
Chapter 3
Neural Network Based Software
Reliability Prediction with the Feed
of Testing Process Knowledge

Tian Jie, Zhou Yong and Wang Lina

Abstract Software reliability is an important factor for evaluating software
quality in the domain of safety-critical software. Traditional software reliability
growth models (SRGMs) only uses the failure data produced in a testing process to
evaluate the software reliability and its growth. However, the number and severity
of the failures uncovered are determined by the effectiveness and efficiency of
testing process. Therefore, an unbiased reliability prediction has to take test
process knowledge into account. In this paper, we proposed a neural network
based reliability prediction method to utilize the testing process metrics to cor-
relate testing process knowledge with failure prediction. The metrics designed in
this paper cover information from the system under test (SUT), design of testing,
software failure and repair process. The method is validated through the testing
process data collected from a real embedded operating system. And the results
show a fairly accurate prediction capability.

Keywords Software reliability � Testing process � Neural network

T. Jie (&)
Bei Jing Command College of CPAPF, Beijing, China
e-mail: happyjie717@126.com

Z. Yong
China Machinery TIDI Geotechnical Engineering Co.,Ltd, Wuhan, China

W. Lina
National Key Laboratory of Science and Technology on Aerospace Intelligent Control,
Beijing Aerospace Automatic Control Institute, Beijing, China

W. Lu et al. (eds.), Proceedings of the 2012 International Conference on Information
Technology and Software Engineering, Lecture Notes in Electrical Engineering 212,
DOI: 10.1007/978-3-642-34531-9_3, � Springer-Verlag Berlin Heidelberg 2013

19



3.1 Introduction

Software plays a very important role in our modern life and is used in many
applications. It has become the core of many safe-critical systems: communica-
tions, monitoring systems, automobiles, airplanes, and so on. All of these appli-
cations demand high-quality software. As a critical factor for software quality,
software reliability has become more and more important in computer system.
Software reliability is defined in ANSI, which is the probability of failure-free
software operation for a specified period of time in a specified environment [1].
During the last 3 decades, there are many researches around this area, and many
software reliability growth models (SRGMs) have been proposed for evaluating
software reliability. The basic principle of SRGMs is that computes software
reliability through the observed failure data and failure time, and then checks
whether the reliability meets the desired requirement. SRGMs can be generally
divided into two categories: one is the parametric models, such as nonhomo-
geneous Poisson process (NHPP) models, Schneidewind models and Musa’s Basic
execution time model; the other is non-parametric models, which is based on
neural network, support vector machine (SVM) and so on. All these proposed
models work on software failure data. Through the analysis and test on the col-
lected failure data, we can choose appropriate model to evaluate and predict
software reliability.

Failure data is one of the productions of testing process. The number and
seriousness of the failures uncovered are determined by the effectiveness and
efficiency of testing process. Therefore, we cannot get reliable estimation of the
practical reliability only with the failure data. The estimation could be biased
toward the low effective or efficient testing. Therefore, an unbiased reliability
prediction approach has to take test process knowledge into account. At present,
there are some SRGMs have been taken into account relevant factors, such as test
coverage. We focus on how to measure and evaluate the testing process to identify
more practical factors to feed into the software reliability model to get reliable
estimations.

In this paper, we propose a machine learning method to correlate test process
knowledge with failure prediction based on neural network. The test metrics used
include the information from system under test (SUT), design of testing, software
failure and repair process, etc. This method can improve the confidence of soft-
ware reliability.

The rest of this paper is organized as follows: Sect. 3.2 introduce some related
work about software reliability prediction. Section 3.3 describe the proposed
method about multi-view analysis of software testing process. In Sect. 3.4, we design
the method to predict software reliability based on neural network. Section 3.5
shows the experimental results and finally we conclude this paper in Sect. 3.6.

