
Chapter 49
Semantic Web Service Automatic
Composition Based on Discrete Event
Calculus

Kai Nie, Houxiang Wang and Jiao He

Abstract A semantic Web service automatic composition method based on
discrete Event Calculus is proposed aiming at the issues of service AI planning
composition such as large number of services and the confine of sequence com-
position process. Firstly, the extension of EC to DEC is present. Then the eight
basic semantic Web service composition processes and their IOPE are modeled
based on the actions, fluent and axioms of DEC. The service composition process
is divided into two steps, abstract service planning and instance execution. And the
service automatic composition framework is introduced. Also the abduction DEC
planning method and semantic matching method of instance execution are given.
The comparison indicate the superiority of this method: it solves the confine of
sequence composition process of classic AI planning composition method with
Event Calculus’ presentation of compound action, concurrent action, continuous
action, knowledge of the agent and the predicate number of the DEC is much
smaller than EC which speed the service discovering and composition.

Keywords Semantic web service � Automatic service composition � Intelligent
planning � Discrete event calculus � Abduction

49.1 Introduction

Emerging semantic Web services standards as OWL-S [1] enrich Web service stan-
dards like WSDL and BPEL4WS with rich semantic annotations to facilitate flexible
dynamic web services discovery, invocation and and composition. The semantic

K. Nie (&) � H. Wang � J. He
College of Electronic Engineering, Naval University of Engineering,
No 717, Jiefang Dadao Road 430033 Wuhan, People’s Republic of China
e-mail: 1999104133@163.com

W. Lu et al. (eds.), Proceedings of the 2012 International Conference on Information
Technology and Software Engineering, Lecture Notes in Electrical Engineering 210,
DOI: 10.1007/978-3-642-34528-9_49, � Springer-Verlag Berlin Heidelberg 2013

477

description of function interface and behaviour of Web service can be provided by
OWL-S, but it does not contain automated reasoning mechanism and does not support
automatic service discovery and composition of semantic Web services. The key
technology of automatic service composition is using semantic match and automated
reasoning mechanism. The automatic semantic Web service composition methods
contain method based on workflow, method based on intelligent planning, method
based on formal description and so on [2]. The intelligent planning method shortening
as AI is very popular and mature in Web service composition and can be implemented
in some tools such as JSHOP and Prolog. The AI composition methods contains
Hierarchy Task Network (HTN) [3], Situation Calculus [4], PDDL [5], dynamic,
description logic [6], theorem prover [7] and so on. But they have two shortcomings:
large number of services and the confine of sequence composition process.

Event Calculus is one of the convenient techniques for the automated composition
of semantic web services. The Event Calculus (EC) is a temporal formalism designed
to model and reason about scenarios described as a set of events whose occurrences
have the effect of starting or terminating the validity of determined properties of the
world. The one that will be used in this paper is the one defined by Shanahan [8]. The
Event Calculus is based on first-order predicate calculus, and is capable of repre-
senting actions with indirect effects, actions with non-deterministic effects, com-
pound actions, concurrent actions, and continuous change. Agarwal [9] presents a
classification of existing solutions into four categories (approaches): interleaved,
monolithic, staged and template-based composition and execution. Okutan [10]
proposes the application of the abductive Event Calculus to the web service com-
position and execution problem about the interleaved and template-based type.
Ozorhan [11] presents a monolithic approach to automated web service composition
and execution problem based on Event Calculus. But they all have large numbers of
predicates and the compose speed of them is slow. The discrete Event Calculus
(DEC) has been proven to be logically equivalent with EC, when the domain of time
points is limited to integers [12]. The DEC can eliminate the triply quantified axioms
that lead to an explosion of the number of predicates.

In this paper, the Abductive Planning of the discrete Event Calculus is used to
show that when atomic services are available. The service composition process is
divided into two steps, abstract service planning and instance execution. And the
service automatic composition framework is introduced and semantic matching
method of instance execution is given.

49.2 Discrete Event Calculus

49.2.1 Event Calculus

The Event Calculus is based on first-order predicate calculus, and is capable of
representing a variety of phenomena, including actions with indirect effects,
actions with non-deterministic effects, compound actions, concurrent actions, and

478 K. Nie et al.

continuous change. The basic ontology of the Event Calculus comprises actions or
events (or rather action or event types), fluents and time points. Table 49.1
introduces the language elements of the Event Calculus.

