Chapter 13
MBCrawler: A Software Architecture
for Micro-Blog Crawler

Gang Lu, Shumei Liu and Kevin Lii

Abstract Getting data is the precondition of researching on micro-blogging
services. By using Web 2.0 techniques such as AJAX, the contents of micro-blog
Web pages are dynamically generated rapidly. That makes it hard for traditional
Web page crawler to crawl micro-blog Web pages. Micro-blogging services
provide some APIs. Through the APIs, well-structured data can be easily obtained.
A software architecture for micro-blogging service crawler, which is named as
MBCrawler, is designed basing on the APIs provided by micro-blogging services.
The architecture is modular and scalable, so it can fit specific features of different
micro-blogging services. SinaMBCrawler, which is a crawler application based on
MBCrawler for Sina Weibo, has been developed. It automatically invokes the
APIs of Sina Weibo to crawl data. The crawled data is saved into local database.

Keywords Social Computing - Micro-blog - Crawler - Twitter

13.1 Introduction

As a fast developing and widely used new Web application, micro-blogging
service such as Twitter and Sina Weibo, has attracted attention of users,
enterprises, governments, and researchers. The first issue comes to researchers is

G.Lu (<) - S. Liu

College of Information Science and Technology, Beijing University of Chemical
Technology, 15 BeiSanhuan East Road, ChaoYang District 100029 Beijing, China
e-mail: sizheng@126.com

K. L
Brunel University, Uxbridge UB8 3PH, UK
e-mail: kevin.lJu@brunel.ac.uk

W. Lu et al. (eds.), Proceedings of the 2012 International Conference on Information 119
Technology and Software Engineering, Lecture Notes in Electrical Engineering 212,
DOI: 10.1007/978-3-642-34531-9_13, © Springer-Verlag Berlin Heidelberg 2013

120 G. Lu et al.

getting data of them. Generally, because of privacy and business reasons,
micro-blogging service providers will not provide the data readily.

In 2001, the authors of [1] described the common architecture of a search
engine, including the issues about selecting and updating pages, storing, scala-
bility, indexing, ranking, and so on. Nevertheless, being different from traditional
Web pages, Web 2.0 techniques such as AJAX (Asynchronous JavaScript and
XML) are widely used in micro-blog Web pages, and the contents in micro-blog
Web pages change too rapidly and dynamically for web crawlers. Traditional
crawlers for static Web pages do not work well to them. Of course, there has been
some research on getting web content from AJAX based Web pages [2-6].
However, all of the work is based on the state of the application, and the technique
is not that easy to implement. Fortunately, to encourage developers to develop
applications about micro-blogging services to make it used as widely as possible,
the providers of micro-blogging services publish some APIs. By those APIs, well-
formatted data of micro-blogging services can be obtained. Except some work in
which Twitter APIs were not used [7], and the work in which the authors did not
state how they got the Twitter data [8, 9], most of existing research about Twitter
utilizes the provided APIs [10-15].

We can see that Twitter APIs are widely used in the research work on Twitter.
We believe that using APIs is the most popular way to get data from micro-
blogging services. That provides us the probability of constructing uniform and
universal software architecture to utilize the provided APIs, to automatically
download and save well-structured data into database. To make it convenient for
researchers to obtain data from micro-blogging services, a software architecture
named as MBCrawler is proposed. Basing on this software architecture, a crawler
using APIs of micro-blogging service with multi threads can be developed. More
functions can be added easily along with more APIs are added, and details can be
designed to fit different online social network services.

13.2 MBCrawler
13.2.1 Basic Structure of MBCrawler

Software architecture named as MBCrawler is proposed. This software architec-
ture presents a main framework by which crawlers for micro-blogging services
data can be easily designed, developed, and expanded. MBCrawler is designed as
multi-threaded, and consists of six components, which are UI, Robots, Data
Crawler, Models, Micro-blogging APIs, and Database. The structure of
MBCrawler is illustrated in Fig. 13.1.

13

Fig

ey
@

3)

“

&)

. 13.1 Basic Structure of
MBCrawler Ul (Main Thread)

MBcrawler: A Software Architecture for Micro-Blog Crawler 121

e

Robots (MultiThread)

e

Data Crawler

A

Micro-blogging
APIs

Model Classes

- —

Database
v

Micro-blogging
Service

Database At the most bottom of MBCrawler is a relational database, in which
crawled data is stored.

Model Classes Each entity like user and status has a database table
correspondingly. On the other hand, entities appear as Model Classes to the
upper layers of the architecture. Model Classes provide methods for upper
layers to manipulate data in database.

