
Chapter 4
Process Calculus for Cost Analysis
of Process Creation

Shin-ya Nishizaki, Mizuki Fujii and Ritsuya Ikeda

Abstract Many researchers have proposed formal frameworks for analyzing
cryptographic and communication protocols and have studied the theoretical
properties of the protocols, such as authenticity and secrecy. The resistance of
denial-of-service attacks is one of the most important issues in network security.
Several researchers have applied process calculi to security issues. One of the most
remarkable of these studies is Abadi and Gordon’s, based on Milner’s pi-calculus.
For the denial-of-service attack, Medow proposed a formal framework based on
the Alice-and-Bob notation, and Tomioka et al. proposed a process calculus based
on Milner’s pi-calculus, the Spice-calculus. Using the Spice-calculus, we can
evaluate the computational cost of executing processes. In our previous works, the
Spice-calculus could analyze computational costs such as arithmetic operations,
hash computation, and message transmission. However, the cost of process crea-
tion was disregarded. In this paper, we improve the Spice-calculus through adding
cost evaluation of process creations. We extend the syntax of the cost in the Spice-
calculus and operational semantics of the Spice-calculus. We then present an
example of the improved Spice-calculus.

Keywords Denial-of-service � Attack � Process calculus � Pi-calculus

S. Nishizaki (&) � M. Fujii � R. Ikeda
Department of Computer Science, Tokyo Institute of Technology, 2-12-1-W8-69,
Ookayama, Meguro-ku, Tokyo 152-8552, Japan
e-mail: nisizaki@cs.titech.ac.jp

M. Fujii
e-mail: mizuki.fujii@lambda.cs.titech.ac.jp

R. Ikeda
e-mail: ritsuya.ikeda@lambda.cs.titech.ac.jp

W. Lu et al. (eds.), Proceedings of the 2012 International Conference on Information
Technology and Software Engineering, Lecture Notes in Electrical Engineering 210,
DOI: 10.1007/978-3-642-34528-9_4, � Springer-Verlag Berlin Heidelberg 2013

33

4.1 Introduction

Vulnerability of communication protocols can cause various kinds of attacks,
which cause substantial damage to systems connected to the Internet. A denial-of-
service attack is one of the constant concerns of computer security. It can make the
usual services of a computer or network inaccessible to the regular users. An
archetypal example of DoS attack is a SYN flooding attack [1] on the Transmission
Control Protocol (TCP) (Fig. 4.1).

Before sending data from a source host S to a destination host D, the hosts have
to establish a connection between S and D, called three-way handshake. The host
S begins by sending a SYN packet including an initial sequence number x. The
host D then replies to S with a message in which the SYN and ACK flags are set,
indicating that D acknowledges the SYN packet from the S. The message includes
D’s sequence number y and incremented S’s sequence number (x ? 1) as an ACK
number. The host S sends a message with an ACK bit, a SEQ number (x ? 1), and
an ACK number (y ? 1).

Consider a situation that lasts for a short period during which an attacker, A,
sends an enormous number of connection requests with spoofed source IP-
addresses to a victim host, D. The number of actual implementations of half-
opened connections per port is limited since the memory allocation of data
structures for such a connection is limited (Fig. 4.2).

Recently, several researchers have studied DoS attacks from various view-
points, such as protection from DoS attacks using resource monitoring [2] and the
development of DoS resistance analysis [3, 4]. She extended the Alice-and-Bob
notation by attaching an atomic procedure annotation to each communication.

Fig. 4.1 Three-way
handshake of TCP

34 S. Nishizaki et al.

4.2 Process Calculus for Analyzing Denial-of-Service Attacks

4.2.1 The Spice Calculus

Tomioka et al. [5] proposed a formal system for DoS resistance analysis, the Spice
calculus, which is based on Milner’s process calculus [6] and its extension for
secure computation [7]. A characteristic feature of the calculus is a type system
which enables us to track the computational cost of each computer node. The type
of the Spice calculus represents the configuration of a distributed system.

For example, a typing of the Spice-calculus

AjðBjCÞ . P1jðQjP2Þ

means that the process P_1 has the type on the left hand side. This notation means
that A;B; C

P1,Q, P2 has type A;B; C, respectively; more intuitively, this means that pro-
cesses P1,Q, P2 are executed on machines A;B; C, respectively. The type AjðBjCÞ
means a distributed system which consists of A;B; C. The types of Spice-calculus
[5] are defined by the following grammar.

A ::¼ a :: x1; . . .; xnf g j ðAjBÞ

The typing of the Spice-calculus contributes to the following:

• identifying the origins of computational costs and
• formalizing current memory usage during execution of processes.

The type a :: {x1,…,xn} means that in the single computer node a, memory cells
x1,…,xn are occupied.

