore state space is one-
dimensional (l = k − m = 1) and the codimension is m = 11. To display S , we
assign the diode voltages to the corresponding node voltages UD1 = ϕn6 − ϕn7
and UD2 = ϕn4 − ϕn7. In Fig. 6.17 the state space (blue) in the coordinate system
UD1 − UD2 − UIN is shown. The associated jump is represented by the red line
(triangles) and, for comparison, the transient solution of the regularized system is
shown by the green line (circles).
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Fig. 6.19 Transfer characteristic in UIN −UOUT coordinate system state space (blue), tran-
sient solution (red)

In Fig. 6.18 the transient solutions of the circuit in relation to different regular-
ization capacitances ε is shown. Here, the regularized solution is far from the state
space manifold and approaches for ε→ 0 the non regularized case. Also the distance
d from transient solution and S vanishes for ε → 0.

At the end, the known input output characteristic in form of a hysteresis is shown
in Fig. 6.19.

6.6 Conclusion

In this article we have described why certain circuits with jumps sometimes require
adding regularizing capacitors or inductors. We have given a geometric interpreta-
tion of jumps in state space and formulated a concrete local criterion to check if a
circuit’s state space manifold exhibits a fold. With our approach, it will not be nec-
essary to add a regularization to get the transient solutions of a circuit. Furthermore
we have shown, for the first time, a complete concept for adapting this geometric
approach to a system of equations based on MNA. Therefore, the developed concept
can be implemented in an MNA based circuit simulator like SPICE. Finally we have
proven the functionality of our concept by numerical results of two BJT circuits. In
a further work [25], we have adapted the non MNA based geometric approach to
MOS circuits, where the EKV model is used as equivalent circuit diagram. How-
ever, the developed theory presented in this paper can be adapted to any electronic
circuit containing a fold in their state space.
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Chapter 7
Dynamics of Liénard Optoelectronic Oscillators

Bruno Romeira, José Figueiredo, Charles N. Ironside, and Julien Javaloyes

Abstract. In this chapter we present a comprehensive study on the dynamics of
novel nonlinear optoelectronic oscillators (OEO) modeled by Liénard OEO sys-
tems. The OEO dynamical systems are based on negative differential resistance res-
onant tunneling diode oscillators incorporating a photoconductive region and laser
diodes. The modeling results are in a good agreement with the wide variety dynam-
ics that has been observed in recent experimental work spanning from self-sustained
relaxation oscillations to injection locking and chaotic behaviors in both electrical
and optical domains. Potential applications range from generation of periodic and
chaotic signals for chaos-based communication schemes to highly stabilized OEOs
for microwave-photonic systems.

7.1 Introduction

Oscillation is among the simplest of dynamic behaviors to describe mathemati-
cally a wide variety of periodic phenomena observed in atmospheric physics, con-
densed matter, nonlinear optics and electronics, plasma physics, biophysics, biology,
etc. [1]. With appropriate perturbation an oscillator system can exhibit highly com-
plex dynamical characteristics ranging from stable, narrow-linewidth oscillation to
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broadband chaos. In recent years, the perturbation schemes that have been more
thoroughly studied for optoelectronic and optical communications applications are
the optical injection [2, 3], optical feedback [4–6], and optoelectronic feedback [7].
For example, irregular emission behavior of semiconductor lasers with injected co-
herent light has been intensively investigated to provide bandwidth enhancement,
chirp reduction, and noise reduction for optical communication applications. The
injection of coherent light into a semiconductor laser is commonly refereed as injec-
tion locking [2]. Optical feedback of laser systems has been systematically studied
and consists of optical re-injection of a fraction of the light produced by the laser
into its active region. In this case the round-trip time of light in the external cavity
introduces a delay in the system that is utilized to control and adjust the dynamical
behavior [8].

Of increasing interest are optoelectronic oscillator (OEO) dynamical systems
subjected to injection and time delayed feedback that can simultaneously gener-
ate highly pure signals in both electrical and optical domains [9,10]. A typical OEO
consists of a nonlinear system with a time-delayed feedback loop that can function
in the frequency range from tens of GHz down to few kHz. In a OEO system, exter-
nal elements such as electro-optic modulators, radio-frequency (RF) oscillators, etc.,
are used to produce nonlinearities, and a laser diode is used only as a light source.
Using this configuration, it was demonstrated that delayed-feedback OEOs provide
very high-quality microwave-photonics oscillators [11]. Because of the variety of
complex dynamical regimes, OEO topologies have been receiving great attention
due to the chaos generation and control capabilities that allows increasing the secu-
rity in optical communication systems [12, 13]. The dynamics of such systems can
be easily synchronized and controlled adjusting either the external perturbation or
feedback parameters [14–16].

As depicted in Fig. 7.1 a nonlinear time-delay system relies on a nonlinear de-
vice, an element to compensate for any losses, and a feedback delay. In this chapter,
the investigated OEO system has a simple configuration whose nonlinearities and
gain arise from the differential negative conductance (NDC) of a resonant tunneling
diode (RTD) [17]. The RTD-based OEO comprises an RTD with a photoconductive
region and a laser diode [18, 19], forming an optoelectronic voltage controlled os-
cillator (OVCO) with both electrical and optical input and output ports [20–22]. As

Fig. 7.1 Schematic of a
simple nonlinear time-delay
system with feedback, gain,
and time delay τd.

d

gain

output

nonlinear
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input
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discussed throughout this chapter, the complex dynamics of RTD-OEOs is modeled
by a Liénard OEO system consisting by two sets of coupled differential equations,
one describing the electrical properties of the oscillator circuit, which corresponds to
a classical Liénard oscillator, and the other modeling the laser diode dynamics using
the single mode laser rate equations. The main potential advantages of utilizing the
RTD-OEO system instead of optical injection or feedback of optoelectronic/laser
systems include the simple implementation, compact solution, tunability of RTD
oscillator, and possibility of novel dynamics taking advantage of the nonlinearities
of both RTD and LD devices plus delayed feedback.

The chapter is organized as follows. In the next section we present a brief re-
view on RTD-based OEO systems. Then we describe in the detail the generalized
forced Liénard OEO model incorporating delayed feedback and discuss in detail its
dynamical regimes. Finally, the last section compiles the most relevant concluding
remarks and expected developments.

7.2 Resonant Tunneling Diode Optoelectronic Oscillators

Resonant tunneling diode OEOs combine the electrical non-linearities of RTD os-
cillators with photo-detectors and laser diode light sources [17, 18, 21]. An RTD
consists of a nano-electronic structure that uses a vertical stacking of epitaxial lay-
ers of semiconductor alloys with the active region consisting of a double barrier
quantum well (DBQW), in total, about 10 nm thick, that act as a Fabry-Pérot in-
terferometer for the electron wavefunctions. The Fabry-Pérot effect gives rise to a
highly nonlinear current-voltage I(V) characteristic with a wide bandwidth NDC
region. When DC biased in the NDC region the RTD can act as an electric amplifier
and as a relaxation oscillator [17].

Taking advantage of the RTD wide bandwidth nonlinear NDC region, it is pos-
sible to implement compact OEO configurations. Figure 7.2 shows a schematic
diagram of an experimental RTD-based OEO comprising a RTD monolithic inte-
grated waveguide photo-detector (PD) driving a laser diode, and an optical fiber
delay feedback loop. As discussed throughout this chapter the OEO can be operated
in a wide variety of operation modes: as an OVCO producing both RF and optical

Fig. 7.2 Schematic diagram
of the RTD-laser diode
OEO experimental setup
with external electrical and
optical injection, and time
delayed feedback.
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modulated signals; as an electrically and optically injection locked OEO; and as a
self-synchronized OEO using a time delayed feedback loop configuration.

Next we review in more detail the main features of RTD-OEOs that include the
RTD’s I(V) characteristic, the photo-detection characteristics, the equivalent circuit
model and the laser diode single mode rate equations. The section ends with the
formulation of the general Liénard OEO mathematical model derived from the RTD-
OEO experimental configuration represented in Fig. 7.2.

7.2.1 Resonant Tunneling Diode

A semiconductor DBQW-RTD consists of a low band-gap semiconductor layer (the
quantum well, typically from 5 nm to 10 nm wide) surrounded by two thinner layers
of higher band-gap material (barriers, typically from 1.5 nm to 5 nm), both sand-
wiched between lower band-gap material layers, usually the same as the well mate-
rial, as shown schematically in Fig. 7.3(a). When both sides are terminated by highly
doped semiconductor layers for electrical connection (the emitter and the collector
regions/contacts) the structure is called a resonant tunneling diode.

Under applied bias, the DBQW-RTD functions as a Fabry-Pérot filter to charge
carrier energy distribution. This is exploited to control the number of carriers that
can take part in the conduction through the DBQW resonant levels. The carrier
transmission coefficient maxima give rise to a I(V) characteristic with regions of
strong nonlinear NDC. In the case of n-type RTDs (the case here), the RTD I(V)
characteristic depicted in Fig. 7.3(b) can be understood with the help of the lowest
conduction band profile shown in Fig 7.3(a).

When the applied bias is small, i.e., V << Vp (peak voltage and local carrier
transmission coefficient maximum), the conduction band profile is not much af-
fected, remaining almost flat, see Fig. 7.3(a)(i). As voltage is increased, the energy
of the first resonant level is moved downwards to the emitter Fermi level, leading
to an almost linear current increase with the voltage, the first positive differential
conductance region, till reaching a local maximum Ip, ideally, at V � 2EN=1/q,
when the overlap between the emitter electron Fermi sea energy spectrum and the
transmission coefficient around the first resonant level reaches a local maximum,
Fig 7.3(a)(ii). A further increase in the applied voltage pulls the first resonant level
towards the bottom. This leads to a sharp current decrease, giving rise to the first
NDC portion of the device’s I(V) characteristic 7.3(b). At a given voltage, known
as the valley voltage Vv, with Vv > Vp , the current reaches a local minimum Iv. An
additional increase of the bias voltage will further lift up the emitter Fermi level and
tunneling through higher resonant levels or through the top regions of the barriers,
7.3(a)(iii), will lead again to a current increase, similar to the behavior of a classical
diode I(V) characteristic. The overall N-shaped I(V) characteristic with a NDC
region is shown in 7.3(b).

Thus in the NDC region the current density decreases with increasing voltage
(increasing electric field across the DBQW), which in general corresponds to an
unstable regime. The actual electric response depends, for instance, upon the contact
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conditions and the attached circuit, which in general contains - even in the absence
of external load resistors - unavoidable resistive and reactive components such as
lead resistances, lead inductances, package inductances, and packages capacitances.
The global I(V) characteristic of an RTD can be calculated from the local j(ε)
relation, where ε represents the electric field across the DBQW, by integrating the
current density j over the cross-section A of the current flow

I =
∫

A
jdx′dy′ (7.1)

where the electric field ε over the length L of the sample is obtained by

V =
∫ L

0
εdz′ (7.2)

where z′ is the direction of current flow and x′ and y′ are the perpendicular direc-
tions. Unlike the j(ε) relation, the I(V) characteristic is not only a property of the
semiconductor material, but also depends on the geometry, the boundary conditions,
and the contacts of the sample. The I(V) relation is said to display NDC when

dI
dV

< 0. (7.3)

For a useful representation of the RTD non-linear I(V) characteristic one have to
considerer a wide variety of device structures and materials available, that is, a suit-
able modeling of the RTD I(V) characteristic has to include, as much as possible,
RTD physical parameters such as material properties, layer dimensions, energy lev-
els, dopant concentrations, and the device geometry.

Since a quantum mechanics based model that includes a full description of RTD
features is not yet available, several attempts have been made to incorporate the
full pronounced nonlinear NDC and RTD high-speed operation characteristics into
circuit simulation packages such as SPICE-like CAD tools [23]. In this work we
consider the physics-based model proposed by Schulman et al. [24], that consists
of a mathematical function which provides a satisfactory fitting of the RTD I(V)
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Fig. 7.3 (a) Lowest conduction band profile under applied voltage. (b) Voltage dependent
current source function G(V) of a typical RTD device with 800 μm2 area, showing the NDC
region.
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consisting of InGaAlAs semiconductor compound materials. The expression is
given in the form

G(V) = A · ln

[
1 + eq(B−C+n1V)/kBT

1 + eq(B−C−n1V)/kBT

]
·

[
π

2
+ tan−1

(
C − n1V

D

)]
+ H

(
en2qV/kBT − 1

)
(7.4)

and contains physical quantities described in detail in [24], which can also be treated
as empirical parameters for fitting purposes. In Eq. (7.4), q and kB are the unit
electric charge and the Boltzmann constant, respectively. Figure 7.3(b) shows a
typical RTD I(V) characteristic using the fitting parameters A = 6.42× 10−3 A,
B = 0.0875 V, C = 0.1334 V, D = 0.013 V, H = 4.656× 10−2 A, n1 = 0.1502,
and n2 = 0.0041.

The RTD structures described here include also photoconductive layers to oper-
ate as a photo-detector which allows RTD oscillators to be controlled by both optical
and electrical signals. In a RTD-PD device, the NDC, and hence the current flow, can
be controlled by the incident optical power due to the photo-detection characteris-
tics of the structure. By taking advantage of NDC intrinsic gain, RTD-based photo-
detectors can exhibit high responsivity and large gain-bandwidth-efficiency [18].

The RTD photo-detector depicted in Fig. 7.2 represents a waveguide photo-
detector configuration incorporating a DBQW as reported in [18]. The RTD photo-
generated current Iph(P) in response to an optical signal P(λ) is given by

Iph(P) = ηph
qλ

hc
P(λ) (7.5)

where λ is the operation wavelength, h and c are the Planck constant and the speed of
light in the vacuum, respectively, and ηph is the waveguide photo-detector quantum
efficiency given by

ηph = κ(1− Rre f )(1− e−αγphΛ) (7.6)

with κ being the light coupling factor, Rre f is the waveguide facet reflectivity, α is
the waveguide core absorption coefficient, γph is the overlap integral of the electric
field and the optical field, and Λ is the waveguide photo-detector absorbing active
length. For a sinusoidal optical input with average power, P(λ), and modulation
depth, m, the incident power is

P(t) = P(λ)(1 + m sin(2π fint)) (7.7)

In Table 1 are presented the typical physical parameters used to model the RTD
photo-detector characteristics.

7.2.2 RTD Photo-Detector Equivalent Electrical Circuit

Using the theory of nonlinear oscillations in terms of differential equations, we have
formulated a dynamical model from the analysis of the lumped electrical circuit
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Fig. 7.4 Schematic of the
equivalent electrical circuit
of the RTD-PD oscillator
subjected to external injec-
tion.
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shown in Fig. 7.4. The model is used to investigate the dynamics of RTD-PD oscil-
lators perturbed by both electrical and optical modulated signals.

The equivalent circuit of Fig. 7.4 models the forced RTD-PD RLC nonlinear os-
cillator, with the RTD being represented by its intrinsic capacitance in parallel with
a voltage dependent current source G(V), and the photo-detection characteristics
being represented by an optical power dependent current source Iph(P). The resis-
tor R and inductor L account for the circuit’s resistance and inductance parasitics,
respectively. By applying Kirchoff’s rules (using Faraday’s law) to the circuit of
Fig. 7.4, the voltage V across the capacitance C and the current I through the in-
ductor L under external injection are given by the following set of two first-order
non-autonomous differential equations

dV
dt

=
1
C

[
I − G(V)− Iph(P)

]
(7.8)

dI
dt

=
1
L
[VDC + VAC sin(2π fint)− RI −V] (7.9)

where VDC is the DC bias voltage, VAC sin(2π fint) is the external electrical pe-
riodic force, and G(V) is the mathematical representation of the RTD-PD I(V)
characteristic, Fig. 7.3(b). Table 1 summarizes the typical circuit parameters used in
the model given by Eqs. (7.8-7.9).

7.2.3 Laser Diode Rate Equations

In order to correlate the response of the laser diode to its physical parameters we
use single-mode rate equations to describe the dynamic behavior of the laser diode
[25]. The rate equations relate mathematically the interaction between electrons and
photons within the laser cavity and thus describe the nonlinearity in the input-output
relationship between the RTD driving current and the optical modulated signal of
the laser light output. The rate equations for the photon S and injected carrier N
densities in the active region are
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Table 7.1 Description of the typical physical parameters of the electrical circuit and RTD
waveguide photo-detector

Symbol Quantity Typical order of magnitude

R Resistance 1 Ω
L Inductance 9× 10−9 H
C Capacitance 5.5× 10−12 F
VDC Bias voltage 1 V
λ Operation wavelength 1.55 μm
κ Light coupling factor 0.35
Rre f Waveguide facet reflectivity 0.3
αv Waveguide core absorption coefficient (valley) 400 cm−1

γph Overlap integral of the electric and optical fields 0.25
Λ Waveguide contact length 150 μm

dN
dt

=
Im

qVact
− N

τn
− g0(N − N0)(1− εNS)S (7.10)

dS
dt

= Γg0(N − N0)(1− εNS)S− S
τp

+ Γβ
N
τn

(7.11)

S
Pf

=
Γτpλ0

Vactηlhc
(7.12)

where Im accounts for the oscillatory current entering in the active region given by
Eqs. (7.8-7.9), and the bias current IDC. The laser dynamics is modeled employ-
ing typical parameters of semiconductor laser diodes. In Table 3 are described the
physical parameters of the laser rate equations.

Table 7.2 Description of the physical parameters of the laser rate equations

Symbol Quantity Typical order of magnitude

Vact Active region volume 6.75× 10−11 cm3

τn Carrier lifetime 2× 10−9 s
τp Photon lifetime 1.2× 10−12 s
g0 Gain coefficient 10−6 cm3s−1

N0 Optical transparency density 1018 cm−3

εN Nonlinear gain compression 0.6× 10−17 cm3

β Spontaneous emission 4× 10−4

Γ Optical confinement factor 0.44
ηl Differential quantum efficiency per facet 0.2
λ0 Lasing wavelength 1.55× 10−6 m
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7.2.4 Forced Liénard OEO System with Time Delayed Feedback

In what follows, the Liénard OEO system is formulated using dimensionless dif-
ferential equations from the analysis of RTD-PD oscillator equivalent circuit and
laser diode rate equations presented in previous subsections. Figure 7.5 presents a
block diagram showing the corresponding mathematical representation of the forced
Liénard OEO model with time delayed feedback, where P(t) and F(t) stand for the
time-dependent functions that represent the optical and electrical external perturba-
tions, respectively, and s(t− τd) corresponds to the optical time-delayed feedback
variable.

The dimensionless equations are obtained from the normalization of RTD-PD
differential Eqs. (7.8) and (7.9) and laser diode Eqs. (7.10) and (7.11). In order
to normalize Eqs. (7.8) and (7.9), we choose V0 and I0 as scale parameters with
physical dimensions of current and voltage (I0 = 1 A and V0 = 1 V), respectively,
and rescale V = xV0, I = yI0, t = τ

√
LC, VDC = υ0V0, VAC = υV0, fin = Ωω0,

ω0 = (
√

LC)−1, and R = γ(V0/I0). Variables x and y are dimensionless.
Because in real systems noise sources affect the dynamics continuously in an

unpredictable manner, we have also included in the model an external Gaussian
white noise source, χξy, to account for the stochastic noise in the OEO, where χ
denote the dimensionless noise strength, and ξy represents the Gaussian function.

The dimensionless single mode rate equations are obtained from Eqs. (7.10) and
(7.11) making use of the normalized carrier density n and the normalized photon
density s, rescaling N = nNth and S = sS0, where S0 = Γ(τp/τn)Nth, with Nth =

N0 + (Γg0τp)−1 being the laser threshold carrier density.
Finally, redefining τ as t and introducing into the system an optical delayed-

feedback s(t− τd), where η is the feedback strength and τd is the time-delay with
respect to the dimensionless time t, we obtain the following dimensionless coupled
delay differential equations (DDEs)

Fig. 7.5 Block diagram of
the forced Liénard OEO
dimensionless system with
time delayed feedback
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dx
dt

=
1
μ

[
y− g(x)− P(t)− χξy − ηs(t− τd)

]
(7.13)

dy
dt

= μ [υ0 + F(t)− γy− x] (7.14)

dn
dt

=
1
τ′n

[
im

ith
− n− n− δ

1− δ
(1− εs)s

]
(7.15)

ds
dt

=
1
τ′p

[
n− δ

1− δ
(1− εs)s− s + βn

]
(7.16)

Equations (7.13)-(7.16) describe the system of equations of the Liénard OEO with
time delayed feedback control through the variable s(t − τd), and electrical and
optical perturbation through F(t) and P(t), respectively. The Liénard OEO with
time-delayed feedback obeys DDEs rather than ordinary differential equations. In
DDE systems the state of a dynamic variable at a given time depends on the values
of the dynamic variables at both current and previous times.

In Eqs. (7.13) and (7.14), the function g(x) comes from the normalization of
G(V) and μ = V0/I0

√
C/L is dimensionless. Equations (7.15) and (7.16) are the

dimensionless rate equations, where δ = N0/Nth and ε = εNS0 are two dimension-
less parameters, im is the bias current and current modulation given by electrical
model, Eqs. (7.13) and (7.14), and ith is the laser diode dimensionless threshold
current. The parameters τ′n and τ′p come from the time rescaling.

The OEO presented here is an example of a Liénard-type system. Such systems
were intensely studied during the advent of the radio and vacuum tubes since cer-
tain oscillating circuits can be modeled as Liénard systems [26], and are also used
in many areas of physics and engineering. Hence, Liénard systems have been the
object of intensive analysis by numerous authors (see [27, 28] and the references
cited therein). Among the most relevant dynamic behaviors of such systems are the
existence of periodic solutions in the form of limit cycles and bifurcations.

A particular example of a Liénard system is the Van der Pol oscillator. Balthasar
van der Pol [29] devised the van der Pol oscillator to analyze the nonlinear oscil-
lations in a parallel RLC circuit linked to a triode valve as the amplifier, with the
anode current in the triode being a nonlinear function of the lumped voltage. The
van der Pol equation can describe self-sustained oscillations in the form of limit cy-
cles and injection locking phenomena [30], not only in electronic circuits but also
in many other dissipative structures including, among others, chemical reactions,
biological and optical systems.

7.3 Dynamical Regimes of Liénard OEOs

In what follows, we discuss the dynamics of the Liénard OEO system subjected
to external deterministic periodic force and time delayed feedback. The modes of
operation and the corresponding dynamical regimes are numerically investigated
and mapped in detail.
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7.3.1 Self-Sustained Oscillations

The Liénard oscillator described by the differential equations (7.13) and (7.14) is a
system with at least two dimensions, which means that it is possible to have cyclic
or periodic behavior represented by closed loop trajectories in the state space: the
limit cycle solution. The motion on a limit cycle in state space represents oscillatory,
repeating motion of the Liénard system, which in our case represents the formation
of self-sustained oscillations in both electrical and optical domains as observed in
the experimental circuit [20, 21].

The analysis of the Liénard oscillator starts with the investigation of limit cycles
without external injection and without time delayed feedback by analyzing the lo-
cation of its fixed points. Fixed points (equilibria) of Eqs. (7.13) and (7.14) occur
where dx

dt = 0 and dy
dt = 0. These points are obtained solving the following equations

y = g(x) (7.17)

y =
1
γ
(υ0 − x) (7.18)

Equation (7.17) is the I(V) characteristic of the RTD-PD, and Eq. (7.18) is the load
line. Fixed points occur at the points of intersection of these pair of curves. Since
Eq. (7.17) describes a curve with two turning points and Eq. (7.18) is a straight line,
the general configuration of the fixed points can be deduced. Figure 7.6(a) shows the
situation where γ is small, that is, when the series resistance, R, is sufficiently small

(R < | dG(V)
dV |). In this situation, the load line is steep and the curves only intersect

at a single point as υ0 is increased from zero.
At intermediate values of υ0 the load line intersects the downward sloping section

of g(x). For the situation when the load line is small, the typical form of g(x)
with two turning points is sufficient to ensure that all stability transitions are Hopf
bifurcations (containing only one fixed point) creating stable periodic orbits. Self-
sustained oscillations occur when there is a stable periodic orbit. This is the van
der Pol-like situation which results in a stable oscillation if the downward sloping
section of g(x) is sufficiently steep.

x-y limit cycle

load
line

(a) (b)

g(x)

(c)

Fig. 7.6 (a) I(V) characteristic g(x) function, load lines and x − y limit cycle. (b) n − s
limit cycle. (c) Voltage, x, relaxation oscillations in time domain.
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Figures 7.6(a) and (b) present examples of limit cycles when the load line in-
tersects the downward sloping section of g(x). The analysis of the phase portraits,
Figs. 7.6(a) and (b), confirm the existence of a stable limit cycle in the x-y phase
plane (electrical domain) and n-s phase plane (optical domain). Intersections on the
other sections of the curve outside the NDC give stable equilibria and no oscillations
are present.

The self-sustained oscillations produced are of the type of relaxation oscillations,
which are characteristic of negative resistance-type oscillators (e. g. van der Por
oscillator). Figure 7.6(c) shows typical relaxation oscillations at 0.498 GHz when
υ0 = 1 and 0.616 GHz when υ0 = 1.3. In the Liénard oscillator the characteristics
of relaxation oscillations are determined by parameters μ, υ0, and by the voltage
dependent current source function g(x). Of particular interest is the frequency de-
pendence of the Liénard oscillator to the change of the υ0 parameter. As shown
in Fig. 7.6(c), because this change in the parameter will cause the amplitude of the
oscillation to change, the Liénard oscillator exhibits a frequency tunability as a func-
tion of bias voltage. This regime of operation is called voltage controlled oscillator
and has been experimentally verified in previous work [20].

7.3.2 Injection Locking Dynamics

Frequency locking is a common phenomenon whenever two or more oscillation fre-
quencies (within the same physical system or physically distinct oscillators) interact
nonlinearly. Considering the Liénard oscillator, if the oscillator is characterized by
a self-sustained oscillation frequency Ω0 and an external frequency Ω is perturbing
the system, and if the two frequencies are commensurate over some range of control
parameter values, that is

Ω
Ω0

=
p
q

(7.19)

with p and q integers, than we say the frequencies are frequency locked over this
parameter range.

In order to study the frequency locking dynamics, first we consider the case of
electrical injection of a periodic signal F(t) = υe sin(2πΩt), where υe is the ex-
ternal amplitude and Ω the external frequency. The overall dynamics considering
both control parameters - external frequency and amplitude - was mapped solving
the differential equations (7.13)-(7.16) (in this case ξ = 0, η = 0 and P(t) = 0), and
plotting the results in the υe − Ωp plane to illustrate the range of frequency ratios
over which lockings occur, where Ωp is the frequency ratio Ω/Ω0 (Ω0 was set
to 0.1109 corresponding to the oscillator natural frequency of 0.498 GHz). In Fig.
7.7 is presented the corresponding locking map, where each color corresponds to
a tongue and is related with a periodic region signed with its corresponding num-
ber p/q ratio. As υe increases, the frequency locking regions expand to fill finite
intervals along the Ωp interval.
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Figure 7.7 shows the 1 : 1, 2 : 1, 3 : 1, and 4 : 1, frequency-locking regions. These
regions are called Arnold tongues after the Russian mathematician who pioneered
the study of frequency-locking [31]. Between each large locking region one can find
several types of behavior, including sub-harmonic locking with narrow tongues and
aperiodic outputs, namely chaos, which in the graphic of Fig. 7.7 corresponds to the
white regions between tongues.

In order to map with more detail the locking regions, the dynamics of the Liénard
oscillator was analyzed using 1D−bifurcation maps. The bifurcation maps were
constructed by calculating the time series of a given system variable, such as the
voltage or photon density, and plotting the corresponding peak heights as a function
of a given circuit control parameter, for example external frequency.

In Fig. 7.8(a) we present the bifurcation map for the photon density, s, as a func-
tion of frequency ratio Ωp, in the region of frequencies between 0.002 < Ω < 0.5
for a fixed amplitude υe = 0.3. As pictured in Fig. 7.8(a), increasing the external
frequency Ω from close to DC, a stable periodic signal is obtained with period−p,
followed by a aperiodic region, then a stable period−p region, followed by a ape-
riodic, and so on. This phenomenon is known as period-adding bifurcation and is
controlled by the electrical injection of the Liénard oscillator where the modulated
laser output follows the nonlinear dynamics of the electrical Liénard oscillator.

The period-adding sequence presented in the bifurcation map in Fig. 7.8(a) fol-
lows the broader locking regions related with the fundamental and harmonic fre-
quencies of the Liénard oscillator. In a close analysis of the bifurcation maps, Fig.
7.8(b), we find a fine structure of locking as a result of the competition between the
self-sustained oscillation and the external injected signal. As shown in Fig. 7.8(b),
the sub-harmonic frequency locking regions decrease in length (along the Ω axis)
when the denominator in the fraction p/q increases. For example, the sub-harmonic
locking region 8 : 3 is shorter than the sub-harmonic locking region 5 : 2. These re-
gions can be easily mapped by constructing the so-called Farey tree that is based
in the theory of numbers [32]: if we have two rational fractions p/q and p′/q′, the

Fig. 7.7 Arnold tongues
map for electrical injection
of a periodic signal F(t)

1:1 2:1 3:1 4:1
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(a) (b)

Fig. 7.8 (a) Bifurcation map for electrical injection of a periodic signal F(t) and fixed am-
plitude υe = 0.3. (b) Detailed bifurcation map in the region of frequencies 0.22 < Ω < 0.32
showing an example of the the Farey tree sequence.
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Fig. 7.9 Electrical (a) and optical (b) phase spaces for the following locking regions 2:1 (Ω =
0.24), 5:2 (Ω = 0.28), 8:3 (Ω = 0.295), and aperiodic region (Ω = 0.3). (c) Corresponding
power spectra of the voltage, x, output.

rational fraction that lies between and has the smallest denominator is the rational
fraction (p + p′)/(q + q′).

In Figs. 7.9(a) and (b) we show the corresponding trajectories of the locking
and aperiodic regions in the electrical and optical domains in the x − y and n − s
phase spaces, respectively, represented in the bifurcation map of Fig. 7.8(b). Clear
trajectories of limit cycles are observed when the Liénard oscillator is locked at
Ω = 0.24, Ω = 0.28, and Ω = 0.295. When the system is not frequency locked
and the ratio of frequencies cannot be expressed as a ratio of integers, then the
ratio is called irrational and the motion is said to be aperiodic or quasi-periodic
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because it never exactly repeats itself. An example of this type of output is shown
in Figs. 7.9(a) and 7.9(b) at Ω = 0.3. The corresponding Fourier spectrum output
characterized by a high harmonic content is shown in Fig. 7.9(c).

We have also studied the dynamics of the oscillator for the case of optical in-
jection locking of a periodic signal P(t) = υopt sin(2πΩt), where υopt is the ex-
ternal amplitude. In Fig. 7.10(a) we present the Arnold tongues map showing the
frequency-locking regions. The tongues are considerable smaller when compared
with the electrical injection example discussed previously, and follow the expected
experimental results for injection of optical signals with power levels below 10
mW [18]. The tongues can be enlarged increasing the modulation depth parame-
ter or the responsivity parameter of the waveguide photo-detector. In Fig. 7.10(b)
we present the bifurcation map for a fixed amplitude υopt = 3× 10−3.

The dynamics of the Liénard oscillator subjected to optical injection is simi-
lar to the dynamics reported in the electrical injection, which includes the period-
adding and the Farey tree sequence. However, we found that for a fixed amplitude
the period-adding sequence does not decrease along the Ω axis but rather increases,
as is clearly seen in the map of Fig. 7.10(b) where the harmonic locking regions are
larger than the fundamental locking region. This is physically explained by the fact
that in this case the nonlinearity of the circuit is externally perturbed in the current
component. This behavior can be further studied by adjusting the circuit physical
parameters or the circuit configuration in order to follow a similar dynamical se-
quence presented in the case of the electrical injection.

Both the period-adding and Farey tree sequences found in the optical and electri-
cal injection regimes are good examples of the rich dynamics found in the Liénard
oscillator and can be used to construct robust frequency divider optoelectronic os-
cillators based on the injection-locking dynamics presented here.

(a) (b)

Fig. 7.10 (a) Arnold tongues map for optical injection of a periodic signal P(t). (b) Bifurca-
tion map for optical injection of a periodic signal P(t) and fixed amplitude υopt = 3× 10−3.
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7.3.3 Quasi-Periodicity and Chaotic Dynamics

Here we analyze the route to chaos found in the Liénard oscillator in the case of
electrical injection of a periodic signal F(t). The system follows the quasi-periodic
route to chaos scenario and begins with a limit cycle trajectory. As a control pa-
rameter is changed a second periodicity appears in the behavior of the system. If
the ratio of the period of the second type of motion to the period of the first is not
a rational ratio, then we say, as described previously, that the motion is aperiodic
or quasi-periodic. Under some circumstances, if the control parameter is changed
further, the motion becomes chaotic.

The complex structure observed in the limit cycles of Figs. 7.11(a) and 7.11(b)
are examples of electrical and optical chaos generated by the Liénard oscillator. The
strongest evidence the system dynamics is chaotic is provided by its Fourier spec-
trum, Fig. 7.11(c), which is broadband and continuous, a signature of a chaotic sig-
nal. The remaining peaks observed in Fig. 7.11(c) correspond to the injected exter-
nal signal, the free-running signal and to minor vestiges of some quasi-periodicity,
which are an indication that the system dynamics evolves into a quasi-periodic route
to chaos.

In order to distinguish quasi-periodic orbits from chaotic orbits, the analysis con-
tinues further with the determination of the system’s Lyapunov exponents. Lya-
punov exponents measure the rate of divergence of nearby trajectories, and are a
key component of chaotic dynamic studies. A positive Lyapunov exponent is taken
as the defining signature of chaos. The Lyapunov exponents also discriminate be-
tween the different dynamics: a limit cycle will have one zero exponent, with the
other being negative; and a m−frequency quasi-periodic orbit will have m zero ex-
ponents, with the remaining negative.

Figure 7.11(d) shows the Lyapunov characteristic exponents of the Liénard OEO
system. We found one positive exponent, one zero exponent due to the external
injection and the remaining exponents are negative. Under these conditions, in the Ω
interval considered, chaotic states occur between the quasi-periodic regions. These
chaotic transitions become more evident increasing the amplitude of the driving
signal.

Recently, this route to chaos was experimentally validated using electrical injec-
tion of an RTD oscillator circuit driving a laser diode [22], confirming many of the
details of the model discussed here. The route to chaos is different from several
numerical and experimental studies using directly modulated semiconductor lasers
including Fabry-Pérot and DFB light sources in sveral optical and optoelectronic
configurations [33, 34].

7.3.4 Time Delayed Feedback Dynamics

We now analyze the dynamics of the Liénard OEO subjected to time delayed
feedback. For purposes of numerical simulation, Eqs. (7.13)-(7.16) were inte-
grated with a standard constant step size Runge-Kutta (RK) method of fourth or-
der [35]. The presence of a delayed contribution in Eq. (7.13) demand a special care.



7 Dynamics of Liénard Optoelectronic Oscillators 133

(c)

1=0.048
2=0

3=-0.352
4=-0.647
=-1.0115

(d)

(b)(a)

Fig. 7.11 Electrical and optical chaotic trajectories in the (a) x − y, and (b) n − s phase
spaces fixing the external amplitude υe = 1.505. (c) Fourier spectrum of the chaotic signal.
(d) Lyapunov characteristic exponents.

Indeed, to advance the solution with a step h from tn = nh to tn+1 = (n + 1)h,
the RK algorithm requires evaluating the values of s(t− τd) at intermediate points
tmid = (n + 1/2)h. However, s(tmid − τd) is not known and must be interpolated
from past values, e.g., (tn−1− τd), s(tn− τd), s(tn+1− τd), etc., with an order con-
sistent with the algorithm of integration. Therefore, in addition of the past values
of s(t) we also kept s′(t), that is, a quantity readily available upon time integra-
tion which allows building a third order Hermite polynomial between tn − τd and
tn+1− τd. By evaluating this interpolant of the delayed term at tmid− τd, we ensure
an overall fourth order accuracy. At last, the stochastic noise contribution was added
after the deterministic step by simply using the Euler method.

We first evaluate the stochastic noise contribution in the free-running oscilla-
tor dynamics. Figures 7.12(a) and 7.12(b) show the fundamental voltage x spectra
without and with noise contribution, respectively. The introduction of noise into the
system smears out the stable limit cycle producing a broader peak in the Fourier
domain. It also reduces the signal-to-noise ratio of the free-running oscillation fre-
quency because of the white Gaussian noise contribution.

When the time delayed feedback is included, important dynamical effects are ob-
served that include close-to-carrier noise reduction and the appearance of spurious
levels due to the delay contribution. Figures 7.13(a) and 7.13(b) present the voltage
x spectrum around the fundamental self-sustained oscillation frequency for a time
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delay of τop = 0.5 μs (corresponding to a normalized time delay of τd = 2.2× 103),
fixing the dimensionless noise strength at χ = 7× 10−5 and increasing the delayed
feedback strength η. We are assuming the feedback route is an optical time delay τd
due to the optical fiber length L given by

τop =
nFL

c
(7.20)

with nF being the optical fiber effective refractive index and c the velocity of light.
An optical time delay of τop = 0.5 corresponds to an optical fiber line around 100
m in length. As shown in Figs. 7.13(a) and 7.13(b), the introduction of time de-
layed feedback narrows the linewidth of the fundamental oscillation frequency and
generates frequency side peaks due to the time-delay τd, which corresponds to the
free spectral range (FSR) of the OEO given by FSR = 1/τd. The presence of these
side modes with single-mode-suppression-ratio (SMSR) lower than -40 dBc, Fig.
7.13(b), deteriorates the spectra at offsets around the FSR.

In Fig. 7.14 we investigate the influence of the time delay at a fixed level of feed-
back η = 5× 10−4. When τop = 0.25 μs the carrier frequency peak resembles the
broad peak of the free-running oscillation without delayed feedback, Fig. 7.12(b),
with some vestiges of side modes at levels close to the noise floor. The influence
of the delay is more pronounced in Fig. 7.14(b) at τop = 1 μs showing several side
modes with a SMSR around -40 dBc. The results provide evidence that phase noise
levels can be improved by increasing the fiber length, but there is a compromise
between the fiber length and the oscillator stability because increasing the delayed
feedback produces high-power side peaks close to the carrier. To overcome this limi-
tation delayed configurations using multiple delayed-feedbacks can be implemented
to suppress the spurious frequencies [36]. The numerical simulations presented here
follow the experimental dynamics recently reported in [19], where we observed the
stability of the OEO can be controlled using an optical fiber delay line.

The large number of side-bands spaced by FSR inversely proportional to the
time delay and the feedback strength parameters is an indication that more complex

(a) (b)

Fig. 7.12 Simulated spectra of free-running fundamental oscillation (a) without stochastic
noise χ = 0, and (b) with noise contribution χ = 7× 10−5
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SMSR
FSR

(a) (b)

Fig. 7.13 Simulated spectra of fundamental oscillation with feedback level (a) η = 5× 10−4

and (b) η = 5× 10−3, and fixed time delay of τop = 0.5 μs

(a) (b)

Fig. 7.14 Simulated spectra of fundamental oscillation with time delay (a) τop = 0.25 μs and
(b) τop = 1 μs, and fixed feedback level of η = 5× 10−4

dynamics may occur, which is strongly depended of the feedback level and the
length of the external cavity. This can be exploited in innovative applications such
as generation of electrical and optical frequency combs [11], or even chaotic tran-
sitions, controlled by the delayed feedback parameter. In the results presented here,
considering the moderate levels of feedback employed, η << Δ I

I0
, where ΔI is the

peak-to-valley current ratio, only stable limit cycles were observed. Currently under
study are the instabilities in the Liénard OEO system model associated to the time
delay and feedback level.

7.4 Conclusion and Future Work

As a conclusion, we have presented a new type of optoelectronic oscillator (OEO)
comprising a resonant tunneling diode (RTD) oscillator driving a laser diode. The
RTD-OEO is modeled as a Liénard OEO system subject to external perturbations
and to time delayed feedback. We have mapped in detail the dynamic regimes
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spanning from stable and low-noise free-running oscillations with time-delayed
feedback, to period-adding bifurcations and Farey-tree sequence dynamics, and
quasi-periodicity route to chaos scenarios under external injection.

Considering the variety of dynamical regimes found in general Liénard nonlinear
systems, this work suggests the theoretical and experimental study of the synchro-
nization and chaotic dynamics of RTD-based OEOs can find many applications such
as in generation of random numbers, novel spread spectrum, ultra wide bandwidth,
and optical communication schemes. The main potential advantages of utilizing
RTD-based OEO systems instead of using other optoelectronic and laser systems
subjected to optical injection or feedback include the simplicity and compactness of
our OEO solution, the RTD frequency tunability as a function of the voltage, and
the electrical and optical input ports provided by the RTD detector which reduces
considerably the number of high-speed electronics required in most of the schemes
used to generate chaos.

At the present the RTD-based OEO exploits only RTD’s inherent non-linearity,
with the laser diode parameters being selected in a way that the laser dynamics
does not influence the overall dynamics of RTD-OEO oscillator, e.g., the laser is
used only as a light source. In future work novel approaches may be explored in the
Liénard OEO system using the laser relaxation oscillation frequency to increase the
system’s dimensionality and investigate the resultant dynamics. The Liénard OEO
system can be explored in further applications not discussed in this chapter, namely
chaos-controlled methods using time delayed feedback to stabilize a desired dynam-
ical behavior. This can be used to implement novel microwave-photonic dynamical
systems for applications requiring the ability to control the chaotic trajectories.
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Chapter 8
Application of Coupled Dynamical Systems
for Communities Detection in Complex
Networks

Nikolai Nefedov

Abstract. In this chapter we present a dynamical systems framework and its applica-
tions for stable communities detection and missing (or hidden) link predictions uti-
lizing network topology and its dynamics. In particular, we consider the dynamical
formulation of modularity extended with a random walk approach, and then gener-
alize it to coupled dynamical systems to detect communities at different hierarchical
levels. We introduce attractive and repulsive coupling and study different scenarios
for dynamical links updates that allow us to make predictions on a cooperative or a
competing behavior of users in the network and analyze connectivity dynamics. The
developed methods are tested on benchmark networks and then applied for analysis
of real-world mobile datasets to derive a social community structure and to make
link predictions/recommendations.

8.1 Introduction

The growing spread of smart phones equipped with various sensors makes it pos-
sible to record rich-content user data and compliment it with on-line processing.
Mobile data processing could help people to enrich their social interactions and
improve environmental and personal health awareness. At the same time, mobile
sensing data could help service providers to understand better human behavior and
its dynamics, identify complex patterns of users’ mobility, and to develop various
service-centric and user-centric mobile applications and services on-demand. One
of the first steps in analysis of rich-content mobile datasets is to find an underly-
ing structure of users’ interactions and its dynamics by clustering data according to
some similarity measures. Classification and clustering (finding groups of similar
elements in data) are well-known problems which arise in many fields of sciences,

Nikolai Nefedov
Nokia Research Center, Switzerland
e-mail: nikolai.nefedov@nokia.com
ISI Lab, Swiss Federal Institute of Technology, Zurich (ETHZ)

K. Kyamakya et al. (Eds.): Selected Topics in Nonlinear Dynamics, SCI 459, pp. 139–159.
DOI: 10.1007/ 978-3-642-34560-9 8 c© Springer-Verlag Berlin Heidelberg 2013

nikolai.nefedov@nokia.com


140 N. Nefedov

e.g., [2, 9, 22]. In cases when objects are characterized by vectors of attributes, a
number of efficient algorithms to find groups of similar objects based on a metric
between the attribute vectors are developed. On the other hand, if data are given
in the relational format (causality or dependency relations), e.g., as a network con-
sisting of N nodes and E edges representing some relations among the nodes, then
the problem of finding similar elements corresponds to detection of communities,
i.e., groups of nodes which are interconnected more densely among themselves than
with the rest of the network.

The growing interest to the problem of community detection was triggered by the
introduction of a new clustering measure called modularity [11, 20]. The modular-
ity maximization is known as the NP-problem and currently a number of different
sub-optimal algorithms are proposed, e.g., see [10] and references within. However,
most of these methods address static networks partitioning into disjoint communi-
ties. On the other hand, in practice communities are dynamic and often overlapping.
It is especially visible in social networks, where people are affiliated to different
groups, depending on professional activities, family status, hobbies, and etc.

In this chapter we present a framework for communities detection in dynamical
graphs and its applications for missing (or hidden) link predictions /recommenda-
tions based on the network topology and its dynamics. In particular, we use dynam-
ical formulation of modularity maximization based on a fast greedy search [5, 20]
extended with a random walk approach [16] to detect multi-resolution communi-
ties beyond and below the resolution provided by max-modularity. We generalize
a random walk approach to coupled dynamical systems [3] and then extend it with
dynamical links updates to make predictions beyond the given topology. In practice
many biological and social systems show a presence of conflicting processes. For
example, dynamics of social relations may be described in terms of cooperative and
competitive interactions among the participants. In this chapter we introduce attrac-
tive and repulsive interactions among the nodes in a graph which allows us to detect
and predict cooperative and competitive behavior in evolving social networks. In
particular, in case of coupled oscillators the competitive behavior may be modeled
as attractive coupling driving oscillators into global synchronization and repulsive
coupling forcing system into chaotic/random behavior. Then a dynamical interplay
between the given network topology and local interactions drives the connectiv-
ity evolution. We evaluated several coupling scenarios using different clustering
measures and found that a combination of attractive and initially neutral coupling
combined with dynamical links updates provide the the best performance. To deal
with overlapping communities we introduce a soft community detection and pro-
pose friend-recommendations in social networks, where new link recommendations
are made as intra- and inter-clique communities completion and recommendations
are prioritized according to topologically-based similarity measures [17] modified
to include multiple-communities membership. We show that the proposed predic-
tion rules are in line with the network evolution predicted by coupled dynamical
systems. To test the proposed framework we use the benchmark network [23] and
then apply developed methods for analysis of multi-layers graphs built from real-
world mobile datasets [14].
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The chapter is organized as follows. In Section 2 we outline the dynamical formu-
lation of community detection that forms the basis for the rest of the paper. Topology
detection using coupled dynamical systems and its extensions to model a network
evolution are described in Section 3. Soft community detection for networks with
overlapping communities and its applications are briefly outlined in Section 4. Eval-
uation of the proposed methods in the benchmark network is presented in Section
5. Analysis of some real-world datasets collected during Nokia data collection cam-
paign is presented in Section 6, followed by conclusions in Section 7.

8.2 Community Detection

8.2.1 Modularity Maximization

Let’s consider the clustering problem for an undirected graph G = (V, E) with
|V| = N nodes and E edges. Recently Newman et al [11, 13] introduced a new
measure for graph clustering, named a modularity, which is defined as a number
connections within a group compared to the expected number of such connections
in an equivalent null model (e.g., in an equivalent random graph). In particular, the
modularity Q of a partition P may be written as

Q =
1

2m ∑
i,j

(
Aij − Pij

)
δ(ci, cj) , (8.1)

where ci is the i-th community; Aij are elements of graph adjacency matrix; di is
the i-th node degree, di = ∑j Aij; m is a total number of links, m = ∑i di/2; Pij is
a probability that nodes i and j in a null model are connected; if a random graph is
taken as the null model, then Pij = didj/2m.

By construction |Q|< 1 and Q = 0 means that the network under study is equiv-
alent to the used null model (an equivalent random graph). Case Q > 0 indicates
a presence of a community structure, i.e., more links remain within communities
than would be expected in an equivalent random graph. Hence, a network partition
which maximizes modularity may be used to locate communities. This maximiza-
tion is NP-hard and many suboptimal algorithms are suggested, e.g., see [10] and
references within.

In the following we use the basic greedy search algorithm [20] extended with
a random walk approach described below, since it gives a reasonable trade-off be-
tween accuracy of community detection and scalability.

8.2.2 Communities Detection with Random Walk

It is well-known that a network topology affects a system dynamics, it allows us
to use the system dynamics to identify the underlying topology [3, 4, 16]. First, we
review the Laplacian dynamics formalism recently developed in [8, 16].
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Let’s consider N independent identical Poisson processes defined on every node
of a graph G(V, E), |V|= N, where random walkers are jumping at a constant rate
from each of the nodes. We define pn as the density of random walkers on node i at
step n, then its dynamics is given by

pi,n+1 = ∑
j

Aij

dj
pj,n . (8.2)

The corresponding continuous-time process, described by (8.3),

dpi

dt
= ∑

j

Aij

dj
pj − pi = ∑

j

(
Aij

dj
− δij

)
pi (8.3)

is driven by the random walk operator
Aij

dj
− δij, which in case of discrete

time is presented by the random walk matrix Lrw = D−1L = I−D−1A, where
L = D−A is a Laplacian matrix, A is a non-negative weighted adjacency matrix,
D = diag{di}, i = 1, . . . , N. For an undirected connected network the stationary
solution of (8.2) is given by p∗i = di/2m.

Let’s now assume that for an undirected network there exist a partition P with
communities ck ∈ P , k = 1, . . . , Nc. The probability that initially, at t0, a random
walker belongs to a community ck is Pr (ck, t0) = ∑

j∈ck

dj/2m. Probability that a

random walker, which was initially in ck, will stay in the same community at the
next step t0 + 1 is given by

Pr (ck, t0, t0 + 1) = ∑
j∈ck

∑
i∈ck

(
Aij

dj

)(
dj

2m

)
. (8.4)

The assumption that dynamics is ergodic means that the memory of the initial con-
ditions is lost at infinity, hence Pr(ck, t0,∞) is equal to the probability that two
independent walkers are in ck,

Pr(ck, t0,∞) =

(
∑
i∈ck

di

2m

)(
∑
j∈ck

dj

2m

)
. (8.5)

Combining (8.4) and (8.5) we may write

∑
ck∈P

(Pr (ck, t0, t0 + 1)− Pr(ck, t0,∞)) =
1

2m ∑
i,j

(
Aij −

didj

2m

)
δ(ci, cj) = Q .

(8.6)

In general case, using (8.3), one may define a stability of the partition P as [8, 16]
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RP (t) = ∑
ck∈P

Pr (ck, t0, t0 + t)− Pr(ck, t0,∞) (8.7)

= ∑
ck∈P

∑
i,j∈ck

((
et(Â−I)

)
ij

dj

2m
− didj

4m2

)
, where Âij =

Aij

dj
. (8.8)

Then, as the special cases of (8.8) at t = 1, we get the expression for modularity
(8.6).

Note that RP (t) is non-increasing function of time: ȧt t = 0 we get

RP (0) = 1− ∑
ck∈P

∑
i,j∈ck

didj

4m2 (8.9)

and max
P

R(0) is reached when each node is assigned to its own community. Note

that (8.9) corresponds to collision entropy or Rényi entropy of order 2.
On the other hand, in the limit t → ∞, the maximum of RP (t) is achieved with

Fiedler spectral decomposition into 2 communities. In other words, time here may
be seen as a resolution parameter: with time t increasing, the max

P
R(t) results in a

sequence of hierarchical partitions {Pt} with the decreasing numbers of communi-
ties. Furthermore, as shown in [8], we may define a time-varying modularity Q(t)
by linear terms in time expansion for R(t) at t ≈ 0,

R(t)≈ (1− t) · R(0) + t ·Q = Q(t) , (8.10)

which after substitution (8.6) and (8.9) gives

Q(t) = (1− t) + ∑
ck∈P

∑
i,j∈ck

(
Aij

2m
t− didj

4m2

)
. (8.11)

In the following we apply time-dependent modularity maximization (8.11) using the
greedy search to find hierarchical structures in networks beyond modularity maxi-
mization Qmax in (8.1). This approach is useful in cases where maximization of
(8.1) results in a very fragmental structure with a large number of communities.
Also it allows us to evaluate the stability of communities at different resolution lev-
els. However, since the adjacency matrix A is not time dependent, the time-varying
modularity (8.11) can not be used to make predictions beyond the given topology.

8.3 Topology Detection Using Coupled Dynamical Systems

8.3.1 Laplacian Formulation of Network Dynamics

Let’s consider an undirected weighted graph G = {V, E} with N nodes and E edges,
where each node represents a local dynamical system and edges correspond to local
coupling. Dynamics of N locally coupled dynamical systems on the graph G is
described by
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ẋi(t) = qi(xi(t)) + kc

N

∑
j=1

Aijψ
(

xj(t)− xi(t)
)

, (8.12)

where qi(xi) describes a local dynamics of state xi; Aij is a coupling strength be-
tween nodes i and j; ψ(·) is a coupling function; kc is a global coupling gain.

In case of weakly phase-coupled oscillators the dynamics of local states is de-
scribed by Kuramoto model [1, 15]

θ̇i(t) = ωi + kc

N

∑
j=1

Aij sin
[
θj(t)− θi(t)

]
. (8.13)

Linear approximation of coupling function sin(θ) � θ in (8.13) results in the con-
sensus model [21]

θ̇i(t) = kc

N

∑
j=1

Aij
[
θj(t)− θi(t)

]
, (8.14)

which for a connectivity graph G may be written as

Θ̇(t) = − kcL Θ(t) , (8.15)

where L = A−D is the Laplacian matrix of G. The solution of (8.15) in the form
of normal modes ωi(t) may be written as

ωi(t) = kc

N

∑
j=1

Vijθj(t) = kc ωi(t0)e−λit , (8.16)

where λ1, . . . ,λN are eigenvalues and V is the matrix of eigenvectors of L. Note
that (8.16) describes a convergence speed to a consensus for each nodes. Let’s order
these equations according to the descending order of their eigenvalues. Then it is
easy to see that nodes are approaching the consensus in a hierarchical way, reveal-
ing at the same time a hierarchy of communities in the given network G. Note that
(8.15) has the same form as (8.3), with the difference that the random walk process
(8.3) is based on Lrw = D−1 L. It allows us to consider random-walk-based com-
munities detection in the previous section as a special case of coupled oscillators
synchronization.

Similarly to (8.15), we may derive the Laplacian presentation for locally coupled
oscillators (8.13). In particular, the connectivity of a graph may be described by
the graph incidence (N × E) matrix B: {B}ij = 1 (or −1) if nodes j and i are
connected, otherwise {B}ij = 0. In case of weighted graphs we use the weighted
Laplacian defined as

LA � BDABT . (8.17)

Based on (8.17) we can rewrite (8.13) as in [19]

Θ̇(t) = Ω− kcBDA sin
(

BTΘ(t)
)

, (8.18)
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where vectors and matrices are defined as follows: Θ(t) � [θ1(t), · · · ,θN(t)]T;
Ω � [ω1, · · · ,ωN]

T; DA � diag{a1, . . . , aE}, a1, ..., aE are weights Aij indexed
from 1 to E. In the following we use (8.18) to describe different coupling scenarios.

8.3.2 Dynamical Structures with Different Coupling Scenarios

Synchronization in static networks is well-established topic and has being under
studies for several decades. Recently the interest is moving to networks with chang-
ing topology, where topology evolves as a result of dynamical network interactions,
thus creating an interplay between structure and dynamics [6]. Below we address
this problem by including time-dependent topology into Kuramoto model.

Usually in Kuramoto model a global order parameter kc is used to characterize
the level of synchronization among oscillators. To take into account local effects we
consider a local order parameter rij measuring correlations between instant phases
of oscillators,

rij(t) = 〈cos
[
θj(t)− θi(t)

]〉, (8.19)

where the average 〈·〉 is taken over initial random phases θi(t = 0). Following [3,4]
we may define a dynamical connectivity matrix Ct(η), where two nodes i and j are
connected at time t if their local phase correlation is above a given threshold η,

Ct(η)ij = 1 if rij(t)> η

Ct(η)ij = 0 if rij(t) < η . (8.20)

We select communities resolution level (time t) using a random walk as in Section
2. Next, by changing the threshold η, we obtain a set of connectivity matrices Ct(η)
which reveal dynamical topological structures for different correlation levels. Since
the local correlations rij(t) are continuous and monotonic functions in time, we
may also fix η and express dynamical connectivity matrix (8.20) in the form Cη(t)
to present the evolution of connectivity in time for a fixed correlation threshold η.
Using this approach we consider below several scenarios of networks evolution with
dynamically changing coupling.

8.3.2.1 Attractive Coupling with Dynamical Updates

As the first step, let’s introduce dynamics into static attractive coupling (8.13). Using
the dynamical connectivity matrix (8.20) we may write

θ̇i(t) = ωi + kc

N

∑
j=1

F(η)
ij (t)sin

[
θj(t)− θi(t)

]
, (8.21)
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where matrix F(η)(t) describes dynamical attractive coupling, F(η)
ij (t) =

AijCη(t)ij ≥ 0. Then, similar to (8.18), the attractive coupling with a dynamical
update may be described as

Θ̇(t) = Ω(t)− kcB(t)DF(t)sin
(

B(t)TΘ(t)
)

, (8.22)

where initial conditions are defined by Aij; DF(t) is formed from DA with elements
{ak} scaled according to Cη(t).

8.3.2.2 Combination of Attractive and Repulsive Coupling with Dynamical
Links Update

Many biological and social systems show a presence of a competition between con-
flicting processes. In case of coupled oscillators it may be modeled as the attractive
coupling (driving oscillators into the global synchronization) combined with the re-
pulsive coupling (forcing system into a chaotic/random behavior). In the following
we call this type of coupling as AR scenario.
To allow positive and negative interactions we use instant correlation matrix R(t) =
R+(t) + R−(t), and separate attractive and repulsive parts [19]

θ̇i(t) =ωi + k+c
N

∑
j=1

r+ij (t) Aij sin
[
θj(t)− θi(t)

]−
k−c

N

∑
j=1
|r−ij (t)| Aij sin

[
θj(t)− θi(t)

]
,

(8.23)

where superscripts denote positive and negative correlations 1.
Note that in this case the total number of links in the network does not change, at a
given time instant each link performs either attractive or repulsive function.

To obtain the Laplacian presentation we define a dynamical connectivity matrix
F(t) as element-by-element matrix product

F(t) = R(t) ◦A = F+(t) + F−(t), (8.24)

and present dynamic Laplacian as the following

LF(t) = B(t)(DF+(t) + DF−(t))B
T(t). (8.25)

It allows us to write

θ̇i(t) =ωn + k+c
N

∑
m=1

F+
ij (t)sin

[
θj(t)− θi(t)

]−
k−c

N

∑
m=1

F−ij (t)sin
[
θj(t)− θi(t)

]
,

(8.26)

1 For presentation clarity we omit here the correlation threshold η.
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or in matrix form

Θ̇(t) =Ω− k+c B(t)DF+(t)sin
(

BT(t)Θ(t)
)
+ k−c B(t)DF−(t)sin

(
BT(t)Θ(t)

)
.

(8.27)

8.3.2.3 Combination of Attractive and Initially Neutral Coupling with
Dynamical Links Update

Negative correlations (resulting in repulsive coupling) are typically assigned be-
tween nodes which are not initially connected. However, in many cases this scenario
is not realistic. For example, in social networks, the absence of communications be-
tween people does not necessary indicate conflicting (negative) relations, but often
has a neutral meaning. To take this observation into account we modified second
term in (8.23) such that it sets neutral initial conditions to unconnected nodes in ad-
jacency matrix A. This case is referred below as AN scenario. In particular, system
dynamics with links update (8.24) and initially neutral coupling is described by

θ̇i(t) = ωi + k+c
N

∑
j=1

F+
ij (t)sin

[
θj(t)− θi(t)

]
+ k−c

N

∑
j=1

F−ij (t) cos
[
θj(t)− θi(t)

]
,

(8.28)
or in the matrix form

Θ̇(t) = Ω− k+c B(t)DF+(t)sin
(

BT(t)Θ(t)
)
− k−c B(t)DF−(t)cos

(
BT(t)Θ(t)

)
(8.29)

Then a dynamical interplay between the given network topology and local inter-
actions drives the connectivity evolution. Note that according to (8.29), if negative
correlations take place between selected nodes at a certain time instant, the probabil-
ity that negative relations would appear at the next time instant in attractive-neutral
scenarios is lower than in the AR scenario. In social relations it may be interpreted as
a forgetting factor for occasional negative events, it facilitates different forms of co-
operation, starting from communities formation (clustering) up to global consensus
(full synchronization).

8.3.2.4 Dynamical Balance between Attractive and Repulsive Coupling with
Dynamical Links Update

As it was mentioned, the interplay between coupled dynamics and topology in gen-
eral results in a complicated evolution of network topology. For example, dynamical
link updates running at a given connected graph may generate a wide range of
topologies ranging from fully connected graphs and dynamical clustering to random
networks. On the other hand, it would be interesting to find an allocation of attractive
and repulsive coupling among nodes such that it maintains (possibly with small fluc-
tuations) a balance between attractive and repulsive interactions and keeps the given
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topology stable. A detailed analysis of this problem is to be addressed elsewhere.
In this chapter we only briefly outline a special case relevant to social network
analysis.

In particular, given social interactions as a graph, we want to find an allocation
of attractive and repulsive relations in the dynamical network which maintains its
stability. In general this combinatorial problem is NP-hard and does not have unique
solution. However, by using network evolution with dynamical links update we can
find approximate solutions. The suggested approach is to find values k−c and k+c in
(8.29) such that after some transition time the dynamical connectivity matrices de-
scribing attractive F−(t) and repulsive coupling F+(t) are becoming time-invariant
(with possible small fluctuations). In the following we call this scenario as attractive-
neutral stable (ANS) coupling. It allows us to derive underlying pattern of attractive
and negative interactions in the social networks.
Another approach to the find positive and negative relations is to consider dynam-
ics of connectivity matrices, then select edges with repulsive interactions and esti-
mate its duration. Obviously, the longer repulsive dynamics exists between selected
edges, the stronger are negative interactions between users.

In the following we use coupled system dynamics approach to predict networks’
evolution and to make missing links predictions and recommendations. Further-
more, the suggested approach allows us also to predict repulsive relations in the
network based on the network topology and links dynamics.

8.4 Overlapping Communities

8.4.1 Multi-membership

In social networks people belong to several overlapping communities depending on
their families, occupations, hobbies, etc. As the result, users (presented by nodes in a
graph) may have different levels of membership in different communities. This fact
motivated us to consider multi-community membership as edge-weights to different
communities. As an example, we can measure a membership gj(k) of node k in j-th
community as a number of links (or its weight for a weighted graph) between the
k-th node and other nodes within the same community, gj(k) = ∑i∈cj

wki. Then, for

each node k we assign a vector g(k) = [g1(k), g2(k), . . . , gNc(k)], k ∈ {1, . . . , N}
which presents the node membership (or participation) in all detected communities
{c1, . . . , cNc}. In the following we refer g(k) as a soft community decision for the
k-th node.

To illustrate the approach, overlapping communities derived from bench-
mark karate club social network [23] are depicted at Fig.8.1. Modularity max-
imization here reveals 4 communities shown by different colors. However, the
multi-communities membership results in overlapping communities illustrated by
overlapping ovals (Fig.8.1).
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Fig. 8.1 Overlapping communities in karate club social network: colors indicate communi-
ties. Intra- and inter-community link recommendations are shown by arrows

8.4.2 Application of Soft Community Detection for
Recommendation Systems

In online social networks a recommendation of new social links may be seen as an
attractive service. Recently Facebook and LinkedIn introduced a service ”People
You May Know”, which recommends new connections using the friend-of-friend
(FoF) approach. However, in large networks the FoF approach may create a long
and often not relevant list of recommendations, which is difficult (and also compu-
tationally expensive, in particular in mobile solutions) to navigate. Furthermore, in
mobile social networks (e.g., Nokia portal Ovi Store) these kinds of recommenda-
tions are even more complicated because users’ affiliations to different groups (and
even its number) are not known. Hence, before making recommendations, commu-
nities are to be detected first.

8.4.2.1 Recommendations as Communities Completion

Based on soft communities detection we suggest to make the FoF recommendations
as follows [18]:

(i) detect communities, e.g., by using one of the methods described above;
(ii) calculate membership gj(k) in all relevant communities for each node k;
(iii) make new recommendations as communities completion following rules below;
(iv) use multiple-membership to prioritize recommendations.

To make new link recommendations in (iii) we suggest the following rules:

• each new link creates at least one new clique (the FoF concept);
• complete cliques within the same community (intra-cliques) using the FoF

concept;
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• if there is no FoF links, then complete cliques towards to the fully-connected own
intra-community;

• complete inter-cliques (where nodes belong to different communities);
• prioritize intra-clique and inter-clique links completion according to some mea-

sure based on multi-membership.

To assign priorities we introduce several similarity measures outlined below. We will
show in next sections that these rules are well in line with link predictions made by
coupled dynamical systems described in Section 3.

8.4.2.2 Modified Topology-Based Predictors

Let’a define sets of neighbors of node k, which are inside and outside of commu-
nity ci as Γi(k) = {Γ(k) ∈ ci} and Γ\i(k) = {Γ(k) /∈ ci}, respectively. This allows
us to introduce a set of similarity measures by modifying topology-based base-line
predictors listed in [17] to take into account the multiple-membership in overlap-
ping communities. As an example, for the intra-clique completion we may associate
a quality of missing link prediction (or recommendation) between nodes k and n
within ci community by modifying the base-line predictor scores as follows [18]:

- Preferential attachment: S(i,i)
PA (k,n) = |Γi(k)| · |Γi(n)|;

- Jaccards score: S(i,i)
JC (k,n) = |Γi(k) ∩ Γi(n)|/|Γi(k) ∪ Γi(n)|;

- Adamic/Adar score: S(i,i)
AA (k,n) = ∑z∈Γi(k)∩Γi(n) (log|Γ(z)|)−1;

- Katz score (intra-community):

S(i,i)
KC (k,n) =

∞

∑
l=1

βl |path(k,n)(l)| =
{
(I− βA(i))−1 − I

}
(k,n)

,

where |pathi(k,n)(l)| is number of all paths of length-l from k to n within ci; I is
the identity matrix, A(i) is the (weighted) adjacency matrix of community ci, β is a
dumping parameter, 0 < β < 1, such that ∑ij βAij < 1.
The measures above consider communities as disjoint sets and may be used as the
1st order approximation for link predictions in overlapping communities. To take
into account both intra- and inter-community links we use multi-community mem-
bership for nodes, gi(k). In general, for nodes k∈ ci and n∈ cj, the inter-community
relations may be asymmetric, gj(k) �= gi(n). In the case of undirected graphs we
may use averaging and modify the base-line predictors S(k,n) as

S(i,j)(k,n) =
gj(k) + gi(n)

2m
S(k,n) . (8.30)

For example, modified Katz score which take into account multi-communities mem-
bership is defined as

S(i,j)
KC (k,n) =

gj(k) + gi(n)
2m

{
(I− βA(Cn,k))−1 − I

}
(k,n)

, (8.31)
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where k ∈ ci,n ∈ cj; A(Cn,k) is an adjacency matrix formed by all communities
relevant to nodes n and k.