The axioms of the Event Calculus relating the various predicates together are as
follows:

holdsAt F; Tð Þ initiallyP Fð Þ ^ :clipped F; 0; Tð Þ ð49:1Þ

holdsAt F; Tð Þ happens E; T0ð Þ ^ initiates E;F; T0ð Þ ^ T0\T
^ :clipped F; T0; Tð Þ

ð49:2Þ

clipped F; T0; T1ð Þ $ 9E; T happens E; Tð Þ ^ T0� T ^ T � T1

^ terminatesðE; T;FÞ
ð49:3Þ

declipped F; T0; T1ð Þ $ 9E; T happens E; Tð Þ ^ T0� T ^ T � T1

^ initiates E;F; Tð Þ
ð49:4Þ

49.2.2 DEC

The axioms of DEC utilize a subset of the EC elements (Table 49.1), that is
happens, holds At, initiates and terminates. The axioms that determine when a
fluent holds, are defined as follows:

holdsAt F; T þ 1ð Þ happens E; Tð Þ ^ initiates E;F; Tð Þ ð49:5Þ

holdsAt F; T þ 1ð Þ holdsAt F; Tð Þ ^ :9E happens E; Tð Þ ^ terminates E;F; Tð Þ
ð49:6Þ

Table 49.1 Event calculus predicates in classical logic

Predicate Meaning

Happens (E, T) Event E occurs at time T
InitiallyP (F) Fluent F holds from time 0
InitiallyN (F) Fluent F does not hold from time 0
Holds At (F, T) Fluent F holds at time T
Initiates (E, F, T) Event E initiates fluent F at time T
Terminates (E, F, T) Event E terminates fluent F at time T
Clipped (F, T0, T1) Fluent F is terminated some time in the interval [T0 T1]
Declipped (F, T0, T1) Fluent F is initiated some time in the interval [T0 T1]
Releases (E, F, T) Fluent F is not constrained by inertia after event E at time T

49 Semantic Web Service Automatic Composition 479

Compared to EC, DEC axioms are defined over successive timepoints. Addi-
tionally, the DEC axioms are quantified over a single time point variable.
Therefore the number of predicates is substantially smaller than EC. Axioms
(49.6), however, contain the existentially quantified variable E. Each of these
axioms will be transformed into 2 ej jclauses. Moreover, each clause will contain a
large number of disjunctions. To overcome the creation of 2 ej jclauses, we can
employ the technique of subformula renaming, as it is used in [12]. According
to this technique, the subformula happens E; Tð Þ ^ initiates E;F; Tð Þ in (49.5), is
replaced by a utility predicate that applies over the same variables, e.g. startAt
E;F; Tð Þ. A corresponding utility formula, i.e. startAt E;F; Tð Þ $ happens
E; Tð Þ ^ initiates E;F; Tð Þ, is then added to the knowledge base.

In order to eliminate the existential quantification and reduce further the
number of variables, we adopt a similar representation as in [12], where the
arguments of initiation and termination predicates are only defined in terms of
fluent and time points—represented by the predicates initiated At and terminated
At respectively. As a result, the domain-independent axioms of DEC presented
above are universally quantified over fluents and time points. The axioms that
determine when a fluent holds are thus defined as follows:

holdsAt F; T þ 1ð Þ initiatedAt F; Tð Þ ð49:7Þ

holdsAt F; T þ 1ð Þ holdsAt F; Tð Þ ^ :terminatedAt F; Tð Þ ð49:8Þ

49.3 Service Automatic Composition Method Based on DEC

49.3.1 The Basic Service Processes Translation to DEC

In OWL-S the composite processes are composed of sub-processes and specify
constraints on the ordering and conditional execution of the sub-processes. The
minimal set of control constructs according to includes Sequence, Split, Split
+Join, Any-Order, Choice, If–Then-Else, Repeat-While and Repeat-Until. These
constructs are translated automatically into compound events in our framework.