20 T. Jie et al.



3.2 Related Works

In this section, we first briefly introduce the related works about software testing
process in software reliability, and then we introduce some research about neural
network based software reliability.
Many studies have indicated that during the software testing process, fault
detection rate depends on the test team skills, the program size and software
testability factors. Kapur et al. [2] proposed that the fault repair rate can be
expressed as a function of testing effort and testing time. Huang et al. [3] pointed
out when the testing effort metrics spent on fault detection is not constant, the
traditional S-curve may not be suitable for the software failure data. In order to
solve this problem, they first evaluated the testing effort function (TEF), and
combined the logic testing effort function with the exponential and S-shape soft-
ware reliability model.

Meanwhile, there are some discussions about software reliability focus on that
the execution time cannot be the only measure factors for software failure
behavior. In order to improve the accuracy of the prediction, many researchers
have taken more factors into account and improved the software reliability models.
As the important factor to display the completeness and effectiveness of the testing
process, test coverage became a software reliability metrics. Malaiya et al. [4]
proposed a logarithm-exponent model, Cai [5] also proposed a test coverage-
reliability model (TC-SRM). Their model estimated the failure intensity function
based on the testing calendar time and test coverage. However, these models only
considered a few classic of test coverage, i.e. code coverage. An and Zhu [6]
proposed the concept of integrated test coverage (ITC). They estimated the soft-
ware reliability though combining multi kinds of test coverage metrics to an
integrated parameter.

There are also some researches related to the fault repair process. Schneidewind
[7, 8] first modeled the failure repair process. Based on this model, many
researchers extended the works.

Since the approaches mentioned above considered the testing process for pre-
dict the software reliability. We found that many models depend on a priori
assumptions and they have not considered the relationship between the different
metrics of the process. In recent years, neural network approach has been used to
predict software reliability. This method is more flexible and usable, so we
introduce some work about neural network based software reliability.

Karunanithi [9] first used some kind of neural networks to estimate the software
reliability. Cai et al. [10] proposed using the recent 50 inter-failure times as the
multiple-delayed inputs to predict the next failure time. Tian and Noore [1] pro-
posed a software reliability prediction method based on multiple-delayed-input
and single-output.

From existing research, we found the testing process has become an important
factor for software reliability, and the neural network can provide a flexible
application for predict software reliability. And the multiple-delayed-input and

3 Neural Network based Software Reliability Prediction 21



single-output method can help us considering complex factor to prediction. In this
paper, we proposed Neural Network based Software Reliability Prediction with the
Feed of Testing Process Knowledge. In order to give an accurate prediction, we
first analyze the testing process. Furthermore, we will show how to link the testing
process factor with the software reliability prediction.

3.3 Multi-Perspective Testing Process Analyses

Safety-critical software requires a high reliability. However, in the actual project,
we found that using the failure data and failure time to estimate the software
reliability is not accuracy. The most important reason is that the testing process
directly determines the veracity of the failure data, in addition, the complexity of
the system under test (SUT) determine the testability and the number of the
potential failure numbers. Testing process is the last stage of software develop-
ment; we can collect the process data as many as possible. We propose a method
which through analyze different perspective on the whole testing process to create
a complete comprehensive for software test.

Based on the above understanding, we combine with the characteristic of the
software reliability and proposed a method to analyzing the software reliability
based on the three perspectives: SUT, Testing process and the Failure data.

In order to analyze the impact of different perspectives on the software reli-
ability, we are following three clues to do the process analysis and the information
extraction. For every clue, we first give the information which needs collection,
then we give the effect analysis of these information.

3.3.1 System Under Test

We choose the SUT as the first perspective because SUT reflect the testability of
the system.

As we know, the complexity of SUT determines the testability and the numbers
of failures. Generally, we think that the bigger numbers of LOC and McCabe, the
more failures will be existed in the system. The relativity of the complexity of
SUT and numbers of failures is positive. We choose the LOC and McCabe as the
measure index.

3.3.2 Testing Process

Testing process is the key factor for the software reliability, because it determines
the capability of detecting failures.

22 T. Jie et al.



In this paper, we take the testing effort, design of the test case and the execution
of the test case into account.