Micro-blogging APIs Micro-blogging services provide some APIs which
meet REST (REpresentational State Transfer) requirements. The layer of
Micro-blogging APIs includes simple wrapped methods of the APIs.
The methods submit URLs with parameters by HTTP requests, and return the
result string in the format of XML or JSON.

Data Crawler Data Crawler plays a role as a controller between Robots and
Micro-blogging APIs. It receives commands indicating what data to crawl
from Robots, and then invokes specific function in Micro-blogging APIs. It
also transforms the crawled data from the format of XML or JSON into
instances of certain model class, which will be used by Robots.

Robots MBCrawler needs different robots crawl different data in multi-threads
at the same time. User Relation Robot, User Information Robot, Status Robot,
and Comment Robot are four main robots, which should be included at least.
All robots have their own waiting queues, such as queues of users’ ID or
queues of status IDs. The waiting queues are all designed as circular queues to
crawl the updated data repeatedly.

Generally, a crawler should run continuously. However, some cases may

interrupt its running. For example, the network disconnects, or even the computer

on

which the crawler is running has to reboot. As a result, every robot will record

the user ID or status ID before it start to crawl the data. The robots can start from
the last stopped points when they restart.

122 G. Lu et al.

(7

Global Pool
User Queue For Usel
Information Robot

»{ User Queue For User
Relation Robot

Thread of User
Relation Robot

Thread of User \/
™ ‘/

Information
Robot

ul | |
(Main Thread)

Thread of
Status Robot

User Queue For
Status Robot
Thread of
Status Queue For ‘ ‘ ‘
“» Comment
Robot { Comment Robot - ﬁ ﬂ .ﬁ-‘

& J

4

Fig. 13.2 Multi-threaded robots and their queues

(6) UI UI means User Interface. It’s the layer of representation, which shows
information from the crawler and makes users able to control the program.
Necessary options of the program also can be set by UIL. Robots can be started,
paused, continued, or stopped at any time by the buttons on UL

13.2.2 Multi-Threads Structure of Robots Layer

MBCrawler is multi-threaded. Besides the main thread of Ul, more threads with
robots working in them is generated, so that different robots can work in parallel.
The structure of the multi-threaded robots and their queues is as in Fig. 13.2 shows.

Each robot has its own waiting queue. The queue of Comment Robot is of status
IDs, and others are of user IDs.

The arrows between robots and the waiting queues in Fig. 13.2 show the data
flow direction between them. Basically, every robot fetches the head item from its
own queue to crawl, and then move the item to the end of the queue. By crawling
followers and followings IDs of a user, User Relation Robot processes BES in the
social network of micro-blogging service. User Relation Robot will make all
waiting queues grow at the same time, by adding new items to them synchro-
nously. User Information Robot does not add new items into any queues. Status
Robot adds the ID of the crawled status into the waiting queue of Comment Robot.
If it finds new user IDs, it will also add them to the queues of user IDs. Comment
Robot also adds commenters’ user IDs into the queues of user IDs.

13.2.3 Two-Part Queues Management

As it is shown in Sect. 12.2.2, each robot has a waiting queue of user IDs or status
IDs. A whole waiting queue is designed as a circular queue, to ensure that every ID

13 MBcrawler: A Software Architecture for Micro-Blog Crawler 123

MaxLengthiInMem IDs are moved into
(IstWaitinglD

| | | | | | | | I—j
\The Head Node is moved to the end of the whole queue

L y L)

Y Y
IstWaitingID IstWaitingIDInDB

v
The Whole Queue

Fig. 13.3 Structure and working process of a queue

in it will be process repeatedly for information updating. As a result, the queues
will grow longer and longer as the crawler works. However, the limited memory of
computer cannot contain unlimited queues. To deal with that issue, a queue is
departed into two parts. One part is maintained in memory, the other part is stored
in disk, namely in database. The two parts are managed by two variable IstWa-
itingID and IstWaitingIDInDB respectively.

IstWaitingID is a linked list, whose length is limited to MaxLengthlnMem.
IstWaitingIDInDB manages the other part of the waiting queue in database. When
arobot starts to work, it will create a temporary table in database in order to extend
the queue into disk. If the length of the whole queue is longer than MaxLeng-
thinMem, new IDs will be added into the temporary table. In this case, IDs in
IstWaitingID will be moved into IstWaitingIDInDB at last. When there is no ID in
IstWaitingID, the first MaxLengthInMem 1Ds in IstWaitingIDInDB will be moved
into [stWaitinglID, as Fig. 13.3 illustrates.

