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Abstract. In this paper, a new time-series forecasting model based on the 
Flexible Beta Operator Neural Tree (FBONT) is introduced. The FBONT 
model which has a tree-structural representation is considered as a special Beta 
basis function multi-layer neural network. Based on the pre-defined Beta 
operator sets, the FBONT can be formed and optimized. The FBONT structure 
is developed using the Extended Genetic Programming (EGP) and the Beta 
parameters and connected weights are optimized by the Particle Swarm 
Optimization algorithm (PSO). The performance of the proposed method is 
evaluated using time series forecasting problems and compared with those of 
related methods. 
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1 Introduction 

Time series forecasting play a major role in the characterization of time series 
performance by predicting the future value and understanding fundamental features in 
systems, so it has been a center of attention of several researches. Recently, various 
nonlinear time series forecasting methods have been proposed such as artificial neural 
networks (ANN) [1, 2, 3, 4], SVM [5], adaptive algorithms [6, 7], and have been 
successfully applied. 

A neural network’s performance depends mainly on two issues which are the 
network structure and the parameter’s adjustment on the continuous parameter space 
and these issues are closely coupled. For a given problem, the neural network structure 
is not unique and also it may be a single hidden layer is not enough. Thus, the design 
of ANN automatically is required and many important attempts have been developed 
such as evolutionary programming [8], Neuro Evolution of augmenting topologies [9]. 
Furthermore, weights and kernel parameters of ANNs can be learned by many 
methods, i.e., back-propagation algorithm [10], genetic algorithm [11], differential 
evolution algorithm [1, 3, 4], particle swarm optimization algorithm [2] and so on. 

Although conventional representation of ANN has the nonlinear approximation 
capability, it also presents many weaknesses, for example, the neural network’s structure 
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is difficult to regulate, it suffers from slow convergence characteristics and over-fitting 
phenomenon leading the decline of its generalization, it is prone to be trapped in local 
minima [12]. Thus a special multi-layer feedforward ANN has been proposed by Chen 
[13] and it is called flexible neural tree (FNT). FNT allows over-layer connections, input 
variables selection and different activation functions for different nodes [12]. Recent 
studies have begun to explore this representation of neural networks in the context of 
classification [14], recognition [15], approximation [16] and control [17], etc. To form 
the flexible neuron model, the most used flexible activation function is the Gaussian 
function. However, the Beta function [18, 19] shows its performance for standard 
representation of ANN against the Gaussian function due to its great flexibility and its 
universal approximation ability [1-4, 11]. For these reasons we adopted in this research 
the flexible Beta function to establish the flexible neuron model. 

In this paper, a flexible Beta operator neural tree (FBONT) model is proposed for 
time-series prediction problem. Based on the predefined Beta operator sets, a flexible 
Beta operator neural tree model can be created and evolved. The hierarchical structure 
is evolved using the Extended Genetic Programming (EGP). The fine tuning of the 
Beta parameters (centre, spread and the form parameters) and weights encoded in the 
structure is accomplished using the Particle Swarm Optimization algorithm (PSO).  

The paper is planned as follows: Section 2 describes the basic flexible Beta operator 
neural tree model. A hybrid learning algorithm for evolving the Beta function neural 
tree models is the subject of Section 3. The set of some simulation results are provided 
in Section 4. Finally, some concluding remarks are presented in Section 5. 

2 Flexible Beta Operator Neural Tree Model 

In this work, we have used the tree-based encoding method as it defined by Chen [12-
17] for representing a FBONT model. The function node set F and terminal node set 
T used for generating a FBONT model are described as follows: ܵ ൌ ܨ ڂ ܶ ൌ ሼ൅ଶ, ൅ଷ, … , ൅ேሽ ڂ  ሼݔଵ, … ,  ெሽ                   (1)ݔ

where +n (n = 2,. . . , N) denote non-terminal nodes and represent flexible neuron Beta 
operators with n inputs.  

x1, x2,. . ., xM are terminal nodes and defining the input vector values. The output of 
a non-terminal node is calculated as a flexible neuron model (fig.1). 

