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Precise Fundamental Matrix Estimation
Based on Inlier Distribution Constraint

Yan Zhen, Xuejun Liu and Meizhen Wang

Abstract The fundamental matrix is an effective tool to analyze epipolar geom-
etry relationship between two-view images and plays an important role in com-
puter vision. Traditional RANSAC method selects the biggest consensus set of
inliers to estimate fundamental matrix. No previous methods have considered
whether such a choice really is the best. In this paper, a new algorithm for fun-
damental matrix estimation by considering the inliers distribution is proposed. It
takes the traditional RANSAC method as the basic framework and selects these
sets which contain a large number of inliers to construct a candidate set. Then
calculate the density of the inlier distribution and the mean of the epipolar distance
of the inlier sets in the candidate set. At last choose the optimum one as the inlier
set to estimate the fundamental matrix. Through experiment comparison with
previous methods on a large number of simulated and real image data show that
the proposed algorithm can achieve a more precise result.
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26.1 Introduction

The fundamental matrix describes the relationship between two images of the
same scene taken from two different viewpoints, namely, the epipolar geometry.
The epipolar constraint is the only geometric information could available from two
uncalibrated images [1]. Therefore, precise estimation of fundamental matrix is
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one of the most crucial steps in many computer vision applications such as 3D
reconstruction, visual navigation, stereo vision and motion segmentation [2, 3].

The fundamental matrix is most of the time evaluated from point correspon-
dences. However, the point correspondences inevitable contain noise and outliers,
thus affect the precise of the fundamental matrix. Noise calls for estimating fun-
damental matrix over the largest possible set of correspondences but outliers make
it awkward. In recent years, it has been done a lot of work on how to accurately
and robustly estimate fundamental matrix. From these studies, it showed that the
main difficulty of fundamental matrix estimation is how to quick and accurately
eliminate the outliers. The robust algorithms are used to solve this problem. These
methods are based on random selecting the points, so the quality of the sampling
has a direct impact on the precise of the fundamental matrix. Previous studies
showed that the evenly distribution can better represent the variation of the image
due to camera motion. So it is important to select a better inlier set for a more
precise fundamental matrix. However, only a few studies have taken into account
the distribution of the inlier set when estimating the fundamental matrix [4, 5].

Various properties and calculation methods for the fundamental matrix have
been studies in the last two decades. They can be roughly divided into three
different approaches: the linear, the iterative and the robust [6]. The linear methods
[6, 7] estimate the fundamental matrix by using seven or eight corresponding
points. With more than eight points, a least-squares technique is used. The
advantages of the linear methods are its simplicity for implementation and com-
putational efficiency, but they are very sensitive to noise. In order to obtain a better
result, the iterative and robust algorithms have to be considered. The iterative
approach [1, 3] has been proposed to minimize the sum of geometric distances
between the points and the corresponding epipolar lines, or the gradient-weighted
epipolar errors. Although iterative method is direct relation to a meaningful
geometric measure and the result is more accurate than linear method, it time
consuming and cannot cope with potential outliers. The third one are the robust
methods, they can alleviate the effect of outliers to the fundamental matrix esti-
mation. The three representative robust methods are M-Estimators, LMedS and
RANSAC [8, 9]. Robust methods can deal with the noise and false point corre-
spondences, but they require much more computational time and they still have
their limitations. In addition, in recent years, the genetic algorithm was introduced
to the fundamental matrix estimation [10, 11]. This could improve the accuracy of
the result, but the genetic algorithm is time consuming and thus result the algo-
rithm need more time.

This paper present a novel method to estimate the fundamental matrix, it based
on the RANSAC method and consider the inlier set distribution. Traditional
RANSAC method selects the biggest consensus set of inliers to estimate funda-
mental matrix, no previous methods have consider whether such a choice really is
the best. In our algorithm, we select these inlier sets that contain a large number of
inliers to construct a candidate set. Then calculate the mean of the epipolar dis-
tances and the density of the inlier sets in the candidate set. Finally choose the
minimum mean of the epipolar distances which need to meet the condition that it
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distribution should better than the one that has the largest number of inliers. After
selecting the proper inlier set, we use the M-Estimators method to estimate the
fundamental matrix.

