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Abstract. The Dendritic Cell Algorithm (DCA) is an immune-inspired
classification algorithm based on the behavior of dendritic cells. The
DCA performance depends on its data pre-processing phase including
feature selection and their categorization to specific signal types. For
feature selection, DCA applies the principal component analysis (PCA).
Nevertheless, PCA does not guarantee that the selected first principal
components will be the most adequate for classification. Furthermore,
the categorization of features to their specific signal types is based on
the PCA attributes’ ranking in terms on variability which does not make
“sense”. Thus, the aim of this paper is to develop a new DCA data pre-
processing method based on Rough Set Theory (RST). In this newly-
proposed hybrid DCA model, the selection and the categorization of
attributes are based on the RST CORE and REDUCT concepts. Results
show that using RST instead of PCA for the DCA data pre-processing
phase yields much better performance in terms of classification accuracy.

Keywords: Artificial immune systems, Dendritic Cells, Rough Sets,
Core, Reduct.

1 Introduction

Artificial Immune Systems (AIS) are a class of computationally intelligent sys-
tems inspired by the principles of the vertebrate immune system. As AIS is
being developed significantly, novel algorithms termed “2nd Generation AISs”
have been created. One such 2nd Generation AIS is the Dendritic Cell Algorithm
(DCA) [5] which is based on the behavior of the natural “dendritic cells” (DCs).
DCA has been successfully applied to various applications. In fact, its perfor-
mance depends on its data pre-processing phase which is divided into two main
steps: feature selection and signal categorization. More precisely, DCA uses the
principal component analysis (PCA) to automatically select features and to cat-
egorize them to their specific signal types; as danger signals (DS), as safe signals
(SS) or as pathogen-associated molecular patterns (PAMP)[6]. DCA combines
these signals with location markers in the form of antigen to process his classi-
fication task. For signal selection, PCA transforms a finite number of possibly
correlated vectors into a smaller number of uncorrelated vectors, termed “princi-
pal components” which reveals the internal structure of the given data with the
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focus on data variance [6]. However, using PCA for feature selection presents a
drawback as it is not necessarily true that the first selected components will be
the adequate features to retain [7]. Thus, the choice of these components for the
DCA can influence its classification task by producing unreliable results. As for
feature categorization, DCA uses the generated PCA ordered list of standard
deviation values to assign for each selected attribute its signal type (SS, DS or
PAMP). However, this categorization process which is based on high and low
values of the calculated standard deviations does not make “sense” as a coher-
ent process which can influence negatively the DCA functioning. Thus, in this
paper, we develop a novel AIS hybrid model based on a new automatic data
pre-processing phase for the DCA. As DCA was hybridized with various tech-
niques to improve its classification performance such as with fuzzy set theory
[2], a fuzzy clustering technique [3] and a maintenance policy [4], in this paper,
our new hybrid model named “RST-DCA” is grounded on the behavior of DCs
within the framework of Rough Set Theory (RST). Our RST-DCA model uses
the RST REDUCT and CORE concepts to select the right features to retain
and to categorize them into their right signal types. This paper is structured as
follows: Section 2 of this paper introduces the DCA. Section 3 presents the RST
concepts. Section 4 details our hybrid RST-DCA AIS system. The experiments
and the results are outlined in Section 5 and 6.

2 The Dendritic Cell Algorithm

The first DCA step is data pre-processing which includes feature selection and
signal categorization. For signal selection, DCA applies the PCA that reduces
data dimension, by accumulating the vectors that can be linearly represented by
each other [6]. Once features are selected, PCA is applied to assign each attribute
to its specific signal type. More precisely, DCA uses the PCA calculated standard
deviations and selects the highest values. As both PAMP and SS are positive
indicators of an anomalous and normal signal [5], one attribute is used to form
both PAMP and SS. Thus, the attribute having the lowest standard deviation
out of the selected attribute set is used to form both PAMP and SS. Using
one attribute for these two signals requires a threshold level to be set: values
greater than this can be classed as SS otherwise as PAMP [5]. As for the DS
attribute assignment and since the DS is “less than certain to be anomalous”, the
combination of the rest of the selected attributes are chosen to represent it [5].
After calculating the values of SS, PAMP and DS [5], DCA adheres these signals
and antigen to fix the context of each DC. DCA processes its input signals to
decide whether the collected DC goes to the semi-mature context, implying that
the antigen data is normal, or if the DC goes to the mature context, signifying an
anomalous data item. The nature of the response is determined by measuring the
number of fully mature DCs and is represented by the Mature Context Antigen
Value (MCAV). MCAV is used to assess the degree of anomaly of a given
antigen. By applying thresholds at various levels, analysis can be performed to
assess the anomaly detection capabilities of the algorithm. Those antigens whose
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MCAV are greater than the anomalous threshold are classified as anomalous
else as normal. More DCA details and its pseudocode can be found in [5].