Translations of the sequence control construct:

axiom happens pSequenceExample Inputs;Outputsð Þð ;T0; Tmð Þ;
½happens pProcess1 Inputs1;Outputs1ð Þ; T1; T2ð Þ; happens pProcess2 Inputs2;Outputs2ð Þ; T3;T4ð Þ; . . .;

happens pProcessn Inputsn;Outputsnð Þ;Tx; Ty

� �
; before T0;T1ð Þ; before T1;T3ð Þ; . . .; before Tx; Tmð Þ�Þ

Inputi � Inputs [
[i�1

j¼1

Outputsj for i ¼ 1; . . .; n Outputs �
[n

i¼1

Outputsi

480 K. Nie et al.

Translations of the Split control construct:

axiom happens pSplitExample Inputs;Outputsð Þð ; T0; Tmð Þ;
½happens pProcess1 Inputs1;Outputs1ð Þ; T1; T2ð Þ; happens pProcess2 Inputs2;Outputs2ð Þ;T3;T4ð Þ; . . .;

happens pProcessn Inputsn;Outputsnð Þ; Tx; Ty

� �
; before T0; T1ð Þ; before T0; T3ð Þ; . . .; before T0; Txð Þ�Þ

Inputsi � Inputs for i ¼ 1; 2; . . .; n Outputs �
[n

j¼1

Outputsj

Translations of the Split–Join control construct:

axiom happens pSplitJoinExample Inputs;Outputsð Þð ;T0;Tmð Þ;
happens pProcess1 Inputs1;Outputs1ð Þ; T1; T2ð Þ½ ; happens pProcess2 Inputs2;Outputs2ð Þ;T3; T4ð Þ; . . .;

happens pProcessn Inputsn;Outputsnð Þ;Tx; Ty

� �
; before T0;T1ð Þ; before T0;T3ð Þ; . . .; before T0; Txð Þ;

before T2; Tmð Þ; before T4; Tmð Þ; . . .; before Ty; Tm

� �
�Þ

Translations of the If–Then–Else control construct:

axiom happens pIfThenElseExample Inputs;OutPutsð Þ; T0; Tmð Þð ;

happens jpl pIfCondition Inputs1ð Þ; T1; T2ð Þ½ ; happens pThenCase Inputs;Outputsð Þ; T3;T4ð Þ;
before T0; T1ð Þ; before T2;T3ð Þ; before T4; Tmð Þ�Þ

axiom happens pIfThenElseExample Inputs;OutPutsð Þ; T0ð ; Tmð Þ;
happens jpl pElseCondition Inputs1ð Þ; T1;T2ð Þ½ ; happens pElseCase Inputs;Outputsð Þ; T3; T4ð Þ;

before T0; T1ð Þ; before T2;T3ð Þ; before T4; Tmð Þ�Þ

Translation of the Repeat-While control construct:

axiom happens pRepeatWhileExample Inputs;OutPutsð Þ; T0; Tmð Þð ;

happens jpl pLoopCondition Inputs1ð Þ;T1;T2ð Þ;½ happens pWhilecase Inputs;Outputsð Þ; T1; T3ð Þ;
before T0; T1ð Þ; before T1;T2ð Þ; before T1; T3ð Þ; before T3; Tmð Þ�Þ

49.3.2 Web Service Automatic Composition Framework

The Web service automatic composition framework is in Fig. 49.1. The frame-
work is divided into two steps: abstract service planning and instance execution.
The steps of the workflow are: convert OWL-S descriptions and user inputs and
outputs to the discrete Event Calculus axioms; execute the abductive theorem
prover to generate plans; convert the generated plans to graphs; convert the
selected graphs to OWL-S service files; execute the selected OWL-S service
composition.

