
Chapter 50
Optimization Design of Operating
Parameters for Hydrogen Cyanide
Conversion Rate Based on an Improved
Particle Swarm Optimization and BP
Neural Network

Yuantao Zhang and Taifu Li

Abstract An optimal design method of operating parameters in hydrogen cyanide
(HCN) production process is presented. Firstly the soft sensor model of HCN
conversion rate is established by BP neural network. Then considering the prac-
tical constraints of operating parameters and taking the maximum HCN conversion
rate as objective function, an improved particle swarm optimization (IPSO)
algorithm is introduced to optimize the operating parameters, which takes into
account the dynamic inertia weight and the particle average position to avoid
falling into local optimum and accelerate the convergence. Simulation results with
actual production data show that, compared with genetic algorithm (GA) opti-
mization, this method can obtain the optimal operating parameters of the HCN
production process.

Keywords Particle swarm optimization � BP neural network � HCN conversion
rate � Operating parameters optimization � Soft sensing model

50.1 Introduction

Hydrogen cyanide (HCN) is a colorless transparent toxic liquid with a bitter
almond flavor. It is widely used in the electroplating industry, mining industry,
cabin and warehouse smoked rodent control, manufacturing all kinds of resin
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monomers such as methyl acrylate resin and other industries. Furthermore HCN
can generate a lot of derivatives, which have important uses in the field of phar-
maceuticals, pesticides, fuel, light-sensitive chemicals, and engineering materials.
Therefore HCN market demand is broad. Nowadays most of the production of
HCN comes from the direct production, while the rest comes from the byproduct
of acrylonitrile. But direct method HCN conversion rate is usually low (60–70 %).
Therefore, the use of advanced computational intelligence techniques to study
imminent HCN conversion rate increases. However, the current research literature
in this respect at home and abroad is rare. Neural network can establish the object
mathematical model without considering the exact process by its strong nonlinear
approximation ability, it is widely used in the modeling of complex chemical
processes [1–3]. Particle swarm optimization (PSO), which comes from simulating
birds foraging in the process of migration and clustering behavior, is a global
random search algorithm based on swarm intelligence. PSO can be used to solve a
large number of nonlinear, nondifferentiable and multi-peak complex optimization
problems [4, 5]. In this paper, BP neural network is used for establishing the soft
sensor model of HCN conversion rate firstly, then taking the maximum HCN
conversion rate as objective function, an improved PSO algorithm is presented to
optimize the operating parameters. The research results can provide a new way of
thinking to improve HCN conversion rate in actual production process.

50.2 HCN Conversion Rate Soft Sensing Model Based
on BP Network

The direct method is also called Andrussow method by using methane, ammonia
gas and oxygen as the main raw material. It is an ammonia oxidation with the raw
material mixture passing through the wire mesh-like catalyst bed made of platinum
iridium alloy in the conditions of atmospheric pressure and 1000 �C above. Lit-
erature [6] indicates that three-layer BP neural network can be realized arbitrarily
complex nonlinear mapping as long as enough hidden nodes. That is to say it can
approximate function with arbitrary precision to achieve a very curve fitting.
Therefore we use three-layer BP neural network to establish HCN production
process firstly. Comprehensively analyzing of the HCN production process, the
nine operating parameters of HCN (the settings of the control system, shown in
Table 50.1) is chosen as the input variables of BP neural network and the output is
HCN conversion rate. The nodes of hidden containing layer are 5, the transfer
function of hidden layer nodes is Tausig function and the transfer function of
output layer nodes is Logsig function.

The BP neural network training samples come from 3411 groups of HCN real-
time production data in Chongqing Unisplendour Chemical Plant, in which 3241
groups are selected randomly as network training and the rest of 170 groups are
selected as predictive test. Firstly HCN production data are preprocessed, including
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gross error elimination, 3r method and five-spot triple smoothing algorithm. The
preprocessed data are shown as Table 50.2, where a denotes HCN conversion
rate.