3 Rough Set Theory

In RST [8], an information table is defined as a tuple T' = (U, A) where U and A
are two finite, non-empty sets, U the universe of primitive objects and A the set
of attributes. A may be partitioned into C' and D, called condition and decision
attributes, respectively. Let P C A be a subset of attributes. The indiscernibility
relation, IND(P), is an equivalence relation defined as: IND(P) = {(x,y) €
UxU :Va € P,a(x) = a(y)}, where a(x) denotes the value of feature a of object
x. The family of all equivalence classes of IND(P) is denoted by U/IND(P).
Equivalence classes U/IND(C') and U/IND(D) are respectively called condition
and decision classes. For any concept X C U and attribute subset R C A,
X could be approximated by the R-lower and R-upper approximations using
the knowledge of R. The X lower approximation is the set of objects U that
are surely in X, defined as: R(X) = J{E € U/IND(R) : E C X}. The X
upper approximation is the set of U objects that are possibly in X, defined as:
R(X) = {F € U/IND(R) : ENn X # 0}. The boundary region is defined
as: BNDg(X) = R(X) — R(X). If BNDg(X) is empty, R(X) = R(X), X
is said to be R-definable. Otherwise X is a rough set with respect to R. The
positive region of U/IN D(D) with respect to C' is denoted by POS.(D) where:
POS.(D) = |JR(X). POS.(D) is a set of objects of U that can be classified
with certainty to classes U/IND(D) employing attributes of C. For feature
selection, RST defines two main concepts; the CORE and the REDUCT. The
CORE is equivalent to the set of strong relevant features which are indispensable
attributes in the sense that they cannot be removed without loss of prediction
accuracy of the original database. The REDUCT is a combination of all strong
relevant features and some weak relevant features that can sometimes contribute
to prediction accuracy. These concepts provide a good foundation upon which
we can define our basics for defining the importance of each attribute. In RST,
a subset R C C' is said to be a D-reduct of C if POSr(D) = POSc(D) and
there is no R’ C R such that POSy (D) = POSc(D). In other words, the
REDUCT is the minimal set of attributes preserving the positive region. There
may exist many reducts (a family of reducts), REDE(C), in T. The CORE is
the set of attributes that are contained by all reducts, defined as: COREp(C) =
(REDp(C) where REDp(C) is the D-reduct of C. In other words, the CORE
is the set of attributes that cannot be removed without changing the positive
region. This means that all attributes present in the CORE are indispensable.

4 RST-DCA: The Solution Approach

4.1 RST-DCA Feature Selection Process

Our learning problem is to select high discriminating features for antigen classi-
fication from the original input data set which corresponds to the antigen infor-
mation database. We may formalize this problem as an information table, where
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universe U = {x1,22,...,2N} is a set of antigen identifiers, the conditional at-
tribute set C' = {c1, ca,...,cn} contains each feature of the information table to
select and the decision attribute D of our learning problem corresponds to the
class label of each sample. As DCA is applied to binary classification problems,
the input database has a single binary decision attribute. Hence, the decision
attribute D, which corresponds to the class label, has binary values d: either
the antigen is collected under safe circumstances reflecting a normal behavior
(classified as normal) or the antigen is collected under dangerous circumstances
reflecting an anomalous behavior (classified as anomalous). The condition at-
tribute feature D is defined as follows: D = {normal,anomalous}. For that,
RST-DCA computes, first of all, the positive region for the whole attribute set
C for both label classes of D: POSx({d}). Based on the RST computations
(seen previously in Section 3), RST-DCA computes the positive region of each
feature ¢ and the positive region of all the composed features C' — {c} (when dis-
carding each time one feature ¢ from C) defined respectively as POS.({d}) and
POSc_.3({d}), until finding the minimal subset of attributes R from C' that
preserves the positive region as the whole attribute set C' does. In fact, RST-
DCA removes in each computation level the unnecessary features that may affect
negatively the accuracy of the RST-DCA. The result of these computations is ei-
ther one reduct R = REDp(C) or a family of reducts REDY/(C). Any reduct of
REDZX(C) can be used to replace the original antigen information table. Conse-
quently, if the RST-DCA generates only one reduct R = REDp(C) then for the
feature selection process, RST-DCA chooses this specific R which represents the
most informative features that preserve nearly the same classification power of
the original data set. If the RST-DCA generates a family of reducts REDE(C)
then RST-DCA chooses randomly one reduct R among RED¥(C) to represent
the original input antigen information table. This random choice is argued by
the same priority of all the reducts in REDE(C). In other words, any reduct R
of the reducts REDE(C) can be used to replace the original information table.
These attributes which constitute the reduct will describe all concepts in the
original training data set. By using the REDUCT, our method can guarantee
that the selected attributes will be the most relevant for its classification task.