In the next section we compare Katz predictor (8.31) with dynamics-based
predictors.

8.5 Methods Testing in Benchmark Networks

8.5.1 Zachary Karate Club: Communities and Its Dynamics

To test algorithms we use karate club social network [23] as the benchmark network.
A number of communities at different resolution levels is presented at Fig.8.2. As
one can see, max-modularity partition and max-stable partition are not necessary the
same, the most stable partition in case of karate club network is the partition into 2
communities.

Comparison of coupling scenarios AR and AN are presented at Fig.8.3 - Fig.8.5.
Pair-wise correlations between oscillators at t = 1 for coupling scenarios AR (on the
left) and AN (on the right) are presented at Fig.8.3. Coupling scenario AN reveals
clearly communities structure, while in case of AR the negative coupling dominates
over the attractive coupling and forces the system into a chaotic behavior. Dynamic
connectivity matrices reordered by communities for the attractive-neural coupling
at t = 1 (on the left) and t = 10 (on the right) are depicted at Fig.8.4. As one can see
from Fig.8.4 and Fig.8.5 in case of AN the number of connections with the attractive
coupling is growing in time, while the repulsive connections are decreasing.

For a given initial graph G(V, E), prediction process increases total number of
edges Ep in the network. To compare different prediction schemes we introduce
prediction depth kp = Ep/E, 1 < kp < N2/2E. In case of dynamical systems
kp corresponds to a time instant tp when total number of edges reaches Ep. Up-
per part at Fig.8.6 depicts the adjacency matrix for Zachary karate club (red cir-
cles) and links predicted by dynamics (blue dots) at time instants corresponding to
kp = {1.58,2.44,5.44}. As expected, the dynamical links prediction tends to make
more connections within the established communities first, followed by merging
communities and creating the higher hierarchical level partitions.

Fig. 8.2 Karate club network: stability of communities at different resolution levels
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Fig. 8.3 Karate club: pair-wise correlations (scaled by 5) between oscillators at t = 1. Re-
ordered by communities. Coupling scenarios: AR (k+c = k−c ) on the left; AN (k+c = k−c ) on
the right

This observed behavior looks similar to the recommendations made by commu-
nity completion introduced in Section 4. For a comparison, the lower part of Fig.8.6
presents predictions made by topology-based Katz predictor (8.31) based on soft
community detection at the same prediction depths kp.

8.5.2 Comparison of Different Predictions Schemes

To compare topologies produced by different predictors we use the dynamical sys-
tems framework described in Section 3. Let us consider a network of N identical
particles connected by elastic strings according to adjacency matrix A and described
by motion equations

ẍi +
N−1

∑
j=1

Aij(xi − xj) = 0 (8.32)

where xi is the coordinate of i-the particle. Vibrational frequencies ωa of this net-
work are defined by eigenvalues γa =−ω2

a of Laplacian LA of matrix A. Laplacian
spectrum of a graph is often called as the vibrational spectrum [7]. We measure dif-
ference between two graphs using Laplacian spectrum. In particular, we present
spectral density ρ(ω) for a graph as a sum of narrow Lorentz distributions [12],

ρ(ω) = K
N−1

∑
a=1

γ

(ω− ωa)2 + γ2 (8.33)

where γ is the width of the Lorentz distributions, K is a normalization coefficient
such that

∫
ρ(ω)dω = 1. Using spectral densities (8.33), distance d(G1, G2) be-

tween two graphs G1 and G2 may be defined as

d(G1, G2) =
∫ ∞

0
[ρ1(ω)− ρ2(ω)]2dω. (8.34)
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Fig. 8.4 Karate club: dynamic connectivity matrices for attractive (shown on the top in red
color) and repulsive (shown at the bottom in blue color) coupling at t = 1 (left) and t = 10
(right); coupling scenario AN; nodes are reordered by communities

Fig. 8.5 Karate club: evolution of averaged attractive and repulsive weights for coupling
scenarios AR (k+c = k−c ), AN (k+c = k−c ) and ANS (k+c = 10 k−c )

As an illustration, vibration spectra and distance between graphs for considered
predictors are depicted at Fig. 8.7 and Fig.8.8, respectively. Even though both pre-
dictors are approaching the fully connected graph, the network evolution for each
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Fig. 8.6 Karate club: adjacency matrix is shown by red circles, detected communities by pink
squares, predicted links are shown by blue dots. The upper part (a)-(c): predictions made by
dynamical systems at different time scales. The bottom part (d)-(f): recommendations made
by the modified Katz predictor at different values of β while keeping the same number of
edges Ep as in the dynamical predictor.

Fig. 8.7 Karate club: vibration spectra of networks
formed by Katz predictor (dashed blue) and dynam-
ical predictor (red line); prediction depth kp = 2.4,
γ = 0.05

Fig. 8.8 Karate club: mean
square error between vibration
spectra as function of prediction
depth kp, where total number
of edges is Ep = kpE and E is
number of edges in the original
networks
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of predictors may follow different trajectories. In particular, at small values of pre-
diction depth, kp < 3, the network evolution is similar for both cases. However, at
intermediate values of kp the evolution trajectories may follow different paths (cf.
Fig.8.8), which in turn results in different predictions (Fig.8.6, middle part).

8.5.3 Detection of Negative Relations

In this section we illustrate applications of ANS scenario to predict repulsive rela-
tions based on network topology and links dynamics. Following ANS approach our
task here is to find dynamical relations among nodes which make the given topology
stable by balancing total weights of attractive and repulsive interactions. For karate
network we found that this balance may be achieved if k+c = 10 k−c in (8.29). Sim-
ulation results for ANS scenario presented at Fig.8.5 show that after some transition
period the time-evolution of weights (lines marked by squares and rhombi) becomes
practically time-invariant. Also for all simulated initial phase realizations we did not
observe changes in connectivity matrices (cf. Fig.8.4) provided that t > 10.

Recall that allocation of attractive and repulsive relations to preserve the given
topology is not unique. One of possible solutions for karate club network under
ANS scenario is shown at Fig.8.9. Here we present normalized weights (intensity)
for attractive and repulsive relations (left and right parts, respectively). Nodes are
reordered according to communities. As one can see, negative relations (light-blue
dots at Fig.8.9, right) more frequently appear at the communities’ boarders, reveal-
ing overlapping communities structure. Furthermore, this approach allows to spot
negative relations within communities under assumption that topology is stable. At
the same time the intensity of positive relations are not the same for different nodes
(Fig.8.9, left). Note that the allocation at Fig.8.9 is only one of possible solutions.
Fig.8.10 (left part) presents another solution example where nodes are ordered in
natural order to verify relations using Fig.8.1. Averaging several solutions allows us

Fig. 8.9 Karate club: Intensity of attractive and repealing (negative) relations; nodes are or-
dered according to communities
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Fig. 8.10 Karate club: allocation of repulsive relations to maintain the stability of karate
network. One solution example, natural ordering of nodes (left); intensity of negative relations
by averaging over 10 solutions, nodes are reordered according to communities (right)

more reliably find negative relations within communities which are more difficult to
detect than nodes with multi-community membership.

8.6 Applications for Mobile Networks Data

To analyze mobile users behavior and underlying social structure Nokia Research
Center/Lausanne organized mobile data collection campaign at EPFL university
campus [14]. Rich-content datasets (including data from mobile sensors, call-logs,
bluetooth (BT) and WLAN proximity, GPS coordinates, information on mobile and
applications usage and etc) are collected from about 200 participants for the period
from June 2009 till October 2010. Besides the collected data, several surveys before
and after the campaign have been conducted to profile participants and to form a
basis for the ground truth. Due to lack of space in this section we only briefly out-
line applications of dynamical systems presented in previous sections for analysis
of social affinity graphs constructed from call-logs and BT users proximity.

Fig.8.11 shows voice-call and SMS connections of 134 participants socially
connected within the data collection campaign. To find communities we used modu-
larity maximization with the greedy search algorithm [20] which identifies 14 com-
munities after the 3d iteration (Fig.8.11). However, similar to karate network, we
found that max modularity partition is not the most stable one. Fig.8.12 presents sta-
bility of communities at different hierarchical levels detected by the random walk
for the network shown at Fig.8.11. As one can see, the max-modularity partition
with 14 communities is highly unstable and hardly could be used for reliable pre-
dictions; the stable partitions appear at the higher hierarchical levels starting from 8
communities. We rely on this fact to build the ground truth references for clustering
evaluation.

As discussed above, one of applications of coupled systems dynamics may be
seen in new links predictions/recommendations. To illustrate the approach we con-
sider coupled oscillators interconnected according to call-logs network at Fig.8.11.
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Fig. 8.11 Nokia mobile data collection campaign: voice-calls and SMS network recorded for
134 users; max-modularity is reached at 14 communities (color coded)

Fig. 8.12 Nokia call-log network: stability of communities at different resolution levels

Scaled pair-wise correlations between oscillators at kp = 2.4 clearly reveal the com-
munity structure shown at Fig.8.13 (left). Right part of Fig.8.13 depicts the call-log
adjacency matrix (shown by circles) and connections predicted by coupled oscilla-
tors dynamics (blue dots) at time corresponding to one of stable hierarchical levels,
kp = 2.4. This method allows us to predict/recommend connections between people
and study their connectivity evolution.

Detection of overlapping communities and spotting of competing (repulsive) and
cooperative (attractive) social relations in combined call-log and BT networks ac-
cording to ANS coupling strategy are illustrated at Fig.8.14. In particular, light-blue
dots at center of Fig.8.14 indicate a separation of two large communities confirmed
by questionnaires.
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Fig. 8.13 Nokia call-log network: scaled pair-wise correlations between oscillators at time
corresponding to prediction depth kp = 2.4, scenario AN (left); links predicted by dynamics
at kp = 2.4 are shown by dark-blue dots, adjacency matrix is shown by circles (right)

Fig. 8.14 Nokia data: combined call-log and BT networks: Intensity of repulsive (left) and
attractive (right) relations, average over 100 realizations

8.7 Conclusions

In this chapter we propose coupled dynamical systems framework and its appli-
cations for stable communities detection and links predictions/ recommendations
utilizing network topology. The method is based on the dynamical formulation of
modularity using a random walk and then is extended to coupled dynamical sys-
tems to detect communities at different hierarchical levels. We introduce attractive
and repulsive coupling and study different scenarios for dynamical link updates that
allow us to make predictions on a cooperative or a competing behavior of users in
the network and analyze connectivity dynamics.

The developed methods are first tested on benchmark networks and then applied
for analysis of datasets recorded during Nokia mobile-data collection campaign to
derive social community structures and to make link predictions/recommendations.
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Chapter 9
Infinite Networks of Hubs, Spirals, and Zig-Zag
Patterns in Self-sustained Oscillations of a
Tunnel Diode and of an Erbium-doped
Fiber-ring Laser

Ricardo E. Francke, Thorsten Pöschel, and Jason A.C. Gallas

Abstract. A remarkably regular organization of spirals converging to a focal point
in control parameter space was recently predicted and then observed in a nonlinear
circuit containing two diodes. Such spiral organizations are relatively hard to ob-
serve experimentally because they usually emerge very compressed. Here we show
that a circuit with a tunnel diode displays not one but two large spiral cascades. We
show such cascades to exist over wide parameter ranges and, therefore, we expect
them to be easier to observe experimentally.

9.1 Introduction

Numerical simulations have recently uncovered a number of surprising and unex-
pected regularities in the control parameter space of certain dissipative flows. Such
regularities were observed in systems as diverse as electrical circuits containing
either piecewise-linear or smooth nonlinearities, in certain lasers, in chemical oscil-
lators and in several other paradigmatic flows covering a large spectrum of practical
applications [1]– [21]. More specifically, a wide-ranging regular organization of
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spirals was anticipated numerically to exist in the control parameter space of simple
electronic circuit. This organization consists of a doubly infinite hierarchy of spi-
rals converging to focal centers called “periodicity hubs” [2, 3]. Such hubs are very
interesting accumulation points of a doubly infinite sequence of spirals: an infinite
family of spirals characterized by periodic oscillations which is intercalated with an
infinite family of spirals characterized by chaotic oscillations. Every periodic spiral
has a characteristic waveform which evolves continuously along the spiral with a
period that grows without any bound, diverging at the focal point. Loosely, hubs
work like crowded bus stations with busses represent spirals: when arriving at such
“station” following an ingoing spiral one is presented with a doubly-infinite choice
for changing to an outgoing “bus”, i.e. to an outgoing spiral. This is so because
there is an infinite choice of periodic as well as an infinite choice of chaotic patterns
to choose from at the focal point. The selection may be simply accomplished by
suitable selection of parameters. Examples of such hubs and spirals may be seen in
Fig. 9.2 below. That the predicted spiral organization indeed exists in real systems
was confirmed experimentally very recently at the ETH in Zürich [22] using a slight
variation of the original circuit where they were numerically anticipated [2, 3]. Pe-
riodicity hubs were shown to be not isolated points but, instead, to emerge forming
infinite hierarchical networks of points responsible for the organization of all stable
periodic and chaotic phases [8].

Of particular interest for applications is that periodicity hubs are robust against
parameter changes and imply a wide-range of predictable regularity in control pa-
rameter space. This is important because knowledge of the details of the regular
organization of physical parameters allows one to select suitable numerical values
to tailor the operation of circuits, lasers, and all sorts of nonlinear oscillators. By
constructing detailed phase diagrams, i.e. by constructing detailed stability charts
displaying the precise location in parameter space of the dynamical phases, one ob-
tains a powerful instrument to perform accurate parameter changes allowing one to
indeed control the system, not merely to perturb it without having a minimal abil-
ity of predicting in which new dynamic state the system will land after parameters
are changed. Of course, parameter charts also allow one to perform big changes of
control parameters, not just infinitesimally small changes.

So far, the spiral organization around periodicity hubs was observed in elec-
tronic circuits containing piecewise-linear elements [2–4, 22]. This type of circuits
have two features that complicate experimental measurements. First, spirals usually
emerge strongly distorted as, for example, in the paradigmatic circuit of Chua [3,4].
Second, although it is known that spirals arise in infinite hierarchical networks [8],
so far only a single isolated spiral has been detected experimentally [22].

The main reason complicating the observation of spiral networks is that the
parameter regions containing them become significantly compressed making it hard
to record them, particularly in noisy systems. An additional reason is that to observe
networks one first needs to locate adequate two-parameter cuts in an usually
high-dimensional control parameter space. This last task (parameter tuning) may
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Fig. 9.1 Schematic representation of the tunnel diode circuit leading to Eqs. (9.13)–(9.15).
The voltage applied to the diode is denoted by U.

be rather difficult to perform experimentally. In this case computer simulations are
of great help in locating suitable regions to search experimentally for hubs. On in-
teresting additional byproduct is that computations may reveal shortcomings of the
theoretical description of the electronic components (diodes, etc) in the sense that
discrepancies between computations and measurements may emerge.

Here, our aim is to describe a simple autonomous electronic circuit, shown in
Fig. 9.1, which we found to display clear and easily accessible sequences of spirals
in its parameter space, as illustrated in Fig. 9.2 below. Apart from standard capaci-
tances, inductances and resistances, the circuit contains two active elements, namely
a linear negative conductance−g and a tunnel diode.

Chaotic oscillations in diodes were studied quite early in pioneering works by
Pikovsky and Rabinovich [23–25] and other authors, e.g. [26]– [31], in several con-
figurations, autonomous or not. Tunnel diodes were found to display very rich dy-
namical scenarios when their control parameters are varied [24, 26]. Although the
chaotic dynamics of circuits with tunnel diodes seems nowadays to have simply
felt in oblivion, we wish to point out that they contain an unsuspected richness of
dynamics to offer both for convenient experimental exploration as well as to help
developing novel theoretical tools to deal with new complex phenomena being dis-
covered like, e.g. periodicity hubs, which are yet far from understood.

9.2 The Flow Defined by a Simple Circuit with a Tunnel Diode

In this Section we derive the equations governing the self-excited oscillator illus-
trated in Fig. 9.1, containing a tunnel diode. At the end of the Section we comment
an approximation in the original expressions in the literature [24].

From Fig. 9.1, where I denotes the current through the inductance, U the voltage
across C1, and V the voltage across C, using Kirchhoff’s laws we get:
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V −U = rI +
dI
dt

, (9.1)

−I = −gV + C
dV
dt

, (9.2)

I = F(U) + C1
dU
dt

. (9.3)

With the help of an auxiliary variable W ≡ V − rI these equations become

dI
dt

=
W −U

L
, (9.4)

dW
dt

= −I
1− gr

C
+

gL− rC
LC

W +
r
L

U, (9.5)

dU
dt

=
I − F(U)

C1
. (9.6)

Handy adimensional equations can be obtained by introducing the following
changes of variable

τ =

√
1− gr

LC
t≡ ω t, I = (x + 1)I0, U = (z + 1)U0, y =

W −U0

ωLI0
. (9.7)

In addition, we need to replace F(U) by its transformed f (z) in the variable z,
obtaining then:

dx
dτ

= y− U0

ωI0L
z, (9.8)

dy
dτ

= −x +
gL− rC

ωLC
y +

rU0

ω2L2 I0
z +

(
− 1 +

gU0

ω2 I0LC

)
, (9.9)

dz
dτ

=
I0

ωC1U0

(
x− f (z)

)
. (9.10)

Now, by introducing the following abbreviations

δ =
U0

ωI0L
, 2γ =

gL− rC
ωLC

, α =
rU0

ω2L2 I0
, (9.11)

β = −1 +
gU0

ω2 I0LC
= α− 1 + 2γδ, μ =

ωC1U0

I0
, (9.12)

the equations can be written in a much simpler form, namely,

dx
dτ

= y− δz, (9.13)

dy
dτ

= −x + 2γy + αz + β, (9.14)

μ
dz
dτ

= x− f (z). (9.15)
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These equations coincide with those of Pikovsky and Rabinovich [23–25]. However,
we obtain them using ω2 = (1− gr)/(LC) (see Eq. (9.7)) instead of the approxi-
mation ω2 = 1/(LC) used by them. Both expressions agree when gr � 1.

Equations (9.13)–(9.15) are used below to study the dynamics of the tunnel diode.
In Eq. (9.15), the nonlinear function f (z) represents the characteristic function of
the tunnel diode which, for simplicity, we assume to be a cubic function: f (z) ≡
z3 − z.

Before proceeding we mention that Eqs. (9.13)–(9.15) were investigated theo-
retically in 1989 by Carcasses and Mira [32]. Using a Poincaré surface of section,
these authors associated a two-dimensional diffeomorphism T to the differential
equations and then considered the qualitative bifurcation structure of T in the μ× β
parameter plane. Here, however, we consider the quantitative bifurcation structure
observed in the γ× δ parameter plane as generated directly by Eqs. (9.13)–(9.15),
not by an approximate Poincaré proxy.

9.3 The Slow-Fast Dynamics of the Circuit with a Tunnel Diode

Slow-fast systems (also known as singularly perturbed or systems with multiple time
scales) are ubiquitous systems in physics, engineering, and biology in which two or
more processes take place on different time scales [33,34]. They are vector fields of
the generic form

μẋ = f (x,y,μ), (9.16)

ẏ = g(x,y,μ), (9.17)

where μ is a small parameter.
In this context, the flow defined by Eqs. (9.13)–(9.15) is particularly interesting

because the parameter μ in front of the derivative ż may be conveniently tuned to in-
duce dynamical effects happening at different time scales. When μ is small, motions
in the phase space can be divided into slow motions, corresponding to trajectories
on the surface x = f (z), and fast motions, corresponding to the straight lines x =
constant and y = constant. As described by Rabinovich [24], the system has three
states of equilibrium for a broad interval of values of the parameters α, β,γ, and δ,
one state located at the origin, and the remaining pair located symmetrically on the
surface of slow motions. All three states are unstable. If the untwisting of the paths
near the unstable foci, say A and A′, is not too fast, the mapping point cannot leave
the region containing all three states of equilibrium: the mapping point moves out-
ward away from the point A along the spiral and, having reached the line x = ±1
along which the surface of slow motion bends over, it enters the neighborhood of
the symmetrically located state A′. It then follows the paths leaving this point thus
returning to the neighborhood of A, repeating the sequence again and again.

An important property of flows like the one above is that two trajectories lying
arbitrarily close to one another near the boundary at which they break off from the
slow-motion surface, may behave completely differently. Those lying inside the path
tangential to |x|= 1 remain on the slow-motion surface and complete one additional
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Fig. 9.2 (Color online) Top panel: Global view of the control parameter space of the tunnel
diode circuit, Eqs. (9.13)–(9.15), with boxes indicating the location of two periodicity hubs
and spirals of large influence. Bottom panels: magnifications of the white boxes in the upper
panel. Pink denotes divergent solutions. Here α = −0.013, β = 0, μ = 0.1. Each individual
panel displays 2400× 2400 = 5.76× 106 Lyapunov exponents.

turn around the equilibrium point. However, trajectories that are arbitrarily close to
it but located outside this tangential path, fall downward (or rise upward) and enter
the neighborhood of the symmetric state of equilibrium. Thus, as pointed out by
Rabinovich [24], the future of these trajectories depends on fine details of their
past.
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Apart from f (z), the flow defined by Eqs. (9.13)–(9.15) involves only linear
terms, facilitating the theoretical analysis. Mathematically, the equations represent-
ing the circuit with a tunnel diode look quite similar to the ones governing the dy-
namics of the simple piecewise-linear resistive circuit were periodicity hubs were
originally discovered [2,3,8]. Note that numerical simulations do not depend on the
restriction of μ being a small parameter.

9.4 Phase Diagrams

This Section presents several high-resolution Lyapunov phase diagrams discrimi-
nating the nature (chaotic or periodic) of the dynamical behavior observed in the
γ× δ control parameter plane.

Lyapunov phase diagrams are generated by solving numerically the equations of
motion (here with a standard fixed-step fourth-order Runge-Kutta integrator) and
using the solutions obtained to compute all Lyapunov exponents for the system and
plotting the largest nonzero exponent. As it is well-known, Lyapunov exponents
are convenient numerical indicators used to discriminate the dynamical nature of
the asymptotic oscillations observed in dynamical systems, i.e. they allow one to
discriminate between periodic oscillations (which lead to negative exponents) and
chaos (positive exponents).

Figure 9.2 shows Lyapunov phase diagrams summarizing what happens over a
wide portion of the γ× δ control space of the tunnel diode, discriminating periodic
from chaotic phases. As indicated by the color scales, colors represent positive Lya-
punov exponents, i.e. regions where chaos is prevalent. In contrast, periodic phases
are represented using darker shadings. Note that the color scales representing neg-
ative and positive exponents vary independently from each other on both sides of
zero, i.e. the variation is not uniform from the negative minimum to the positive
maximum of the scales. Further, the color table of each enlargement is renormal-
ized according to the minimum and maximum exponents so that colors may vary as
one magnifies specific regions of the parameter space.

In Fig. 9.2 it is possible to recognize something that is very desirable for experi-
ments: the existence of two large-size groups of nested spirals accumulating into dis-
tinct focal points, where the periodicity hubs are located. Converging to each focal
point one sees two groups of intertwined spirals, defined by periodic and by chaotic
oscillations. Both groups seem to contain an infinite number of spirals. As param-
eters approach the focal point, the waveforms of the periodic oscillations evolve
continuously and their periodicity grows without bound. Note that sequences of
shrimps [35–37] occur along the periodicity spiral arranged in consecutive pairs at
each half-turn. Many other interesting parameter domains worth investigating may
be also recognized in Fig. 9.2. For details see Ref. [8].

In Fig. 9.2 and in other phase diagrams here we vary γ and δ over experimentally
accessible ranges. As it is clear from the definitions in Eqs. (9.11)–(9.12), specific
values of γ and δ may be conveniently achieved in more than one way by suitably
selecting numerical values for the several reactances in the circuit. Thus, all circuit
elements are equally important, not just the tunnel diode.
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Fig. 9.3 Examples of V-connections in the control space of the tunnel diode. (a) A zig-zag
pattern PQRS formed by “gluing” V-connections together. The zig-zag continues beyond S
but the additional shrimps are too small to be seen in the scale of the figure. Pink denotes
parameter regions leading mainly to unbounded solutions (divergence); shrimps Q and S are
embedded in it. (b) The V-connection ABC in the white box in (a). One of the legs of R
allows passing between R and B via continuous parameter changes. A complex network of
periodicity domains interconnects these shrimps. Here α = −0.33, β = 0,μ = 0.1.

Figure 9.3 shows a curious and abundant type of interconnection among dis-
tinct clusters of periodicity (“shrimps” [35]), computed here for α = −0.33, β =
0,μ = 0.1. Each panel of Fig. 9.3 shows 1200× 1200 Lyapunov exponents, the
same resolution used in Figs. 9.5 and 9.6 below. Figure 9.3b displays an upside-
down “V-connection” or “V-bridge”, as indicated by the letters ABC. This type
of connection can be seen in Fig. 3 of a recent paper by Celestino et al. [15], who
used a discrete map to study the properties of the unbiased current in the ratchet
transport of particles. The shrimps in Fig. 9.3b are identical to those that combine
to form the infinite chain that composes the continuous spirals in Fig. 9.2. Shrimps
were originally described forming regular sequences of parallel clusters of period-
icity, apparently disconnected from each other [36]. Here, however, the clusters of
stability A and B are clearly interconnected by B, forming a structure that resembles
an upside-down V. The periodicity clusters A, B, and C are contained in the white
box in Fig. 9.3a which contains many such connections forming zig-zag sequences
in parameter space.

As mentioned in the introduction, knowledge of the existence of such parameter
paths interconnecting distinct clusters of periodicity may be obviously used as a
simple and powerful technique to control the system, i.e. to efficiently implement
with a single operation macroscopic parameter changes leading to desirable changes
in the behavior of the system in a predictable way, allowing one to precisely select
which change to implement. In sharp contrast to “control techniques” which rely
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Fig. 9.4 (Color online) V-connections observed in other systems. (a) in an erbium-doped
fiber-ring laser (inside box A), and (b) in the discrete-time Hénon map of Eqs. (9.18)–(9.19).
The two wide periodicity regions inside box B are high-order structures studied in detail for
the Hénon map in Ref. [42]. The black box in (b) contains several additional V-connections
which are too small to be seen in the scale of this figure [43]. Each panel displays results for
2400× 2400 parameter points. Pink denotes parameter regions leading mostly to divergence.

on infinitesimal changes and are totally unable to target any specific final orbit,
knowledge of parameter charts allows one to perform parameter changes of any
arbitrary size and may move to any nearby stable orbit either with a single parameter
jump or with sequences of controlled parameter changes, if so desired.

Figure 9.4 shows that V-connection provinding bridges among periodicity clus-
ters are not difficult to find in other flows and even in the discrete-time models, i.e. in
maps. For example, inside box A of Fig. 9.4a one sees a clear V-interconnection to
be present in the control space of an erbium-doped dual-ring fiber laser [38–40].
Several others interconnections like this one exist over wide range of parame-
ters [41]. The equations of motion and parameters adopted for this laser are given
in the Appendix. Noteworthy in box B of this figure are the cuspidal island and the
large island near it. Such structures appear profusely in parameter space. They have
not been studied so far, although some results are known [42]. After the shrimps,
the cuspidal island and the large island near it are the structures observed more fre-
quently in the parameter space of flows and maps.

Figure 9.4b illustrates a V-connection for the paradigmatic discrete-time Hénon
map defined here as follows [36, 37]:

xt+1 = a− x2
t + byt, (9.18)

yt+1 = xt. (9.19)



170 R.E. Francke, T. Pöschel, and J.A.C. Gallas

2.2 4.0γ
0.363

0.39

δ

-2.131 0.3250

2.2 4.0γ
0.363

0.39

δ

(a)
2.59 2.65γ

0.381

0.389

δ

-0.975 0.2910

2.59 2.65γ
0.381

0.389

δ

(b)

2.55 3.05γ
0.372

0.389

δ

-1.707 0.3270

2.55 3.05γ
0.372

0.389

δ

(c)

Fig. 9.5 Successive enlargements illustrating a continuous spiral “arising” from a V-
connection in the control space of the tunnel diode. (a) Global phase diagram, with the pair
of boxes indicating the regions magnified in the other two panels. (b) The V-connection part
of a spiral. The white box is magnified in Fig. 9.6. (c) Magnification of the largest box in (a),
showing the V-connection (left box) and the spiral (inside the large white rectangle on the
right). Several other analogous spirals and hubs exist although most of them are restricted to
rather small parameter windows. Here α = −0.33, β = 0,μ = 0.1.

The Hénon map displays a profusion of V-connections, in addition to several other
connections with complex forms that are quite difficult to classify systematically.
The number of interconnections of all sorts is so great that one has the impression
that in the end, all clusters of periodicity might in fact compose just a vast single
network of connected domains fixed by the equations of motion. A more detailed
investigation of the parameter space of the Hénon map is presented elsewhere [43].

Figure 9.5 illustrates a situation where, instead of the zig-zag patterns seen in
Fig. 9.3, the V-connection gives origin to an infinite sequence of shrimps coiling up
to form a continuous spiral. It seems appropriate to recall that a proper and encom-
passing mathematical description of spiral organizations in parameter space is still
to be done. The only scenario that is presently reasonably well-understood is one
associated with a theorem by L. Shilnikov [9, 10].
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Fig. 9.6 Magnification of the white box in Fig. 9.5b showing a complex periodicity cluster
resembling a shrimp but containing a rather intricate network of loci that resemble “super-
stable” loci, a concept properly defined for one-dimensional multi-parameter maps. Here
α = −0.33, β = 0,μ = 0.1.

However, considerably richer scenarios are possible in higher-dimensional slow-
fast systems, particularly when period-doubling cascades follow a Hopf bifurcation
and subsequent canard explosion, producing alternations of periodic and chaotic
oscillations. As the amplitude of the chaotic attractors grows one observes a spiking
regime consisting of large pulses separated by irregular time intervals in which the
system displays small-amplitude chaotic oscillations. This scenario, reminiscent of
Shilnikov’s homoclinic chaos despite the fact that no homoclinic connections are
involved, has been observed very recently in ground-breaking experimental studies
of a semiconductor laser with optoelectronic feedback by Al-Naimee et al. [44]
and in the equations governing a light emitting diode (LED) subjected to the same
feedback [45]. Such experiments provide new insight, showing that key concept
of excitability needs to be extended beyond that familiar to fixed points, into the
realm of higher-dimensional attractors of maps and flows as anticipated theoretically
[46]. They equally show that slow-fast systems are relatively poorly understand and
need to be investigated in more detail. Interestingly, lasers and circuits with LEDs
open now the possibility for probing experimentally such elusive and unexplored
phenomena. For details, see Refs. [7, 45].

Figure 9.6 displays a structure that looks like a shrimp but contains a much more
intricate arrangement of parameters as represented by the white curves inside the
wide periodicity cluster. Such curves look very much like “superstable loci”. How-
ever, as pointed before [2], superstable loci are only defined for one-dimensional
maps, where they mark trajectories passing through at least one “critical point” of
the map, i.e. a point where the derivative of the map is zero [47]. Although Fig. 9.6
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Fig. 9.7 Illustration of a spiral structure extending over a very wide parameter range of the
tunnel diode. Similar spiral arrangements exist over wide ranges for many other choices of
parameters. This structure of the parameter space looks quite similar to the one found in
the control space of Chua’s circuit [3, 4, 8]. Each panel displays 1600× 1600 = 2.56× 106

Lyapunov exponents. Here α = −0.33, β = 0,μ = 0.1.

displays a phase diagram for a flow (not a map), for lack of a proper definition and
a better name we loosely refer to the white curves as being “superstable loci”. Two
important points may be recognized from Fig. 9.6: first, the existence of rather com-
plex periodicity clusters not yet considered theoretically and, second, the necessity
of adequately generalizing some known concepts in order to also deal with pressing
situations that emerge abundantly when considering periodicity clusters of flows.
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We remark that even though stability diagrams for flows display rather interesting
networks of the aforementioned “superstable loci”, there is still no theoretical pre-
scription which would allow one to predict their existence and compute them for
flows. In fact, even a proper name is still to be invented for them.

Figure 9.7 displays spiral structures which extend over very wide parameter
ranges and that, we believe, should be relatively easy to observe in experiments.
Of course, experimental resolution sets a limit on the number of turns of the spiral
that can be observed. Important here is that the regular distribution of the successive
shrimps gives an indication that a spiral has been spotted. For instance, it should
not be difficult to unveil the regular organization simply by plotting bifurcation di-
agrams passing through the diagonal line containing the main body of the shrimps.
The spiral organization seen in Fig. 9.7 looks very similar to spirals reported for
Chua’s circuit when operating both with piecewise-linear or cubic nonlinearities, as
might be seen from Fig. 4 of Ref. [4] or from Fig. 5 of Ref. [8]. How could one
objectively quantify the isomorphism among these systems?

9.5 Conclusions and Outlook

This work presented several high-resolution Lyapunov phase diagrams showing that
a simple circuit containing a tunnel diode displays a pair of large continuous spiral
networks with rich intertwined structures extending over a wide region in control
parameter space. Near them one finds an infinite sequence of smaller spirals, as
described in Refs. [8, 9]. The large pair of spiral networks makes tunnel diodes
quite interesting testground to probe experimentally intricate and elusive dynamical
properties described recently in the literature. We also described the abundance of
a class of shrimp arrangement, certain V-connections [15], which we have shown
to be capable of forming quite long zig-zag paths and networks in parameter space.
Analogous features were also observed in the control space of an erbium-doped
dual-ring fiber laser and of the much simpler Hénon map, known to represent well
the dynamics of loss-modulated CO2 lasers [1]. Spirals and zig-zag patterns offer
an interesting way to move in a controlled and systematic way between families of
stable solutions, quite distinct from the nowadays so popular method of randomly
perturbing trajectories without having any control of the final state to be reached
after application of the perturbation.

Parameter spirals of periodicity (and of chaoticity) emerge from and accumulate
at periodicity hubs: mathematically, such hubs are associated in phase-space with
very small regions of quite strong curvature, sometimes (but not necessarily) involv-
ing homoclinic bifurcation curves of a common saddle-focus equilibrium. These
homoclinic bifurcation curves are arranged in fractal-like sheaves in the parameter
plane [9]. The specific organization of hub networks depends strongly on the in-
teraction between the homoclinic orbits and the global structure of the underlying
attractor [9]. A challenging problem now is to describe what is causing the complex
organization of periodicity clusters in phase diagrams of flows not involving homo-
clinic orbits. Note that presently there is no mathematical framework to predict and
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describe the genesis of hubs and the associated spirals in more general scenarios
where the celebrated theorem of Shilnikov does not apply [7, 9].

The present work also shows that Lyapunov phase diagrams are quite valuable
exploratory tools for practical applications allowing one to understand global fea-
tures of complex attractors. We believe that the use of Lyapunov phase diagrams
can significantly augment and speed-up the understanding of physical models. Lya-
punov phase diagrams focus exclusively on stable solutions, i.e. on features that
are directly measurable experimentally. Lyapunov phase diagrams reveal the oc-
currence of many global bifurcations without recourse to more specialized and de-
manding numerical techniques. They are therefore a very powerful way to begin
the analysis of nonlinear systems and can also be applied to laboratory experiments
which, of course, only detect stable structures. As described elsewhere in detail [7],
note that there is absolutely no need to compute Lyapunov exponents from exper-
imentally measured data. For experimental data it is enough to simply construct
“binary” black-and-white phase diagrams discriminating between two states: pres-
ence or absence of periodicity. A complementary tool of great utility in analyzing
dynamical systems is the direct study of the periodicity and the number of extrema
of the oscillations as parameters are tuned [48, 49] (without resource to secondary
and somewhat artificial quantities derived from the period like, e.g. when artificially
introducing pairs of frequencies in phenomena where such pairs are not naturally
present or not quite justifiable [49, 50]).

We hope the findings reported here to motivate their experimental investigation.
From a theoretical point of view, at present it is totally unclear where to expect hubs
and spirals to be found in flows. It is equally unclear which type of flows should
be expected to contain hubs and spirals, particularly in high-dimensional systems.
Thus, the only way to learn about them is through detailed numerical simulations
and experiments. A related open question is how to optimize the search for the
“most convenient” sections of the high-dimensional surface in control parameter
space so as to better expose the intricacies and the structure of phase diagrams. In
other words, to find an efficient way of quickly asserting the impact of changing all
control parameters. From an experimental pointo of view, an interesting challenge
is to investigate how realistic the simple cubic function used here is to describe
the dynamics of real-life tunnel diodes. Obviously, high-resolution phase diagrams
have the power of revealing eventual shortcomings of the mathematical formulation
of models of natural phenomena. Phase diagrams can show where models need to
be improved to better reproduce experimental measurements.
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176 R.E. Francke, T. Pöschel, and J.A.C. Gallas

35. “Shrimps” refer to wide-reaching structures in parameter space formed by a regular set
of adjacent windows centered around a main pair of usually intersecting ’superstable’
parabolic arcs (see discussion of Fig. 9.6). Thus, a shrimp is a doubly-infinite mosaic
of periodicity domains composed by an innermost main domain plus all the adjacent
periodicity domains arising from two symmetrically located period-doubling cascades
together with their corresponding domains of chaos [36]. Shrimps should not be confused
with their innermost main domain of periodicity or with superstable loci. For details see
Refs. [36, 37]

36. Gallas, J.A.C.: Phys. Rev. Lett. 70, 2714 (1993); Physica A 202, 196(1994); Appl. Phys.
B 60, S203 (1995), special supplement issue: Festschrift Herbert Walther; Hunt, B.R.,
Gallas, J.A.C., Grebogi, C., Yorke, J.A., Koçak,H.: Physica D 129, 35(1999)
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Appendix: The Erbium-Doped Dual-Ring Fiber Laser

This Appendix collects the equations for the continuous-time model of the erbium-
doped dual-ring fiber laser.

We follow Luo et al. [38] and consider the erbium-doped dual-ring fiber laser
with the lasing fields in the two rings frequency locked through a coupler c0 with
phase change of π/2 from one ring to the other. In this case, the equations for the
fundamental system are [38–40]:

dEa

dt
= −ka(Ea + c0Eb) + gaEaDa, (9.20)

dEb

dt
= −kb(Eb − c0Ea) + gbEbDb, (9.21)

dDa

dt
= −(1 + Ipa + E2

a)Da + Ipa − 1, (9.22)

dDb

dt
= −(1 + Ipb + E2

b)Db + Ipb − 1, (9.23)
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where Ea and Eb are the lasing fields and Da and Db are the population inversion in
rings a and b, respectively. The parameters ka,kb, ga, gb represent the decay rate and
the gain coefficient of the lasing fields a and b, as indicated. Ipa and Ipb represent
pump intensity in the respective fiber rings. Note that this laser model contains cubic
nonlinearities, similarly to the one present in the tunnel diode model.

For the model above, an interesting paper by Zhang and Shen [40] reported hy-
perchaotic dynamics, in particular for the following set parameters

ka = kb = 1000, c0 = 0.2, ga = 10500, gb = 4700.

These are the parameter values adopted here to compute the phase diagram in
Fig. 9.4. However, we emphasize that the laser phase diagram is not at all sensitive
to these specific values in the sense that similarly looking diagrams are obtained for
a wide range of parameter choices in addition to the above ones [41].



Chapter 10
Study of Dynamics of Atmospheric Pollution and
Its Association with Environmental Parameters

Siwek Krzysztof, Osowski Stanislaw, and Swiderski Bartosz

Abstract. The chapter is devoted to the study of the dynamic processes of cre-
ation of atmospheric pollution (particulate matter, SO2, NO2 and ozone) and its
association with the environmental atmospheric parameters, like the temperature,
wing, humidity, insolation, etc. We analyse the problem of nonlinearity of these pro-
cesses, their chaocity as well as the interrelationships between the concentration of
the particular pollutant and the environmental variables. The results of these studies
are applied in building the prediction models of the concentration of the particular
pollutants.

10.1 Introduction

The analysis and forecasting of the air quality parameters are important topics of at-
mospheric and environmental research today due to the health impact caused by air
pollution [1,4]. The main pollutants of the air are the particulate matters (PM), ni-
trogen dioxide (NO2), sulphur dioxide (SO2) and ozone. Forecasting their concen-
trations represents a difficult task due to the complexity of the physical and chem-
ical processes involved. On the other side the relevant information is contained in
the dynamic structures of the measured atmospheric variables [5,11]. Data min-
ing of these structures may increase our understanding of the processes and apply
this knowledge in the prediction procedure. In this chapter we will study different
aspects of pollution dynamics changing in time scale of hours, trying to catch the
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most important interrelations between the level of pollution and other environmental
parameters like temperature, wind and humidity. The most important is the problem
of linearity or nonlinearity of these processes. We will investigate it by applying the
statistical methods to time series measurement results. In checking the linearity of
the process we apply the Hinich test [10]. We have checked also the chaotic charac-
ter of the process applying the short term largest Lyapunov exponent as the measure
of chaocity [2,3]. From the prediction point of view the most important relations
are between the pollution and the environmental variables. We study these interrela-
tions considering the correlation and other measures of dependencies (for example
the collinearity) among the variables. On basis of these results we have built the
nonlinear prediction model by using the Support Vector Machine and compared its
performance with the linear ARX model.

10.2 Analysis of the Pollution Time Series

The presented study will be based on the measurements made by the meteorological
stations placed in southern part of Warsaw (Ursynow). This quarter of Warsaw is a
typical suburb deprived of the industry. The source of air pollution is mainly the
traffic and private heating of the houses, especially important in the winter. The
analyzed results of measurement refer to hourly registration of pollutants. Different
pollution types are analyzed: PM10 (the PM of the diameter up to 10 μm) SO2,
NO2 and ozone. Fig. 1 presents the typical time series of these pollutants, measured
within the last two years.

Fig. 10.1 The succeeding hourly values of PM10,SO2, NO2 and ozone concentrations mea-
sured in Warsaw within the last two years (the data start from January 1st)
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We can observe the significant changes of the distribution patterns of these pol-
lutants. There are visible abrupt jumps of pollution concentrations, occurring most
often in PM10, SO2 and NO2. In assessing the degree of prediction difficulty it is
important to know some statistical characteristics of these time series. First we have
calculated the mean value and standard deviation for each of them. Very important
factor is the ratio between the standard deviation and the mean. The higher this ratio
the more difficult is the prediction task. In Table I we present the mean values and
standard deviations as well as their ratios for the measured pollution data presented
in Fig. 10.1. The ratios std/mean assume high values, and differ for each pollution
type. The most difficult case is presented by the data of PM10 and SO2, for which
these ratios assume the highest values.

Table 10.1 The mean values and standard deviations of different pollutants types registered
in the last two years of measurements

Mean [μg/m3] Std [μg/m3] Std/mean
PM10 30.26 22.77 0.75
SO2 8.74 7.49 0.86
NO2 23.69 15.87 0.67

Ozone 46.64 31.35 0.66

The fundamental issue in time series analysis is the study of linearity or non-
linearity of the process. The basic idea behind the nonlinearity test is that if the
third order cumulant of the process is zero, then the bispectrum and its bicoher-
ence are also zero [7]. If the bispectrum is nonzero then the process is non-Gaussian
(potentially nonlinear). In the case of a non-Gaussian and linear process, the bico-
herence is a nonzero constant. In practice the so-called “probability of false alarm”
(PFA), that is the probability that we will be wrong in assuming that the data have a
nonzero bispectrum, has been implemented to test the Gaussianity. If this probabil-
ity is small, reject the assumption of zero bispectrum and reject also the assumption
of the Gaussianity of the process. In the case of non-Gaussian process, the linear-
ity test, checking whether the squared bicoherence is constant for all frequencies
f1 and f2 reveals the eventual linearity of the process. In practice the bicoherence
is usually not flat. In testing for linearity or nonlinearity of the non-Gaussian pro-
cesses we may rely on the comparison of the so called empirical and theoretical
sample interquartile ranges [10]. If their values are comparable the process is linear.
In the case of high differences the process is regarded as nonlinear. In checking the
nonlinearity we have applied the function glstat.m of Matlab [10]. After applying
it on the investigated pollution data we have got in all cases PFA=0, which means
that the assumption of Gaussianity should be rejected. In checking linearity or non-
linearity of the process we compared in this test the estimated (Re) and theoretical
(Rt) values of the interquartile ranges. In each case we have got relatively large
values of the ratio Re/Rt. In the case of PM10 this ratio was equal 1.92, for SO2
– 2.35, for NO2 – 2.1 and for ozone 3.52. It means that the process of pollution
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creation for each pollutant is weakly nonlinear. The highest value of Re/Rt has
been observed for ozone. Observation of the time series of each pollutant suggests
the chaotic nature of the process. To prove the chaocity of the observed time se-
ries we have applied the Lyapunov exponent measure [2].The Lyapunov exponents
have been proven to be the most useful dynamic diagnostic measure for the chaotic
sys-tems. Lyapunov exponents define the average exponential rate of divergence
or convergence of the nearby orbits in the phase space. It may be described in the
form d(t) = d0eLt, where L means the Lyapunov exponent and d0 the initial dis-
tance of two nearby orbits. The magnitude of the exponent reflects the time scale
on which the system dynamics become unpredictable [2]. Any system containing at
least one positive Lyapunov exponent is defined to be chaotic and the nearby points,
will diverge to any arbitrary separation. Two trajectories adjacent to each other at
the beginning evolve exponentially in time and their distances change significantly
with time (small distance Δxij at the beginning and large distance Δxij(Δt)) after
time increase Δt. For chaotic time series the function Δxij(Δt)) is dependent on the
starting point x0, Δxij(Δt) = Δxij(x0,Δt) and will behave erratically. The estima-
tion L of the short-term largest Lyapunov exponent STLmax was done according to
the formula [2,3]

L =
1

NΔt

N

∑
i=1

log2
|Δxij(Δt)|
|Δxij(0)| (10.1)

where Δxij(0) = x(ti) − x(tj) is the displacement vector at ti, that is the pertur-
bation of the fiducial orbit observed at time tj with respect to ti, while Δxij(Δt) =
x(ti + Δt) − x(tj + Δt) is the same vector after time Δt. The vector x(ti) is the
point in the fiducial trajectory for t = ti and x(tj) is properly chosen vector adjacent
to x(ti) in the phase space [3]. The time increase Δt is the evolution time, that is the
time which is allowed for Δxij to evolve in the phase space. For time given in hours
the value of L is in bits/hour. N is the number of local STL′maxs that will be esti-
mated within the period T of the data segment, where T = NΔt + (p− 1)τ. For the
exponent L to be a good estimate of STLmax the candidate vector x(tj) should be
chosen in such a way that the previously evolved displacement vector Δxi−1,j(Δt)
is almost parallel to the candidate displacement vector Δxij(0). Moreover Δxij(0)
should be small in magnitude to avoid computer overflow in the evolution within
chaotic region. The choice of the parameters of evolution, such as the embedding
dimension p, the evolution time Δt, the lag time τ, the parameters used for selection
of x(ti) and the length of data segment T are adjusted according to [3]. In studying
chaotic behavior of the investigated time series we have applied the following pa-
rameters: period T equal 1 year (8760 hours), shift of the calcula-tion window equal
one quarter of the year (2190 hours), τ=19 corresponding to the first minimum of
the autocorrelation function, embedding dimension of the phase space equal p=10,
evolution time Δt = 86. From this we got dt = Δt/T = 0.0098. All simulations
have been performed using the available data from the time period 2004-2011 with
the help of Matlab [6]. We have applied Iasemidis approach [3] to the estimation
of the largest Lyapunov exponent. The following additional parameters used in the
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Fig. 10.2 The time changes of the estimation of the largest Lyapunov exponents for the in-
vestigated pollutants. The horizontal axis represents time and its units are given in months.

algorithm were taken according to the hints from the paper [3]: B=0.05; C=0.1,
IDIST1=19, IDIST2= IDIST3=163. The results in the form of changes of the
largest Lyapunov exponent with time for each pollutant are presented in Fig. 10.2.
The results prove that all time series under investigation are highly chaotic and the
average Lyapunov exponents for all pollutants take similar values.

The interesting (from the prediction point of view) is the correlation between the
actual pollution level and its previous values. To study this relations we have plotted
the autocorrelation function for different delays. The corresponding plots for each
pollutant are presented in Fig. 10.3. It is evident that the correlation of pollution
levels between distant hours is rather weak (except the first 24 hours). More-over,
we can notice the significant differences of the shapes of autocorrelation curves
corresponding to different pollutants (for example between PM10 and ozone).

Another interesting question is the cross correlation existing among concentra-
tions of different pollutants. High correlation (close to one) means that on the basis
of measurement of one type pollutant we can predict the level of the other one.

Table 10.2 The cross correlation coefficients between 4 types of pollutants

PM10 SO2 NO2 Ozone
PM10 1 0.4467 0.5509 -0.2868
SO2 0.4467 1 0.2688 -0.2138
NO2 0.5509 0.2688 1 -0.5592

Ozone -0.2868 -0.2138 -0.5592 1
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Fig. 10.3 The autocorrelation functions of the concentration of different pollutants versus the
delays measured in hours

Table 10.2 depicts the values of the cross correlation coefficients between 4 inves-
tigated pollutants. The results show that there is a weak correlation existing among
different pollutants. The values of all coefficients are changing in the range (-0.5592
÷ 0.5509).

We have analyzed also the mean values of pollution levels corresponding to dif-
ferent seasons of the year. Table 10.3 depicts these results for all investigated pol-
lutants. We can see quite significant differences among them. Different pollutants
show peak values corresponding to different seasons of the year. These results con-
vince us to consider the season of the year as one of the input attribute taken into
account at the prediction process.

Table 10.3 The mean values of four pollutants for different seasons of the year

PM10 SO2 NO2 Ozone
Winter 41.04 16.16 26.01 34.22
Spring 35.67 10.89 28.15 63.39

Summer 28.92 5.77 20.63 62.91
Autumn 37.65 8.97 24.83 35.95

The interesting question is the correlations among different seasonal pollution
levels. The calculations of these correlations using Matlab [6] have shown very lit-
tle linear dependence for all investigated pollutants. Table 10.4 shows the exem-
plary results for PM10. Similar levels of correlations have been obtained for other
pollutants.
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Table 10.4 The mean values of four pollutants for different seasons of the year

Winter Spring Summer Autumn
Winter 1 0.0362 0.0146 0.0335
Spring 0.0362 1 0.1406 -0.0001

Summer 0.0146 0.1406 1 0.0746
Autumn 0.0335 -0.0001 0.0746 1

All values of the cross correlations are far below one (close to zero level). It
confirms once again our conjecture, that season of the year should be included as
one of the input attribute in the predicting system.

10.3 The Relations between the Pollution and the
Environmental Parameters

It is well known that the main factors influencing the pollution level are the temper-
ature, strength and direction of wind, humidity and insolation [1,4]. We study the
interrelation between the pollution level and these environmental variables, consid-
ering the correlation and other measures of dependencies (for example the collinear-
ity) among these variables.

Fig. 10.3 presents the exemplary relations between the concentration of the SO2
and the values of four environmental parameters: the wind speed, temperature, in-
solation and humidity. We can see complex distribution of points corresponding to
different hours of the days. There are no clear functional relationships, indicating
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the need for more advanced tools of prediction. Similar relations are observed for
the other types of pollution.

These distributions of points are the evidence of the lack of correlation between
the pollution level and the environmental parameters. Table V depicts this observa-
tion in a numerical form showing the appropriate correlation coefficients. In most
cases they are very small. However, it does not mean that there are no relationships
between them. We should take into account that the correlation coefficients are only
the evidence of the linear dependence existing among the investigated variables.
They say nothing about the nonlinear relations between variables. Therefore in the
pollution prediction systems these parameters are treated as important exogenous
variables that are input to the predicting system.

Table 10.5 The cross correlation coefficients between four types of pollutants and the con-
sidered environmental variables

Wind Temperatur Humidity Insolation
PM10 -0.3260 -0.2018 0.0818 -0.1310
SO2 -0.0224 -0.3584 0.0961 -0.0478
NO2 -0.4395 -0.2423 0.2094 -0.3380

Ozone 0.3239 0.6080 -0.7723 0.6019

However, the other fact is that in the predicting systems we should avoid the
multi-collinear input features. To check the multi-collinearity among the meteoro-
logical parameters we have performed different tests using Matlab. Assuming the
tested vector as follows: x=[temp,windx,windy,hum, insol], where temp means
temperature, windx and windy – the wind speed in x and y directions, hum – the
humidity and insol – the insolation, we have applied the F-test, testing the joint
hypothesis that all coefficients αi of linear equation

pollution = α0 + α1temp + α2windx + α3windy + α4hum + ε (10.2)

are all equal zero, where ε is iid ∼N(0,1). We have tested the null hypothesis:

H0 : α1 = α2 = α3 = α4 = 0 (10.3)

against the alternative one H1:

H1α1 �= 0∨ α2 �= 0 ∨ α3 �= 0 ∨ α4 �= 0 (10.4)

For all pollutants we have got the results Fstat > 40 and p value < 0.001 voting
against the null hypothesis. We have applied the next test, variance inflation fac-
tor (VIF) quantifying the severity of multi collinearity in an ordinary least squares
regression analysis. It measures how much the variance of an estimated regression
coefficients is in-creased because of collinearity. The results of this analysis per-
formed in Matlab [11] are depicted in Table 10.6.
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Table 10.6 The results of VIF test

Exogenous variable VIF value
Temperature 1.70

Windx 1.02
Windy 1.01

Humidity 2.02
Insolation 1.75

None of the atmospheric variables for all pollutants was characterized by the
VIF value above 5. This is the evidence of the lack of multi-collinearity among
them [11]. The performed tests suggest that for all pollutants there is no evident
collinearity between the exogenous variables. It means that all exogenous varia-
bles are important in the prediction process. The results of these studies allow us to
propose the mathematical model of the pollution, which can be used for prediction
of the mean concentration of the particular pollutant for the next day on the basis
of the actual measurement of the environmental variables and the past history. The
results of the previous analysis suggest that model should be rather nonlinear. In this
research we have applied the Support Vector Machine in regression mode (SVR) of
Gaussian kernel [8]. For comparison we have also used the classical linear auto-
regressive model with exogenous variables (ARX).

10.4 Comparison of the Linear and Nonlinear Prediction
Models

The results of the previous analysis have been taken into account at building the
particular model of pollutant, enabling to predict the generally unknown, next day
mean value of pollution [9]. As the input variables we have used the past val-ues
of pollutant and the values of the atmospheric parameters predicted by the meteo-
rologists for the next day. The results of previous experiments have shown that the
known pollution history can be limited to only one past day. The general super-
vised model of the pollution forecast for dth day has been assumed in the following
mathematical form [9]

P̂(d) = f (w,windx,windy, temp,hum, insol,r, s, P(d− 1)) (10.5)

In this expression w represents the vector of adjusted parameters of the model,
windx, windy – the wind speed in x and y directions, temp – temperature, hum
– humidity, insol – the insolation level, r – type of the day and s – the season of the
year. The symbol P̂(d) represents the predicted pollutant concentration in the air
and the P(d− 1) written without hat – the known exact value of the pollution of the
previous day. All of them are delivered as an input information to the particular pre-
dictor. To provide the appropriate representation of the wind, we have applied its two
components windx and windy in the rectangular coordination system. Additionally
we take into account the type of the day under prediction (binary representation of
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weekend or working day: 1 for work day and 0 for weekend) and the season of the
year (binary representation of four seasons: 11 – winter, 10 – spring, 01 – summer
and 00 - autumn). To provide similar impact of all input variables, the data samples
should be normalized. The normalization may take different forms, from which the
simplest one (applied in this work) is to divide the real value by the mean of the data
base, corresponding to the years taking part in experiments.

The particular form of the applied predictor depends on its structure and way of
learning. In this work we have investigated the nonlinear neural model based on
Support Vector Machine with Gaussian kernel [8], working in regression mode. To
make the comparison with linear predicting system we have applied the linear ARX
model [11].

SVR in its principle minimizes the weights of the network, while keeping the
output signals as close as possible to the their destination values with the predefined
tolerance limit ε [8]. The regularization constant C is applied for weighting between
the values of weights and the prediction error on the learning data, while ε is the
tolerance value in learning process (the prediction error below this tolerance is ne-
glected). The most important advantage of SVR over other solutions is the fact that
its learning algorithm is based on the quadratic programming with linear constraints
of one, well defined global minimum. Moreover SVRs are known from very good
generalization properties. The details of learning SVR network may be found in the
excellent book [8].

To assess the obtained results in a most objective way we have applied differ-
ent measures of the prediction quality. Each of these measures determine the qual-
ity of prediction from different point of view. Five measures have been used in
experiments.

• The mean absolute error (MAE)

MAE =
1
p
(

p

∑
i=1
|ti − yi|) (10.6)

• The mean absolute percentage error (MAPE)

MAPE =
1
p
(

p

∑
i=1

|ti − yi|
di

) ∗ 100% (10.7)

• The root mean squared error (RMSE)

RMSE =

√√√√ 1
p

p

∑
i=1
|ti − yi|2 (10.8)

• The correlation coefficient (R) of the observed and predicted data

R =
Ryt

std(y)std(t)
(10.9)
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• The index of agreement (IA)

IA = 1− ∑
p
i=1(ti − yi)

2

∑
p
i=1(|ti − t̄|+ |yi − t̄|)2

(10.10)

In these relations p is the number of data points, yi = P̂i is the predicted value, ti
– the really observed value, t̄ the average of really observed data, Ryt is the co-
variance value between the really observed and predicted data points of pollutant
concentration, and std denotes standard deviation of the appropriate variable. To get
the most objective assessment of the proposed prediction system we have applied
10-fold cross validation. This means repeating 10 times the sessions of learning and
testing the system using the learning and testing data organized in different way.
In each session we have generated randomly the set of learning (800 out of avail-
able 1460 samples) and testing (the remaining 660 samples) data. The final results
of learning and testing are the mean of all trials. In presenting the results we limit
ourselves only to the testing data, not taking part in learning, since these data are
representative for future operation of the system in the most objective way. The lin-
ear ARX model of prognosis was implemented in Matlab [6] by using its built in
learning algorithm. The ARX adaptation procedure has shown that the best results
have been obtained at the rank of denominator Na = 4 and numerator Nb = 1 of
the ARX model. The SVR predictor was adapted at regularization constant C=100,
the tolerance limit ε = 0.01 and the width of the Gaussian kernel σ = 0.8. All other
parameters of this model (the number of support vectors and the positions of theirs
centers) have been automatically adjusted by the learning algorithm.

Table 10.7 The statistical results (mean±std) of SVR and ARX predictors in 10 cross vali-
dation experiments on the testing data for PM10, SO2, NO2 and ozone

PM10 PM10 SO2 SO2 NO2 NO2 Ozone Ozone
SVR ARX SVR ARX SVR ARC SVR ARX

MAE 10.5±0.78 11.2±0.99 9.74±0.82 10.4±1.12 11.5±0.76 11.6±0.77 6.2±0.39 6.5±0.45
[μg/m3]
RMSE 15.0±3.71 15.5±3.84 14.7±3.74 14.8±3.91 17.9±3.78 17.5±3.69 7.8±1.87 8.1±1.97
[μg/m3]
MAPE 28.4±1.39 32.4±3.27 28.5±2.95 33.2±3.45 32.7±2.58 35.1±2.60 23.7±1.29 24.6±1.67
[%]
R 0.77±0.09 0.74±0.11 0.78±0.11 0.77±0.09 0.70±0.12 0.69±0.78 0.84±0.11 0.83±0.11
IA 0.83±0.07 0.84±0.11 0.85±0.09 0.86±0.12 0.68±0.07 0.70±0.06 0.91±9.08 0.90±0.11

The results depicted in Table 10.7 present the mean values and standard deviation
(the numbers behind ± sign) of the appropriate quality measures. It is evident that
the nonlinear model of prediction (SVR) performs much bet-ter than the linear one.
All quality measures related to it are much better. This con-firms the nonlinear char-
acter of the predicted time series. The highest accuracy was obtained for ozone, the
pollutant of the smallest std/mean ratio and of the greatest balance of the succeeding
hourly values of concentration.
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10.5 Conclusions

The results presented in this work have shown that the mechanism of pollution
creation, irrespective of the type of pollutant, is very complex and belongs to the
nonlinear, chaotic process not easy in modeling. To obtain the highest quality of
prediction results we should apply the nonlinear model of the process, better taking
into account the complex relations between the concentration of pollutant and the
basic atmospheric parameters influencing the mechanisms of creation and spreading
the pollution. The numerical experiments confirmed the superiority of the nonlinear
SVR model applying Gaussian kernel over the classical ARX linear model.

Further work will be concentrated on the development of the more accurate pre-
diction method. In our opinion the main source of improvement will be in consider-
ation of more factors taken into account as input attributes in the prediction process.
We should consider additional potential prognostic features such as longer history
of pollution development, peak pollution values and their long term influence on
the mechanism of pollution creation, etc. Additional tools of feature selection, well
associated with the prediction problem will be developed.
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Chapter 11
System Dynamics Modeling of Intelligent
Transportation Systems
Human and Social Requirements for the
Construction of Dynamic Hypotheses

Oana Mitrea

Abstract. The current article structures the knowledge and requirements for the
(system dynamics) modeling of distributed actions in the intelligent transportation
systems from the perspective of the sociology of technology.

11.1 Introduction

Challenging the discrete view of separate events and decisions system dynamics
comes with a novel purpose of assembling a formal structure ”that can reproduce
by itself, without exonegenous explanations the essential characteristics of a dy-
namic problem” [1]. Its key conceptual tools are: the endogenous perspective; the
feed-back thinking; the stocks and flows; the feed-backs, and the dominance of non-
linearity (id). The importance of system dynamics modeling and simulation has re-
cently increased in the field of traffic engineering and traffic planning [2-3]. As
Raux (2003) emphasizes, in practice the complex non-linearity has often been ne-
glected in the existing models due to the ”heaviness of calculations and the involved
complexity” [4]. However, this neglect should not cast shadows on its chances and
promises. Particularly the fact that changeable system structures can lead to un-
expected behavior through a complex chain of causes and effects has encouraged
extensive preoccupation with system dynamics modeling in the field of the intelli-
gent traffic [5]. The central concept of this approach is to model how all the objects
in a system interact with each other through ”feedback loops, where a change in
one variable affects other variables over time, which in turn affects the original vari-
able, and so on” [5]. The key advantages of this approach are the better control
of the increasingly high complexity of the modern systems and the faster and eas-
ier sensitivity analyses, through the quick implementation of tests on the structure
of the models [4]. System dynamics models have been constructed particularly at
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the macroscopic level of the traffic flow to explore the interaction of transportation,
economy, and urban planning [3-4] or to evaluate the effect of different transport
policies on emissions of pollutants from European countries [6]. Also microscopic
system-dynamics based models for traffic simulation can be mentioned [5] [7-9].
Since system dynamics is much involved with complexity and adaptability, we be-
lieve that there is still room for interdisciplinary ideas flowing into the ”engineering”
perspective. The current article aims to examine whether the results of socio-logical
research about the distributed agency in hybrid systems (systems in which humans
and collective actors interact with intelligent technology) can be useful for tracing
the basic formal structure of the system (in accordance with the framework provided
by Forrester (1969) (see below) and for the production of dynamic hypotheses[10]:

Fig. 11.1 The formal structure of the system dynamics models after Forrester (1969)

11.2 Interaction and Interactivity in Intelligent Transportation
Systems

Intelligent Transportation Systems are defined by the Intelligent Transportation
Systems Society as ”a category of systems and concepts utilizing synergistic tech-
nologies and systems engineering concepts to develop and improve transportation
systems of all kinds”1 . The most recent efforts have been done in the areas of driver
assistence (ADAS) and cooperative traffic systems with the purpose of increasing
safety, efficiency, comfort, and the ecological sustainability of driving.

In general the ”intelligence” of the ITS is mainly related to the way that the data
received from sensors are processed and turned into meaningful information for
various ”on-demand” situations. The following components are thereby involved
[11]:

1 http://www.ewh.ieee.org/tc/its/
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• the active in- and -out vehicle environment sensing, respectively road infrastruc-
ture sensing which will provide users with improved safety, spontaneity, effi-
ciency and comfort

• intelligent spaces defined as ”environments that continuously monitor what’s
happening in them, communicate with their inhabitants and neighbourhoods,
make related decisions, and act on these decisions” [11] (Wang et al. 2006, p.
68 )

• agent-based control – distributed operational agents letting networked transporta-
tion systems operate on a management-on-demand or service-on-demand basis
(Wang et al. 2006, p. 69 )

Over time, modeling and simulation of human behavior have become increasingly
important for the development of innovative ITS solutions and their evaluation [12].
According to Möbus et al, common aims of driver models are: ”to predict and gen-
erate driver behavior emitted by individual drivers sometimes in interaction with
assistance systems; to identify situations or maneuvers and classify behavior (e.g.
anomalous vs. normal) of ego driver; provide a robust and valid mapping from
human sensory data to human control actions; be learnt from time series of raw
data or empirical probability distributions with statistical sound (machine-learning)
procedures with only a few non-testable ad hoc or axiomatic assumptions; should
be able to learn new patterns of behavior without forgetting already learnt skills
(stability-plasticity dilemma)” [13]. The user-centered approaches to driver model-
ing have mainly focused on the development of interface design for in-vehicle nav-
igation systems that are adapted to driver behavior in driving contexts. In general,
the driver behavior has been modeled in order to understand the mechanism of driv-
ing performance in road traffic environments; to estimate a driver’s intention prior
to various maneuvers; to access the benefit of in-vehicle information systems; and
to predict driver behavior from previous and current observations [14]. A great deal
of such studies employed probabilistic models (including Markov dynamic mod-
els and Bayesian network model) in which the random driving operations observed
commonly in a real environment were regarded as stochastic events [13-14]. Their
aim has been mainly a (psychologically valid) representation of the traffic agent
(e.g. driver behavior).