Figure 50.1 shows the predicted HCN conversion rate by trained BP neural
network and Fig. 50.2 shows the error between prediction output and desired
output. The prediction performance indicators are as follows: mean absolute
deviation (MAD) is 1.1248, mean square error (MSE) is 2.4826, mean forecast
error (MFE) is 0.0327 and mean absolute percentage error (MAPE) is 1.5938.

50.3 IPSO Algorithm

Particle swarm optimization (PSO) algorithm is a new evolution of computing
technology based on social group behavior. The basic idea of PSO algorithm is
derived from study on the behavior of birds prey. In PSO, each iteration of the
particle updates itself by tracking personal optimal position and group optimal
position until now. Therefore, this algorithm is an efficient parallel search algo-
rithm, which can be used to solve a large number of nonlinear, nondifferentiable,
and multi-peak complex optimization problems. The basic PSO algorithm can be
described as follows:

Table 50.1 Operation parameters of HCN

Ammonia gas
compensation
pressure

Natural gas
compensation
pressure

Air
compensation
pressure

Ammonia gas
compensation
temperature

Drum
pressure

PAG PNG PA TAG PD

Reactor outlet
temperature

Ammonia gas
compensation
flow

Natural gas/
Ammonia
gas

Air/Ammonia gas

TRO FAG NGTAG ATAG

Table 50.2 Actual production data of HCN

Operating
parameters

Group 1 Group 2 Group 3 … Group 3410 Group 3411

TAGð�CÞ 31.6 31.3 31.5 … 31.8 32.1

FAGðkgf=cm3Þ 601 598 601 … 599 600
NGTAG 1.1430 1.1505 1.1464 … 1.1385 1.1333
ATAG 6.2013 6.2140 6.2096 … 6.2971 6.2933
PAGðMPaÞ 2.00 2.02 2.00 … 1.99 2.00
PNG(MPa) 1.99 1.99 1.99 … 1.99 2.00
PA(MPa) 2.00 2.01 2.00 … 1.99 1.99
PD(MPa) 2.77 2.53 2.67 … 2.92 2.85
TROð�CÞ 79 78 79 … 79 79
a 71.787 71.952 71.886 … 71.402 71.336
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Assume m particles compose a group in D-dimensional target search space,
where the ith particle is expressed as a D-dimensional vector xi ¼ ðxi1; xi2; � � � xiDÞ;
that is the potential solution. The best previous position of any particle is recorded
and represented as pbest. The best particle among all particles is called as gbest. The
flight velocity denoted by vi ¼ ðvi1; vi2; � � � viDÞ is also a D-dimensional vector. The
position and velocity of particles are updated according to the following equations.

vidðt þ 1Þ ¼ xvidðtÞ þ c1r1 pbestidðtÞ � xidðtÞ½ � þ c2r2 gbestdðtÞ � xidðtÞ½ � ð50:1Þ

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ ð50:2Þ

where i ¼ 1; 2; � � � ;m; d ¼ 1; 2; � � � ;D, x is inertia weight which decides the impact
of particle present speed to next generation. c1 and c2 are acceleration coefficients
with positive values. The relative sizes of c1 and c2 reflect the relative importance

Fig. 50.1 Prediction output

Fig. 50.2 Prediction error
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of pi and pg in evolution. r1 and r2 are random numbers between 0 and 1.
vid 2 �vmin

d ; vmax
d

� �
, xid 2 �xmin

d ; xmax
d

� �
, vmin

d
, vmax

d
, xmin

d and xmax
d represent actual

bounds.
Suitable selection of inertia weight provides a balance between global and local

explorations, thus requiring less iteration on average to find a sufficiently optimal
solution. As originally developed, often decreases linearly from 0.9 to 0.4 during a
run. The inertia weight is set according to the following equation [7].

x ¼ xstart � ðxstart � xendÞ � k=Gmax ð50:3Þ

where xstart is initial inertia weight, xend is inertia weight iterated to maximum
number, k is the number of iterations, Gmax is the maximum number of iterations.