However, if IstWaitingIDInDB is too long, and MaxLengthinMem is set to a big
number, the process of moving MaxLengthlnMem 1Ds from IstWaitingIDInDB to
IstWaitingID will take a long time. That may cause the response of database
timeout. An alternate way to solve the problem, is adding an additional thread to
take the charge of moving IDs between the two parts of the queue, as Fig. 13.4
shows.

As Fig. 13.4 illustrates, a model called Queue Coordinator and a queue named
Back Buffer are added. Queue Coordinator fetches IDs from IstWaitinglDInDB to
IstWaitingID. A crawling robot fetches an ID from IstWaitingID to crawl. After
that, it sends the crawled ID to Back Buffer. At the same time, Queue Coordinator
fetches crawled IDs from Back Buffer and pushes them to the back of IstWaitin-
gIDInDB. The crawling robot and Queue Coordinator work asynchronously in
parallel. Of course, each robot needs a Back Buffer, but only one Queue
Coordinator is enough to manage all of the queues.

124 G. Lu et al.

Crawled |D—ﬂk \ \

¥

Send to Back of Queu
Back Buffer

D E— | | | |
7 L

IstWaitingID IstWaitingIDInDB

Queue
Coordinator

~
The Whole Queue

Fig. 13.4 Producer-consumer based queue management

13.3 Implementation as SinaMBCrawler

Basing on MBCrawler, a crawler program named as SinaMBCrawler for Sina
micro-blog, which is called Sina Weibo, is developed. Sina Weibo is one of the
most popular micro-blogging services in China. By SinaMBCrawler, data of Sina
Weibo can be crawled into database.

Sina Weibo has some more features than Twitter. For example, users of Sina
Weibo can label themselves with no more than 10 words, which can reflect the
users’ hobbies, profession, and so on. These words are called as tags. As a result, a
new robot takes the charge of crawling the data about tags is added, which is
named as UserTagRobot.

In our research work, SinaMBCrawler initially was running for months. During
that time, it crawled 8,875,141 users’ basic information, 55,307,787 user
relationship, 1,299,253 tags, 44,958,974 statuses, and 35,546,637 comments. The
data is stored in a SQL Server database. However, in that time, SinaMBCrawler
was frequently stopped to be modified because of bugs and updates. That makes
the data some dirty due to some testing result. So we abandoned that data. From
15:54:46 on May 30th, 2011 to 11:44:26 on January 7th, 2012, a stable version of
SinaMBCrawler was running uninterruptedly. The data obtained this time is listed
in Table 13.1.

ACR is the abbreviation for Average Crawling Rate, which is different for each
robot, because they access different Sina Weibo APIs. For example, only one
user’s information can be obtained by UserInfoRobot for each invoking the
relative API, while at most 5,000 user relationships can be obtained by UserRe-
lationRobot for one time. ACR is also related to the data. For instance, many users
don’t set their tags, so UserTagRobot can’t get their tags. That lowers the ACR of
UserTagRobot.

13 MBcrawler: A Software Architecture for Micro-Blog Crawler 125

Table 13.1 Crawled data by a stable version of SinaMBCrawler

Robot Data content Total records ACR (records/minute)
UserInfoRobot User information 6,571,955 20
UserRelationRobot User relationship 37,902,219 118
UserTagRobot Tag 1,068,060 3

User owning tags 8,031,712 25
StatusRobot Status 32,627,963 102
CommentRobot Comment 26,884,365 84

13.4 Conclusion and Future Work

Software architecture for micro-blogging services crawler, called MBCrawler,
is designed in our work. The whole architecture is designed in levels. By dividing
the whole architecture into several levels and applying some simple design pat-
terns, the structure of the architecture is highly modularized and scalable. The
different parts of the architecture are loose coupling, and each part is high cohe-
sion. That makes it easy to modify and extend the software.

Basing on MBCrawler, a crawler software for Sina Weibo named as
SinaMBCrawler is implemented. Functions and a robot about users’ tags are easily
added according to Sina Weibo API. Because of the careful design of the archi-
tecture, we have easily upgrade SinaMBCrawler according to Sina Weibo API 2.0,
in which only JSON format is used and some new properties are added to users,
tags, and so on. SinaMBCrawler has been used to crawl a large number of data
from Sina Weibo, which is used in our research work.

In summary, comparing to traditional Web page crawlers, MBCrawler mainly
has the following features:

1. Because micro-blogging services APIs are the foundation of the design and
implementation of MBCrawler, MBCrawler does not need to download Web
pages to analyze. It obtains well-structured data by APIs directly. That makes
MBCrawler avoid complex technical issues resulted from AJAX.

2. MBCrawler does not store dynamically generated Web pages, but directly
stored the well-structured data obtained by APIs into database.