One cannot deny the importance of driver’s psychology for a correct specifica-
tion of a driver model. It is critical to know which internal characteristics influence
the driver in a given situation. However, the specification of the majority of the
properties of human internal capability (such as: ”information reception, percep-
tion and processing; neuromuscular dynamics with threshold, time delay and lim-
itations; preview, anticipation; adaptation/learning; planning capacities (path and
speed); driving experience; risk behavior; concentration, tiredness/ stress and emo-
tion” [12]) does not satisfactorely surprend the way that the new ”intelligent” tech-
nologies and humans interact.

The situation analyzed by the classical HCI (Human Computer Interaction) - per-
sons sitting in front of computers - point towards a (quite) predictible, and quite per-
ceptible static setting. However, the interactivity of humans with advanced mobile
technologies is more complex, dynamic; and involves more senses. A newer branch
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of Human Computer Interaction (HCI) strongly concentrates now on the more com-
plex matters of interactivity between humans and the smart ubiquitous computing
technologies that imply multisensory interactivity with everywhere interfaces and
the pro-active environment intelligence [15-23].

In the last time the ITS (Intelligent Transportation Systems) have started to gain
in relevance for the sociology of technology, mainly because they illustrate how
advanced technologies can ”act” in cooperation with human and social systems to
achieve the global goals of safety, efficiency and sustainability.

At the microscopic level any external observer can confirm nowadays that
the users of driver assistence systems are less and less the only ones acting au-
tonomeously, although they still take decisions and perform a variety of tasks during
driving. The agents in on-board units stay behind them and mix in human decisions
and actions. The intelligent cooperation of technical units is achieved if their behav-
ior, although based on algorithms, can be described as situated cooperativeness or
”artificial” interaction rather than determined operation [24]. In this way, advanced
technologies cannot be represented as passive objects, reduced at neutral instrumen-
tality anymore. On the contrary, they entangle with humans and make room for a
hybrid system – consisting of human and nonhuman decision makers [25]. The so-
ciology of hybrid systems is highly preoccupated by the issues of automomy and
control and could provide some interesting findings for the construction of micro-
scopic system dynamics models in ITS [25-26].

In hybrid systems humans experience the agents as communicative counterparts,
which reactions may deviate from human expectations and develop in a contingent
manner [24]. This type of interactivity between humans and intelligent agents is
characterized by complexity, contingence, and symbolic mediated communication
[24]. While it is true that agents ”stay” in place of humans in various areas, the
agent representation of human wishes, decisions, motoric reactions is usually more
then the name suggests: a ”substitution”, ”acting in place of another”. It is rather
a re-construction of humans’ behaviors and decisions from a given perpective, in
accordance with an underlying theoretical model (see the variety of driver models).
There is no exaggeration to tell that in some cases the cooperation of agents in ad-
vanced technologies leads to unexpected or at least for the involved humans, difficult
to foresee effects 2 . At the same time, the human that has already interacted with
the agents is not the same anymore. He/She has reveived in-advance information on
ways not possible without the mediation of advanced technologies; has been able
to react faster to the events on the road; sometimes has just simply complied with
recommendations without questioning their backgrounds (as considered too com-
plicated for further enquiring). The ”oriented human” [27] after interaction with

2 This perspective is consistent with Intelligent Transportation Systems as complex
adaptative systems: Complex systems comprised of multiple components (agents) in-
teracting via nonlinear feedback processes. Interesting here is that: ”Their macro-
scopic properties, emerging from the collective interaction, contrast with the proper-
ties of the individual components. In particular, in complex adaptive systems, agents
are able to adapt to the environment and co-evolve with the system as a whole.”
http://www.sg.ethz.ch/teaching/cas 2010
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advanced technologies does not think and act in the same way as the human that has
handled with instrumental, non-intelligent ICTs so far.

After these considerations, first questions relevant for the construction of dy-
namic hypotheses for system dynamics model at the microscopic level:

• How do human and non-human elements interact and co-evolve? [28].
• How do some consequences of this interaction (like for instance short-time adap-

tativity and reactive-passivity [25]) propagate through the system?

If we take three examples: the decentralized intersection control, the hierarchical
(policemen and traffic lights controlled) and the cooperative intersaction control
(involving manifold communication between humans, smart agents embedded in
vehicles, and street infrastructure), interesting comparisons can be performed. The
effective functioning of a totally decentralized intersection (without advanced tech-
nologies) is based on the learned and internalized norm-conforming behaviour. This
is also the case for the classical hierarchical traffic control by policeman or by traffic
lights. As Weyer (2009) emphasizes, the strategical driver bevahior is still possible
(based on expectations and experience) in this situation. If the green light blinks,
one can asess his/her own possibilities to pass the intersection in time [25]. How-
ever, the situation is different in the cooperative intersection control. Its declared
aim is to enhance traffic safety and flow through through intelligent applications
such as: journal plans, messaging, collision avoidance, feed-back and sensory in-
puts [29]. In this demand-oriented intersection the behavioral control rules might be
clearly (and manageable) formulated, nevertheless the human perception of com-
plexity and contingency of technology arises from the multitude of possible system
states (and possibly from the different implementation strategies derogating from
human expectations [29]. The degrees of freedom can no longer move within the
normatively expectable behavior space. Manifold (obscure) independent activity is
attributed to an intelligent artifact. This may lead, according to Weyer, to the de-
crease of the self-perception about human autonomy and to a passive-reactive be-
haviour in driving [25]. In this context of interactivity, further research questions
with potential of generating dynamic hypotheses are:

• Which decisions and actions (tactical, strategical, and operational) can be de-
scribed in the intelligent driving? (capturing of state variables, their levels, flows)

• How are the sequences of actions distributed? On what instances?
• How do humans assess inputs, real-time recommendations from the intelligent

traffic system? How do they respond in real-time to them?What happens in time
with the humans’ capacity to plan and anticipate their actions (predictive, strate-
gic thinking) under the real-time condition?

• To what extent are voluntary decisions, human autonomy, and their ability to
recognize situations in the cooperative traffic preserved? How do humans react
in time to system failure and false alarms, distraction, cognitive overload, unin-
tended consequences of actions?

• How do perceptions about the ease of use the usefullness of applications (accep-
tance) evolve in time?
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• Which collective actors are involved? What are their perspectives and objectives?
• How can/do the agents adapt to the changes occurred to humans in time?

At the macroscopic level the pragmatical sociology of technology extends the view
about the ”intelligent driving” to the the level of the heterogeneous constellation
of humans, collective actors, technical agents, infrastructures, and signs [24], [30-
31]. According to this view, technology in action can be understood and modeled
in interaction with technical elements (called ”intra-action” Rammert [24] ); and in
interactivity with human and social systems [24]. The second type of interactivity is
related to the embedding of the human-vehicle-environment system into a broader
socio-technical constellation (comprising of institutional actors, guiding principles,
visions about mobility systems, social norms and values) [24]. The recent advances
in the sociology of technology stress the fact that the performance of ”intelligent”
mobility systems represent a result of a complex interface coordination among the
activities of human drivers, car technology, environment, social, and political actors.
Due to the distributiveness of actions to technological, human, social and political
systems in hybrid constellations, it is possible that the performance of the whole
system decreases, even if the driving behaviour, car control or telecommunications
become smarter. The performance of the intelligent mobility system is dependent
on how the hybrid driver-vehicle-environment system is embedded in the socio-
technical configurations of the transport system. This include a variety of actors:
city and traffic planners, producers of alternative mobility technologies, telecom
providers, the structure of their products, etc., who decide whether with individual
vehicles or not, with how much freedom, in what combination with other means
and under what guidance and regulation system is mobility performed [24] (Ram-
mert 2007, p. 129). As a consequence the system dynamics model needs to adopt a
holistic perpective, including all relevant actors of a given socio-technical constella-
tion. This shall integrate the microscopic time-space perspectives of the individuals,

Fig. 11.2 Hierarchical versus cooperative intersection control
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the interactivity with the intelligent agents, and the macroscopic views of the in-
volved actors in different spatial and temporal contexts. According to these consid-
erations, the tracing of boundaries for the macroscopic system dynamics modeling
and simulations (and evaluations) can be performed at the major interface between
the system driver-vehicle-environment and the socio-technical constellation of the
collective actors.

11.3 Particularization: Human and Social Requirements for the
System Dynamics Modeling of Cooperative Traffic
Scenarios

Cooperative traffic systems are defined as: ”systems in which a vehicle communi-
cates wirelessly with another vehicle (Vehicle-to-vehicle communication, or V2V)
or with the road infrastructure (vehicle-to-infrastructure - or V2I communications,
and infrastructure-to-vehicle communication or I2V” [32]. The majority of the co-
operative traffic services are aimed at the foresighted driving and an early detection
of hazards (for instance through ESP, ACC, operative platooning, PReVent, WILL-
WARN (Wireless Local Danger Warning), INTERSAFE, etc.). Examples of already
implemented cooperative traffic services are: incident management, road/weather
condition warning, roadwork information, lane utilisation information, in-vehicle
variable speed limit information, traffic congestion warning. Services to be intro-
duced later address navigation and driver/management support in a more general
sense: ISA (Intelligent Speed Adaptation) with infrastructure link, international

Fig. 11.3 The anatomy of a cooperative system, adapted after the analysis of the intelligent
mobility system (Rammert 2007) [24]
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service handover, road charging to influence demand, route navigation - estimated
journey time, route navigation - recommended next link, route navigation - map
information update, floating car data (FCD)”3.

A microscopic view:
”I’m approaching the X crossroad, driving home after work in a distant city. It

is raining. I would prefer to travel by train, but unfortunately the schedule does not
suit me. I am tired, but anxious to see my family and to spend a nice evening to-
gether. I’m entering the outskirts of my city. Unfortunately, the warning system of
my car informs me that 200 meters ahead, after the intersection, the road suddenly
blocked due to an accident. Between 16:00 - 17:00 this spot should be a nightmare,
a perfect image of chaos, but the reality is dazzling: nothing happens. Every car
seems to quickly adapting to the spontaneous changes and to fit in the newly created
niches: some change the lane and turn to the left, some take the next right turn,
some wait patiently. I’m waiting for my turn. After a fast communication with other
cars and infrastructure, my intelligent car recommends me the optimal maneuvers
for the fastest alternative route. I’m accepting them, driving safely and being just
in time in front of my house. Now, let’s suppose I don’t have THIS car, stuffed with
sensors and devices which can send and receive information to/from other cars and
infrastructure. It is still possible that nothing happens. Partially because I am an
experienced driver, executing the right maneuvers, partially because the other ”in-
telligent” cars can perceive me as a moving potential danger and can avoid me.
However, so I put so significant strain on the effective functioning of the system:
its safety and flow. The accumulation of such small events can lead to delays and
coordination problems. If I want to be really bad, I can simply ignore warnings
and recommendations from my intelligent car, or act against them – because I still
have the overhand about what to do with the information received (blended decision
making). I eventually comply with the rules of the ”intelligent cooperative traffic”
because I don’t want endanger other traffic members.”

This story depicts some key elements of the cooperative driving; among them
the foresighted driving, the early detection of hazards. From the microscopic per-
spective the focus is placed on the continuous experience of the modeling unit (car-
driver system) with space, time, exchanged information, and driving coordination.
The Finnish Strategic Research Agenda ”Cooperative Traffic ICT” however stresses
the necessity to follow a red line through all this complexity – while defining the co-
operative traffic system in accordance to its purpose [33]: ”We have to understand
the transport system as a stratified entity of decision making where both the quality
and quantity of traveling and transporting are influenced by societal and individuals’
values and extending to a single maneuver at the wheel. The cooperative aspect is
embedded in the capability of different actors either passively or actively to acquire
data and share it with other parts and players of the traffic system.”[33]

3 Described in in WP3000: COOPERS services and value chains, concerning operator/ user
behaviour, Integration of services in the co-operative system, 2010,
http://www.coopers-ip.eu/fileadmin/results/deliverables/D3600-
3700 COOPERS SERVICES AND VALUE CHAINS VO4 APPROVED.pdf
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If one conceives the cooperative driving as a continuous ”cooperative” action
distributed on human and technical instances, the interest lays with the exact char-
acterization of the actions chain for each individual unit and with the rules that
favor the passage from one action to another. Our expectation is that this ”passage”
is influenced, among others, by the socio-technical distribution of the cooperative
agency (by what/who/where decides about next action sequence). Further we deal
with the embedding of the driving actions in the broader configuration of the co-
operative traffic system involving policy driven system goals: safety, fuel economy,
environmental protection.

The process of model building at both microscopic and macroscopic levels in-
cludes several steps ranging from qualitative description to quantification. The un-
derstanding of the real situation is crucial for the next formal description of the pro-
cess: key variables and their linear and non-linear interactions. It is about finding out
how humans and the cooperative driving agents embedded in cars and infrastructure
can cope with the daily driving needs in real-time in the context of the interaction
with a variety of other systems (alternative mobility, communication, and urban in-
frastructure, social and political systems). For the description of actions chains in the
hybrid constellation of the cooperative traffic we employ and complete the frame of
reference advanced by the Cooperative Traffic Agenda (2009), which distinguishes
among four levels of approach: (1) societal goals, levels of individuals, 2) strategic
behavior, 3) tactical behavior, 4) operational behavior [33].

1. At the broader of the socio-technical constellation of the cooperative traffic sys-
tem, relevant are basic decisions about driving / not driving a car, the amount of
driving, and choice of travel means. The action of driving is highly influenced by
the dynamic of social and individual values embedded in the objectives of trans-
port policies (visions about the sustainable mobility, pricing, alternative travel
options, measures for environmental sustainability), and by the interaction with
the systems of alternative mobility.

2. Once the decision to drive an intelligent car on the cooperative traffic system
taken, there is now room for strategic decisions about how to plan the route in
space and time. The drivers do not accomplish this alone, nor do the warning and
recommender smart agents. Instead, a joint strategy emerges from action distri-
bution on drivers, passengers, other involved traffic members, collective actors
AND travel information agents, traffic management assistance on the route, in-
frastructures, etc. This wider socio-technical constellation exerts an important
influence on the type of information required through the embedding of mobility
visions, social values in the design of travel information services and in traveler’s
expectations.

3. At the tactical level are relevant decisions about how to travel safer, faster, and
more comfortable. Various traffic management, assistance, services, traffic info,
location-based- services are here involved. It should be also mentioned that mo-
bility visions and social values remain embedded in services design and traveler’s
expectations.

4. At the operational level are important decisions about how to behave on the road,
how to control the car. Many assistive applications are designed for instance to
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support a more ”sustainable” behavior of the driver (safe driving, eco-driving).
Agency distribution is dominated by the smart agents with contingent and even
intentional properties. Also here are social visions (for instance about sustainable
mobility) embedded in their construction. Human agency capacity may decline
to short-time adaptability, with unexpected future consequences.

A forthcoming research project aims at modeling the distributed actions in coop-
erative traffic systems from the microscopic perspective. A scenario of ”between-
vehicle cooperation” will be selected. For a detailed comprehension of the actions
and interactions in cooperative driving it is necessary to follow a progressive ex-
ploration strategy (see Rammert’s approach [24]. The first set of research questions
regards the description of actions in system: ”where/what/who acts”. Specific inter-
actions and forms of interactivity between humans and agents within this frame are
further explored. The last questions relate the hybrid actions to the broader context
of the ”hybrid constellation” of the cooperative mobility.

11.3.1 Description of the Pro-active and Co-operative Agency
[24]:

This set of questions aims at describing the action chains in detail, formally charac-
terizing the distributiveness of actions and decisions on humans and agents:

• How does cooperative driving work? What are the involved instances?
• What decisions (tactical, strategical, and operational) are taken at the different

scales in different contexts?
• What actions occur (communication, information access, monitoring, generating

solutions, selecting solutions, implementing cooperative solutions, denying so-
lutions, etc.?) How can their degree of automation be described (from manual
control to full automation [25])?

• Who/what performs the actions in detail?
• How are the actions distributed? On what instances?
• What label reaches the action (1-causal, 2- contingent, 3-intentional) for the spe-

cific instances?
• Which order feature the action chains in various cooperative scenarios for partic-

ular individuals/ technical systems?
• What are the unintended consequences of the sequencies of actions?
• What conflicts can be identified? How do they evolve in time?

11.3.2 The level of Interpersonal Interaction, Intra-activity
(Interaction among Technical Agents) and Interactivity
with Human and Social Systems [24]

These questions in-depth explore the interaction human-humans, among technical
elements and the interactivity between humans technical components and agents
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• How do humans cooperate for the accomplishment of mobility goals in dynamic
mobility systems?

• What type of interaction occurs among technical agents in such systems?
• How do humans assess inputs, real-time recommendations from the cooperative

traffic system? How do they respond in real-time to them?
• How human decisions and actions are delegated in real-time to the agents?
• What happens with the humans’ capacity to plan and anticipate their actions

(predictive, strategic thinking) under the real-time condition?
• To what extent are voluntary decisions, human autonomy, and their ability to

recognize situations in the urban traffic preserved?
• How do humans react to system failure and false alarms, distraction, cognitive

overload?

11.3.3 The ”Hybrid Constellations” of Pro-active and
Cooperative Agency [24]

The questions here are about the contextual frames the should be taken into account
to link the cooperative action chains to the elements of the heterogeneous constella-
tion. Important is also to learn how the social behavior of humans in the intelligent
traffic is shaped through their real-time interaction and coordination of mobility.

In particular:

• Which visions about social cooperation, systems of mobility, alternative mobility
are involved, and are dynamically interacting with the cooperative traffic system?

• Which collective actors are involved with particular actions? What are their roles:
for coordination, control?

• Which general rules apply (street, city regulation on road sections)?
• Which contextual elements from the broader constellation (like for instance

weather, telecommunication systems) have influence on particular driving ac-
tions? What influence?

These research questions will be answered through the direct experiencing of the
source system (participant observation) and by the extraction of knowledge and
perceptions from users, experts, and stake-holders by means of the COMPRAM
methodology and Constellation Analysis. Constellation Analysis will provide a
structured visualization of interdisciplinary points of view to the complex interplay
of actors and contexts of action in different times and contexts. The method has been
mainly designed as a tool for interdisciplinary collaboration at the Center for Tech-
nology and Society at the TU Berlin. Its main advantage is that traffic situations can
be analyzed from different perspectives as respect to their diversity and heterogene-
ity. COMPRAM stands for the Complex Problem Handling Method, a framework
specially developed to handle complex societal problems DeTombe [34]. Although
the method is developed for the usage at the macro-perspective; we believe it will
be particularly useful for the generation of dynamic hypotheses about the system
behavior and for the construction of the conceptual system dynamics model.



202 O. Mitrea

The research design includes the following steps:

1. The generation of system knowledge (from awareness to complete description).
A systematical and detailed knowledge about decisions and actions during coop-
erative driving in general and in various ”between-vehicle cooperation” scenarios
will be obtained from literature surveys, participant observation, secondary anal-
yses of test beds data, past small-scale experiments of technological interven-
tions/evaluations. In-depth interviews. The results will be examined by expert
teams (involved in the COMPRAM approach).

2. The construction of the simulation model for the selected ”between-vehicle
cooperation” scenario: In this phase, the obtained system knowledge will be con-
verted into a simulation model that takes into account both qualitative and quan-
titative aspects. The output of the model will allow the calibration according to
the selected scenario, simulation, and prediction of effects. An array of cooper-
ative traffic settings is considered for the modeling and simulation in the current
project. They are selected (in cooperation with involved stake-holders) in such a
way that makes possible the evidentiation of the eventual conflict potential and
problems.

11.4 Implications for the Modeling of the User Acceptance

One of the most important non-technical factors for the prediction of the market
penetration of such innovations is user acceptance [35]. This is defined as ”the de-
gree to which individual users will use a given system when usage is voluntary or
discretionary” [35]. Among the many theoretical models of user acceptance, one of
the most widely adopted in the technology literature is the Unified Theory of Ac-
ceptance and Use of Technology (UTAUT), developed by Venkatesh, Morris, David
and David 2003 [36].

The challenge for the system dynamics modeling is to integrate the microscopic
model of the cooperative driving and co-operative traffic findings into another model
explaining and predicting user acceptance of the intelligent transportation sys-tem.
The link between the user acceptance and the hybridization of actions could rep-
resent an interesting subject for system dynamics modeling. Recent studies about
autonomy and control in hybrid systems have indicated that the consequence of the
hybridization of actions in hybrid systems (system in which intelligent agents in-
teract with human and social systems) represents for humans a successive transfer
from their strategic to the adaptative agency [25]. While the capacity for strate-
gic agency implies instrumental rationality, the possibility to anticipate the conse-
quences of actions, regularity and predictability, the adaptative agency of humans
translates into rapid reactions to situation-adjusted solutions with emergent charac-
ter generated by the IT systems, which cannot be previously predicted in all the de-
tails [25]. Although Weyer considers aviation the most adequate prototype of a new
work world which is more and more shaped by ”autonomous” technology, the coop-
erative traffic system may face similar promises and problems [25-26]. According
to Weyer, it is important to identify the conflict potential emerging from the relation
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between the transparence degree of technological agency and the driver adaptability
and autonomy. Recent sociological studies of technology emphasize the fact that
the distribution of activities among humans and machines in hybrid socio-technical
constellations of driving should be gradually balanced in system design, leaving
room for human self-initiative; own responsibility; control of personal data; inter-
vention capacity; and the human decision about the real usefulness of applications
[24].

11.5 Conclusion

At the microscopic level, the dynamic hypotheses about ”intelligent” driving actions
can be formulated by including driving sequences in loops of information feedback
and circular causality. Based on the identification of levels for variables describing
the actions and their inflows and outflows, the final intention is to build a diagram
capturing the stock-and-flow/causal feedback structure. This diagram will be final-
ized in the research in progress. In the article we concentrate on the potential of the
theory of the distributiveness of actions in heterogeneous constellations (sociology
of technology [24] [30-31]) to enhance the formulation of dynamic hypotheses for
system dynamics modeling of ITS.

At the macroscopic level we highlight the importance of closing the system
boundaries in order to achieve endogeneous explanations. The performance of the
Intelligent Transportation Systems is dependent not only on the interactivity be-
tween the vehicle-human systems and the environment, but also by the impact of
socio-political and other contextual factors from a broader socio-technical constel-
lation. Valide and complete information about the system structure can be obtained
only by extending the perspective to the level of the socio-technical constellation of
the system [24], or in any case, by specifying the limits of the interpretation.

As the present paper shows, the design of intelligent technologies relies more and
more on the comprehension of broader (non-technical) mechanisms. At the same
time, there is the possibility to use simulation models to develop sociological models
of societies and organizations and to reflect about the emergence of non-intended
effects in the mobile information and communication society.
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et al. (eds.) Data and Mobility. AISC, vol. 81, pp. 27–38. Springer, Heidelberg (2010)
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Chapter 12
Electromagnetics, Systems Theory, Fluid
Dynamics, and Some Fundamentals in Physics

Alfred Fettweis

Abstract. Based on strict validity of Maxwell’s equations in vacuum, concepts of
field velocity v, rest field, basal electromagnetic (EM) field etc. are defined. Their
properties lead to flow equations that have the same structure as those of fluid dy-
namics and thus in fact describe an EM fluid whose flow velocity is equal to v. For
a photon a model is presented whose inner structure consists of such an EM fluid
and exhibits all known photon properties. The corresponding model of an electron
is sufficiently complete to analyse its dynamic properties, which turn out to be as
required by classical relativity. The (time-independent) Schrödinger equation is ob-
tained within the frame of the present theory.

12.1 Introduction

This paper goes well beyond [1], on which it is crucially based. Essential results al-
ready published are recapitulated if needed, but for most major new results outlines
of proofs are sketched. As in [1], strict validity of Maxwell’s equations in vacuum,
even down to the smallest dimensions, is assumed, including the relativistic trans-
formation rules of these equations.

The concepts of field velocity and rest field of an electromagnetic (EM) field are
introduced and precisely defined. The known equations involving field momentum
and stress tensor as well as the equation relating Poynting vector and energy are then
found to be equivalent to new equations, say flow equations, that are of the same
type as the corresponding equations of fluid dynamics and thus lend themselves to
a consistent mechanistic interpretation. We speak about this as an observation at
the primary or basic level. At this basic level, the EM field thus behaves like an
electromagnetic fluid (EM fluid) that is moving under the influence of the surface

Alfred Fettweis
Ruhr-Universität Bochum, Germany
e-mail: fettweis@nt.rub.de

K. Kyamakya et al. (Eds.): Selected Topics in Nonlinear Dynamics, SCI 459, pp. 209–234.
DOI: 10.1007/ 978-3-642-34560-9 12 c© Springer-Verlag Berlin Heidelberg 2013

fettweis@nt.rub.de


210 A. Fettweis

and volume forces acting in it. In particular, changes of energy densities are caused
by to two entirely distinct effects: convection and the work done by these forces.

On the other hand, one can combine these two mechanisms into a single effect
and characterize the overall energy migration simply by means of an effective en-
ergy velocity. We refer to this as an observation at the secondary level. This energy
velocity reaches twice the field velocity at the low end and becomes equal to it at
the speed of light. Whether at the primary or the secondary level, the flow equations
clearly show that an EM field inherently has inertia and thus mass.

At the secondary level, thus when using the energy velocity, the original flow
equations admit a form that exhibits relevant properties, at least in as far as the ex-
pressions for mass and energy are concerned, that are in agreement with classical
relativistic dynamics [2-4]. At the primary level, however, the results are only com-
patible with those of an alternative relativistic dynamics that was first mentioned
in [5] and had then gradually been refined in a sequence of papers, the last one of
which being [7] (although some of the claims mentioned in these papers cannot be
upheld in view of newer results such as those discussed in [1] and the present pa-
per). Even at the secondary level, this alternative theory still plays a decisive role
and may therefore not simply be replaced by the classical theory.

The fields are assumed throughout to be autonomous (self-sustaining), and fre-
quently, more specifically, to be basal. For basal fields the flow equations become
particularly elegant. Elementary particles, at least EM particles such as electrons,
positrons, and photons, are found to be nowhere point objects but condensed fields.
They have an inner structure whose fine details can be observed at the two levels
already mentioned. At the tertiary level of observation these details are ignored and
only the movement of a particle as a whole is considered; it is found to follow the
laws of classical relativistic dynamics.

For a photon model the resulting equations can be solved analytically. This leads
to a long list of features that comprises all photon properties known to this author.
Puzzling properties such as the wave-particle duality and the identity of Planck’s
constant � , defined as the proportionality constant between energy and frequency
of a photon, with the photon spin and the (double value of the) electron spin are fully
explained. For an electron (positron) important steps have been achieved towards
finding a complete representation. Due to the results already available, a variety of
properties have been verified.

The results available for an electron have made it possible to examine its be-
haviour in an external field. This way, the dynamic behaviour of an electron is
found to follow exactly the laws of classical relativity. Hence, relativistic dynam-
ics and thus, in the limit, Newtonian dynamics are proved to be direct consequences
of Maxwell’s equations. In particular, inertia and thus inertial as well as gravitational
mass have turned out to be inherent properties of an EM field, not the result of some
extraneous influence. At least for photons and electrons (positrons), the existence of
an Higgs particle as source for mass has no relevance.

The last section concerns the application to quantum physics. In particular, the
celebrated (time-independent) Schrödinger equation is derived within the frame of
the present theory. The Schrödinger function is found to stand for any of the field
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components of an EM co-field associated with the electron EM field spread out in-
side of the atom in which it is incorporated. The precise form of the co-field depends
on the contingencies of the process by which the electron has been incorporated into
the atom. Consequently, the actual randomness is not due to intrinsic (inherent to
the nature of the objects), but to extrinsic probability, i.e. probability caused by
complexity, like in thermodynamics.

12.2 Electromagentic Field in Vacuum: Maxwell’s Equations
and Related Results

Let RF be the reference frame under consideration. A point P in RF is characterized
by its position coordinates x,y,z, or compactly by

r = (x,y,z)T,

and by its time coordinate t, altogether thus by its four coordinates x,y,z,t. In this text
we exclusively consider electromagnetic (EM) fields in vacuum. Such fields can be
described in RF by the field variables,

E = (Ex, Ey, Ez)
T, H = (Hx, Hy, Hz)

T, i = (ix , iy,oz)
T and q,

and by the two constants ε0 and μ0. While E, H, H, ε0, and μ0 represent quanti-
ties in standard notation (although we systematically make use of H instead of the
frequently preferred B), we are designating the charge density by q, not by ρ as is
commonly done. This allows us to represent consistently the density, whether per
unit area or per unit volume, of any relevant quantity by a meaningful small letter,
and the corresponding full quantity for, say, a particle by the respective capital letter.
We also make systematic use of the transposition operator T when handling vectors
and matrices; this has several advantages in our context. We do of course assume all
coordinate systems to be right-handed.

The EM field itself is described by what is commonly called Maxwell’s equa-
tions, i.e., by

ε0
∂E
∂t

+ i =∇×H, (12.1a)

μ0
∂H
∂t

+ i = −∇× E, (12.1b)

q = ε0∇TE, (12.2a)

∇TH = 0, (12.2b)

where

∇=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)2

.
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From the point of view adopted throughout in this paper, we assume the field to be
autonomous (self-sustaining). In other words, we assume q and i to be not given
sources, but properties of the field that can be determined from E and H by (12.1a)
and (12.2a). While (12.1) and (12.2) are standard in the literature, it is apparently
usually overlooked that these equations admit an equivalent state-space form, which
is more advantageous to use in many situations. For this form, the set (12.1) and
(12.2) is to be replaced by

ε0
∂E
∂t

+ i =∇×H, μ0
∂H
∂t

= −∇× E,
∂q
∂t

= −∇Ti (12.3)

with both
q = ε0∇TE and ∇TH = 0 f or t = t0, (12.4)

where t0 is some fixed time, for instance the initial time.
From Maxwell’s equations, thus from (12.1) and (12.2) or from (12.3) and (12.4),

two further useful equations can be derived, which, in our notation, can be written
as follows:

∂j
∂t

+ (∇TTc)
T + fc = 0, (12.5a)

∂ω

∂t
+∇TS + iTE = 0, (12.5b)

To these we add the original equations defining q and i, thus

q = ε0∇TE, (12.6a)

i =∇×H− ε0
∂E
∂t

, , (12.6b)

In (12.5),

j =
1
c2 S =

1
c2 E×H (12.7)

is the classically known momentum density of the field,

fc = qE + μ0i×H (12.8)

the classical Lorentz force density, and Tc, i.e.,

Tc = w1− ε0EE− μ0HH, (12.9)

a classical stress tensor equal to (the negative of) what is known as Maxwell’s stress
tensor. Furthermore, the field energy density ω in RF and the speed of light, c, are
defined by

w =
1
2
(ε0E2 + μ0H2), E2 = ETE, H2 = HTH, c =

1√
ε0μ0

(12.10)
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and the Poynting vector S by

S = (Sx,Sy,Sz)
T = E×H. (12.11)

While (12.5b) is commonly encountered, (12.5a) as well as (12.9) are less well
known. Note that the systematic use of the transposition operator has made it possi-
ble to present these equations in a very compact form.

The definitions we have adopted for E and H (cf. (12.10)) do not specify the signs
of these quantities. For fully fixing them we could assume E = |E| and H = |H|,
thus E ≥ 0 and H ≥ 0 , but in order to preserve our freedom for later purposes we
will not impose that unnecessary restriction. A corresponding remark holds for most
other vector quantities throughout this paper. This unconventional way of proceed-
ing allows us to express many of the results to be derived in a simpler way than
otherwise feasible.

Based on (12.5), it is standard to interpret j as a momentum density, Tc as a mea-
sure for surface forces (forces acting per unit surface), and fc as a volume force
density (force acting per unit volume). A fully satisfactory justification for this stan-
dard interpretation of Tc′ , however, cannot be found in the literature and, as will
become clear, is not feasible. The equations (12.5) should indeed be critically com-
pared to the corresponding conservation equations of fluid dynamics, as will be done
hereafter.

12.3 Fluid Dynamics

The fluid dynamics equations to which (12.5) should be compared are the conserva-
tion equations (essentially the Navier-Stokes equations)

∂j
∂t

+ (∇T(vjT))T + (∇TT)T + fg = 0,

∂w
∂t

+∇T(wv) +∇T(Tv) + vTfg = 0
(12.12)

which concern the rate of change of the momentum density j=mv and the energy
density w of the fluid. In the first expression (12.12), the term (∇T(vjT))T is due
to the fact that the momentum density j, which is proportional to the velocity v, is in
turn subject to convection and is thus travelling itself with velocity v. Furthermore,
the volume and the surface force densities are represented, respectively, by the vec-
tor fg (usually due to gravitation) and the matrix (tensor) T, which is determined
by pressure and the viscosity forces. The corresponding terms in the second expres-
sion (12.12) describe the work done by these forces, while ∇T(wv) is due to the
convection of the energy density.

A proper analogy between (12.5) and (12.12), clearly, is not possible. On the
one hand, the term (∇T(vjT))T is missing in (12.5a). In order to justify the in-
terpretation of j one cannot therefore, for instance, simply integrate (12.5a) over
an arbitrary volume V of finite extent and delimited by a surface F and then apply
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Gauss’ theorem. It is therefore customary to argue by considering the limit when F
goes to infinity and to assume that the field on F vanishes sufficiently fast so that
the total flux of j across F goes to zero. In (12.5b), on the other hand, the term in S
assumes a role similar to that of the convection term (second term) in (12.12), but
while the work done by the volume forces is taken into account by the third term,
there is no corresponding term involving the surface forces, or else, (12.5b) suggests
that the electromagnetic surface forces cannot do work.

12.4 Field Velocity, Rest Field, and Energy Velocity

The dilemmas just explained are obviously due to the absence in (12.1) to (12.4) of
a velocity like in (12.12). It is crucial therefore that we associate with an EM field
a further local property that we call the field velocity. We represent it by the symbol
v, its associated normalized velocity by fi, and we have,

v = (vx,vy,vy)
T, β = (βx, βy, βz)

T =
v
c

, (12.13)

where c is the speed of light, as always in this paper. Let us briefly recall how these
new concepts are introduced.

Since the Poynting vector obviously is intimately related to a flow phenomenon,
it appears logical to require v to be parallel to S and to have v = 0 for S = 0. If at
a point P in the given reference frame RF we actually have v = 0 , the field will be
said to be there at rest. For equally obvious reasons we also impose the following
requirement: Let RF’ be a reference frame moving with constant velocity v0 with
respect to RF, P’ a point in RF’, and P the corresponding point in RF. If the field is
at rest at P’ we require its velocity v at P to be equal to the one RF’ has with respect
to RF, thus to have v = v0 . In common terms, this amounts, for instance, to stating
that a passenger at rest in an airplane has with respect to ground the same velocity
as the airplane itself.

Applying these principles and using concepts of relativity theory, in particular
the relativistic transformation rules for electromagnetic fields, one finds [1],

β

1 + β2 =
S

2cw
, β2 = β2β = |β|2 = v2

c2 , v2 = vTv. (12.14)

According to these conditions, v is nowhere necessarily positive (cf. the above dis-
cussion concerning E and H). There always exist two solutions for v, one with
|β| ≥ 1 and one with |β| ≤ 1 , but only the latter is physically acceptable. We may
thus always assume

0≤ |β| ≤ 1, 0≤ |v| ≤ c.

The limit β = ±1, thus v = ±c is reached if and only if the field is locally planar,
thus such that E and H are orthogonal and carry both the same energy density. On
the other hand, v = 0 everywhere if the field is either electrostatic or magnetostatic.
We clearly have (cf. (12.11) and (12.14)),
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vTE = vTH = 0, βTE = βTH = 0. (12.15)

With the field at P is associated a rest field characterized by the rest field quantities
E0, H0, i0, and q0, with S0 = E0 ×H0 = 0, thus such that

E0 = γE0, H0 = γH0, γTγ = 1, γ = (γx,γy,γz)
T,

γ being a unit vector. They are related to the original quantities by

E0 =
1
α
(E + μ0v×H, H0 =

1
α
(H− ε0v× E), (12.16a)

E =
1
α
(E0 − μ0v×H0, H =

1
α
(H0 + ε0v× E0), (12.16b)

i0 = i− 1
α

(
q− vTi

(1 + α)c2

)
v = i− 1

α

(
cq− βTi

1 + α

)
β, (12.17a)

q0 =
1
α

(
q− 1

c2 vTi
)
=

1
α

(
q− 1

c
βTi

)
, (12.17b)

where α =
√

1− β2, and we obtain

vTE0 = 0, vTH0 = 0. (12.18)

ε0E2 − μ0H2 = ε0E2
0 − μ0H2

0. ETH = ET
0 H0 = E0H0. (12.19)

For the resulting rest energy density w0 we have,

α2w = (1− β2)w = (1 + β2)w0, w0 =
1
2

(
ε0E2

0 + μ0H2
0

)
, (12.20)

and from (12.19),

w2
0 =

1
4
(ε0E2

0 − μ0H2
0) +

1
c2 (E0H0)

2

=
1
4
(ε0E2 − μ0H2) +

1
c2 (E

TH)2 = w2 − 1
c2 |S|2,

(12.21)

It is thus Lorentz invariant, and the same can be shown to hold for E0 and H0 pro-
vided the signs of these two scalars are properly chosen within the freedom avail-
able as discussed in the paragraph following (12.11). Furthermore, 0 ≤ w0 ≤ w,
with w0 = 0 if an only if v =±c, which obviously is reminiscent of a basic photon
property.

The difference wk defined by

wk = w− w0 =
2β2

1 + β2 w (12.22)
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is the kinetic energy density of the field, the second expression following from the
first by making use of (12.20).

In view of the interpretation usually given to S and w, a (classical) energy velocity
vc may be defined by

S = vcw, thus with vc =
2

1 + β2 v, |vc| ≥ |v|, (12.23)

equality holding only for v= 0 and |v|= c. For small values of |β|we have vc = 2v.
The ratio |vc|/|v| decreases monotonically for increasing values of |v|. Defining

βc =
1
c

vc, βT
c βc = β2

c , α2
c = 1− β2

c ,

we derive

βc =
2

1 + β2 β, αc =
α2

1 + β2 =
1− β2

1 + β2 ,
2v
α2 =

vc

αc
, w =

w0

αc
. (12.24)

12.5 The Flow Equations

12.5.1 General Form of the Flow Equations

Making use of the relevant results in Sections 2 and 4 we can split Tc according to

Tc = T0 + vjT ,

where
T0 = TT

0 := w0U, U = UT = (1− 2γγT). (12.25)

This way, we can rewrite (12.5), fc being still given by (12.8), in the form

∂j
∂t

+ (∇T(vjT))T + (∇TT0)
T + f0 = 0,

∂w
∂t

+∇T(wv) +∇T(T0v) + iTE = 0.
(12.26)

To these we may add
∂q
∂t

+∇Ti = 0. (12.27)

We call (12.26) and (12.27) the flow equations of the EM field.
The stress tensor T0 in (12.26) clearly differs from Maxwell’s stress tensor. As

follows by comparing (12.25) with (12.9), T0 is equal to the expression one obtains
by replacing everywhere in Tc the actual field by the rest field. It comprises only one
dyadic product instead of two. The matrix U in (12.25) is orthogonal and is equal
to what is known in numerical mathematics as a Householder matrix [8]. Clearly,
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T0 may be claimed to be simpler than Tc′ , but the latter reduces to the former for
v = 0.

Clearly, the equations in (12.26), which are strictly equivalent to the original ones
in (12.5), have the same general structure as the fluid dynamics equations (12.12).
Thus, the terms describing convection of the momentum density j, the velocity v,
and the energy density w are present precisely in the way needed. The same is
true for the stress tensor T0 that describes the surface forces and the work done
by these forces. Hence, we may interpret (12.26) as describing an electromagnetic
fluid, or short, an EM fluid. The velocity of that fluid can be identified with the flow
velocity v.

Accordingly, a mass density for obtaining j should be introduced; we call it the
internal mass density, mi. In view of (12.25) we may write

j = miv, mi =
2w0

c2α2 , mi0 = mi|v=0 =
2w0

c2 , w0 =
1
2

mi0c2. (12.28)

This reveals a surprising result: The relationships between mi and mi0 as well as
those between mi0 and w0 apparently violate classical relativity but are in perfect
agreement with the alternative theory presented in [5-7]. Since classical relativity
is known to be perfectly confirmed by many experiments, this obviously requires
some closer examination. This will be done hereafter primarily in the context of an
important subclass of autonomous fields that is of prime concern to us.

12.5.2 Flow Equations of a Basal Electromagnetic Field

The above equations simplify if the EM field is basal, i.e. if in the adopted reference
frame RF we have everywhere i0 = 0 or, equivalently, i = qv. The existence of
such an RF is a plausible assumption to make for an individual autonomous field. It
amounts indeed to requiring that in RF there cannot exist a current without charges
travelling with some non-vanishing velocity. In particular, (12.8) becomes

fc = q(E + μ0v×H), f0 := q0E0, (12.29)

and we derive,
vTfc = vTf0 = 0, iTE = 0. (12.30)

The flow equations now become

∂j
∂t

+ (∇T(vjT))T + (∇TT0)
T + f0 = 0, (12.31)

∂w
∂t

+∇T(wv) +∇T(T0v) = 0,
∂q
∂t

+∇T(qv) = 0. (12.32)

These results are remarkable, as will become more evident in the course of our
further analysis. Note that the contributions by the surface and the volume forces
in (12.31) and (12.32) depend only on the rest field. On the other hand, the volume
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forces do not contribute to the energy balance, contrary to the surface forces. This
expresses that in a basal field energy can be transmitted only by convection (term
∇T(wv)) and by work done by the surface forces (term ∇T(T0v)). It is in perfect
agreement with Maxwell’s claim that actions at a distance are unphysical, or else,
that any effect upon a remote location can only be exerted by means of propagation,
say by a phenomenon in which properties are handed on, so to speak, from one
elementary cell to the next via the surface separating them.

In terms of the state-space form of Maxwell’s equations a basal field is described
by the partial differential equations

ε0
∂E
∂t

= −qv +∇×H, μ0
∂H
∂t

=−∇× E,
∂q
∂t

=−∇T(qv), (12.33)

where v has to be expressed in terms of E and H by means of (12.11), (12.13),
and (12.14). They comprise seven individual equations and the same number of
dependent variables, i.e., the six components of E and H and the scalar q. This
underlines the adequacy of the concept of a basal field. The set (12.32) is in general
non-linear, as is needed for achieving stable field configurations.

Let us now return to the relativistic conflict mentioned above. Clearly, all equa-
tions (12.29) to (12.33) only involve the field velocity v. In what in mechanics is
called a deformable medium, however, one must distinguish between various types
of propagation velocities. In an elastic medium, for instance, there may occur shear,
pressure, and surface waves etc., all with their own, distinct velocity. Familiar dis-
tinct phenomena in a fluid are its flow velocity and the speed of sound. More specif-
ically, energy is migrating due not only to convection but also to work done by the
forces. As an example, sound energy propagates at a remarkably high speed even if
the fluid is essentially at rest. We must therefore expect something similar to occur
in an EM fluid.

Accordingly, let us combine in the first equation (12.32) the effects due to con-
vection and to work done. Using T0v = w0v we can write (cf. (12.22) and (12.24)),

wv + T0v = (w + w0)v = wvc.

Hence, the changes w undergoes due to the two original effects can be combined
into a single energy transport phenomenon that takes place with an equivalent energy
velocity vc equal to what we have called the classical or effective energy velocity.
Although this result could have been obtained quite directly, the present way of
deriving it is highly instructive. Altogether, (12.32) can now be replaced by

∂w
∂t

+∇T(wvc) = 0.
∂q
∂t

+∇T(qv) = 0. (12.34)

The interest in using vc is further enhanced by considering a mass density, m, that
we define by using vc instead of v. We then obtain from (12.24) and (12.28),

j =
1
c2 S = miv = mvc, m =

m0

αc
, m0 =

1
2

mi0 =
w0

c2 , (12.35)
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where j is equal to the momentum density used before. Clearly, the relationships
between m and m0 as well as between m0 and w0 are precisely as to be expected
from classical relativity theory, and we have mi0 = 2m0, explains the appearance of
the factor 1

2 in some of the results of the alternative theory. Nevertheless, it would
not be permitted to build the analogy with fluid dynamics by interpreting vc as the
velocity of the EM fluid. Indeed, as (12.31) to (12.33) clearly show, the convection
of j, w, and q as well as the work done by the surface forces definitely occur with
velocity v, not vc. Obviously, if the field is autonomous but not basal, quite similar,
although less complete conclusions can be drawn.

As a consequence of these results the full meaning of the concept of an EM
fluid becomes visible. For fully understanding the behaviour we have to distinguish
between three levels of observation. At the first or basic level, the relevant form
of the equations has the same structure as those of a fluid in classical mechanics.
Nevertheless, a proper relativistic interpretation is possible only by appealing to the
alternative theory mentioned before [5-7]. At the second level, we do not exclu-
sively observe the fluid flow as such but, more specifically, also the movement of its
energy. We are then faced with a split situation: While the energy flow follows clas-
sical relativity, the convective flow of momentum and charge is feasible only within
the alternative theory. Beyond this, the evidence of the EM fluid suggests that an
EM particle, although extremely small, is in fact not point-like. Its inner structure
may be pictured as an EM fluid that is likely to be rotating around an axis and is
held together by its own inner forces. At the third level of observation, the particle
is examined when it is moving as a whole, thus without paying attention to what
is precisely taking place in its inside. In any case, since the particle cannot move
separately from its energy, it is bound to behave according to the laws of classical
relativity. This is confirmed by results to be presented later.

According to the discussion just given we may also distinguish between an in-
ternal and an external behaviour of the EM fluid, the basic level of observation
corresponding to the internal behaviour, and the secondary level to the external be-
haviour. More specifically, we may consider the flow velocity v to be in fact the
internal velocity of the EM fluid, and vc to be its external velocity. This also justi-
fies calling, as we have done, mi the internal mass, since its use is indeed closely
associated with v.

12.5.3 Field Rotating around an Axis

We consider an EM fluid that is rotating around an axis. For this we adopt standard
spherical coordinates r,θ,φ and assume the axis of rotation to be coincident with the
θ−axis. The only non-zero components of v, vc′ , and j are those in the φ−direction.
We designate them by v, vc, and j, respectively, and we then obtain from (12.28) and
(12.35)

j = mvc = miv. (12.36)
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Comparing this with (12.22) we can write,

wk = ωl = vj = mvvc, v =ωR, j = mvc,

l = jR, k =
2π

λ
=

ω

v
=

1
R

(12.37)

where ω is the angular frequency, R the distance from the axis, k the wave number,
λ the wavelength, and l the angular momentum density, all at the point P under
consideration.

Let then V be the relevant volume occupied by the EM fluid, Wk its total internal
kinetic energy, L its total angular momentum, W its total energy, and M its total
mass. We have,

Wk =
∫

V
wkdV, L =

∫
V

ldV, W = c2M =
∫

V
wdV, J =

∫
V

jdV, (12.38)

where we have added a quantity, J, that plays a role similar to an ”equivalent total
momentum”. Using (12.37) and (12.38), we first consecutively define a nominal an-
gular frequency ω̄, a nominal field velocity v̄, a nominal lateral radius R̄, a nominal
energy velocity v̄c, and a nominal wave number k̄ by

Wk = ω̄L = v̄J, L = R̄J, J = v̄cM = k̄L, (12.39)

from which we derive

v̄ = ω̄R̄, Wk = v̄v̄cM, k̄ =
2π

λ̄
=

ω̄

v̄
=

1
R̄

, R̄ =
L

v̄cM
. (12.40)

If, for instance, ω is constant we have ω̄ = ω, and if the range covered is narrow,
as will usually be the case at least for ω, ω̄ will essentially be equal to the value at
the centre of that range.

Consider then again a reference frame RF’ that moves with constant velocity v0
with respect to the original reference frame RF. Let El and Hl be the longitudinal
components of E and H, i.e., their components in the direction of v0, and let E′ l and
H′

l be the corresponding components in RF’. As can be shown [1] we have

lim
|v0|→c

E′ l = lim
|v0|→c

H′
l = 0. (12.41)

Assume next that the EM fluid in RF is rotating around an axis parallel (i.e., in
our terminology, either co-parallel or anti-parallel) to v0 and thus possesses in RF
and therefore in RF’ an angular momentum parallel to v0. The presence of such a
momentum implies that both El and Hl are non-vanishing. On the other hand, in
the limit |v0| = c the field is seen in RF’ as travelling with velocity equal to the
speed of light. Hence, we conclude from (12.41) that if a field is travelling at the
speed of light, an angular momentum parallel to the direction of propagation can
be determined at most indirectly, but not by observing the field itself. (See also the
discussion given in the last paragraph of Section 8.1.)
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12.6 A Photon Model

We consider an autonomous EM field that is travelling in the x-direction with field
velocity v = (c,0,0)T = vc, in which case α = 0 and w0 = 0 (cf. Section 4). A
detailed analysis [1] reveals the existence of a solution for which

Ex = Hx = 0,
√

ε0Ey =
√

μ0Hz,
√

ε0Ez = −√μ0Hy,

Ey =
1

2πε0

∫ ∞

−∞

∫ ∞

−∞

(y− ŷ)q(τ, ŷ, ẑ)
d̂2

dŷdẑ,

Ez =
1

2πε0

∫ ∞

−∞

∫ ∞

−∞

(z− ẑ)q(τ, ŷ, ẑ)
d̂2

dŷdẑ, τ = t− x
t

.

In there, τ is defined as given, and d̂ is the distance between the points (y,z) and
(ŷ, ẑ) for x and t held fixed, thus for τ constant. This field is inherently basal. One
crucial point in deriving the model is the assumption that it does not consist of a
signal comprising just a single frequency, but instead possesses a spectrum of es-
sentially finite extent, thus with a bandwidth that is nowhere zero although very
small compared to its nominal (centre) frequency. According to standard theory of
communication signals, a signal with zero bandwidth, thus a pure sinusoid, is indeed
only a mathematical idealization and cannot have any actual physical meaning. An-
other crucial point concerns the charge density. The model comprises domains with
positive and others with negative density that balance each other.

Assuming appropriate symmetry conditions, the model has been confirmed to
possess the following photon properties:

1. It propagates strictly along a straight line in a single direction, thus without any
sideward scattering.

2. Its velocity is equal to the speed of light, c.
3. The field is transversal.
4. The model exhibits an effective circular or linear polarization. In other words,

the field is, on the average, circularly or linearly polarized, although the instan-
taneous field orientation is slightly oscillating around the ideal average position.

5. It has zero rest energy and zero rest mass.
6. Its total energy (cf. (12.38)) is proportional to the nominal frequency Ω. More

precisely, the ratio �̃= W/Ω is independent of Ω. Since it is reminiscent of �,
we have designated it (temporarily) by �̃.

7. Its momentum is equal to W/c.
8. Let RF be the reference frame for which the model is derived and let us observe

it in a reference frame RF’ that is moving with respect to RF with constant
velocity v0 parallel to the direction of propagation of the model in RF and thus
in RF’. The field observed in RF’ is then of exactly same type as the one in RF.
It thus represents again a photon, although with Ω replaced by

Ω′ = Ω

√
1− β0

1 + β0
.
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This is identical to what is known as longitudinal relativistic Doppler effect
[2]. It implies that for any photon the specific value of Ω that is encountered is
simply a question of the reference frame in which the field is observed.

9. The local charge density inside of the model is nowhere zero. More precisely,
there are interleaved domains with positive and negative charge densities, re-
spectively, but the total charge, thus the charge seen from a distance, is zero.

10. The total magnetic moment is zero.
11. While the charges are oscillating, the total positive charge as well as the total

negative charge remain individually constant.
12. Items 9 to 11 suggest that the photon does indeed consists of an electron and

a positron that form an interleaved pair. This explains immediately the pair
production of an electron and a positron as well as the annihilation of such a
pair.

13. In view of item 8, there exists only a single type of photon, or else, all photons
are the same if we observe each one in its own basic reference frame RFb, i.e.
the one in which Wb = 2We where Wb is the value of W in RFb, and We is the
energy of an electron at rest. According to item 6, we have Wb = �̃Ωb, where
Ωb is the nominal angular frequency of the photon in RFb. Assuming circular
polarisation, we may identify Ωb with the angular frequency with which the
EM fluids of the electron and the positron are rotating.

14. Since w0 = 0, we also have W0 = 0 for the total rest energy of the model, and
hence W = Wk, where Wk is the total kinetic energy, thus Wb = Wkb,Wkb being
the total kinetic energy in RFb. Identifying ω̄ in (12.39) with the present Ωb we
have Wb = ΩbLb. In there, Lb is the angular momentum and is thus necessarily
equal to 2Le, where Le is the angular momentum of as well an electron as a
positron. Identifying thus Le with the electron spin we may write Le = �/2,
thus Wb = Ωb� and hence (cf. item 13), �̃ = �. The photon energy is solely
due to the energy of the hidden rotational movement of the EM fluid (cf. last
paragraph of Section 5.3).

15. For the gravitational redshift the same value is obtained as that known from
general relativity.

16. Assume again reference frames RF and RF’ as above but with v0 not parallel
but perpendicular to the direction of propagation. The field in RF’ is then again
that of a photon but with shifts in frequency and propagation direction as known
from the theory of the lateral relativistic Doppler effect [2].

17. The theory according to item 16 also reveals that the mass of a photon cannot
fully be characterized by a single scalar, but requires two parameters, an axial
mass M = W/c2 that is equal to the classical relativistic mass, and a radial
mass equal to 2M. This leads immediately to the deflection of a photon by a star
identical to that predicted by general relativity.

18. The spread in position x and momentum J of the photon model satisfies the
classical uncertainty relation, and this exactly in the form Δ× ΔJ ≥ �/2.

19. The field is concentrated in a small volume, thus localized. It may therefore be
said to be like a particle.
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20. The model behaves like a general modulated signal, although with suppressed
carrier, the carrier frequency corresponding to the nominal frequency Ω. The
photon thus behaves like a wave.

21. In a dispersive medium the carrier travels with phase velocity and the energy
with group velocity. This confirms the wave-like behaviour.

22. In view of items 19 to 21, the photon model is simultaneously particle and
wave, without any ambiguity or apparent contradiction. It thus offers a natural
explanation for the wave-particle duality.

This list covers all photon properties known to the author. In that sense, it is claimed
to be likely quite complete.

12.7 Towards a Model of an Electron

12.7.1 Purely Electromagnetic Approach

Consider a basal EM field that is rotating around an axis and assume it to have circu-
lar symmetry about its axis and appropriate symmetry with respect to an equatorial
plane. We also assume the rotation to be steady, i.e. independent of time, adopt
standard spherical coordinates r,θ, and ϕ, and express all results in terms of ap-
propriately normalized, dimensionless quantities Êr, Êθ ,Ĥr,Ĥθ , q̂, r̂, ŵ. For the three
relevant partial differential equations we then obtain [1],

r̂
∂Êθ

∂r̂
+ Êθ − ∂Êr

∂θ
= 0, r̂

∂Ĥr

∂r̂
+ 2Ĥr +

∂Ĥθ

∂θ
+ Ĥθ cotθ = 0, (12.42)

β(r̂
∂Êr

∂r̂
+ Êr +

∂Êθ

∂θ
+ Êθ cotθ) = r̂

∂Ĥθ

∂r̂
+ Ĥθ − ∂Ĥr

∂θ
, (12.43)

where β is given by

2βŵ
1 + β2 = Êr Ĥθ − Êθ Ĥr, ŵ

1
2
(Ê2

r + Ê2
θ + Ĥ2

r + Ĥ2
θ ), (12.44)

and the normalized charge density q̂ can be determined by means of

r̂q̂ = r̂
∂Êr

∂r̂
+ Êr +

∂Êθ

∂θ
+ Êθ cotθ.

These equations remain satisfied if we multiply Er , Eθ, Hr, Hθ , and q and thus the
corresponding normalized quantities by a same arbitrary constant, say K, while leav-
ing v unchanged. They all involve only dimensionless quantities and are of purely
mathematical nature in the sense that they are free of any physical parameter. Hence,
if a solution exists it will itself be independent of any physical parameter. The set
formed by (12.42) to (12.44), clearly, is nonlinear, which is one of the reasons why
it is far more difficult to handle the electron than the photon.
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The total charge Q (normalized: Q̂) and the total angular momentum L (normal-
ized: L̂), are given by

Q̂ =
∫

V̂
q̂dV′, L̂ =

∫
V̂
(Êr Ĥθ − Êθ Ĥr)r̂ sin θdV̂,

where V̂ is the normalized relevant volume. Hence, the quantity F̃ defined by

F̃ =
Q2

|L|
√

μ0

ε0
=

Q̂2

|L̂|
is a pure number. It should be compared to Sommerfeld’s fine-structure constant, F,
which is the dimensionless quantity defined by

F =
Q2

e
2hε0c

=
Q2

e
2h

Z =
Q2

e
8πLe

Z, Z =

√
μ0

ε0
,

where Qe is the electron charge, Z the impedance of free space, h = 2π� the Planck
constant, and Le = �/2 the electron spin [9]. The value of F is known to be quite
close to 1/137. If we then set L = Le, as in Section 6, item 14, and Q = Qe we find
f = F̃/8π. A characteristic radius Re that is helpful for finding a rough estimate of
the electron size is given by

Re =
√

RcRB =
�

cMe
= 3.8616× 10−13, with

Rc

Re
=

Re

RB
= F, (12.45)

where Rc and RB are the classical electron radius and the Bohr radius, F again the
fine-structure constant, and Me the electron mass.

12.7.2 Incompleteness of the Original Formulation

In principle, the arbitrariness of the constant K mentioned in Section 7.1 allows
us to make Q become equal to Qe. It is definitely excluded, however, that Qe can
fully be determined from the equations in Section 7.1. The only physical parame-
ters involved are indeed ε0 and μ 0, and as a simple dimensional analysis shows,
no combination of these can produce the dimension of a charge. In addition, there
exist strong arguments why the above-mentioned equations cannot have a real (in
the mathematical sense), thus a physically acceptable solution. An additional, nec-
essarily attractive force must be present that becomes strong in the innermost part
of the electron, thus in that part where the charge density approaches zero but where
the magnetic field, which reaches its maximum at the centre, is large.
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The obvious logical source for such an attractive force is gravitation. However, it
cannot simply be gravitation in form of the classical Newtonian gravitational field
since even ε0, μ0, and the gravitational constant Γ still can not produce a charge.
Nevertheless, since the forces due to gravitation are in most regions smaller by many
orders of magnitude than those due to the EM field this will not measurably affect
the determination of the fine structure constant discussed in Section 7.1.

Consequently, the problem of accurately modelling the electron remains un-
solved. It definitely requires a generalization of Maxwell’s equations. It appears
impossible to do this by starting from their original form, say as given in (12.1) to
(12.4). A more realistic approach would be to make use of the flow equations. Thus,
since inertial mass implies heavy mass, the presence of w, thus of m = w/c2, im-
plies the presence of a gravitational field G. In terms of Newtonian gravity theory
we then have

∇TG = 4πΓm. (12.46)

From this we could conclude that there should exist an associated field of G, say G̃,
such that

1
4πΓ

∂G
∂t

+ j−∇× G̃ = 0. (12.47)

Indeed, in view of (12.46) and the first equations in (12.34) and (12.35), the vector
formed by the first two terms in (12.47) has a vanishing divergence and can therefore
differ from 0 only by the curl of some other vector.

Furthermore, f0 in (12.31) would have to be replaced by a more general force
density f that also comprises the term −mG as well as a contribution due to G̃.
Since the volume forces may not contribute to the work that is done, we would
then still have to require jTf = 0. It is more likely, however that a proper theory of
the electron can be developed only within the framework of general relativity. This
remains a challenging task, which is well beyond the scope of this paper. Such a
complete theory, however, would not affect the symmetry properties that have been
mentioned in Section 7.1 and that will play a role in the coming Section 8.

A dimensional analysis might be helpful in order to gain some rough inside about
the order of magnitude of the distances at which additional gravitational effects,
whether due to G̃ or to spatial curvature, might become effective. The parameter Rg
defined by

Rg = KQe

√
ZΓ
c3 ,

where K is a dimensionless constant and Z =
√

μ0/ε0 is again the impedance of
free space, can indeed be shown to have the dimension of a length. If K can be
determined by some analytic process, it is unlikely that it differs from 1 by many
orders of magnitude. Setting thus K = 1 we find

Rg = 4.89× 10−36 meter.
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12.8 Travelling Particles

12.8.1 Electron-Like Particle Observed in Different Reference
Frames

We consider an electron model as discussed in Section 7 and assume it to be given
in a reference frame RF. The rest field vectors E0 and H0 may be decomposed
according to

E0 = E0ax + E0ra and H0 = H0ax + H0ra

into an axial and a radial component, thus into a component parallel to the axis of
rotation and one perpendicular to it. A corresponding decomposition then holds for
the rest energy density w0 and thus for the total rest energy W0, for which we may
thus write

W0 =
∫

V
w0dV = W0ax + W0ra,

V being again the relevant volume of the field.
Let RF’ be a reference frame moving with respect to RF with constant velocity

v0 = (v0,0,0)T. Let W′ be the total energy of the field in RF’, v′c = (v′cx,v′cy,v′cz)
T

the energy velocity in RF’, W′
x the total energy flowing per unit time in the x’ -

direction of RF’. Making use of the symmetry properties of the field and, assuming
the axis of rotation to be parallel to v0, one finds,

W′
x + v0W′ = α0v0(Woax −Wora), (12.48)

where α2
0 = 1− β2

0, β0 = v0/c and

W′ =
∫

V ′
w′dV′, W′

x =
∫

V ′
v′cxw′dV′.

On the other hand, seen from RF’, that same energy flow is given by−v0W′. Hence,
we conclude from (12.48),

W0ax = W0ra =
1
2

W0. (12.49)

A field such as the one we are dealing with is modelling a particle, say Pa. Quantities
that refer to Pa as a whole will be characterized by a subscript ”p”. Although at any
fixed position x, y, z the field described in Section 7 is independent of t there is of
course internal rotational movement. For an outside observer this internal movement
may be ignored, and in that sense Pa will then be said to be at rest. Correspondingly,
we designate its total energy by Wp0 instead of W.

Assume next that Pa is at rest in RF’ and thus seen in RF as travelling as a whole
with velocity−v0, with v0 as mentioned. We may interpret this by saying that Pa is
travelling with a (particle) velocity vp = −v0. Let

Jp =
∫

V
jdV and Wp =

∫
V

wdV (12.50)
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be the resulting total momentum and total energy, respectively, of Pa. These quanti-
ties are related by (cf. (7.9) in [1])

Wp − vT
p Jp = αpWp0, α2

p = 1− β2
p, β2

p =
vT

p vp

c2 . (12.51)

A further general relation (cf. (7.17) and (7.28) in [1]) simplifies to

αpWp −Wp0 = β2
p(W0ra −W0ax) (12.52)

if vp is parallel to the axis of rotation, as will be assumed hereafter. Together with
(12.49) we thus obtain,

Wp =
Wp0

αp
= c2Mp, Jp =

Wp

c2 vp = Mpvp,

Wp0 = c2Mp0, Mp =
Mp0

αp
,

(12.53)

which are exactly as required by classical relativity.
Another result of interest concerns L and L’, i.e., the angular momenta of Pa in

RF and RF’, respectively, with v0 again parallel to the axis of rotation, as above.
Adopting again standard spherical coordinates, we derive from (12.6) in [1] for the
component, i.e. the only non-vanishing component of the momentum density j,

j′φ =
1
α0

jφ, (12.54)

Let R and R’ be the distances from the axis in RF and RF’, respectively. Integrating
(12.54) over the relevant volume V’ and observing that R’=R we find,

L′ =
∫

V ′
j′φR′dV′ = 1

α0

∫
V ′

jφRdV′ =
∫

V
jφRdV = L, (12.55)

thus L′ = L (a result that is of interest for instance in the context of Section 5.3, last
paragraph, and Section 6, item 14,).

In order to justify (12.55), recall first that the integrals comprising dV′ =
dx′dy′dz′ have to be evaluated for t′ constant. Hence, the Lorentz transformation
has to be used in the form

x′ =−v0t′ + ff0x, y′ = y, z′ = z,

which yields dV′ = α0dV, where dV = dxdydz. In the last integral in (12.55),
jφ has to be interpreted as jφ(x,y,z, t), where, in principle, we have to set
t = ff0t′ + v0x/c2. But since the field in RF is independent of t, the choice of this
variable is irrelevant and that last integral is therefore indeed equal to L. Note that
proofs of the earlier results mentioned in the present section make use of similar
arguments.
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12.8.2 Dynamic Equations of an Electron-Like Model

Let EF be the EM field of, say, the particle Pa. We assume Pa to be an electron and
look at the effect an external electromagnetic field EFe has upon it. In principle, EFe
is characterized by Ee,He, ie, qe, but ”external” as used here implies that the sources
of EFe are sufficiently far removed from the relevant volume V of Pa. For simplicity
we restrict ourselves to an electrostatic EFe. Inside of V we may therefore assume

∂Ee

∂t
= 0, ∇× Ee = 0, qe =∇TEe = 0, He = ie = 0.

Adding such a field to EF does not affect its equations (cf. (12.1) to (12.4)). Two
conclusions can be drawn from this: Firstly, if Pa is in a basic reference frame,
thus in a reference frame where it is at rest, EF may be assumed to be as discussed
in Section 7.1. Secondly, in order to examine the effect EFe exerts upon Pa some
generalization of Maxwell’s theory is needed; or better, of the flow equations. These
must however be used in their original form (12.26) and (12.27), while (12.31) and
(12.32) hold only if Pa is at rest in the given reference frame.