The rest of this paper is organized as follows. Section 26.2 introduce the epi-
polar geometry and review the traditional algorithms for fundamental matrix
estimation. Section 26.3 we introduce the density of the inlier set and the strategy
of the proper inlier set selection. In Sect. 26.4, we describe the proposed algorithm
for fundamental matrix estimation. Some experiment results for synthetic and real
scenes are given in Sect. 26.5. Finally, the conclusion is described in the last
section.

26.2 Point Density and Proper Inlier Set Selection

26.2.1 Point Density

Previous studies show that the evenly distributed point set is effective for the
fundamental matrix estimation [4, 5]. This is mainly due to the fundamental matrix
contains the relative orientation and position between two cameras, so the inlier set
should reflect the variation of the images. Seo and Hong et al. proposed that the
standard deviation of the point density in sub-regions and an entire image can be
used to evaluate whether the inlier set is evenly distributed [5]. According the
number of the inliers, the image is divided into several uniform sub-regions by
Eq. (26.1).

Ws ¼ W=int
ffiffiffiffi
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p� �
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ð26:1Þ

where Ws and Hs denote the width and the height of the sub-region, N is the
number of the inliers, W and H are the width and height of the image. After
divided the image into sub-regions, then calculate the number of the sub-regions
and the inliers in each sub-regions, respectively using Ns and Psi denote it. At last,
compute the standard deviation of the point density by Eq. (26.2)
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26.2.2 Proper Inlier Set Selection

The traditional RANSAC method selects the biggest consensus set of inliers to
estimate the fundamental matrix. But this selection scheme always does not
guarantee the result is the best one. During the experiment, we found that
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sometimes using these inlier sets which are contain less number of inliers than the
largest one could obtain better results. So, if the proper inlier selected satisfy the
following two conditions: the first condition is that its standard deviation of
the point density should not larger than the one which has the largest number of
inliers; the other condition is that the average geometry distance should be the
minimum one, we can achieve a more precise estimation of the fundamental
matrix.

In order to show whether this hypothesis is correct, we use the simulated data
which are provided by Armangue and Salvi [6] to test it. The simulated data
contains 125 pairs of points. We added the random noise and the percentage of
mismatched data in it. Using the vector (a, b) to denote the noise is a Gaussian
distribution N(0, a) and the percentage of the mismatched data is b. After some-
times of random sampling, we choose these sets which should contain large
number of inliers. Among these sets, the largest number should have 10 % more
points than the one which has the least numbers. Then calculate the fundamental
matrix and the average geometry distance. At last select the inlier set which should
satisfy above conditions. Table 26.1 shows the experiment results.

From Table 26.1 we can see that, there are a total of nine groups of data, except
the one which contain no noise and mismatched data, due to all points in this group
are inliers, so the selected set contains all the points. Among the other eight
groups, only 50 % of the results choose the largest number of consensus as the
proper inlier set, the rest 50 % select the other set as the proper inlier set. Both the
density and the average distance are better than the traditional selection. So we can
conclude that select the proper inlier set can obtain a more precise result.

26.3 Proposed Fundamental Matrix Estimation Algorithm

Because using the traditional RANSAC algorithm always does not guarantee the
result is the best one, we propose a new algorithm to solve this problem. Due to
the point density has an important influence on the fundamental estimation, so the

Table 26.1 The results under different noise levels and different percentages of mismatched

Method
(a, b)

RANSAC Proposed method

Mean error Point density Inliers Mean error Point density Inliers

(0.0, 0 %) 0.000 0.970 125 0.000 0.970 125
(0.5, 0 %) 0.613 0.940 124 0.594 0.928 117
(0.5, 30 %) 0.555 1.090 80 0.555 1.090 80
(0.5, 45 %) 3.020 0.877 53 3.020 0.877 53
(0.5, 55 %) 11.135 1.330 43 5.653 1.246 38
(1.5, 0 %) 1.150 1.000 100 1.150 1.000 100
(1.5, 30 %) 1.375 1.077 71 1.239 0.909 67
(1.5, 45 %) 2.141 0.848 64 2.141 0.848 64
(1.5, 55 %) 10.418 1.076 52 7.201 1.050 49
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proposed algorithm considers these factors when selecting the inlier set. The basic
idea of the proposed algorithm is as follows: at first randomly selecting some
subsets to estimate the fundamental matrix and statistical the number of inliers.
Then choose some sets which have large number of inliers to calculate the point
density. The range of the candidate set can be determined by the number of the
inliers, in the range, the largest number of inliers should have 10 % more points
than the least one. Then select inlier set use the strategy that was proposed above.
At last use the M-Estimators method to estimate the fundamental matrix based on
the selected inlier set.