49 Semantic Web Service Automatic Composition 481

49.3.3 Abstract Service Planning

49.3.3.1 Translation of IOPE to DEC Axioms

The input and output of Web service translation to DEC are as follows:

axiom initiatedAt web service event I1; I2; . . .; Ik;O1;O2; . . .;Oj

� ���
; known out parameter namei;Oið Þ;TÞ;

holdsAt known in parameter name1; I1ð Þ;Tð Þ; . . .;½ holdsAt known in parameter namek; Ikð Þ; Tð Þ;
holdsAt precondition1;Tð Þ ; . . .; holdsAt preconditionp; T

� �
�Þ

The precondition of Web service translation to DEC is as follows:

axiom happens pPreconditionExample Input1; Input2ð Þ;T1;TNð Þð ;

jpl½ pPrecondition Input1; Input2ð Þ; atom number Input1;Arg1ð Þ;
atom number Input2;Arg2ð Þ ;Arg1\Arg2; Other Events and Temporal Orderings½ �. . .�Þ

The effect of Web service translation to DEC is as follows:

axiom initiatedAt web service event I1; I2; . . .; Ik;O1;O2; . . .;Oj

� ���
; effect ei;TÞ;

holdsAt known in parameter name1; I1ð Þ;Tð Þ; . . .;½ holdsAt known in parameter namek; Ikð Þ;Tð Þ;
holdsAt precondition1; Tð Þ ; . . .; holdsAt preconditionp; T

� �
�Þ

OWL-S service
description
repository

dynamic-
Prolog.pl

Abductive
DEC

planner

Plan Graphs

Composed
OWL-S
service

Execution
Environment

Output

Users
convert OWL-S to

DEC axioms

Prolog

Input Type

Load query and
domain description

to prolog

convert query result
to graph

convert graph to
OWL-S

OWL-S files to
execution engine

Execution result

Input
Value

Output Type

Fig. 49.1 The service
automatic composition
framework based on DEC

482 K. Nie et al.

Here effect ei is the Prolog translation of the effect name taken from the has
effect section of the service profile.

49.3.3.2 Abductive DEC Planning Algorithm

Abduction is used over the Event Calculus axioms to obtain partially ordered sets of
events. Abduction is handled by a second order Abductive Theorem Prover (ATP) in
[13]. The ATP tries to solve the goal list by proving the elements one by one. During
the resolution, abducible predicates are stored in a residue to keep the record of the
narrative. The narrative is a sequence of time-stamped events. In the definition of
the predicate abduce, GL denotes the goal list, RL represents the residue list, NL
represents the residue of negated literals, G is the axiom head and AL is the axiom
body.

AH AB1 ^ AB2 ^ . . . ^ ABN axiom AH; AB1;AB2; . . .;ABN½ �ð Þ

abduct GL;RLð Þ abduct GL;h;RL;hð Þ abduct h;RL;RL;NLð Þ

abduct holdsAt F;Tð ÞjGL½ �;CurrRL;RL;NLð Þ axiom initially Fð Þ;ALð Þ;
irresolvable clipped 0;F; Tð Þ;CurrRL;NLð Þ ; append AL;GL;NewGLð Þ;

abduct NewGL;CurrRL;RL; clipped 0;F; Tð ÞjNL½ �ð Þ

abduct holdsAt neg Fð Þ; Tð ÞjGL½ �;R1;R3;N1;N4ð Þ axiom initially neg Fð Þð Þ;ALð Þ;
irresolvable declipped 0;F; Tð Þ;CurrRL;NLð Þ; append AL;GL;NewGLð Þ;

abduct NewGL;CurrRL;RL; declipped 0;F; Tð ÞjNL½ �ð Þ

49.3.4 Generating Output Graphs from the Results
of the Planner

The Service-Oriented C4ISR system on the naval fields is taken as an example for
generating output graphs from the results of the planner. Fig. 49.2 is the generating
graph. There eight services are as follows: the surface target detection service W1,
the underwater target detection service W2, the information process service W3, the
fire control compute service W4, the missile launch service W5, the torpedo launch
service W6, the efficiency evaluate service W7, the repeat attack service W8, St and
En are the start and end services. The W1 and W2 are concurrent, then the W3 is in
sequence. The W5 and W6 are choice relation. The W8 is loop with W4, W5, W6 and
W7, and k is a small integer. The abstract service of the process is corresponding to
an instance service set, and the QoS of the instance services are different according
their equipments such as execute time, cost, and accuracy.