We first look at fc (cf. (12.8)). As it contains the term qE, an additional term
fe = qEe must be added, although with opposite sign since it corresponds to a force
acting upon EF, not one effected by EF. Furthermore, the term iTE in the second
equation (12.26) should be complemented correspondingly by a term iTEe. Hence,
(12.26) should be replaced by

∂j
∂t

+ (∇T(vjT))T + (∇TT0)
T + fc = fe, fe = qEe, (12.56)

∂w
∂t

+∇T(vw) +∇T(T0v) + iTE = iTEe. (12.57)

While Ee may depend on t, we assume it to be independent of r and, at least for the
time being, to be permanently parallel to the initial direction of the axis of rotation
of Pa. Due to symmetry, this axis then remains permanently parallel to Ee. If we then
integrate (12.56) and (12.57) over the relevant volume V and take into account that
w and w0 are vanishing at least with the forth power of the distance, we obtain after
carefully taking into account the symmetry properties of the various terms involved
[1],

∂Jp

∂t
= Fe, Fe = QEe,

∂Wp

∂t
= vT

p Fe, Wp = Mpc2, (12.58)

where Q is the total charge of Pa, vp the particle velocity, and where Jp and Wp
are as defined by (12.50). At any fixed time instant we may choose v0 = −vp and
this way associate with Pa another reference frame in which Pa is at rest. Hence, the
results (12.53), which have been obtained for a similar scenario, are also valid for
the present quantities Jp, Wp, Mp, and vp.

The results discussed so far in Sections 8.1 and 8.2 concern an axial movement
of the field, thus a movement parallel to its axis of rotation. Consider next a radial
movement of an electron, thus a movement perpendicular to its axis, as has already
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been mentioned for a photon in Section 6, items 16 and 17. We then find the same
need for characterizing the inertia, thus the mass, not simply by a single scalar, but
by an axial mass Max and a radial mass Mra. These are found to be given by

Mra =
3
2

Max, Max = Mp,

Mp being as above.
Similar results are found for the kinetic energies

Wpkax = Wpax −Wp0 and Wpkra = Wpra −Wp0, (12.59)

that are associated, respectively, with an axial and a radial movement. In (12.59),
Wpax and Wpra are the total energies for a movement in the axial and the radial
direction, respectively. Assuming the same velocity vp in both cases we find,

Wpkra

Wpkax
=

3 + αp
2

, αp =
√

1− β2
p, βp =

vp

c
.

Hence, for a given velocity the radial kinetic energy is between 2(vp = 0) and
3/2(vp ± c) times as large as the axial one. The energy needed for bringing an
electron to any given velocity is therefore minimum for a movement in axial direc-
tion. The only stable position for the axis of rotation of an electron to occupy in a
trajectory is therefore to be parallel to its velocity. Consequently, as soon as an elec-
tron (which is not a rigid body, thus not simply a classical gyroscope!) is subjected
to a force it will immediately reshuffle its internal field in such a way that its axis
becomes parallel to the local tangent, thus such that the assumptions made for arriv-
ing at (12.58) are locally fulfilled. The momentum to be used in (12.58) is therefore
effectively given by

Jp = Maxvp = Mpvp,

and the angular momentum, thus the electron spin, is oriented like vp. In particular,
the movement of an electron in an external electric field is governed by the laws of
classical relativity, also if the trajectory is arbitrarily curved, provided the external
field is always practically homogeneous within the tiny relevant volume the particle
occupies. This remains obviously true if forces due to, say, a magnetic or a gravi-
tational external field are acting, and it may therefore be assumed to hold also for
particles of nature other than an electron.

12.9 Quantum Mechanics

12.9.1 Problems with the Conventional Approach

The movement of an electron Pa in a shell of an atom also occurs, in a sense, under
the influence of an external electrostatic field, i.e., the one created by the charge of
the nucleus. Due to the strong forces involved one must expect, however, that the
field of which Pa consists will be even more spread out. The results of Section 5.3,
which have been obtained without assuming circular symmetry, remain applicable.
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Where appropriate, the symbols for nominal values in Section 5.3 will hereafter
be replaced by capital letters that refer to the particle nature of the field. Some of
the quantities will have values that differ from those for an isolated electron. Due
to conservation laws, Lp and Mp0 will of course remain unchanged. Gravitational
effects as alluded to in Section 7.2 are totally irrelevant.

In the conventional elementary approach to wave mechanics one uses expressions
that involve, in particular, a unique frequency, Ω, a unique wave number, K, the
particle mass Mp, the particle velocity vp, and the kinetic energy Wpk. Using the de
Broglie relation Jp = Mpvp = �K, one finds [9],

K2 = 2
Mp

�2 Wpk, where Wpk =
1
2

Mpv2
p. (12.60)

In view of ample experimental evidence the first one of these expressions is defi-
nitely correct as long as vp is non-relativistic, in which case Wpk is indeed given by
the second expression. By analogy with the photon, one then equates Wpk = �Ω,
finds vp = dΩ/dK, and interprets that result by claiming the particle velocity to be
equal to the group velocity of the associated wave. In the light of a detailed analysis
of the widely misinterpreted concepts of group velocity and group delay [10-12] and
the thorough discussion in Appendix E3 of [1], such an interpretation is untenable.

From the point of view adopted in this text, however, Ω is simply a nominal fre-
quency, say the appropriately defined centre of a non-vanishing frequency band, and
K the correspondingly defined nominal wave number. As follows from the discus-
sion in the last paragraph of Section 5.2 (cf. (12.39)), the general law relating Wpk
and Ω is not Wpk = �Ω, but

Wpk = LpΩ, (12.61)

with Lp = � for a photon and, for an electron,

Lp = �/2 and thus Wpk = �Ω/2. (12.62)

This way, the velocity of Pa is found to be indeed given by vp = Ω/K, and no
conflict arises with a correct use of the group-velocity concept. This agrees with
a multidimensional (sufficient in practice: two-dimensional) Fourier analysis of a
uniformly travelling particle that is definitely not point-like but consists of a dis-
tributed field and thus gives naturally rise to ranges of wavelength and frequency
with non-vanishing width.

12.9.2 Schrödinger Equation

Define Kp,Λ, and Λp by

Kp =
2π

Λ
=

Mpvp

2Lp
=

1
2R̄

(12.63a)

Λp =
Λ
2
= 2πR̄ (12.63b)
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where the last equality in (12.63a) follows by making use of (12.39), while
Mp,Lp,vp etc. now take over the roles assumed in Section 5.3 by M,L,v̄c etc. But
2πR̄ was the length of the circumference along which the energy, thus also M, was
travelling periodically with nominal velocity v̄ . We may therefore conclude that
the particle is ”nominally” travelling with constant velocity vp along a circular path
and that the wavelength associated with that periodic movement is equal to Λp .
In a periodic movement, however, the wavelength of the underlying field is double
that of its energy and is thus given by Λ = 2Λp . This points to Kp being indeed
the wave number of a true electromagnetic phenomenon. Altogether, the results we
have obtained suggest the following interpretation:

The spread-out EM field of an electron in an atomic shell will, in practice, never
assume its perfect shape. The details of this are unpredictable and depend on the
specifics of the process by which the electron has originally been incorporated into
the atom. Hence, the ideal field, say the EM main field, will be accompanied by an
EM co-field that is equal to the difference between the actual field and the main field.
The co-field has no sources of its own and is tied to its main field. In the relevant
domain it is described by a standard wave equation

∂2ψ

c2∂t2 − Δψ = 0, Δ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (12.64)

where ψ stands for any of the altogether six components of the electric and the
magnetic field.

If we solve (12.64) in a standard way for ψ = ΨejΩt , where Ψ is independent
of t and where i designates in the present context the imaginary unit, we obtain the
time-independent (Helmholtz) equation

ΔΨ + K2
pΨ = 0, Kp =

Ω
c
=

2π

Λ
, Ω = cKp, (12.65)

where Kp and Λ are as in (12.63) and where Ω is assumed to have been chosen
according to the last expression in (12.65). This result holds as long as Ω is inde-
pendent of t, but Ω and Kp may very well be functions of r, in particular thus of
r.

If the velocities are non-relativistic, Kp becomes identical to K. Taking into ac-
count 2Lp = �, the Helmholtz equation in (12.65) can then be written in the stan-

dard form of the time-independent Schrödinger equation, �2

2Mp0
ΔΨ + WpkΨ = 0,

while the corresponding time dependent equation is in fact (12.64). If, however,
the non-relativistic approximation is not permitted, we may still use (12.65), but
for Mp and its relation to Mp0 and Wpk we must now use Mp = Mp0/αp, Wpk =

Wp −Wp0 =
(

1
αp
− 1

)
c2 Mp0, whence we conclude, Kp =

Mpvp
� =

Mp0vp
αp�

,
1−αp

αp
=

Wpk
αp Mp

=
Wpk
Mp0

,αp =
√

1− β2
p,βp =

vp
c . These expressions allow us to determine first

vp in terms of Wpk and Mp0′, and then R̄ by means of R̄ = Re/2β̄p (cf. (12.40) and
(12.45)). Note that all these results have been obtained without making use of the de
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Broglie relation. The universal validity of this relation in its original form is indeed
doubtful since one obtains from (12.39) not only (12.61), but also Jp = KpLp , not
Jp = Kp� .

The unpredictability of Ψ recalls its probabilistic interpretation in standard quan-
tum physics. According to that classical interpretation, however, the randomness is
of intrinsic nature and thus belongs to the inherent constitution of quantum objects.
In our interpretation, however, it is of extrinsic nature. In other words, it is brought
about from the outside and is simply due to the great complexity of the actual phe-
nomena. This puts it into the same category as, for instance, properties such as the
use of probability theory for dealing with pressure and temperature in the kinetic
theory of gases.

12.10 Conclusion

The paper centres on electromagnetic (EM) fields in vacuum that are autonomous
(self-sustaining). Maxwell’s equations and their relativistic transformation rules
have been shown to imply the existence of flow equations that are structured exactly
like the dynamic equations of a conventional fluid and thus effectively describe an
EM fluid. That fluid possesses inertia, hence mass, and is therefore also subject to
gravitational properties. Photons and electrons have an inner structure that consists
of such a fluid. For a photon the partial differential equations (PDEs) to be satis-
fied can be solved explicitly, and the resulting model possesses an impressive list of
properties that seems to comprise all those that are known to hold.

For an electron (or a positron), the PDEs describing the model are nonlinear, and
the role of the gravitational field in its innermost part is not yet completely resolved.
Nevertheless, highly important results have been obtained: Firstly, a particle based
on this model behaves in an external field exactly as required by the relativistic
dynamic equations of an electron. It therefore possesses the complete amount of
mass that is amply confirmed by experiment, and this without any need to rely on
a still speculative Higgs particle. Secondly, introducing nominal values for velocity,
energy, mass etc. the (time-independent) Schrödinger equation is derived, thus as a
direct consequence of Maxwell’ equations and their relativistic transformation rules.

Consequently, photons and electrons are nowhere point-like. They possess an in-
ner structure that has been determined by appealing to long known theories. There is
no contradiction whatsoever between their behaviour as particles and as waves. The
core of the problem is the same as for a distributed mass in classical mechanics, for
example an elastic body or a fluid. For these, an analysis of their detailed behaviour
requires to handle the relevant partial differential equations, but for examining some
highly important aspects it is sufficient to consider only the movement of just one
point, the centre of gravity, thus to proceed as if we were dealing with a point mass.
The coordinates of the centre of gravity, its velocity etc. are then true nominal values
in the above sense, and we are again faced with a true dualism: On the one hand,
behaviour as if we were dealing with a point-like particle, on the other, phenomena
that are characteristic of distributed systems, including typical wave-like properties.
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It would obviously be wrong to see in this something like a wave-particle duality,
thus a source of contradiction that is unexplainable in terms of classical mechanics.
There is no reason why this should be different for an EM fluid.

According to the theory, presented in this paper, the Schrödinger function stands
for any of the six components of a co-field, which is the difference field between
the actual and the ideal one. The co-field itself depends on the contingencies of
the process by which the electron is incorporated into the atom. Consequently, its
precise behaviour is in practice unpredictable and can therefore be assessed only by
probabilistic methods. This, however, is an issue of probability due to complexity,
say of extrinsic probability, thus of probability imposed by conditions exterior to
the object. This contradicts the standard Copenhagen interpretation, which assumes
intrinsic probability, thus probability inherent to the object itself.

Some important further consequences should be mentioned. According to the
theory here presented, while EM fields are not composed of point-like particles, as
is widely believed, EM particles are, in a sense, composed of fields. Furthermore,
there is no reason why EM fields should only exist in condensed form, thus in form
of EM particles. On the contrary, it is most likely that the entire cosmos is perme-
ated by an EM field, as thinned out as it may widely be. Since this omnipresent
vagabonding field is subject to gravitation it will at least provide some contribution
to the mysterious dark matter, and its density will be higher inside of galaxies. Ex-
cept for its own contribution to gravity the vagabonding field is undetectable since
only photons, cosmic (particle) rays, electron showers etc. can be registered on earth.

It is likely that similar principles are also of relevance for other types of particles,
either elementary or composite ones, possibly with other types of fields involved.
This implies that the specific field configuration that forms a particle must be stable,
at least to the degree required for achieving the respective lifetime. Stable config-
urations in turn are only feasible if the fields are altogether non-linear, but, as has
been shown, this is indeed the case for autonomous EM fields. Individual stable con-
figurations can exist only as isolated entities. Such an individual quantum state can
turn into another one only if some threshold is exceeded, either due to some outside
influence (collision, absorption of a photon, merger etc.) or simply spontaneously.
The latter phenomenon can easily be explained because due to the myriad of per-
manent external influences the actual field configuration will in reality be constantly
fluctuating around the ideal one and will thus from time to time exceed a relevant
threshold (spontaneous photon emission, radioactivity, tunnelling etc.).

To the best of the author’s knowledge, all results obtained so far are in perfect
agreement with confirmed experimental evidence.
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Chapter 13
Fundamentals of Electrodynamics
Essential Overview of EM Theory

Branko Mišković

Abstract. Instead of the strict causal exposition, this is an original cross-section
through EM theory, as its brief overview. All the equations are transparently pre-
sented in the pairs or tables, thus pointing up their symmetries and relations, with
enough verbal announcement of their derivations. The characteristic problems are
treated in the form: thesis – antithesis – synthesis. A few apparent antinomies of
EM theory are thus presented and resolved, surpassing some, more or less obsolete,
principal views. The text is of educational character, on the lower university level,
also accessible to the wider public of non-expert readers.

13.1 Introduction

Usual scientific texts represent the formal sequences of mathematical procedures
and logical conclusions. Though convenient in deductive expositions, this method is
not effective in inductive elaboration, demanding some generalizations, with active
imagination and intuition, above the formal procedures. Electric circuits and EM
fields are the pair of the causal and imaginative thoughts. The circuits are in fact line
cross-sections through surrounding fields. Concerning the fields, our text insists on
visual images of the processes and exhaustive comparison of the quantities and their
relations, from various angles of view.

Hard inductive development of a scientific theory demands a sequence of for-
mal concepts to be introduced. Their formalistic application sometimes follow into
obvious contradictions, as the theses and antitheses. The syntheses demand critical
revision of the concepts and even of some principal views. The original aspect of
this text considers some antinomies of EM theory. Instead of the classical or rel-
ativistic approaches, the valid elements of both are affirmed and supplemented by
some new ideas resolving the former problems. The application of the two distinct
theories to the same physical reality cannot be justified.
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The ready EM theory may be compared with a three-storied house, built of EM
carriers, fields and potentials. The central laws form its fundament, differential
equations – the walls, and algebraic – the floors. Due to the incomplete basis, the
walls had been founded on the intuition and experience. The attempt of the cover
installation has generated SRT. With orientation to the walls, all the floors, includ-
ing the fundament, are here elaborated. The obtained results enable the consistent
exposition of all the aspects of the complete theory. Their interpretation, however,
demands radical revision of some traditional principal views.

The classical and modern concepts of elementary particles, their fields and
interactions, are here surpassed. Instead of the source or carrier of its fields, a par-
ticle is reduced to the field center. Being the partial causes of the summary macro-
effects, the elementary fields are understood as the rigid structures, stable orientated
in space. In the zero sum of two opposite fields, the moving component is producing
the kinetic effects, independently of the opposite, unmoving field. The fields inter-
act directly, at each point of space separately. Even Maxwell’s equations do not take
into account any time of the force transfer.

The sequence of the new views and results is the basis for systematic elaboration
and methodical exposition of EM theory. Before the known differential equations,
algebraic ones are consistently affirmed. The complementarities of the two formal
approaches and their results are understood. All this demands some arrangement of
the terminology and notation. The obsolete terms are substituted by more adequate
ones. The majority of traditional symbols is kept, with one systematic unification,
based on Maxwell’s convention: discrete quantities are denoted by lower case let-
ters, and physical fields by respective capitals.

13.2 Basic Concepts

With respect to the vague essence of EM phenomena, respective theory is founded
inductively, starting from the sensory effects of these phenomena. In the aim of
convenient interpretation of the physical processes, some formal concepts are intro-
duced hypothetically. The central of them are electric poles or charges (q), as the
material agents in EM interactions. The former term is more convenient for discrete,
and the latter for distributed quantities. The explanation of the attractive and repul-
sive forces relies on the two types of electric poles, positive and negative ones. Two
equipolar charges mutually repel, and opposite ones attract each other. This is the
only way for their comparison and distinction.

Apart from (radial) static forces, only dependent on mutual distance of interact-
ing charges, the additional EM forces also depend on motion. Two charges moving
in parallel, as the convectional currents (qv), interact by (transverse) kinetic forces,
dependent on the speed product and superimposed to the static ones. Finally, the
alternating speed of a pole affects all the present such poles, including this pole
itself, by the (axial) dynamic forces, dependent on acceleration. Acting on all the
present poles, the static and dynamic forces are covered by the same concept of
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collinear electric field. The kinetic forces, transverse to the speeds of moving poles,
are expressed by the embracing magnetic field.

Two opposite electric poles, somehow connected to each other on a mutual dis-
tance (r = rp–rn), form respective dipole(p). The rotation of such a dipole around
one of its poles forms the circular current and magnetic moment(m). The new con-
cepts are defined by the following equations:

p = qr, m = qr × v (13.1)

The magnetic moment is perpendicular to the plane of rotation. Unlike the electric
dipole, composed of the two separable poles, magnetic moment cannot be split into
apparent poles. In spite of this distinction, the parallelism between electric and mag-
netic phenomena, encouraged by the formal symmetries of their relations, has been
exploited in the former development of EM theory. On the basis of behavior of the
two defined objects, the two EM fields, electric (E) and magnetic (B), had initially
been introduced:

te = p× E, tm = m× B (13.2)

δ fe = (p ·�)E, δ fm = (m ·�)B (13.3)

13.3 Static & Kinetic Interactions

With respect to the separate electric poles, as the constituent parts of the dipoles,
EM theory started by their treatment. The image of the central electric field (Fig.
13.1.) is thus obtained. The field lines determine the directions of respective forces
at each point, acting on other such poles and dipoles. The density of the lines points
to the local field intensity and global non-homogeneity. The full field flux through
a concentric sphere does not depend on the radius. As the Gaussian theorem, this
is generalized to any closed surface embracing a given charge. The inverse square
function, known as the electrostatic central law, had been confirmed independently,
by the strong Coulomb’s experimental procedure.

The application of the equation (13.3a) to the central field, in the surroundings
of a separate pole, gives the force decreasing by third power of the distance. There
can be shown that the force between two dipoles decreases by the forth power. In
general, the interaction of two multi-poles decreases by the power equal to the sum
of all their poles. Therefore, the interactions of statistically neutral bodies practically
annul, but are manifest in the very close contacts. In fact, all these interactions are
based on the mentioned electrostatic Coulomb’s law.

Though the attempts of parallel treatment of the fictional magnetic poles and their
central fields made a role in the former theory, they have been mainly abandoned.
The excessive insisting on formal symmetries may conceal or fully miss the essence
of a natural phenomenon. Instead of the magnetic poles, electric currents and their
(kinetic) interactions are observed. Circular magnetic fields are noticed around cur-
rent carrying conductors. In accord to the axial symmetry, such a field decreases by
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the first power of distance. In the case of the magnetic moment of a contour current,
it has the form of a thoroidal vortex (Fig. 13.2.).

This field is axially directed only in the plane of the contour: in the course of the
moment m – inside, and opposite – outside the contour. At the vertical hyperboloid
cutting the plane through the contour, this field is parallel to the contour plane.
Just in this region, it performs the main interactions with other similar contours,
attracting parallel, and repelling anti-parallel currents.

The contour current, magnetic field and respective kinetic force represent the
trihedral vectors. As the consequence of the initial field introduction, in accord to
its action upon the apparent dipoles, the formulation of the general kinetic law has
been hindered. Instead, its incomplete case (13.4b), valid at common motion (v =
V) at least, is here presented in parallel with the static law (13.4a):

fs = nc2r0, fk = −n(V · v)r0 (13.4)

n =
μq1q2

4πr2 , c2 =
1
εμ

(13.5)

Due to easier formal manipulation and comparison of the two laws, the substitutive
factor n is defined by (13.5a). The known Maxwell’s relation (13.5b) links the speed
of light propagation and the two EM constants. With respect to the similar relation

Fig. 13.1 Central field



13 Fundamentals of Electrodynamics 239

in fluid-mechanics, the former constant (ε) expresses compressibility or elasticity,
and the latter (μ) mass density of the medium. This analogy points to aero-dynamic
interpretation of EM quantities and their relations. Both forces (13.4) are in the cen-
tral form, as the inverse square functions. The direct comparison points to their two
distinctions: the product of two – instead of the square of the constant speed, with
opposite signs of the two forces. As if that the (general) static law might be a special
case of the (incomplete) kinetic one, at the speed: v = V = ic. The common speed
of all the particles points to their continual motion along the temporal dimension,
manifest by the known cosmic expansion. The imaginary unit (i) expresses the force
of attraction. These facts will be physically clearer later, at gradual development of
this exposition.

13.4 Dynamic Interaction

Apart from the two above interactions, static and kinetic ones, dependent on the
distance and motion of the charges, let us now introduce the dynamic EM forces,
dependent also on acceleration. As the preceding act in this aim, the integration of
the two forces (13.4), via the factor n – from r up to ∞ – gives the new factor: m =
nr. Instead of the forces – in the usual laws (13.4), their integrals give respective
potential energies, expressed by the two alternative laws:

ws = mc2, wk =−mV · v (13.6)

m1,2 =
μq1q2

4πr1,2
, m =

μq2

4πr
(13.7)

Fig. 13.2 Thoroidal vortex
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With respect to Einstein’s equation (13.6a), the factor m is nothing else than mass,
mutual (13.7a) and proper (13.7b) ones. These two masses are in fact elementary
factors of induction and self-induction, respectively, known from electric circuits.
The symbol r – in the proper mass (13.7b), represents the particle radius, as the
distance of the surface charge from its own center. The simplest (Lorentz’) particle
model, as the elastic sphere, with evenly distributed surface charge, is understood.
Not only that this model is very convenient in calculation, but gives acceptable re-
sults. It will be finally fit into the full particle model, in 4D space.

As the measure of its variation, time derivative of the kinetic energy (13.6b),
partially – per the product mV, with the speed v – as the parameter, gives the power
(v · f ) of the energy transfer, performed by the dynamic forces. This gives the force
action law, expressing the dynamic forces of accelerated charges. The mass of a
neutral body – as the multi-pole, may be explained by the inertia of the elementary
charged particles in its structure. With respect to mutual cancellation of the distant
opposite fields, these masses are reduced to the nearer fields, close to the particles.
This is the reason of the mass-defect. In absence of some other basis of the inertial
phenomena, all points to EM nature of all the matter. However, in current physics
mass and charge are treated as the two separate concepts.

The central forces (13.4) act in reverse upon their carrier – as the object of its
own fields, proportionally to the force difference distributed about the surface. With
respect to the same speed, the incomplete kinetic law (13.4b) is sufficient. The dif-
ference equals to the static force scaled by the factor: g2 = 1–v2/c2. Starting from
the unit – at rest, this factor approaches zero at the speed v = c. The force is ever
positive, tending to expand the particle. The particle persistence points to another
force in the opposition. This may be some constant pressure of a hypothetical om-
nipresent quantum fluid. The force balance is enabled by compression of the particle
in accord to the function: r = r0g. Therefore, with respect to (13.7b), the mass tends
into infinity by inverse function of the same factor: m = m0/g.

Well, lesser particles are of the greater masses. This means that proton radius is
lesser than that of en electron, in the inverse ratio of their masses. This contradicts
to experience where the greater bodies of the same texture are also more massive.
At elementary particles, however, the masses are located in their electric fields. The
field domain increases with speed on account of the particle volume, just in the
region of the strongest fields. The particle inside may be fully fluidic, without hard
material parts. The current physics, however, expects to explain the material essence
by possible or fictional structure of the particles.

The factor g, and the both parameters of the particle dependent on it, above the
speed c are of imaginary values. This points to the upper limiting speed of massive
particles, and also of the structures composed of them. The generalization of this
restriction to all the speeds in nature, postulated for the sake of SRT, has neither a
real basis nor justification. As if, our view is confirmed by the newest experimental
result, where a particle slightly exceeds the strict speed c. However, the technical
conditions of this registration have not been taken into account. The strong fields
change the conditions even of light propagation. Comparable measurement of this
speed in the same conditions should be also performed.
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Fig. 13.3. presents the classical kinetic energy (dashed) and Lorentz’ mass func-
tion. The two functions are close at small speeds, but at greater ones separate from
each other. The former function keeps the finite values, but the latter one strives into
infinity approaching the boundary speed c. Apart from the quantitative, there is the
interpretative distinction between the two functions. The classical one concerns the
energy dependent on speed, at constant mass. In the latter one, however, the values
of mass and energy grow with increasing speed. Mutually proportional, these two
quantities are equaled in the natural units (NU).

The comparison of the equations (13.5b) and (13.6a) points to the physical
essences of these two quantities. Mass plays the role of the medium density (μ),
and energy – of elasticity modulus (1/ε). Their quantitative ratio as if depends on
the system of quantities applied. Namely, in SI a small mass accords to the vast
energy, but in NU (c = 1) energy in vacuum equals to mass, and in material media
is lesser from it. In EM waves mass concerns the full wave energy, in both medium
layers, but the energy is restricted to vacuum, as the unique layer for transfer of the
traveling wave energy, at the standard speed of propagation (c).

Unlike the proper mass (13.7b), dependent on the charge radius, and thus – on its
speed, the mutual mass (13.7a) depends on the distance of two interacting particles,
irrespective of their motion. With respect to the mutual sense of the gravitational

Fig. 13.3 Mass and energy functions
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mass, similar invariance may be also expected from this quantity. This indication
calls in question its equivalence with the inertial mass, postulated for the sake of
GRT. This theory itself is thus called in question. It, however, is not related with EM
theory, and does not deserve our significant attention.

Linear momentum in force action law may be expressed as the product of three
factors (mvv0), with its time derivative consisting of three terms. The two former
terms form the inertial, and latter one – centrifugal forces:

fi =
−m∂tv

g2 , fc =
mv2

r
(13.8)

They are the functions of the variable mass. In relation to resting mass (m0 = mg),
the forces are scaled by the factors g3 or g. The inertial force keeps the inherited
speed, and centrifugal one supports the strait direction.

13.5 Central Distributions

The two EM fields were introduced empirically, in accord to their actions upon
respective dipoles (13.2) & (13.3). They have been theoretically applied later, to
interactions of electric poles and currents (13.4). The action upon an object charge,
as the field definition (13.10a), resolves the static law (13.4a) into this definition and
distribution of the central field of a carrying charge (13.9a). The equations (a) thus
express the central distribution and action of electric fields:

E =
q1r0

4πεr2 , fc =
μq1V × r0

4πr2 (13.9)

fe = q2E, fm = q2v× B (13.10)

Such resolution of the incomplete kinetic law (13.4b) would not be correct. The two
partial laws (b) were introduced inductively, before the complete law itself. The field
of a convectional current (qV), in the form (13.9b), is known as Ampere’s theorem.
At interaction of two parallel line currents, the force is perpendicular to this field and
the two currents. In reverse to the resolution of the static law (a), the elimination of
the magnetic field from (b) should give the kinetic law. However, apart from the
radial force (13.4b), an additional axial component, not satisfying action-reaction
symmetry, is thus obtained. As the torque on a moving dipole, this force was not
confirmed by Trouton-Noble experiment.

Alike above definitions of the central fields, from respective forces, the resolution
of the two alternative laws (13.6), as the energies, gives the distributions and actions
of the two central potentials, static (a) and kinetic (b):

Φ =
q1

4πεr
, A =

μq1V
4πr

(13.11)

ws = q2Φ, wk = −q2v · A (13.12)
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The validity of these equations is confirmed by their equivalence with (13.9) or
(13.10). Due to the scalar product, the equation (13.12b) is relevant only in the
longitudinal direction, for the parallel components of the two speeds.

13.6 Algebraic Relations

Algebraic equations relating the two EM fields or their objects are introduced in-
ductively. The actions of moving fields are described by the convective (13.13), and
reactions upon dissimilar objects – by relative relations (13.14):

B = εμV × E, E = B×U (13.13)

Eeq = v× B, Beq = εμE× u (13.14)

Here u is the speed of a magnet, and U – of magnetic field. One moving field pro-
duces the other (13.13). The central fields (13.9) mutually compared give the re-
lation (13.13a), and the substitution of the forces (13.10) – the equivalent electric
field (13.14a). The inverse convective relation (13.13b) has been established empir-
ically, with the inverse relative relation (13.14b) introduced as the set completion.
With respect to (13.9b)& (13.10b), magnetic field – embracing the causing current
– acts by transverse kinetic forces on the object currents, including free or bound
electricity in moving bodies. For these reasons, all above relations are in the form
of the vector products of a field with its own speed (13.13), or with that of dissim-
ilar object (13.14). The convective and relative relations in fact describe the two
phases of the same process: production of dissimilar fields (13.13) and reactions
of respective external fields (13.14). The former equations observe EM interactions
from the moving fields, and latter ones – from moving objects. The two crosswise
relations are usually used: the convective (13.13b) – for moving magnetic field, and
the relative (13.14a) – for electricity moving through such a field. Similarly, the po-
tentials (13.11) compared and the energies (13.12) equaled, give the two alternative
relations (a), convective and relative ones:

A = εμΦV, J = QV (13.15)

Φeq = −v · A, Qeq = −εμv · J (13.16)

The substitution of the central potential distributions (13.11) into (a), equivalently
relates the two carriers, electricity and current (b). The convective pair (13.15) ac-
cords to respective field relation (13.13a), and relative one (13.16) – to (13.14a).
With respect to the field relations, each of these two sets lacks for a pair of relations.
This fact is the consequence of the scalar form of the laws (13.12).
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13.7 Field Transformations

The crosswise addition of the nominally similar fields, the real – from (13.13), and
equivalent – from (13.14), gives the two mutual inductions:

B+ = εμ(V − u)× E, E+ = −B× (U − v) (13.17)

These equations describe the same pair of interactions: electricity is the carrier and
magnet the object in (a), and opposite – in (b). The convective terms arise at motion
of dissimilar fields, and relative – of similar objects.

The case of a common detector moving at the speed u = v – through the two
EM fields, demands both equations (13.17). The addition of the inductions (13.17)
to respective fields gives the primary field transformations:

B′ = B + εμV′ × E, E′ = E + B×U′ (13.18)

Here V′ = V–v and U′ = U–v are the speeds of the two fields, transformed in the
relation to the common detector moving through them. These equations do not take
into account the motion of the convective fields (13.13), nor the relative inductions
in these fields. Added to the primary fields (13.18), these effects form the secondary
transformations:

B′′ = B′ + εμV′
c × Ec, E′′ = E′ + Bc ×U′

c (13.19)

Though the convective fields (13.13) are included into (13.17), their speeds are still
unknown. Not only that this question has not been explicitly asked, but the rest-
ing convective fields were implicitly understood: Vc = Uc = 0,orVc′ = Uc′ = –v.
Thus defected transformations (13.19) were the starting bases for the relativistic
postulates. The same theoretical gap had disabled in the former times the general-
ization of the incomplete kinetic law (13.4b). With gradual analysis of this problem,
let us determine the wanted field speeds and formulate the law.

13.8 Kinetic Law

After elimination of the magnetic field from (13.9b) & (13.10b), with implicit sup-
position of its rest, there follows the conclusion of the torque on a moving dipole.
On the other hand, if this field were moving together with its cause, the kinetic force
acting on the object in common motion would be annulled. As the synthesis of the
thesis and antithesis, we suppose the transverse field motion. With respect to this
motion, the radial and axial force components are:

fr = n[(Uc − v) ·V]r0, fa = −n[(Uc − v) · r0]V (13.20)

Due to the transverse speed Uc , its scalar product with the axial speed V annuls,
and the radial force (a) turns into (13.4b). The annulment of the asymmetrical axial
force (b), not noticed in the mentioned Trouton-Noble experiment – in the case of
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a moving dipole (v = V), demands the zero value of the expression in the brackets.
This finally gives the wanted magnetic field speed (a):

Uc = Vcotθit, Vc = Ucotθit (13.21)

The symmetric speed (b) of the convective electric field we introduce by analogy. θ
is the angle between the given field and its speed. The circular field lines spread in
the front and shrink behind a moving carrier, enabling thus its motion. The result (a)
can be confirmed geometrically, as the transverse convective derivative at motion of
a charged particle and its central potentials (13.11). These speeds are independent of
the field objects, and so the two results (13.21) are general. (13.21a) applied to the
poles independently moving in parallel turns the two oblique (13.20), into respective
orthogonal components:

fe =−nV2cosθia, fm = −nVvsinθit (13.22)

Well, this is the central kinetic law in the form of Lorentz’ force: f = q(E + v× B).
At the two equal speeds (v = V), the vector sum accords to (13.4b).

The electric force (a) is odd around the transverse plane. In a line current, as the
stream of plenty charges, the sum of such odd functions annuls. Therefore, it could
not be noticed in technical practice. Respective axial electric field (E = f e/q) sub-
tracted from the static central field, squeezes the result from this direction into ellip-
soidal form. SRT ascribes this effect to the increased transverse fields, in ac-cord to
respective artificial transformations. In fact, this theory was the direct consequence
of the above theoretical misconception. Our resolution of the antinomy uproots the
main reason for the primary introduction of SRT.

Though derived from the incomplete law (13.4a), the dynamic force (13.8) is re-
solved into the components, alike the kinetic force (13.22). Obviously, the two com-
ponents (13.8), inertial and centrifugal ones, are in relation with electric and mag-
netic forces (13.22), respectively. Irrespective of their strict relation, these analogies
say that the two longitudinal components – (13.8a) & (13.22a) – are of the electro-
dynamic, and transverse ones – (13.8b) & (13.22b) – of magneto-kinetic natures.
Their former names, (13.8) – as dynamic, and (13.22) – as kinetic, are thus sur-
passed. Though dynamic forces understand inertial and centrifugal components, the
radiation fails at a centripetal charge acceleration. It is related with electric field, but
the magnetic one keeps only the direction of motion, without any transfer of energy.

13.9 Differential Equations

On the bases of the space distributions of the central fields and potentials, in the
functions of position and motion of their carriers, the following two differential
sets are introduced in various ways. Maxwell’s equations (a) relate the fields with
carriers, and gauge conditions (b) – fields and potentials:

divE =
Q
ε

, Es = −gradΦ (13.23)
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curlB =
εμ∂E

∂t
+ μJ, B = curlA (13.24)

curlE =
∂B
∂t

, Ed = −∂A
∂t

(13.25)

With respect to non-vortical static, and vortical dynamic fields, the same symbol
(E = Es + Ed) is used in (a). The static equation (13.23a) is some generalization
of Gaussian theorem, as the generalized central static field (13.9a). The discrete
charge is replaced by respective scalar field, Q = ∂q/∂v, as the density of electricity
representing the field sources. The elastic medium deformation, proportional to ε,
partially compensates the initial charge, as the field source.

In the similar manner, the generalization of Ampere’s theorem (13.9b), as the
central distribution of the magnetic field, via the line integration along an infinite
conductor, gives the kinetic equation (13.24a). The convectional current (qV) is thus
substituted by respective density, J = QV, as the sum of the convective and con-
ductive flows. This sum is supplemented by the field derivative, as a displacement
current in dielectrics. Namely, electric field slightly displaces the bound electricity,
positive in relation to negative polarities, disturbing thus their mutual position. This
is well-known as the medium polarization, resulted from the process of dis-placing,
as respective component of the electric current.

The dynamic equation (13.25a) is introduced by generalization of the integral
law of induction, formulated on respective Faraday’s empirical results. The three
Maxwell’s equations successively introduce the three EM fields: static, kinetic and
dynamic. The second equation relies on the first, and the third – on the second. This
explains their distinct forms, and asymmetry of the two electric and third magnetic
fields. The forth Maxwell’s equation, divB = 0, concerns free magnetic poles, as the
supposed sources of respective field. As the result, it says that these poles do not ex-
ist, denying thus the initial supposition. In addition, this equation fails in respective
pandanus between the gauge conditions, at right.

More directly than Maxwell’s equations, gauge conditions express physical
essences of EM forces: static – as elastic reaction of the compressible fluid, ki-
netic – as Bernoulli’s transverse pressure loss, and dynamic one is nothing else than
Newtonian force action law. In addition, their derivation is also simpler and more
convincing. The two former conditions, static and kinetic, follow from the com-
parison of the central distributions. Radial derivative (grad) of the central potential
(13.11a), gives respective electric field (13.9a). In the similar manner, the transverse
derivative (curl) of the kinetic potential (13.11b) – uniformly directed, gives the
magnetic field (13.9b). Curl applied to the dynamic condition, as the force action
law, with substitution of the kinetic one, gives the dynamic equation (13.25a).

These two sets are in relation with the classical dilemma of the force action:
by successive transfer or directly at a distance. In accord to the continuity princi-
ple, Maxwell advocated the former view. Though the dispute has not been reliably
resolved, Maxwell’s view has been accepted together with his equations, without
any proof. Nobody has noticed that the speed of transfer was not included into these
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equations. The speed itself has never been determined, but the value c is understood.
This view is transferred into quantum theory, where particles interact by continual
barter of photons. However, this conception do not explain at all the interactions
between particles, especially not their attraction.

According to this view, a particle would be an inexhaustible source emitting the
fields and receiving such emissions from other particles. Unlikely, the other view
concerns a particle only equipped by its fields stretched into surroundings, acting
directly and instantly at each point. Really, EM forces are determined in practice
from the field distributions, without elaborated theory of their propagation. In the
final instance, the particles interact and manifest only by their fields. There is none
a proof of existence of any hard particle body, distinct from its fields. A particle is
the center, and may be something as a knot of its fields. This conclusion radically
modifies the interpretation of the above differential sets.

The carriers at right sides of Maxwell’s equations are nothing else than the dif-
ferential features of the fields, indicated at left. Such mutual relation of the fields
and potentials is more convincing. By the gauge conditions, the fields just describe
the shapes of the potentials. In the tensor 4D calculus, the potentials are vectors,
fields – bi-vectors, and carriers – tri-vectors. The numbers of components are also
the same: 4-6-4. The components of 4D potential are associated to the four axes:
static to temporal, and kinetic to spatial ones. EM fields, as the bi-vectors, belong
to the six planes: electric – to longitudinal (xt,yt,zt), and magnetic to transverse
(xy,yz,zx) ones, ’surnamed’ in relation to the temporal axis.

13.10 EM Induction

By generalization of the two central fields (13.9), the two former Maxwell’s equa-
tions are obtained, and by the field comparison – rational relation (13.13a). The
dynamic equation (13.25a) and empirical relation (13.13b) rely on experience. The
application of div&curl to the convective relations (13.13) gives two pairs of differ-
ential forms, wider than Maxwell’s set. The comparison points to the space deriva-
tives of field speeds, as the factors in the excessive terms. This fact demands the
restriction of the relations to the homogeneous speeds, without rotation or deforma-
tion of the moving fields, behaving as the rigid structures stably oriented in space.
Just such fields interact instantly at each point of the domain.

Apart from thus restricted form of the field motion, let us consider that of its di-
rection. In accord to (13.17b), the relevantmutual speed and induction are perpendic-
ular to the magnetic field. Their common surface also contains the kinetic potential,
as the vortical field. The transverse gradient of the magnetic field, in the same sur-
face, is perpendicular to the vector potential. Since the two mutually perpendicular
vortical fields cannot exist on the same surface, the gradient is a non-vortical field.
The motion in direction of the gradient causes the induction along vector-potential,
and opposite. Of course, the vortical or non-vortical form of the induction accords
to respective collinear field in each case.
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Magnetic field does not move along the vector potential, or this motion does not
cause any effect. Unlike the field, the object conductor can be moved or even rotated
in any direction. In the relative EM induction, the two directions are relevant: the
former along the field gradient, and latter along the vector-potential. Respective two
types of induction are illustrated on Fig. 13.4.

Each of the two circuits consists of an instrument and its terminals, with an ad-
ditional conductor sliding along the terminals. Instead of the primary conductor,
the two secondary ones are moving, causing the relative inductions (13.14a). The
transverse motion of the parallel conductor, along the field gradient, causes the vor-
tical induction directed as the primary current or kinetic potential. The two opposite
inductions, in the moving transverse conductor, play the role of the apparent non-
vortical electric field symmetric to the primary current.

The former case may be generalized to the mutual motion of the primary and sec-
ondary conductors, thus changing the kinetic potential: ∂A/∂t = [(v− V) ·�]A.
In accord to (13.25), this gives the real vortical induction. The latter case, however,
does not obey the principle of relativity. The translation of the transverse conduc-
tor, together with its free electricity, represents the set of convectional longitudinal
cur-rents, parallel to the primary one. In accord to (13.22b), this produces the trans-
verse forces affecting the moving object electricity. The equivalent induced field
does not exist out of the conductor itself. In addition, similar longitudinal motion of
the current carrying conductor would not cause any effect.

In the Faraday’s experiment (Fig. 13.5.) sliding contacts of the instrument termi-
nals touch the center and rim of a conducting disc, rotating in the front of a cylindri-
cal magnet, around the common axis. The thoroidal magnetic field (Fig. 13.2.), of
the circular magnetization current on the magnet cover, is axially symmetric, with-
out any gradient along the rotation. Free electricity inside the rotating disc forms
the set of circular currents, attracted or repelled by the magnetization current. In
the circuit and measuring instrument, this (in fact kinetic) effect gives an apparent
impression of the radial non-vortical induction. This field, however, does not exist
out of the rotating disc, and cannot be measured as such.

An additional Faraday’s experiment is easily reducible to this one. With respect to
the statistically neutral magnetic material, possible rotation of the magnet, together
with the disc, does not change at all the magnetization current, nor the induction.

Fig. 13.4 Vortical and ’non-vortical’ inductions
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This is the same as if the sliding contacts are reconnected directly to the magnet, as
the sufficiently conducting material. Not only that this effect has been the enigma
for EM theory up to these days, but this author himself was led astray, believing for
many years in the real non-vortical induction. Being unable to ex-plain its essence,
he is forced to the above reexamination.

13.11 EM Antinomies

Although Maxwell’s equations, as the basic laws of EM theory, have been widely
and successfully applied, their formalistic applications follow into a few antinomies,
which solution demands the revision of some principal views. In this sense, the static
equation (13.23a) applied to two typical surface charges – of a sphere (Fig. 13.1.)
and of plane (Fig. 13.6.) – gives respective distributions in surrounding space, of the
fields perpendicular to each of the two surfaces.

The central field apparently exists only out of the spherical volume, and sym-
metric field of a plane seems to be homogeneous. For the same surface charges,
the former field is twice stronger than the latter, split into halves. The former field
obeys inverse square function, and respective potential (13.11a) – inverse function.
The latter potential is problematic. In accord to the homogeneous field, it would de-
crease by linear function, cut the abscissa at some distance, obtaining the negative
values. The constant potential would mean the zero field. This antinomy demands
some reexamination of the two field distributions.

If its radius grows into infinity, a finite sphere degenerates into infinite plane.
There arises the question of the field redistribution during the limiting process, and
of a physical reason for this event. The only possible compromise between the two
extreme distributions is presented on Fig. 13.7. In accord to it, the central field is
also equally divided into the two surface sides. Due to various field directions, the
sum annuls in the center, and has some values in other internal points, maximal –
close to the surface. Not only that the separate fields exist in the zero sum, but they
continue to the opposite surfaces, break them and add to the local fields, with the
sum twice stronger than the field of a charged plane.

Fig. 13.5 Faraday’s rotational induction
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The obtained relation between the two extreme field distributions results from
the unity of the two surfaces. The locally observed flat surface is in fact the sphere
of extremely long radius. Alike the equator on a globe, dividing the spherical sur-
face into the two equal circles, with the poles as their opposite centers, the plane
divides 3D space into the two hyper-spheres. This follows to the substitution of the
flat – Euclidian, by the curved – Riemannian space, with circular dimensions. This
view also explains the potential of the plane. In accord to the field on Fig. 13.7.,
the potential is only locally linear. At greater distances it decreases slowly, tending
asymptotically to zero and approaching this value at infinity.

This explanation, however, calls in question the static equation (13.23a). Namely,
the internal field lines (Fig. 13.7.) start from the charged surface, and terminate in the
neutral space. Of course, this is the phenomenal vector sum, as the action of plenty
separate fields. Keeping their individualities, these fields obey the static equation.
This consideration in the whole points to undisturbed coexistence of more fields of
the same nature at least, in the same locations. The numerous fields somehow pass
by and cross each other, as if being displaced along the structural depts. In this sense,
with the three spatial and forth temporal axes, a structural dimension, as the fifth,
must be introduced. The following solution of an apparent antinomy of the kinetic
Maxwell’s equation, also speaks in favor of this idea.

The application of (13.24a) to a moving central field (Fig. 13.1.), via its con-
vective derivative, (V · �)E = –∂E/∂t, finally gives the magnetic field (13.9b).
However, the same procedure cannot be applied to a line current. If the vertical line
on Fig. 13.6. were a line conductor, the horizontal arrows would represent electric
field lines of the moving electricity forming the current. In accord to the above view,

Fig. 13.6 Euclidian field distribution
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this field is separated from the opposite field of the resting polarity. There arises the
additional problem, of the zero field gradient in direction of its motion. It can be
surpassed only by separate treatment of elementary particles, their central fields and
respective processes, with the final sum of the effects. This conclusion affirms the
simultaneous coexistence of the multiple electric and magnetic fields in the same
3D location, being distributed along the structural dimension.

13.12 Structural Models

The motion of a charge, as the convectional current qV, is continued in space by
displacement current –ε(V ·�)E, in the surroundings. Axial gradient of the central
field gives the thoroidal vortex of this current, Fig. 13.2. This vortex may be under-
stood as the photon associated to the moving particle. Possible deceleration of the
particle would release this photon fully or partially. Free from the carrying particle
mass, it continues its own propagation at the speed c. In fact, it takes over the kinetic
energy, as the energetic difference of the moving and resting particle. In accord to
the function r = r0g, where g is smaller than unit, the photon energy equals to that
of the electric field between the two particle radii.

In analogy to the photon, the model of a charged particle may be also predicted.
The quantity c2 – in the static law (13.4a), against the product of the two speeds, in
kinetic one (13.4b), points to the common speed of all the particles, along temporal
axis. The same speed value points to similar structural model, as a hyper-thoroidal

Fig. 13.7 Riemannian field distribution
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vortex of the quantum fluid flow, coaxial with temporal axis. Alike that of photon,
this motion is the condition of the particle existence. The two references of propa-
gation, of photons – through 3D space, and of particles – along the temporal axis,
accord to the two structural levels along the fifth axis. They are substantial substrata
of the two respective physical quantities: displacement current – of photons, and
kinetic potential – of elementary charged particles.

Well, a hyper-thoroidal vortex, coaxial with t-axis, is the model of a charged par-
ticle. If Fig. 13.2. represents a positive, the opposite fluid flow forms the negative
particle. These two models obey the known CPT symmetry (circulation-polarity-
time). Each of the particles is symmetric in 3D space, but two opposite polarities
are mutually anti-symmetric along the temporal axis. The alternation of one of the
CPT parameters would alternate an additional. For instance, the reorientation of
the temporal axis would alternate the polarities of all the particles. Irrespective of
the theoretical basis of this quantum rule, it is fitted into our particle model. More-
over, this model offers the resolution of a sequence of scientific dilemmas. Let us
announce at least some of these fundamental answers.

The boundary between the internal and external flows, as the cross-section of a
circular line – on Fig. 13.2. – represents 3D particle surface. At a positive particle,
the internal fluid flow adds to, and external one subtracts from the common speed.
In accord to Bernoulli’s law, these two results are manifest in 3D space (transverse
to t-axis) by some disturbances of the pressure, as the static potential. This potential
is negative inside, and positive out of the positive particle (Fig. 13.8.). This is the
reason of the lesser radius and greater mass of a proton than the same electron
measures, related by (13.7b). Unlike the current scientific views, proton would also
be the elementary particle. The exceptional stabilities in separate states speak in
favor of the elementary natures of the two basic charged particles.

Fig. 13.8 Elementary central potential
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The common motion of all the particles along t-axis (at speed c) may be related
with cosmic expansion. The cosmos itself would be reduced to a hipper-spherical
wave, in accord to the circular form of its axes. If the temporal axis were a strait
line, cosmos would expand into infinity. In order to avoid this undesirable process,
the cosmology was looking for physical reasons for deceleration and possible redi-
rection of the cosmic process. Without our idea of wave propagation, gravitational
attraction between all the celestial bodies seemed to be such a cause. However, an
estimation pointed to insufficiency of all the cosmic matter for such a reversal. To
provide the needed gravitational attraction, some invisible (dark) matter, equivalent
to the massive quantum fluid, has been introduced.

As the projection from the temporal into spatial domains, the speed of expan-
sion depends on the t-axis form. In common with the wave flow, circular form of
this axis would surpass the dead end of the former cosmology. The uniform mo-
tion along such an axis is projected to the cyclic cosmic pulsation between the two
singularities in 4D space. In between, after decelerated expansion, there follows ac-
celerated contraction. On the other hand, the parallel motion of all the matter, in
accord to Bernoulli’s law, points to gravitational attraction, as the consequence. The
causal relation is thus reversed: instead of a determinative factor, gravitation may
be a mere consequence of the cosmic flow. Apart from the opposite causality, the
propagation need not be reversed for cosmic contraction.

This model itself is called in question by the recent remark of the increasing red
shift of the light arrived from very distant super-nova stars. Instead of the expected
deceleration, this fact is interpreted as the fantastic possibility of the accelerated
cosmic expansion. In opposition to dark matter, its cause is ascribed to some dark
energy, similar to the internal pressure of the compressible quantum fluid. Though
the multiplication of indistinct concepts is none a scientific progress, this explana-
tion has been widely accepted and crowned by Nobel prize. As if, the gravitational
influence on the red shift is not taken into account. Its combination with collapsing
process of mentioned stars may be the reason of the increasing red shift. This author
himself fails in sufficient data for the final conclusion.

Some additional questions here arisen stay still open. Apart from determination
of the temporal axis form, there are interrelations and final unity of various physical
interactions, from the mechanical, via EM, up to the nuclear forces. Of course, these
will be the themes of the future times and investigations.

13.13 Conclusion

With respect to very wide and long application of EM theory, all the facts being
measurable had already been checked. Some crucial results, however, have so far
not been convincingly explained. Apart from reinterpretation of these results, our
text tries to classify conveniently all the quantities and their relations, with respective
arrangement and concise exposition of the theory. Instead of the incomplete clas-
sical or problematic relativistic approaches, as the thesis and antithesis, this work
may be understood as their supplemented synthesis.
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The three classes of EM quantities have been considered: electric charges and
currents – as the carriers of the static & dynamic electric, and kinetic magnetic
fields, with the static – scalar, and kinetic vector potentials. In the reverse order,
the three quantity classes are expressed by the vectors, bi-vectors and trivectors in
4D space. They are related in 3D space by a few types of equations. Usual central
laws directly express EM forces, and alternative ones – respective energies. The
quantities of the same ranks are related algebraically, and the order of differential
equations equals to the difference of the related ranks. All the laws in common
constitute a solid system of the complementary relations.

The general kinetic central law (13.22) is the palpable original contribution of
this work. With explanation of a few problematic experiments, as Faraday’s rota-
tional induction and Trouton-Noble negative result, it removes respective theoret-
ical dilemmas. The secondary field transformations (19) are also completed. The
relativistic postulates and respective kinematical transformations, based on the in-
complete field transformations, are finally disqualified. On the other hand, Einstein’s
equation and Lorentz’ mass function are explained and affirmed. Instead of the ac-
ceptance or rejection of STR, its fundamental aspects are here separated from the
mainstream speculations of this controversial theory.

EM processes are reduced to the mechanics of some quantum fluid in 4D space.
The compressibility, super-fluidity and inertia of this fluid are the bases of the ra-
dial static, transverse kinetic and axial dynamic forces, respectively. All the forces
depend on mutual position of interacting charges, the kinetic also depend on their
speeds, and dynamic ones – on acceleration of one of them. The essences of mass
and electricity are finally explained, with the main structural models, from a pho-
ton up to the full cosmos. The circular spatial axes are affirmed and explained by
the wave cosmic process, which determines by itself gravitational attraction, with
unique and uniform lapse of time, in accord to Galilean view.
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Chapter 14
Advanced Adaptive Algorithms in 2D Finite
Element Method of Higher Order of Accuracy

Pavel Karban, Ivo Doležel, František Mach, and Bohuš Ulrych

Abstract. Sophisticated methods of automatic adaptivity in finite element methods
of higher order of accuracy are presented. The main attention is paid to hp-adaptivity
techniques that exhibit the highest level of flexibility and exponential convergence
of results. The technologies implemented in our own fully adaptive FEM codes
Agros2D and Hermes2D based on a higher-order finite element method are illus-
trated by three typical examples.

14.1 Introduction

All advanced techniques for numerical solution of physical fields contain special
algorithms for automatic adaptivity of discretization meshes (see, for example [1],
[2], [3]. These algorithms are applied at the moment when the error of solution is
higher than the acceptable tolerance. This error defined as the difference between the
current numerical solution and exact solution is usually caused by locally rougher
mesh, presence of one or more singular points, curvilinear boundaries or interfaces
approximated by polygonal lines, etc. In all these cases, such errors must be iden-
tified in the course of computation and appropriate measures have to be taken for
their fixing. This technology is also implemented in the codes Hermes2D [4] and
Agros2D [5] that have been developed for a couple of years in our group. While
Hermes is a library of numerical algorithms for monolithic and fully adaptive so-
lution of systems of generally nonlinear and nonstationary partial differential equa-
tions (PDEs) based on the finite element method of higher order of accuracy, Agros
is a powerful user’s interface serving for preprocessing and postprocessing of the
problems solved.
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14.2 Adaptivity Techniques in Agros and Hermes

The algorithms of automatic adaptivity implemented in Hermes and Agros are di-
vided into the following principal groups:

• Refinement of elements in regions where the solution exhibits an unacceptable
error. This way is called h-adaptivity while the original large finite element is
split to several smaller elements, the degree of the polynomials replacing the real
distribution of the investigated quantity in them remains the same. This is clear
from Fig. 14.1, where both large element and smaller elements are described by
polynomials of the same order.

Fig. 14.1 Typical applica-
tion of h–adaptivity: poly-
nomial orders in smaller
elements remain unchanged

• Improvement of approximation of the investigated quantity. This way is called
p-adaptivity the shapes of elements in the region do not change, but we increase
the orders of the polynomial approximating the distribution of the investigated
quantity. The situation is depicted in Fig. 14.2.

Fig. 14.2 An application of
p–adaptivity: polynomial
order in the same element is
increased

• The combination of both above ways is called hp-adaptivity, which belongs to
the most flexible and powerful techniques characterized by an extremely fast
(exponential) convergence of results. A typical possibility of its application is
depicted in Fig. 14.3.

• Curvature of edges of selected elements adjacent to curvilinear interfaces and
boundaries. As this technique is original and we do not know any commercial
software (SW) that would use it (although, for example, ANSYS works with
curvilinear elements that are, however, generated in a different manner), we will
describe it in more detail. Agros2D discretizes 2D domains on the base of SW
Triangle [6] that provides a high-quality triangular mesh. The corresponding in-
put data for modeling curvilinear boundaries or interfaces in Triangle are given
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Fig. 14.3 Typical applica-
tion of hp–adaptivity: the
original element is divided
into more smaller elements
and polynomial order in
them are increased

by a series of points lying on this line (together with the markers carrying infor-
mation that these points belong to such a line) while the output is represented by
a set of triangular elements (see Fig. 14.4). In the second step Agros2D repeats
analyzing the curved lines and when any of the newly generated nodes approx-
imating the curve (Fig. 14.4, right part) does not lie on it, it is automatically
projected on the original arc. At the same time a special procedure determines
the corresponding angles, such as angles α1 and α2 in the right part of Fig. 14.5.

Fig. 14.4 Typical input data
for SW Triangle (left) and
output mesh (right)

Fig. 14.5 Projection of a
newly generated node on
the curve (left) and resultant
curvilinear elements formed
in Agros2D (right)

In the course of numerical processing of the task the curvilinear elements are
mapped back on normal triangles where all remaining operations (such as Gaus-
sian numerical integration) are carried out and only in the final step postprocess-
ing they are mapped again to the curvilinear elements.

The h-adaptivity is the simplest one and is implemented in practically all existing
codes. The elements burdened by high errors are divided into several smaller ele-
ments, but there exist even other possibilities. The principal problems accompanying
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this type of adaptivity are the hanging nodes appearing on the interfaces between the
refined elements and elements without refinements. What are the hanging nodes is
clear from the right part of Fig. 14.6 (they do not represent vertexes of elements in
not refined parts). These nodes must be handled with particular care, otherwise they
may significantly contribute to the growth of the degrees of freedom of the problem
solved [7].

The p-adaptivity is even simpler to implement, because the mesh remains un-
changed. Only in the selected elements we enlarge the order of the corresponding
approximating polynomials.

Fig. 14.6 Refinement of the given area and generation of the hanging nodes

The hp-adaptivity represents the most complicated method and its implementa-
tion is highly nontrivial. On the other hand, it exhibits the exponential convergence
of results and it was proven to be an extremely powerful tool just in the finite ele-
ment methods of higher orders of accuracy. Although we can meet this method still
very scarcely, its algorithms are already implemented in our SW Hermes2D and
Agros2D.

The curved elements are applied in case of modeling curvilinear boundaries and
interfaces.

In the present version, Agros2D also allows combining triangular and quadrilat-
eral elements (these are desirable either in the regions with anisotropic materials or
in regions where the field is expected sufficiently smooth).

14.3 Error of Solution

Algorithms of adaptivity start to be applied at the moment when some local error of
solution is higher than the acceptable tolerance. Consider an equation

L f = 0 (14.1)

where L denotes a differential operator and f a function whose distribution over
some domain Ω is to be found. If f ′ is its approximation obtained by the numerical
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solution of (14.1), the absolute and percentage relative errors d and e are defined by
the relations

δ = f − f ′ η = 100| δ
f
| (14.2)

Even other quantities, however, may be used for the estimation of errors. These
quantities are called norms (they are usually denoted by symbol ||e||) and Her-
mes2D works with three of them:

• Basic ”energetic” norm that is defined by the formula

||e|| =
∣∣∣ ∫

Ω
δ(Lδ)dΩ

∣∣∣ 1
2

(14.3)

• L2 norm defined by the relation

||e||L2 =
∣∣∣ ∫

Ω
δ2dΩ

∣∣∣ 1
2

(14.4)

• H1 norm defined by the relation

||e||H1 =
∣∣∣ ∫

Ω
(δ2 + gradδ · gradδ)dΩ

∣∣∣ 1
2

(14.5)

Unfortunately, the exact solution f is usually known only in very simple, analyti-
cally solvable cases. Moreover, there exists no general method that would provide
a good estimation of the error for an arbitrary PDE (although for several classes
of linear PDEs we can find it). Moreover, in the case of the hp adaptivity the tra-
ditional error estimate (one number per element) is not enough; we must know its
distribution over the whole element. In principle, it might be possible to obtain this
information from estimates of local higher derivatives, but this approach is not very
practical. That is why we work [8] with the reference solution fre f instead, that is
obtained either by a refinement of the whole mesh (h-adaptivity), by enlargement of
the polynomial degree (p-adaptivity) or by both above techniques (hp-adaptivity).
In this manner we get the candidates for adaptivity even without knowledge of the
exact solution f . The library Hermes2D works with very sophisticated and subtle
tools based on the above considerations.

14.4 Illustrative Examples

In order to show the power of the indicated adaptive algorithms, we will illustrate
their application by three different examples. In some of them we will compare the
results with results obtained using other professional commercial codes.
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14.4.1 Example I (hp Adaptivity)

The first example is inspired by the solution of the Schrödinger equation describing
the interaction between two atoms. It can be found in a benchmark example collec-
tion [9] that serves for the comparison of capabilities of various existing codes. The
equation in the form

1
r

∂

∂r

(
r

∂u
∂r

)
+

u
(r + α)4 =

r − α

r(r + α)3 cos
(

1
r + α

)
, r =

√
x2 + y2 (14.6)

is solved on a unit square, whose low left corner is at the origin of the Cartesian
coordinate system. Its particular analytical solution is

u = sin
(

1
r + α

)
(14.7)

and we shall assume the corresponding boundary conditions along the circumfer-
ence of this unit square. The solution oscillates near the origin and the coefficient α
is inversely proportional to the number of oscillations. For example, if α = 1/10π
we obtain ten oscillations and the resultant function u, evaluated exactly by SW
Mathematica, is depicted in Fig. 14.7.

Figure 14.8 shows the meshes generated by code Agros2D after realizing the
adaptive process. Its left part depicts a mesh obtained by using exclusively h-
adaptive technique, while the right part contains a mesh obtained using fully

Fig. 14.7 Distribution of function u = sin(1/(r + a) for a = 1/10π (exact solution carried
out using SW Mathematica)
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Fig. 14.8 Discretization meshes for solving the problem: left—mesh obtained by using the
h-adaptive technique (for p = 1), right—mesh obtained by using the hp-adaptive technique
(the numbers in the rectangles show the degrees of the approximating polynomials

hp-adaptive technique. Both meshes satisfy the condition that the corresponding
relative errors η of solution do not exceed 0.01 %. It is obvious that the number
of elements in the right-hand mesh (and, consequently, the number of the degrees
of freedom (DOFs)) is much smaller, so that the hp-adaptivity is much more effec-
tive and the computation is characterized by a substantially shorter time and less
intensive demands on the computer memory.

The numerical solution to (14.6) satisfying the condition η ≤ 0.01 % obtained by
Agros2D and Hermes2D is depicted in Fig. 14.9.

Figure 14.10 compares the adaptive techniques implemented in library Her-
mes2D with the techniques built in Comsol Multiphysics 3.5a. It is clear that Her-
mes2D is able to reach accuracy on the order of 10−2% with less than one tenth of

Fig. 14.9 Numerical solution to (14.6) obtained by Agros2D and Hermes2D (η ≤ 0.01%)
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Fig. 14.10 Comparison of adaptive techniques (relative error η versus the number of DOFs;
acronym H2D means Hermes2D

DOFs than the best version of Comsol (h-FEM, p = 2). The principal reason is that
Comsol does not support the hanging nodes, which leads to a strong growth of the
DOFs.

14.4.2 Example II (Curved Elements)

Application of the curvilinear elements will be illustrated on an example of induc-
tion heating of a cylindrical aluminum billet of diameter d = 60mm rotating at a
given angular frequency n = 1500rpm in a stationary magnetic field generated by
a system of permanent magnets, see Fig. 11. The axial length of the arrangement
l = 120mm. The whole experimental stand is shown in Fig. 12.

The magnetic circuit is made of carbon steel CSN 12 040 [10], permanent mag-
nets VMM10 (based on rare earths) exhibit the remanence Br = 1.41T, and relative
permeability in the second quadrant μr = 1.21. All physical parameters of the bil-
let and other materials are generally functions of the temperature [11]. The goal of
the solution is to determine the time dependence of the average temperature of the
billet.

The continuous mathematical model of the problem consists of two partial differ-
ential equations describing the distribution of magnetic and temperature fields. The
first one, describing the magnetic field in terms of magnetic vector potential A, may
be written in the form
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Fig. 14.11 Cylindrical aluminum billet rotating in a system of permanent magnets (all di-
mensions given in mm)

Fig. 14.12 View of the real experimental system

curl
(

1
μ

curlA−Hc

)
− γv× curl A = 0 (14.8)

where γ is the electrical conductivity, v is the local velocity of rotation, and Hc
stands for the coercive force of the permanent magnets. A sufficiently distant arti-
ficial boundary is characterized by the Dirichlet condition in the form A = 0. The
temperature field in the billet obeys the equation
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div(λgradT) = ρcp

(
∂T
∂t

+ v · gradT
)
− pJ (14.9)

where λ is the thermal conductivity, ρ denotes the specific mass, and cp stands for
the specific heat at a constant pressure. Finally, the symbol pJ denotes the time aver-
age internal sources of heat (the specific Joule losses) determined from the formula
pj = |J2

eddy/γ|, where Jeddy is he density of currents induced in the billet. This is

given by the relation Jeddy = γv× curlA.
The task was solved numerically by the codes Agros2D and Hermes2D in the

monolithic formulation (which means, that both magnetic and temperature fields
were calculated simultaneously, so that the final numerical scheme was character-
ized by one stiffness matrix). We respected all possible nonlinearities, such as the
magnetization characteristic of steel CSN 12 040 and temperature dependencies
of all physical parameters of used materials. Figure 14.13 shows the discretization
mesh (at the end of the process of adaptivity) used for computation of magnetic field
in the system. The numbers in the rectangles denote the degrees of polynomials in
particular elements. The billet is discretized using the mentioned curved elements
(savings in DOFs are about 20% with respect to using normal triangular elements,
compare with [11]). The regions in the neighborhood of the corners of the mag-
netic circuit representing the singular points are discretized by small triangles of
low polynomial orders while places with expected smooth regions are covered by
large triangles of high polynomial orders.