In the testing process, we measure the coverage of the test case, including
the numbers of the normal test and robust test. Link with the SUT, we also observe the
distributionof the test case based on the size and complexity (i.e. McCabe) of the SUT.

In this paper, we choose the number of test cases, execution of test case and test
coverage as the measure target. We define the efficiency of the testing as the
failure numbers divide the test case numbers. In practice, test case numbers is
larger than failure numbers. In order to keep the data consistent, we compute
Effective of hundred test cases. Equation 3.1 defines the EoTC:

EoTC ¼ Number of failure
NoTC=100

: ð3:1Þ

3.3.3 Software Failure

Failure is the core factor for the software reliability; we not only collect the failure
numbers but also separate the test case which is detecting the failure.

Software failure is the kernel factor of software reliability; it can reflex the
situation of the system. In this study, we only concerned about the failure numbers;
we will use the knowledge of testing process and SUT to predict failure numbers.
In the future work; we will take other factors into account.

Figure 3.1 shows the relationship of the effect factors and software reliability,
we divide effects into three perspective based on the three clues. In the figure, blue
nodes express the effect factors we will utilize in the software reliability
prediction.

3.4 Software Reliability Predictions

After we collect the data of the SUT and testing process, we can predict the
software failure numbers based on neural network.

3.4.1 Neural Network

Neural network can solve following problem: training set contain complex sensor
data with noise, and the problems need more symbolic expression.

The characteristics of such problems are: the instance can be expressed as
‘‘property-value’’, and the output of the objective function may be discrete values,

3 Neural Network based Software Reliability Prediction 23



real values or vectors which are contained some discrete property and some real
property, the training data may contain errors and so on. These characteristics are
very fit for our problems. First, we have a series of process data, and then we use
these data to predict the failure numbers. Figure 3.2 give the sketch map of the
neurons. w is a real constant, which express the weight of the input. w determines
the input x on the neuron of the contribution rate for the output.

Equations 3.2 and 3.3 give the mathematical expression of the neuron.

y ¼ fðWA
0 þ bÞ ð3:2Þ

y ¼
Xn

i¼1

wjixi þ b ð3:3Þ

R
el

ia
b

ili
ty

Sy
st

em
 

U
nd

er
 

T
es

t

T
es

tin
g 

pr
oc

es
s

So
ft

w
ar

e 
Fa

ilu
re

LOC

McCabe

Testing effort

Design of Test case

Failure Time

Number of Failure

Severity

Number of Test case

Number of Test 
inspection

Number of
 Functions

Execution of 
Test case

Failure Live Time

Tester Numbers

Test stage

Test case’s LOC

Test coverage

Fig. 3.1 Multi-perspective
of testing process

SUM

w1
w2
w3
w4

wn

b

f(x)

x1

x2

x3

x4

.

.

.

xn

1

y

Fig. 3.2 Neurons: x1� xn

individual component of the
input vector, w1�wn weight
of each input, b bias, f
transfer function, y neuron
output

24 T. Jie et al.



We choose the most commonly used sigmoid function as the activation
function. Equation 3.4 give the expression of the sigmoid function.

f að Þ ¼ 1
1þ e�a

: ð3:4Þ

3.4.2 Design Neural Network

We choose a most common type of neural network architecture which named feed-
forward network.

We use the data obtained from the previous section which contains the
knowledge of testing process as the input of the neural network. During the
training process, we use the Levenberg–Marquardt (LM) algorithm and Gaussian-
Newton algorithm to achieve fast convergence. Our work supposes that the ability
of testers is stable, and the quality of different test case is equality.

3.5 Experiments

3.5.1 Data Sets

Our datasets come from a real operating system. We choose kernel module of
system as the research data, and the description of the data sets is shown in
Table 3.1.