In the creation process of Beta operator neural tree, if a non-leaf node, i.e., +n is 
selected, n real values are randomly created to represent the connected weight 
between the node +n and its offspring. In addition, seen that the flexible activation 
function used in this study is the beta function, four adjustable parameters (the 
center  c୬ , width σ୬  and the form parameters p୬, q୬ሻ are randomly generated as 
flexible Beta operator parameters. For each non-terminal node, i.e., +n, its total 
excitation is calculated by: ݕ௡ ൌ  ∑ ௝ݓ כ ௝௡௝ୀଵݔ                                 (2) 

where  ݔ௝ ( j = 1, …, n) are the inputs to node +n. The output of node +n is then 
calculated by: 
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the (1-T)% best individuals are selected to survive to the next generation and the 
remaining individuals are removed and replaced with new ones.  

Crossover: the tree structure crossover operation is implemented by taking randomly 
selected sub-trees in the individuals and selecting randomly one non-leaf node in the 
hidden layer for each chromosome, and then swapping the selected sub-trees. 

Mutation: four different mutation operators were used to generate offspring from the 
parents. These mutation operators are as follows: 

1. Changing one leaf node: select one leaf node randomly in the neural Beta operator 
tree and replace it with another leaf node;  

2. Changing all the leaf nodes: select all leaf nodes in the neural Beta operator tree 
and replace it with another leaf node;  

3. Growing: select a random leaf node in hidden layer of the neural Beta operator tree 
and replace it with a randomly generated sub-tree;  

4. Pruning: randomly select a Beta operator node in the neural tree and replace it with 
a random leaf node.  

After each mutation or crossover operator, a redundant terminals pruning operator 
will be applied, if it is possible; i.e. if a Beta operator node has more than two 
terminals, the redundant terminals should be deleted. 

3.2 Parameter Optimization with PSO 

PSO was proposed by Kennedy and Eberhart [20] and is inspired by the swarming 
behavior of animals. The initial population of particles is randomly generated. Each 
particle has a position vector denoted by xi. A swarm of particles ‘flies’ through the 
search space; with the velocity vector vi of each particle. Each particle records its best 
position corresponding to the best fitness in a vector pi. Moreover, the best position 
among all the particles obtained in a certain neighborhood of a particle is recorded in 
a vector pg. At each iteration, a new velocity for particle i is updated by: ݒ௜ሺݐ ൅ 1ሻ ൌ ሻݐ௜ሺݒ ݓ  ൅ ܿଵ߮ଵ൫݌௜ሺݐሻ െ ሻ൯ݐ௜ሺݔ   ൅  ܿଶ߮ଶ ቀ݌௚ሺݐሻ െ  ሻቁ       (4)ݐ௜ሺݔ

where ܿଵ,ܿଶ (acceleration) and ݓ (inertia) are positive constant and ߮ଵ and ߮ଶ are 
randomly distributed number in [0,1]. The velocity vi is limited in[-vmax ,+vmax]. Based 
on the calculated velocities, each particle changes its position: ݔ௜ሺݐ ൅ 1ሻ ൌ ሻݐ௜ሺݔ ൅ ሺ1 െ ݐ௜ሺݒሻݓ ൅ 1ሻ                      (5) 

3.3 Fitness Function 

To find an optimal FBONT, the Root Mean Squared Error (RMSE) is employed as a 
fitness function: 
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ሺ݅ሻݐ݅ܨ ൌ  ටଵ௉  ∑ ሺݕ௧௝ െ ௢௨௧௝ݕ ሻଶ௉௝ୀଵ                         (6) 

where P is the total number of samples,  ݕ௧௝ and ݕ௢௨௧௝  are the actual time-series and 
the FBONT model output of jth sample. ݐ݅ܨሺ݅ሻ  denotes the fitness value of ith 
individual. 