4.2 RST-DCA Feature Categorization Process

RST-DCA has to assign, now, for each selected attribute, produced by the pre-
vious step, its specific signal type; either as PAMP, as DS or SS. As previously
stated, both PAMP and SS have a certain final context (either an anomalous
or a normal behavior) while the DS cannot specify exactly the final context to
assign to the collected antigen as the DS may or may not indicate an anomalous
situation. This problem can be formulated as follows: Both PAMP and SS are
more informative than DS which means that both of these signals can be seen
as indispensable attributes. To define this level of importance, our method uses
the CORE RST concept. As for DS, it is less informative than PAMP and SS.
Therefore, RST-DCA uses the rest of the REDUCT attributes (discarding the
attributes of the CORE chosen to represent both SS and PAMP) to represent
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the DS. As stated in the previous step, our method may either produce only one
reduct R or a family of reducts REDE/(C). The process of signal categorization
for both cases are described in what follows: In case where our RST-DCA gener-
ates only one reduct; it means that COREp(C) = REDp(C). In other words,
all the features of the reduct are indispensable. In this case, RST-DCA selects
randomly one attribute ¢ from COREpR(C) and assigns it to both PAMP and
SS as they are the most informative signals. Using one attribute for these two
signals requires a threshold level to be set: values greater than this can be classed
as SS, otherwise as a PAMP signal. The rest of the attributes COREpR(C) —{c}
are combined and the resulting value is assigned to the DS as it is less than cer-
tain to be anomalous. In case where our RST-DCA produces a family of reducts
REDE(C), the RST-DCA presents both concepts: the core COREp(C) and
the reduct REDE(C). Let us remind that COREp(C) = (Y REDp(C); which
means that on one hand we have the minimal set of attributes preserving the
positive region (reducts) and on the other hand we have the set of attributes that
are contained in all reducts (core) which cannot be removed without changing
the positive region. This means that all the attributes present in the CORE are
indispensable. For signal categorization, PAMP and SS are assigned, randomly,
one attribute ¢ among the features in CORFEp(C). As for the DS signal as-
signment, RST-DCA chooses, randomly, a reduct REDp(C) among REDE(C).
Then, RST-DCA combines all the REDp(C) features except that ¢ attribute
already chosen and assigns the resulting value to the DS. Once signal catego-
rization is achieved, RST-DCA processes its next steps as the DCA does [5].

5 Experimental Setup

To test the validity of our RST-DCA hybrid model, our experiments are per-
formed using binary databases from [I] described in Table [l

For data pre-processing, DCA and RST-DCA uses PCA and RST, respec-
tively. Each data item is mapped as an antigen, with the value of the antigen
equal to the data ID of the item. To perform anomaly detection, a threshold
which is automatically generated from the data is applied to the MCAVs. The
MCAV threshold is derived from the proportion of anomalous data instances of

Table 1. Description of Databases

Database Ref  f Instances f Attributes
Spambase SP 4601 58
SPECTF Heart SPECTF 267 45
Cylinder Bands CylB 540 40
Chess Ch 3196 37
Tonosphere IONO 351 35
Mushroom Mash 8124 23
Congressional Voting Records CVT 435 17

Tic-Tac-Toe Endgame TicTac 958 10
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the whole data set. Items below the threshold are classified as class 1 and above
as class 2. The resulting classified antigens are compared to the labels given in the
original data sets. The results presented are based on mean MCAV values gener-
ated across 10 runs. We evaluate the performance of RST-DCA in terms of num-
ber of extracted features, sensitivity, specificity and accuracy which are defined
as: Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Accuracy =
(TP+TN)/(TP+ TN + FN + FP); where TP, FP, TN, and FN refer re-
spectively to: true positive, false positive, true negative and false negative. We
will also compare the classification performance of our RST-DCA method to
well known classifiers which are the Support Vector Machine (SVM), Artificial
Neural Network (ANN) and to the Decision Tree (DT).