3. Because MBCrawler does not store Web pages, no index module for Web
pages is needed. However, the indexing mechanism of the used database can be
utilized to enhance the performance of the database.

Nevertheless, there is an important condition for using MBCrawler. To access
the APIs, MBCrawler has to act as an application registered at the micro-blogging
services provider. Fortunately, it is easy to register applications for it. After that, a
unique pair of application ID and secret will be given to access APIs by the
application. Because there are access frequency restrictions for an application, in
our SinaMBCrawler, we registered five applications for the five robots. As a result,
each robot can work as an independent application, and they will not share the

126 G. Lu et al.

same access frequency restriction. That makes SinaMBCrawler work more
efficiently.

In the future, MBCrawler can be improved mainly in two aspects. Firstly,
a focused module can be designed, to tell the robots what type of data to crawl.
For example, the robots can be told to crawl the information of users who are in a
specific city, or the statuses including specific words. Secondly, we would like to
design a ranking module. It is impossible to crawl the whole user relation graph
due to the large scale of it. A ranking module will help the crawler to select more
important users to crawl. Additionally, because database is loose-coupled with
MBCrawler, it also can be considered that trying some NoSQL databases
according to the practice requirements. For example, to research the user relation
network, any one of graph databases can be selected to store the network.

Acknowledgments This work is supported by the Fundamental Research Funds for the Central
Universities grants ZZ1224.

References

1. Arasu A, Cho J, Garcia-Molina H, Paepcke A, Raghavan S (2001) Searching the web. ACM
Trans Internet Technol (TOIT) 1(1):2-43
2. Mesbah A, van Deursen A (2009) Invariant-based automatic testing of AJAX user interfaces.
In: Proceedings of the 31st international conference on software engineering, Washington,
USA, pp 210-220
3. Xia T (2009) Extracting structured data from Ajax site. In: First international workshop on
database technology and applications, pp 259-262
4. Duda C, Frey G, Kossmann D, Matter R, Zhou C (2009) AJAX crawl: making AJAX
applications searchable. In: IEEE 25th international conference on data engineering
ICDE’09, pp 78-89
5. Peng Z, He N, Jiang C, Li Z, Xu L, Li Y, Ren Y (2012) Graph-based AJAX crawl: mining
data from rich internet applications. In: 2012 international conference on computer science
and electronics engineering (ICCSEE), vol 3. pp 590-594
6. Mesbah A, van Deursen A, Lenselink S (2012) Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Trans Web 6(1):1-30
7. Weng J, Lim E-P, Jiang J, He Q (2010) TwitterRank: finding topic-sensitive influential
twitterers. In: Proceedings of the third ACM international conference on web search and data
mining, New York, USA, pp 261-270
8. Mendoza M, Poblete B, Castillo C (2010) Twitter under crisis: can we trust what we RT? In:
Proceedings of the first workshop on social media analytics, pp 71-79
9. Sriram B, Fuhry D, Demir E, Ferhatosmanoglu H, Demirbas M (2010) Short text
classification in twitter to improve information filtering. In: Proceeding of the 33rd
international ACM SIGIR conference on research and development in information retrieval,
pp 841-842
10. A. for C. M. S. L. G. on Security, Audit, and Control (2007) Why we twitter: understanding
microblogging usage and communities. In: Proceedings of the ACM workshop on privacy in
the electronic society, Washington, USA
11. Asur S, Huberman BA (2010) Predicting the future with social media. ArXiv 1003:5699
12. Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media?
In: Proceedings of the 19th international conference on World wide web, pp 591-600

13 MBcrawler: A Software Architecture for Micro-Blog Crawler 127

13. Wu S, Hofman JM, Mason WA, Watts DJ (2011) Who says what to whom on twitter. In:
Proceedings of the 20th international conference on World wide web, pp 705-714

14. Bakshy E, Hofman JM, Mason V, Watts DJ (2011) Everyone’s an influencer: quantifying
influence on twitter. In: Proceedings of the fourth ACM international conference on Web
search and data mining, pp 65-74

15. Li R, Lei KH, Khadiwala R, Chang KC-C (2012) TEDAS: a twitter-based event detection
and analysis system. In: International conference on data engineering, Los Alamitos, USA,
vol 0. pp 1273-1276

	13 MBCrawler: A Software Architecture for Micro-Blog Crawler
	Abstract
	13.1…Introduction
	13.2…MBCrawler
	13.2.1 Basic Structure of MBCrawler
	13.2.2 Multi-Threads Structure of Robots Layer
	13.2.3 Two-Part Queues Management

	13.3…Implementation as SinaMBCrawler
	13.4…Conclusion and Future Work
	Acknowledgments
	References