Figure 14.14 shows the distribution of magnetic field in the system for the nomi-
nal revolutions n = 1500rpm. Figure 14.15 shows the corresponding distribution of
temperature after 120 s of heating. While the temperature of the billet reaches about
T ≈ 150 ◦C , due to the presence of good thermal insulation the permanent magnets
remain practically cold (about 45 ◦C), so that there is no danger of deteriorating
their physical properties because of overheating (maximum allowable temperature
being about 80 ◦C).

The time evolution of the average temperature of the billet obtained by both mod-
eling and measurement is depicted in Fig. 14.16. The figure contains two charac-
teristics. The upper one corresponds to eight permanent magnet (see Fig. 14.12).
The lower one was measured at the presence of only four magnets (instead of four
remaining magnets the model contained four ferromagnetic poles of the same di-
mensions).

Finally, Fig. 14.17 shows the convergence curves when using triangular and
curvilinear elements for different initial setting of approximating polynomials in
particular cells of the mesh. Comparable results are obtained (after the process of
adaptivity) for 1396 elements (some of them being curved) and 1824 purely trian-
gular elements. The savings in DOFs in this case are about 240 %.

14.4.3 Example III (Curved Elements and Circular Points)

Application of the curved elements will also be illustrated on another example that
exhibits one more issue: a singular point. This means a point at which it is not
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Fig. 14.13 Discretization mesh: the cross section of the system is discretized using curved
elements (light lines—before adaptivity, dark lines—after adaptivity, numbers in the right
column show the orders of the corresponding elements

possible to define the normal and the gradient of the solution grows there over all
limits.

Consider a spark gap in Fig. 14.18 consisting of two electrodes. The upper one
(conical with a sharp point at its end) carries potential ϕ = 1000V, the lower one is
spherical and grounded (i.e., ϕ = 0). The arrangement is considered axisymmetric
and the task is to find the distribution of electric potential ϕ in the system.

The viewpoint of modeling the problem is seemingly quite simple (electric field
is described by the Laplace equation on a very simple domain). But this holds only
to some extent. It turns out that common commercial codes are not able to provide
correct values of potential near the peak of the cone and also its values near the
sphere are somewhat distorted. The governing equation for the potential ϕ in the air
between the electrodes reads

1
r

∂

∂r

(
r

∂ϕ

∂r

)
+

∂2 ϕ

∂z2 = 0 (14.10)

The boundary conditions are given by the prescribed potentials on the surfaces of the
electrodes, and Neumann condition along a sufficiently distant artificial boundary.



266 P. Karban et al.

Fig. 14.14 Distribution of
magnetic field in the system
for n = 1500rpm

Fig. 14.15 Distribution of the temperature in the area of the billet and permanent magnets
after 120 s of heating

The problem was solved using several codes from which Comsol Multiphysics
3.5a and QuickField are commercial codes, while FEMM 4.2, Hermes2D and
Agros2D are freely distributable applications.

Figure 14.19 shows some results obtained using Hermes2D and Agros2D. Its
left part depicts the mesh (the light lines show the original mesh while the dark
lines the final mesh after 25 steps of adaptivity and the numbers give the orders of
the corresponding polynomials) and right part the distribution of potential ϕ in the
vicinity of both electrodes.
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Fig. 14.16 Time evolution of the average temperature of the billet for n = 1500rpm

Fig. 14.17 Convergence curves of the results: Agros2D, symbol p denoting the initial degree
of polynomials before starting of the adaptive process

It is clear that fine elements and hanging nodes were generated mostly in the
region of the peak of the conical electrode. The spherical electrode is simulated by
curvilinear elements, i.e., quite precisely (and the distribution of electric field in its
vicinity, therefore, is modeled with a very high accuracy). Figure 14.20 depicts the
dependence of the total electrostatic energy We in the system calculated by different
codes on the total number of the degrees of freedom (DOFs). The codes FEMM
and QuickField only work with linear elements (p = 1, without adaptivity) and the
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Fig. 14.18 The investigated spark gap

Fig. 14.19 Left—original rougher mesh (white lines) and final mesh after adaptivity (dark
lines), orders of elements in the column, right—distribution of potential and electric field
near the electrodes (codes Agros2D and Hermes2D, p = 1, number of DOFs 1977, relative
error of solution η = 0.307%)
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Fig. 14.20 Dependence of total energy We of electrostatic field in the system on the number
of DOFs

Fig. 14.21 Comparison of various adaptive algorithms in Agros2D Fig.
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Fig. 14.22 Two discretization meshes that provide results with relative error η < 1%: purely
triangular mesh - 1402 DOFs (left), combined mesh - 1186 DOFs (right)

results obviously converge very slowly. Faster is the convergence in Comsol Mul-
tiphysics, mainly with switched-on adaptivity. On the other hand, this code does
not support the hanging nodes, so that much more elements are needed. Finally,
Agros2D with hp-adaptivity starting from a rough mesh converges fast, with a sub-
stantially lower number of DOFs (their number is 1977 for relative error of solution
η = 0.307%). Thus, usage of Agros2D is much more effective.

Figure 14.21 shows analogous convergence curves obtained from Agros2D for
several adaptive algorithms differing by the starting values of p. Again, the conver-
gence of results based on the hp-adaptivity is the fastest. Finally, Fig. 14.22 shows
a purely triangular mesh (left part) and mesh combining triangular and quadrilateral
elements (right part). The second one provides the results of the same quality as the
first one (η < 1%), but the number of DOFs is lower by about 20%.

14.5 Conclusion

The methods of adaptivity described in the paper represent a powerful tool whose
application leads to significant savings in DOFs in comparison with various avail-
able SW (by one order and more) even at a higher accuracy of the results.

Further improvement of these techniques can be achieved by using meshes that
combine triangular, quadrilateral and curved elements, as quadrilateral elements
seem to be effective mainly for modeling of domains with anisotropy. Nowadays,
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we are developing the corresponding algorithms and implementing them into the
software Hermes and Agros.
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1. Šolı́n, P., Dubcová, L., Kruis, J.: Adaptive hp-FEM with dynamical meshes for transient
heat and moisture transfer problems. J. Comput. Appl. Math. 233(12), 3103–3112 (2010)
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Chapter 15
SPICE Model for Fast Time Domain Simulation
of Power Transformers, Exploiting the
Ferromagnetic Hysteresis and Eddy-Currents

Lucian Mandache, Dumitru Topan, Mihai Iordache, and Ioana Gabriela Sirbu

Abstract. The paper proposes an effective time-domain modeling and simulation
strategy of power transformers, using the SPICE circuit simulator. The nonlinear
phenomena involved by the iron core are carefully considered, including the non-
linearity with saturation, static hysteresis and eddy currents. The principle of mag-
netic circuit modeling is based on analog lumped equivalent circuits and the SPICE
implementation uses the principle of modularity. Such a module includes one trans-
former winding (either primary or secondary) and its core leg, implemented as a
subcircuit with user-defined parameters. The method allows simulating normal op-
eration modes, as well as critical transients and faulty conditions, the simulation
result containing all electromagnetic quantities as time-domain functions. It is re-
markable through its extremely short computation time and reasonable accuracy, it
being conceived firstly as useful tool for design purposes, especially for repeated
simulations required by optimization algorithms. A case study is presented to prove
the feasibility, usefulness and accuracy of the proposed modeling and simulation
approach, where the SPICE results are validated by experimental ones.

15.1 Introduction

The iron cores are basic components of transformers and inductors for wide applica-
tion area, ranging from analog and digital microelectronics toward power converters
and power systems. Because of the related phenomena involved by the iron core, as
the nonlinearity with saturation, electromagnetic inertial behavior caused by the fer-
romagnetic hysteresis, anisotropy and induced eddy currents, a rigorous design of
such electromagnetic devices is difficult. An optimal design of transformers should
also consider the entire electromagnetic system, including the power supply and the
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load, as well as all possible operation modes: normal operation mode (both steady-
state and transients), malfunction modes or critical events.

This goal is only possible through CAD (Computer-Aided Design) tools, based
on appropriate modeling and simulation approaches capable to provide the analysis
of the entire equipment with adequate accuracy. Even though co-simulation solu-
tions involving a FEM (Finite Element)-based simulator for the electromagnetic and
thermal field analysis combined with a time-domain circuit simulator could offer the
most accurate results [1,2], they are obviously the most costly regarding hardware
and software requirements, computation effort and simulation time.

In such circumstances, in order to achieve reasonable design costs with reason-
able accurate results, the concept of modeling the electromagnetic system (including
the iron core) through equivalent diagrams with lumped circuits could be exploited
successfully. Such an equivalent diagram is described by a mathematical model un-
der the form of a nonlinear differential algebraic equation system (DAE). Although
this concept has been promoted by many authors [4-10], it has not been sufficiently
exploited yet. Depending on the analysis aim, the models based on analog lumped
circuits have different degrees of accuracy. The simplest approaches do not con-
sider the iron losses, but only the nonlinear behavior of the first-magnetization curve
specified either by points or by analytic functions [10,11]. Other basic approaches
consider the iron losses globally, with weak connection to the real physical phenom-
ena [4,5]. Some authors developed more improved models starting from the specific
physical phenomena which involve known core losses, as static hysteresis [6,8] or
eddy currents [9].

We propose a more sophisticated but effective procedure for modeling and sim-
ulation of transformers supplied with harmonic or distorted voltages, the load be-
ing linear, nonlinear and/or time-dependent, taking into account, in the same time,
the ferromagnetic nonlinearity with saturation, the static hysteresis and the eddy
currents of the iron core. Since the corresponding mathematical model (DAE) is
SPICE-compatible [3] the powerful software tool from SPICE family – ICAP4 from
Intusoft co. [11] is exploited to perform the numerical analysis. Therefore, the entire
electromagnetic system (including the chain power grid-transformer-load) is simu-
lated in a unitary manner, and the time-consuming FEM-based analysis is avoided.

Although the general principle of this modeling and simulation procedure is
known, our systematic study brings a significant improvement in terms of degree of
generality and the ease of use. We conceived the modeling and simulation method
to become a useful tool for researchers and designers, especially for repeated simu-
lations required by optimization algorithms, where the shortening of the simulation
time is paramount. Moreover, the chosen circuit simulator is remarkable through its
accessibility among the specialists of academia and industry.

The modeling procedure considers the specific phenomena related to the wired
ferromagnetic legs, explained by the Maxwell’s theory. A concept of modularity has
been exploited, in order to confer flexibility and ease of use. As absolute novelty,
the main module is conceived as a subcircuit that combines: a ferromagnetic leg
as magnetic field path, a winding spooled on it and the corresponding flux leakage
path. Moreover, depending on the extern diagram, the winding of the model can
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play either the role of primary or secondary coil. Another module corresponds to
transformer yokes or unwired legs, it being derived starting from the previously
said model of the wired leg. It contains only a nonlinear, hysteretic and eddy current
carrying iron core piece with flux leakage path. The air-gaps are modeled through
linear resistances numerically equal to the corresponding magnetic reluctances.

The modeling procedure has a wide range of generality, being suitable to be ex-
tended to inductors, linear actuators and rotating motors with any normal operation
mode (harmonic, distorted or switching-mode).

The section 15.2 describes briefly the modeling principles, while the SPICE im-
plementation is shown in the section 15.3. An example of a single-phase transformer
is given in the section 15.4, where the SPICE simulation results are judged in com-
parison with experimental results. Some other simulations were performed and the
results are included here.

15.2 Modeling Principles

The simplest model of a ferromagnetic piece of cross section S and length l flowed
by a magnetic flux assumed as uniform within the cross section (with the flux den-
sity B) consists in a voltage controlled nonlinear resistance flowed by a current nu-
merically equal to the magnetic flux, the voltage across it being numerically equal
to the magnetic force [9]. Its nonlinear characteristic i(v) reproduces in scale the
anhysteretic magnetization curve B(H), commonly specified by the manufacturer
of the ferromagnetic material; the scale factors depend on the cross-section and the
length of the piece. Such a model does not consider the hysteresis effect, nor eddy
currents.

The assumption related to the uniform distribution of the magnetic flux density
within the cross section is in accordance to the real phenomenon for relatively small
pieces of magnetic circuits. Moreover, it can be extended to power transformers, as
proven by the experience [12]. If no uniform flux distribution is expected because
of possible unusual shapes of core legs or yokes (e.g. as for water-cooled or forced
air-cooled cores), in order to accomplish the assumption named before, the core leg
model could be divided in smaller elements. We recommend deciding about splitting
the core leg in elements with uniform flux density after a preliminary FEM-based
analysis of the magnetic filed distribution, even for simple harmonic regime.

Although the initial magnetization characteristic is commonly specified by points
as lookup table or graphic, for modeling and simulation purposes, to avoid conver-
gence and stability problems during the numerical computation, an analytic repre-
sentation is preferred, as continuous and derivable function. We tried successfully
the Langevin approximation [13] that accomplishes the condition above and can be
easily matched to the given lookup table. It is an implicit equation which provides
the anhysteretic component of the magnetization:

Man(H) = Msat

(
coth

H + αM
a

− a
H + αM

)
(15.1)
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where the saturation magnetization Msat and the parameters α, acan be established
enough accurately starting from the characteristic specified in the datasheet. About
the ferromagnetic hysteresis, the inertial curve of the irreversible component of
the magnetization is exemplary described by the expression of the differential irre-
versible susceptibility dMirr/dH based on the theory of Jiles and Atherton [13,14].
In order to include the Jiles model in a time-domain circuit simulation program, the
mathematical model must contain only derivatives with respect to time. Since Mirr
and H are time-dependent, the derivative with respect to time of Mirr includes the
irreversible susceptibility developed by Jiles:

dMirr

dt
=

Man − Mirr

ksgn dH
dt − α(Man − Mirr)

dH
dt

(15.2)

where the constant k is related to the width of the hysteresis cycle and the difference
Man − Mirr gives the reversible component of the magnetization weighted with a
subunit coefficient c correlated with the initial susceptibility [13]:

Mrev = c(Man − Mirr) (15.3)

The resulting flux density is therefore the effect of the reversible and irreversible
magnetization:

M = Mrev + Mirr; B = μ0(H + M) (15.4)

Starting from the magnetic force as excitation quantityum = Hl, imposed by a given
ampere-turns according to the Ampere’s law, the corresponding computation chain
of the hysteresis model joined to the Langevin representation of the initial magneti-
zation curve is shown as block diagram in fig. 15.1.

Since the eddy-current losses can be easily assessed for common power trans-
formers working at the grid frequency (starting from the specific power losses speci-
fied in the datasheet), the problem of eddy currents becomes more difficult in distort-
ing operation modes, as under weak power quality conditions, at medium frequen-
cies or in switching mode involved by power electronics applications. We developed

Fig. 15.1 Computation chain of the hysteretic magnetization based on Jiles-Atherton model
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previously an original model for eddy currents, in order to asses their instantaneous
and mean power losses, as well as their parasitic magnetic field [9]. The principle is
based on the computation of an equivalent eddy current whatever the shape or the
iron core piece, and an equivalent resistance that dissipates the same power loss as
in the real case. Massive ferromagnetic pieces, as well as silicon steel sheets have
been treated. The calculus is based on the quantitative evaluation of the phenom-
ena explained by the Maxwell’s theory, according to the Faraday’s law of induction
(to compute the electromotive forces induced in the iron core by the time-variable
magnetic field), the Ohm’s law (to compute the induced eddy current), the Joule’s
law (to compute the power loss) and the Ampere’s law (to compute the parasitic
magnetic field). The equivalent eddy current in the time domain was obtained as:

ieddy(t) = K
p0yl

2π2 f 2
0 B2

0

(
dφ

dt

)
= Keddy

dφ

dt
(15.5)

where p0 is the specific power loss [W/kg] given in the datasheet for the reference
frequency f0 and the reference flux density B0 in harmonic behavior. For silicon
steel laminated sheets the reference conditions are usually 50 Hz and 1 T. K is a
shape factor and γis the mass density in kg/m3. If the eddy current mean power loss
is computed in reference conditions, the equivalent eddy current resistance results:

Reddy =
1

K2
2π2 f 2

0 B2
0

p0ylS
(15.6)

It dissipates accurately the actual power loss when it is flowed by the equivalent
eddy current computed before, whatever the time-domain variation of the magnetic
flux.

Therefore, the anhysteretic or hysteretic magnetization model shall be completed
with additional elements in order to consider the eddy current, its power loss and its
magnetic field, according to the computation chain shown in Fig. 15.2. The input
quantity is the external ampere-turn, as primary source of the magnetic field, while
the eddy current ampere-turn opposes to it.

A core piece carrying a coil is now considered, like a leg together with the pri-
mary winding of a transformer (Fig. 15.3a). All other windings are assumed in open-
circuit and both the main flux φ and the leakage flux φl have been considered.

Obviously, they are fascicular magnetic fluxes. The Kirchhoff’s voltage law for
the primary circuit loop includes the components of the voltage across the winding
of N turns and resistance R, respectively the voltage drop across the resistance and
the electromotive force induced by the total magnetic flux:

v = Ri + N
d(φ + φl)

dt
(15.7)

The main magnetic flux flows through the ferromagnetic leg, while the leakage flux
path can be assumed as a linear magnetic reluctance corresponding to the surround-
ing air. Therefore, an equivalent diagram of the structure of fig. 15.3a is conceived
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as in fig. 15.3b, where the model of the core piece includes both hysteresis and eddy-
current effect. The magnetic reluctance corresponding to the leakage flux is noted
Rml .

The ampere-turn of the winding is modeled by the current controlled voltage
source with the control resistance numerically equal to its number of turns. The sec-
ond term of (15.7) is modeled as the current controlled voltage source, controlled
with the time-derivative of the input current, numerically equal to the total magnetic
flux φ + φl . If the secondary winding is now considered, using similar notations as
in (15.7) and fig. 15.3a, the term of the form Nd(φ + φl)/dt represents the exci-
tation of the secondary circuit, so that the corresponding expression of the voltage
Kirchhoff’s law is formally identical to (15.7), with the only change of the sign
of the term Ri, as consequence of current sense inversion. Therefore, the model of
fig. 15.3b remains valid for the assembly secondary winding - core leg. Since the
mathematical model is a differential-algebraic equation system, the modeling pro-
cedure is compatible not only with SPICE, but also with other time-domain analysis
methods based on state or semi-state equations [15,16].

15.3 SPICE Implementation

According to the principles exposed in the previous section, a complex model of
a wired ferromagnetic piece has been developed and implemented as SPICE sub-
circuit (version ICAP4 from Intusoft). It is based on an equivalent lumped circuit
diagram. It contains four terminals, two terminals of the electric circuit (winding
terminals) and two terminals of the magnetic circuit. The same subcircuit can play
either the role of primary or secondary.

Depending on the transformer construction, the model allows placing the primary
and secondary on the same core leg or on different legs. The number of secondary
windings is practically unlimited.

Fig. 15.2 Computation chain of eddy currents and their effect in ferromagnetic core pieces
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(a) (b)

Fig. 15.3 Model of a wired transformer leg

The subcircuit netlist (called LEDDY3) built according to the model above is
detailed below. It implements the computation chains of Fig. 15.1 and Fig. 15.2
integrated in the model diagram of Fig. 15.3a:

*SYM=LEDDY
.SUBCKT LEDDY3 1B 2B 1M 2M {RCC=1.5, N=100, SFE=10e-4,
+LFE=0.1, BSAT=1.8, GC=0.95, C=0.53, K=20, ALPHA=5e-5, A=35}
* Hysteresis model:
BB 1 2 I=3.1415*4e-7*{SFE}*(I(VH)+V(5))
GH 0 4 1 2 {1/LFE}
L2 4 9 1 IC=0
VH 9 0 0
BDMIRR 0 5 I=V(4)*(V(5)-V(6))/({C*K}*SGN(V(4))-
+{ALPHA}*(V(5)-V(6)))
BMREV 5 6 V={C}*(V(7)-V(6))
* Anhysteretic characteristic.
C1 6 0 1 IC=0
BAUX 8 0 V=(I(VH)+V(5)*{ALPHA})/{A}
R1 8 0 1e9
BMAN 7 0 V=ABS(V(8))>1e-3 ? {BSAT}/(3.1415*4e-7)*
+(1/TANH(V(8))-1/V(8)) : {BSAT}/(3.1415*4e-7)*V(8)/3
R2 7 0 1e9
* Eddy-current model:
VF 1A 1 0
FF 0 3A VF 1
LF 3A 0 1 IC=0
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GE 0 4A 3A 0 {GC}
RE 4A 5A {2/3/GC}
VE 5A 0 0
HE 2 2M VE 1
* Model of eq. (7)
RC 1B 10 {RCC}
E1 10 3 3A 0 {N}
V1 3 2B
H1 1A 1M V1 {N}
.ENDS

The main subcircuit parameters are: the DC resistance of the winding, the winding
number of turns, the cross section, the length and the shape factor of the ferromag-
netic core leg, the saturation flux density, nearby other parameters related to the
shape of the initial magnetization characteristic and static hysteresis, and the level
of the equivalent eddy current, as described above. The quantities of interest, as the
magnetic filed strength, magnetic flux density, equivalent eddy current, can be easily
passed outside the subcircuit in order to be processed and judged according to the
requirements of each particular case.

The subcircuit terminals 1B and 2B correspond to the electric circuit, while the
terminals 1M and 2M correspond to the magnetic circuit. Four areas are distin-
guished depending on their roles, as it was emphasized by comments included in
the subcircuit netlist. The subcircuit uses independent zero-voltage sources as am-
meters (V1 for the winding current, VF for the magnetic flux, VH for the mag-netic
field strength, VE for the equivalent eddy-current), and dependent voltage and cur-
rent sources for modeling the equations (15.1)-(15.7) or to transfer some quantities
from an area to another.

For legs or yokes without windings, a simplified version of this subcircuit has
been created. Both subcircuits were included in the SPICE model library, in order
to be called in future applications.

15.4 Example of Modeling and Simulation of a Single-Phase
Power Transformer

To exemplify the usefulness of the developed model, we chose to simulate a single-
phase voltage transformer in transient behavior using the SPICE implementation.
The simulation results are compared with experimental results. To acquire with ac-
curacy the experimental data, we used a power analyzer Chauvin Arnoux CA8352
with the sampling rate set at 19.2 kHz.

Summary description of the studied transformer designed and built for a par-
ticular application: rated voltage 220/120V, core type E+I (E20), silicon steel M4-
0.27mm, main leg of 16mm2, primary winding of 420 turns.

We consider as relevant and expose here the case when the no-load transformer
is connected to the grid at the moment of zero-crossing voltage, so that the peak
value of the current achieves the highest value comparing to all other possible cases.
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In Fig. 4 are shown the reference experimental results given directly by the power
analyzer interface; both the voltage across the primary winding and the transient
no-load current were acquired.

For the SPICE simulation, the model diagram of fig. 15.5 was used. It contains
models like those described before for the wired central core leg (noted LEDDY3)
and for the lateral legs (LEDDY0). The technological airgaps are represented as lin-
ear resistors (RGAP1 and RGAP2 on the figure, with the electric resistance numeri-
cally equal to the magnetic reluctance of the corresponding airgap) and the network
parameters are modeled as RL impedance (LG and RG on the figure). The no-load
operation mode is obtained with a high value of the load resistance (RLOAD). The
diagram contains also testing points for currents and voltages. The test points for
currents evaluate the currents through the additional zero-voltage independent volt-
age sources (V3 for the primary current, and V1 for the current numerically equal to
the magnetic flux in the main leg). The voltage test points evaluate the voltages with
respect to the ground of the points 6 (primary voltage) and 12 (this is numerically
equal to the magnetic force across the main leg). The power source of 220V / 50Hz
is modeled as an independent voltage source (VG on the figure) with no initial phase
angle.

The transient analysis time covered ten complete cycles in order to obtain the
damping of transient components. The maximum value of the integration time step
was chosen 5μs, corresponding to 40000 computation points.

The current given by the simulation is shown in Fig. 15.6, where the experimental
curve was represented too for comparison. For more clarity, the first 4 cycles and the
last cycle (the last cycle describes the steady-state operation mode) are shown sep-
arately at adequate representation scales. The simulation time was only 4.8 seconds
on a PC of 2.2GHz/2GB RAM.

The accuracy of the simulation results, with acceptable deviation compared to
actual (experimental) phenomena, proves the viability of the method.

Any electric or magnetic quantity, including instantaneous and mean power
losses, can be also computed as simulation result and stored in the output file. This
is extremely useful in design activities. As example, in Fig. 15.7 is shown a global
image on the transient analysis described above, where the current (curve 2) is rep-
resented together with the voltage across the primary winding (curve 1) and the
corresponding magnetization curve denoting a strong saturation (curve 3).

Contrarily, if the transformer is connected to the power grid at the peak value of
the voltage (see curve 2 in Fig. 8), the transient behavior is extremely slight (see the
current – curve 1), with no saturation (curve 3).

In Fig. 15.9 it is depicted the influence of the grid voltage on the primary no-load
(magnetization) current, where the curve 1 corresponds to the rated value (slightly
distorted), the curve 2 correspond to a 20% higher voltage (strongly distorted be-
cause of the iron core saturation level) and the curve 3 corresponds to a 20% lower
voltage (quasi-sinusoidal). The RMS values of the currents are also given on the
label attached to the figure. It must be emphasized that the simulation time for each
studied case was below 10 seconds, on a common PC.
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(a)

(b)

Fig. 15.4 Rough experimental results acquired with a power analyzer: (a) – primary voltage;
(b) – primary current in transient behavior

Fig. 15.5 Example SPICE diagram
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(a)

(b)

Fig. 15.6 The primary no-load current as simulation/experimental result: (a) – the first four
cycles after the connection to the power grid with detail on the peak value of the current; (b)
– one cycle describing steady-state operation mode
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Fig. 15.7 No-load transformer connected to the grid at the moment of zero-crossing voltage

Fig. 15.8 No-load transformer connected to the grid at the peak value of the voltage
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Fig. 15.9 Influence of the grid voltage on the primary no-load current

15.5 Conclusion

The proposed modeling and simulation method is capable to offer complete infor-
mation on conventional power transformers, as well as on those conceived for spe-
cial applications, as in power electronics, due to the time-domain modeling. The
complex nonlinear phenomena in ferromagnetic cores are also considered. The sim-
plifying assumptions (see the uniformity of the flux density) are reasonable for the
envisaged applications.

The flexibility and simplicity of implementation are obvious due to the modu-
lar structure of the model. The method is remarkable through the extremely short
computation time, comparing to other modeling and simulation strategies, so that
repeated simulations required by optimization algorithms can benefit by negligible
costs. It is also robust and reliable of the point of view of the computation stability.
Thus, the interaction of the studied transformer with the power grid and other neigh-
boring devices can be easily considered to improve the accuracy of the simulation.

The method can be easily extended for other electromagnetic devices with soft
iron core (e.g. filter inductors, electromagnetic actuators, excitation poles of DC
or synchronous motors). To keep a reasonable accuracy, a preliminary FEM-based
magnetic field analysis could be necessary before deciding about splitting the fer-
romagnetic core in elements with uniform flux density, as mentioned in the section
15.2.

Acknowledgements. This work was supported by The Romanian Ministry of Education,
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Chapter 16
Hard-Coupled Modeling of Induction Shrink Fit
of Gas-Turbine Active Wheel

Václav Kotlan, Pavel Karban, Bohuš Ulrych, Ivo Doležel, and Pavel Kůs

Abstract. Hard-coupled model of induction heating of a ferromagnetic disk is pre-
sented. The problem is described by three coupled partial differential equations (for
the distribution of electromagnetic field, temperature field and field of thermoelastic
displacements) whose coefficients are temperature-dependent functions. The sys-
tem is solved numerically in the monolithic formulation by a fully adaptive finite
element method of higher order of accuracy implemented into own codes Hermes
and Agros. The methodology is illustrated by a typical example—heating of an ac-
tive wheel of a high-speed gas turbine that is to be hot-pressed on a shaft with the
aim of obtaining a shrink fit allowing transferring the given torque at the nominal
revolutions. Evaluated and discussed are also the parameters of the heating process
in transverse and longitudinal magnetic fields.

16.1 Introduction

Hot pressing belongs to widely spread industrial technologies used in a great
number of industrial applications (for instance manufacturing of shrunk-on rings,
crankshafts, tires of railway wheels, armature bandages in electrical machines, etc.,
see [1], [2]). The process of heating is mostly realized by gas or induction. Induction
heating is characterized by an easy control of the intensity of heating and its local
distribution, no chemical changes in the surface layers of the processed material,
and no products of combustion.
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In case of assembly of a shrink fit its external part (usually a chuck, a disk or
a wheel) must be heated as long as the dilatation of its bore allows inserting the
internal part (shaft, shank of a machine tool) into it. The system (particularly its
heated part) is then cooled, which produces the shrink fit. Its purpose is usually to
transfer a prescribed mechanical torque. The process is schematically depicted in
Fig. 16.1.

Fig. 16.1 Schematic view of manufacturing a shrink fit

The radius of the internal hole of the wheel at cold is rh, the radius of the shaft
is rs, and there holds rh < rs. After heating the wheel its hole enlarges its radius to
rh1 > rs. Then the wheel is put on the shaft and the whole system is cooled. After
cooling the radii of hole and shaft are the same (rh2) and there holds rh < rh2 < rs.

Manufacturing of shrink fits often requires a lot of energy. In order to minimize
its consumption and also to anticipate the mechanical properties of the resultant
fit, we should have detailed information about the complete process. And the most
relevant tool is both the previous experience and computer modeling.

From the physical viewpoint, the process represents a triply coupled nonlinear
and nonstationary problem characterized by a mutual interaction of three physical
fields: magnetic field, temperature field and field of thermoelastic displacements.
These fields (more or less influencing one another) are described by partial differen-
tial equations (PDEs) whose coefficients containing various material properties are
temperature-dependent functions.

The above system was solved by several groups of authors working in the do-
main. They mostly used either a weakly coupled formulation (the three fields were
solved independently of one another), see [3], [4], [5] or a mixed formulation, when
magnetic field is solved independently, while the two remaining fields in the quasi-
coupled or hard coupled formulation [6]. Usage of the weakly coupled formulation
is acceptable just in the case of lower temperatures necessary for heating, as the
material parameters in such a temperature range may be (with a small error) con-
sidered constant. The mixed formulation provides relatively good results even for
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higher temperature rises, but still there is a risk of unacceptable inaccuracies. And
the temperature dependence of the relative permeability was considered only in a
few cases (a serious reason is here the lack of experimental data).

The authors present the solution to the problem in the monolithic formulation that
allows modeling of heating of the external part up to the Curie temperature or even
higher. The algorithm is based on a fully adaptive finite element method of higher
order of accuracy, which represents the basis of codes Hermes and Agros developed
in our group. The algorithm is illustrated by an example of hot pressing of an active
wheel on shaft of a high-speed gas turbine working at temperatures exceeding even
500 ◦C.

The aim of the paper is to propose a complete methodology of proposal of a
shrink fit that satisfies all mechanical requirements and whose realization is (with
respect to energy needed) as cheap as possible. More details are given in the next
section, after explaining necessary particulars concerning the mechanical aspects of
the problem.

16.2 Formulation of the Problem and Its Basic Analysis

In fact, the problem of pressing a wheel on a shaft based on the induction shrink fit
is even more complex than it may seem from the previous section. For its proposal,
we usually start from the following demands:

• The shrink fit has to transfer the required mechanical torque Mm.
• The maximum revolutions nmax of the system wheel-shaft must be lower than

the limit (”release”) revolutions nlim (revolutions at which the centrifugal forces
acting on the wheel produce such enlargement of its internal diameter that the fit
becomes released).

• The pressure p acting between both parts of the fit in any admissible operation
regime must not exceed its maximum allowable value pmax.

Let us analyze the situation on a wheel of the simplest rectangular cross section as
is depicted in Fig. 16.2. For the sake of simplicity we suppose that both the wheel
and shaft are made of the same material (this case, however, is perhaps the most
usual one in technical practice). The diameter of the bore in the wheel must always
be smaller than the diameter of the shaft. Provided that the shaft is perfectly firm
(which is an idealization of the real situation), the pressure p acting in the place of
the fit is given by the formula

p =
ΔRE

r1

r2
2 − r2

1

2r2
2

≤ pmax (16.1)

where E denotes the Young modulus of the material and ΔR denotes the interference
(in Fig. 16.2 somewhat exaggerated for better visibility). Other dimensions are also
obvious from Fig. 16.2. The pressure p must satisfy the inequality
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Fig. 16.2 System shaft
wheel before assembly

p
2r2

2

r2
2 − r2

1
=

ΔRE
r1

≤ σa

2
⇒ ΔR ≤ σar1

2E
(16.2)

where σa stands for the allowable stress of the material. The starting torque Mstart
(that is always somewhat higher than the nominal torque Mm) is now given by the
expression

Mstart = 2πpr2
1h f f (16.3)

where f f stands for the coefficient of the static friction between the metals from
which both wheel and shaft are produced. Finally, the limit revolutions nlim (in
rev/min) follow from the formula

nlim =
60
2π

√
4ΔRE

ρr1r2
2(3 + v)

(16.4)

where ρ denotes the specific mass of the wheel and n is the Poisson number. Now
we will explain the quantity ΔR called interference. As known, neither the radius
of the shaft rs nor the radius of the bore in the wheel rh can be manufactured quite
exactly. Each of these dimensions is characterized by a certain tolerance band, as is
indicated in Fig. 16.3.

Suppose that the nominal radius of both the shaft and hole should be r1. If we
want to join both parts by a shrink fit, the real radius of the shaft must be little larger
than r1, while the real radius of the hole must be little smaller. Both mentioned radii
lie between two bounds. The radius of the shaft rs ∈< rs,min,rs,max > while the
radius of the hole rh ∈< rh,min,rh,max >. Moreover, rh,max < r1 < rs,min. Now it
is clear that the real interference ΔR ∈< ΔRmin, Rmax >, where ΔRmin = rs,min −
rh,max and ΔRmax = rs,max − rh,min. And the conditions listed at the beginning of
Section 16.2 must hold for both the limit values of the interference ΔR, i.e., both
for ΔRmin and ΔRmax.

In the case of ΔR = ΔRmin we must mainly check the starting torque Mstart
and release revolutions nlim, while there is practically no danger of exceeding the
allowable pressure p. On the contrary, for ΔR = ΔRmax the situation is opposite.

Consider an arrangement of an active wheel of a gas turbine and shaft depicted (in
somewhat simplified manner) in Fig. 16.4. The disk is heated by two coils (indicated
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Fig. 16.3 Tolerance bands
for the shaft and wheel

in the right part of Fig. 16.4) in two variants, using transverse (up) and longitudinal
(down) magnetic fields. The coils formed by a hollow massive copper conductor are
adjusted to the surface of the heated part. In our case we will consider two conical
plate-type coils, but even more sophisticated arrangements can be found in industrial
practice.

Fig. 16.4 System disk–shaft (left, all dimensions in mm) and two possible arrangements of
the field coils in the process of induction heating (right)
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The aim of this paper is to carry out a complete study of preparation of the above
shrink fit, consisting of the following steps:

• Finding the interference shaft-hole that allows transferring the prescribed torque
within the range of the operation temperatures.

• Checking the nominal revolutions (with respect to the release revolutions) and
operation pressure between the shaft and wheel.

• Estimation of the field currents in the inductors that produce a sufficient temper-
ature rise of the wheel (that brings about the required dilatation of its hole) in an
acceptable time period.

• Finding the principal characteristics describing the process of heating in the
transverse and longitudinal magnetic fields,

• Evaluation of the results obtained and their discussion (with respect to the time
of heating and efficiency).

16.3 Continuous Mathematical Model of the Process of Heating

Suppose that the material for the shaft and wheel is known (mainly its parameters
E, ν and σa) and also the interference ΔR. The process of induction heating of the
wheel is then described by three partial differential equations (PDEs) describing the
distributions of magnetic field, temperature field and field of thermoelastic displace-
ments. These fields are mutually coupled through selected material parameters (that
are generally functions of the temperature).

Electromagnetic field generated by the inductors in the wheel and its neighbor-
hood is described by the well-known parabolic equation for the magnetic vector
potential A in the form [7]

curl
(

1
μ

curlA
)
+ γ

∂A
∂t

= Jext (16.5)

where μ denotes the magnetic permeability, γ is the electric conductivity and Jext
stands for the vector of the external harmonic current density in the inductors. Per-
meability μ is supposed to be a nonlinear function of not only flux density B, but
also temperature T. But solution to equation (16.5) is practically unfeasible. The
reason consists in the deep disproportion between the frequency f (tens or hundreds
Hz) of the field current and time of heating (tens of seconds or minutes). That is
why the model was somewhat simplified using the assumption that the magnetic
field is harmonic. In such a case it can be described by the Helmholtz equation for
the phasor A of the magnetic vector potential A

curl culr A + jωγμA = μJ
ext

(16.6)

where ω is the angular frequency. But during the numerical processing of this equa-
tion, the magnetic permeability μ in any cell of the discretization mesh is assigned
to the actual local value of magnetic flux density B. The conditions along the axis
of the device and artificial boundary placed at a sufficient distance from the system
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are of the Dirichlet type A = 0. The temperature field in the wheel is described by
the heat transfer equation [8] in the form

div(λ grad T) = ρcp
∂T
∂t
−w (16.7)

where λ is the thermal conductivity, ρ denotes the specific mass and cp stands
for the specific heat at a constant pressure (all of these parameters are again
temperature-dependent functions). Finally, symbol w denotes the time average vol-
umetric sources of heat that generally consist of the volumetric Joule losses wJ due
to eddy currents and magnetization losses wm, so that

w = wJ + wm (16.8)

where

wJ =
|Jeddy|2

γ
, Jeddy = jωγA (16.9)

while losses wm (in the case that they are considered) are determined from the
known measured loss dependence wm = wm(|B|) for the used material. The sub-
stantial advantage of the above approach consists in the fact that as the vector po-
tential A in any element of this model is assumed harmonic, magnetic flux density
B in every element is then also harmonic.

The boundary conditions for (16.7) should take into account convection and ra-
diation, but their particular application depends on the case solved.

The solution of the thermoelastic problem was performed using the Lamé equa-
tion

(ϕ + ψ)grad (divu) + ψΔu− (3ϕ + 2ψ)αTgrad T + f = 0 (16.10)

where ϕ and ψ are coefficients associated with material parameters by the relations

ϕ =
νE

(1 + ν)(1− 2ν)
, ψ =

E
2(1 + ν)

(16.11)

Here, u represents the displacement vector, αT denotes the coefficient of the lin-
ear thermal dilatability of material (which is, generally, a temperature-dependent
function) and f denotes the vector of the internal volumetric (electromagnetic,
gravitational) forces. The application of the boundary conditions depends on the
arrangement solved. Knowledge of the displacements u allows determining of the
corresponding deformations, and mechanical strains and stresses of the thermoelas-
tic origin in the wheel.

16.4 Numerical Solution

The numerical solution of the problem is realized by a fully adaptive higher-order
finite element method [10], whose algorithms are implemented into codes Hermes



294 V. Kotlan et al.

[11] and Agros [12]. Both codes have been developed in our group for a couple of
years.

The codes written in C++ are intended for monolithic numerical solution of
systems of generally nonlinear and nonstationary second-order partial differential
equations whose principal purpose is hard-coupled modeling of complex physical
problems. While Hermes is a library containing the most advanced procedures and
algorithms for the numerical processing of the task solved, Agros represents a pow-
erful preprocessor and postprocessor. Comprehensive information about them can
be found on the corresponding www pages. Both codes are freely distributable un-
der the GNU General Public License. The most important and in some cases quite
unique features of the codes (that were used in the process of the numerical solution)
follow:

• Solution of the system of PDEs is carried out monolithically, which means that
the resultant numerical scheme is characterized by just one stiffness matrix. The
PDEs are first rewritten into the weak forms whose numerical integration pro-
vides its coefficients. The integration is performed using the Gauss quadrature
formulas.

• Fully automatic hp-adaptivity. In every iteration step the solution is compared
with the reference solution (realized on an approximately twice finer mesh), and
the distribution of error is then used for selection of candidates for adaptivity.
Based on sophisticated and subtle algorithms the adaptivity is realized either by
a subdivision of the candidate element or by its description by a polynomial of a
higher order [13], [14].

• Each physical field can be solved on quite a different mesh that best corresponds
to its particulars. This is of great importance, for instance, for respecting skin ef-
fect in the magnetic field, while the temperature field is usually smooth. Special
powerful higher-order techniques of mapping are then used to avoid any numer-
ical errors in the process of assembly of the stiffness matrix.

• In nonstationary processes every mesh can change in time, in accordance with
the real evolution of the corresponding physical quantities.

• Easy treatment of the hanging nodes [15] appearing on the boundaries of sub-
domains whose elements have to be refined. Usually, the hanging nodes bring
about a considerable increase of the number of the degrees of freedom (DOFs).
The code contains higher-order algorithms for respecting these nodes without
any need of an additional refinement of the external parts neighboring with the
re-fined subdomain.

• Curved elements able to replace curvilinear parts of any boundary by a system
of circular or elliptic arcs. These elements mostly allow reaching highly accurate
results near the curvilinear boundaries with very low numbers of the DOFs.

16.5 Illustrative Example

A wheel is made of carbon steel (Czech make) CSN 12 040 and its dimensions are
specified in Fig. 16.4). The most important physical parameters of the steel follow:
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E = 2.1× 1011N/m2,ν = 0.3,σa = 2.75× 108N/m2,αT = 1.25× 10−5/K,ρ =
7650kg/m3, and f f = 0.15.

From (16.2) we immediately obtain the inequality ΔR ≤ 39.3× 10−6 m. As the
profile of the wheel (see Fig. 16.4)) is irregular, we have to determine the equivalent
values of r2 and h(r1 = 0.06m). From the viewpoint of the starting torque Mstart,
decisive is the length of the wheel bore, so that we accept h = 0.16m. Finally, the
value r2 is calculated from the condition that the axial cut through the wheel is
rectangular and volume of the equivalent wheel is equal to the volume of the real
wheel. In this way we obtain r2 = 0.3294m. Furthermore, for the axisymmetric
arrangement the vector of displacements u has components (ur,0,uz).

Using the above data we can determine the dependencies of mechanical val-
ues listed in section 16.2 on the interference ΔR. Its value is determined as ΔR =
min[ur(r = r1)] along the length of the hole, where ur denotes the radial compo-
nent of the displacement vector u, see (16.10). Figure 16.5) shows the dependence
p = p(ΔR) (eq. 16.1), Fig. 16.6 depicts the dependence Mstart = Mstart(ΔR) (eq.
16.3) and Fig. 16.7 contains the dependence nlim = nlim(ΔR) (eq. 16.4). The value
of ΔR changes from 0 to 39.3× 10−6m, which is its maximum possible value with
respect to the allowable stress.

Fig. 16.5 Dependence p = p(ΔR) of the investigated wheel

With respect that the nominal revolutions of such wheels do not exceed n =
1500/min, it seems to be reasonable to consider (with respect to the safety coeffi-
cient k = 1.5) ΔR ≥ 10× 10−6m. Such values of ΔR also meet the demand laid on
the transferred torque.

For the following electromagnetic, thermal and thermoelastic computations we
will also need further important characteristics of the used carbon steel. For ex-
ample, Fig. 16.8 shows its magnetization characteristic B = B(H) and Figs. 16.9–
16.11 depict

the temperature dependencies of its electric conductivity γ , thermal conductivity
λ , and heat capacity cp.

As told before, the magnetic permeability μ (more precisely its relative com-
ponent μr) is a function of magnetic flux density B and temperature T. For every
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Fig. 16.6 Dependence Mstart = Mstart(ΔR) of the investigated wheel

Fig. 16.7 Dependence nlim = nlim(ΔR) of the investigated wheel

Fig. 16.8 Magnetization
curve of steel CSN 12 040

type of steel it must be found experimentally, which usually represents a serious
difficulty. We introduce, therefore, an assumption that μr(B, T) = μr(B, T0)φ(T),
where μr(B, T0) is the dependence of relative permeability μr on magnetic flux
density B at a given temperature T0 (for example, T0 = 20 ◦C) and function φ(T) is
given by the relation
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f or T0 ≤ T ≤ TC φ(T) = a− bT2

f or TC ≤ T φ(T) =
1

μr(B, T0)

(16.12)

Here,

a =
μr(B, T0)T2

C − T2
0

μr(B, T0)(T2
C − T2

0 )
, b =

μr(B, T0)− 1
μr(B, T0)(T2

C − T2
0 )

(16.13)

and TC is the Curie temperature (for the steel used its value is approximately 800 ◦C.
Both inductors are wound by a massive hollow copper conductor in an arrange-

ment depicted in Fig. 16.12. Each of them has 15 turns and the conductors are
intensively cooled by flowing water. The inductors are packed in glass wool (its
physical parameters change with the temperature only very slightly, so that we con-
sider γgw = 0S/m,λgw = 0.04W/mK,ρcp,gw = 0.04824× 10−6 J/m3K) in order
to reduce the thermal losses by convection and radiation from the heated wheel. This
means that the wheel is thermally well insulated in the course of the whole process
of heating. The temperature of the ambient air T0 = 30 ◦C and average temperature
of water flowing in the hollow conductors of the inductor Tw = 50 ◦C.

For illustration, Fig. 16.13 shows the meshes (after adaptivity, frequency of the
field current f = 50Hz) for computation of the temperature field (left) and thermoe-
lastic displacements (right). They strongly differ from each other and also from the
mesh (not depicted) used for the magnetic analysis. No radiation is assumed along
the external boundary of the insulation system formed by glass wool.

Fig. 16.9 Dependence of
electrical conductivity γ on
temperature T for steel CSN
12

Fig. 16.10 Dependence of
thermal conductivity λ on
temperature T for steel CSN
12



298 V. Kotlan et al.

Fig. 16.11 Dependence
of heat capacity ρcp on
temperature T for steel CSN
12 040

Fig. 16.12 Arrangement
of the inductor: 1–heated
wheel, 2–thermal insulation
(glass wool), 3–hollow turns
of the inductor, 4–cooling
water

The principal results representing the velocity of heating in transverse and longi-
tudinal magnetic fields generated by field currents of the same value and analogous
dependencies for the radial displacements are depicted in Figs. 16.14 and 16.15. It
is clear, that from the viewpoint of the velocity of heating and total efficiency of
the process the application of the transverse field is more favorable. From the graph
we can choose an appropriate interference ΔR = ur(rmin) and using Figs. 16.5,
16.6 and 16.7 we can easily check the pressure p, starting torque Mstart and release
revolutions nlim.

Fig. 15 Resultant graphs for induction heating in longitudinal magnetic field:
I. average temperature Tavrg in the wheel versus time, II. temperature of the inner
surface T(r1) of the wheel versus time, III. radial dilatation ur(r1) of the inner surface
of the wheel versus time for I =5 kA f =50 Hz
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Fig. 16.13 Discretization mesh (after adaptivity) used for computation of temperature field
(left) and for computation of thermoelastic displacements (right) for frequency f = 50Hz

Fig. 16.14 Resultant graphs for induction heating in transverse magnetic field: I. average
temperature Tavrg in the wheel versus time, II. temperature of the inner surface T(r1) of the
wheel versus time, III. radial dilatation ur(r1) of the inner surface of the wheel versus time
for I = 5kA f = 50Hz
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Fig. 16.15 Resultant graphs for induction heating in longitudinal magnetic field: I. average
temperature Tavrg in the wheel versus time, II. temperature of the inner surface T(r1) of the
wheel versus time, III. radial dilatation ur(r1) of the inner surface of the wheel versus time
for I = 5kA f = 50Hz

16.6 Conclusion

For the investigated wheel, its heating in the transverse magnetic field exhibits
higher velocity and better efficiency than in the longitudinal one. A substantial ac-
celeration of the process is reached by using an appropriate thermal insulation along
both sides of the wheel, that leads to a considerable reduction of thermal losses.

Next work in the field will be focused on further improvement of numerical algo-
rithms and acceleration of the computations. After finding the temperature depen-
dencies of the mechanical parameters (E, ν and αT) of the steel, they will also be
included into the analysis.
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Chapter 17
Stability Analysis and Limit Cycles of High
Order Sigma-Delta Modulators

Valeri Mladenov

Abstract. In this chapter we present an unified approach for study the stability and
validation of potential limit cycles of one bit high order Sigma-Delta modulators.
The approach is general because it uses the general form of a Sigma-Delta modula-
tor. It is based on a parallel decomposition of the modulator and a direct nonlinear
systems analysis. In this representation, the general N-th order modulator is trans-
formed into a decomposition of low order, generally complex modulators, which
interact only through the quantizer function. The developed conditions for stability
and for validation of potential limit cycles are very easy for implementation and this
procedure is very fast.

17.1 Introduction

Sigma-Delta modulation has become in recent years an increasingly popular choice
for robust and inexpensive analog-to-digital and digital-to-analog conversion [1, 2].
Despite the widespread use of Sigma-Delta modulators theoretical understanding
of Sigma-Delta concept is still very limited. This is a consequence of the fact that
these systems are nonlinear, due to the presence of a discontinuous nonlinearity - the
quantizer. Since the pioneering work of Gray and his co-workers beginning with [3],
a number of researchers have contributed to the development of a theory of Sigma-
Delta modulation based on the principles of nonlinear dynamics [4, 5, 6]. That work
and references there, has succeeded in explaining many fundamentally nonlinear
features of this system. The stability of high order interpolative Sigma-Delta (ΣΔ)
modulators based on nonlinear dynamics has been considered in a couple of papers
[7, 8]. The authors present a technique, which in many cases simplifies the analysis.
The technique involves a transformation of the state equations of a modulator into
a form in which the individual state variables are essentially decoupled and interact

Valeri Mladenov
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only within the quantizer function. In [9, 10, 11] and [12] a stability (in the sense of
boundness of the states) analysis approach based on decomposition of the general
N-th order modulator is presented. This decomposition is considered for all cases
of poles of the transfer function of the modulator loop filter. Using this presentation
the modulator could be considered as made up of N first order modulators, which
interact only through the quantizer function. Based on this decomposition the sta-
bility conditions of high order modulators are extracted. They are determined by the
stability conditions of each of the first order modulators but shifted with respect to
the origin of the quantizer function. Limit cycles are well known phenomena that
often appear in practical ΣΔ modulators. For data processing applications it is very
important to predict and describe possible limit cycles. Main results concerning the
limit cycles for low order Sigma-Delta modulators are presented in [6, 13, 14] and
[15]. In [16, 17] authors use state space approach and present a mathematical frame-
work for the description of limit cycles in 1-bit Sigma-Delta modulators for constant
inputs. In [18] and [19] an approach for validation of potential limit cycles for high
order modulators with constant input signals is presented. The approach is based on
the same decomposition of the general N-th order modulator presented in [7, 9, 10,
11] and [12]. The conditions for the existence of limit cycles given in [18] and [19]
are easily to be checked and they are basis of a searching procedure for possible
limit cycles. In this contribution we do extend both techniques and present unified
approach for study the stability and limit cycles of high order sigma-delta modula-
tors. The study is organized as follows. In the next section we describe the parallel
decomposition technique for different cases of poles of the loop filter transfer func-
tion. Then we present the stability analysis study for first and high order modulators
together with an example. In Section 17.5 we present the limit cycle analysis and
also give several examples to show the applicability of the presented techniques.
The concluding remarks are given in the last section.

17.2 Parallel Decomposition of a Sigma Delta Modulator

The structure of a basic ΣΔ modulator is shown in Figure 17.1, and consists of a
filter with transfer function G(z) followed by a one-bit quantizer in a feedback loop.
The system operates in discrete time.

The input to the loop is a discrete-time sequence u(n) ∈ [−1,1], which is to ap-
pear in quantized form at the output. The discrete-time sequence x(n) is the output

Fig. 17.1 Basic structure of the sigma-delta modulator
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of the filter and the input to the quantizer. Let us consider a N-th order modulator
with a loop filter with a transfer function (TF) in the form

G(z) =
a1z−1 + ... + aNz−N

1 + d1z−1 + d2z−2 + dNz−N (17.1)

Suppose the transfer function has N real distinct roots of the denominator. Then
using partial fraction expansion we get

G(z) =
a1z−1 + ... + aNz−N

(1− λ1z−1)...(1− λNz−1)
=

b1z−1

1− λ1z−1 + ... +
bNz−1

1− λNz−1 (17.2)

where the coefficients bi, i = 1,2, ..., N of the fractional components can be found

easily using the well known formula bi =
(1−λiz−1)

z−1

∣∣∣
z=λi

G(z) .

The corresponding block diagram of the modulator is given in Figure 17.2.
Based on this presentation the state equations of the ΣΔ modulator are

xk(n + 1) =λkxk(n) +

[
u(n)− f

(
N

∑
i=1

bixi(n)

)]
=

=λkxk(n) +

⎡
⎢⎣u(n)− f

⎛
⎜⎝bkxk(n) +

N

∑
i=1
i �=k

bixi(n)

⎞
⎟⎠
⎤
⎥⎦

k =1,2, ..., N

(17.3)

where λ1, λ2 . . . ,λN are poles (or modes) of the loop filter and the quantizer func-
tion f is a sign function. Equation (17.3) also can be rewritten in the form

Fig. 17.2 Block diagram of the modulator using parallel form of the loop filter
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xk(n + 1) =λkxk(n) +

[
u(n)− f

(
N

∑
i=1

bixi(n)

)]
=

λkxk(n) +
[

u(n)− f
(

bTx(n)
)]

=

λkxk(n) + [u(n)− y(n)] k = 1,2, ..., N

(17.4)

where b = (b1,b2, ...,bN)
T is the vector of fractional components coefficients and

x = (x1, x2, ..., xN)
T is the state vector. The above presentation indicates that high

order modulators could be considered as built up of first order modulators, which
interact only through the quantizer function. To simplify the notations, we will drop
the indexes and will rewrite equation (17.3) in the following form

xk(n + 1) = λx(n) + [u(n)− f (bx(n) + α(n))] = (17.5)

where

α(n) =
N

∑
i=1
i �=k

bixi(n) (17.6)

and

y(n) = f

(
N

∑
i=1

bixi(n)

)
= f

(
bTx(n)

)
=

{
1 bTx(n)≥ 0
−1 bTx(n)< 0

(17.7)

Equation (17.4) describes a first order shifted by α(n) modulator. A detailed analysis
of the stability of these modulators will be presented in the next chapter.

In the general case the loop filter transfer function can have complex conjugated
roots. Without loss of generality we will consider only one pair of complex conju-
gated roots. In this case (17.2) becomes

G(z) =
b1z−1

(1− λ1z−1)
+ ... + G2(z) =

b1z−1

(1− λ1z−1)
+ ...

BN−1z−1 + BNz−2

1− d1z−1 − d2z−2

(17.8)

The denominator of the last part of (17.8) has a complex conjugated pair of roots.
The main idea is to use a complex form of expansion of the last part of G(z). There-
fore (17.8) becomes

G(z) =
b1z−1

(1− λ1z−1)
+ ... +

bN−1z−1

(1− λN−1z−1)
+

bNz−1

1− λNz−1 (17.9)

where
λN−1 = α + jβ,λN = α− jβ

bN−1 = δ− jγ,bN = δ + jγ
(17.10)

i.e. λN−1, λN and bN−1, bN are complex conjugated numbers. Because of this we
can use the same parallel presentation given in figure 2. However, the values of the
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last two blocks are complex. It should be stressed that the output signal of these two
blocks is real. In order to make things more clear and without loss of generality we
will consider only these blocks. They correspond to a second order ΣΔ modulator
with complex conjugated poles of the loop filter transfer function G(z). The block
diagram of this modulator is given in figure 17.3.

Here both signals x1 and x2 are complex conjugated, namely

x1(k + 1) = m(k + 1) + jn(k + 1)
x2(k + 1) = m(k + 1)− jn(k + 1)

(17.11)

Because of this the input of the quantizer is real i.e.

(δ− jγ)x1(k) + (δ + jγ)x2(k) = 2δm(k) + 2γn(k) (17.12)

As in the case of real poles, the modulator could be considered as two first order
modulators interacting only through the quantizer function. The difference now is
that the signals connected with both modulators are complex, but the input and
output signals (u and y) are the “true” signals of the modulator. This model will help
us to make analysis simple. We will consider the state of the first order modulators
as a point in a complex plane (m,n). Depending on whether the input 2δm + 2γn of
the quantizer is positive or negative the state equation of the second order modulator
could be described as follows:

x1(k + 1) = (α + jβ)x1(k) + [u(k)− 1],2δm(k) + 2γn(k) ≥ 0
x2(k + 1) = (α + jβ)x2(k) + [u(k)− 1],2δm(k) + 2γn(k) ≥ 0

(17.13)

and
x1(k + 1) = (α + jβ)x1(k) + [u(k) + 1],2δm(k) + 2γn(k) < 0
x2(k + 1) = (α + jβ)x2(k) + [u(k) + 1],2δm(k) + 2γn(k) < 0

(17.14)

Fig. 17.3 Block diagram of second order modulator with complex conjugate pair of roots of
the loop filter transfer function
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where x1 and x2 are given by (17.11). In fact 2δm + 2γn is a line through the
origin in the plane (m,n) and depending on in what half the point x1 is (because
x1 = m + jn), the description of the modulator is (17.13) or (17.14).

17.3 Stability of Shifted First Order Sigma-Delta Modulators

The shifted first order modulator is described by equation (17.5). Because of the
ideal quantizer, the system can be viewed as two linear systems connected at point
- α(n)/b and thus the equations describing the dynamics of the first order Sigma-
Delta modulator from (17.5) are

x(n + 1) = λx(n) + [u(n)− 1], x(n)≥ −α(n)/b;b > 0
x(n + 1) = λx(n) + [u(n) + 1], x(n)< −α(n)/b;b > 0

(17.15)

The fixed points of the system are x′ = u(n)−1
1−λ , x′′ = u(n)+1

1−λ .
In what follows we will consider the input signal u(n) to be from the interval

u(n) ∈ [−Δu,Δu],Δu > 0 and because of this the shift α(n) belongs to the interval
[−Δα,Δα],Δα > 0. The flow diagram of the system is given in Figure 17.4.

Stable Mode, λ < 1

Depending on the parameters b,α(n) and input signal u(n) the system can have
two stable virtual fixed points (the case given in the figure) and a compact region
exists between them (in fact this is an invariant set in state space, which has the
property that all subsequent states lie in the original set for a certain class of input
signals). For another set of parameters one of the virtual fixed points becomes a real
fixed point. In each of the cases the system is stable but in the second one, there is

Fig. 17.4 Flow diagrams of the first order system for the case of λ ≤ 1 and λ > 1
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no compact region. The system moves towards a single attractor at the stable fixed
point. Anyway, if the initial condition is between the origin and the real fixed point
of system (17.5) the state flow finishes at the equilibrium point (due to asymptotic
movement to the single equilibrium point). It should be noted that this is not a de-
sired Sigma-Delta modulator behavior. The Sigma-Delta modulator behavior appear
when the first order system has two virtual fixed points and the state of (17.5) jumps
between them. Thus the desired bitstream appear at the output of the quantizer.

Unstable Mode, λ > 1

The stability in this case is connected with existence of a compact region between
the unstable fixed points (not virtual). It is important to point out that b > 0. Other-
wise the dynamic of the system is described by

x(n + 1) = λx(n) + [u(n)− 1], x(n)< −α(n)/b;b < 0
x(n + 1) = λx(n) + [u(n) + 1], x(n)≥ −α(n)/b;b < 0

(17.16)

and it is easy to observe that the above system is always unstable, because at least
one of the fixed points is virtual. Let’s consider the map (17.5), given by (17.15)
depicted in Figure 17.5. For a compact region (CR), to exists the fixed point should

not be virtual i.e. − α(n)
b < u(n)−1

(1−λ)
and − α(n)

b > u(n)+1
(1−λ)

This should be true for the worst case i.e. − α(n)
b < Δu−1

(1−λ)
and − α(n)

b > −Δu+1
(1−λ)

.

Taking into account that (1− λ) < 0 and b > 0 we get

b
λ− 1

Δu− b
(λ− 1)

< α(n) < − b
λ− 1

Δu +
b

(λ− 1)
(17.17)

The second condition for the existence of a compact region is that it has to be in-
cluded into the region between the fixed points i.e. the stable region. The max-
imum jump of the variable x(n) from the Negative Half Line (NHL), with re-
spect to –α(n)/b, to the Positive Half Line (PHL), with respect to –α(n)/b,
is [–α(n)/b]λ + [u(n) + 1] and the maximum jump from PHL to NHL is
[–α(n)/b]λ + [u(n)− 1]. Hence in the worst case

−α(n)
b

λ + [Δu + 1]<
Δu− 1
(1− λ)

, −α(n)
b

λ + [−Δu− 1]>
−Δu + 1
(1− λ)

Solving the above inequalities with respect to α(n) we find that a compact region
can only exist if b > 0 and

b > 0

b
λ− 1

Δu− b(2− λ)

λ(λ− 1)
< α(n) < − b

λ− 1
Δu +

b(2− λ)

λ(λ− 1)
(17.18)

Because the above should be valid for all y and for y = 0 as well then (2−λ)/λ > 0
or λ < 2, i.e. 1 < λ < 2. Due to this (2 − λ)/λ < 1 and hence if (17.18) is
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Fig. 17.5 Map (17.5) given by (17.15) for the case of λ > 1

satisfied then (17.17) will be satisfied as well. Considering again these two con-
ditions, the maximal shift of the input signal Δu, which ensures that the compact
region is included into the region between the fixed points i.e. the stable region is
given by

Δu < −Δα(λ− 1)
b

+
2− λ

λ
(17.19)

Note that condition (17.18) is a sufficient but not necessary condition. It has been
derived for the worst case and if satisfied, the first order modulator is stable for
the range of input signal given by (17.19). However, if (17.18) is not satisfied the
modulator could be stable for certain input signal.

17.4 Stability of High Order Sigma-Delta Modulators

Stability of High Order Sigma-Delta Modulators with Real Poles

Taking into account the parallel presentation given in Section 17.2, the stability of
the high order Sigma-Delta modulator depends on the stability of each of the first
order modulators. If all modes λk, are stable, i.e. λk < 1 then the corresponding
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high order Sigma-Delta modulator is stable in the sense of boundness of the states.
If there exists even one unstable mode λk, i.e. 1 < λk < 2, the stability conditions
for shifted modulators given above should be applied. In this case the shift αk(n)
depends on the values of the other variables xi(n) i.e.

λk(n) =
N

∑
i=1
i �=k

bixi(n) (17.20)

From (17.18), we have

N

∑
i=1
i �=k

bixi(n) < − bk

λk − 1
Δu +

bk(2− λk)

λk(λk − 1)

N

∑
i=1
i �=k

bixi(n) >
bk

λk − 1
Δu− bk(2− λk)

λk(λk − 1)
,

k = 1,2, ..., N

(17.21)

The above should still be true when xk makes the maximal ”jumps” into the PHL
or into the NHL. Without loss of generality we will consider the first p modes λk of
the high order Sigma-Delta modulator to correspond to 1 < λk < 2,k = 1,2, . . . , p
whereas the remaining N − p modes correspond to λk < 1,k = p + 1, . . . , N. In
this case only the first p coefficients bk must be positive and the remaining N − p
coefficients could have any real value. The maximal ”jumps” of the state variables

corresponding to the first p modes in the PHL and the NHL are u(n)−1
1−λk

and u(n)+1
1−λk

,
respectively (the fixed points of the system with respect to xk,k = 1,2, . . . , p). Sim-
ilarly, the maximal ”jumps” of the state variables corresponding to the last N − p
modes in the PHL and the NHL, are u(n)+1

1−λk
and u(n)−1

1−λk
, respectively (the virtual or

real fixed points of the system with respect to xk,k = p + 1, . . . , N). Therefore from
(17.21) for the worst case with respect to the input signal one can obtain

p

∑
i=1
i �=k

bi
−Δu− 1

1− λi
+

N

∑
i=p+1

|bi|Δu + 1
1− λi

< − bk

λk − 1
Δu +

bk(2− λk)

λk(λk − 1)

p

∑
i=1
i �=k

bi
Δu + 1
1− λi

+
N

∑
i=p+1

|bi|−Δu− 1
1− λi

>
bk

λk − 1
Δu− bk(2− λk)

λk(λk − 1)

k = 1,2, ..., p

(17.22)

Note that we apply (17.22) only for the shifts connected to the first p modulators.
The other N − p first order modulators are stable, because for their corresponding
λk,λk ≤ 1,k = p + 1, . . . , N. If there exists a region [−Δu,Δu]⊆ [−1,1], such that
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u ∈ [−Δu,Δu] and for this region conditions (17.22) are satisfied, then the Sigma-
Delta modulator will be stable for all input signals from this region. Taking into
account equation (17.22) we get[

p

∑
i=1

bi

λi − 1
−

N

∑
i=p+1

|bi|
λi − 1

]
Δu <

N

∑
i=p+1

|bi|
λi − 1

−
p

∑
i=1
i �=k

bi

λi − 1
+

bk(2− λk)

λk(λk)− 1

k = 1,2, ..., p
(17.23)

More detailed considerations of the above inequality shows that in order to ensure a
consistent solution of (17.23) with respect to Δu

p

∑
i=1
i �=k

bi

λi − 1
−

N

∑
i=p+1

|bi|
λi − 1

− bk(2− λk)

λk(λk − 1)
< 0, k = 1,2, .., p (17.24)

Hence the maximal shift of input signal Δu ensuring the stability is given by

Δu <

∑N
i=p+1

|bi|
λi−1 −∑

p
i=1
i �=k

bi
λi−1 +

bk(2−λk)
λk(λk−1)

∑
p
i=1

bi
λi−1 −∑N

i=p+1
|bi|

λi−1

, k = 1,2, ..., p (17.25)

Note that inequalities (17.25) should be valid simultaneously for each k,k =
1,2, . . . , p. Therefore, together with bk > 0,k = 1,2, . . . , p, equation (17.24) gives
the sufficient conditions for the stability of the Sigma-Delta modulator, namely

(2− λk)

λk

bk

(λk − 1)
>

p

∑
i=1
i �=k

bi

λi − 1
−

N

∑
i=p+1

|bi|
λi − 1

, k = 1,2, ..., p (17.26)

For the poles outside the unit circle, k = 1,2, . . . , p, we have that (2− λk)/λk < 1.
This implies that the inequality, Eq. (17.26), can only hold for one value of k. Hence,
Eq. (17.26) provides a sufficient condition for stability when p = 1 i.e. there is at
most one unstable mode, and this sufficient condition cannot hold when there is
more than one pole outside the unit circle. It is clear now that in the case of repeated
poles (λ1, . . . ,λm = λ) of the loop transfer function, the Sigma-Delta modulator
is stable only when the corresponding modes are stable i.e. λ ≤ 1. Let us consider
more precisely the case of identical poles. Without losing the generality we will
consider that the pole λ1 is repeated with order 2 i.e. λ1 = λ2 = λ. In this case (2)
becomes

G(z) =
b1z−1

1− λz−1 +
b2z−2

(1− λz−1)2 + ... +
bNz−1

1− λNz−1 (17.27)
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And the state equations may be given as

x1(n + 1) = λx1(n) + u(n)− sgn[b1x1(n) +
N

∑
i=2

bixi(n)]

x2(n + 1) = x1(n) + λx2(n)

xk(n + 1) = λkxk(n) + u(n)− sgn[bkxk(n) +
N

∑
i=1
i �=k

bixi(n)]

k = 3, .., N

(17.28)

If λ is an unstable mode, i.e. 1 < λ < 2 then the corresponding first and second
modulators should be stable in the sense of boundedness of the states. The first one
can satisfy the conditions given by (17.18). The second one in fact is a linear system
described by

x2(n + 1) = λx2(n) + x1(n) (17.29)

where the state variable x1 could be considered as an input signal for this system. If
1 < λ < 2 then all possible symbolic sequences represent admissible periodic orbits
of x1. Because of this, depending on the initial conditions a certain periodic orbit of
x1 could influence the instability in x2.