6 Results and Discussion

In this Section, we show that using RST instead of PCA is much convenient for the
DCA data pre-processing phase as it improves its classification performance which
is confirmed by the results given in Table[2l Let us remind that for signal selec-
tion, DCA applies PCA where it selects the highest standard deviation values. As
the highest values have to be selected, this needs either to keep only the eigenval-
ues larger than 1 [7] or involving the user to decide which features to keep for the
algorithm. However, the fact of using eigenvalues can either lead to overestimate
the number of factors to keep or to underestimate it leading to ignore important
information. In addition, involving users to determine a priori the number of at-
tributes to retain may result to preserve more or less features than necessary. In
this Section, we will show that these problems are solved by our RST-DCA.
From Table 2] it is clearly seen that the number of features selected by our
RST-DCA is less than the one generated by DCA when applying PCA (PCA-
DCA). This can be explained by the appropriate use of RST for feature selection.
In fact, RST-DCA keeps only the most informative features which constitute the
REDUCT. For instance, by applying our RST-DCA method to the CylB data
set, the number of selected features is only 7 attributes. However, when applying

Table 2. DCA and RST-DCA Comparison Results

Sensitivity (%) Specificity (%) Accuracy (%) # Attributes

Database DCA DCA DCA DCA
PCA RST PCA RST PCA RST PCA RST
SP 86.76 94.53 87.58 94.47 87.26 94.5 14 8

SPECTF 72.16 84.43 67.27 7454 71.16 824 11 4
CylB 91.50 96.50 92.94 96.79 92.38 96.67 16 7
Ch 94.06 97.84 93.64 98.23 93.86 98.02 14 11
IONO 93.65 9523 94.22 96.88 94.58 96.29 24 19
Mash 99.41 99.82 99.28 99.73 99.34 99.77 7 6
CvVT 91.07 95.83 9213 97  91.72 96.55 14 8
TicTac 91.37 93.45 89.15 93.67 90.6 9352 7 6
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the PCA-DCA to the same database (CylB), the number of the retained features
is 16. We can notice that PCA preserves additional features which are the result
of the PCA overestimation of the number of factors to retain. This overestimation
affects the DCA classification task by producing unreliable results. On the other
hand, RST-DCA based on the REDUCT concept, selects the minimal set of
features from the original database and can guarantee that the reduct attributes
will be the most relevant for its classification task. In fact, by reducing more
the number of features while preserving the classification power of the original
data set, our RST-DCA has the advantages to decrease the cost of acquiring
data and to make the classification model easier to understand unlike when
applying the PCA. In addition, RST-DCA has sufficient advantages over the
PCA-DCA, as it does not require any additional information about data a priori
such as thresholds or expert knowledge on a particular domain. Thus, RST-
DCA results will not be influenced by any external information. As for the
classification accuracy, from Table 2] we can easily remark that the RST-DCA
accuracy is notably better than the one given by the PCA-DCA. For example,
when applying the RST-DCA to the CylB database, the RST-DCA accuracy is
set to 96.67%. Nevertheless, when applying the PCA-DCA to the same database,
the accuracy is 92.38%. Same remark is noticed for both the sensitivity and
the specificity criteria. These encouraging RST-DCA results are explained by
the appropriate set of features selected and their categorization to their right
and specific signal types. As stated previously, the classification results of the
DCA depends on its data pre-processing phase which is crucial to obtain reliable
results. RST-DCA uses the REDUCT RST fundamental concept to select only
the essential part of the original database. This pertinent set of minimal features
can guarantee a solid base for the signal categorization step. The RST-DCA good
classification results are also explained by the appropriate categorization of each
selected signal to its right signal type by using both the REDUCT and the
CORE concepts. As for DCA, by applying the PCA, it produces less accuracy in
comparison to our RST-DCA method which is explained by the inappropriate
use of the PCA for data pre-processing. In fact, the first components selected are
not necessarily the right set of features to retain since this set still contains extra
features that do not add anything new to the target concept while increasing the
cost of acquiring data. The set may also contain misleading features which have a
negative effect on classification accuracy. Furthermore, the DCA categorization
step does not make “sense” as a coherent categorization procedure.

The performance of our RST-DCA is, also, compared to SVM, ANN and to DT
in terms of the average of accuracies on the 8 data sets. The parameters of SVM,
ANN and DT are set to the most adequate parameters to these algorithms using
the Weka software. Figure[llshows that PCA-DCA has nearly the same classifica-
tion performance as SVM and ANN and a better one than DT. It also shows that
our RST-DCA outperforms all the mentioned classifiers including the PCA-DCA
in terms of overall accuracy. These encouraging RST-DCA results are explained by
the appropriate application of RST to the DCA data pre-processing phase making
the DCA a better classifier by generating pertinent and more reliable results.
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Fig. 1. Comparison of Classifiers’ Average Accuracies on the 8 Binary Datasets

Conclusion and Further Works

In this paper, we have introduced a new hybrid computational biological model
for the DCA based on RST. Our model aims to select the convenient set of
features from the initial database and to perform their signal categorization
using the REDUCT and the CORE RST concepts. The experimentation results
show that our RST-DCA is capable of performing better its classification task
than DCA and other classifiers. Future works will include the use of fuzzy rough
set theory for the DCA and the application of RST-DCA to real world problems.
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