In the experiment, we will partitions the data sets as different modules. In
dataset DS1, we use the first 25 modules which cover the 84 % of all modules to
training the system. For the dataset DS2, the training data are the first 10 modules
coving the 76 % of all modules in DS2. Both of two dataset, the remaining module
are used for prediction failure numbers. Through predict the number of failures, we
predict the software reliability.

Table 3.1 Real data sets

Module Data

Description Number of test case Number of failure

DS1 Kernel module 976 25
DS2 Library functions 725 186

3 Neural Network based Software Reliability Prediction 25



3.5.2 Prediction Result

Table 3.1 gives the number of test case and failure numbers in DS1 and DS2.
We use first 20 data to train the network, and use last 20 data to predict failure
numbers. We compare the reality data and the simulate data, and then compute the
mean squared error.

Figure 3.3a shows the predict result of DS1 and Fig. 3.3b give the predict result
of DS2. X axis describe the different modules, and y axis give the predict failure
numbers of corresponding module.
Figure 3.4 give the performance of neural network. In figure, we can see that when
the training reaches the 6th epoch, mean squared error (MSE) is 10-1. In our
experiment, we only predict the failure numbers of the module. In fact, based on
the raw data, we can calculate the cumulative of the failure numbers.

Fig. 3.3 a Predict result of DS1. b Predict result of DS2

Fig. 3.4 Performance of
network

26 T. Jie et al.



3.6 Conclusion

In this paper, we proposed a neural network based software reliability method
which is depend on the knowledge of software testing process. We first introduce
the method, and then we give a real example. This method depends on adequate
knowledge of testing process, so we need collect raw data go with the whole
testing process. But it can give us a more close to reality result. In the future,
we will extract more refined process data, and based on this work, we will predict
the cumulative failure numbers.

References

1. Tian L, Noore A (2005) Evolutionary neural network modeling for software cumulative
failure time prediction. Reliab Eng Sys 77:45–51

2. Kapur PK, Goswami DN, Bardhan A, Singh O (2008) Flexible software reliability growth
model with testing effort dependent learning process. Appl Math Model 32(7):1298–1307

3. Huang CY, Kuo SY, Lyu MR (2007) An assessment of testing-effort dependent software
reliability growth models. IEEE Trans Reliab 56(2):198–211

4. Malaiya YK, Li N, Bieman JM, Karcich R (2002) Software reliability growth with test
coverage. IEEE Trans Reliab 51(4):420–426

5. Cai X (2006) Coverage-based testing strategies and reliability modeling for fault-tolerant
software systems. Ph.D. thesis, The Chinese University of Hong Kong

6. An J, Zhu J, (2010) Software reliability modeling with integrated test coverage. In: Fourth
IEEE international conference on secure software integration and reliability improvement,
Singapore

7. Schneidewind NF (2001) Modeling the fault correction process. In: Proceedings of the 12th
international symposium on software reliability engineering (ISSRE), Hong Kong, China,
185–190

8. Schneidewind NF (2003) Fault correction profiles. In: Proceedings of the 14th international
symposium on software reliability engineering (ISSRE), Denver, USA, 257–267

9. Karunanithi N, Malaiya YK (1992) The scaling problem in neural networks for software
reliability prediction. In: Proceedings of the third international IEEE symposium of software
reliability engineering, Los Alamitos, CA, 76–82

10. Cai KY, Cai L, Wang WD, Yu ZY, Zhang D (2001) On the neural network approach in
software reliability modeling. J Syst Softw 58(1):47–62

3 Neural Network based Software Reliability Prediction 27


	3 Neural Network Based Software Reliability Prediction with the Feed of Testing Process Knowledge
	Abstract
	3.1…Introduction
	3.2…Related Works
	3.3…Multi-Perspective Testing Process Analyses
	3.3.1 System Under Test
	3.3.2 Testing Process
	3.3.3 Software Failure

	3.4…Software Reliability Predictions
	3.4.1 Neural Network
	3.4.2 Design Neural Network

	3.5…Experiments
	3.5.1 Data Sets
	3.5.2 Prediction Result

	3.6…Conclusion
	References