Stability of High Order Sigma-Delta Modulators with Complex
Poles

In the particular case of two complex conjugated poles given in Figure 17.3, the
dynamics of the Sigma-Delta Modulator is described by (17.13) or (17.14). The
analysis of the behavior of both first order ”complex” modulators is similar to the
analysis of the first order ”real” modulators, given in Section 17.3. Here we always
should keep in mind that both modulators work cooperative, because their signals
are conjugated. These modulators do not exist in the real Sigma-Delta modulator.
They are introduced (like in the “real” case as well) to help us to carry out the
analysis of the behavior of the whole system.

Stable Mode, |λ1| = |λ2| < 1

In this case both modulators have two stable equilibrium points (in every half plane):

first modulator: u−1
1−λ1

and u+1
1−λ1

i.e. (u−1)[(1−α)+jβ]
(1−α)2+β2 and (u+1)[(1−α)+jβ]

(1−α)2+β2

second modulator: u−1
1−λ2

and u+1
1−λ2

i.e. (u−1)[(1−α)−jβ]
(1−α)2+β2 and (u+1)[(1−α)−jβ]

(1−α)2+β2
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These fixed points could be virtual or real. Taking into account equations (17.12),
(17.13) and (17.14), the fixed points of both modulators are ”virtual” when 2δ(1−
α) + 2γβ > 0 and ”non-virtual” when 2δ(1− α) + 2γβ < 0. Both complex modu-
lators are stable and the second order modulator is stable as well. As was mentioned
in section 17.3, the Sigma-Delta modulator behavior appears when the first order
system has two virtual fixed points and the states of (17.13), (17.14) jump between
them. Thus the desired bitstream appears at the output of the quantizer. According
to [12], in the general case, when the last two first order modulators are ”complex”,
i.e. correspond to a stable complex conjugated pair of roots; condition (17.26) has
the form

(2− λ1)

λ1

b1

(λ1 − 1)
> −

N−2

∑
i=2

|bi|
λi − 1

+
2|δ(1− α) + γβ|
(1− α)2 + β2 (17.30)

and the maximal range of input signal Δu ensuring the stability is expressed by

Δu <
∑N−2

i=2
|bi|

λi − 1
+

2|δ(1− α) + γβ|
(1− α)2 + β2 +

b1(2− λ1)

λ1(λ1 − 1)
b1

λ1 − 1
−∑N−2

i=2
|bi|

λi − 1
+

2|δ(1− α) + γβ|
(1− α)2 + β2

(17.31)

Unstable Mode, |λ1| = |λ2| > 1

In this case both modulators have two unstable fixed points (in every half plane).
Depending on parameters, these points could be ”non-virtual” or ”virtual”. In the
case of virtual fixed points, both ”complex” modulators are unstable and the whole
system is unstable. In the case of real fixed points, the possibility for Sigma-Delta
modulator behavior is connected with the existence of a compact region in the com-
plex plane.

To summarize the results on stability of high order Sigma-Delta modulators from
this section, we have the following: 1. Any Sigma-Delta modulator comprised en-
tirely of parallel sections with poles inside the unit circle is inherently stable. 2. Any
Sigma-Delta modulator with only real poles is guaranteed to be stable if (17.26)
holds and (17.25) provides the maximum input for stability. Equation (17.26) also
implies that the sufficient conditions for stability are violated if at least 2 real poles
are outside the unit circle. 3. Any Sigma-Delta modulator comprised entirely of
parallel sections with poles inside the unit circle and one complex conjugate pair
inside the unit circle is inherently stable. 4. Any Sigma-Delta modulator comprised
entirely of parallel sections with some real poles outside the unit circle and one
complex conjugate pair inside the unit circle is guaranteed to be stable if (17.30)
holds, and (17.31) provides the maximum input for stability. Equation (17.30) also
implies that the sufficient conditions for stability are violated if at least 2 real poles
are outside the unit circle. It should be emphasized, that present theoretical study in-
cludes only the cases considered above; real poles not equal to 1, or complex poles
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inside the unit circle. To demonstrate the applicability of the presented conditions
we consider a ΣΔ modulator with the following loop filter transfer function

G(z) =
b1z−1

1− λ1z−1 +
2r cosθz−1 − r2z−2

1− 2r cos θz−1 + r2z−2 , λ1 > 1

In this case λ2 = α + jβ, λ3 = α − jβ; b2 = δ − jγ, b3 = δ + jγ where
α = r cos θ, β = r sin θ, δ = r cos θ; γ = r cos2θ

2sinθ , Then the stability condition
becomes

(2− λ1)

λ1

b1

(λ1 − 1)
>

2r cos θ − r2

1− 2r cos θ + r2 (17.32)

Let’s consider two different modulators with the following set of parameters: r =
0.9,θ = 15◦,λ1 = 1.05,b1 = 0.5 and r = 0.9,θ = 15◦,λ1 = 1.05,b1 = 1. One can
simulate numerically the behavior of both modulators and could observe that the
first modulator is unstable, whereas the second one is stable for a certain range of
input signal (given by (17.31)) because stability condition (17.32) is satisfied.

17.5 Analysis of Limit Cycles in High Order Sigma-Delta
Modulators

In what follows, the following case will be considered:

1. The input signal u = u(n) is constant from interval [-1, 1]

u = const.,u ∈ [−1,1] (17.33)

2. The poles of the loop filter λ1,λ2, . . . ,λn are in the unit circle

(∀N
k=1 : |λk| < 1) (17.34)

One of the important observations in [4] is that the case of pairs of complex con-
jugated poles can be considered on similar way with the help of presentation given
in Figure 17.2. However, in this case the corresponding signals and coefficients are
complex conjugated. As it has been stressed the contribution of the state variables
corresponding to every pair of complex conjugated poles, to the input of the quan-
tizer is real. In the next investigations we are going to skip also the case of real
repeated roots. This assumption is practical, because it is very difficult to have this
case due to unavoidable noise in every sigma-delta modulator realization. Without
loss of generality we will consider the case with real distinct poles. Thus the discrete
time sequence for state variables x1, x2, . . . , xN is given by:
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xk(1) =λkxk(0) + [u(0)− y(0)],

xk(2) =λkxk(1) + [u(1)− y(1)] = λ2
kxk(0)+

+ [u(0)− y(0)]λ1
k + [u(1)− y(1)]

......
xk(n) =λkxk(n− 1) + [u(n− 1)− y(n− 1)] =

λn
k xk(0) + [u(0)− y(0)]λn−1

k + [u(1)− y(1)]λn−2
k + ...

[u(n− 2)− y(n− 2)]λ1
k + [u(n− 1)− y(n− 1)] =

λn
k xk(0) +

n−1

∑
i=0

[u(i)− y(i)]λn−i−1
k

k = 1,2, ..., N

(17.35)

The limit cycles correspond to periodic solutions in time domain. The periodic
solutions can be observed at the output of the modulator as repetitive sequences
of 1’s and -1’s. Let’s consider a periodic sequence y(0),y(1), . . . ,y(M− 1) with
length M at the output of the modulator. In this case y(M) = y(0),y(M + 1) =
y(1), . . . ,y(2M− 1) = y(M− 1), etc. Every periodic output sequence corresponds
to a periodic sequence in the states i.e. every state variable xk is periodic. This can
be observed easily if we write the state variable xk after L periods.

xk(L.M) = λL.M
k xk(0) +

LM−1

∑
i=0

[u(i)− y(i)]λLM−i−1
k

k = 1,2, ..., N

(17.36)

Taking into account that every [u(i) − y(i)] is the same after each M samples,
(17.36) can be rewritten as

xk(L.M) =λL.M
k xk(0) +

LM−1

∑
i=0

[u(i)− y(i)]λLM−i−1
k

λL.M
k xk(0) +

L−1

∑
p=0

λ
p.M
k

(
M−1

∑
i=0

[u(i)− y(i)]λM−i−1
k

)
=

λL.M
k xk(0) +

1− λLM
k

1− λM
k

(
M−1

∑
i=0

[u(i)− y(i)]λM−i−1
k

)

k = 1,2, ..., N

(17.37)

The above is correct, because ∑L−1
p=0 λ

p.M
k is a partial sum of the first L terms of

a geometric series with value
1−λLM

k
1−λM

k
. If |λk| < 1, for every L that is large enough

(after enough time) xk(L.M) = 1
1−λM

k

(
∑M−1

i=0 [u(i)− y(i)]λM−i−1
k

)
, i.e. xk(L.M)

does not depend on L. This means repetition of the value of state xk after every
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M instances, i.e. the states are periodic. If |λk| > 1, from (17.37) follows that the
boundness of the states is ensured if

xk(0) =
1

1− λM
k

(
M−1

∑
i=0

[u(i)− y(i)]λM−i−1
k

)
(17.38)

and thus xk(L.M) = xk(0). This means that the initial condition with respect to xk,
should be taken in accordance with (17.38), in order to ensure stability of the solu-
tion. This fits with the results in concerning the stability of high order modulators
when λk > 1. If λk = 1, xk(L.M) = xk(0) for every L and every xk(0), because
at the periodic orbit ∑M−1

i=0 [u− y(i)] = 0 for constant input signal u. This actually
means that periodicity with respect to xk is ensured. In the case of complex pair of
poles the results are similar, but the initial conditions connected with the complex
conjugated pair of poles are also complex conjugated. We should stress again that
the contribution of the state variables corresponding to these poles, to the input of
the quantizer is real. The obtained results have been derived without matching the
time sequence of the states xk(0), xk(1), . . . , xk(M− 1),k = 1,2, . . . N with the time
sequence of the output signal y(0),y(1), . . . ,y(M− 1) in the framework of one pe-
riod. In fact to have a valid output sequence y(0),y(1), . . . ,y(M− 1) condition
(17.7) should be satisfied. Thus,(

N

∑
k=1

bkxk(n)

)
= (bTx(n))≥ 0, i f y(n) = 1

(
N

∑
k=1

bkxk(n)

)
= (bTx(n))< 0, i f y(n) = −1

n = 1,2, ..., M

(17.39)

or
N

∑
k=1

bkλn
k xk(0) ≥−

N

∑
k=1

bk

(
n−1

∑
i=0

[u(i)− y(i)]λn−i−1
k

)
, i f y(n) = 1

N

∑
k=1

bkλn
k xk(0) <−

N

∑
k=1

bk

(
n−1

∑
i=0

[u(i)− y(i)]λn−i−1
k

)
, i f y(n) = −1

n = 1,2, ..., M
(17.40)

Hence

N

∑
k=1

bkλn
k xk(0)≥ −

n−1

∑
i=1

(
[u(i)− y(i)]

N

∑
k=1

bkλn−i−1
k

)
, i f y(n) = 1

N

∑
k=1

bkλn
k xk(0)< −

n−1

∑
i=1

(
[u(i)− y(i)]

N

∑
k=1

bkλn−i−1
k

)
, i f y(n) = −1

n = 1,2, ..., M
(17.41)
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In the case of a complex pair of poles λi,λi+1 the result has the same form. It should
be noted that the left and right parts of inequalities (17.41) are real. The strategy for
searching the limit cycles that correspond to a given output sequence of 1’s and
-1’s with arbitrary length M is based on finding the appropriate initial conditions
xk(0),k = 1,2, . . . , N with respect to state variables that ensure periodicity after
the first period. Afterward the validity of the corresponding output sequences has
to be checked. To simplify conditions (17.41) for validation of a given limit cycle
connected with the corresponding vector of initial conditions xk(0),k = 1,2, . . . , N
obtained by (17.38), we are going, substitute (17.38) in all conditions (17.41). Thus
taking into account (17.7) we get

N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
≥ −

n−1

∑
i=0

(
[u− y(i)]

N

∑
k=1

bkλn−i−1
k

)
,

i f y(n) = 1
N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
< −

n−1

∑
i=0

(
[u− y(i)]

N

∑
k=1

bkλn−i−1
k

)
,

i f y(n) = −1
n = 1,2, ..., M

(17.42)

Conditions (17.42) can be combined in one, multiplying both sides by y(n) that is
either 1 or -1.

y(n).
N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
≥

− y(n).
n−1

∑
i=0

(
[u− y(i)]

N

∑
k=1

bkλn−i−1
k

)

n = 1,2, ..., M

(17.43)

The above inequalities (17.43) can be developed further as follows

y(n).
N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
≥

− y(n).
N

∑
k=1

bk

n−1

∑
i=0

[u− y(i)]λn−i−1
k

n = 1,2, ..., M

(17.44)

or
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y(n).
N

∑
k=1

bkλn
k

u
1− λM

k

(1 + λk + λ2
k + ... + λM−1

k )−

y(n).
N

∑
k=1

bkλn
k

u
1− λM

k

(y(0)λM−1
k + y(1)λM−2

k + ...+ y(M− 2)λk + y(M− 1)) ≥

− y(n)
N

∑
k=1

bku.(1 + λk + λ2
k + ...+ λn−1

k )+

+ y(n).
N

∑
k=1

bk(y(0)λ
n−1
k + y(1)λn−2

k + ... + y(n− 2)λk + y(n− 1))

n = 1,2, ..., M
(17.45)

Taking into account that the value of the sum (1+ λk + λ2
k + ...+ λM−1

k ) is
1−λM

k
1−λk

and the value of the sum (1 + λk + λ2
k + ... + λn−1

k ) is
1−λn

k
1−λk

, inequalities (17.45)
become

y(n).
N

∑
k=1

bkλn
k

u
1− λk

+ y(n)
N

∑
k=1

bku
1− λn

k
1− λk

≥

y(n).
N

∑
k=1

bkλn
k

u
1− λM

k

(y(0)λM−1
k + y(1)λM−2

k + ...+ y(M− 2)λk + y(M− 1))+

+ y(n).
N

∑
k=1

bk(y(0)λ
n−1
k + y(1)λn−2

k + ... + y(n− 2)λk + y(n− 1))+

n = 1,2, ..., M
(17.46)

Thus we get

y(n).u.
N

∑
k=1

bk
1

1− λk
≥

y(n).
N

∑
k=1

bk

1− λM
k

(y(0)λn+M−1
k + y(1)λn+M−2

k + ... + y(M− 2)λn+1
k + y(M− 1)λn

k )+

+ y(n).
N

∑
k=1

bk(y(0)λ
n−1
k + y(1)λn−2

k + ... + y(n− 2)λk + y(n− 1))+

n = 1,2, ..., M
(17.47)

Further investigations on (17.47) leads to
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y(n).u.
N

∑
k=1

bk
1

1− λk
≥

y(n).
N

∑
k=1

bk

[(λn+M−1
k

1− λM
k

+ λn−1
k

)
y(0) +

(λn+M−2
k

1− λM
k

+ λn−2
k

)
y(1)+

...+
( λM

k

1− λM
k

+ 1
)

y(n− 1) +
λM−1

k

1− λM
k

y(n) + ... +
λn+1

k

1− λM
k

y(M− 2) +
λn

k

1− λM
k

y(M− 1)
]

n = 1,2, ..., M

and hence

y(n).u.
N

∑
k=1

bk
1

1− λk
≥

y(n).
N

∑
k=1

bk

[( λn−1
k

1− λM
k

)
y(0) +

( λn−2
k

1− λM
k

)
y(1)+

... +
( 1

1− λM
k

)
y(n− 1) +

λM−1
k

1− λM
k

y(n)+

... +
λn+1

k

1− λM
k

y(M− 2) +
λn

k

1− λM
k

y(M− 1)
]

n = 1,2, ..., M

Therefore, with respect to the output bitstream sequence y(0),y(1), . . . ,y(M− 1)
the inequalities that have to be satisfied are M linear inequalities in form

y(n).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(n).
N

∑
k=1

bkλn−1
k

1− λM
k

)
y(0)+

+

(
y(n).

N

∑
k=1

bkλn−2
k

1− λM
k

)
y(1) + ... +

(
y(n).

N

∑
k=1

bk

1− λM
k

)
y(n− 1)+

+

(
y(n).

N

∑
k=1

bkλM−1
k

1− λM
k

)
y(n) + ... +

(
y(n).

N

∑
k=1

bkλn+1
k

1− λM
k

)
y(M− 2)+

+

(
y(n).

N

∑
k=1

bkλn
k

1− λM
k

)
y(M− 1)

n = 1,2, ..., M
(17.48)

Inequalities (17.48) have a geometrical interpretation. In the M dimensional space
of the output sequences y(0),y(1), . . . ,y(M− 1) with length M, every output bit-
stream of 1’s and -1’s is a vertex of the M dimensional hypercube in this space.
Such a vertex represents a possible limit cycle if it is on the corresponding side of
all M hyperplanes, given by (17.48) that are equivalent to this vertex.
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In extended form the inequalities (17.48) could be rewritten as follows. For n = 1

y(1).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(1).
N

∑
k=1

bk

1− λM
k

)
y(0) +

(
y(1).

N

∑
k=1

bkλM−1
k

1− λM
k

)
y(1)+

... +

(
y(1).

N

∑
k=1

bkλ2
k

1− λM
k

)
y(M− 2) +

(
y(1).

N

∑
k=1

bkλk

1− λM
k

)
y(M− 1)

For n = 2

y(1).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(2).
N

∑
k=1

bkλk

1− λM
k

)
y(0) +

(
y(2).

N

∑
k=1

bk

1− λM
k

)
y(1)+

+

(
y(2).

N

∑
k=1

bkλM−1
k

1− λM
k

)
y(2) + ...+

+

(
y(2).

N

∑
k=1

bkλ3
k

1− λM
k

)
y(M− 2) +

(
y(2).

N

∑
k=1

bkλ2
k

1− λM
k

)
y(M− 1)

n = 1,2, ..., M

For n = M,y(M) = y(0), because the limit cycle is with length M

y(0).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(0).
N

∑
k=1

bkλM−1
k

1− λM
k

)
y(0)+

+

(
y(0).

N

∑
k=1

bkλM−2
k

1− λM
k

)
y(1) + ... +

(
y(0).

N

∑
k=1

bk

1− λM
k

)
y(M− 1)

Taking into account that at the limit cycle y(0) = y(M),y(1) = y(M +
1), . . . ,y(M− 1) = y(2M− 1),y(M) = y(2M) = y(0) or y(p) = y(p + M) for
p = 1,2, . . . , M− 1, we can rewrite conditions (17.48) in more general form:

y(n).u.
N

∑
k=1

bk

1− λk
≥
(

y(n).
N

∑
k=1

bkλM−1
k

1− λM
k

)
y(n)+

+

(
y(n).

N

∑
k=1

bkλM−2
k

1− λM
k

)
y(n + 1) +

(
y(n).

N

∑
k=1

bkλM−3
k

1− λM
k

)
y(n + 2) + ...+

(
y(n).

N

∑
k=1

bkλk

1− λM
k

)
y(n + M− 2) +

(
y(n).

N

∑
k=1

bk

1− λM
k

)
y(n + M− 1)

n = 1,2, ..., M
(17.49)

This result simplify conditions (17.41) for validation of a given limit cycle con-
nected with an output bitstream y(0),y(1), . . . ,y(M− 1) with length L, because
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directly incorporates the values of the bitsteram sequence, the constant input sig-
nal u and the parameters of parallel presentation of the loop filer of the sigma-
delta modulator considered. It should be stressed that the coefficients ∑N

k=1
bk

1−λk
,

∑N
k=1

bkλM−1
k

1−λM
k

, ∑N
k=1

bkλM−2
k

1−λM
k

,. . . , ∑N
k=1

bk
1−λM

k
are common for all inequalities and

thus the conditions (17.49) could be checked very easy.
For better understanding the validation formulas (17.49) we are going to present

a particular case for verification of limit cycles with length M = 4 for a sigma-delta
modulator with a third order loop filter N = 3. In this case formulas (17.49) become

y(1).u.
3

∑
k=1
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≥
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y(1).
3

∑
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k
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(
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3

∑
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k
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k
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+

(
y(1).

3

∑
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k
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y(3) +

(
y(1).

3

∑
k=1
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k
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y(2).u.
3

∑
k=1
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≥
(

y(2).
3
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k
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k
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(
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3

∑
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k
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(
y(2).

3

∑
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(
y(1).

3

∑
k=1
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k

)
y(1)

y(3).u.
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≥
(
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3
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k

1− λ4
k

)
y(3) +

(
y(3).

3

∑
k=1
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k

1− λ4
k

)
y(0)+
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(
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3

∑
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)
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(
y(3).

3

∑
k=1
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k

)
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y(0).u.
3

∑
k=1
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1− λk
≥
(

y(0).
3

∑
k=1

bkλ3
k

1− λ4
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)
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(
y(0).

3

∑
k=1
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k
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)
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+

(
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3
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3
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1− λ4
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Based on considerations here, given periodic output sequence of 1’s and -
1’s with arbitrary length M, corresponds to a limit cycle if the inequalities
(17.49) are satisfied. The application of the approach considered consists of
checking inequalities (17.49) for every possible output sequence of 1’s and -1’s
with length M. The number of these sequences is 2M. Developed conditions
(17.49) are M inequalities for every output sequence. Because the coefficients

∑N
k=1

bk
1−λk

,∑N
k=1

bkλM−1
k

1−λM
k

,∑N
k=1

bkλM−2
k

1−λM
k

,. . . ,∑N
k=1

bk
1−λM

k
are common for all inequal-

ities, conditions (17.49) are checked very fast and easy. This result accelerates the
validation check for the limit cycles in the general case considered in this section.
To demonstrate applicability of the new conditions (17.49), we consider a second
order sigma-delta modulator with the following loop filter transfer function [4]
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Fig. 17.6 Output bitstream of the second order Sigma-Delta modulator with loop filter trans-
fer function given by (17.50)

G(z) =
2r cos θz−1 − r2z−2

1− 2r cosθz−1 + r2z−2 (17.50)

In this case λ1 = α+ jβ, λ2 = α− jβ, b1 = δ− jγ, b2 = δ+ jγ, where α = r. cos θ,
β = r. sin θ, δ = r. cos θ, γ = r.(cos2θ)/(2sin θ). When r = 0.9 and θ = 30◦, λ1 =
0.7794+ j0.4500, λ2 = 0.7794− j0.4500, b1 = 0.7794− j0.4500, b2 = 0.7794+
j0.4500 and the initial conditions that lead to a periodic output sequence y(0) =
1, y(1) = 1, y(2) = −1 without transient are x1(0) = 0.779− j0.123, x2(0) =
0.779 + j0.123 [18], [19]. When the constant input is u = 0.4, the periodic output
sequence with length M = 3 is y(0) = 1, y(1) = 1, y(2) =−1, and can be detected
in Figure 17.6.

In this case the inequalities (17.49) have the form

y(1).u.
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where y(3) = y(0).

The coefficients ∑2
k=1

bk
1−λk

= 2.9816, ∑2
k=1

Bkλ2
k

1−λ3
k
= 0.4775, ∑2

k=1
bkλ2
1−λ3

k
=

1.0578, ∑2
k=1

bk
1−λ3

k
= 1.4463 are common for the above 3 inequalities that are sat-

isfied for the output bitstream sequence y(0) = 1, y(1) = 1, y(2) = −1.
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= 1.1037 ≥ 0

17.6 Conclusions

In this chapter we present an unified approach for study the stability and valida-
tion of potential limit cycles of one bit high order Sigma-Delta modulators. The
approach is general because it uses the general form of a Sigma-Delta modulator. It
is based on a parallel decomposition of the modulator and a direct nonlinear systems
analysis. In this representation, the general N − th order modulator is transformed
into a decomposition of low order, generally complex modulators, which interact
only through the quantizer function. The developed conditions for stability and for
validation of potential limit cycles are very easy for implementation and this proce-
dure is very fast. The reported results can be elaborated further for some particular
cases, and investigating the possibilities to skip the check of some output bitstream
sequences and thus to accelerate extra the limit cycle validation procedure. Further-
more it is an open problem how to use the developed conditions for Sigma-Delta
modulators design, i.e. to design a Sigma-Delta modulator working on a desired
limit cycle.
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Chapter 18
Stability Analysis of Vector Equalization Based
on Recurrent Neural Networks

Mohamad Mostafa, Werner G. Teich, and Jürgen Lindner

Abstract. Since the pioneer work of Hopfield on the computational capabilities of
recurrent neural networks (RNNs), they have been applied to solve classification
and optimization problems in many scientific disciplines. This can be done, either
by using conventional training algorithms like back propagation through time, or
by investigating the Lyapunov stability of these RNNs and comparing the corre-
sponding Lyapunov function with the cost function of the optimization problem to
be solved. The later method is especially interesting in the field of engineering be-
cause no training phase is needed, which is always associated with computational
effort and time. In this chapter we focus on an application of RNNs in communica-
tions engineering, namely the vector equalization. The importance of this procedure
arises from the fact that there is no need for training. The parameters of the RNN
to act as vector equalizer can be obtained by investigating the stability properties
of these networks and by choosing a suitable activation function, which will be the
core of this work.

Keywords: Recurrent neural networks, stability analysis, vector equalization.

18.1 Organization of the Chapter

In Section 2 we introduce the vector-valued transmission model and present the
problem of vector equalization. In Section 3 we discuss the recurrent neural
networks (RNNs) with the corresponding state-space equations and revisit the Lya-
punov theory on stability. The stability analysis of RNNs with time-invariant acti-
vation functions is considered in Section 4. Section 5 is dedicated to analyze the
optimum activation function for the vector equalizer based on RNNs. In Section
6 we present the stability analysis of the RNN for time-variant activation func-
tions in detail. The comparison between local and global stable vector equalizer
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based on RNNs is discussed in Section 7. We finish the chapter with a conclusion in
Section 8.

The following notation is needed throughout the chapter. Vectors are underlined
once, matrices twice. (·)T, (·)H and | · | denote the transpose, conjugate transpose
and the absolute value of a matrix or a vector. A matrix B ≥ 0 (B > 0) means it is
positive semidefinite (positive definite).

We restrict ourself to real-valued RNNs without hidden neurons. We will point
out, where a result is also valid for complex-valued RNNs. Extension to complex-
valued RNNs is in progress. Parts of this chapter have been published in ( [17], [18],
[19]).

18.2 Vector-Valued Transmission Model

The block vector-valued transmission model for linear modulation schemes without
channel coding is shown in Fig. 18.1 and is described as follows [13], [14]:

x̃ = r · x + ne (18.1)

• x is the transmit vector of size (n× 1)
• x̃ is the receive vector of size (n× 1)
• x̆ is the soft-valued decided vector of size (n × 1) at the output of the vector

equalizer, cf. Fig. 18.1
• x̂ is the decided vector of size (n× 1), cf. Fig. 18.1
• ne is the colored noise vector of size (n× 1) with correlation matrix

φ =
N0

2
· r (18.2)

N0 is the single-sided noise power spectral density
• r is the discrete-time channel matrix of size (n× n). It is a symmetric1 r = rT and

positive semidefinite matrix r ≥ 0 because it is a correlation matrix. This prop-
erty arises from the use of the channel matched filter at the receiver. r depends
on the transmission scheme (basic wave forms) and the channel. For coherent
transmission (the case we are considering) a perfect knowledge of the channel
impulse response and thus the discrete-time channel matrix r at the receiver side
is required

• the channel matrix r contains all physical properties of the transmission model.
• ∀i ∈ {1,2, · · · ,n}, ∀j ∈ {1,2, · · · , M}, M = 2s, s ∈N/{0} :

xi ∈Ax = {a1, a2, · · · , aM}, aj ∈R. In this case there are Mn possible transmit
vectors2.

The vector-valued transmission model depicted in Fig. 18.1 is a general model and
fits to different transmission schemes like OFDM (orthogonal frequency division

1 For complex-valued case it is a hermitian matrix r = rH .
2 For complex-valued case aj ∈ C.



18 Stability Analysis of Vector Equalization 331

Fig. 18.1 Block vector-
valued transmission model
for linear modulation
schemes without channel
coding

multiplexing), CDMA (code division multiple access), MC-CDMA (multi carrier
CDMA), MIMO (multiple input multiple output), ... etc [13]. All Information about
the physical background of the model in Fig. 18.1 is contained in r. More details
about the connection between this model and the physical model of a transmission
scheme can be found in [13]. The vector equalizer in Fig. 18.1 acts as a classifier.

The maximum-likelihood vector equalizer represents the optimum vector equal-
izer3 and its functionality can be described as follows: For each received vector x̃
it calculates the distance between the received vector x̃ and all possible transmit
vectors ξ (finite set with cardinality Mn) and then decides in favor of the minimum

distance as follows4 [16]:

Γ(ξ) = −2 · x̃T · ξ + ξ̃
T · r · ξ̃

x̂ = arg minξ

{
Γ(ξ)

} (18.3)

In the distance calculation the correlation of the noise Eq. (18.2) has to be taken into
account. This leads to the Mahalanobis metric [6] as the proper distance measure.

If the channel matrix r is fully occupied, the complexity of the optimum equalizer
increases in general exponentially with the length of the vectors in Eq. (18.1) and
is too complex to be implemented for a realistic n [26]. Therefore research efforts
have been concentrated on the development of suboptimum vector equalizers, which
have lower complexity and near-optimum performance.

One suboptimum vector equalizer with remarkable performance and moderate
complexity is the RNN. For a properly defined RNN this can be explained by the
equivalence between the Lyapunov function (in the case of local stability) and the
cost function of the optimum vector equalizer Eq. (18.3) [13]. In this case there is
no need for a learning phase, in contrast to the usual strategy when using artificial
neural networks (ANN) for optimization problems. This represents a very attractive
feature.

Having the channel matrix r the weight coefficients of the RNN can be set up
directly. This connection will be explained in the following sections.

3 Optimum in the sense that it leads to the minimum number of erroneous decisions.
4 In complex-valued case it is Γ(ξ) = −2 · �{x̃H · ξ}+ ξ̃

H · r · ξ̃.
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18.3 Recurrent Neural Networks

In this section we introduce the structure and the dynamical behavior of both
discrete-time (serial and parallel update) and continuous-time RNNs. We revisit also
the stability theorem based on Lyapunov functions.

18.3.1 Discrete-Time RNNs

Figure 18.2 shows a discrete-time RNN with parallel update. v is the output, u
the inner state, e the external input, ϕ(·) the activation function, wij the weight

coefficient from the output of the jth neuron to the input of the ith neuron, wi0 the
weight coefficient of the ith external input, n the number of neurons in the network.
v,u, e ∈Rn,w,w0 ∈Rn×n,w0 = diag{w10,w20, · · · ,wn0}.

Fig. 18.2 Discrete-time recurrent neural network, v is the output, u the inner state, e the
external input, ϕ(·) the activation function, wij the weight coefficient from the output of

the jth neuron to the input of the ith neuron, wi0 the weight coefficient of the ith ex-
ternal input, n the number of neurons in the network. v,u, e ∈ Rn,w,w0 ∈ Rn×n,w0 =

diag{w10,w20, · · · ,wn0}.

In the parallel update case all neurons are updated in one step (k). The dynamical
behavior in this case is described as follows:

u(k + 1) = w · v(k) + w0 · e

v(k) = ϕ[u(k)]
(18.4)

In the serial update case one neuron is updated every step (ρ). The dynamical be-
havior of the discrete-time RNN with serial update, assuming the jth neuron is being
updated, is described as follows:
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uj(ρ + 1) =
n

∑
i=1

wji · vi(ρ) + wj0 · ej

vj(ρ) = ϕ[uj(ρ)], j ∈ {1,2, · · · ,n}
(18.5)

Depending on Eq. (18.5) we define the output vector before and after updating the
jth neuron i.e. the transition from the discrete-time index (ρ) to (ρ + 1) as follows:

v(ρ) = [v1(ρ), · · · ,vj−1(ρ),vj(ρ),vj+1(ρ), · · · ,vn(ρ)]
T

v(ρ + 1) = [v1(ρ), · · · ,vj−1(ρ),vj(ρ + 1),vj+1(ρ), · · · ,vn(ρ)]
T

(18.6)

We notice that ∀i �= j : vi(ρ + 1) = vi(ρ). This definition will be useful during the
stability proof.

Remark 18.1. In this case n steps are required to update all neurons.

Remark 18.2. The order of the update in this case may influence the performance of
the RNN.

18.3.2 Continuous-Time RNNs

The dynamical behavior of the continuous-time RNN, cf. Fig. 18.3, is described as
follows:

τ · du(t)
dt

= −u(t) + w · v(t) + w0 · e

v(t) = ϕ[u(t)]

τ = diag{τ1,τ2, · · · ,τn}
(18.7)

τi = Ri · Ci is the time constant of the ith neuron in the continuous-time model.

Remark 18.3. All variables in Eq. (18.7) are like those in Eq. (18.4).

Remark 18.4. The activation function in Eq. (18.4,18.5,18.7) is applied element-
wise.

18.3.3 Stability Analysis Based on Lyapunov Functions

Definition 18.1. The equilibrium states veq of a continuous-time dynamical system
dv(t)

dt = g[v(t)] fulfill g[veq] = 0.

Definition 18.2. The fixed points v f of a discrete-time dynamical system v(k +
1) = g[v(k)] fulfill g[v f ] = v f .

Remark 18.5. If the continuous map λ(u) : u → w · ϕ[u] + w0 · e is bounded then
the RNNs have at least one fixed point i.e. the activation function ϕ must be bounded
[15].
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Fig. 18.3 Continuous-time recurrent neural network, v is the output, u the inner state, e the

external input, ϕ(·) the activation function, wij =
Tij
Ti

the weight coefficient from the output

of the jth neuron to the input of the ith neuron, wi0 = Tio
Ti

the weight coefficient of the ith

external input, n the number of neurons in the network. v,u, e ∈ Rn,w,w0 ∈ Rn×n,w0 =

diag{w10,w20, · · · ,wn0}.

The equilibrium state of a continuous-time dynamical system (defined as veq in the
following) is asymptotically stable if in a small neighborhood of veq (the domain of
attraction B) there exists a positive definite function E(v). The derivative of E(v)
with respect to the time along the dynamics is negative definite in that region [5].
A scalar function E(v) that satisfies these requirements is called a strict Lyapunov
function for the equilibrium state veq. In other words E(v) has to fulfill:

1. E(v) has continuous partial derivatives with respect to the elements of the state
vector v

2. E(veq) = 0
3. E(v) > 0 if v ∈B/{veq}
4. dE(v)

dt < 0 if v ∈B/{veq}
5. dE(v)

dt = 0 if v = veq.

If the domain of attraction B is unlimited (unbounded), then the system possesses
only one equilibrium and is globally stable. For local stability results we focus on
the asymptotic stability of the equilibrium veq = 0, for other equilibrium points we
just have to shift the equation of motion of the dynamical system and the Lyapunov
function to that equilibrium point. We adopt this procedure for global stability re-

sults. For discrete-time dynamical systems we replace the differentiation dE(v)
dt with

E[v(k + 1)]− E[v(k)].
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Definition 18.3. The discrete-time RNN reaches a limit cycle of length Tc ∈ N

means:
E[v(k)] = E[v(k + Tc)]

18.4 Stability Analysis of RNNs with Time-Invariant Activation
Functions

In this section we introduce some known results related to the stability of the RNNs
with time-invariant activation functions. To do so, we begin with the following
definition:

Definition 18.4. A set of real-valued functions f (x) satisfying the following condi-
tions is said to be class F(1)

• f (x) is continuously differentiable with respect to x
• f (0) = 0
• f (x) is a bounded function i.e. there exists some h such that | f (x)| ≤ h < ∞
• f (x) is a monotonically increasing function i.e. d f (x)

dx > 0

From the above listed conditions we conclude that:

• there exists a positive real-valued l1 such that ∀x,y ∈ R, x �= y : l1 ≥ f (x)− f (y)
x−y

i.e. d f (x)
dx is over bounded

• f (x) is invertible

The inverted function f−1(x) has the following properties [23]:

• f−1(x) is continuously differentiable with respect to x
• f−1(0) = 0

• f−1(x) is a monotonically increasing function i.e. d f−1(x)
dx > 0

• There exists a positive real-valued l2 such that

∀x,y ∈R, x �= y : l2 ≤ f−1(x)− f−1(y)
x−y and l2 = 1

l1
i.e. d f−1(x)

dx is under bounded.

Theorem 18.1. The discrete-time RNN with parallel update, cf. Fig. 18.2, Eq.
(18.4), is locally asymptotically stable with maximum length of cycles equals to
two if:

• the activation function ϕ(x) ∈ F(1)

• there exists a diagonal positive definite matrix D = diag{d1,d2, · · · ,dn} > 0

such that D · w =
{

D · w
}T

.

Proof. The Lyapunov function in this case is given by:

E[v(k)] =− vT(k + 1) · D · w · v(k)− [vT(k + 1) + vT(k)] · D · w0 · e

+
n

∑
l=1

dl ·
{∫ vl(k+1)

0
ϕ−1(ζ)dζ +

∫ vl(k)

0
ϕ−1(ζ)dζ

}
(18.8)
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This function is monotonically decreasing along the discrete-time dynamics of the
network i.e. E[v(k + 1)]− E[v(k)]≤ 0. The proof can be found in [3].

Theorem 18.2. The discrete-time RNN with serial update, cf. Eq. (18.5) and Eq.
(18.6), is locally asymptotically stable with maximum length of cycles equals to one
if:

• the activation function ϕ(x) ∈ F(1)

• there exists a diagonal positive definite matrix D = diag{d1,d2, · · · ,dn} > 0

such that D · w =
{

D · w
}T

• the diagonal elements of the weight matrix are non-negative

Proof. The Lyapunov function in this case is given by:

E[v(ρ)] =−1
2

vT(ρ) · D · w · v(ρ)− vT(ρ) · D · w0 · e +
n

∑
l=1

dl ·
∫ vl(ρ)

0
ϕ−1(ζ)dζ

(18.9)
This function is monotonically decreasing along the discrete-time dynamics of the
network i.e. E[v(ρ + 1)]− E[v(ρ)]≤ 0. The proof can be found in [3].

Theorem 18.3. The continuous-time RNN, cf. Fig. 18.3 and Eq. (18.7), is locally
asymptotically stable if:

• the activation function ϕ(x) ∈ F(1)

• there exists a diagonal positive definite matrix D = diag{d1,d2, · · · ,dn} > 0

such that D · w =
{

D · w
}T

Proof. The Lyapunov function in this case is given by:

E[v(t)] = −1
2

vT(t) · D · w · v(t)− vT(t) · D · w0 · e +
n

∑
l=1

dl ·
∫ vl(t)

0
ϕ−1(ζ)dζ

(18.10)
This function is monotonically decreasing along the continuous-time dynamics of
the network. The proof can be found in5 [12].

Theorem 18.4. The fixed points of the discrete-time RNN with serial and parallel
updating are the same.

Proof. This theorem has been proven for ϕ(x) = sign(x) in [1]. A generalization
to any ϕ ∈ F(1) is similar and is omitted here for lack of space.

Remark 18.6. In the original proof of theorems (18.1-18.3) it is assumed that D = I
and w = wT . However, the generalization to D �= I is only a minor modification of
the proof and we will see later that this assumption is very useful.

Remark 18.7. If ϕ(·) = tanh(·) then theorem (18.3) coincides with the work of Hop-
field presented in [9].

5 The original proof is for complex-valued RNNs



18 Stability Analysis of Vector Equalization 337

Remark 18.8. If ϕ(x) = tanh(β · x) and β→∞ then theorem (18.2) coincides with
the work of Hopfield presented in [8].

18.5 Analyzing The Optimum Activation Function

In this section we introduce the optimum activation function for the vector equalizer
based on RNN and we prove that the optimum activation function belongs to F(1).
At the end of this chapter we derive the connection between the Lyapunov function
of the RNNs Eq. (18.8-18.10) and the maximum likelihood function Eq. (18.3).

18.5.1 The Optimum Activation Function

In6 [1], [21] the optimum estimate x̆ of a single-valued symbol x ∈ Ax =
{a1, a2, · · · , aM}, ai ∈ R, which is disturbed by real-valued additive white Gaus-
sian noise has been obtained using the mean squared error J = E{|x − x̆|2|x̃}. The
minimum of J can only be reached if x̆ is a continuous value (soft estimate), i.e. x̆
is not restricted to the discrete-valued symbol alphabet Ax see Fig. 18.4.

This problem can be treated as a problem of parameter estimation [4], [21] and
in the case of a real-valued symbol alphabet Ax leads to the optimum estimate:

x̆ = θopt(x̃) =

M
∑

i=1
ai exp{− β

2 a2
i }exp{βaix̃}

M
∑

i=1
exp{− β

2 a2
i }exp{βai x̃}

(18.11)

where σ2 = 1
β is the power of the real-valued additive white Gaussian noise.

Fig. 18.4 Parameter estima-
tion problem

This function θopt(·) has been widely used as activation function in case of us-
ing RNNs as multiuser detector or vector equalizer [2], [11], [20], [21], [24], [25].
We will see later that β is nothing else than the slope of the function θopt(·).
There are many methods to define β when using the function θopt(·) as acti-
vation function for the vector equalizer based on RNNs. One method is to as-
sume it to stay constant during the evolution process. Another one is to assume
it to be time-variant during the iteration process. The later approach leads to a

6 The estimation has been done for complex-valued symbols and noise.
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time-varying activation function. Therefore we need to analyze the stability un-
der this time-varying condition. One but not the only way of this time-variation
is to update σ2 (the power of the additive white Gaussian noise plus the power of
the interference) after each iteration. Another possibility is to let the slope β to
be increased during the iteration process. We restrict ourself to symbol alphabets
Ax = {a−M

2
, a−M

2 +1, · · · , a−1, a1, · · · , a M
2 −1, a M

2
}, which fulfill:

• Symbol alphabets of length M: M = 2s, s ∈N/{0}
• Real-valued symbol alphabets: ∀i ∈ {−M

2 ,−M
2 + 1, · · · ,−1,1, · · · , M

2 −
1, M

2 } : ai ∈R

• Symmetric symbol alphabets: ∀i ∈ {1,2, · · · , M
2 } : ai = −a−i

• Equal distanced symbol alphabets:∀i ∈ {−M
2 ,−M

2 + 1, · · · ,−1,1, · · · , M
2 − 1} :

ai+1 = ai + dh, dh ∈R+.

Using these conditions we can rewrite Eq. (18.11) as follows:

θopt(x̃) =

M
2
∑

i=1
ai exp[− β

2 a2
i ]sinh(βaix̃)

M
2
∑

i=1
exp[− β

2 a2
i ]cosh(βaix̃)

(18.12)

Remark 18.9. If a1 = 1 and ∀i ∈
{
−M

2 ,−M
2 + 1, · · · , M

2 − 1
}

: αi =
ai+1+ai

2 it can

be shown that:

θopt(x̃) ≈
M
2 −1

∑
i=−M

2

tanh[β · (x̃− αi)]

The larger is the slope β, the better is the approximation.

Remark 18.10. For binary phase shift keying (BPSK) Ax = {−1,+1}:

θopt(x̃) = tanh(β · x̃)

18.5.2 Properties of the Optimum Activation Function

It is easy to prove that the optimum activation function θopt(·) in
Eq. (18.11,18.12) fulfills the following conditions:

• its domain is R and it is continuously differentiable with respect to its argument
• θopt(0) = 0
• it is a bounded function θopt(·) ∈ [min{Ax} ,max{Ax}]
• it is a monotonically increasing function

dθopt(x)
dx > 0

• max
{

θopt(x)−θopt(y)
x−y

}
= max

{
dθopt(x)

dx

}
≈ β. The larger is β, the better is the

approximation
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• the optimum activation function is invertible
• θ−1

opt(·) is continuously differentiable with respect to its argument

• θ−1
opt(0) = 0

• it is a monotonically increasing function
dθ−1

opt(x)
dx > 0

• min

{
θ−1

opt(x)−θ−1
opt(y)

x−y

}
= min

{
dθ−1

opt(x)
dx

}
≈ 1

β . The larger is β, the better is the

approximation
• β >> 1⇒ ∫ x

0 θ−1
opt(ζ)dζ is a strictly convex function [7]

• β << 1⇒ ∫ x
0 θ−1

opt(ζ)dζ is a strongly convex function [7]

We conclude that θopt(·) ∈ F(1) and the theorems (18.1-18.4) are valid if ϕ(·) =
θopt(·).
Example 18.1. Figures 18.5 and 18.6 show those properties using a 4ASK symbol
alphabet Ax = {−3,−1,1,3}.

−5 0 5
−3

−2

−1

0

1

2

3

β=0.2
β=1
β=5

x̃

θopt

−3 −2 −1 0 1 2 3
−5

0

5

β=0.2
β=1
β=5

x̆

θ−1
opt

Fig. 18.5 The activation function and the inverted activation function
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0

1

2

3

4

5
β=0.2
β=1
β=5

x̃

dθopt
dx̃

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4
β=0.2
β=1
β=5

x̆

dθ−1
opt

dx̆

Fig. 18.6 Derivative of the activation function and the inverted activation function
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Interpreting the integration as calculation of surface, it is easy from Fig. 18.5 to see
that:

β1 > β2 ⇒
∫ x

0
θ−1

opt,β1
(ζ)dζ ≤

∫ x

0
θ−1

opt,β2
(ζ)dζ

⇒
∫ x

0
θ−1

opt,β2
(ζ)dζ −

∫ x

0
θ−1

opt,β1
(ζ)dζ ≥ 0

⇒
∂[
∫ x

0 θ−1
opt,β(ζ)dζ]

∂β
≤ 0

(18.13)

Remark 18.11. For large slopes β no difference can be seen in the activation func-
tion. For β → ∞,θopt(·) tends to a staircase function.

18.5.3 Lyapunov Function vs. Maximum Likelihood Function

The basic idea behind the ability of using RNNs as vector equalizer without training
is the correspondence between the Lyapunov function and the Mahalanobis metric.
Let us compare Eq. (18.3) and Eq. (18.9):

Γ(ξ) = ξ̃
T · r · ξ̃ − 2 · ξ̃

T · x

E[v(ρ)] = −1
2

vT(ρ) · D · w · v(ρ)− vT(ρ) · D · w0 · e +
N

∑
l=1

dl ·
∫ vl(ρ)

0
ϕ−1(ζ)dζ

We are looking for the discrete-valued vector ξ which minimizes Γ(ξ). The RNN is
minimizing the Lyapunov function (energy function) E[v(ρ)]. If we compare Γ(ξ)
with E[v(ρ)] term by term assuming rd = diag{r11,r22, · · · ,rnn} we conclude:

D = rd, w0 = r−1
d ⇒ D · w0 = I

e = x̃, w = r−1
d ·

{
rd − r

}
ϕ(·) = θopt(·)

(18.14)

After reaching a fixed point:
ξ = DECI{v}

The vector equalizer based on RNNs is a suboptimum equalizer because:

• the third term in the Lyapunov function does not have any correspondence in the
Mahalanobis metric
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• to fulfill the third stability condition of the discrete-time RNN with serial update
( cf. theorem 18.2) the weight matrix w is forced to have zero diagonal elements.
Therefore the first two terms in both Lyapunov function and maximum likelihood
metric are not exactly coinciding, except for BPSK

• we are looking for the global minima of the Mahalanobis metric but the RNN
finds in general only the local minima.

18.6 Stability Analysis of RNNs with Time-Variant Activation
Functions

Previous work showed that vector equalizer based on RNNs set up with the rules
in Eq. (18.14), where the slope of the activation function β is constant during the
iteration process result in a good performance for channels with small to moderate
interference. To be able to avoid local minima, a linear increasing slope has been
suggested and better results could be achieved. On the other hand the stability proof
in theorems (18.1-18.3) is not valid any more. Therefore we provide in this sec-
tion conditions on the time-variant activation function, for which the stability of the
RNNs can be proven.

18.6.1 Discrete-Time RNNs with Parallel Update

Theorem 18.5. The discrete-time RNN with parallel update, cf. Fig. 18.2 and Eq.
(18.4), is locally asymptotically stable with maximum length of cycles equals to two
if:

• the slope of the activation function β is non-decreasing during the iteration pro-
cess

• the activation function ϕ(·) = θopt(·) ∈ F(1)

• there exists a diagonal positive definite matrix D = diag{d1,d2, · · · ,dn} > 0

such that D · w =
{

D · w
}T

.

Proof. The Lyapunov function in this case is given by:

E[v(k)] =− vT(k + 1) · D · w · v(k)− [vT(k + 1) + vT(k)] · D · w0 · e

+
n

∑
l=1

dl ·
{∫ vl(k+1)

0
ϕ−1

β(k+1)(ζ)dζ +
∫ vl(k)

0
ϕ−1

β(k)(ζ)dζ

}
(18.15)

We proof in the following that E[v(k)] is monotonically decreasing with time. For
this reason we define:

ΔE = E[v(k)]− E[v(k− 1)]

Using the conditions above and the mean value theorem [22] we find:
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ΔE =−
{

vT(k + 1)− vT(k− 1)
}
·D · w · v(k)−

{
vT(k + 1)− vT(k− 1)

}
·D · w0 · e

+
n

∑
l=1

dl ·
{∫ vl(k+1)

0
ϕ−1

β(k+1)(ζ)dζ −
∫ vl(k−1)

0
ϕ−1

β(k−1)(ζ)dζ

}

ΔE =−
{

vT(k + 1)− vT(k− 1)
}
·D · u(k + 1) +

n

∑
l=1

dl ·
{∫ vl(k+1)

vl(k−1)
ϕ−1

β(k+1)(ζ)dζ

}

−
n

∑
l=1

dl ·

⎧⎪⎪⎨
⎪⎪⎩
∫ vl(k−1)

0
ϕ−1

β(k−1)(ζ)dζ −
∫ vl(k−1)

0
ϕ−1

β(k+1)(ζ)dζ︸ ︷︷ ︸
Il

⎫⎪⎪⎬
⎪⎪⎭

Because β(k) is non-decreasing then according to
Eq. (18.13): ∀l ∈ {1,2, · · · ,n} : Il ≥ 0⇒ ∑n

l=1 dl · Il ≥ 0

ΔE =−
{

vT(k + 1)− vT(k− 1)
}
· D · {u(k + 1)− u0} −

n

∑
l=1

dl · Il

u0 ∈]min{u1,u(k + 1)} ,max{u1,u(k + 1)} [
u1 = ϕ−1

β(k+1)[v(k− 1)]

Because of the special properties of the activation function Fig. 18.5⇒ ΔE≤ 0 and
the equality holds in two cases:

• limit cycle of length two v(k− 1) = v(k + 1) �= v(k)
• fixed point v(k− 1) = v(k) = v(k + 1)

for:

• β(k) reaches a constant value
• β(k) reaches a large value such that increasing it makes no difference on the

activation function ϕβ(·)
� 

Remark 18.12. We can imagine a way to avoid the limit cycle of length two by cal-
culating the next value of the slope β dependent on its previous values and previous
outputs of the RNN.

18.6.2 Discrete-Time RNN with Serial Update

Theorem 18.6. The discrete-time RNN with serial update, cf. Eq. (18.5) and Eq.
(18.6), is locally asymptotically stable with maximum length of cycles equals to one
if:

• the slope of the activation function β is non-decreasing during the iteration
process

• the activation function ϕ(·) = θopt(·) ∈ F(1)
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• there exists a diagonal positive definite matrix D = diag{d1,d2, · · · ,dn} > 0

such that D · w =
{

D · w
}T

• the diagonal elements of the weight matrix are non-negative.

Proof. The Lyapunov function in this case is given by:

E[v(ρ)] =−1
2

vT(ρ) ·D ·w · v(ρ)− vT(ρ) ·D ·w0 · e+
n

∑
l=1

dl ·
∫ vl(ρ)

0
ϕ−1

β(ρ)
(ζ)dζ

(18.16)
We proof in the following that E[v(ρ)] is monotonically decreasing with time as-
suming the jth neuron, j ∈ {1,2, · · · ,n}, has been updated i.e. vl(ρ + 1) = vl(ρ) if
l �= j. For this reason we define:

ΔE = E[v(ρ + 1)]− E[v(ρ)]

Using the conditions listed above and the mean value theorem [22] we find:

ΔE =− dj ·
{

vj(ρ + 1)− vj(ρ)
} · uj(ρ + 1)− 1

2
· dj · wjj ·

{
vj(ρ + 1)− vj(ρ)

}2

+
n

∑
l=1

dl ·
{∫ vl(ρ+1)

0
ϕ−1

β(ρ+1)(ζ)dζ −
∫ vl(ρ)

0
ϕ−1

β(ρ)
(ζ)dζ

}

ΔE =− dj ·
{

vj(ρ + 1)− vj(ρ)
} · {uj(ρ + 1)− uj,0

}− 1
2
· dj · wjj ·

{
vj(ρ + 1)− vj(ρ)

}2

−
n

∑
l=1

dl ·

⎧⎪⎪⎨
⎪⎪⎩
∫ vl(ρ)

0
ϕ−1

β(ρ)
(ζ)dζ −

∫ vl(ρ)

0
ϕ−1

β(ρ+1)(ζ)dζ︸ ︷︷ ︸
Il

⎫⎪⎪⎬
⎪⎪⎭

Because β(ρ) is non-decreasing then according to Eq. (18.13): ∀l ∈ {1,2,1 · · · ,n} :
Il ≥ 0⇒ ∑n

l=1 dl · Il ≥ 0

ΔE =− dj ·
{

vj(ρ + 1)− vj(ρ)
} · {uj(ρ + 1)− uj,0

}
− 1

2
· dj · wjj ·

{
vj(ρ + 1)− vj(ρ)

}2 −
n

∑
l=1

dl · Il

uj,0 ∈]min
{

uj,1,uj(ρ + 1)
}

,max
{

uj,1,uj(ρ + 1)
}
[

uj,1 = ϕ−1
β(ρ+1)[vj(ρ)]

Because of the special properties of the activation function Fig. 18.5⇒ ΔE≤ 0 and
the equality holds if vj(ρ) = vj(ρ + 1) and β(ρ) = β(ρ+1) or β(ρ) is so large such
that increasing it makes no difference for the activation function. A fixed point will
be reached if ∀l ∈ {1,2, · · · ,n} : ΔE = 0. � 
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18.6.3 Continuous-Time RNN

Theorem 18.7. The continuous-time RNN, cf. Fig. 18.3 and Eq. (18.7), is locally
asymptotically stable if:

• the slope of the activation function β is non-decreasing during the iteration pro-
cess

• the activation function ϕ(·) = θopt(·) ∈ F(1)

• there exists a diagonal positive definite matrix D = diag{d1,d2, · · · ,dn} > 0

such that D · w =
{

D · w
}T

.

Proof. The Lyapunov function in this case is given by:

E[v(t)] =−1
2

vT(t) · D · w · v(t)− vT(t) · D · w0 · e +
n

∑
l=1

dl ·
∫ vl(t)

0
ϕ−1

β(t)(ζ)dζ

(18.17)
We proof in the following that dE[v(t)]

dt is monotonically decreasing with time.

dE[v(t)]
dt

= −dvT(t)
dt

·D · τ · du(t)
dt

+
n

∑
l=1

dl · ∂

∂β

{∫ vl

0
ϕ−1

β (ζ)dζ

}
︸ ︷︷ ︸
≤0 according to Eq. (18.13)

·dβ(t)
dt

⇒ dE[v(t)]
dt

≤ 0

An equilibrium point is reached if dv(t)
dt = 0 and β(t) reaches a constant or a large

value. � 
Remark 18.13. In the proof of the theorems (18.5-18.7) it has been assumed that
all neurons have the same slope β. This can easily be generalized to the case,
where different neurons have different slopes. Important is that these slopes are
non-decreasing with respect to time.

18.7 Global vs. Local Stability for Vector Equalizer Based on
RNN

A RNN can be globally or locally stable depending on the fulfilled inherent stability
conditions. When applying the RNN to solve practical optimization problems, the
RNN is usually designed to have an unique equilibrium and to be globally asymp-
totically stable to avoid spurious responses or the problem of local minima [10]. In
this section we show that for a vector equalizer based on RNN, the global stability
conditions can be achieved easily. However, this leads to a long latency time, i.e.
a longer processing time is required. On the other hand, local stability conditions
offer more free parameters to optimize its performance. We show also, in which
situations both stability cases are especially interesting.
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18.7.1 Discrete-Time RNN with Parallel Update

Theorem 18.8. The discrete-time RNN with parallel update, cf. Fig. 18.2, Eq.
(18.4), is globally asymptotically stable if:

• the activation function ϕ(·) = θopt(·) ∈ F(1)

• there exists a diagonal positive definite matrix P such that:

L−1 · P · L−1 − |w|T · |P| · |w| > 0 (18.18)

where L = diag{β1, β2, · · · , βn}.

Proof. The corresponding Lyapunov function (shifted to the global fixed point) is
given by:

E[Z(k)] = ZT(k) · P · Z(k) (18.19)

Z(k) is the difference between the output of the discrete-time RNN at discrete time
k and its global equilibrium. The proof can be found in7 [27].

18.7.2 Continuous-Time RNN

Theorem 18.9. The continuous-time RNN, cf. Fig. 18.3, Eq. (18.7), is globally sta-
ble if:

• the activation function ϕ(·) = θopt(·) ∈ F(1)

• there exists a diagonal positive definite matrix P such that:

P · τ−1 ·
{

L−1 − |w|
}
> 0 (18.20)

where L = diag{β1, β2, · · · , βn}.

Proof. The corresponding Lyapunov function (shifted to the global fixed point) is
given by:

E[Z(t)] = ZT(t) · L · P · Z(t) (18.21)

Z(t) is the difference between the output of the continuous-time RNN at time instant
t and its global equilibrium. The proof can be found in8 [27].

18.7.3 Discussion

As mentioned before, the RNNs with a unique equilibrium and globally asymptot-
ical stability are preferred in general, when applying RNNs to solve optimization
problems.

In the following we show, what that means, when applying the RNNs as vector
equalizer. At the end of this section we will be able to have a better understanding of

7 The original proof is valid for complex-valued RNN also.
8 The original proof is valid for complex-valued RNN also.
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a hybrid scheme of global and local stability, which has already been applied for the
RNN vector equalizer. Let us begin with the globally stable, continuous-time RNN
Eq. (18.7). In this case Eq. (18.20) must be fulfilled to guarantee that the RNN is
globally stable.

A direct solution to fulfill Eq. (18.20) is to assume:
∀i ∈ {1,2, · · · ,n} : pi = p > 0, τi = τ > 0 ⇒

P · τ−1 ·
{

L−1 − |w|
}
> 0⇔ p

τ
·
{

L−1 − |w|
}
> 0

⇔ L−1 − |w|> 0

L−1 − |w| is a square matrix with positive diagonal elements and negative off-
diagonal elements. To force this matrix to be positive definite, we must increase
its diagonal elements L−1

i = β−1
i i.e. decreasing βi. This leads to activation func-

tions ϕi(·) with very small slopes, where a huge evolution time (multiple of τ) is
required to reach the global minimum. In other words, global stability requires acti-
vation functions with small slopes but it does not demand explicitly any conditions
on the weight matrix itself.

Similar results can be obtained when analyzing the globally stable, discrete-time
RNN Eq. (18.4). In this case Eq. (18.18) must be fulfilled to guarantee that the RNN
is global stable.

A direct solution to fulfill Eq. (18.18) is to assume:
∀i ∈ {1,2, · · · ,n} : pi = p > 0

L−1 · P · L−1 − |w|T · P · |w| >0⇔
p ·

{
L−2 − |w|T · |w|

}
>0⇔

L−2 − |w|T · |w| >0

As in the previous case, one direct solution to fulfill the condition above is to de-
crease βi.

The correspondence between the cost function of the optimum vector equaliza-
tion and the Lyapunov function of the RNN (in the case of local stability) depends
on the slope βi. The smaller the slope, the smaller is the similarity. This means, even
if the RNN is globally stable, the Lyapunov function does not match to the Maha-
lanobis distance any more. Unlike the global stability conditions, the local stability
does not demand any conditions on the slope of the activation function βi but it de-
mands a symmetric weight matrix (for D = I). In the context of vector equalization
the global stability becomes interesting, if the symmetry property of the weight ma-
trix is lost (because of electronic elements non accuracy for continuous-time RNN
as example).

A combination of global and local stability of the RNN vector equalizer (at least
for discrete-time RNN) can be used. In this case the iteration process begins with a
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small slope β (good assumption for global stability). The value of the slope increases
after each iteration (transition from global to local stability)9 [1].

18.8 Conclusion

In this chapter we reviewed the problem of vector equalization and how to apply
a RNN to solve it as suboptimum scheme without training phase. We analyzed
the properties of the optimum activation function for the vector equalizer based on
RNNs and we generalized the known results of the stability of RNNs to a class of
time-varying activation functions. These functions emerge from the problem of pa-
rameter estimation and have been used intensively in conjunction with the applica-
tion of RNNs as multiuser detector or vector equalizer in wireless communications.

In this paper we analyzed also the global and local stability of the discrete-time
and continuous-time RNN in the context of a vector equalizer. We studied the impact
of the stability conditions on the equalization process. We showed that the global
stability is interesting if the weight matrix is not symmetric. This might be the case
because of electronic elements non-accuracy in case of continuous-time RNN as
example. On the other hand global stability in general leads to long latency time
and degraded performance at the receiver. This means a longer time is required to
equalize each received vector because of the small slope of the activation function.

Local stability demands for symmetric weight matrices. The optimum slope and
the evolution time have to be found by simulations.

We showed that a vector equalizer based on RNNs with increasing slope of the
activation function during the iteration process can be interpreted as a scheme with
a transition from global stability to local stability. On the other hand local stability
still holds with increasing slope.

Acknowledgements. Financial support by the Deutsche Forschungsgemeinschaft (DFG
project Li 65912-1) is gratefully acknowledged.

References

1. Engelhart, A.: Vector detection techniques with moderate complexity. Dissertation, uni-
versity of Ulm, institute of information technology, VDI Verlag GmbH, Düsseldorf
(2003)

2. Engelhart, A., Teich, W.G., Lindner, J., Jeney, G., Imre, S., Pap, L.: A Survey of mul-
tiuser/multisubchannel detection schemes based on recurrent neural networks. In: Wire-
less Communications and Mobile Computing, special issue on Advances in 3G Wireless
Networks, vol. 2(3), pp. 269–284. John Wiley & Sons, Ltd. (2002)
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Chapter 19
Stability of Linear Circuits with Interval Data:
A Case Study

Zygmunt A. Garczarczyk

Abstract. In this chapter we study the problem of checking stability of a linear
lumped electric circuits with interval data that model uncertainties of their element
parameters (passive element values R, L, C and controlled source coefficients k).
For such circuits the problem is concerned with examination of the eigenvalues of
interval matrix. Presented approach is based on checking stability of symmetric in-
terval matrix associated with the state matrix and is based on some interval analysis
results. The method is not complex and in some cases we can determine circuit sta-
bility. We illustrate the applicability of studied approach by means of two numerical
examples.

19.1 Introduction

Much of modern system theory adresses problems involving uncertainty. The math-
ematical model of a system might have various physical parameters (as, for example
coefficients of friction, spring constants, capacitances, inductances, etc.) whose val-
ues are specified only within given intervals. The effects of system parameter uncer-
tainties on system performance are important aspect of system design. A fundamen-
tal problem in system theory is concerned with stability of a given linear system.
Stability analysis of systems with parametric uncertainties has attracted much atten-
tion in recent years. Motivated by the celebrated Kharitonov’s Theorem and Edge
Theorem, a number of papers have concentrated on robust stability of polynomial
and matrix families with more complex uncertainty structures [2]-[4], [7], [8], [10],
[12], [16]-[18].

The objective of this chapter is to present the results of our studies based on inter-
val analysis techniques on checking stability of a linear lumped electric circuits with
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interval data that model uncertainties of their element parameters (passive element
values R, L, C and controlled source coefficients k).

19.2 Problem Statement

A most applicable characterization of engineering systems is through their state
equations. For linear time-invariant circuits the characterization is commonly ex-
pressed by normal form of the first order differential state equations which can be
written in terms of the vector p of uncertain parameters. We consider

dx(t)
dt

= A(p)x(t) + B(p)u(t) (19.1)

and call A(p) and B(p) an uncertain or interval matrices. Their entries are not
known exactly and are represented by some intervals. The following example will
demonstrate this fact.