In order to track memory usage accurately, stricter restriction is imposed in the
Spice-calculus than in Milner’s original process calculus, the pi-calculus. For
example, a typing rule [5]

Fig. 4.2 SYN-flood attack

4 Process Calculus for Cost Analysis of Process Creation 35

a :: V . P V � fvðMÞ V � fvðNÞ
a :: V . out M Nh i; P

TypeOut

The first assumption of this rule forces the process P to be executed on the
single computer node a. Consequently, a term

inp nðxÞ; ðp jQÞ

is not allowed in the Spice-calculus, since (P | Q)$ must be executed on a
distributed system composed of multiple computer nodes.

The Spice-calculus is given operational semantics as a transition relation, in other
words, small-step semantics. We can find the computational cost consumed in each
transition step of the semantics. Moreover, we can identify not only the level of the
computational cost but also the origin of this cost. For example, [5], a rule

M # V : c

hashðMÞ # hashV : cþ hash

formulate hash-value computation. The cost c is incurred for evaluation of M and
hash for the hash-value computation. There are two kinds of transition relation
between processes giving the operational semantics of the Spice-calculus: one is a
reduction relation and another commitment relation. Inner-process computation is
formalized as the reduction relation and inter-process computation as the com-
mitment relation. The following is one of the rules defining the reduction relation:

M # V : c N # V : d

ðmatch M is N err fPg; QÞ [Q : a � ðcþ d þ matchÞRedMatch

The costs for evaluating M and N are c and d, respectively. The resulting value
of M and N is V. The following is one of the rules defining the commitment
relation:

a :: V ‘ inp nðxÞ; P!n ðxÞP : fa � storexg
CommIn

In this rule, the process inp n(x); P is transit to an intermediate form (x)P, which is
waiting for arrival of a message at the port n. The cost storex occurs at the node a.

Recently, Cervesato proposed another formal approach to quantitative analysis
of secure protocols [8].

4.2.2 Formalization of Process Creation

In the existing version of the Spice-calculus [5], the costs of memory and compu-
tation, such as hashing and arithmetic operations, are formalized. However, the cost
of process creation is overlooked. In this paper, we improve the Spice-calculus by
adding the costs of process creation.

36 S. Nishizaki et al.

Actually, process creation entails a certain amount of cost. For example, in a
variation of the Unix system, a Process Control Block (PCB) is allocated in a
kernel memory space to save the process context when the process is created.
Hence process-creating is considered as expensive. In order to formulate process
creation in the Spice-calculus, we introduce several new rules for the operational
semantics. In the reduction relation between processes, the process replication is
represented as a rule

repeat P [P j ðrepeat PÞ

The cost of creating a process is represented as process and is incorporated into
the rule as follows.

repeat P [P j ðrepeat PÞ : a � process

The terminated process is formalized as the nil stop. In order to formalize
elimination of the terminated processes precisely, we introduce another kind of
terminated process end and we add a new reduction rule in which stop is transit to
end as follows.

stop [end : a � �process

When a process is terminated and eliminated, a cost process is deducted.

4.3 Example of Formalization: Three-Way Handshake

TCP’s three-way handshake is described as follows in the Alice-and-Bob notation.

A! B : A;B; SA

B! A : B;A; SB; SA þ 1
A! B : A;B; SA þ 1; SB þ 1

In the Spice-calculus, we can write the protocol as the following process
expressions.

PA ¼
def

newðSAÞ;
store xsa ¼ SA;
out c ðA; B; xsaÞh i;
inp c ðpÞ;
split ½x0b; x0a; x0sb; x0saþ1� is p err free xsa; pf g;
free p;
match x0sa is A and x0sb is B and x0saþ1 is succðxsaÞ

err free xsa; x0b; x0a; x0sb; x0saþ1

� �
;

free x0b; x0a; x0saþ1;
out c A; B succ ðxsaÞ; succ ðx0sbÞ

� �� �
;

P0A

4 Process Calculus for Cost Analysis of Process Creation 37

PB ¼
def

newðSBÞ;
inp c ðq1Þ;
split ½ya; yb; ysa� is q1 err free q1f g;
free q1;
match yb is B err free ya; yb; ysaf g;
free yb;
store ysb ¼ SB;
out c B; ya; ysb; succðysaÞð Þh i;
inp c ðq2Þ;
split ½y0b; y0a; y0saþ1; y0sbþ1� is q2 err free ya; ysa; ysb; q2f g;
free q2;
match y0b is B and y0a is ya and y0saþ1 is succðyaÞ
and y0sbþ1 is succ ðysbÞ;

err free ya; ysa; ysb; y0b; y0a; y0saþ1; y0sbþ1

� �
;

free y0b; y0a; y0saþ1; y0sbþ1;
P0B

Then a normal situation of communication between these two processes is
represented as NormalConfig:

NormalConfig ¼defðrepeat PA j repeat PBÞ:

On the other hand, a situation of a SYN-flood attack [9] on the three-way
handshake protocol is described in Alice-and-Bob notation as follows.