49 Semantic Web Service Automatic Composition 483

49.3.5 The Instance Service Matching Method

The instance service matching process is divided into two steps: the local semantic
matching and the global QoS-ware matching. The local semantic matching is not
only considering the input and output matching, but also the local semantic
matching. The global QoS-ware matching is translated into a multi-objective
services composition optimization with QoS constraints. The multi-objective
estimation of distribution algorithm based on Independent Component Analysis is
utilized to produce a set of optimal Pareto services composition with constraint
principle by means of optimizing various objective functions simultaneously.

49.4 Conclusion

A semantic Web service automatic composition method based on discrete Event
Calculus is proposed aiming at the issues of service AI planning composition
method such as large number of services, the confine of sequence composition
process. The eight basic semantic Web service composition processes and their
IOPE are modeled based on the actions, fluent and axioms of DEC. The service
composition process is divided into two steps, abstract service planning and
instance execution. And the service automatic composition framework is intro-
duced. Also the abduction DEC planning algorithm and semantic matching method
of instance execution are given. The comparison indicate the superiority of this
method: it solves the confine of sequence composition process of classic AI plan-
ning composition method with DEC’ presentation of compound action, concurrent
action, continuous action, knowledge of the agent, the predicate number of the DEC
is much smaller than EC which speed the service discovering and composition.

St Split

W1

W2

Split+
join

W3
Sequ-
ence

Choice

W5

join W7 EnReapt/
WhileW4

W8

W6

Fig. 49.2 Graph model of service-oriented C4ISR system on the naval fields

484 K. Nie et al.

References

1. Martin D, Burstein M, McDermott D et al (2007) Bringing semantics to web services with
OWL-S. World Wide Web J 10(3):243–277

2. Charif Y, Sabouret N (2006) An overview of semantic web services composition approaches.
Electron Notes Theoret Comput Sci 33–41

3. Sirin E, Parsia B, Wu D et al (2004) HTN planning for Web service composition using
SHOP2. J Web Sem 1:377–396

4. Mcilraith S, Son T (2002) Adapting go log for composition of semantic web services. In:
Proceedings of the eighth international conference on principles of knowledge representation
and reasoning, France

5. Klusch M, Gerber A, Schmidt M (2005) Semantic web service composition planning with
OWLS-XPlan. In: Proceedings of the 1st international AAAI fall Symposium on agents and
the semantic web. Arlington, pp 117–120

6. Wan Changlin, Han Xu, Niu Wenjia et al (2010) Dynamic description logic based web
service composition and QoS model. Acta Electronica Sinica 38(8):1923–1928 (in Chinese)

7. Rao JH, Kungas P, Matskin M (2006) Composition of semantic web services using linear
logic theorem proving. Inf Syst 4–5:340–360

8. Shanahan M (1999) The event calculus explained. In: Artificial intelligence today: recent
trends and developments. Springer, Berlin 409–430

9. Agarwal V, Chafle G, Mittal S et al (2008) Understanding approaches for web service
composition and execution. In: Proceedings of the first Bangalore annual compute
conference. ACM, New York, pp 1–8

10. Okutan C, Cicekli NK (2010) A monolithic approach to automated composition of semantic
web services with the event calculus. Knowl-Based Syst 23:440–454

11. Ozorhan EK, Kuban EK, Cicekli NK (2010) Automated composition of web services with the
abductive event calculus. Inf Sci 180:3589–3613

12. Mueller ET (2008) Event calculus. In: Handbook of knowledge representation, vol 3.
Elsevier, Amsterdam, pp 671–708

13. Shanahan MP (2000) An abductive event calculus planner. J Logic Prog 44:207–240

49 Semantic Web Service Automatic Composition 485

	49 Semantic Web Service Automatic Composition Based on Discrete Event Calculus
	Abstract
	49.1…Introduction
	49.2…Discrete Event Calculus
	49.2.1 Event Calculus
	49.2.2 DEC

	49.3…Service Automatic Composition Method Based on DEC
	49.3.1 The Basic Service Processes Translation to DEC
	49.3.2 Web Service Automatic Composition Framework
	49.3.3 Abstract Service Planning
	49.3.3.1 Translation of IOPE to DEC Axioms
	49.3.3.2 Abductive DEC Planning Algorithm

	49.3.4 Generating Output Graphs from the Results of the Planner
	49.3.5 The Instance Service Matching Method

	49.4…Conclusion
	References