As we known, each particle only uses individual optimum and group optimum
information in basic PSO algorithm. Considering the sharing of information in
group is the result of an evolutionary, the idea of group average position is pre-
sented to avoid group into a local optimum and accelerate the convergence.

Supposing that a particle swarm is composed of m particles, then the positions
of m particles can be denoted as P1 P2 � � �Pm½ �, and the average position of m
particles is

Pmean ¼
Xm

i¼1

Pi

m
ð50:4Þ

Therefore the velocity update equation of IPSO algorithm is

vidðt þ 1Þ ¼ xvidðtÞ þ c1r1 pbestidðtÞ � xidðtÞ½ � þ c2r2 gbestdðtÞ � xidðtÞ½ �
þ c3r3 pmeandðtÞ � xidðtÞ½ � ð50:5Þ

where c3 is a positive constant, r3 is a uniform random number between 0 and 1, x
is shown as Eq. (50.3). The position update equation of IPSO algorithm is equal to
basic PSO algorithm as Eq. (50.2).

It can be seen from Eq. (50.5) that each particle in IPSO draws lessons form the
experience of other particles and uses more information to decide its own
behavior. In other words, each particle is on longer search between group optimum
and individual optimum, but in group optimum, group average position and
individual optimum. IPSO algorithm still retains particle swarm global best
position, and furthermore, it can speed up the convergence rate, while group
average position is used for avoiding the group into a local optimum.

50.4 Operating Parameters Optimization of HCN
Conversion Rate

Choosing the maximum HCN conversion rate as fitness function, GA and IPSO are
used for optimizing the operating parameters respectively and the results are
shown in Table 50.2; Figs. 50.3 and 50.4. In IPSO, evolutionary generations
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are 200, population numbers are 80, acceleration coefficients c1 ¼ c2 ¼ 1:5,
c3 ¼ 1:2, inertia weight x ¼ 0:9� 0:5 � k=70. In GA, crossover probability is 0.4,
mutation probability is 0.2, evolutionary generations and population numbers are
the same as IPSO. The actual constraint ranges of operating parameters are also
shown in Table 50.3.

The simulation results show that the optimization performance of IPSO is better
than GA. IPSO has a faster convergence rate and stronger extremum optimization
ability. In Figs. 50.3 and 50.4, GA evolves to 188 generation to converge to
79.1282, while IPSO only evolves to 141 generation to converge to 82.4150. The
optimized operating parameters are shown in Table 50.2.

Fig. 50.3 Fitness curve of
GA

Fig. 50.4 Fitness curve of
IPSO
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50.5 Conclusion

According to the fact that direct method HCN conversion rate is low in Chongqing
Unisplendour Chemical Plant, in this paper, firstly the soft sending model of HCN
conversion rate is established by BP neural network, and then the operating
parameters of HCN production process are optimized by GA and IPSO respec-
tively to achieve extremum optimization. IPSO takes into account the dynamic
inertia weight and the particle average position to avoid falling into local optimum
and accelerate the convergence. The simulation results show that the optimization
performance of IPSO is better than GA. Furthermore, the optimized operating
parameters have been used in practical production to improve HCN conversion
rate indeed, therefore this paper has a certain academic value and engineering
significance.
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Table 50.3 Constraint ranges and optimization results of HCN operating parameters
Optimized
result

PAG PNG PA TAG PD TRO FAG NGTAG ATAG

Constraint
ranges

1.98–2.02 1.99–2.01 1.97–2.11 18.77–43.68 2.11–3.08 77–81.17 462.82–708.08 1.12–1.17 6.11–6.37

GA

a ¼ 79:1282 2.0072 2.0037 1.9933 41.6411 2.9939 78.6458 565.4187 1.1220 6.2970

IPSO
a ¼ 82:4150

2.0118 2.0102 1.9979 43.6829 2.7013 79.6965 551.0604 1.1201 6.3763
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