EXAMPLE 1. Consider the circuit of Fig. 19.1.
A state-space equation of the circuit is given by

d
dt

[
u1
u2

]
=

[− 2
RC − k+1

RC
− 1

RC − 1
RC

][
u1
u2

]
+

[ 2
RC 0
1

RC − 1
C

][
e
j

]

Assume that the capacitors are exactly given as C = 1, and resistances of resistors
and gain of the voltage - controlled voltage source are done as interval numbers,
viz. R = [0.935,1.01] and k = [0.7,0.4]. They form the uncertain vector p = (R,k).
With the numerical values substituted, the matrices on the right-hand side become

Fig. 19.1 Linear time-invariant circuit for Example 1
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A(p) =
[
[−2.14,−1.96] [−1.86,−1.67]
[−1.07,−0.98] [−1.07,−0.98]

]

B(p) =
[
[1.96,−2.14] 0
[0,98,1.07] −1

]
It’s seen that in stability analysis of circuits, the stability of an interval (uncertain)
matrices, equivalent to a set of matrices mathematically, is of concern.

It is well known that linear time-invariant continuous-time system is stable if and
only if all the eigenvalues of the matrix A(p) have negative real parts. A(p) is an
interval matrix i.e. is a real matrix in which all elements are known only within
certain closed intervals. In precise terms, an n× n interval matrix AI = A(p) is a
set of real matrices defined by

AI =
{

A = [Aij] : bij ≤ aij ≤ cij, i, j = 1,2, ..,n
}

(19.2)

An interval matrix AI is said to be stable if ∀A ∈ AI , all the eigenvalues of A are
in the open left-half of the complex plane, i.e., Re{λi(A)}, where λ(A) denotes an
eigenvalues of A. The problem of stability of such matrices is much more compli-
cated than the analogous one for systems described by their characteristic polyno-
mial, as suggested by the fact that Kharitonov’s Theorem for interval polynomials
does not hold for interval matrices.

19.3 Stability Of Interval Matrices

First we introduce some notations. For a square real matrix A = |aij| we denote the

transpose by AT , its absolute value as the matrix |A|= (|aij|) and the spectral radius

by ρ(A), ρ(A) = max|λi(A)|, i = l, ...,n. Matrix is called symmetric if A = AT .
Symmetric matrices are known to have all eigenvalues real. W shall denote by σ(A)
the spectrum of A i.e. the set of all λ(A). Matrix inequalities, as A < B or A > B,
are to be understood componentwise. Let Ac and Δ be real n× n matrices, Δ ≥ 0.
The set of matrices

AI = [Ac − Δ, Ac + Δ] = {A : Ac − Δ ≤ A ≤ Ac + Δ} (19.3)

is called an interval matrix. Elements of center matrix Ac and radius matrix Δ are
defined following

[acij] =
1
2
(bij + cij) (19.4)

[Δij] =
1
2
(cij − bij) (19.5)

AI is said to be symmetric if both Ac and Δ are symmetric. With each interval
matrix AI = [Ac − Δ, Ac + Δ we shall associate the symmetric interval matrix

AI
s = [A′

c − Δ′, A′
c + Δ′] (19.6)
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where

A′
c =

1
2
(Ac + AT

c ) (19.7)

Δ′ = 1
2
(Δ + ΔT) (19.8)

Obviously, if A ∈ AI , then 1
2 (Ac + AT

c ) ∈ AI
s , and AI is symmetric if and only if

AI = AI
s .

Stability properties of associated symmetric interval matrix are closely related to
stability of any interval matrix AI . In his paper, Rohn [15] exploiting Bendixon’s
theorem pointed out that if AI

s is stable, then AI is also stable. Unfortunately, the
converse implication is generally not valid. For stability verification it’s also useful
result showing that, if for symmetric interval matrix AI

s center matrix A′
c is stable

and
ρ
(
|A′−1

c |Δ′
)
< I (19.9)

holds, then AI
s is stable. Because of roundoff errors in computations of the inverse

matrix, for practical purposes condition (19.9) may be replaced by following one

ρ
(
|I −QA

′−1
c |+ |Q|Δ′

)
< I (19.10)

where I is the unit matrix and Q ≈ A
′−1
c .

The problem of finding the convex hull of the eigenvalues of a symmetric interval
matrices has been recently studied by Hertz [10]. The maximal eigenvalue of eigen-
values of these interval matrices coincides with the maximal eigenvalue of a set
containing 2n−1 symmetric vertex matrices. It’s seen the complexity of evaluation
the maximal eigenvalues grows up immediately with a dimension of state equations.

Basing on the above results simpler procedure for testing the stability or instabil-
ity can be suggested:

STEP 1. Evaluate center matrix Ac and radius matrix Δ with element defined by
(19.4), (19.5). If Ac and Δ are symmetric go STEP 3.

STEP 2. Using (19.7), (19.8) calculate symmetric matrices A′
c and Δ.

STEP 3. Test stability of the center matrix A′
c. If A′

c is stable go to STEP 4 else
go to STEP 6.

STEP 4. If condition (19.9) (respectively (19.10)) is fulfilled go to STEP 5 else
go to STEP 6.

STEP 5. Stop. The state-space equation (19.1) is stable.
STEP 6. Stop. No decision concerning the stability or the instability of (19.1) can

be made.

If the procedure terminates in STEP 6 no decision concerning the instability of the
set of linear circuits with interval parameters can be made. This follows from the
fact the stability problem of symmetric interval matrices is imbedded in the broader
stability problem of any interval matrices. Therefore the instability of matrix (19.6)
does not necessarily entail instability of matrix (19.3). In such case another stability
condition must be tried (cf. for example [3], [12], [16], [18]).
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19.4 Computational Aspects

Problem of testing robust stability of linear circuits is formulated, from the math-
ematical viewpoint, as the matrix eigenvalue problem. There are many numerical
methods for asymmetric and symmetric eigenvalue problem, like QR method, Ja-
cobi method, power method, Lanczos method etc. [9], [14]. Some of these tech-
niques are appropriate when only a few eigenvalues are desired. Although comput-
ing the matrix eigenvalues may not be simply it’s relatively easy to estimate some
of them. In the foregoing procedure in STEP 3 and STEP 4 it’s necessary only to
calculate the spectral radius of given matrix to decide about its stability. This task
can be done with use of the power method.

Given a matrix A, the power method is defined by the iterations

xk = Axk−1,k = 1,2, ... (19.11)

where x0 is the starting guess. The iterations converge to an eigenvector correspond-
ing to the Λ(A) with largest magnitude i.e. ρ(A). The spectral radius estimate is
calculated as the Rayleigh quotient

ρ(A) = lim
k→∞

xT
k Axk

xT
k xk

(19.12)

Furthermore notice that condition (19.9) (resp.(19.10)) is formulated for nonnega-
tive or positive matrix C = |A′−1

C |Δ′ ≥ 0.
For estimation ρ(C) we can exploit the Perron-Froebenius Theorem [8]. For ex-

ample, if C > 0 and if x is Perron vector of C then

ρ(C) =
n

∑
i=1

n

∑
j=1

cijxj (19.13)

Recall that x1 + x2 + ... + xn = 1 by definition. According to the Brauer’s theorem
[17],[18] we can simply estimate the bounds for spectral radius

s + m(h− 1)≤ ρ(C)≤ S−m(1− 1
g
)

g =
S− 2m +

√
S2 − 4m(S− s)

2(2(s−m))

h =
−s + 2m +

√
S2 − 4m(S− s)

2m

(19.14)

where
m = min

i,j
cij

s = min
i

Si, S = max
i

Si, Si =
n

∑
j=1

cij
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19.5 Numerical Experiments

To illustrate properties of studied approach we consider two numerical examples.
EXAMPLE 2. For the introductory circuit of Fig. 19.1 we shall check stability us-

ing the foregoing procedure. Matrices of centers and radiuses of the interval entries
of matrix AI = A(p) are following

Ac =

[ −2.05 −1.765
−1.025 −1.025

]
,Δ =

[
0.09 0.097
0.045 0.045

]

Associated symmetric center matrix A′
c and radius matrix Δ′ are

A′
c =

[ −2.05 −1.395
−1.395 −1.025

]
,Δ′ =

[
0.09 0.071
0.071 0.045

]

Spectrum of A′
c is equal ρ(A′

c) = (−3.023,−0.051) thus A′
c is stable. Because

ρ
(
|A′−1

c |Δ′
)
= 0.486 < 1 circuit of Fig.1 is stable.

EXAMPLE 3. Consider stability of the circuit of Fig. 19.2. The state-space equa-
tions are done as

d
dt

⎡
⎣ i

u1
u2

⎤
⎦ =

⎡
⎢⎣

0 − 1
L 0

− 1−k
C1

− 1
RC1

1
RC1

k
C2

1
RC2

− 1
RC2

⎤
⎥⎦
⎡
⎣ i

u1
u2

⎤
⎦

For numerical data R = [2,2.5], L = 1,C1 = [0.5,1],C2 = [1,2],k = [0.2,0.4] ma-
trix A(p) = AI is following⎡

⎣ 0 −1 0
[0.6,1.6] [−1,0.4] [0.4,1]
[0.1,0.4] [0.2,0.5] [−0.5,−0.2]

⎤
⎦

Center matrix Ac and radius matrix Δ are

Ac =

⎡
⎣ 0 −1 0

1.1 −0.7 0.7
0.25 0.35 0.35

⎤
⎦

Δ =

⎡
⎣ 0 0 0

0.5 0.3 0.3
0.15 0.15 0.15

⎤
⎦

For associated symmetric interval matrix AI
s we obtain

A′
c =

⎡
⎣ 0 0.05 0.125

0.05 −0.7 0.525
0.125 0.525 −0.35

⎤
⎦
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Fig. 19.2 Linear time-invariant circuit for Example 3

Δ′ =

⎡
⎣ 0 0.25 0.075

0.25 0.3 0.225
0.075 0.225 0.15

⎤
⎦

A′
c is stable because spectrum is equal

σ(A′
c) = (−2.022,−0.252,−0.057)

Spectral radius ρ
(
|A′−1

c |Δ′
)
= 0.847 < 1 and circuit of Fig. 19.2 is stable. For

another set of data (R = [0.4,0.5], L = 1,C1 = 1,C2 = [1,2],k = [0.2,0.4]) no con-
clusion concerning the stability or the instability of circuit was made.

19.6 Final Remarks

Checking stability of linear time-invariant systems with uncertain parameters is a
key problem of system theory. It has received considerable attention in recent years
especially after the seminal work of Kharitonov. In this chapter, we have presented
a simple procedure for testing robust stability of linear circuits. It’s seen from nu-
merical experiments that procedure works effectively for some interval state matrix.
Future studies should be focused on improving and tailoring foregoing procedure to
the underlying robust stability structure.
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Chapter 20
Data Reconciliation and Bias Estimation in
On-Line Optimization

Moufid Mansour

Abstract. The reliability of measured data, which can be subject to both systematic
and random errors, is of great importance for the monitoring and evaluation of pro-
cess performance and the determination of control action. This Chapter presents
and assesses bias estimation (as a type of systematic error) technique and data
reconciliation methods for the detection, estimation and elimination of biases and
random errors respectively. It is shown how these methods can be successfully em-
ployed within an on-line Integrated System Optimisation and Parameter Estimation
(ISOPE) scheme for the determination of the process optimum, despite the exis-
tence of model-reality differences and measurement errors. The performance of the
resulting scheme is demonstrated by application to a two tank CSTR system.

20.1 Introduction

In recent times, established techniques of Integrated System Optimization and Pa-
rameter Estimation (ISOPE) have been seen to be successfully applied in the on-line
process optimization situation when model-reality differences exist (see for example
Ellis et al., 1988 and Roberts and Williams, 1981). The ISOPE approach includes
process measurements as part of the procedure and has been seen to perform well,
and obtain the real process optimum, when employed with faithful measurements.
However, in many practical situations, errors in process measurements may exist,
and it is this setting of the ISOPE algorithm that is being considered. Measurements
from process plants are seldom error free, as they are prone to contain both ran-
dom and systematic errors. Systematic errors are caused by non-random events such
as process leaks, biases in instrument measurements, malfunction of instruments
and inadequate accounting of departures from steady state conditions. Random er-
rors arise from chance occurrences and are generally normally distributed. In this
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Chapter, we aim at investigating a technique for Bias Estimation (BE) to tackle bi-
ases as a type of systematic error and methods of Data Reconciliation (DR), to deal
with random errors, and incorporate them within an ISOPE scheme.

20.2 Data Reconciliation

Data reconciliation (also called validation), allows state estimation and measure-
ment correction problems to be addressed in a global way. The aim here is to obtain
error-free values of available measurements, and also yield consistent and complete
estimates of all the process state variables as well as unmeasured process parame-
ters. Data reconciliation is based on measurement redundancy (Arora et al., 2002).
By definition, a redundant measurement is a measurement which the value can be
calculated based on other measurements. Data reconciliation uses measurement re-
dundancies with the fact that at least some information about the process is known (a
priory) and exploits it together with the relationships that exist between the measure-
ments to correct them. The yielded measurements are accurate and more reliable.
As a result, the reconciled values are of a lower variance compared to original raw
measurements.

The main drawback in the data reconciliation problem is the incompleteness of
the measurement sets. Usually, process variables cannot all be obtainable or avail-
able for measurement. This is due to different reasons; among them we mention
cost considerations and technical unfeasibility. Therefore, we sometimes proceed
to estimating the value of some unmeasured variables by way of mass, energy and
component balances (Mah et al., 1976).

The general assumptions lying behind steady-state data reconciliation methods
and their software implementations are given as follows (Kim et al., 1997):

1. The process is stationary: The system is at steady-state.
2. The measurement error is Gaussian with zero mean value, and known variances.

This signifies that the measurements are not affected by any gross error.

Therefore, the data reconciliation problem can be stated as follows (Bagajewicz,
2003): Given a set of measurement values of a subset state variables, it is desired to
obtain the best estimators of these measured state variables and as many unmeasured
variables as possible.

20.2.1 Types of Errors

There are two types of experimental errors: systematic errors and random errors
Systematic errors affect the accuracy of the measurement. In fact, in the absence of
other types of errors, repeated measurements on the same variable yield the same
result that differs from the true or accepted value by the same amount. Common
sources of systematic errors are faulty calibration of measuring instruments, biases
in instrument measurements, inadequate accounting of departures from steady-state
operations and/or inaccurate process models. On the other hand, random errors are
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errors that affect the precision of the measurement. In the absence of other types
of errors, repeated measurements on the same variable yield a result that fluctuates
around the true or accepted value. Random errors come from the randomness of the
measurements, such a process noise and they are normally distributed.

20.2.2 Brief History

Data reconciliation has been around for several years now. It has been used as a
mean for obtaining accurate and reliable data in process plants. The earliest work
reported in the literature is probably that of Kuehn and Davison (1961), where the
authors presented a formulation of the data reconciliation problem and a method
based on Lagrange Multipliers in order to solve the steady-state data reconcilia-
tion problem. Gelb (1974) used Kalman Filtering successfully to recursively smooth
measurement data and estimate parameters In dynamic cases. However, both steady-
state and dynamic studies were developed for linear systems only. Therefore, mod-
ifications were made in order to handle a more general form: nonlinear systems.
Knepper and Gorman (1980) proposed a method in which successive linearization
of the system’s nonlinear equations was used. It was based on the application of
the analytical solution for the linearly constrained data reconciliation problem. In a
comparison study, Jang et al. (1986) concluded that nonlinear programming gives
better results in terms of response to changes in parameters and robustness in the
presence of modelling errors and strong nonlinearities. In the same context, Lieb-
man and Edgar (1988) demonstrated that nonlinear programming yield improved
reconciliation estimates compared to successive linearization. In 1983, Crowe et al.
(1983) proposed a method based on matrix projection to reconcile process flows.
They used a Chi-square test based on the inverse of the reduced Hessian. In 1987,
Narasimhan and Mah (1987) introduced their well known Generalise Likelihood
Ratio (GLR) method for gross error detection. This method based on the likelihood
ratio statistical test was capable of detecting, identifying, estimating and eliminat-
ing a wide variety of gross errors. In the same paper, they proposed a strategy for
identifying multiple gross errors namely the Serial Compensation strategy. Based on
the Chi-square test, a linear combination technique that identifies equivalent gross
errors was derived by Rollins et al. (1996). A review of important results for gross
error detection prior to 1996 is available in Crowe (1996), for steady-state systems
and Albuquerque and Kramer (1995) for dynamic systems.

Based on a bivariate distribution function constructed using the maximum like-
lihood principle, Tjoa and Biegler (1991) presented a method for combined data
reconciliation and gross error detection applied to steady-state processes. Because
the assumption that all data reconciliation algorithms are based on, is that the mea-
surements are taken at steady-state, and as processes are generally never in a steady-
state, means not only random errors but also process variations are averaged with
good measurements. This issue was addressed in many publications (Narasimhan,
1984, Holly et al., 1989, and Abu-el-zeet et al., 2000). In the year 2000, Narasimhan
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and Jordache (2000) published a book, which provides a systematic and comprehen-
sive treatment of data reconciliation and gross error detection techniques.

The literature is rich with excellent review papers: Mah (1982); Tamhane and
Mah (1985); Mah (1990); Madron (1992); and Crowe (1996).

20.2.3 The Benefits of Data Reconciliation

The benefits gained from data reconciliation in the chemical and process industry
are numerous. We mention (Arora et al., 2002):

• Improvement of measurement layout.
• Fewer routine analyses.
• Reduced frequency of sensor calibration (only faulty sensors need to be cali-

brated).
• Removal of systematic measurement errors.
• Systematic improvement of process data.
• A clear picture of plant operating condition.
• Reduced measurement noise for key variables.

Moreover, monitoring through data reconciliation leads to early detection of sen-
sor deviation and equipment performance degradation, actual plant balances for ac-
counting and performance follow-up, safe operation closer to the process limits and
improved quality and performance at the process level.

20.2.4 Recent Developments and Software Packages

People both from academia and industry, are being attracted to the area of data
reconciliation. Hundreds of articles have been published, several books have been
written and a couple of industrial software packages exist at the present moment
(Bagajewicz, 2003).

Recent developments in the field aim at combining online data acquisition with
data reconciliation, where reconciled data are displayed in control rooms in parallel
with raw measurements. Departure between reconciled and measured data can trig-
ger alarms and analysis of time variation of those corrections can draw attention to
drifting sensors that need recalibration (Arora et al., 2002).

Amongst the software packages developed to date, we note: PRECISE, from Ok-
Solutions, VALI, which is a data reconciliation and data validation software avail-
able from BELSIM s.a. We also mention RAGE, which is a software package for
data reconciliation and gross error detection developed by the Chemical Engineer-
ing Department (IIT Madras).

In the next subsection we present the mathematical structure of the steady-state
data reconciliation problem and the different means used to solve it. After that,
bias estimation technique is given to demonstrate one type of systematic errors. A
comprehensive case study that illustrates the use of the above tools is provided in
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Section 5. The case study demonstrates the treatment of random errors as well as
biases using the appropriate techniques on a two CSTR system.

20.2.5 Formulation of the Data Reconciliation Problem

Data Reconciliation (DR) is a necessary operation for obtaining accurate and consis-
tent data in process plants by forcing them to obey natural laws such as material and
energy balances so that, ultimately, the material and, if considered, the energy bal-
ances are satisfied exactly (Abu-el-Zeet et al., 2000). Generally speaking, the data
reconciliation problem can be formulated as a constrained optimization problem.
That is, as a least squares estimation problem if the measurements contain random
errors only. This will be the case here as any prior biases have already been removed.
Let ε be a vector of random measurement errors:

ε = ym − ytrue (20.1)

where ym is the vector of measured process variables, and ytrue denotes the vector
of true values of measured variables. If these errors are considered to be normally
distributed with zero mean, and a covariance matrix, V , the data reconciliation
problem can be defined as a least squares estimation problem:

Minimise : F(ym,ytrue)

F(ym,ytrue) =
1
2
(ym,ytrue)

TV−1(ym,ytrue)

subject to : h(ytrue) = 0

(20.2)

where h is a set of algebraic equality constraint equations, and V is the variance-
covariance matrix, where each element Vii is σ2

i (i = 1,m), and is assumed to be the
same for all data sets.

The above problem can be solved using several approaches.

20.2.5.1 Nonlinear Programming (NLP)

The problem of equation (20.2) can for instance be solved by any nonlinear pro-
gramming technique. Often Sequential Quadratic Programming (SQP) is used as
it requires the fewest function evaluations. In this case, upper and lower bounds on
the measured variables are added, so problem (20.2) can be more generalized. These
upper and lower bounds can be considered as an extra inequality constraint.

20.2.5.2 Quadratic Programming

In the special case where the equality constraint equations are linear, or can be
linearized if they are almost linear, problem (20.2) can be reduced to an uncon-
strained Quadratic Programming problem (QP) that can be solved analytically. We
write then,
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h(ytrue) = Aytrue = 0 (20.3)

where A is the Jacobian of the constraint equations and the solution is obtained by
the use of Lagrange multipliers and is given by (Abu-el-zeet, 2000):

ytrue = ym −VAT(AVAT)−11δ (20.4)

where δ is the residual of the unsatisfied balances and is given by:

δ = Aε = Aym (20.5)

20.2.5.3 Successive Linearization

A shortcoming of the linear solution is that the solution does not necessarily satisfy
the non-linear constraints. In successive linearization, the linear problem is iterated
until an optimal point is obtained satisfying the non-linear constraints. As in the
linear solution method, the advantage of successive linearization is its relative sim-
plicity and fast calculation.

20.3 Bias Estimation

When both random and biases are present on process measurements, bias estimation
techniques are firstly applied to the measurements to eliminate, or reduce, the non-
random errors (Narasimhan and Jordache, 2000).

In the special case where the locations of the biased variables are known a priori,
bias can be estimated as a parameter (McBrayer and Edgar, 1995). This method-
ology is appropriate here and the procedure is to solve the following non-linear
programming (NLP) problem:

Min : J(ȳ, b̂)
subject to :

f (ȳ) = 0

(20.6)

ȳl,i ≤ ȳi ≤ ȳu,i ∀i,

b̂l,i ≤ b̂i ≤ b̂u,i ∀i,
(20.7)

Where:

J(ȳ, b̂) =

⎛
⎝ ȳ1 −

(
ym1 − b̂1

)
σ1

⎞
⎠

2

+

⎛
⎝ ȳ2 −

(
ym2 − b̂2

)
σ2

⎞
⎠

2

+

⎛
⎝ ȳ3 −

(
ym3 − b̂3

)
σ3

⎞
⎠

2

(20.8)
where ymi is the ith measured variable, ȳi is the ith estimate, σi is the measurement
noise standard deviation of the ith measured variable and b̂i is the estimate of bias
on the ith measured variable. It should be noted that the bias, b̂i , is also included in
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the inequality constraints. This allows for physical limits on the range of admissible
biases.

20.4 ISOPE and the Inclusion of Data Reconciliation and Bias
Estimation

The ISOPE algorithm is a model-based system optimization technique that was de-
veloped to overcome model-reality differences and generate the system optimum
(Roberts, 1979). The basic form of ISOPE is discussed here in connection with BE
and DR but extended versions can readily be employed if the situation demands
(Ellis et al., 1988).

As process measurements are being used within the algorithm, there are, in-
evitably, difficulties in that measurements are likely to be contaminated by various
types of errors. By applying BE and DR techniques to the measurements, it would
be hoped that the performance of the ISOPE algorithm could be improved.

The ISOPE algorithm addresses the general non-linear programming problem,
where * refers to the real process (Mansour and Ellis, 2003):

Min
c

Q(c,y∗) (20.9)

subject to:
y∗ = F∗(c) (20.10)

g(y∗) ≤ 0 (20.11)

cmin ≤ c ≤ cmax (20.12)

where, c and y∗ are the controls and outputs, respectively, of the process. The gen-
eral form of the ISOPE algorithm, with error free output measurements can be seen
in Ellis et al., (1988) and Roberts, (1979).

With the inclusion of Bias Estimation and DR, the ISOPE algorithm takes the
following form:

1. Apply the current control, ck , to the real process and, after an appropriate settling
time, obtain steady-state measurements, y∗k . Where, k is the iteration and y∗k is
the error burdened output measurement.

2. Apply BE and DR techniques as required to the measured outputs, y∗k , to yield
the error free outputs, y∗k.

3. The process model is given by:

y = F(c,α) (20.13)

where, α are free model parameters. Assuming that measurements of all out-puts
are available, (20.10) and (20.13) can be used in a simple estimation procedure
to determine the model parameters, α:



368 M. Mansour

y = F(c,α) = F∗(c) (20.14)

This estimation procedure also has the benefit of satisfying one of the necessary
system optimality conditions (Ellis et al., 1988).

4. Solve the modified model-based optimization problem given by:

Min
c

Q(c,α)− λTc

y = F(c,α)
g(c,α)≤ 0

(20.15)

Where,

λ =

[
∂T F
∂c

− dF∗
dc

][
∂T F
∂α

][
∂Q
∂α

]
(20.16)

λ is termed a modifier and arises from the necessary optimality conditions, of
the system optimization problem (Ellis et al., 1988, Roberts and Williams, 1981,
Rob-erts, 1979).

5. In order to control convergence of the algorithm, the new control ĉk , obtained
from the model-based problem of (20.15), is not directly applied to the system.
Instead, the following under-relaxation scheme is used to provide updated con-
trols, ĉk+1 , for the process :

ck+1 = ck + K(ĉk − ck) (20.17)

where K is a relaxation gain matrix, and governs the actual changes made to the
real process inputs from one iteration to another. Its purpose is to ensure that
excessive alterations are not made.
The above steps are repeated until satisfactory convergence is obtained. Conver-
gence occurs when no further improvement is observed. In other words, when
the new control is no longer a better candidate than the previous one.

20.5 Application to a Continuous Stirred Tank Reactor System

The ISOPE algorithm, using the Bias Estimation (BE) and Data Reconciliation (DR)
schemes, is now applied, under simulation, to a Continuous Stirred Tank Reactors
(CSTR) system (Garcia and Morari, 1981) which has two tanks connected in cas-
cade (Figure 20.1).

An exothermic autocatalytic reaction takes place in the reactors with interaction
taking place in the units in both directions due to a recycle of 50% of the product
stream into the first reactor. Regulatory controllers are used to control the tempera-
ture in both reactors.

The reaction is:

A + B k+−
�==�−

k-
2B (20.18)
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The system has four outputs which are the concentrations of the two components A
and B in the two tanks, i.e.: y = (Ca1,Cb1,Ca2,Cb2 . In our example, the concen-
trations of species B in both tanks Cb1 and Cb2 are to be monitored for steady-state
identification. Temperatures in the two tanks, T1 and T2 are the set-points.

The simulations were started from the same initial operating point given by
T1 = 307K and T2 = 302K yielding the following steady-state output values of the
concentration of product B in the two tanks 1 and 2, Cb1(0) = 0.0516[kmol/m3] ,
and Cb1(0) = 0.0586[kmol/m3] .

Measurement noise was simulated as normally distributed with zero mean. The
value of the variance-covariance matrix was chosen to be:

V =

[
σ2

1 0
0 σ2

2

]
(20.19)

where σ1 is the standard deviation for the variable Cb1 and was chosen to be 5%
of the nominal value, σ2 is the standard deviation for Cb2 and was of a value of
5%. These values were chosen as they represent typical values in many realistic
situations.

The aim here is to maximize the concentration of component B in tank 2, giving
the objective function, (20.9), as:

Q(c,y∗) = −Cb2 (20.20)

The controls, at the real process optimum, obtained directly from the real process
equations, are: T1 = 312K and T2 = 310.2K With corresponding output concentra-
tion measurements Cb1(0) = 0.0644[kmol/m3] , and Cb1(0) = 0.0725[kmol/m3]
The model adopted is of the approximate linear form [1]:

V =

[
Cb1
Cb2

]
=

[
a11 a12
a21 a22

][
T1
T2

]
+

[
α1
α2

]
(20.21)

where α1 and α2 are the free model parameters to be estimated and aiji, j = 1,2 are
also model parameters which are assigned the values of the process derivatives. The
real process derivatives, d f /dc , may be estimated by such techniques as apply-
ing control perturbations or, as is the case here, by the use of Broydon’s method
(Fletcher, 1980). The estimation of the process derivatives may be made by such
techniques for the calculation of the modifier, λ, in (20.16). The procedure is im-
plemented, using a MATLAB/SIMULINK software plat-form, following the steps
described in Section 20.4. Initially, to illustrate the performance of the ISOPE algo-
rithm, without any BE or DR being implemented, both measurements were subject
to 5% additive noise. Figures 20.2(a) shows the measurements, while Figure 20.2(b)
shows the controls not converging to the correct real optimum. This is due to flawed
data measurements producing erroneous model parameters. The sample extreme
case of gross error, represented here is in the form of measurement biases. With
noise present on the measurements as well, it is observed with BE and DR applied,
as described in Sections 20.2 and 20.3, to the real process measurements. Figure
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20.3(a) shows, due to the introduction of BE and DR, error free measurements be-
ing obtained. Having error free measurements available, the ISOPE algorithm is
now able to function correctly, as can be seen in Figure 20.3(b), where the controls
converge the correct real process optimum. Figures 20.3(a) and 20.3(b) demonstrate
the effectiveness of the BE and DR procedures to enable the ISOPE algorithm to
perform successfully. Less extreme situations, such as when only noise is present
on the measurements, have also been seen to be handled satisfactorily by the BE
and DR procedures [10].

Fig. 20.1 Continuous Stirred Tank Reactor System

(a) ISOPE Process Outputs and Measure-
ments

(b) ISOPE Control Trajectories

Fig. 20.2 Noise applied without BE and DR
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(a) ISOPE Process Outputs and Measure-
ments with Implementation of BE and DR

(b) ISOPE Control Trajectories with Imple-
mentation of BE and DR

Fig. 20.3 Multiple Biases and Noise Present

20.6 Conclusion

In the on-line process optimization problem, when measurements are subject to
gross errors and/or noise, it has been seen how techniques of Bias Estimation (BE)
and Data Reconciliation (DR) can be employed in conjunction with an algorithm
for Integrated System Optimisation and Parameter Estimation (ISOPE) to enable
the real process optimum to be found. This is in the situation when there also exists
model-reality differences.

These techniques have been demonstrated for the on-line optimization of a two
tank CSTR system. Despite the presence of multiple biases and noise on the process
measurements, together with an unfaithful model, the real process optimum was
seen to be achieved.

Thus, these techniques of BE and DR are therefore eminently suitable for the
often encountered on-line optimization situation, when measurements are subject to
errors, yet still enable the process optimum to be achieved.
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Chapter 21
Image Edge Detection and Orientation Selection
with Coupled Nonlinear Excitable Elements

Atsushi Nomura, Yoshiki Mizukami, Koichi Okada, and Makoto Ichikawa

Abstract. This chapter presents an image-processing algorithm for edge detec-
tion and orientation selection with discretely coupled nonlinear elements. The al-
gorithm utilizes the nonlinear characteristic of the FitzHugh-Nagumo model and
arranges the elements on an image grid system. The model is described with a pair of
ordinary differential equations with activator and inhibitor variables, and exhibits
mono-stable excitability. It was previously found that a grid system consisting of
mono-stable nonlinear elements self-organizes pulses at crossing points between an
initial activator distribution and a threshold level. In particular, the imposition of
strong inhibitory coupling on the grid system causes stationary pulses at the cross-
ing points. The algorithm presented here focuses on the phenomenon in which the
grid system self-organizes stationary pulses at the crossing points. In addition, the
algorithm introduces anisotropic coupling strength into the grid system; the cou-
pling strength is decided according to the difference between the gradient direction
of the inhibitor distribution and the specific orientation. An experimental section
demonstrates the results of edge detection and orientation selection for artificial and
real images.

21.1 Introduction

Nonlinear elements are common in nature and exhibit interesting temporal behav-
ior such as nonlinear excitation and oscillation [1]. Very classical researches done
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in physiology showed that a nerve axon responds to an external stimulus and its
state traces a nonlinear process of excitation and inhibition [2]. A chemical reaction
system can also show nonlinear excitation or oscillation processes [3].

A system consisting of coupled nonlinear elements exhibits further interest-
ing phenomena, such as self-organized pattern-formation processes. A reaction-
diffusion system refers to a system of diffusely or continuously coupled nonlinear
elements [1]. Some reaction-diffusion systems self-organize spiral waves and target
waves traveling in space while others self-organize stationary periodic waves from
initial uniform distribution.

Several researchers have found that a reaction-diffusion system has functions of
information processing in addition to the function of information transmission. In a
chemical reaction-diffusion system, an external stimulus initiates a target wave. The
wave travels in space and reaches another point in space. If we artificially stimulate a
point in the space of the reaction-diffusion system, and if we observe another point,
we can find the traveling wave passing the observation point after a finite duration
of time. This means that an information transmission system with traveling waves is
established between the two points [4]. Another chemical reaction-diffusion system
self-organizes waves in an area or along edges of an image-brightness distribution
projected onto the system [5]. Thus, we can understand that a reaction-diffusion
system also has the image-processing functions of edge detection and segmentation.

Image-processing functions can also be provided with a grid system of discretely
coupled nonlinear excitable or oscillatory elements. A typical nonlinear element has
activator and inhibitor variables; the activator variable excites the state of the ele-
ment and the inhibitor variable inhibits the element from exciting. A grid system
named LEGION (Locally Excitatory Globally Inhibitory coupled Oscillatory Net-
work) performs image segmentation [6, 7]. We previously found that a grid system
of nonlinear excitable elements with strong inhibitory coupling could also perform
edge detection and segmentation [8–10].

This chapter presents an algorithm for edge detection and orientation selection
with a two-dimensional grid system of discretely coupled nonlinear excitable el-
ements. According to our previous findings [8–10], the algorithm utilizes a grid
system consisting of nonlinear excitable elements. When a particular element has
isotropic, strong inhibitory coupling to its neighboring elements, the system per-
forms edge detection. When a particular element has anisotropic inhibitory cou-
pling to its neighboring elements, the system performs orientation selection. A
reaction-diffusion model with anisotropic inhibitory coupling originally demon-
strated oriented periodic pattern formation in a biological system [11]. The al-
gorithm presented here is obtained by replacing the anisotropic diffusion of the
reaction-diffusion model with anisotropic discrete coupling. An experimental sec-
tion shows that the algorithm indeed works for edge detection and orientation
selection for artificial binary images and real gray-level images. In addition, the
section demonstrates quantitative performance of the algorithm for noisy artificial
binary images, in comparison with two representative existing algorithms proposed
by Marr and Hildreth [12] and by Canny [13].
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21.2 Background

21.2.1 Coupled Nonlinear Elements

Biological systems perform information transmission with pulses stably propagat-
ing in space [1]. For example, a nerve axon has a mechanism of transmitting in-
formation from one point to another point with pulses. Hodgkin and Huxley [2]
examined the mechanism with physiological experiments, and presented a mathe-
matical model describing the response of the axon to an external stimulus. In addi-
tion, they derived a partial differential equation describing pulse transmission along
the axon.

FitzHugh [14] derived a simplified model so as to qualitatively simulate behav-
ior of the Hodgkin-Huxley model. On the one hand, the Hodgkin-Huxley model has
four variables and is highly complex; on the other, the FitzHugh model has only two
variables of activator and inhibitor. Thus, he simplified the Hodgkin-Huxley model
by retaining its qualitative characteristics of excitation and inhibition. Nagumo et
al. [15] almost simultaneously presented a similar simplified model, and imple-
mented a circuit system simulating pulse transmission along a nerve axon. Nowa-
days, the FitzHugh-Nagumo model refers to that derived by FitzHugh [14] and also
by Nagumo et al. [15].

A system of coupled nonlinear elements such as those modeled by the FitzHugh-
Nagumo model and the Hodgkin-Huxley model causes stable pulses and their robust
propagation. It is difficult to explain such a robust pulse transmission phenomenon
with linear elements. There are many types of nonlinearity depending on biological
systems and their functions. Among them, the FitzHugh-Nagumo model in particu-
lar has been studied with theoretical and numerical analyses.

A system of diffusely coupled nonlinear elements becomes a reaction-diffusion
system, which also brings a wide variety of pattern-formation phenomena such
as spiral and target waves propagating in two- or three-dimensional space. The
Belousov-Zhabotinsky reaction system self-organizes spiral and target waves [3],
and a biological amoeba system also self-organizes such waves for transmitting in-
formation about environmental changes [16]. The reaction-diffusion mechanism of
diffusely coupled nonlinear elements causes these pattern-formation phenomena.

Some of reaction-diffusion systems with strong inhibitory diffusion generate lo-
calized and stationary periodic patterns, which simulate morphogenesis in hydras
and patterns of markings on fish skin. Turing was the first to propose a model of
reaction-diffusion and its condition for explaining morphogenesis [17]; later, Gierer
and Meinhardt proposed more realistic models [18]. Besides these early theoretical
results, laboratory experiments have shown that several real chemical and biological
systems self-organize such localized and stationary periodic patterns [19, 20].

Besides the chemical and biological systems stated above, there exist artificial
systems such as circuit systems exhibiting nonlinear excitation and oscillation. Chua
and Matsumoto proposed a circuit system exhibiting nonlinearity [21]; the system is
now called the Chua circuit. Later, the Chua circuit was combined with the cellular
neural network approach; Chua also proposed the cellular neural network approach
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as a framework implementing discretely coupled elements on a circuit system [22].
Thus, we can now implement reaction-diffusion systems including the FitzHugh-
Nagumo type not only with numerical computation, but also with circuit systems by
combining the Chua circuit with the cellular neural network approach. Several Chua
circuit systems have successfully demonstrated traveling and stationary waves.

21.2.2 Edge Detection

An edge refers to a position having rapid brightness change on image space. Marr
and Hildreth proposed an edge-detection algorithm that located zero-crossing points
in second derivatives of image brightness distributions [12]. Their algorithm is com-
posed of a Gaussian filter for noise reduction and a Laplacian filter for the second
derivatives. The brightness distribution of a strongly blurred image intersects with
a weakly blurred one at its inflection point. Thus, the algorithm has another ver-
sion composed of two Gaussian filters with different spatial spreads, instead of the
Laplacian-of-the-Gaussian filter.

The application of a Gaussian filter to image brightness distribution results in a
blurred image, which is also the case with a diffusion equation. The solution of the
diffusion equation becomes a convolution of the Gaussian function and its initial
condition [23]. If the diffusion equation has the initial condition of image bright-
ness distribution, its solution becomes the same as the output of the Gaussian filter
applied to the image brightness distribution. Thus, we can utilize the diffusion equa-
tion instead of the Gaussian filter in image processing.

By accepting the application of diffusion equations to image processing, several
researchers have come to propose applying anisotropic diffusion equations to edge
detection [24]. Since an isotropic diffusion equation blurs image brightness distri-
bution almost everywhere, it tends to remove meaningful image structures, such as
corner points required for later processes of image understanding and recognition.
By modulating its diffusion coefficient adaptively for original image brightness dis-
tribution, the researchers have tried to solve the difficulty of preserving meaningful
image structures.

The cellular neural network approach [22] was combined with edge detection
algorithms utilizing diffusion equations, and therefore brought further practical ap-
plications in circuit systems. Isotropic and anisotropic diffusion equations were re-
formulated with templates of the cellular neural network approach [25].

Part of the research on image processing was originally motivated by biologi-
cal vision. For example, the Mach bands effect, which is a kind of edge enhance-
ment phenomenon in human and biological vision, has attracted much attention
from practitioners of image processing as well as vision researchers. Barlow et
al. presented a mathematical model for explaining the phenomenon, by modeling
interactions among discretely coupled visual receptor units in the lateral eye of
Limulus [26]. The important point in the model is the nonlinear and inhibitory in-
teractions. In addition, it is known that a biological visual system has orientation
selectivity. Several researchers have presented models for explaining the selectivity;
one of them explains that some asymmetry causes orientation selectivity [27].
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Motivated by previous research work on biological vision and nonlinear phe-
nomena, several researchers have proposed image processing algorithms such as
segmentation and edge detection. Wang and Terman [6] focused on the biological
nonlinear response described with the FitzHugh-Nagumo model. They arranged the
FitzHugh-Nagumo nonlinear oscillator elements on an image grid system, and cou-
pled them with local excitation and global inhibition; the LEGION network refers to
a grid system. We ourselves presented a grid system of discretely coupled FitzHugh-
Nagumo nonlinear excitable elements, and reported that the grid system is appli-
cable to edge detection and segmentation [8–10]. We imposed strong inhibitory
coupling on the grid system; this is a key point for self-organizing stable pulses
indicating edges.

This chapter presents an edge detection and orientation selection algorithm
by employing our previous grid system consisting of the FitzHugh-Nagumo ele-
ments. The algorithm for edge detection is the same as that of our previous algo-
rithm designed for binary image edge detection [8–10]. In addition, by introducing
anisotropic inhibitory coupling into the grid system, we propose to perform orienta-
tion selection. The anisotropic coupling is motivated by a reaction-diffusion model
simulating the oriented periodic patterns of markings on fish skin [11].

21.3 FitzHugh-Nagumo Elements on a Grid System

21.3.1 FitzHugh-Nagumo Element

The FitzHugh-Nagumo nonlinear element qualitatively simulates the temporal re-
sponse of a nerve axon to a stimulus [14,15]. A mathematical model explaining the
response of the element is described with a pair of time-evolving ordinary differ-
ential equations with an activator variable u(t) and an inhibitor variable v(t), as
follows:

du
dt

=
1
ε
{u(u− a)(1− u)− v}, (21.1)

dv
dt

= u− bv, (21.2)

in which d/dt is a temporal derivative; ε is a positive small constant (0 < ε �
1); a is a constant and b is a positive constant (0 < b). Equation (21.1) has cubic
nonlinearity. The initial conditions for u(t) and v(t) are as follows:

u(0) = u0, v(0) = v0. (21.3)

Phase plane analysis (see eg Appendix 1 in [1]) visualizes the solution trajectory
of the FitzHugh-Nagumo model described with Eqs. (21.1) and (21.2), as shown
in Fig. 21.1. The phase plane is partitioned into four domains, depending on the
positive or negative sign of du/dt and dv/dt. Let us consider an initial condition
(u,v) = (u0,v0) denoted by P0. Since the point P0 is located in the domain of
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Fig. 21.1 Phase plane for the FitzHugh-Nagumo model of Eqs. (21.1) and (21.2). Null-clines
denoted by du/dt = 0 and dv/dt = 0 partition the plane into four domains according to the
combination of positive and negative signs of du/dt and dv/dt; D1 = {(u,v)|du/dt >
0,dv/dt > 0}, D2 = {(u,v)|du/dt < 0,dv/dt > 0}, D3 = {(u,v)|du/dt < 0,dv/dt <
0} and D4 = {(u,v)|du/dt > 0,dv/dt < 0}. For example, an initial solution (u,v) =
(u0,v0) denoted by P0 traces the trajectory P0 → P1 → P2 → P3 → O as time proceeds. An
excited state refers to areas having a large value u around P1, and a resting state refers to
areas having a small value u around P3 and O.

du/dt > 0 and dv/dt> 0, the solution (u,v) traces the trajectory denoted by P0 →
P1 and enters an excited state having a large value of u. After the solution enters the
area having du/dt < 0 and dv/dt > 0, the variable u(t) begins to decrease as
time proceeds. Thus, the solution traces the trajectory along P1 → P2 → P3, and
returns to the resting state having a small value of u. At the final stage, the solution
converges to the stable steady state located at the origin O via the trajectory along
P3 → O, as suggested by the linear stability analysis. Thus, the origin is the only
globally stable steady state, in the case of Fig. 21.1. Let us consider a situation in
which the model is in the stable steady state O in Fig. 21.1. If the model receives an
external stimulus beyond the threshold level a, it again enters the excited state and
traces the similar trajectory P0 → P1 → P2 → P3 → O. Thus, this model describes
what is called an excitable element.

When the solution (u,v) traces the trajectory along P0 → P1, the solution u in-
creases with acceleration. This is because Eq. (21.1) has the cubic nonlinearity with
the large velocity 1/ε. In contrast to this, after the element enters an excited state,
the variable v also becomes large, resulting in du/dt < 0. A large value of the
variable v inhibits the variable u from increasing. Thus, the variable u is called an
activator and the variable v is called an inhibitor.

The behavior of the FitzHugh-Nagumo model depends on the settings of the pa-
rameters a and b. If the model has one or two stable steady states, it becomes a
mono-stable or bi-stable excitable system, respectively. In the bi-stable system an
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Fig. 21.2 One-dimensional results for coupled elements described with Eqs. (21.4) and
(21.5). The parameter settings were as follows: (a) Cu = 2.0 and Cv = 6.0 and (b) Cu = 6.0
and Cv = 2.0; other parameter settings were fixed at a = 0.05,b = 1.0, ε = 1.0× 10−3,δt =
1.0× 10−4 and L = 400; δt is the finite difference for numerical computation of Eqs. (21.4)
and (21.5). The horizontal axes denote the index number i and the vertical axes do values of
ui and vi. Solid gray lines indicate the initial condition for ui; the initial condition vi was
zero for all of the elements. Figures (a-1) and (b-1) show the results obtained at t = 0.18,
Figs. (a-2) and (b-2) show those at t = 0.30, and Figs. (a-3) and (b-3) show those at t = 3.0.

external stimulus triggers the switch of the two stable steady states. If the model
has no stable steady state, it becomes an oscillatory system, in which the state of the
system autonomously oscillates as time proceeds. A model having two stable steady
states works for a bi-stable nonlinear excitable element and that exhibiting the os-
cillatory behavior works for a nonlinear oscillatory element. On the one hand, Wang
and Terman utilized the FitzHugh-Nagumo type nonlinear oscillatory elements for
image segmentation [6, 7]; on the other hand, we utilize nonlinear mono-stable ex-
citable elements in this chapter.

21.3.2 Coupled Elements

Kurata et al. found that a pair of FitzHugh-Nagumo excitable elements coupled with
strong inhibition self-organizes in a localized pattern [10]. Its one-dimensionally
extended version is as follows:
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dui

dt
=

1
ε
{ui(ui − a)(1− ui)− vi}+ Cu {(ui+1 − ui)− (ui − ui−1)} ,(21.4)

dvi

dt
= ui − bvi + Cv {(vi+1 − vi)− (vi − vi−1)} , (21.5)

in which the index number i = 1, · · · , L identifies each of the elements, (ui,vi)
is a solution of the i-th element, and Cu and Cv denote the coupling strength
among neighboring elements. In Eqs. (21.4) and (21.5), replacements of the discrete
coupling terms with diffusion coupling terms bring a one-dimensional FitzHugh-
Nagumo type reaction-diffusion system. Note that Eq. (21.4) employs inhibitory
coupling; however, the original FitzHugh-Nagumo type reaction-diffusion system
does not employ inhibitory diffusion coupling [14, 15].

Figure 21.2 shows results of numerical computation of Eqs. (21.4) and (21.5).
On the one hand, Fig. 21.2(a) shows that the two pulses are self-organized and re-
main at the edges of the initial one-dimensional distribution; on the other hand,
Fig. 21.2(b) shows that the two pulses self-organized at the edges and traveled in a
one-dimensional domain. The ratio between two values of the coupling strength Cu
and Cv caused the difference between the two results of Figs. 21.2(a) and 21.2(b),
that is, Cv/Cu = 3 in Fig. 21.2(a) and Cv/Cu = 1/3 in Fig. 21.2(b). Thus, we
can understand that the pulses remain at fixed points due to the strong inhibitory
coupling.

21.4 Algorithm

We present an algorithm for edge detection and orientation selection with the
FitzHugh-Nagumo type nonlinear mono-stable excitable elements. The algorithm
utilizes a grid system consisting of mono-stable excitable elements; it imposes
strong inhibitory couplings among neighboring elements. We substituted an image
brightness distribution to the initial conditions of the activator variables of the ele-
ments, and initiated computation of ordinary differential equations governing states
of the elements. After a certain duration of time, the grid system self-organized a
pulse pattern as excited pulses remaining at the edges, as shown in Section 21.3.2.
Thus, edge detection could be implemented by finding excited activators in ex-
cited states. In addition, we introduced anisotropy into the inhibitory coupling for
strengthening the propagation of the inhibiting effect at a specific orientation. The
strong inhibitory coupling allows only elements located along the edge lines per-
pendicular to the orientation.

In Section 21.4.1 we present the algorithm for edge detection. In Section 21.4.2
we extend the algorithm so as to deal with both edge detection and orientation se-
lection by introducing anisotropic inhibitory coupling.
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Fig. 21.3 Two-dimensional grid system consisting of the FitzHugh-Nagumo nonlinear el-
ements of Eqs. (21.6) and (21.7). The coupling strength is Cu for the activator ui,j and Cv
for the inhibitor vi,j, in which (i, j) denotes a grid point on the grid system Li × Lj. See
Eq. (21.9) for the boundary conditions of the grid system.

21.4.1 Edge Detection Algorithm with a Two-Dimensional Grid
System

Figure 21.3 shows a grid system utilized in the algorithm. Let Li × Lj be a two-
dimensional grid system; the number of grid points is Li × Lj = |Li ×Lj|. At each
grid point (i, j) ∈ Li ×Lj, we arrange the FitzHugh-Nagumo element governed by

dui,j

dt
=

1
ε

{
ui,j(ui,j − a)(1− ui,j)− vi,j

}
+ Cu

{
(ui+1,j − ui,j)− (ui,j − ui−1,j)

}
+ Cu

{
(ui,j+1 − ui,j)− (ui,j − ui,j−1)

}
, (21.6)

dvi,j

dt
= ui,j − bvi,j

+ Cv
{
(vi+1,j − vi,j)− (vi,j − vi−1,j)

}
+ Cv

{
(vi,j+1 − vi,j)− (vi,j − vi,j−1)

}
. (21.7)

The second and third terms of the right-hand sides in Eqs. (21.6) and (21.7) couple
four neighboring elements located at (i+ 1, j), (i− 1, j), (i, j+ 1) and (i, j− 1) with
the element located at (i, j).

The pixel value of an input image I at the coordinate (i, j), Ii,j, (i, j) ∈ Li × Lj,
is fed to the excitation element as the initial value ui,j(0) of the grid system. Thus,
the initial conditions for ui,j and vi,j are as follows:

ui,j(0) = Ii,j, vi,j(0) = 0. (21.8)
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This is because the FitzHugh-Nagumo elements coupled with strong inhibition self-
organize pulses at the edge positions in the initial condition of ui, as shown in the
one-dimensional case of Fig. 21.2. The boundary conditions for ui,j are as follows:

u0,j = u1,j, uLi ,j = uLi+1,j, ui,0 = ui,1, ui,Lj
= ui,Lj+1. (21.9)

The boundary conditions for vi,j are the same as those of Eq. (21.9).
With the initial conditions of Eq. (21.8) and the boundary conditions of

Eq. (21.9), we carried out numerical computation of the coupled FitzHugh-Nagumo
excitable elements. After a sufficient duration of time, the grid system self-organized
pulses on the edge lines (see Fig. 21.3). Thus, by finding excited activators in excited
states, we could detect edges. The edge map M(t) at time t is as follows:

M(t) = {(i, j)|ui,j(t) > 1/2}, (21.10)

in which we judge the state of an element with the threshold level 1/2; if ui,j > 1/2,
we estimate the element to be in an excited state and the position (i, j) to be an edge.

21.4.2 Algorithm for Edge Detection and Orientation Selection

As described in Section 21.3.2 and Section 21.4.1, the grid system self-organizes a
pulse pattern at edges of an initial activator distribution. Strong inhibitory coupling
is the necessary condition for organizing the pulses, and weak inhibitory coupling
does not allow such pulses to remain at edge positions. The adoption of anisotropic
inhibitory coupling to the grid system is expected to realize orientation selection
of edge lines. Only elements having strong inhibitory coupling to neighboring el-
ements can maintain the excitation state. The strength of the inhibitory coupling
is given based on the directional difference between the gradient of the inhibitor
variables and the specific orientation to be selected.

Let us introduce anisotropic inhibitory coupling strength A(θi,j) into inhibitor
distribution on the grid system, as follows:

dvi,j

dt
= ui,j − bvi,j

+Cv

{
A(θi+1/2,j) · (vi+1,j − vi,j)− A(θi−1/2,j) · (vi,j − vi−1,j)

}
+Cv

{
A(θi,j+1/2) · (vi,j+1 − vi,j)− A(θi,j−1/2) · (vi,j − vi,j−1)

}
,(21.11)

in which the interpolations A(θi+1/2,j) and A(θi,j+1/2) are

A(θi+1/2,j) =
A(θi+1,j) + A(θi,j)

2
, A(θi,j+1/2) =

A(θi,j+1) + A(θi,j)

2
. (21.12)

The direction θi,j of A(θi,j) denotes the gradient direction of the inhibitor distribu-
tion vi,j, as defined by
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θi,j = tan−1

(
vi,j+1(t)− vi,j−1(t)
vi+1,j(t)− vi−1,j(t)

)
. (21.13)

The anisotropic inhibitory coupling strength A(θi,j) is defined by

A(θi,j) = 1/
√

1− δv cos2(θi,j − φ), (21.14)

in which δv denotes the strength of the inhibitory coupling and takes the range of
0 ≤ δv < 1; if δv = 0, A(θi,j) becomes 1.0 and thus Eq. (21.11) returns to the
isotropic coupling of Eq. (21.7). In Eq. (21.14), A(θi,j) is designed to strengthen the
inhibitory coupling around the area having a similar direction between the gradient
direction θi,j and the specific orientation φ. Thus, the orientation φ± π/2 indicates
the edge orientation to be selected.

Shoji et al. [11] presented a reaction-diffusion model for explaining oriented pe-
riodic patterns of markings on fish skin. The earlier work done by Kondo and Asai
showed that the Turing type periodic pattern appears on fish skin [20]; a reaction-
diffusion model self-organizes the periodic pattern under strong inhibitory diffusion.
Shoji et al. proposed to introduce anisotropy into the diffusion coefficient to ex-
plain the oriented periodic patterns. The formulation of Eqs. (21.11) and (21.14)
originated from the reaction-diffusion model presented by Shoji et al. [11], and
was derived from the replacement of anisotropic diffusion with anisotropic discrete
coupling.

Algorithm 1. for edge detection and orientation selection.
1: for all (i, j) ∈ Li ×Lj do
2: ui,j ← Ii,j, vi,j ← 0 � Set the initial conditions with Eq. (21.8).
3: end for
4: t ← 0
5: while t < Lt do
6: for all (i, j) ∈ Li ×Lj do
7: Update ui,j with Eq. (21.6). � With the boundary conditions of Eq. (21.9).
8: Compute θi,j with Eq. (21.13).
9: Compute A(θi,j) with Eq. (21.14).

10: Update vi,j with Eq. (21.11).
11: end for
12: t ← t + δt
13: end while
14: M← ∅
15: for all (i, j) ∈ Li ×Lj do
16: if ui,j > 1/2 then
17: M←M∪{(i, j)} � Update an edge or orientation-selected map with

Eq. (21.10).
18: end if
19: end for



384 A. Nomura et al.

Algorithm 1 describes the algorithm of edge detection and orientation selection
for an image-brightness distribution Ii,j, (i, j) ∈ Li × Lj. When δv = 0, the algo-
rithm provides an edge map; when δv > 0, the algorithm provides an orientation-
selected map for specific orientation φ. For computing ordinary differential equa-
tions, we utilized a finite difference δt for temporal discretization. The algorithm
computes Eqs. (21.6) and (21.11) iteratively until t = Lt.

21.5 Experimental Results and Discussion

21.5.1 Examples of Edge Detection and Orientation Selection

This section presents experimental results of edge detection and orientation se-
lection for artificial and real images. Algorithm 1 performed edge detection with
the parameter of δv = 0.0 and orientation selection with φ = 0.0,π/4,π/2,3π/4
and δv = 0.95. The FitzHugh-Nagumo nonlinear element has the parameter a in
Eq. (21.1); the parameter works as a threshold level for an initial condition of
u = u0. The algorithm first divides the initial distribution into two levels higher
or lower than the threshold level a. Then, it performs edge detection or orientation
selection for areas segmented by a. Thus, we first confirmed that Algorithm 1 works
for the artificial binary image having brightness values Ii,j ∈ {0,1}, and then tried
to apply the algorithm to a real image.

Figure 21.4 shows an artificial binary image and the results of edge detection and
orientation selection. The algorithm with δv = 0.0 provided a good result of edge
detection; it successfully detected edges around corner points and in tiny areas; in
particular, it fully detected edges as seen in the word ”University” and the abbrevi-
ation ”PDE”. In the results of orientation selection shown in Figs. 21.4(c)∼21.4(f),
the algorithm almost successfully provided maps of vertical and horizontal orien-
tation selection. In particular, it detected vertical lines with φ = 0.0 and horizontal
lines with φ = π/2 along the edges of cells and small rectangles. On the orienta-
tion π/4 and 3π/4, although the algorithm provided almost well detected maps, it
partly generated noisy results that can be seen as dotted lines. For example, see the
edge lines along the triangle in Figs. 21.4(e) and 21.4(f).

Figure 21.5 shows a real image and its results of edge detection and orientation
selection. Although the algorithm with δv = 0.0 detected edges along the contours
of high-contrast objects such as window frames and tables, it failed to detect the
edges of the gray horizontal bar clearly seen against the white wall. This is because
the algorithm detected edges for areas segmented with the threshold level a. (Recall
that an element initiated with u0 > a can enter an excited state; that with u0 < a
cannot enter the excited state, but directly returns to a resting state, as described in
Section 21.3.1.) Figures 21.5(g) and 21.5(h) show two situations in one-dimensional
distributions of image brightness values Ii,j and obtained solutions ui,j as well as the
threshold level a = 0.1. For example in Fig. 21.5(g), while the algorithm success-
fully detected edges around j = 190 and j = 227, it failed to detect those around
j= 45 and j= 56, at which there was the horizontal bar on the wall. On the one hand,
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(a) (b)

(c) (d)

(e) (f)

Fig. 21.4 Results of edge detection and orientation selection for an artificial binary image.
Figure (a) shows an artificial binary image with the size of Li × Lj = 500 × 500 pixels.
Algorithm 1 provided an edge map (b) for the image (a); its parameter settings on coupling
were Cu = 2.0,Cv = 6.0 and δv = 0.0. Algorithm 1 provided orientation-selected maps with
(c) φ = 0.0, (d) φ = π/2, (e) φ = π/4 and (f) φ = 3π/4; its parameter settings on coupling
were Cu = Cv = 2.0 and δv = 0.95. Other parameter settings were fixed across (b)∼(f) as
δt = 1.0× 10−4, a = 0.10,b = 1.0, ε = 1.0× 10−3 and Lt = 5.0.
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Fig. 21.5 Results of edge detection and orientation selection for a real image. Figure (a)
shows the real image with the size of Li × Lj = 500× 375 pixels and 256 brightness levels
(eight bits quantization). Algorithm 1 with the parameter settings of Cu = 4,Cv = 12 and
δv = 0.0 provided an edge map (b) for the image (a). Algorithm 1 with the parameter set-
tings of Cu = Cv = 2.0 and δv = 0.95 provided orientation-selected maps with (c) φ = 0.0,
(d) φ = π/2, (e) φ = π/4 and (f) φ = 3π/4. Other parameter settings were the same as
those in Fig. 21.4. Figure (g) shows one-dimensional distributions of image-brightness val-
ues Ii=100,j and obtained solutions ui=100,j; Fig. (h) shows those of Ii,j=280 and ui,j=280.
Two-dimensional distributions of Ii,j and ui,j are shown in Figs. (a) and (b). The parameter a
was chosen as a = 0.1 in the edge detection (b).
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the image brightness distribution does not cross the threshold level a at j = 45∼ 56;
on the other hand, it crosses the level at j = 190 and j = 227. Figure 21.5(h) also
shows a similar situation around i = 308 ∼ 320. An edge of a table exists around
i = 308∼ 320; in spite of that, the algorithm did not detect the edge, as also shown
in Fig. 21.5(b). Thus, except for the low-contrast edges not crossing the threshold
level, we confirmed that the algorithm almost correctly detected edges also for the
real image. When turning our attention to results of vertical and horizontal orienta-
tion selection, we could find orientation selected lines. However, for example, along
the edges of the window frames in Fig. 21.5(c), the algorithm provided results that
can be seen as broken and dotted lines, as also confirmed in Fig. 21.4.

Let us consider the reason why the algorithm provided orientation selection re-
sults that can be seen as dotted lines and broken ones in both Figs. 21.4 and 21.5.
For example, when focusing on the result along the edge lines of the window frames
in Fig. 21.5(d), we can observe the edge lines not lying on an exact horizontal ori-
entation, but lying on orientation slightly slanted from the horizontal one. A se-
ries of short horizontal lines can approximate a straight line slightly slanted from
the horizontal orientation. Thus, we understand that the broken lines obtained for
slightly slanted lines are reasonable as an approximation in the orientation selec-
tion. However, when turning our attention to highly slanted edge lines of the tables
in Fig. 21.5(d), we can find dotted-line like results as a horizontal orientation; that
is, the algorithm detected the small dots for the highly slanted edge lines. The results
of the small dots are considered as over-detection and are unacceptable as approx-
imation of the highly slanted edge lines. We believe that this would be avoidable
with optimal parameter settings and with a coupling scheme that takes into account
not only four neighboring adjacent elements, but also those located diagonally on
the grid, or more global ones. Ways of estimating the optimal parameter settings and
coupling with more global elements are future research topics.

21.5.2 Quantitative Performance Evaluation on Edge Detection

This section presents quantitative performance evaluation of Algorithm 1 consisting
of coupled FitzHugh-Nagumo (FHN) elements, in comparison with two representa-
tive algorithms proposed by Marr and Hildreth [12] and Canny [13]. The algorithm
proposed by Marr and Hildreth utilizes the difference-of-two-Gaussians filter, and
is called the DoG algorithm. An output of a Gaussian filter is generally equiva-
lent to a solution of a diffusion equation [23]. Thus, Eqs. (21.6) and (21.7) without
the reaction terms of [u(u− a)(1− u)− v]/ε and u− bv approximate two Gaus-
sian filters. We implemented the DoG algorithm by solving two diffusion equations
having different diffusion coefficients, on which we imposed a weak excitatory cou-
pling Cu = 4.0 and a relatively strong inhibitory one Cv = 26.1, as suggested by
Marr and Hildreth. We estimated the duration of time in computing the diffusion
equations so as to achieve the best performance for each image (in most cases,
we estimated it at Lt = 0.6). For the other algorithm proposed by Canny [13], we
utilized a computer program code provided on a website by Heath et al. [28, 29].
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Fig. 21.6 Edge detection results for noisy binary images. Figure (a) shows a noisy image
generated by adding n = 5 % dot noise to the binary image of Fig. 21.4(a). Algorithm 1
consisting of coupled FitzHugh-Nagumo (FHN) elements provided an edge map (b) with
the same parameter settings as those of Fig. 21.4(b); the DoG algorithm proposed by Marr
and Hildreth with the difference-of-two-Gaussians filter [12] provided the edge map (c); the
Canny algorithm [13, 28] provided the edge map (d). Figure (e) shows the dependence on
the noise ratio n (%) of the three algorithms; PFHN, RFHN and FFHN show the dependence of
Algorithm 1; PDoG, RDoG and FDoG show the dependence of the DoG algorithm; and PCanny, RCanny

and FCanny show the dependence of the Canny algorithm. See Eq. (21.15) for the measures P, R
and F.
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The Canny algorithm has three parameters: σ and two threshold levels; we chose
their parameter settings so as to achieve the best performance among the com-
binations of σ = 0.2,0.4, · · · ,2.0, the lower threshold level = 0.1,0.2, · · · ,0.8 and
the higher threshold level = 0.2,0.3, · · · ,0.9 for each image.

We applied the three algorithms: Algorithm 1, the DoG algorithm and the Canny
algorithm to noisy artificial binary images, and evaluated their performance quan-
titatively with three measures. The noisy images were generated by adding bi-
nary noise to the artificial binary image shown in Fig. 21.4(a); the noise ratio
n (%) refers to the ratio of the number of binary noise pixels to that of all the
pixels Li × Lj. Figure 21.6(a) shows one of the noisy images (n = 5 %), and
Figs. 21.6(b)∼21.6(d) show edge maps provided by the three algorithms for the
noisy image of Fig. 21.6(a). The following F-measure computed from precision and
recall measures P and R [30] evaluates the performance of the algorithms for each
noisy artificial image:

P =
|Mt ∩Mo|
|Mo| , R =

|Mt ∩Mo|
|Mt| , F =

PR
αP + (1− α)R

, (21.15)

in which Mt is the true edge map and Mo is the obtained one. The parameter α
defines the balance between the two measures P and R; we fixed α at α = 0.5, which
means equal balance. Larger values of P, R and F indicate better performance. Fig-
ure 21.6(e) shows the dependence of the three algorithms on the noise ratio n.

Let us discuss the results of Fig. 21.6. In the result of Algorithm 1, the mea-
sure PFHN decreases almost linearly as the noise ratio n increases, while the measure
RFHN is almost constant (RFHN � 0.95), and the measure FFHN also decreases linearly.
Since the recall measure R evaluates the ratio of the number of detected true edges
|Mt ∩Mo| to that of the true edges |Mt|, the constant large value of RFHN implies
that the algorithm always successfully detected most of the true edges. In contrast
to this, since the precision measure P evaluates the ratio of the number of detected
true edges to that of the detected edges |Mo|, the linearly decreasing trend implies
that the algorithm detected false edges and the number of false edges increased
as the noise ratio n increased. From these considerations, the decreasing trends of
PFHN and FFHN suggest that the algorithm falsely detected noise pixels as edges, and
thus clearly showed the noise vulnerability of Algorithm 1. This is also recogniz-
able with the obtained edge map shown in Fig. 21.6(b). However, as also recog-
nized in Fig. 21.6(b) simultaneously, the algorithm successfully removed noise in
areas having a higher brightness level. This may provide a clue for improving the
noise-robustness of the algorithm. The DoG algorithm provided the worst edge de-
tection results among the three algorithms. The Canny algorithm achieved the best
performance among them, and its performance is almost constant or only slightly
decreases as the noise ratio n increases. Thus, the Canny algorithm is very robust to
noise, when its parameter settings are adaptively chosen.