I ! B : Ii; B; SI

B! I : B;A; SB; SIi þ 1

ði ¼ 1; 2; . . .Þ

The intruder in this attack is written as a process PI as follows.

PI ¼
def

newðiÞ; newðsÞ; out c ði; B; sÞh i; stop:

Since the intruder spoofs the senders’ IP-addresses, the responding packets
from the victim B are lost. In order to represent such lost packets, we introduce a
process PN which formulates the network:

PN ¼
def

inp cðrÞ; stop:

The attacking situation is written as a process AttackConfig:

AttackConfig ¼defðrepeat pI j repeat pB j repeat pNÞ:

Then the process is typed as

AttackConfig : ðijbjnÞ . ðrepeat pI j repeat pB j repeat pNÞ:

38 S. Nishizaki et al.

Reducing the process AttackConfig, we know the level of costs consumed
during execution.

AttackConfig
!! newðSBÞ; ðstop j repeat PA j ðinp c ðq2Þ; � � �Þ

jrepeat PBj stop j repeat PNÞ
: i � proces; b � proces; n � procesf g
þ i � pair; b � storef g
þ i � �proces; b � 2store; b � matchf g
þ b � pair; n � storef g
þ n � �procesf g
¼ i � pair; b � proces; b � pair;f

b � 3store; b � match; n � storeg

Here we know that not only memory cost but also process creation is consumed
by the SYN-flood attack.

4.4 Conclusion

In our previous works, the Spice-calculus could analyze computational costs such
as arithmetic operations, hash computation, and message transmission. However,
the cost of process creation was disregarded. In this paper, we improved the Spice-
calculus through adding cost evaluation of process creation and elimination. We
extended the syntax of the cost in the Spice-calculus and operational semantics of
the Spice-calculus. We then described TCP’s three-way handshake and the
SYN-flood attack as examples of our new calculus.

As well as the work presented in this paper, we have several other subjects to
study in future. One of the most important ones is formalizing and analyzing the
SYN-cookie method against the SYN-flood attack and other DoS-resistant meth-
ods [10, 11].

Acknowledgments This work was supported by Grants-in-Aid for Scientific Research (C)
(24500009).

References

1. Schuba CL, Krsul IV, Kuhn MG, Spafford EH, Sundaram A, Zamboni D (1997) Analysis of a
denial of service attack on TCP. In: Proceedings of the 1997 IEEE symposium on security
and privacy, pp 208–223. IEEE Computer Society, IEEE Computer Society Press

2. Millen JK (1993) A resource allocation model for denial of service protection. J Comput
Secur 2(2/3):89–106

3. Meadows C (1999) A formal framework and evaluation method for network denial of
service. In: Proceeding of the 12th IEEE computer security foundations workshop, pp 4–13

4 Process Calculus for Cost Analysis of Process Creation 39

4. Meadows C (2001) A cost-based framework for analysis of denial of service networks.
J Comput Secur 9(1/2):143–164

5. Tomioka D, Nishizaki S, Ikeda R (2004) A cost estimation calculus for analyzing the
resistance to denial-of-service attack. In: Software security—theories and systems. Lecture
Notes in Computer Science, vol 3233. Springer, New York, pp 25–44

6. Milner R, Parrow J, Walker D (1992) A culculus of mobile processes, part i and part ii. Inf
Comput 100(1):1–77

7. Abadi M, Gordon AD (1997) A calculus for cryptographic protocols: the spi calculus. In:
Fourth ACM conference on computer and communication security, pp 36–47. ACM Press,
New York

8. Cervesato I (2006) Towards a notion of quantitative security analysis. In: Gollmann D,
Massacci F, Yautsiukhin A (eds) Quality of protection: security measurements and metrics—
QoP’05, pp 131–144. Springer advances in information security 23

9. TCP SYN Flooding and IP spoofing attacks (1996), CA-1996-21
10. Aura T, Nikander P (1997) Stateless connections. In: International conference on information

and communications security ICICS’97. Lecture notes in computer science, vol 1334,
pp 87–97. Springer, Berlin

11. Aura T, Nikander P, Leiwo J (2001) DOS-resistant authentication with client puzzles. In:
Security protocols, 8th international workshop. Lecture notes in computer science, vol 2133,
pp 170–177. Springer, Berlin

40 S. Nishizaki et al.

	4 Process Calculus for Cost Analysis of Process Creation
	Abstract
	4.1…Introduction
	4.2…Process Calculus for Analyzing Denial-of-Service Attacks
	4.2.1 The Spice Calculus
	4.2.2 Formalization of Process Creation

	4.3…Example of Formalization: Three-Way Handshake
	4.4…Conclusion
	Acknowledgments
	References