3.4 The Learning Algorithm for FBONT Model 

To find an optimal or near-optimal FBONT model, architecture and parameters 
optimization are used alternately. Combining of the EGP and PSO algorithms, a 
hybrid algorithm for evolving FBONT model is described as follows and is depicted: 

(a) Randomly create an initial population (FBONT trees and its parameters); 
(b) Structure optimization is achieved by the Extended Genetic Programming 

(EGP) as described in section 3.1; 
(c) If a better architecture is found or a maximum number of generation is attained, 

then go to step (d), otherwise go to step (b); 
(d) Parameter optimization is achieved by the PSO algorithm. The architecture of 

FBONT model is fixed, and it is the best tree found by the structure search. The 
parameters (weights and flexible Beta function parameters) encoded in the best 
tree formulate a particle; 

(e) If the maximum number of iterations is attained, or no better parameter vector 
is found for a fixed time then go to step (f); otherwise go to step (d); 

(f) If satisfactory solution is found, then the algorithm is stopped; otherwise go to 
step (b). 

4 Experimental Results  

To evaluate its performance, the proposed FBONT model is submitted to time-series 
prediction problems: Mackey-Glass chaotic and the Jenkins–Box time series.  

4.1 Mackey–Glass Time Series Prediction 

A time-series prediction problem can be constructed based on the Mackey–Glass [21] 
differential equation:    ݀ሺݔሺݐሻሻ݀ݐ ൌ െ߬ሻݐ10ሺݔെ߬ሻ1൅ݐሺݔܽ  െ  ሻ                                            (7)ݐሺݔܾ

The setting of the experiment varies from one work to another. In this work, the same 
parameters of [2] and [14], namely a = 0.2, b = 0.1 and ߬ ≥ 17, were adopted, since 
the results from these works will be used for comparison. 500 data pairs of the series 
were used as training data, and 500 were used to validate the model identified. The 
used Beta operator sets to create an optimal FBONT model is ܵ ൌ ܨ ڂ ܶ ൌሼ൅ଶ, ൅ଷ, ൅ସ, ൅ହሽ ڂ  ሼݔଵ, ,ଶݔ ,ଷݔ ସሽݔ , where ݔ௜  (i = 1, 2, 3, 4) denotes ݔሺݐሻ, ݐሺݔ െ
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Fig. 4. The evolved FBONT and its output for forecasting Jenkins–Box data 

Table 2. Comparison of testing errors of Box and Jenkins 

Method  Prediction error 
(MSE) 

ANFIS model [23] 0.0073 
FuNN model [24] 0.0051 
FNT [14] 0.00066 
HMDDE [3] 0.0581 
FBONT 0.000135 

5 Conclusion  

In this paper, a Flexible Beta Operator Neural Tree model and its design and 
optimization algorithm are proposed for time-series forecasting problems. The work 
demonstrates that the FBONT model can successfully evolve the structure and 
parameters of artificial neural networks simultaneously by using a tree representation. 
In fact, the FBONT structure is developed using Extended Genetic Programming 
(EGP) and the Beta parameters and connected weights are optimized by Particle 
Swarm Optimization algorithm (PSO). The experiment results show that the FBONT 
model can effectively predict the time-series problem such as Mackey-Glass chaotic 
time series and the Jenkins–Box time series. 

Acknowledgments. The authors would like to acknowledge the financial support of 
this work by grants from General Direction of Scientific Research (DGRST), Tunisia, 
under the ARUB program. 

References 

1. Dhahri, H., Alimi, A.M.: Opposition-based Differential Evolution for Beta Basis Function 
Neural Network. In: IEEE Congress on Evolutionary Computation, Barcelona, Spain,  
pp. 1–8 (2010) 

2. Dhahri, H., Alimi, A.M., Karray, F.: Designing Beta Basis Function Neural Network for 
Optimization Using Particle Swarm Optimization. In: IEEE International Joint Conference 
on Neural Networks, Hong Kong, China, pp. 2564–2571 (2008) 



24 S. Bouaziz, H. Dhahri, and A.M. Alimi 

3. Dhahri, H., Alimi, A.M., Abraham, A.: Hierarchical multi-dimensional differential 
evolution for the design of beta basis function neural network. Neurocomputing 79,  
131–140 (2012) 

4. Dhahri, H., Alimi, A.M.: The Modified Differential Evolution and the RBF (MDE-RBF) 
Neural Network for Time Series Prediction. In: Proc. of the International Conference, pp. 
5245–5250 (2006) 