For confirming the convergence of Algorithm 1 and the DoG algorithm, we
evaluated the edge detection processes of the algorithms applied to the image
of Fig. 21.6(a). Figure 21.7 shows temporal changes of the three measures. For
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Fig. 21.7 Temporal changes of the three measures P, R and F for edge detection processes
of Algorithm 1 consisting of coupled FitzHugh-Nagumo (FHN) elements and the DoG algo-
rithm proposed by Marr and Hildreth with the difference-of-two-Gaussians filter [12]. Fig-
ure (a) shows the temporal changes of PFHN, RFHN and FFHN for the edge detection process
of Algorithm 1 applied to the noisy image (n = 5 %) of Fig. 21.6(a). Figure (b) shows the
temporal changes of PDoG, RDoG and FDoG for the edge-detection process of the DoG algorithm
applied to the same image. See Figs. 21.6(b) and 21.6(c) for their obtained edge maps.

Algorithm 1, the temporal changes rapidly converged to almost constant values be-
fore t = 1.0, as shown in Fig. 21.7(a). For the DoG algorithm, the three measures
dynamically changed in the range of t < 1.0, and decreased almost monotonically
in the range of t > 1.5, as shown in Fig. 21.7(b); the algorithm achieved the best
performance at t = 0.6. Thus, how to estimate the optimal duration of time or the
stopping time for the best performance is a problem yet to be solved; this is the stop-
ping time evaluation problem [31] or the termination problem [7]. We believe that
the FitzHugh-Nagumo type nonlinearity of Eqs. (21.1) and (21.2) works to avoid
the termination problem in Algorithm 1.

21.6 Conclusion

This chapter presented an algorithm for edge detection and orientation selection
with a grid system consisting of coupled nonlinear excitable elements. Several
biological phenomena caused by strong inhibitory coupling or long-range inhibi-
tion [17, 18, 20, 26] motivated us to utilize the FitzHugh-Nagumo model [14, 15] as
a nonlinear excitable element and to couple elements with strong inhibition. The two
conditions of strong inhibitory coupling and strong nonlinearity induced stationary
pulses remaining at positions having rapid changes across a threshold level in their
initial activator distribution [10]. Thus, our edge detection algorithm utilized the
phenomenon in which the grid system self-organizes a pulse pattern at edges in an
initial condition. In addition, by introducing anisotropic inhibitory coupling into the
grid system, we developed an edge detection algorithm so as to perform orientation
selection as well. The idea of introducing the anisotropy came from the model that
explained oriented periodic patterns of markings on fish skin [11].

We experimentally applied the algorithm of edge detection and orientation se-
lection to artificial binary and real images. The algorithm provided almost correct
results of edge detection, except that it did not detect edges with low brightness
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changes in the real gray level image. We also performed orientation selection with
four different orientation settings. Although the algorithm provided fairly reason-
able results for orientation selection, it also provided dotted-line or broken-line
edges. We finally compared the quantitative performance among our algorithm and
two representative previous algorithms proposed by other researchers [12,13] for ar-
tificially generated noisy binary images. Although the algorithm presented here did
not achieve the best performance among the three algorithms, it performed better
than the previous algorithm proposed by Marr and Hildreth [12].

There exist several future research topics for the present algorithm. The algo-
rithm couples an element with its horizontally and vertically nearest four neighbor-
ing adjacent elements on the grid system. For more reliable and accurate orientation
selection, we will study additional diagonal or more global coupling schemes. We
are expecting that this will bring more precise orientation selection than the four
orientation selections in the present algorithm. As also suggested by the results of
performance comparison, the algorithm has noise vulnerability; in order to solve
the vulnerability, we are now reconsidering the initial conditions provided for the
FitzHugh-Nagumo elements. In addition to these algorithmic improvements, from
an engineering point of view, it would be interesting to apply the algorithm to a
cellular neural network approach for hardware implementation, developing various
visual functions, and building a biologically inspired visual system. From a scien-
tific point of view, we hope that the resulting artificial visual system provides some
hints for understanding the human visual system and visual functions therein.
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31. Mrázek, P., Navara, M.: Selection of optimal stopping time for nonlinear diffusion filter-
ing. Int. J. Comp. Vis. 52, 189–203 (2003)

http://marathon.csee.usf.edu/edge/edge_detection.html


Chapter 22
Consecutive Repeating State Cycles Determine
Periodic Points in a Turing Machine

Michael Stephen Fiske

Abstract. The Turing machine is studied with new methods motivated by the notion
of recurrence in classical dynamical systems theory. The state cycle of a Turing ma-
chine is introduced. It is proven that each consecutive repeating state cycle in a Tur-
ing machine determines a unique periodic configuration (point) and vice versa. This
characterization is a periodic point theorem for Turing machines. A Turing machine
is defined to be periodic if it has at least one periodic configuration or it only has
halting configurations. Using the notion of a prime directed edge and a mathemati-
cal operation called edge pattern substitution, a search procedure finds consecutive
repeating state cycles. If the Turing machine is periodic, then this procedure eventu-
ally finds each periodic point or this procedure determines that the machine has only
halting configurations. New mathematical techniques are demonstrated such as edge
pattern substitution and prime directed edge sequences that could be quite useful in
the further study of the aperiodic Turing machines. The aperiodicity appears to play
an integral role in the undecidability of the Halting problem.

22.1 Introduction

New results are achieved here by analyzing the Turing machine from a dynamical
systems point of view. Classical dynamical systems theory has been successful by
first understanding the periodic behavior and then studying more general recurrent
behavior (as in [3], [4], [7], and [11] ). This paper follows the classical approach, by
finding a notion of recurrence that characterizes periodic configurations of a Turing
machine.

In the next section, the Turing machine is briefly reviewed and then some def-
initions are presented for studying its recurrent behavior. The Turing machine is
represented as (Q, A,η) where Q is a finite set of states, A is a finite alphabet and
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the program η is a function η : Q× A→Q× A×{−1,+1}∪ {H}× A×{0}. A
Turing machine configuration (q,k, T) is a triplet, where q is the current state of the
machine, the function T : Z → A represents the tape, where Z is the integers and
k is an integer that is the tape head location. A machine starts program execution
at configuration (q,k, T) where T(k) = α and η determines the next configuration
according to three cases:

1. (r,k− 1,S) if η(q,α) = (r, β,−1)
2. (r,k + 1,S) if η(q,α) = (r, β,+1)
3. (H,k,S) if η(q,α) = (H, β,0)

such that for all three cases the new tape S(j) = T(j) whenever j �= k and S(k) = β.
Case 1 means that the machine moves to state r, replaces alphabet symbol α with

symbol β at tape square k and then moves the tape head left −1 to tape square
k − 1. Case 2 means the same as Case 1 except the tape head moves right +1 to
tape square k + 1. Case 3 means that the machine reaches a unique halting state H
and the program execution halts.

A configuration (q,k, T) is called a halting configuration if machine execution
starts at (q,k, T), and after a finite number of execution steps, the machine reaches
the halting state. A configuration (q,k, T) is periodic if after the execution of n
computational steps of the Turing machine, the new configuration (r, j,S) has the
same state and the same tape contents. This means r = q and the same tape contents
means T(x + k) = S(x + j) for every integer x. In this case, (q,k, T) is a periodic
configuration. Thus, all periodic configurations are immortal. A Turing machine is
called periodic if it has at least one periodic configuration or it only has halting
configurations.

The state cycle is a notion of recurrence for the Turing machine. A state cy-
cle is a non-halting execution sequence of input commands (q0, a0) → (q1, a1)
→ ·· · → (qN−1, aN−1) → (qN , aN), such that q0 = qN and where pair (q,α) in
η(q,α) is called an input command. A state cycle is called a prime state cycle if
it contains no proper state subcycles. A consecutive repeating state cycle is a state
cycle that repeats itself twice, where the second repeat immediately follows the
first: (q0, a0)→ (q1, a1) → ·· · → (qN−1, aN−1)→ (q0, a0) → (q1, a1) → ·· · →
(qN−1, aN−1).

In theorem 22.2, a periodic point theorem that holds for any Turing machine is
proved: a consecutive repeating state cycle uniquely determines a periodic config-
uration of the Turing machine; and vice versa, a periodic configuration uniquely
determines a consecutive repeating state cycle. Thus, to search for a periodic con-
figuration, a procedure may look for consecutive repeating state cycles.

In definition 22.12, the prime directed edge is defined. The prime directed edge
represents, over a window of execution, a Turing machine program visiting only
one state twice and visiting the other states one time or not at all. A prime directed
edge contains a prime state cycle. Pattern matching determines how two prime di-
rected edges are glued together. When prime directed edges are glued together, this
is called link matching. The link matching is used to build prime directed edge se-
quences. Based on |Q| and |A|, an upper bound on the number of prime directed



22 Consecutive Repeating State Cycles 395

edges is computed. The prime directed edge sequences cover all Turing program
execution possibilities. As a consequence, the number of prime directed edges is
a useful measure of the Turing machine complexity. For a given Turing machine,
a procedure for finding all prime directed edges is shown. After this, a periodic
point search procedure is described whereby prime directed edges are link matched
together to form prime directed edge sequences. This procedure searches for con-
secutive repeating state cycles inside the edge sequences.

In [9], Kurka conjectured that any Turing machine that has no halting configu-
rations has a periodic configuration. In [2], Blondel et al demonstrated that some
Turing machines have only aperiodic immortal configurations. Furthermore, Blon-
del et al. showed in [2] that determining whether a given counter machine has a
periodic orbit in configuration space is undecidable.

In this context, there are two main results. First, that each consecutive repeating
state cycle determines a unique periodic point in a Turing Machine and vice versa.
Second, using this first result, if a Turing machine is periodic, then the search proce-
dure can determine whether the machine only has halting configurations or, if not,
then this procedure finds a periodic configuration of this machine. Furthermore, the
procedure demonstrated can be used to find periodic configurations of any length
when they exist. Finally, the mathematical tools developed here – e.g. the prime di-
rected edge, the edge substitution operator, link matching, and prime directed edge
sequences – can be used to study the aperiodic immortal configurations, which could
help better understand the dynamics of the Halting problem [12].

22.2 Turing Machines & Periodic Configurations

The Turing Machine is defined here so that its program η is explicitly represented
as a function.

Definition 22.1. Turing Machine
A Turing machine is a triple (Q, A,η) where

1. Q is a finite set of states that does not contain a unique halt state H.

2. The machine execution starts in an initial state s and s lies in Q.

3. A is a finite set of alphabet symbols that are read from and written to the tape.

4. −1 and +1 represent advancing the tape head to the left or right square, respec-
tively.

5. η : Q× A → Q× A× {−1,+1} ∪ {H}× A× {0} is a function. η acts as the
program for the Turing machine. For each q in Q and α in A, η(q,α) = (r, β, x)
describes how machine (Q, A,η) executes one computational step. When in state
q and scanning alphabet symbol α on the tape:

(a) Machine (Q, A,η) changes to state r.

(b) Machine (Q, A,η) rewrites alphabet symbol α as symbol β on the tape.

(c) If x = −1, then machine (Q, A,η) moves its tape head one square to the left
on the tape and is subsequently scanning the symbol in this square.
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(d) If x =+1, then machine (Q, A,η) moves its tape head one square to the right
on the tape and is subsequently scanning the symbol in this square.

(e) If r =H, machine (Q, A,η) reaches halting state H and halts.

Definition 22.2. Turing Machine tape
The Turing machine tape T is represented as a function T : Z → A where Z denotes
the integers. The tape T is M-bounded if there exists a bound M > 0 such that
T(k) = T(j) whenever |k|, |j| ≥ M.

The Turing machine definitions in [5], [12] assume the initial tape, before program
execution begins, is M-bounded and the tape contains only blank symbols, denoted
here as #, outside the bound. In this paper, the tape is not assumed to be M-bounded,
unless this is explicitly stated for a particular case. The symbol on the kth square of
the tape is T(k).

Definition 22.3. Turing Machine Configuration with tape head location
Let (Q, A,η) be a Turing machine with tape T. A configuration is an element of the
set C = (Q ∪ {H})× Z× {T : T is tape with range A}. If (q,k, T) is a configura-
tion, then k is called the tape head location.

Consider the configuration (p,2, . . .##αβ## . . . ). The 1st coordinate indicates that
the Turing machine is in state p. The 2nd coordinate indicates that its tape head is
currently scanning tape square 2, denoted as T(2). The 3rd coordinate indicates that
tape square 1 contains symbol α, tape square 2 contains symbol β, and all other tape
squares contain the # symbol. Sometimes a periodic configuration p = (q,k, T) is
called a periodic point or immortal periodic point.

Definition 22.4. Computational Period and Hyperbolic Degree
Consider immortal periodic point p. If the machine starts its execution at point p,
then the minimal number of computational steps, denoted C(p), for the machine to
return to point p is called the computational period of p. Observe that C(p) = R+ L
where R and L denote the number of right and left tape head moves respectively.
Define the hyperbolic degree of p as m(p) = R− L. If m �= 0, the periodic point is
called hyperbolic. Otherwise, p is called non-hyperbolic.

The computational period is motivated by the classical dynamical systems definition
of the period of a point p in X for an autonomous (e.g. [6]) dynamical system
f : X → X where X is a topological space, f is a function and m is the minimal
positive integer such that f m(p) = p . The hyperbolic degree is analogous to the
classical dynamical systems definition of a hyperbolic periodic point of f : X → X
when X is a manifold and f is differentiable.

A pattern W is a finite sequence of alphabet symbols chosen from A. In other
words, W : {0,1, . . . ,n− 1}→ A. The length of W = n and is denoted as |W|= n.
The kth element of the pattern W is denoted as W(k) or wk. Thus, pattern W is
sometimes explicitly expressed as w0w1 . . . wn−1. S is a subpattern of W if S =
wjwj+1 . . . wk−1wk for some j and k satisfying 0≤ j ≤ k ≤ n− 1 and the length of
S = k− j + 1. A pattern represents a finite sequence of the tape.
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The expression [4,121212] represents the point p where the machine is in state
4; the tape head is located at the underlined 1; the tape to the right of the tape head
contains the periodic pattern 212 212 . . . ; and the tape to the left of the tape head
contains the periodic pattern . . . 12 12 12.

Example 22.1. Non-Hyperbolic Periodic Point

The state set is Q = {q,r} and the alphabet set is A = {1,2}. The halting state is
H. η is defined below.

η(q,1) = (H,1,0) η(q,2) = (r,2,−1)
η(r,1) = (q,2,+1) η(r,2) = (q,1,+1)

Consider program execution steps: [r, x22y] "→ [q, x12y] "→ [r, x12y] "→
[q, x22y] "→ [r, x22y], where x is any infinite left tape sequence chosen from A and
y is any infinite right tape sequence. The tape head moves for this non-hyperbolic
immortal periodic point are [+1,−1,+1,−1]. All points of the form p = [r, x22y]
are non-hyperbolic periodic points with period 4.

Example 22.2. Hyperbolic Periodic Point

The state set is Q = {q,r, s, t,u,v,w, x} and the alphabet set is A = {1,2}. η is
defined below.

η(q,1) = (r,1,+1) η(q,2) = (H,2,0)
η(r,1) = (H,1,0) η(r,2) = (s,2,+1)
η(s,1) = (t,1,+1) η(s,2) = (H,2,0)
η(t,1) = (H,1,0) η(t,2) = (u,2,+1)
η(u,1) = (H,1,0) η(u,2) = (v,1,+1)
η(v,1) = (H,1,0) η(v,2) = (w,2,+1)
η(w,1) = (H,1,0) η(w,2) = (x,1,−1)
η(x,1) = (H,1,0) η(x,2) = (q,2,+1)

The point p = [q,12 1 212222] is an immortal periodic point with computational
period 8 and hyperbolic degree 6.

Definition 22.5. Window of Execution
Consider the next N computational steps of a Turing machine. The window of exe-
cution, denoted as [�,μ] or [�,�+ 1, . . . ,μ], is the sequence of integers representing
the tape squares that the tape head visited during these N computational steps. The
length of the window of execution is μ− �+ 1 which is also the number of distinct
tape squares visited by the tape head during these N steps. To express the window
of execution for the next n computational steps, the lower and upper bounds are
expressed as a function of n: [�(n),μ(n)]. If j ≤ k, then [�(j),μ(j)]⊆ [�(k),μ(k)]
which follows from the definition.

The purpose of the window of execution is to describe only the portion of the tape
that the tape head visits during the next N computational steps. This is useful be-
cause all tape squares outside the window of execution remain unchanged during
those N steps. Since the tape squares may be renumbered without changing the re-
sults of the machine execution, for convenience it is often assumed that the machine
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starts execution at tape square 0. In example 22.2, during the next 8 computational
steps – that is, one cycle of the immortal periodic point – the window of execution
is [0, 6] and its length is 7.

22.3 State Cycles

This section introduces state cycles and consecutive repeating state cycles. Subse-
quently, a proof shows that a consecutive repeating state cycle determines a unique
periodic point and a periodic point determines a unique consecutive repeating state
cycle.

Definition 22.6. State Cycle
Consider N execution steps of Turing Machine (Q, A,η). After each execution step,
the machine is in some state qk and the tape head is pointing to some alphabet sym-
bol ak. Relabel the indices of the states and the alphabet symbols if necessary and as-
sume the machine has not halted after N execution steps. This execution sequence of
input commands is (q0, a0) "→ (q1, a1) "→ . . . "→ (qN−1, aN−1) "→ (qN , aN), where
each pair (qk, ak) executed as η(qk, ak) is called an input command. A state cycle
is a non-halting execution sequence of input commands such that the first and last
input command in the sequence have the same state: (qk, ak) "→ (qk+1, ak+1) "→
. . . "→ (qN−1, aN−1) "→ (qk, ak). The length of this state cycle equals the number of
input commands minus one. A state cycle is called a prime state cycle if it contains
no proper state subcycles. For a prime state cycle, the length of the cycle equals the
number of distinct states in the sequence. For example, (2,0) "→ (3,1) "→ (4,0) "→
(2,1) is called a prime 3-state cycle because it has length 3 and also 3 distinct states
{2,3,4}.

Remark 22.1. Any prime state cycle has length ≤ |Q|
Proof. This follows from the pigeonhole principle and the definition of a prime state
cycle.

Remark 22.2. Any state cycle contains a prime state cycle

Proof. Relabeling if necessary let ζ(q1,q1) = (q1, a1) "→ . . . "→ (qn, an) "→
(q1, an+1) be a state cycle. If q1 is the only state visited twice, then the proof is com-
pleted. Otherwise, define �= min{|ζ(qk,qk)| : ζ(qk,qk) is a subcycle of ζ(q1,q1)}.
Then � exists because ζ(q1,q1) is a subcycle of ζ(q1,q1). Claim: Any state cycle
ζ(qj,qj) with |ζ(qj,qj)|= � must be a prime state cycle. Suppose not. Then there is
a state r �= qj that is visited twice in the state cycle ζ(qj,qj). But then ζ(qr ,qr) is a
cycle with length less than � which contradicts �′s definition.

Definition 22.7. Consecutive repeating state cycle
If machine (Q, A,η) during program execution repeats a state cycle two consecu-
tive times, (q1,b1) "→ . . . "→ (qn,bn) "→ (q1,b1) "→ . . . "→ (qn,bn) "→ (q1,b1), then
(Q, A,η) has a consecutive repeating state cycle.
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Theorem 22.1. Each periodic point determines a unique consecutive repeating
state cycle

Proof. Suppose p is an immortal periodic point with period n. Let the input com-
mand sequence (q1,b1) "→ . . . "→ (qn,bn) "→ (qn+1,bn+1) denote the first n input
commands that are executed. Since p has period n, (q1,b1) = (qn+1,bn+1). Thus,
the first n steps are a state cycle (q1,b1) "→ . . . "→ (qn,bn) "→ (q1,b1). Since the
n + 1 computational step corresponds to applying η to p, the window of execution
is identical for the next n steps as it was for the first n steps. Thus, the next n steps
have an input command sequence that is identical as the first n steps. Thus, the se-
quence of input commands for 2n steps is (q1,b1) "→ . . . "→ (qn,bn) "→ (q1,b1) "→
. . . "→ (qn,bn) "→ (q1,b1).

Theorem 22.2. Each consecutive repeating state cycle determines a unique peri-
odic point

Proof. Suppose Turing machine (Q, A,η) begins or resumes execution at some tape
square and repeats a state cycle two consecutive times denoted as (q1,b1) "→ . . . "→
(qn,bn) "→ (q1,b1) "→ . . . "→ (qn,bn) "→ (q1,b1). Let sk denote the tape square just
before input command (qk,bk) is executed the first time where 1 ≤ k ≤ n. Let tk
denote the tape square just before input command (qk,bk) is executed the second
time where 1≤ k ≤ n.

Thus, just before input command (q1,b1) is executed a second time, the window
of execution for the first state cycle is In = ∪n+1

j=1 {sj} where sn+1 = t1. The window

of execution for the second repetition of the state cycle is Jn = ∪n+1
j=1 {tj}, where

tn+1 = tn + t1 − sn.
Furthermore, observe that the window of execution for the computational steps

1 thru k is Ik = ∪k+1
j=1{sj} where the tape head is located at tape square sk+1 after

input command (qk,bk) is executed the first time. Also, observe that the window of
execution for the computational steps n + 1 thru n + k is Jk = ∪k+1

j=1{tj} where the

tape head is located at tape square tk+1 after the input command (qk,bk) is executed
the second time in the second repeating cycle.

Next a useful notation represents the tape patterns for each computational step.
Then the proof is completed using induction. Let V1 denote the tape pattern, which is
the sequence of alphabet symbols in the tape squares over the window of execution
In, just before input command (q1,b1) is executed the first time. Thus, V1(s1) = b1.
Let Vk denote the tape pattern, which is the sequence of alphabet symbols in the
tape squares over the window of execution In, just before input command (qk,bk) is
executed the first time. Thus, Vk(sk) = bk.

Let W1 denote the tape pattern, which is the sequence of alphabet symbols in the
tape squares over the window of execution Jn, just before input command (q1,b1)
is executed the second time. Thus, W1(t1) = b1. Let Wk denote the tape pattern,
which is the sequence of alphabet symbols in the tape squares over the window of
execution Jn, just before input command (qk,bk) is executed the second time. Thus,
Wk(tk) = bk.
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Using induction, it is shown that V1 on window of execution In equals W1 on
window of execution Jn. This completes the proof.

Base Case. Since (q1,b1) is the input command before computational step 1 and
(q1,b1) is the input command before computational step n + 1, then V1(s1) = b1 =
W1(t1). Thus, V1 restricted to window of execution I1 equals W1 restricted to win-
dow of execution J1.

η(q1,b1) = (q2, a1, x) for some a1 in A and where x = −1 or +1.

Case x = +1. Right Tape Head Move

s1 s2 t1 t2
V1 . . . b1 b2 . . . W1 . . . b1 b2 . . .
V2 . . . a1 b2 . . . W2 . . . a1 b2 . . .

Then s2 = s1 + 1 and t2 = t1 + 1 and V1(s2) = b2 = W1(t2). It has already been
observed that V1(s1) = b1 =W1(t1). Thus, V1 restricted to the window of execution
I2 equals W1 restricted to the window of execution J2 . Furthermore, the tape head
is at s1 just before computational step 1 and input command (q1,b1) is executed;
the tape head is at t1 just before computational step n + 1 and input command
(q1,b1) is executed. Also, V2(s1) = a1 =W2(t1) and V2(s2) = b2 = W2(t2). Thus,
V2 restricted to the window of execution I2 equals W2 restricted to the window of
execution J2. Furthermore, the tape head is at s2 just before computational step 2 and
input command (q2,b2) is executed; the tape head is at t2 just before computational
step n + 2 and input command (q2,b2) is executed.

Case x = −1. Left Tape Head Move
s2 s1 t2 t1

V1 . . . b2 b1 . . . W1 . . . b2 b1 . . .
V2 . . . b2 a1 . . . W2 . . . b2 a1 . . .

Then s2 = s1 − 1 and t2 = t1 − 1 and V1(s2) = b2 = W1(t2). And V1(s1) = b1 =
W1(t1). Thus, V1 restricted to the window of execution I2 equals W1 restricted to
the window of execution J2. Furthermore, the tape head is at s1 just before com-
putational step 1 and input command (q1,b1) is executed; the tape head is at t1
just before computational step n + 1 and input command (q1,b1) is executed. Also,
V2(s1) = a1 = W2(t1) and V2(s2) = b2 = W2(t2). Thus, V2 restricted to the win-
dow of execution I2 equals W2 restricted to the window of execution J2. Further-
more, the tape head is at s2 just before computational step 2 and input command
(q2,b2) is executed; the tape head is at t2 just before computational step n + 2 and
input command (q2,b2) is executed. This completes the base case of induction.

Induction Hypothesis. Suppose that for the 1,2, . . . ,k− 1 computational steps and
the corresponding n + 1,n + 2, . . . ,n + k− 1 steps that for every i with 1≤ i ≤ k:

1. V1 restricted to the window of execution Ii equals W1 restricted to the window
of execution Ji; and for each remaining p where p ≤ i, Vp restricted to the
window of execution Ii equals Wp restricted to the window of execution Ji.
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2. Furthermore, the tape head is at si just before computational step i and input
command (qi,bi) is executed; the tape head is at ti just before step n + i and
input command (qi,bi) is executed.

Induction Step. Since (qk,bk) is the input command before computational step k
and before computational step n + k, then Vk(sk) = bk = Wk(tk).

η(qk,bk) = (qk+1, ak, x) for some ak in A and x = −1 or +1.

Case x = +1. Right Tape Head Move for computational steps k and n + k.

sk sk+1 tk tk+1
Vk . . . bk bk+1 . . . Wk . . . bk bk+1 . . .
Vk+1 . . . ak bk+1 . . . Wk+1 . . . ak bk+1 . . .

By the inductive hypothesis Vk restricted to window of execution Ik equals Wk
restricted to window of execution Jk and the only change to the tape and tape
head after executing η(qk,bk) = (qk+1, ak,+1) for the steps k and n + k is that
Vk+1(sk) = ak = Wk+1(tk) and Vk+1(sk+1) = bk+1 = Wk+1(tk+1) and that the
tape heads move right to sk+1 and tk+1 respectively. Thus, Vk+1 restricted to win-
dow of execution Ik+1 equals Wk+1 restricted to window of execution Jk+1. And for
each j satisfying 1 ≤ j ≤ k, then Vj restricted to window of execution Ik+1 equals
Wj restricted to window of execution Jk+1.

Case x = −1. Left Tape Head Move for computational steps k and n + k.

sk+1 sk tk+1 tk
Vk . . . bk+1 bk . . . Wk . . . bk+1 bk . . .
Vk+1 . . . bk+1 ak . . . Wk+1 . . . bk+1 ak . . .

By the inductive hypothesis Vk restricted to window of execution Ik equals Wk
restricted to window of execution Jk and the only change to the tape and tape
head after executing η(qk,bk) = (qk+1, ak,−1) for the steps k and n + k is that
Vk+1(sk) = ak = Wk+1(tk) and Vk+1(sk+1) = bk+1 = Wk+1(tk+1) and that the
tape heads move left to sk+1 and tk+1 respectively. Thus, Vk+1 restricted to win-
dow of execution Ik+1 equals Wk+1 restricted to window of execution Jk+1. And for
each j satisfying 1 ≤ j ≤ k, then Vj restricted to window of execution Ik+1 equals
Wj restricted to window of execution Jk+1.

22.4 Prime Directed Edge Sequences

Edge pattern substitution is the mathematical operation used to link match prime
directed edges. Prime directed edges are link matched to construct prime directed
edge sequences. The notion of an overlap match expresses how a part or all of one
tape pattern may match part or all of another tape pattern.

Definition 22.8. Overlap Matching & Intersection Patterns
Let V and W be patterns. (V, s) overlap matches (W, t) if and only if V(s + c) =
W(t + c) for each integer c satisfying −� ≤ c ≤ μ such that � = min{s, t} and
μ = min{|V| − 1− s, |W| − 1− t} where 0≤ s < |V| and 0≤ t < |W|. The index
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s is called the head of pattern V and the index t is called the head of pattern W. If V
is also a subpattern, then (V, s) submatches (W, t). If (V, s) overlap matches (W, t),
then define the intersection pattern I with head u = � as (I,u) = (V, s) ∩ (W, t),
where I(c) = V(c + s − �) for every integer c satisfying 0 ≤ c ≤ (�+ μ) where
�= min{s, t} and μ = min{|V| − 1− s, |W| − 1− t}.

Definition 22.9. Edge Pattern Substitution Operator
Given patterns V = v0v1 . . . vn and W = w0w1 . . . wn with heads s, t satisfying
0 ≤ s, t ≤ n and pattern P = p0 p1 . . . pm with head u satisfying 0 ≤ u ≤ m. If
(P,u) overlap matches (V, s), define the edge pattern substitution operator ⊕ as
E = (P,u)⊕ [(V, s)⇒ (W, t)] according to the four different cases A, B, C and D.

Case A u > s and m− u > n− s

E(k) =
W(k + s− u) if u− s ≤ k ≤ u + n− s
P(k) if 0≤ k < u− s or u + n− s < k ≤ m

The head of E is u + t− s and |E|= m + 1.
p0 p1 . . . pu−s . . . pu . . . pu+n−s . . . pm

v0 . . . vs . . . vn
w0 . . . ws . . . wn

Case B u > s and m− u ≤ n− s

E(k) =
W(k + s− u) if u− s ≤ k ≤ n + u− s
P(k) if 0≤ k < u− s

The head of E is u + t− s and |E|= n + u− s + 1.

p0 p1 . . . pu−s . . . pu . . . pm

v0 . . . vs . . . vs+m−u . . . vn
w0 . . . ws . . . ws+m−u . . . wn

Case C u ≤ s and m− u ≤ n− s
E(k) = W(k) when 0≤ k ≤ n. The head of E is t and |E| = |W| = n + 1.

p0 . . . pu . . . pm

v0 . . . vs−u . . . vs . . . vs+m−u . . . vn
w0 . . . ws−u . . . ws . . . ws+m−u . . . wn

Case D u ≤ s and m− u > n− s

E(k) =
P(k + u− s) if n < k ≤ m + s− u
W(k) if 0≤ k ≤ n

The head of E is t and |E|= m + s− u + 1.

p0 . . . pu . . . pu+n−s . . . pm

v0 . . . vs−u . . . vs . . . vn
w0 . . . ws−u . . . ws . . . wn

Set pattern P = 0101 110. Set pattern V = 11 0101. Set pattern W = 01 0010.
Then (P,0) overlap matches (V,2). Thus, the edge pattern substitution operation
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is well-defined so E = (P,0) ⊕ [(V,2) ⇒ (W,4)] = 01 0010 110. The head or
index of pattern E = 4. Furthermore, (P,4) overlap matches (V,0). Thus, F =
(P,4)⊕ [(V,0)⇒ (W,4)] = 0101 010010. The index of pattern F = u + t− s =
4 + 4− 0 = 8.

Definition 22.10. Execution node for (Q, A,η)
An execution node is a triplet N = [q,w0w1 . . . wn, t] for some state q in Q where
w0w1 . . . wn is a pattern of n + 1 alphabet symbols each in A such that t is a non-
negative integer satisfying 0 ≤ t ≤ n. Intuitively, w0w1 . . . wn is the pattern of al-
phabet symbols on n + 1 consecutive tape squares and t represents the location of
the tape head.

Definition 22.11. Halting Execution Node
Suppose [q,v0v1 . . . vn, s] is an execution node and over the next |Q| computational
steps a prime state cycle is not found. In other words, a prime directed edge is not
generated. Then the Turing machine execution halted in |Q| or less steps. Let W be
a pattern such that (W, t) submatches (V, s) and W spans the window of execution
until execution halts. Define the halting node as H = [q,W, t].

Definition 22.12. Prime directed edge
A prime head execution node H = [q,v0v1 . . . vn, s] and prime tail execution node
T= [r,w0w1 . . . wn, t] are called a prime directed edge iff all of the following hold:

1. When Turing machine (Q, A,η) starts execution, it is in state q and the tape head
is located at tape square s. For each j satisfying 0≤ j ≤ n tape square j contains
symbol vj. In other words, the initial tape pattern is v0v1 . . . vs . . . vn.

2. During the next N computational steps, state r is visited twice and all other states
in Q are visited at most once. In other words, the corresponding sequence of input
commands during the N computational steps executed contains only one prime
state cycle.

3. After N computational steps, where 1 ≤ N ≤ |Q|, the machine is in state r.
The tape head is located at tape square t. For each j satisfying 0 ≤ j ≤ n tape
square j contains symbol wj. The tape pattern after the N computational steps is
w0w1 . . . wt . . . wn.

4. The window of execution for these N computational steps is [0,n].

A prime directed edge is denoted as [q,v0v1 . . . vn, s]⇒ [r,w0w1 . . . wn, t] or H⇒T.
The number of computational steps N is denoted as |H⇒ T|.
Definition 22.13. Overlap matching of a node to a prime head node
Execution node N overlap matches head execution node H iff the following hold:

1. N= [r,w0w1 . . . wn, t] is an execution node satisfying 0≤ t ≤ n.
2. H= [q,v0v1 . . . vm, s] is a prime head node satisfying 0≤ s ≤ m.
3. State q = State r.
4. Pattern (W, t) overlap matches (V, s), where W = w0w1 . . . wn and V =

v0v1 . . . vm.
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Lemma 22.1. Overlap matching prime head nodes are equal

If Hj = [q, P,u] and Hk = [q,V, s] are prime head nodes and they overlap match,
then they are equal. Distinct prime directed edges have prime head nodes that do
not overlap match.

Proof. From the definition of prime edge, 0≤ u≤ |P| and 0≤ s≤ |V|. Let (I,m) =
(P,u)∩ (V, s) where m = min{s,u}. Suppose the same machine begins execution
on tape I with tape head at m in state q. If s = u and |P| = |V|, then the proof is
complete. Otherwise, s �= u or |P| �= |V| or both. Hj has a window of execution
[0, |P| − 1] and Hk has window of execution [0, |V| − 1]. Let the ith step be the first
time that the tape head exits finite tape I. This means the machine would execute
the same machine instructions with respect to Hj and Hk up to the ith step, so on
the ith step, Hj and Hk must execute the same instruction. Since it exits tape I at the
ith step, this would imply that either pattern P or V are exited at the ith step. This
contradicts either that [0, |P| − 1] is the window of execution for Hj or [0, |V| − 1]
is the window of execution for Hk.

Theorem 22.3. The number of prime directed edges is ≤ |Q|2|A||Q|+1

Proof. From lemma 22.1, each prime head node determines a unique prime directed
edge so an upper bound for head nodes provides an upper bound for the prime
directed edges. Consider prime head node [q,V, s]. There are |Q| choices for the
state q. Any pattern that represents the window of execution has length ≤ |Q|+ 1.

Furthermore, lemma 22.1 implies, for any pattern P where (V, s) submatches
(P, t), then the resultant pattern is the same since V spans the window of execution.
Thus, |A||Q|+1 is an upper bound for the number of different patterns V.

There are two choices for s in a |Q| + 1 length pattern because the maximum
number of execution steps is |Q| (i.e., the tape head move sequence is either |Q|
consecutive left tape head moves or |Q| right tape head moves). Thus, |Q| is an
upper bound for the number of choices for s unless |Q|= 1. The bound holds in the
trivial case that |Q|= 1. Thus, there are at most |Q|2|A||Q|+1 prime directed edges.

|Q|2|A||Q|+1 is not a strict upper bound. Procedure 2 describes an algorithm for
finding all the prime directed edges of a Turing machine, which also provides the
number of prime directed edges.

Definition 22.14. Edge Node Substitution Operator
Let H⇒ T be a prime directed edge with prime head node H= [q,v0v1 . . . vn, s] and
tail node T = [r,w0w1 . . . wn, t]. If execution node N = [q, p0 p1 . . . pm,u] overlap
matches H, then the edge pattern substitution operator in definition 22.9 induces a
new execution node N⊕ (H⇒ T) = [r, (P,u) ⊕ [(V, s) ⇒ (W, t)],k] with head
k = u + t− s if u > s and head k = t if u≤ s such that 0≤ s, t≤ n and 0≤ u ≤m
and patterns V = v0v1 . . . vn and W = w0w1 . . . wn and P = p0 p1 . . . pm.

Let P = {H1 ⇒ T1, . . . ,Hk ⇒ Tk, . . . ,HN ⇒ TN} denote the finite set of prime
directed edges for (Q, A,η). The number of prime directed edges in P is |P| and is
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called the prime directed edge (PE) complexity of (Q, A,η). As defined in 22.14, the
link matching step compares two tape patterns, one from execution node Nk and the
other from head node Hk+1. If the tape patterns overlap match and the state of Nk
equals the state of Hk+1, then the edge node substitution operation is well-defined
and is used to glue prime directed edge Hk+1 ⇒ Tk+1 to execution node Nk. In
other words, Nk+1 =Nk ⊕ (Hk+1 ⇒ Tk+1) is computed.

Definition 22.15. Prime directed edge sequence and Link Matching
A prime directed edge sequence is defined inductively. Each element is a coordinate
pair, where the first element is a prime directed edge, the second element is an
execution node and each element is expressed as (Hk ⇒ Tk,Nk). The first element
of a prime directed edge sequence is (H1 ⇒ T1,N1) where N1 = T1, and H1 ⇒ T1
is some prime directed edge in P. For simplicity in this definition, the indices in P
are relabeled if necessary so the first element has indices equal to 1. If N1 overlap
matches some non-halting prime head node H2, the second element of the prime
directed edge sequence is (H2 ⇒ T2,N2) where N2 = N1 ⊕ (H2 ⇒ T2). This is
called a link match step. Otherwise, N1 overlap matches a halting node, as defined
in 22.11. In this case, the prime directed edge sequence terminates and this is called
a halting match step. This is expressed as [(H1 ⇒ T1,T1),H].

If the first k− 1 steps are link match steps, then the edge sequence up to the kth
element is inductively defined as [(H1 ⇒ T1,N1), (H2 ⇒ T2,N2), . . . ,
(Hk ⇒ Tk,Nk)] where Nj overlap matches prime head node Hj+1 and Nj+1 =
Nj ⊕ (Hj+1 ⇒ Tj+1) for each j satisfying 0≤ j < k.

22.5 Search Procedure for Periodic Points

This section demonstrates how to search for any periodic point – when they exist
– by looking for consecutive repeating state cycles inside a prime directed edge
sequence. This procedure is useful because it does not search over a tape pattern
that has already been previously examined. This is due to Lemma 22.1 that proves
if two head nodes overlap match in their respective prime directed edges, then the
prime directed edges are equal.

Although there are other methods to look for periodic points, this search proce-
dure demonstrates a broader approach because each aperiodic immortal configura-
tion corresponds to a unique prime directed edge sequence. This is relevant because
the non-trivial recurrence of the M-bounded aperiodic immortal configurations is
integral to the undecidability of the Halting problem.

Link matching is a computational operation used to construct prime directed edge
sequences. The following example link matches two prime directed edges.

Example 22.3. Link matching prime directed edges

State set Q = {q,r, s, t,u}. Alphabet set A = {0,1}. Program η is defined below.
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η(q,0) = (r,1,+1) η(q,1) = (r,1,−1)
η(r,0) = (H,1,0) η(r,1) = (s,0,+1)
η(s,0) = (t,0,+1) η(s,1) = (H,1,0)
η(t,0) = (u,1,−1) η(t,1) = (q,0,+1)
η(u,0) = (q,1,−1) η(u,1) = (t,0,+1)

The execution steps of [u,00010,1]⇒ [q,10000,4] are shown in table 1.

Table 22.1 Prime Directed Edge [u,00010,1]⇒ [q,10000,4]

STATE TAPE HEAD COMMAND

u 00010 1 η(u,0) =
(q,1,−1)

q 01010 0 η(q,0) = (r,1,+1)
r 11010 1 η(r,1) = (s,0,+1)
s 10010 2 η(s,0) = (t,0,+1)
t 10010 3 η(t,1) = (q,0,+1)
q 10000 4

The execution steps of [q,01010,0]⇒ [q,10000,4] are shown in table 2.

Table 22.2 Prime Directed Edge [q,01010,0]⇒ [q,10000,4]

STATE TAPE HEAD COMMAND

q 01010 0 η(q,0) = (r,1,+1)
r 11010 1 η(r,1) = (s,0,+1)
s 10010 2 η(s,0) = (t,0,+1)
t 10010 3 η(t,1) = (q,0,+1)
q 10000 4

Prime edge [u,00010,1] ⇒ [q,10000,4] can be link matched to prime edge
[q,01010,0] ⇒ [q,10000,4]. After link matching, the sequence of input com-
mands is [(u,0), (q,0), (r,1), (s,0), (t,1), (q,0), (r,1), (s,0),(t,1)]. Observe that
[(q,0), (r,1), (s,0), (t,1), (q,0), (r,1), (s,0), (t,1)] is a consecutive repeating state
cycle, which corresponds to the periodic configuration [q,1000 0101 0101].

Definition 22.16. Prime Input Command Sequence
Suppose (q1, a1) "→ . . . "→ (qn, an) is an execution sequence of input commands

for (Q, A,η). Then (q1, a1) "→ . . . "→ (qn, an) is a prime input command sequence
if qn is visited twice and all other states in this sequence are visited once. In other
words, a prime input command sequence contains exactly one prime state cycle.

Lemma 22.2. Prime Directed Edges ⇔ Prime Input Command Sequences

Prime directed edges and prime input command sequences are in one-to-one corre-
spondence.
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Proof. (⇒) Let H⇒ T be a prime directed edge where H = [q,v0v1 . . . vn, s] and
T = [r,w0w1 . . . wn, t]. From the definition of a prime directed edge, over the next
N computational steps some state r is visited twice, all other states in Q are vis-
ited at most once and there is a sequence of input commands (q,vs) "→ (q1, a1) "→
. . . (r, ak) . . . "→ (r,wt) corresponding to these N steps. This is a prime input com-
mand sequence.

(⇐) Let (q1, a1) "→ . . . "→ (r, aN+1) be a prime input command sequence with N
computational steps. Then r is visited twice and all other states in the sequence are
visited only once. Let v0v1 . . . vn be the initial tape pattern over the window of exe-
cution during the N computational steps. Now a1 = vs for some s. Let w0w1 . . . wn
be the final tape pattern over the window of execution as a result of these N steps.
From the definition of the window of execution, the tape head is at some t satisfying
0≤ t≤ n after these N steps. Thus, [q,v0v1 . . . vn, s]⇒ [r,w0w1 . . . wn, t] is a prime
directed edge.

Lemma 3. Any consecutive repeating state cycle is contained in a composition
of one or more prime input command sequences.

Proof. The proof is in the appendix.

Example 22.4

This example illustrates the correspondence between prime directed edges and
prime input command sequences for machine (Q, A,η) where Q = {2,3,4}, H
is the halting state, A = {0,1} and η is specified as η(2,0) = (3,1,−1), η(2,1) =
(4,0,−1), η(3,0) = (4,1,+1), η(3,1) = (4,0,+1), η(4,0) = (H,0,0), and
η(4,1) = (2,0,+1). The correspondence is shown below.

Prime Directed Edges Prime Input Command Sequences

[2,000,1]⇒ [2,100,2] (2,0) "→ (3,0) "→ (4,1) "→ (2,0)
[2,100,1]⇒ [2,000,2] (2,0) "→ (3,1) "→ (4,1) "→ (2,0)
[2,11,1] ⇒ [2,00,1] (2,1) "→ (4,1) "→ (2,0)
[2,001,1]⇒ [2,101,2] (2,0) "→ (3,0) "→ (4,1) "→ (2,1)
[2,101,1]⇒ [2,001,2] (2,0) "→ (3,1) "→ (4,1) "→ (2,1)
[3,010,0]⇒ [3,101,1] (3,0) "→ (4,1) "→ (2,0) "→ (3,0)
[3,110,0]⇒ [3,001,1] (3,1) "→ (4,1) "→ (2,0) "→ (3,0)
[4,10,0] ⇒ [4,11,1] (4,1) "→ (2,0) "→ (3,0) "→ (4,1)
[4,11,0] ⇒ [4,00,1] (4,1) "→ (2,1) "→ (4,0)

There are 9 distinct prime directed edges. Observe that |Q|2|A||Q|+1 = 3224 = 144.

Definition 22.17. Edge Sequence contains a consecutive repeating state cycle
Lemma 22.2 implies that an edge sequence corresponds to a sequence of prime input
commands. The expression an edge sequence contains a consecutive repeating state
cycle means that the corresponding sequence of prime input commands contains a
consecutive repeating state cycle.
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Theorem 22.4. Any consecutive repeating state cycle is contained in a prime
directed edge sequence.

Proof. This follows immediately from definitions 22.15, 22.17 and lemmas 22.2
and 22.3.

Procedure 1. Searching for a consecutive repeating state cycle in a prime di-
rected edge sequence

Given an edge sequence whose corresponding prime input command sequence
(q0, a0) "→ (q1, a1) "→ ... "→ (qN , aN) has length N.

Set n = N
2 if N is even; otherwise, set n = N+1

2 if N is odd.

For each k in {0,1,2, . . . ,n− 1}
For each j in {0,1, . . . , N − 2k− 1}
{

If (qj, aj) "→ . . . "→ (qj+k, aj+k) equals (qj+k+1, aj+k+1) "→ . . . "→
(qj+2k+1, aj+2k+1)

return consecutive repeating state cycle
(qj, aj) "→ . . . (qj+k, aj+k) . . . (qj+2k+1, aj+2k+1)

}
If the outer for loop is exited without finding a consecutive repeating state cycle
return NO consecutive repeating state cycles were found.

Procedure 2. Prime Directed Edge Search Procedure

Read Turing Machine (Q, A,η) as input.
Set P= ∅.
For each non-halting state q in Q
For each pattern a−|Q| . . . a−2a−1a0a1a2 . . . a|Q| selected from A2|Q|+1

{
Square −|Q| . . . −1 0 1 . . . |Q|
Contents a−|Q| . . . a−1 a0 a1 . . . a|Q|

1. In start state q, T(k) = ak where −|Q| ≤ k ≤ |Q|, and tape head location 0,
execute (Q, A,η) until one state is visited twice or a halting state is reached.
The execution takes ≤ |Q| steps.

2. If execution does not halt, set r equal to the state that is first visited twice.

3. Over this window of execution, construct a prime directed edge H⇒ T where
H= [q,v0v1 . . . vn, s], T= [r,w0w1 . . . wn, t] and 0≤ s, t ≤ n ≤ |Q|.

4. Set P=P ∪ {H⇒ T}.

}
Remark 22.3. Prime Directed Edge Search Procedure finds all edges
Procedure 2 finds all prime directed edges of (Q, A,η) and all halting nodes.
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Proof. Let H⇒ T be a prime directed edge of (Q, A,η). Then H⇒ T has a head
node H = [q,v0v1...vn, s], for some state q in Q, for some tape pattern v0v1 . . . vn
that lies in An+1, such that n ≤ |Q| and 0 ≤ s ≤ n. In the outer loop of proce-
dure 2, when q is selected from Q and in the inner loop when the tape pattern
a−|Q| . . . a−2a−1a0a1a2 . . . a|Q| is selected from A2|Q|+1 such that a−s = v0 . . .
a−k = vs−k . . . a0 = vs . . . ak = vs+k . . . an−s = vn then the machine
execution in procedure 2 will construct prime directed edge H⇒ T.

When the head node is a halting node, the machine execution must halt in at most
|Q| steps. Otherwise, it would visit a non-halting state twice and be a non-halting
head node. The rest of the argument for this halting node is the same as for the
non-halting head node.

To avoid subscripts of a subscript, let pj and the subscript p(j) represent the same
number. P = {H1 ⇒ T1, . . . ,Hk ⇒ Tk, . . . ,HN ⇒ TN} is the set of all prime
directed edges. E([p1],1) is the edge sequence [(Hp(1) ⇒ Tp(1),Np(1))] of length
1 where Np(1) = Tp(1) and 1≤ p1 ≤ |P|. Next E([p1, p2],2) is the edge sequence
[(Hp(1) ⇒ Tp(1),Np(1)), (Hp(2) ⇒ Tp(2),Np(2))] such that 1 ≤ p1, p2 ≤ |P| and
Np(2) =Np(1)⊕ (Hp(2)⇒ Tp(2)). In general,
E([p1, p2, . . . , pk],k) denotes the edge sequence of length k which is
[(Hp(1) ⇒ Tp(1),Np(1)), (Hp(2) ⇒ Tp(2),Np(2)), . . . , (Hp(k) ⇒ Tp(k),Np(k))]

where Np(j+1) =Np(j)⊕ (Hp(j+1)⇒ Tp(j+1)) for each j satisfying 1≤ j ≤ k− 1
and 1≤ p(j)≤ |P|.
Procedure 3. Immortal Periodic Point Search Procedure

Read Turing Machine (Q, A,η) as input.

Use procedure 2 to find all prime directed edges P.

Set k = 1. Set E(1) = {E([1],1), E([2],1), . . . , E([|P|],1)}.

While ( E(k) �= ∅ )
{

Set E(k + 1) = ∅.
For each E([p1, p2, . . . , pk],k) in E(k)

For each prime directed edge Hj ⇒ Tj in P
{

if Hj ⇒ Tj link matches with Np(k) then
{

Set pk+1 = j.
Set E(k + 1) = E(k + 1) ∪ E([p1, p2, . . . , pk, pk+1],k + 1).
If E([p1, p2, . . . , pk, pk+1],k + 1) has a consecutive repeating state cycle
then return the consecutive repeating state cycle and exit the while loop.

}
}

k is incremented.
}
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If the while loop exits because E(m) = ∅ for some m, then return ∅; in other words,
(Q, A,η) has only halting configurations.

Remark 22.4. |E(k)| ≤ |P|k

Definition 22.18. Periodic Turing Machine

A Turing machine (Q, A,η) that has at least one periodic configuration, whenever
it has an immortal configuration is said to be a periodic Turing machine.

Remark 22.5. If E([p1, p2, . . . , pr],r) contains a consecutive repeating state cy-

cle, then the corresponding periodic point has period≤ 1
2

r
∑

k=1
|Hp(k) ⇒ Tp(k)|.

Proof. Theorem 22.2 implies that a consecutive repeating state cycle determines
an immortal periodic point. The length of the state cycle equals the period of the
periodic point. Further, the number of input commands corresponding to the number
of computational steps equals |Hp(k)⇒ Tp(k)| in directed edge Hp(k)⇒ Tp(k).

Theorem 22.5. When machine (Q, A,η) is periodic, procedure 3 terminates in
a finite number of steps with either a consecutive repeating state cycle or for some
positive integer J, then E(J) = ∅, which means all of the configurations of (Q, A,η)
are halting.

Proof. If (Q, A,η) has at least one configuration (q,k, T) that is an immortal, then
by definition 22.18, this implies the existence of a periodic point p with some finite
period N. Thus, from Theorem 22.1, there is a consecutive repeating state cycle that
corresponds to the immortal periodic point p. Since procedure 3 searches through all
possible prime edge sequences of length k, a consecutive repeating state cycle will
be found that is contained in a prime directed edge sequence with length at most
2N. Thus, periodic point p of period N will be reached before or while computing
E(2N).

Otherwise, (Q, A,η) does not have any immortal configurations; in other words,
for every configuration, (Q, A,η) halts in a finite number of steps. Claim: There
is a positive integer J such that every edge sequence terminates while executing
procedure 3. By reductio absurdum, suppose not. Then there is at least one infinite
prime directed edge sequence that exists. This infinite edge sequence corresponds to
an immortal configuration, which contradicts that (Q, A,η) is a periodic machine.

Example 22.5. A Turing Machine with only aperiodic immortal configurations

This example is based on work in [2]. The state set Q = {a,b, c,d, e, f} and the
alphabet set A = {0,1,2,3}. The halting state is H. In the following table, the
Turing program is presented as quintuples (q, a,r,b,m) where η(q, a) = (r,b,m).
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(a,0,d,1,+1) (a,1, f ,1,+1) (a,2, f ,2,+1) (a,3, f ,3,+1)
(b,0, c,1,−1) (b,1, e,1,−1) (b,2, e,2,−1) (b,3, e,3,−1)
(c,0, a,2,−1) (c,1, f ,1,+1) (c,2, f ,2,+1) (c,3, f ,3,+1)

(d,0,b,2,+1) (d,1, e,1,−1) (d,2, e,2,−1) (d,3, e,3,−1)
(e,0, a,3,−1) (e,1, a,0,−1) (e,2,d,0,+1) (e,3, f ,0,+1)
( f ,0,b,3,+1) ( f ,1,b,0,+1) ( f ,2, c,0,−1) ( f ,3, e,0,−1)

Observe that any periodic tape pattern with any non-halting state is immortal. How-
ever, none of these configurations are periodic because none are returned to in a
finite number of execution steps.

Remark 22.6. Procedure 3 does not halt on aperiodic Turing machines.

22.6 Discussion and Further Work

In [12], Turing presented the Halting problem and proved that the Halting problem
is undecidable with a Turing Machine. In [8], Hooper proved that the Turing Immor-
tality problem is undecidable. Both papers assume that every initial machine config-
uration is M-bounded for some finite M (i.e., the tape is bounded by blank symbols
before the Turing machine program begins executing). In [1], Berger demonstrated
an aperiodic tiling that proved that the tiling problem was undecidable. In light of [2]
and the results presented here, the aperiodicity appears to be an integral part of the
undecidability.

Procedure 2 finds all the prime directed edges and works for any Turing machine.
Furthermore, the construction of the edge sequences via link matching inside Proce-
dure 3 works on any Turing machine; and at the kth pass through the outer loop, this
construction explores all possible immortal configurations up to an edge sequence
length of k prime directed edges. The limitation of procedure 3 is on the aperiodic
Turing machines and is due to the exit condition of finding a consecutive repeating
state cycle.

Although the consecutive repeating state cycle characterizes any periodic config-
uration in the Turing machine, a broader notion of recurrence is needed to address
the more complex behavior of aperiodic immortal configurations that are initially
M-bounded. Lemma 22.1 implies that every immortal configuration is contained
by a unique prime directed edge sequence, so prime directed edge sequences cover
all possible Turing program behaviors. Research that further develops the mathe-
matical notions described here could help better understand the aperiodic immortal
configurations, aperiodic Turing machines and perhaps undecidability.
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Appendix

Using the same notation as Theorem 22.2, let V1 denote the initial tape pattern,
which is the sequence of alphabet symbols in the tape squares over the window of
execution of the prime input command sequence, just before the first input command
(q1, a1) in the sequence is executed. Let s1 denote the location of the tape head,
V1(s1) = a1. Let Vk denote the tape pattern just before the kth input command
(qk, ak) in the sequence is executed and let sk denote the location of the tape head,
Vk(sk) = ak.

Definition 22.19. Composition of Prime Input Command Sequences

Let (q1, a1) "→ . . . "→ (qn, an) and (r1,b1) "→ . . . "→ (rm,bm) be prime input com-
mand sequences where Vk denotes the tape pattern just before the kth input com-
mand (qk, ak) with tape head at sk with respect to Vk. Wk denotes the tape pat-
tern just before the kth input command (rk,bk) with tape head at tk with re-
spect to Wk. Suppose (Vn, sn) overlap matches with (W1, t1) and qn = r1. Then
(qn, an) = (r1,b1). The composition of these two prime input command sequences
is defined as (q1, a1) "→ . . . "→ (qn, an) "→ (r2,b2) "→ . . . "→ (rm,bm). The com-
position is undefined if (Vn, sn) and (W1, t1) do not overlap match or qn �= r1. If
(q1, a1) "→ . . . "→ (qn, an) "→ (q1,b1) is a prime state cycle, then it is also prime
input command sequence.

http://www.newlisp.org/
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Example 22.6. Directed Partition procedure

Start with finite sequence ( 0 4 2 3 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2 ).

The partition steps are shown below.

1. ( (0 4 2 3) 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2). 4 lies in (0 4 2 3).

2. ( (0 4 2 3) (4 1 3 0) 1 2 0 4 2 3 4 1 3 0 1 2). 1 lies in (4 1 3 0).

3. ( (0 4 2 3) (4 1 3 0) (1 2 0 4) 2 3 4 1 3 0 1 2). 2 lies in (1 2 0 4).

4. ( (0 4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) 3 0 1 2). 3 lies in (2 3 4 1).

5. ( (0 4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) (3 0 1 2) ). 0 lies in (3 0 1 2).

Definition 22.20. Tuples

A tuple is a finite sequence of objects denoted as (σ1,σ2, . . . .,σm). The length of the
tuple is the number of objects in the sequence denoted as
|(σ1,σ2, . . . ,σm)|= m. For our purposes, the objects of the tuple may be states, input
commands or natural numbers. (3) is a tuple of length one. (1, 4, 5, 6) is a tuple of
length four. Sometimes the commas will be omitted as in the previous example. (4
6 0 1 2 3) is a tuple of length six. The 4 is called the first object in tuple (4 6 0 1 2
3). 1 is called a member of tuple (4 6 0 1 2 3).

Definition 22.21. Tuple of Tuples

A tuple of tuples is of the form (w1,w2, . . . ,wn) where each wk may have a different
length. An example of a tuple of tuples is ( (3), (1, 4, 5, 6), (4, 5, 6) ). The commas
are omitted in this example ( (0 8 2 3) (1 7 5 7) (5 5 6) ).

Definition 22.22. Directed Partition of a Sequence

A directed partition is a tuple of tuples (w1,w2, . . . ,wn) satisfying Rule A and B.

Rule A. No object σ occurs in any element tuple wk more than once.

Rule B. If wk and wk+1 are consecutive tuples, then the first object in tuple wk+1
is a member of tuple wk.

Example 22.7. Directed Partition Examples

The five examples illustrate element and partition tuples and Rule A and Rule B.

( (0 8 2 3) (8 7 5 4) (5 0 6) ) is an example of a directed partition.

( (0 8 2 3) (8 7 5 4) (5 0 6) ) is sometimes called a partition tuple.

(0 8 2 3) is the first element tuple. The first object in this element tuple is 0.

Element tuple (8 0 5 7 0 3) violates Rule A because object 0 occurs twice.

( (0 8 2 3) (1 7 5 4) (5 0 6) ) violates Rule B since 1 does not lie in tuple (0 8 2 3).
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Definition 22.23. Consecutive Repeating Sequence and Extensions

A consecutive repeating sequence is a sequence (x1, x2, . . . , xn, . . . , x2n) of length
2n for some positive integer n such that xk = xn+k for each k satisfying 1 ≤
k ≤ n. An extension sequence is the same consecutive repeating sequence for
the first 2n elements (x1, x2, . . . , xn, . . . , x2n . . . x2n+m) such that xk = x2n+k for
each k satisfying 1 ≤ k ≤ m. A minimal extension sequence is an extension se-
quence (x1, . . . , xn, . . . x2n+m) where m is the minimum positive number such that
there is one element in x2n, x2n+1, . . . , x2n+m that occurs more than once. Thus,
x2n+k = x2n+m for some k satisfying 0≤ k < m.

For example, the sequence S = (4234130120 4234130120) is a consecutive repeat-
ing sequence and S = (4234130120 4234130120 42341) is an extension sequence.
S contains consecutive repeating sequence S .

Definition 22.24. Directed partition extension with last tuple satisfying Rule B

Suppose (x1 . . . xn . . . x2n, x2n+1, . . . x2n+m) is an extension of consecutive repeating
sequence (x1 . . . xn . . . x2n). Then (w1,w2, . . . ,wr) is a directed partition extension
if it is a directed partition of the extension: The last tuple wr satisfies Rule B if
x2n+m is the last object in tuple wr and xm+1 lies in tuple wr.

For example, the extension (4 2 3 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2 0 4 2 3) has directed
partition extension ((4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) (3 0 1 2) (0 4 2 3)) and
the last tuple satisfies Rule B since 4 lies in (0 4 2 3).

Procedure 4. Directed Partition procedure

This procedure converts a finite sequence into a directed partition.

Given a finite sequence (x1 . . . xn) of objects.

Initialize element tuple w1 to the empty tuple ( ).

Initialize partition tuple P to the empty tuple ( ).

For each element xk in sequence (x1 . . . xn)
{

if xk is a member of the current element tuple wr
{

Append element tuple wr to the end of partition tuple P so that
P = (w1 . . . wr).

Initialize current element tuple wr+1 = (xk).
}
else update wr by appending xk to end of element tuple wr.

}

The result is the current partition tuple P after element xn is examined in the
loop. Observe that the tail of elements from (x1 . . . xn) with no repeated elements
will not lie in the last element tuple of the final result P.
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Procedure 5. Directed Partition Procedure implemented in newLISP
<www.newlisp.org>

The function findpartition converts any finite sequence represented as a list into
a directed partition.

(define (addobject etuple object)
(if (member object etuple)

nil
(append etuple (list object))

))

(define (findpartition seq)
(let(

(partition ’())
(etuple ’())
(testadd nil)

)
(dolist (object seq)
(set ’testadd (addobject etuple object))
(if testadd

(set ’etuple testadd)
(begin
(set ’partition (append partition (list etuple)))
(set ’etuple (list object))

)
))

partition
))

> (set ’seq ’(4 2 3 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2 0 4 2 3 4))

> (findpartition seq)
((4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) (3 0 1 2) (0 4 2 3))

4 lies in the last tuple (0 4 2 3).

Remark 22.7. Every Consecutive Repeating Sequence has an extension sequence
with a directed partition such that the last tuple satisfies the Rule B property.

Proof. As defined in 22.23, extend consecutive repeating sequence
(x1 . . . xn . . . x2n) to the extension sequence (x1 . . . xn . . . x2n, x2n+1, . . . x2n+m) such
that m is the minimum positive number such that there is one element in
x2n, x2n+1, . . . x2n+m that occurs more than once. Thus, x2n+k = x2n+m for some k
satisfying 0≤ k < m.

Apply procedure 4 to S = (x1 . . . xn . . . x2n, x2n+1, . . . x2n+m). Then the resulting
partition tuple P extends at least until element x2n and the last tuple in P satis-
fies rule B. If the partition tuple P is mapped back to the underlying sequence of
elements, then it is an extension sequence since it reaches element x2n.

Lemma 22.3. Any consecutive repeating state cycle is contained in a composi-
tion of one or more prime input command sequences.

www.newlisp.org
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Proof. Let σ = [(q1, a1) "→ . . . "→ (qn, an)(q1, a1) "→ . . . "→ (qn, an)] be a consec-
utive repeating cycle. Procedure 4 and remark 22.7 show that this sequence of
consecutive repeating input commands may be extended to a minimal extension
sequence [(q1, a1) "→ . . . "→ (qn, an) "→ (q1, a1) "→ . . . "→ (qn, an) "→ (q1, a1) "→
. . . "→ (qm, am)].

For simplicity, let νk denote input command (qk, ak). Apply procedure 4 to
(ν1 . . . νnν1 . . . νnν1 . . . νm) so that the result is the partition tuple P = (w1 . . . wr).
Then the sequence of element tuples in P represent a composition of one or more
prime input command sequences.

Rules A and B imply that for consecutive tuples wk = (νk(1)νk(2) . . . νk(m)) and
wk+1 = (ν(k+1)(1)ν(k+1)(2) . . . ν(k+1)(m)) , then
(qk(1), ak(1)) "→ . . . "→ (qk(m), ak(m)) "→ (q(k+1)(1), a(k+1)(1)) is a prime input com-
mand sequence. Remark 22.7 implies that the last tuple wr corresponds to a prime
input command sequence and that the consecutive repeating state cycle is contained
in the partition P mapped back to the sequence of input commands.

Definition 22.25. Finite sequence rotation

Let (x0x1 . . . xn) be a finite sequence. A k-rotation is the resulting sequence
(xkxk+1 . . . xnx0 x1 . . . xk−1). The 3-rotation of (8 7 3 4 5) is (3 4 5 8 7).

Definition 22.26. Rotating a state-symbol cycle

Let (q1, a1) "→ . . . "→ (qn, an) "→ (q1,b1) be a state cycle. This state cycle is called a
state-symbol cycle if a1 = b1. A rotation of this state-symbol cycle is the state cycle
(qk, ak) "→ . . . , (qn, an) "→ (q1, a1) "→ . . . (qk,bk) for some k satisfying 0 ≤ k ≤ n.
In this case, the state-symbol cycle has been rotated by k− 1 steps.

Lemma 22.4. Any consecutive repeating rotated state cycle generated from a
consecutive repeating state cycle induces the same immortal periodic orbit.

Proof. Let p be the immortal periodic point induced by this consecutive repeating
state cycle. Rotating this state cycle by k steps corresponds to starting at periodic
machine configuration p and executing the Turing machine k steps.

Procedure 6. A newLISP [10] function that searches for a consecutive repeating
sequence.

(define (findpatternrepeats plength seq)
(let (

(k 0)
(maxk (- (length seq) (+ plength plength)) )
(pattern nil)
(repeatpair nil)
(norepeats true)

)

(while (and (<= k maxk) norepeats)
(set ’pattern (slice seq k plength))
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(if (= pattern (slice seq (+ k plength) plength))
(begin
(set ’repeatpair (list pattern k))
(set ’norepeats false) )

)
(set ’k (+ k 1))

)
repeatpair

))

(define (findrepeats seq)
(let (

(plength 1)
(maxplength (/ (length seq) 2) )
(repeatpair nil)

)
(while (and (<= plength maxplength) (not repeatpair))

(set ’repeatpair (findpatternrepeats plength seq))
(set ’plength (+ plength 1))

)
repeatpair

))

(set ’seq1 ’(3 5 7 2 3 5 7 11 5 7 ) )
(set ’seq2 ’(3 5 7 2 3 5 7 11 5 7 11 2 4 6 8 ) )
(set ’seq3 ’(1 2 0 2 1 0 2 0 1 2 0 2 1 0 1 2 1 0 2 1 2 0

2 1 0 1 2 0 2 1 2 0 1 2 1 0 1 2 0 1 0 1) )

> (findrepeats seq1)
nil

> (findrepeats seq2)
((5 7 11) 5)

> (findrepeats seq3)
((0 1) 38)
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Sánchez-López, C. 19
Sirbu, Ioana Gabriela 273
Stanislaw, Osowski 179
Stefanski, Andrzej 3

Teich, Werner G. 329
Thiessen, Tina 99
Tlelo-Cuautle, E. 19
Topan, Dumitru 273
Trejo-Guerra, R. 19

Ulrych, Bohuš 255, 287
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