The complete procedure of the proposed method is summarized as follow:

(1) Select a random sample of eight point correspondences and estimate the
fundamental matrix by using the normalized eight-points algorithm. Then
compute the distance of point to its epipolar line for each point correspon-
dence and statistical the number of inliers, at the same time record the average
distance.

(2) Repeat (26.1) for K times and store fundamental matrix, the number of inliers
and the average distance.

K ¼ log 1� Pð Þ= log 1� 1� eð Þcð Þ ð26:3Þ

where P is the probability that these points are the inliers in sampling c points
at K times, e is the ratio of the outlier to the entire set.

(3) Select some inlier sets to construct a candidate inlier set.
(4) Compute the standard deviation of point density of the selected inlier sets.
(5) Select the inlier set by using the method that proposed above as the proper

inlier set.
(6) Re-estimate the fundamental matrix from the proper inlier set by using the

M-Estimators algorithm.

26.4 Experimental Results and Discussion

In this section, we show some experimental results of the proposed method. We
compare it with the results in the survey by Armangue and Salvi [6]. The test data
that used in our method are also provided by them, it includes synthesis data and
real image data.

First of all, Table 26.2 gives the result of the experiment on the simulation data.
From the table we can see that except the proposed algorithm, the LMedS method
can provide better result than others. But compared with our method, the result that
obtained by our method are better than the LMedS algorithm. So, we can conclude
that our proposed method can provide precise fundamental matrix under different
levels of noise and different percentages of mismatched.
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Table 26.2 Average distances under different noise and percentage of mismatched (unit: pixel)
(a, b)
Methods

(0.0, 0 %) (0.0, 10 %) (0.5, 0 %) (0.5, 10 %) (1.0, 0 %) (1.0, 10 %)

Seven points 14.250 25.370 163.839 140.932 65.121 128.919
Eigenvalue minimization 0.000 17.124 0.538 19.262 1.065 21.264
Gradients eigen 0.000 18.224 0.554 19.409 1.071 18.730
FNS 0.000 17.124 0.538 22.302 1.065 18.374
CFNS 0.000 16.978 0.543 22.262 1.066 19.638
LMedS 0.000 0.000 0.538 0.586 1.065 1.052
RANSAC 0.000 16.457 0.538 18.942 1.065 14.076
Our method 0.000 0.000 0.506 0.509 0.796 0.825

Table 26.3 Average distances of the real images (unit: pixel)

Scenes
Methods

Urban Underwater Robot Kitchen

Seven points 51.633 97.977 119.439 16.956
Eigenvalue minimization 0.440 1.725 4.080 2.623
Gradients eigen 0.446 1.581 4.787 1.901
FNS 0.437 1.599 4.080 2.623
CFNS 0.437 1.609 3.199 1.892
LMedS 0.319 0.847 1.559 0.545
RANSAC 0.440 1.725 3.855 2.623
Our method 0.290 0.538 0.340 0.395

Fig. 26.1 The epipolar lines of the inliers computed by the proposed method for real images
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We choose four real images to test our algorithm. The average distances of the
four data sets are summarized in Table 26.3. Figure 26.1 gives the epipolar lines
of the point correspondences computed from the fundamental matrix estimated by
the proposed algorithm. It is obvious from Table 26.3 that our method outperforms
the others.

From the experiment results of the simulate data sets and the real images sets,
we can conclude that the proposed algorithm can select the proper inlier set to
estimate the fundamental matrix and the precise of the result is better than the
other algorithms.

26.5 Conclusions

In this paper, we proposed a precise fundamental matrix estimation algorithm. The
proposed algorithm takes into account the average distance of the points to its
epipolar lines and the distribution of the inlier set to select the proper inlier set.
The traditional RANSAC algorithm choose the set that has the biggest number of
inliers to estimate the fundamental matrix, but the experimental results show that
this select strategy does not always guarantee a precise solution. Compared with
the traditional RANSAC algorithm, our algorithm select the inlier set is better than
the traditional one. Experimental results on synthetic and real images show that
our algorithm can obtain a more precise fundamental matrix. This method can be
used in the further work such as camera calibration and 3D scene reconstruction.
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