5. Liu, H., Liu, D., Deng, L.-F.: Chaotic Time Series Prediction Using Fuzzy Sigmoid 
Kernel-based Support Vector Machines. Chin. Phys. 15(6), 1196–1200 (2006) 

6. Li, H., Zhang, J., Xiao, X.: Neural Volterra Filter for Chaotic Time Series Prediction. 
Chin. Phys. 14(11), 2181–2188 (2005) 

7. Meng, Q., Zhang, Q., Mu, W.: A Novel Multi-step Adaptive Prediction Method for 
Chaotic Time Series. Acta Phys. Sin. 55(4), 1666–1671 (2006) 

8. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Trans. Evolut. 
Comput. 3, 82–102 (1999) 

9. Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks through Augmenting 
Topologies. Evolut. Comput. 10, 99–127 (2002) 

10. Stepniewski, S.W., Keane, A.J.: Pruning Back-propagation Neural Networks Using 
Modern Stochastic Optimization Techniques. Neural Comput. Appl. 5, 76–98 (1997) 

11. Aouiti, C., Alimi, A.M., Maalej, A.: A Genetic Designed Beta Basis Function Neural 
Networks for Approximating of Multi-variables Functions. In: Proc. Int. Conf. Artificial 
Neural Nets and Genetic Algorithms. Springer Computer Science, Prague, Czech 
Republic, pp. 383–386 (2001) 

12. Chen, Y., Yang, B., Meng, Q.: Small-time Scale Network Traffic Prediction Based on 
Flexible Neural Tree. Appl. Soft Comput. 12, 274–279 (2012) 

13. Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series Forecasting Using Flexible Neural 
Tree Model. Inf. Sci. 174, 219–235 (2005) 

14. Chen, Y., Abraham, A., Yang, B.: Feature Selection and Classification using Flexible 
Neural Tree. Neurocomput. 70, 305–313 (2006) 

15. Chen, Y., Jiang, S., Abraham, A.: Face Recognition Using DCT and Hybrid Flexible Tree. In: 
Proc. of the International Conference on Neural Networks and Brain, pp. 1459–1463 (2005) 

16. Chen, Y., Peng, L., Abraham, A.: Exchange Rate Forecasting Using Flexible Neural Trees. 
In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, 
pp. 518–523. Springer, Heidelberg (2006) 

17. Chen, Y., Meng, Q., Zhang, Y.: Optimal Design of Hierarchical B-Spline Networks for 
Nonlinear System Identification. J. Dynam. Continu. Discrete Impul. Systems Series B (2006) 

18. Alimi, A.M.: The Beta System: Toward a Change in Our Use of Neuro-Fuzzy Systems. 
Int. J. Manag. Invited Paper, 15–19 (2000) 

19. Alimi, A.M.: The Beta Fuzzy System: Approximation of Standard Membership Functions. 
In: Proc. 17eme Journees Tunisiennes d’Electrotechnique et d’Automatique: JTEA 1997, 
Nabeul, Tunisia, pp. 108–112 (1997) 

20. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE 
International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995) 

21. Lzvbjerg, M., Krink, T.: Extending particle swarms with self-organized criticality.  
In: Proceedings of the Fourth Congress on Evolutionary Computation (CEC 2002),  
pp. 1588–1593. IEEE Press, Piscataway (2002) 

22. Box, G.E.P., Jenkins, G.M.: Time Series Analysis-Forecasting and Control. Holden Day, 
San Francisco (1976) 

23. Nie, J.: Constructing fuzzy Model by Self-organising Counter Propagation Network. IEEE 
Trans. Systems Man Cybern. 25, 963–970 (1995) 

24. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing: a Computational 
Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997) 


	Evolving Flexible Beta Operator Neural Trees (FBONT) for Time Series Forecasting

	Introduction
	Flexible Beta Operator Neural Tree Model
	The Hybrid FBONT Evolving Algorithm 

	Structure Optimization

	Parameter Optimization with PSO
	Fitness Function
	The Learning Algorithm for FBONT Model

	Experimental Results
	Mackey–Glass Time Series Prediction
	Box and Jenkins’ Gas Furnace Problem


	Conclusion
	References




